

BEFORE THE FEDERAL ENERGY REGULATORY COMMISSION APPLICATION FOR LICENSE FOR MAJOR PROJECT

SUSITNA HYDROELECTRIC PROJECT

VOLUME 68

EXHIBIT E Chapter 3 (Figures) FEBRUARY 1983

Prepared by:

ALASKA POWER AUTHORITY

ARLIS ANCHURAGE, ALASKA Est, 1997 BEFORE THE FEDERAL ENERGY REGULATO APPLICATION FOR LICENSE FOR SUSITNA HYDROELECT	DRY COMMISSION	
ESC, 1997 BEFORE THE FEDERAL ENERGY REGULATO APPLICATION FOR LICENSE FOR	DRY COMMISSION	
FEDERAL ENERGY REGULATO	DRY COMMISSION	
	R MAJOR PROJECT	
SUSITNA HYDROELECT		
	RIC PROJECT	
VOLUME 61	В	
	EXHIBIT E	
	Chapter 3	
	(Figures) FEBRUARY 1983	
Prepared by:	ARLIS Alaska Resources	
The second se	Library & Information Services Ancl	
ALASKA POWER		

Ø

Î

1

SUSITNA HYDROELECTRIC PROJECT

VOLUME 6B

EXHIBIT E CHAPTER 3

FISH, BOTANICAL, AND WILDLIFE RESOURCES

TABLE OF CONTENTS

t

																										Page
LIST	0F	TABLES	•	•	•		•	•	•			•	•	•	•	•		•			•	×	•			i
LIST	0F	FIGURES		•	•	•		•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	xvi

This Volume contains the tables and figures for Chapter 3.

- E.3.1 Mitigation Options Analysis Structure Recommended by Susitna Hydroelectric Project, Alaska Department of Fish and Game and the U.S. Fish and Wildlife Service
- E.3.2 Common and Scientific Names of Fish Species Recorded from the Susitna Basin
- E.3.3 Commercial Catch of Upper Cook Inlet Salmon in Numbers of Fish by Species, 1954-1982
- E.3.4 Commercial Catch of Lower Cook Inlet Salmon in Number of Fish By Species, 1954-1982
- E.3.5 Side-Scan Sonar Counts of Salmon Migrating Past Yentna Station, and Peterson Population Estimates and Corresponding 95% Confidence Intervals of Salmon Migrating to Sunshine, Talkeetna and Curry Stations, 1981-1982
- E.3.6 Susitna Basin Sport Fish Harvest and Effort by Fishery and Species - 1978, 1979, 1980, 1981
- E.3.7 Chinook Salmon Escapement Counts of Susitna River Basin Streams from 1976 to 1982, Adult Anadromous Investigations, Susitna Hydro Studies, 1982
- E.3.8 1982 Chinook Salmon Escapement Surveys of Susitna River Basin Streams Adult Anadromous Investigations, Susitna Hydro Studies, 1982
- E.3.9 Preliminary Results of 1982 Smolt Trap Catches at Talkeetna Station
- E.3.10 Adult Salmon Migration Rates (in miles per day)
- E.3.11 Analysis of Sockeye Salmon Age Data by Percent From Escapement Samples Collected at Susitna, Yentna, Sunshine, Talkeetna and Curry Stations, Adult Anadromous Investigations, Susitna Hydro Studies, 1981
- E.3.12 Estimated Number of Slough Spawning Sockeye, Chum and Pink Salmon in Sloughs Between Devil Canyon and Talkeetna, 1981 to 1982

i

- E.3.13 Mainstem Susitna River Salmon Spawning Locations Identified in 1981-1982
- E.3.14 Coho Salmon Juveniles, Percent Incident at Habitat Location Sites on the Mainstem Susitna River and Its Tributary Mouths Between Cook Inlet and Devil Canyon - November 1980 to May 1981
- E.3.15 Coho Salmon Juveniles, Percent Incident at Habitat Location Sites on the Mainstem Susitna River and Its Tributary Mouths Between Cook Inlet and Talkeetna - June to September 1981
- E.3.16 Arctic Grayling Hook and Line Total Catch by Tributary Between the Mouth and Proposed Impoundment Elevations (PIE) and Mouth in the Impoundment Study Area - 1981
- E.3.17 Arctic Grayling Population Estimates for the Reach of Major Tributaries in the Watana and Devil Canyon Impoundment Areas
- E.3.18 Peterson Population Estimate for Arctic Grayling by Age Group in the Watana Impoundment Area, Summer 1982
- E.3.19 Streams Crossed by Denali Highway (Cantwell to Watana Access Junction)
- E.3.20 Streams to be Crossed by Watana Access Road (Denali Highway to Watana Dam)
- E.3.21 Streams to be Crossed by Devil Canyon Access Road and Transmission Line Between Watana and Devil Canyon, and Railroad Spur from Gold Creek to Devil Canyon
- E.3.22 Waterbodies to be Crossed by the Susitna Transmission Line (Anchorage to Willow)
- E.3.23 Waterbodies to be Crossed by the Susitna Transmission Line (Healy to Fairbanks)
- E.3.24 Effects of Surfacing and Earthwork on Physical and Chemical Characteristics of Aquatic Habitat
- E.3.25 Increase in Water Surface Elevation During Initial Fill of Watana Reservoir

- E.3.26 Comparison of Average Monthly Streamflows at Gold Creek During Initial Filling of Watana Reservoir
- E.3.27 Major Impact Issues During Filling of Watana Reservoir Regarding Salmonids in the Talkeetna-to-Devil Canyon Reach
- E.3.28 Major Tributaries to be Inundated
- E.3.29 Comparison of Average Monthly Streamflows at Sunshine During Initial Filling of Watana Reservoir
- E.3.30 Comparison of Average Monthly Streamflows at Susitna Station During Initial Filling of Watana Reservoir
- E.3.31 Major Impact Issues During Operation of Watana Reservoir Regarding Salmonids in the Talkeetna-to-Devil Canyon Reach
- E.3.32 Comparison of Average Monthly Streamflows at Gold Creek Station Under Operation of Watana Dam
- E.3.33 Comparison of Average Monthly Streamflows at Sunshine Station Under Operation of Watana Dam
- E.3.34 Comparison of Average Monthly Streamflows at Susitna Station Under Operation of Watana Dam
- E.3.35 Comparison of Average Monthly Streamflows at Gold Creek of the Two Operational Watana and Devil Canyon Dams
- E.3.36 Comparison of Average Monthly Streamflows at Sunshine of the Two Operational Watana and Devil Canyon Dams
- E.3.37 Comparison of Average Monthly Streamflows at Susitna of the Two Operational Watana and Devil Canyon Dams

- E.3.38 Impact Issues and Proposed Mitigation Features for Anticipated Filling and Operational Impacts to Aquatic Habitats Susitna Hydroelectric Project
- E.3.39 Proposed Fisheries Mitigations with Estimated Capital and Annual Operating and Maintenance Costs
- E.3.40 Schedule for Implementing Fisheries Mitigation Program
- E.3.41 Construction Costs for Water Quality and Fisheries Monitoring in 1982 Dollars from 1985 to 2002
- E.3.42 Alaska Department of Fish and Game Standards for Passing Arctic Grayling to be Used on Susitna Hydroelectric Project Stream Crossings
- E.3.43 Alaska Department of Fish and Game Temporary Stream Diversion Standards
- E.3.44 Alaska Department of Fish and Game Standards for Blasting Near an Anadromous Fish Stream
- E.3.45 Cost Assumptions Used in Developing Estimated Costs for Fisheries Mitigation
- E.3.46 Estimated Square Feet of Salmon Spawning Habitat Made Available by Mitigation Procedures
- E.3.47 Annual Operating Costs of Fisheries Monitoring Program in 1982 Dollars
- E.3.48 Vascular Plant Species in the Watana and Gold Creek Watersheds and Downstream Floodplain Which Are Outside Their Range
- E.3.49 Candidate Endangered and Threatened Plant Taxa Sought in the Watana and Gold Creek Watershed Surveys with Notes on Their Habitats and Known Localities
- E.3.50 Vegetation Types (and sample location numbers) Sampled in Watana and Gold Creek Watersheds

- E.3.51 Hectares and Percentage of Total Area Covered by Vegetation Types in the Watana and Gold Creek Watersheds
- E.3.52 Hectares and Percentage of Total Area Covered by Vegetation Types for the Area 16 km on Either Side of the Susitna River From Gold Creek to the MacLaren River
- E.3.53 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open Conifer Vegetation Type in Watana and Gold Creek Watersheds
- E.3.54 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open White Spruce Vegetation Type in Watana and Gold Creek Watersheds
- E.3.55 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open Black Spruce Vegetation Type in Watana and Gold Creek Watersheds
- E.3.56 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Woodland Conifer Vegetation Type in Watana and Gold Creek Watersheds
- E.3.57 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Balsam Poplar Forest Vegetation Type in Watana and Gold Creek Watersheds
- E.3.58 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Birch Deciduous Forest Vegetation Type in Watana and Gold Creek Watersheds
- E.3.59 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Aspen Deciduous Vegetation Type in Watana and Gold Creek Watersheds
- E.3.60 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open Mixed Conifer-Deciduous Forest Vegetation Type in Watana and Gold Creek Watersheds

۷

- E.3.61 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Mixed Conifer-Deciduous Forest Vegetation Type in Watana and Gold Creek
- E.3.62 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Wet Sedge-Grass Tundra Vegetation Type in Watana and Gold Creek Watersheds
- E.3.63 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Mesic Sedge-Grass Tundra Vegetation Type in Watana and Gold Creek Watersheds
- E.3.64 Plant Species List of One Herbaceous Alpine Tundra Stand in Watana and Gold Creek Watersheds
- E.3.65 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Mat and Cushion Tundra Vegetation Type in Watana and Gold Creek Watersheds
- E.3.66 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Tall Alder Vegetation Type in Watana and Gold Creek Watersheds
- E.3.67 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open Tall Alder Vegetation Type in Watana and Gold Creek Watersheds
- E.3.68 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Closed Low Shrub Vegetation Type in Watana and Gold Creek Watersheds
- E.3.69 Cover Percentages for Total Vegetation, Vertical Strata, and Plant Species in Open Low Shrub Vegetation Type in Watana and Gold Creek Watersheds
- E.3.70 Aquatic Plant Survey, Susitna Hydroelectric Project, August 1980

- E.3.71 Hectares and Percentage of Total Area Covered by Vegetative Community Types in the Watana Watershed
- E.3.72 Hectares and Percentage of Total Area Covered by Vegetative Community Types in the Gold Creek Watershed
- E.3.73 Percent Cover in Early Successional Stands on Downstream Foodplain of Susitna River
- E.3.74 Percent Cover in Alder Stands on Downstream Floodplain of Susitna River
- E.3.75 Percent Cover in Immature Balsam Poplar Stands on Downstream Floodplain
- E.3.76 Percent Cover in Birch-Spruce Stands on Downstream Floodplain, Summer 1981
- E.3.77 Hectares and Percent of Total Area Covered By Vegetation Types Within the Healy To Fairbanks Study Corridor
- E.3.78 Hectares and Percent of Total Area Covered by Vegetation Types Within the Willow To Cook Inlet Study Corridor
- E.3.79 Areas of Different Vegetation Types To Be Crossed by Willow-To-Healy Transmission Corridor
- E.3.80 Areas of Each Vegetation Type to Be Crossed by Watana-To-Gold Creek Transmission Corridors and Percent Total for Watana and Gold Creek Watersheds
- E.3.81 Vegetation and Wetland Classes Found in the Proposed Susitna Impoundment and Borrow Areas
- E.3.82 Hectares of Different Wetland Types by Project Component
- E.3.83 Hectares of Different Vegetation Types to be Affected by the Watana Facility Compared with Total Hectares of That Type Upstream of Gold Creek in the Susitna Watershed and in the Area Within 16 km of the Susitna River

- E.3.84 Hectares of Different Vegetation Types to be Affected by the Devil Canyon Facility Compared With Total Hectares of That Type in the Watana and Gold Creek Watersheds and in the Area Within 16 km of the Susitna River
- E.3.85 Areas of Each Vegetation Type to be Cleared for Access and Percent Total for Watana and Gold Creek Watersheds
- E.3.86 Areas of Different Vegetation Types to be Crossed by Transmission Corridors
- E.3.87 Comparison Between Aerial Habitat Classifications and Those of Viereck and Dyrness (1980) Used to Classify Observations of Radio-Collared Moose in the Nelchina and Susitna River Basins of South-Central Alaska from 1977 Through Mid-August
- E.3.88 Monthly Use of Habitat Types by Radio-Collared Moose of Both Sexes and All Ages as Determined From Fixed-Wing Aircraft from October 1976 Through Mid-August 1981 in the Middle and Upper Susitna and Nelchina River Basins
- E.3.89 Summary of Elevational Use by Approximately 200 Radio Collared Moose (Both Sexes and All Age Classes) From October 1976 Through Mid-August 1981 in the Middle and Upper Susitna and Nelchina River
- E.3.90 Occurrence and Mean Percent of Canopy Coverage for Species of Riparian and Non-Riparian Vegetation and Habitat Types Observed at Relocation Sites for 6 Male Moose Captured and Radio-Collared Along the Susitna River South of Talkeetna, Alaska, and Monitored During Calving, Summer, Breeding, and Transitional Periods from March 16 to October 15, 1981
- E.3.91 Occurrence and Mean Percent of Canopy Coverage for Species of Riparian and Non-Riparian Vegetation and Habitat Types Observed at Relocation Sites for 19 Female Moose Captured and Radio-Collared Along the Susitna River South of Talkeetna, Alaska, and Monitored During Calving, Summer, Breeding, and Transitional Periods from March 16 to October 15, 1981
- E.3.92 Winter Carrying Capacity of the Watana Impoundment Zone (Including Adjacent Project Facilities) and Susitna Watershed Upstream of Gold Creek for Moose Based on the Biomass of Twigs Available in Winter

- E.3.93 Dates Indicating Chronology of Departure From Susitna River Wintering Areas for Male and Female Moose Radio-Collared on the Susitna River Downstream From Talkeetna, March 10-12, 1981
- E.3.94 Minimum, Maximum and Mean Distance to the Susitna River from Geometrical Centers of the Calving Range, Summer Range, and Breeding Range for Male and Female Moose Radio-Collared in Several Locations Along the Susitna River Between Devil Canyon and the Delta Islands, Alaska 1980-81
- E.3.95 Proximity to the Susitna River of Relocations of 9 Male and 29 Female Moose Radio-Collared Along The Susitna River Between Devil Canyon and the Delta Islands, Alaska, 1980-81
- E.3.96 Summary of Moose Sex and Age Composition Data Collected Annually in Count Area 6 in Game Management Unit 13 of Southcentral Alaska
- E.3.97 Summary of Moose Sex and Age Composition Data Collected Annually in Count Area 7 in Game Management Unit 13 of Southcentral Alaska
- E.3.98 Summary of Moose Sex and Age Composition Data Collected Annually in Count Area 14 in Game Management Unit 13 of Southcentral Alaska
- E.3.99 Summary of Moose Census Data and Subsequent Population Estimates for Count Areas 7 and 14 Derived from Surveys Conducted Along the Susitna River From November 5 through November 8, 1980
- E.3.100 Density (Moose/km of River) Of Moose Observed on 10 Aerial Censuses in 4 Zones of Riparian Habitat Along the Susitna River from Devil Canyon to Cook Inlet, Alaska, 1981-82
- E.3.101 Summary of Moose Sex and Age Composition Data Obtained During Surveys of Riparian Communities Along the Lower Susitna River
- E.3.102 Proportion of Radio-Collared Caribou Sightings In Each Vegetation Type

- E.3.103 Nelchina Caribou Herd Population Estimates
- E.3.104 Reported Hunter Harvest of the Nelchina Caribou Herd, 1972-1981
- E.3.105 Compilation of Highest Yearly Counts Completed in Watana Hills Sheep Trend Count Area
- E.3.106 Number and Age-Sex Classification of Sheep Observed at Jay Creek Mineral Licks From May 6 Through June 24, 1981
- E.3.107 Number of Aerial Brown Bear Observations By Month in Each of 5 Major Habitat Categories
- E.3.108 Comparison of Reported Home Range Sizes of Brown/Grizzly Bears in North America
- E.3.109 Densities of Selected North American Brown Bear Populations
- E.3.110 Averge Age and Sex Ratios of Brown Bear Populations in the Middle and Upper Susitna and Nelchina River Basins
- E.3.111 Litter Sizes of Various North American Brown Bear Populations
- E.3.112 Reproductive Rates of North American Brown Bear Populations
- E.3.113 Summary of Brown Bear Harvest from Alaska's Game Management Unit 13, 1973-1980
- E.3.114 Nmber of Aerial Black Bear Observations by Month in Each of 5 Habitat Categories
- E.3.115 Summary of Reported Black Bear Harvests From Alaska's Game Management Unit 13, 1973-1980
- E.3.116 Comparisons of Food Remains in Wolf Scats Collected At Den and Rendezvous Sites in 1980 and 1981 from the Eastern Susitna Basin and Adjacent Areas
- E.3.117 Estimate of Numbers of Wolves by Individual Pack Inhabiting the Susitna Hydroelectric Study Area in Spring and Fall 1980 and 1981

х

- E.3.118 Number of Sample Units Containing Indicated Level of Beaver Activity During Summer 1982 Downstream Survey
- E.3.119 1982 Aerial Counts of Beaver Structures Along 15.2 Km (9.4 Mi) of Lower Deadman Creek Immediately Downstream from Deadman Lake, and A Marshy Section of Upper Deadman Creek From Its Mouth at Deadman Lake 3.2 Km (2.0 Mi) Upstream From The Lake
- E.3.120 Results of Surveys For Muskrat Pushups Upstream From Gold Creek During Spring 1980
- E.3.121 Numbers of Furbearer Tracks Seen During Aerial Transects in the Middle Susitna Basin, November 1980
- E.3.122 Tabulation of November 1980 Aerial Transect Data, Species by Vegetation Type
- E.3.123 Number of Tracks of Otter and Mink Observed At North and South Sides of 37 Susitna River Check Points, November 10-12, 1980
- E.3.124 Results of Marten Scat Analyses by Season, Based Upon Percent Frequency of Occurrence
- E.3.125 Tracks of Red Foxes Encountered During November 1980 Aerial Transect Surveys
- E.3.126 Red Fox Den Classification System
- E.3.127 Location and Status of Raptor and Raven Nest Sites in the Middle Susitna Basin, Alaska
- E.3.127b Location of Raptor Nests in the Middle Susitna Basin
- E.3.128 Breeding Phenologies of Eagles, Gyrfalcon, and Common Raven in Interior Alaska
- E.3.129 Data on Bald Eagle Nests Along the Susitna River Between Devil Canyon and Cook Inlet
- E.3.130 Summary of Total Numbers and Species Composition of Waterbirds Seen on Lakes Surveyed in Summer 1981 in the Middle Susitna Basin

xi

Т

- E.3.131 Summary of Total Numbers and Species Composition of Waterbirds Seen on Surveyed Waterbodies During Aerial Surveys of the Upper Susitna River Basin, Fall 1980
- E.3.132 Summary of Total Numbers and Species Composition of Waterbirds Seen on Surveyed Waterbodies During Aerial Surveys of the Upper Susitna River Basin, Fall 1981
- E.3.133 Summary of Total Numbers and Species Composition of Waterbirds Senn on Surveyed Waterbodies During Aerial Surveys of the Upper Susitna River Basin, Spring 1981
- E.3.134 Seasonal Population Statistics for the More Important of Surveyed Waterbodies of the Middle Susitna River Basin, 1980-81
- E.3.135 Summary of Total Numbers and Species Composition of Waterbirds Seen During Spring Aerial Surveys of the Lower susitna River, 1981 and 1982
- E.3.136 Number of Territories of Each Species on Each 10-Hectare Census Plot, Upper Susitna River Basin, Alaska, 1981
- E.3.137 Number of Territories of Each Bird Species on Each 10-Hectare Census Plot, Upper Susitna River Basin, Alaska 1981
- E.3.138 Comparison of Breeding Bird Densities, 1981 and 1982, Middle Susitna River in Alaska
- E.3.139 Habitat Descriptions of 10 Ha Avian Census Plots
- E.3.140 Major Avian Habitats of the Middle Susitna Basin and Their Most common Avian Species
- E.3.141 Relative Abundance of Birds by Habitat and Vegetation Succession Stage, Lower Susitna River Floodplain, June 10-21, 1982. Figures Are the Number of Birds Recorded Per 100 Minutes in Each Habitat
- E.3.142 Number of Small Mammels Captured Per 100 Trap Nights During Four Sampling Periods Between August 1980 and August 1982, Middle Susitna River Basin

- E.3.143 Standardized Habitat Niche Breadth Values For Ten Small Mammal Species Sampled by Snap and Pitfall Trapping at 43 Sites, Middle Susitna River Basin, Fall 1981
- E.3.144 Time Schedule of Anticipated Impacts to Terrestrial Vertebrates Resulting From Susitna Hydro Project
- E.3.145 Anticipated and Hypothesized Impacts to Moose
- E.3.146 Loss of Cover Types Commonly Used By Moose, In Relation To Their Availability
- E.3.147 Anticipated and Hypothesized Impacts to Caribou
- E.3.148 Anticipated and Hypothesized Impacts to Dall Sheep
- E.3.149 Anticipated and Hypothesized Impacts to Brown Bears
- E.3.150 Anticipated and Hypothesized Impacts to Black Bear
- E.3.151 Anticipated and Hypothesized Impacts to Wolves
- E.3.152 Anticipated and Hypothesized Impacts to Wolverine
- E.3.153 Anticipated and Hypothesized Impacts to Aquatic Furbearers (Beaver and Muskrat)
- E.3.154 Number of Lakes With Muskrat Pushups in Spring 1980 Occurring Within Borrow Areas and Impoundments
- E.3.155 Anticipated and Hypothesized Impacts to Semi-Aquatic Furbearers
- E.3.156 Anticipated and Hypothesized Impacts on Fox
- E.3.157 Anticipated and Hypothesized Impacts to Marten, Weasel, and Lynx
- E.3.158 General Types of Impacts to Raptors
- E.3.159 Anticipated and Hypothesized Impacts to Raptors and Ravens

- E.3.160 Number of Known Raptor or Raven Nest Sites in the Middle Susitna River Basin, Alaska, That Would Be Inundated by the Watana and Devil Canyon Reservoirs or That May Be Affected by Development of Associated Access Routes and Transmission Routes
- E.3.161 Raptor and Raven Nesting Locations in the Middle Susitna Basin, Alaska, That May Be Affected By The Susitna Hydroelectric Project Development
- E.3.162 Nest Number and Status of Raptor Nesting Locations Which Will Be Affected by the Susitna Hydro Project and the Source of Impacts
- E.3.163 Factors That Affect the Sensitivity of Raptors to Disturbances
- E.3.164 Influence of Timing of Disturbance on the Possible Effects on Raptors
- E.3.165 Approximate Losses of Avian Habitats Studied in the Middle Susitna Basin as a Result of the Susitna Hydroelectric Project
- E.3.166 Estimated Number of Small and Medium-Sized Birds That Would Be Eliminated Through Habitat Destruction As a Result of the Susitna Hydroelectric Project
- E.3.167 Total Average Daily Traffic on Access Road and Denali Highway During Peak Construction Year and Season
- E.3.168 State of Alaska Temporal and Spatial Protection Criteria For Nesting Raptors
- E.3.169 Estimated Mitigation Costs for Compensation for Moose, Brown Bear and Black Bear Foraging Habitat Loss
- E.3.170 Estimated Mitigation Costs for Aerial Photography of Vegetation in the Downstream Floodplain
- E.3.171 Estimated Mitigation Costs for Bald Eagle Habitat Modification
- E.3.172 Estimated Mitigation Costs for Design, Construction, and Placement of 10 Nest Platforms with Artificial Nests for Golden Eagles

- E.3.173 Estimated Mitigation Costs for Design, Construction, and Placement of 10 Nest Boxes for Cavity-Nesting Raptors
- E.3.174 Estimated Mitigation Costs for Modification of Cliff Locations to Provide Golden Eagle Nesting Habitat
- E.3.175 Estimated Mitigation Costs for Creating New Nesting Cliffs for Golden Eagles
- E.3.176 The Success of Artificial Nesting Structures Installed On Power Poles and Transmission Towers
- E.3.177 Botanical Resources Mitigation Summary
- E.3.178 Wildlife Mitigation Summary

- E.3.1 Option Analysis
- E.3.2 Relationship of Field Studies and Monitoring to Impact Assessment and Mitigation Planning
- E.3.3 Susitna River Drainage Basin
- E.3.4 Susitna River and Major Tributaries From Mouth to Little Willow Creek
- E.3.5 Susitna River and Major Tributaries From Montana Creek to Devil Canyon
- E.3.6 Susitna River and Major Tributaries From Devil Canyon to Denali Highway
- E.3.7 Upper Cook Inlet Commercial Salmon Management Area
- E.3.8 Population Estimates of Adult Salmon in Susitna River
- E.3.9 Percentage of Salmon Migrating Past Sunshine
- E.3.10 Timing of Life Stages of Salmon in the Susitna Rivr From Talkeetna to Devil Canyon
- E.3.11 Daily Sonar Counts of Sockeye Salmon At Susitna, Yentna, Sunshine and Talkeetna Stations
- E.3.12 Slough and Tributary Index Area Peak Spawning Counts
 E.3.13 Slough and Tributary Index Area Peak Spawning Counts
 E.3.14 Slough and Tributary Index Area Peak Spawning Counts
 E.3.15 Slough and Tributary Index Area Peak Spawning Counts
 E.3.16 Slough and Tributary Index Area Peak Spawning Counts
 E.3.17 Slough and Tributary Index Area Peak Spawning Counts
 E.3.18 Daily Sonar Counts of Chum Salmon at Susitna, Yentna, Sunshine and Talkeetna Stations

E.3.19 Daily Sonar Counts of Coho Salmon at Susitna, Yentna, Sunshine and Talkeetna Stations

Daily Sonar Counts of Pink Salmon at Susitna, Yentna, Sunshine and Talkeetna Stations
Waterbodies To Be Inundated By Watana Reservoir
Fish Spawning Times Vs. Watana Surface Elevation
Waterbodies To be Inundated By Devil Canyon Reservoir
Diagram of Fish Stream Crossing
Rehabilitated Tsusena Creek Borrow Site
Berm Design to Prevent Overtopping of Sloughs
Slough Mouth Restructured Plan
Design Drawing of Lowered and Restructured Slough
Susitna River Fishery Mitigation Induced Upwelling Using Tributary Water Supply
Susitna River Fishery Mitigation Main Stream Spawning Bed
Schematic Grayling Hatchery
Study Area for Botanical Resources and Wildlife
Vegetation Mapping Areas of the Susitna River Basin
Locations of Stands Sampled on Downstream Floodplain of the Susitna River, 1981
Vegetation Mapping Areas for Transmission Corridors
The Watana and Gold Creek Watersheds With Major Water Bodies
Location of Project Facilities
Vegetation Map of Upper Susitna River Basin
Vegetation Map of Susitna Project Impact Areas

xvii

ŝ

- E.3.40 Vegetation Map of Susitna Project Impact Areas
- E.3.41 Vegetation Map of Susitna Project Impact Areas
- E.3.42 Vegetation Map of Proposed Susitna Hydroelectric Access Corridors
- E.3.43 Vegetation Map of Proposed Susitna Hydroelectric Access Corridors
- E.3.44 Vegetation Map of Proposed Susitna Hydroelectric Access Corridors
- E.3.45 Wetland Map of Susitna Hydroelectric Project Access Corridors
- E.3.46 Wetland Map of Susitna Hydroelectric Project Access Corridors
- E.3.47 Wetland Map of Susitna Hydroelectric Project Access Corridors
- E.3.48 Vegetation Map of Proposed Healy-Fairbanks Transmission Corridor
- E.3.49 Vegetation Map of Proposed Healy-Fairbanks Transmission Corridor
- E.3.50 Vegetation Map of Proposed Healy-Fairbanks Transmission Corridor
- E.3.51 Vegetation Map of Proposed Willow-Cook Inlet Transmission Corridor
- E.3.52 Vegetation Map of Proposed Willow-Cook Inlet Transmission Corridor
- E.3.53 Vegetation Map of Susitna Project Impact Areas
- E.3.54 Vegetation Map of Susitna Project Impact Areas
- E.3.55 Vegetation Map of Susitna Project Impact Areas
- E.3.56 Vegetation Map of Susitna Project Impact Areas
- E.3.57 Vegetation Map of Susitna Project Impact Areas

Т

E.3.58	Vegetation Map of Susitna Project Impact Areas
E.3.59	Vegetation Map of Susitna Project Impact Areas
E.3.60	Vegetation Map of Susitna Project Impact Areas
E.3.61	Vegetation Map of Susitna Project Impact Areas
E.3.62	Vegetation Map of Susitna Project Impact Areas
E.3.63	Vegetation Map of Susitna Project Impact Areas
E.3.64	Vegetation Map of Susitna Project Impact Areas
E.3.65	Vegetation Map of Susitna Project Impact Areas
E.3.66	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.67	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.68	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.69	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.70	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.71	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.72	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.73	Wetland Map of Susitna Hydroelectric Project Impoundment Area and Borrow Sites
E.3.74	Vegetation Sample Locations in Susitna River Basin, 1980
E.3.75	Locations of Lakes and Ponds Surveyed for Vascular Aquatic Plants in August 1980
E.3.76	A Schematic Representation of the Dominant Vegetati

.3.76 A Schematic Representation of the Dominant Vegetation Associated With Many of the Lakes and Ponds of the Susitna Basin j.

.

E.3.77	Patterns of Forest Succession Following Fire In Alaska
E.3.78	Primary Succession on the Susitna Floodplain
E.3.79	Adjustments to Road/Railroad Alignments Index Map
E.3.80	Adjustments to Road Alignment
E.3.81	Adjustments to Road Alignment
E.3.82	Adjustments to Road and Railroad Alignments
E.3.83	Comparison of Road Construction Techniques
E.3.84	Typical Hillside Cut of Railroad Cross Section
E.3.85	Typical Transmission Right-of-Way Cross Section
E.3.86	Locations of Radio-Collared Cow Moose During Parturition (May 15-June 15) From 1977 Through 1981
E.3.87	Locations of Radio-Collared Moose During The Rut (September 20-October 20) From 1977 Through Fall 1980
E.3.88	General Movement and Migration Patterns of Radio- Collared Moose From October 1976 Through Mid-August 1981
E.3.89	Boundaries of Established Moose Count Areas
E.3.90	Zones Employed To Estimate Moose Densities Within Riparian Communities Along the Susitna River
E.3.91	Dates of Mortalities of Collared and Uncollared Moose Calves During 1977, 1978 and 1980 In The Nelchina and Upper Susitna Basin, Alaska
E.3.92	Historical Range of the Nelchina Caribou Herd
E.3.93	Distribution of Nelchina Radio-Collared Caribou During Calving Period, May 15 Through June 10, 1980 and 1981
E.3.94	Location of Radio-Collared Caribou In Subherds, May 9, 1980, Through September 22, 1981
E.3.95	Seasonal Elevation Use By Caribou From Nelchina Head

- E.3.96 Calf Survival Compared to Wolf Numbers And Total Caribou
- E.3.97 Location of Dall Sheep Study and Aerial Survey Areas
- E.3.98 Suspected Locations and Territorial Boundaries Of Wolf Packs Inhabiting The Susitna Hydroelectric Project Area during 1980 and 1981
- E.3.99 General Location and Year of Use of Observed Wolf Den and Rendezvous Sites Discovered in the Susitna Hydroelectric Project Area From 1975 Through 1981
- E.3.100 Observed Home Ranges of Wolverines In The Middle Susitna Basin Based on Location of Radio-Collared Animals
- E.3.101 Aerial Transects for Furbearers and Checkpoints For Otter and Mink Sign
- E.3.102 Locations and Classification of Fox Dens
- E.3.103 Locations of 12 Bird Census Plots in the Middle Susitna River Basin
- E.3.104 Locations of Important Lakes and Lake Groups Surveyed for Waterfowl in the Middle Susitna Basin
- E.3.105 Importance Values of Waterbodies for Migrant Waterfowl in the Middle Susitna Basin, Upper Tanana River Valley, and Scottie Creek Area Fall 1980
- E.3.106 Importance Values of Waterbodies for Migrant Waterfowl in the Middle Susitna Basin, Upper Tanana River Valley, and Scottie Creek Area Spring 1981
- E.3.107 Clustering of 42 Small Mammal Trapline Sites Into Similar Vegetative Groupings, Based on an Analysis of Frequency Counts of 81 Plant Taxa In the Ground Cover
- E.3.108 Abundance Patterns of Eight Small Mammal Species Relative To Vegetation Types at 42 Sites in the Susitna River Basin, Alaska, July 29-August 30, 1981

- E.3.109 Probable Factors Regulating Moose Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.110 Probable Factors Regulating Brown Bear Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.111 Probable Factors Regulating Black Bear Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.112 Probable Factors Regulating Wolf Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.113 Probable Factors Regulating Beaver Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.114 Probable Factors Regulating Marten Populations in the Susitna Basin and Actions That Might Affect These Populations
- E.3.115 Elevations of Raptor and Raven Nests in the Vicinity of the Watana Impoundment Area in Relation to Filling and Operation Water Levels
- E.3.116 Changes in Elevation of the Devil Canyon Reservoir During Operation and Elevations of Raptor and Raven Nests in the Proximity of the Impoundment Zone
- E.3.117 Relative Amounts of Moose Browse Available Compared With The Time Since Fire or Other Disturbance in Interior Alaska
- E.3.118 Eagle Nesting Platforms to be Provided on Transmission towers
- E.3.119 Ground Wire Gapping Designed to Protect Raptors From Electrocution
- E.3.120 Armless Configurations Designed to Protect Raptors From Electrocutions
- E.3.121 Installation of Transformer Equipment to Provide for Raptor Perching

T

- E.3.122 Perch Guards Designed to Protect Raptors From Electrocution
- E.3.123 Elevated Perch Construction Designed to Protect Raptors from Electrocution

TABLE E.3.1: MITIGATION OPTIONS ANALYSIS STRUCTURE RECOMMENDED BY SUSITNA HYDROELECTRIC PROJECT, ALASKA DEPARTMENT OF FISH AND GAME (ADF&G) AND THE U.S. FISH AND WILDLIFE SERVICE (USFWS). DESIRABILITY OF OPTIONS DECREASES FROM TOP TO BOTTOM. EXPLANATIONS OR EXAMPLES OF EACH OPTION AS DESCRIBED BY AGENCIES ARE SHOWN.

DEFINITION

ALASKA DEPARTMENT OF FISH AND GAME

U.S. FISH & WILDLIFE SERVICE

OPTION

AVO/DANCE

Avoid Impact by Not Taking a Certain Action

 Keep as much existing natural habitat as possible.
 Maintain fish and game populations and critical habitats.

MINIMIZATION

 Maintain habitat diversity and the capacity of each system to restore itself naturally,

Minimize Impacts by Limiting Magnitude of Action

Rectify Impacts by Rehabilitating Environment

- Repair, rehabilitate or restore abused aquatic or terrestrial systems.
- Restore the same functions or structure of habitats.

RESTRICTION

RECTIFICATION

Reduce (or Eliminate) Impact Over Time by Maintenance

- Operate and maintain mitigation measures to reduce impacts over time.

COMPENSATION

Compensate for Impact by Substitute Resources

- Create or restore fish, wildlife and habitat values, and resource use opportunities that were unavoidably lost.
- Compensation by providing substitute resources or environments is least desirable; the preferred mode is onsite mitigation.

Modify Project Design to Avoid Impact

- No-project alternative is one mode.
- Design modifications in action type, magnitude, timing and locations are options.

Modify Project Design to Minimize Impacts

- Design modifications in action type, magnitude, timing and location are options.

Restore Damaged Environments

- Reclaim disturbed sites by seeding, etc.
- Restock lost fish and wildlife.

Maintain Mitigation Effort to Reduce Impact

- Monitor and maintain mitigation measures.
- Train mitigation personnel.

Restore Lost Resources by Management or Replacement

- Intensify production through management.
- Initiate hatcheries; restocking programs.
- Lease or buy new lands for enhanced management.

TABLE E.3.2: COMMON AND SCIENTIFIC NAMES OF FISH SPECIES RECORDED FROM THE SUSITNA BASIN

SCIENTIFIC NAME

ι

Petromyzontidae Lampetra japonica

Salmonidae

Coregonus laurettae Coregonus pidschian Oncorhynchus gorbuscha Oncorhynchus kisutch Oncorhynchus kisutch Oncorhynchus nerka Oncorhynchus tshawytscha Prosopium cylindraceum Salwelinus malma Salvelinus namaycush Thymallus arcticus

Osmeridae <u>Thaleichthys pacificus</u>

Esocidae Esox lucius

Catostomidae Catostom<u>us</u> catostomus

Gadidae Lota lota

Gasterosteidae Gasterosteus aculeatus

Cottidae Cottus sp.

COMMON NAME

Arctic Lamprey

Bering Cisco Humpback Whitefish Pink Salmon Chum Salmon Coho Salmon Sockeye Salmon Chinook Salmon Round Whitefish Rainbow Trout Dolly Varden Lake Trout Arctic Grayling

Eulachon

Northern Pike

Longnose Sucker

Burbot

Threespine Stickleback

Sculpin

			IN NUMBER	S OF FISH BY SPEC	<u>165, 1954 - 198</u>	52
Year	Chinook	Sockeye	Coho	Pink	Chum	Total
1954	63,780	1,207,046	321,525	2, 189, 307	510,068	4,291,726
1955	45,926	1,027,528	170,777	101,680	248, 343	1,594,254
1956	64,977	1,258,789	198, 189	1,595,375	782 , 051	3,899,381
1957	42,158	643 , 712	125, 434	21,228	1,001,470	1,834,002
1958	22,727	477,392	239,765	1,648,548	471,697	2,860,129
1959	32,651	612,676	106, 312	12, 527	300, 319	1,064,485
1960	27,512	923 , 314	311,461	1,411,605	659,997	3,333,889
1961	19,210	1,162,303	117,778	34,017	349, 628	1,683,463
1962	20,210	1,147,573	350,324	2,711,689	970 , 582	5,200,378
1963	17,536	942,980	197, 140	30, 436	387,027	1, 575, 119
1964	4,531	970,055	452,654	3,231,961	1,079,084	5,738,28
1965	9,741	1,412,350	153 , 619	23, 963	316, 444	1,916,11
1966	9, 54 1	1,851,990	289,690	2,006,580	531, 825	4,689,62
1967	7,859	1,380,062	177,729	32, 229	296, 037	1,894,71
1968	4,536	1,104,904	470,450	2,278,197	1,119,114	4,977,20
1969	12, 398	692,254	100, 952	33, 422	269 , 855	1, 108, 88
1970	8,348	731,214	275,296	81 3, 8 95	775, 167	2,603,92
1971	19,765	636, 303	100,636	35, 624	327,029	1,119,35
1972	16,086	879,824	80, 933	628,580	630,148	2,235,57
1973	5, 194	670,025	104,420	326, 184	667, 573	1,773,390
1974	6, 596	497, 185	200,125	483, 730	396,840	1,584,470
1975	4,780	684,818	227, 372	336, 359	951,796	2,205,13
1976	10,867	1,664,150	208, 710	1,256,744	469,807	3, 61 0, 27
1977	14,792	2,054,020	192, 975	544, 184	1,233,733	1,049,70
1978	17,303	2,622,487	219,234	1,687,092	571,925	5,118,04
1979	13, 738	924,415	265, 166	72, 982	650, 357	1,926,65
1980	12,497	1,584,392	283,623	1,871,058	387,078	4,138,64
1981	11,548	1,443,294	494,073	127,857	842,849	2,919,62
Average	19,548	1,114,408	229,684	even-1,701,026 odd- 124,459	614,384	2,891,89
19 <u>8</u> 2 ¹	20,636	3,237,376	777,132	7 <u>88,9</u> 72	1,428,621	6,252,73

TABLE E.3.3: COMMERCIAL CATCH OF UPPER COOK INLET SALMON IN NUMBERS OF FISH BY SPECIES, 1954 - 1982

¹ ADF&G Preliminary data.

