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Introduction 

Salmon streams in southeast 
Alaska vary in amount of salmon 
produced per usable area. In 
many cases, the factors that 
limit production in some streams 
are readily discernible: 
overfishing, barriers to fish 
passage (falls, logjams) , 
unfavorable streambed conditions 
(sedimentation, unstable gravel 
beds), excessive gradient, and 
highly variable streamflow. In 
some cases, however, streams 
that appear to have favorable 
conditions for salmon production 
do not support runs in propor- 
tion to their apparent potential. 
Questions then arise: Do 
geomorphic factors regulate 
production of salmon in these 
streams? Are these factors, or 
groups of factors, discernible 
directly as gross watershed 
characteristics, or are they 
more subtly related to local 
variations in the physical, 
chemical, or biological makeup 
of individual streams? Can the 
productivity of a particular 
stream be predicted from simple 
measurements of watershed 
characteristics on aerial 
photographs and topographic 
maps, or is a detailed investi- 
gation of streams and monitoring 
of fish populations necessary? 
Answers to these questions will 
have considerable bearing on 
the management of anadromous 
fisheries as the potential for 
damage from man's activities 
increases and as emphasis 
changes from maintenance of 
natural stocks of salmon to 
increased quality and pro- 
ductivity of watersheds. 

Factor Identification 

Thompson and Hunt (1930) 
stressed the importance of the 
drainage basin as a whole, not 
just the stream, in their 
investigations of the basic 
nature of stream productivity. 
Slack (1955) reinforced this 
concept in his studies of 
stream productivity factors, 
demonstrating that the biolog- 
ical productivity of a stream 
is directly related to the 
physical environment of the 
watershed, which controls 
drainage pattern, flow rates, 
gravel size and shape, channel 
gradient, and general stability 
characteristics. Statistical 
analysis of quantitative 
geomorphic parameters of 
individual watersheds can help 
identify these factors. 

Quantitative geomorphic 
techniques developed by Horton 
(1932, 1945) and Strahler (1952, 
1953, 1954) provide a convenient 
method for obtaining numerical 
data on gross basin character- 
istics, given limited funding 
and difficulty of access and 
sampling of test streams. 
Measurement of physical parame- 
ters based on basin and channel 
geometry, obtainable from aerial 
photographs and topographic maps, 
provides correlation units such 
as drainage size and shape, 
stream density, and pattern, 
number, and length of tribu- 
taries. These in turn provide 
an estimate of stage of water- 
shed development, probable 
basin discharge, extent of 
bedrock control of drainage, 



impact of unstable slopes, and 
extent of channel suitable for 
spawning. Such techniques have 
been used successfully to 
analyze relationships between 
erosion, climate, surface 
properties, and geomorphology 
(Melton 1957, Maxwell 1960, 
Dissmeyer 1967). In 1973, Ziemer 
used quantitative geomorphic 
techniques to relate drainage 
basin and channel configuration 
to changes in production of 
pink salmon on Montague Island, 
Prince William Sound, Alaska, 
after large vertical tectonic 
adjustments resulting from the 
"Good Friday Earthquake" of 
1964. Using five drainage 
system factors, he showed a 
correlation between drainage 
system geometry and freshwater 
production factors for pink 
salmon, with escapement as his 
indicator of production. He 
assumed that (1) the number of 
spawners using a stream is a 
sound measure of fish production 
in that stream, (2) escapement 
counts were consistently made 
from year to year and stream to 
stream, and (3) the impact of 
the fishery was consistent 
between stocks and years. He 
realized the problems involved 
by making these assumptions, 
but he had no other tools 
available. 

