Harding Lawson Associates

Engineers Geologists & Geophysicists

Volume II

Point Thomson Development Project Winter 1982 Geotechnical Investigation

prepared for EXXON COMPANY, U.S.A.
Production Department Western Divisor

j#-3 0 **12**

VOLUME II

POINT THOMSON DEVELOPMENT PROJECT WINTER 1982 GEOTECHNICAL INVESTIGATION EXXON COMPANY, U.S.A

HLA JOB NO. 9612,031.08

A Report Prepared for

EXXON COMPANY, U.S.A. 1800 Avenue Of The Stars Los Angeles, CA 90067

by

Donald E. Bruggers, P() Civil Engineer CE-4882

Jay M. England, P.E. Civil Engineer 1943-E

HARDING LAWSON ASSOCIATES 624 WEST INTERNATIONAL AIRPORT ROAD ANCHORAGE, ALASKA 99502 907/276-8102

JUNE, 1982

REPORT COPY Nº

This is a proprietory report prepared for Exxon Company USA for the Point Thomson Development Project.

APPENDIX A EXISTING INFORMATION

1.	Geotechnical Investigation Beaufort Sea
2.	Interpretation of Geophysical, Geologic and
	Engineering Data Beaufort Sea, Alaska
3.	Drill Sites B, D, E, Fl, F2 - Soil Investigation
	a. Drill Site B
	b. Drill Site D
	c. Orill Site E
	d. Drill Site F
	e. Drill Site F2
ONS	HORE SOIL INVESTIGATIONS
1.	Gravel Study - Field Exploration and Laboratory Tests
2.	Field Density Tests - Field Construction Observation
	of Frozen Gravel Fill Placement At Three Orill Sites
	in the Point Thomson Area

APPENDIX A EXISTING INFORMATION

Previous soil investigations for the development of the Point Thomson Development (PTD) area have produced a collection of geotechnical data. This chapter summarizes the available onshore and offshore geotechnical information sources pertinent to development of the PTD area.

The studies cited were performed for either government agencies or partners in the PTD area. The list is limited to data available to Harding Lawson Associates (HLA) and used in the current investigation. The locations of the studies along with the boring locations for this study are shown on Plate A-1.

A. Offshore Soil Investigations

Geotechnical Investigation Beaufort Sea

HLA performed this investigation in February and March, 1979 for the United States Geological Survey (USGS). Four borings for this USGS investigation were drilled within the proposed PTD area to depths of 42 to 103 feet below mudline. Logs for these four borings were generalized in the Alaska Oil and Gas Association study and are shown on Plates A-2 through A-5.

2. Interpretation of Geophysical, Geologic and Engineering Data Beaufort Sea, Alaska

This study was performed in November, 1979 for eight oil companies by HLA. This paper presented an interpretation of geophysical and geotechnical data available in the Prudhoe Bay-Point Thomson region from 1971-1977 and involved the geotechnical data generated in the 1979 USGS investigation.

JP

9612,031.08

DER

DRAWN

JOB NUMBER 9612,031.08 APPROVED DING

REVISED

Refer to Plate A21, Bonding index ## Refer to Plate 11, Explanation of Geologic Map Symbols

Harding Lawson Associates Engineers, Geologists & Geophysicists Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

A-5

DRAWN JP 9612,031.08

DEB

DAYE REVISED

3. Drill Sites B, D, E, Fl, F2 - Soil Investigation

These five sites were investigated in February and March, 1980 by HLA for Exxon Company, U.S.A. Several borings were drilled at each site. Generalized subsurface profiles of conditions encountered at each site are presented on Plates A-6 through A-10 and are described below.

a. Drill Site B

Drilling operations were conducted on the ice from February 29 through March 2, 1980. Five test borings were drilled at the locations shown on Plate A-6. Ice thickness at boring locations varied from 4.0 to 4.8 feet and the water depth (top of ice to mudline) ranged from 6.6 to 9.4 feet. The test borings ranged in depth from 47.0 to 100.3 feet below mudline. A generalized subsurface profile of the site is presented on Plate A-6.

The upper stratum extending from the mudline to a depth of 20 to 25 feet is a Holocene unit. This unit is comprised of sand, silty sand and thin interbedded layers of sandy and clayey silt. The sand is fine-grained and loose to medium dense. The silt layers are medium stiff and have medium plasticity.

A late Pleistocene stratum of silt and clay underlies the surficial Holocene deposit. This stratum extends to depths of 35 to 46 feet and ranges in thickness from 14 to 24 feet. The stratum contains occasional, discontinuous silty sand and gravel lenses, some organic silt layers, and occasional thin seams of peat. The silt and clay are overconsolidated and medium stiff to stiff.

The silt and clay are underlain by a glaciofluvial Pleistocene deposit of silty sand and gravel. This deposit extended to the depths penetrated by the borings.

. At the time of our investigations, the soils were unbonded (*) from the mudline to depths ranging from 31 to 36 feet. Below these depths the soil is bonded.

The ground temperatures were measured in Boring B-1 using down-hole thermistors. The ground temperatures measured approximately 44 hours after completion of the boring ranged from -1.6° C to -0.6° C.

b. Drill Site D

Drilling operations were conducted at the "D" site from March 3 through 6, 1980. The island is approximately 430 feet in width (bank-to-bank) at the proposed drill pad location. Surface elevations vary across the drill pad site from 2.6 to 4.3^(**). Five test borings were drilled at the locations shown on Plate A-7 to depths of 41.5 to 100.0 feet. A generalized subsurface profile of the site is presented on Plate A-7.

A Holocene unit consisting of sand and silty sand extends from the ground surface to depths of 12 to 17 feet. The sand is fine to medium grained with occasional fine gravel and thin gravel lenses. The unbonded sand is medium dense to dense.

The surficial sand is underlain by a late Pleistocene deposit consisting predominantly of clayey silt with some silty clay layers. Generally, the silt and clay have medium plasticity and the unbonded soils are medium stiff to stiff. At depths ranging from 30 to 45 feet the silt and clay contain interbedded silty sand and gravel.

^{(*) &}quot;Unbonded" soil denotes soils which exhibit temperatures below OOC but behave in a thawed manner due primarily to saline concentrations in the pore water. "Bonded" soil denotes soils which exhibit temperatures below OOC and behave as an ice-cemented soil mass having frozen pore water.

^(**) All elevations refer to feet above Mean Lower Low Water (MLLW).

In Boring D-1 sandy gravel, gravelly clay, and sand were encountered beginning at a depth of 68 feet and extending to the 100-foot depth penetrated by the boring.

At the time of our investigation the soils were bonded from the ground surface to depths ranging 8 to 11 feet. Underlying the surficial bonded soils is an unbonded zone ranging in thickness from 3 feet in Boring D-3 to 13 feet in Boring D-1. Ground-water seepage occurred in several of these unbonded zones. Beneath this zone the soils were bonded to a depth of approximately 79 feet. From 79 to 100 feet the soil was unbonded. The bonded soils encountered during our investigation are denoted on the boring logs and on the design and subsurface profiles.

The ground temperatures were measured in Borings D-1 and D-2 using down-hole thermistors. In Boring D-1 the ground temperatures, measured approximately 84 hours after the boring was completed, varied from -9.2° C at a depth of 5.7 feet to -2.5° C at a depth of 51.7 feet. In Boring D-2 the ground temperatures, measured approximately 71 hours after completion of the boring, varied from -13.3° C at a depth of 4.0 feet to -3.4° C at a depth of 49 feet.

c. Orill Site E

Drilling operations were conducted at the "E" site from March 6 through 8, 1980. At the proposed drill pad site the island varies in width (bank-to-bank) from approximately 480 to 600 feet. The surface elevation varies across the pad from 3.2 to 5.3 feet. Five test borings were drilled at the locations shown on Plate A-8 to depths of 51.5 to 101.5 feet. A generalized subsurface profile of the site is presented on Plate A-8.

The borings encountered Holocene deposits extending from the ground surface to depths of 28 to 33 feet. The surficial 9 to 13 feet of this deposit consists of fine to medium grained sand with occasional thin gravel layers in the upper five feet. The lower portion of the deposit consists of silty sand and sandy silt with some organics. The deeper sand is also fine to medium grained and the silt has a low plasticity.

The Holocene unit is underlain by late Pleistocene silt and clay which extend to the depths penetrated by the borings with the exception of a sand pocket or layer encountered in Boring E-1 at a depth of 86 feet.

In Borings E-1, E-3, and E-4 the subsurface soils were bonded from the ground surface to the depth penetrated by the borings. In Boring E-2 an unbonded zone was encountered from approximately 18 to 22 feet; seepage water was also encountered in this zone. In Boring E-5, unbonded zones were encountered from 13 to 18 feet and 22 to 29 feet.

The ground temperatures were measured in Boring E-1 using down-hole thermistors. The ground temperatures, measured approximately 50 hours after completion of the boring, varied from -19.4° C at the ground surface to -4.2° C at a depth of 50.5 feet.

d. Drill Site F

Drilling operations were conducted at the "F" site from March 9 through 12, 1980. The island is approximately 150 feet in width (bank-to-bank) at the proposed drill pad location. Surface elevations vary across the drill pad site from 0.9 to 4.9 feet. Five test borings

drilled at the site ranged in depth from 50.0 to 104.5 feet at the locations shown on Plate A-9. A generalized subsurface profile of the site is presented on Plate A-9.

A Holocene unit consisting of sand and silty sand extends from the ground surface to a depth of approximately 20 feet. The sand is fine to medium grained and the unbonded sand is dense to very dense. A gravel layer 1.5 to 3.0 feet thick was encountered in the upper 5 feet of several test borings.

The sand is underlain by late Pleistocene deposits consisting of interbedded silt, clay and organic silt to a depth of approximately 40 feet, and gray silty clay below a depth of 40 feet. The silt and clay generally have medium to low plasticity and the unbonded materials are soft to medium stiff. The gray silty clay extended to the depths penetrated by Borings F-2 through F-5 and to a depth of 77 feet in Boring F-1. Below 77 feet and extending to the depth penetrated, Boring F-1 encountered a later to middle Pleistocene stratum of gray sandy silty gravel.

The surficial soils were bonded to depths of 6 to 10 feet. Beneath the surficial bonded zone, an unbonded zone was encountered. The thickness of the unbonded zone varied from 3 feet in Boring F-3 to 33 feet in Boring F-2.

The ground temperatures were measured in Boring F-1 using down-hole thermistors. The ground temperatures measured approximately 156 hours after completion of the boring ranged from -21.1° C at the ground surface to -2.7° C at a depth of 53 feet.

e. Drill Site F2

Drilling operations were conducted at the "F2" site from March 12 through 14, 1980. At the proposed drill pad location the width of the island varies from approximately 290 to 340 feet (bank-to-bank). Surface elevations vary across the drill pad site from 2.6 to 4.9 feet. Five test borings were drilled at the locations shown on Plate A-10 to depths of 56.5 to 101.5 feet. A generalized subsurface profile of the site is presented on Plate A-10.

A Holocene unit consisting of sand and silty sand extends from the ground surface to a depth of approximately 24 feet. The sand is fine to medium grained and medium dense in the unbonded zones. A thin gravel layer was encountered in the upper five feet of several of the borings.

Underlying the sand is late Pleistocene silt and clay. The silt has a plasticity ranging from low to medium, while the clay plasticity ranges from medium to high. The upper portion of the stratum contains some organics. The silt and clay extended to a depth of 90 feet in Boring F2-1 where a sandy gravel was encountered to the depth penetrated by the boring.

The surficial soils were bonded from the ground surface to depths of 8 to 16 feet. The bonded soils are underlain by an unbonded zone varying in thickness from 6 feet in Borings F2-1 to 16 feet in Boring F2-5. Below this zone the soils were bonded to the depth penetrated by the borings.

The ground temperatures were measured in Boring F2-5 using down-hole thermistors. The ground temperatures, measured approximately 28 hours after the boring was completed, ranged from -20.8° C at the ground surface to -2.6° C at a depth of 55.8 feet.

B. Onshore Soil Investigations

1. Gravel Study - Field Exploration and Laboratory Tests

This onshore study was performed in March, April and May 1980 by HLA for Exxon Company, U.S.A. The purpose of the study was to locate sources of gravel material which could be used as construction material. A total of 118 borings were drilled. Various laboratory tests were performed on samples recovered from the borings.

The test borings drilled in the Point Thomson area in general encountered a surficial layer of organic soil (peat). Beneath the organic soil, a thin layer of sandy silt and silty sand were generally present. Usually, the silt and silty sand were common in the three to six-foot depth range. Beneath the silt and silty sand, gravelly sand and sandy gravel with variable amounts of silt were encountered to the depths explored.

In general, the ice content was greatest in the borings between the 3-foot and 10-foot depth and decreased below 15 feet. Massive ice layers were encountered in the 3 to 15-foot range in 22 of the borings. Ground ice constituted as much as 50 percent of the total soil volume in the upper 10 to 15 feet where fine-grained soils, such as silt, were present.

2. Field Density Tests - Field construction observation of frozen gravel fill placement at three drill sites in the Point Thomson area

HLA performed testing in March and April, 1980 for Exxon Company, U.S.A. in the project area. Field density and water content tests were performed on frozen gravel hauled from the Point Thomson C-1 material source located as shown on Plate A-1. Test results indicate that this material had an average dry density of 70 pounds per cubic foot and a water (ice) content of 25 percent.

APPENDIX B DRILLING INVESTIGATION

Α.	SURVEYING	B-1 B-1 B-2
8.	OFFSHORE DRILLING INVESTIGATION. 1. Drilling Methods. 2. Sampling Methods. a. Undisturbed Samples. b. Drive Samples. c. Grab Samples. d. Rotary Wash Samples.	B-4 8-34 8-35 8-35 8-35 B-36
c.	ONSHORE DRILLING INVESTIGATION	B-36
٥.	SAMPLE HANDLING	B-37
Ε.	DRILLING OPERATIONS DIARY	B-38

Harding Lawson Associates

LIST OF TABLES

Table	B-1	UTM Zone 6 Coordinates for the Survey Control Points
Table	8-2	As Drilled UTM Zone 6 Coordinates

LIST OF ILLUSTRATIONS

Plates through	B-1 B-23	Logs of Borings 1 through 23
Plate	B-24	Unified Soil Classification and Key to Test Data

APPENDIX B ORILLING INVESTIGATION

A. Surveying

Besse, Epps & Potts of Anchorage, Alaska provided horizontal control for the test boring program using a Motorola Mini Ranger III system. This system includes a range console, a receiver/transmitter, two reference stations, and peripheral equipment for data recording and range computations. One surveyor assisted occasionally by HLA personnel completed the survey program.

1. Horizontal Control

The position of each test boring was fixed relative to the positions of benchmarks and known survey locations near the project area. Initially, battery-powered remote stations were established at these sites. The distance between each test boring and the various control points were determined using the Mini Ranger III system. Given these known distances, and using the method of resection, the locations and coordinates of the test borings were established.

As each remote station answers to interrogations from the range console, the two-way travel time of radar frequency pulses is used to compute the distance between points. The system is accurate to \pm 3 meters for a station separation of up to 40 nautical miles. The measured distances are continuously displayed on LED read-outs on the range console. Additionally, the information is supplied to peripheral equipment that provides hard copy records of time and distance data and computes the XY coordinates of the station.

2. Survey Program

The survey program was conducted in three phases. During the first phase, remote stations were established at the five survey control points listed in Table B-1. In phase two, the test borings were located and staked. Test Borings 1 to 17, 21, and 22 were located with a helicopter-mounted range console prior to the commencement of the drilling program. The remaining four sites, Test Borings 18, 19, 20, and 23, were established using the range console and data recording system mounted in a Rolligon. The final phase of the program involved determining the as-drilled locations of the test borings. The Rolligon-mounted unit was used to determine these locations, which are summarized in Table B-2.

TABLE B-1. UTM ZONE 6 COORDINATES FOR THE SURVEY CONTROL POINTS

Control Point	East (X, feet)	North (Y, feet)
Hopson	1 699 321.65	25 542 594.67
Nygren	1 741 125.23	25 532 682.12
Thin	1 694 111.09	25 563 542.99
Point Thomson 4	1 688 925.76	25 543 214.63
Point Thomson 3	1 733 219.53	25 541 585.22

TABLE 8-2. AS-DRILLED UTM ZONE 6 COORDINATES

Test Boring	East (X, feet)	North (Y, feet)
1	1 672 981	25 541 221
2	1 670 030	25 565 015
3	1 685 051	25 544 025
4	1 687 992	25 558 492
5	1 695 221	25 563 165
6	1 695 409	25 551 822
7	1 699 991	25 538 242
8	1 70 2 49 9	25 546 772
9	1 702 473	25 558 836
10	1 709 962	25 562 119
11	1 709 919	25 552 762
12	1 710 000	25 542 511
13	1 722 914	25 540 930
14	1 722 995	25 551 633
15	1 725 699	25 559 893
16	1 733 529	25 562 005
17	1 733 344	25 546 035
18	1 730 229	25 534 749
19	1 747 696	25 552 953
20	1 739 000	25 541 749
21	1 705 180	25 566 788
22	1 677 694	25 551 551
23	1 763 017	25 548 668

B. Offshore Drilling Investigation

The soil conditions within the offshore area were investigated between March 3 and March 15, 1982 by drilling 18 test borings, ranging in depth from 25 to 80 feet. Additionally, pipe for ground temperature monitoring was installed in five test borings, as described in Appendix C.

The locations of the offshore test borings are shown on Plate II-2; the test boring logs are presented as Plates B-1 through 23 with the explanation of the symbols used on the test boring logs presented on Plate B-24.

HLA personnel involved in the offshore drilling included a geologist, a soil engineer, a drilling foreman, two drillers, and two drill helpers. Two drill crews, consisting of a geologist or engineer, a driller, and a drill helper, worked alternate 12-hour shifts to maintain around-the-clock drilling. The engineer or geologist directed the drilling operation, logged the soils encountered, and obtained representative samples for laboratory testing. The drilling foreman served as a Cat operator, back-up driller and a mechanic.

The offshore test borings were drilled using a sled-mounted Mobile Drill B-61 that was fully enclosed in a heated and insulated framed structure. The drill rig was equipped with casing, drill rods, and a mud pump for rotary wash rilling. Additionally, eight-inch O.D. hollow stem auger and a mud pit were available. Extra support equipment, including a 5 kw generator and a survival shed, was mounted on a support sled.

A Rolligon with a water-shack and driver was provided by Crowley All-Terrain Corporation (CATCO) to support the drilling operations. The Rolligon was used to transport crews, drag trails, and carry the surveying equipment.

Date Completed: 3-5-82 Logged By: P.J. Ondra

Job Number: 9612,031.08

Approved: Date: 4-82

Pt. Thomson Development Project Winter 1982, Geotechnical Study

LOG OF BORING NO. 1 EXXON Company, U.S.A.

. . \$ •

R.H. Prescott

Job Number: 9612,031.08

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

Date Completed: 3-5-82 Logged By: M.R. Musial

Job Number: 9612,031.08

. Musial Date: 4-82

R.H. Prescott

LOG OF BORING NO. 3
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

B-3

Date Completed: 3-7-82 M.A. Musjal Logged By: R.H. Prescott

Job Number: 9612,031.08

Approved: D∈B Date: 4-82

LOG OF BORING NO. 4 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

PLATE

Date Completed: 3-8-82 Logged By: M.R. Musial

Job Number: 9612,031.08

R.H. Prescott

Approved: Date: 4-82 LOG OF BORING NO. 5 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

Date Completed: 3-4-82 Logged By: M.R. Musial R.H. Prescott Approved: Date: 4-82

LOG OF BORING NO. 6
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

R-A

Date Completed: 3-4-82 Logged By: P.J. Ondra

Job Number: 9612,031.08

Approved: Date: 4-82

LOG OF BORING NO. 7 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

Date Completed: 3-11-82 M.R. Musial Logged By: R.H. Prescott

Job Number: 9612,031.08

Approved: Date: 4-82

LOG OF BORING NO. 8

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

Logged By: M.R. Musial R.H. Prescott

Job Number: 9612,031.08

Date: 4-82

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

HLA

Date Completed: 3-9-82 Logged By: R.H. Prescott

Job Number: 9612,031.08

Approved: Do

LOG OF BORING NO. 10 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

B-10

LĄ

Date Completed: 3-11-82 Logged By: M.R. Musial R.H. Prescott

Job Number: 9612,031.08

sial Date: 4-8

Approved: 268 Date: 4-82

LOG OF BORING NO. 11 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

B-11

Date Completed: 3-6-82 Logged By: P.J.Ondra

Approved: 363

Date: 4-82

Job Number: 9612,031.08

LOG OF BORING NO. 12 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

PLATE **B-12**

Date Completed: 3-8-82 Logged By: P.J. Ondra Approved: D6B

Date: 4-82

Job Number: 9612,031,08

LOG OF BORING NO. 13 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

PLATE

Date Completed: 3-12-82 Logged By: M.R. Musial

Job Number: 9612,031.08

Approved: DEB Date: 4-82

LOG OF BORING NO. 14
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

B-14

11.7

Date Completed: 3-13-82 Logged By: M.R. Musial R.H. Prescott Approved: D68 Date: 4-82

LOG OF BORING NO. 15
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

B-

Date Completed: 3-12-82 Logged By: M.R. Musial R.H. Prescott

Job Number: 9612,031.08

Approved:

Date: 4-82

LOG OF BORING NO. 16 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

IA

Date Completed: 3-13-82 Logged By: M.R. Musial Approved: D€3
Date: 4-82

LOG OF BORING NO. 17
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

B-17

Job Number: 9612,031.08

R.H. Prescott

Date Completed: 3-9-82 Logged By: P.J. Ondra Approved: ⊅66 Date: 4-82

LOG OF BORING NO. 18 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

B-18

Job Number: 9612,031.08

Date Completed: 3-10-82 Logged By: P.J. Ondra

Job Number: 9612,031.08

DeB Approved:

LOG OF BORING NO. 19 Date: 4-82 Pt. Thomson Development Project Winter 1982, Geotechnical Study

EXXON Company, U.S.A.

PLATE

Date Completed: 3-15-82 Logged By: M.R. Musial R.H. Prescott Approved: 5063 Date: 4-82 LOG OF BORING NO. 20 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

B-20

Date Completed: 3-6-82 Logged By: M.R. Musial

Job Number: 9612,031.08

R.H. Prescott

Date: 4-82

LOG OF BORING NO. 22 Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

ILA

Date Completed: 3-11-82 Logged By: P.J. Ondra

Job Number: 9612,031.08

Approved: Def

Date: 4-82

LOG OF BORING NO. 23
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

R-23

UNIFIED SOIL CLASSIFICATION SYSTEM

MAJOR DIVISIONS				TYPICAL NAMES		
BOILS 30 SIPY	GRAVELS MORE THAN HALF COARSE PLACTION IS LARGER THAN NO. 4 SHEVE SIZE	CLEAN GRAVELS WITH LITTLE OR NO FINES	ew .	WELL GRADED GRAYELS, GRAVEL - SAND MIXTURES		
			GP .	POORLY GRADED GRAVELS, GRAVEL - SAND MIXTURES		
1		CRAYELS WITH CVER 12% FINES	GM	Skity Gravels, Poorly Graded Gravel - Sand - Skit Mexicals		
MARE PA			ec /	CLAYEY GRAVELS, POORLY GRADED GRAVEL - SAND CLAY MIXTURES		
GRAIN MUIS LACOR	SANDS MORE THAN HALF COARSE PLACTION IS SMALLER THAN NO. 4 SIEVE SIZE	CLEAM SANDS WITH LSTILE OR NO FINES	5W	Well graded sands, gravelly sands		
💆 🧸			5P	POORLY GRADEO SANDE, GRAVELLY SANDS		
COAR		SANDS WITH -OVER 12% FINES	SM	SILTY SANDS, POORLY GRADED SAND — BLT MIXTURES		
			sc S	CLAYEY SANOS, POORLY GRADED SAND - CLAY MIXTURES		
S.	SILTS AND CLAYS LIQUID LIMIT LISS THAN 30		MC	INORGANIC SILTS AND YERY FINE SANOS, ROCK FLOUR, SILTY OR CLAYEY FINE SANOS, OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
JIOS C			CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS		
RAINED 13 SMALLER T			OL .	ORGANIC CLAYS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		
TINE GRAINED	SELTS AND CLAYS LICIUM SOME THAN SO		мн	INORGANIC SILTS, MICACEOUS OF BIATOMACIOUS FINE SANDY OR SILTY SOILS, ELASTIC SILTS		
			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS		
ğ			ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS		
	HIGHLY ORGANI	IC 301L3	r ====================================	PEAT AND OTHER HIGHLY ORGANIC SOILS		

KEY TO TÉST DATA

Consolidation
Thaw Consolidation CON -TCON -Liquid Limit (In %) Plastic Limit (in %) ΡĹ Specific Gravity G. SÅ Sieve Analysis MA Mechanical Analysis Unconsolidated Undrained Triaxial Consolidated Undrained CU Trlaxial Consolidated

Drained Triaxial UC, F -Unconfined Compression, frozen

Electrical Conductivity TC PI* Thermal Conductivity Nonplastic

KEY TO SAMPLE TYPE

Shelby Tube 3" Split Spoon 2" Split Spoon s s, W Rotary Wash

GЬ **Driven Thickwalled Tube** G

Grab Pushed

"Undisturbed" Sample

Bulk or Grab Sample

ICE DESCRIPTIONS

GROUP	•				
SYMBOL	ICE VISIBILITY AND CONTENT	DESCRIPTION		SYMBOL	
		Poorly bonded or friable		Nf	
N	Segregated ice not visible by eye	Well bonded	No Excess Ice	N _b i N _{be}	
			Excess los microscopic		
	Segregated ice is visible by eye, ice one inch or less in thickness	individual ice crystals or inclusions		Vx	
		Ice coatings on particles		٧c	
v		Random or irregularly oriented ice formations		۸,	
		Stratified or distinctly oriented los formations		V _s	
ICE	Ice greater than one Inch in	Ice with soll inclusions		ICE + soli type	
	thjckness	ice without soil inclusions		ICE	

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unified Soil Classification and

Key to Test DataPt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

PLATE

APPROVED DOS

DATE

REVISED

DATE

It was also used on occasion to move the drill rig between test borings. Because rough ice conditions necessitated slow travel time, most rig moves were accomplished using the D-6 Cat. A Tucker "Sno-cat" was occasionally used to transport crews.

The drill crews were quartered in a 16-person sled-camp stationed on the ice at Point Hopson. The camp was equipped with sleeping units, kitchen, shower, water shack, and a diesel generator for electrical power. Communications were maintained between the camp and drilling enclosure and between the camp and CATCO operations office using radios.

Drilling Methods

With the exception of Borings 19 and 23, the offshore test borings were drilled with rotary wash techniques utilizing sea water drilling fluid. The criteria for determining the total depth of drilling were as follows:

- In all cases, a minimum depth of 50 feet below the ground surface or mudline
- Five feet into coarse-grained soil (gravels or gravelly soil)
- Fifteen feet into ice-bonded soil

Each test boring was cased with 4-inch I. D. casing from the enclosure deck to at least 10 feet below mudline. Additional casing was used when the test boring would not stay open during either the drilling or sampling operations. The casing was advanced and retracted using a 300-pound safety drop hammer. Borings 19 and 23 were drilled with 8-inch O.D. hollow stem auger and a Nodwell-mounted B-61 drill rig as described in Section C of this Appendix.

Sampling Methods

Sampling was performed continuously to at least 15 feet below mudline and at 5 to 10 foot intervals throughout the remaining depth of the test borings. The four types of samples and the procedures used to obtain samples are discussed in the following sections. The symbol in parentheses following the sample type appears on the test boring logs and designates the sampling method used. The symbol corresponds to those presented on the Test Boring Key Sheet, Plate B-24.

a. <u>Undisturbed Samples (T)</u>

Undisturbed samples were taken with Shelby tubes in accordance with ASTM Test Method D 1587-74. The Shelby sampler was a 2.87-inch I.D. by 36-inch long steel tube. The tube was placed at the bottom of the test boring and pushed (P) by the hydraulic system of the drill rig approximately 34 inches into the soil or to refusal. This method was used in soft to stiff silts and clays and in loose to medium dense sands.

b. <u>Orive Samples (S) and (Ss)</u>

Drive sampling was performed by driving a split-spoon sampler either 18 inches into the soil or to refusal. Two sizes of split-spoon were used depending upon the soil conditions. A 2.4-inch I.D. by 3.0-inch 0.D. sampler (S), containing three 6.0-inch brass liners to retain the sample, was primarily used to sample coarse-grained soil and hard silts and clays that could not be sampled using a Shelby tube. The 2.4-inch I.D. sampler was also used to recover disturbed specimens that were not recovered when using a Shelby tube. Where dense or ice-bonded coarse-grained soils were encountered, drive samples were taken with a 1.4-inch I.D. by 2.0-inch 0.D. (Ss) split-spoon sampler.

Both sizes of samplers were advanced by either a 300-pound hammer falling 30 inches, or by the hydraulic system of the drill rig. When the hammer was used, the number of blows required to drive each 6-inch increment was recorded. This driving information is presented on the test boring logs as the number of blows required to drive the sampler the last 12 inches, or fraction thereof.

c. Grab Samples (G)

Grab samples were occasionally taken during auger drilling on the barrier islands. Samples were either taken from the auger cuttings or directly from the augers as they were pulled from the hole.

d. Rotary Wash Samples (W)

Rotary wash samples consist of soil particles that have settled out of the circulating wash water after it has been run through a sieve. This technique was primarily used if representative samples of gravel could not be obtained by using the split-spoon sampler. The wash technique was also used to obtain intermediate samples when the sampling interval was greater than five feet. Since the grinding action of the bit within the casing breaks down the larger gravel particles, the in situ materials are probably more coarsely graded than these specimens indicate.

C. Onshore Drilling Investigation

Five test borings were drilled to explore the onshore soil conditions between March 4 and 8, 1982. The depths drilled varied between 48.5 to 50.5 feet; the conditions encountered are shown on the Test Boring Logs. Thermistor wells were installed in Test Borings 7 and 13.

The onshore borings and the two borings on Flaxman Island were drilled with a Mobile Drill B-61 rig that was equipped with eight-inch O.D. hollow-stem auger and mounted on a Nodwell carrier. A Tucker Sno-cat was used to transport the crew to the rig, as a work station for the geologist, and as a shelter from the weather.

The onshore drill crew worked a single 12-hour shift and consisted of a geologist, a driller, and a drill helper. The geologist directed the drilling operation, logged the soils encountered in the borings, and obtained representative samples for laboratory testing.

The majority of the samples that were taken were either type (S) or type (G), as discussed in the offshore investigation section. Modified Shelby tubes (T) were also used occasionally. These samplers are standard Shelby tubes with hardened cutting teeth. They are drilled (D) into bonded, fine-grained soil by slowly rotating the sampler while applying pressure by the drill rig hydraulic system.

D. Sample Handling

The soil samples were visually examined, classified and logged in the field by our engineer/geologist. Whenever possible, sample temperatures as well as torvane and/or pocket penetrometer readings were taken. Shelby tubes and split-spoon liners were sealed with electrical tape to prevent moisture loss and then tagged. Bulk and grab samples were placed in heavy-duty plastic bags, sealed, and tagged. In the field, unbonded samples were protected against freezing by storing them in either a cooler chest or heated enclosure. Bonded samples were kept frozen by storing them in either a cooler chest that was packed with blue-ice or a chest freezer.

All of the samples from the onshore borings were returned to our operations base at Deadhorse on a regular basis. The bonded samples from the offshore borings were stored in a chest freezer at -10° C until the end of the drilling program. Unbonded offshore samples were transported daily to the camp, where they were stored in a heated room until they could be transferred to Deadhorse. In Deadhorse, all of the bonded samples were stored in a chest freezer for a minimum amount of time until they could be shipped via air freight to our laboratory in Anchorage. To protect the bonded specimens from thermal shock, they were shipped in insulated containers and stored in our laboratory cold room at -6° C until tested.

E. Drilling Operations Diary

Oate	Activity
3/03/82	Moved drill rigs, sled-camp and crew to PTD project area, off-shore rig began drilling Test Boring 6 (TB 6).
3/04/82	Completed TB 6 and installed a thermistor string. Moved to and began drilling TB 3. Onshore rig (Nodwell) moved to and completed TB 7 and installed thermistor well.
3/05/82	Completed TB 3. Moved to and began drilling TB 22. Nodwell moved to and completed TB 1.
3/06/82	Completed TB 22. Moved to and began drilling TB 2. Nodwell moved to and completed TB 12.
3/07/82	Completed TB 2. Moved to and completed TB 4. Moved to TB 5. Nodwell - mechanical standby - starter malfunctioned.
3/08/82	Completed TB 5 and installed thermistor well. Moved to and began drilling TB 21. Nodwell moved to and completed TB 13 and installed thermistor well.
3/09/82	Completed TB 21. Moved to and completed TB 10. Moved to and began drilling TB 9. Nodwell moved to and completed TB 18.
3/10/82	Completed TB 9. Moved to and began drilling TB 8. Nodwell moved to and completed TB 19 and installed thermistor well.

E. <u>Drilling Operations Diary</u> (continued)

3/11/82	Completed TB 8. Moved to and completed TB 11. Moved to and began drilling TB 14. Nodwell moved to and completed TB 23.
3/12/82	Completed TB 14. Moved to and began drilling TB 16. TB 16 terminated at 25.5 feet due to ice movement and high winds. Installed thermistor string. Moved to and began drilling TB 15. Nodwell drill rig and crews demobilized.
3/13/82	Completed TB 15. Moved to and began drilling TB 17.
3/14/82	Completed TB 17 and installed thermistor string. Moved to and began drilling TB 20.
3/15/82	Completed TB 20. Demobilized enclosed drill rig, sled-camp and crews.

APPENDIX C GROUND TEMPERATURE MEASUREMENTS

A.	GENERAL	C-1
В.	EQUIPMENT 1. Offshore 2. Onshore and Barrier Islands	C-1 C-1 C-2
c.	THERMISTOR INSTALLATION	C-3 C-3 C-3
D.	THERMISTOR READINGS AND DATA REDUCTION	C-4 C-4 C-5
Ē.	FINDINGS	C - 5

Harding Laws on Associates

LIST OF TABLES

Table	Thermistor Installations	
		LIST OF ILLUSTRATIONS
		··
Plate	C-1	Temperature vs Depth, Offshore
Plate	C - 2	Temperature vs Depth, Onshore Borings

Temperature vs Depth for Barrier Islands

Plate

C-3

APPENDIX C GROUND TEMPERATURE MEASUREMENTS

A. <u>General</u>

Three thermistor strings and four thermistor wells were installed in the test borings listed in Table C-1.

TABLE C-1. THERMISTOR INSTALLATIONS

Test Boring	Location of Installation	Depth of Test Boring (ft)	Date Boring Completed	Total Depth of Temperature Data (ft)
5	Barrier Island	51.5	03/08/82	50.0
6	Offshore	51.5	03/04/82	45.0
7	Onshore	49.0	03/04/82	49.0
13	Onshore	50.0	03/08/82	50.0
16	Offshore	25.5	03/12/82	21.0
17	Offshore	50.5	03/13/82	45.0
19	Barrier Island	50.5	03/10/82	50.0

B. Equipment

1. Offshore

Hard-wired thermistor strings were used to obtain ground temperature measurements in the offshore test borings. The strings were constructed using 20-gauge, 52-conductor cable and YSI Model 44034 bead-in-glass thermistors. The Model 44034 thermistor has an interchangeability of $\pm 0.1^{\circ}$ C between -10° C to 80° C, a resistance of 5000 ohms at 25° C, and exhibits a resistance change of approximately 860 ohms per degree centigrade.

Each thermistor string was 175 feet long, including a 75-foot leadwire, and contained 24 thermistors spaced at 3-foot intervals for the first 21 feet and 5-foot intervals to 100 feet. The thermistors were installed through an incision in the cable sheath and individually grounded. They were then sealed into the cable with heat shrink tubing, and silicone caulk and the incision was covered with heat-shrink tubing. Finally, a 41-pin, male plug was installed on the lead-out end of the thermistor string and covered with a waterproof cap. The thermistors were placed in an ice bath held at a constant 0° C and the corresponding resistance was compared to the manufacturers' values.

2. Onshore and Barrier Islands

Ground temperature measurements for the barrier islands and onshore test borings were recorded using a retractable probe that contained a YSI Model 44007 thermistor and a Victory, Serial No. 50 thermistor. The interchangeability of the YSI thermistor is $\pm 0.2^{\circ}$ C for the temperature range 0° C to 80° C. Also, it has a resistance of 5000 ohms at 25° C and exhibits a resistance change of approximately 860 ohms per degree centigrade. The precision calibrated Victory thermistor has an interchangeability of $\pm 0.05^{\circ}$ C and a resistance of 4560 ohms at 0° C and exhibits a resistance change of approximately 220 ohms per degree centigrade.

The thermistors were placed side by side at the bottom of a six-inch-long probe that was attached to a four-conductor lead-out wire manufactured by Berk-Teck Company (Model BTONX-734-2F-Q). One conductor was used for a common ground, one for measuring lead-wire resistance, and the remaining two for measuring the thermistors. The calibration of the probe was performed by Dr. Robert I. Lewellen of Lewellen Arctic Research and can be traced back to the National Bureau of Primary Standards.

C. Thermistor Installation

1. Offshore

The procedure for installing the offshore thermistor strings was as follows:

- After washing the test boring to remove all of the cuttings, the boring was sounded with a weighted line to confirm that it was open for its entire depth.
- A length of 1-inch I.D. steel pipe, equal to the total depth of the hole, was attached to flexible hose whose length was equal to the depth from the mudline to the top of the ice. This entire assembly was then set on the bottom of the hole and filled with propylene glycol.
- 3. The thermistor string and lead-out assembly were trimmed to a length so that the first of the 3-foot interval thermistors was located at the mudline when placed down the pipe. The string was then lowered to the bottom of the steel pipe. An additional 25 feet of flexible hose was attached to the installed hose. This was done so that small ice movement would not destroy the temperature well.
- 4. The drill casing was pulled from around the thermistor installation and the drill sled was moved off of the site.

2. Onshore and Barrier Islands

The onshore and barrier islands thermistor wells consist of l-l/4-inch I.D. PVC pipe that is filled with propylene glycol. First, PVC pipe was installed in a completed test boring which was then backfilled. The pipe was then filled with propylene glycol and capped until ground temperature readings are taken.

D. Thermistor Readings and Data Reduction

The resistance values were reduced to ground temperatures using the following relationship:

1. Offshore

The thermistor strings were allowed to equilibrate for periods ranging from 10 days to 4 weeks before the ground temperatures were recorded. These readings were obtained using a switchbox and a Data Precision Model 248 multi-meter. The multi-meter displays 4.5 digits and is capable of measuring and resolving resistance to 1 ohm. When combined, the YSI thermistors and the multi-meter have a precision of $\pm 0.1^{\circ}$ C and an accuracy of $\pm 0.2^{\circ}$.

2. Onshore and Barrier Islands Ground Temperatures

The thermistor wells were allowed to equilibrate for up to 4 weeks before the final ground temperatures were measured. The resistance readings were taken by using a Data Precision Model 248 multi-meter, as described above. When combined, the calibrated bead-in-glass thermistors and the Model 248 multi-meter have a precision of +0.05°C and an accuracy of +0.1°C.

Resistance readings were taken at 2-foot to 5-foot intervals from the ground surface to the bottom of the thermistor well. All of the depths were referenced to the ground surface surrounding the thermistor well. The thermistors were monitored at each depth until a stabilized reading was obtained. Stabilization time varied from up to 30 minutes in the upper 10 feet and 1 to 3 minutes in the lower portion of the boring. To avoid inducing heating in the thermistors, the multi-meter was turned off between readings. Once a stabilized value was obtained, the lead-wire resistance was recorded and the probe was lowered to the next depth. It took approximately 60 minutes to monitor the borings.

Data Reduction

The resistance values obtained in the field were corrected for leadwire resistance by subtracting the measured lead-wire resistance from the total resistance. The resistance values were reduced to ground temperatures using the relationships in Equation C-1.

$$(1/T) = A + B (1nR) + C (1n R)^3$$
 (C-1)

Where: T = temperature degrees Kelvin
A, B, C = constants for the thermistors
based on calibration curves

R = measured resistance in ohms

E. Findings

Plate C-1 shows the data obtained from the offshore Test Borings 6, 16, and 17. Furthermore, ground temperature data that were obtained in 1979 from HLA/USGS Test Borings 15, 16 and 18 are shown for purposes of comparison. The level of zero annual temperature change appears at a depth of 30 to 40 for the test borings.

Ground temperature data that were obtained from the onshore test borings are presented on Plate C-2. The data indicate that there is very little difference in onshore ground temperatures between the two borings. The level of zero temperature change appears at a depth of 30 to 50 feet in both test borings.