550.29

2 C

HARTER

Year	Chinook	Sockeye	Coho	<u>Pink</u>	Chum	<u>Total</u>
1954	1,545	39,626	15,159	270,744	265,591	592,665
1955	573	36,600	9,675	1,184,328	68 ,71 0	1,299,886
1956	333	36,306	9,345	207,920	88,218	342,122
1957	4 19	26,917	1,765	285,613	206,450	521,164
1958	120	19,450	1,796	949,766	124,482	1,095,614
1959	132	21,637	6,352	124,748	110,833	263,707
1960	27	24,726	2,692	611,647	116,082	755,174
1961	41	22,776	1,619	303,377	55,593	383,406
1962	60	25,286	7,727	2,248,341	179,259	2,460,673
1963	96	15,121	6,736	203,616	138,510	364,079
1964	91	20,654	9,460	1,055,417	323,335	1,408,957
1965	10	14,002	862	115,598	28,076	158,548
1966	62	15,333	5,411	579,240	129,062	729,108
1967	176	29,044	2,726	375,488	85,445	492,879
1968	64	95,242	4,883	585,441	75,134 /	760,764
1969	64	122,796	623	202,444	61,203	387,130
1970	107	22,312	4,860	574,284	224,158	825,721
1971	73	22,234	4,561	392,871	148,602	568,341
1972	88	57,897	2,234	28,663	75,543	164,425
1973	145	29,209	2,101	307,403	115,513	554,371
1974	183	27,428	6,514	50,601	19,210	103,936
1975	143	28,142	6,211	1,063,432	21,646	1,119,574
1976	450	58,159	3,216	136,445	50,822	249,092
1977	217	100,058	2,872	1,292,153	145,778	1,541,078
1978	1,747	156,404	6,529	352,561	73,518	590,759
1979	1,238	64,417	12,250	2,986,534	223,028	3,287,467
1980 ²	401	66,360	11,411	894,819	74,851	1,047,842
1981 ²	347	110,365	10,146	3,300,805	321,619	3,743,281
1982 ²	1,506	131,688	46,398	552,028	198,202	929,192
29 Yr A	vg 345	49,662	7,108	732,287	129,252	918,653

 TABLE E.3.4:
 COMMERCIAL CATCH OF LOWER COOK INLET SALMON IN

 NUMBERS OF FISH BY SPECIES, 1954-1982¹

¹Data Source: ADF&G Final IBM Computer Runs, 1954-1981, and Processor Catch Reports.

2_{ADF&G} Preliminary Data.

TABLE E.3.5:	SIDE-SCAN SONAR COUNTS OF SALMON MIGRATING PAST YENTNA STATION AND
	PETERSON POPULATION ESTIMATES AND CORRESPONDING 95% CONFIDENCE INTERVALS
	OF SALMON MIGRATING TO SUNSHINE, TALKEETNA AND CURRY STATIONS, 1981 - 1982

1

CLUB OF

Station	· · · · · · · · · · · · · · · · · · ·	<u>Chin</u> 1981	<u>look</u> 1982	<u>Socke</u> 1981	1982	<u>Coh</u> 1981	o 1982	Chui 1981	m 1982	P I n 1981	k 1982
Yentna Station				139,000	114,000	17,000	34,100	19,800	27,800	36,100	447,000
Sunshine Station	No.		49,600	133,000	151,000	19,800	45,700	263,000	430,000	49,500	443,000
	95% Confidence Interval	9	45,000 55,100	120,000 150,000	139,000 167,000	18,000 22,000	42,000 50,300	235,000 298,000	408,000 456,000	46,400 53,100	407,000 487,000
Talkeetna Station	No.		10,900	4,800	3,100	3,300	5,100	20,800	49,100	2,300	73,000
	95% Confidence Interval	9	8,300 12,500	4,300 5,400	2,800 3,500	2,800 6,200	4,300 6,200	18,400 22,800	45,200 53,800	1,900 2,943	70,500 75,800
Curry Station	No.		11,300	2,800	1,300	1,100	2,400	13,100	29,400	1,000	59,000
	95% Confidence Interval	÷	8,300 16,000	2,600 3,100	1,100 1,500	7,090 2,500	1,800 3,800	11,800 14,600	26,700 32,700	700 2,100	53,600 65,300

i

Source: ADF&G (1981a) ADF&G (1983)

.

	Days				<u></u>	1978					
Locations	Fished	KS	SS	RS	PS	CS	RT	DV	LT	GR	BB
Willow Creek Caswell Creek	22,682	47	<u></u> 905	56	18,901	2,458	913	280	0	208	9
Montana Creek Sunshine Creek	25,762	408	2,451	85	15,619	4,429	1,193	633	0	958	9
Clear (Chunilna) Creek	5,040	12	2,200	28	2,074	1,912	1,501	1,817	0	859	27
Sheep Creek	11,869	256	478	14	6,981	1,697	470	108	0	461	18
Little Willow Creek	5,687	0	151	28	3,142	1,015	334	63	0	334	0
Deshka River	9,111	850*	1.798	0	697	0	3,634	0	0	579	l 0
Lake Creek	8,767	326*	2,212	254	2,833	1,015	2,721	154	36	2,115	45
Alexander Creek	6,914	769*	2,401	183	1,146	215	2,640	136	0	1,871	0
Talachulitna River Lake Louise,	732	12*	88	141	31	234	0	235	0	99	0
Lake Susitna, Tyone River	13,161	0	0	0	0	0	0	0	2,522	2,278	2,947
Others	14,970	163	2,388	56	3,994	2,692	1,519	2,739	877	3,770	208
1978 Total	124,695	2,843	15,072	845	55,418	15,667	14,925	6,165	3,435	13,532	3,263

TABLE E.3.6: SUSITNA BASIN SPORT FISH HARVEST AND EFFORT BY FISHERY AND SPECIES - 1978, 1979, 1980 and 1981

KS = chinook salmonRT = rainbow troutSS = coho salmonDV = Dolly VardenRS = sockeye salmonLT = lake troutPS = pink salmonGR = arctic graylingCS = chum salmonBB = burbot

.

* Chinook less than 20 inches

Source: Mills (1979-1982)

TABLE E.3.6 (Cont'd)

1

f.

с - ·

	Days	··_····				1979					<u> </u>
Locations	Fished	KS	SS	RS	PS	CS	RT	DV	LT	GR	BB
Willow Creek	18,911	459	462	94	3,445	582	1,500	618	0	1,654	18
Caswell Creek	3,710	156	624	0	100	9	282	91	0	354	0
Montana Creek	22,621	312	1,735	346	2,472	745	1,536	527	0	791	9
Sunshine Creek	3,317	10*	774	157	700	55	382	264	0	0	45
Clear (Chunilna) Creek	5,125	312	1,248	31	645	355	1,373	827	0	1,045	9
Sheep Creek	6,728	10	462	31	2.418	682	573	127	0	645	64
Little Willow Creek	5,171	0	262	14 1	745	118	345	336	0	1,091	0
Deshka River	13,236	2,811	973	0	109	0	3,182	0	0	1,463	82
Lake Creek	13,881	1,796	2,671	440	882	136	4,527	164	9	1,963	109
Alexander Creek	8,284	712	1,560	79	236	45	1,182	182	0	745	145
Talachulitna River	2,185	293	125	47	100	55	0	155	0	664	45
Lake Louise.											
Lake Susitna. Tyone River	12,199	0	0	0	0	0	0	0	2,618	2,936	2,363
Others	12,639	39	1,997	220	664	1,245	3,472	909	472	4,918	282
1979 Total	128,007	6,910	12,893	1,586	12,516	4,072	18,354	4,200	3,099	13,342	3,171

Ţ,

KS = chinook salmonRT = rainbow troutSS = coho salmonDV = Dolly VardenRS = sockeye salmonLT = lake troutPS = pink salmonGR = arctic graylingCS = chum salmonBB = burbot

* Chinook less than 20 inches

Source: Mills (1979-1982)

TABLE E.3.6 (Cont'd)

	Days					1980	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · ·	 	
Locations	Fished	KS	SS	RS	PS	CS	RT	DV	LT	GR	BB
Willow Creek	29,011	289	1,207	83	23,638	989	1,168	636	О	1,868	0
Caswell Creek	4,963	215	1,124	77	1,663	19	154	83	0	353	26
Montana Creek	19,287	559	2,684	257	8,230	571	854	167	0	655	13
Sunshine Creek	5,208	132	1,534	116	2,408	225	193	39	1 0	0	39
Clear (Chunilna) Creek	4,388	172	661	6	622	385	950	751	0	1,348	32
Sheep Creek	8,041	45*	430	9	6,362	648	385	83	0	725	45
Little Willow Creek	8,190	32*	494	77	6,420	270	353	122	0	1,156	0
Deshka River	19,364	3,685	2,290	0	689	0	4,305	0	0	1,817	224
Lake Creek	8,325	775	2,351	267	2,101	69	2,144	121	9	1,972	0
Alexander Creek	6,812	1,438	999	52	809	121	1,945	353	0	1,145	0
Talachulitna River	2,542	121	491	112	276	17	379	982	0	1,713	0
Lake Louise,											
Lake Susitna, Tyone River	10,539	0	0	0	0	0	0	0	2,609	4,477	6,612
Others	12,216	45*	2,234	257	3,403	1,445	2,658	790	267	4,854	212
1980 Total	138,886	7,389	16,499	1,304	56,621	4,759	15,488	4,127	2,876	22,083	7,203

KS = chinook salmon	RT = rainbow trout
SS = coho salmon	DV = Dolly Varden
RS = sockeye salmon	LT = lake trout
PS = pink salmon	GR = arctic grayling
CS = chum salmon	BB = burbot

* Chinook less than 20 inches

Source: Mills (1979-1982)

TABLE E.3.6 (Cont'd)

	Days	1981										
Locations	Fished	KS*	KS	SS	RS	PS	CS	RT	DV	LT	GR	BB
Willow Creek	14,060	144	441	747	77	2,797	1,533	1,475	249	0	1,188	48
Caswell Creek	3,860	· 77	172	901	38	335	0	326	38	0	144	0
Montana Creek	16,657	239	422	2,261	182	1,782	805	1,111	240	0	891	0
Sunshine Creek	3,062	57	0	968	220	958	125	249	10	0	57	115
Clear (Chunilna) Creek	3,584	86	287	422	29	19	57	1,226	1,418	0	996	0
Sheep Creek	6,936	0	0	326	105	1,236	987	201	57	0	872	0
Little Willow Creek	3,845	0	0	29	67	604	192	374	48	0	623	0
Deshka River	13,248	738	2,031	632	0	19	0	3,631	10	0	1,255	96
Lake Creek	6,471	163	632	1,035	211	412	48	2,874	67	19	1,600	29
Alexander Creek	6,892	278	843	891	67	57	10	2,290	287	0	1,130	29
Talachulitna River	1,378	57	0	240	172	29	0	0	0	0	479	0
Lake Louise,								(1		
Lake Susitna, Tyone River	14,397	115	0	0	0	0	0	0	0	4,093	4,892	5,292
Others	7,850	277	0	939	115	412	450	3,851	814	287	7,089	57
1981 Total	102,240	2,748	4,828	9,391	1,283	8,660	4,207	13,757	3,238	4,399	21,216	5,666

1

province of the second se

100

-

KS = chinook salmon	RT = rainbow trout
SS = coho salmon	DV = Dolly Varden
RS = sockeye salmon	LT = lake trout
PS = pink salmon	GR = arctic grayling
CS = chum salmon	BB = burbot

* Chinook less than 20 inches

Source: Mills (1979-1982)

1976	1977	1978	1979	1980	1981	1982			
E 412	0.246	E 954	6 215			2 546			
						2,546			
				—	-	16,000e			
				_		592 d			
دده	598	450	524c	а	459	316d			
0.07		7.00	4-7			150.			
				-		156d			
						527d			
. – -				а	- +	140d			
•				а		887d			
-			-	ь		47			
				а		1,053			
			190	а		1,111			
			а	а	1,900	3,844			
1,237	769	997	864c	а	а	982			
112	168	59	а	а	а	119d			
1,870	1,782	900	а	а	а	644d			
124	229	62	а	а	а	100d			
24	36	13	37	а	а	27d			
53	69	a	28	а	а	7d			
92	95	а	a	а	а	36 d			
112	136	а	58	а	а	198			
2,280	4,102	1.335	а	а	а	а			
				a	a	3, 577			
				а	а	3, 101			
44	135		•			b			
	. – .	_		-		b			
b	1, 511	385	b			b			
	5, 412 21, 693 1, 660 833 203 455 160 1, 445 b 537 702 6, 513 1, 237 112 1, 870 124 24 53 92 112 2, 280 3, 735 1, 319 44 b	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

TABLE E.3.7: CHINOOK SALMON ESCAPEMENT COUNTS OF SUSITNA RIVER BASIN STREAMS FROM 1976 to 1982, ADULT ANADROMOUS INVESTIGATIONS, SUSITNA HYDRO STUDIES, 1982

¹1976-1980 counts - Kubik, S.W.

1

a No total count due to high turbid water

b Not counted

c Poor counting conditions
 d Counts conducted after peak spawning
 e Estimated peak spawning count (ADF&G/Delaney, K.)

TABLE E.3.8: 1982 CHINOOK SALMON ESCAPEMENT SURVEYS OF SUSITNA RIVER BASIN STREAMS ADULT ANADROMOUS INVESTIGATIONS, SUSITNA HYDRO STUDIES, 1982

		Survey		<u>Chinook</u>	Salmon C	ounted
Stream_Surveyed	Date	Method	Condition	Live	Dead	Total
Alexander Creek (Mount to Lake)	7/31	Hel.	Good	1,687	0	1,687
Wolverine Creek (Alexander Creek Drainage)	7/28	Hel.	Good	537	0	537
Sucker Creek (Alexander Creek Drainage)	7/28	Hel.	Good	322	0	322
Bunco Creek	8/7	Hel.	Fair	168	30	198
Byers Creek	8/12	Hel.	Excellent	7	0	7
Chase Creek	8/11	Foot	Good	8	7	15
Cheechako Creek (Devil Canyon)	8/6	Hel.	Good	16	0	16
Chinook Creek (Devil Canyon)	8/6	Hel.	Good	. 5	0	5
Chulitna River	8/12	Hel.	Excellent	49	51	100
Chulitna River (East Fork)	8/12	Hel.	Excellen†	67	52	119
Chulitna River (Middle Fork)	8/12	Hel.	Excellent	385	259	644
Clear Creek	7/21	Hel.	Fair	978	4	982
Deshka River	8/5-9	Hel.	Fair	10,471	200	10,671
Sold Creek	8/3	Hei.	Good	122	20	142
Goose Creek	8/7	Hel.	Good	98	42	140
lonolulu Creek	8/12	Hel.	Excellent	11	16	27
Indian River	7/21	Hel.	Good	1,049	4	1,053
Jack Long Creek	8/4	Foot	Excellent	2	0	2
4th of July Creek	9/29	Foot	Good	55	1	56
(Ashwitna River (North Fork)	8/10	He!.	Excellent	128	28	156
Lake Creek	8/2	Hel.	Good	2,267	50	2,317
Camp Creek (Lake Creek Drainage)	8/2	Hel.	Excellen†	, 517	0	517
Sunflower Creek (Lake Creek Drainage)	8/2	Hel.	Excellent	743	0	743
	-/-				•	

TABLE E.3.8 (Contid)

1

		Survey		Chinook	Salmon C	ounted
Stream Surveyed	Date	Method	Condition	Live	Dead	Total
Little Willow Creek	8/7	Hel.	Good	190	126	316
Montana Creek	8/5	Foot	Good	829	58	887
Portage Creek	7/21 8/8	Hel. Hel.	Excellent Excellent	955 1,081	0 30	955 1,111
Prairie Creek	7/31	Hel.	Excellent	3,782	62	3,844
Sheep Creek	8/7	Hel.	Good	316	211	527
Spink Creek	8/7	Hel.	Excellent	12	0	12
Troublesome Creek	8/12	Hel.	Excellent	34	2	36
Talachuiitna River	8/1	Hel.	Excellent	3,101	0	3, 101
Willow Creek	8/6	Foot	Fair	506	86	592
Deception Creek (Willow Creek Drainage)	8/6	Foot	Fair	212	17	229

¹Partial count; Mainstem Deshka from Trapper Creek to Forks; Trapper Creek not surveyable, estimated peak spawning count was 16,000 (see Table E.3.7).

 $^2 {\rm Survey}$ conditions on Deshka River and tributaries ranged from good to poor.

Source: ADF&G 1982d

D	No. of	Obteach		Catch pe		<u>.</u>
<u>Date</u>	Samples	Chinook	Sockeye	Coho	Chum	Pink
6/18-6/24	7	0,53	1,40	3.86	4.97	0
6/25-7/1	4	0.57	1.32	1,10	2.31	0
7/2-7/8	6	0.41	7,52	0.47	0,92	0.06
7/9-7/15	7	0.55	2.37	0.33	0.71	0.02
7/16-7/22	7	0.14	1.63	0,53	0,39	0
7/23 - 7/29	7	0.46	2.43	0.63	0.12	Q
7/30-8/5	7	0.14	1.02	0.49	0.05	0
8/6-8/12	7	0.08	0,84	0.53	0.02	0
8/13-8/19	7	0.02	0.35	0.36	0.01	0
8/20-8/26	7	0.03	0.23	0.20	0	0
8/27-9/2	3	0.04	0.12	0.15	0	0
9/3-9/9	5	0	0.07	0,22	0	0
9/10-9/16	7	0.01	0.03	0.21	0	0
9/17-9/23	6	0.11	0.14	0,48	0	0
9/24-9/30	7	0	0.10	0.48	· 0	0
10/1-10/7	5	0.01	0.09	0,20	0	0
10/8-10/12	5	0	0.03	0.29	0	0

TABLE E.3.9: PRELIMINARY RESULTS OF 1982 SMOLT TRAP CATCHES AT TALKEETNA STATION

Source: ADF&G (1982f)

Species	Sunshi Talkee (23 mi 1981	tna	Curry	(40 miles)		ma y les) 1982
Chinook Mean Rate Maximum Rate		2.1 7.7		3.1 6.7		2.2 17.0
Sockeye Mean Rate Maximum Rate	4.6 7.7	2.7 11.5	3.0 8.0	3.4 10.0	3.5 17.0	 17.0
Coho						
Mean Rate Maximum Rate	4.0 	5 . 3 		 	11.3 8.5	10 <u>.</u> 0
Chum Mean Rate Maximum Rate	4.6 11.5	7.4 23.0		6.3 20.0	3.8 17.0	6 . 5 17 . 0
Pink						
Mean Rate Maximum Rate	2.6 11.5	7.4 23.0		7.1 20.0	6.0 17.0	10.0 17.0
				<u> </u>		

TABLE E.3.10: ADULT SALMON MIGRATION RATES (IN MILES PER DAY)

Source: ADF&G (1981a) ADF&G (1983)

Т

1 **197**8 STERNE.

TABLE E.3.11:	ANALYSIS OF SOCKEY	E SALMON AGE DATA BY	PERCENT FROM ESCAPEME	INT SAMPLES COLLECTED	AT SUSITNA, YENTNA,
	SUNSHINE, TALKEETN	AND CURRY STATIONS	, ADULT ANADROMOUS INV	ESTIGATIONS, SUSITNA	HYDRO STUDIES, 1981

			I			AGE CL	ASS 17						BROOD	YEAR	
Collection Site	n	³ 1	³ 2	4	42	43	5 ₁	5 2	⁵ 3	⁶ 2	6 ₃	1975	1976	1977	1978
Susitna Station	1709	0.0	0.6	0.0	8.4	0.0	0.0	83.9	2.7	0.1	4.3	4.4	86.6	8.4	0.6
Yentna Station	1193	0.1	0.7	0.7	7.5	0.4	1.9	80.8	3.5	2.4	2.0	4.4	86.2	8.6	0.8
Sunshine Station	976	0.0	1.1	0.6	21.0	0.6	0.0	70.2	2.6	0.2	3.7	3.9	72.8	22,2	1.1
Talkeetna Station	110	0.0	0.0	1.8	22.8	0.0	Qr_0	70.2	1.8	1.8	1.8	3.6	71.8	24,6	0.0
Curry Station	270	0.0	0.7	1.1	27.4	0.0	0.0	65,9	3.4	0.0	1.5	1.5	69.3	28,5	0.7

1/ Gilbert-Rich Notation

Source: ADF&G 1981a

	River		<u> </u>					
Slough	Mile		ckeye	C	hum	Pi	nk	
		1981	1982	<u>19</u> 81	1982	1981	1982	
1	99,6	0	0	6	0	0	0	
2	100.4	ŏ	ŏ	30	ŏ	õ	Ő	
- 38	101.4	ž	õ	0	ŏ	ŏ	0	
3A	101.9	9	Ő	Ő	ŏ	1	0	
5	107.2	ó	Ő	ŏ	2 ^a	ó	0	
6A	112.3	ĩ	ŏ	11	2 ^a 2 0	0	35 ^a	
8	113.2	ò	ŏ	480	· 2	25	0	
ao	121.8	ŏ	ŏ	400	23 ^a	20	0	
ã	121.9	ŏ	2	õ	75	0	ő	
88	122.2	ŏ	5	1	80 ^a	0	0	
Moqse	123, 5	ŏ	8	167ª	65	0	9	
A	124.6	ŏ	õ	140 ^a	0	ŏ	9	
A	124.7	ŏ	ŏ	60	ŏ	2	ŏ	
8 A	125.1	19ľ	133	620 ^a	748	Õ	28	
B	126.3	0	9	0	73	0	32 ^a	
9	128.3	14	6	260 ^a	420	ŏ	32	
98	129.3	203	· 1	190		ŏ	0	
9Ã	133, 3		1	207	173	ŏ	ŏ	
10	133.8	õ	ò	207	2	0	õ	
11	135,3	1762	113Ĭ	765	732	ŏ	276	
13	135 7	0	0	5	0	ŏ	0	
15	137.2	ŏ	ŏ	í	1	ŏ	135	
16	137.3	1ŏ	ŏ	3	ò	ő	õ	
17	138.2	49	ŏ	94	21ª	ŏ	0 0	
19	139.7	2 ^a	õ	3	1	ŏ	1	
20	140 1	64	106	16	30 ^a	ŏ	133	
21	141.0	Ŏ	0	457	1222	ŏ	64 ^a	
21A	145.5	õ	ŏ	10	2	õ	Õ	
Estimated	i Total	2315	1402	3 5 2 6	3674	28	735	

TABLE E.3.12: ESTIMATED NUMBER OF SLOUGH SPAWNING SOCKEYE, CHUM AND PINK SALMON IN SLOUGHS BETWEEN DEVIL CANYON AND TALKEETNA, 1981 TO 1982

T

1981 Estimated Total: 5869 slough spawning salmon. 1982 Estimated Total: 5811 slough spawning salmon.

¹ Total numbers estimated by calculating the area under the curve formed from plotting number of live salmon in sloughs versus the date and dividing by the average estimated stream life (as in Bell, 1980). The estimated stream life was 12 days for sockeye, 10 days for chum and 7 days for pinks (Bechtel Civil and Minerals, Inc., 1983).

In some cases the peak live count exceeded the calculated total count. These are indicated by "a" and the peak live count is used.

River	Dat	te		Species	Caught c	or Observe	əd
Mile	1981	1982	Sockeye	Pink	Chum	Coho	Other
68,3	9-21		0	0	6	0	
76.6	9-21		0	0	1	2	
	9-27		0	Ō	16	Ō	
83.3	9-5		0	0	17	0	
92.2	10-9		0	0	11	0	
96,8	9-2		0	0	1	0	
97.0	9-17		0	0	20	0	
100,5	9-24		0	0	0	0	eggs pumped from redds
114.4		9-2	0	0	18	1	
117.6	9-23		0	0	0	6	
117.7		8–13 9–2	0 0	12 0	15 0	0 8	
128.6		9-5 9-7	0 0	0 0	10 7	0 0	
129.2	9-8		0	0	2	1	
129.8		9-12	0	0	5	0	
130,5	9-8		0	0	3	0	
131.1	9-7		0	0	3	0	
131.3		8-19 9-4	0 0	0 0	3 12	0 · 0	
135 2	9–6	y-4	0	0	6	0	
135.2	9-0						
136.0		8-12 9-4	0 0	20 0	14 50	4 0	
137.4		8-19	0	0	25	0	
138,2		9-27	0	0	0	0	eggs pumped
				`			from redds
138,9		9-4	0	0	16	0	
143.3		9-4	0	0	22	, 0	
148.2		8-18	0	0	400	0	
		9-5	1	0	4	1	

TABLE E.3.13: MAINSTEM SUSITNA RIVER SALMON SPAWNING LOCATIONS IDENTIFIED IN 1981-1982 1981-1982

.

Source: ADF&G (1981a) ADF&G (1982e)

			Percen	t Inci <u>d</u> e	ence		
	Nov	Dec	Jan	Feb	Mar	Apr	May
Cook Inlet							
to Talkeetna	83.3	0.0 ^a	42.9	60.0	63,6	0 . 8	57.7
Tributary Mouth Sites	100.0	0.0	66.7	66 . 7	66.7	0.0	83,3
Mainstem and Slough Sites	50.0	0.0	25.0	50.0	50,0	0.0	50 <u>.</u> 0
Talkeetna to Devil Canyon	-	-	0.0	42.9	50.0	42.9	-
Tributary Mouth Sites	-	-	0.0	0.0	25.0	0.0	-
Mainstem and Slough Sites	-	-	0.0	75.0	66.7	50,0	-

TABLE E.3.14: COHO SALMON JUVENILES, PERCENT INCIDENT AT HABITAT LOCATION SITES ON THE MAINSTEM SUSITNA RIVER AND ITS TRIBUTARY MOUTHS BETWEEN COOK INLET AND DEVIL CANYON - NOVEMBER 1980 TO MAY 1981

 a Extrme cold (-25° to -40°F) hampered sampling efforts during December 1980.

b Hazardous ice conditions prior to spring breakup limited sampling efforts to three habitat location sites in April 1981.

Source: ADF&G 1981f

L

		Percent Incidence								
	June 1-15	June 16- <u>3</u> 0	Ju ly 1-15	July 16-31	Aug. 1-15	Aug. 16-30	Sept. 1-15	Sept. 16-31		
Tributary (Mouth) Habitat Sites	80,0	66,7	80.0	81.3	93.8	100.0	100.0	91.7		
Mainstem	40,0	11.1	55.6	20.0	18.2	22.2	50.0	62.5		
Combined Habitat Sites	60.0	42.9	70.8	57.7	63.0	72.0	83.3	80.0		

TABLE E.3.15: COHO SALMON JUVENILES, PERCENT INCIDENT AT HABITAT LOCATION SITES ON THE MAINSTEM SUSITNA RIVER AND ITS TRIBUTARY MOUTHS BETWEEN COOK INLET AND TALKEETNA, JUNE TO SEPTEMBER 1981

Source: ADF&G 1981f

-

.

		×				
				CATCH		
Tributary	May	June	July	August	September	Total
Fog Creek	22	17	23	5	5	72
Tsusena Creek	23	19	74	18	1	135
Deadman Creek	53	86	42	6	3	190
Watana Creek	1	49	16	172	28	266
Kosina Creek	136	246	143	67	187	779
Jay Creek	3	178	70	16	50	317
Goose Creek	121	136	82	37	6	382
Oshetna River	19	92	155	_73	167	506
TOTAL CATCH	378	823	605	394	447	2,647

TABLE E.3.16: ARCTIC GRAYLING HOOK AND LINE TOTAL CATCH BY TRIBUTARY BETWEEN THE MOUTH AND PROPOSED IMPOUNDMENT ELEVATIONS (PIE*) AND MOUTH IN THE IMPOUNDMENT STUDY AREA, 1981

* PIE for Fog and Tsusena Creeks = 1455 ft; all other tributaries = 2185 ft.

Source: ADF&G 1981f

١

		Рори	Petersen lation Estima	
Stream	Reservoir	1981	1982 Number	1982 Number per mile
Fog Creek	Devil Canyon	176		
Tsusena Creek	Devil Canyon	1,000		
Deadman Creek	Watana	979	734	1,835
Watana Creek	Watana		3,903	323
Kosina Creek	Watana	2,787	5,544	1,232
Jay Creek	Watana	1,089	1,592	455
Goose Creek	Watana	1,327	949	791
Oshetna River	Watana	2,017	2,426	1,103

TABLE E.3.17: ARCTIC GRAYLING POPULATION ESTIMATES FOR THE REACH OF MAJOR TRIBUTARIES IN THE WATANA AND DEVIL CANYON IMPOUNDMENT AREAS

1 1981 Estimate based on Arctic grayling greater than 8 inches (200 mm) long.

1982 Estimate based on all ages, but underestimates ages 1 and 2.

.

Source: ADF &G 1981f ADF &G 1982e

2

Age	Number Marked	Number Recaptured	Number Caught	Estimated Number in Age Group
1 & 2	91	3	84	1955
3	226	10	222	4602
4	263	23	263	2904
5	321	44	342	2454
6	204	48	270	1134
7	81	16	107	521
7 and above	27	7	41	180
Totals	1281	1 53	1 3 3 7	13, 750

.

TABLE E.3.18: PETERSEN POPULATION ESTIMATE FOR ARCTIC GRAYLING BY AGE GROUP IN THE WATANA IMPOUNDMENT AREA, SUMMER 1982

Stream	Miles from Richardson Highway	Species Present
Trib, to Jack R.	132,5	grayling
Trib. to Jack R.	132	grayling
Unnamed Creek (Jack R. System)	128	grayling ¹
Edmonds Creek	121	Various species from the Nenana River, including grayling, northern pike, burbot, whitefish, and sculpin.
Nenana R. Oxbow	119.75	11
Nenana R. Oxbow	119.5	11
Trib. to Nenana R.	118	11
Trib. to Nenana R.	117.8	11
Trib. to Nenana R.	116.8	11
Unnamed Creek (Nenana System)	114.5	"

TABLE E.3.19: STREAMS CROSSED BY DENALI HIGHWAY (CANTWELL TO WATANA ACCESS JUNCTION)

 $^{1}\ensuremath{\mathsf{Can}}$ be reasonably expected, but not verified.

r

<u>.</u>	Miles from	
Stream	Denali Highway	Species Present
Unnamed Creek (Nenana System)	0.3	(grayling) ¹
Tributary to Lily Creek	2.0	(grayling, cottids) ¹
Lily Creek	3.2	(grayling, cottids) ¹
Seattle Creek	6 . 0	(grayling, cottids) ¹
Unnamed Creek (Seattle System)	7.8	(grayling, cottids) ¹
Unnamed Creek (Seattle System)	8.8	(grayling, cottids) ¹
Trib. to Brushkana Creek	11.0	(grayling, cottids) ¹
Trib. to Brushkana Creek	11.6	(grayling, cottids) ¹
Brushkana Creek	12.0	(grayling, cottids) ¹
Trib. to Brushkana Creek	14.0	(grayling, cottids) ¹
Unnamed Creek (Brushkana System)	17.0	(grayling, cottids) ¹
Unnamed Creek (Brushkana System)	18.5	(grayling, cottids) ¹
Deadman Creek	20.1	grayling, (whitefish, suckers, & cottids)
Trib. to Deadman Creek	23.2	(grayling, cottids) ¹
Trib. to Deadman Creek	24, 3	probably none ²
Trib. to Deadman Creek	25, 1	probably none ²
Trib. to Deadman Creek	28.0	(grayling, cottids) ¹
Trib. to Deadman Creek	29 . 1	probably none ²
Trib. to Deadman Creek	29.8	probably none ²
Trib. to Deadman Creek	31.8	probably none ²
Trib. to Deadman Creek	37.8	(grayling, cottids) ¹
Trib. to Deadman Creek	38, 5	(grayling, cottids) ¹

TABLE E. 3. 20: STREAMS TO BE CROSSED BY WATANA ACCESS ROAD (DENALI HIGHWAY TO WATANA DAM)

¹ Can be reasonably expected, but not verified.

 2 Steep contours on downstream side of road probably preclude fish from this reach.

Stream	Miles from Watana Road	Species Present
Tsusena Creek	2.5	grayling, whitefish, longnose sucker, Dolly Yarden, and sculpin
Unnamed Creek	8.0	(grayling) ¹
Unnamed Creek	8,6	(grayling) ¹
Unnamed Creek	12.2	(grayling) ¹
Unnamed Creek	13,9	(grayling) ¹
Unnamed Creek	15,9	(grayling) ¹
Trib. to Devil Creek	18.8	(grayling) ¹
Devil Creek	22.0	(grayling) ¹
Trib. to Devil Creek	24.4	(grayling) ¹
Trib. to Devil Creek	24.6	(grayling) ¹
Trib. to Devil Creek	26 . 3	(grayling) ¹
Susitna River	35.1	grayling; chinook, coho, pink and chum salmon; whitefish; sucker; burbot; sculpin; and Dolly Varden
Unnamed Creek	36.0	(grayling) ¹
Stream	Miles from Gold Creek Station	Species Present
Gold Creek	0.4	chinook, coho, pink salmon
Susitna River Encroachment	2.5	chinook, coho, chum, pink and sockeye salmon; grayling; rainbow trout; whitefish; sucker; burbot; Dolly Varden; and sculpin.
Unnamed Creek	3.6	(grayling, Dolly Varden)
Unnamed Creek	4.8	(grayling, Dolly Varden)
Jack Long Creek Trib.	9 . 5	(grayling, Dolly Varden)
Jack Long Creek Encroachment	9-12	chinook, coho, chum, and pink salmon

TABLE E.3.21: STREAMS TO BE CROSSED BY DEVIL CANYON ACCESS ROAD AND TRANSMISSION LINE BETWEEN WATANA AND DEVIL CANYON, AND RAILROAD SPUR FROM GOLD CREEK TO DEVIL CANYON

¹ Can be reasonably expected, but not verified.

Stream	Fish Species Present
Ship Creek	pink, chinook, coho, chum, and sockeye salmon; Dolly Varden; rainbow trout.
Fossil Creek	none
Otter Creek	rainbow trout
Knik Arm	pink, chinook, coho, chum, and sockeye salmon
Unnamed Creek (T, R4W, Sec. 18)	un known
Little Susitna River	coho, pink, chinook, chum, and sockeye salmon; rainbow trout; Dolly Varden; grayling
Tributary to Fish Creek (T17N, R5W, Sec. 18, 19)	(rainbow trout; coho, chinook salmon) ¹
Fish Creek	chinook, sockeye, pink, and coho salmon; rainbow trout
Unnamed Creek (T18N, R5W, Sec. 8)	(coho) ¹
Unnamed Creek (T18N R5W, Sec. 5)	(coho) ¹
Unnamed Creek (T19N, R5W, Sec.)	unknown .
Willow Creek	coho, chum, pink, and chinook salmon; grayling; rainbow trout; Dolly Varden; whitefish

. 4

TABLE E.3.22: WATER BODIES TO BE CROSSED BY THE SUSITNA TRANSMISSION LINE (ANCHORAGE TO WILLOW)

L

¹ Can be reasonably expected, but not verified.

) tream	Fish Species Present
Nenana River #1	coho saimon, grayling, round whitefish, longnose sucker, slimy sculpin, burbot, Dolly Varden
Dry Creek	unknown
Panguinge Creek	coho salmon, longnose sucker, round whitefish, Dolly Varden, grayling, slimy sculpin
ittle Panguinge Creek	coho salmon, grayling, round whitefish, slimy sculpin, Dolly Varden, longnose sucker
Slate Creek	unknown
Fributary to Slate Creek	unknown
Rock Creek	unknown
Jnnamed Creek 9S, R9W, S36, FM	unknown
June Creek	unknown
ear Creek	unknown
lenana River #2	grayling; northern pike; slimy sculpin; chum, chinook and coho salmon; inconnu; ¹ whitefish; burbot
Jnnamed Creek F8S, R8W, S31, FM	unknown
lindy Creek	unknown
ributary to Windy Creek	unknown
Unnamed Creek 182, R9W, S1, FM	unknown
Jnnamed Creek 175, R8W, S18, FM	unknown
Jnnamed Creek 172, R7W, S8, FM	unknown
Innamed Creek T7S, R7W, S5, FM	unknown
Jnnamed Creek 16S, R7W, S32, FM	unknown
Fributary to Fish Creek 76S, R7W, S21, FM	(grayling and other species found in Fish Creek) ²
Fributary to Fish Creek 16S, R7W, S22, FM	(grayling and other species found in Fish Creek) ²
Fish Creek	grayling, round whitefish, slimy sculpin ³ Doliy Varden, longnose sucker

-

garma,

TABLE E.3.23 (Cont'd)

Stream

Unnamed Creek (2 crossings) T6S, R7W, S10, FM

Unnamed Creek (2 crossings) T6S, R7W, S3, FM

Unnamed Creek T4S, R7W, S34, FM

Unnamed Creek T4S, R7W, S28, FM

Tanana River complex

Tanana Tributary complex

Little Goldstream Creek

Little Goldstream Tributary T3S, R6W, S4, FM

Little Goldstream Tributary R3S, R6W, S3 FM

Little Goldstream Tributary T3S, R6W, S2, FM

Little Goldstream Tributary T3S, R6W, S1, FM

Little Goldstream Tributary T2S, R5W, S32, FM (2 crossings)

Bonanza Creek Tributary T2S, R5W, S33, 34, 36, FM (3 crossings)

Ohio Creek Tributary T2S, R5W, S7, FM

Ohio Creek Tributary T2S, R4W, S5, FM (2 crossings)

Ohio Creek Tributary T1S, R4W, S33, FM

Ohio Creek Tributary TiS, RAW, S27, FM

Fish Species Present

unknown

unknown

unknown

unknown

chum, coho and chinook salmon; inconnu; northern pike; grayling; whitefish; burbot

unknown

grayling, round whitefish, blackfish, longnose sucker, slimy sculpin

(grayling and other species found in Little Goldstream Creek)

(grayling and other species found in Little Goldstream Creek)

(grayling and other species found in Little Goldstream Creek)

(grayling and other species found in Little Goldstream Creek)

(grayling and other species found in Little Goldstream Creek)²

un known

unknown

unknown

unknown

unknown

TABLE E.3.23 (Cont'd)

Stream	Fish Species Present
Ohio Creek Complex	un known
Ohio Creek Complex	un known
Alder Creek Complex	unknown
Emma Creek	unknown
Alder Creek Tributary T1S, R3₩, S13, FM	un known

- 1 2 Inconnu = <u>Stenodus</u> <u>leucichthys</u> Not verified but can reasonably
- 3
- be expected Slimy sculpin = Cottus cognatus Blackfish = Dallia pectoralis 4

Sources: ADF&G (1982g) Tarbox et al. (1978)

TABLE E.3		TS OF SURFAC UATIC HABITA		WORK ON PHYSICAL	AND CHEMICAL	CHARACTERIS	TICS	
Construction Activity/			Rock	Subgrade	Aggregate	Equipment	Borrow Pits	Long-term
Physical and Chemical Effects	Clearing	Earthwork	Excavation	Stabilization	Production	Areas	& Landfills	Effects
Increased Surface Runoff	x	x		x	x	x	x	x
Lower Water Table	x	x						х
Leaching of Soil Mineral	x	x			-			
Fluctuation of Streamflow	x	x		x	x	x		х
Fluctuation in Water Level	x	x		x	×	x		x
Downstream Flooding	x	x			X	х		X
Increased Sedimentation	x	x	x	×	x	x		×
Reduced Habitat Diversity	x	х	X		×	х		x
Increased Turbidity	x	x	. x	x	x	x	x	x
Changes in Water Temperature	× (x	x	ĺ	х	x	ĺ	
Changes in pH	x	x	x		x	x		
Change in Chemical Composition	x	x	x	x	х	х		
Addition of Hydrocarbons				x		x		
Increased Oxygen Demand	x	х	x		x			

TABLE E.3.24: EFFECTS OF SURFACING AND EARTHWORK ON PHYSICAL AND CHEMICAL CHARACTERISTICS OF AQUATIC HABITAT

Source: Darnell et al. 1978.

IST YEAR							
Month	Rate (ft/day)	End of Month WSEL (ft)	Increase in WSEL (ft)				
APR	· _	1460	-				
MAY	5, 4	1626	166				
JUN	2.4	1699	73				
JUL	4.0	1823	124				
AUG	0,9	1851	28				
SEPT	0,6	1869	18				
ОСТ	0, 2	1875	6				
NOV	_	1875	-				
DEC	-	1875	-				

TABLE E.3.25: INCREASE IN WATER SURFACE ELEVATION (WSEL) DURING INITIAL FILL OF WATANA RESERVOIR*

Total increase in water surface elevation for the year is 415 ft.

2ND YEAR						
Month	Rate (ft/day)	End of Month WSEL (ft)	Increase in WSEL (ft)			
JAN	-	1875	-			
FEB	-	1875	-			
MAR	-	1875	-			
APR	< 0, 1	1875				
MAY	1,0	1908	33			
JUN	2,5	1984	76			
JUL	1,7	2036	52			
AUG	0,8	2062	26			
SEPT	0,3	2070	8			
0CT	0.3	2080	10			
NOV	0,1	2080	-			
DEC	<0.1	2080	-			

Total increase in water surface elevation for the year is 208 ft.

3RD YEAR						
Month	Rate (ft/day)	End of Month WSEL (ft)	Increase in (WSEL (ft)			
JAN	, -	2080	-			
FEB .	-	2080	-			
MAR	~	2080	-			
APR	<0,1	2080	-			
MAY	0, 5	2197	17			
JUN	1.3	2139	42			
JUL	1.0	2171	32			
AUG	0.4	2185	14			

Total increase in water surface elevation for the year is 102 ft.

* Under median flow conditions.