Several quantitative methods 
were considered in an attempt to 
assign numbers to various degrees 
of salmon production. Enough 
time could not be spent on each 
stream to obtain even rough 
estimates of the standing crop 
of juveniles, egg or preemergent 
fry densities, or some other 
biological measure of production 
Escapement counts are available 
for most southeast Alaska salmon 
streams for many years back. 
These counts are summarized in 
a set of catalogs that describe 

the physical characteristics 
of streams as well as the 
number of salmon that have 
returned to their spawning 
grounds. (Catalogs can be 
seen at the Alaska Department 
of Fish and Game, Juneau). 
However, salmon escapement 
data are not necessarily a 
reliable index of production 
of a given stream. Escapement 
is only one portion of the 
total run returning to a 
stream--the portion that has 
survived the onslaught of the 
fishery and has successfully 
completed the upstream migration 
to the spawning grounds. In- 
tensity of the fishing effort 
as well as success of fishing 
is not necessarily the same for 
different streams. Consequently, 
the total return (catch plus 
escapement) to two streams may 
be similar. If fishing mor- 
tality, however, has accounted 
for two-thirds of the total 
return to one stream and one- 
third of the total return to 
another stream, escapement 
to the second stream may be 
twice as great. Other factors 
also may produce differential 
survival between stocks of 
fish. The ocean feeding area 
of one population may promote 
better growth and/or survival 
than another. The migration 
routes of one stock may subject 
that run to greater predation 
than the route or timing of 
another run. Aerial and ground 
surveys of escapements are 
often conducted at different 
stages of a given run in dif- 
ferent years, by various 
observers, under different 
light conditions, etc. The 
main point is that escapement 
to a stream, although it may 
help in q u a l i t a t i v e 7 , y  describing 
the general level of production 
ofthe stream,does not necessarily 
indicate the biomass of salmon 



that were or could be produced 
in that stream. A better 
q u a n t i t a t i v e  indication of a 
stream's fish production would 
be the average number of smolts 
(seaward migrant juveniles) 
produced by a known number of 
spawning females over several 
years. Obtaining this type of 
information for many streams 
is costly, time consuming and, 
as a result, generally not done 

For this study, streams 
were categorized as either 
good producers or poor pro- 
ducers of pink and chum salmon. 
These categories were based on 
interviews and correspondence 
with district fishery manage- 
ment biologists throughout 
southeast Alaska and on the 
many years of escapement data 
(aerial and ground surveys by 
several agencies) summarized in 
the stream catalogs. Production 
was not based on escapement 
figures alone. Streams which 
were thought to be fair pro- 
ducers were not selected, so 
that only v e r y  good production 
and v e r y  poor production of 
pink and chum salmon were 
considered. Poor producers 
were further defined as streams 
to which no known causes for 
poor runs could be attributed; 
that is, they were streams 
which were accessible to migra- 
ting fish throughout most of 
their length (not blocked by 
falls, logjams, etc.) , they 
appeared to have sufficient high 
quality water and gravels, they 
were not regularly "robbed" by 
illegal fishing, and they had 
not historically supported good 
pink and chum salmon runs. This 
subjective selection of good 
producers and poor producers may 
be criticized as not being 
statistically valid since the 
streams were not a randomly 
selected sample of all the 

available streams in southeast 
Alaska--one person's idea of 
"good" or "poor" may differ 
greatly from that of the next. 
However, we felt that this 
type of selection was justified 
since we specified only very 
good or very poor streams and 
since this is the type of 
selection process that may be 
necessary for the resource 
manager to use when he does 
not have the time and funds to 
obtain more quantitative 
estimates of production. 

Data Accumu/ation 

A total of 78 watersheds 
were categorized as either 
exceptionally good producers or 
exceptionally poor producers 
based on the preceding criteria. 
These watersheds were scattered 
throughout southeast Alaska. 
They ranged in size from a 
minimum of 5.2 km2 to a maxi- 
mum of 422.2 km2 (fig. 1) ; 22 
were classified as poor and 
56 as good. 

To identify general 
similarities or differences 
between good producers and 
poor producers, we selected 21 
independent variables for inter- 
basin correlation purposes. 
These variables are listed in 
table 1. Of these, 19 were 
continuous--that is, they ap- 
peared at varying levels in 
every basin and could be simply 
measured on aerial photographs 
or 15-minute quadrangle maps. 
The other two were discontinuous; 
they classed each watershed 
according to whether it was 
underlain predominantly by 
igneous bedrock or metasedi- 
mentary bedrock. Of the 19 
continuous variables, 14 (XI-N2; 
X5-X8; X Y ) were llmX16; '18-1 19 



F i g u r e  1.--Map s h o w i n g  l o c a t i o n  of s a m p l e  w a t e r s h e d s .  



Table 1 --List  of quant i ta t ive  geomorphic variables used for 
in terbasin  come Zation purposes 

Area of drainage basin 

Mean valley side slope 

Unit of measurement Symbo 1 

Basin area with slope above 
critical angle (34') 

Variable 

Avalanche index (number of 
avalanches in watershed) 

Drainage density 

Bifurcation ratio 

Total length of channel segments 

Gradient of stream channel 

Length of stream with acceptable 
spawning gradient ( < I 2  percent) 

Obstructions in main channel 

Basin perimeter 

Basin relief 

Channel frequency 

Relative relief 

Compactness coefficient 

Form factor 

Lakes in stream system 

Length ratio 

Basin orientation 

Predominatly sedimentary/ 
metamorphic rock (>SO percent) 

Predominantly igneous rock 
(>SO percent) 

degrees 

percent 

number 

dimensionless 

dimensionless 

km 

degrees 

km 

number 

km 

m 

dimensionless 

dimensionless 

dimensionless 

dimensionless 

number 

dimensionless 

degrees 



standard quantitative geomorphic 
variables that provide a measure 
of basin or channel geometry, 
discharge characteristics, or 
stage of watershed development. 
Five (X3, X4, Xg, X10, X17) 
were developed for this study 
to provide a direct measure of 
basin stability and productivity. 

GOOD 0 
Analysis 

The purposes of the data 
analysis were: (1) to test each 
variable for significance in 
differentiating between good 
producers and poor producers 
and (2) to construct a discrim- 
inant model that would give a 
decisionmaker or researcher the 
opportunity to classify salmon 
streams as either very poor 
producers or v e r y  good producers. 
Analysis dictated a search for a 
"best possible" model (where 
"best" is determined by trade- 
offs between statistical 
accuracy, data collection feasi- 
bility, and model application 
costs) that would provide more 
potential gain than cost to the 
user and that could be applied 
to any watershed for classifying 
it as a good producer or poor 
producer. Figure 2 shows such 
a model. Note that this ap- 
proach requires equal dispersions 
for both groups but does not 
require equal sample sizes 
(Cooley and Lohnes 1971). 

Data analysis was handled 
in four stages. Stage 1 in- 
volved computer-assisted 
evaluation of each explanatory 
variable property. This eval- 
uation required examination of 
sample statistics, histograms, 
scatter diagrams, and correlation 
coefficients for each variable. 
Stage 2 centered on basic linear 
regression analysis of the 21 

F i g u r e  2 .  - -Geometr ic  i n t e r p r e t a t i o n  
o f  d i s c r i m i n a n t  a n a l y s i s  ( a f t e r  
C o o l e y  and Lohnes  1971, used  w i t h  
p e r m i s s i o n )  : f a )  p rob l em  f o r  t w o  
g r o u p s  and t w o  v a r i a t e s  ( x  and y); 
(b) l i n e  I  1 l i n e  I I ;  f c )  e l i p s e  
sets c a l l e d  c e n t o u r s  f o r  c e n t i l e  
c o n t o u r s ;  ( d l  o v e r l a p  o f  g r o u p  
good or poor i s  s m a l l e r  t h a n  f o r  
a n y  o t h e r  set; ( e )  p i c t u r e  o u t e r  
e l i p s e s  a s  i n c l u d i n g  90 p e r c e n t  o f  
e a c h  g roup  and i n n e r  e l i p s e s  7 5  
p e r c e n t  o f  e a c h  g roup .  

independent variables on salmon 
productivity. Stage 3 involved 
development of a family of 
discriminant functions from 
which a subset could be se- 
lected for further evaluation. 
Stage 4 included comparative 
analysis of selected key 
discriminant models. All 
analytical work was accom- 
plished with the aid of special 
data processing facilities and 
software available through 
Oregon State University, 
Corvallis. 