Barrier islands ground temperature data are shown on Plate C-3. Data obtained in 1980 from Drilling Pads F and D are also shown for comparison. The data for Test Borings 5 and 19 yield well-defined curves that appear to converge to a line of zero temperature change at a depth of 40 to 50 feet.

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Ground Temperature vs Depth ,Offshore

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A. <u>C-</u>1

9612,031.08

APPROVED

DATE 4/82

REVISED

DATE

Մ"

. TEMPERATURE, OC

Ground Temperature vs Depth Onshore Borings

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

DATE

9612,031.08

APPROVED

4/82

Harding Lawson Associates Engineers, Geologists & Geophysicists

Ground Temperature vs Depth for Barrier Islands

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

9612,031.08

APPROVED

4/82

REVISED

DATE

The warmer temperatures recorded in Test Boring 5 are a direct result of the insulation provided by the thick layer of ice and snow at the boring. Below 20 to 30 feet, ground temperatures recorded at Drilling Pads F and D in 1980 were about 1° C to 3.5°C warmer than those observed during our investigation. This implies that subsea ground temperatures are getting colder due to the presence of the barrier islands.

APPENDIX D LABORATORY TESTING

Α.	GENERAL	D-1
В.	SAMPLE HANDLING AND VISUAL CLASSIFICATION 1. Sample Storage	D-2 D-2 D-49
c.	PRIMARY TESTING OF OFFSHORE MATERIALS 1. Moisture Content/Dry Density 2. Organic Content 3. Particle Size Analysis 4. Liquid and Plastic Limits 5. Specific Gravity 6. Chemical Tests 7. Electrical Conductivity Tests	D-68 D-68 D-70 D-78 D-79 D-80 D-80
D.	STRENGTH TESTING. 1. Triaxial Tests	D-94 D-94 D-94 D-94 D-114 D-149
Ε.	CONSOLIDATION TESTING OF UNFROZEN OFFSHORE MATERIALS	D-159
F.	DREDGED FILL PROPERTIES OF OFFSHORE MATERIALS	D-163
G.	THAN CONSOLIDATION TESTING OF BONDED SOIL	D-191
н.	THERMAL CONDUCTIVITY	D-196

LIST OF ILLUSTRATIONS

Plates through	D-1 D-23	Laboratory Test Summary
Plates through	D-24 D-40	Laboratory Soil Logs
Plates through	D-41 D-47	Particle Size Analysis
Plate	D-48	Chemical Analysis Summary
Plates through	D-49 D-54	Electrical Conductivity Summary
Plates through	D-55 D-59	Salinity Profiles
Plate	D-60	Unconsolidated-Undrained Triaxial Compression Test Report Summary
Plates through	D-61 D-74	Unconsolidated-Undrained Triaxial Compression Test Reports
Plate	D - 75	Consolidated-Undrained, Consolidated-Drained Triaxial Compression Test Report Summary
Plates through	D-76 D-108	Consolidated-Undrained Triaxial Compression Test Reports
Plates through	D-109 D-113	Consolidated-Drained Triaxial Compression Test Reports
Plate	0-114	Direct Shear Test Report Summary
Plates through	D-115 D-117	Direct Shear Test Reports
Plates and	D-118 D-119	Consolidation Test Report Summary
Plates through	D-120 D-142	Consolidation Test Reports

LIST OF ILLUSTRATIONS (continued)

		, ·
Plate	D-143	Coefficients of Secondary Consolidation
Plate	D-144	Thaw Consolidation Test Summary
Plates through	D-145 D-147	Thaw Consolidation Test Reports
Plate	D-148	Thermal Conductivity Test Summary
Plates through	D-149 D-161	Thermal Conductivity Test Reports

APPENDIX D LABORATORY TESTING

A. General

A comprehensive laboratory testing program was conducted by Harding Lawson Associates to evaluate the properties of soil samples obtained from test borings drilled for the Point Thomson Development, Winter 1982 Geotechnical Study. Details of the field investigation program are given in Appendix B.

Soil index tests were performed to classify the sampled soils and to determine their in situ moisture contents, dry unit weights, grain size distributions, plasticity indexes, specific gravities and organic contents.

Soil strength parameters under static loading conditions were determined by unconsolidated-undrained triaxial shear tests (TXUU), consolidated-undrained triaxial shear tests (TXCU), consolidated-drained triaxial shear tests (TXCU), and direct shear tests (DS).

One-dimensional consolidation tests were used to analyze the soil stress history and deformation behavior of unfrozen samples, while thaw-strain tests were used to analyze the behavior of frozen samples.

The pore water chemistry and freezing point depression of selected samples were determined by conducting both chemistry and salinity tests. Thermal conductivity measurements were made on both frozen and thawed samples for use in performing heat transfer analyses.

The procedures employed in the laboratory testing program were generally in accordance with those suggested by the American Society for Testing and Materials (ASTM). The ASTM designations for the various tests are tabulated below:

<u>Laboratory Test</u>	ASTM Test Method
Visual Classification	D 2488-69
Laboratory Classification	D 2487-69
Moisture Content	D 2216-71
Liquid Limit	D 423-66
Plastic Limit	D 424-59
Particle Size Analysis	D 422-63
Specific Gravity	D 854-58
Triaxial Shear	D 2850-70
Direct Shear	D 3080-72
Consolidation	D 2435-70

Furthermore, several tests were conducted for which there are no suggested ASTM methods. These are as follows:

Laboratory Test

Sedimentation
Thaw Consolidation
Thermal Conductivity
Geochemical Analysis
Electrical Conductivity

All of the above test procedures are described in the following sections of this appendix. The laboratory testing program is summarized by test boring on Plates D-1 through 0-23.

B. Sample Handling and Visual Classification

Sample Storage

Upon arrival at Anchorage International Airport, the soil samples were picked up and delivered to our Anchorage laboratory where they were stored until testing. Four types of samples were received: Shelby tube, brass liner, jar and grab.

Sample Signation	SOIL CL	ASS.	-		CL	ASSIFICAT	T NOIT	TESTS									SECC	NDAR	Y TEST	S			
DEPTH (ft)	USCS	2 ICE		oil Gradation (%		Moist.	Atte	erberg L	imits	Dry Density	Org. Loss by	Spec.	3 Elec.	4 F.P.D.	UHXT	TXCU	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
	<u>. </u>		Gravel +4	Sand -4 to +200	Fines 	Cont. (%)	LL	PL	P1	(pcf)	by Ignition (%)	Grav.	Cond,		17.00					Consol.		Cond	
0.0		V _{X,r}				100.3									-				<u> </u>		<u> </u>		
1.3		V _X ,r				43.3			<u> </u>	_54_	·		i		<u> </u>				<u> </u>			<u> </u>	
2.7		V _{x,r}				301		<u> </u>	<u> </u>	15										Х	 		
3.7	ML	$V_{X,r}$				71.5	<u> </u>		 	46		'				<u> </u>				<u> </u>	 	ļ	
4.2	ML	$V_{X,r}$	_			92.6			Ļ —	47			<u> </u>						<u> </u>	Х	ļ	<u> </u>	·
8.5	SP	Vx.r			 -	18.9	<u> </u>		<u> </u>				<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>			
10.5	SP	V _x .r	<u>.</u>			19.5	 	<u> </u>	<u> </u>	67	<u> </u>		<u> </u>			<u> </u>			<u> </u>	<u> </u>		<u></u>	
13.5	SP	$V_{X,r}$			4.6	18.1	ļ	ļ	<u> </u>	75	<u> </u>								ļ	<u> </u>		<u> </u>	
18.5	SP-SM	٧x	_22	70,2	7.8	13.5		<u> </u>	<u> </u>		2.71				<u> </u>	<u> </u>			<u> </u>			L	
23.5	SP-SM	٧x			11.3	13.0	<u> </u>	<u> </u>	<u> </u>	<u> </u>			i		<u> </u>	ļ		<u> </u>					
28.5	SM	v_{x}	18	68.4	13.6	12.1			<u> </u>													<u> </u>	
33.5	SM	٧x			13.8	10.6		1	<u> </u>		<u> </u>							<u> </u>					
38.5	SM	٧x	17	69.7	13.3	10.4			<u>L</u>	<u> </u>	<u> </u>	<u> </u>											
43.5	SM	$V_{\mathbf{x}}$				9.7										<u> </u>						<u> </u>	
48.5	SM	V _x	24	63.3	12.7	8.6		ŀ	<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>						<u> </u>	
			·						<u> </u>		ļ		<u> </u>		<u> </u>	<u>}</u>	<u> </u>						
0.1	SP					23.4		<u> </u>	<u> </u>	100		2.68				<u> </u>			Х.				
0.3	SP) [97.7	2.3	22.8	1	1		102	1	2.69	1			<u> </u>	X	}			1	}	
0.9	SP					22.0		Ι					52.3	2.1									
2.2	SM		11	75.5	13.5				Ī													Γ	
2.7	SP-SM				_				T	<u> </u>	<u> </u>		45.5	1.9							Х		
2.8	SP-SM				8.6				T								_					$T^{}$	
3.0	SP-SM					23.0			1				49.7	2.0									
3.4	SP		_			22.8			T	98		2.65					Х						
3.5	SP			96.1	3.9	1		 	†	 	1		1	1	<u> </u>		1		1	†	1		
3.9	SP-SM			1	10.9		1	\vdash	T^{-}	 					 		1		1	1	 	T^{-}	
8.4	ML			1	<u> </u>	33.4	<u> </u>	1	 				50.7	2.1	 				1	1	<u> </u>	1	
3.0 3.4 3.5 3.9	SP-SM SP SP-SM				96.1	96.1 3.9	96.1 3.9 10.9	96.1 3.9 10.9	96.1 3.9 10.9	23.0 22.8 96.1 3.9 10.9	23.0 22.8 96.1 3.9 10.9 33.4	23.0 22.8 96.1 3.9 10.9 33.4	23.0 22.8 96.1 3.9 10.9 33.4	23.0 49.7 22.8 98 2.65 96.1 3.9 2.65 10.9 50.7	23.0 49.7 2.0 22.8 98 2.65 96.1 3.9 2.0 10.9 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 96.1 3.9 2.65 10.9 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 96.1 3.9 2.65 10.9 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 χ 96.1 3.9 33.4 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 χ 96.1 3.9 33.4 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 χ 96.1 3.9 33.4 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 χ 96.1 3.9 2.65 3.9 10.9 50.7 2.1	23.0 49.7 2.0 22.8 98 2.65 χ 96.1 3.9 33.4 50.7 2.1	23.0

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System

3. Elec. Cond. = Electrical Conductivity in mmhos/cm 4. F.P.D. = Freezing Point Depression, *C

5. NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
1/82

DRAWN

JOB NUMBER 9612,031.08

DESIGN	IPLE IATION	SOIL CL	ASS.			CLA	ASSIFICA ⁻	TION	FESTS									SECO	NDAR	Y TEST	rs			
25	DEPTH	1	2	· s	oil Gradation (9	6)	Moist.	Atte	erberg L	imits	Dry	Org. Loss	Spec.	Elec.	4		TVOL				Thaw		Thermal	_
BORING NO.	(ft)	USCS	ICE }	Gravel +4	Sand -4 to +200_	Fines -200	Cont. (%)	LL	PL	PI	Density (pcf)	by Ignition (%)	Grav.	Cond.	F.P.D.	TXUU	IXCU	TXCD	D.S.	Consol.	Consol.	Chem.	Cond	Comments
2	8.5	ML -				•	26.3	NP	NP	NP	100		2.68							Х				
	9.9	ML				_	31.2	<u> </u>		<u> </u>	90		2.72					. х						
	10.5	ML					30.6			<u> </u>				46.4	1.9					<u> </u>		-	<u> </u>	
	10.7	ML			15.2	84.8	29.0				94		2.73					Х	!	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	11.3	ML			1		32.5			<u> </u>	89		2.69		•			Х		<u> </u>				
	12.9	ML	<u> </u>				38.6		<u>!</u>		80		<u> </u>	}		χ				<u> </u>			<u> </u>	
	14.1	ML					38.8	<u> </u>	<u> </u>		81		2.70							χ				
	14.4	ML					28.7	<u> </u>		<u> </u>				40.8	1.6									
	14.5	ML					35.7			Γ	83					X	}						ΓΤ	-
	18.5	МН					51.8	}						29.9	1.2									
	18.6	MH					48.4	ļ			72													
	19.0	ML					46.2							35.0	1.4									
7	19.2	ML		;	ľ		42.4				76						-							
	25.7	ML					55.5				65													-
	26.5	ML_			7.4	92.6	29.0				86													- ·-·
	27.3	SM -					23.4	}		Ī	99													
	30.0	SM				,	16.0							36.3	1.4									
	30.2	SM					15.0	1	}		98	1					1						T 1	
	35.0	ML					26.3				99			Ĭ										
	40.2	ML					21.2				106		2.74				X					1		
	40.7	ML					8.2		·	T]			68.9	2.8							1		
	40.8	ML					21.1			T	107		2.72				Х					Ι		
	41.6	ML					26.3	T	1		96		2.72			T^{-}	Х		1		-			
	41.7	ML											2.72			\Box								
	41.9	ML			1			1		1		1	2.72							1				
	46.7	ML		· ·		97.3	32.5			1	89					X	 					<u> </u>	† †	
	51.2	ML		<u> </u>			26.0		T	T	97				1	X				1		 		

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
THE 4/82

ов NUMBER 9612,031.08

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C

^{5.} NP = Non-Plastic

	AMPLE	SOIL CL	ASS.	-		CLA	ASSIFICAT	rion 1	ESTS		_							SECO	NDAR	Y TEST	-s ·			
BORING	DEPTH	1 USCS	2 ICE		oil Gradation (9		Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	3 Elec.	4 F.P.D.	TXUu	TXCU	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
ğ	² (ft)		1.0-	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI	(pcf)	by Ignition (%)	Grav.	Cona,							Consol.		Cond	
2	60.5	SM		10	59.3	30.7	13.0							48.1	2.0								<u> </u>	
	60.7	SM			ļ		14.8				120												<u> </u>	
	66.5	GP			<u> </u>	1.8	17.7				<u> </u>			48.3	2.0					<u> </u>			<u> </u>	
	67.5	GP					9.1						2.69										<u> </u>	
	_	<u> </u>		_										<u> </u>							ŗ			
3	0.0	ML					37.9							44.3	1.8				. <u> </u>					
	1.5	SP	<u> </u>	35	60.4	4.6	10.6		·				2.69	45.7	1.9						·	<u> </u>		
	1.7	SP		•			18.8		L '		117	ļ				<u> </u>						<u></u>		
	3.5	SP	<u> </u>		<u> </u>		18.3							48.2	2.0	,				<u> </u>		<u> </u>	<u> </u>	
i [·	4.5	SP					2.2		<u> </u>					57.2	2.3								<u> </u>	
	6.0	SP				. 0.7	9.9						2.69	52.5	2.1				,					
}	7.5	SP					8.7		[
11	9.0	GP-GM		56	36.6	7.4	8.6	1						54.9	2.2									
	12.0	SP					6.5							51.9	2.1			,						
	15.0	SP		19	78.8	2.2	22.4							50.5	2.1									
	19.0	GP				!	8.6						2.69	51.6	2.1	ļ								
	25.0	GP					4.8			<u> </u>														
	30.0	GP-GM		50	44.3	5.7	5.8							50.8	2.1						·			-
	30.2	GP-GM					5.3		1		118							ļ						
	50.0	GP-GM	Nbn				4.0							30.4	1.2									
11	<u> </u>		1		<u> </u>		1																	
	0.0	ML	1		Ť		26.4	-		<u> </u>	96	1	ļ —											
	1.1	SM	1	<u> </u>	 	21.4		1		<u> </u>	1					 					-			
	1.7	SP	1		98.0	2.0				ļ —	İ	ļ												· · · · · · · · · · · · · · · · · · ·
\sqcap	1.8	- SP	†		†		22.7	<u> </u>		 	101	 					 	1	Х	 	.		† <u>-</u>	
 	2.8	SP	1		 	· -	24.5	1	1	 		 -		46.3	1.9	1				 	<u> </u>		1 1	
	3.0	SM	1		 	_	27.1			NP	97	1	2.69		1	 			 	X	 	<u> </u>	† <u> </u>	
┖ㅡ		<u> </u>	4	!	ــــــــــــــــــــــــــــــــــــــ	J	1	<u> </u>	<u></u>	-	1 ,,			ــــــــــــــــــــــــــــــــــــــ	•	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	<u>. </u>	1		·	<u> </u>	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm

4. F.P.D. = Freezing Point Depression, *C

5. NP = Non-Plastic

Harding Lawson Associates Engineers. Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

APPROVED DATE

DATE 4/82

PLATE

JOB NUMBER 9612,031.08

DEB

SA DESIG	MPLE NATION	SOIL CL	ASS.			CL/	ASSIFICAT	TION T	ESTS		<u>.</u>		,					SECC	NDAR	Y TEST	rs			
S S	DEPTH	1		. Sc	oil Gradation (9	6)	Moist.	Atte	rberg Li	mits	Dry	Org. Loss	Spec.	Elec.	4		TVCII	TVCO			Thaw	[]	Thermal	C
BORING	(ft)	USCS	ICÉ	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI	Density (pcf)	by Ignition (%)	Grav.	Cond.	F.P.D.	TXUU	IXCO	TXCD	D.S.	Consol.	Consol.	Chem.	Cond	Comments
4	9.5	ML					43.8							44.4	1.8				· 	<u> </u> i	 			
	9.6	ML				<u> </u>	41.6				_77	· -		j					· 		 			
	12.0	ML				<u> </u>	41.0	<u> </u>						43.8	1.8					<u> </u>	·	.		
<u> </u>	12.4	ML				<u> </u>	38.8			<u> </u>	78]					X	
<u></u>	13.0	OL					36.3	<u> </u>			80	15.9	2.67							Х	·		ļ	
<u></u>	13.3	OL.					43.7	33	26	6	75	 	2.67				Χ				<u> </u>	<u> </u>		
	13.8	ML			9.9	90.1	47.5	<u> </u>			72_		2.67				Χ			<u> </u>	<u> </u>	<u> </u>	-	
<u> </u>	14.4	ML	{	_ 			48.7	33	26	6_	72	<u> </u>	2.7	 i			:			X		<u> </u>	-	
<u> </u>	15.0	ML_	\vdash				45.5	<u> </u>						<u> </u>										
<u> </u>	18.3	MH	<u> </u>				70.8	 		ļ	57		2.68	<u> </u>	<u> </u>	X				<u> </u>	<u> </u>	-	<u> </u>	
<u>, </u>	18.8	CL		<u> </u>			74.7				_56		2.66	<u>_</u>	<u> </u>	<u> </u>	Χ			X			1	
`)	19.0	CL				- <u>-</u>	68.4		<u> </u>		58		2.66		<u> </u>					 	 -	<u> </u>	<u> </u>	
I	19.5	CL			<u> </u>		74.7	44	26	18				<u> </u>	<u> </u>					 	· .	<u> </u>	<u> </u>	
ļ	19.6	CL	·	_ -	<u></u>		71.1	 -			57		2.66				<u> </u>				 	<u> </u>	1	
 	20.2	ML	 	<u> </u>	<u> </u>		69.0	-	-		 - -		<u> </u>	47.4	1.9	<u></u>				├	}	 	<u> </u>	
	25.0	OL	ļ. 	<u> </u>	 	_ _ _	25.9	 		 	 	12.0	 	44.5		<u> </u>	<u> </u>			 -	 -		 	
 -	25.5	SM	\vdash	<u> </u>			9.8	├	 	<u> </u>	122	<u> </u>	<u>-</u>	44.3	1.8	 	}	<u> </u>		-	 	 	<u> </u>	
	25.6	SP-SM	 	7	F2 0	40.2	9.7	}			133		<u></u>	<u> </u>	├		<u> </u>			 	 	-		
 	26.0	SM	 	- 	52.8	65.6	12.9	 	_	 	120	 		├──	 	<u> </u>	 -	 		 			<u> </u>	
	30.0	ML	+-				22.8	 -		-	100	 -	 	 	├──	 - -		 -		 	 	 	-	
I I —	31.0 40.0	ML ML	 			<u> </u>	24.4	27	22	5	1.00	<u> </u>	 	 	 	 -			 	-	 	 	╂┈┤	
	40.2	ML		<u> </u>			23.1	-		 	105	 	 	 -	-	 	 -	 		-		├		
 	44.5	ML	╂╾╾	1	24.1	74.9	22.5	 		 	107	 		 	 	 		 	 	 	 	 	\vdash	· · · · · · · · · · · · · · · · · · ·
 	49.5	SP		-			21.9	├		}	1.0,	 	 -	53.1	2.2	 -	 - -	 -		 	 	 		
	50.0	SP	-	<u> </u>	 	2.8	13.7	-		├──	121		2.69	 	 	 -	 		 -	1	╁┈	 	-	
	1 30.0	- "	1	 	 		 -	╁		 	† <u></u>			 	}	-	 	 	 -	1	 	├──	 	
L	L,	<u> </u>		<u></u>		1	<u> </u>	⊥		1	<u>L</u>	L	<u>l</u>	<u>l</u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u></u> -	 -	Ь	<u> </u>		

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISE
DEB 4/82

DRAWN JP

9612,031.08

ı	MPLE NATION	SOIL CL	ASS.	-		CLA	ASSIFICAT	TION T	ESTS									SECO	NDAR	Y TEST	'S			
BORING NO.	DEPTH	USCS 1	2 ICE	· s	oil Gradation (9	6)	Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	Stec.	4 F.P.D.	טטאַד	TYCII	TXCD	D.S.	Consol.	Thaw	Cham	Thermal	
S S	(ft) .	0303	ICE	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	Ρl	(pcf)	lgnition (%)	Grav.	Cond.		1,00	1,00	IACD		CONSOI.	Consol.	Chem.	Cond	Comments
5	0.1	SP-SM	Vx.c	14	76.4	9.6	27.1				<u> </u>		2.71	61.5							· .			
	0.5	SP-SM	Vx,c				16.2						-	54.3									ļ	
	2.0	SP-SM	Vx.c				14.0			_				90.9	4.0					ļ[χ		
	4.0	SP	Vx.c			3.5	<u> </u>			<u> </u>	<u></u>							<u> </u>					<u> </u>	<u> </u>
	4.5	SM	Nf,bn	-	<u> </u>	· .	36.4				ļ .	<u> </u>	<u> </u>	26.3	1.0	<u> </u>								
	6.0	SM	Nf,bn				18.0				110	<u> </u> -									:			
i	6.5	SM	Nf.bn	-		22.0	18.3			<u> </u>			<u> </u>	107.9	4.0						<u>-</u>	<u> </u>	<u> </u>	
	6.7	SM	N _{f,bn}				18.9				108		<u> </u>		<u> </u>									
<u> </u>	8.0	SM	N _{f,bn}				13.5	<u>.</u>	<u> </u>	<u> </u>	122	<u> </u>	<u> </u>	108.7		· 						Χ	ļ	·
	10.0	SP				1.1	6.9	<u> </u>	L	ļ.—	<u> </u>	<u> </u>	<u> </u>	21.2	0.8	<u> </u>		_			. !		ļ	<u> </u>
<u> </u>	10.1	SP					6.2	<u> </u>		<u> </u>	102	ļ		<u> </u>	<u> </u>					<u> </u>			<u> </u>	
	16.0	ML					33.0			<u> </u>	<u> </u>	<u> </u>	<u> </u>	83.7	3.4								ļ!	
	16.1	ML			<u> </u>		34.8	<u> </u>		<u> </u>	85												<u> </u>	
	16.5	ML			<u> </u>		52.0	<u> </u>		<u> </u>		ļ	<u> </u>	17.6	0.7					<u> </u>		<u> </u>		
	16.7	ML	<u> </u>		<u> </u>		38.4	<u> </u>	<u> </u>	<u> </u>	80		<u> </u>		<u></u> _						_	<u> </u>		
	19.0	ML	1		<u> </u>		35.5			<u> </u>	61		<u> </u>			Х				<u> </u>			ļ	
<u> </u>	19.2	CL					39.5	<u> </u>	<u> </u>	<u> </u>	79		<u> </u>			<u> </u>			_	<u> </u>		<u> </u>	X	
 	19.5	CL	<u> </u>		<u> </u>		36.6	31	21	10	87		2.72							X		<u> </u>	<u> </u>	
	20.3	CL			<u> </u>		42.3			<u> </u>	<u> </u>		<u> </u>	78.1	3.2					<u> </u>		<u> </u>	ļ	
<u> </u>	25.5	ML	ļ	<u> </u>	<u> </u>		52.4	↓		<u> </u>	66				<u> </u>	<u> </u>				<u> </u>		ļ	ļ	
<u> </u>	31.1	ML	٧r		<u> </u>		43.6	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	42.9	1.7	<u> </u>		 				<u> </u>	ļ	
	31.2	ML	Vr		1		46.3	<u> </u>	ļ	ļ	72		<u> </u>	ļ	<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	
	45.5	CL	٧r		1.6	98.4	41.9			<u> </u>	<u> </u>	<u> </u>		28.1	1.1	<u> </u>				<u> </u>		<u> </u>	<u> </u>	
\ <u> </u>	45.7	CL	Vr	<u> </u>	<u> </u>	<u> </u>	33.6	<u> </u>			86	<u> </u>	<u> </u>		<u> </u>	<u> </u>				<u> </u>	X			
	46.0	CL	Vr		1.0	99.0	36.2	<u> </u>			67	<u> </u>	<u> </u>			<u> </u>					Х			
	51.0	CL	٧r	<u> </u>	<u> </u>	<u> </u>	27.0	<u> </u>	ļ	<u> </u>		<u> </u>	ļ	37.9	1.5	<u> </u>				<u> </u>		<u> </u>		
!	51.2	CL	٧r		<u> </u>		28.8				92		<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u></u>				

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED
DEB 4/82

JOB NUMBER 9612,031.08

		MPLE NATION	soir ér	ASS.			CLA	ASSIFICAT	ION T	ESTS									SECO	NDAR	Y TEST	rs			·
`	BORING	DEPTH	1 USCS	2 ICE		oil Gradation (%		Moist.		rberg Li		Dry Density	Org. Loss by	Spec. Grav.	3 Elec. Cond.	F.P.D.	זעטע	TXCU	TXCD	D.S.	Consol.	Thaw Consol.	Chem.	Thermal	Comments
	8	(ft)			Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	Pl	(pcf)	by Ignition (%)	GIAV.								Consol.		Cond	
	6	0.1	SM			49.3	50.7	31.6							48.6							·		<u> </u>	
		0.5	SM					22.5							47.3	·	<u> </u>				<u> </u>	<u> </u>			
1		1.0	SM					22.5			_				48.1							· 	<u> </u>		
П		3.5	ML	L				29.2	<u> </u>		ļ.—.'				47.3	1.9						<u> </u>			
11		3.6	ML					30.4			<u> </u>	92	ļ <u>. </u>	2.69		<u> </u>					X				
П		4.0	ML		<u></u>			34.7				<u> </u>	<u> </u>	· ·	52.1	2.1	<u>-</u>						-		
		4.1	ML				84.9	33.4			<u> </u>	88		2.68	<u> </u>	 _		Х			<u> </u>	<u> </u>			
Ш		4.6	ML					32.3	NP_NP	NP	NP	90	<u> </u>	2.69	<u> </u>		 	X			<u> </u>	<u> </u>	<u> </u>	<u> </u>	
		5.2	ML					21.3			<u> </u>			<u> </u>	_48.4	2.0	<u> </u>	ļ. <u>.</u>				<u> </u>			·
	. :	5.3	:.SP-SM		22	68.5	9.5	14.1			L	121		2.69		<u> </u>					:				
		-6.5	SP-SM	. :				18.7				<u> </u>	<u> </u>		50.1	2.0	<u></u>			<u> </u>			<u> </u>	<u> </u>	
_ ~	•	6.7	ML				52.7	11.4			<u> </u>	114								<u> </u>	1			<u> </u>	
ħ	. ,•	7.2	SP-SM					7.4			[95.9	3.8					1			<u> </u>	
		9.2	SM					11.4							49.4	2.0									
		9.3	SM	l				9.3	<u> </u>			120				<u> </u>	<u> </u>					<u> </u>			
ı		12.0	GM					19.1				111			<u> </u>	L	<u> _</u>			_		<u> </u>		<u>.</u>	
ı		12.5	ML					24.1			Ī		L		48.7	2.0									
1		12.6	ML					22.5			[87													
1		13.5	ML	<u> </u>										2.71											
-		14.1	ML					25.1			-				34.1	1.3									
1		14.3	ML	1		1.8	98.2				<u> </u>						<u> </u>								
-		14.7	ML			1		23.3	Γ		I	99	1	2.71	37.1	1.5		Х				\Box			
ŀ	<u> </u>	15.4	ML				<u> </u>	26.2			I^-	100	1					Х	1.			T^-		<u> </u>	
		16.5	ML	1			[23.0	$\lceil - \rceil$		T	104	\top	2.71			Ţ	1				1			
	 	21.4	ML	1	 	† 	 	26.4	\vdash		†	 	1		47.7	1.9	<u> </u>	 				 			
-	 	21.5	MŁ	1	 	 	 - ·	23.1	29	24	5	1	1	1	1	1	 	†			1	T^{-}		†	
ŀ	┢	21.7	ML	1		4.2	95.8	23.1	I^-		<u> </u>	107	1	2.73			1			1	X	T^{-}		1	
1	Щ	L 	1	<u> —</u>	<u></u>	1	<u></u>	<u></u>	1	<u>.</u>		1	 -	J				•	1		<u> </u>	1,	<u> </u>	1	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freeing Point Depression, °C

5. NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

APPROVED DeB

DATE 4/82

լ∤։		MPLE NATION		ASS.	-		CL	ASSIFICAT	TION 1	FESTS									SECO	NDAR	Y TEST	rs 			
	BORING	DEPTH (ft)	1 USCS	2 ICE		oil Gradation (%		Moist. Cont. (%)		erberg Li		Dry Density	Org. Loss by Ignition (%)	Spec. Grav.	3 Elec. Cond _a	4 F.P.D.	ТХИЦ	TXCU	TXCD	D.S.	Consol.	Thaw Consol.	Chem.	Thermal Cond	Comments
1					Gravel +4	Sand -4 to +200	Fines 200	20.4	ᄔ	PL	Pi	(pcf) 106	(%)								 -				
.ㅏ	6	22.1	ML ML					25.5			<u> </u>	100													
11		25.0	ML					24.3			<u> </u>	102	<u>'</u>								<u></u> -				
_		30.0	GP-GM		. 56	38.7	5.3	6.7				102		2.68	52.5	2.2			_		 -	-			
╟		35.5 35.6	GP-GM		. 50	30.7	3.3	6.0	 		├	141		2.00	32.3	2.2						 			
ŀ		40.5	GP	-	<u> </u>	 	2.8	3.4			 	123								<u> </u>	-			\vdash	
ıŀ	-	40.5	<u>ur</u>	<u> </u>		1	2.0	- 3.7	 -	-	 	140										 -		 	
`	7	0.5	OL	V _{x,r}				108				34				:		\vdash				X			
ı٢	-'	1.0		ν _{χ,r}	•			31.3				80	14.0	2.32										$\vdash \dashv$	·
'ተ		1.6		V _{x,r}				138	 	\vdash	 	29													
ıŀ		2.0		$V_{x,r}$	· —			250	 		 	19									 	Х	 		····
٠-١	3	5.0	SP-SM	ν _χ		 	-	220				17									 	 			
. 1	·	5.4	SP-SM	٧x		 		43.1		 		59		 			<u> </u>			-	 	<u> </u>			
1		5.9	SP-SM	٧x				23.6	\vdash	 		79		<u> </u>	<u> </u>						†				
.t		9.0		٧x	8	70.3	21.7	<u> </u>		 				 							_		_		-
H		14.0		V _{x,r}			-	245 .				18									i				
Ì		15.0		V _{x,r}	_			190		t	<u> </u>	24					<u> </u>						i		
		19.0	SP-SM	V _X				12.9																	
		24.8	ML	V _{x,r}	_		i	114			Ι	36		-										 	
ij		29.0	SM	٧x				7.3																	
11		34.0	SP-SM	٧x			7.4	12.8										-							
11		39.0		٧ _x	24	58.3	17.7	16.6			T	1													
11		44.0		٧x			19.4	14.8	<u>L. </u>																
1		49.0		V _x	41	43.5	15.5	11.9								<u> </u>							1		<u> </u>
11											T^-														
	8	0.0	GM		44	26.7	29.3	23.8																	
		0.1	GM]		31.8							49.6	2.0	1								

1. USCS = Unified Soil Classification System
2. Ice = U.S. Army Corps of Engineers Ice Classification System

3. Elec. Cond. = Electrical Conductivity in mmhos/cm

4. F.P.D. = Freezing Point Depression, C

5. NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISE
DES 4/82

PLATE

JOB NUMBER 9612,031.08

	SAMPLE SIGNATION	SOIL CL	ASS.			CL	ASSIFICAT	TION T	ESTS					<u></u>				SECO	NDAR	Y TEST	s			
BORING	DEPTH	USCS	2 ICE		oil Gradation (9		Moist.	<u> </u>	rberg Li		Dry Density	Org. Loss by	Spec.	3 Elec. Cond.	4 F.P.D.	TXUU	TXCU	TXCD	D.S.	Consol.	Thaw Consol.	Chem.	Thermal	Comments
<u> </u>	< (ft)		_	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI	(pcf)	Ignition (%)	Grav.	<u> </u>		<u></u>					CAMISOI.	<u> </u>	Cond	
88	3.0	SP.	<u> </u>	15	80.4	4.6	15.4						2.68	51.2							·		<u> </u>	
1	5.0	SP		40	56.4	3.6	9.5							55.9		<u> </u>]	<u></u> -		<u> </u>				
 	7.0	SP	<u> </u>			· 	8.0						- · · · · · · · · · · · · · · · · · · ·	54.9		<u></u>			-	<u> </u>		<u> </u>		
1	8.5	SP		 	<u> </u>		9.2		<u> </u>					60.2	2.5]								
<u> </u>	8.7	SP		<u> </u>			6.7				78			 		<u> </u>								
	9.0	SP_	<u> </u>	<u> </u>			15.3	,			120			72.5	3.0									
	10.2	ML	$oldsymbol{ol}}}}}}}}}}}}}}}}}$				25.6			<u> </u>	ļ	<u> </u>		78.7	3.2	<u></u>						<u> </u>		
: [10.4	ML					24.1]		100	<u> </u>				<u> </u>							·	
	12.2	ML					22.6		L		103								<u></u>			ļ	Х	
	12.8	ML	1	<u> </u>			26.0			<u></u>	99	<u> L</u>	2.73		<u> </u>	<u></u>				Х				
	13.0	ML					25.3							79.3	3.2	<u> </u>						ļ	r	
1	14.9	ML			-	_	28.8	 	i	Ì		Ì :	<u> </u>	52.4	2.1					<u> </u>		_	-	
7	15.0	ML	1				26.4				98					Х						Γ		
	18.0	ML					23.3							63.1	2.6								·	
	24.0	SM		10	43.0	47.0	18.7																	
	25.0	SM	7			36.4	14.0				121								ļ					
:	37.0	SP-SM		40	52.9	7.1	13.9																	
i																								
9	0.0	SM		<u> </u>	63.5	36.5	23.7				113	[
	0.1	SM					22.5							52.4	2.1									·.
1	0.5	SM		1			22.1				105									T			Х	
	4.4	SM			1				1	 				50.0	2.1				<u> </u>			X		
	4.5	SM					24.7		<u> </u>	[101		2.71			1	X							
	5.0		1	,	1	<u> </u>	22.5			 				52.4	2.1							-		-
	5.1	SM	\top		†		22.7		 	 	103		2.70	 -			X		<u> </u>	T				
	5.6	}	1	 	†		22.6	 	 	 	1			50.0	2.0				<u> </u>	1		†		
	5.7	SM	T^{-}		1	t	32.1	 	<u> </u>		90	 	2.72	1	<u> </u>	— —				Х	<u> </u>	 		
\ L _		_1	<u> </u>	<u>.t.</u>	<u></u>		<u> </u>	<u> </u>	<u> </u>	L	L	<u> </u>		ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>		<u> </u>	1	1		<u></u>	i	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISE
DEB 4/82

108 NUMBER 9612,031.08

BORING		-	ASS.			CLA	SSIFICAT	TION T	ESTS									SECO	NDAR	Y TEST	S			
α×Ι	DEPTH	1	2	- So	oil Gradation (%	6)	Moist.	Atte	rberg Li	imits	Dry Density	Org. Loss by Ignition	Spec.	Elec.	4	TXUU	TYCH	TXCD	D.S.	CI	Thaw	Chem,	Thermal	<u> </u>
8	(ft)	USCS	ICE	Gravel +4	Sand 4 to +200	Fines -200	Cont. (%)	ŁL	PL	PI	(pcf)	Ignition (%)	Grav.	Cond,	1,1.0.	1,000	1,700	IXCD	,D.S.	Consol.	Consol.	Chem,	Cond	Comments
9	6.6	ML					28.2			i				53.1	2.2				· · · · · · · · · · · · · · · · · · ·	ļ				
	7.0	ML			40.6	59.4						<u> </u>					<u> </u>					<u></u> .		
	7.3	ML_					28.2						2.75	39.8	1.6		[<u></u> .	<u> </u>	: 			
	7.4	ML.					26.4			<u></u>	98		2.74	<u> </u>	 	ļ	χ			<u> </u>				· · · · · · · · · · · · · · · · · · ·
	8.0	ML					34.2	ļ		<u> </u>				51.8	2.1									
	8.1	ML				<u> </u>	28.4			 	96	ļ }	2.74		<u> </u>		X			<u> </u>				
	9.0	ML			· .		_ 27.4_	NP	NP	<u>N</u> P	96	<u> </u>	2.74			<u>.</u>	X			ļ		·		
	9.7	_ ML					35.0				86		2.71		_				<u> </u>	Х			ļ !	
	9.9	ML					28.2							53.9	2.2									
	13.8	ML	70				37.0				::			50.7	2.1									:
	14.4	ML					41.8				78					Х		· · ·						
1	15.0	ML		. 			40.7				77				·	x								
	19.3	M H					80.4			·	53		2.66		l					Х				
	19.5	ML					51.3				68					Х								
	20.0	ML				l	37.0						l	46.0	1.9	<u> </u>								
	25.0	ML				67.4											}							
	25.4	SM				· . <u>.</u> .	33.2							42.5	1.7									
	25.5	SM					35.7				79													
	30.0	SM				38.8							<u> </u>								[
	31.6	SM					30.2				90					X								
	36.0	SM		<u> </u>		23.6		Ţ								1				T				· · · · · · · · · · · · · · · · · · ·
	36.3	SM					27.8			1	96			1					_	1		<u> </u>		
	40.9	ML	\Box				32.8	35	27	8					 	 						 		·
	41.1	ML				۰ <u>. </u>	34.5	 			1			37.8	1.5	 					<u> </u>			
-	41.2	ML					32.8			 	91		2.73	<u> </u>		 			<u> </u>	X	<u> </u>	<u> </u>		<u> </u>
	41.4	CL			1.8	98.2	31.2	 	<u> </u>		90	<u> </u>	 	 		X	<u> </u>			<u> </u>	<u> </u>	 		· · · · · · · · · · · · · · · · · · ·
	41.9	CL					27.6	 	1	 	96		<u></u> -			X	†				<u> </u>	 		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

APPROVED DATE

1/82

9612,031.08

DATE 4/82

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

		MPLE NATION	SOIL CL	ASS.			CLA	ASSIFICAT	rion T	ESTS									SECO	NDAR	Y TEST	'S			·
	SOR ING	DEPTH	1		· So	il Gradation (9	6)	Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	3 Elec.	4 FPD:	TXUU	TXCH	TYCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
\mathbb{L}	ğŽ	(ft)	USCS	ICE	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL.	PI	(pcf)	by Ignition (%)	Grav.	Cond.		1,000	1200	1,000	0,3.	Conson	Consol	Calcin,	Cond	Continents
IL	9	46.4	CL	<u> </u>			· 	29.3				93	· · · · · · · · · · · · · · · · · · ·					,				! !		X	·
$\ \ $		50.5	ML_	<u> </u>				25.1	ļ			97													7
╽		55.5	ML_			···		16.5	· .			112_									<u> </u>			ļi	
		60.0	GP	<u> </u>				2.8		<u> </u>	·	106			.							· .			-
		60.5	GP			· 	! 	6.2				96										·			
		61.0	6P		96.1	3,7	0.2				<u> </u>	<u> </u>			<u> </u>							: : : :			
			<u> </u>				ļ 						<u> </u>	ļ								i		_	
$\ \ $	10	0.5	SP-SM	Vc		91.1	8.9			<u> </u>]												
		1.0	SP-SM	Vc				23.3				<u> </u>	···-	·	10.5	0.4									
$\ \ $		2.5	SP-SM	Vc				111							23.9	0.9									
lT		3.0	SP-SM	ν _c			10.2													· · · · · · · · · · · · · · · · · · ·	- 4, 7 7	- 1	- :		
1 [e de E	3.5	SP-SM	٧c	·- ·- ·- · · · · · · · · · · · · · ·			23.8			<u> </u>				6.2	0.2									
11		5.5	SP-SM	٧c	. 272			23.2	2 1 h 7 h 7 h	: :-				-	12.1	0.4									
١ſ		7.0	SP-SM	٧c				25.1							12.5	0.4									
		8.5	SP-SM	٧c		89.3	10.7																		
11		9.5	SP-SM	٧c				26.9						_	27.2	1.1		· ·							
Ħ		12.0	SP-SM	Nf				23.5							109	4.1									
		14.5	SM					19.4	<u> </u>			110			106	4.0					T				
		15.0	SM					23.2				101			90.9	3.9				 I			Х		
		16.5	SM					24.4				99													
$\ \cdot \ $	-	18.0	ML	Vr				28.1				85	ļ			 									
11	<u></u>	20.5	ML	٧r		<u> </u>		28.9		1		95	<u> </u>										<u> </u>		
H		26.0	ML	Y _{x,r}		<u> </u>		42.7	<u> </u>	<u> </u>		77	ļ		Ţ								 	 	
11		31.0	ML	Vr				21.6	27	21	6	108										Х			
		40.5	ML	Vr		_ ~_⊸		19.6				107		 	 		 			 	 		<u> </u>	 	
		46.0	ML	ν _r	-	<u> </u>		27.3		1		96			<u> </u>	 							<u> </u>	 -	
		51.0	ML	Vr			<u> </u>	22.7	<u> </u>	 		104	 -		t							- -	<u> </u>		
۱۱			1	17	<u>i </u>	<u> </u>	<u> </u>	1	1	<u> </u>	L	<u>. </u>	<u>!</u>			<u> </u>	L		<u>. </u>		<u> </u>		L—	<u>-</u>	L

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISE
DEB 4/82

PLATE

9612,031.08

	SAMP ESIGNA		soil cl	ASS.	<i>:</i>		CLA	SSIFICAT	TION T	TESTS			·						SECO	NDAR	Y TEST	s 		1	
1	2 DE	ЕРТН	1	2		il Gradation (%	5)	Moist.	Atte	rberg Li	imits	Dry	Org. Loss	Spec.	Elec.	4 E D O	*******	TVCII	TVCD			Thaw		Thermal	
3	~ = 1	(ft)	USCS	ICE	Gravel +4	Sand -4to +200	Fines -200	Cont. (%)	LL	PL	PI	Density (pcf)	Ignition (%)	Grav.	Cond.	F,F.D.	TXUU	IXCO	TXCD	D.S.	Consol.	Consol,	Chem.	Cond	Comments
1		0.0	ŞP					12.2							44.8	1.8				· · · · · · · · · · · · · · · · · · ·		:. ı ;			
		4.0	GP		77	22.0	1.0	·		.	<u> </u>														,
		10.0	GP		82	17.1	0.9	8.4		ļ	<u> </u>				48.9	2.0				<u> </u>				<u> </u>	
		15.0	GP		51	45.5	3.5	8.1	·			109									<u> </u>	<u> </u>			·
		17.0	GP			-	2.3			ļ	<u> </u>	<u> </u>			<u> </u>									<u> </u>	
		19.5	GP		· · · ·	·	·	8.5			ļ	<u> </u>			48.0	2.0		·			<u> </u>				
		19.7	GP			·		8.3	<u> </u>		<u> </u>	114		ļ	<u> </u>						<u> </u>	<u> </u>			
	1 2	22.0	GP		68	31.3	0.7	<u> </u>	<u> </u>	ļ	<u> </u>			2.70	ļ				 			<u> </u>	<u> </u>		
		30.5	GP				0.5		<u> </u>	ļ	<u> </u>		ļ—. <u>.</u>					·····				·			
		34.0	GP				1.1														<u> </u>				
		34.5	SP-SM				9.7			<u> </u>	<u> </u>	<u> </u>		<u> </u>								· .			
5		40.0	SP			- :		8.0		<u> </u>		131		2.69											
r (_	say s	41.0	GP-GM		58	33.9	8.1	7.1	<u> </u>		1				49.5	2.0									
		41.2	GP-GM		<u> </u>			5.6	 	<u> </u>	 	124		 	<u> </u>	<u> </u>					<u> </u>	· 	L		·
╿		49.0	SP		41.3	54.8	3.9	<u>. </u>	<u> </u>	<u> </u>	<u> </u>			2.68	<u> </u>						.			<u> </u>	
$\ \ _{-}$	_		c-0.				<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u> _		<u> </u>		<u> </u>				<u> </u>	:			·
	2	0.0	0L · ·	Vx.r				406		<u> </u>	<u> </u>	11	ļ	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	: :-:		χ	<u> </u>
$\ \ $		0.5	0L	V _X ,r				74.1		<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	0.6	0.0						<u>:</u>			
		0.6	0L	$v_{x,r}$	<u></u>			27.6	<u></u>	 - -	 	78	ļ	ļ	<u> </u>	<u> </u>					<u> </u>	X			·
		1.0	Pt	<u> </u>	<u></u>		<u> </u>	100	<u> </u>	<u> </u>	1	37		<u></u>			<u> </u>	<u> </u>	· 		<u> </u>		ļ		
$\ $		1.5	Pt					<u> </u>	<u> </u>	 	<u> </u>	5			<u> </u>	ļ	 	<u> </u>			<u> </u>				
\prod		3.3	ICE	\ <u></u>	<u> </u>		 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	0.3	0.0					<u> </u>	 	<u> </u>	<u> </u>	
\prod		6.2	SM	٧x		·	<u> </u>	429	 	ऻ	<u> </u>	10	<u> </u>	ļ	<u> </u>	<u></u>	<u> </u>				<u> </u>	<u> </u>	 	<u> </u>	
$\ \ $		6.7	SM	V _X	 		<u> </u>	74.7	<u> </u>	1	<u> </u>	45		<u> </u>		 	<u> </u>				<u> </u>]	
		9.0	SM	V _X	3	79.6	17.4	30.0	'	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u>	7.1	0.2				_		<u> </u>		<u> </u>	
		9.1	SM	V _X	<u> </u>	<u> </u>	, ·	19.2	 	 	 	93	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		 			X	<u></u>	<u></u>	
$\ \ $		9.5	SM	Vχ	<u> </u>		<u> </u>	38.3		<u>L</u> .	<u> </u>	65	<u>L</u>	<u> </u>	<u>L</u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>		
1																									

Harding Lawson Associates Engineers, Geologists & Geophysicists

Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED
DATE
REVISED

PLATE

NWARD 9L

JOB NUMBER 9612,031.08

MB

DATE 4/82

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

		ASS.	-		CLA	SSIFICAT	TION T	ESTS									SECO	ONDAR	Y TEST	r Š			
DEPTH	1	2	\$c	oil Gradation (9	د)	Moist.	Atte	rberg Li	mits	Dry	Org. Loss	Spec.	3 Elec.	4	TVIII	TVCII	#W0D	200		Thaw	~	Thermal	C
(ft)	USCS	ICE	Gravel	Sand -4 to +200	Fines -200	Cont. (%)	ŁL	PŁ	Pi	(bct)	Ignition (%)	Grav.	Cond.	F.P.D.	1,000	1200	1 XCD	D.S.	Consol.	Consol.	Coem.	Cond	Comments
14.4	GM	٧x	43	42.5	14.5	41.4				58													
19.0	SP-SM	٧x			11.3	14.7							9.1	0.3									
19.2	SP-SM	$V_{\mathbf{x}}$		<u> </u>	·	20.8										<u></u>			<u> </u>	<u> </u>	<u> </u>		
24.0	SP-SM	Vx	· 		9.3	10.4	ļ, i				ļ		11.2	0.4	<u> </u>			<u> </u>					
24.2	SP-SM	$V_{\mathbf{x}}$				14.4							<u> </u>							ļ	<u> </u>		
29.0	SP-SM	V _X				16.8						ļ	22.2	0.8							<u></u>		
29.2	SP-SM	$V_{\mathbf{X}}$				15.2		<u> </u>		81							:			<u> </u>			
34.5	ML	1				46.9			<u> </u>				31.3	1.2									
34.7	ML				_	40.9				72													
39.0	· L. · · · · · · · · · · · · ·					25.8				· · · · · · · · · · · · · · · · · · ·			'	2 24 2	, · · · · · · · · · · · · · · · · · ·								
44.0	ML					17.0																	
49.3	ML		<i></i>			27.2				79	:												
																· · ·							
0.2	OL	V _{x.r}				60.1					15.9		1.6	0.0									
0.3	0L					54.9				53										Х			
2.0	ML	T.,	1			153				24										[-
3.0	SP-SM					21.0				82			[Х			
3.8	GP-GM	ν _x	49	43.8	7.2															,			
5.0	SP-SM	٧x				8.3							8.3	0.3									
6.5	SM	٧x			16.1	24.3																	
			22	65.5	12.5	15.8							5.8	0.2		<u> </u>							
			^		<u> </u>	20.0												1]			
		_				76.1	34	25	9	52			<u> </u>				<u> </u>			X			
			1]		154				29					1				lacksquare		<u> </u>	χ	
						48.8				<u> </u>		ļ	29.9	1.2			1		1	1			
22.5	ML	\rightarrow				58.6				59			Γ	\vdash									
		$\overline{}$			11.5	6.9		1				Ī		<u> </u>				<u> </u>	1				
	DEPTH (ft) 2 14.4 19.0 19.2 24.0 24.2 29.0 29.2 34.5 34.7 39.0 44.0 49.3 3 0.2 0.3 2.0 3.0 3.8 5.0 6.5 10.0 12.0 17.5 18.0 22.3	DEPTH (ft) USCS 14.4 GM 19.0 SP-SM 19.2 SP-SM 24.0 SP-SM 24.2 SP-SM 29.0 SP-SM 29.2 SP-SM 34.5 ML 34.7 ML 39.0 ML 49.3 ML 49.3 ML 30.2 OL 0.3 OL 2.0 ML 3.0 SP-SM 3.8 GP-GM 5.0 SP-SM 3.8 GP-GM 5.0 SP-SM 10.0 SP-SM 12.0 SM 17.5 ML 18.0 ML	DEPTH (ft)	DEPTH (ft)	DEPTH USCS ICE	DEPTH (H)	DEPTH (ft)	DEPTH USCS ICE Soil Gradation (%) Moist. Atterest Moist. Atterest Moist. Moist. Atterest Moist. Moist. Atterest Attorest Moist. Atterest Attorest Moist. Atterest Moist. Atterest Attorest Attorest Moist. Atterest Attorest Attorest	Signation Soil Calcing Soil Gradation (%) Moist. Atterberg Light (ft) USCS ICE Gravel Atto 4200 Fines Cont. (%) LL PL	DEPTH USCS CE Soil Gradation (%)	DEPTH USCS Total Total	DEPTH USCS CE Soil Gradation (%) Moist Cont. (%) LL PL P1 Dry Crit Crit P2 P1 Crit Crit P2 P1 Crit Crit P2 P1 Crit Crit P2 P1 Crit Crit Crit Crit P2 P1 Crit Crit Crit Crit P2 P1 Crit Cr	DEPTH USCS VE Soil Gradation (%)	DEPTH USCS ICE Soil Gradation (%)	DEPTH USCS 1CE Soil Gradation (%) Moist. Ont. (%) U.L PL Pl Ont. (%) Ont. (%) Ont. (%) U.L PL Pl Ont. (%) Ont	Depth USCs C Grave 410 700	DEPTH USCs C Gravel Sand Sand						

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C

5. NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
4/82

9612,031.08

1 #	MPLE NATION	SOIL CL	ASS.	•		CLA	ASSIFICAT	rion 1	rests	.e							_	SECC	OND AR	Y TEST	is				
BORING	DEPTH	1 USCS	2 ICE	So	il Gradation (%	ر _ا (Moist.	Atte	erberg Li	imits	Dry Density	Org. Loss by	Spec.	Elec.	FPD.	TXUU	TXCU	TXCD	D,S.	Consol.	Thaw	Chem,	Therma!	Comments	
82	(ft)	0303	102	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI	{pct}	by Ignition (%)	Grav.	Cond.		.,,,,,		.,,,,,		20113011	Consol.	C. (C.)	Cond		·
13	32.0	SM	V_{X}	45	41.7	13.3	12.9							23.0	0.9									·	
]]	37.0	SM	$v_{\rm x}$				11.0					<u>-</u>		<u> </u>]				ļ 					· · · · · · · · · · · · · · · · · · ·	···
<u> </u>	42.0	SM	٧x			12.6	9.8								<u> </u>		<u></u>								
	50.0	SP-SM	V _X	34	55.1_	10.9	9.6	<u> </u>						17.1	0.6										-
				·			<u> </u>	<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>											
					: 		<u> </u>			<u></u>						 			<u> </u>						
14	0.0	_SM					21.7	<u> </u>	ļ <u>.</u>		107		<u> </u>	47.7	1.9				<u> </u>						
	1.5	SM		1	71.9	27.1					<u>L</u> _	ļ		<u> </u>								ļ		L	
	1.8	SM	<u> </u>				21.6	<u> </u>	<u> </u>					46.1	1.9	<u></u>			<u> </u>						
a kan to aka	2.4	ML.					27.1				95		2.72	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· - · · · -	χ								
	2.9	ML			 		26.7				96		2.71				<u> </u>								
	6.1	ML				· · · · · · · · · · · · · · · · · · ·	31.1							45.6	1.8				an Allana an Allana						
1	6.2	ML			- 		33.1	32	26	6			}												
	6.3	ML					33.1				89		2.71							X	 			<u> </u>	
	7.3	ML		· · · · · · · · · · · · · · · · · · ·			31.1							44.9	1.8								: · · · · · · · · · · · · · · · · · · ·		
	7.9	ML					31.1 ·				90				<u> </u>		<u> </u>	<u> </u>			<u> </u>	<u> </u>			
	11.0	SM		11	61.1	27.9	25.2							50.4	2.1							<u> </u>			
 	11.2	SM		··			23.5				102		<u> </u>												
	12.5	SP-SM					16.1							50.1	2.0										
	12.7	SP-SM					14.2	<u> </u>	1		121	}	Ī]			<u> </u>			
	13.5	SP					6.2																		
	15.0	SP					9.5				1														
	15.5	SP					15.1				119														
	16.7	CL				[19.5	33	19	14		1				1						}			
	16.8	CL	1				19.5	 			112	1	2.75					1 .		Х					
	17.0	CL	1				18.1			 	113			<u> </u>	T^{-}	Х	 								_
	19.8	CL					· · · · · · · · · · · · · · · · · · ·						Ī		1	T		T							
		CL					20.4				110		<u> </u>		<u> </u>										· · · · · · · · · · · · · · · · · · ·

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Efec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED
DATE
REVISE
4/82

JOB NUMBER 9612,031.08

	MPLE NATION	SOIL CL	ASS.			CLA	ASSIFICA	TION	rests									SECO)NDAR	y test	S	<u></u>		·	
BORING NO.	DEPTH	1		s	oil Gradation (9	~ %)	Moist.	Atte	rberg Li	imits	Dry Density	Org. Loss	Spec.	Elec.	!!!	TYIUI	TXCU	TYCU	20	Consol.	Thaw	Chem.	Thermal	Comments	
82	(ft)	USCS	ICE	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	Pł	(pcf)	by Ignition (%)	Grav.	Cond.	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.1,00	1,00		J.J.	Conson	Consol	CATEIII.	Cond	L Comments	_
14	25.5	CL					22.9		<u> </u>		103					<u> x</u>					· 		<u> </u>		
	31.1	ML					22.8	ļ. 	<u> </u>	<u></u>	105						<u> </u>	<u> </u>		<u> </u>		<u></u>	<u> </u>]
	<u>35.4</u>	CL				<u> </u>	25.1	40	26	14		ļ	<u> </u>												
	36.0	ML					25.1		<u> </u>		101	ļ		 		X]		
	40.5	ML		<u> </u>		,	25.1	ļ	<u> </u>		101	<u> </u>	<u> </u>			χ	 					<u> </u>			
[]	45.0	GM		47	21.6	31.4_	18.9					ļ 	[<u> </u>								·	
	50.0	GP		64	34.0	2.0	8.7		<u> </u>	<u> </u>		ļ			 	<u> </u>				· 	-	Ĺ	<u> </u>		
				<u></u>			 			<u> </u>	 					 									
15	0.2	ML	<u> </u>				32.8				<u></u>			51,4	2.1			<u></u>							ــــــــــــــــــــــــــــــــــــــ
	1.9	- ML		· · · · · · · · · · · · · · · · · · ·	1		35.0							63.5	2.6										
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0	ML					36.0				83		<u></u>			χ					<u> </u>				
T	2.7	ML_					39.0				<u> </u>	<u> </u>		46.4	1.9		<u> </u>				<u> </u>			<u>. </u>]
./	5.0	Mi_					43.2		<u> </u>					49.4	2.0										
	5.2	ML				<u> </u>	40.5	46	31	5	81		2,65							X					
	5.5	ML		<u> </u>			47.8		<u> </u>	<u> </u>				50.3	2.1		<u> </u>								
	7.5	SM	_		52.2	47.8			<u> </u>	<u> </u>	<u> </u>	<u></u>	<u> </u>		<u> </u>			<u> </u>				<u> </u>			
	7.7	SM					27.3			ļ	95			Ĺ											
	8.2	SM					26.0							64.5	2.6					<u>.</u>					
	8.4	MH				83.1	70.2				56						Х								
	9.0	MH					81.1			NP	51		2.43			X									
	9.7	ML	T -				64.9			Ī		Ī		64.3	2.6										
	10.7	ML					33.4							63.6	ŧ										
	10.8	ML					32.2				86					х					·				
	11.5	SM					28.0		Γ^-					61.5	2.5								[\neg
	15.5	SM					18.2	 		[114		2.73		Ţ		Х			T .					
	16.0	SM	1.				18.6			1	113		2.73	1			Х					<u> </u>			\neg
	· · · · · · · · · · · · · · · · · · ·		T				15.2			1					2.1										
	18.5	SM					15.2	<u> </u>	<u> </u>	<u> </u>	<u> </u>			50.8	2.1		<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u> _		<u> </u>	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED
DATE
HEVISE
4/82

JOB NUMBER 9612,031.08

	MPLE NATION	SOIL CL	ASS.	•		CLA	SSIFICAT	TION 1	ESTS						. 1			SECC)NDAR	Y TEST	S			l
250	DEPTH	1	2	So	oil Gradation (%	6)	Moist.	Atte	rberg Li	imits	Dry	Org. Loss	Spec.	3 Elec.	4	TXUU	TYCU	TXCD	D.\$.		Thaw	~	Thermal	
BORING	(ft)	USCS	ICE	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL.	Pl	Density (pcf)	by Ignition (%)	Grav.	Cond.	r.r.D.	1,000	1,00	TAGE	0.5.	Consol.	Consol.	Chem.	Cond	Comments
15	18.7	SM					18.2				104										<u> </u>			· · · · · · · · · · · · · · · · · · ·
	26.7	ML					18.4	<u> </u>						72.0	3.0							<u> </u>		
	26.8	ML .				·	21.5				106		2.69	ļ						Х	·	<u> </u>		
	36.4	sc					16.8						<u> </u>	51.8	2.1	<u></u>					; ;	<u> </u>		
	36.8	CL					26.0		<u> </u>		95		<u> </u>			Х		· · ·				<u> </u>		
	39.5	CL	$v_{x,r}$			<u>.</u>	30.3	28	21	7				26.2	1.0						<u>.</u>			
	39.6	CL.	$v_{x,r}$				23.5				102										X	<u> </u>		
	49.0	CL	$V_{X,r}$				19.2							28.1	1.1	·)			
	49.1	CL	$v_{x,r}$				27.7	<u></u>	<u>L</u>		92								<u></u>		X	<u> </u>		
	55.0	CL	$V_{x,r}$				54.4				68										!			
16	0.1	SP-SM		23	68.3	8.7					·								_			[
	0.8	SP-SM						ĺ						40.8	1.7							Х		
	1.1	SM				39.9	25.1							38.7	1.5									
	2.5	SM					31.9	<u> </u>																
	3.0	SM					32.9						<u> </u>	18.0	0.7		,							·
	3.1	SM	Vc,5				48.9				79										Х			
	4.0	SM	Vc,s				25.2				97													
	5.0	ML	V _{c.s}			93.1	27.9							13.7	0.5									
	5.1		Vc,5	i			42.6				73										Х			
	5.5		Vc,s				25.7																	
	6.0		Vc,s				28.5				93										.'			
	7.5		V _C ,s				21.6							26.1	1.0									
	8.0		Vc,s				30.1	Ī			89				<u> </u>									
	9.0		Vc,s			39.1	29.5		1		<u> </u>			7.8	0.3				_					
	9.1		Vc,s				28.5				93	·									χ	T		
	9.5		Vc,s	_			29.6		1	<u> </u>	91			<u> </u>			1							

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISE
DATE 4/82

JOB NUMBER 9612,031.08

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression,*C
 NP = Non-Plastic

DEPTH (ft) 11.0 11.5	·	2 ICE	So															_		<u>i</u>	•		
11.0	·	1 10-		il Gradation (%	6)	Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	3 Elec.	FP.D.	TXUU	TXCII	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
	CM		Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	₽L	PI	(pcf)	Ignition (%)	Grav.	Cond.		1,,00	77.00			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Consol		Cond	
11.5	SM	<u>ν</u> ς.s		<i></i>		27.7				91										· 			<u> </u>
	SM	۷ _{C,s}				29.0							8.1	0.3									
13.0	CL-ML	٧r				29.3							17.5	0.6				·····					
13.2	CL-ML	v_r				31.2	23	17	6			· .											-
13.5	CL-ML	V _r				31.2	24	18	6	90													
14.5	SM	Vr		<u> </u>		30.7				 			7.0	0.2						<u>:</u>			
15.0	ML	Vr.	· .		67.4	30.1				87										·			
16.5	SM	V _C				33.8							9.3	0.3									
17.5	SM	V _C		51.2	48.8	29.6				79								· · · · · ·					
24.5	ML	٧r				33.1							11.0	0.4				<u></u>	1 1 7 1				· · · · · · · · · · · · · · · · · · ·
24.6	ML	Vr				25.5				98					أحنا		<u>.</u>			X			
7 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-																	*					
0.2	SP	F 1				21.8	- :	- 1		104		- 						· · · · · · · · · · · · · · · · · · ·		· : " : "			
0.7	SP					19.9							46.8	1.9									
0.8	SP					22.4				102				 									
1.4	SP				·	19.6	<u> </u>						45.2	1.8									· · · · · · · · · · · · · · · · · · ·
3.4	CL-ML					32.6	25	21	5														
3.5	CL-ML			; 		32.6				90		2.71							Х				
3.8	CL-ML					29.7							49.0	2.0									
4.9	ML					43.4] _						47.9	1.9						.,			
6.1	ML					33.1							36.9	1.5			·						
6.2	ML		1	5.7	93.3	52.5				67	·	<u> </u>			Х					:			
6.7	WF					40.5				77					χ			_		2 2 3			
· -						50.1							37.4	1.5									
	$\overline{}$	1			<u> </u>	25.7				89			<u> </u>							: "-			
		1	44	16.4	39.6	17.2				<u> </u>			48.7	2.0			· ·	_		: .	<u> </u>		
	1					17.8	1			108								_					
	16.5 17.5 24.5 24.6 0.2 0.7 0.8 1.4 3.4 3.5 3.8 4.9 6.1 6.2 6.7 7.3 9.0 9.4	16.5 SM 17.5 SM 24.5 ML 24.6 ML 0.2 SP 0.7 SP 0.8 SP 1.4 SP 3.4 CL-ML 3.5 CL-ML 4.9 ML 4.9 ML 6.1 ML	16.5 SM V _C 17.5 SM V _C 24.5 ML V _T 24.6 ML V _T 0.2 SP 0.7 SP 0.8 SP 1.4 SP 3.4 CL-ML 3.5 CL-ML 3.8 CL-ML 4.9 ML 6.1 ML 6.2 ML 6.7 ML 7.3 SM 9.0 GM 9.4 GM	16.5 SM V _C 17.5 SM V _C 24.5 ML V _T 24.6 ML V _T 0.2 SP 0.7 SP 0.8 SP 1.4 SP 3.4 CL-ML 3.5 CL-ML 3.8 CL-ML 4.9 ML 6.1 ML 6.2 ML 1 6.7 ML 7.3 SM 9.0 GM 9.4 GM 44	16.5 SM V _C 51.2 17.5 SM V _C 51.2 24.5 ML V _r 24.6 ML V _r 0.2 SP 0.7 SP 0.8 SP 1.4 SP 3.4 CL-ML 3.5 CL-ML 4.9 ML 6.1 ML 6.2 ML 1 5.7 6.7 ME 7.3 SM 9.0 GM 9.4 GM 44 16.4	16.5 SM V _C 51.2 48.8 17.5 SM V _C 51.2 48.8 24.5 ML V _r 24.6 ML V _r 0.2 SP 0.7 SP 0.8 SP 1.4 SP 3.4 CL-ML 3.5 CL-ML 3.8 CL-ML 4.9 ML 6.1 ML 6.2 ML 7.3 SM 9.0 GM 9.4 GM 44 16.4 39.6	16.5 SM V _C 51.2 48.8 29.6 24.5 ML V _C 51.2 48.8 29.6 24.6 ML V _C 33.1 24.6 ML V _C 25.5 0.7 SP 21.8 0.7 SP 19.9 0.8 SP 19.9 0.8 SP 19.6 3.4 CL-ML 32.6 3.5 CL-ML 32.6 3.8 CL-ML 29.7 4.9 ML 43.4 6.1 ML 1 5.7 93.3 52.5 6.7 ML 40.5 7.3 SM 50.1 9.4 GM 44 16.4 39.6 17.2	16.5 SM V _C 51.2 48.8 29.6 24.5 ML V _C 33.1 33.1 24.6 ML V _C 25.5 0.2 SP 21.8 25.5 0.7 SP 19.9 22.4 1.4 SP 19.6 32.6 25 3.4 CL-ML 32.6 25 3.5 CL-ML 32.6 25 3.8 CL-ML 29.7 4.9 ML 43.4 43.4 6.1 ML 33.1 52.5 6.7 ML 1 5.7 93.3 52.5 6.7 ML 40.5 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1	16.5 SM V _C 51.2 48.8 29.6 24.5 ML V _T 33.1 25.5 17.5 SM V _C 51.2 48.8 29.6 24.6 ML V _T 33.1 24.6 ML V _T 25.5 10.2 SP 21.8 10.7 SP 19.9 10.8 SP 19.9 1.4 SP 32.6 25 21 32.6 25 21 33.5 CL-ML 32.6 3.8 CL-ML 32.6 3.8 CL-ML 29.7 4.9 ML 29.7 4.9 ML 33.1 6.1 ML 33.1 6.2 ML 1 5.7 93.3 52.5 6.7 ML 40.5 7.3 SM 50.1 9.0 GM 94 GM 44 16.4 39.6 17.2	16.5 SM V _C 51.2 48.8 29.6 24.5 ML V _T 33.1 25.5 3.1 24.6 ML V _T 25.5 3.1 25.5 3.1 24.6 ML V _T 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.5 3.1 25.	16.5 SM V _C 51.2 48.8 29.6 79 24.5 ML V _C 33.1 24.6 ML V _C 25.5 98 0.2 SP 21.8 104 0.7 SP 19.9 0.8 SP 22.4 102 1.4 SP 32.6 25 21 5 3.5 CL-ML 32.6 25 21 5 3.5 CL-ML 32.6 90 3.8 CL-ML 29.7 90 3.8 CL-ML 32.6 90 3.8 CL-ML 33.1 66.1 ML 29.7 90 3.8 CL-ML 33.1 66.1 ML 43.4 66.1 ML 43.4 66.1 ML 43.4 66.1 ML 56.2 ML 1 5.7 93.3 52.5 67 6.7 ML 1 5.7 93.3 52.5 67 7.3 SM 9.0 GM 9.4 16.4 39.6 17.2 89 9.4 GM 44 16.4 39.6 17.2	16.5 SM V _C	16.5 SM V _C 51.2 48.8 29.6 79 24.5 ML V _T 25.5 98	16.5 SM V _C 51.2 48.8 29.6 79 17.5 SM V _C 51.2 48.8 29.6 79 24.5 ML V _T 33.1 11.0 24.6 ML V _T 25.5 98 11.0 0.2 SP 25.5 98 104 11.0 0.7 SP 19.9 104 102 46.8 0.8 SP 19.9 102 46.8 46.8 1.4 SP 19.6 102 45.2 45.2 3.4 CL-ML 32.6 25 21 5 271 45.2 3.5 CL-ML 32.6 25 21 5 271 49.0 4.9 ML 43.4 47.9 47.9 47.9 6.2 ML 1 5.7 93.3 52.5 67 77 77 77 77 77 77 77 77 <td< td=""><td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_C 33.1 11.0 0.4 24.6 ML V_C 25.5 98 104 0.2 SP 21.8 104 25.5 104 0.7 SP 19.9 46.8 1.9 0.8 SP 19.9 46.8 1.9 1.4 SP 19.6 102 45.2 1.8 3.4 CL-ML 32.6 25 21 5 2.71 2.0 3.8 CL-ML 29.7 49.0 2.0 47.9 1.9 4.9 ML 43.4 77.9 1.9 1.5 6.2 ML 1 5.7 93.3 52.5 67 67 6.7 ML 1 5.7 93.3 52.5 67 77 7 7 7.3 SM 50.1 77</td><td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 33.1 11.0 0.4 11.0 0.4 24.6 ML V_T 25.5 98 10.4 11.0 0.4 0.7 SP 21.8 10.4 10.2 46.8 1.9 0.8 SP 19.9 46.8 1.9 46.8 1.9 1.4 SP 19.6 45.2 1.8 1.8 3.4 CL-ML 32.6 25 21 5 5 3.8 CL-ML 32.6 90 2.71 36.9 1.9 4.9 ML 43.4 47.9 1.9 49.0 2.0 4.9 ML 33.1 36.9 1.5 5 6.7 ML 1 5.7 93.3 52.5 67 X X 7.3 SM 50.1 37.4 1.5 37.4 1.5 9 9.4 GM 44 16.4 39.6</td></td<> <td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_r 33.1 11.0 0.4 11.0 0.4 24.6 ML V_r 25.5 98 104 11.0 0.4 0.7 SP 19.9 46.8 1.9 46.8 1.9 0.8 SP 19.9 46.8 1.9 46.8 1.9 1.4 SP 19.6 45.2 1.8 45.2 1.8 3.4 CL-ML 32.6 25 21 5 49.0 2.0 4.9 ML 29.7 49.0 2.0 47.9 1.9 6.1 ML 33.1 36.9 1.5 36.9 1.5 6.7 ML 1 5.7 93.3 52.5 67 37.4 1.5 9.0 GM 44 16.4 39.6 17.2 89 48.7 2.0</td> <td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 17.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 33.1 11.0 0.4 11.0 0.4 224.6 ML V_T 25.5 98 10.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 0.4 11.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4</td> <td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 17.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 25.5 98 11.0 0.4 24.6 ML V_T 25.5 98 11.0 0.4 0.7 SP 19.9 46.8 1.9 19.9 46.8 1.9 19.9 19.9 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2</td> <td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 33.1 11.0 0.4 11.0 0.4 24.6 ML V_T 25.5 98 11.0 0.4 12.0 0.2 SP 21.8 104 102 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <</td> <td>36.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_C 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4<td>16.5 SM V_C 51.2 48.8 29.6 79 111.0 0.4 124.5 ML V_Y 25.5 98 12.18 11.0 0.4 12.18 12.18 12.1 12.1 12.1 12.1 12.1 12</td><td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 25.5 98 104 11.0 0.4 12.4 12.4 15.4 SP 1.9 19.6 12.4 12.5 12.8 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4</td></td>	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _C 33.1 11.0 0.4 24.6 ML V _C 25.5 98 104 0.2 SP 21.8 104 25.5 104 0.7 SP 19.9 46.8 1.9 0.8 SP 19.9 46.8 1.9 1.4 SP 19.6 102 45.2 1.8 3.4 CL-ML 32.6 25 21 5 2.71 2.0 3.8 CL-ML 29.7 49.0 2.0 47.9 1.9 4.9 ML 43.4 77.9 1.9 1.5 6.2 ML 1 5.7 93.3 52.5 67 67 6.7 ML 1 5.7 93.3 52.5 67 77 7 7 7.3 SM 50.1 77	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _T 33.1 11.0 0.4 11.0 0.4 24.6 ML V _T 25.5 98 10.4 11.0 0.4 0.7 SP 21.8 10.4 10.2 46.8 1.9 0.8 SP 19.9 46.8 1.9 46.8 1.9 1.4 SP 19.6 45.2 1.8 1.8 3.4 CL-ML 32.6 25 21 5 5 3.8 CL-ML 32.6 90 2.71 36.9 1.9 4.9 ML 43.4 47.9 1.9 49.0 2.0 4.9 ML 33.1 36.9 1.5 5 6.7 ML 1 5.7 93.3 52.5 67 X X 7.3 SM 50.1 37.4 1.5 37.4 1.5 9 9.4 GM 44 16.4 39.6	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _r 33.1 11.0 0.4 11.0 0.4 24.6 ML V _r 25.5 98 104 11.0 0.4 0.7 SP 19.9 46.8 1.9 46.8 1.9 0.8 SP 19.9 46.8 1.9 46.8 1.9 1.4 SP 19.6 45.2 1.8 45.2 1.8 3.4 CL-ML 32.6 25 21 5 49.0 2.0 4.9 ML 29.7 49.0 2.0 47.9 1.9 6.1 ML 33.1 36.9 1.5 36.9 1.5 6.7 ML 1 5.7 93.3 52.5 67 37.4 1.5 9.0 GM 44 16.4 39.6 17.2 89 48.7 2.0	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 17.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _T 33.1 11.0 0.4 11.0 0.4 224.6 ML V _T 25.5 98 10.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 0.4 11.0 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 17.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _T 25.5 98 11.0 0.4 24.6 ML V _T 25.5 98 11.0 0.4 0.7 SP 19.9 46.8 1.9 19.9 46.8 1.9 19.9 19.9 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _T 33.1 11.0 0.4 11.0 0.4 24.6 ML V _T 25.5 98 11.0 0.4 12.0 0.2 SP 21.8 104 102 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <	36.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _C 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 11.0 0.4 <td>16.5 SM V_C 51.2 48.8 29.6 79 111.0 0.4 124.5 ML V_Y 25.5 98 12.18 11.0 0.4 12.18 12.18 12.1 12.1 12.1 12.1 12.1 12</td> <td>16.5 SM V_C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V_T 25.5 98 104 11.0 0.4 12.4 12.4 15.4 SP 1.9 19.6 12.4 12.5 12.8 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4</td>	16.5 SM V _C 51.2 48.8 29.6 79 111.0 0.4 124.5 ML V _Y 25.5 98 12.18 11.0 0.4 12.18 12.18 12.1 12.1 12.1 12.1 12.1 12	16.5 SM V _C 51.2 48.8 29.6 79 11.0 0.4 24.5 ML V _T 25.5 98 104 11.0 0.4 12.4 12.4 15.4 SP 1.9 19.6 12.4 12.5 12.8 12.4 12.4 12.4 12.4 12.4 12.4 12.4 12.4

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
4/82

JOB NUMBER 9612,031.08

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

	MPLE NATION	SOIL CLA	ASS.			CLA	ASSIFICAT	TION T	EST\$				_					SECO	NDAR	Y TEST	S			
Ş _C	DEPTH	1	2	Sc	oil Gradation (%	6)	Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	Elec.	F,P.D.	TXUU	TVCII	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Commints
BORING	(ft)	USCS	ICE	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI	(pcf)	Ignition (%)	Grav.	Cond.		1200	1,00	I ACD	<i>D.</i> 3.	Collson	Consol.	Chem.	Cond	Comments
17	10.0	GM				· · · · · · · · · · · · · · · · · · ·	19.4							50.2	2.0									
	11.5	<u>G</u> P				0.4	3.1						-						·		<u> </u>			
	13.3	GP					7.2				114			<u> </u>										
	16.5	GP-GM					8.6							ļ']	
	18.5	ML					18.1				,													
	25.7	ML		<u>,, , , , , , , , , , , , , , , , , , ,</u>			22.7							67.2	2.8									
	25.9	ML			·		21.4				106					ļ								· · · · · · · · · · · · · · · · · · ·
	30.4	ML					18.4			-	114		·			X								
	35.0	· CL						43	26	17		·												
	35.3	CL					24.7				103		2.78				Х	:						
	35.7	CL					23.9				103		2.78							X				
	36.3	ML					24.3				103	4,41	2.78				X							
r. 31	40.7	GP-GM		58	34.9	7.1	6.6	[-:				,
	49.8	GP-GM					9.8																	
	50.3	GP-GM					5.2				113													
						- ' - '		T -																
18	0.3	0L					149			-	31												Х	
	1.0	0L		,			55.2				55										Х			
	18.5	GP-GM	V _×			5.7	20.4	T																
	23.5	SP-SM	ν _x	46	47.5	6.5	34.5						2.66											
	28.5	SP-SM					7.2	1				-		Ī										
		SP-SM	ν _x	43	47.3	9.7	1.2					<u> </u>												-
		SP-SM	٧x			7.8	9.3																1	
	43.5	SP-SM	ν _x	32	57.0	11.0	13.7							 										
	48.5	1	Vχ			10.4	10.5	1							<u> </u>									
			 ^ -					1		T	 	1				1	<u> </u>						<u> </u>	
19	0.0	SP	Nfbn		*		2.8				115	1				†	<u> </u>		ĺ					

Harding Lawson Associates

Engineers; Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED

Oute REVISED
4/82

PLATE

JOB NUMBER 9612,031.08

USCS = Unified Soit Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

		MPLE NATION	SOIL CL	ASS.	-		CLA	ASSIFICA ⁻	TION T	TEST\$									SECC	NDAR	y test	Γ \$			<u>.</u>
T	BORING NO.	DEPTH	1 USCS	2 ICE	· Se	oil Gradation (9		Moist.	Att	erberg L	imits	Dry Density	Org. Loss by	Spec.	Elec.	4 F.P.D.	TXUU	TXCU	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
	ğ ^z	(ft)		100	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PŁ	PI	(pcf)	Ignition	G га v .	Cond,						50.1.50.1	Consol.		Cond	Commence
	19	0.1		Ntbn	9	89.9	1.1				<u> </u>			0.70				-				· .			
		1.0		Nf,bn	·						<u> </u>			2.73		_				<u> </u>					
╽┟		2.2		Nf,bn				2.2				113		<u></u>	8.33	0.4		·				<u> </u>	Х		
L		4.0		٧x	14	83	3.0	8.8	<u> </u>		ļ	ļ		<u> </u>	<u></u>					·			<u> </u>		
┟		4.8	SP	Vχ			,	15.0	<u> </u>		<u> </u>				{ -	0.1									
┞		6.0	SP	٧x		<u> </u>		22.5	<u> </u>		<u> </u>				9.0	0.3						÷	<u> </u>		
╽┞		8.0	SP	٧x				24.8	 					<u> </u>	81.0	3.3				· 		<u> </u>	l 	 	
		8.4	SP	V _X				28.3	<u> </u>		<u> </u>		<u> </u>											<u> </u>	
		9.5	SP	V _X	<u> </u>		·	20.2					The Allena and the		45.7	1.9	<u> </u>					:			
		11.0	SP-SM	V_{X}				21.3																	
		12.0	SP-SM	v_{x}			5.5	24.8			<u> </u>				91.2	3.6									
IJ,	\	12.2	SP-SM	V _X				41.2	<u> </u>			84													
		14.0	SP	Nf				25.9						<u> </u>	93.2	3.7									
$\lfloor \lfloor$		14.2	SP	Nf				28.8																	
		14.5	SP				·	22.5			<u> </u>	96				:				·		·			
		15.0	SP-SM					21.4				<u> </u>			129	4.3						<i>I</i> —			
		15.2	SP-SM					16.7				102													
1 [· -	16.0	ML	Vr				30.4			T				130	4.3						-			-
		16.2	ML	٧r				28.7			1	94													
П		16.5	ML	٧r	-			26.8				97			110	4.1									
11		24.5	ML	Vr				21.6			<u> </u>	108	1		 							Х	<u> </u>		
		24.6		V _r				36.2	1	Ī	1			T	73.8	3.0				<u> </u>	1	<u> </u>			
ll		24.7		Vr	<u> </u>		.,	37.2	38	26	12			1	<u> </u>	1									
		29.0	1	Vr				48.9		1	1		1		62.2	2.6									
lt				1		1		<u></u>		 	†	<u> </u>				<u> </u>	1		†	_					
 				 	<u> </u>	T		 	I^-	-	1	<u> </u>			<u> </u>	<u> </u>			<u> </u>				†		<u> </u>
 		*** **********************************		1				1	 	<u> </u>	 		†	1	 		ļ——		i	-			 -		
L		<u> </u>	<u>+</u>		<u> </u>	<u> </u>		<u>i. </u>	1	·	!	<u> </u>	<u></u>	<u> </u>	 -	<u> </u>			<u>. </u>		<u>, </u>	"	! _	J	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

0ATE 4/82 DEB

	AMPLE GNATION	SOIL CL	ASS.	-		CLA	ASSIFICAT	TION 1	ESTS						· .			SECO	NDAR	Y TEST	-S:			
BORING	DEPTH (ft)	1 USCS	1CE	Sc Gravel +4	Sand -4 to +200	6) Fines -200	Moist. Cont. (%)	Atte	rberg Li PL		Dry Density (pcf)	Org. Loss by Ignition (%)	Spec. Grav.	3 Elec. Cond.	4 F.P.D.	Τχυυ	TXCU	TXCD	Đ.S.	Consol.	Thaw Consol.	~L	Thermal Cond	Comments
	29.2	ML	,	+4	-4 to +200	200	54.8				65	(%)								_				
19	1	ML	V _r			<u>_</u>	51.1				69						<u> </u>				:			
	34.5	ML	٧r				12.1				0.5					<u></u>						<u> </u>		
	44.0		٧r		 									60.5	2.5	<u>-</u>			 		•			
<u>-</u>	49.5	ML	V _r		 		21.9	 			100			00.3	2.5							·		
	49.7	ML	٧r		·		21.0				105					 -					···			, , , , , , , , , , , , , , , , , , ,
	 	ML					336	 -			25									 				
20	0.0				5.3	90.7	330				2.5	}	}	···		 -								
	0.1	ML		4	5.3	90.7	53.8				<u></u>	<u> </u>		46.2	1.9									
	0.2	ML			-	<u> </u>	42.9				*; •	11 *** . 11 11												<u> </u>
	2.5	SM					{							44.8					· ·					
	4.0	GP GP			42.0	-pag	6.6						· · · · · · · · · · · · · · · · · · ·	55.6		<u> </u>	<u> </u>		<u>. </u>	<u> </u>	· ·			·
)_	6.5	GP-GM	 	49	44.3	6.7	6.5	<u> </u>	<u>.</u>		120	.		48.0	1.9					-				<u></u>
· ··	6.7	GP-GM	ļ			: ·	5.1	!	<u> </u>		139		<u> </u>			 		 	. 	ļ	<u> </u>			
· · · · · ·	8.0	GP	-	 			8.0	}	-	<u> </u>		 	 	50.9	<u> </u>	 _	 	<u> </u>		<u> </u>	<u> </u>		<u> </u>	···
	10.0	GP	<u> </u>				4.8				 -	<u> </u>		52.4	2.1	 -	 			 -	<u> </u>	<u> </u>	<u> </u>	
	11.5	GP.	ļ	75	24.1	0.9	3.2				<u> </u>		<u> </u>		ļ	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>			· <u>-</u>
	16.5	GP	<u> </u>				7.8	 	<u> </u>		<u> </u>	·			 		<u> </u>			 	<u> </u>		<u> </u>	
	40.0	SP-SM	<u> </u>	41	52.9	6.1	7.9	 		<u> </u>	 		2.69		<u> </u>	<u> </u>	ļ		<u> </u>	<u> </u>	<u> </u>			
	<u> </u>	<u> </u>	! —	 				 								<u> </u>	<u> </u>				 		 	
21	0.0	SP-SM	<u> </u>				23.4	<u> </u>		<u> </u>	106		 			<u> </u>	<u> </u>	ļ	<u> </u>	 		ļ	<u> </u>	
	0.1	SP-SM	+			6.4	22.9	<u> </u>		<u> </u>	<u> </u>	ļ		49.1	2.0	 	<u> </u>		<u> </u>		<u></u>	<u> </u>		
	0.5	SP-SM	+		92.1	7.9	21.3	<u> </u>	<u> </u>	<u> </u>	102	<u> </u>	2.70	<u> </u>			ļ	<u></u>	X	<u> </u>	<u> </u>	ļ		· · · · · · · · · · · · · · · · · · ·
	1.5	SP-SM	 	ļ		<u> </u>	21.7			<u> </u>		ļ	<u> </u>	38.2	1.5		 	<u> </u>					<u> </u>	
	1.7	SP-SM	├ ──				22.1		<u> </u>		102			<u> </u>					<u> </u>	<u> </u>		 		
	2.0	SP-SM			91.0	9.0	20.8				105		2.72					·	Х	<u> </u>				······································
	2.5	SP-SM												46.50	2.0						<u> </u>	χ		
	3.1	CL					20.6	Į	[.		ļ.	36.2	1.4								Ι Ι	

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study

ЈОВ NUMBER 9612,031.08

EXXON Company, U.S.A.