£.,

ALASKA RESOURCES LIBRARY U.S. DEPT. OF INTERIOR

Month	Pre-Project	Proposed Minimum	Forecast Streamflows					
	(cfs)	(cfs)	1st yr (cfs)	% Change	2nd yr (cfs)	% Change	3rd yr (cfs)	% Change
ост	5800	2000	-	-	4300	-26	2000	- 66
NOV	2600	1000	-	-	2600	0	2600	0
DEC	1800	1 000	-	-	1800	0	1800	0
JAN	1500	1000	-	-	1500	0	1500	0
FEB	1200	1 000	-	-	1200	0	1200	· 0
MAR	1100	1000	-	-	1100	0	1100	0
APR	1400	1 000	_	-	1200	-14	1400	0
MAY	13200	6000	9800	- 26	6000	-55	6000	- 55
JUN	27800	6000	22200	-20	6000	-78	6800	- 76
JUL	24400	6500	7300	-70	6500	-73	6500	-73
AUG	22200	12000	16800	-24	12000	-46	14100	-36
SEPT	13300	9300	9300	-30	9300	-30	13300	0
A VERAGE ANNUAL	9700	4000	6900	-29	4 500	-54	4900	-49

TABLE E. 3.26: COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT GOLD CREEK DURING INITIAL FILLING OF WATANA RESERVOIR*

*Under median flow conditions.

Species	Passage Into Sloughs	Passage Into Tributaries	Reduced Stough + Mainstem Spawning Habitat	Reduced Ground Water Upwelling	Rearing in Mainstem	Increased Winter Water Temp.	Decreased Summer Water Temp.	Decreased Mainstem Turbidity	Decreased Mainstem Scouring	Downstream Passage in Mainstem	Downstream Passage from Sloughs
Chum - Adult - Embryo - Juvenile	-	0	-	- 0	-	-	-	O	+	0	-
Sockeye - Aduit - Embryo - Juvenile	-		-	- 0	o	-	-	+ +		0 0	-
Chinook - Aduit - Juvenile	o	0 , 0	o	-	+	+	-	+	+	o	o
Coho - Adult - Juvenile	0	0 0	o	-	+	+	Ξ	+	+	ο	0
Pink - Adult - Embryo - Juvenile	-	o	-	o		-	-	o	+	o	-
Rainbow Trout - Adult - Juvenile	- 0	0 0	o	0 0	+ +	+ +	-	+ +	+ +	0 0	0 0

TABLE E.3.27: MAJOR IMPACT ISSUES DURING FILLING OF WATANA RESERVOIR REGARDING SALMONIDS IN THE TALKEETNA-TO-DEVIL CANYON REACH

and a

22/202

~

Note: o = no impact

and a second

.

+ = beneficial impact

- = adverse impact

Blank = not present in the habitat considered.

TABLE E.3.28: MAJOR TRIBUTARIES TO BE INUNDATED

Tributary	Total Length Inundated	Length Exposed During Annual Drawdown	Length Re-inundated During May-June
Deadman Creek	2.3 miles	0.8	0_ 4
Watana Creek	10,0	0, 7	0, 5
Kosina Creek	4.2	0,8	0, 4
Jay Creek	3, 2	0, 8	0.4
Goose Creek	1,2	0,8	0,3
Oshetna River	2.0	1.6	0.6

TRIBUTARIES INUNDATED BY THE WATANA RESERVOIR

TRIBUTARIES INUNDATED BY THE DEVIL CANYON RESERVOIR

Tributary	Total Length Inundated
Tsusena Creek	0 <mark>.</mark> 2 miles
Fog Creek	1.0
Devil Creek	1.4
Chinook Creek (RM 157)	1.3
Cheechako Creek (RM 152.4)	1.6

See Tables E.2.10 and E.2.11 for complete list of tributaries to be inundated, and Figures E.3.21 and E.3.23 for locations.

² May-June = Arctic grayling spawning and incubation period.

Month	Pre-Project	Proposed Minimum				Streamflow		
	(cfs)	(cfs)	1st yr (cfs)	% Change	2nd yr (cfs)	% Change	3rd yr (cfs)	% Change
OCT	13700	10100	-	-	12400	-9	10100	-26
NOV	5800	4400	-	-	5800	0	5800	0
DEC	4200	3400	-	-	4200	0	4200	0
JAN	3500	3000	-	-	3500	0	3500	0
F₿B	3000	2700	-	-	3000	0	3000	0
MAR	2600	2500	-	-	2600	0	2600	0
APR	3200	2800	-	-	3000	-6	3200	0
MAY	27700	20400	24200	-13	20400	-26	20400	-26
JUN	64200	42300	58200	-9	42300	-34	43100	-33
JUL	63200	45800	46600	-26	45800	-28	45800	-28
AUG	55900	46400	51200	-8	46400	-17	4 5800	-13
SEPT	32300	28400	28400	-12	28400	-12	32300	0
A VERA GE ANNUA L	23300	17700	20400	-12	182 00	-22	18300	-21

TABLE E.3.29: COMPARISON OF A VERAGE MONTHLY STREAMFLOWS AT SUNSHINE DURING INITIAL FILLING OF WATANA RESERVOIR*

* Under median flow conditions.

. .

1

Month	Pre-Project	Proposed Minimum				t Streamflow		-
	(cfs)	(cfs)	Tst yr (cfs)	% Change	2nd yr (cfs)	% Change	3rd yr (cfs)	% Change
ост	30100	26400	30100	0	28700	-5	26400	-12
NCV	12700	11200	12700	0	12700	0	12700	0
DEC	8200	7400	8200	0	82 00	0	82 00	0
JAN	7 900	7500	7 900	0	7900	0	7 900	0
FBB	7000	6800	7000	0	7000	0	7000	0
MAR	6300	6200	6300	0	6300	0	6300	0
APR	7000	6600	7000	0	6800	-3	7000	0
MAY	60500	53100	56900	-6	53100	-12	53100	-12
JUN	123700	101800	118000	-5	101800	-18	102600	-17
JUL	131900	114600	115400	-1 3	114600	-13	114600	-13
AUG	110800	101400	106200	-4	101400	-8	1 03 500	-7
SEPT	66000	62100	62100	-6	62100	-6	66000	0
A VERA GE ANNUA L	47700	42100	44800	-6	42600	-11	42900	-10

and the test the construction of the

TABLE E.3.30: COMPARISON OF A VERAGE MONTHLY STREAMFLOWS AT SUSITINA STATION DURING INITIAL FILLING OF WATANA RESERVOIR*

* Under median flow conditions.

Species	Passage Into Sloughs	Passage Into _Tributaries	Reduced Slough Spawning Habitat	Reduced Ground Water Upwelling	Rearing in Mainstem	Over- wintering Habitat	Increased Winter Water Temp.	Decreased Mainstem Turbidity	Decreased Mainstem Scouring	Downstream Passage in Mainstem	Downstream Passage from Sloughs
Chum - Adult - Embryo - Juvenile	-	0	-	- -				o	+	o	_
Sockeye - Aduit - Embryo - Juvenile	-		-	- -	o	•	Ξ	+		o	_
Chinook - Adult - Juvenile	o	0 0	o		+	+	+	+	o	o	o
Coho - Adult - Juvenile	o	0 0	o		+	+	+	+	o	o	o
Pink - Adult - Embryo - Juvenile	-	o	-	0 0 0				+	o	-	- ·
Rainbow Trout - Adult - Juvenile	- 0	0 0	o	0 0	+	+	+ +	+ +	0 0	0 0	0 0

TABLE E.3.31: MAJOR IMPACT ISSUES DURING OPERATION OF WATANA RESERVOIR REGARDING SALMONIDS IN THE TALKEETNA-TO-DEVIL CANYON REACH

3

Note: o = no impact

+ = beneficial impact

)

- = adverse impact

blank = not present in the habitat considered.

Month	Pre-Project (cfs)	Post-Project (cfs)	% Change
OCT	5700	8000	+40
NOV	2500	9200	+268
DEC	1800	10700	+4 94
JAN	1500	9700	+547
FEB	1200	9000	+650
MAR	1100	8300	+655
APR	1400	7700	+4 50
MAY	13200	10400	-22
JUN	27800	11400	-59
JUL	23900	9200	-62
AUG	21700	13400	-38
SEPT	13300	9800	-26

TABLE E.5.52:	COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT GOLD	
	CREEK STATION UNDER OPERATION OF WATANA DAM	

-

ţ

•

<u>Month</u>	Pre-Project (cfs)	Post-Project (cfs)	发 Change
OCT	13700	16000	+17
ΝΟΫ	5800	12400	+114
DEC	4200	13000	+2 10
JAN	3500	11700	+234
FEB		10600	+266
MAR	2600	9800	+277
APR	2900	9500	+206
МАҮ	27700	24900	-10
JUN	64500	47900	-26
JUL	63300	48300	-24
AUG	56500	47400	-16
SEPT	32700	29000	-11

 $\overline{}$

(1997)

,

TABLE E.3.33: COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT SUNSHINE STATION UNDER OPERATION OF WATANA DAM

Month	Pre-Project (cfs)	Post-Project (cfs)	% Change
OCT	304 00	32400	+7
NOV	12800	19200	+50
DEC	8300	17000	+105
JAN	8000	16100	+101
FEB	7100	14700	+107
MAR	6300	13500	+114
APR	7000	13300	+90
MAY	60800	57600	- 5
JUN	124500	107400	-14
JUL	132400	117000	-12
AUG	1 12000	102300	-9
SEPT	66800	62600	-6

ø

TABLE E.3.34: COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT SUSITNA STATION UNDER OPERATION OF WATANA DAM

				发 Change	Compared to:
Month	Pre- Project (cfs)	<u>Watana Alone</u> (cfs)	Watana/ Devil Canyon (cfs)	Pre- Project	<u>Watana Alone</u>
0CT	5,700	8,000	7,800	+ 37	- 3
NOV	2, 500	9,200	9 , 600	+284	+ 4
DEC	1,800	10,700	11,300	+528	+ 6
JAN	1,500	9, 700	10,600	+607	+ 9
F EB	1,200	9,000	10,200	+750	+1 3
MAR	1,100	8, 300	9, 300	+745	+12
APR	1,400	7,700	8,100	+479	+ 5
MAY	13,200	10,400	8,700	- 34	-16
JUN	27,800	11,400	9,900	- 64	-13
JUL .	23, 900	9, 200	8, 400	- 65	- 9
AUG	21,700	13,400	12,600	- 42	- 6
SEPT	1 3, 30 0	9, 800	10, 500	- 21	+ 7
					κ.

/

A4 - A

TABLE E.3.35: COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT GOLD CREEK OF THE TWO OPERATIONAL WATANA AND DEVIL CANYON DAMS

TABLE E.3.36:	COMPARISON OF AVERAGE MON	NTHLY STREAMFLOWS AT SUNSHINE
	OF THE TWO OPERATIONAL W/	TANA AND DEVIL CANYON DAMS

T

				% Change Compared To:		
<u>Month</u>	Pre- Project (cfs)	<u>Watana Alone</u> (cfs)	Watana/ Devil Canyon (cfs)	Pre- Project	Watana Alone	
хт	13,700	16,000	15,800	+ 15	- 1	
NOV	5, 800	12,400	12,900	+1 22	+ 4	
DEC	4,200	13,000	13,600	+223	+ 5	
JAN	3, 500	11,700	12,600	+260	+ 8	
FEB	2, 900	10,600	11,800	+3 01	+1 1	
MAR	2 , 600	9, 800	10,700	+307	+ 9	
APR	3,100	9,500	9,800	+216	+ 3	
MAY	27,700	24, 900	23, 200	- 16	- 7	
JUN	64,500	47,900	46,200	- 28	- 4	
JUL	63, 300	48, 300	47,600	- 25	- 1	
AUG	56 , 500	47,400	46,800	- 17	- 1	
SEPT	32, 700	29,000	29,600	- 9	+ 2	
		· · ·				

% Change Compared to:

				/	<u> </u>
Month	Pre- Project (cfs)	<u>Watana Alone</u> (cfs)	Watana/ DevilCanyon (cfs)	Pre- Project	Watana Alone
OCT	30,400	32,400	32,200	+ 6	< 1
NOV	12, 800	19,200	19, 800	+ 55	+ 3
DEC	8,300	17,000	17,600	+112	+ 4
JAN	8,000	16, 100	17,000	+113	+ 6
FEB	7,100	14,700	15,900	+124	+ 8
MAR	6,300	13, 500	14, 400	+129	+ 7
APR	7,000	13,300	13,600	+ 94	+ 2
MAY	60,800	57, 600	55 , 9 00	- 8	- 3
JUN	124,500	107,400	105,700	- 15	- 2
JUL	132, 400	117,000	116, 300	- ·12	+ 1
AUG	112,000	102,300	101,700	- 9	+ 1
SEPT	66 , 800	62,600	63, 300	- 5	+ 1

TABLE E.3.37: COMPARISON OF AVERAGE MONTHLY STREAMFLOWS AT SUSITNA OF THE TWO OPERATIONAL WATANA AND DEVIL CANYON DAMS

.

. .

<u>% Change Compared to:</u>

	OCCURRENCE					MITIGATI	ON FEATURE	
IMPACT ISSUE	Watana Development		Devil Canyon Development		Watana Develjopment		Devil Canyon Development	
	Filling	Operation	Filling	Operation	Filling	Operation	Filling	Operation
Passage of Adult Salmon	×	x		x	- Downstream release	- Downstream release		- Downstream release
Adverse Impacts to Slough Habitat	X	×		X	 Downstream release Slough modi- fication Replacement habitat through modification of side channels 	- Downstream release - Slough modi- fication - Replacement habitat through modification of side channels		- Downstream release - Slough modi- fication - Replacement habitat through modification of side channels
Loss of Side-Channel and Mainstem Salmon Spawning Areas	x	x		X	- Replacement habitat through modification of side channels	- Replacement habitat through modification of side channels		- Replacement habitat through modification of side channels
Altered Thermal Regime	×	x		x		Multiple level outlet		Multiple lev outlet
Gas Supersaturation	×	x		 	Fixed cone valves			Fixed cone valves
lnundation of Tributary Habitat	x		x		Grayling propagation and restock - ing program		Grayling propagation and restock- ing program	
Out-migration of Juvenile Anadromous Fish	x	x		. X	Downstream release	Downstream release		Downstream release

TABLE E. 3, 38: IMPACT ISSUES AND PROPOSED MITIGATION FEATURES FOR ANTICIPATED FILLING AND OPERATIONAL IMPACTS TO AQUATIC HABITATS, SUSITNA HYDROELECTRIC PROJECT

		<u>Capital C</u>	osts (x 1000) Dollars)		
Mitigation Feature	Number Proposed	Labor	Materials	Total	Annual Operating and Maintenance Costs (x 1000 dollars)	
Downstream Mitigation ¹						
Protective Slough Berms	10	1,100	400	1,500	75	
Restructured Slough Mouth	8	96	64	160	8	
Lowered and Restructured	8	1, 152	768	1,920	96	
Slough Profile	0	19152	/00	1, 92.0	90	
Augmented Upwelling System	4	444	296	740	37	
Side-Channel Scarlfying	4 3	240	160	400	20	
Slough Gravel Cleaning	3	3 50	250	600	600	
Mainstem Spawning Bed	2	636	424	1,060	80	
			Total	\$ 6,380	Total 916	
Impoundment Mitigation						
Impoundment Mitigation Grayling Propagation Research Grayling Hatchery 3	1	143	47	190	NA	
Graviing Hatchery	1	450	300	750	110	
Grayling Hatchery" 3 Rainbow Trout Production	1	225	150	357		
			Total	\$ 1,315	Total 148	
Dam Structures ⁴						
Multiple Level Intakes	1	18,400	-	18,400	NA	
Cone Valves - Watana	6	47,100	-	47,100	NA	
Cone Valves - Devil Canyon	7	14,600	-	14,600	NA	
			Total	\$80,100	_	
	Tot	al for Fisheries	Mitigation	\$87,795	Annual O & M 1,064	

TABLE E.3.39: PROPOSED FISHERIES MITIGATIONS WITH ESTIMATED CAPITAL AND ANNUAL OPERATING AND MAINTENANCE COSTS

¹ Costing details are in Table E.3.45

 2 Assumes 3-year study, costing details are in Table E.3.45

 3 Addition to an existing facility, costing details are in Table E.3.45 Costing details are in Exhibit D

Mitigation Measure	Project Phase for Implementation	Year of Implementation Design or Construction Planning or Starting							
Construction Mitigation									
Preconstruction Design									
and Planning	Final Design	1983	(NA)						
Construction Monitoring	Watana Construction	1984	1985						
Operational Mitigation									
Downstream Mitigation									
Protective Slough Berms	Watana Filling	1985	1991						
Slough Mouth Excavation	Watana Filling	1985	1991						
Lowered and Restructured Sloughs	Watana Filling	1985	1991						
Induced Upwelling	Watana Filling	1985	1991						
Side-Channel Scarifying	Watana Filling	1985	1991						
Slough Gravel Cleaning	Watana Filling	1985	1991						
Mainstream Spawning Beds	Watana Filling	1985	1991						
Impoundment Mitigation Grayling Propagation									
Research	Final Design	1983	1984						
Grayling Hatchery	Watana Construction	1986	1989						
Rainbow Trout Introductions	Devil Canyon Operation	2000	2002						
Multiple Level Intakes	Watana Filling	1984	1993 (on-line)						
Cone Valves	Watana Operation	1984	1994 (on-line)						
Operational Monitoring	Watana Filling	1985	1991						

TABLE E.3.40: SCHEDULE FOR IMPLEMENTING FISHERIES MITIGATION PROGRAM

T

Year	Management (\$70/hr)	Fleid Labor (\$50/hr)	Field Equipment	Travel (\$200/hr)	Total (x 1000)
1985 ¹	140,000	240.000	15,000	9,600	404.6
1986	140,000	240,000	5,000	9,600	394.6
1987	140,000	240,000	5,000	9,600	394.6
19882	140,000	240,000	5,000	9,600	394.6
1989 [∠]	210,000	720,000	40,000	19,200	989.2
1990	227,500	960,000	15,000	28,800	1,231,3
1991	227, 500	960,000	5,000	28,800	1,221,3
1992	227,500	960,000	5,000	28,800	1,221,3
1993	175,000	720,000	5,000	19,200	919.2
1994	140,000	240,000	5,000	9,600	394.6
1995,	140,000	240,000	5,000	9,600	394,6
1996 ³	175,000	480,000	25,000	19,200	699, 2
1997	175,000	480,000	5,000	19,200	679.2
1998	175,000	480,000	5,000	19,200	679,2
1999	175,000	480,000	5,000	19,200	67 9.2
2000	175,000	480,000	5,000	19,200	679,2
2001	140,000	240,000	5,000	9,600	394 6
2002	140,000	240,000	5,000	9,600	394.6

TABLE E.3.41: CONSTRUCTION COSTS FOR WATER QUALITY AND FISHERIES MONITORING IN 1982 DOLLARS FROM 1985 TO 2002

Total \$12,165.1

 $^{1}\ensuremath{\operatorname{Construction}}$ of access road and facilities.

÷.

-

- ² Construction of Watana Dam and facilities plus transmission line.
- ³ Construction of Devil Canyon Dam and facilities plus postconstruction monitoring of Watana facilities.

TABLE E.3.42: ALASKA DEPARTMENT OF FISH AND GAME STANDARDS FOR PASSING ARCTIC GRAYLING TO BE USED ON SUSITNA HYDROELECTRIC PROJECT STREAM CROSSINGS

Length of Culvert (feet)	Average Cross-Sectional Velocities at Outlet ² (ft/sec)
	4.6
40	3.8
50	3,2
60	2.8
70	2,6
80	2,3
90	2.1
100	2.1 2.0
150	1.8
200	1.8
200	1.8

- ¹ Each culvert must be installed so that at least 20 percent of the diameter of each round culvert or at least 6 inches of the height of each elliptical or arch type culvert are set below the streambed at both the inlet and outlet of the culvert except when using bottomless arch culverts or to avoid solid rock excavation.
- 2 Average cross-sectional velocities at the outlet of the culvert may not exceed the velocities in the table except for a period not exceeding 48 hours during the mean annual flood.

Source: Edfelt 1981

T

TABLE E.3.43: ALASKA DEPARTMENT OF FISH AND GAME TEMPORARY STREAM DIVERSION STANDARDS

Temporary diversion channels in all streams frequented by fish must be constructed and controlled in the following manner:

- (1) The width and depth of the temporary diversion channel must equal or exceed 75 percent of the width and the depth, respectively, of that portion of the streambed which is covered by ordinary high water at the diversion site, unless a lesser width or depth is specified by the department on the permit for activities undertaken during periods of lower flow;
- (2) During excavation or construction, the temporary diversion channel must be isolated from water of the stream to be diverted by natural plugs (unaltered streambank) left in place at the upstream and downstream ends of the diversion channel;
- (3) The diversion channel must be constructed so that the bed and banks will not significantly erode at expected flows;
- (4) Diversion of water flow into the temporary diversion channel must be conducted by first removing the downstream plug, then removing the upstream plug, then closing the upstream end and the downstream end, respectively, of the natural channel of the diverted stream;
- (5) Rediversion of flow into the natural stream must be conducted by removing the downstream plug from the natural channel and then the upstream plug, then closing the upstream and the downstream end, respectively, of the diversion channel;
- (6) After use, the diversion channel and the natural stream must be stabilized and rehabilitated as may be specified by permit conditions.

Source: Edfelt (1981)

TABLE E.3.44: ALASKA DEPARTMENT OF FISH AND GAME STANDARDS FOR BLASTING NEAR AN ANADROMOUS FISH STREAM

DISTANCE TO ANADROMOUS FISH STREAM MEASURED IN FEET

Explosive Charge Weight in Pounds

Substrate	- 1	2	5	10	25	100	500	1000	
Rock	50	80	120	170	2 70	530	1 180	1670	
Frozen Material	50	70	110	160	250	500	1120	1580	
Stiff Clay, Gravel, ice	40	60	100	140	220	440	990	1400	
Clayey Silt, Dense Sand	40	50	80	120	180	370	820	1160	
Medium to Dense Sand	30	50	70	100	160	320	720	1020	
Medium Organic Clay	20	30	50	70	100	210	460	660	
Soft Organic Clay	20	30	40	60	100	190	440	620	

1 Required distances for charge weights not set forth in this table must be computed by linear intropolation between the charge weights bracketing the desired charge if the charge weight is between one and 1000 pounds; example: for 15 pounds of explosive in rock substrate - required distance = 170 feet + 15 lbs-10 lbs 25 lbs-10 lbs (270 feet-170 feet) = 203 feet;

for charge weights greater than 1000 pounds, the required distance may be determined by linear extropolation.

Source: Edfelt 1981

I

TABLE E.3.45: COST ASSUMPTIONS USED IN DEVELOPING ESTIMATED COSTS FOR FISHERIES MITIGATIONS

	Mitigation Feature		Cost
•	Protective Berm:		
	Assumes constructing a 5,000-cu per yard.	bic yard berm with an i	mpermeable core at \$3
	Construction		
	Labor Materials		\$110,000 40,000
		Total	\$150,000
	Maintenance ²		\$ 7,500/year
•	Restructured Slough Mouth:		
	Assumes excavating a 6-foot wid depth of 3 feet with stabilizat \$30 per yard.		
	Construction		
	Labor Materials		\$ 12,000 8,000
		Total	\$ 20,000
	<u>Maintenance</u> 2		\$ 1,000/year
•	Lowered and Restructured Slough	:	
•	Lowered and Restructured Slough Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya	channel for a distance	of 1,200 feet to a
•	Assumes lowering a 30-foot wide	channel for a distance	of 1,200 feet to a
•	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya	channel for a distance	of 1,200 feet to a \$ 72,000 <u>48,000</u>
•	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor	channel for a distance	\$ 72, 000
•	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor	channel for a distance rd.	\$ 72,000 48,000
-	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor Materials	channel for a distance rd.	\$ 72,000 48,000 \$120,000
_	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor Materials <u>Maintenance</u> ²	rd. rd. Total ng every 5 feet for two	\$ 72,000 <u>48,000</u> \$120,000 \$ 6,000/year 200-foot sections at
-	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor Materials <u>Maintenance²</u> Augmented Upwelling System: Assumes cross pipes for upwelli	rd. rd. Total ng every 5 feet for two	\$ 72,000 <u>48,000</u> \$120,000 \$ 6,000/year 200-foot sections at
-	Assumes lowering a 30-foot wide depth of 1.5 feet at \$30 per ya <u>Construction</u> Labor Materials <u>Maintenance</u> ² Augmented Upwelling System: Assumes cross pipes for upwelli a width of 30 feet located 300	rd. rd. Total ng every 5 feet for two	\$ 72,000 <u>48,000</u> \$120,000 \$ 6,000/year 200-foot sections at

9

2008

Labor Materials Cross Pipes Distribution and Control Material Processing		\$ 33,000 22,000 10,000 20,000 110,000
	Total	\$185,000
Maintenance ²		\$ 9,250

TABLE E.3.45 (Cont'd)

Т

			,
	Mitigation Feature		Cost
5.	Side-Channel Scarifying:	<u></u>	· · · · · · · · · · · · · · · · · · ·
	Assumes scarifying a 30-foot wide channe \$30 per yard.	al for a distanc	ce of 1,000 feet at
	Construction		
	Labor Materials		\$ 60,000 40,000
		Total	\$100,000
	<u>Maintenance</u> ²		\$ 5,000
б.	Slough Gravel Cleaning:		
	Assumes cleaning a 30-foot wide channel depth of 3 feet at \$50 per yard.	for a distance	of 1,200 feet to a
	Construction		
	Labor Materials		\$120,000 80,000
		Total	\$200,000
7.	Mainstem Spawning Bed:		
	Creation of a submerged bed to 60 feet of fill at \$80 per yard.	vide and 1,000 f	feet long with 3 feet
	<u>Construction</u>		
	Labor Materials		\$318,000 212,000
		Total	\$530,000
	Maintenance ²		\$26,500
8.	Grayling Propagation Research:		
	Assumes 2 research personnel 6 months/ye	ear for 3 years	•
	Labor Materials		\$143,000 47,000
		Total	\$190,000
9.	Grayling Hatchery:		
	Assumes it is appended to an existing f footage, including the cost of one addi	acility; costs tional housing	are based on square unit.
	Construction		
	Labor Materials		\$450,000 300,000
		Total	\$750,000 ³

1.1.1

TABLE E.3.45 (Cont'd)

janarri,

12343

And the second

A4237844

201

<u>pullina,</u>

Mitigation	Feature	Cost
Operation ar	nd Maintenance	
Labor Materials		\$ 78,000 32,000
	Total	\$ 110,000 per year
Planting Cos	ts	\$ 10,000 per year
0. Rainbow Trou	it introductions:	
Assumes the the grayling	need to provide production facilities w g hatchery.	ith half the capacity o
Construction	<u>1</u>	
Labor Materiais		\$ 225,000 150,000
	Total	\$ 375,000
Operation an	nd Maintenance	
Labor Materiais		\$ 35,000 3,000
	Total	\$ 38,000
1. Aquatic Stud	lles Program:	
Continue aqu	natic studies during project construction	n.
<u>Construction</u>	<u>1</u>	
Labor Materials		\$5,000,000 1,000,000
	Total	\$6,000,000
Operation		
Labor Materials		\$ 394,800 116,600

¹ Includes equipment rental.

² Average Annual Operating Cost. Yearly maintenance is not anticipated; maintenance may be needed on a 3-5 year cycle.

³ Residence = \$150,000 Hatchery = \$600,000

TABLE E. 3. 46: ESTIMATED SQUARE FEET OF SALMON SPAWNING HABITAT MADE A VAILABLE BY MITIGATION PROCEDURES

Mitigation Feature	Estimated Habitat Area (square feet)
Protective slough bern Restructured slough mouth	1 2
Lowered and restructured slough Augmented upwelling	144,000 48,240
Side-channel scarifying Stough gravel cleaning	120,060
Mainstem spawning bed	120,015
Total habitat reclaimed	432,315

1 2 Protects slough from mainstem flow during winter. 3 Allows access to slough habitats. Maintains quality of slough spawning gravels.

Т

Task	Total Personnel Months Per Year	Personnel Cost (1982 Dollars)	•
Management and Analysis	12	48,000	
Adult and Smolt ² Enumeration	39	116, 500	
Talkeetna to Devil Canyon Production Monitoring	30	92,100	
Resident Fish Stocking Program	15	4 5, 900	
Total Personnel Cost		302, 500	
Contractual Services		56, 900	
Materials		59,700	
Administration and Support Costs		92,300	
Average Annual Fisheries Monitoring Costs		511,400	. <u></u>

TABLE E.3.47: ANNUAL OPERATING COSTS OF FISHERIES MONITORING PROGRAM IN 1982 DOLLARS

¹ Costs are based on 1982 Susitna Hydro Aquatic Studies costs and the estimated level of effort required to perform the monitoring studies.

 $^2\ensuremath{\,\text{Assumes}}$ fish wheels at Sunshine and Curry and a smolt trap at Curry.

TABLE E.3.48: VASCULAR PLANT SPECIES IN THE WATANA AND GOLD CREEK WATERSHEDS AND DOWNSTREAM FLOODPLAIN WHICH ARE OUTSIDE THEIR RANGE AS REPORTED BY HULTEN (1968) (FROM MCKENDRICK ET AL: 1982)

Middle and Upper Basin Extensions:

١

Equisetum fluviatile Lycopodium selago ssp, selago Lycopodium complanatum Picea mariana* Carex filifolia Danthonia intermedia Luzula wahlenbergii Veratrum viride Listera cordata** Platanthera convallariaefolia Platanthera hyperborea Platanthera dilatata Echinopanax horridum Senecio sheldonensis Myrica gale* Ranunculus occidentalis Potentilla biflora Rubus idaeus* Rubus pedatus Pedicularis kanei kanei Pedicularis parviflora Potamogeton robbinsii

Downstream Extensions:

Echinopanax horridum Rubus idaeus*** Scirpus microcarpus Galium triflorum Ainus tenuifolia Circaea alpina Actaea rubra Ribes hudsonianum*** Arnica chamissonis Swamp horsetail Fir clubmoss Ground cedar Black spruce Thread-leaf sedge Timber oatgrass Wahlenberg woodrush Helebore Heart-leaved twinblade Northern bog-orchis Northern bog-orchis White bog-orchis Devil's club Sheldon groundsel Sweet gale Western buttercup Two-flower cinquefoil Raspberry Five-leaf bramble Kane lousewort Lousewort Robbins pondweed

Devil's club Raspberry Small-fruit bulirush Sweet-scented bedstraw Thinleaf alder Enchanter's nightshade Baneberry Northern black currant Arnica

- * Viereck and Little (1972) include the upper Susitna River basin in the range of this species.
- ** This species was recorded by the bird and small mammal survey group from the University of Alaska Museum.
- ***Viereck and Little (1972) include the downstream area in the range of this species.

TABLE E.3.49: CANDIDATE ENDANGERED AND THREATENED PLANT TAXA* SOUGHT IN THE WATANA AND GOLD CREEK WATERSHED SURVEYS WITH NOTES ON THEIR HABITATS AND KNOWN LOCALITIES (FROM MCKENDRICK ET AL. 1982)

.

Species and Habitat	Unofficiai Status**
<u>Smelowskia pyriformis</u> Drury & Rollins North American endemic calcareous scree, talus, in upper Kuskokwim R. drainage	Threatened species
Aster yukonensis Cronq. North American endemic river banks, dry streambeds, river deita sands and gravels Kluane Lake. Koyukuk River	Endangered species
Montia <u>bostockii</u> (A. E. Porsild) S. L. Welsh North American endemic wet, alpine meadows, St. Elias Mtns., Wrangell Mtns.	Endangered species
Papaver alboroseum Hult. Amphi-Beringian weli-drained alpine tundra, Wrangeil Mtns., St. Elias Mtns Cook Iniet lowlands, Alaska Range	Endangered species
Podistera yukonensis Math & Const. North American endemic Sfacing rocky slopes, grasslands at low elevations, Eagle area, Yukon border	Endangered species
<u>Smelowskia borealis</u> (Greene) Drury & Rollins var. <u>viilosa</u> North American endemic alpine calcareous scree, Mt. McKinley Park, Alaska Range	Endangered species
<u>Taraxacum carneocoloratum</u> Nels. North American endemic alpine rocky slopes, Alaska Range, Yukon Ogilvie Mtns.	Endangered species
Other Endangered Species Possibilities Cryptantha shackletteana Eriogonum flavum var. aquilinum Erysimum asperum var. angustatum	Upper Yukon River Eagle, Alaska Upper Yukon River

^{*} Information and status from Murray (1980).

^{**}All species are under review by the U.S. Fish & Wildlife Service for inclusion in the Endangered Species Act of 1973.

TABLE E.3.50:	VEGETATION TYPES (AND SAMPLE LOCATION NUMBERS) SAMPLED
	IN WATANA AND GOLD CREEK WATERSHEDS
	(FROM MCKENDRICK ET AL. 1982

Vegetation Type	Sample Location Number*
Mat and cushion tundra	1-8
Sedge-grass tundra	9-10
Herbaceous tundra	11
Wet sedge-grass tundra	12-14
Open black spruce	15-17
Woodland black spruce	18-22
Open white spruce	23-27
Woodland white spruce	28
Closed birch forest	29-32
Open birch forest	33-34
Closed balsam poplar	35-36
Open balsam poplar	37
Closed aspen	38
Closed mixed conifer-deciduous forest	39-41
Open mixed conifer-deciduous forest	42-49
Closed tall shrub	50-52
Open tali shrub	53
Mixed low shrub	54-62
Willow shrub	63~64

* Sample locations are given in Figure $E_{\bullet}3_{\bullet}74$

TABLE E.3.51: HECTARES AND PERCENTAGE OF TOTAL AREA COVERED BY VEGETATION TYPES IN THE WATANA AND GOLD CREEK WATERSHEDS* (FROM MCKENDRICK ET AL. 1982)

Vegetation Type	Hectares**	Percent of Total Area
Total Vegetation	1,387,607***	85,08
Forest	348,232	21,35
Conifer	307,586	18,86
Woodland spruce	188, 391	11,55
Open spruce	118,873	7,29
Closed spruce	323	0.02
Deciduous	1,290	0,08
Open birch	968	0.06
Closed birch	323	0.02
Mixed	39,355	2,41
Open	23,387	1.43
Closed	15,968	0,98
Tundra	394,685	24,20
Wet sedge-grass	4,839	0,30
(Mesic) sedge-grass	184,358	11,30
Herbaceous alpine	807	0.05
Mat and cushion	65,001	3,99
Mat and cushion/sedge-grass	139,680	8,56
Shrubland	644,690	39,53
Tall shrub	129,035	7.91
Low shrub	515,655	31,62
Birch	33, 549	2,06
Willow	10,645	0,65
Mixed	471,461	28,91
Unvegetated	243,392	14,92
Water	39,840	2.44
Lakes	25,162	1,54
Rivers	14,678	0.90
Rock	113,712	6,97
Snow and ice	89,841	5,51
Total Area	1,630,999	100.00

Based on maps produced at a scale of 1:250,000.

** Differences in resolution as a result of differences in scale may result in some discrepancies for common areas between these figures and those presented in Table E.3.52.

*** 1 hectare = 2,471 acres.

TABLE E.3.52:	HECTARES AND PERCENTAGE OF TOTAL AREA COVERED BY
	VEGETATION TYPES FOR THE AREA 16 km ON EITHER
	SIDE OF THE SUSITNA RIVER FROM GOLD CREEK TO
	THE MACLAREN RIVER*
	(FROM MCKENDRICK ET AL. 1982)

Vegetation Type	Hectares**	Percent of Total Area
Forest	142,306***	30,75
Conifer	115,048	24.87
Woodland spruce-black	62,993	13,62
Woodland spruce-white	13,291	2.87
Open spruce-black	28,304	6,12
Open spruce-white	10,460	2,26
Deciduous	4,393	.94
Open birch	1,498	0.32
Closed birch	2,324	0,50
Closed balsam poplar	571	0.12
Mixed	22,865	4,94
Open conifer deciduous	9,639	2,08
Closed conifer deciduous	13,226	2.86
Tundra	114,728	24,81
Wet sedge grass	3,517	0,76
Sedge grass	27,505	5 95
Sedge shrub	20,073	4,34
Mat and cushion	63, 633	13.76
Shrubland	177,264	38,34
Open tall shrub	15,524	3,36
Closed tall shrub	15,767	3.41
Birch shrub	42,880	9,27
Willow shrub	8,230	1.78
Mixed low shrub	94,863	20 <u>.</u> 52
Herbaceous	18	0.01
Grassland	1,079	0,23
Disturbed	24	0.01
Unvegetated	26,979	5.83
Rock	16,603	3,59
Snow and ice Water	249	0.05
River	4,236	0.92
Lake	5,891	1.27
Total Area	462,398	99,98

Based on maps produced at a scale of 1:63,360.

** Differences in resolution as a result of differences in map scale may result in some discrepancies for common areas between these figures and those presented in Table E.3.51.

1

*** 1 hectare = 2.471 acres.

Т

Category		Average Cover ^{**} (percent)
Total vegetation		98
Overstory (>10 cm dbh)		24
<u>Picea glauca</u>	White spruce	24
Picea mariana	Black spruce	2
Understory (2,5 - 10 cm dbh)		10
Picea glauca	White spruce	3
Picea mariana	Black spruce	2
Shrub layer (>0.5 m tall, <2.5 cm dbh)		5
Picea glauca	White spruce	5 1
Picea mariana	Black spruce	3
Fround layer (<0.5 m tall)		94
Mosses, unidentified		11 -
Feather mosses	Feather moss	29
<u>Ptilium</u> spp.	_ • •	13
Empetrum nigrum	Crowberry	6 5 7
Ledum decumbens	Northern Labrador tea	5
<u>Vaccinium uliginosum</u> Vaccinium vitis-idaea	Bog blueberry Mountain cranberry	6
Equisetum arvense	Meadow horsetail	6
Equisetum silvaticum	Woodland horsetail	8
Linnaea borealis	Twinflower	8
Picea mariana	Black spruce	1
Calamagrostis canadensis	Bluejoint	14

TABLE E.3.53: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN CONIFER VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 9.

Category		Average <u>Cover**</u> (percent)
Total vegetation		100
Overstory (>10 cm dbh) Pica glauca	White spruce	35 35
Understory (2.5 - 10 cm dbh) Picea glauca Alnus sinuata	White spruce Sitka alder	11 3 6
Shrub layer (>0.5 m tall, <2.5 cm dbh) Picea glauca Alnus crispa Rosa acicularis	White spruce American green alder Prickly rose	4 1 4 3
Ground layer (<0.5 m tall) Feather mosses Ptilium spp. Equisetum arvense Equisetum silvaticum Linnaea borealis Betula glandulose Rosa acicularis Ualamagrostis canadensis	Feather moss Meadow horsetail Woodland horsetail Twinflower Resin birch Prickly rose Bluejoint	94 30 24 11 6 15 6 5 23

TABLE E.3.54: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN WHITE SPRUCE VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 5.

Т

Category		Average Cover** (percent)
Total vegetation		96
Overstory (>10 cm dbh)		14
Picea glauca	White spruce	13
Picea mariana	Black spruce	5
Understory (2.5 - 10 cm dbh)		10
Picea glauca	White spruce	4
Picea mariana	Black spruce	5
Shrub layer (>0.5 m tall, <2.5 d	em dbh)	7
Picea mariana	Black spruce	8
Salix spp.	Willow	2
Ground layer (<0.5 m tall)		93
Mosses, unidentified		34
Feather mosses	Feather moss	30
<u>Cladonia</u> spp.	·	. 7
Empetrum nigrum	Crowberry	14
Ledum decumbens	Northern Labrador tea	14
Vaccinium uliginosum	Bog blueberry	10
Vaccinium vitis-idaea	Mountain cranberry	15
Equisetum silvaticum	Woodland horsetail	12
Salix spp. Picea mariana	Willow Black spruce	7 4

TABLE E.3.55: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN BLACK SPRUCE VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

^{*} Number of areas sampled was 3.

Category		Average Cover** (percent)
Total vegetation		99
Overstory (>10 cm dbh) <u>Pica glauca</u>	White spruce	1
Understory (2.5 – 10 cm dbh) <u>Picea</u> <u>mariana</u>	Black spruce	12 11
Shrub layer (>0.5 m tall, <2.5 cm dbh) Picea mariana	Black spruce	17 15
Ground layer (<0.5 m tall) Feather mosses Sphagnum spp. Empetrum nigrum Ledum decumbens Ledum groenlandicum Vaccinium uliginosum Equisetum silvaticum Rubus arcticus Rubus chamaemorus Picea mariana Carex bigelowii Carex spp.	Feather moss Sphagnum moss Crowberry Northern Labrador tea Labrador tea Bog blueberry Woodland horsetail Nagoonberry Cloudberry Black spruce Bigelow sedge Sedge	93 5 62 8 5 23 10 15 5 3 7 6

TABLE E.3.56: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN WOODLAND CONIFER VEGETATION TYPE * IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 6.

ļ

Category		Average Cover** (percent)
Total vegetation		99
Overstory (>10 cm dbh) Pica glauca Populus balsamifera	White spruce Balsam poplar	80 1 75
Understory (2.5 - 10 cm dbh) Populus balsamifera	Balsam poplar	5 5
Shrub layer (>0.5 m tall, <2.5 cm dbh) Populus balsamifera	Balsam poplar	10 5
Ground layer (<0.5 m tall) Ptilium spp. Polytrichum spp. Empetrum nigrum Ledum decumbens Vaccinium uliginosum Vaccinium vitis-idaea Cornus canadensis Populus balsamifera Spiraea beauverdiana	Crowberry Northern Labrador tea Bog blueberry Mountain cranberry Bunchberry Balsam poplar Beauverd spiraea	85 20 5 30 40 40 20 40 1 5

TABLE E.3.57: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED BALSAM POPLAR FOREST VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 1.

**Includes only those species with at least 5 percent cover.

Category		Average Cover** (percent)
Total vegetation		99
Overstory (>10 cm dbh) Pica glauca Betula papyrifera	White spruce Paper birch	7 <i>3</i> 8 68
Understory (2.5 - 10 cm dbh) Picea glauca Betula papyrifera	White spruce , Paper birch	9 5 3
Shrub layer (>0.5 m tall, <2.5 cm dbh) Picea glauca Betula papyrifera	W + spruce Paper birch	3 1 3
Ground layer (<0.5 m tall) Ptilium spp. Polytrichum spp. Vaccinium uliginosum Vaccinium vitis-idaea Equisetum silvaticum Cornus canadensis Calamagrostis canadensis Gymnocarpium dryopteris Mertensia paniculata	Bog blueberry Mountain cranberry Woodland horsetail Bunchberry Bluejoint Oak-fern Tall bluebell	95 15 5 15 5 10 10 16 38 20 10

TABLE E.3.58: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED BIRCH DECIDUOUS FOREST VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 2.

Category		Average Cover** (percent)
Total vegetation	un	99
Overstory (>10 cm dbh)		80
Betula papyrifera	Paper birch	5
Populus tremuloides	Trembling aspen	80
Understory (2.5 – 10 cm dbh)		5
Betula papyrifera	Paper birch	5
Populus tremuloides	Trembling aspen	5
Shrub layer (>0.5 m tall, <2.5 c	em dbh)	. 5
Picea glauca	White spruce	5 5 5 5 5 5 5 5
Betula papyrifera Betula glandulosa	Paper bírch	5
Betula glandulosa	Resin birch	5
Rosa acicularis	Prickly rose	- 5
Salix spp.	Willow	5
Populus tremuloides	Trembling aspen	5
Ground layer (<0.5 m tall)		85
Ptilium spp.		5
Polytrichum spp.		5
Ledum decumbens	Northern Labrador tea	20
Vaccinium uliginosum	Bog blueberry	10
Linnaea borealis	Twinflower	5
Cornus canadensis	Bunchberry	80
Mertensia paniculata	Tall bluebell	2
Epilobium angustifolium Geocaulon lividum	Fireweed	5 5 5 5
Spiraea beauverdiana	Sandalwood Beauwerd epineer	2
Vaccinium vitis-idaea	Beauverd spiraea Mountain cranberry	10
Betula nana	Dwarf arctic birch	
Viburnum edulis	Highbush cranberry	5 5 5 5
Lycopodium annotinum	Stiff clubmoss	5
Lycopodium clavatum	Running clubmoss	5

TABLE E.3.59: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED ASPEN DECIDUOUS VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 1.

**Includes only those species with at least 5 percent cover.

Category		Average Cover** (percent
Total vegetation		100
Overstory (>10 cm dbh) Picea glauca Betula papyrifera	White spruce Paper birch	38 20 12
Understory (2.5 – 10 cm dbh) Picea glauca Betula papyrifera	White spruce Paper birch	7 5 1
Shrub layer (>0.5 m tall, <2.5 cm dbh) Picea glauca Betula papyrifera Salix novae-angliae	White spruce Paper birch Tall blueberry willow	17 2 2 11
Ground layer (<0.5 m tall) Feather mosses Ptilium spp. Empetrum nigrum Ledum decumbens Vaccinium uliginosum Vaccinium vitis-idaea Equisetum silvaticum Cornus canadensis Picea glauca Calamagrostis canadensis Gymnocarpium dryopteris	Feather moss Crowberry Northern Labrador tea Bog blueberry Mountain cranberry Woodland horsetail Bunchberry White spruce Bluejoint Oak-fern	79 18 34 6 16 9 3 13 2 11 8

TABLE E.3.60: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN MIXED CONIFER-DECIDUOUS FOREST VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 8.

Т

Category		Average Cover** (percent)
Total vegetation		98
Overstory (>10 cm dbh)		60
<u>Picea glauca</u> Betul <u>a papyri</u> fera	White spruce Paper birch	33 35
Becola papyrilera	Faper birch))
Understory (2.5 - 10 cm dbh)		8
<u>Picea glauca</u>	White spruce	3
Betula papyrifera	Paper birch	4
Shrub layer (>0.5 m tall, <2.5 cm dbh)		4
Picea glauca	White spruce	3
Ground layer (<0.5 m tall)		88
Ptilium spp.		40
Empetrum nigrum	Crowberry	3
Vaccinium vitis-idaea	Mountain cranberry	8
Equisetum silvaticum Cornus canadensis	Woodland horsetail Bunchberry	24 13
Rubus arcticus	Nagoonberry	7
Calamagrostis canadensis	Bluejoint	30

TABLE E.3.61: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED MIXED CONIFER-DECIDUOUS FOREST VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 3.

**Includes only those species with at least 5 percent cover in any one area sampled.

.

Category		Average Cover** (percent)
Total vegetation		 99
Shrub layer (>0.5 m tall, <2.5 cm dbh) <u>Salix planifolia</u> ssp. <u>pulchra</u>	Diamondleaf willow	13 8. 5
Salix spp.	Willow	
Ground layer (<0.5 m tall) Mosses, unidentified		86 20
Sphagnum spp.	Sphaqnum moss	22
Salix fuscescens	Alaska bog willow	5
Calamagrostis canadensis	Bluejoint	14
Carex aquatilis	Water sedge	38
Carex bigelowii	Bigelow sedge	23

TABLE E.3.62: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN WET SEDGE-GRASS TUNDRA VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 3.

I.

Category		Average Cover** (percent)
Total vegetation	· · · · · · · · · · · · · · · · · · ·	65
Ground layer (<0.5 m tall) Polytrichum spp. arex bigelowii Carex spp.	Hairy-cap moss Willow Bigelow sedge Sedge	65 5 13 30 4

TABLE E.3.63: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN MESIC SEDGE-GRASS TUNDRA VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (MCKENDRICK ET AL. 1982)

* Number of areas sampled was 2.

TABLE E.3.64: PLANT SPECIES LIST OF ONE HERBACEOUS ALPINE TUNDRA STAND IN WATANA AND GOLD CREEK WATERSHEDS (MCKENDRICK ET AL. 1982)

[

Category	Common Names
Lycopodium alpinum	Alpine clubmoss
Lycopodium annotinum	Stiff clubmoss
Lycopodium selago	Fir clubmoss
Equisetum spp.	Horsetail
Carex bigelowii	Bigelow sedge
Carex filifolia	Thread-leaf sedge
Eriophorum angustifolium	Tall cottongrass
Calamagrostis purpurascens	Purple reedgrass
Deschampsia caespitosa	Tufted hairgrass
Festuca rubra	Red fescue
Phleum commutatum	Timothy
Juncus spp.	Rush
Luzula confusa	Northern woodrush
Luzula tundricola	Tundra woodrush
Myosotis alpestris	Forget_me_not
Campanula lasiocarpa	Mountain harebell
Aster sibiricus	Siberian aster
Artemisia arctica	Wormwood
Petasites frigidus	Arctic sweet coltsfoot
Senecio atropurpureus	Ragwort
Sedum rosea	Roseroot
Silene acaulis	Moss campion
Diapensia lapponica	Diapensia
Cassiope tetragona	Four-angle mountain-heather
Epilobium latifolium	Dwarf fireweed
Polemonium acutiflorum	Jacob's ladder
Polygonum bistorta	Meadow bistort
Rumex arcticus	Arctic dock
Aconitum delphinifolium	Monkshood
Anemone narcissiflora	Anemone
Caltha leptosepala	Mountain marsh-marigold
Sanguisorba stipulata	Sitka burnet
Sibbaldia procumbens	Sibbaldia
Salix phlebophylla	Skeletonleaf willow
Salix polaris	Polar willow
Salix reticulata	Netleaf willow
Salix rotundifolia	Least willow
Boykinia richardsonii	Richardson boykinia
Saxifraga tricuspidata Veronica wormskjoldii	Three-tooth saxifrage
Veronica wormskjoldii	Alpine speedwell
Valeriana capitata Polytrichum spp.	Capitate valerian
	Hairy-cap moss

1000

Category		Average Cover** (percent)
Total vegetation		78
Ground layer (<0.5 m tall)		78
Lichens, unidentified		14
Cladonia spp.		8
Empetrum nigrum	Crowberry	8
Ledum decumbens	Northern Labrador tea	7
Vaccinium uliginosum	Bog blueberry	8
Arctostaphylos spp.	Bearberry	7
Betula glandulosa	Resin birch	6
Betula nana	Dwarf arctic birch	10

TABLE E.3.65: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED MAT AND CUSHION TUNDRA VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 8.

Category		Average Cover** (percent)
Total vegetation		96
Understory (2.5 – 10 cm dbh) Alnus sinuata Alnus crispa	Sitka alder American green alder	57 25 32
Shrub layer (>0.5 m tall, <2.5 cm dbh) Alnus sinuata Alnus crispa Ribes spp.	Sitka alder American green alder Currant	38 28 10 8
Ground layer (<0.5 m tall) Equisetum silvaticum Ribes spp. Alnus sinuata Calamagrostis canadensis	Woodland horsetail Currant Sitka alder Bluejoint	62 31 8 7 35

TABLE E.3.66:COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT
SPECIES IN CLOSED TALL ALDER VEGETATION TYPE* IN WATANA AND GOLD
CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 3.

ł

Category		Average Cover** (percent)
Total Vegetation		
Overstory (>10 cm dbh) <u>Picea glauca</u>	White Spruce	10 10
Understory (2,5 - 10 cm dbh) <u>Picea glauca</u> <u>Alnus sinuata</u>	White Spruce Sitka alder	45 5 40
Ground layer (<0,5 m tall Linnaea borealis Alnus Sinuata Calamagrostis canadensis	Twinflower Sitka alder Bluejoint	25 5 5 10

TABLE E.3.67: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN TALL ALDER VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 1.

Category	· · ·	Average Cover** (percent)
Total vegetation		93
Shrub layer (>0.5 m tall, <2.5 cm dbh)	42
Betula glandulosa	Resin birch	10
<u>Salix planifolia</u> ssp. <u>pulchra</u>	Diamondleaf willow	8
Ground layer (<0.5 m tall)		52
Mosses, unidentified		17
Feather mosses	Feather moss	6
Empetrum nigrum	Crowberry	6
Ledum decumbens	Northern Labrador tea	18
Ledum groenlandicum	Labrador tea	4
Vaccinium uliginosum	Bog blueberry	8 8
Vaccinium vitis-idaea	Mountain cranberry	8
Arctostaphylos rubra	Red-fruit bearberry	6
Betula glandulosa	Resin birch	34
Betula nana	Dwarf arctic birch	9

TABLE E.3.68: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN CLOSED LOW SHRUB VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 10.

Category		Average Cover** (percent)
Total vegetation		100
Shrub layer (>0.5 m tall, <2.5 cm dbh) Betula glandulosa	Resin birch	17 5
Ground layer (<0.5 m tall) Feather mosses Ledum groenlandicum Vaccinium uliginosum Betula glandulosa Carex aquatilis	Feather moss Labrador tea Bog blueberry Resin birch Water sedge	83 13 5 15 15 43

TABLE E.3.69: COVER PERCENTAGES FOR TOTAL VEGETATION, VERTICAL STRATA, AND PLANT SPECIES IN OPEN LOW SHRUB VEGETATION TYPE* IN WATANA AND GOLD CREEK WATERSHEDS (FROM MCKENDRICK ET AL. 1982)

* Number of areas sampled was 2.

SPECIES														ond										
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
		-				-										*)		•						
<u>Climacium</u> sp Moss															q ,	,			C					
<u>isoetes muricata</u> Quiliwort											s													
<u>Equisetum fluviatile</u> Horsetail	đ	d	d					с										d				s		S
<u>Sparganium angustifolium Bur reed</u>	с	đ	đ	đ			đ			d	d	с	đ	с		с	đ	s			S	с	c	с
Potamogeton sp Pondweed (narrow-leaved)		с					с	s														-	·	
Potamogeton sp Pondweed (broad-leaved)								s										S				с		d
Potamogeton robbinsii Pondweed																				đ				
Potamogeton fillformis Pondweed																			s		s			
Eriophorum spp Cotton grass																		s						
<u>Carex aquatilis</u> Sedge	d	d			с	с		d	đ								С	ď			:			
Nuphar polysepalum Yellow pond illy		c				d	đ	d	d	d	с	đ	d	đ		d	c		đ		d	đ	d	d
Ranunculus contervoides Buttercup		с		đ		d		5		s					s	s								
<u>Potentilla palustris</u> Marsh fivefinger										s														
Callitriche verna Water starwort															d ,									
<u>Hippuris vulgaris Mare's tail</u>							с			с	s				d		с		с		s	5		s
<u>Menyanthes trifoliata</u> Buckbean																							S	
<u>Utricularia vulgaris</u> Bladderwort											с	d		C	c	d	đ				5		s	d

TABLE E.3.70: AQUATIC PLANT SURVEY, SUSITNA HYDROELECTRIC PROJECT, AUGUST 1980 (FROM MCKENDRICK ET AL. 1982)

* d = dominant, c = common, s = sparse

SPECIES													P	bno	or L	ake	(#)							
"BANK" SPECIES	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
······································						-		<u> </u>								*) _d								
Sphagnum spp Sphagnum moss															c,	"'d	•						d	
<u>Equisetum fluviatile</u> Horsetail		d	d					d		S														
<u>Woodsia</u> sp Woodsia												S												
<u>Calamagrostis</u> <u>canadensis</u> Reed bent grass				d	d	,		d		с							C				'			S
Eriophorum spp Cotton grass				d	d	c			d			d	d	С				8			d		с	
Carex sp Sedge						d							d								d			
<u>Carex</u> aquatilis Sedge		đ	d	d	d	ď	d	ď	d	d		d	8	d	đ	d	d	d		d	d	d	d	
<u>Carex</u> rhyncophysa Sedge			8														s							· • •
<u>Iris setosa</u> Iris		S																						
<u>Salix</u> sp Willow					С							s												8
<u> Potentilla palustris</u> Marsh fivefinger				с	d		C	С		d		C			С	d	С	S	S			с	ď	с
Andromeda polifolia Andromeda		,			с																			
<u>Menyanthes</u> trifoliata Buckbean		S						с		с			d								S		с	
																							•	

and a

and a

The second se

* d = dominant, c = common, s = sparse

TABLE E.3.70

(Contd.)

 TABLE E, 3.70 (Contd)

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
- Total Cover (%)	<1	<5	_(*)	0-1			10-20	<5	-	0-5	0-1	1-5	1-2	80-90	80-100	50-60	1-5	0+1	5–10	40-50	15	20-30	20-35	10-20
Surroundir Wetland Width (Meters)	2	2-3		3-6	6-9	3-6	3-6	2-9	-	15-30	0-3	15-25	35	15-30	15-25	3045	3-15	1-2	2-3	D	6-9	12-15	3-6	2-3
Elevation (Feet)	1950	1700	2300	2300	2180	2180	2800	1950	1950	1975	2300	2280	2410	2340	1850	2300	2 060	2750	1800	3000	2250	2560	2575	2560

Pond or Lake #

* data not recorded

•

TABLE E.3.71: HECTARES AND PERCENTAGE OF TOTAL AREA COVERED BY VEGETATIVE COMMUNITY TYPES IN THE WATANA WATERSHED (MODIFIED FROM MCKENDRICK ET AT. 1982, BASED ON MAPS AT A SCALE OF 1:250,000)

Vegetative Community	Hectares	Acres	Percent of Total Area
Forest	310,155	766, 393	21.29
conifer	300,931	743,600	20,66
woodland spruce	185,608	458,637	12.74
open spruce	115,001	284,167	7.89
closed spruce	323	798	0.02
deciduous	1,290	3,188	0.09
open birch	968	2, 392	0.07
closed birch	323	798	0.02
Mixed	7,933	19,602	0.54
open	7,817	19,316	0.54
closed	134	331	0.01
Tundra	323,612	799,645	22.21
wet sedge	4,839	11,957	0.33
mesic sedge	183,834	454,254	12.62
herbaceous alpine	807	1,194	0.06
mat and cushion	51,690	127,726	3.55
mat and cushion/sedge	82,442	203, 714	5.66
Shrubland	595,519	1,471,527	40.88
tall shrub	93, 379	230,740	6.75
low shrub	497,140	1,228,433	34.13
birch	20,520	50,705	1.41
willow	10,645	26,304	0.73
mixed	465,975	1,151,424	31.99
Unvegetated	227,497	562,145	15.62
water	34,715	85,781	2.38
rock	103,063	254,669	7.07
snow and ice	89,720	221,698	6.16
Total vegetated area	1,229,286	3,037,566	84.38
Total area	1,456,783	3,599,711	100.00

TABLE E.3.72: HECTARES AND PERCENTAGE OF TOTAL AREA COVERED BY VEGETATIVE COMMUNITY TYPES IN THE GOLD CREEK WATERSHED (MODIFIED FROM MCKENDRICK ET AT. 1982, BASED ON MAPS AT A SCALE OF 1:250,000)

1

Vegetative Community	Hectares	Acres	Percent of Total Area
	38,077	94,088	21.86
conifer	6,655	16,445	3-82
woodland spruce	2,783	6,877	1.60
open spruce	3,872	9,568	2.22
closed spruce	-	-	· · · · · ·
deciduous	-	-	-
open birch	-	-	· · ·
closed birch	-	-	-
Mixed	31,422	77,644	18.04
open	15,570	38,474	8.94
closed	15,852	39,170	9.10
Tundra	71,073	175,621	40.80
wet sedge	-		-
mesic sedge	524	1,295	0,30
herbaceous alpine		-	-
mat and cushion	13,311	32,891	7.64
mat and cushion/sedge	57,238	141,435	32.85
Shrubland	49,171	121,501	28.22
tall shrub	30,656	75,751	17.60
low shrub	18,515	45,751	10.63
birch	13,029	32, 195	7.48
willow	· -	· -	_
mixed	5,486	13,556	3.15
Unvegetated	15,895	39,277	9.12
water	5,125	12,664	2.94
rock	10,649	26,314	6.11
snow and ice	121	299	0.07
Total vegetated area	158,321	391,211	90.88
Total area	174,216	430,488	100.00

Category		Mean Percent Cover
Physical Features	······	
Water		+
Bare ground		53
Gravel, cobbles		2
Vegetation Categories		
Litter	, ,	13
Standing dead		+
Perennial grasses		1
Perennial forbs		25
Mosses		+
Lichens		+
Low shrubs		4
Tall shrubs		+
Trees		8
Total vegetation		38
Vegetation by Species or Genus		
Equisetum variegatum	Variegated horsetail	25
Populus balsamifera	Balsam poplar	. 8
Salix alaxensis	Feltleaf willow	4
Salix novae-angliae	Tall blueberry willow	. 1
Salix arbusculoides	Little tree willow	+
Salix sp.	Willow	. +
Astragalus sp.	Milk-vetch	+
Hedysarum sp.	Sweet-vetch	+
Calamagrostis canadensis	Bluejoint	+ .
Eriophorum sp.	Cottongrass	+
Scirpus sp.	Bullrush	+
Alnus tenuifolia	Thinleaf alder	+
Alnus sinuata	Sitka alder	+
Artemisia telesii	Wormwood	+
Nephroma sp.	Nephroma	÷+

TABLE E.3.73: PERCENT COVER IN EARLY SUCCESSIONAL STANDS* ON DOWNSTREAM FLOOD-PLAIN OF SUSITNA RIVER (FROM MCKENDRICK ET AL. 1982)

*Early successional stands were numbers 1, 5, 6, 8, 9, 13, 14, 15, 20, 21, 22, and 25 shown in Figure E.3.34. Number of transects sampled was 42.

.

Category		Mean Percen Cover
Physical Features		
Bare ground		1
Litter		99
egetation Categories		
Standing dead		+
Perennial grasses		38
Perennial forbs		11
Mosses		+
Lichens		+
Low shrubs		6
Tall shrubs		60
Trees		13
Total vegetation		87
egetation by Species or Genus		
Calamagrostis canadensis	Bluejoint	38
Alnus tenulfolla	Thinleaf alder	59
Alnus sinuata	Sitka alder	3
Viburnum edule	Highbush cranberry	1
Epilobium angustifolium	Fireweed	3 13
Populus balsamifera	Balsam poplar	13
Artemisia tilesii	Wormwood	. 3
Salix alaxensis	Feitleaf willow	5 +
Sallx novae-angliae	Tall blueberry willow	
Sallx sp.	Willow	+
<u>Stellaria</u> sp.	Starwort	+
Epilobium latifolium	Dwarf fireweed	+
Rosa acicularis	Prickly rose	+
Ribes spp.	Currant	+
Hedysarum sp.	Sweet-vetch	+
Rubus arcticus	Nagoonberry	+
Rubus Idaeus	Raspberry	+
Trientalls europaea	Arctic starflower	+
Gallum sp.	Bedstraw	+
Poa sp.	Bluegrass	+

TABLE E.3.74: PERCENT COVER IN ALDER STANDS* ON DOWNSTREAM FLOODPLAIN OF SUSITNA RIVER (FROM MCKENDRICK ET AL. 1982)

* Alder stands were numbers 2, 19, 23, and 27 shown in Figure E.3.34. Number of transects sampled was 20.

Category		Mean Percent Cover
Physical Features		
Vegetation Categories		
Litter		95
Standing dead		+
Perennial grasses		23
Perennial forbs		9
Mosses		+
Low shrubs		6
Tall shrubs		48
Trees		62
Total vegetation		9 1
Vegetation by Species or Genus		
Populus balsamifera	Balsam poplar	62
Alnus tenulfolla	Thinleaf alder	40
Alnus sinuata	Sitka alder	8
Calamagrostis canadensis	Bluejoint	23
Viburnum edule	Highbush cranberry	3 3
Artemisia tilesil	Wormwood	3
Heracleum lanatum	Cow parsnip	1
Mertensia paniculata	Tali bluebell	1
Rosa acicularis	Prickly rose	3
Picea glauca	White spruce	+
Sallx novae-angliae	Tall blueberry willow	+
Pyrola secunda	One-sided wintergreen	+
Pyrola sp.	Wintergreen	+
Rubus idaeus	Raspberry	+
Sanguisorba stipulata	Sitka burnet	+
Gallum sp.	Bedstraw	+
Matteuccla struth lopteris	Ostrich fern	+
Streptopus amplexicaulis	Cucumber-root	+

TABLE E.3.75: PERCENT COVER IN IMMATURE BALSAM POPLAR STANDS* ON DOWNSTREAM FLOODPLAIN (FROM MCKENDRICK ET AL. 1982)

*Immature balsam poplar stands were numbers 10, 12, and 26 shown in Figure E.3,34. Number of transects sampled was 18.

ategory		Mean Percen Cover
egetation Categorles	· · _ · _ · _ · _ · · · · · · · · ·	
Litter		100
Standing dead		· · · · +
Perennial grasses		18
Perennial forbs		44
Mosses		1
Low shrubs		40
Tall shrubs		14
Trees		52
Total vegetation		93
egetation by Species or Genus		
Betula papyrifera	Paper birch	42
Picea glauca	White spruce	12
Alnus tenulfolla	Thinleaf alder	10
<u>Alnus sinuata</u>	Sitka alder	5
Viburnum edule	Highbush cranberry	19
Ribes spp.	Currant	5
Rosa acicularis	Prickly rose	20
Calamagrostis canadensis	Bluejoint	18
Dryopteris dilatata	Spinulose shield-fern	7
<u>Gymnocarpium</u> sp.	Oak-fern	4
Echinopanax horridum	Devil's club	4
Cornus canadensis	Bunchberry	1
<u>Mertensia paniculata</u>	Tall bluebell	
Rubus Idaeus	Raspberry	3 1
Epilobium angustifolium	Fireweed Dwarf firewood	· · ·
Epiloblum latifollum	Dwarf flreweed	+
Sallx novae-angliae	Tall blueberry willow Bramble	+
Rubus sp. Rubus arcticus		+
Trientalis europaea	Nagoonberry Arctic starflower	Ŧ

TABLE E.3.76: PERCENT COVER IN BIRCH-SPRUCE STANDS* ON DOWNSTREAM FLOODPLAIN, SUMMER 1981 (FROM MCKENDRICK ET AL. 1982)

1

*Birch-spruce stands were numbers 4, 11, and 29 shown in Figure E.3.34. Number of transects sampled was 20.

TABLE E.3.77:HECTARES AND PERCENT OF TOTAL AREA COVERED BY VEGETATION
TYPES WITHIN THE HEALY TO FAIRBANKS STUDY CORRIDOR
(FROM MCKENDRICK ET AL. 1982)

Vegetation Type*	Hectares	Acres	Percent of Total Area
Forest	86,830	214, 557	77.9
Woodland spruce	1,812	4,477	1.6
Open spruce	31,739	78,427	28.5
Closed spruce	1,347	3,328	1.2
Woodland deciduous	993	2,454	.9
Open deciduous	12,553	31,018	11.3
Closed deciduous	10,384	25,659	9.3
Woodland conifer-deciduous	961	2,375	0.9
Open conifer-deciduous	12,502	30,892	11.2
Closed conifer-deciduous	4,125	10,193	3.7
Open spruce/open deciduous	948	2,343	0.9
Open spruce/wet sedge-grass/ open deciduous	1,993	4,925	1.8
Open spruce/low shrub/wet sedge_grass/open deciduous	7,008	17,317	6.3
Open spruce/low shrub	465	1,149	0.4
Tundra	4,407	10,890	3.9
Wet sedge-grass	2,268	5,604	2.0
Sedge grass	277	684	0.2
Sedge shrub	566	1 , 399	.5
Sedge-grass/mat and cushion	1,296	3,202	1.2
Shrubland	17,199	42,499	15.4
Low mixed shrub	15,405	38,066	13.8
Willow shrub	58	143	.05
Low shrub/wet sedge-grass	1,736	4,290	1.6
Agricultural land	175	432	•2
Disturbed	431	1,065	•4
Unvegetated	2,467	6,096	2.2
Lakes	196	484	•2
River	2,143	5,295	1.9
Gravel	<u> </u>	316	<u>.1</u>
Total Area	111,509	275,539	100.0

*The Tanana Flats portion of the transmission corridor is an area of extremely complex mosaics of various vegetation types. As a result, various complexes were recognized.

.

TABLE E.3.78: HECTARES AND PERCENT OF TOTAL AREA COVERED BY VEGETATION TYPES WITHIN THE WILLOW TO COOK INLET STUDY CORRIDOR (FROM MCKENDRICK ET AL. 1982)

1

.

Vegetation Type	Hectares	Acres	Percent of Total Area
Forest	25,851	63,878	67.0
Woodland spruce	2,457	6,071	6.3
Open spruce	3,402	8,406	8.8
Closed spruce	3,226	7,971	8.4
Open birch	16	40	.04
Closed birch	3,638	8,989	9.4
Open balsam poplar	100	247	.3
Closed balsam poplar	172	425	.5
Open conifer_deciduous	1,697	4,193	4.4
Closed conifer-deciduous	11,143	27',534	28.9
Wet sedge-grass	9,123	22,543	23.7
Shrubland	2,213	5,468	5.7
Closed tall shrub	92	227	•2
Low mixed shrub	2,121	5,240	5.5
Lakes	1,011	2,498	2.6
Disturbed	381	941	1.0
Total Area	38,579	95,328	100.0

1.5

Cover Type	Hectares	Acres	Proportion of Total Area Cleared
loist tundra	37.5	92.8	1.5
let tundra	77.6	191.6	3.1
lpine tundra	17.5	43.3	0.7
Nottomland spruce-			
poplar forest	215.2	531.8	8.6
pland spruce-			
hardwood forest	1168.7	2888.0	46.7
owland spruce-			
hardwood forest	608.1	1502.7	24.3
hrublands	290.3	717.3	11.6
ow brush, muskeg bog	87.6	216.4	
otal:	2502.6	6183.8	100.0%

TABLE E.3.79: AREAS OF DIFFERENT VEGETATION TYPES TO BE CROSSED BY WILLOW-TO-HEALY TRANSMISSION CORRIDOR*

*Calculated from data in Table 22 from Commonwealth Associates (1982). The values here represent the additional clearing of the corridor to 91 m (300 ft) from the 33 m (110 ft) given by Commonwealth Associates (1982).

TABLE E.3.80: AREAS OF EACH VEGETATION TYPE TO BE CROSSED BY WATANA-TO-GOLD CREEK TRANSMISSION CORRIDORS, AND PERCENT TOTAL* FOR WATANA AND GOLD CREEK WATERSHEDS

		atana to 11 Canyo		Devil Canyon to Gold Creek***			
Vegetation Type	ha	acres	<u>8*</u>	ha	acres	<u></u> %*	
Forest	48.3	119.4	0.0	120.5	297.6	0_0	
Woodland white spruce	27.8	68,7	0_0	-	-	-	
Open white spruce	-	-	_	-	-	-	
Open black spruce	_	-	-	5,6	13.8	0.0	
Open birch	0_8	2.0	0.1	2.8	6.9		
Closed birch	3.3	8.2	2,5	-	_	-	
Closed balsam poplar	-	-	-	-	-	-	
Open mixed	-	-		à	-	-	
Closed mixed	16.4	40.5	0.1	112.1	276.9	0.7	
Shrubland	184_8	456.5	0.0	-	-	-	
Closed tall	51.9	128.2	0.0	-	· •	-	
Low (birch)	32.3	79.8	0.1	-	-	-	
Low (Willow)	88.3	218,1	0.8	-	-	-	
Low (mixed)	12.3	30,4	0.0	-	-	-	
Tundra	146.7	362.4	0.0	11.2	27.7	0.0	
Wet sedge-grass	· · · -	-	_	11.2	27.7	0.2	
Sedge-grass	47.4	117.1	0.0	-	-	-	
Sedge shrub	48.2	119.1	****	-	-	-	
Mat and cushion	51.1	126.2	0.1	-	-	-	
Totai	379.8	938,3		131.7	325.3	_	

Percent of total area of each vegetation type in entire Watana and Gold Creek watersheds, based on 1:250,000-scale mapping (McKendrick et al. 1982). Based on clearing width of 300 ft. Based on clearing width of 510 ft. Data not available for entire Watana and Gold Creek watersheds.

**

ł

TABLE E.3.81: VEGETATION AND WETLAND CLASSES FOUND IN THE PROPOSED SUSITNA IMPOUNDMENT AND BORROW AREAS

Mapping Unit (Viereck & Dyrness 1980)	FWS Wetland Class (Cowardin et al. 1979)
Lakes, ponds	Lacustrine unconsolidated bottom, aquatic bed, unconsolidated shore
Rivers, streams	Riverine Upper Perennial rock bottom, unconsolidated bottom, rocky shore, unconsolidated shore
Wet sedge-grass	Palustrine or Lacustrine emergent
Low shrub	Palustrine scrub-shrub
Birch shrub	Palustrine scrub-shrub
Willow shrub	Palustrine scrub-shrub
Open black spruce	Palustrine forested
Woodland black spruce	Palustrine forested
Open white spruce	Palustrine forested
Closed white spruce	Palustrine forested
Open balsam poplar	Palustrine forested
Closed balsam poplar	Palustrine forested

TABLE E.3.82: HECTARES OF DIFFERENT WETLAND TYPES* BY PROJECT COMPONENT (FROM MCKENDRICK ET AL	, 1982)
--	---------

		WATANA F	ACILITY									
		BORROW AREAS										
Wetland Type	impoundment, Dam and Spiilways	Camp, Village and Airstrip	A	D	E	F	H	t				
alustrine forested	7,408	1,	252	16	133	80	345	15				
Palustrine scrub-shrub	1,126	142	62	212		199	38					
Palustrine emergent Lacustrine	139		8	8								
emergent Lacustrine Riverine	4 54 _2,182	8										
Tota I	10,913	150	322	236	133	279	383	15				
	·····	DEVIL CANYO	N FACILITY									
Wetland Type	Impoundment, Dam and Spillways	Camp and Vill	age		Borro	ow Area K						
Palustrine forested	800					11						
^p alustrine shrub-scrub	43					29						
alustrine emergent acustrine	12				×							
emergent Lacustrine Riverine	1 810											
Total	1,666	-0-				40						

*Wetland types according to Cowardin et al. (1979).

and and the state of the state

TABLE E.3.83: HECTARES OF DIFFERENT VEGETATION TYPES TO BE IMPACTED BY THE WATANA FACILITY COMPARED WITH TOTAL HECTARES OF THAT TYPE UPSTREAM OF GOLD CREEK IN THE SUSITNA WATERSHED AND IN THE AREA WITHIN 16 km OF THE SUSITNA RIVER* (MODIFIED FROM MCKENDRICK ET AL. 1982)

an an a	Dec d		<u></u>	Borrow Areas ¹		as ¹				Percent of 16 km*				
Vegetation Type	Dam and Spillways	1 mpoundment	Camp	Village	Airstrip	A	D	E	F	<u> </u>	1	Total	That Type	That Type
Forest	34****	10784				181	53	180	81	451	34	11798	3.4	8.3
Woodland spruce-														
black	8	3870				179	16			224		4297	3 . 1	6,8
Woodland spruce-														
white		397						71	69			537	3,1	4.0
Open spruce-black		2864								121	15	3000	4.0	10,6
Open spruce-white		769				2		62	11			844	4.0	8.0
Open birch	1	325						,				326	33.7	21.8
Closed birch	13	460					5					478	148.0**	20.5
Closed baisam poplar		3										3	***	0,5
Open conifer-														-
deciduous	5	1337					32			106		1480	6.4	15.4
Closed conifer-													•	
deciduous	7	759						47	1		19	833	5,2	6.3
Tundra		84				70	8					162	0_1	0.1**
Wet sedge-grass Sedge-grass		84					8					92	1,9	2,6
Sedge shrub						70						70	<u>.</u> .	0 1##
Mat and cushion	A.C.	1674	67	60	17	70 81	004		199	38		70	0.1	0.1**
Shrubland	46	1674	63	62	17	81	224		199	20		2449	0.4	1.4
Open tall shrub	6	227				. !						234	0.4 ***	1.5
Closed tall shrub	17	287					12		105			317		2.0
Birch shrub	1	443	34	35	13	4	88		195			813	2.4	1.9
Willow shrub	<u> </u>	66			_				4	17		87	0,8	1.0
Mixed low shrub	22	651	29	27	4	75	124			21		953	0.2 ***	1.0
Herbaceous		45										45	***	250,0**
Grassland														
Disturbed				•								a.a		- -
Unvegetated	13	2104		8		1	2 2					2128	0.8	7,9
Rock	1	59					2					62	0.1	0,4
Snow and ice														
River	12	2007										2019	13.7	47.7
Lake		38		8						·-	· · · ·	47	0.2	0.8
Total	93	14736	63	70	17	333	287	180	280	489	34	16582	1.0	3.6

Area given is above maximum impoundment fill level.

* An area 16 km (10 mi) on either side of the Susitna River from Gold Creek to the mouth of the Maclaren River.

** Hectares are apparently greater in the impact areas than for the entire basin, because the basin was mapped at a much smaller scale, and many of the stands did not appear at that scale.

*** Areas of this type were too small to be mapped at the scale at which the watershed was mapped.

**** 1 hectare = 2,471 acres.

TABLE E.3.84: HECTARES OF DIFFERENT VEGETATION TYPES TO BE AFFECTED BY THE DEVIL CANYON FACILITY COMPARED WITH TOTAL HECTARES OF THAT TYPE IN THE WATANA AND GOLD CREEK WATERSHEDS AND IN THE AREA WITHIN 16 km OF THE SUSITNA RIVER* (MODIFIED FROM THE MCKENDRICK ET AL. 1982)

	Dam and		<u> </u>		Borrow#1	****	Percent of Watershed Total For	Percent of 16 km* Area For
Vegetation Type	Spillways	Impoundment	Camp	Village	Area K	Total	That Type	That Type
Forest	16****	2289	36	39	119	2 499	0.7	1.8
Woodland spruce-black		133				133	0.3	0.2
Woodland spruce-white		20				20	0.3	0.2
Open spruce-black	4	300			11	315	1.3	1.1
Open spruce-white		329				329	1.3	3,2
Open birch		57				57	5,9	3.8
Closed birch	3	430				433	133,7**	18_6
Open balsam poplar	-	6	1			6	***	
Closed balsam poplar		8				8	***	1.4
Open conifer-		-				_		•••
deciduous	7	279				286	1.2	3.0
Closed conifer-	•						••=	
deciduous	2	727	36	39	108	912	5.7	6,9
Tundra	-	11				11	0.0	0.0
Wet sedge-grass		ii				11	0.2	0,3
Sedge-grass								•••=
Sedge shrub								
Mat and cushion								
Shrubland		70			18	88	0.0	0,1
Open tall shrub		2				2	0.0	0,0
Closed tall shrub		ī				1	0.0	0.0
Birch shrub		49			18	67	0.2	0,1
Willow shrub		14			10	14	0,1	0.2
Mixed low shrub		4				4	0.0	0.0
Herbaceous		7					0.0	
Grassland								
Disturbed								
Unvegetated	2	826			11	839	0.3	3,1
Rock	- ,	15			• •	15	0.0	õ, i
Snow and ice								
River	1	810				811	5,6	19,2
Lake	<u>i</u>	1		· · · ·	<u> </u>	13	0.1	0.2
Total	18	3 196	36	39	148	3 437	0,2	0.7

* An area 16 km (10 mi) on either side of the Susitna River from Gold Creek to the mouth of the Maclaren River.

** Hectares of closed birch are apparently greater in the impact areas than for the entire basin, because the basin was mapped at a much smaller scale, and many of the closed birch stands did not appear at that scale.

1

. .

*** Balsam poplar stands were to small to be mapped at the scale at which the watershed was mapped.

彌湯

.

***** 1 hectare = 2.471 acres. ***** Borrow area G (not included) will consist of approximately 22 ha with stands of woodland and open black spruce, closed mixed forest, and open tall shrub.

TABLE E.3.85: AREAS OF EACH VEGETATION TYPE TO BE CLEARED FOR ACCESS, AND PERCENT TOTAL* FOR WATANA AND GOLD CREEK WATERSHEDS

	. †	ali Hig o Watan Road) *	a		De	atana t vil Can Road) *	yon	to	ll Cany Gold Cr ilroad)	eek
Vegetation Type	ha	acres	\$		ha	acres	\$*	ħa	acres	\$*
Forest	0.3	0,9	0.0		37.4	92.4	0.0	28.3	70.0	0.0
Woodland white spruce	-	-	-		14.1	34.8	0.0	-	-	-
Open white spruce	0.3	0.9	0.0		3.7	9,1	0.0	-	-	-
Open black spruce	-	-	-		-	-	-	1.5	3.7	0.0
Open birch	-		-		-	-	-	0_6	1,5	0.1
Closed birch	-	-	-		0.7	1.7	0.8	-	-	-
Closed balsam poplar	-	-	-		-	-	-	0,3	0.7	***
Open mixed	. 🛥	-		. *	4.2	10,4	0.0	5,7	14,1	0.0
Closed mixed	-	-	-		14.7	36.3	0.1	20.2	50.0	0,3
Shrubland	138.8	342.8	0.1		90.8	224.3	0.0	-	-	-
Closed tall	-	-	-		24.8	61.3	0.0	-	-	-
Low (birch)	50,6	125.0	0.2		12.4	30,6	0.0	-	- '	-
Low (willow)	73,5	181.6	0.7		48.4	119,6	0.5	-	-	. 🛥
Low (mixed)	. 14.7	36 . 3	0.0		5.2	12.8	0.0	-	-	•
Tundra 🦿	53.4	131.9	0.0		61.1	150.9	0.0	0,8	2.0	0.0
Wet sedge-grass	10.2	25.2	0.2		-	-	-	0.8	2.0	0.0
Sedge-grass	15,1	37.3	0.0		10,4	25.7	0.0	-	-	
Sedge shrub	-	-	-		16.7	41.3	****	-	· · ·	-
Mat and cushion	28.1	69 . 4	0.0		34 _• 0	84.0	0.1	-	-	· -
TOTAL	192,5	476,5			189.3	467.6		29,1	72.0	

Percent of total area of each vegetation type in entire Watana and Gold Creek watersheds, based on 1:250,000-scale mapping (McKendrick et al. 1982). Based on clearing width of 120 ft. Based on clearing width of 50 ft. Data not available for entire Watana and Gold Creek watersheds. ×

.

** ***

Vegetation/Habitat		y to banks		to Cook let	Tot	tal
Туре	ha	acres	ha	acres	ha	acres
Forest	1150.7	2843.4	535.3	1322.9	1686.0	4166.3
Woodland spruce-black	33.3	82.2	15.5	38.2	48.8	120.4
Woodland spruce-white	JJ•J	02.2		JU-2	40.0	120+4
Open spruce-black	514.1	1270.2	73.5	181.6	587.6	1451.8
Open spruce-white						
Closed spruce	55.9	138.2	46.3	113.9	102.2	252.1
Open deciduous	112.4	277.6			112.4	277.6
Closed deciduous	55.9	141.5			55 . 9	141.5
Open brich						
Closed birch			86.1	212.8	86.1	212.8
Woodland conifer-						
deciduous	21.6	53.4			21.6	53.4
Open conifer-deciduous Closed conifer-	188.3	465.2	B3.9	207.3	272.2	672.5
deciduous	45.2	111.6	228.9	568.3	274.1	679.9
Open spruce/open						
deciduous	23.1	57.0			23.1	57.0
Open spruce/wet sedge-grass/		٩				
open deciduous	32.2	79.6			32.2	79.6
Open spruce/low shrub/ wet sedge-grass/						
open deciduous	52.5	129.8		~~	52.5	129.8
Open spruce/low shrub	14.7	36.4			14.7	36.4
Tundra	37.2	91.8	75.5	186.6	112.7	278.4
Wet sedge-grass	23.3	55.2	75.5	186.6	98.8	241.8
Sedge-grass	7.5	18.4			7.5	18.4
Sedge shrub	7.4	18.2			7.4	18.2
Shrubland	231.7	572.4	37.7	93.2	269.4	665.6
Open tall shrub						
Closed tall shrub				~-		
Birch shrub						
Low mixed shrub	220.6	545.1	37.7	93.2	258.3	638.3
Low shrub/wet						
sedge-grass	11.1	27.3			11.1	27.3
Disturbed	9.3	22.9			9.3	22.9
Unvegetated	13.B	34.1	0.9	2.3	14.7	36.4
Lakes	2.7	6.7	0.9	2.3	3.6	9.0
Rivers	11_1	27.3			11.1	27.3
Totals:	2875.7	7105.7	1299.0	3209.3	4174.7	10315.7

TABLE E.3.86: AREAS OF DIFFERENT VEGETATION TYPES TO BE CROSSED BY TRANSMISSION CORRIDORS*

1

*Calculated from values in Table 53 in McKendrick et al. (1982). Right-of-way width was adjusted to 91 m (300 ft) along the entire transmission corridor.

TABLE E.3.87: COMPARISON BETWEEN AERIAL HABITAT CLASSIFICATIONS AND THOSE OF VIERECK AND DYRNESS (1980) USED TO CLASSIFY OBSERVATIONS OF RADIO-COLLARED MOOSE IN THE NELCHINA AND SUSITNA RIVER BASINS OF SOUTH-CENTRAL ALASKA FROM 1977 THROUGH MID-AUGUST

(from ADF&G 1982a)

Aerial Habitat Classifications Equivalent Classification from Viereck and Dyrness (1980)

Dense tall spruce (white or unknown)

Medium density, tall height spruce (white or unknown)

Sparsely dense tall spruce (white or unknown)

Dense medium height spruce (white, black or unknown)

Medium density, medium height spruce (white, black or unknown)

Sparseiy dense, medium height spruce (white, black or unknown)

Medium density, short spruce (black or unknown)

Sparsely dense short spruce

Riparian willow

Upland willow & brush

Aspen

Riparian hardwood or unidentified

Alder

Rock/ice

Open white spruce

Open white spruce, open mixed forest, closed mixed forest

Woodland white spruce, open mixed forest, closed mixed forest

Open black spruce

Open black spruce, open mixed forest, closed mixed forest

Woodland white spruce, open mixed forest, closed mixed forest

Open black spruce, open mixed forest, closed mixed forest

Woodland black spruce, open mixed forest, closed mixed forest

Willow shrub, wet sedge-grass tundra

Willow shrub, sedge shrub tundra, mixed low shrub

Closed balsam poplar

Open birch forest, closed birch forest

Closed tall shrub, open tall shrub, willow shrub

Rock/ice

TABLE E.3.88:	MONTHLY USE OF HABITAT TYPES BY RADIO-COLLARED MOOSE OF BOTH SEXES AND ALL AGES AS DETERMINED FROM FIXED-WING AIRCRAFT FROM OCTOBER 1976 THROUGH
	MID-AUGUST 1981 IN THE MIDDLE AND UPPER SUSITNA AND NELCHINA RIVER BASINS (from ADF&G 1982a)

Vegetation ¹ Classification	_Jar ∦	1 <u>.</u> %	Feb #	. 5	Mar. #	x	Apri ∦	 %	<u>May</u> #	F	<u>June</u> #	<u>z</u>	July #	<u>8</u>	Aug. #	75 7	Sept.	r	0ct. #	*	<u>Nov</u> #	∕ <u>•</u> 死: 1	Dec.	. F	<u>Tota</u> #	1 75
Birch	0	0	0	0	0	0	0	0	2	.7	1	•3	. 1	.6	0	0	0	0	0	0	0	0	0	0	4	.2
Unidentified hardwood	0	0	0	0	0	0	0	0	0	0	1	.3	0	0	0	0	0	0	0	0	1	1.1	1	1.1	3	.2
Dense medium height black spruce	2	4.8	2	3.3	0	0	8	6.7	12	4.4	21	6,8	10	5,9	10	7.4	9	7.8	4	3.0	2	2.2	1	1.1	81	4,6
Dense medium height white spruce	0	0	0	0	0	0	3	2.5	2	•7	0	0	0	0	o	0	 	•9	2	1.5	1	1.1	0	0	9	•2
Dense short black spruce	2	4.8	1	1.7	1	•2	2	1.7	6	2.2	5	1.6	0	0	1	. 7	5	4.3	1	. 7	2	2.2	1	1.1	27	1.5
Dense tall black spruce	0	0	0	0	1	•2	1	. 8	0	0	0	0	4	2.4	0	0	0	0	0	0	0	0	1	1.1	7	.4
Dense tall white spruce	1	2.4	6	10.0	7	3,4	4	3.4	9	3.3	8	2.6	2	1.2	0	0	2	1.7	2	1,5	2	2.2	4	4.3	47	2.7
Alder	0	0	0	0	0	0	0	0	0	0	0	0	2	1,2	2	1.5	0	0	0	0	0	0	0	0	4	.2
Dense medium height black spruce	0	0	 · 0	0	0	0	0	0	0	0	. 0	0	0	0	2	1.5	0	0	0	0	0	ò	0	0	2	.1
Medium dense medium height black spruce	4	9.5	 17	28.3	57	27.8	38	31.9	84	31.0	59	19 . 1	36	21,3	23	16.9	27	23.3	18	13.3	13	14.1	17	18,3	393	22.5
Medium dense short spruce	6	14.3	2	3,3	21	10.2	7	5,9	15	5.5	29	9.4	9	5.3	11	8.1	8	6.9	2	1.5	2	2.2	2	2.2	114	6.5
							Į		Į		1														1	

TABLE E.3.88 (Page 2)

Vegetation ¹ Classification	Jar #	<u>,</u>	Feb, #	द्र	<u>Mar</u> , #	*	Apri #	<u> </u>	May #	3	June #	, 76	July #	/ <u>%</u>	Aug. #	\$ 1	Sept.	ţ	0ct. #	75	<u>Nov</u> #	⊻. % ∦	Dec.	%	Total #	<u>z</u>
Medium dense tall spruce	0	0	0	0	1	.5	3	2.5	3	1.1	2	. 6	5	3.0	4	2.9	0	0	0	0	0	0	1	1.1	19	1.1
Medium dense tall white spruce	2	4.8	5	8.3	5	2.4	9	7.6	14	15,2	18	5.8	4	2.4	. 11	8.1	7	6.0	10	7.4	3	3,3	4	4.3	92	5,3
Upland brush and willow	14	33,3	18	30.0	34	16.6	12	10_1	44	16.2	72	23.3	53	31.4	32	23.5	29	25 . 0	58	43.0	35	38.0	40	43.0	441	25.2
Sparse dense medium spruce	8	19.0	6	10.0	58	28.3	24	20.2	56	20.7	57	18.4	21	12.4	17	12,5	14	12.1	24	17.8	19	20.7	11	11.8	315	18.0
Sparse short spruce	2	4.8	1	1.7	13	6.3	3	2,5	14	5.2	22	7.1	17	10,1	6	4.4	9	7.8	2	1.5	7	7,6	8	8.6	104	6.0
Sparse tall spruce	1	2.4	0	0	1	.5	0	0	4	1,5	0	0	5	3.0	4	2.9	1	.9	0	0	2	2.2	0	0	18	1.0
Sparse tall white spruce	0	0	2	3.3	6	2.9	5	4.2	6	2.2	14	4.5	0	0	13	9.6	4	3.4	12	8.9	3	3,3	. 2	2,2	67	3.8
Column Total	42	2,4	60	3.4	205	11.7	119	6.8	271	15,5	309	17.7	167	9.7	136	7.8	116	6.6	135	7.7	92	5,3	93	5.3	1747	100.0

a

1

¹ Aerial habitat classifications and the approximate Viereck & Dyrness equivalents are given in Table E.3.87.

Month	Jan.	Feb.	March	April	Мау	June	July	Aug.	Sept.	0ct.	Nov.	Dec.	Tota!
Mean elevation	2800	2736	2686	2577	2641	2690	2755	2790	2745	2997	2953	2955	2749
Standard deviation	461.8	468 <u>.</u> 0	442.4	461.9	449.0	426,6	531.2	509 . 6	451.8	488,6	480.4	475.7	
Sample size	66	98	285	204	341	424	2 18	174	130	193	168	1 16	2417
Range of elevations Minimum Maximum	1800 3900	1400 3900	1700 4600	1500 4100	1400 3800	1300 4400	_ 4200	1800 4800	1800 4000	1400 4200	1450 4400	1600 4600	

TABLE E 3 80.	SUMMARY OF ELEVATIONAL USE BY APPROXIMATELY 200 RADIO-COLLARED MOOSE (BOTH SEXES AND ALL AGE CLASSES) FROM
	OCTOBER 1976 THROUGH MID-AUGUST 1981 IN THE MIDDLE AND UPPER SUSITNA AND NELCHINA RIVER

y

TABLE E.3.90: OCCURRENCE AND MEAN PERCENT OF CANOPY COVERAGE FOR SPECIES OF RIPARIAN (R) AND NON-RIPARIAN (NR) VEGETATION AND HABITAT TYPES OBSERVED AT RELOCATION SITES FOR 6 MALE MOOSE CAPTURED AND RADIO-COLLARED ALONG THE SUSITNA RIVER SOUTH OF TALKEETNA, ALASKA, AND MONITORED DURING CALVING, SUMMER, BREEDING, AND TRANSITIONAL PERIODS FROM MARCH 16 TO OCTOBER 15, 1981

Desi

(from ADF&G 1982b)

								Seasona	I Period ¹				<u> </u>			
Vegetative	ND -	Calv	ring R		NR	Summ	er R		NR	Bree	ding R			Tran	sitio R	ns
type	<u>(N</u>	=30)		» N=0)		=38)		% 1= <u>3</u>)		21)		N=4)		-58)		N=6)
Total % of relocatio	ons	100%	0	8	93	5%		7 %	84	1%	1	6%	91	18	1	9%
Alder	10	20	0	-	25	24	3 *	30	17	34	2	80	15	21	3	31
Birch	22	52	0	-	29	45	3	37	12	33	3	23	43	47	2	30
Spruce	24	28	0	-	30	19	3	23	20	21	2	25	53	35	5	16
Cottonwood	1	40	0	-	2	31	1	т	3	13	1	т	5	22	4	73
Sed ge	7	30	0	-	2	20	1	20	0	-	0	-	1	50	0	-
Grass	5	37	0	-	4	23	0	-	0	-	0	-	2	55	0	-
Sedge and/or grass	0	0	0	-	15	35	0	-	13	32	2	10	5	55	0	-
Willow	7	26	0	-	2	35	0	-	1	10	0	-	б	23	5	15
Fern	0	-	0	-	2	10	0	-	0	-	0	-	1	10	0	-
Devil's Club	1	30	0	-	18	21	1	10	2	20	0	-	6	23	0	-
Horsetail	2	т	0	<u> -</u>	0	· _	0	-	0	-	0	-	0		0	-
Muskeg	- 1	50	0	-	2	15	0	-	4	50	1	50	3	47	0.	-
Aspen	0	-	0	-	0	-	0	-	0	-	0	-	3	38	0	-
Water	0	-	0	_	0	-	. 0	-	0	-	1	50	0	-	0	-

Calving = May 14 - June 17; Summer = July 1 to August 31; Breeding = September 14 - October 31; All Transitions = remainder of time from April 16 to October 15, excluding calving, summer, and breeding periods. NR = non-riparian and R = riparian, within the outmost banks of the Susitna River; Percent = average for percents of canopy coverage at sites where present;

T = trace, less than 10 percent per observation; and

N = number of moose relocations (higher in every season in non-riparian vegetation types).

2

-1

TABLE E.3.91: OCCURRENCE AND MEAN PERCENT OF CANOPY COVERAGE FOR SPECIES OF RIPARIAN (R) AND NON-RIPARIAN (NR) VEGETATION AND HABITAT TYPES OBSERVED AT RELOCATION SITES FOR 19 FEMALE MOOSE CAPTURED AND RADIO-COLLARED ALONG THE SUSITNA RIVER SOUTH OF TALKEETNA, ALASKA, AND MONITORED DURING CALVING, SUMMER, BREEDING, AND TRANSITIONAL PERIODS FROM MARCH 16 TO OCTOBER 15, 1981

(from ADF&G 1982b)

								Seasona	l Period ¹							
Vegetative		Cal	ving			Summ				Bree	ding			II Tran	sition	ns
Туре	NR (N ²	=78	R (N:	» =15)	NR (N=	% 1 <u>10)</u>	R (N=	76 16)	NR (N=0	58 <u>)</u>	R (N=	% =17)	NR (N≖	% 153 <u>)</u>	R (N=	% =55)
Total \$ of relocatio	ons 8	3%	10	6 %	8	2%	13	%	8	0%	20)%	7.	3%	20	6 %
Alder	12	27	9	34	64	28	12	41	51	27	14	34	37	27	16	31
Birch	50	56	7	34	107	40	11	36	57	41	8	38	137	48	18	41
Spruce	71	31	10	9	104	20	3	7	66	24	13	15	148	33	40	28
Cottonwood	1	60	10	55	2	10	12	35	2	10	9	43	12	31	40	63
Sedge	13	33	2	15	1	30	0	-	0	-	0	-	2	10	2	т
Grass	7	20	2	35	14	25	3	20	0	-	0	-	4	20	0	-
Sedge and/or grass	0	-	0	-	28	40	3	13	43	21	10	24	13	25	3	25
Willow	13	33	6	35	2	15	5	26	0	-	0	-	11	16	21	32
Fern	0	-	0	-	6	13	0	-	4	15	0	-	3	13	0	-
Devil's Club	1	10	0	-	57	19	1	10	. 5	12	0	-	15	21	3	13
Horsetaí I	2	0	0	-	0	-	0	-	0	- '	0		2	т	0	-
Muskeg	14	50	0	-	4	43	0	-	9	52	1	50	2	45	0	· _
Aspen	1	40	-	-	0	-	1	50	1	10	0	-	8	28	0	-
Water	0	-	0	-	0	-	0	-	0	-	1	50	0	-	0	-

Calving = May 14 - June 17; Summer = July 1 to August 31; Breeding = September 14 - October 31;

All Transitions = remainder of time from April 16 to October 15, excluding calving, summer, and breeding periods.

NR = non-riparian and R = riparian, within the outmost banks of the Susitna River;

Percent = average for percents of canopy coverage at sites where present;

T = trace, less than 10 percent per observation; and

N = number of moose relocations (higher in every season in non-riparian habitats).

2

TABLE E _• 3 _• 92:	WINTER CARRYING CAPACITY OF THE WATANA IMPOUNDMENT ZONE (INCLUDING ADJACENT PROJECT FACILITIES) AND SUSITNA WATERSHED UPSTREAM OF GOLD CREEK FOR MOOSE BASED ON THE BIOMASS OF TWIGS AVAILABLE IN WINTER (SEE TEXT AND APPENDIX EH FOR DETAILED EXPLANATION OF METHODS USED).

	Area	(ha)	A		Twig Big (kgx10		Moose	Days	Winter Res	idents
Vegetation Type (Level 3)	Impoundment Zone	Basin	Available Browse (kg/ha)	n	Impoundment Zone	Basin	Impoundmen Zone	t Basin	Impoundment Zone	Basin
open coniferous forest	3, 844	96,100	29.9	240	114.9	2,873.4	22, 980	574,680	127.7	3, 192, 7
lood land coniferous orest	4,834	156, 513	10,0	45	48,3	1,565.1	9,660	313, 020	53 . 7	1,739.0
Open deciduous forest	326	968	5, 5	15	1.8	5,3	360	1,060	2.0	5,9
Open mixed forest	1,480	23,125	34.0	15	50.3	786.3	10,060	157,260	55.9	873 . 7
Low mixed shrubland	1,853	520,250	29.8	363	55 . 2	15,503,5	11,040	3, 100, 700	61.3	17,226.1
TOTALS				678	270,5	20,733.6	54,100	4,146,720	301	23,037

,

Date'	F	emales	<u>Males</u>		
	2 Riparian	Non-riparian	Riparian	Non-riparian	
March 10-12	16	0	4	0	
March 16	9	7	4	0	
March 23	8	8	1	3	
April 3	7	5	0	2	
April 6	7	9	0	4	
April 14	3	7	0	1	
April 20	6	11	1	3	
April 22-23	4	13	0	4	
April 28	3	14	0	4	

TABLE E.3.93:	DATES INDICATING CHRONOLOGY OF DEPARTURE FROM SUSTINA RIVER WINTERING AREAS FOR MALE AND FEMALE MOOSE RADIO-COLLARED ON
	THE SUSITNA RIVER DOWNSTREAM FROM TALKEETNA, MARCH 10-12, 1981
· · · · · · · · · · · · · · · · · · ·	(from ADF&G 1982b)

¹ All individuals not relocated on each date.

I

2 Riparian = individuals relocated within the outmost banks of the Susitna River; Non-riparian = individuals relocated outside the outmost banks of the Susitna River.

Sex	Calving range May 14 to June 17						Summer range July 1 to August 31				Se	Breeding range September 14 to October 31			
Location 1	N ²	Min ³	Max	Mean	SD	N	Min	Max	Mean	SD	N	Mīn	Max	Mean	SD
Females Upstream	8	0.0	5.0	2,25	2,25	8	0.7	4.3	2,60	2,24	8	1.2	4.9	3,09	1.4
Downstream Westside	14	0.0	19.9	9,22	7,86	14	0	24.0	10,37	8,68	13	0	25.0	10,74	9,5
Eastside	4	2.1	4.6	5,33	2,63	7	2.2	10 . 1	6.67	3.54	7	32.2	16.9	8.91	6.2
Males Upstream	2	3.0	3.4	3.2	0.28	3	1.7	3.0	2.37	0.65	3	1,6	2.0	1.8	0.2
Downstream Westside	1	30,6	30,6	-	-	2	26.7	36,2	31.5	 .	2	26.4	35.3	30.9	-
Eastside	5	1.5	30,9	9,80	12,06	6	3.2	29.2	10.48	9,96	6	2.0	28.8	10,28	9.4

TABLE E.3.94: MINIMUM, MAXIMUM AND MEAN DISTANCE (km) TO THE SUSITNA RIVER FROM GEOMETRICAL CENTERS OF THE CALVING RANGE, SUMMER RANGE, AND BREEDING RANGE FOR MALE AND FEMALE MOOSE RADIO-COLLARED IN SEVERAL LOCATIONS ALONG THE SUSITNA RIVER BETWEEN DEVIL CANYON AND THE DELTA ISLANDS, ALASKA 1980-81

1 Upstream = moose radio-collared north of Talkeetna; downstream = moose radio-collared south of Talkeetna; westside = moose spending the breeding season on the west side of the Susitna River; and eastside = moose spending the breeding season on the east side of the Susitna River.

 2 N = moose seasons of data: 2 moose each studied 1 season = 1 moose studied for 2 seasons and each equals N=2.

³ Min = minimum, Max = maximum and SD = standard deviation for distance values in each category.

TABLE E.3.95: PROXIMITY TO THE SUSITNA RIVER OF RELOCATIONS OF 9 MALE (M) AND 29 FEMALE (F) MOOSE RADIO-COLLARED ALONG THE SUSITNA RIVER BETWEEN DEVIL CANYON AND THE DELTA ISLANDS, ALASKA, 1980-81

(from ADF&G 1982b)

	Nu	Imber		Distance of Relocations from River								
Sex	Individuals	Relocations	River	0-1.6km (0-1 mi)	1.6-4.8k (1-3 mi)	m 4.8-8.1k (3-5 mi)	m 8,1-16,1km (5-10 mi)	16.1-24.2km (10-15 mi)	24.2-32.3k (15-20 ml)	im 32.3+kn (20+ mi)		
	-											
м	2 ²	74	3	36	29	6						
F	10	222	21	82	90	22	б	0	1			
м	6 ³	162	13	10	55	21	43	0	19	1		
F	15	403	101	41	67	14	87	74	19			
M	1 ⁴	45	0	0	2	1	0	9	11	22		
F	4 ⁵	166	5	4	17	32	77	22	9			
	M F M F	Sex Individuals M 2 ² F 10 M 6 ³ F 15 M 1 ⁴	M 2^2 74 F 10 222 M 6^3 162 F 15 403 M 1^4 45	Sex Individuals Relocations River M 2 ² 74 3 F 10 222 21 M 6 ³ 162 13 F 15 403 101 M 1 ⁴ 45 0	Sex Individuals Relocations River $(0-1.6km)$ M 2^2 74 3 36 F 10 222 21 82 M 6^3 162 13 10 F 15 403 101 41 M 1^4 45 0 0	Sex Individuals Relocations River $(0-1.6km - 1.6-4.8k - 4.8k - $	Sex Individuals Relocations River $(0-1.6km - 1.6-4.8km - 4.8-8.1km - $	Sex Individuals Relocations River $(0-1 \text{ ml})$ $(1-3 \text{ mi})$ $(3-5 \text{ mi})$ $(5-10 \text{ mi})$ M 2^2 74 3 36 29 6 F 10 222 21 82 90 22 6 M 6^3 162 13 10 55 21 43 F 15 403 101 41 67 14 87 M 1^4 45 0 0 2 1 0	Sex Individuals Relocations River $(0-1.6km - 1.6-4.8km - 4.8-8.1km - 8.1-16.1km - 16.1-24.2km$ M 2^2 74 3 36 29 6 F 10 222 21 82 90 22 6 0 M 6^3 162 13 10 55 21 43 0 F 15 403 101 41 67 14 87 74 M 1^4 45 0 0 2 1 0 9	Sex Individuals Relocations River $(0-1.6km)$ $1.6-4.8km$ $4.8-8.1km$ $8.1-16.1km$ $16.1-24.2km$ $24.2-32.3k$ M 2^2 74 3 36 29 6 F 10 222 21 82 90 22 6 0 1 M 6^3 162 13 10 55 21 43 0 19 F 15 403 101 41 67 14 87 74 19 M 1^4 45 0 0 2 1 0 9 11		

¹ Upstream - moose captured north of Talkeetna.

Downstream - moose captured south of Talkeetna.

Westside - captured moose that spent the breeding season to the west of the Susitna River.

Eastside - captured moose that spent the breeding season to the east of the Susitna River.

 2 One individual studied 1-1/2 years.

³ One individual studied 1-1/2 years.

⁴ One individual studied for 1-1/2 years.

 5 Three individuals studied for 1-1/2 years.

	Total	Small	Calves	Incidence of Twins Per 100		
	Males Per	Moose 16	per 100	Females	Calf 🖇	Total
Date	100 Females	in Herd	Females	With Calf	in Herd	Sample
	100 1 8110 183		· 000103			Jampre
1955 ^a	84.1	11.0	43.2	5.6	19.0	400
1956 ^a	61_6	7.7	28, 1	0.0	14.8	351
1957 ^a	43.3	3.5	38.3	10.2	21.1	256
1958 ^a	44.9	6.4	40.2	6.9	21.7	957
1959	•	-	NODA		-	
1960 ^a	57.2	9.0	46, 4	4.0	22.4	343
1961	70.1	12,5	48,4	16_0	22.2	424
1962	44,2	-	28.3	4.6	16.4	414
1963 ^a	35,6	6, 5	46.6	7.4	25.6	798
1964 ^a	33,3	3,1	44.4	20.0	25.0	96
1965 ^a	30,4	6,3	25.8	1.5	16,5	806
1966 ^a	27.7	3.2	28.0	3.5	17.9	658
1967	29.7	.3.4	28.8	0.8	18, 1	681
1968	29.7	3.2	26.3	2.4	16.9	504
1969	35.7	7.8	33,5	2.8	19.3	384
1970	26,6	6.2	14.2	6.9	10,1	308
1971	30.0	2.8	22.8	3.9	14.9	362
1972	10,1	2.9	23,1	0,0	17.3	277
1973	20,7	5,2	19.0	2,3	13,6	324
1974	16,0	5,2	34.4	9.0	22,9	328
1975	17.6	5.7	18.5	5,6	13.6	279
1976	20,6	5.8	24.3	4.6	16.8	274
1977	16.7	3.7	33.8	13.2	22.4	352
1978	24,1	6.0	28.6	11.7	18.8	368
1979	14.6	2,2	25.3	9.3	18.1	326
1980	15,1	5,2	29.7	8,1	20,5	423
1981	26,5	9.6	38,6	5,1	23.4	530

(modified from ADF&G 1982a)

Remarks: ^a Area boundary change - see ADF&G (1982a).

Date	Total Males Per 100 Females	Smali Moose % in Herd	Calves per 100 Females	Incidence of Twins Per 100 Females With Calf	Calf % in Herd	Total Sample
						- Camp I C
1957				ATA		
1958				АТА		
1959				АТА		
1960				A T A		
1961				АТА		
1962			,	АТА		
1963 ^a	47.7	3.3	38,5	0.0	20.7	121
1964 ^b	39.7	6.3	31,4	2.8	18.4	207
1965 ^a	59.8	7.8	16.2	0.0	9.2	412
1966	48.3	3.8	20,1	0.0	11.9	293
1967 1968	41.0	4.4	20.6	2.5	12.8	642
1968				ΑΤΑ ΑΤΑ		
1970	34.7	5.0	42.1	8.6	23.6	864
1970	26.3	5.0 5.3	33.2	7 . 1	20.8	624
1972	20.6	2.0	17.5	3.7	12.6	665
1973	21,9	6.0	16.3	2.9	11.8	890
1974	12,6	3.0	28.3	6.3	20,1	672
1975	10.0	3.4	15.9	4.8	12.7	695
1976	12.3	3.2	21.6	7.1	16,1	865
1977	10.8	3.0	28.7	6.0	20,6	954
1978	14.8	5,9	20.2	4.1	15.0	1030
1979	8.8	1.8	23.3	5.8	17.7	838
1980	13.3	5,6	25,1	1.1	17,9	946
1981	14.2	3.4	31.6	0.0	21.7	1284

-

TABLE E.3.97: SUMMARY OF MOOSE SEX AND AGE COMPOSITION DATA COLLECTED ANNUALLY IN COUNT AREA 7 IN GAME MANAGEMENT UNIT 13 OF SOUTHCENTRAL ALASKA

I.

(modified from ADF&G 1982a)

Remarks: ^a Area boundary change - see ADF&G (1982a). ^b Early 1965 data used for 1964.

	Total	Small	Calves	Incidence of Twins Per 100		
	Males Per	Moose \$	per 100	Females	Calf 🖇	Total
Date	100 Females	In Herd	Females	With Calf	In Herd	Sample
1955 ^a	105.6	10,5	73.2	10.6	26,0	200
1956			NOD			
1957	72.5	5,2	50.3	4.9	22.6	381
1958 ^a	86.8	5.0	37.0	7.4	16.6	441
1959			NOD			
1960 ^a	71.1	8,6	56.7	21.4	24.5	139
1961 ^a	62.0	12.2	55,7	7.6	25.6	555
1962	56.3	10,1	23.8	1.8	13.2	416
1963				АТА		
1964				АТА		
1965	28,6	7.2	21.6	0.0	14.4	278
1966 ^a	20,0	5,9	33,5	0.0	21.8	238
1967	39.0	3,9	34.1	2,9	19.7	355
1968 ^a	9.4	2.8	36.5	3.8	25.0	108
1969	17.5	4.0	40,1	2.0	25.4	405
1970	19.4	2.2	44.4	2,1	25.9	185
1971	27.1	5.7	20.7	5,0	14.0	300
1972	21.4	6,2	25,5	0,0	17,4	288
1973	22.0	5,1	17.3	2.0	12.4	411
1974	15.4	3.4	35,2	3.7	23,4	500
1975	9.9	3.3	21.7	1,9	16.5	333
1976	9.2	3.6	19.9	3.0	15.4	447
1977		• -		ΑΤΑ	- •	
1978	20,5	6,6	18.3	2.0	13.2	379
1979		-	NOD		•	
1980	13.7	7.4	16.2	3.8	12.5	447
1981		-		АТА	- ·	

TABLE E.3.98: SUMMARY OF MOOSE SEX AND AGE COMPOSITION DATA COLLECTED ANNUALLY IN COUNT AREA 14 IN GAME MANAGEMENT UNIT 13 OF SOUTHCENTRAL ALASKA

(modified from ADF&G 1982a)

Remarks: ^a Area boundary change - see ADF&G (1982a).

TABLE E.3.99: SUMMARY OF MOOSE CENSUS DATA AND SUBSEQUENT POPULATION ESTIMATES FOR COUNT AREAS 7 AND 14 DERIVED FROM SURVEYS CONDUCTED ALONG THE SUSITNA RIVER FROM NOVEMBER 5 THROUGH NOVEMBER 8, 1980

w Med	ium High
1 9	6
6 27	18
4 920	663
5 1.847	3,726
5 656	954
	1 9 26 27 54 920 25 1.847

Total population estimate 90% Cl = 1986 <u>+</u> 371

I

Sightability correction factor = 1.03

Corrected population estimate = 2046 <u>+</u> 382 (modified from ADF&G 1982a)

TABLE E.3.100: DENSITY (MOOSE/KM OF RIVER) OF MOOSE OBSERVED ON 10 AERIAL CENSUSES IN 4 ZONES OF RIPARIAN HABITAT ALONG THE SUSITNA RIVER FROM DEVIL CANYON TO COOK INLET, ALASKA, 1981-82

(adapted from ADF&G 1982b, ADF&G unpubl. data)

		<u></u>			Ae	rial Ce	<u>nsus Nu</u>	nber ^D			
Ri	ver Zone ^a	1.	2	3	4	5	6	7	8	9	10
I	moose/mi2	3,27	1.64	0.73	0.64	2.27	0.64	1.64	5,18	6,91	6.91
	moose/km	1,26	0.63	0.28	0.25	0.88	0.25	0.63	2,00	2,67	2.67
11	moose/mi2	1.78	2 . 11	0.56	1.89	2.78	2.00	0.44	3.11	5.11	9.56
	moose/km	0.69	0 . 81	0.21	0.73	1.07	0.77	0.17	1.20	1.97	3.69
	moose/m12	3.67	4.78	3,35	5,95	4.15	1.43	1,50	5,80	7.30	11,50
	moose/km	1.42	1.84	1,29	2,30	1.60	0.55	0,58	2,24	2.82	4,44
١V	moose/mi2 moose/km	4 . 92 1. 90	3.84 1.48	3.68 1.42	4.28 1.65	1.64 0.63		3,56 1,37	6.36 2.46	16,48 6,36	12,48 4,82
All	moose/mi2	3, 79	3.81	2.81	4.34	3.02	1.37	2.01	5.60	9.72	10.99
zones	moose/km	1, 46	1.47	1.08	1.68	1.17	0.53	0.78	2.16	3.75	4.24

^a = Area within each census zone (land area only; water not included)

1 = Devil Canyon to Talkeetna, 29 km² (11 mi²) 11 = Talkeetna to Montana Creek, 23 km² ($9mi^2$) 111 = Montana Creek to Yentna River, 104 km² (40 mi²) 1V = Yentna River to Cook Inlet, 65 km² (25 mi²) All Zones = 220 km² (85 mi²)

^b 1 = December 9-10, 1981

2 = December 28, 1981 and January 4, 1982

3 = February 2 and 6, 1982

4 = March 1-2, 1982

5 = March 23-24, 1982

6 = April 12, 1982

7 = October 29 and November 6, 1982

8 = November 10 and 18, 1982

9 = December 1, 2, and 6, 1982

10 = December 20-22, 1982

TABLE E.3.101: SUMMARY OF MOOSE SEX AND AGE COMPOSITION DATA OBTAINED DURING SURVEYS OF RIPARIAN COMMUNITIES ALONG THE LOWER SUSITNA RIVER

		······································		Incidence	·	
River Zone ^a	Total Males Per 100 Females	Calves Per 100 Females	Twins Per 100 Females With Calf	Calf ≸ in Herd	Total Sample	
	1981 1982	1981 1982	1981 1982	1981 1982	1981 1982	
I.	40.0 16.7	40.0 24.1	0.0 8,3	22.2 17.1	36 76	
0	37 . 5 40 . 0	62.5 44.0	25.0 0.0	31.3 23.9	16 46	
	10.9 12.3	45.7 50.8	13.5 14.1	30.6 31.2	147 292	
1 ¥	33.3 18.1	53.0 25.4	12,9 9,0	28.5 17.7	123 412	
TOTAL	23.1 17.1	48.4 34.5	12.5 10.8	28,9 22,8	322 826	

(derived from ADF&G 1982b and ADF&G unpubl. data)

a I = Devil Canyon to Talkeetna.

8

11 = Talkeetna to Montana Creek.

III = Montana Creek to Yentna River.

IV = Yentna River to Cook Inlet.

TABLE E.3.102: PROPORTION OF RADIO-COLLARED CARIBOU SIGHTINGS IN EACH VEGETATION TYPE

	Calving, Summer	Calving, Summer	Au	tumn	Spring, Rut, Winter,	Spring, Rut, Winter	Τσ	tal
<u>Habitat</u>	Cows	Bulls	Cows	Bulls	Cows	Bulls	Cows	Bulls
Spruce forest	0.0	23.3	36.4	25.0	58.5	77.7	34.2	50,9
Tundra-herbaceous	72,5	36,7	29.1	20.8	11.6	9.3	36 . 0	19.4
Shrubland	26.7	36.7	16.4	41.7	24.3	9.3	23.9	24.1
Bare substrate	0,8	3,3	18,2	12,5	5, 5	3.7	5,9	5.6
Total sightings	120	30	55	24	164	54	339	108

(data from ADF&G 1982c)

Year	Total Estimate	Female Estimate	Male Estimate	Calf Estimate
1955	40,000 ^a			
1962	71,000 ^b	_	-	_
1967	61,000 ^C	-	-	-
1972	7,842	4,800	1,622	1,420
1973	7,693	4,646	1,268	1,779
1976	8,081	4,979	1,663	1,439
1977	13,936	7,509	2,868	3,559
1978	18,981	9,866	4,429	4,686
1980	18,713	9, 164	5,673	3,876
1981	20,694	10, 154	6, 184	4, 356

TABLE E.3.103: NELCHINA CARIBOU HERD POPULATION ESTIMATES (Fall estimates for years after 1962) (from ADF&G 1982c)

a Watson and Scott (1956), February census. ^b Siniff and Skoog (1964), February census perhaps should be adjusted downward by as many as 5,000 caribou due to presence of Mentasta herd. ^c Felt by some to be an unreasonably high estimate.

TABLE E.3.10	4:	REPORTED	HUNTER	HARVEST	OF	THE	NELCHINA
		CARIBOU	HERD, 1	972-1981			

	· · · · · · · · · · · · · · · · · · ·	Females		🖇 of Total	Males		\$ of Total	5 of Total	
Year	Total Harvest	No.	(%)	Females	No.	(%)	Males	Herd	
1972	555	153	(28)	3%	338	(72)	21\$	7\$	
1973	629	203	(33)	4%	411	(67)	32%	8\$	
1974	1,036	343	(34)	-	656	(66)	-	-	
1975	669	201	(31)	-	441	(69)	-	-	
1976	776	201	(26)	4%	560	(74)	34 %	10%	
1977	360	77	(22)	18	275	(78)	10\$5	3%	
1978	539	111	(21)	18	416	(79)	9%	3%	
1979	630	90	(14)	-	509	(81)	-	-	
1980	621	117	(21)	15	453	(79)	8\$	3%	
1981	901	164	(18)	2%	737	(82)	12%	4%	

4

1259 **-**

Allower

52435

885-90,

ξ.

Maries

(derived from ADF&G 1982c, unpubl. data)

	Legal			% Legal	%	
Year	Rams*	Lambs	Total	Rams	Lambs	Surveyor
1950			0			Scott
1967			230			Nichols
1968			183		26.6	Nichols, August
1973	10	40	176	5,6	22.7	Mcliroy, August
1974	6	18	76	7.9	23.7	Harkness, April
1976	4	30	130	3,1	23.0	Elde, August
1977	4	33	152	2,6	21.7	Spraker, July 11
1978	5	34	189	2.6	18.0	Elde, July 23
1980	9	42	174	5,1	24.1	Tobey, July 22
1981	2	43	209	>1.0	20.6	Westlund, July 28

TABLE E.3.105: COMPILATION OF HIGHEST YEARLY COUNTS COMPLETED IN WATANA HILLS SHEEP TREND COUNT AREA (from ADF&G 1982d)

I

*A legal ram is defined as having a 3/4 curl or greater horn. Beginning in 1979 a legal ram is defined as having a 7/8 curl or greater horn.

-

د

Date	Time	Location	Sheep	Ewes	Yearlings	Lambs	Rams
5/06	-	West side ^a	5				
5/08	-	West side	15	2	2		
5/09	a.m.	West side	4				
5/13	1645	West side	2				
5/14	0900	West side	4				
5/18	1355	West side	4	1	1		6
5/21	-	West side	8				
5/22	1700	West side	8	1	1		6
5/23	1145	East side	9	2	1		6
5/24	1840	West side _b	9	1	2		6-7
5/25	1152	East side ^b	14	1	2		12
5/26	1808	_	0		-		
5/27	2225	-	ō				
5/30	-	East side	5				
6/02	-	-	Ō				
6/03	1405	Upstream E. ^C	1				1
6/03	1408	Upstream W.	9				ģ
6/04	1926	_	0				Ó
6/05	1900	East side	9				ġ
6/06	2146	West side	9				-
6/07	2025	East side	9				
6/08	2115	East side	10				
6/09	-	West side	7	7			
6/10	0955	West side	4	2	2		
6/11	_	West side	4	3		1	
6/12	1939	Upstream	10	_			
6/13	1154	East side	1	1			
6/13	1154	Upstream W.	7	4		3	
6/14	0933	-	Ó			-	
6/15	1509	West side	4	4			
6/15	1509	Upstream	3	2		1	
6/16	1102	Upstream W.	4	2 3		1	
6/17	1155	Upstream E.	1	ī			
6/19	1000	Upstream	1	4			1
6/19	1000	West side	i	1			•
6/21	1545	West side	14				
6/24	0847	West side	7				7

TABLE E.3.106: NUMBER AND AGE-SEX CLASSIFICATION OF SHEEP OBSERVED AT JAY CREEK MINERAL LICKS FROM MAY 6 THROUGH JUNE 24, 1981 (from ADF&G 1982d)

^a Bluff on western bank of lower Jay Creek.

^b Directly across Jay Creek from above site.

^C Two miles upstream from above site.

Habitat	May	June	July	August	September	October/ April	All Months (<u>%)</u>
Spruce 1 % of Months 2 % of Habitats	44 31.2 31.0	50 35.5 29.6	17 12,1 19,3	16 11.3 17.6	9 6.4 25.0	5 3,5 13,2	141 (25.0) -
	16 18.0 11.3	26 29.2 15.4	22 24.7 25.0	20 22.5 22.0	4 4.5 11.1	1 1.1 2.6	89 (15,8) -
− Shrubland ≸ of Months ≸ of Habitats	39 16.4 27.5	75 31.5 44.4	46 19 . 3 52 . 3	52 21.8 57.1	21 8.8 58.3	5 2,1 13,2	238 (42,2)
 ▼ of Months ≸ of Habitats	12 42.9 8.5	14 50.0 8.3	1 3,6 1,1	1 3.6 1.1	0 0 0	0 0 0	28 (5,0)
− ∦ of Months ∦ of Habltats	31 45,6 21,8	4 5.9 2.4	2 2.9 2.3	2 2.9 2.2	2 2.9 5.6	27 39.7 71.1	68 (12,1)
All Habitats (\$) 	142 (25 , 2)	169 (30,0)	88 {15.6	91 5) (16,1)	36) (6,4)	38 (6,7)	564 (100 _• 0)

TABLE E.3.107: NUMBER OF AERIAL BROWN BEAR OBSERVATIONS BY MONTH IN EACH OF 5 MAJOR HABITAT CATEGORIES (from ADF&G 1982e)

I

The proportion of sightings of bears in spruce habitat that occurred in each month (e.g., 31.2% of the bear sightings in spruce occurred in May).

2

1

For each month, the proportion of sightings that were in that particular habitat type.

		Sample		lean 9 Range	
Area	Sex	Size	 	<u> </u>	Source
Kodiak Island, AK	M F	7 23	24 12	9.3 4.6	Berns et al. 1977
Yellowstone	M	6	161	62.2	Cralghead 1976
National Park	F	14	73	28.2	
Southwestern	M	5	287	110.8	Pearson 1975
Yukon	F	8	86	33.2	
Northern Yukon	M F	9 12	414 73	159 . 8 28 . 2	Pearson 1976
Western Montana	M	3	513	198,1	Rockwell et al.
	F	1	104	40,2	1978
Upper Susitna and	M	14	790	305.0	This study (1978 ar
Neichina basins	F	19	316	122.0	1980 results only)
Northwestern	M	8	1350	521,2	Reynol ds 1980
Alaska	F	18	744	132,8	

TABLE E.3.108: COMPARISON OF REPORTED HOME RANGE SIZES OF BROWN/GRIZZLY BEARS IN NORTH AMERICA (adapted from Reynolds 1980)

mi ² /Bear	km ² /Bear	Location	Source
0.6	1.6	Kodiak Island, AK	Troyer and Hensel 1964
6, 0 ^a	15.5	Alaska Peninsula, AK	Glenn, unpubl. data
8.2	21,2	Glacier National Park, Montana	Martinka 1974 ^b
11.0	28.5	Glacier National Park, BC	Mundy and Flook 1973 ^b
9-11	23-27	SW Yukon Territory	Pearson 1975
16-24	41-62	Upper Susitna River, AK	Miller and Ballard 1980
88 (16-300) ^C	288 (42-780) ^C	Western Brooks Range (NPR-A), AK	Reynolds 1980
100	260	Eastern Brooks Range, AK	Reynolds 1976

TABLE E.3.109: DENSITIES OF SELECTED NORTH AMERICAN BROWN BEAR POPULATIONS (from ADF&G 1982e)

^a Data refer to a 4,662 km² (1,800 mi²) intensively studied area of the central Alaska Peninsula.

^b Taken from Pearson 1975,

^C Mean is for the entire National Petroleum Reserve, Alaska; the range represents values for different habitat types in this reserve. The highest density occurred in an intensively studied experimental area.

	1	Males		Fe	ə məle s			
Subpopulations	Average Spring Age (Years)		n	Average Spring Age (Years)	(Range)		Average Both Sexes (Years)	Sex Ratio % Males
GMU 13 fall harvests, 1970–1980	8.0	(3,5-23,5)	208	7.7	(3,5-28,5)	191	7.9	52
1979 Upper Susitna studies (Miller & Ballard 1980)	7.4	(3,5-21,5)	17	7.4	(3,5-16,5)	15	7.4	53
Middle Susitna Basin (1980–1981): all captures	7.7	(3,5-14,5)	14	7.9	(3,5-13,5)	15	7.8	48
Radio-collared bears (1980-1981) with <u>></u> 5 captures	6 . 0	(3 . 5-10.5)	4	8.6	(3,5-13,5)	13	8,0	24 ^a

TABLE E.3.110: AVERAGE AGE AND SEX RATIOS OF BROWN BEAR POPOULATIONS IN THE MIDDLE AND UPPER SUSITNA AND NELCHINA RIVER BASINS (from ADF&G 1982e)

No.

1.....

and a

1

^a Because adult male bears lost their collars more easily than adult females, this ratio underestimated the percentage of males.

		Average litter	age of litter	
Source	Area	0,5	1.5	0,5-1,5
Pearson 1975	Southwestern Yukon Territory	1,7(11)	1,5(11)	1.6(22)
Martinka 1974	Glacier National Park, Montana	1,7(35)	1.8(30)	1.7(65)
This Study	Nelchina Basin, Alaska	2,3(9)	1.6(16)	1.7(10)
Reynolds 1976'	Eastern Brooks Range, Alaska	1,8(13)	2.0(7)	1.9(20)
Reynolds 1980*	Western Brooks Range, Alaska	2,0(33)	1,9(21)	2,0(54)
Mundy 1963	Glacier National Park, B.C.	1,9(81)	1.8(45)	1,9(126)
Klein 1958	Southeastern Alaska	2,2(25)	1.9(35)	2,0(60)
Glenn et al. 1976	McNeil River, Alaska	2,5(41)	1,8(69)	2,1(110)
Glenn 1976 & updated	Black Lake, Alaska Peninsula	2,1(19)	2.1(51)	2.1(70)
Hensel et al. 1969	Kodiak Island, Alaska	2,2(98)	2,0(103)	2.1(201)
Craighead et al. 1976	Yellowstone National Park	2,2(68)	. .	

TABLE E.3.111: LITTER SIZES OF VARIOUS NORTH AMERICAN BROWN BEAR POPULATIONS (from ADF&G 1982e)

*Calculations from data presented in Table 3 of Reynolds (1980)

.

Агеа	Mean Age at 1st Production to Maximum Age of Breeding	Potential Reproduction Life = Reproduc Interval	tive.	Litter Size	•	Potential Production of Cubs	x Reproductive Rate (No. cubs/aduit female/year)
Yellowstone Park (Craighead et al. 1976)	6.3 - 24.8	18.5 years 3.40	X *	2,24	*	12.2	0,66
Alaska Peninsula (Glenn et al. 1976)**	6.3 - 24.8	<u>18,5 years</u> 3,77	×	2,50	æ	12.3	0,66
Eastern Brooks Range (Reynolds 1976)**	0.1 - 24.8	<u>14.7 years</u> 4.24	×	1.78	=	6,2	0.42
Western Brooks Range (Reynolds 1980)	8.4 - 24.8	<u>16.4 years</u> 4.03	×	2,03	=	8.3	0,50
Netchina Basin (This study)	5.2 - 24.8	<u>19.6 years</u> 3.3	×	2.3	Ξ	13.7	0,70
Neichina Basin (This study)	5.2 - 14.4***	<u>9.2 years</u> 3.3	×	2.3	=	6 .4	0.70

TABLE E.3.112: REPRODUCTIVE RATES OF NORTH AMERICAN BROWN BEAR POPULATIONS (from ADF&G 1982e)

. . * This potential may be close to actual in lightly hunted populations in Yellowstone and the Brooks Range, it probably over estimates productivity of heavily hunted population (Alaska Peninsula).

** Reynold's (1980) analysis of data presented by others.

***Maximum age based on age of 30 females (>12 years) in the sport harvest 1970-1980.

	Total Sport	Ave	— orace Age (I	N)	% Total	Harvest Taken	in Fall ^a	\$ of Total Take	
Year	Take	Males	Females	Both	Males	Females	Both	By Non-Residents	
1973	44	6,9(25)	7.3(15)	7,1(40)	100	100	100	59	
1974	72	6.3(39)	7,3(28)	6.7(67)	100	100	100	47	
1975	80	7.2(40)	7.7(31)	7,4(71)	100	100	100	46	
1976	59	6,8(28)	5.0(25)	5,9(53)	100	100	100	39	
1977	38	6,1(28)	7.1(6)	6,3(34)	100	100	100	32	
1978	63	6,1(32)	6,5(24)	6,2(56)	100	100	100	44	
1979	73	6,5(34)	8,1(28)	7,2(62)	100	100	100	42	
1980	84	5,0(39)	5.8(31)	5,4(70)	79	85	82	30	
73-80	513	6.2(265)	6.8(188)	6,5(453)	96	97	42	· · ·	
Fall On	ly -	6,3(255)	6,9(183)	6,5(438)					
Spring	Only -	7,7(10)	6 . 2(5)	7,2(15)					

TABLE E.3.113 SUMMARY OF BROWN BEAR HARVEST FROM ALASKA'S GAME MANAGEMENT UNIT 13, 1973-1980 (from ADF&G 1982e)

^a Only fall seasons prior to 1980.

I

Habitat	May	June	July	August	September .	October-April	All Months
SPRUCE 1 \$ by Months 2 \$ by Habitat	82 22.9 50.3	95 26.5 46.3	54 15.1 35.8	68 19.0 31.8	44 12.3 30.8	15 4.2 46.9	358 (39,4)
RIPARIAN % by Months % by Habitat	23 19.0 14.1	33 27.3 16.1	23 19.0 15.2	18 14.9 8.4	23 19.0 16.1	1 8 3_1	121 (13 . 3)
SHRUBLAND \$ by Months \$ by Habitat	50 12.9 30.7	70 18.0 34.1	69 17.8 45.7	119 30.7 55.6	71 18.3 49.7	9 2.3 28.1	388 (42,7)
TUNDRA \$ by Months \$ by Habitat	3 17.6 1.8	3 17.6 1.5	3 17.6 2.0	6 35,3 2,8	2 11.8 1.4	0 0 0	17 (1,9)
OTHER \$ by Months \$ by Habitat	5 20.8 3.1	4 16.7 2.0	2 8.3 1.3	3 12,5 1,4	3 12.5 2.1	7 29.2 21.9	24 (2,6)
TOTALS	163 (18,0)	205 (22,6)	151 (16,6)	214 (23,6)	143 (15,7)	32 (3,5)	908 (100,0)

TABLE E.3.114: NUMBER OF AERIAL BLACK BEAR OBSERVATIONS BY MONTH IN EACH OF 5 HABITAT CATEGORIES (from ADF&G 1982e)

¹ The proportion of sightings of bears in spruce habitat that occurred in each month (eq., 22.9% of the bear sightings in spruce occurred in May).

-

 2 For each month, the proportion of sightings that were in that particular habitat type.

TABLE E.3.115: SUMMARY OF REPORTED BLACK BEAR HARVESTS FROM ALASKA'S GAME MANAGEMENT UNIT 13, 1973-1980 (from ADF&G 1982e)

	Total Sport	Ave	Average Age (n) ^a			Males			tal Harvest en in Fall		dd		
Year	Take	Males	Females	Both	Spring	Fall	Both	Males	Females	Both	Ad	Bď	Cd
1973	70	5,9(39)	5,2(20)	5,6	NA	63	63	100	100	100	49	14	-
1974	48	5,7(26)	7,8(14)	6,4	86	64	67	81	93	85	21	25	-
1975	67				75	75	75	67	67	67	19	36	-
1976	63	5,2(5)			63	70	67	63	55	62	21	26	55
1977 ^b	58	5,1(26)	4,8(12)	5.0	81	64	69	66	82	71	19	26	52
1978 ^c	70	5,4(13)			80	63	68	64	81	69	20	7	64
1979 ^c	70				68	50	55	64	79	70	11	18	73
1980	85				77	74	75	67	71	69	24	32	67
73-80	531	5.6(121)	5,9(58)	5.7	74	65	68	71	79	74	23	184	63
Fall on	1y -	5,5(88)	5,9(49)	5,6									
Spring	only -	5,7(33)	6,3(9)	5.8									

^a Mean age given only when n > 5.
 ^b Only fall bears aged.
 ^c Only spring bears aged.
 ^d A \$ of total take by non-residents.
 ^b Number taken by hunters reporting aircraft as primary source of transportation.
 ^c \$ of total where meat was salvaged for food.

TABLE E.3.116: COMPARISONS OF FOOD REMAINS IN WOLF SCATS COLLECT AT DEN AND RENDEZYOUS SITES IN 1980 AND 1981 FROM THE EASTERN SUSITNA BASIN AND ADJACENT AREAS (from ADF&G 1982f)

Food Items	72	1980 27 Scats	1981 290 Scats		
	No. Items	\$ Occurrences	No. Items	% Occurrences	
Adult moose	105	12.00	24	6,15	
Calf moose	369	42, 17	87	22,31	
Moose, age unknown	22	2,51	21	5 . 38	
Adult caribou	30	3,43	31	7.95	
Calf caribou	13	1,49	19	4.87	
Caribou, age unknown	8	0, 91	5	1,28	
Moose or caribou	31	3, 54	9	2,31	
Beaver	48	5,49	37	9.49	
Muskrat	26	2.97	24	6 . 15	
Snowshoe hare	55	6,29	21	5,38	
Microtine	40	4.57	37	9.49	
Unidentified small mammal	15	1.71	20	5,13	
Bird	16	1.83	8	2,05	
Fish	1	0,11	2	0,51	
Vegetation	. 22	2,51	5	1,28	
Wolf	4	0,46	1	0,26	
Unknown	70	8.00	39	10,00	
Total	875	100.00	390	100,00	

.

÷

Pack Area	Spring 1980 (Post-Hunt)	Fall 1980 (Prehunt)	Spring 1981	Fall 1981
Butte Lake	3-4	3-4+	3	5
Fish Lake	?	2	9	12+
Jay Creek	б	7-8	?	10
Keg Creek	?	?	2-3	2-3
Maciaren River	2	4-5	?	2-3
Portage Creek	?	?	?	6
Stephan Lake	2+	11	?	?
Susitna	4	10	5	4
Susitna-Sinona	4	4-5	2	?
Tolsona	9	16	13	15
Tyone Creek	4	2	0	?
Upper Talkeetna River	?	?	?	2
Watana	5	14	8	14
Total	40	77	42-43	72-74

TABLE E.3.117: ESTIMATE OF NUMBERS OF WOLVES BY INDIVIDUAL PACK INHABITING THE SUSITNA HYDROELECTRIC STUDY AREA IN SPRING AND FALL 1980 AND 1981

(from ADF&G 1982f)

T

TABLE E.3.118:	NUMBER OF SAMPLE UNITS CONTAINING INDICATED LEVEL OF BEAVER ACTIVITY DURING SUMMER 1982 DOWNSTREAM SURVEY
	(See text for explanation) (from Gipson, unpub. data)

	<u>None</u> No Sign Seen	Low Tracks, Cuttings	<u>Mod.</u> Dams, Trails	High Dens, Lodges		
Main channel	22	_	_			
Side channel	22	5	1	4	UPPER	
Slough	2	3	1	5	SECTION n = 38	
Clearwater	-	2	2	3		
Main channel	4	-	-	-		
Side channel	1	1	6	3	MIDDLE	
Siough	-	1	3	1	SECTION n = 11	
Clearwater	-	-	_	4		
Main channei	1	-	-	-		
Side channei	1	-	3	9	LOWER	
Slough	1	-	1	3	SECTION n = 8	
Clearwater	*					

* Lower section contained no clearwater habitat in sample units surveyed.

і Ъ. RWEAR

TABLE E.3.119:	1982 AERIAL COUNTS OF BEAVER STRUCTURES ALONG 15,2 KM (9,4 MI)					
	OF LOWER DEADMAN CREEK IMMEDIATELY DOWNSTREAM FROM DEADMAN					
	LAKE, AND A MARSHY SECTION OF UPPER DEADMAN CREEK FROM ITS					
	MOUTH AT DEADMAN LAKE 3.2 KM (2.0 MI) UPSTREAM FROM THE LAKE					
(from Gipson, unpub. data)						

L

		Lod	ges	Dams	
Location	Caches	Active	Inactive	Active	Inactive
Lower Deadman Creek	8	9 ¹	5	3	4
Upper Deadman Creek	5	5	0	0	0
TOTAL	13	14	5	3	4

¹Two apparently active lodges were observed within 30 meters (33 yards) of each other and only one food cache was noted between the lodges. Possibly both of these lodges had been active during summer, but only one would remain active through winter.

	_				Location	of Lakes	<u> </u>
Lake Number	Eleva (m)	tion MSL (ft)	No. Pushups	Quarter Section	Section	Range	Township
001	267	876	2	SW	31	tw	32N
001	207	0/0	2	SE	31	1W	32N
002	472	1549	4	SE	30	1₩	32N
002	.,_	1212	•	SW	29	1W	32N
003	526	1726	14	NE	30	1W	32N
				NW	29	1W	32N
004	640	2100	0	NE	20	1W	32N
-	-		-	NW	21	1W	32N
				SE	20	1W 👘	32N
005	500	1641	26	SE	15	1W	32N
				SW	14	1W	32N
				SE	14	1W	32N
				NW	23	1W	32N
006	495	1624	0	NW	23	1W	32N
				NE	23	1W	32N
007	480	1575	0	NW	24	1W	32N
				SW	24	1W	32N .
		4		SE	23	1W	32N
				NE	23	1W	32N
008	463	1519	0	SW	6	1E	3 1N
009	463	1519»	0	SE	6	1E	31N
010	442	1450	0	SW	32	1E .	32N
011	472	1549	0	SE	32	1E	32N
012	419	1375	0	SE	32	1E	32N
013	542	1778	0	SW	4	1E	32N
				SE	4	1E	· 32N
014	724	2375	0	NW	28	1E	32N
015	724	2375	0	NE	21	1E	32N
				NW	22	1E	32N
				SW	22	1E	32N
				NW	27	1E	32N
				SE	21	1E	32N
016	712	2336	0	SW	16	1E	32N
				SE	16	1E	32N
				SW	15	1E	32N
				NW	22	1E	32N
				NE	21	1E	32N
017	754	2474	0	NE	22	1E	32N
				NW	23	1E	32N
018	572	1878	0	NW	35	1E	32N
019	503	1650	0	SW	35	1E	32N
				NW	2	1E	3 1N
020	541	1775	0	SE	35	1E	32N
				NE	2	1E	3 1N
021	724	2375	0	NW	36	1E	32N
022	724		0	NW	36	1E	32N
023	686	2250	0	SW	24	1E	32N
				SE	24	1E	32N
				SW	19	2E	32N
				NW	30	2E	32N
				NE	25	1E	32N
				NW	25	1E	32N
024	724	2375	0	NE	19	2E	32N
			_	NW	20	2E	32N
025	722	2369	0	NW	20	2E	32N
				NE	20	2E	32N
				SE	20	2E	32N 32N
				SW	20	2E	5°7NI

TABLE E.3.120: RESULTS OF SURVEYS FOR MUSKRAT PUSHUPS UPSTREAM FROM GOLD CREEK DURING SPRING 1980 (from Gipson et al. 1982)

TABLE E.3.120 (Page 2)

I.

					Location	of Lakes	5
Lake	Elevation		No.	Quarter		_	
Number	(m)	(ft)	Pushups	Section	Section	Range	Township
026	709	2326	0	SW	21	2E	32N
027	533	1749	ŏ	NW	27	2E 2E	32N
			v	NE	27		
				SE		2E	32N
					27	2E	32N
028	754	2474	0	SW	27	2E	32N
029			0	NE	7	4E	3 1N
	716	2349	0	SW	8	4 E	3 1N
030	602	1975	0	NW	17	4E	3 1N
031	602	1975	0	NE	17	4 E	3 1N
032	693	2274	1	NW	5 5	5E	3 1N
				S₩	5	5E	3 1N
033	693	2274	0	SW	5 4	5E	3 1N
034	716	2349	0	SW	4	5E	31N
				SE	5	5E	3 IN
035	680	2231	0	SW	5 9 9	5E	3 1N
			•	SE	á	5E	31N
				NE	16		
						5E	3 1N
				NW	16	5E	3 1N
				NE	17	5E	3 1N
				NW	17	5E	3 1N
				NE	18	5E	3 1N
				SE	7	5E	31N
				S₩	8 8	5E	3 1N
				SE	8	5E	3 1N
036	678	2225	8	SW	10	5E	3 1N
				SE	9	5E	31N
037	693	2274	0	SE	9 3 3	5E	3 1N
			· ·	SW	ž	5E	3 1N
				SE	10		
						5E	3 1N
				SW	10	矩	31N
070	647	0110	•	NE	9	5E	3 1N
038	643	2110	0	SE	11 .	5E	3 1N
				SW	11	5E	3 1N
				NW	14	5E	3 1N
				NE	15	5E	3 1N
				SW	15	5E	3 1N
				NW	15	5E	3 1N
				SW	10	5E	3 1N
039	709	2326	0	NW	3	5E	3 1N
040	683	2241	õ	SW	21	5E	32N
041	678	2225	1	NW	21		
042	683	2241	ò			5E	32N
042	689			NE	21	5E	32N
043	009	2261	1	NE	21	5E	32N
				NW	22	5E	32N
				SE	21	5E	32N
.		· · · ·		NE	21	5E -	32N
044	693	2274	0	SW	15	5E	32N
				NW	22	5E	32N
045	683	2241	0	SE	16	5E	32N
				NE	21	5E	32N
046	693	2274	0	SE	15	5E	32N
			-	ŚW	45	5E	32N
047	683	2241	7	NW	15	5E	32N
- • •	vu2		,	NE	16		
048	739	2425	6			5E	32N
048	716			NW	10	5E	32N
~~7	110	2340	0	NW	14	5E	32N
050	716	0740	-	SW	14	5E	32N
050 051	716	2349	0 0	NW	14	5E	32N
	716	2349		NW	14		32N

ı j

TABLE E.3.120 (Page 3)

					Location	of Lakes	5
Lake Number	Elevation (m)	MSL (ft)	No. Pushups	Quarter Section	Section	Range	Townshi
052	716	2349	0	NW	14	55	32N
				NE	14	5E	32N
053	716	2349	0	NE	14	5E	32N
054	716	2349	0	SE	14	5E	32N
055	716	2349	0.	NE	14	5E	32N
				SE	14	5E	32N
056	716	2349	0	NE	14	5E	32N
020		2242	v	NW	13	5E	32N
057	693	2274	0	SW	35,	5E	
							32N
058	708	2323	0	NE	53	55	32N
059	693	2274	32	NE	13	5E	32N
				NW	18	5E	31N
				SW	18	52	3 IN
				SE	13	5E	31N
				SW	13	56	3 IN
				SE	14	5E	31N
				NE	14	5E	3 1N
				NE	13	矩	31N
060	692	2270	0	SW	5 5	6E	3 IN
				SE	5	6E	31N
				NE	8	6E	3 1N
					9		
				SE	7	6E	31N
				SW	7	6E	3 1N
				NE	7	6E	31N
				NW	8	6E	3 1N
061	678	2225	3	SW	4	6E	3 1N
	••••		-	SE	5	бE	31N
062	670		0		5		
062	678	2225	0	NW	2	6E	- 3 1N
063	709	2326	0	SE	19	6E	32N
064	724	2375	0	NW	19	6E	32N
				NE	24	6E	32N
065	747	2451	3	SW	18	6E	32N
066	716	2349	õ	NE	18	6E	32N
000	7.0	2343	v				
			~	NW	18	6E	32N
067	716	2349	24	SW	7 7	6E	32N
				SE	7	6E	32N
				SW	8	6E -	32N
		-		SE	8	6 E	32N
				NE	17	6E	32N
				NW	17		
						6E	32N
				NE	18	6E	32N
068	692	2270	15	SE	17	6E	32N
				SW	16	6E	32N
				NW	21	6E	32N
				NE	20	6E	32N
069	693	2274	1.4				
009	200	2214	14	SE	11	6E	32N
070	709	2326	8	NW	12	6E	32N
071	533	1749	5	SE	24	6E	32N
072	503	1650	2	NW:	31	7E	32N
073	610	2001	0	SW	29	7E	3 2N
074	625	2051	0 2	NW	29	7E	32N
~, .				NE	29	7E	32N
						15	
		005	-	SE	29	7E	32N
07/5	625	2051	(0)	SE	29	7E	321
				NE	32	7E	32N
076	625	2051	2	SW	28	7E	3.2N
077	625	2051	ō	SE	29	7É	32N
078	625	2051	Ŏ	SE	29	7E	32N
079			2		23		
U/9	960	3150	0	SE	23	7E	3 1N
080	838	2749	0	SE	6	8E	3 1N

÷

.

f

	=				Location	of Lake	s
Lake Number	Elevat (m)	ion MSL (ft)	No. Pushups	Quarter	Sectio-	Range	Townshis
mumper'	<u>(m)</u>		rusnups	Section	Section	range	Township
081	. 823	2700	0	SE	6	8E	3 1N
				SW	5	8E	31N
082	564	1850	2	SW	8	8E	3 1N
083	770	2526	Ò	SW	33	8E	32N
				NE	33	8E	32N
084	770	2526	0	NW		8E	3 1N
085	808	2651	0	SW	3 2 2 2 2 2	8E	31N
				SE	2	8E	3 1N
086	808	26 51	0	SE	2	8E	3 1N
087	808	2651	0	SE	2	8E	31N
088	741	2431	1	SE	7	9E	3 1N
089	866	2841	25	SE	25	11E	30N
				SW	30	11E	30N
				NW	31	11E	30N
				NE	36	11E	30N
090	870	2854	2	SE	30	11E	30N
				NW	31	11E	30N
091	869	2851	0	NW	31	11E	30N
092	777	2549	1	SW	5	11E	29N
				NW	8	11E	29N
093	777	2549	0	NW	8	11E	29N
				NE	8	11E	29N
				SE	8	11E	29N
				SW	8	1 1E	29N
094	780	2559	0	SE	5	11E	29N
				NE	5 8	11E	29N
095	777	2549	0	SW	4	11E	29N
096	777	2549	ō	NW	9	11E	29N
097	777	2549	Ō	NW	9 9 9	11E	29N
098	777	2549	Ō	NW	9	11E	29N
	-	···,	. –	SW	9	11E	29N
099	777	2549	0	SE	9 8	11E	29N
	•••		-	ŚŴ	9	1 1E	29N
100	853	2799	1	NE	26	10E	30N
101	853	2799	Ó	NE	26	10E	30N
· • ·			-	NW	25	10E	30N
102	853	2799	. 0	SW	24	10E	30N
103	853	2799	Ō	SW	23	3E	30N
	•		•	NW	26	3E	30N

Transect ^a			Short-tail	ed	···· · · · ·	
Number	Marten	Fox	Weasel	Mink	Otter	Totals
01	41	1	3	5	2	52
02	80	0	7	1	6	94
03	91	9	5	3	0	108
04	198	0	20	0	3	221
05	84	0	11	1	0	96
06	163	0	6	0	1	170
07	202	23	39	0	2	266
08	86	11	0	2	5	104
09	85	11	. 1	2	0	99
10	125	20	95	2	3	245
11	39	30	58	2	1	130
12	40	38	96	5	1	180
13	7	60	77	5	3	152
14	112	10	328	6	3	4 5 9
Totals	1353	213	746	34	30	2376

TABLE E.3.121: NUMBERS OF FURBEARER TRACKS SEEN DURING AERIAL TRANSECTS IN THE MIDDLE SUSITNA BASIN, NOVEMBER 1980 (from Gipson et al. 1982)

^a See Figure E.3.101 for transect locations.

, 12 (12)

*श्रम*क्ष .

TABLE E.3.122:	
	SPECIES BY VEGETATION TYPE
	(from Gipson et al. 1982)

1 I

k.

Vegetation			Short-tailed	_		
Туре	<u>Marten</u>	<u>Fox</u>	Weasel	Mink	<u>Otter</u>	<u>Tota Is</u>
Forest, white spruce	35	1	4	0	0	40
Forest, birch	3	0	2	0	0	5
Forest, poplar	0	0	1	0	0	1
Forest, black spruce	0	2	0	0	0	2
Forest, mixed	54	0	1	0	0	55
Alpine mat-cushion	3	5	29	0	0	37
Woodland, white spruc	æ 525	5	88	1	0	619
Woodland, black spruc	e 605	61	401	3	1	1071
Woodland, mixed	29	0	5	0	0	34
Shrub, low	12	9	8	0	0	29
Shrub, medlum	35	108	190	0	0	333
Shrub, alder	25	2	11	0	0	38
River ice	2	1	2	20	20	45
Lake ice	0	4	0	0	0	4
Creek ice	6	0	2	4	2	14
Marsh	3	4	0	3	0	10
River bar	9	8	1	3	7	28
Rock	0	0	1	0	0	1
TOTALS	1353	213	746	34	30	2376

Checkpoint	Nor	th	Sou	th
Numbers	Otters	Mink	Otters	Mink
01	2	0	0	0
02	3 0	0	0	0
03	0	2 0	0	0
04	ŏ	ŏ	3	1
05	ŏ	ŏ	2	ò
06	ŏ	ŏ	3 2 0	ñ
07	ŏ	ĩ	ŏ	1
08	ŏ	ò	ŏ	0 1 2 0 2 1 0 1
09	ŏ	ŏ	ī	ō
10	Ō	ŏ	ò	2
11		1	Ō	1
12	4 3 0 2 0 3 0	1	Ō	0
13	0	0	0	1
14	2	0	3 4	1
15	0	0	· 4	0
16	3	1	0	2
17	0	3	0	0 2 4 2 2 0 0 0 2 0 0 0 0
18	0	0	0	2
19	0 2 1 0 2 0	0	1	2
20	2	0	1	0
21	1	1	0	0
22	0	0	0	0
23	2	1	0	2
24	0	0	0	. 0
25 26	0 0	0	0	0
20	0	0	0 4	0
28	0	0	4	0
29	ŏ	0	4	2
30	0	ŏ	0	2
31	ŏ	ŏ	ŏ	ň
32	ŏ	ŏ	ŏ	3
33	õ	ž	ŏ	3
34	ŏ	1	ŏ	2
35	õ	i	2	3
36	ŏ	ò	2	2
37	<u> </u>	<u> </u>	0 0 2 2 0	0 2 0 3 3 2 3 2 2 2
Totals	20	16	27	38

TABLE E.3.123: NUMBER OF TRACKS OF OTTER AND MINK OBSERVED AT NORTH AND SOUTH SIDES OF 37 SUSITNA RIVER CHECK POINTS, NOVEMBER 10-12, 1980^a (from GIpson et al. 1982)

^a See Figure E.3.101 for locations of river check points.

	Autumn 1980	Winter 1980-81	Spring 1981	Autumn 1981	Unknown Season	Total
Unknown Mammal	0.0	0.7	3.9	0.7	0.0	1.2
Microtine	83,3	85,6	82.7	98 <u>.</u> 7	85 . 7	88,8
Shrew	16.7	2.7	2.9	0.0	1.3	2,4
Sciurid	4.2	9.6	15.4	0,0	3,9	6.8
Ungulate	16.7	0.0	1.9	1.4	6.5	2,6
Snowshoe Hare	0.0	1.4	0.0	0.0	3.9	1.0
Muskrat	0.0	3.4	2.9	0.0	0.0	1.6
Bird	4.2	17, 1	12,5	3.4	5.2	9.6
Berry	41.7	39.7	29.8	1.4	19.5	23.3
Fish	0.0	0.7	1.0	0.0	1.3	0,6
Human Foods	0.0	0.0	0.0	0.0	7.8	1.2
Total Scats	24.0	146.0	104.0	148.0	77.0	499.0
Food Items/Scat	1.7	1.7	1.6	1.1	1.4	1,5

TABLE E.3.124: RESULTS OF MARTEN SCAT ANALYSES BY SEASON, BASED UPON PERCENT FREQUENCY OF OCCURRENCE (from Gipson et al. 1982)

TABLE E.3.125:	TRACKS OF RED FOXES ENCOUNTERED DURING NOVEMBER 1980 AERIAL TRANSECT SURVEYS	
	(from Gipson et al. 1982)	

	Number of F	OX IFACKS		
levation (m)	North side Susitna	South side Susitna		
516 - 547		1		
548 - 581	2	4		
582 - 613	5	-		
614 - 645	1	-		
646 - 677	-	· · · · ·		
678 - 709	- -	-		
710 - 741	20	2		
742 - 774	9	6		
775 - 806	10	18		
807 - 838	-	2		
839 - 870	12	47		
871 - 902	5	1		
903 - 935	`-	38		
936 - 967	5	1		
968 - 1000	7	2		
001 - 1032	-	1		
1033 - 1064	. -	2		
065 - 1096	3	11		
097 - 1129	-	15		
otal	79	151		
ransects 1 - 11	67	51		

TABLE E.3.126: RED FOX DEN CLASSIFICATION SYSTEM (from Gipson et al. 1982)

月月日

.1

807A

arter j

+ 1

Importance Ranking	Den Type	Description
1	Prîmary	Active or believed to have been active in 1979, 1980, or 1981. Natal den. Multiple burrow system. Believed to have traditional use. Large dirt mounds at burrow entrances and wear patterns. Five or more entrances.
2	Secondary	Not active in 1980 or 1981. Multiple burrow system. Large dirt mounds at entrances. Wear patterns but obscured to various degrees by recent vegetative recolonization. Probably natal den when in use. May be used as a resting site. Five or more entrances.
3	Primary Alternative	Found near primary or secondary sites. Signs of recent or present use. Two to five en- trances usually. Probably occupied and used primarily by pups. First pup movements away from natal den are usually to these sites. Presence of digging activity.
4	Tertiary	Usually two to five entrances. Old food remains and/or scats present. Probably not used in recent years. May be used as a resting site.
5	Shelter	One burrow. Probably used for shelter only.

	Nesting	Corresponding U of A Museum No, (Kessel et al. 1982a;		S-	tatus ^a		USGS Talkeetna Mounta	ins			
Species	Location No.	B. Cooper 1982 pers. comm.)	1974 ^b	1980 ^c	1981 ^C	1982 ^d	15 ft x 30 ft Quad No	Township	Location Range	Section	Estimated ^e Elevation
,											m (f+)
Golden eagle	GE-1	V, C, TT	-	×	×	NC	C-1	T30N	R11E	7	716-731 (2,350-2,400)
	GE-2	D, T, gg	-	×	×	NC	0-2	T31N	R9E	17	610-655 (2,000-2,150)
	GE-3	E, kk, 11	-	×	×	NC	D -2	T31N	R 8E	1	715 (2,400) f
	GE-4	qq	-	-	0	×	D-2	T31N	R8E	15, 22	564 (1,850)
	GE-5	F	-	×	0	NC	D-2	T31N	R8E	9, 10	549 (1,800)
	GE-6	-	0	-	-	NC	0-2	T31N	R8E	8,9	<579 <(1,900)
	GE-7	R	-	-	×	NC	D-3	T31N	R7E	14	945 (3,100) ^f
	GE - 8	G	-	×	0	NC	D-3	T32N	R6E	28	490-518 (1,600-1,700)
	GE-9	ff	-	-	0	NC	D-3	T32N	R6E	29	490518 (1,600-1,700)
	GE-10	-	-	-	0	NC	D-4	T33N	R5₩	28	1,189 (3,900)
	ĞE-11	dd	-	-	0	NC	D -4	T32N	R4E	25	490-518 (1,600-1,700)
	GE-12	-	0	-	-	NC	D-4	T31N	R 3 E	15, 14	<549? <(1,800?)
	GE-13	Z	-	0	0	NC	D -4	T31N	R 3E	17, 18	427-442 (1,400-1,450)

		Corresponding U of A Museum									
	Nesting	No. (Kessel et al. 1982a;		¢.	tatus ^a		USGS Talkeetna Mountain	- e			
Species	Location No.	B. Cooper 1982 pers. comm.)	1974 ^b	1980 ^c	1981 ^C	1982 ^d	15 ft x 30 ft	Township	Location Range	Section	Estimated ^e Elevation
								<u></u>			m (f+)
Golden eagie (contd)	GE-14	-	0	-	-	NC	D-4	T31N	R3E	12	427-457? (1,400-1,500
	GE-15	X, Y	-	-	0	NC	. D ~5	T32N	R2E	22, 23	518-579 (1,700-1,900
	GE-16	1	-	×	×	NC	D-5	T 32N	R2E	27	470-485 (1,540-1,590)
	GE-17	рр	-	-	0	NC	D-5	T31N	R2E	17	610-625 (2,000-2,050)
	GE-18	м	-	-	×	NC	D-5	T32N	R 1E	32	335 (1,100)
Bald eagle	BE-1	-	0	-	-	NC	C-1	T31N	R12E	28, 33	686-694 (2,250-2,275)
	8E-2	В	-	×	×	NC	C-1	T29N	R1 1E	9, 10	663-671 (2,175-2,210)
	BE-3	'nh	×	-	0	NC	C-2	T30N	R10E	16	579 (1,900)
	BE -4	S	×	-	×	NC	D-2	T31N	R8E	11	540-549 (1,775-1,800)
	BE-5	A	×	×	0	NC	D -3	T31N	R7E	2	497-503 (1,630-1,650)
	BE-6	K	-	×	×	NC	D-3	T33N	R 5E	34	760 (2,500)
	BE-7	N	-	-	×	NC	C-4	T30N	R3E	1	564-572 (1,850-1,875)
	BE-8	L	0	×	×	NC	D-6	T3 1N	R 2 W	9, 10	230 (750)

,

TABLE E.3.127 (Page 3)

	Nesting	Corresponding U of A Museum No. (Kessei et al. 1982a;		S·	tatus ^a		USGS Taikeetna Mounta				
Species	Location No.	B. Cooper 1982 pers. comm.)	1974 ^b	1980 ^C	1981 ^C	1982 ^d	15 ft x 30 ft Quad No.	Township	Location Range	Section	Estimated ^e Elevation
-											m (ft)
Raven	R-8	-	×	-	-	NC	D-3	T32N	R7E	33	519 (1,700)
	R-9	-	×	-	-	NC	D-3	T 32N	R 6 E	25	488 (1,600)
	R-10	-	×	0	-	NC	D-3	T32N	R6E	28	488 (1,600)
	R-11	-	0	-	-	NC	D-3	T 32N	R5E	26, 35	564 (1,850)
	R-12	Q	-	-	×	NC	D-3	T32N	R5E	23, 26	625 (2,050)
	R-13	P, ee	-	-	×	NC	D-4	T32N	R5E	20	549 (1,800)
	R-14	mm, nn, cc	-	-	0	NC	D-4	T31N	R4E	14	549-580 (1,800-1,90
	R-15	0 , aa, bb	-	-	×	NC	D -4	T31N	R 4E	15	519-580 (1,700-1,90
	R-16	-	0	-	. –	NC	D-4	T31N	R 3 E	18	442 (1,450)
	R-17	-	0	-	-	NC	D -4	T31N	R 3 E	13	442 (1,450)
	R-18		0	-	-	NC	D -5	T32N	R2E	36	427 (1,400)
	R-19	j j	×	×	-	NC	D-5	T32N	R2E	27	458 (1,500)
	R20	W	-	-	0	NC	D-5	T32N	R2E	33	366 (1,200)

	Nesting	Corresponding U of A Museum No. (Kessel et al. 1982a;		S	tatus ^a		USGS Talkeetna Mounta				
Species	Location No.	B. Cooper 1982 pers. comm.)	1974 ^b	1980 ^C	1981 ^C	1982 ^d	15 ft x 30 ft Quad No.	Township	Location Range	Section	Estimated ^e Elevation
						Sector 1					m (ft)
Raven	R-8	-	×	-	-	NC	D-3	T32N	R 7E	33	519 (1,700)
	R-9	-	×	-	-	NC	D -3	T32N	R6E	25	488 (1,600)
	R-10	-	×	. 0	-	NC	D -3	T32N	R6E	28	488 (1,600)
	R-11	-	0	-	-	NC	D-3	T 32 N	R 5E	26, 35	564 (1,850)
	R-12	Q	-	-	×	NC	D-3	T32N	R5E	23, 26	625 (2,050)
	R-13	P, ee	-	-	×	NC	D-4	T32N	R 5E	20	549 (1,800)
	R -14	mm, nn, cc	-	-	0	NC	D-4	T31N	R4E	14.	549-580 (1,800-1,900
	R-15	O, aa, bb	-	-	×	NC	D-4	T31N	R4E	15	519-580 (1,700-1,900
	R-16	-	0	-	-	NC	D-4	T31N	R3E	18	442 (1,450)
	R-17	-	0	-	-	NC	D-4	T31N	R3E	13	442 (1,450)
	R-18	-	0	-	-	NC	D-5	T32N	R2E	36	427 (1,400)
	R -19	J	×	×	-	NC	D-5	T32N	R2E	27	458 (1,500)
	R20	W	-	-	0	NC	D-5	T 32 N	R2E	33	366 (1,200)

TABLE E.3.127 (Page 5)

	Nesting	Corresponding U of A Museum No. (Kessel et al. 1982a;		Status ^a			USGS Taikeetna Mounta	ins			
Species	Location No.	B. Cooper 1982 pers. comm.)	1974 ^b	1980 ^c	1981 ^c	1982 ^d	15 ft x 30 ft Quad No.	Township	Location Range	Section	Estimated ^e Elevation
		, <u> </u>						,,.		<u>,</u>	m (ft)
Raven (Contd)	R-21	-	0	-	-	NC	D~5	T32N	R 1E	32	427 (1,400)

^aStatus unknown, x = possibly active, x = active, 0 = inactive, - = not reported (1974) or not located (1980 - 1981) (although suitable habitat was present in most cases), NC = not checked.

^bData from White (1974).

CData from Kessel et al. (1982a), B. Kessel and B. Cooper (unpubl. data).

dData from Kessel and Cooper (unpubl. data).

^{eD} Offerences occur between elevations given here and those reported by Kessel et al. (1982). Original estimates were obtained by attempting to locate nests as accurately as possible on USGS 1:63,360 maps with contour intervals of 100' (majority) or 50' (Talkeetna Mtns),C-1 but it was often difficult to precisely locate nests and to locate them relative to tightly spaced contour intervals (Cooper 1982 pers. comm.). All elevations have been reviewed and some revisions were made; however, in some cases estimates given here may contain errors of as much as ±100'. All elevations must be considered approximate (unless otherwise noted) until the majority are rechecked with a precision altimeter.

[†]Elevation checked with helicopter altimeter (+ 30-foot accuracy, 20-foot increments) on October 11, 1982.

TABLE E.3.127b: LOCATION OF RAPTOR NESTS IN THE MIDDLE SUSITNA BASIN

GE-1 2.4 (0.

1 I.

- 2.4 km (1.5 mi) upriver from Vee Canyon and 0.5 to 0.6 km (0.3 to 0.4 mi) up a narrow canyon on the north side of the Susitna River. Three nests present; 1980 nest 26 m (85 ft) up a 33 m (110 ft) cliff, 100 m (330 ft) back from and 67 m (220 ft) above unnamed creek, 1981 nest 8 m (26 ft) up 12 m (40 ft) cliff 81 m (265 ft) back from and 67 m (220 ft) above unnamed creek (Kessel et al. 1982a; Kessel, unpubl. data).
- GE-2 4.2 km (2.6 mi) up the Susitna River from the mouth of Jay Creek and in a canyon on the north side of the Susitna River. Three nests were present; 1980 nest 5 m (15 ft) up 13 m (40 ft) cliff, 10 m (35 ft) back from and 18 m (60 ft) above unnamed creek, 1981 nest 1 m (5 ft) up 5 m (15 ft), vegetated cliff, 14 m (45 ft) back from and 33 m (110 ft) above unnamed creek (Kessel et al. 1982a; Kessel, unpubl. data).
- GE-3 2.4 km (1.5 ml) up Jay Creek from its confluence with the Susitna River. Three nests were present; 1981 nest 5 m (15 ft) up 30 m (100 ft) cliff, 150 m (490 ft) from west bank and 115 m (375 ft) above Jay Creek (Kessel et al. 1982a; Kessel, unpubl. data).
- GE-4 1.6 km (1.0 mi) up Kosina Creek from its confluence with the Susitna River and on the east side of Kosina Creek. This nest was identified as an inactive raven nest in 1981 but golden eagles nested there in 1982 (B. Cooper 1982 pers. comm.).
- GE-5 1.0 km (0.6 mi) down the Susitna River from the mouth of Kosina Creek. The nest is 32 m (105 ft) up 38 m (125 ft) cliff on north riverbank (Kessel et al. 1982a).
- GE-6 2.8 km (1.7 mi) down the Susitna River from the mouth of Kosina Creek on the north bank of the river. White (1974) reported a golden eagle nest at this location in 1974, but his location may correspond to GE-5 since the area he indicated does not contain suitable nesting habitat.
- GE-7 9.6 km (6.0 mi) down the Susitna River from the mouth of Kosina Creek and 7 m (25 ft) up a 12 m (40 ft) cliff on a south-facing hillside above the south bank of the river (Kessel et al. 1982a).
- GE-8 4.0 km (2,5 mi) down the Susitna River from the mouth of Watana Creek and 13 m (45 ft) up a 23 m (75 ft) cliff, 40 m (130 ft) back from and 34 m (110 ft) above the north bank of the river. This nest was inactive in 1981 although it did have a fresh spruce lining (Kessel et al. 1982a; Kessel, unpubl. data).
- GE-9 5.4 km (3.4 mi) up the Susitna River from the mouth of Deadman Creek on a cliff on the north bank of the river (Kessei, unpubl. data).
- GE-10 11.2 km (7.0 mi) north of the proposed Watana damsite, high on the southeast side of Tsusena Butte (Kessel, unpubl. data).
- GE-11 1.0 km (0.6 mi) down the Susitna River from the mouth of Tsusena Creek and 0.8 km (0.5 mi) up and on the east bank of a small unnamed drainage (Kessel, unpubl. data).
- GE-12 10.0 km (6.3 mi) down the Susitna River from the mouth of Fog Creek on the north bank of the river. White (1974) reported a golden eagle nest at this location in 1974, but his location probably corresponds to GE-13, since the area he indicated does not appear to contain suitable nesting habitat.

TABLE E.3.127b (Page 2)

- GE-13 9.4 km (5.9 mi) up the Susitna River from the mouth of Devil Creek on a cliff on the north bank of the river (Kessel, unpubl. data).
- GE-14 5.6 km (3.5 mi) up the Susitna River from the mouth of Devil Creek. A golden eagle nest was reported at this location on the west side of the river in 1974 (White 1974); but the nearest suitable habitat appears to be 1.4 km (0.9 mi) and 2.0 km (1.3 mi) further downstream (B. Cooper 1982 pers. comm.) and one of these locations may represent the actual 1974 location.
- GE-15 2.8 km (1.8 mi) up Devil Creek from its confluence with the Susitna River. Two nests (alternates) are present; one on the cliffs on the west side of Devil Creek and one on the cliffs on the north side of a small, unnamed tributary that empties into Devil Creek (Kessel, unpubl. data).
- GE-16 0.6 km (0.4 mi) up Devil Creek from its confluence with the Susitna River and 30 m (100 ft) up 45 m (150 ft) vegetated cliff, 100 m (330 ft) back from and 120 m (395 ft) above Devil Creek on the west bank (Kessel et al. 1982a).
- GE-17 6.8 km (4.3 ml) down the Susitna River from the mouth of Devil Creek and 3.5 km (2.2 ml) up and on the east side of a smail drainage that joins the river from the south (Kessel unpubl. data).
- GE-18 3.4 km (2.1 mi) up the Susitna River from the mouth of Portage Creek on a moderate-sized cliff on the north bank (Kessel et ai. 1982a).
- BE-1 4.2 km (2.6 mi) up the Susitna River from the mouth of Tyone River. White (1974) reported two closely associated nests on the east side of the Susitna River in 1974 but they appeared to be gone by 1980-81.
- BE-2 3.4 km (2.1 mi) up the Oshetna River from its confluence with the Susitna River and 4 m (15 ft) from edge of the west bank in a 22 m (70 ft) white spruce (Kessei et al. 1982a).
- BE-3 4.0 km (2.5 mi) down the Susitna River from the midpoint of Vee Canyon on the south bank of the Susitna River, just west of the mouth of a small unnamed tributary (White 1974; Kessel, unpubl. data).
- BE-4 1.8 km (1.1 mi) up the Susitna River from the mouth of Kosina Creek and 25 m (80 ft) up a 33 m (110 ft) cliff on the north bank of the river (White 1974; Kessel et al. 1982a).
- BE-5 8.8 km (5.5 mi) up the Susitna River from the mouth of Watana Creek on a wooded island in a live white spruce (White 1974, Kessel et al. 1982a).
- BE-6 9.2 km (5.7 mi) up Deadman Creek from its confluence with the Susitna River on top of a 15 m (50 ft), broken-topped balsam poplar, 25 m (80 ft) from the north bank of Deadman Creek (Kessel et al. 1982a).
- BE-7 On the south shore of a small pond (WB105), 1.2 km (0.7 mi) east of the northeast end of Stephan Lake and on top of a 13 m (45 ft), broken-topped balsam poplar (Kessel et al. 1982a).
- BE-8 1.0 km (0.6 mi) up the Susitna River from its confluence with Indian River and on top of a 23 m (75 ft), broken-topped popiar, 4 m (15 ft) from the north riverbank (White 1974; Kessel et al. 1982a).

TABLE E.3.127b (Page 3)

- GYR-1 At midpoint of Vee Canyon and 100 m (330 ft) up a 113 m (370 ft) cliff on the south bank of the Susitna River (White 1974, Kessel et al. 1982a).
- GYR-2 6.8 km (4.2 mi) down the Susitna River from the mouth of Devil Creek and 2.6 km (1.6 mi) up a gorge on the south side of the river. Nest is 100 m (330 ft) up 105 m (345 ft) cliff in the creek canyon (White 1974, Kessel et al. 1982a).
- GYR-3 1.8 km (1.1 mi) due south of the proposed Devil's Canyon damsite. An active nest was reported in 1974 and White (1974) commented that it was "...back from high water limits about 1/2 mile...."
- GOS-1 0.3 km (0.2 mi) west of the mouth of Kosina Creek on the south bank of the Susitna River (B. Cooper 1982 pers. comm.).
- GOS-2 1.6 km (1.0 mi) up the Susitna River from the mouth of Fog Creek and on the southeast side of the river. Goshawk nests reported at this location in 1974 (White 1974).
- GOS-3 2.0 km (1.3 mi) southeast of the Devil's Canyon damsite in paper birch on steep slope (B. Cooper 1982 pers. comm.; Kessel 1982 pers. comm.).
- R-1 2.4 km (1.5 mi) upriver from Vee Canyon and 0.6 km (0.4 mi) up a narrow canyon on the north side of the Susitna River. A nest was reported on the east side of the narrow canyon about 0.2 km (0.1 mi) from a small stream in 1974 (White 1974).
- R-2 0.6 km (0.4 mi) up the Susitna River from the midpoint of Vee Canyon. An active nest was reported on the north side of the Susitna River on a south-facing cliff in 1974 (White 1974).
- R-3 At midpoint of Vee Canyon an active nest was reported on the south-facing slope of the north bank of the Susitna River in 1974 (White 1974).
- R-4 5.6 to 6.6 km (3.5-4.1 ml) down the Susitna River from the midpoint of Vee Canyon on the north bank. An active nest was reported at this general location in 1974 (White 1974). It was probably located on one of the two small existing southfacing cliff areas.
- R-5 1.6 km (1.0 mi) up Jay Creek from its confluence with the Susitna River. An active nest was reported about 0.1 km (300 ft) east of Jay Creek up a small unnamed tributary that joins Jay Creek (White 1974).
- R-6 1.4 km (0.8 mi) up Kosina Creek from its confluence with the Susitna River. An active nest was reported about 0.2 km (0.1 mi) east of Kosina Creek on a northwest-facing hill (White 1974).
- R-7 .4,6 km (2,8 mi) down the Susitna River from the mouth of Kosina Creek. An active nest was reported on the north bank of the Susitna River in 1974 (White 1974).
- R-8 5.0 km (3.1 mi) up the Susitna River from the mouth of Watana Creek. An active nest was reported on the north bank of the Susitna River in 1974 (White 1974).
- R-9 1.0 km up (0.6 mi) the Susitna River from the mouth of Watana Creek. An active nest was reported on the north bank of the Susitna River in 1974 (White 1974).

TABLE E.3.127b (Page 4)

- R-10 4.6 km (2.8 mi) down the Susitna River from the mouth of Watana Creek. An active nest was reported on the north bank of the Susitna River in 1974 (White-1974). The nest was inactive in 1980 (Kessel et al. 1982a).
- R-11 0.2 km (0.1 ml) down the Susitna River from the mouth of Deadman Creek. A nest was reported on the south bank of the Susitna almost opposite the mouth of Deadman Creek (White 1974).
- R-12 1.4 km (0.9 mi) up Deadman Creek from its confluence with the Susitna River and 13 m (45 ft) up a 32 m (105 ft) cliff on the east bank of the creek (Kessel et al. 1982a).
- R-13 4.2 km (2.6 mi) up Tsusena Creek from its confluence with the Susitna River. Two nests (alterates) were reported to be on a cliff on the east bank of the creek. (Kessel et al. 1982a).
- R-14 3.8 km (2,4 mi) up Fog Creek from its confluence with the Susitna River. Two nests (alternates) were located on the north side of the creek and another alternate nest was located on the south side. (Kessel et al. 1982a).
- R-15 2.4 km (1.5 ml) up Fog Creek from its confluence with the Susitna River. Two nests (alternates) were located on the north side of the creek and an active nest was located on the south side of the creek (Kessel et al. 1982a).
- R-16 7.4 km (4.6 mi) up the Susitna River from the mouth of Devil Creek. Nests were reported on the north bank of the Susitna River in 1974 (White 1974).
- R-17 7.4 km (4.6 mi) up the Susitna River from the mouth of Devil Creek and 0.5 km up a small drainage that flows south into the Susitna River. A nest was reported at this location in 1974 (White 1974).
- R-18 2.4 km (1.5 mi) up the Susitna River from the mouth of Devil Creek. A nest was reported on the north shore of the Susitna River in 1974 (White 1974).
- R-19 1.0 km (0.6 mi) up Devil Creek from its confluence with the Susitna River and near the top of a cliff on the west bank of the creek. An active nest was reported here in 1974 (White 1974) and it was active in 1980 (Kessel et al. 1982a).
- R-20 1.9 km (1.2 mi) down the Susitna River from the mouth of Dev11 Creek on cliffs on the northwest side of the river (Kessel, unpubl. data).
- R-21 3.6 km (2.3 mi) up the Susitna River from the mouth of Portage Creek and 0.6 km (0.4 mi) downstream from the proposed Devil Canyon damsite on the north bank of the river. A nest was reported at this location in 1974 (White 1974).

 TABLE E.3.128:
 BREEDING PHENOLOGIES OF EAGLES, GYRFALCON, AND COMMON RAVEN IN INTERIOR ALASKA (from Kessel et al. 1982a)

	_	Dates of Phases of Breeding Cycle									
Species	<u>Status</u>	Arrival/Courtship	Egg-Laying	Incubation	Nestlings	Fledging/Dispersa					
Golden eagle ^b	M	Mar 5-Apr 30	Apr 1-May 10	Apr 15-June 20	June 1-Sept 1	Aug 1-Sept 25					
Bald eagle ^b	M/R	Mar 10- May 1	Mar 20-May 10	Apr 30-June 30	May 20-Sept 15	Aug 1-Sept 30					
Gyrfalcon ^b	R	Mar 1-Apr 10	Apr 1-May 20	Apr 5-June 25	May 15-Aug 15	July 10-Sept 30					
Raven ^C	R	Mar 1-Apr 15	Apr 1-May 5	Apr 5-May 25	Apr 25-June 25	May 25-July 15					

a M = migrant, R = resident b Data summarized from Roseneau et al. (1981) c Based on calculations from Kessel (unpublished data) and Brown (1974)

TABLE E.3.129: DATA ON BALD EAGLE NESTS ALONG THE SUSITNA RIVER, BETWEEN DEVIL CANYON AND COOK INLET. NESTS IN 1980 WERE OBSERVED IN APRIL BY U.S. FISH AND WILDLIFE SERVICES; 1981 NESTS WERE LOCATED ON 26 JUNE BY TERRESTRIAL ENVIRONMENTAL SPECIALISTS, INC.; THE 1982 NESTS WERE RESULTS OF UNIVERSITY OF ALASKA MUSEUM SURVEYS. ALL 1982 NESTS WERE LOCATED IN LARGE, OLD COTTONWOOD TREES. (from Kessel et al. 1982b)

in the second

1000

1000

St	ar a tatu	S	No. Chicks			Nest Height		Broken Topped		Distance from river	Elevation
80	81	82	1982		Locality	(m)	<u>(m)</u>	?	alivə	(m)	(m/ft)
N	A	Α	1	62°47'N 149°38'W:	North bank of Susitna River 1 km upstream from confluence with Indian River	23	23	Yes	ilve	4	244 (800)
N	Α	I.	0	62°40'N 149°55'W:	Island in Susitna River 4 km downstream from Sherman	21	21	Yes	dead	250	182 (600)
N	A	A	2	62°20'N 150°10'W:	Confluence of Chulitna and Susitna rivers	25	33	No	dead	200	107 (350)
-	-	A	2	62°21'N 150°03'W:	South bank of Talkeetna River 3 km upstream from confluence with Susitna River	27	30	No	live	3	116 (380)
-	-	Α	1	62°19'N 150°08'W:	West bank of Susitna River opposite Talkeetna	30	33	No	live	10	107 (350)
N	Α	A	<u>>1</u>	62°13'N 150°06'W:	East bank of Susitna River 4,5 km upstream from Parks Highway Bridge	22	33	No	live	5	91 (300)
N	-	A	-	62°10'N 150°10'W:	East bank of Susitna River 2 km downstream from Parks Highway Bridge	-	-	-	-	-	91 (300)
	Α	Α	-	62°01'N 150°06'W:	Island in Susitna River near Sheep Creek Slough	-	-	-	-	-	76 (250)
N	-	A	-	61°49'N 150°10'W:	Island in Susitna River west of Kashwitna Lake	12	23	No	live	30	30 (100)
N		A	>1	61°47'N 150°10'W:	Island in Susitna River opposite mouth of Willow Creek	23	30	No	live	10	30 (100)
Ν	-	Α	-1	61°46'N 150°13'W:	Island in Susitna River 2 km west of mouth of Willow Creek	30	34	No	beeb	90	24 (80)
-	-	A	2	61°45'N 150°15'W:	Northwest corner of Delta Islands	30	30	Yes	live	40	24 (80)
Ņ	Α	Α	<u>>1</u>	61°43'N 150°19'W:	West bank of Susitna River _5 km upstream from mouth of Kroto Creek	28	28	Yes	live	100	30 (100
N	-	1	0	61°43'N 150°17'W:	East bank of Susitna River opposite mouth of Kroto Creek	22	30	No	live	20	27 (90)
N	-	Á	>1	61°40'N 150°19'W:	East bank of Susitna River opposite Kroto Slough	23	27	Yes	live	- 5	30 (100)
Ň	-	i i	<u> </u>	61°39'N 150°20'W;	Island in Susitna River near Kroto Slough	20	27	No	live	100	24 (80)
N	-	i.	Ó	61°39 N 150°21 W:	Island in Susitna River near Kroto Slough	27	30	No	live	5	24 (80)
-	-	Å	_	61°37'N 150°23'W;	Island in Susitna River 5 km upstream from Yentna River mouth	23	30	No	live	100	20 (60)
-	-	A	-	61°35'N 150°25'W:	Island at confluence of Yentna and Susitna rivers	_	-		-	_	17 (50)
-	-	A	>1	61°28'N 150°30'W:	East bank of Susitna River east of Flat Horn Lake	23	27	Yes	live	5	10 (30)
-	-	i i	-0	61°28'N 150°32'W:	West bank of Susitna River east of Flat Horn Lake	23	25	Yes	live	3	10 (30)
-	-	Å	_	61°24'N 150°30'W:	South end of Bell Island	-		-	-	-	7 (20)
-	-	1	0	61°22'N 150°36'W:	Northern end of Big Island	20	34	No	live	1	3 (10)
-	-	i	Ó	61°22'N 150°37'W:	West bank of Susitna River west of Big Island	18	23	No	live	2	3 (10)
-	-	i	Ō	61°20'N 150°38'W:	West side of Big Island	20	23	Yes	dead	20	3 (10)
-	-	i	õ	61°20'N 150°28'W:	West side of Big Island	20	20	Yes	dead	20	3 (10)
-	-	i	ō	61°25'N 150°28'W:	East bank of Susitna River near Maid Lake			Yes	-		3 (10)
-	-	i	ō	61°22'N 150°31'W;	Island in the Susitna River west of Beaver Lake	-		Yes	-	_ `	3 (10)
N	_	<u> </u>	_	61°22'N 150°01'W:	Confluence of the Chunilna and Talkeetna rivers	-	-		-	-	137 (450)
N	-	_	-	62°20'N 150°05'W:	Island 1 km up to Talkeetna River	÷	_	-	-	_	107 (350)
Ň	-	-	-	62°17'N 150°08'W:	Island in Susitna River 3 km downstream from Talkeetna	_		. –	-	_	107 (350)
N	-	-	-	62°16'N 150°09'W:	West bank of Susitna River 6 km downstream from Talkeetna	_	_	-		_	107 (350)
-	Α	-	-	61°59'N 150°07'W:	Island in Susitna River near mouth of Sheep Creek	· _	-	_	-	-	60 (200)
N	_		-	61°54'N 150°07'W:	East bank of Susitna River near mouth of 196 Mile Creek	-	-	-	_	-	45 (150)
N	-	-	-	61°46'N 150°13'W:	North end of Delta Islands	-	· .	<u> </u>	_	_	30 (100)
	A	-	- 1	61°28'N 150°32'W:	West bank of Susitna River west of Bell Island	_		-		-	7 (20)
-	A	-	-	61°27'N 150°30'W:	Island in Susitna River east of Bell Island	-	_	-	-	-	7 (20)
N	_	_	-	61°57'N 150°06'W:	Island in Susitna River 1 km upstream from Caswell Creek mouth	-	-	-	_	-	55 (180)

Key: N = nest, A = active nest, I = inactive next, - = no information

TABLE E.3.130: SUMMARY OF TOTAL NUMBERS AND SPECIES COMPOSTION OF WATERBIRDS SEEN ON LAKES SURVEYED IN SUMMER 1981 IN THE MIDDLE SUSITNA BASIN (based on Kessal et al. 1982a)

	Summer	· 1981
Species	Adults	Broods
Common Loon	22	3
Arctic loon	2	ō
Red-throated loon		0
Red-necked grebe	8 7 5	1
Horned grebe	5	5
Trumpeter swan	16	1
Mallard	10	1
Pintall	7	2
Green-winged teal	2 7	t
Northern shoveler	7	1
American wigeon	8	6
Scaup, greater and lesser	70	5
Goldeneye, common and Barrow's	6	1
Oldsquaw	47	11
White-winged scoter	81	0
Surf scoter	33	2
Black scoter	26	11
Scoter spp.	6	1
Red-breasted merganser	1	1
Merganser spp.	1	0
Mew guit	83	7
Bonaparte's gull	5	0
Arctic tern	48	0
Total birds	461	60
Total wetland area surveyed (km ²)	20,5	20,5
Density (birds/km ² of wetlands)	22.5	2.9

TABLE E.3.131: SUMMARY OF TOTAL NUMBERS AND SPECIES COMPOSITION OF WATERBIRDS SEEN ON SURVEYED WATERBODIES DURING AERIAL SURVEYS OF THE UPPER SUSITNA RIVER BASIN, FALL 1980

(from Kessel et al. 1982a)

and the second second

1

			DATE OF	SURVEY			
Species	7 Sept	11 Sept	16 Sept	20 Sept	26 Sept	3 Oct	TOTAL
Loon spp.				4 3	1		5
Common loon		3	2	3			8
Red-necked grebe	2	3 4 1	4		5 2	3	17
Horned grebe	1	4 🖌	17	9	2	2	35
Swan spp.		34	29	9	12	20	104
Canada goose				1	20		21
American wigeon		155	325	97	88	56	721
Green-winged teal		30	83	9	1	2	125
Mallard	10	64	14	116	110	124	438
Pintail	60	60	53	21	3	4	201
Blue-winged teal		1					1
Northern shoveler		8	20				. 28
Ring-necked duck			2	12			14
Scaup spp.	165	347	499	370	293	180	1854
01dsquaw	7	4	13	13	16	4	57
Black scoter		8	38	25	24	10	105
Scoter spp.*				6	56	72	134
surf scoter		5	4	2			11
white-winged scoter	10			1	6	1	18
Bufflehead		33	40	95	127	101	396
Goldeneye spp.	15	36	68	124	95	133	471
Merganser spp.		8	30	36	68	19	161
TOTAL BIRDS	270	803	1241	953	927	731	4925
Total wetland area surveyed (km ²)	13.11	22.08	25.76	27.53	29.00	24.25	
Density (birds/km ² of wetlands)	20.6	36.4	48.2	34.6	32.0	30.1	

* Surf or white-winged scoter

Ĩ

TABLE E.3.132: SUMMARY OF TOTAL NUMBERS AND SPECIES COMPOSITION OF WATERBIRDS SEEN ON SURVEYED WATERBODIES DURING AERIAL SURVEYS OF THE UPPER SUSITNA RIVER BASIN, FALL 1981 (from Kessel et al 1982a)

		[DATE OF SURVEY			
Species	15-16 Sept	26 Sept	26 Sept-9 Oct	12-19 Oct	20-23 Oct	
Common loon	2	3	3	1		9
Arctic loon		_				
Red-throated loon						
Loon spp.						
Red-necked grebe	12	3	1			16
Horned grebe	_	-				
Whistling swan	-	18	24			42
Trumpeter swan	6		10	14	÷	30
Swan spp.		41	25	22	13	101
Canada goose				50		50
Mallard	41	153	131	142		467
Pintail	32					32
Green-winged teal	13	3				16
Northern shoveler						
American wigeon	133	÷	14	5	4 	152
Canvasback						
Redhead						
Scaup, greater and lesser	479	166	51	90		786
Goldeneye, common and Barrow's	18	125	68	36		247
Bufflehead	17	20	29	52		118
Oldsquaw	15	31	7	1		54
Nhite-winged scoter			69	13		82
Surf scoter				29		29
Black scoter	1	6	2	1		10
Scoter, spp.	69		1	92		162
Common merganser			1	2		3
Red-breasted merganser						
Merganser spp.	77	38		18		133
TOTAL BIRDS	915	607	436	568	13	2539
Total wetland area surveyed (km ²)	25,68	25.68	21,31	11,57	6,62	
Km ² of 100% frozen waterbodies						
surveyed*	0	1.41	3,91	3.76**	2.00	
Density (birds/km ² of wetlands)	35.6	23.6	20,5	49.1	1,96	

* Other waterbodies had at least some open water

** An additional 9.22 km² of 100% frozen waterbodies were not surveyed in mid-October because they were known to be frozen. By late October only Stephen and Murder Lakes still had some open water.

TABLE E.3.133: SUMMARY OF TOTAL NUMBERS AND SPECIES COMPOSITION OF WATERBIRDS SEEN ON SURVEYED WATERBODIES DURING AERIAL SURVEYS OF THE UPPER SUSITNA RIVER BASIN, SPRING 1981 (from Kessel et al. 1982a)

and a

1

....

1

		DATE OF SURVEY		
Species	3 May	10 May	26 May	TOTAL
Common toon			4	4
Arctic loon			5	5
Red-throated loon			5	2
Loon spp.		3	4	7
		-		
Red-necked grebe			4	4
Horned grebe		1	1	2
Whistling swan				
Trumpeter swan	2		6	8
Swan spp.		11	10	21
Canada goose				
Mallard	97	78	121	296
Pintaii	71	70	1 16	257
Green-winged teal	67	47	38	152
Northern shoveler		12	28	40
American wigeon	5	94	.99	198
Canvasback		1		1
Redhead			28	28
Scaup, greater and lesser		103	513	616
Goldeneye, common and Barrow's		51	38	89
Bufflehead		2	10	. 12
Oidsquaw and a squaw and a squaw a squa		2	84	86
White-winged scoter			16	16
Surf scoter		4	35	39
Black scoter		1	42	43
Scoter, spp.		12	74	86
Common merganser			7	7
Red-breasted merganser			2	2
Merganser spp.			25	25
TOTAL BIRDS	242	492	1312	2046
Total wetland area surveyed (km ²)	25,68	25,68	25,68	
Km ² of 100% frozen waterbodies surveyed*	14,31	1,97	0	
Density (birds/km ² of wetlands)	9.4	19,2	51,1	

*Other waterbodies had atleast some open water.

TABLE E.3.134: SEASONAL POPULATION STATISTICS FOR THE MORE IMPORTANT OF SURVEYED WATERBODIES OF THE MIDDLE SUSITNA RIVER BASIN, 1980-81. INCLUDED ARE WATERBODIES THAT WERE AMONG THOSE HAVING THE SIX HIGHEST IMPORTANCE VALUE RATINGS IN AT LEAST ONE SEASON (from Kessel et al. 1982a)

			Fall 1980*	*		Fall 1981*	H		Spring 198	1++		Summer	- 1981	
	Size	Mean no.	Mean density	Mean no,	Mean no.	Mean density	Mean no.	Mean no.	Mean density	Mean no.	no.	Density of	no.	no.
Waterbody	(km ²)	birds	(no/km ²)	species	birds	(no/km ²)	species	birds	(no/km ²)	species	adults	adults	species	broods
Murder Lake - WB107	0,15	39.0	260.0	4.3	38.0	253.3	3.0	51.3	342.2	5,0	23	153 . 3	5	1
Stephan Lake - WB106	3 . 55	156.0	43.9	9.5	168.5	47.5	5.0	99.7	28.1	7.3	87	24.5	9	2
(Tyone R - Oshetna R group - WB140)	0,90	53,5	59 . 4	5.0	30,5	33.9	2,5	48.3+	53 _• 7†	3.7†	75	83,3	11	4
(MacLaren R- Tyone R group - WB131)	1.04	212.8	204 <u>.</u> 6	6,5	123.0	118,3	5.0	54.7†	52,6†	3.7†	-	-	-	-
(Clarence Lake group- WB145)	1,60	103,8	64.8	7.0	42,5	26.6	4.5	58 _• 7	36.7	7.0	35	21.9	8	6
(Fog Lakes group 1- WB059)	1.44	72.8	50 . 5	6,5	55.0	38,2	3.0	21,3	14.8	4.7	54	37.5	11	5
Watana Lake - WB148	1,25	95.8	76.6	3.8	34.5	27.6	2.0	21.3†	17.1+	3.0+	8	6.4	3	0
Pistol Lake (Lower Deadman Creek group- WB067)	0,76	19.0*	17,9*	4.0*	4 . 0†	5,3	1 .5+	85.0	111,8	6.0	15	19.7	8	5
(Fog Lakes group II- WB032)	0.07	-	-	-	-	-	-	· _	-		8	114.3	4	6
Swimming Bear Lake- wB150	0 . 57	-	-	-	11.5	20,2	0,5	4 . 7+	8,2†	0.7†	33	57.9	5	4

¹ Codes are those used by Kessel et al. (1982a) * Combines WB 064-067 **September 11, 16, 20 and 26, 1980; September 15 and 26, 1981 t 100 percent frozen on at least one survey

ttMay 3, 10, and 26, 1981

- Not surveyed

		Do Ta	evil Ikeet	Canyo ma (7	n to 4 km)			eetna na (33		Kash	Montana t witna Lake			ashwitn uth of (36				th Yeni ok inie		
Species	7/	81	10/82	Мау 21/8	2 28/82	7/8	1 10/8:	May 2 21/8	2 28/82	7/81	Мау 10/82 21/8	2 28/82	7/81	Ма 10/82	y 21/82	28/82	7/81	Ma 10/82	ay 21/82	28/82
مى يەرىپى بىرىمىيە يەرىپىيە يەلەيدىنى بىرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە يەرىپىيە ي يېرىپىيە يېرىپىيە يەرىپىيە يەر			<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>		<u> </u>	_ ~_		<u> </u>											-
Aratic loon					2															
Red-throated loon																			1	1
Loon spp.																	8			
Red-necked grebe													1				4			
Swan spp.					2									2		1	60	400	20	
White-fronted goose																				
Brant																	2			,
Canada goose					-						1			4			1			21
Green-winged teal	. 3	4				5				3										
Mallard	1	8	8	2	1	23	12			23		2	7	1		1	2	2	3	12
Pintail 🗇	1	3								3										3
American wigeon		2								14			4				9			5
Canvasback	:	2															20			
Scaup spp.			1.			2											100			
Scoter spp.										2										1
Goldeneye spp.	1	1		2		6				2			3				10			2
Bufflehead				2		2				14										
Common merganser				2	4			6	2						. 9	1	70	8	64	119
Merganser spp.		6		4	21	6				61			8				102			
Total no. species				11				7			9				9				14	
Mean no, birds/survey				29				16			31			1	2			29	96	
Mean no. birds/km				0.4				0.5			1.1			0.	3			8.	.0	

TABLE E.3.135: SUMMARY OF TOTAL NUMBERS AND SPECIES COMPOSITION OF WATERBIRDS SEEN DURING SPRING AERIAL SURVEYS OF THE LOWER SUSITNA RIVER, 1981 AND 1982 (from Kessel et al. 1982b, B. Kessel, unpub. data)

]

1

1

a.

TABLE E.3.136: NUMBER OF TERRITORIES OF EACH SPECIES ON EACH 10-HECTARE CENSUS PLOT, UPPER SUSITNA RIVER BASIN, ALASKA, 1981 (+ = SMALL PORTION OF A BREEDING TERRITORY ON CENSUS PLOT, COUNTED AS 0.1 IN DENSITY AND DIVERSITY CALCULATIONS: V = VISITOR TO PLOT.)

(from Kessel et al. 1982a)

Species	Alpine Tundra	Dwarf-Low Blich Shrub Thicket	Medium Birch Shrub Thicket	Low-Medium Willow Shrub Thicket	Tall Alder Shrub Thicket	Cotton- wood Forest	Paper Birch Forest	White Spruce- Paper Birch Forest l	White Spruce- Paper Birch Forest II	White Spruce Forest	White Spruce Scattered Woodland	Black Spruce Dwarf Forest
Pintall Goshawk Marsh hawk				v	v					v		v
Spruce grouse Ruffed grouse Willow ptarmigan		0,5		v	v	v	v	1.0	1.0	v +	۷	v
Rock ptarmigan White-tailed ptarmigan	+ ~ V	0.5 0.7		·								·
Greater yellowlegs Common snipe Baird's sandpiper	0.8	v	v	v							+ 0,5	1.0
Long-tailed Jaeger Short-eared owl Common flicker		V V		v					V			
Hairy woodpecker Downy woodpecker N. three-toed woodpecker Alder flycatcher						1.0 0.5 1.0		v	1.0 0.3	1.0	V	v
Olive-sided flycatcher Horned lark Tree swallow	0.3	V	v	v		V .			۷	v		
Gray jay Black-bliled magpie Common rayen			• .	·	1.0 V	•	V	0,5	0.5	1.0	+	v v
Black-capped chickadee Boreal chickadee Brown creeper	н. м _а	N 21				1.8 2.0	v v	. V	V 1_0 1_0	V	V	1 <u>.</u> 0
American robin Varied thrush Hermit thrush		·			0.5 1.5 2.2	10.0 V	V 3.5 6.1	2.5 3.8	3.3 V	V 2.9	0.5 V	0.5 V
Swainson's thrush Gray-cheeked thrush Arctic warbler			4.8	3.6	•	6.9 3.8	5 5 V	5.4 V	8.0	3.0	V 3,9 2,8	v 2,5

.

1

TABLE E.3.136 (Page 2)

. •

Species	Alpine Tundra	Dwarf-Low Birch Shrub Thicket	Medium Birch Shrub Thicket	Low-Medium Willow Shrub Thicket	Tall Alder Shrub Thicket	Cotton- Wood Forest	Paper Birch Forest	White Spruce- Paper Birch Forest I	White Spruce- Paper Birch Forest II	White Spruce Forest	White Spruce Scattered Woodland	Black Spruce Dwarf Forest
Ruby-crowned kinglet Water pipit Bohemian waxwing	0,5					v	v	3.3	.1 . 0	4.2	0.8	4.0 V
Orange-crowned warbler											v	
Yeliow-rumped warbler					+	7.0	9.8	7.5	9.5	1.0	0.8	2.5 1.5
Blackpoll warbler Northern waterthrush			v			4.4 6.1	3.9 +	1.8 2.5	0.5 V		2.0	1.5
Nilson's warbler Rusty blackbird			8.8	9.2	1.2	4.0	3.8	4.0			9,4	v
Common redpoll Pine siskin		v	v	1.5	v	2,5	2.0 V	2.0	3.0	v	0.5	1.0
White-winged crossbill					v	· V	•	v	v	v	v	v
Savannah sparrow	1.0	5.8	3.0	12.3						v	2.5	0,8
Dark-eyed junco Tree sparrow		2.5	11.8	15.0	2.8 1.5	1.8	2,5	3.9	4.5	2.5	2.5 2.0 7.9	2.0
White-crowned sparrow		0.3	4.1	3.8	+	3.5					6.5	2.5
Fox sparrow Lincoin's sparrow			•	V V	1.6	4.6	1.0	1.9	V V		3,5	2.6 2.5 2.9
Lapland longspur Snow bunting	1.0 0.2	0.8						• .	••		r	

No.

TABLE E.3.137: NUMBER OF TERRITORIES OF EACH BIRD SPECIES ON EACH 10-HECTARE CENSUS PLOT, UPPER SUSITNA RIVER BASIN, ALASKA, 1982 (+ = SMALL PORTION OF A BREEDING TERRITORY ON CENSUS PLOT, COUNTED AS 0.1 IN DENSITY AND DIVERSITY CALCULATIONS; V = VISITOR TO PLOT.)

(from Kessel,	, unpub	1.1	tabl	es)	ľ
---------------	---------	-----	------	-----	---

Species	Alpine Tundra	Dwarf-Low Blrch Shrub Thicket	Medium Birch Shrub Thicket	Low-Medium Willow Shrub Thicket	Tall Alder Shrub Thicket	Cotton- wood Forest	Paper Birch Forest	White Spruce- Paper Birch Forest 1	White Spruce- Paper Birch Forest II	White Spruce Forest	White Spruce Scattered Woodland	Black Spruce Dwarf Forest
Goshawk									V	+		
Marsh hawk Spruce grouse			V				+		0,5	+		
Willow ptarmigan		+		+			T I		0,0	т		
Rock ptarmigan		v										
American golden plover Whimbrei	0.5											
Greater yellowlegs											+	
Common snipe		V	v	+							0,5	
Long-billed dowitcher Baird's sandpiper	2.0	V										
Great horned owler	2.0					٧						
Hawk owl											v	
Short-eared owl Common flicker		V								v		
Hairy woodpecker					-	1.0				•		
Downy woodpecker						0,5						·
N. three-toed woodpecker Dilve-sided flycatcher										0.5 +		· · ·
Horned lark	0.6	0.3								·		
Tree swallow						V				V.		
Violet-green swallow Gray jay					v			0.8	1.0	v 0,5	v	
Black-billed magpie					v			•••			·	
Common raven Black-capped chickadee	۷					2.0						
Boreal chickadee						2.0	v	1.0	2.0	v		
rown creeper						+		- • -	1.0			
American robin Varied thrush				+	+ 0.5	+ 3,5	2.0	2,0	1.0	+ 1.0	V V	°0 , 9
Hermit thrush				•	1.8		4.0	2.0	T.∎♥		۲	
Swainson's thrush					+	2.5	1.0	4,1	5 <u>.</u> 0	4.0		
Gray-cheeked thrush Wheatear	v				3.0					v	1.3	2.5

N

TABLE E.3.137 (Page 2)

Species	Alpine Tundra	Dwarf-Low Birch Shrub Thicket	Medium Birch Shrub Thicket	Low-Medium Willow Shrub Thicket	Tall Alder Shrub Thlcket	Cotton- wood Forest	Paper Birch Forest	White Spruce- Paper Birch Forest i	White Spruce- Paper Birch Forest II	White Spruce Forest	White Spruce Scattered Woodland	Black Spruce Dwarf Forest
Arctic warbler Ruby-crowned kinglet Water pipit		2.0	5.0	3.0				2.8	3.8	4.1	2.0 1.5	1_8
Orange-crowned warbler Yellow-rumped warbler Blackpoll warbler Northern waterthrush					0.8 0.8	2.0 2.5 2.3	V 4.0 3.0	4.3 0.8 1.3	+ 5_8 V	V 3.0 + V	V	1.8 0.8
Wilson's warbler Common redpoll Pine grosbeak White-winged crossbill	v	v	2.7 V	4.0	2.3 V	V V	2.0	3.5 V	0.3 V V	v 1.0 V	3.7	0.5 V
Savannah sparrow Dark-eyed junco	1.0	8.3	3.2	6 . 3	2,3		3.3	2,8	1.0 5.0	3,5	V	+ 1.4
Tree sparrow White-crowned sparrow Golden-crowned sparrow		3 <u>.</u> 0 +	7.8 2.0	7_6 3_4 0_8	۷	1.5					3.6 4.5	1.4 1.5 2.0
Fox sparrow Lincoln's sparrow			v		3.1	4.0	2.0	3.0			2.0	3.5 V
Lapland longspur Snow bunting	1.0 V	0.5										

.

	· · · · · · · · · · · · · · · · · · ·	-	eeding cies	Diversi	ту ³ (Нт)	(No	Densit territ 10 ha)	orles/
Avian	Census Plots ⁴	1981	1982	1981	1982	1981	1982	Change ² (%
(1)	Alpine tundra ¹	10	7	1.73	1.66	4.8	6.2	+23,1
(2)	Dwarf-low birch shrub ¹	7	6	1.29	0.91	11,9	11,6	0
(3)	Medium birch shrub	5	5	1_48	1.49	32,5	20.7	-36,3
(4)	Low-medium willow shrub	6	9	1,56	1.80	45.4	25.4	-44.1
(5)	Tall alder shrub	10	9	2.05	2,02	12,5	11,8	-5.6
(6)	Cottonwood forest	16	13	2,55	2,30	60,9	25 _• 0	-58.9
(7)	Paper birch forest	10	9	2,05	2,02	38,1	21.4	-43.8
(8)	White spruce-paper birch forest l	14	11	2.47	2,26	· 41 . 8	26.4	-36.8
(9)	White spruce-paper birch forest li	13	13	2.07	2.09	34.6	26.6	-23.1
(10)	White spruce forest	8	13	1.83	1.84	15,7	18.1	+15,3
(11)	White spruce woodland	16	9	2,29	1.95	43.8	19.2	-56,2
(12)	Black spruce dwarf forest	13	11	2,43	2,13	24.8	16,8	- 32 , 3

TABLE E.3.138: COMPARISON OF BREEDING BIRD DENSITIES, 1981 AND 1982, MIDDLE SUSITNA RIVER IN ALASKA (based on Kessel et al. 1982a, Kessel unpub. data)

¹ Based on 25-ha piot; other plots were 10 ha. ² Overall number of territories on 150 ha of censused piots decreased 37.5 percent. ³ Shannon-Weaver diversity index. ⁴ Plot numbers from Table E.3.139 given in parentheses. Names from Kessel et al. (1982a).