Stage 1 provided familiarity 
with the explanatory va.riablec 
and all relevant interrelation- 
ships. Stage 2 provided a tool 
for evaluating possible model 
structures and behavioral char- 
acteristics. The basic approach 
was a "modified-backstep" regres- 
sion analysis. All explanatory 
variables were regressed on a 
salmon productivity dummy vari- 
able. The least significant 
variables were dropped one at a 
time in each "backstep." At 
each juncture, the t-values of 
previously dropped variables were 
scanned. Any dropped variable 
which had a t-value that climbed 
back to a value of k2.0 was 
reentered into the specified 
model. This approach allows for 
development of more significant 
models than does "stepwise 
regression" (Draper and Smith 
1968). The reason for using 
regression modeling prior to 
using discriminant modeling is 
that a two-class linear, 
discriminant function is alge- 
braically equivalent to a re- 
gression model. Model stability, 
structure, and order of variable 
importance (significance) are 
more easily examined and evaluated 
in a regression model than in a 
discriminant model; for example, 
for presence and impact of 
multicolinearity. 

Stage 2 resulted in several 
significant models and a battery 
of test results that examined 
the reliability of six model 
assumptions (Kmenta 1971): 
(1) Error term is normally 
distributed, ( 2 1  expected value 
of the error term is zero, (3) 
variance of the error term is a 
constant, (4) error terms are 
not correlated in time and/or 
space, (5) each explanatory 
variable is nonstochastic, and 
(6) no explanatory variable has 
an exact linear relationship 

with any other explanatory 
variable. Examination of 
histograms and selected scatter 
diagrams of the residuals as 
well as of covariance matrices 
and correlation matrices did 
not indicate that any of these 
assumptions was violated signif- 
icantly for the models 
considered (Draper and Smith 
1968, Kmenta 1971). 

Stage 3 produced a variety 
of discriminant models for later 
evaluation. The approach used 
in forming these models was the 
"modified-backstep" procedure 
that simply began with a fully 
specified model (all 21 explan- 
atory variables) and dropped 
variables, one by one, in the 
same order as determined for 
the regression modeling proce- 
dure. For practical purposes, 
the largest model considered 
was a 12-variable model which 
included all explanatory 
variables with regression 

1/ values so that : -1.0 : t >+1.0.- 
The smallest model considered 
was a 5-variable model with 
values for all inclusive 
variables: -2.0 ;t >+2.0. In 
all models consiaered, each 
discriminant function produced 
means of the good groups and 
poor groups that were signifi- 
cantly different at the a = 
0.025 level. Blodels with 8 
or fewer variables produced 
significantly different means 
at the a = 0.01 level (largest 
characteristic root test, 
Morrison 1 9 6 : ) .  

L' N o t e :  F o r  t h e  t - t e s t  f o r  
sample s i z e s  o f  n = 2 0 ,  a n y t h i n g  a t  
o r  n e a r  2 . 0 0  i s  s i g n i f i c a n t  a t  a = 
0 . 0 5 .  K i t h  n - 7 8 ,  t h e  t 2 . 0 0  i s  
s i g n i f i c a n t  a t  CI = 0 . 0 2 5 ,  \ h e l e a s  
t h e  a = 0 . 0 5  h j s  a t - v a l u e  = 1 . 6 7  
a n d  t h e  a = 0 . 1 0  o n e  1 . 2 9  
( H r o v i i l c c  1 9 6 5 )  . 



Stage 4 was the most 
thorough and rewarding stage. 
Three key models were identified 
immediately for detailed com- 
parative analysis. They were: 
5-, 8-, and 12-variable models 
with the general characteristics 
shown in table 2. 

Any process providing for 
final model selection 1s neces- 
sarily arbitrary and subjective. 
Because the explanatory vari- 
ables had inclusive t-values 
near the a = 0.05 level and 
the function discriminated 
between good and poor means at 
the a = 0.01 level, the eight- 
variable model was chosen for 
reporting analysis. The extra 
costs of collecting data and 
manipulating a larger equation 
were also considered part of 
the trade-off in model selection 
We accepted a middle ground 
between data costs and 
statistical accuracy. 