APPROVED DATE

4/82 DATE 4/82

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

		IPLE IATION	SOIL CLA	ASS.			CL	ASSIFICA	TION	rests			-						SECO	NDAR	Y TEST	S			
Z Z	Š	DEPTH	USCS	2 ICE		oil Gradation (%		Moist.	Atte	rberg Li	mits	Dry Density	Org. Loss by	Spec.	Elec.	4 F.P.D.	TXUU	TXCU	TXCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
ğ		(ft)	0300		Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	Pi	Density (pcf)	by Ignition (%)	Grav.	Cond,							Consot.		Cond	00,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
21		3.2	CL		· 			20.5	26	19	7												L		
 		3.3	Cr.		·			20.1	<u> </u>			111		2.76							Х	 	<u> </u>	<u> </u>	
L	_	4.1	ML_					19.3	ļ			111	ļ	2.74				Х			<u> </u>			<u> </u>	
_	_	4.5	ML					19.6	<u> </u>		, ,				39.1	1.6	·				ļ				
	_ .	4.7	ML			2.1	97.9	18.9	<u> </u>			111	<u> </u>	2.73				X		<u> </u>		<u></u>		[
 		5.2	ML	<u> </u>			<u> </u>	20.5	} -			108		2.74				X			ļ	·	ļ	_	
	_ -	5.8	ML.					20.8	<u> </u>						48.7						<u> </u>	<u> </u>	ļ	<u> </u>	
_	_	6.7	ML					21.5	<u> </u>						37.4	1.5					ļ	ļ	ļ	-	
		7.0	ML		- ,		<u> </u>	19.2		<u> </u>		110		```			-Х	<u></u>		· · · ·	<u></u>		<u> </u>	<u> </u>	
	\perp	8.2	ML		-··		· · ·	16.8	 						52.9	2.2		····			1		ļ	_	
		9.0	SM		<u>. </u>			29.7	 _			92			· · ·			 			· :}	<u></u>	 	<u> </u>	·
\		9.6	SM				·	31.2	<u> </u>						61.2					; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;				 	
Ĺ		10.6	:SM		· · ·		· · ·	30.6	<u> </u>	<u></u>					62.3	2.6	<u> </u>	[i			<u> </u>	<u> </u>	 	<u> </u>	
_		10.8	SM	<u> </u>			· ————————————————————————————————————	29.2	<u> </u>			93	 		50.0	0.5	 	<u>-</u>			 .			ļ ·	
 _	-t	12.9	ML		<u> </u>			25.7	 	 _					63.8	2.6	ļ				 		 	- ;	
╟	-1	16.1	ML	\vdash	· - · · · · · · · · · · · · · · · · · · ·		· ·	27.3		<u> </u>		97			70.7	20		<u> </u>			 		ļ	X	
l ⊢	<u> </u>		SP-SM	\vdash			<u> </u>	30.2	 	<u> </u>		100		70 70	70.7	2.9	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 		}	<u> </u>	<u> </u>
_		18.0	ML	 				24.0	<u> </u>	<u> </u>		102		2.73	<u> </u>		<u> </u>	Х			<u> </u>			<u> </u>	· · · · · · · · · · · · · · · · · · ·
! ├	$-\tau$	18.5	ML	 	<u> </u>	<u>.</u>		26.6	-	-	 	97		2.74	64 1	2 5		Х	 		 		}]	
-	<u> </u>	19.0	ML	 		F 6	06.4	22.4	22	21			ļ	2.73	64.4	2.0				<u> </u>	 			 	
	+	25.0	ML	 		5.6	94.4	25.0	22	21		 		2./3	77.2	2 1	-				╂	}	<u> </u>	-	·
╟		25.9	ML			 	<u> </u>	25.2	} -	 	<u> </u>	99	 _	2 76	<u> L. </u>	3.1	 			<u> </u>	 	<u> </u>	 	-	
\ <u> </u>	-t	26.1	ML	 			<u> </u>	25.9	-	 		99		2.76				X	} '	<u> </u>	 -			 	
-		26.8	ML					25.9	 	 _	ļ	100	<u>.</u>	2.78	ľ	<u></u>		X		<u> </u>	 _	!	 	 	
		27.8	ML	 	<u> </u>	<u> </u>	ļ	27.0	1	<u> </u>	<u> </u>	100		2.81	<u> </u>	<u> </u>	_	<u> </u>	_	<u> </u>	X	<u> </u>	 	 	
\Vdash			····-	<u> </u>	 	 	<u> </u>	 _	 	<u> </u>	 -	<u> </u>	 -	ļ	<u> </u>	<u> </u>	<u> </u>	_			 		 -	 	
L				<u>L</u>	<u> </u>		<u></u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u></u> _		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>	

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec, Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

APPROVED DEC

0ATE 4/82 REVISED

		IPLE IATION	SOIL CL	ASS.			CL	ASSIFICAT	TION T	ESTS							<u> </u>		SECO	NDAR	Y TEST	S			· · · · · · · · · · · · · · · · · · ·
BORING	o l	DEPTH	1	2	Soil Gradation (%)			Moist.	Atterberg Limits		imits	Dry Density	Org. Loss by	Spec.	3 Elec.	4 F.P.D.	TYIII	TYCU	TYCD	D.S.	Consol.	Thaw	Chem.	Thermal	Comments
S S	2	(ft)	USCS	ICE	Gravel	Sand -4 to +200	Fines -200	Cont. (%)	LL	₽L	PI	(pcf)	by Ignition (%)	Grav.	Cond,		1,00	1,700	1,700	<i>D.</i> 3.		Consol.	Chem.	Cond	Comments
2	1	31.0	CL					24.4				101								·				χ	
L	_ _	31.5	CL					23.7				100					Х			· · ·					
		32.0	CL				<u> </u>	23.0		· .		101					Х					<u></u>			
		32.5	CL				<u> </u>	26.2						<u> </u>	70.9	2.9				`. 		<u>; </u>			
		41.0	CL	<u> </u>	·			24.1					<u> </u>		38.3	1.5		<u> </u>							
L		41.2	CL_			· .		22.5				105										·			
L	_	45.0	CL					18.7				108													
		55.2	CL-ML	<u> </u>				44.2	26	20	6	<u> </u>	<u> </u>]						<u> </u>				
		55.5	CŁ					22.0		<u> </u>		103	i												
		60.0	CL				· .	_22.6				104													
1		62.0	SC		2	72.5	25.5	18.7							50.1	2.1									
							-		Ī								. <u>-</u>								
[2	2	0.7	SM		-		· · · · · · · · · · · · · · · · · · ·	30.5																	
		1.0	SM					24.8							45.8	1.9									
		1.2	SM					25.1			<u> </u>	81					<u> </u>					<u> </u>	ļ L.—.		
		2.2	SM _			50. <u>9</u>	_49.1			İ				<u> </u>	46.5	2.0	L						Х		
		2.5	ML					24.5							49.4	2.0						 		 	
		2.7	ML					25.8	1			99		2.70	45.5	1.9		Х					Х		
		3.3	ML					27.4														:			
		3.5	ML			28.4	71.6	25.0	24	21	3														
		3.8	ML					30.7				90		2.69				X	-						
		4.5	ML					42.7	[[-
		5.0	ML				- - -	43.7]		47.2	1.9									
	T	5.2	ML				. :	41.4				78													
	1	7.5	CL				_ _	52.3	35	23	12		<u> </u>		47.6	1.9						<u> </u>			
		11.5	SP				- <u></u>	9.2						1		2.0	1	1		· ·			1	 	
			SP~SM				10.3	15.9	<u> </u>			 						T			1		<u> </u>		
L		<u> </u>	L,,	-	·	<u> </u>	<u> </u>	<u> </u>	L	<u></u>	I	<u> </u>	<u> </u>		·			<u> </u>	<u> </u>			1 <u></u>	·		

1. USCS = Unified Soil Classification System
2. Ice = U.S. Army Corps of Engineers Ice Classification System

3. Elec. Cond. = Electrical Conductivity in mmhos/cm
4. F.P.D. = Freezing Point Depression, *C
5. NP = Non-Plastic

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

PLATE

JOB NUMBER 9612,031.08

APPROVED DEB

0ATE 4/82 REVISED

		MPLE NATION	soil cl	ASS.		CLASSIFICATION TESTS													SECO	NDAR					
<u> </u>	BORING NO.	DEPTH USC	1 USCS	2 ICE	Soil Gradation (%)			Moist.	Atterberg Limits			Dry Density	Org. Loss by	Spec. Grav.	3 Elec Cond.	4 F.P.D.	TXUU	TXCU	TXCD	D.S.	Consol.	Thaw Consol	Chem.	Thermal	Comments
				-	Gravel +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL.	Pt	(pcf)	Ignition (%)	Grav.								CORSOL		Cond	
-	22	13.0	SP		34	65.1	0.9	9.1												.—		-			
1		15.5	SP					8.3						· · · · · · · · · · · · · · · · · · ·	55.4	2:3				: 		<u> </u>			
` 		20.0	SP		37	62.2	8.0	10.6	 					2.70							}				
11		30.0	GP		54	44.5	1.5	0.9												- 	 				
╵┟	{	40.0	GP-GM		·		5.9	7.6				[·	2.69		<u> </u>		 				<u> </u>	<u> </u>		
٠, <u> </u>		50.0	GP		63	35.4	1.6	11.3								·						:			
1						<u> </u>		 	 	 		 							 }		 	:		<u> </u>	
Ţ	23	0.0	ML	٧x		<u> </u>		42.9	ļ			55		<u> </u>						<u> </u>	 -	X	<u> </u>		<u> </u>
	1	0.3	ML	VX	····			29.5		<u> </u>				· · · · · · · · · · · · · · · · · · ·	3.6	0.1					<u> </u> -				
		0.5	ML	٧x				30.3				78		-				!		· 	1	<u> </u>		Х	
		1.0	ML	ν _x				23.2	21	13	8	107		:		·						X			
: 1		6.3	ICE							<u> </u>				-	0.3	0.0						 -		<u></u>	
ΙL		8.3	ICE		l 							7.			0.3	0.0									
		10.3	SM	٧x				41.6						:	17.6	0.6									
		10.5	SM	v_{x}		<u> </u>	-	47.4			· 	63					<u> </u>			L		<u>.</u>	·		
1		10.8	ML	v_{x}		11.6	88.4	64.6	<u> </u>	<u> </u>		54										χ			
		12.5	CL	Vr				43.9	33	22	11	70						ļ					<u> </u>	Х	
Π		14.0	CL	٧r				49.1				65													
		14.5	CL	Vr			<u> </u>	30.8	<u> </u>						36.5	1.5						:			
٦ſ		14.7	CL	٧r	1			37.8				89											<u> </u>		
!		15.0	CL	٧r	1			56.7				62													
, [19.0	CL	٧r			······································	31.9			<u> </u>	83	ļ			<u></u>						X			
1		24.5	CL	٧r	1			24.6	— —			93	<u> </u>										1		
ij		29.0	 	N _{be}		84.5	15.5	23.7			 				10.0	0.4									
		29.2	 	N _{be}	 -		<u> </u>	22.8		 		58			_		 	 						<u> </u>	
-		34.0	CL	٧ _{x,1}			·	32.5	 		<u> </u>	76	 	<u> </u>			1 -						<u> </u>		
1 t		39.5	 	ν _{χ,γ}				27.7	27	20	7	89			 		†				1	X			
, L			<u>. </u>	, , , , , , , , , , , , , , , , , , ,	<u> </u>	1	L	<u> </u>	1	<u>}</u>	<u> </u>	<u></u>	<u>!</u>	<u> </u>	<u> </u>	<u> </u>	.1	 ——	<u> </u>	<u> </u>					

USCS = Unified Soil Classification System
 loe = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED

JOB NUMBER 9612,031.08

DATE 4/82 TXB

\$		201F ÓF	ASS.	-		CLA	ASSIFICAT	rion t	ESTS				_							Y TEST					
. ⊋Ω [DEPTH (ft)	1 USCS	2 ICE	· Sc	oil Gradation (9		Moist,	Atte	erberg Li	imits	Dry Density	Org. Loss by Ignition (%)	Spec. Grav.	Elec.	F.P.D.	TXUU	TXCI	TXCD	D.S.	Consal	Thaw	Chem	Thermal	Comments	· · · · ·
8	(ft)	0303	100	Gravel . +4	Sand -4 to +200	Fines -200	Cont. (%)	LL	PL	PI		ignition (%)	Grav.	Cond,							Consol		Cond		
23	44.4	CL	$V_{X,r}$	· 			27.2				83										;		<u> </u>	<u>.</u>	
	49.0	CL	$V_{x,r}$	<u> </u>		<u> </u>	29.3						 	35.5	1.4	<u></u>									
	49.2	CL	Vx.r				25.5				90								<u> </u>						. <u> </u>
													<u></u> -						· 		<u> </u>				
																					·				·
			[-			<u> </u>	ii	<u> </u>				 											· -	
			\sqcap										Ţ												
		·													-										
			1-1																						
						-										i									
			1			-			<u> </u>	 															
-+			1											 	 						 -	 	╏──┤		
				<u> </u>				} <u>'</u>			 		}	 							-	 	-		
			-	<u> </u>					 	 			 -	 	 		 		<u> </u>	 	<u> </u>		 }		
			 				 	 			 -	 		┨──	 -					- -	 				
			╂╼╧				 	 -		-		 	 	 -	<u></u>					<u> </u>	 -	 	 -		
		<u> </u>		<u> </u>	-		<u> </u>		 	-		 	ļ	 		 	<u>-</u>			 	<u> </u>	ļ	 -		
		<u> </u>	-				 	 -		-	 	 	-	 	 	 	<u></u>			<u> </u>		 		 	
			<u> </u>	<u> </u>			 	ļ <u> </u>	ļ	<u> </u>	<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		 		
				ļ			<u> </u>	<u></u>	 	<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ			<u> </u>	ļ <u>.</u>	<u> </u>			
			!		 		<u> </u>		<u> </u>		<u> </u>	<u> </u>	<u> </u>			<u> </u>	_			_	<u> </u>	 	<u> </u>		
			1	<u>. </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>			<u> </u>		·	<u> </u> _		
														<u> </u>									11		
1											<u> </u>									<u> </u>					
				1											1						ų				
	ast.																				1				 _
			1		 		<u> </u>								1	1									
			1				1					1			I^-	1	<u> </u>						1		-

USCS = Unified Soil Classification System
 Ice = U.S. Army Corps of Engineers Ice Classification System
 Elec. Cond. = Electrical Conductivity in mmhos/cm
 F.P.D. = Freezing Point Depression, *C
 NP = Non-Plastic

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Laboratory Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

9612,031.08

APPROVED DEB

DATE 4/82 REVISED

Initially, all of the sample containers were visually inspected for signs of leakage or disturbance. The frozen samples were immediately placed in our cold room and stored at a temperature of approximately -8°C. The remaining specimens were stored as discussed below.

Shelby tubes were placed horizontally in a specially constructed rack to reduce sample disturbance during storage. Additionally, the Shelby tubes were turned 90 degrees every 24 hours to reduce the effects of water migration. Samples contained in brass liners were kept in an upright position on a storage shelf, as were jar samples. The grab samples were placed in moisture-proof plastic bags and stored in a single layer to prevent the bags from tearing or ripping.

Although care was taken to prevent moisture loss within the samples, desiccation is unavoidable. Therefore, we do not believe that samples stored longer than six months should be tested.

2. Shelby Tube Sample Extraction, Visual Classification, and Preparation

After a Shelby tube sample was extruded, an engineer and/or a technician inspected the specimen and logged it in accordance with the Unified Soil Classification System (USCS). These laboratory soil logs are presented as Plates D-24 through D-40. If the soil was bonded, the ice contained in the bonded soil sample was further classified in accordance with the U.S. Army Corps of Engineers' ice classification system. The information recorded on the laboratory soil logs includes comments on structural features and soil constituents, such as sea shells and organic materials. These logs provide more detailed information about the nature of the soils encountered in each boring than could be shown on the field test boring logs presented in Appendix B.

LOG OF SOIL SAMPLE LOG OF SOIL SAMPLE AN NO THESE DE NO 96 UKT YOU المس المناصرية FOOGED BA y & LOGGED BY TROPELL ONTE 4/13/64 DATE THE BL 10<u>14</u>1 BORNE NO -2 VISUAL CLASSAFICATION 007TI (R.) WISHEL CLASSWICATION TEST RESALTS SHECOY SHELBY Ę o* 400064 SF-32 MINING SHEETH WAS CHT IN THERE TRANSPORT OF SECTION TO EXTEND (LASS PROFILE The system was something the state of the st LOG OF SOIL SAMPLE LOG OF SOIL SAMPLE ла на <u>КГР.03</u>3.08 THOMAS Pt. Thomson LOGGED OF 1271-DATE 4/1/81 π<u>. Ω ¹</u> VEHAL CLASSIFICATION (M) DEPTH VISUAL CLASSIFICATION SHELBY MERNAM 16 FWE ر سمجي LAKE **Laboratory Soil Logs** Harding Lawson Associates Pt. Thomson Development Project Winter 1982, Geotechnical Study Engineers, Geologists & Geophysicists

(PP)

JOB NUMBER 9612,031.08 APPROVED

DATE 4/82

EXXON Company, U.S.A.

REVISED

oved 9/

DATE

APPROVED

DIB.

ŔĔVISED

4/82

DATÉ

JOB NUMBER

9612,031.08

& Geophysicists

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 APPROVED $\supseteq \ell \beta$

DATE 4/82 REVISED

DATE

JOB NUMBER 9612,031.08 APPROVED JAB

CATE 4/82

DATE REVISED

4/82

DEB

JOB NUMBER

9612,031.08

APPROVED

DUB

JOB NUMBER

9612,031.08

DATE

REVISED

4/82

D

DUB

DATE 4/82

REVISED

DATE

JOB NUMBER

9612,031.08

ЈОВ NUMBER 9612,031.08

APPROVED DEB

EXXON Company, U.S.A. DATE 4/82

APPROVED

DB

JOB NUMBER

9512,031.08

REVISED

4/82

& Geophysicists

Winter 1982, Geotechnical Study EXXON Company, U.S.A

JOB NUMBER 9612,031.08 APPROVED PEG

4/82

REVISED

DeB

JOB NUMBER 9612,031,08

EXXON COMPANY U.S.A. #B

4/82

APPROVED

XB.

4/82

JOB NUMBER

9612,031.08

: I 🖷 ;

& Geophysicists

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

APPROVED 1283

4/82

REVISEO

Engineers, Geologists & Geophysicists

Laboratory Soil Logs

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

PLATE

JOB NUMBER 9612,031.08 APPROVED 126B

DATE 4/82

REVISED

Torvane and pocket penetrometer readings were performed on all finegrained soil samples; the values obtained are shown on the laboratory soil logs. However, because of the character of the soils encountered within the project area, these values should be used only to compare the relative consistencies of the soil samples.

Three types of samples were preserved for future use:

Jar Samples. Samples to be saved for primary testing were stored in glass jars. These samples were generally 2 to 4 inches high. The tops of the jars were secured and sealed with electrical tape.

split Tubes. Some soil samples were preserved in split tubes. These tubes, constructed of brass, are 6 inches long and have an inside diameter of 2.87 inches. The tubes were split in half lengthwise and the soil sample was placed within the split tube. The ends and seams of the tubes were then covered with plastic caps and taped.

Bag Samples. In some cases, there was excess material after all of the desired test specimens were removed. If this remaining material was not suitable for long-term storage in jars or split tubes, it was preserved in a sealed plastic bag and stored as discussed above.

Whenever possible, Shelby tube samples were not extruded until just prior to testing. This procedure kept moisture loss and disturbance of test specimens to a minimum and eliminated the need for sealing the temporary storage containers with wax.

C. Primary Testing of Offshore Materials

1. Moisture Content/Dry Density

Moisture content and dry density tests were performed to evaluate the natural water content and dry density of the soils encountered. These tests served as a basis for correlating the soil engineering characteristics determined from other laboratory tests. Generally, the wet density of a sample was determined by calculating its volume and weight. The specimen was then dried at 105°C, and the weight loss was used for determining the moisture content and dry density.

Moisture content and dry density was determined for all secondary test specimens. Additional moisture-density tests were performed as required to establish moisture and density profiles. The moisture contents and dry densities are reported on the test data sheets, laboratory test summaries and on the test boring logs in Appendix B.

The data indicate that the natural moisture contents of surficial fine-grained sediments generally vary between 15 to 35 percent. In the underlying gravels, the moisture contents are generally less than 15 percent. There appears to be no distinct variation in moisture content with depth at any of the test borings.

The boring logs summarize the variation in dry density with depth.

Table IV-6 presents the range in dry density for different soil types.

2. Organic Content

The organic content of selected specimens was determined by the "Standard Method of Test for Organic Content of Soils" (State of Alaska, 1980), also known as the organic ignition test. The sample to be tested was

oven-dried for 24 hours at a temperature of 105° C, and the dry weight was recorded. The sample was then weighed to the nearest 0.1 gram and placed in a tared crucible. Next, the crucible containing the sample was placed in a muffle furnace at a temperature of 950° C $\pm 50^{\circ}$ C until all organic matter was combusted. Combustion usually occurred within one to two hours. After cooling the sample to room temperature it was weighed and the percentage of organic material lost by ignition was calculated.

The organic contents are listed in the laboratory test summaries presented in this appendix and on the test boring logs in Appendix B. If the organic contents exceeded five percent by weight, the modifier "O" or term "organic" is used to describe the soil type.

Although deltaic and marine soils commonly contain high percentages of organic material (Kolb, 1967; Moore, 1977), the high compressibility, low shear strength, and high moisture content commonly associated with highly organic soil were not observed. The organic content of the samples that were tested ranged from 12 to 16 percent. Although these soils did exhibit a decreased density and an increased moisture content, when the behavior of the organic silts is compared with that of the non-organic silts, there was neither a noticeably reduced strength nor a significantly increased compressibility.

It has been reported in the literature that when the organic content of a soil is less than about 20 percent, the effect of the organic material is less important than that of minor mineralogical or structural differences (Franklin et al., 1973). The soils tested for this project commonly contained

varying percentages of sands, silts, and clays. It appears that these mineralogical differences have a greater influence on the mechanical properties of the soil than do the percentages of organic materials.

3. Particle Size Analysis

Particle size is important because of its influence on the drainage, shear strength, and compaction characteristics of a soil. Furthermore, the distribution of particle sizes, i.e., gradation, will affect the in situ density of natural deposit of granular soils, in addition to being an indicator of frost susceptibility and stratigraphy. In general, coarse-grained soils drain more freely, have higher shear strengths, and are more readily compactible than fine-grained materials. Also, well graded, granular soil typically has a higher density and a higher shear strength than poorly graded, fine soil.

The quantitative distribution of particle sizes was determined for representative samples by performing sieve and hydrometer tests. Additional samples were also tested to determine only the percentage of material passing the No. 200 sieve size. Samples on which these tests were performed are indicated on the test boring logs in Appendix B. Those tested by mechanical analysis, including a hydrometer test, are marked "MA". The percentage of material passing the No. 4 and No. 200 sieve sizes is also listed on the logs. A summary of the particle size analysis tests is presented on Plates D-41 through D-47. Plate IV-15 presents a graphical summary of the test results.

DESIG	MPLE GNATION				·	PAR	TICLE	SIZE	ANAL	YSIS (% Pass	ing)				
BORING NO.	DEPTH (ft)	USCS CLASS	2"	1-1/2	1"	3/4"	1/2"	No. 4	No. 10	No. 20	No. 30	No. 40	No. 100	No. 200	.02 mm	.005 mm
1	13.5	SP												4.6		
	18.5	SP-SM		-	100	96	96	78	58.4	47.4	44.0	39.1	15.7	7.8	5.0	0.9
	23.5	SP-SM												11.3		
	28.5	SM				100	97	82	61.4	47.1	42.1	36.1	18.4	13.6		
	33.5	SM												13.8	_	
	38.5	SM					100	83	56	43.9	39.5	33.7	17.3	13.3		
	48.5	SM				100	98	76	49	37.3	33.6	29.3	16.4	12.7		
										-	. ;					
2	0.3	SP						100	99.8	99.7	99.3	96.6	17.8	2.3	1.0	8.0
	2.2	SM				100	9 8	89	83.8	79.5	76.7	72.1	27.0	13.5		
	2.8	SP-SM												8.6		
	3.5	SP		-				100	99.9	98.5	94.9	79.3	9.0	3.9		
	3.9	SP-SM												10.9		
	10.7	ML.									99.8		98.4	84.8	23.0	10.5
	26.5	ML			· · _				100	99.9	99.9	99.7	9 8.7	92.6		
	46.7	ML												97.3		
	60.5	SM				100	99	90	86.6	85.7	84.4	79.1	45.5	30.7		
	66.5	.GP	•		-									1.8		
3	1.5	SP				100	96	65	43.3	33.8	30.5	25.8	9.9	4.6		
	6.0	SP			.*									0.7		
	9.0	GP-GM		100	92	79	71	44	33.5	30.6	29.6	27.8	12.7	7.4		
	15.0	SP		•	100	95	92	81	76.6	75.4	74.2	63.4	4.4	2.2		
	30.0	GP-GM			100	90	78	50	32.6	24.5	21.9	18.7	8.4	5.7		
												-				

Harding Lawson Associates Engineers, Geologists & Geophysicists Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

D-41

APPROVED

TEB

DATE 4/82 REVISED

	AMPLE GNATION	ı				PAR	TICLE	SIZE	ANAL	YSIS ((% Pas	sing)				
BORING NO.	DEPTH (ft)	USCS CLASS	2"	1-1/2''	1"	3/4"	1/2"	No.	No. 10	No. 20	No. 30	No. 40	[*] No. 100	No. 200	.02 mm	.005 mm
4	1.1	SM												21.4		
,	1.7	SP						100	99.8	99.6	99.1	97.0	15.0	2.0	T	
	13.8	ML							1		1	99.6	1	90.1	49.8	21.8
	26.0	SM				100	98	93	89.8	88.1	87.0	85,3	58.1	40.2		
	30.0	ML												65.6		
	44.5	ML					100	99	99.3	98.9	98.4	97.5	81.3	74.9		
	50.0	SP												2.8		
														_		
																•
5	0.1	SP-SM				100	93	86	82.5	80.4	78.5	75.2	17.0	9.6		
	4.0	SP										<u> </u>		3.5		
	6.5	SM												22.0	· . !	
	10.0	SP											<u> </u>	1.1		
	45.5	CL						-		100	99.8	99.8	99.6	98.4	67.2	28.4
	46.0	ML						100	99.8	99.8	99.8	99.8	99.6	99.0	58.6	25.2
									-							
-								_								
_6	0.1	SM					·		100	99.9	99.7	99.6	95.7	50.7		
	4.1	ML]]]					84.9		
	5.3	SP-SM			100	98	92	7 8	7110	67.6	66.1	63,7	33.8	9.5	5.2	2.3
	6.7	ML			·									52.7		
	14.3	ML									99.4		98.6	98,2	62.0	24.0
	21.7	ML							100	99,8	99,6	99.6	98.4	95,8	51.2	21.5
	35.5				100	91	74	44	31.4	24.2	21.4	17,4	7,7	5.3		
	40.5	GP												2.8		
							\longrightarrow			i						

Harding Lawson Associates Engineers, Geologists & Geophysicists

Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study

EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

DLB

4/82

REV:SED

DESI	MPLE GNATION					PAR	TICLE	SIZE	ANAL	YSIS	(% Pas	sing)				
BORING NO.	DEPTH (ft)	USCS CLASS	2"	1-1/2	1"	3/4"	1/2"	No. 4	No. 10	No. 20	No. 30	No. 40	No. 100	No. 200	.02 mm	.005 mm
7	9.0	SM					100	92	83.8	78.5	75.9	69.3	36.7	21.7		
<u> </u>	34.0	SP-SM	.					<u> </u>						7,4		
	39.0	SM				100	99	76	57.1	44.0	40.1	35.2	22.2	17.7		
	44.0	SM												19.4		
	49.0	SM			100	97	89	59	41.3	33,9	31.5	28.6	19.6	15.5		
8	0.1	GM	100	78	78	73	65	56	51.1	49.4	48,6	46.4	35,0	29.3		
	3.0	SP		100	97	97	96	85	77.1	68.6	63,1	50.4	11.5	4.6		
	5.0	SP		100	90	80		60	t	ŀ	28.7	Į.		Ι-		
	24.0	SM			100	92	92	90	89.3	88.3	87.9	87.4	84.0	47.0		
	25.0	SM												36.4		
1	37.0	SP-SM			100	97	8 8	60	48,4	43.5	40,8	36.0	14.5	7.1		
9	0.0	SM						100	99.9	99.8	99.8	99.8	81.0	36,5		
	7.0	ML								ı	99.5		93,2	59.4	22,0	9.0
	25.0	ML												67.4		
	30.0	SM												38.8		
	36,0	SM												23.6		
	41.4	CL							100	99.8	99.8	99.6	99.4	98.2	71.2	37,8
	61.0	GP			72.2	59.9	34.1	3.9	1.3			1	0.4	0,2	-	
					•											
10	0.5	SP-SM							100	99.9	99.5	96.3	12.4	8.9		
	3.0	SP-SM				-								10.2		
	8.5	SP-SM					100	99.9	99.9	99.5	98.8	93.0				

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study

D-43

EXXON Company, U.S.A.

REVISED

DESIG	MPLE GNATION					PAR	TICLE	SIZE	ANAL	YSIS (% Pass	sing)				
BORING NO.	DEPTH (ft)	USCS.		1-1/2	1"	3/4"	1/2"	No. 4	No. 10	No. 20	No. 30	No. 40	No. 100	No. 200	.02 mm	.005 mm
11	4.0	GP	ļ 	100	94	94	64	23	11.1	7.4	6.4	5.3	1.8	1.0		
	10.0	□GP		100	96	89	57	18	11.3	8.6	7.5	5.9	1.7	0.9		
	15,0	GP				93	85	49	28.8	25.2	24.2	22.7	7.9	3.5		
	17.0	GP							1	<u> </u>				2.3		
	22.0	GP						32	7.0	3.5	2.8	2.3	1.0	0.7		
	30.5	SP					- 2					<u> </u>		0.5		
	34.0	GP												1.1		!
	34.5	SP-SM								<u> </u>				9.7		:
	41.0	GP-GM		100	97	93	76	42	29.5	25.9	24.9	23.9	15.5	8.1		
	49.0	SP		100	94.8	90.6	82.5	58.7	50.1	44.7	41.1	31.7	7.2	3.9		
				<u>.</u>												1
	· · · · · · · · · · · · · · · · · · ·												_			
_12	9.0	SM				100	99	97	96.2	95.9	95.5	92.1	48.5	17.4		
	14.4	GM			100	87	86	57	50.2	46.5	45.2	43.4	24.0	14.5		
\longrightarrow		SP-SM										-		11.3		
	24.0	SP-SM									·			9.3		
\longrightarrow													·			
											ļ					
13		GP-GM			100	91	80	51	36.5	30.1	27.9	23.7	9.7	7.2		
	6.5	SM												16.1		
	10.0	SM			100	97	95	78	62.6	53.4	50.3	45.2	18.0			
		SP-SM									<u></u>			11.5		
	32.0	SM		100	88	86	77	55	44.7	37.5	35.0	31.6	16.5	13.3		
	42.0	SM												12.6		
\longrightarrow	50.0	SP-SM				100	97	66	44.5	35.4	32.4	28.5	14.5	10.9		
							<u>. </u>									
				1		1				<u> </u>			1			

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

DATE REVISED
4/82

APPROVED DATE A38MUM BOL D&B 9612,031.08

DESIG	MPLE SNATION	1				PART	TICLE	SIZE	ANAL	YSIS	(% Pas	sing)				
BORING NO.	DEPTH (ft)	USCS CLASS	2"	1-1/2"	1"	3/4"	1/2"	No. 4	No. 10	No. 20	No. 30	No. 40	No. 100	No. 200	.02 mm	.005 mm
14	1.5	SM					100	99	98.9	98.9	98.8	98.7	72.0	27.		
	11.0	SM				100	99	89		1	83.6	3		27.9	I	
	45.0	GM	100	75_	75	75	69	_53	1		49.5	Τ		31.4		
	50.0	GP				84	69	36	1	I — · — · — ·	12.4		4	2.0		
15	7.5	SM		 .							99.8	99.7	87.5	[16.0	8.0
	8.4	MH							· · · · · · · · · · · · · · · · · · ·		<u> </u>	-		83.1		
										·		<u> </u>				· ·
16	0.1	SP-SM		90	84	82	80	77	76.1	74.3	70.7	56.4	22.6	8.7		
	1.1	SM				·								39.9		
	5.0	ML												93.1		
\Box	9.0	SM						-						39.1		
	15.0	ML												67.4		
	17.5	SM									_	100	94.3	48.8		
														·		
17	6.2	ML					100	99	99.5	99.3	99.3	98.9	95.5	93.3	53.3	21.9
	9.4	GM				100	. 90	$\overline{}$	51.2				44.8	39.6		
	11.5	GP								-				0.4		-
	40.7	GP-GM			100	93	82	42	24.3	18.1	16.3	14.5	10.1			
					-											
			-				-									

Harding Lawson Associates Engineers, Geologists & Geophysicists

Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DEB

REVISED

DESI	MPLE GNATION	1				PAR	TICLE	SIZE	ANAL	_YSIS	(% Pas	sing)				
BORING NO.	DEPTH (ft)	USCS CLASS.	2"	1-1/2"	1"	3/4"	1/2"	No. 4	No. 10	No. 20	No. 30	No. 40	No. 100	No. 200		.005 mm
18	18.5	GP-GM												5.7		
	23.5	SP-SM			100	96	87	54	34.2	26.4	23.	19.	7 8.9	9 6.5	1	1
	33.5	SP-SM		100	81	76	73	57	7	35.2		27.		9.7		
	38.5	SP-SM												7.8		
	43.5	SP-SM				100	98	68	46.2	36.3	32.9	28.	14.4	11.0		
	48.5	SP-SM												10.4		
19	0.1	SP				99	95	91	78.0	65.9	60.3	45.9	1.8	1.1		·
	4.0	SP				100	99	86		T	59.0			3.0		
_	12.0	SP-SM	·											5.5		
				į												
										ĺ						
20	0.1	ML				100	98	96	96.0	95.9	95.7	95.4	93.1	90.7		
	6.5	GP-GM		100	90	84	79	51	34.7	27.1	24.5	20.9	10.8	6.7		
	11.5	GP			100	72	77	25	10.3	6.7	5.9	4.7	1.5	0.9		
	40.0	SP-SM				100	93	59	40.1	28.2	24.3	20.1	8.5	6.1		
											•					
21	0.1	SP-SM			[6.4		
	0.5	SP-SM		<u> </u>				100	99.4	98.9	98.3	96.4	48.9	7.9		
	2.0	SP-SM							100	99.9	99.7	99.1	60.5	9.0		
	4.7	ML									100	99.8	99.6	97.9	67.8	32.7
	25.0	ML									100		99.7	94.4	40.7	16.0
	62.0	sc					100	98	89.0	75.2	63.6	49.4	35.4	25.5	16.4	8.0
													<u> </u>			
																1

Harding Lawson Associates Engineers, Geologists & Geophysicists

Particle Size Analysis
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
4/82

		MPLE	,				D.A.E.3	T104 F	CIZE	0.81.0.1	vele	10/ Doe	-inal				
22		DEPTH	USCS		1-1/2	1"		<u> </u>	No.	No.	No.	No.	No.		1		1
12.0 SP-SM		 	 						 	 	 -	· 	ļ	 	-	····	 -
13.0 SP 100 98 66 12.3 5.2 3.9 2.9 1.4 0.9 20.0 SP 100 94 63 14.4 6.5 4.9 3.5 1.3 0.8 30.0 GP 100 97 87 46 25.5 14.4 11.4 8.5 2.7 1.5 5.9 50.0 GP 93 88 37 14.5 7.8 6.2 4.9 2.4 1.6	<u> </u>	3.5	ML	<u> </u>					100	99.9	99.9	99.9	99.5	97.3	71.6	31.2	13.3
20.0 SP	L	12.0	SP-SM									<u> </u>		<u> </u>	10.3		i
30.0 GP		13.0	SP				100	98	66	12.3	5.2	3.9	2.9	1.4	0.9		
40.0 GP-GM 93 88 37 14.5 7.8 6.2 4.9 2.4 1.6 23 10.8 ML 100 99.7 98.9 98.6 98.1 94.1 88.4 29.0 SM 100 99.9 15.5		20.0	SP				100	94	63	14.4	6.5	4.9	3.5	1.3	0.8		_
50.0 GP 93 88 37 14.5 7.8 6.2 4.9 2.4 1.6 23 10.8 ML 100 99.7 98.9 98.6 98.1 94.1 88.4 29.0 SM 100 99.7 98.9 98.6 98.1 94.1 88.4		30.0	GP_			100	97	87	46	25.5	14.4	11.4	8.5	2.7	1.5		
23 10.8 ML 100 99.7 98.9 98.6 98.1 94.1 88.4 29.0 SM 100 99.9 15.5		40.0	GP-GM												5.9	,	
23 10.8 ML 100 99.7 98.9 98.6 98.1 94.1 88.4 29.0 SM 100 99.9 15.5		50.0	GP				93	88	37	14.5	7.8	6.2	4.9	2.4	1.6		
29.0 SM																	
29.0 SM																	
	23	10.8	ML]		100	99.7	98.9	98.6	98.1	94.1	88.4		
		29.0	SM									100	99.9		15.5		
	- 1																
	7				1												
	1								- 1								
						$\neg \uparrow$											
	7				$\neg \neg$					\neg						_	1
		-															
	 				-1			``									
										-+	—- -						
		- +				. 	十	~-		-+			- 				
	- -†											$\neg \neg$				-	
					$-\dagger$		-				+					-	
					$-\dagger$	-+					+			-+		\dashv	
										+							
	L_		 			<u>F</u>					1.						