TABLE E.3.139: HABITAT DISCRIPTIONS OF 10 HA AVIAN CENSUS PLOTS (modified from descriptions in Kessel et al. 1982a)

	el et al. (1982a) lot Names	Equivalent Kessel (1979) Avian Habitats'	Approximate Viereck and Dyrness (1980) Equivalents	Equivalent Mappable (1:63,360 Scale) Vegetation Type Inits (McKendrick et al. (1982))
(1)	alpine tundra	dwarf shrub mat (<0,4m), dwarf shrub meadow and block field	mat and cushion tundra, mesic sedge-grass tundra	² mat and cushion tundra, dwarf sedge shrub meadow and mesic sedg e- grass tundra.
(2)	dwarf-low birch		1	
(3)	shrub thicket and medium birch shrub thicket	low shrub thicket (0,4-1,1m), and medium shrub thicket (1,2-2,4m)	low shrubland (<1,5m) and tali ⊴hrubland (>1,5m)	low birch shrub
(4)	low-medium willow shrub thicket	low shrub thicket (0.4-1.1m), and medium shrub thicket (1.2-2.4m)	low shrubland (>1,5m) and tall shrubland (>1,5)	³ low mîxed shrub
(5)	tall alder thicket	tali shrub thicket (2.5-4.9m)	tall shrubland (>1,5m)	tall shrubland
(6)	cottonwood forest	deciduous forest (90% of canopy)	closed deciduous forest (75% closed canopy cover)	closed balsam poplar forest
(7)	paper birch forest	deciduous forest (90% of canopy)	closed deciduous forest (75\$ closed canopy cover)	closed birch forest
(8)	white spruce- paper birch			
(9)	forest [and white spruce- paper birch forest []	coniferous forest (10-90% of canopy)	deciduous forest (25–75% closed canopy	deciduous forest
(10)	white spruce forest	coniferous forest (90% of canopy)	closed conifer forest (75% closed canopy cover)	ciosed conifer forest
(11)	white spruce scattered woodland	scattered woodland (<u>>5</u> m)	conifer and deciduous woodland (10-24≸ closed canopy cover)	⁴ woodland white spruce
(12)	black spruce dwarf forest	dwarf forest (<5m, stunted growth 0,2-20% canopy)	conifer and deciduous woodiand (10-24≸ closed canopy cover)	⁴ woodland black spruce

¹As given by Kessel et al. (1982a).

²Kessel et al. (1982a): "The alpine tundra piot contained 3 distinct avian habitats, all typical of and widespread in the high country of the region: dwarf shrub meadow, dwarf shrub mat and block field (rock scree)." "The dwarf shrub meadow was dominated by <u>Carex microchaeta</u> and contained significant quantities of dwarf shrub (up to 50% ground over)..."

³Kessel et al. (1982a) characterized the low-medium willow shrub thicket plot as heterogeneous with medium height shrub birch and willow over 2/3 of the plot.

⁴White spruce scattered woodland and black spruce dwarf forest are assigned to woodland conifer types rather than the woodland mixed conifer-deciduous types suggested by Kessel et al. (1982a) on the basis of Kessel et al.'s (1982a) descriptions of plot vegetation. In particular, no deciduous tree component appears to have been present in either plot (see Kessel et al. 1982a:39 and Table 2, page 28).

TABLE E.3.140: MAJOR AVIAN HABITATS OF THE MIDDLE SUSITNA BASIN AND THEIR MOST COMMON AVIAN SPECIES (from Kessel et al. 1982a)

- Lacustrine Waters and Shorelines: arctic tern, mew gull, greater and lesser scaup, common loon
- Fluviatile Waters, Shorelines and Alluvia: spotted sandpiper, mew gull, violet-green swallow, harlequin duck

Т

- Upland Cliffs and Block-fields: gray-crowned rosy finch, common redpoll, horned lark, American golden plover, water pipit
- Dwarf Shrub Mat: water pipit; American golden plover, horned lark, Lapland longspur, rock ptarmigan
- Low Shrub: savannah spärrow, tree sparrow, Lapland longspur, white-crowned sparrow
- Medium Shrub: tree sparrow, white-crowned sparrow, savannah sparrow, arctic warbler, Wilson's warbler
- Tall Shrub: hermit thrush, Wilson's warbler, fox sparrow, white-crowned sparrow, tree sparrow
- Scattered Woodland and Dwarf Forest: white-crowned sparrow, American robin, bohemian waxwing, tree sparrow, ruby-crowned kinglet
- Mixed Deciduous-Coniferous Forest: hermit thrust, dark-eyed junco, yellow-rumped warbler, Swainson's thrush, varied thrush
- Deciduous Forest: yellow-rumped warbler, common redpoll, Swainson's thrush, blackpoll warbler
- Coniferous Forest: ruby-crowned kinglet, varied thrush, dark-eyed junco, yellow-rumped warbler, Swainson's thrush

TABLE E.3.141: RELATIVE ABUNDANCE OF BIRDS BY HABITAT AND VEGETATION SUCCESSION STAGE, LOWER SUSITNA RIVER FLOODPLAIN, JUNE 10-21, 1982. FIGURES ARE THE NUMBER OF BIRDS RECORDED PER 100 MINUTES IN EACH HABITAT (from Kessel et al. 1982b)

and a

Constant of

	Early Su	cession	al Stands		Mid-Succ	essional	Stands	La	te Successional	Stands
Species	Alluvia	Dwarf & Low Shrub	Medium Shrub	Tall Willow Shrub	Tall Alder Shrub	Mixed Tall Shrub	Tall Alder- Inmature Cottonwood	Cottonwood Forest	Mixed Paper Birch- Cottonwood- White Spruce Forest	Mixed Paper Birch- White Spruce Forest
Goldeneye sp.								0.3		
Semipalmated plover	2	1						- •-		
Spotted sandpiper	13	0								
Herring gull	*									
Arctic Tern	4	2								
Downy woodpecker		-						0.3		
Hairy woodpecker			1.5		0,9	0.6	1.4	0.6		
N. three-toed woodpecker										0.6
Alder flycatcher				13.3	9,1	7.0	0,5	2.0	1.7	2.1
Black-capped chickadee					0.4			2,5	1.7	
Brown creeper										0,3
Varied thrush					0,9	0,6	1.0	5.4	1.7	2,1
Gray-checked thrush				1 A	4.6	8.2	2,9	7.1	8,3	1.7
Swainson's thrush					0.4			3.7	5.0	7,4
American robin				3,3	1.4			2.8	3,3	0,6
Ruby-crowned kinglet									1.7	2.4 0.3
Bohemian waxwing								1.1		0,3
Orange-crowned warbler					_	1.9			3.5	
Yellow warbler				3,3	1.8	1.9	7.3	0,3		
Yellow-rumped warbler					3.2	1.3	3.9	6.2	18,3	13.3
Blackpoll warbler			·	6.7	3,2	9.5	2.4	6.5	6.7	5.3
Northern waterthrush			1,5	2.1	7.3	12.0	2.9	12.5	10.0	3.3
Wilson's warbler					• -	1.9		0.8	° 3 . 3	0,3
Common redpoll					0,9	5.7		0.6		2,1
Fox sparrow			1.5	3.3	4,1	1.9		4.3	3.3	1.5
White-crowned sparrow			13,8		2,3	1.3	0.5	2.5	1.7	1.2
Dark-eyed junco						0,6	<u></u>	1.7	1.7	2.1
Total no, of species	4	+	4	5	14	14	9	19	15	17
Total no. of species in stand t	урө	. 8			- 17	,			22	
No, minutes of censuses/habitat	- 127	+	65	30	219	158	206	352	60	358
Total no, minutes of census per stand type		192			613	5			750	
Relative abundance/habitat	19,	,3 +	18.5	30.0	40.6	54_4	22.8	61.1	71.7	46.5
Total relative abundance per stand type		25.	5		37.	5			51.5	<u></u>

•	(Captures per 100	Trap Nights (No. o	f Captures)	Number of Captures	Percent
Species	Fall 1980	Spring 1981	Fall 1981	Fall 1982	All Trapping Periods	of Total
Sorex cinereus	9.12 (361)	0.93 (39)	11.36 (847)	0.56 (42)	(1289)	34.6
S. monticolus	2.42 (96)	0	0.64 (48)	0.03 (2)	(146)	3.9
S. arcticus	2.98 (118)	0.07 (3)	2.31 (172)	0.13 (10)	(303)	8.1
5. hoyi	0.13 (5)	0	0.07 (5)	0	(10)	0.3
<u>Clethrionomys</u> rutilus	8.41 (333)	2.23 (93)	10.95 (816)	2.89 (216)	(1458)	39.1
Microtus pennsylvanicus	0,33 (13)	0	0.74 (55)	0.47 (35)	(103)	2.8
M. oeconomus	0.61 (24)	0.05 (2)	2.12 (158)	0.53 (40)	(224)	6.0
M. miurus	0	0	0.91 (68)	1.07 (80)	(148)	4.0
Lemmus sibiricus	0	0.02 (1)	0.23 (17)	0.15 (11)	(29)	0.8
Synaptomys borealis	0	0	.0.05 (4)	0.15 (11)	(15)	• 0. 4
Total captures	24.00 (950)	3.30 (138)	29.38 (2,190)	5.98 (447)	(3725)	100.0
Number of trap nights	3960	4176	7455	7470		

TABLE E.3.142: NUMBER OF SMALL MAMMALS CAPTURED PER 100 TRAP NIGHTS DURING FOUR SAMPLING PERIODS BETWEEN AUGUST 1980 AND AUGUST 1982, MIDDLE SUSITNA RIVER BASIN (Number of Captures are Given in Parentheses.) (from S. O. MacDonald, unpub. data)

TABLE E.3.143: STANDARDIZED HABITAT NICHE BREADTH VALUES FOR TEN SMALL MAMMAL SPECIES SAMPLED BY SNAP AND PITFALL TRAPPING AT 43 SITES, MIDDLE SUSITNA RIVER BASIN, FALL 1981 (Niche Breadth Measures were Calculated Using Formula Employed by Krebs and Wingate (1976))

Species (d ₁)	Standardized Habitat Niche Breadth Vaiue ^a
Masked shrew (464.7)	0,60
Northern red-backed vole (454.8)	0, 59
Dusky shrew (28.3)	0.45
Arctic shrew (96.3)	0,38
Brown lemming (10,2)	0,21
Tundra vole (87.7)	0.17
Northern bog lemming (2,2)	0.09
Meadow vole (43.8)	0.08
Pygmy shrew (2 _. 8)	0.08
Singing vole (42.7)	0,05

(from Kessel et al. 1982a)

^aHigh niche breadth values indicate that a species habitat included a wide range of vegetation types whereas low values indicate that a species occurred in few vegetation types.

1. Permanent Habitat Loss

Area affected (ha) 131 14,691 14,691 14,691	Time period over which area increases 1985 - 1991 1985 - 1993 1991 - 1993	Devil Canyon (add Area (ha) 21	Time Period 1996 - 1999
14,691 14,691	1985 - 1993	21	1996 - 1999
14,691			
	1985 - 1991	3,196 3,196 (also below fill leve1)	1996 - 2001 1999 - 2001 1996 - 1999
app. 558	1993 - ?	?	2001 - ?
192	1985	218	1988 - 1994
192	1985		
		189	1988
		29	1991 - 1994
27	1987 - 1988		
47	1985	9	1994
and Temporary Habitat	Loss		
12, 545	1989 - 1992	1,942	1999 - 2001
49	1987 - 1988	24	1995 - 2002
58	1985 - 1994	24	1994 - 2002
4 707	1007 1001	340	1006 1000
333	1987 - 1991	(48 	1996 - 1999
	avartable		
		148	date not available
300	1985 - 1995	195	1994 - 2002
data not available			
· · · · · · · · · · · · · · · · · · ·	1985 - 2002		
		61	1994 - 2002
data not available	1985 - ?	?	1994 - 2002
data not available ?	?	?	?
on 379 ₀ 8 77 <u>0</u> 5	dates not availale	209 additional	
	app. 558 192 192 27 47 and Temporary Habitat 12,545 49 58 1,323 333 287 180 280 489 34 300 data not available data not available data not available 280 489 34 300	app. 558 1993 - ? 192 1985 192 1985 27 1987 - 1988 47 1985 and Temporary Habitat Loss 12,545 1989 - 1992 49 1987 - 1988 58 1985 - 1994 1,523 1987 - 1991 333 287 180 dates not 280 available 489 34 300 1985 - 1995 data not available 61 1985 - 2002 data not available 1985 - ? data not available 1985 - ? data not available 1985 - ? data not available 2002 7	app. 558 1993 - ? ? 192 1985 218 192 1985 189 29 27 1987 - 1988 47 1985 9 and Temporary Habitat Loss 9 12,545 1989 - 1992 1,942 49 1987 - 1988 24 58 1985 - 1994 24 1,523 1987 - 1991 148 58 1985 - 1994 24 1,523 1987 - 1991 148 300 dates not

彩机

MARK P.

1000

TABLE E.3.144 (Page 2)

Watana and Devil Canyon

Area Affected

Climatic induced alteration

- downstream reach - near impoundment

pice in

(Total area affected cannot be determined. Exact impact mechaisms hypothesized include: 1) delayed plant phenology due to snow drifting and decreased summer temperature, 2) increased rainfall in summer, 3) increased winds, and 4) decreased summer temperatures)

Hydrologic induced alteration - downstream reach

(Total area affected cannot be determined. Exact impact mechanisms hypothesized include: 1) lowering water table, 2) frosting of vegetation, 3) earlier plant phenology due to higher water temperature, and 4) altered frequency and mechanisms of creation of early successional vegetation.

3. Barriers, Impediments or Hazards to Movement

<u>Watana</u>	Date of initiation of impact	Comments
 Impoundment Access corridor Denali to Watana Open water downstream Transmission corridor Devil Canyon Impoundment Access corridor Watana to Devil Canyon Rail, DC to Gold Creek 	1991	 water and/or ice shleving may act as barrier or hazard to some species.
		 snow drifting may block or impede movements for some species.
	1985	- may be a physical or visual barrier to some species
– Open water downstream	1993	- may block crossings by some species.
- Transmission corridor	1989 - 1990	- "hum" may cause frequent headaches, thereby reducing frequency of intromission and natality for some species.
		 drifting of snow has been hypothesized by some to present a barrier to move- ments of some species.
Devil Canyon		
- Impoundment	1999 - 2001	- as Watana above
- Watana to Devil Canyon	1991 1991 - 1994	- as Watana above
- Open water downstream	2001	- will persist further downstream w/D.C.
- Increased aufeis downstream	2001	- may be hazard to some species
- Transmission corridor	1991 - 2001	- "hum" will be louder with D.C.
		- corridor will be wider and snow drifting

has been hypothesized by some to present a barrier to movements of some species.

TABLE E.3.144 (Page 3)

1

4. Disturbance Associated with Construction Activities

Watana & Devil Canyon	Duration for Watana	Duration for Devil Canyon
Containment Structures	1985 - 1991	1996 - 1999
Borrow Areas	1985 - 1991	1996 - 1999
- A	?	
- D	?	
- <u>E</u>	?	
- F.	?	
- H	?	
- 1 - K	?	?
Impoundment clearing	1989 - 1992	1999 - 2001
Access roads		
- Denali Highway to Watana	1985	
- Watana to D.C.		1991
- rail, D _• C _• to Gold Creek	. 	1991 - 1994
Temporary camp	1985 - 1994	1994 - 2002
Germanent utlinge	1987	
Permanent village Temporary airstrip	?	
	·	•
Additional airplane		
and helicopter disturbance	1982	1982
Contractor work areas	1985 - 1995	1994 - 2002
Staging areas		
- mid access road	?	· · · · · · · · · · · · · · · · · · ·
- Cantwell	1985 - 2002	
- Gold Creek		1994 - 2002
Transmission corridor		
- clearing	1989 - 1990	1989 - 1990
- maintenance	as required	as required
Accessory roads	?	?
5. Increased Human Access		
Hypothesized Impacts of both projects	Date of initiation of imp	pact
Increased hunting and poaching	1982-	
Increased risk of fire	1982-	
Increased mortality due to		·
collisions with vehicles	1982-	
increased recreational disturbance	1982-	
Increased human/wildlife conflicts (especially bear encounters)	1982-	
		1

TABLE E.3.145: ANTICIPATED AND HYPOTHESIZED IMPACTS TO MOOSE

- (1) Permanent Habitat Loss:
 - Watana
 - --impoundment area and permanent facilties
 - --access corridor
 - Devil Canyon

--impoundment area and permanent facilities

--access corridor

(2) Habitat Alteration and Temporary Habitat Loss:

- Watana 🐪

--impoundment clearing

--reclaimed areas

--impoundment shore erosion

--transmission corridor

--climatic-induced habitat alteration

- . Wintering habitat loss will be severe impact winter carrying capacity 266 moose.
- Spring habitat loss, especially calving habitats in lowland riparian areas, will be a major impact.
- Summer and fail habitats are mostly in upland areas, a small number of non-migratory moose will be displaced.
- . Small area of non-critical habitat loss.
- May affect location of new special-use areas following impoundment filling.
- . Wintering habitat loss will affect an estimated 36 moose based on carrying capacity data.
- . Spring habitat ioss will be minor but may displace a small number of moose which calve in this area.
- . No significant loss of summer or fall habitats.
- Small area of non-critical habitat loss.
- Clearing will reduce winter capacity prior to flooding.
- . Winter habitat for 37 moose will be affected. Revegetation is likely to restore these areas as moose habitat between 2-20 years following disturbance.
- . Will occur on steep slopes of little value to moose.
- Nearly all 30,000 ha of the corridor is likely to become winter habitat of reasonable quality to moose. No existing winter habitat will be made unusable. Corridor will be maintained in early succession throughout the life of the project.
 Drifting snow is unlikely to be a significant factor in the 285-foot corridor and will not
- factor in the 285-foot corridor and will not reduce forage availability.
- Snow drifting from the reservoir surface is unlikely to extend far into wooded winter habitats. Drawdown and ice-shelving will catch much windblown snow and further drifting will cocur at the edge of open habitat and wooded areas. It is unlikely that the value of the Fog Lakes area as winter range will be negatively affected.
- Delayed meit-off of drifts which do occur will reduce the availability of Low shrub habitat in spring in a narrow band on the southwest shore of the impoundment.

--hydrologic-induced habitat alteration

- Devil Canyon
 - --impoundment clearing
 - --reclaimed areas

--impoundment shore erosion

--transmission corridor

--climatic alteration

--hydrologic-induced alteration

 Increased summer rainfall, increased winds and cooler summer temperatures in the basin are unlikely to measurably reduce carrying capacity. Available data indicate that any such changes in rainfall patterns will be indetectable (R. Skog, unpub, data from Williston Reservoir, B_cC_o).

 Delayed plant phenology may occur immediately adjacent to the reservoir due to its cooling effect.

- . Decreased flows may lower the water table in downstream reaches. This is unlikely to affect willow colonization due to the wet climate.
- Open water may cause frosting of vegetation as far downstream as Gold Creek. Heavy frosting may make some browse unavailable. Lighter frosting will increase metabolic demand on moose which consume large quantities of ice.
- . Altered frequency and mechanism of creation of early successional habitats will occur in downstream reaches. Two factors of altered hydrology are responsible: (1) reduced summer flow, and (2) increased winter flow. The specific impacts are: (1) reduced frequency of bank-full floods and a decrease in all flood stages will decrease creation of early successional habitat; (2) decrease in ice jamming In spring due to lower flood stage will decrease creation of early successional habitat; (3) increased ice scouring during winter caused by high fall flow and constant high winter flow will Increase creation of early successional habitat; and (4) increased aufeis in winter due to high winter flows will increase creation of early successional habitat. No prediction of areas scoured each year is possible based on current data.
- Clearing will reduce winter carrying capacity prior to flooding.
- Borrow area K and the temporary camp and village contain winter browse for 1 moose based on carrying capacity data. Total winter browse for 340 moose will be lost if both projects are constructed (permanent plus temporary). Reclaimed areas will improve as winter habitat between 2-20 years following disturbance.
- . Will occur on steep slopes of little value to moose.

. As for Watana.

- Smaller, narrower impoundment makes detectable changes less likely than for Watana.
- Increased water temperatures and open water in winter will occur downstream as far as Talkeetna, otherwise impacts as described for Watana.

TABLE E. 3. 145 (Page 3)

(3) Barriers, Impediments, and Hazards to Movement:

– Watana

--impoundment

--access corridor

--downstream

- Devil Canyon

--impoundment

--access corridor

--downstream

(4) Disturbance Related to Construction Activities:

--construction activities

--impoundment clearing

- Open water and/or ice shelving may block access to traditional calving and wintering areas. Moose could be expected to establish new areas and alter movement patterns, but some mortality may occur from attempts to cross the reservoir.
- Prior to filling, clearcut areas in the impoundment may inhibit movements.
- Snow drifting has been hypothesized to impede movements south and southwest of the reservoir and to reduce the value of Fog Lakes as winter range.
- May inhibit migration between summer and winter range especially in the Watana-Butte Creek areas and the Watana-Deadman Creek areas. Construction activities will be more severe barrier than subsequent traffic except during hunting season when moose will avoid the corridor.
- . Increased mortality due to collisions. May be substantial during construction phase during winter due to darkness and poor weather. Train collisions may be substantial between Houston and Talkeetna.
- Open water may restrict movements to island calving areas for those cows which use them (as far downstream as Gold Creek).
- . Attempted crossings during winter may thermally stress animals, may lead to mortality.
- Ice cover and aufeis will increase downstream due to increased winter flow and may result in same mortality from moose falling down (R. Modafferi 1982 pers. comm.).
- . Impacts as for Watana, less severe. No major movement corridors occur, but movements may increase after building of Watana. Little iceshelving will occur due to low (1 m) drawdown.
- Rail corridor may cause substantial mortality, especially during winters with heavy snowfall when moose may become trapped in the corridor.
- As for Watana, except open water may occur as far downstream as Talkeetna.
- Winter habitats and calving areas are most sensitive to disturbance. Impacts will be affected through avoidance and consequent habitat loss.
- Noisy and unpredictable disturbances such as impoundment clearing are most serious and will probably cause avoidance of the area at any season.

TABLE E. 3. 145 (Page 4)

--access road traffic

--air traffic

• Traffic and other neutral or predictable disturbances can be habituated to (borrow area use, village activities, dam construction).

Overflights can be a serious impact, especially during calving and in winter. Repeated harassment can be detrimental at all times of year.
Habituation is possible to neutral and predictable disturbances as near airports if animals are not deliberately harassed.

(5) Increased Human Access:

--hunting and poaching

--increased risk of fire

--vehicle collisions

--recreational disturbance

• Increased mortality; most serious in easily accessible areas, will also cause avoidance of access corridor during hunting season. Can be regulated.

. Impossible to predict. Fires would eventually improve moose habitat in decadent stands. Natural fires are usually considered beneficial to moose but have been suppressed in recent years.

Less serious after construction during operation phase.

. Impossible to quantify. May become serious problem in time, particularly during winter and calving.

TABLE E.3.146: LOSS OF COVER TYPES COMMONLY USED BY MOOSE, IN RELATION TO THEIR AVAILABILITY. THE PROPORTIONATE SEASONAL USE OF EACH TYPE BY RADIO-COLLARED MOOSE IS ALSO SHOWN. (data from ADF&G 1982a and McKendrick et al. 1982)

	WATANA Area Affected (ha)			DEVIL CANYON Area Affected (ha)		Proportionate				
			Proportionate				Proportion of Relocations			
Forest Cover Type	Impoundment	Construction	Loss	Impoundment	Construction	Loss	Spring	Summer-Fall	Winter	N
Woodland spruce forests	4267	567	0.03	153	0	0.06	0.56 ^C	0.43	0.40	7 9 1
Open spruce forests	3633	75	0.03	629	15	0.17	0 . 29^C	0.28	0.30	504
Birch forests	785	19	0.62	487	3	_d	<0.01	<0.01	<0.01	7
Mixed forests	2099	207	0.29	1506	162	0. 04	_d	-	-	-
Tall shrub	514	37	<0.01	3	0	< 0. 01	0,14 ^e		0.29 ^e	445 ⁶
Birch shrub	443	288	0.04	49	18	<0. 01		0. 29 ^e		
Willow and mixed low shrub	717	283	<0.01	18	0	<0.01				
Tundra	84	78	<0.01	11	0	<0.01				

^a Proportionate loss is expressed as the amount of the cover type lot (ha) in relation to its total coverage (ha) in the respective watershed. (See Section 3.3 - Botanical Resources for a description of the watershed and area estimates of the forest cover types.)

^b Proportion of moose relocations in that habitat during April-May, June-October, and November-March, respectively.

^C ADF&G (1982a) included mixed forest communities in their spruce forest classifications and therefore moose use in mixed forest cover types cannot be separately estimated.

^d Vegetation in areas beyond the impoundment and construction zones was mapped at a scale too small to adequately assess the availability of this cover type.

^e ADF&G (1982a) included all shrub types in a single shrub category and therefore use in various shrub types cannot be separately estimated.

- (1) Permanent Habitat Loss:
 - Watana

--impoundment area and village and airstrip

--access corridor

- Devil Canyon

--impoundment area and village and airstrip

--access corridor

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana

--impoundment clearing

--reclaimed areas

--shore erosion

--transmission corridor

--climatic induced alteration

- Devil Canyon

(3) Barriers, Impediments, and Hazards to Movement:

– Watana

--impoundment

- Total area permanently lost represents 0.3% of total range, low quality grazing habitat.
- . Total area permanently lost an inconsequential proportion of total range.
- Little historical use of this portion of range has been documented. An inconsequential proportion of total range.
- . No impact on caribou through habitat lost.
- Poor quality range, inconsequential proportion of range affected.
- Borrow sites A, D, and F are in areas frequented by bulls in summer. Total area 900 ha = 0.02% of range. Total loss (including permanent) = 0.3% of range.
- Will occur on steep slopes of little value to caribou.
- Areas of low use historically, poor quality range. No negative impacts.
- Snow drifting will not affect critical winter or spring range.
- Increased summer precipitation and decreased summer temperatures would occur mainly downwind of reservoir and are unlikely to affect caribou range.
- . No impacts to caribou.
- . Intersects a major caribou migration route. Effects likely: (1) altered movement patterns will reduce frequency of crossing with consequent decreases in use of portions of range reducing carrying capacity; (2) isolate subherds having separate calving grounds; (3) increase accidental mortality associated with ice shelving, drifting ice flows, floating debris, and extensive mud flats.
- Drifting south and southwest of the reservoir may block movements.

TABLE E.3.147 (Page 2)

--access corridor

- Devil Canyon

--all facilities

(4) Disturbance Related to Construction Activities:

- Watana

--impoundment

--borrow areas

--access road

--air traffic

(5) Increased Human Access:

--hunting and poaching

--vehicle collisions

--recreational disturbance

-- Increased risk of fire

. Between the Denali Highway and the Watana damsite traverses on historically important area of range currently used by a subherd of approximately 2500 animals and portions of main herd. Road is west of main calving area. Altered movements likely where road berms are high. Accidental mortality will occur. Wolves may use road to their advantage when hunting.

. Crossings less hazardous and less frequent. No impacts to caribou are anticipated.

- Females and calves will avoid construction sites. No population-level impacts.
- . Areas A, D, and F most likely to disturb bull caribou in summer. Inconsequential loss of summer habitat.
- . Between Denail Highway and Watana considerable disturbance is likely from construction traffic. Cows in late pregnancy and cows with newborn caives most sensitive. Altered movements likely where traffic levels are high. High disturbance levels may increase energy and demands.
- . Intentional harassment could lead to direct
- mortality, especially for young animals. Regular overflights may adversely impact caribou through increased energy costs. Very high levels of aircraft disturbance may affect productivity. Groups with females and calves most sensitive.
- . Current permit system controls numbers taken. increased access will impact the distribution of hunter take more than actual size of harvest. Should distribute take over larger set of subherds than current take.
- . Traffic volume will be less in postconstruction period, but recreational use traffic will continue.
- . Could become a major factor. Particularly sensitive periods include winter and calving. At worst a change in range use, disruption of migration, and abandonment of traditional calving areas.
- . Impossible to quantify. Caribou are less likely than moose to benefit from occurrence of fire. Range value would decrease for a prolonged period foilowing fire.

available.

af fected.

Undetectable.

- (1) Permanent Habitat Loss:
 - Watana
 - --impoundment

• Partial inundation of Jay Creek mineral lick. Inundation will occur over 22% of the lick surface area during months of maximum use. At maximum impoundment level in October, 42% of lick surface will be flooded.

. No critical or regularly used habitats affected.

. No critical or regularly used habitats affected.

 Jay Creek mineral lick may have ice shelves in lower sections in early spring. Areas of lick below maximum fill level may suffer some leaching

making them less desirable when they are

. No other critical or regularly used habitats

. No critical or regularly used habitats affected.

· Probably limited to impoundment area.

- Devil Canyon

--access corridor

--impoundment and access

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana
 - --impoundment
 - --climatic alteration
 - Devil Canyon
- (3) Barriers, Impediments, and Hazards to Movement:
 - Watana
 - --air traffic

basin may occur if low-flying aircraft are uncontrolled. The Jay Creek mineral lick is a particularly sensitive area. Frequently disturbed sheep may suffer increased metabolic energy requirements and may abandon areas where severe disturbances occur. Deliberate harassment (including "sight-seeing") constitutes a severe disturbance at the Jay Creek mineral lick. Lambing areas and winter habitats also sensitive to disturbance.

. Serious impacts to all Dall sheep in the middle

• Most will occur some distance from critical and regularly used range and can be habituated to in the absence of deliberate harassment. Spring habitats at low elevations and winter concentrations on south slopes may be sensitive to disturbance from reservoir clearing operations.

Additional impacts as described for Watana.

--air traffic

--other construction activities

TABLE E. 3.148 (Page 2)

- Devil Canyon

--construction activities

(5) Increased Human Access:

1

letese Vetese

<u>potence</u>

--hunting and poaching

--recreational disturbance

- . No other disturbance impacts anticipated.
- Size of legal harvest not expected to increase as most or all legal rams in area are already harvested each year.
- Air traffic can severely affect use of the Jay Creek mineral site as described under "disturbance" above.
- Boats on the Watana reservoir are also likely to affect use of the Jay Creek mineral lick.

(1) Permanent Habitat Loss:

Т

- Watana
 - --impoundment

- --access corridor and village and airstrip
- Devil Canyon

--impoundment

--access corridor

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana

--impoundment clearing

--reclaimed areas

--impoundment shore erosion

--transmission corridor

--climatic-induced alteration

--hydrologic-induced aiteration

- . Den habitat--no dens known below impoundment
- ievel, 0% of denning habitat lost. Spring feeding areas (lower elevation spruce habitats) flooded. Three of 12 radio-collared bears without cubs moved to areas to be impounded by the Watana reservoir in spring 1980 (25%). Seven of 13 (54%) in 1981.
- . Effects on prey populations may impact brown bears, but the importance of ungulate prey is unknown.
- . Insignificant habitat loss.
- . May affect denning locations. Number of dens affected not determinable from current maps of den and access road locations.
- . No impact on denning habitat.
- . Spring feeding areas. Three of 12 radio-collared bears without cubs (75%) moved to areas to be Impounded by the Devil Canyon impoundment in spring 1980. One of 13 (8%) in 1981. Total for both Impoundments was 6 of 12 (50%) in 1980 and 8 of 13 (61%) in 1981.
- . Prey population reduction may affect brown bears. Importance of ungulate prey is unknown.
- . Insignificant habitat loss (see also disturbance section of table).
- . No denning habitat lost (see also disturbance section of table).
- . Spring feeding areas in lower elevation spruce habitats used by 25% of radio-collared bears without cubs in 1980 and 54% in 1981.
- . Deleterious effects on prey populations may benefit brown bears temporarily.
- . Not a significant amount of habitat loss. Revegetation with grasses and forbs will temporarily improve the value of these areas for spring and early summer habitats (see also disturbance section of this table).
- Possible (unpredictable) impact on potential denning areas.
- . Both positive and negative impacts, but net impact is minor.
- . Any changes which may occur are likely to be indetectable and minor (R. Skog, unpub. data on Williston Reservoir B.C.).
- . Reduction in prey populations (ungulate and salmon) if they occur may impact brown bears in downstream reaches.

TABLE E.3.149 (Page 2)

- Devil Canyon

--impoundment clearing

- --reclaimed areas
- --other areas
- (3) Barriers, impediments, and Hazards to Movement:
 - Watana
 - --impoundment

--access corridor

- Devil Canyon
 - --impoundment
 - --access corridor
- (4) Disturbance Related to Construction Activities:

--general

-- impoundment clearing

- . Spring feeding areas in lower elevation spruce habitats used by 25% of radio-collared bears without cubs in 1980 and 8% in 1981. Total for both impoundments 50% of radio-collared bears without cubs in 1980 and 61% in 1981.
- . Not significant amount of habitat loss. Revegetation with grasses and forbs will temporarily improve the value of these areas as spring and early summer habitats.
- . As treated above.
- . Broken ice and/or ice-shelving may block or hinder access to habitually used areas for some individuals in early spring. Crossing of the reservoir in other seasons is not anticipated to be a major problem for bears.
- . (Disturbance treated in next section of table.)
- . Mortalities from collisions unlikely.
- Altered movements between seasonal use areas possible. Not a significant impact on productivity or habitat use.
- . (Disturbance treated in next section of table.)

. No impact on movements anticipated.

. Minor impacts described above.

- Some bears will avoid areas of intense human activities, others will habituate and some habituated bears will be attracted to such areas.
- Feeding of bears by employees or non-project personnel will endanger the bears and all humans in the vicinity. Maulings and destruction of the
- in the vicinity. Maulings and destruction of the "offending bear" will eventually occur. . Human/bear conflicts have a great potential to
- cause significant loss of work time for contractors, injuries to employees, and property damage.
- . Cubs will habituate readily to human presence and subsequently become problem animals as they grow up.
- Habituated bears also become more susceptible to hunting.
- . Mortalities due to human/bear conflicts. Concentrations in impoundment areas in spring.

--impoundment facilities. staging areas, borrow sites

1

--air traffic

--access road

--transmission corridor

(5) Increased Human Access: --hunting and poaching

--human/bear conflicts

--collisions with vehicles --recreational disturbances . Altered movements due to avoidance or attraction.

. Mortalities due to human/bear conflicts.

- Altered movements due to avoidance or attraction. Bears will be attracted to garbage dumps and to improperly disposed or inadequately incinerated garbage.
- , individual bears whose home ranges overlap these sites will be displaced.
- . Bears are likely to be attracted to revegetated areas. This will increase their contact with humans and cause problems with habituated bears.
- . Extremely sensitive to harassment. Also sensitive to frequent disturbance in concentration areas. May disrupt normal feeding, resting, and denning activities.
- . Altered movements during periods of high traffic levels are possible due to avoidance. Habituated bears may become attracted to the roads as a food source if fed.
- . Road construction activities may cause abandonment of some dens during winter, resulting in mortality of those bears. . Use of adjacent forage habitat may be disrupted
- or eliminated.
- . Habituated bears are more susceptible to hunting and trapping.
- . Some denning habitat may be made unacceptable by the presence of the road. (Three known den sites may become unsultable.) However, there is no evidence to indicate that den sites are limiting and no population-level effects are anticipated.
- . Clearing in winter may cause abandonment of some dens with direct mortality of those animals affected.
- Possibly a serious impact, depending on manage-ment strategies and priorities. Brown bear may be sacrificed to the benefit of more desirable ungulate species by future management guideilnes. This is obviously beyond the control of the Alaska Power Authority.
- . Will result in destruction of offending bears. Outside of construction activities (treated above) these interactions are inevitable and difficult to control.
- . Attraction to revegetated areas near villages will result in increased encounters of bears and humans.

. Unlikely to be of any significance.

. Possible effect on bears in dens and in concentration areas, particularly salmon runs on Prairie Creek. Recreational development of this area is likely to greatly increase the occurrence of bear-human encounters with negative effects on both.

TABLE E.3.150: ANTICIPATED AND HYPOTHESIZED IMPACTS TO BLACK BEAR

(1) Permanent Habitat Loss:

- Watana

--impoundment area and village and airstrip • Black bear are highly dependent on spruce forest habitats. 10,016 ha/346,637 = 3% of conifer habitat in Devil Canyon and Watana Basin total will be lost. A viable population is unlikely to remain above Watana Creek after filling. The narrow band of spruce forests remaining will leave resident bears susceptible to interactions with brown bears and necessitate altered movement patterns.

• Den habitats - 69% of known black bear dens are in impoundment area (9/13 den sites).

• Black bears do not normally occur near the corridor north of Deadman Lake.

- Devil Canyon

--impoundment area

--access corridor

(2) Habitat Alteration and Temporary Habitat Loss:

- Watana

---impoundment clearing

--reclaimed areas

--impoundment shore erosion

--transmission corridor

--climatic-induced alteration

--hydrologic-induced alteration

• Loss of spruce forest habitats. 1,801/346,637 = 0.5% of conifer habitat in Devil Canyon and Watana Basins total will be lost. Little spruce habitat occurs in impoundment areas.

habitat occurs in impoundment areas. Den habitats - 6% of known black bear dens are in impoundment area (1/16 den sites).

- . Most of Watana-Devil Canyon segment is at elevations above acceptable black bear habitat.
- 10,016 ha of spruce forest habitat for black bears will be eliminated.

• 975 ha of spruce forest habitat in the borrow sites for Watana (10,991 total impoundment and borrow areas). Borrow Areas D and F in areas used for berries in late summer. Revegetation likely to improve availability of early spring forage temporarily.

. Possible impact to some den habitats.

. Likely to improve habitat for black bear.

. Indetectable.

- Snow drifts in a small area S and SW of impoundment may slightly reduce availability of low shrub habitat in spring.
- Reduction in prey populations (if they occur) would negatively impact black bears (salmon).
- Alteration of phenology of vegetation may cause greater availability of early spring forage in downstream areas.
- Alteration of frequency of mechanism of creation of early successional habitats may alter availability of riparian spring forage.

--access corridor

- Devil Canyon

--impoundment clearing

--reclaimed areas

ι

--other areas

(3) Barriers, Impediments, and Hazards to Movement:

- Watana

-- impoundment

--operating facilities

--access corridor

- Devil Canyon

--impoundment and facilities

--access corridor

(4) Disturbance Related to Construction Activities:

--impoundment clearing

--impoundment facilities, staging areas, and borrow sites

- . 1.801 ha of spruce forest habitat.
- 194 ha of spruce forest habitat (1,995 ha total Devil Canyon; 12,986 total Watana and Devil Canyon = 3.75% of total in Watana and Devil Canyon Basins). Revegetation likely to improve availability of early spring forage temporarily.
- . As described above.
- Broken ice floes and/or ice shelving may block or hinder access to habitually used areas for some individuals in early spring. Crossings are not anticipated to present any problem for bears at other seasons.
- Animals displaced during filling will be susceptible to mortality from brown bears they may encounter on dispersal. Cubs will be particularly vulnerable to brown bear predation. Displacement will also increase intra-specific competition causing decreased productivity.
- May block access or alter movements of downstream animals to late summer foraging areas upstream of Tsusena Creek (see disturbance section).
- . Black bears do not normally occur near the corridor north of Deadman Creek.
- No impediment or hazard to movements anticipated.
- Most of corridor at elevations above acceptable black bear habitat (see disturbance section).
- Habituation problems treated for brown bear (Table E.3.149) will also occur with black bears. Location of facilities may cause even greater problems with black bears.
- problems with black bears. . Will displace black bears from forested areas. Result in increased human/bear interactions, predation by brown bears.
- . Winter clearing will cause denning bears to leave their dens, resulting in mortality.
- Mortalities due to human/bear conflicts.
- . Altered movements due to avoidance or attraction. Bears will be attracted to garbage dumps and to improperly disposed or inadequately incinerated garbage.
- Individual bears whose home ranges overlap these sites will be displaced.
- Bears will avoid denning near areas with frequent disturbances.

--air traffic

--access road

--transmission corridor

(5) Increased Human Access

--hunting and poaching

--human-bear conflicts

--collisions with vehicles --recreational disturbance . Bears are likely to be attracted to revegetated areas. This will increase their contact with humans and cause problems with habituated bears.

May disrupt normal feeding, resting and denning activities.

- Reduce use of adjacent tableland habitats used by bears foraging for berries in late summer.
 Habituated bears more susceptible to hunting and poaching.
- Clearing in winter in forested habitats may cause abandonment of some dens with direct mortality of most animals effected.
- Intensity of impact dependent on management strategies of ADF&G. Potential for serious impact if bears receive low management priorities.
- Inevitable result of increased human use.
 Attraction to revegetated and improperly disposed garbage will increase frequency of encounters between bears and humans.
- . Unlikely to be significant.
- . Impacts greatest in denning and concentration areas, particularly salmon runs.

TABLE E.3.151: ANTICIPATED AND HYPOTHESIZED IMPACTS TO WOLVES

(1) Permanent Habitat Loss:

ł

- Watana
 - --impoundment and permanent facilities
- No known den or rendezvous sites will be inundated.
- Watana pack members may be affected as 1/3 of all radio-locations for pack members were in the impoundment zone.
- Secondary effects of the elimination of the Watana pack's range will be upheaval of the historical distribution of packs and associated social strife.
- . