

WINTER OPTION

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thomso	Sas Cy	oject	Job No.	74-38877		
Subject	Dredging and	sposal	Option	Sheet	1	of	5

ASSUMPTIONS

Schedule

- Prudhoe to Point Thomson sea ice road construction will start November 15th and be completed by January 15. ${ }^{\text {b }}$
- Ice road traffic will be open on February 15.
- Ice road traffic will be closed on April 15.
- Mobilization and demobilization will take approximately 6 days total (144 hours) for North Slope equipment.
- Work will be conducted on a 24 -hour per day schedule.
- Dredging operations will be continuous. Spoils could be temporarily stockpiled; however, continuous hauling is planned.

Equipment

- One backhoe will be used to excavate with an additional backhoe retained for contingency.
- 30-cy dump trucks will be utilized.
- Dump trucks are available on the North Slope. ${ }^{\text {b }}$
- Dump trucks can dispose of their contents without additional equipment within 5 minutes.
- Spoils excavated with a backhoe will gain about 5% volume from entrainment of additional seawater. Reference states that bucket has 100\% efficiency; however, to be conservative, a 5\% increase in volume has been assumed (95% efficiency). ${ }^{e .9}$
- The water/ice above the area to be dredged will be thickened and cut with a ditch witch prior to excavation of the ice with a backhoe. ${ }^{\text {b }}$
- The ditch witch will cut out the area to be dredged in eight passes with 50 ft between each pass; 8,400 linear feet will be cut.
- Calculations do not include time or materials to manipulate dredge spoils after they are deposited on the ice. It is anticipated that grading spoils within the ocean dumping zone will not result in extending the construction schedule.

Ice roads

- Standard ice road width is 35 ft with a maximum posted speed of 35 mph . ${ }^{\text {d }}$
- Ice roads are built at a standard rate of 1 to 2 inches of height per day. Production rates depend primarily on weather conditions and equipment limitations, but a standard assumption is 1 mile/day. ${ }^{\text {b }}$
- The sea ice road distance along the shoreline from Endicott to Point Thompson is approximately 42 miles and will be the primary ice road used for ground transportation. ${ }^{\text {. }}$
- The longest floating sea ice road that can feasibly be constructed is approximately 20 miles, using the maximum number of available pumper trucks (12). ${ }^{\text {b }}$
- Cost for an ice road near the shoreline in shallow water less than 2 ft deep is approximately $\$ 30,000$ per mile. Ice road maintenance costs are approximately $\$ 7,500 /$ day during ocean dredging and disposal activities to keep the road passable and remove snow drifts. ${ }^{\text {b }}$
- Costs for a floating ice road constructed on ocean depths ranging from 2 to 6 ft are approximately $\$ 100,000 /$ mile, while a road constructed on depths greater than 6 ft are $\$ 300,000 /$ mile. Maintenance costs are approximately $\$ 7,500 /$ day. ${ }^{\text {b }}$

Miscellaneous

- Room and board will be provided by the project to the equipment operators.
- Support services, fuel and personnel will be available within the Point Thomson Unit.
- The existing gravel road distance from Deadhorse to Endicott is approximately 20 miles.
- The ice thickness over the dredge site will be approximately 7.5 feet thick. ${ }^{h}$

CALCULATION SHEET
Calc. No.

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thompson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	posal	Option	Sheet	2	of	5

CALCULATIONS

Ice and Dredge Material Quantity

- The area to be dredged is $1,000 \mathrm{ft} \times 400 \times 2 \mathrm{ft}$ and is located in water 7 to 9 ft deep. ${ }^{f}$
- The volume of in situ material to be dredged is $30,000 \mathrm{cy}$.'
- Sea water weighs 0.83 tons/cy (assumed).
- Average fine to medium grained soil weighs 1.5 tons/cy (assumed).

Volume of sediment to be removed in cubic yards:
$(30,000 \mathrm{cy})+10 \%$ additional water for entrainment and efficiency $(3,000 \mathrm{cy})=33,000 \mathrm{cy}$
Volume of ice to be excavated:
$(1,000 \mathrm{ft})(400 \mathrm{ft})(6 \mathrm{ft})=2,400,000 \mathrm{ft}^{3}=88,900 \mathrm{cy}$
Weight of sediment to be removed in tons:
$(30,000 \mathrm{cy})(1.5$ tons $/ \mathrm{cy})+(3,000 \mathrm{cy})(0.83$ tons $/ \mathrm{cy})=47,490$ tons
Weight per volume of sediment:
(47,490 tons) $/(33,000 \mathrm{cy})=1.44$ tons/cy

Excavating Equipment Specifications

2-cy bucket backhoe:

- Available on the North Slope. ${ }^{\text {b }}$
- Production rate is $130 \mathrm{cy} / \mathrm{hr}{ }^{\text {a }}$
- Average cost including two operators (one per $12-\mathrm{hr}$ shift) is $\$ 4,000$ per $24-\mathrm{hr}$ day. ${ }^{\text {b }}$

Ditch witch:

- Available on the North Slope. ${ }^{\text {b }}$
- Production rate is 350 linear $\mathrm{ft} / \mathrm{hr}{ }^{\text {c }}$
- Average cost for a ditch witch including an operator is $\$ 4$ per linear foot. ${ }^{\text {b }}$

Duration to complete excavation of sediment, assuming continuous dredging:
$(33,000 \mathrm{cy}) /(130 \mathrm{cy} / \mathrm{hr})=254 \mathrm{hrs} ;(254 \mathrm{hrs}) /(24 \mathrm{hrs} /$ day $)=11$ days
Duration to complete excavation of ice:
Ditch witch: $(8,400 \mathrm{ft}) /(350 \mathrm{ft} / \mathrm{hr})=24 \mathrm{hrs} ;(24 \mathrm{hrs}) /(24 \mathrm{hrs} /$ day $)=1$ day
Backhoe: $(88,900 \mathrm{cy}) /(130 \mathrm{cy} / \mathrm{hr})=684 \mathrm{hrs} ;(684 \mathrm{hrs}) /(24 \mathrm{hrs} /$ day $)=29$ days

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thompson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	posal	Option	Sheet	3	of	5

Hauling Equipment Specifications

30-cy dump truck:

- Available on the North Slope. ${ }^{\text {b }}$
- Is allowed to travel 35 mph . ${ }^{\text {d }}$
- Average cost for a dump truck including an operator is $\$ 3,500$ per day. ${ }^{\text {b }}$

Number of truck loads required:
($33,000 \mathrm{cy}$)/(30 cy/truck) $=1,100$ truck loads
Time to load dump trucks by backhoe:
($30 \mathrm{cy} / \mathrm{truck}$) $/(130 \mathrm{cy} / \mathrm{hr})=.23 \mathrm{hr} /$ truck (about 14 minutes)

The following costs are a reasonable estimate of the costs associated with basic dredging and hauling operations and are to be used only for comparison between different dredging and hauling options.

ALTERNATIVES

Alternative 1: 2-cy bucket backhoe; Two 30-cy dump trucks; Continuous dredging
Cycle time $=$ (time to load 1 truck) \times (available trucks)
$(.23 \mathrm{hrs} / \mathrm{truck})(2$ trucks $)=.46$ hours
Time available to travel = (cycle time) - (time to load 1 truck) - (time to dump 1 truck)
(. 46 hrs$)-(.23 \mathrm{hrs})-(.08 \mathrm{hrs})=.15$ hours (9 minutes)

Maximum truck travel distance from dredge site $=(($ available travel time $)$ (ruck speed) $) / 2$ (roundtrip) $((.15 \mathrm{hrs})(35 \mathrm{mph})) / 2=\mathbf{2 . 6 3}$ miles
Cost to build ice road $=($ length $) \times($ ice road cost over 6 ft deep $)=(2.63$ miles $) \times(\$ 300,000 / \mathrm{mile})$ = \$789,000
Cost per day $=(2$ backhoes/day $)+(2$ dump trucks/day $)+$ (ice road maintenance/day $)=$
$(\$ 4,000 \times 2)+(\$ 3,500 \times 2)+(\$ 7,500)=\$ 22,500$
Duration of operation $=(\mathrm{mob} /$ demob $)+($ excavation $)=(6$ days $)+(11$ days $)=17$ days
Total cost $=($ cost to build ice road $)+($ cost per day \times duration $)=$
$(\$ 789,000)+(\$ 22,500 \times 17$ days $)=\$ 1,171,500$
Alternative 2: 2-cy bucket backhoe; Three 30-cy dump trucks; Continuous dredging
Cycle time $=$ (time to load 1 truck) \times (available trucks)
$(.23 \mathrm{hrs} / \mathrm{truck})(3$ trucks $)=.69$ hours
Time available to travel = (cycle time) - (time to load 1 truck) - (time to dump 1 truck)
$(.69 \mathrm{hrs})-(.23 \mathrm{hrs})-(.08 \mathrm{hrs})=.38$ hours (23 minutes)
Maximum truck travel distance from dredge site $=(($ available travel time)(truck speed))/2 (roundtrip) $((.38 \mathrm{hrs})(35 \mathrm{mph})) / 2=6.7$ miles
Cost to build ice road $=($ length $) \times$ (ice road cost over 6 ft deep$)=(6.7$ miles $) \times(\$ 300,000 /$ mile $)$

$$
=\$ 2,010,000
$$

Cost per day $=(2$ backhoes/day $)+(3$ dump trucks/day $)+($ ice road maintenance/day $)=$ $(\$ 4,000 \times 2)+(\$ 3,500 \times 3)+(\$ 7,500)=\$ 26,000$
Duration of operation $=(\mathrm{mob} /$ demob $)+($ excavation $)=(6$ days $)+(11$ days $)=17$ days
Total cost $=($ cost to build ice road $)+($ cost per day \times duration $)=$
$(\$ 2,010,000)+(\$ 26,000 \times 17$ days $)=\$ 2,452,000$

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thompson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	posal	Option	Sheet	4	of	5

```
Alternative 3: 2-cy bucket backhoe; Four 30-cy dump trucks; Continuous dredging
    Cycle time = (time to load 1 truck) x (available trucks)
        (.23 hrs/truck)(4 trucks) = . }92\mathrm{ hours
    Time available to travel = (cycle time) - (time to load 1 truck) - (time to dump 1 truck)
        (.92 hrs)-(.23 hrs)-(.08 hrs) = .61 hours (37 minutes)
    Maximum truck travel distance from dredge site = ((available travel time)(truck speed))/2 (roundtrip)
        ((.61 hrs)(35mph))/2=10.7 miles
    Cost to build ice road = (length) }\times\mathrm{ (ice road cost over 6 ft deep) = (10.7 miles) }\times($300,000/mile
        = $3,210,000
    Cost per day = (2 backhoes/day) + (4 dump trucks/day) + (ice road maintenance/day) =
        ($4,000\times2) + ($3,500\times4) + ($7,500) =$29,500
    Duration of operation = (mob/demob) + (excavation) = (6 days) + (11 days) }=17\mathrm{ days
    Total cost = (cost to build ice road) + (cost per day x duration) =
        ($3,210,000) + ($29,500 x 17 days) = $3,711,500
```


Alternative 4: 2-cy bucket backhoe; 4 30-cy dump trucks; Continuous dredging; No floating ice road

Cycle time $=$ (time to load 1 truck) \times (available trucks)
$(.23 \mathrm{hrs} /$ truck $)(4$ trucks $)=.92$ hours
Time available to travel = (cycle time) - (time to load 1 truck) - (time to dump 1 truck) (. 92 hrs$)-(.23 \mathrm{hrs})-(.08 \mathrm{hrs})=.61$ hours (37 minutes)

Maximum truck travel distance from dredge site $=(($ available travel time $)($ truck speed $) / / 2$ (roundtrip) $((.61 \mathrm{hrs})(35 \mathrm{mph})) / 2=10.7$ miles
Cost per day $=(2$ backhoes/day $)+(4$ dump trucks/day $)=$
$(\$ 4,000 \times 2)+(\$ 3,500 \times 4)=\$ 22,000$
Duration of operation $=($ mob $/$ demob $)+($ excavation $)=(6$ days $)+(11$ days $)=17$ days
Total cost $=($ cost per day $)($ duration $)=$
$(\$ 22,000)(17)=\$ 374,000$

CALCULATION SHEET
Calc. No.
Name K. Swanson Date \qquad

	Calc. No.		
Checked	KB	Date	$5 / 30 / 02$

Project Point Thompson Gas Cycling Project
Job No. 74-38877200.00
Subject Dredging and Disposal - Winter Option
5 of

5

FOOTNOTES

References

a. 2001 R.S. Means. Heavy Construction Cost Data. 15th Addition. Construction Publishers and Consultants. 2000.
b. AIC, Anchorage. Phone call from Ms. Kristina Swanson (URS) to Mr. Ken Yokey (AIC) on May 21, 2002.
c. AIC, Anchorage. Phone call from Ms. Kristina Swanson (URS) to Mr. Ken Yokey (AIC) on May 30, 2002.
d. AIC, Deadhorse. Phone call from Ms. Kristina Swanson (URS) to Mr. Jim Workman (AIC) on May 20, 2002.
e. General Construction, Seattle. Phone call from Ms. Kristina Swanson (URS) to Mr. Ron McCray (General) on May 29, 2002.
f. URS, Anchorage. Point Thomson Gas Cycling Project Environmental Report. July 30, 2001.
g. U.S. Army Corps of Engineers. Dredging and Dredged Material Disposal. March 25, 1983.
h. MMS 1996

SUMMER OPTION

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thomson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	sposal	mer Option	Sheet	1	of	4

ASSUMPTIONS

Schedule

- Due to sea ice, Point Barrow is not open for marine traffic until August 1.
- Due to sea ice, marine traffic from West Dock to Point Thomson Unit is not open until July 15 at the earliest and July 25 at the latest.
- Due to fall whaling activities, marine traffic from West Dock to Point Thomson Unit is closed on August 31.
- Sealifts will arrive at Point Thomson on August 10.
- Summer dredging activities and the transportation of Point Thomson modules will happen within the same season.
- Mobilization and demobilization will take approximately 6 days total (144 hours) for North Slope equipment.
- Work will be conducted on a 24 -hour per day schedule.
- Dredging operations will be continuous and spoils will not be stockpiled; therefore, barges have to keep up with dredging.

Equipment

- Due to North Slope availability, no more than 2 self-propelled barges would be available for use at one time. ${ }^{\text {c }}$
- Barges are already equipped to contain dredge spoils and can dump their load without additional equipment within 60 minutes.
- One dredge will be used to excavate and an additional dredge (either backhoes or cutterhead suction dredges) retained contingency.
- Spoils excavated with a backhoe will gain about 5% volume from entrainment of additional seawater. Reference states that bucket has 100% efficiency; however, to be conservative, an additional 5% increase in volume has been assumed (95% efficiency). ${ }^{\text {d.f }}$
- Spoils excavated with a cutter-head suction dredge will gain approximately 650% volume from seawater (approximately 15% efficiency). ${ }^{\text {b, }}$

Miscellaneous

- Room and board will be provided by project to the equipment operators.
- Support services and personnel will be available within the Point Thomson Unit.

Calc. No.

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thomson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	sposal	er Option	Sheet	2	of	4

CALCULATIONS

Dredge Material Quantity

- The area to be dredged is $1,000 \mathrm{ft} \times 400 \times 2 \mathrm{ft}$ and is located in water 7 to 9 ft deep. ${ }^{e}$
- The volume of in situ material to be dredged is $30,000 \mathrm{cy}$. ${ }^{e}$
- Sea water weighs 0.83 tons/cy (assumed).
- Average fine to medium grained soil weighs 1.5 tons/cy (assumed).

Volume of material to be removed in cubic yards:
Cutter-head suction dredge $=(30,000 \mathrm{cy})+650 \%$ entrained sea water $(195,000 \mathrm{cy})=225,000 \mathrm{cy}$ Backhoe $=(30,000 \mathrm{cy})+10 \%$ additional water for entrainment and efficiency $(3,000 \mathrm{cy})=33,000 \mathrm{cy}$

Weight of material to be removed in tons:

Cutter-head suction dredge $=(30,000 \mathrm{cy})(1.5$ tons $/ \mathrm{cy})+(195,000 \mathrm{cy})(0.83$ tons $/ \mathrm{cy})=206,850$ tons Backhoe $=(30,000 \mathrm{cy})(1.5$ tons $/ \mathrm{cy})+(3,000 \mathrm{cy})(0.83$ tons $/ \mathrm{cy})=47,490$ tons

Weight per volume per dredging method:
Cutter-head suction dredge $=(206,850$ tons $) /(225,000 \mathrm{cy})=0.92$ tons/cy Backhoe $=(47,490$ tons $) /(33,000 \mathrm{cy})=1.44$ tons $/ \mathrm{cy}$

Excavating Equipment Specifications

Cutter-head suction dredge:

- Available on the North Slope. ${ }^{\text {b }}$
- Production rate is $65 \mathrm{cy} / \mathrm{hr} .^{\text {b,f }}$
- Average cost including an operator is $\$ 1,000$ per $24-\mathrm{hr}$ day. ${ }^{\text {b }}$

2-cy bucket backhoe:

- Available on the North Slope. ${ }^{\text {D }}$
- Production rate is $130 \mathrm{cy} / \mathrm{hr}$. ${ }^{\text {a }}$
- Average cost including an operator is $\$ 4,000$ per $24-\mathrm{hr}$ day. ${ }^{\text {b }}$

Duration to complete excavation, assuming continuous dredging:
Cutter head suction dredge: $(225,000 \mathrm{cy}) /(65 \mathrm{cy} / \mathrm{hr})=3,462 \mathrm{hrs} ;(3,462 \mathrm{hrs}) /(24 \mathrm{hrs} /$ day $)=144$ days 2 cy bucket backhoe: $(33,000 \mathrm{cy}) /(130 \mathrm{cy} / \mathrm{hr})=254 \mathrm{hrs} ;(254 \mathrm{hrs}) /(24 \mathrm{hrs} /$ day $)=11$ days

Hauling Equipment Specifications

Self-propelled hopper barge:

- Available on the North Slope. ${ }^{\text {c }}$
- Travels at an average speed of $7 \mathrm{mph} .^{\text {c }}$
- Requires approxiately 8 ft of draft water depth to navigate when fully loaded. ${ }^{\text {c }}$
- Can travel 300 miles on one fuel tank. ${ }^{\text {c }}$
- Average capacity of 400 tons. ${ }^{\text {c }}$
- Average cost including an operator is $\$ 15,000$ per $24-\mathrm{hr}$ day. ${ }^{\text {c }}$

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thomson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	posal	er Option	Sheet	3	of	4

Hauling Equipment Specifications Cont'd

Number of barge loads required:

- Self-propelled barge with cutter-head suction dredge $=(206,850$ tons $) /(400$ tons/barge $)=$ 517 barge loads
- Self-propelled barge with 2 cy bucket backhoe $=(47,490$ tons $) /(400$ tons/barge $)=119$ barge loads

Time to load barges:
Self-propelled barge with cutter-head suction dredge $=(65 \mathrm{cy} / \mathrm{hr})(0.92$ tons $/ \mathrm{cy})=60$ tons $/ \mathrm{hr}$; (400 tons/barge) / (60 tons/hr) $=7 \mathrm{hrs} /$ barge
Self-propelled barge with 2 cy bucket backhoe $=(130 \mathrm{cy} / \mathrm{hr})(1.44$ tons $/ \mathrm{cy})=187 \mathrm{tons} / \mathrm{hr}$;
(400 tons/barge) / (187 tons/hr) $=2.1 \mathrm{hrs} /$ barge

The following costs are a reasonable estimate of the costs associated with basic dredging and hauling operations and are to be used only for comparison between different dredging and hauling options.

ALTERNATIVES

Alternative 1: 2 cy bucket backhoe; self-propelled barge; continuous dredging and loading Cycle time $=$ (time to load 1 barge) \times (available barges)
($2.1 \mathrm{hrs} /$ barge $)(2$ barges $)=4.2$ hours
Time available to travel = (cycle time) - (time to load 1 barge) - (time to dump 1 barge)
(4.2 hrs)-(2.2 hrs)-(1 hr) $=1$ hour
Maximum barge travel distance from dredge site $=(($ available travel time $)$ (barge speed) $) / 2$ (roundtrip)
$((1 \mathrm{hr})(7 \mathrm{mph})) / 2=3.5$ miles
Cost per day $=(2$ backhoes/day $)+(2$ barges/day $)=(\$ 4,000 \times 2)+(\$ 15,000 \times 2)=\$ 38,000$
Duration of operation $=($ mob/demob $)+($ excavation $)=(6$ days $)+(11$ days $)=17$ days
Total cost $=($ cost per day $) \times($ duration $)=(\$ 38,000) \times(17$ days $)=\$ 646,000$
Alternative 2: Cutterhead-suction-dredge; self-propelled barge; continuous dredging and loading
Cycle time $=$ (time to load 1 barge) \times (available barges)
(7 hrs/barge)(2 barges) $=14$ hours
Time available to travel = (cycle time) - (time to load 1 barge) - (time to dump 1 barge)
(14 hrs)-(7 hrs)-(1 hr) $=6$ hours
Maximum barge travel distance from dredge site $=(($ available travel time $)($ barge speed $)) / 2$ (roundtrip)
$((6 \mathrm{hrs})(7 \mathrm{mph})) / 2=21$ miles
Cost per day $=(2$ dredges $/$ day $)+(2$ barges/day $)=(\$ 1,000 \times 2)+(\$ 15,000 \times 2)=\$ 32,000$
Duration of operation $=(\mathrm{mob} /$ demob $)+($ excavation $)=(6$ days $)+(144$ days $)=150$ days
Total cost $=($ cost per day $) \times($ duration $)=(\$ 32,000) \times(150$ days $)=\$ 4,800,000$
Alternative 3 : Cutterhead-suction-dredge; side-casting; continuous dredging and loading
Cost per day $=(2$ dredges $/$ day $)=\$ 1,000 \times 2=\$ 2,000$
Duration of operation $=(\mathrm{mob} /$ demob $)+($ excavation $)=(6$ days $)+(144$ days $)=150$ days
Total cost $=($ cost per day $) \times($ duration $)=(\$ 2,000) \times(150$ days $)=\$ 300,000$

Name	K. Swanson	Date	5/30/02	Checked	KB	Date	5/30/02
Project	Point Thomson Gas Cycling Project			Job No.	74-38877200.00		
Subject	Dredging and	sposal	er Option	Sheet	4	of	4

FOOTNOTES

References

a. 2001 R.S. Means. Heavy Construction Cost Data. 15th Addition. Construction Publishers and Consultants. 2000.
b. AIC, Anchorage. Phone call from Ms. Kristina Swanson (URS) to Mr. Ken Yokey (AIC) on May 21, 2002.
c. Agviq Marine, Deadhorse. Phone call from Ms. Kristina Swanson (URS) to T.J. Borden (Agviq) on May 20, 2002.
d. General Construction, Seattle. Phone call from Ms. Kristina Swanson (URS) to Mr. Ron McCray (General) on May 29, 2002.
e. URS, Anchorage. Point Thomson Gas Cycling Project Environmental Report. July 30, 2001.
f. U.S. Army Corps of Engineers. Dredging and Dredged Material Disposal. March 25, 1983.