JP JP

Harding Lawson Associates Engineers, Geologists & Geophysicists

Particle Size Analysis Pt. Thomson Development Project Winter 1982, Geotechnical Study

EXXON Company, U.S.A. APPROVED DATE JOB NUMBER REVISED 4/82 9612,031.08 DEB

Plate IV-15 shows that the gravels (GP) are generally smaller than two inches in diameter, and that they have a mean grain size of about 1/4 inch. The gravels also contain a relatively high percentage of sand and a silt content varying between 5 and 30 percent but generally less than 5 percent. The sands encountered within the project area are fine to coarse grained and typically contain 5 to 50 percent silt. The silts encountered contain varying amounts of sand, ranging from less than 5 and up to 50 percent by weight. Finally, the clays generally contain substantial amounts of silt.

4. Liquid and Plastic Limits

The liquid and plastic limits, i.e., the moisture contents at which liquid and plastic behavior occur, were determined for selected fine-grained soil samples. These two parameters, along with the shrinkage limit, are known as the Atterberg limits. Atterberg limits are used to classify fine-grained soils by measuring differences in mechanical behavior and to aid in estimating the overconsolidation and compression indexes of the material. In classifying fine-grained soils, Atterberg limits are used instead of grain size distribution because it is possible to have two soils, such as clay and fine "rock flour", with similar grain size distributions, yet each exhibits a significantly different mechanical behavior.

Another term that is used to describe the behavior of fine-grained soils is "degree of plasticity". Leonards (1962) relates the plasticity index (liquid limit minus the plastic limit) to the degree of plasticity as follows:

Plasticity Index	<u>Degree of Plasticity</u>
05	non-plastic
5-15	moderately plastic
15-40	plastic
greater than 40	highly plastic

All of the data from these tests are plotted on Plate IV-16, and a numerical summary of the Atterberg limits is presented in the Laboratory Test Summary. Generally, the fine-grained soils in the project area range from non-plastic to moderately plastic. Both silts and clays were encountered, the silt being more plastic than the clay.

5. Specific Gravity

Specific gravity tests were performed to determine the specific gravity, G_S , of the soil constituents of all secondary tests. Additional tests were performed as required. The measured values are shown on the appropriate data sheets, and the results of the tests are summarized below:

Classification	<u>Average</u>
SAND (SP)	2.69
SILTY SAND (SM)	2.70
SILT (ML)	2.70
CLAY (CL)	2.75
GRAVEL (GP)	2.69

These values are within the range considered normal for these soil types.

6. Chemical Tests

Chemical testing of the pore fluids was performed by Chemical and Geological Laboratories of Alaska, Inc. in Anchorage. For these tests the pore water conductivity and total soluble salt concentration were measured using titration methods and the representative freezing point depression (FPD) was determined using standard seawater salt concentration - FPD relationships. The results of these tests are presented on Plate D-48.

Interpretation of the test results was not within the scope of our services. For a detailed discussion of interstitial water chemistry in the Prudhoe Bay region, the reader is referred to Page and Iskandar (1978) and Iskandar, Osterkamp, and Harrison (1978).

7. Electrical Conductivity Tests

The electrical conductivity of selected specimens was measured to determine the salinity of the interstitial fluids. With the salinity known, the freezing point depressions were calculated. The results of the electrical conductivity tests along with the results of tests performed by Chemical and Geological Laboratories of Alaska, Inc. are shown on Plates D-49 and D-54.

The general test procedure is as follows:

- 1. Approximately 100 grams of material is removed from a representative sample and weighed.
- 2. Approximately 100 grams of distilled water is added to the soil to create a solution. The solution is placed in a constant temperature bath that is maintained at 25°C.
- A YSI Conductivity Bridge is inserted into the prepared solution, and the electrical conductivity is recorded.
- 4. The solution is weighed and oven-dried to determine the moisture content.

Boring	Depth	uscs	Bonded	Conductivity	Freezing Point			nterstiti	al Water	Analysi	s (ppt)		Total
No.º	(ft)	0363	Donaed	(motos/cm)	Depression (°C)	Ma	·K	Ca	Mg	SQ4.	CL	HC03	Salts (ppt)
2	2.7	SP-SM	No	45.45	1.90	10.460	0.365	0.420	0.950	1.700	18.310	0.730	32,935
5 🧦	2.0	SP-SM	Yes	90.90	3.95	23.080	0.560	0.900	2,240	2.465	41.820	1.030	72.095
, 5	8.0	SM	Yes	108.70	5.02	29,690	0.840	1.110	2.720	3.670	53,180	0.975	92.185
9	4.4	SM	No	50.00	2.10	11.72	0.380	0.300	0.985	1,200	20.440	0.870	35.895
10	15.0	SM	No	90.90	3.85	21.87	0.520	0.810	2.730	2,440	41.330	0.810	70.510
16	0.8	SP-SM	No	40.80	1.70	9.330	0.465	0,490	0.760	1,480	16.050	1.290	29.865
19	2.2	· SP	Yes	8.33	0.35	0.920	0.515	0.810	0.465	1.090	0.670	5.550	10.020
21	2.5	SP-SM	No	46.50	1.95	10.680	0.350	0.455	0.970	1.660	18.740	0.790	33.645
22	2.2	-SM-	No	46.50	1.95	10.770	0.525	0.965	0.960	2.410	18.540	0.850	35.020
22	2.7	ML	Na	45.45	1.90	10.950	0.470	0.295	0.730	1.330	18.430	0.960	33.165

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Chemical Analysis Summary Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

IVB

DATE 4/82

REVISEO

Boring No.	Depth (ft)	USCS	Bonded	Moisture Content (%)	Electrical Conductivity (mmhos/cm)	FPD*
2 2 2 2 2 2 2	0.9 2.7** 3.0 8.4 10.5 14.4	SP SP-SM SP-SM ML ML ML	No No No No No	22.0 23.0 33.4 30.6 28.7	52.32 45.45 49.67 50.67 46.42 40.75	2.13 1.90 2.02 2.06 1.88 1.64
2 2 2 2 2 2 2	18.5 19.0 30.0 40.7 60.5 66.5	MH ML SM ML SM GP	No No No No No	51.8 46.2 16.0 8.2 13.0	29.92 35.01 36.26 68.91 48.07 48.26	1.17 1.39 1.44 2.83 1.95 1.97
3 3 3 3	0.0 1.5 3.5 4.5 6.0	ML SP SP SP SP	Na Na No No No	37.9 10.6 18.3 2.2 9.9	44.25 45.70 48.16 57.23 52.48	1.78 1.85 1.95 2.34 2.14
3 3 3 3 3	9.0 12.0 15.0 19.0 30.0 50.0	GP-GM SP SP GP GP-GM GP-GM	No No No No No Yes	8.6 6.5 22.4 8.6 5.8 4.0	54.87 51.93 50.48 51.56 50.76 30.42	2.24 2.12 2.06 2.10 2.07 1.19
4 4 4 4 4	2.8 9.5 12.0 20.2 25.5 49.5	ML ML ML SM SP	No No No No No	24.5 43.8 41.0 69.0 9.8 21.9	46.27 44.44 43.84 47.42 44.34 53.10	1.87 1.79 1.77 1.93 1.79 2.18
5 5 5 5 5	0.1 0.5 2.0** 4.5 6.5 8.0**	SP-SM SP-SM SP SM SM SM	Yes Yes Yes Yes Yes	27.1 16.2 14.0 36.4 18.3 13.5	61.47 54.32 90.90 26.28 107.94 108.70	2.52 2.22 3.95 1.01 4.04 5.02

- Calculated according to Page & Iskandar, 1978, other relationships are available.
- Chemical Analysis Data

Harding Lawson Associates Engineers, Geologists & Geophysicists

R3BMUN BOL

Electrical Conductivity Summary

Pt. Thomson Development Project Winter 1982, Geotechnical Study

EXXON Company, U.S.A. REVISED DATE 4/82 9612,031.08 D63

Boring No.	Depth (ft)	USCS	Bonded	Moisture Content (%)	Electrical Conductivity (mmhos/cm)	FPD*
5 5 5 5 5 5 5 5 5 5	10.0 16.0 16.5 20.3 31.1 45.5 51.0	SP ML CL ML CL CL	No No No No Yes Yes Yes	6.9 33.0 52.0 42.3 43.6 41.9 27.0	21.15 83.66 17.60 78.10 42.89 28.13 37.85	0.79 3.37 0.65 3.17 1.73 1.09 1.52
6 6 6 6 6	0.1 0.5 1.0 3.5 4.1 5.2 6.5	SM SM ML ML ML SP-SM	No No No No No No	31.6 22.5 22.5 29.2 34.7 21.3 18.7	48.57 47.32 48.10 47.27 52.06 48.36 50.08	1.97 1.92 1.95 1.91 2.12 1.96 2.04
6 6 6 6 6 6	7.2 9.2 12.5 14.1 14.7 21.4 35.5	SP-SM SM ML ML ML ML GP-GM	No No No No No No No	7.4 11.4 24.1 25.1 23.3 26.4 6.7	95.87 49.41 48.69 34.05 37.09 47.72 52.45	3.75 2.01 1.98 1.34 1.47 1.94 2.15
8 8 8 8	0.1 3.0 5.0 7.0 8.5	GM SP · SP SP SP	Na No No No No	31.8 15.4 9.5 8.0 9.2	49.61 51.24 55.94 54.88 60.17	2.02 2.09 2.29 2.24 2.47
8 8 8 8	9.0 10.2 13.0 14.9 18.0	SP ML ML ML ML	No No No No No	15.3 25.6 25.3 28.8 23.3	72.53 78.68 79.27 52.37 63.09	2.96 3.19 3.21 2.14 2.59
9 9 9 9 9	0.1 4.4** 5.0 5.6 6.6 7.3	SM SM SM ML ML ML	No No No No No No	19.7 22.5 22.6 28.2 28.2	48.46 50.00 52.39 50.01 53.06 39.77	1.97 2.10 2.14 2.03 2.17 1.59

- Calculated according to Page & Iskandar, 1978, other relationships are available.
- Chemical Analysis Data

* *	

Harding Lawson Associates Engineers, Geologists & Geophysicists

JOB NUMBER

9612,031.08

Electrical Conductivity Summary

Pt. Thomson Development Project Winter 1982, Geotechnical Study

PLATE

EXXON Company U.S.A. REVISED 4/82 DEB

Boring No.	Depth (ft)	USCS	Bonded	Moisture Content (%)	Electrical Conductivity (mmhos/cm)	FPD* (°C)
17	7.3	SM	No	50.1	37.42	1.49
17	9.4	GM	No	17.2	48.65	1.98
17	10.0	GM	No	19.4	50.24	2.04
17	25.7	ML	No	22.7	67.22	2.76
19 19 19 19 19	2.2** 4.8 6.0 8.0 9.5 12.0	SP SP SP SP SP-SM	Yes Yes Yes Yes Yes	15.0 22.5 24.8 20.2 24.8	8.33 3.76 9.01 80.97 45.72 91.24	0.35 0.12 0.31 3.27 1.85 3.62
19 19 19 19 19	14.0 15.0 16.0 16.5 24.5 29.0 49.5	SP-SM SP-SM ML ML ML ML ML	Yes Yes Yes Yes Yes Yes	25.9 21.4 30.4 26.8 36.2 48.9 21.9	93.16 129.04 130.12 110.15 73.75 62.21 60.54	3.67 4.30 4.30 4.09 3.01 2.56 2.49
20	0.2	ML	Na	53.8	46.17	1.87
20	2.5	SM	No	42.9	44.76	1.81
20	4.0	GP	No	6.6	55.63	2.27
20	6.5	GP-GM	No	6.5	47.95	1.94
20	8.0	GP	Na	8.0	50.87	2.07
20	10.0	GP	No	4.8	52.37	2.14
21	0.1	SP-SM	No	22.9	49.09	1.99
21	1.5	SP-SM	No	21.7	38.30	1.52
21	2.5**	SP-SM	No		46.50	1.95
21	3.1	CL	No	20.6	36.24	1.43
21	4.5	ML	No	19.6	39.07	1.56
21	5.8	ML	Na	20.8	48.67	1.98
21	6.7	ML	Na	21.5	37.36	1.48
21	8.2	ML	No	16.8	52.89	2.16
21	9.6	SM	No	31.2	61.15	2.51
21	10.6	SM	No	30.6	62.26	2.55

Calculated according to Page & Iskandar, 1978, other relationships are available.

Chemical Analysis Data

Harding Lawson Associates Engineers, Geologists & Geophysicists

Electrical Conductivity Summary

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A. **D-53**

PLATE

JOB NUMBER APPROVED DATE REVISED DATE
9612,031.08 348 4/82

Boring No.	Depth (ft)	USCS	Bonded	Moisture Content (%)	Electrical Conductivity (mmhos/cm)	FPD*
21 21 21 21 21 21 21 21	12.9 16.8 19.0 25.9 32.5 41.0 62.0	ML SP -SM ML ML CL CL SC	No No No No No No	25.7 30.2 22.4 25.2 26.2 24.1 18.7	63.82 70.69 64.36 77.22 70.94 38.29 50.07	2.62 2.89 2.64 3.14 2.91 1.53 2.05
22 22 22 22 22 22	1.0 2.2** 2.5 2.7** 3.3	SM ML SM SM ML	No No No No No	24.8 24.5 25.8 27.4	45.77 46.50 49.41 45.45 46.66	1.85 1.95 2.01 1.90 1.89
22 22 22 22 22 22	5.0 7.5 11.5 13.0 15.5	ML CL SP SP SP	No No No No No	43.7 52.3 9.2 9.1 8.3	47.19 47.58 49.66 50.16 55.37	1.91 1.93 2.02 2.04 2.27
23 23 23 23 23 23 23 23 23	0.3 6.3 8.3 10.3 14.5 29.0 49.0	ML ICE ICE SM CL SM CL	Yes Yes Yes Yes Yes Yes	29.5 41.6 30.8 23.7 29.3	3.62 0.33 0.33 17.60 36.45 10.02 35.46	0.11 0.01 0.01 0.64 1.45 0.35 1.41

- Calculated according to Page & Iskandar, 1978, other relationships are available.
- ** Chemical Analysis Data

Harding Lawson Associates

Engineers, Geologists & Geophysicists **Electrical Conductivity Summary**

Pt. Thomson Development Project Winter 1982, Geotechnical Study **D-54**

PLATE

EXXON Company, U.S.A.

APPROVED
DOB
4/82

REVISED

The diluted electrical conductivity measurements were converted to a salinity value using the sea water-equivalent salinity content and the paraconductivity relationship that is presented in the Handbook of Chemistry and Physics (1976).

This diluted salinity value was then corrected to represent the salinity of the natural moisture content by applying Equation D-1 and the freezing point depression was calculated by applying the relationship presented in Equation D-2 (Page and Iskandar, 1978). (1) A discussion of the significance of salinity on the freezing point of soil is presented in Chapter IV.

$$C_1 V_1 = C_2 V_2 \tag{D-1}$$

Where

C1 = Salinity concentration before dilution, ppt

 v_1 = Volume before dilution, gm

C₂ = Salinity concentration after dilution, ppt

V₂ = Volume after dilution, gm

$$FPD = 0.00249 - 0.0533C_1 - 0.0000764C_1^2 + 0.00000187C_1^3$$
 (D-2)

Where FPD = freezing point depression in degrees centigrade

The calculated salinity values for each boring are presented on the Salinity Profile sheets, Plates D-55 through D-59. The calculated freezing point depression values are plotted with measured ground tempeatures on Plate IV-12.

⁽¹⁾ Other relationships exist to compute the freezing point depression.

Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

9612,031.08

APPROVED DG3

4/82 DATE

REVISED

& Geophysicists

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

9612,031.08

APPROVED DEB

4%82

REVISED

Harding Lawson Associates Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A. D-57

ORAWN JOB NUMBER 9612.031.08

APPROVED

DeB

DATE 4/82

REVISED

& Geophysicists

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

9612,031.08

APPROYED Deb

REVISED

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

DATE APPROVED REVISED JOB NUMBER DRAWN 063 4/82 K 9612,031,08

D. Strength Testing

1. Triaxial Tests

Soil strength tests conducted under static loading conditions were performed on selected samples of unfrozen sand, silt, and clay to define the shear strength parameters used in engineering analyses. For a complete discussion of the triaxial test, the reader is referred to Bishop and Henkel (1978).

a. Unconsolidated-Undrained Triaxial Shear Tests

Unconsolidated-undrained triaxial shear (TXUU) tests were conducted on samples of clayey and organic silts. The maximum sample depth was approximately 51 feet below mudline. All samples were tested at their field moisture content and at a constant strain rate of about 1.5 percent per minute. Failure was defined as the peak deviator stress. The test results are summarized on Plate D-60, and the individual test results are presented on Plates D-61 through D-74.

Attempts were made to correlate the undrained shear strength (S_u) with depth and dry density, as well as the ratio of the undrained shear strength/overburden pressure (S_u/P_o) with depth. There are no significant correlations between S_u and S_u/P_o versus depth. However, a reasonable correlation was established between S_u and dry density as shown on Plate IV-17.

b. Consolidated-Undrained Triaxial Shear Tests

Consolidated-undrained triaxial shear (TXCU) tests with pore pressure measurements were conducted to provide information on the undrained shear strength (S_u) , the effective angle of internal friction (ϕ^i) , the effective cohesion (C^i) , and the stress-strain behavior of selected samples.

			·	<u> </u>			
Boring	Depth (ft)	USCS	Moisture Content (%)	Dry Density (pcf)	Cell Pressure (psf)	Shear Strength (psf)	Strain 0 Peak Stress (%)
2 2 2 2	12.9 14.5 46.7 51.2	ML ML ML ML	38.6 35.7 32.5 26.0	80 83 89 97	3000 1500 5500 6500	290 480 1600 2070	15.0 15.0 6.0 7.0
4	18.3	МН	70.8	57	4000	330	10.0
5	19,0	ML	35.5	61	1500	400	15.0
8.	15.0	ML	26.4	98	1875	1320	15.0
9 9 9 9 9	14.4 15.0 19.5 31.6 41.4 41.9	ML ML SM CL CL	41.8 40.7 51.3 30.2 31.2 27.6	78 77 68 90 90 96	1500 3000 2000 4000 2500 2500	620 560 360 1580 1630 2460	11.0 15.0 11.0 10.7 9.0 8.0
14 14 14 14	17.0 25.5 36.0 40.5	CL CL ML ML	18.1 22.9 25.1 25.1	113 103 101 101	2200 3200 4500 5000	4730 2140 2380 2880	7.0 15.0 6.1 5.4
15 15 15 15	2.0 9.0 10.8 36.8	ML MH ML CL	36.0 81.1 32.2 26.0	83 51 86 95	500 1000 1300 4600	790 800 710 520	8.7 6.0 15.0 15.5
17 17 17	6.2 6.7 30.4	ML ML ML	52.5 40.5 18.4	67 77 114	800 900 3800	750 1350 6450	15.0 14.0 4.7
21 21 21	7.0 31.5 32.0	ML CL CL	19.2 23.7 23.0	110 100 101	900 4000 4000	3820 1270 1090	10.8 8.8 15.2

Harding Lawson Associates Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial

Compression Test Report Summary
PT. Thomson Development Project, Winter 1982
Geotechnical Study, EXXON Company, U.S.A.

APPROVED
DATE
REVISED
4/82

PLATE

DATE

DRAWN Þ

))

JOB NUMBER 9612 ,031 .08

DIAMETER (in): ___ 2.87 6.00 HEIGHT (in): ____ MOISTURE CONTENT (%): __38.6 DRY DENSITY (pcf):____ CELL PRESSURE (psf): 3000 SHEAR STRENGTH (psf): 290 SAMPLE SOURCE: Boring 2 at 12.9' CLASSIFICATION: SILT (ML)

2.87 DIAMETER (in): 6.00 HEIGHT (in): _____ MOISTURE CONTENT (%): 35.7 DRY DENSITY (pcf): _____ CELL PRESSURE (psf): 1500 SHEAR STRENGTH (psf): 480 SAMPLE SOURCE: Boring 2 at 14.5' CLASSIFICATION: SANDY SILT (ML)

Harding Lawson Associates Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED

PAGE

REVISED

DATE:

OF THE PROVING THE PROVINGED

DATE:

APPROVED

PAGE

9612,031.08

Déi3

DIAMETER (in): _______2.87

HEIGHT (in): _______6.00

MOISTURE CONTENT (%): ______32.5

DRY DENSITY (pcf): ______89

CELL PRESSURE (psf): _____5500

SHEAR STRENGTH (psf): _____1600

SAMPLE SOURCE: ______Boring 2 at 46.7'

CLASSIFICATION: ______SILT (ML)

DIAMETER (in): _______2.87

HEIGHT (in): ______5.9

MOISTURE CONTENT (%): _____26.0

DRY DENSITY (pcf): ______97

CELL PRESSURE (psf): _____6500

SHEAR STRENGTH (psf): ____2070

SAMPLE SOURCE: __Boring 2 at 51.2'

CLASSIFICATION: ___SILT (ML)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 6

Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE

DATE

DATE

9612,031.08

D&B

4/82

D-62

DIAMETER (in): ____ 2.46 5.60 HEIGHT (in): _____ MOISTURE CONTENT (%): 70.8 DRY DENSITY (pcf):_____57 CELL PRESSURE (psf): 4000 SHEAR STRENGTH (psf): 330 SAMPLE SOURCE: Boring 4 at 18.31 CLASSIFICATION: SILT (MH)

1.0	11		I		14	T	П	T.			П	П	П	П
	++	┦┦	4-	-4-	₽₽	-	Н	4	╂╼╁	4	╁┼	╀	₩	⊢ ∤
ŀ	╃╅╌	╀┼┦	-1-1	+	Н		Н		╂┽	┰	⊢	╂╌┼╌	╀┤	∤ ⊸[
ł	┪╂	┡┼╂	╌╂╌┪	+	╁╌┧	1	Н	╌╂╌	₩	-1-√	1	1	1-}-)
	++-	┦	╌┼╌┦	+	H	+	Н	+	M	+		 	11	H
	11	111	77	7	7 1	十	П	7	П	7		П	П	П
ł	\Box	Ш			П	I			I			Π	П	
	Π	Ш		I.	П				•			╚	Н.	
1		Ш		1	Ц	.44	1	1	1-1	┸	╙	<u> </u>	Н.	ш
^	++	ш	+1	4	1	4.,	Ц	4-	₽	4	⇊	▙	╁╂	H
×	44	141	-11	1	11	4	Н	╌╂╌	\mathbf{H}	ᅪ	Н-	 	Н-	╂┪
\times 1	+ }	┞ ┨╌╏	+1	4	Н	╌╂╼	Н		H	╌┼╌	╁	╂	╁┼	H
≃	╉╅	Ͱ ϳ┫	И	4	Н	+-	Н	 -	H		╌╂╌	⊢	╂-	H
DEVIATOR STRESS (psf X 1000)	╉╬╌	 	7 1	-	H	+	Н	₩.	17	+	1	1	*	Ħ
4	++		/11	\top	Ħ	1	П		П		П		П	П
Σ I	11	17	11	1	П				П	\mathbf{T}		\Box	Π	
⇒ 1			71		П	I			\Box			П	П	
0 5	Π	III	\vdash		\Box	\perp					Ц	Ш	11	ш
တ္တပ္ႏာ		Y	_	\perp	Ц	1		Ц_	14	┸	-	1	₩.	↓.
X1 1	447		1.7	4	-	-4-	щ	_ _	Н		╀╃╾	╁┯╴	₩-	↓ ┩
₩ I	↓ ¥	╄╌┧	44	+	-	4	-	├- }-	₩	╌╄╌	} - }-	┰	₩-	₩.
	-	╂┼╌┨	╌┼┤	+	┼╂		1	₩	₽	+-	Η.	 	╁÷	/
رم: ا	+/-	╄┽┪	+1	+	╁	+		Н-	┪	┿	H	 	++	H
* ′ {	₩	┞ ╶┦╌┫	+1	+	₹Ŧ	1	1	\dashv	1	+	H	1	• •	17
~	7	计计	1		11	+	1		M	7	П	\mathbf{H}	Li	П
ኤ ነ	1	\sqcap 1	73		Ħ				П	Ι.		\coprod	Π	
≃ 1	Ш				П	\perp		Н		Τ.	Ш.	П.	Ш	$oldsymbol{\square}$
Y			Н	ĹĹ		\perp		Π.	Ц	I	L.	\Box	1	ш
5 1		Ш	\perp	Ш	Ш	4		щ	11	┵	ئدا	14	1 -↓-	⇊
G I	# -	₽	44	-	Н		┖	⊢;-	₽┪	4	\vdash	╀	╇╌╁╾	+-1
	╫╌	┼┼┨		-	H	╌╄╌	┞╴	┝╌╅╌	Hi	+	╁┼	╉┪╌	1 }	+
	#+	╟╏ ┩	- }-	-	H	+-	⊢	⊢⊢	╉┤	┿	⊢	╋┿	++	
	╫╫	╂╌╂╼┫	+		H	+-	Η.	H	1	╅╸	H	1 :-	+ +	
	╫┼	╂┼╍┨	7	+	H	1		-	Ħ	\top	tt	11	11	
	111		1						\Box	T			П	
ا م							Γ	\Box		工		Π	П	
٥١)	5	;		K)		Ī	5		1	20		- 25,
			ДΧ	ΊA	L	S	TF	RΑ	IN	(%))		

DIAMETER (in): HEIGHT (in): _____ 5.90 MOISTURE CONTENT (%): 35.5 DRY DENSITY (pcf): 61 CELL PRESSURE (psf): 1500 SHEAR STRENGTH (psf): 400 SAMPLE SOURCE: Boring 5 at 19.0' CLASSIFICATION: CLAYEY SILT (ML)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED
DATE
1023
4/82

JOB NUMBER 9612,031.08

DB

STRESS (psf X 1000) DEVIATOR AXIAL STRAIN (%)

DIAMETER (in): _____ 2.87 HEIGHT (in): _____ MOISTURE CONTENT (%): 26.4 DRY DENSITY (pcf): 98 CELL PRESSURE (psf): 1875 SHEAR STRENGTH (psf): 1320 SAMPLE SOURCE: Boring 8 at 15.0' CLASSIFICATION: SILT (ML)

DIAMETER (in): ________2.87 HEIGHT (in): _____ MOISTURE CONTENT (%): 41.8 DRY DENSITY (pcf): 78 CELL PRESSURE (psf): 1500 SHEAR STRENGTH (psf): 620 SAMPLE SOURCE: Boring 9 at 14.4' CLASSIFICATION: SILT (ML)

Harding Lawson Associates Engineers, Geologists

& Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE

APPROVED

J٩

9612,031.08

DIAMETER (in): ________2.87 6.00 HEIGHT (in): _____ MOISTURE CONTENT (%): 40.7 DRY DENSITY (pcf):____ CELL PRESSURE (psf): 3000 SHEAR STRENGTH (psf): 560 SAMPLE SOURCE: Boring 9 at 15.01 CLASSIFICATION: SILT (ML)

DIAMETER (in): ______ 2.87 HEIGHT (in): ______ 5.75 MOISTURE CONTENT (%): 51.3 DRY DENSITY (pcf): _____ CELL PRESSURE (psf): 2000 SHEAR STRENGTH (psf): 360 SAMPLE SOURCE: Boring 9 at 19.5' CLASSIFICATION: SILT (ML)

Harding Lawson Associates

AXIAL STRAIN (%)

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, 4/82

9612,031.08 DRAWN)۲

PLATE

HEIGHT (in): ______ MOISTURE CONTENT (%): 30.2 DRY DENSITY (pcf): _____90 CELL PRESSURE (psf): 4000 SHEAR STRENGTH (psf): 1580 SAMPLE SOURCE: Boring 9 at 31.61 CLASSIFICATION: SILTY SAND (SM)

	4									
sf x 1000)	3									
DEVIATOR STRESS (psf X 1000)	2									
DEVIATOR	1									
	0,	o	5 Δ)	(IAI	ю КО	TRA	IS AIN	(%	30 30	25

DIAMETER (in): 2.87 HEIGHT (in): _____ 6.00 MOISTURE CONTENT (%): 31.2 DRY DENSITY (pcf): 90 CELL PRESSURE (psf): 2500 SHEAR STRENGTH (psf): 1630 SAMPLE SOURCE: Boring 9 at 41.4' CLASSIFICATION: CLAY (CL)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

9612,031.08

Des

2.87 DIAMETER (in):_____ 5.90 HEIGHT (in): _____ MOISTURE CONTENT (%): 27.6 DRY DENSITY (pcf):____ CELL PRESSURE (psf): 2500 SHEAR STRENGTH (psf): 2460 SAMPLE SOURCE: Boring 9 at 41.9' CLASSIFICATION: CLAY (CL)

DIAMETER (in): ______ 2.87 6.00 HEIGHT (in): ______ MOISTURE CONTENT (%): 18.1 DRY DENSITY (pcf): 113 CELL PRESSURE (psf): ____2200 SHEAR STRENGTH (psf): 4730 SAMPLE SOURCE: Boring 14 at 17.0' CLASSIFICATION: CLAY (CL)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company,

JOB NUMBER 9612,031.08

AXIAL STRAIN (%)

DEB

4/82

PLATE

STRESS (psf X 1000) AXIAL STRAIN (%)

DIAMETER (in): ____ 2.87 6.00 HEIGHT (in): _____ MOISTURE CONTENT (%): 22.9 DRY DENSITY (pcf): 103 CELL PRESSURE (psf): 3200 SHEAR STRENGTH (psf): 2140 SAMPLE SOURCE: Boring 14 at 25.5' CLASSIFICATION: CLAY (CL)

DIAMETER (in):____ 2.87 5.90 HEIGHT (in): _____ MOISTURE CONTENT (%): 25.1 DRY DENSITY (pcf): 101 CELL PRESSURE (psf): 4500 SHEAR STRENGTH (psf): 2380 SAMPLE SOURCE: Boring 14 at 36.0' CLASSIFICATION: CLAYEY SILT (ML)

Harding Lawson As≤ociates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

36

JOB NUMBER 9612,031.08

2.0 (DEVIATOR STRESS (DSf x 1000) (DSVIATOR STRESS (DSf x 1000) (DSVIATOR STRESS (DSf x 1000) (DSVIATOR STRESS (DSf x 1000) (DSf x 1000				_		_	_				_		_	_		_		_	_			_
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1	-	4.U		Ц	-1	Ι.	Н	Ц	1	L		_	4	4	4	П	Ц.	4.	П	4	+	4
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1			1	Н	4		H	Ц		L	\dashv	-	4	+	+	Н	4	-	₽₽	4	+	┨
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1		1	╁	Н	4	┪~	1	\mapsto	╌╁╼	1	Н	Н	1	+	+	1	\vdash	╊	Н	\dashv	╫	1
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1		_	+	Н	+	+	╂┥	Н	+-	H	-	Н	╅	+	┿	H	+	╆	╁┤	7	╌╂╌	ł
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1			╈	Н	┰	┰	H	\dashv	+	Ħ	Н	Н	+	+	+	H	7	†	11	+	┿	1
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1		i	1	Н	┪	┰	Н	┪	+	Ħ	\Box	П	7	t	t	Ħ		┪	\Box	1	7	1
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1		- 1	1	Ħ	1	1	\vdash	H	7			П	7	1	1	⇈☐		T			I]
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1			Ι		I	I			Ξ				\Box	I	I	П		Ι	П	7	I]
DEVIATOR STRESS (psf X 1000 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1 o. 1	1		L	Ш		ı	u		_	Ц	_		4	┸	1	Ц	Ц	┸	_	4	_	1
OEVIAIOR 0.5	\simeq ,	- 5	4	Ц	4	4		Ц	4.	Ш		ų	Ц	4	4-	Ļ	Н	╀	_4	4	4	4
OEVIAIOR 0.5	×	1	4.	Н	4	-44	1	Н	4-	.	Ц	4	7	4	Ļ	ļ.,	Н	╀	1	4	+	4
OEVIAIOR 0.5	X		+	Н	-+	₩	H	┝╁	╀	1-	Н	Н	4	+	╁	∤~	Н		-┪	-1	+	1
OEVIAIOR 0.5	\simeq		+	Н	╅	₽	╂╼╡	┥	┰	╌	Н	Н	+	┿	┿	1	┝╋	╅╴	+1	7	+	1
OEVIAIOR 0.5	×		+	Н	٠,	#		-	+	٢	Н	П	↰	+	+	+-	H	†	11	┪	1	1
OEVIAIOR 0.5	•		+	Н	-1	1		Н	7	1	Н	T	7	7	7	1	П	7	П	ヿ	1	1
OEVIAIOR 0.5	χ		7	П	7	1	1	H	┪	1			1	1	Ŧ			1	П			1
OEVIAIOR 0.5	5		Τ		7	Τ							\Box		Τ			I		\Box	工]
OEVIAIOR 0.5	1	പ	Т		Ш	ı		\Box		1			_}	4	1	١.	Ц	1.	1	Н	1	4
OEVIAIOR 0.5	χı		Ц.,	П		┸	ш	Ц	-	₽	H			4	+	₽	Н	4.	₽	_	+	4
OEVIAIOR 0.5	V.	- 1	4	М	-	4	Н	Н	÷	H	ш	4	+	-	+	ļ	H	┿		+	+	-{
OEVIAIOR 0.5	₩.	:	4	Н	4			Н		H	Н	Н	+	4	╂	١-,	Н	┿		-	- -	1
OEVIAIOR 0.5	⊨		╁	+	H	-}-	1	H	-}-	1		Η	∺	+	+	} ~	Н	╅	7	+÷	-	1
OEVIAIOR 0.5	'n		╁	r	\dashv	┪	•	Н	-	т	Н		Н	+	+	t⊤	H	†	Ħ	_;	7	1
			1		- †	✝⁻	П	П	_	T	П	_	I	1	1	1_		1	13		\Box	1
	~		\Box		1	Ī	Ī			Ι		-	\exists	1	1	L	П	I	Ц	_	1	1
	ក	i	П			I				Г			Ц	I	Ŧ	Ι	Ц	1	Ц	_	1	1
	Ĕα		Ш			Ŀ	L	Ц		L	Ц		4	4	┸	Ļ,	Ц	1	Н	4	4	1
	≼પ	7.0	1	Ш	1	┸	∔	Ц	4	L	Ш	Ц	4	4	-	1	-	4-	44	-4	4	4
	5	ı	•	Н	4		H	Ц	_ _	L	Ц	Ц	4	+	+-	L	1	╁.	₽┦	-	+	4
	ليآ		╂╌	Н	H	╂	1	Н	+	1	Н	Н	Н	┰	┿	1-	H	╊	╁┈	↤	+	1
	Δ		╂	╂┥	H	┰	H	-1	╁	╂╌	-	Н		+	Ť	ţ-	H	+	†7	-+		1
0 5 10 15 20 25			#	Н	+	-†-	1	Н	╅	t	-		1	7	+	t	1	╈	11	_		1
0 5 10 15 20 25			#	Н	1	┰	H	H	╁	1	П	Н	H	1	1	٢		T		╗	T	7
0 5 10 15 20 25					┪	1	\mathbf{T}	Ħ	1	T			Ⅱ	1	1			T			工	1
0 5 10 15 20 25		1	\prod		J	Ι			I	Г				1	.L		П	L		Ц	4	1
^u O 5 10 15 20 25		ച	Ш		- 1	L				L		<u> </u>	Ц	1	1	┸	Ц	┸		!	٠.	J
		U()			5			- 1	0				15	•			2)		- 3	25

DIAMETER (in): 2.87

HEIGHT (in): 5.75

MOISTURE CONTENT (%): 36.0

DRY DENSITY (pcf): 83

CELL PRESSURE (psf): 500

SHEAR STRENGTH (psf): 790

SAMPLE SOURCE: Boring 15 at 2.0'

CLASSIFICATION: CLAYEY SILT (ML)

H LA

Harding Lawson Associates

AXIAL STRAIN (%)

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

AWN JOB NUMBER 9612,031.08 APPROVED

4/82

REVISED DATE

DIAMETER (in): _______ 2.87 HEIGHT (in): _______6.45 MOISTURE CONTENT (%): ___81.1_ DRY DENSITY (pcf): 51_ CELL PRESSURE (psf): 1000 SHEAR STRENGTH (psf): 800 SAMPLE SOURCE: Boring 15 at 9.0' CLASSIFICATION: SILT (MH)

DIAMETER (in): 2.87 6.00 HEIGHT (in): ______ MOISTURE CONTENT (%): 32.2_ DRY DENSITY (pcf): 86 CELL PRESSURE (psf): 1300 SHEAR STRENGTH (psf): 710 SAMPLE SOURCE: Boring 15 at 10.85 CLASSIFICATION: SILT (ML)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED

DATE

4/82

APPROVED

A

JOB NUMBER 9612,031.08

JP

DIAMETER (in):_____ 2.87 HEIGHT (in): ______ 5.80 MOISTURE CONTENT (%): 26.0 DRY DENSITY (pcf): _____ CELL PRESSURE (psf): 4600 SHEAR STRENGTH (psf): _520 SAMPLE SOURCE: Boring 15 at 36.8' CLASSIFICATION: CLAY (CL)

2.	0	T	_	_	···	·"		_		_	<u>'</u>		 -	`''	•	_,		ر د د	' —	_;		_	_
	H	H	╅╴	Н	Н	\exists	7		H	٦	Н	-	Н	Н	Н			1			_	\pm	1
	- [[П	I			_]	耳		Ц	Ĺ				П			Ц	_		\Box	Ц	7	7
	╂	╁╅	4-	Н	Н	Н	4	H	Н			Н	Н	-	Н	H	Н	Н	Н	Н	Н	-	┨
	H	╆	+	Н	٦	Н	_	-	Н	Н				Н	H	-		Н	Н	-	┪	士	1
			I												П						╗	\Box]
	╁┼	┨.,	+	Н	Ц	Ц	Ц	Н	Н	Н	Ш	Н	Ц	Ц		-4	Ц	Н	Ц	Н	Н	+	4
	┎┠┼	╂╌╂	╀	Н	Н	Н	-	Н	Н	Н		Н	Н	-	Н	Н	H	Н		\vdash	Н	+	1
=1.5	Þ	廾	十	H	Н	Н		7				×		L	П	Г		П			◻]
STRESS (psf X 1000)	П	П	I			_		П	3					\Box	Ц			Ц			Ц	1	1
Χ.	1	₩	1	Н	Ц	Н		И	Н	_	Н	H	Н	Н	Н		-	Н	-	-	Н	-+	4
\succeq	H	╂┽	Ť	Н	-	-	7	Н	Н	Н	Н	Η	Н	Τ	Н	7		H			Н	_	1
×		П	I		╗	3		Ί					Ĺ	П		1		П			П	7]
"	14	14	+	Ц	4	И	ᅼ	Н	Н	<u> </u>	Ľ	1-	-	-	Н	니	\vdash	Н	Н	Н	Н	-1	4
يق	╟	╅╉	+	Н	-1	Н	Н	Н	Н	Η	Н	Н	Н	-	Н		Н	Н	H	H	H	+	1
_ 1 /	ηĦ	††	+		/				Τ.			Γ.		Ш			_					1	1
	ᄺ	Ţ	7	П		\Box		П	L	L			Г		П	Ţ	П	П	Ţ	\Box	Ц	7	7
M	╌	₩	+	И	Ц	Н	H	Н	Н	-	Н	-	Н	Н	Н	-	H	Н	H	Н	H	+	4
<u>~</u>	H	⇈	+,	Н		H	i	Н	Н	H	Н	Н	Н	Н	Н	_		Н		_	٦	-+	1
H			Z	Ц					Ľ			П	П	П		7		П				4	1
		 	9	Н	Н	Н	Ц	Н	L	Н	-	-	H	H	-	Н	-	Н	_	H	Η	+	4
~	H	╁╅	∕⊢	Н		Н	Н	Н	H	Н	-	┝	Н	H	Н	-:		Н	H	H	- 1	1	1
ä	H	М	1	Ŀ	\exists								П	<u> </u>								\Box	1
⊢ი ≀	գ[].	Į/į	I	L						Ш	Ц	Į.	L	Ш	Ц	L	Щ	Ц	_	Ц	Ц	╌	╛
્ર≊ જ	0.5														┨								
≥.	H	41	+	Н	-	Н	Н	Ⅎ	Н	Η	-				Н	_			ï	Ħ		⇉	╛
ద	1	П	Ţ			П										Π.		П			П	÷	7
_	╟	┵	+	Н	H	Н	4	Н	Н	⊢	_	١.	Н	Н	Н	Н	Н	Н	H	H	Н	•	4
	Ж	+	+	Н	H	Н		H	Н	Н	┝	1		Н	H	7	Н	Н			7	\dashv	┪
		П	1										Π			Ħ		口			口		4
	₽ ↓	+1	\perp	Щ	L	$ \perp $		Ļ	L	-	-	Ļ.	Ŀ	L.	Ŀ	H	Щ	Н	H	H	Н	-	-1
	양	<u> </u>	ب	5		ш	L	K	_		-	٠	Ľ	드 5	L	٧		7	Ö	•3 	ш		2:
	v		•													_			~				_
				Δ	٠X		٩I	L	- (Sī	П	₹/	41	N		(%	,)					

2.87 DIAMETER (in):_____ 6.00 HEIGHT (in): _____ MOISTURE CONTENT (%): 52.5 DRY DENSITY (pcf): 67 CELL PRESSURE (psf): 800 SHEAR STRENGTH (psf): 750 SAMPLE SOURCE: Boring 17 at 6.2' CLASSIFICATION: CLAYEY SILT (ML)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982,

Geotechnical Study, EXXON Company, U.S.A. **▲PPROVED**

JOB NUMBER 9612,031.08

NB

4/82

DIAMETER (in): 2.87

HEIGHT (in): 6.00

MOISTURE CONTENT (%): 40.5

DRY DENSITY (pcf): 77

CELL PRESSURE (psf): 900

SHEAR STRENGTH (psf): 1350

SAMPLE SOURCE: Boring 17 at 6.7'

CLASSIFICATION: CLAYEY SILT (ML)

	16						
	10						
8	12						
psf X i							
ESS (8						
STF	i					}}}-	
DEVIATOR STRESS (psf X 1000)	4						
A	i						
	0))	5	ю	15	20	25
			AXI	AL ST	RAIN	(%)	

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Unconsolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982,

Geotechnical Study EXXON Company U.S.A.

APPROVED DATE REMSEO DATE

DRAWN

9612,031.08

PPROVED De:B **78**2

D-72

DIAMETER (in) ______ 2.87 HEIGHT (in): ______ 5.95 MOISTURE CONTENT (%): ____19.2 DRY DENSITY (pcf): 110 CELL PRESSURE (psf): ____900 SHEAR STRENGTH (psf): 3820 SAMPLE SOURCE: Boring 21 at 7.0' CLASSIFICATION: SANDY SILT (ML)

DIAMETER (in):_____ 2.87 5.70 HEIGHT (in): _____ MOISTURE CONTENT (%): 23.7 DRY DENSITY (pcf): 100 CELL PRESSURE (psf): 4000 SHEAR STRENGTH (psf): 1270 SAMPLE SOURCE: Boring 21 at 31.5 CLASSIFICATION: SILTY CLAY (CL)

Harding Lawson Associates

Engineers, Geologists & Geophysicists.

Unconsolidated-Undrained **Triaxial Compression Test Report**

Pt. Thomson Development Project, Winter 1982 -73

Geotechnical Study EXXON Company.

JOB NUMBER 9612,031.08

368

4/82

PLATE

	3	DIAMETER (in):
(psf X I		MOISTURE CONTENT (%):23_0 DRY DENSITY (pcf):101
STRESS (psf X 1000)	2	CELL PRESSURE (psf): 4000
		SHEAR STRENGTH (psf): 1090
DEVIATOR		SAMPLE SOURCE: Boring 21 at 32.0'
Ä		CLASSIFICATION: SILTY CLAY (CL)
	00 5 10 15 20 AXIAL STRAIN (%)	25
		DIAMETER (în): HEIGHT (in):
(0001)		MOISTURE CONTENT (%):
DEVIATOR STRESS (psf X		DRY DENSITY (pcf):
ESS		CELL PRESSURE (psf):
STR		SHEAR STRENGTH (psf):
TOR		SAMPLE SOURCE:
DEVIA		CLASSIFICATION:
	O 5 10 15 20	<u></u>
	AXIAL STRAIN (%)	
	Harding Lawson Associates Engineers, Geologists & Geophysicists	Unconsolidated-Undrained Triaxial Compression Test Report 7

Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

APPROVED
DATE
DED
4/82

DRAWN

9612,031.08

The following procedure was used for these tests:

- 1) A 2.87-inch-diameter sample was trimmed to a height of approximately 6.00 inches and placed in a triaxial cell. A confining pressure of 2 psi was immediately applied to the sample to ensure sample integrity.
- Back pressures, varying between 20 and 50 psi, were applied to achieve complete saturation. The "B parameter", which relates changes in pore water pressure to changes in confining pressure (B = $\Delta u/\Delta O_C$) was calculated to check for sample saturation. If the sample was not saturated, a higher back pressure was employed.
- 3) The sample was consolidated under a selected confining pressure. During consolidation, the volume change of the sample was recorded and plotted against the logarithm of time. This plot was used to determine when primary consolidation had ended.
- 4) After completion of the consolidation phase, the drain valve was closed and an axial load was applied at a constant strain rate of approximately 0.1 percent per minute; the actual strain rate depended upon soil type. During loading, pore pressure readings were obtained with a Mercury manometer. The measurement of pore pressure allow direct correlation of TXCU results with TXCD results.

Results of the TXCU tests are summarized on Plate D-75. Both total and effective stresses and strains at failure are presented. Representative total and effective strengths are presented on Mohr's diagram, Plate D-76. The effective stress failure criterion is based on the effective principal stress ratios $(\sigma_1^{-1}/\sigma_3^{-1})$. If the material is non-dilatant, the maximum stress ratio, $(\sigma_1^{-1}/\sigma_3^{-1})_{max}$ is taken as the failure stress ratio $(\sigma_1^{-1}/\sigma_3^{-1})$. If the material is dilatant, the stress ratio at which the

Boring	Depth	nzez	Туре	Initial		Consolidation	Stresses & A	kial Strai	n at (0'/	0 ₃) _f (1)	Stress/Strain	at 0,-0,1f (2)	Pore Pressure Coefficient at
No.			of Test	Moisture Content	Dry Density	Pressure	ďf	σ _{3f}	$\left(\begin{array}{c} \frac{\theta_1}{\theta_3} \right)_f$	€ŋ	(0 ₁ -0 ₃) _f	4 1	(03-03) max
	(ft)			(X)	(pcf)	(psf)	(psf)	(psf)	u ₃ 'f	(%)	(psf)	(x)	['] A _f
2	0.3	SP SP	TxCO	22.8	102	1500	7310	1440	5.08	2.5	5870	2.5	
2	3.4 9.9	ML ML	TxCD	22.8	98	3000	17060	3100	5.51	5.0	13950	5.0	
2	10.7	ML	TxCD TxCD	31.2 29.0	90 94	1000 2000	4990	990	5.04	9.0	4000	9.0	
2	11.3	ML	TxCD	32.5	89	4000	9010 1541 0	2270 3930	3.96	9.0	6740	9.0	
Ž	40.2	HL.	TxCU	21.2	106	2000	11010	2240	3.92	12.0	11480	12.0	
2	40.8	HL	TxCU	21.1	107	4000	14130	2950	4.92 4.79	5.0	8770	5.0	-0.03
ž	41.6	HL	TXCU	26.3	96	6000	14420	3960	3.64	5.0 8.1	15040	8.0	-0.02
_	1		1,200	i			14420	3300	3.04	Ð. I	>13050	15.0	0.05
4	13.3	OL	TxCU	43.7	75	3000	4390	950	4-62	9.0	> 3560	11.0	0.57
4	13.8	ML	TxCU	47.5	72	1500	2290	980	4.97	9.0	> 1930	12.0	0.48
4	19.0	CL	TxCU	68.4	58 57	1000	2190	350	6.33	8.0	1880	5.0	0.3B .
4	19.6	CL	TxCU	ו.ח	57	2000	2530	430	5.86	9.0	2100	9.0	0.73
6	4.1	ML	TxCt	33.4	B8	3000	5080	1080	4.70	7.0	> 5360	15.0	0.26
6	4.6	ML	TxCU	32.3	90	750	2640	630	4.17	4.0	2550	6.0	-0.01
6	5.3	SP-SM	TxCU	14.7	121	750	3590	970	3.73	2.5	2630	2.5	-0.05
6	14.7	ML	TxCt	23.3	99	1500	7110	1570	. 4.53	4.D	5540	4.0	0.16
6	15.4	ML	TxCU	26.2	100	3000	10140	2250	4.51	4.0	10310	6.0	-0.13
9	4.5	SM	TxCU	24.7	101	1600	5600	1270	4.42	2.5	5920	4.1	0.03
9	5.1	SM	TXCU	22.7	103	3200	9570	2380	4.03	5.1	9280	9.0	-0.03 0.00
.9	7.4	ML	TxCU	26.4	98	3000	6880	3700	4.05	6.0	> 6610	16.0	n.10
9	8.1	ML.	TxCU	28.4	.95	1870	4940	1180	4.19	5.0	5460	15.2	-0.01
9	9.0	ML	TxCU	27.4	- 96	860	3330	760	4.38	3.0	2930	4.0	0.00
14	2.4	ML	T×CU	27.1	95	1000	2960	550	5.41	3.1	3990	8.0	-0.03
14	2.9	ML	TxCU	26.7	96	2000	5420	1240	4.37	5.0	> 5220	10.0	0.07
15	8.4	MH	TxCU	70.2	56	750	2300	460	5.01	6.0	1920	8.0	0.13
15	15.5	SM	TxCU	18.2	1 14	5000	24070	5170	4.66	6.0	18900	6.0	-0.01
15	16.0	SM	TxCU	18.6	113	2250	11010	2320	4.75	2.5	8690	2.5	-0.07
17	35.3	CL	TxCU	24.7	103	2000	6710	1540	4.36	3.2	7170	F 0	1 .
17	36.3	ML.	TxCU	24.3	103	4000	9370	2590	3.62	4.1	9010	5.0 10.0	-0.04 -0.01
21	4.1	ML	TxCU	19_3	111	750	4120	910	4.54	1.1	2220		
21	4.7	ML	TxCU	18.9	111	1500	7210	1450	4.95	2.0	3210 7080	1.1	-0.10
21	5.2	HL.	TxCU	20.5	108	3000	7410	2130	3.48	2.5	6020	2.5	-0.04
21	18.0	ML.	TxCV	24.0	102	4000	13280	3680	3.61	10.1	10280	6.0 12.2	0.04 0.00
21	18.5	HL	TxCU	26.6	97	2000	5710	2040	2.80	7.0			
21	26.1	HL	T×CU	25.9	99	5000	14570	3490	4.17	8.0	3670 >14270	7.0	-0.01
21	26.8	ML.	TxCU	25.9	98	2500	10410	2330	4.47	6.0	>14270 9080	15.0	0.01
				ł		ì			i i			7.0	-0.02
22 22	2.7 3.8	ML ML	TxCU TxCU	25.8 30.7	99 90	750 1500	1860 3700	290	6.46	1.5	34BO	7.3	-0.05
	1		1,1,00	1		1000	3/10	<u>R20</u>	4.50	4.0	> 4180	10-0	<u> </u>

NOTES:

- (1) For TXCD tests, $(0_1'/0_3')f = (0_1'/0_3')max;$ For TXCU tests, $(0_1'/0_3')$ f = $(0_1'/0_3')$ max or $(0_1'/0_3')$ at which the pore pressure becomes negative, whichever is smaller.
- (2) For TXCD tests, $(\sigma_1 \sigma_3) f = (\sigma_1 \sigma_3) \max$. For TXCU tests, $(0_1 - 0_3) = (0_1 - 0_3) \max$ or the deviator stress at which the pore pressure becomes negative, whichever is smaller.

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained, Consolidated-Drained Triaxial Compression Test Report Summary

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A. DATE 4/82

ов мимвея 9612,031.08

Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

			· · · · · · · · · · · · · · · · · · ·			
DRAWN	JOB NUMBER	APPROVED	DATE	REVISED	DATE	
11	9612,031.08	DEB	4/82			

pore pressure becomes zero or $(\sigma_1'/\sigma_3')_{max}$ is taken as $(\sigma_1'/\sigma_3')_f$, whichever is smaller. The effective strengths for all tests are presented on a modified Mohr diagram as shown on Plate IV-19, which yields an effective friction angle of 40 degrees with no cohesion intercept.

The deviator stress, $(\sigma_1^-\sigma_3^+)$, is used as the total stress failure criterion. If the soil is non-dilatant, the maximum deviator stress $(\sigma_1^+-\sigma_3^-)_{max}$ is taken as the failure stress, $(\sigma_1^-\sigma_3^-)_f$. If the soil is dilatant, the $(\sigma_1^-\sigma_3^-)$ at which the pore pressure becomes zero or the $(\sigma_1^-\sigma_3^-)_{max}^-$ is taken as $(\sigma_1^-\sigma_3^-)_f$, whichever is smaller. The pore pressure parameter, A_f is computed at $(\sigma_1^-\sigma_3^-)_{max}^-$.

Several series of tests were made with two or more tested at different confining pressures. Results indicate that the rate of increase in undrained shear strength with the increase in consolidation pressure is approximately 0.5, regardless of material type and dry density as shown on Plate IV-18. The undrained shear stengths corresponding to the effective overburden pressures are plotted with TXUU data. The agreement between the TXCU and TXUU results is good as shown on Plate IV-17.

Results of each individual test are presented on Plates D-77 through D-110. The normalized deviator stress and pore pressure, as well as the effective stress ratios and pore pressure parameter A, are plotted versus the consolidation pressure.

Consolidated-Drained Triaxial Shear Tests

Consolidated-drained triaxial shear (TXCD) tests were conducted on samples of sandy silt (ML) and sand (SP). In these tests, the samples were saturated by seepage or back pressure, subjected to pressure, and allowed to

TYPE OF SPECIMEN	Undisturbed		BEFO	RE TEST		AF	TER TEST
DIAMETER(in.) 2.87	HEIGHT(in)	6.45	MOISTURE CONTENT	w _o	70.2 %	wf	6 <u>6</u> .1 %
OVERBURDEN PRESS.,	vo 460	psf	VOID RATIO	e _O	1.875	ef	1.728
CONSOLIDATION PRES	5.) O _c -	psf	SATURATION	So	97	Sf	100 %
STRAIN RATE	_	%/min	DRY DENSITY	16	56	16	60 pc
LL	PL		PI		G _s 2.	60	
LASSIFICATION			SOUR	CE Bor	ing 2 at 8.4	. •	

DRAWN

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 DEB

DATE 4/82 REVISED DATE

TYPE OF SPECIMEN Un	disturbed	<u> </u>	BEFORE TE	ST	Δ	FTER TES	ĭΤ
DIAMETER(in.) 2.87	HEIGHT(in) 6,45	MOISTURE CON	ITENT Wo	21.2 %	wf	20.0	%
VERBURDEN PRESS.,C	Svo 2210 psf	VOID RATIO	e _o	0.616	ef	0.546	
ONSOLIDATION PRES	S.,) O _c 2000 psf	SATURATION	So	94 %	Sf	100	%
TRAIN RATE	%/min	DRY DENSITY	¥	106 pcf	હ	111	pcf
L	PL	P1 -		G _s	2.7	4	
LASSIFICATION SAN	OY SILT (ML)		SOURCE	Boring 2 at 40.	.2'		

APPROVED

HLA

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

D-78

TYPE OF SPECIMEN Undisturbed	BEFO	RE TEST		AF	TER TEST
DIAMETER(in.) 2.87 HEIGHT(in) 6.44	MOISTURE CONTENT	wo	21.1 %	wf	19.0 %
OVERBURDEN PRESS., dvo 2240 psf	VOID RATIO	e _o	0.585	ef	0.532
CONSOLIDATION PRESS.,) d' 4000 psf	SATURATION	So	98 %	Sf	100 %
STRAIN BATE %/min	DRY DENSITY	Ϋ́d	_107 pcf	Ϋ́d	111 pcf
LL PL	PI		G _s 2.		
ELASSIFICATION SANDY SILT (ML)	SOUR	CE Bori	ng 2 at 40.8	ŗı	<u> </u>

APPROVED

DEB

HLA

Harding Lawson Associates Engineers, Geologists Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A. D-79

ANN JOB NUMBER
NP 9612_031_08

& Geophysicists

DATE 4/82 REVISED

TYPE OF SPECIMEN U	ndisturbed	BEFO	RE TEST		A	FTER TEST
DIAMETER(in.) 2,87	HEIGHT(in) 6.45	MOISTURE CONTENT	w _o	26.3 %	Wf	19.0 %
)VERBURDEN PRESS.,	5 <mark>7</mark> 2300 psf	VOID RATIO	e _o	0.585	ef	0.532
ONSOLIDATION PRES	is.,) σ_c' 4000 psf	SATURATION So		98 %	Sf	100 %
TRAIN RATE	%/min	DRY DENSITY	γ _d	107 pcf	$\gamma_{\rm d}$	111 pcf
L	PL	PI		G _{s 2}	.72	
LASSIFICATION SAM	IDY SILT (ML)	SOUR	ICE Bori	ing 2 at 41.6	1	

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidated-Undrained Triaxiai Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

D-80

TYPE OF SPECIMENU	ndisturbed(tri	mmed)			BEFOR	RE TEST			. Al	FTER TES	T
DIAMETER(in.) 2,43	HEIGHT(in) 5	.9	MOISTUR	E CON	TENT	wo	43.7	%	Wf	37.5	%
OVERBURDEN PRESS	,d _{vo} 73	() psf	AR GIOV	OIT		e _o	1.235		ef	1.003	
CONSOLIDATION PRE	ss., o' 150	0 psf	SATURAT	TION		So	95	%	Sf	100	%
STRAIN RATE		%/min	DRY DEN	SITY		Υ _d	75	pcf	γ _d	83	pcf
LL 33	PL 26			Pi	6			s.	2.67		
LASSIFICATION OR	GANIC SILT (OL	.)			SOUR	CE Bo	ring 4 at	13.	3'		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Comrpession Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

DRAWN JOB NUMBER v? Q612 N31 NR

APPROVED

DATE A /Q2

YPE OF S	PECIMEN U	ndisturb	ed(trimmed)	BEFORE TEST					AFTER TEST			
METER	(in.) 2.43	HEIGHT	r(in) 5.90	MOISTU	RE CON	TENT	w _o	47.5	%	Wf	40.9	%
VERBURG	EN PRESS.,	J _{vo}	760 psf	VOID RA	ATIO		e _O	1.311	-	ef	1.089	
ONSOLIDA	SOLIDATION PRESS.,) O' 1500 psf			SATURATION		S _o 97	97	%	Sf	100	, %	
TRAIN RA	TE		%/min	DRY DEN	ISITY		Υd	72	pcf	γ _d	80	pcf
L	33	PL	26		PI	6		· · · · ·	G _s 2	2.67		
LASSIFICA	ASSIFICATION SILT (ML)					SOUR	CE Bo	ring 4 a	t 13,8	} 1		

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A. **D-82**

68.4 % 1.848	w _f	58.5 %
1.848	ef	
		1.637
98 %	Sf	95 %
58 pcf	γ _d	63 pc
Gs	2.6	6
	G _s	···· 1 ··· · · · · · · · · · · · ·

HLA

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A. D-83

RAWN JOB NUMBER 9612,031.08 APPROVED DEB DATE 4/82 J.S.A. DATE

YPE OF SPECIMEN U	ndisturbed(t	ri <u>mmed</u>)		₽E	FORE TEST		A	AFTER TEST		
AMETER(in.) 2.46	HEIGHT(in)	6.05	MOISTUR	RE CONTEN	T Wo	71.1 %	Wf	57.1	%	
VERBURDEN PRESŞ.	ძ _{vo} 1080	psf	VOID RA	ATIO	e _O	1.933	ef	1.51	9	
ONSOLIDATION PRE	ss. o _c 2000	psf	SATURA	TION	So	98 %	Sf	100	%	
TRAIN RATE		%/min	DRY DEN	ISITY	γ _d	57 pcf	γ _d	66	pcf	
- 44	PL 2	6		PI	18	Gs	2.66			
ASSIFICATION CLAY (CL)				50	URCE Borin	g 4 at 19.6	ı			

JP 9L

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained **Triaxial Compression Test Report**

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED

JOB NUMBER

DEB

DATE 4/82

TYPE OF SPECIMEN Un-	disturbed(trim	med)	BEFOR	E TEST	-	A	FTER TEST
DIAMETER(in.)2.43	HEIGHT(in) 5.	95	MOISTURE CONTENT	wo	33.4 %	wf	30.2 %
OVERBURDEN PRESS.,C	5vo 230	psf	VOID RATIO	e _O	0.893	ef	0.831
CONSOLIDATION PRES	s., o _{c 3000}	psf	SATURATION	So	100 %	Sŧ	100 %
STRAIN RATE _	%	6/min	DRY DENSITY	γ _d	88_ pcf	γ _d	92 pcf
LL	PL		PI		G _s 2	.68	
LASSIFICATION SAN	DY SILT (ML)		SOURC	CE Bor	ing 6 at 4.1'		

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

DRAWN JP JOB NUMBER APPROVED 9612,031.08 DEO

DATE 4/82

TYPE OF SPECIMEN U	ndisturb	ed(trimmed)		₿€FO	RE TEST	<u> </u>	AFTER TEST		
DIAMETER(in.) 2.43	HEIGH'	T(in) 5.80	MOISTUF	RE CONTENT	w _o	32.3 %	Wf	30.6 %	
VERBURDEN PRESS.	d _{vo}	250 psf	VOID RA	ΛŢΙΟ	e _o	0.873	ef	0.828	
ONSOLIDATION PRE	ss., o _c '	750 psf	SATURAT	FION.	So	100 %	St	100 %	
TRAIN RATE		%/min	DRY DEN	SITY	Yd	90 pcf	$\gamma_{\rm d}$	92 pcf	
L NP	PL	NP .		PI NP		Gs	2.69		
ASSIFICATION SANDY SILT (ML)				SOUR	CE Borin	g 6 at 4.6'			

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED

TYPE OF SPE	CIMEN Und	listurbe	d		BEFO	RE TEST			A	FTER TE	ST
DIAMETER(in) 2.87	HEIGHT	(in) 5.9	MOISTUR	RE CONTENT	wa	14.1	%	WE	13.6	%
OVERBURDE	N PRESS.,C	vo.	300 psf	VOID RA	NTIO .	eo	0.38	2	ef	0.366	· ·
CONSOLIDAT	ION PRES	s., ძ _c '	750 psf	SATURAT	FION	So	99	%	Sf	100	%
STRAIN RAT			%/min	DRY DEN	ISITY	Yd	121	pcf	γ _d	123	pcf
LL		PL			PI	-		G _s 2	.69		
LASSIFICAT	ION GRA	VELLY S	AND (SP-SM	}	SOUR	CE Bar	ing 6 a	t 5.31			

DRAWN K

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 APPROVED DEB

4/82

YPE OF SPEÇIMEN U	ndisturbed	BEFO	RE TEST		AFTER TEST		
HAMETER(in.) 2,87	HEIGHT(in) 6.44	MOISTURE CONTENT	wo	23.3 %	Wf	21.7	%
VERBURDEN PRESS.,	5 <mark>vo</mark> 810 psf	VOID RATIO	e _O	0.714	ef	0.673	
ONSOLIDATION PRES	S.,) Oc' 1500 psf	SATURATION	So	99 %	Sf	100	%
TRAIN RATE	%/min	DRY DENSITY	γ _d	99 pcf	γ _d	101	pcf
L	PL	Pf		G _s 2	.71		
LASSIFICATION SAN	DY SILT (ML)	SOUR	ICE Bor	ing 6 at 14.7	1		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

PLATE

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

PLATE

YPE OF SPECIMENUND	isturbed(trimmed)	, BEF	ORE TEST	· !	AFTER TEST		
PIAMETER(in.) 2.43	HEIGHT(in) 5.80	MOISTURE CONTENT	wo	24.7 %	Wf	23.8 %	
VERBURDEN PRESS.,Ó	vo 250 psf	VOID RATIO	e _o	0.667	ef	0.647	
ONSOLIDATION PRESS	s., O _c 1600 psf	SATURATION	ATURATION So		Sf	100 %	
TRAIN RATE	%/min	DRY DENSITY	Υ _d	101 pcf	$\gamma_{\rm d}$	103 pcf	
·	PL	PI -		G _s 2	.71		
LASSIFICATION SI	ASSIFICATION SILTY SAND (SM)			ing 9 at 4.5	:		

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained **Triaxial Compression Test Report**

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER

APPROVED DEB

DATE 4/82

TYPE OF SPECIMEN Un	disturbed(trimmed)	BEFO	RE TEST	Γ]	Af	TER TEST
DIAMETER(in.) 2.46	HEIGHT(in) 6.00	MOISTURE CONTENT	wo	22.7	%	wf	21.2
OVERBURDEN PRESS., O	vo 280 pst	VOID RATIO	e _O	0.641	i	ef	0.578
CONSOLIDATION PRES	S.,) Oc 3200 psf	SATURATION	So	96	%	Sf	100
STRAIN RATE	%/min	DRY DENSITY	Ϋ́d	103	pcf	Ϋ́d	107 po
L i L	PL	P1			G _s 2.	70	
LASSIFICATION SIL	TY SAND (SM)	SOUR	ce Bor	ing 9 at	5.1'		

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained
Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982
Geotechncial Study, EXXON Company, U.S.A.

APPROVED
DATE REVISED
A 1/92

JOB NUMBER 9612,031.08

4/82

YPE OF SPECIMEN	Undisturbed	BEFORE TEST					AFTER TEST		
PIAMETER(in.) 2.87	HEIGHT(in) 6,45	MOISTUR	RE CONTENT	wo	26.4 %	Wf	24.4 %		
IVERBURDEN PRESS.,C	Vvo 410 psf	VOID RA	ATIO	e ₀	0.749	ef	0.668		
ONSOLIDATION PRESS.,) Oc 3000 psf		SATURATION So		97 %	Sf	100%			
TRAIN RATE	%/min	DRY DEN	SITY	Ϋ́d	98 pcf	γ _d	103 pcf		
L	PL		P1		G _s 2	.74			
LASSIFICATION SAN	DY SILT (ML)		\$0UR	CE Bor	ing 9 at 7.4'				

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

PLATE

TYPE OF SPECIMEN Undisturbed		BEFORE TEST			AFTER TEST	
DIAMETER(in.) 2.8	7 HEIGHT(in) 6.45	MOISTURE CONTENT	w _o	28.4%	Wf	27.4 %
OVERBURDEN PRESS. Ovo 450 psf		VOID RATIO	e _o	0.789	ef	0.747
CONSOLIDATION PRESS.,) Oc 1870 psf		SATURATION	So	99%	Sf	100 %
STRAIN RATE %/min		DRY DENSITY	γ _d	96 pcf	γ _d	98 pcf
Ų	PL	PI		G _s 2	.74	
_LASSIFICATION S	ANDY SILT (ML)	SOURCE Boring 9 at 8.1'				

1147

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

D-93

JOB NUMBER

APPROVED

DATE

REVISED

TYPE OF SPECIMEN Uni	disturbed		•	BEFOR	RE TEST		AFTER TEST	
DIAMETER (in.) 2.87	HEIGHT(in) 6.4	15	MOISTURE CONTENT	wo	27.4 %	Wf	27.2	%
OVERBURDEN PRESS, Over	500	psf	VOID RATIO	80	0.781	e f	0.743	
CONSOLIDATION PRESS, C	kć 860	psf	SATURATION	So	96 %	Sf	100	%
STRAIN RATE	%/	min	DRY DENSITY	¥а	96 pcf	Кd	98	pcf
LL NP	PL NP		PI NP		G ₅ 2.	.74		
CLASSIFICATION SAND	Y SILT (ML)		SOUR	CE 8	Soring 9 at 9.0)'		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

DRAWN 9L JOB NUMBER 9612,031.08 APPROVED DEAS

4/82

TYPE OF SPECIMENUN	disturb	ed(trimmed)	BEFO	DRE TEST	Γ		Α	FTER TE	:\$T
DIAMETER(in.) 2.46	HEIGH	IT(in) 5.95	MOISTURE CONTENT	w _o	27.1	%	wf	25,4	%
OVERBURDEN PRESS.	,d _{vo}	130 psf	VOID RATIO	e _o	0.782	<u> </u>	ef	0.692	
CONSOLIDATION PRE	ss.,) oʻʻ	1000 psf	SATURATION	So	94	2	Sf	100	%
STRAIN RATE		%/min	DRY DENSITY	γď	95	pcf	γ _d	100	pcf
LL	PL		PI	-		G _s	2.72		
CLASSIFICATION	SANDY S	SILT (ML)	sou	RCE Bor	ing 14 a	t 2.4	ı.		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED

948 4/82

DRAWN JOB NUMBER 9612,031.08 91,

TYPE OF SPECIMEN Un	disturbed (trimmed		BEFO	RE TEST	-		AF	TER TE	ST
DIAMETER(in.) 2.46	HEIGHT(in)	6.00	**	E CONTENT	wo	26.	7 %	wf	23.8	9
OVERBURDEN PRESS,	0 _{vo} 160	psf	VOID RA	TIO	e _o	0.7	55	ef	0.68	3
CONSOLIDATION PRES	s) o _c 200	00 psf	SATURAT	FION	So	96	%	Sf	100	90
STRAIN RATE		%/min	DRY DEN	SITY	γ _d	96	pcf	γ _d	101	рс
LL	PL .	 ,		PI			G _s	2.71		
CLASSIFICATION S	ANDY SILT (ML)		soui	RCE BOI	ring 14	at 2,9	9.		į

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED DATE 4/82 DRAWN 1 JOB NUMBER DATE 9612,031.08 Das

TYPE OF SPECIME	N Un	disturbed					BEFORE	TEST	A	FTER TEST
DIAMETER (in.)	.87	HEIGHT(in.)	6.45	MOISTUR	CON	TENT	wo	70.2%	Wf	66.1 %
OVERBURDEN PR	ess,o _{vo})	460 psf	VOID RAT	ю		00	1.875	Of	1.728
CONSOLIDATION F	RESS.,O	ć	750 psf	SATURAT	ON		So	. 97 %	Sf	100 %
STRAIN RATE	,		%/min	DRY DEN	SITY		۲ď	56pcf	۲d	60 pcl
և		PL			PI -			Gs 2.	60	
CLASSIFICATION	SILT	(HH)				SOUR	CE Bori	ng 15 at 8.	4'	

Harding Lawson Associates
Engineers Genlogists

Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED D-97

ORAWN JOB NUMBER APPROVED DATE REVISED DATE
9612,031.08 3482

LL	PL		_	Pí	-	G _s	2.73	
STRAIN RATE			%/min	DRY DENSITY	γ _d	114 pcf	Yd	118 pc
CONSOLIDATION PR	ESS., o'c	5000	psf	SATURATION	So	100 %	Sf	100 %
OVERBURDEN PRES	s.,d _{vo}	850	psf	VOID RATIO	e _O	0.500	ef	0.443
DIAMETER(in.) 2.4	HEIG	HT(in) 5	.15	MOISTURE CONTENT	w _o	18.2 %	wf	16.6 %
TYPE OF SPECIMEN	<i>i</i> ndisturi	bed(tri	immed)	BEFO	RE TEST		AF.	TER TEST

CLASSIFICATION SILTY SAND (SM)

SOURCE Boring 15 at 15.5'

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 APPROVED DEB

4/82

TYPE OF SPECIMENUM	disturbed (trimmed)	BEFO	RE TEST		AF	TER TEST
DIAMETER(in.) 2.46	HEIGHT(in) 5.10	MOISTURE CONTENT	wo	18.6 %	Wf	16.8 %
OVERBURDEN PRESS.,	J _{vo} 880 psf	VOID RATIO	e _O	0.514	ef	0.462
CONSOLIDATION PRES	S., I d' _c 2250 psf	SATURATION	So	99 %	Sf	100 %
STRAIN RATE	%/min	DRY DENSITY	Ϋ́d	113 pcf	γ _d	117 pc
£L	PL	PI		Gg	2.73	
CLASSIFICATION	SILTY SAND (SM)	SOUR	CE Bo	ring 15 at 16	6.0'	

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9<u>612</u>,031.08 APPROVED DEB

DATE 4/82

TYPE OF SPECIMEN Und	isturbed		BEFOR	e Tes t	AFT	TER TEST
DIAMETER (in.) 2.87	HEIGHT(in) 6.45	MOISTURE CONT	TENT WO	24.7 %	wf	24.1 %
OVERBURDEN PRESS, OV	1940 psf	VOID RATIO	e _o	0.690	of	0.670
CONSOLIDATION PRESS., O	c 2000 psf	SATURATION	So	99 %	Sf	100 %
STRAIN RATE	%/min	DRY DENSITY	¥d	103 pcf	Кd	104 pcf
LL 43	PL 16	PI	17	G ₃ 2	.78	
CLASSIFICATION SIL	TY CLAY (CL)		SOURCE Bo	ring 17 at 35	.31	

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982
Geotechnical Study, EXXON Company, U.S.A.

APPROVED

DATE
REVISED
4/82

JOB NUMBER 9612,031.08

TYPE OF SPECIMEN U	ndisturbed		BEFORE	TEST	AFT	ER TEST
DIAMETER (in.) 2.87	HEIGHT(in.) 6.45	MOISTURE CONTENT	wo	24.3 %	wf	24.1 %
OVERBURDEN PRESS, O	vo 2000 psf	VOID RATIO	e _O	0.677	of	0.670
CONSOLIDATION PRESS.	oc 4000 psf	SATURATION	So	99 %	Sf	100 %
STRAIN RATE	%/min	DRY DENSITY	¥а	103 pcf	₹d	104 pcf
⊥ 43	PL 26	PI 17		G ₃ 2.	78	
CLASSIFICATION CL	YEY SILT (ML)	SOUR	CE Boria	ng 17 at 36	.3'	

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE REVISED

3088 4/82

PLATE

JOB NUMBER 9612,031.08

TYPE OF SPECIMEN U	idisturbed (trimmed	BEFO	RE TEST		AFTER	TEST
DIAMETER(in.) 2.46	HEIGHT(in) 6.00	MOISTURE CONTENT	w _o	19.3 %	wf 18	.6 %
OVERBURDEN PRESS.	oνo 230 psf	VOID RATIO	e _o	0.535	ef 0.	505
CONSOLIDATION PRE	SS.,) O _c 750 psf	SATURATION	S _o	99 %	Sf 100) %
STRAIN RATE	%/min	DRY DENSITY	√d	111 pcf	7d 114	pcf
LL	PL	Pf		Gs	2.74	
CLASSIFICATION	SANDY SILT (ML)	SOUR	CE Boring	21 at 4.1	1	1

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained **Triaxial Compression Test Report**

Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

PLATE

TYPE OF SPECIMEN Und	isturbed(trimmed)	BEFO	RE TEST		ΑI	FTER TEST
DIAMETER(in.) 2.46	HEIGHT(in) 5.65	MOISTURE CONTENT	wo	18.9 %	wf	18.2 %
OVERBURDEN PRESS.,O	/ _o 260 psf	VOID RATIO	e ₀	0.535	ef	0.497
CONSOLIDATION PRESS	.) O'c 1500 psf	SATURATION	So	96 %	Sf	100 %
STRAIN RATE	%/min	DRY DENSITY	Ϋ́d	111 pcf	γ _d	114 pcf
LL	 PL '	PI		G _s 2.	73	

Harding Lawson Associates Engineers, Geologists

Consolidated-Undrained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 0612 N21 NQ

& Geophysicists

THE

DATE 4/R2

TYPE OF SPECIMEN U	ıdisturbed(t	rimmed)		BEFORE TES	T		A	FTER TE	ST .
DIAMETER(in.) 2.46	HEIGHT(in)	5.75	MOISTURE CONTE	NT Wo	20.5	5 %	Wf	19.3	%
OVERBURDEN PRESS.,	თ _{vo} 290	psf	VOID RATIO	e _O	0.58	32	ef	0,532	2
CONSOLIDATION PRE	ss) o _c 3000	O psf	SATURATION	So	96	%	Sf	100	%
STRAIN RATE		%/min	DRY DENSITY	$\gamma_{\rm d}$	108	pcf	Ŋ	112	pcf
LL	PL .		PI			G _s	2.74	·	ممند
CLASSIFICATION	SANDY SILT	(ML)		SOURCE BO	ring 21	at 5.2	21		- {

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnoial Study, EXXON Company, U.S.A.

DKB

OVERBURDEN PRESS., O'vo 990 psf VOID RATIO eo 0.665 ef 0.597 CONSOLIDATION PRESS., O'c 4000 psf SATURATION So 98 % Sf 100 STRAIN RATE %/min DRY DENSITY 7d 102 pcf 7d 107 p	TYPE OF SPECIMEN Undisturbed	BEFO	RE TEST	r		А	FTER TE	ST
CONSOLIDATION PRESS.,) Oc. 4000 psf SATURATION So 98 % Sf 100 STRAIN RATE %/min DRY DENSITY 7d 102 pcf 7d 107 p	DIAMETER(in.) 2.87 HEIGHT(in) 6.25	MOISTURE CONTENT	w _o	24.0	%_	Wf	22.1	%
STRAIN RATE %/min DRY DENSITY Yd 102 pcf Yd 107 p	OVERBURDEN PRESS, O'vo 990 p	VOID RATIO	e _O	0.665		ef	0.597	,
102 901 0 107	CONSOLIDATION PRESS.,) O. 4000 F	SATURATION	So	98	%	Sf	100	%
0 2 73	STRAIN RATE %/m	DRY DENSITY	7/4	102	pcf	γ _d	107	pcf
LL PL U _S 2./3	LL PL	PI			G _s	2.73		

CLASSIFICATION SANDY SILT (ML)

SOURCE Boring 21 at 18.0'

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

D-105

DRAWN

JOB NUMBER 9612.031.08 APPROVED

DATE 4/82 SED DATE

TYPE OF SPECIMEN L	ndisturbed	BEFO!	RE TEST	Γ·	A	TER TEST
DIAMETER(in.) 2.87	HEIGHT(in) 6,45	MOISTURE CONTENT	wo	26.6 %	wf	24.3 %
OVERBURDEN PRESS.	.O _{vo} 1020 psf	VOID RATIO	e _o	0.763	ef	0.665
CONSOLIDATION PRE	SS.,) O _c 2000 psf	SATURATION	So	96 %	Sf	100 %
STRAIN RATE	%/min	DRY DENSITY	γ _d	97 pcf	γď	103 pcf
LL	PL	PI		G _s 2	.74	
CLASSIFICATION S	ANDA CILA ANI)	SOUR	CE Ro	ring 21 at 18	<u> </u>	

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982
Geotechnical Study, EXXON Company, U.S.A.

APPROVED 7160

DATE 4 (02

TYPE OF SPECIMEN Undisturb	ed			BEFORE	TEST	AF	TER TEST	
DIAMETER (in.) 2.87 HEIGHT	(in) 6.45	MOISTURE	CONTENT	wo	25.9 %	wf	22.5	%
OVERBURDEN PRESS,Ovo	1440 psf	VOID RAT	Ю	e _o	0.749	of	0.647	
CONSOLIDATION PRESS, OC	5000 psf	SATURATI	ION	So	95 %	St	100	%
STRAIN RATE	%/min	DRY DENS	SITY	¥d	99 pcf	¥d	105	pcf
LL PL,	•		Pl		G ₃ 2.	76		
MASSIFICATION SANDY SILT	(ML)		SOUR	CE Bor	ing 21 at 26	.1'		

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

APPROVED DRAWN JOB NUMBER DATE DATE 4/82 9612,031.08

TYPE OF SPECIMEN	Undisturbe	d			BEFORE	TEST	AF	ter test	
DIAMETER (in.) 2.87	HEIGHT(in.)	6.45	MOISTUR	E CONTENT	wo	25.9 %	Wf	23.3	%
OVERBURDEN PRESS, O	yo .	1470 psf	VOID RAT	10	e ₀	0.763	of	0.660	
CONSOLIDATION PRESS.	,ď _c :	2500 psf	SATURAT	ION	So	94 %	Sf	100	%
STRAIN RATE		%/min	DRY DEN	SITY	¥d	98 pcf	Кd	104	pcf
ц	PL			PI		Gs 2	.78		
CLASSIFICATION S	ANDY SILT	(ML)		SOUR	CE Bor	ing 21 at 26	.8'		, n=

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 APPROVED DEB

DATE 4/82

TYPE OF SPECIMEN Undisturbed (trimmed) **BEFORE TEST** AFTER TEST HEIGHT(in) 5.70 DIAMETER(in.) 2.43 MOISTURE CONTENT Wg 25.8 24.1 e_o OVERBURDEN PRESS., Ovo VOID RATIO ef 150 psf 0.695 0.660 % CONSOLIDATION PRESS., ď 750 SATURATION So 100 99 psf Sf % γ_{d} 99 pcf 101 STRAIN RATE %/min **DRY DENSITY** pcf PL PI 2.70 LL G_{s} CLASSIFICATION SANDY SILT (ML) SOURCE Boring 22 at 2.7'

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Undrained **Triaxial Compression Test Report** Pt. Thomson Development Project, Winter 1982

PLATE

0612 N21 NR

APPROVED THA

DATE A 199

Geotechnical Study, EXXON Company, U.S.A. DATE

TYPE OF SPECIMEN	Undist	urbed(trimmed		•	BEFOR	RE TEST			Α	FTER TE	ST
DIAMETER(in.) 2.4	6 неі	GHT(in) 5 , 70	MOISTUR	E CON	ENT	wo	30.	7 %	wf	27.4	%
OVERBURDEN PRE	ss.,o _{vo}	210 psf	VOID RA	TIO .		e _O	0.8	59	ef	0.73	7
CONSOLIDATION P	RESS.,) o	ć 1500 psf	SATURAT	TION		So	96	%	Sf	100	*
STRAIN RATE		%/min	DRY DEN	SITY		γ _d	90	pcf	γ _d	97	pcl
LL 24	PL	21	_	PI	3			G _s	_ 2,69		·
CLASSIFICATION	SILT (ML)			SOUR	CE Bor	 ina 22			e.	

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidated-Undrained Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A. DATE

drain and consolidate. After consolidation, the drain valve was left open and the axial load applied at a constant rate of approximately 0.1 percent per minute, depending upon soil type. The test was conducted at this slow rate to prevent the development of pore pressure. Failure was defined as the point of maximum deviator stress. Results of the tests are summarized on Plate D-75. The effective strengths are plotted on a modified Mohr diameter as shown on Plate IV-16 with the data from TXCU tests. Results of the TXCU and TXCD tests are in agreement and consistently yielded a friction angle of approximately 40° with no cohesion intercept. Stress-strain curves of individual tests are presented on Plates D-111 through D-115.

2. Direct Shear Tests

Direct shear (DS) tests were performed to measure the consolidated-drained shear strengths of fine-grained granular soils. For these tests, a 2.43-inch diameter by 0.8-inch-high cylindrical soil specimen was first placed in split rigid rings. Next, the specimen was saturated and consolidated under a vertical (normal) stress. By using the time rates of consolidation, the test rate was determined and the shear force was slowly applied so that pore pressures did not develop.

Results of the tests are summarized on Plate D-116. Individual test results are shown on Plates D-117 through D-119. The soil is strongly dilatant at low normal stress which yielded high friction angles as shown on Plate D-114. These high friction angles are not unusual for an angular, medium dense to dense sand or silt tested at very low normal pressures. The friction angle decreases rapidly with increasing normal pressure. At the stress range of interest in this project, the friction angle is approximately 40° as measured from the TXCU and TXCD tests.

TYPE OF SPECIMEN Un	disturbed			BEFORE	TEST		NFTER TEST
DIAMETER (in.) 2.46	HEIGHT (in.)	5.60	MOISTURE CONTENT	wo	22.8%	Wf	23.5 %
OVERBURDEN PRESS,P0		20 psf	VOID RATIO	eo	0.650	ef	0.630
CONSOLIDATION PRESS, C	() C	1500 psf	SATURATION	So	94%	Sf	100 %
STRAIN RATE		%/min	DRY DENSITY	¥а	102 pcf	Вd	103 pct
止	PL		Pi		G _S 2.0	69	

CLASSIFICATION SAND (SP)

SOURCE Boring 2 at 0.3'

HLA

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Drained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982
Geotechnical Study, EXXON Company, U.S.A.

D-11

DRAWN JOB NUMBER APPROVED DATE REVISED DATE

9612,031.08

4/82

TYPE OF SPECIMEN Undisturbed BEFORE TEST AFTER TEST 5.70 24.4 % DIAMETER (in.) 2.46 HEIGHT(in.) MOISTURE. CONTENT 22.8 % Wf Wο 0.682 0.644 OVERBURDEN PRESS.,Po 190 **VOID RATIO** ef psf eo 3000 89 % 100 % CONSOLIDATION PRESS., Oc. SATURATION So Sf psf STRAIN RATE %/min DRY DENSITY Хđ 98 pcf ľа 101 pcf PΙ 2.65 PĻ Gs SAND (SP) SOURCE . Boring 2 at 3.4' CLASSIFICATION

AXIAL STRAIN (%)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Drained

Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

D-112

DRAWN JOB NUMBER APPROVED DATE REVISED DATE

S 9612,031.08 DGS 4/82

TYPE OF SPECIMEN	Undisturbed			BEFORE	TEST	AF	TER TEST	
DIAMETER (in.) 2.	37 HEIGHT (in.)	6.45	MOISTURE CONTENT	wo	31.2 %	Wf	28.7	%
OVERBURDEN PRES	S,P0	540 psf	VOID RATIO	eo	0.886	of	0.799	
CONSOLIDATION PRE	ss.,q¦	1000 psf	SATURATION	So	.96 %	Sf	100	%
STRAIN RATE	-	%/min	DRY DENSITY	¥а	90 pcf	۲d	94	pcf
LL	PL		Pl		Gs 2	.72		

CLASSIFICATION SANDY SILT (ML) SOURCE Boring 2 at 9.9'

Harding Lewson Associates

Engineers, Geologists & Geophysicists

Consolidated-Drained

Triaxial Compression Test Report Pt. Thomson Development Project, Winter 1982 Geotechnical Study, EXXON Company,

DRAWN JOB NUMBER Ж 9612,031.08 APPROVED DEB

4/82

TYPE OF SPECIMEN	Und	isturbed				BEFORE	TEST	AFT	ER TEST
DIAMETER (in.) 2.	87	HEIGHT (in.	6.45	MOISTUR	E. CONTENT	wo	29.0%	Wf	26.4 %
OVERBURDEN PRES	s,p		590 psf	VOID RAT	710	e ₀	0.806	ef	0,718
CONSOLIDATION PRE	ss.,o	c .	2000 psf	SATURAT	ION	So	98 %	Sf	100 %
STRAIN RATE			%/min	DRY DEN	SITY	¥а	94 pcf	₹d	99 pcf
LL		PL			PI		G _S 2.	73	
CLASSIFICATION	SAND	Y SILT (M	1L)		SOUR	_ CE Bori	ng 2 at 10.	71.	

Harding Lawson Associates Engineers, Geologists

Consolidated-Drained Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

APPROVED DATE 4/82

JOB NUMBER 9612,031.08

& Geophysicists

70*68*

TYPE OF SPECIMEN Undisturbe	d		BEFORE	TEST	Al	FTER TEST
DIAMETER (in.) 2.87 HEIGHT (in.)	6.45	MOISTURE CONTENT	wo	32.5%	Wf	27.8 %
OVERBURDEN PRESS,P	620 psf	VOID RATIO	e _O	0.885	ef	0.745
CONSOLIDATION PRESS., OC	4000 psf	SATURATION	So	99%	St	100 %
STRAIN RATE	%/min	DRY DENSITY	ξd	89 pcf	Кd	96 pcf
LL PL		Pi		G _S 2	.69	

CLASSIFICATION SANDY SILT (ML) SOURCE Boringo2 at 11.3'

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidated-Drained Triaxial Compression Test Report
Pt. Thomson Development Project, Winter 1982

Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

DEB

4/82

Boring	Depth (Ft)	Test Number	USCS	Moisture Content (%)	Dry Density (pcf)	Normal Stress (pcf)	Maximum Shear (psf)	ø _{d*} (degrees
4	1.8	A B	SP SP	23.3 22.0	101 102	1000 4000	880 3320	39 39
21	0.5	A B	SP-SM SP-SM	20.3	102 102	750 1500	1040 1680	54 48
21	2.0	A 8	SP-SM SP-SM	20.7	104 106	750 1500	1260 1730	58 49
					·			

• This Project

NORMAL STRESS, Ksf

- □ Duck Island Development Project
- O ARCO Waterflood Project

Harding Lawson Associates Engineers, Geologists Direct Shear Test Report Summary PLATE

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

D-116

9612,031.08

& Geophysicists

APPROVED →>EB DATE 4/82 DATE

REVISED

Controlled Deflection Test Type: Consolidated Drained Gs 2.70

Te	st No.	A	В	С
	Height (in.)	1.00	1.00	
اڃا	Moisture Content	23.3 %	22.0 %	%
Initial	Void Ratio	0.674	0.649	
-	Saturation	93%	91 %	%
	Dry Density (pcf)	101	102	
181	Time for 50% Consolidation (min.)	<1	<1	
Before Test	Time for 100 % Consolidation (min.)			
Be	Void Ratio after Consolidation	0.599	0.612	
_	Moisture Content	24.6 %	24.6 %	%
ina	Void Ratio	0.606	0.631	
4	Saturation	100 %	94 %	%
No	ormal Stress (psf)	1000	4000	
M	zximum Sheor (psf)	880	3320	
Ti	me to Failure (min.)	50	49	
\$4	imple Source Boring 4	at 1.8'		
Ci	assification SAND (SP)			
∟ ,				

Harding Lawson Associates

Engineers, Geologists & Geophysicists

0 psf

Direct Shear Test Report Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

DATE
4/82

APPROVED DEB

REVISED

-16

30B NUMBER 9612,031.08

See Figure

0.1

HORIZONTAL DEFORMATION (in.)

Test Type: Consolidated Drained

Controlled Deflection Gs 2.70

To	est No.	A	В	C
	Height (in.)	1.00	1.00	
اج ا	Moisture Content	20.3 %	22.2 %	%
nitial	Void Ratio	0.587	0.656	
-	Saturation	94%	91 %	%
	Ory Density (pcf)	102	102	
Test	Time for 50% Consolidation (min.)	<.1	<1	
Before To	Time for 100% Cansalidation (min.)			
8	Void Ratio after Consolidation	0.555	0.623	
	Moisture Content	22.1%	24.4 %	%
Final	Vaid Ratio	0.587	0.654	
	Saturation	94%	92 %	%
No	ormal Stress (psf)	750	1500	
M	aximum Shear (psf)	1040	1680	**
Ti	me to Failure (min.)	32	39	
Şc	ample Source Boring 21	at 0.5'		
CI	ossification SAND (SP-S	M)		: :::::::::::::::::::::::::::::::::::::
		<u></u>		

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Direct Shear Test Report

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON COMPANY, U.S.A

0.2

DEB

Test Type: Consolidated Drained

Controlled <u>Deflection</u>
Gs 2.72

F	st No.	A	8	С
	Height (in.)	1.00	1.00	
=	Moisture Content	20.7. %	20.9 %	%
Initial	Void Ratio	0.620	0.627	,
=	Saturation	90 %	90 %	%
	Dry Density (pcf)	104	106	
Tesi	Time for 50% Consolidation (min.)	<1	<1	
Before Te	Time for 100 % Consolidation (min.)			
Be	Void Ratio after Cansalidation	0.586	0.589	
	Moisture Content	22.7 %	23.1 %	%
inol	Void Ratio	0.610	0.617	
j	Saturation	92 %	92%	%
N	ormal Stress (psf)	750	1500	
M	ximum Shear (psf)	1260	1730	
Ti	me to Failure (min.)	30	39	
Sc	imple Source Boring 21	at 2.0'		
CI	assification SAND (SP-S	M)		
<u> </u>	44511401141 JANE (31-3		 	

HLA

Harding Lawson Associates Engineers, Geologists & Geophysicists **Direct Shear Test Report**

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A. D-119

DEB

4/82

				Initial Conditions			Compression Ratios			Time Rate		Permeability
Boring No.	Depth (ft)	USGS	Specific Gravity G _S	w (%)	γd (pcf)	e _o	C _e c average	C _e c virgin	C _E R	Load (psf)	C _v x 10 ⁻³ (cm ² /sec)	k x 10 ⁻⁷ (cm/sec)
2	0.1	SP	2.68	23.4	100	0.668	0.017	0.017				
2	8.5	ML	2.68	26.3	100	0.680	0.022	0.055	0.007	4230 8470	56.6 83.1	2.5 2.6
2	14.1	ML	2.70	38.8	81	1.070	0.066	0.134	0.022	1060 2120	29.0 25.1	6.0 5.7
4	3.0	SM	2.69	27.1	97	0.734	0.036	0.084	0.009	4230 8470	153 112	11.8 5.7
4	13.0	OL.	2.67	36.3	80	1.081	0.075	0.102	0.024	3200 6400	51.4 61.4	12.5 8.6
4	14.4	ML	2.70	48.7	72	1.335	0.099	0.150	0.024	3200 6400	15.4 23.6	7.5 6.8
4	18.8	CL	2.66	74.7	- 56	1.967	0.236	0.260	0.076	2120 4230	1.06 1.02	1.7 1.0
5	19.5	CL	2,72	36.6	87	0.964	0.057	0.094	-0.014	2120 4230	37.5 26.8	8.0 3.9
6	3.6	ML	2.69	30.4	92	0.819	0.041	0.114	0.012	4230 8470	28.2 27.0	2.8 1.7
6	21.7	ML	2.73	23.1	107	0.599	0.018	0.041	0.008	4230 8470	39.0 38.6	1.4 0.9
8	12.8	ML	2.73	26.0	99	0.722	0.033	0.047	0.016	2120 4230	28.8 38.7	2.7 3.0
9	5.7	SM	2.72	32.1	90	0.894	0.044	0.109	0.017	3200 6400	69.6 68.0	6.5 5.8
9	9.7	ML	2.71	35.0	86	0.971	0.047	0.109	0.017	3200 6400	25.1 24.4	3.6 2.2
9	19.3	MH	2.66	80.4	53	2.134	0.212	0.212	0.029	800 1600	0.397 0.724	1.1 1.4
9	41.2	ML	2.73	32.8	91	0.869	0.029	0.116	0.020	3200 6400	39.2 19.2	2.6 1.2

Compression Ratio, $C_{\varepsilon_{C}}$ =

Recompression Ratio, $C_{R} = \frac{c_{R}}{1+e_{0}}$

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidation Test Report Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
4/82

Note:

9612,031.08

JP JP

E. Consolidation Testing of Unfrozen Offshore Materials

One-dimensional consolidation tests were performed on representative samples of fine-grained soil to evaluate the stress history, compressibility, and permeability of the soil. Information from the consolidation tests can be used to evaluate immediate and long-term settlements and to determine the response of the soil due to loading.

The consolidation tests were performed on 2.43-inch diameter by 0.8-inchhigh samples. However, in both sequences each load increment was double the previous load. Different loading sequences were used for mechanical and pneumatic consolidometers. For mechanical consolidometers, the initial applied load was 130 psf and the maximum load was 33,870 psf. For pneumatic consolidometers, the initial load was 100 psf and the maximum load was 51,200 psf. A short loading period of 100 minutes was used in both cases because of the high permeability of the soils tested (Hsuan-Loh Su, 1958). In general, the end of primary consolidation occurred at approximately 5 minutes, and the soil samples experienced more than 200 minutes of secondary compression. Two time rate of compression readings were taken for each test to approximate the existing and anticipated overburden pressures. These data were then used to analyze the coefficient of consolidation.

The consolidation data show that the transition from the recompression to the virgin portions of the consolidation curves is not well defined. Therefore, preconsolidation pressures are very difficult to determine from these curves. However, these non-linear plots of void ratio versus the log of pressure are a characteristic of the silty soils found in the Beaufort Sea (HLA/USGS, 1979).

Although the fine-grained sediments within the project area appear to be overconsolidated, the amount of overconsolidation varies considerably. Overconsolidated fine-grained soils are commonly encountered in the Prudhoe Bay region; the overconsolidation was probably caused by freezing and thawing (Selmann, 1979). Physico-chemical effects resulting from the interaction of organic and inorganic compounds in a marine environment could also be partially responsible for the high over-consolidation ratios (More, 1977).

Three compression indexes have been determined for this project: 1) average compression ratio, 2) virgin compression ratio, and 3) recompression index. These indexes are defined on Plate D-120. Only the average compression ratio was used in the settlement analyses. It was calculated for the range of pressures between 1000 psf and 5000 psf, and reflects the current average effective overburden pressure and the estimated effective pressure that may result from construction and development.

In predicting the rate of settlement, it is necessary to know the coefficient of consolidation, $C_{\rm V}$. This parameter relates the decrease in volume of the soil with pressure and time. The coefficients of consolidation were determined by the square root of time curve fitting technique (Taylor, 1948). Because the first three points on the square root versus deformation plots were generally nonlinear, interpretation was required to determine $C_{\rm V}$; this generally yields smaller values of $C_{\rm V}$. Some of the samples tested were still in the rebound portion of the curve at the design stresses; hence, the settlement is not completely time dependent, and larger values of $C_{\rm V}$ result. We believe these factors tend to offset each other.

Domina	Donth	USAS	Specific	· Initial Conditions			Compression Ratios			Time Rate		Permeability
Boring No.	Depth (ft)	USGS	Specific Gravity G _S	w (%)	γd (pcf)	e _o	C _e average	C _e c virgin	C _e R	Load (psf)	C _v x 10 ⁻³ (cm ² /sec)	k x 10 ⁻⁷ (cm/sec)
14	6.3	ML	2.71	33.1	89	0.911	0.057	0.220	0.047	1600 3200	29.0 28.7	3.8 1.9
14	16.8	CL	2.75	19.5	112	0.532	0.020	0.051	0.023	8470 16940	5.2 7.6	0.2 0.2
15	5.2	ML	2.65	40.5	81	1.034	0.080	0.102	0.024	2120 4230	7.0 5.5	2.0 1.3
15	26.8	ML	2.69	21.5	106	0.586	0.026	0.044	0.007	. 4230 8470	21.5 24.1	1.3
17	3.5	CL-ML	2.71	32.6	90	0.877	0.038	0.111	-0.033	4230 8470	33.4 38.2	2.8 3.2
17	35.7	CL	2.78	23.9	103.	0.678	0.013	0.050	0.045	6400 12800	14.2 7.1	0.4 0.2
21	3.3	CL	2.76	20.1	111	0.552	0.021	0.039	0.012	4230 8470	8.2 13.4	0.3 0.4
21	27.8	ML	2.81	27.0	100	0.758	0.034	0.063	0.011	1600 3200 6400 12800	15.3 18.9 18.4 23.0	2.1 1.7 1.1 0.9

Note: Compression Ratio, $C_{\varepsilon_c} = \frac{C_c}{1+e_o}$

Recompression Ratio, $C_{\epsilon_R} = \overline{1+e_0}$

Harding Lawson Associates Engineers, Geologists & Geophysicists

Consolidation Test Report Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED D
34/82

PAWAPIC PL

JOB NUMBER 9612,031.08

A summary of the test results is presented on Plates D-120 and D-121. A reasonable correlation between the compression and recompression ratios with the dry density is established as shown on Plate IV-20. A similar correlation between the coefficient of consolidation and dry density is presented on Plate IV-21. Results of the individual tests are presented on Plates D-122 through D-144.

Coefficients of secondary compression were also determined from the consolidation tests. Typical plots of deformation versus log of time are presented on Plate D-145. The values shown on these graphs are representative of those obtained throughout the testing program.

F. Dredged Fill Properties of Offshore Materials

The settling rate of gravel specimen was conducted to determine the settling rate of potential gravel fill material that is dumped into sea water.

Salt water was prepared by mixing distilled water and salt to a salinity of 35 parts per thousand (Weast, 1977). The soil was then mixed with the salt water at a ratio of four parts salt water to one part soil. After mixing, the slurry was poured into a glass cylinder that was partially filled with salt water and the cylinder was agitated for one minute to mix the solution.

The sand/gravel particles settled within 30 seconds of the beginning of the test. The silt continued to settle for about 120 minutes; at the end of the test, less than 0.1 inch of sediments had accumulated.

DŘIAWN ĸ

JOB NUMBER 9612,031.08

APPROVED XB

4/82

DATE RÉVISEO

JOS NUMBER 9612,031.08 APPROVED 36B

Winter 1982, Geotechnical Study EXXON Company. U.S.A. REVISED

PRESSURE, (psf x 1000)

TYPE OF SPECIMEN Undisturbed(trimmed)	BEFORE TEST				AFTER TEST		
DIAMETER(in) 2.43 HEIGHT(in) 0.80	MOISTURE CONT	ENT wo	38.8 %	Wf	31.2 %		
OVERBURDEN PRESS, 0 _{vo} 780 psf	VOID RATIO	e ₀	1.070	of	0.840		
PRECONSOL PRESS.,(Ovo)max ps	SATURATION	So	98 %	Sf	100 %		
COMPRESSION INDEX,Cc 0.277	DRY DENSITY	Вd	81 pc	f Kd	92 pct		
LL PL	Pl		G _s 2.	70			
CLASSIFICATION SANDY SILT (ML)	SC	XURCE Boring	2 at 14.1'	·			

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidation Test Report

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

DØ

4/82

Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study

EXXON Company U.S.A. REVISED APPROVED

DATE

DRAWN JOB NUMBER 9612,031.08

DEB

4/82

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08

DEB

4/82

REVISED

HLA)

Harding Lawson Associates Engineers, Geologists

& Geophysicists

Consolidation Test Report

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A. D-127

9612,031.08

SPEROVI

4/82

REVISEO

DATÉ

JP 12

18

TYPE OF SPECIMEN Undisturbed(trimmed) BEFORE **TEST** AFTER TEST % DIAMETER(in) 2.43 HEIGHT(in) 0.80 MOISTURE CONTENT % Wo 74.7 50.4 OVERBURDEN PRESS, Ow 1030 psf **VOID RATIO** 1.967 1.364 eo PRECONSOL PRESS. (Ovo)max SATURATION So 100 % Sf % psf 100 COMPRESSION INDEX, Cc 56 pcf kd 0.770 DRY DENSITY 70 pcf PL Pi 2.66 LL SOURCE Boring 4 at 18.8' **CLASSIFICATION** CLAY (CL)

PRESSURE, (psf x 1000)

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidation Test Report
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

D-128

DRAWN JOB NUMBER APPROVED DATE REVISED DATE

\$\text{Y}\text{P} 9612,031.08 \\ \Delta \text{9} \text{4/82}

PRESSURE, (psf x1000)

0.6 0.8 i

)	BEFORE TEST				AFTER TEST		
N	MOISTURE CONTENT	wo	36.6 %	Wf	29.4 %		
sf \	VOID RATIO	eo	0.964	of	0.780		
sf S	SATURATION	So	100 %	Sf	100 %		
	DRY DENSITY	۲۵	87 pcf	۲d	96 pcf		
	PI 10		G _s 2.	72			
	sf sf	MOISTURE CONTENT of VOID RATIO of SATURATION DRY DENSITY	MOISTURE CONTENT Wo st VOID RATIO eo ST SATURATION So DRY DENSITY &d	MOISTURE CONTENT wo 36.6 % sf VOID RATIO eo 0.964 sf SATURATION So 100 % DRY DENSITY \$d 87 pcf	MOISTURE CONTENT Wo 36.6 W f sf VOID RATIO eo 0.964 ef sf SATURATION So 100 % Sf DRY DENSITY &d 87 pcf &d		

CLASSIFICATION SILTY CLAY (CL)

LO

0.2

SOURCE Boring 5 at 19.5'

8 10

Harding Lawson Associates
Engineers, Geologists
& Geophysicists

Consolidation Test Report Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

D-129

DRAWN JOBNUMBER APPROVED DATE REVISED DATE

V 9612,031.08 DEB 4/82

JOB NUMBER 9612.031.08

4/82

REVISEO

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Consolidation Test Report Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company

DATE

DEB

4/82

DRAWN

JOB NUMBER 9612,031.08

& Geophysicists Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612 031 08

APPROVED TOCA

4/82

REVISED

Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company . II

JOB NUMBER 9612,031,08

APPROVED Dea

4/22

REVISEO DATE

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

APPROVED DER

AEVISED

Winter 1982, Geotechnical Study EXXON Company U.S.A.

DRAWN

JOB NUMBER 9612,031.08 APPROVED,

EXXON Company, U.S.A.

Study U-101

JOB NUMBER 9612.031.08

DEB

4/82

REVISEO

DRAWN

R

Engineers, Geologists & Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

4/82

D-139

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company 11

HLA

Harding Lawson Associates Engineers, Geologists & Geophysicists Consolidation Test Report Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

D-141

9612,031.08

APPROVED

4/82

REVISED DATE

Consolidation Test Report Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

9612,031,08

DEB

4/82

DATE REVISED

DRAWN ~

JOB NUMBER 9612,031.08

DB

EXXON Company U.S.A. 4/82

REVISED

Winter 1982, Geotechnical Study

Winter 1982, Geotechnical Study EXXON Company, U.S.A.

4/82

DEAR

Legend

SILTY SAND (SM), Boring 4 at 3.0'

△ CLAY (CL), Boring 17 at 35.7!

O SILT (ML), Boring 21 at 27.8'

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Coefficients of Secondary Consolidation PLATE

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

D-145

FAWN JOB NUMBER 9612.031.08

APPROVED 3>6B

4/82

REVISED DATE

G. Thaw Consolidation Testing of Bonded Soil

Uniaxial thaw consolidation tests were performed on 28 undisturbed samples of bonded permafrost in accordance with the procedures developed by HLA. The testing device was a specially developed consolidometer that was designed to satisfy the necessary stress and thermal boundary conditions during one-dimensional thaw consolidation. The apparatus consists of a rigid, steel, thick-wall cyclinder, with porous stones at the top and bottom to allow the sample to drain. A vertical load is applied to the sample using a loading hanger which bears on a load cap assembly.

The samples were prepared in our cold room at a temperature of about -8°C. Each sample was extruded from a 6-inch long brass liner having an inside diameter of 2.43-inches and approximately 1 inch of the soil was removed for electric conductivity tests. Next, the sample was trimmed to a length that varied between 4.5 and 5 inches, and the ends of the samples were cut flat. The sample was then inserted into the testing cyclinder, and the unit was transported from the cold room to the testing room. It was then mounted into the consolidation apparatus, and the sample was loaded to 500 psf and allowed to thaw at a room temperature of approximately 20°C. The load was then increased to 100 psf and the deformation recorded.

The results of the thaw consolidation tests are summarized on Plate D-146. In addition to a description of the sample, this plate contains information on the frozen state properties and the uniaxial thaw-strain. Data for thaw consolidation tests which were carried out to 58,000 psf load are presented on Plates D-147 through D-149.

				Frozen	Phase		Tha	wed Phase		
Boring No.	Depth (ft)	USCS	Dry Density (pcf)	Ice Content (%)	Vold Ratio	Saturation (%)	Ory Density (%)	Void Ratio	Thaw Load (psf)	Thaw Strain (%)
1	2.7	OL, Vx/Vr	15	301	10	78	39	3.0	1000	62
	4.2	ML, Vx/Vr	47	92.5	2.60	97	105	0.610	1000	55
5	45.7	CL,¥r	86	33.6	0.977	93	88	0.934	1000	2
	46.0	CL,¥r	67	36.2	1.50	65	70	1.4	1000	5
7	0.5	OL,Yx/Vr	34	108	3.80	74	40	3.1	1000	15
	2.0	OL,Vx/Yr	19	250	7.70	88	51	2.2	1000	63
10	31.0	CL,Yr	108	21.6	Q.574	t00	115	0.574	1000	7
12	0.5	OL,Yx/Yr	7.8	27.6	1.168	70	97	0.743	1000	20
12	9.1	SM,Yx	93	19.2	0.818	70	115	0.470	1000	20
13	0.3	OL,Yx/Yr	53	54.9	2.06	78	66	1,458	1000	20
13	3.0	SP-SM,Yx	82	21.0	1.06	59	115	0.470	1000	29
13	17.5	ML,Yx/Yr	52	76.1	2.30	98	91	0.859	1000	44
15	39.6	CL,Vx/Vr	102	23.5	0.549	98	114	0.457	1000	8
15	49.1	CL,Vx/Vr	92	27.7	0.838	98	102	0.658	1000	9
16	3.1	SM, Vc/Vs	79	48.9	1.141	100	87	0.944	1000	9
16	5.1	ML, Vc/Vs	73	42.6	1.316	96	99	0.724	1000	26
16	9.1	SM, Vc/Vs	93	28.5	0.818	100	96	0.762	1000	4
16	24.6	ML, Vr	98	25.5	0.726	100	100	0.691	1000	3
18	1.0	OL, bonded	55	55.2	1.950	80	6 0	818.1	1000	17
19	24.5	ML,Yr	108	21.6	1.03	98	114	0.787	1000	5
23	0.0	ML,Vx	55	42.9	2.075	61	72	1.368	1000	23
23	1.0	ML,Vx	107	23.2	0.580	100	120	0.409	1000	11
23	10.8	ML,Vx	54	64.6	2.132	90	81	1.088	1000	33
23	19.0	CL,Vr	83	31.9	1.037	91	94	0.799	1000	14
23	39.5	CL, Vr	89	27.7	0.900	91	97	0.743	1000	8

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Thaw Consolidation Test Summary
Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REVISED
1948

PLATE

ORAWN X 9612,031.08

TEST AFTER TEST TYPE OF SPECIMEN Undisturbed (frozen) BEFORE 21.6 % Wf 17.5 % HEIGHT(in) 1.80 MOISTURE CONTENT DIAMETER(in) 2.43 Wo 0.471 0.574 OVERBURDEN PRESS, Ovo 1700 psf 00 **VOID RATIO** e f 100 % 100 % Sf So PRECONSOL PRESS.,(Ovo)max psf SATURATION 108 pcf 8d COMPRESSION INDEX, Cc DRY DENSITY 115 pcf 0.092 Gs 2.70 (Assumed) 21 ы 27 PL

CLASSIFICATION SILTY CLAY (CL) SOURCE Boring 10 at 31.0'

Harding Lawson Associates Engineers, Geologists & Geophysicists Thaw Consolidation Test Report PT. Thomson Development Project Winter 1982, Geotechnical Study D-147

EXXON Company, U.S.A.

DRAWN JOB NUMBER APPROVED DATE REVISED DATE

\$\mathcal{X}\$ 9612,031.08 \$\mathcal{DEB}\$ 4/82

TYPE OF SPECIMEN Undisturbed (frozen)					BEFORE TEST (Froz				(Frozen)	en) AFTER TEST		
DIAMETE	ER(in) 2.43	HEIGHT	(in) 1.80		MOISTL	JRE,CON	TENT	wa	23.5	%	Wf	17.0%
OVERBU	IRDEN PRESS,	σ _{vo} ′	2170	psf	VOID F	RATIO		e _o	0.649	•	٥f	0.457
PRECONSOL PRESS., (Oro)max psf			SATURATION			So	-98	%	Sf	100 %		
COMPRESSION INDEX,Cc 0.230			DRY DENSITY		βď	102	pcf	۲ď	114 pcf			
LL	28	PL	21			PI	7		G _S	2.7	70 (Assumed)
CLASSI	FICATION SI	LTY CLA	Y (CL)			·	OURCE	Borir	15 at 3	9.5	í	·

Harding Lawson Associates

Engineers, Geologists & Geophysicists

Thaw Consolidation Test Report

Pt. Thomson Development Project Winter 1982, Geotechnical Study D-148

EXXON Company, U.S.A.

ORAWN JOB NUMBER APPROVED DATE REVISED DATE

9612,031.08 Deg 4/82

& Geophysicists

JOB NUMBER

9612.031.08

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

DATE

APPROVED

AEVISED

>63

4/82

A general relationship for thaw consolidation was obtained by comparing the values of thaw strain and frozen dry density plotted on Plate IV-22 for fine-grained soil while data for gravels are presented on Plate V-8. The data for Plate V-8 are based on other studies. Because samples having a broad range of frozen dry densities were used, it was possible to establish a curve from which thaw consolidation could be estimated. The curve on Plate IV-22 represents the mean thaw strain plus one standard deviation and shows that when the frozen dry densities are greater than approximately 95 pcf, the thaw strains are less than 8 percent. As the frozen dry densities of the samples decrease, the scatter of thaw strain values becomes greater. The increase in thaw strain is approximately 0.7 percent per pcf decrease in dry density.

Literature on thaw consolidation is very limited, particularly for Beaufort Sea soils. The results of the thaw consolidation tests that were performed for this project can be compared with the results obtained for three other Beaufort Sea projects. These results are contained in the following reports: "Subsurface Soil Investigation, Duck Island Wild Cat, Beaufort Sea, Alaska" (R & M Consultants, 1978), "Geotechnical Investigation, Beaufort Sea, Alaska" (HLA/USGS, 1979) and "Duck Island Development Project, Beaufort Sea, Alaska" (HLA, 1981). The data are in agreement with the results of our tests for this project.

H. Thermal Conductivity

Measurements of radial thermal conductivity were made using the "thermal needle method." A detailed discussion of the theory and development of this method is presented by Mitchell and Kao (1978).

In simplified terms, thermal energy is applied at a known constant rate to a probe embedded in a sample. The temperature of the probe is measured as a function of time. By plotting the temperature change versus the log of time, a straight-line relationship is produced with a slope that is proportional to the thermal conductivity. The general equation used for calculating the thermal conductivity is:

$$K = \frac{Q \left[\ln \Delta t\right]}{4 \pi \Delta T} \tag{D-3}$$

Where: $K = thermal conductivity (Btu/ft-hr-<math>^{0}F$)

Q = thermal energy input per unit length
 per unit time (Btu/ft-hr)

T = temperature change corresponding to time

t = time change corresponding to temperature

By substituting specific probe information, Equation D-3 yields the following:

$$K = \frac{CI^2 R \pi ln (t_2/t_1)}{4 \pi (T_2 - T_1)}$$
 (D-4)

Where: C = constant (1 watt/ft = 3.413 Btu/hr)

 I^2 = current (amp)

R = probe unit resistance (4.503 ohm/ft)

By substitution:

$$K = \frac{1.223 \text{ I}^2 \text{ In } (t_2/t_1)}{(T_2 - T_1)}$$
 (D-5)

The following equipment was used for the conductivity tests:

Thermal needle: The thermal needle consists of 1/8-inch 0.D. stainless steel tube, Copper Constantan 0.003-inch-diameter thermocouple wire, Constantan #30 heat source wire, and #16 copper wire leads.

<u>Heat source power supply</u>: A Hewlett-Packard Model 6284A DC Power Supply, with constant voltage from 0 to 20 volts, and constant current from 0 to 3 amps, was used as the heat source.

Thermocouple signal amplifier: This device is our Omega "Omni-Amp IIB" with built-in ice point reference, that is capable of amplifying the thermocouple signal 100 times.

Recording equipment: An Omega single-channel strip chart recorder, Model 555 was used.

Most of the samples tested were unbonded soils. However, five bonded samples were tested as frozen samples. The testing procedure for these samples was as follows:

- The bulk weight and sample dimensions were measured to determine soil density.
- 2. An 1/8-inch-diameter hole was drilled from top to bottom through the center of the sample, and the probe was inserted into the hole. Next, both ends were capped and the sample was immersed in a constant temperature bath, maintained at the specified initial temperature until the sample temperature was stabilized.
- 3. Power was applied to the Constantan line, and the change in temperature with time was recorded on the chart recorder. The input power generally varied from 0.400 to 0.450 amp for both the frozen and the thawed tests. The test was run for 10 minutes, after which the power was turned off. This procedure was repeated until consistent results were obtained at each temperature.
- 4. The temperature, expressed in millivolts, plotted against the log of time, and the slope of the straight line portion of this curve was determined. The radial thermal conductivity was then calculated using Equation D-5.
- 5. Finally, the moisture content was determined. Index property tests were also performed when necessary.

A summary of the thermal conductivity test results is presented on Plate D-150. The results of individual thermal conductivity tests, plots of millivolts versus log time, and any index tests that were performed on the sample are presented on Plates D-151 through D-163.

Two log cycles of data are produced when our test procedure is used. For this report, the first log cycle, which contains the time increment of 0.1 to 1 minute, was omitted because a nonlinear relationship was produced due to problems associated with the seating of the probe. This nonlinearity disappeared within 1 minute of applying the probe, and the thermal conductivity was determined from the straight line portion of the plot in the second log cycle. Two conductivity tests were made on each sample to ensure that the correct thermal conductivity was determined.

The variation of thermal conductivity with density is plotted for the tested samples on Plate IV-23 along with the data from the Duck Island Development project (HLA, 1981). On this plate, the two thermal conductivity values for each sample are connected by a line. It can be seen that the thermal conductivity increases with increases in dry density for both the thawed and frozen samples. Typically, the thermal conductivity will also increase with increases in moisture content. However, this was not observed in these tests, perhaps because of the small range of moisture contents tested.

In general, the thermal conductivity varies with the texture of the soil. At a given density and moisture content, the conductivity is relatively high in coarse-grained soils, such as sands and gravels, and lower in fine-grained soils, such as silts and clays. For the one thermal conductivity test that

Boring No.	Depth	USCS	Dry Density	Moisture Content (%)			Thermal Conductivity Btu/Ft-hr-OF		
	(ft)		(pcf)	LL	PL	Natural		Thawed	
4	12.4	ML	78			38.8		1.09	
5	19.2	CL	79	31	21	39.5		0.99	
8 .	12.2	ML	103			22.6		1.38	
9	0.5	SM	105			22.1		1.41	
9	46.4	CL	93			29.3		1.30	
12	0.0	OL, Vx/Vr	11			406	0.55		
13	18.0	ML, Vx/Vr	29	34	25.	154	1.20		
14	31.1	ML	105			22.8		1.24	
18	0.3	OL	31			149	1.07	<u></u> -	
21	16.1	ML.	97			27.3		1.42	
21	31.0	CL	101 .			24.4		1.49	
23	0.5	ML, Vx	78	21	13	30.3	1.46		
23	12.5	CL, Vr	70	33	22	43.9	1.17		

Test run at temperature of 150 F.

JOB NUMBER

9612,031.08

DRAWN

18

Harding Lawson Associates Engineers, Geologists & Geophysicists

Thermal Conductivity Test Summary

Pt. Thomson Development Project
Winter 1982, Geotechnical Study
EXXON Company, U.S.A.

APPROVED DATE REV

PLATE (

DATE REVISED 4/82

Harding Lawson Associates Engineers, Geologists & Geophysicists

Thermal Conductivity

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

JOB NUMBER 9612,031.08 APPROVED DE13

4/82

was performed on silty sand (SM), the value obtained was higher than values recorded for the fine-grained soils. We observed no substantial difference between the clays, silts, and organic silts.

On Plate IV-24, thermal conductivities from this study are plotted against thermal conductivities from Kersten's work (1949). It can be observed that the thawed thermal conductivities of Beaufort Sea soils are greater than those predicted by Kersten's values. From the limited data developed during this study, it appears that the frozen thermal conductivities agree with Kersten's values.

APPENDIX E EXPLANATION OF ANALYTICAL PROCEDURES

A.	MECHANICAL PROPERTIES OF FILL MATERIALS. 1. Mechanical Properties of Unbonded Fill Materials. 2. Mechanical Properties of Bonded Fill Materials. a. Creep and Strength Properties of Bonded Fill Materials. (1) Temperature. (2) Void Ratio. (3) Ice Saturation. (4) Brine Content. (5) Confining Pressure. b. Elastic Properties of Bonded Fill Materials. c. Compressibility.	E-1 E-3 E-3 E-5 E-6 E-7 E-8 E-14 E-16
В.	PILE SETTLEMENT	E-19
c.	ANALYSIS OF LATERALLY LOADED PILES	E-25

APPENDIX E EXPLANATION OF ANALYTICAL PROCEDURES

This appendix contains detailed discussions of the methods used to define the mechanical properties of fill materials as presented in the Duck Island Development (DID) report (HLA, 1981), the methods used to define pile settlement and the analysis of laterally loaded piles in permafrost. Subsurface soil and gravel fill materials from the DID area are similar to those found in the PTD area; consequently, the relationships and analytical procedures used in the DID study are applicable to this study.

A. MECHANICAL PROPERTIES OF FILL MATERIALS

MECHANICAL PROPERTIES OF UNBONDED FILL MATERIALS

Both materials placed in the summer and gravel-ice mixtures placed in the winter will behave as unbonded soils until freezeback of free pore water. The parameters governing the behavior of fill materials in the unbonded condition include elastic modulus and Poisson's ratio, shear strength and compressibility. Estimated values for these parameters, based on index properties, laboratory test data and correlations available in the literature for similar soil types, are presented in Table IV-6.

Table IV-6. Mechanical properties of unbonded fill inaterial								
	Initial Tangent Modulus		Poisson's Ratio µ	Fric- tion	trength Cohe-	One Dimensional Compression Modulus		
	k	п]	Angle \$\Phi\$	c,psi	m	a	
Ice-Free Gravel Placed in the dry, compacted to R _d = 0.7	250	0.4	0.30	40 ⁰	0	1000	0.9	
Placed below sea level, R _d = 0.5	200	0.4	0.30	36°	0	800	0.9	
Gravel-Ice Mixtures	 							
Placed in the dry, compacted	100	0.4	0.30	20° -	0	400	0.75	
Placed below sea level	60	0.4	0.35	15 ⁰	5	230	0.50	
Silty Sands- Hydraulic Fill				•			·	
uncompacted, R _d = 0.3	75	0.25	0.45	28°	0	40	0.10	
compacted, $H_d = 0.7$	150	0.25	0.45	32 ⁰	0	80	0.25	

Table IV-6 Mechanical properties of unbonded fill material

1.
$$E_i = \left(\frac{\sigma_1 - \sigma_3}{\epsilon_1}\right)_i = k P_a \left(\frac{\sigma_3}{P_a}\right)^n$$
 (After Duncan et.al., 1980)

2.
$$M = \frac{\sigma_1}{\varepsilon_1} = m P_a \left(\frac{\sigma_1}{P_a}\right)^{1-a}$$
 (After Janbu, 1967)

Ì

where: P_a = atmospheric pressure in same unit as σ_1 and σ_3

All unbonded fill materials considered cohesionless, except gravel-ice mixtures
for which a nominal cohesion is assigned to account for some ice bonding when
very cold gravel-ice mixtures are deposited underwater.

The shear strength is represented by the Mohr-Coulomb failure criterion:

$$s = c + \sigma_n \tan \phi \tag{IV-8}$$

where: s = shear strength

c = cohesion intercept

 σ_{Π} = normal stress on the failure plane

 ϕ = angle of internal friction

The elastic moduli are presented as initial tangent moduli (E_i) in the form (Duncan et al., 1980):

$$E_{i} = \left(\frac{\sigma_{1} - \sigma_{3}}{\epsilon_{1}}\right)_{i} = k\left(P_{a}\right)\left(\frac{\sigma_{3}}{P_{a}}\right)^{n} \tag{IV-9}$$

where: σ_1 , σ_3 = major and minor principal stresses, respectively

= major principal strain

k = modulus number

n = modulus exponent

P_a = atmospheric pressure

Assuming a hyperbolic stress-strain relationship, the tangent modulus, E , for any stress condition, (σ_1 - σ_3), σ_3 , can be computed from

$$E_{t} = \left[1 - \frac{R_{f} (1-\sin\phi) (\sigma_{1} - \sigma_{3})}{2c (\cos\phi) + 2\sigma_{3} (\sin\phi)}\right] E_{i}$$
 (IV-10)

where: R_f = "failure ratio" = 0.7 for moist soils

Similarly, compressibility is presented in terms of the one-dimensional modulus (M), i.e.,

$$M = \frac{d\sigma_{Y}}{d\epsilon_{V}} = m_{\{P_{a}\}} (\frac{\sigma_{V}}{P_{a}})^{1-a} \qquad (iV-11)$$

in which σ_V and ϵ_V are the vertical stress and strain in one-dimensional compression, "m" is the modulus number, "a" is the stress exponent, and "P_a" is atmospheric pressure (Janbu, 1967).

2. MECHANICAL PROPERTIES OF BONDED FILL MATERIALS

Lacking reliable experimental data, the following discussion presents methods for qualitative assessment of the mechanical properties of bonded fill material. Direct measurements are needed to evaluate the validity of these methods and the results and conclusions derived from them.

a. Creep and Strength Properties of Bonded Fill Materials

The stress-strain-time behavior of bonded fill materials will be influenced by several material and environmental variables, of which the following could have a significant effect:

- Material type; i.e., silt, sand, or gravel
- Strain rate (¿)
- Temperature (θ)
- Void ratio (e)
- . Ice saturation (S;)
- · Brine content (S_b)
- Confining pressure (σ_3)

Functionally, we may express the stress-strain-time relationship for a given material type as:

$$\sigma = \sigma \left(\dot{\epsilon}, t, \theta, R_d, S_i, S_b, \sigma_3 \right)$$
where:
$$\sigma = \sigma_1 - \sigma_3 = \text{deviator stress}$$

$$\dot{\epsilon} = \frac{d\dot{\epsilon}}{dt} = \text{strain rate}$$

$$t = \text{time}$$

Ladanyi (1972) has proposed the following creep law:

$$\vec{\epsilon} = \vec{\epsilon}_{c} \left(\frac{\sigma}{\sigma_{c}}\right)^{n}$$
 (IV-13a)
$$\sigma = \sigma_{c} \left(\frac{\vec{\epsilon}}{\epsilon_{c}}\right)^{1/n}$$
 (IV-13b)

where: σ = applied stress $\sigma_{C} = \text{creep modulus (a reference stress)}$ $\epsilon = \text{strain rate resulting from applied stress}, \sigma$ $\epsilon_{C} = \text{strain rate corresponding to stress}, \sigma_{C}$ n = creep exponent

This form of creep law assumes that steady-state creep dominates. It is assumed that primary (attenuating) creep is insignificant in comparison to steady-state creep and that the creep rate does not accelerate (tertiary creep) within the duration of loading being considered. The implication of these assumptions is illustrated on Figure IV-9.

Figure IV- 9 Strength versus time behavior for frozen soils (modified after Ladanyi, 1975).

The strength of a frozen soil under various durations of loading are shown in % (σ_1 - σ_3): σ_3 stress space on Figure IV-9. The frictional component of the frozen strength (represented by the slope of the failure envelopes) is assumed to be independent of time whereas the cohesion component (the shear strength when the confining pressure, σ_3 , is zero) decreases with time and eventually vanishes when time becomes infinite.

The line OABC represents a hypothetical loading path starting from at-rest conditions (point 0). Because the loading represented by OA never exceeds the ultimate long-term strength, the creep rate decreases with time and eventually stops. This is the case of attenuating creep. On the other hand, the loading OC exceeds the service life strength; failure by tertiary creep will occur at time t₂ before the service life is reached.

Loading OB exceeds the ultimate long-term strength but is less than the service life strength. It is this type of loading condition for which Equation (IV-13a,b) is assumed to be valid. The requirements for validity of the creep law are as follows:

$$\sigma_{\rm ult} < \sigma_{\rm app} < \sigma_{\rm sl}$$
 (IV-14)

where: $\sigma_{\rm ult} = \text{ultimate long-term creep strength}$
 $\sigma_{\rm app} = \text{applied stress}$
 $\sigma_{\rm sl} = \text{service life creep strength}$

As a practical matter, these requirements are usually satisfied because, on the one hand, proper design cannot permit the applied stress to exceed the service life creep strength and, on the other hand, the ultimate long-term (frictional) strength is generally quite low, except in the case of dense, ice-poor soils.

It is assumed that the effects of the material and environmental variables previously identified can be approximately accounted for in the creep modulus term

$$\sigma_{\rm C} = \sigma_{\rm C} (\theta, e, S_{\rm i}, S_{\rm b}, \sigma_{\rm g})$$
 (IV-15)

The effects of each of the variables are discussed below:

(1) Temperature

The qualitative effects of temperature on the creep behavior of frozen soils are well known. In general, as the temperature decreases, the creep rate decreases and the creep strength increases. The quantitative functional relationships are less well established, but generally seem to be of the form suggested by Sayles and Haines (1974):

$$\left(\frac{\sigma g}{\sigma o}\right) = \left(\frac{g}{\theta o}\right)^{m}$$
 (IV-16)

in which, σ_{θ} and σ_{0} are stresses (or strengths) at temperatures of θ and θ_{0} (^OF below freezing) and m is the temperature exponent. Figure IV-10 shows peak strength versus temperature data reported by Sayles and Haines (1974) for ice and four different types of soil.

For the four different soil types the temperature exponent, m, varies within fairly narrow limits, i.e., $m=0.48\pm15$ percent. Therefore, we have assumed that m=0.5 can be used for the soil types expected to be used as fill for this project. The possible dependency of m on salinity is assumed to be accounted for by the brine content factor discussed below.

(2) Void Ratio

Goughnour and Andersland (1968) found that the shear strength of frozen Ottawa sand varies considerably with the volume concentration of sand in a sand-ice mixture. Sand concentration is defined as the ratio of sand volume to total volume; thus, sand concentration = 1/(1 + e). As the sand concentration was varied from zero (pure ice) to about 42 percent (e = 1.38), only a minor increase in the shear strength was observed. However, above 42 percent, the shear strength increases rapidly, continuing up to a sand concentration of about 63 percent (e = 0.59). Linell and Lobacz (1980) have presented data for Manchester fine sand that show a peak strength at an "ice content" of about 0.58, with the strength decreasing for both higher and lower ice contents. (Note: "ice content" is defined by Linell and Lobacz as the volumetric ratio of ice to soil, which is equivalent to void ratio for 100 percent ice saturation).

$\left(\frac{\sigma_{\theta}}{\sigma_{o}}\right) = \left(\frac{\theta}{\theta_{o}}\right)^{m}$						
Sall	σ _ο (p#i)		m			
Graded Ottawa sand	789		0,48			
Manchester fine sand	812		0.44			
Hanover slit	288		0.55			
Suffield clay	204		0,43			
		Avg.=	0,48			

Figure IV-10. Peak Strength vs. Temperature (After Sayles and Haines, 1974)

If the data of Goughnour and Andersland (1968) and Linell and Lobacz are normalized with respect to peak strength and plotted as a function of void ratio, the data appear as shown in Figure IV-11. Figure IV-11 also shows the relative strength reduction that can be expected for the various fill material types being considered for this project. These reduction factors must be considered as only rough approximations since there are no corroborating test data for the materials.

Figure IV-11. Variation of peak strength with volumetric ice content (Data from Linell and Lobacz, 1980 and Goughnour and Andersland, 1968)

(3) Ice Saturation

Alkire and Andersland (1973) have addressed the effects of ice saturation on frozen Ottawa sand-ice mixtures. Their data, reproduced in Figure IV-12, show a reduction in strength with reduction in ice saturation. Since only two values of ice saturation were used in their study, linear interpolation and extrapolation were used to develop approximate relationships. Extrapolation was confined to ice saturation in the range of 0.18 Signal 1.00 because the curve for zero confining pressure indicates zero strength for Signal 1.01.

If the data in Figure IV-12 are normalized with respect to peak strength at S_i = 1.0 and the effect of confining pressure omitted, the relationship in Equation IV-17 results.

Figure IV-12 Peak deviator stress versus ice saturation for various confining pressures (After Alkire and Andersland, 1973).

The effects of confining pressure are quite apparent in Figure IV-12; this factor will be discussed below. Again, the data on the effects of ice saturation described above are for one material type only, Ottawa sand, and applying the effects to gravels and silty sands involves considerable uncertainty.

$$\frac{\sigma_{S_i}}{\sigma_{S_i}} = -0.22 + 1.22 \, S_i \quad \begin{cases} \text{for} & 0.18 \le S_i \le 1.0 \\ \sigma_3 = 0 \end{cases}$$
 (IV-17)

(4) Brine Content Fill materials

from offshore sources those or from onshore sources placed below sea level will contain significant brine in the pore water. (1978) has shown that brine content can have a substantial effect the strength on of sea ice. Michel's data. reproduced in Figure IV-13. that the show

Figure IV-13. Flexure strength of sea ice vs. brine volume (After Michel, 1978).

flexural strength of sea ice is reduced to 20 percent of the strength of brine-free ice at a brine volume of about 0.16. At higher volumes, no further strength reduction occurs because the excess brine drains out of the ice. Michel suggests the following empirical relationship for strength reduction as a function of brine volume:

$$\frac{\sigma_{\nu}}{\sigma_{\nu}} = 1 - \sqrt{\frac{v}{0.25}} \qquad \left\{ \text{ for } 0 \leq v \leq 0.16 \right\}$$

Ruedrich and Perkins (1974) investigated the effect of salt concentration on the strength of Prudhoe Bay sands and silts. Some of their results are reproduced in Figure IV-14; substantial reductions in strength with increasing salt concentrations are readily apparent.

Figure IV-14. Influence of salt concentration on the strength of Prudhoe Bay sand and silty sand (After Ruedrich and Perkins, 1974).

In order to determine whether the influence of salt concentration in the frozen Prudhoe Bay sands and silty sands is similar to the effect of brine volume on sea ice, we have plotted the strength (at axial strain rate = 10^{-3} min⁻¹) from Figure IV-14 versus brine volume in the form used by Michel (1978) for sea ice. Brine volumes were estimated from the pore water salinity and test temperatures reported by Ruedrich and Perkins (1974) for the Prudhoe Bay samples. The results are shown in Figure IV-15.

Figure IV-15. Influence of brine volume on the strength of Prudhoe Bay sand and silty sand (After Ruedrich and Perkins, 1974)

Although the data are limited, the relationship proposed by Michel (1978) appears to fit quite well. However, at brine volumes greater than 0.16, the data indicate that the strength continues to decrease because, in contrast to the natural freezing of sea ice, brine was not allowed to drain from the Prudhoe Bay test samples. It is our opinion that when the offshore fills freeze the brine will drain except possibly in the lowest portion of the fills, where brine may become trapped. For the case of gravel -ice mixtures placed below sea level, the brine volume is replaced by brine content to account for the initial freshwater ice content of the mixture (see Equation IV-5). Therefore, after replacing ν with S_h Equation IV-18 becomes:

$$\frac{{}^{\sigma}S_{b}}{{}^{\sigma}S_{b}} = 0 = 1 - \sqrt{\frac{S_{b}}{0.25}} \qquad \left\{ \text{ for } 0 \leq S_{b} \leq 0.16 \right\}$$
 (IV-19)

(5) Confining Pressure

To account for the effect of confining pressure on creep behavior, Ladanyi (1975) proposes to treat frozen soil as a (c, ϕ) material by replacing the creep modulus in Equation IV-13, $\sigma_{\rm c}$ by $\sigma_{\rm cf}$, i.e.,

$$\sigma_{cf} = \sigma_{c} + \sigma_{3, av} \quad (N_{\phi} - 1)$$
where:
$$N_{\phi} = \frac{1 + \sin \phi}{1 \cdot \sin \phi}$$

$$\sigma_{c} = 2c \quad \sqrt{N_{\phi}}$$

 ϕ denotes the friction angle of the frozen soil corresponding to the creep rate, $\epsilon_{\rm C}$, and c is the cohesion intercept. In this approach, c and ϕ are total stress parameters and ϕ is assumed to be relatively independent of time and temperature.

Figure IV-16. Angle of internal friction vs. density for frozen and unfrozen fill materials. Based on bonded angle of internal friction being 10 degrees less than the unbonded value (After Navdocks, 1971)

The angles of internal friction for ice-saturated frozen soils reported in the literature are typically six to ten degrees less than those for the same soil and density in the unfrozen condition (see, for example, Alkire and Andersland, 1973, Ladanyi and Johnston, 1973, and Sayles, 1973). If the difference in friction angles between the frozen and unfrozen state for the same soil and dry density is taken to be 10 degrees, the curves shown in Figure IV-16 can be used to estimate the friction angles for frozen fill materials.

The effects of temperature, void ratio, brine content in the pore fluid, ice saturation and confining pressure, as described in the preceding discussion, can now be incorporated into the creep modulus, σ_{r} .

The parameters required to apply Equations IV-13 and IV-13b are as follows:

- · Creep modulus, σ_C , and the corresponding strain rate, $\dot{\epsilon}_C$.
- Creep exponent, n
- Temperature factor, m (see Figure IV-10 and Equation IV-16)
- Index properties which influence the creep modulus
 - Void Ratio (e) (see Figure IV-11)
 - Ice saturation (S_i) (see Equation IV-17)
 - Brine content (S_b) (see Figure IV-15 and Equation IV-19)
 - Confining pressure \$\sigma_3\$ (see Figure IV-16 and Equation IV-20).

The index properties of the fill materials have been discussed previously and values for various typical conditions presented in Tables IV-4, IV-5, and IV-6. Representative values of creep modulus, creep exponents, and temperature factors are presented in Table IV-7.

The values of creep modulus are equivalent to the peak strength at a temperature of $31^{\circ}F$ and a strain rate of 0.15 min. $^{-1}$ and are estimated from the data of Sayles and Haines (1974) shown in Figure IV-10.

Harding Lawson Associates

TABLE IV-7. Summary of creep properties for bonded fill materials ¹

	Ice-FreeGravel	Gravel-lo	e Mixtures	Ice-Free	Silty Sands
$\dot{\epsilon} \cdot \dot{\epsilon}_{\rm c} \left(\frac{\sigma}{\sigma_{\rm c}} \right)^{\rm n}$	placed below sea level (R _d = 0.5)	placed in the dry compacted (Recrystalized)	placed below sea level, uncompacted	uncompacted (R _d = 0.3)	compacted (R _d = 0.7)
Creep Exponent, n	7.5	7.5	7.5	7.5	7.5
Creep Modùlus, σ _c (ksf) (@ έ _c = 0.15 min ⁻¹)	115	² 57	115	90	90
Adjustments to Creep Modulus			*		
(1) Temp. Exponent, m Temp. factor	0.5 2.4	0.5 2.4	0.5 2.4	0.5 2.4	0.5 2.4
(2) Void Ratio Factor	0.38	0.97	0.87	0.69	0.87
(3) Ice Sat. Factor]	0.34			
(4) Brine Content	0.2	***	0.2	0.2	0.2
(5) Conf. Pressure Factor φ (degrees) (Nφ – 1)	26 1.56	10 0.42	5 0.19	18 0.89	22 1.20
Adjusted Creep Modulus	21.0+1.56σ ₃	² (45.0 + 0.42 \sigma 3)	48.0 + 0.19 ₉	2.98+0.89 ₀ 3	37.6 + 1.20 ₃

Notes:

For average fill temperature = -5°C.
 Depends upon degree of recrystallization.

The creep exponent was estimated from data on four different soil types ranging from Ottawa sand to Suffield clay (Sayles, 1968; Sayles and Haines, 1974). The values were obtained from Equation IV-13 rewritten as follows:

$$n = \frac{\log \left[\frac{\epsilon_{f}}{t_{100} \epsilon_{c}}\right]}{\log \left[\frac{\sigma_{f_{100}}}{\sigma_{pk}}\right]}$$
 (IV-21)

Where, ϵ_f = failure strain t_{100} = 100 years σ_{pk} = short-term creep strength ϵ_c = strain rate for σ_{pk} σ_{f100} = creep strength at 100 years

Values of n were computed for several pairs of data at the same temperature for each soil type. In general, the computed n-values decreased with increasing temperatures, but varied little with soil type. A value of n=7.5 was selected as representative of the range of soil types reported for temperatures of 25° to 31° F. This is believed to be a conservative value for the project fill materials.

Using the data presented in Table IV-7 and Equation IV-13b, the creep strength of the various fill materials can be estimated as a function of time. Design values for short-term (24 hours) and long-term (25 years) creep strength are presented in Table IV-8.

b. Elastic Properties of Bonded Fill Materials

Elastic moduli for frozen soils have been shown to be dependent on temperature and strain-rate much like that of stress or peak strength. For example, the data of Parameswaren, 1980 show the following approximate relationship between initial tangent modulus and strain rate for frozen Ottawa sand:

$$E_i = A \quad (\dot{\epsilon})^{m} \tag{(V-22)}$$

Table IV-8. Mechanical properties of bonded fill materials

	Initial Tangent Modulus (ksf)		tial Tangent Poisson's odulus (ksf) Ratjo		Shear Strength		One-Dimensional Compression	
	Short Term	Long Term	μ	Short Term (24 hrs.)	Long Term (25 yrs.)	m	a	
lce-Free Gravel Placed below sea level, uncompacted 93 = 1.34 ksf @ 20 ft.	1400	200	0.25	4.6	1,4	1500	0.90	
Gravel-Ice Mixtures Placed in the dry, compacted (recrystallized) 93 = 0.61 ksf @ 10 ft.	3000	550	0.25	10.0	3.7	400	0.75	
Placed below sea level, uncompacted •3 = 1.19 ksf @ 20 ft.	2850	400	0.15	9.5	2.8	625	0.90	
Silty Sands - Hydraulic Fill Uncompacted g = 0.90 ksf @ 15 ft.	1850	250	0.25	6.1	1.8	125	0.75	
Compacted σ ₃ = 0.94 ksf @ 15 ft.	2300	350	0.30	7.6	2.3	220	0.90	

Notes:

1. For average fill temperature = 5°C.

2. • 3 assumed = 0.5 x (overburden pressure) for average depth within the fill.

Short-term assumed to be 24 hours; \$\frac{\mathbb{E}_i}{\mathscr{S}_U} = 300.\$
 Long-term assumed to be 25 years; \$\frac{\mathbb{E}_i}{\mathscr{S}_U} = 150.\$

5. Properties will vary from unbonded to fully bonded depending upon degree of recrystallization.

Comparison of Equations IV-22 and IV-13 suggests that the initial tangent modulus may be estimated from the creep strength if exponents m and n are approximately equal and if temperature effects are similar. If the ratio E_i/σ_{max} is evaluated over the full range of strain rates and temperatures reported by Parameswaren, the values range from $39 \le E_i/\sigma_{max} \le 221$ with an average value of 133. In general, the lower values correspond to lower strain rates; however, the variations with temperature are inconclusive.

Sayles and Haines (1974) reported peak strength and tangent modulus data for Hanover silt and Suffield clay for a range of temperatures and a strain rate of about 0.15 min⁻¹. For temperatures between 31⁰ and 15⁰F, the ratio of modulus to strength ranged from 273 to 138 for Hanover silt and 124 to 165 for Suffield clay. The values for Hanover silt are in the same range as Parameswaren's Ottawa sand data for comparable strain rates. Temperature effects for these soils are similarly inconclusive.

Based on the data discussed above, we conclude that the initial tangent modulus for bonded fill materials can be approximated by:

$$\frac{E_{i}}{2} \left[\sigma_{1} - \sigma_{3} \right]_{\text{max}} = E_{i} \begin{cases} 300 \text{ for short-term loads} \\ 150 \text{ for long-term loads} \end{cases}$$
 (IV-23)

Vinson (1978) has tabulated values of Poisson's ratio for a wide variety of soil types. The reported values for sands range from 0.23 to 0.28. For silts, the range is from about 0.28 to 0.39 with an average value of about 0.30.

Recommended design values of initial tangent modulus and Poisson ratio for the various bonded fill materials are presented in Table IV-8.

c. Compressibility

Tsytovich (1975) has reported measured values of the coefficient of volume compressibility, $m_V = \frac{\epsilon_V}{\sigma_V}$, for several frozen soils. These data indicate that m_V varies with soil type, density, and unfrozen water content.

Referring to Equation IV-11, it can be seen that m_{ν} is the inverse of the compression modulus, m_{ν} i.e.,

$$m = \frac{1}{m_V} \tag{1V-24}$$

In Figure IV-17, Tsytovich's data for a frozen sand and a silty sand are superimposed on a plot presented by Janbu (1967), for unfrozen soils, showing the variation of compression modulus number, m, and stress exponent, a, with porosity. To make this comparison, the porosity for frozen soils is related to only that portion of the pore volume not filled with ice, i.e.,

$$n = \frac{\text{non-ice pore volume}}{\text{total volume}}$$

$$n = \frac{e - i (G_s/G_i)}{1 + e}$$
(1V-25)

The data for frozen sand and silty sand are quite limited and cover only a narrow range of non-ice porosity. However, these data can be extrapolated by noting that as the amount of ice in the pores decreases to zero, the curves for the frozen and unfrozen conditions must converge at the porosity of the equivalent unfrozen soil. The resulting curve defines the variation of n with non-ice porosity for the frozen soils.

To obtain similar curves for the project fill materials, a family of parallel curves was constructed, each of which merges with the curve for the unfrozen condition at the expected placement porosity. The assumption that these curves should be parallel is based on Janbu's data for unfrozen soils. Values of the stress exponent, a, are obtained using the same type assumption regarding the influence of non-ice porosity.

To illustrate the compression parameters in the frozen versus unfrozen conditions, points for each of the fill materials for both conditions are plotted on Figure IV-17. The compression parameters for bonded fill materials are also tabulated in Table IV-8.

Figure IV-17. Compression parameters for island fill materials

8. PILE SETTLEMENT

As discussed in Section VII subsurface temperatures fluctuate seasonally and cause variations in pile settlement velocity. To account for this change in settlement velocity throughout the year, a representative soil temperature profile, an average for the full year, was determined. The procedure presented on Plate E-1 describes the method used to determine the "average" temperature profile for a pile embedment depth of 10 feet. This procedure was repeated for other pile embedment depths to allow development of a representative soil temperature profile. The procedure used to calculate the ground temperature profiles is presented on Plate E-2. The ice flow law presented on Plate E-3 was used to calculate pile settlement.

Procedure for determining a representative temperature profile and settlement for a 10-foot pile embedment depth.

- The year was divided into eight time periods of equal duration as shown in Figure 1.
- 2. The ground temperature variation with depth was determined for each time period assuming a homogeneous soil beneath the active layer and using Equation El (presented on Plate E-2)for a damped, sinusoidal temperature oscillation.
- The following was computed for the 10-foot pile embedment depth using the Ice Flow Law presented on Plate E-3.
 - a. The settlement of the pile was calculated based upon an average temperature along the pile at each time period as shown in Figure 2 using Equations E2 and E3.

$$\delta/a = (pile settlement)/(pile diameter)$$

Equation E2

$$\delta/a = (U/a) (\Delta t) = 4.5 (\beta ave) (\tau ave^n) (\Delta t)$$

Equation E3

where β ave=f(T ave) From Figure 1, Plate E-3

$$\frac{\delta/a}{(\tau \text{ ave}^n) \text{ (Δt)}} = 4.5 \text{ (β ave)}$$

Note: rayen and At are constant.

b. The settlement for all time periods was added to determine the total settlement of the pile for the year using Equation E4.

$$\frac{t/p=7/8}{5} \frac{\delta/a}{\delta \log a} = t/\frac{p=0/8(\tau \text{ ave}^n)}{8} (\Delta t)$$
 Equation E4

c. This settlement was used to compute a representative ground temperature (Trep) using Equation E5, Morgenstern's flow law, described on Plate E-3.

$$\beta \text{rep} = \frac{\delta/a \text{ ave}}{4.5 \text{ (rave}^{\text{n}}) \text{ (} \Delta t\text{)}} = 3.4 \times 10^{-6} \text{ psi}^{-3} \times \text{year}^{-1}$$

T rep = -4.7° C From Figure 1, Plate E-3

t/p	0/8	1/8	2/8	3/8	4/8	5/8	6/8	7/8
Tave	-1.8º C	-2.0	-5.4	-9.6	-14.2	-14.0	-10.6	-6.4
	8.4 x 10 ⁻⁶ psi ⁻³ year ⁻¹	7.6	3.0	1.7	1.2	1.2	1.6	2.6
8/a (τ ave ⁿ)(Δt)	3.78 x 10 ⁻⁵	3.42	1.35	0.77	0.54	0.54	0.72	1,17

Figure 2. Pile Settlement for Each Time Period

7:1	Harding Lawson Associates Engineers, Geologists & Geophysicists
7 .\	

Procedure for Determining Pile
Settlement and Temperature Profile
Pt. Thomson Development Project, Winter 1982
Geotechnical Study, EXXON Company, U.S.A.

JOB NUMBER 1.000 DATE REVISED DATE 9612,031.08 0 4/82

Engineers, Geologists
& Geophysicists

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

DATE 4/82 **E-2**

APPROVED

REVISED

DATE

Ice-Flow Law (Morgenstern, Roggensack and Weaver, 1980)

$$\frac{\dot{U}_{a}}{a} = 3^{\left(\frac{n+1}{2}\right)} \beta_{\tau_{a}}^{n} = 4.5 \beta_{\tau_{a}}^{n}$$
 Equation E5

where:

U_a = pile velocity

a = pile radius

 r_a = constant tangental shear stress on ice-rich soil

n = soil creep exponent

 β = soil creep constant

Temperature OC	n	K Pa ⁻ⁿ x year ⁻¹	psi ⁻³ x year ⁻¹
-1	3	4.5 x 10 ⁻⁸	1.5 x 10 ⁻⁵
-2	3	2.0 x 10 ⁻⁸	6.6 x 10 ⁻⁶
-5	3	1.0 x 10 ⁻⁹	3.3 x 10 ⁻⁶
-10	3	5.6 x 10	1.8 x 10 ⁻⁶

Figure 1. Temperature Vs Soil Creep Constant

Harding Lawson Associates

Engineers, Geologists & Geophysicists

ice Flow Law

Pt. Thomson Development Project Winter 1982, Geotechnical Study EXXON Company, U.S.A.

REVISEO DATE 4/82

C. ANALYSIS OF LATERALLY LOADED PILES

ANALYSIS OF LATERALLY LOADED PILES IN PERMAFROST

The behavior of piles subjected to lateral loading may be analyzed by the subgrade-reaction method (Poulos and Davis, 1980). The method is capable of treating non-linear soil behavior, layered soils and non-uniform pile sections, and is readily adaptable to computer solution. In general, the soil response to lateral loads is modeled as a series of unconnected non-linear springs represented by "P-Y curves". The P-Y curves are a representation of the load-deflection characteristics of the soil at a given depth along the pile and depend upon the pile dimesions as well as the stress-strain and strength characteristics of the soil.

P-Y Curves

Procedures for constructing the P-Y curves for various (unfrozen) soil types and loading conditions have been summarized by Reese (1975).

An example of these procedures (for soft, saturated clays) is as follows:

1. The ultimate soil resistances per unit length of pile shaft, P_{ult} , is computed using:

$$P_{ult} = N_p \cdot c_f \cdot d \tag{1}$$

where cf = shear strength

d = pile diameter or width

 N_p = nondimensional ultimate resistance coefficient

No increases from a value of 3 at ground surface to a maximum value of 9 at a depth of several pile diameters; vis.,

$$N_{p} = 3 + \frac{\sigma_{r}}{c_{f}} + J \cdot \frac{\kappa}{J} \tag{2}$$

where σ_{ν} = overburden pressure at depth x

x = depth

J = empirical coefficient (typically, J = 0.5)

The P-Y curve is approximately by a cubic parabola:

$$P = \frac{1}{2} P_{ulf} \left(\frac{Y}{Y_c} \right)^{\frac{1}{3}} \tag{3}$$

where P = soil reaction for lateral pile deflection, y

 Y_C = lateral pile deflection at which P = 1/2 Pult

Note: This procedure is based on the concept that the stressstrain curve for the soil and the P-Y curve for soil reaction on the pile should have similar shapes as illustrated in Figure 1 (Matlock, 1970).

3. Y $_{
m C}$ is approximated by: $-^{
m set}$

$$Y_{c} = 2.5 \in_{C} \cdot d \tag{4}$$

where $\epsilon_c = \text{strain at which } (\sigma_1 - \sigma_3) = 1/2 (\sigma_1 - \sigma_3)_{ult}$

Stress-Strain-Time Behavior of Frozen Soils

The stress-strain behavior of frozen soil depends upon, among other factors, the duration of loading and the soil temperature. For example, when a sample of frozen soil is subjected to a constant uniaxial stress, the sample continues to deform with time. As shown on Figure 2 a typical strain-time (creep) curve for frozen soil may exhibit three stages: (1)

deccelerating, or primary, creep; (2) constant strain-rate, or secondary creep; and (3) accelerating, or tertiary, creep which usually leads rapidly to failure.

Depending upon the type of frozen soil and the applied stress level, any of the three stages of creep may dominate (Figure 2a).

Ladanyi (1978) has suggested that primary creep of frozen soils can be described by the equation:

$$\dot{\epsilon} = b \left(\frac{\dot{\epsilon}_c}{b}\right)^b \left(\frac{\sigma_r - \sigma_3}{\sigma_c}\right)^{r} \cdot t^{(b-1)} \tag{5}$$

in which

 $(\sigma_1 - \sigma_3)$ = applied principle stress difference

t = elapsed time -

 $\sigma_{c} \notin \dot{\epsilon_{c}} = \text{values of } (\sigma_{c} - \sigma_{s}) \text{ and } \dot{\epsilon} \text{ at an arbitrarily selected time}$

n = stress exponent

b = time exponent

 σ_c , ϵ_c , n, b = temperature-dependent material constants

Equation (5) predicts that, in the primary creep stage, a plot of log (£) vs. log (t) will be linear with a slope equal to (b-1).

In secondary creep, the strain-rate is independent of time (b=1 in Equation 5), so that:

$$\dot{\epsilon} = \dot{\epsilon}_{c} \left(\frac{\sigma_{i} - \sigma_{3}}{\sigma_{c}} \right)^{\eta} \qquad \left\{ secondary \ creep \right\} \tag{6}$$

Equations 5 and 6 both predict that a plot of $\log (\mathcal{E})$ vs. $\log (\sigma_{\text{r-r_3}})$ will be linear with a slope equal to \mathbf{n} . However, the value of the stress exponent, \mathbf{n} , may be significantly different in the primary and secondary stages.

The constants in Equations 5 and 6 are temperature-dependent. The temperature effects may be evaluated by performing creep tests at different temperatures or estimated from published data.

Evaluation of Creep Parameters of Design

At the stress levels and load durations normally used in engineering design, it is often assumed that secondary creep dominates (Ladanyi, 1978). However, test durations of two weeks or more may be required to establish secondary creep rates at design stress levels. An alternative approach is to perform relatively short-term (a few hours) creep tests and extrapolate the primary creep behavior to the onset of secondary creep (Figure 3). This requires an estimate of the time at which the transition from primary to secondary creep will occur. If the time for this transition to occur is underestimated, the extrapolated secondary creep rate will be conservative (too fast) and, if overestimated, the secondary creep rate will be unconservative (too slow).

Figure 4 shows the primary creep behavior of a sample which was step-loaded to three different stress levels. Except for the usual experimental data scatter, the $\log\left(\frac{1}{\epsilon}\right)$ vs. $\log\left(\frac{1}{\epsilon}\right)$ relationship appears to be linear as predicted by Equation 5. On the other hand, contrary to Equation 5, the curves are not parallel; i.e., $n \neq constant$. These

diverging curves suggest that n steadily increases through the primary stage to the onset of secondary creep. Thus, the steady-state n value obtained by extrapolation will be dependent upon the time estimated for the onset of secondary creep. In this context, as noted previously, underestimating the transition time from primary to secondary creep will be conservative.

For our laboratory test data, we have estimated the time to onset of secondary creep to be 24 hours. We believe this to be a conservative choice. The extrapolated 24-hour strain rates for several tests at different temperatures are plotted vs. the applied stress on a log-log scale in Figure 5. The slope of the straight lines fitted through the data points for each temperature is equal to the stress exponent, n, in Equation 6. For these data n = 3, which is consistent with published data on ice-rich soils (Morgenstern et.al, 1980). The values of $\dot{\mathcal{E}}_{\mathbf{C}}$ and $\sigma_{\mathbf{C}}$ can also be obtained fromm any convenient point on each line e.g., for 28^{0} F, we could choose, say $\dot{\mathcal{E}}_{\mathbf{C}} = 10^{-6}$ min⁻¹ and $\sigma_{\mathbf{C}}$ = 20 psi.

The effect of temperature can also be deduced from Figure 5. For example, at $\dot{\mathcal{L}} = 2 \times 10^{-4} \text{ min}^{-1}$, the corresponding stress values at 28° , 25° , and 20° are 55 psi, 78 psi and 150 psi respectively. As shown on Figure 6, the relationship between stress and temperature (for a given strain-rate) is essentially linear.

Equation 6 and the laboratory creep test results (examples of which are presented on Figures 4, 5, and 6) form the basis for establishing the P-Y curves for the ice-rich fine-grained permafrost in the upper 7.5 feet of the subsurface profile. The fact that the stress exponent, n, is equal to 3.0 for the laboratory test data is consistent with the use of a cubic parabola to represent the P-Y curves since Equation 6 can be rewritten in the form:

$$\sigma_i - \sigma_3 = \sigma_c \left(\frac{\epsilon}{\dot{\epsilon}_c \cdot t} \right)^{1/n} \tag{7}$$

in which t = any elapsed time (short of failure). In this application
"t" is the duration of loading for the various loading conditions.

To construct the P-Y curves, the soil creep parameters required are the creep shear strength (Equation 1) and the strain corresponding to half of the ultimate creep strength (Equation 4). For a given duration of loading and soil temperature, Equation 7 can be solved for:

$$(\sigma_1 - \sigma_3)_f = 2 c_f = \sigma_c \left(\frac{\epsilon_f}{\dot{\epsilon}_c \cdot t_d}\right)^{1/n}$$
 (8)

in which

$$c_f = 1/2 (\sigma_i - \sigma_3)_f = creep shear strength$$

cf = strain at which the soil fails in creep

 t_d = load duration for a particular design condition

or garAlso, for n = 3,

$$\mathcal{E}_{\ell} = \sqrt{8 + \epsilon_{\ell}}$$
(9)

Consider the following example:

1. Assume T =
$$28^{\circ}$$
F
 \leq_{f} = 0.2
 t_{d} = 24 hours

- 2. From Figure 5, say $\epsilon = 2^{\circ}x^{\circ}10^{-4}$ min⁻¹ $\sigma_z = 55$ psi
- 3. From Equation 8, $C_f = \frac{0.2}{(55)(2 \times 10^{-4} \times 24 \times 60)} = 24.4 \text{ psi}$

*** The following steps depend upon pile diameter and depth***

- 4. Substitue of into Equations 1 and 2 to obtain Pult
- 5. From Equation 9, $\leq_C = 0.025$ Substitute \leq_C into Equation 4 to obtain Y_C
- 6. Construct the P-Y curve using Equation 3

The foregoing procedure was developed specifically for ice-rich fine-grained soils for which laboratory creep data was available. Basically the same procedure was used to develop the P-Y curves for the underlying ice-poor granular soils except that the creep parameters were estimated from published data (Sayles, 1968) due to the lack of suitable samples for laboratory testing. As can be inferred from the P_{ult} - Y_{c} data previously supplied, the ice-poor soils have greater creep strengths and fail at lower strains than the ice-rich soils. Also, the stress exponent, n, was estimated to be 7.5 for the ice-poor soils.

Frozen soils tend to go from ductile behavior at low strain-rates to brittle behavior at high strain-rates. Therefore, $\epsilon_{\rm C}$ for three-minute loadings were taken to be one-half the values used for 24-hour and 20-year loadings.

REFERENCES

- Ladanyi, B. 1978. "Mechanical Properties of Frozen Ground," Geotechnical Engineering for Cold Regions. (Andersland and Anderson, eds.), McGraw-Hill Book Company.
- Matlock, H. 1970. "Correlations for Design of Laterally Loaded Piles in Soft Clay." Proc. 2nd Offshore Tech. Conf., Houston, vol. I: 577-594.
- Morgenstern, N. R., et.al. 1980. "The Behavior of Friction Piles in Ice and Ice-Rich Soils," <u>Canadian Geotechnical Journal</u>, vol. 17, pp. 405-415.
- Poulos, H. G. and Davis, E. H. 1980. <u>Pile Foundation Analysis and Design</u>, John Wiley and Sons.
- Reese, L. C. 1975. "Laterally Loaded Piles." Proc. of the Seminar Series, Design, Construction and Performance of Deep Foundations; Geot. Group and Continuing Education Committee, San Francisco section, ASCE; Univ. of Calif., Berkeley.
- Sayles, F. H. 1968. "Creep of Frozen Sands", U.S. Army Cold Reg. Res. Engl. Lab (CRREL), Report: 190, Hanover, N.H.

. . 2 . 2 . 3

Figure 1. (a) Stress-Strain Curve, (b) P-Y Curve for Same Soil

Figure 2. Constant-stress creep test: (a) creep-curve variations;
(b) basic creep curve; (c) true strain rate vs. time.
(after Ladanyi, 1978)

Figure 3. Extrapolation from Primary to Secondary Creep

Figure 4. Primary creep behavior : Ice-Rich Soils

APPLIED STRESS, psi

Figure 5. Secondary creep rates at 24 hours (extrapolated from primary creep data)

Figure 6. Effect of temperature on creep of Ice-Rich Soils