The selected 8-variable 
discriminant function is: 

For discussion purposes, let 
fl (x) = y1 express functional 
output for the poor group and 
f2(x) = y2 for the good group. 
Figure 3 underscores the 
generalized multivariate 
normality (multinormal) con- 
cept assumed related to this 
application of the discriminant 
analysis; it illustrates a 
tailored version of the dis- 
crimination provided by this 
model between the good groups 
and poor groups. 

Explanatory 
variables 

mode 2 characteristics 

Significant delineating 
characteristics (s) 

Means significant @ a = 0.01 
All inclusive t-values: 
-2.0 >t >+2.0 - - 

Means significant @ a = 0.01 
All inclusive t-values: 
-1.5 >t >+2.0 - - 

Means significant @ a = 0.025 
All inclusive t-values: 
-1.0 >t >+1.0 - - 

U Smaller models were not considered due to very high degree of 
significance of removing variables beyond the five listed. 

S 



Normalized Dishibutdn hbrmolized Datribution 

I I 
I 

"2 "1 

y, significantly different from 5 (a the a =O.Ol level 

F i g u r e  3.--Normalized d i s t r i b u t i o n s  
o f  good and poor  w a t e r s h e d s  for 
e i q h t - v a r i a b l e  d i s c r i m i n a n t  m o d e l .  

Application 

The next step was devel- 
opment, application, and 
evaluation of classification 
rules. All classification 
rules depend directly on any 
"a priori" probability infor- 
mation on occurrence of both 
groups yl and y2. One approach 
is to assume no such knowledge 
exists, hence probability (PI) 
of y1 is equal to probability 
(P2) of y2. And, because P1 + 

P2 = 1.0, both Pi and P2 are 
equal to 0.50. A second ap- 
proach is to assume the 
available relative frequencies 
approximate the P1 levels. 
Hence: P = 22/78 = 0.30 and 
P Z  = 56/$8 = 0.70. The prob- 
lem with the second approach 
is that it assumes that the 
sampling techniques were truly 
random. When sampling is not 
random, relative frequencies 
are not used to approximate 
the PI "a priori" probabilities 
(Morrison 1967, Cooley and 
Lohnes 1971). For this problem, 
because of the state of the 
existing data base (highly 

local and ease of access 
oriented) and the constraints 
of accepting only truly poor 
or truly good producing streams, 
the technique was not random. 
This in no way affects any of 
the analytical procedures for 
discriminant functions 
(Morrison 1967); however, it 
precludes the use of relative 
frequencies as "a priori" 
probabilities. For classi- 
fication analysis, P1 = P2 = 
0.50 was the "a priori" 
estimate used. If and when 
future research indicates 
different levels of P1 and P2, 
such modifications can be 
entered in the analysis. The 
appendix illustrates just 
how P and P2 enter into the 
calcuiation of the posterior 
probabilities that dictate 
classification. 

In general, where Plyl) 
and P(y2) represent posterior 
probabilities of yl and y2, 
a classification rule is: 

When L1,2P(~21'L2¶1P(~l) 9 

classify as y2; otherwise as 

YA . Here, L2,1 represents 
t e expected loss for mis- 
classifying a poor (yl) as 
a g o ~ d  (y2) , and L1, 2 the 
expected loss for misclassifying 
a good (y2) as a poor (yl). The 
equal sign is relevant and can 
classify the function value as 
either a good producer or a poor 
producer. When L1 2 = L2,1, 
this reduces to: tlassify as 
y2  when P(y2) L P(yl) ; other- 
wise as yl. For analysis 
purposes, we assumed L1,2 = L2,1, 
and when PI = P2 then LlY2P1= 
L2,lPz. This simplifies the 
decision rule (Morrison 1967): 
When f (x )  2 Ym, classify as yl; 
otherwise as y Refer to 
figure 4 for tzis rule (Rule I). 
Application of Rule I to the 78 
watersheds in the study yielded 
the results shown in table 3. 



I A modification to Rule I 

Figure 4 .  --Classification Rule I. 

provides for selecting a band 
bracketing either side of ym 
so that any f(x) values fal- 
ling within the band are not 
classified. Figure 5 illus- 
trates this concept. 

Application of Rule I1  to 
the 78 watersheds, where the 
lower limit (ER) is 0.05, the 
upper limit (EU) is 0.09, and 
Ym is 0 . 0 7 ,  yielded the results 

Table 3 --CZassification of 78 watershed by Rule I 

Good 

Poor 

Classified by 
discriminant function 

and Rule I 

Number of watersheds 

41 5 4 6 

15 17 3 2 

Total 5 6 2 2 7  8 

Preanalysis classification 

Here, 20 out of 78 water- 
sheds were misclassified, abou 
26 percent. If L z , ~ ,  L1 2, Pi 
and P 2  are different from 
assumed levels, this would be 
altered by applying the tech- 
niques shown in the appendix. 
Under assumptions used here, 
application of the selected 
discriminant function yields 
much better results than 
assumptions of 50-50 possi- 
h i l i t i c s  ( e . g . ,  "a p r i o r i "  
probability = 0.50). 

Good 

Figure 5.--Classification Rule II. 

Poor Total 



shown in table 4; where 13 
watersheds out of 78 are mis- 
classified (about 17 percent). 
Also, 13 watersheds out of 78 
are not classified; so of the 
65 classified, Rule I1 
misclassifies 13 watersheds 
or 20 percent. 

Actually, Rule I mis- 
classifies 5 out of 22 poor 

(23 percent) ; Rule 11, 2 out 
of 18 (11 percent). Rule I 
misclassifies 15 out of 56 
good (27 percent); Rule 11, 11 
out of 47 (23 percent). Rule 
I1  is better than Rule I if we 
assume that the decisionmaker 
does not wish to classify the 
f(x) values clustered closely 
about ym. Tables 5 and 6 
illustrate the percentages of 

Number of watersheds 

Table 4 - -CZassification o f  7 8  watersheds by &rZe II 

Good 

Neutral 

Poor 

Classified by 
discriminant function 

and Rule I1 

Total 56 2 2 7 8 

Table 5 - - GeneraZized appZication o f  Rule I by  percentages 

Preanalysis classification 

Good 7 7 2 3 

Total Good 

Classification by 
normalized curves 

Poor 2 3 7 7 

Poor 

Total 10 0 10 0 

Posterior percentage of total group 

Tab 1 e 4 - - Generalized appZicati.on of Rule II by pcrcsntagec 

Good Poor 

Good 

Neutral 

Poor 

Classification by 
normalized curves 

Total 100 100 

Posterior percentage of total group 

~ o o d  1 Poor 



the normalized curves for 
Rules I and I1 that generally 
fall into the categories 
specified. 

Discussion 

The results of the data 
analysis provide us with a 
linear equation yielding at 
least a qualitative estimate 
of productivity of pink and 
chum salmon for southeast 
Alaska watersheds. The method 
is simple, flexl~le, much more 
accurate than assuming 50-50 
probabilities, and responsive 
to the demands of the decision- 
maker. The land manager is 
provided with an analytical 
tool that can be used in 
solving land use problems. 
For example, a decisionmaker 
faced with a problem of al- 
locating funds for protection 
or improvement of pink and 
chum salmon streams could use 
the discriminant function to 
classify very poor watersheds 
and very good watersheds. Then, 
based on managerial priorities 
for protection or enhancement 
of pink and chum salmon habitat 
commensurate with other resource 
values, he could determine ap- 
propriate allocation of funds. 

Additional areas of mana- 
gerial application involve land 
use decisions which may have an 
impact on salmon production. A 
land manager would benefit from 
knowing which watersheds are 
good producers of pink and chum 
salmon and which are poor pro- 
ducers. He could then take 
steps to minimize impact in 
w a t e r s h e d s  w i t h  h i g h  production. 

For the scientist and 
researcher, this tool provides 
a direct means of choosing an 
exceptionally good or an 
exceptionally poor salmon- 
producing watershed for more 
refined analysis of factors 
affecting productivity. It can 
direct the researcher to water- 
sheds that have a higher prob- 
ability of defining variables 
most likely to influence the 
level of pink and chum salmon 
production. 

The important point is 
that, in general, the discrimi- 
nant function develoved from 
this research is a flexible 
tool that has potential dual 
utility: in land management 
decisions, a classification 
into poor or good categories 
aids the decisionmaking proc- 
ess; in research applications. 
it assists in detailed varlable 
cause and effect analysis. 
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Appendix 

Posterior Probabilities and Classification Comments 

A. Posterior probabilities: For this study two simplifi- 
cations were made: 

Two basic equations are 
solved simultaneously to obtain 1. For the 8-variable 
posterior probabilities: model discriminant function, 

2 - 2 a. o1 - s12 and u2 = s 2 
2 " 

2. P(yi) = CbPifi(y); i = 1,2. s represents significant 
delineating characteristics 

Where: y is the value of the (see table 2). 
discriminant function for a 
watershed; b . s12 = 0.0112 and sZ2 = 0.0139. 

P(y ) is the posterior proba- 
bility of the value y 
being classified in 
the poor group. 

P(y ) is the posterior proba- 
bility of the value y 
being classified in 
the good group. 

'i is the "a priori" 
probability for the 
respective poor (PI) 
and good (P2) groups. 

is a constant to be 
Cb determined. 

fi (y) is the value of the 
function on v: 

TI is the value 3.1416. 

u - 
1 

is the standard devi- 
ation of group i 
discriminant values. 

Y i is the mean of group i 
discriminant values. 

e is natural log base e; 
value of 2.7183. 

2 2 C. Assume u12 = u2 = u and use: 

m and n represent re- 
spective sample sizes for 
groups 1 and 2. 

2 2 .  2 d. s = 0.013; where s = u . 
e. Hence, u12=u2 2 = s  2 

(Wetherill 1967). 

2. The "a priori" proba- 
bilities are assumed equal: 

This allows reduction of the 
fi(y) function to only its 
variable portion: ?. m 

Here, I will always be 

J271 a 
i 

constant; therefore, it is 
included as part of the to-be- 
determined constant: 



1 c =- C,,, and C = l/[cfi(y)l. B. Classification comments: 
JZ-TT a. 

1 Classification into good 
The posterior probabilities can and poor groups cannot rely alone 
be calculated now using this on values of the discriminant 
information. For: function and respective posterior 

- 
yl = 0.1520 (mean poor group) . probabilities. The basic guide- 

line is : L2.,1 P(yl) ( L1,2 P(y2). 
- Here L2,1 1 s  the cost of mis- 
Y2 = -0.0120 (mean good group) . classifying a poor group as good; 

and L1,2, the cost of misclassi- 
o2 = s2 = 0.0130. fying a good group as poor. When 

For: f(x) = -0.002787~~ - 0.602159~~ this inequality holds, classify 

-0.019247~~ - 0.029875~~ + 0.002146~~ 
the value for y as a member of 
the good group; otherwise as a 

+ 0.000332~~~ - 0.023515~~~ + 0.000660x19 member of-the- poor group. For 
L2,1 = L1,2 the analyst can use 
just the posterior probabilities: 
P(yl) - 2  P(y2) implies classi- 
ficatlon as good, otherwise as When the "a priori" probabilities 

can be determined to be something - other than equal (e.g., P1 = P2 - 
0.50), the calculation of pos- 
terior probabilities is still 
straightforward. The analyst 
simply uses a value other than 
0.50 in P(yi) = CPifi (x) for 
the Pi term. The theory and 
analysis remain unaltered. 

poor. 

The important point here 
is that the decisionaaker or 
researcher (user of analysis 
results) must determine his costs 
of wrong classification before 
the method can be applied. 
Exact costs need not be deter- 
mined. Simple cost ratios (R) 
will suffice: L2 1/L1,2 = R2 1/R1,2. 

use RZJP(Y~J I R~,~P(Y~J as 
the guide 1 lne . 
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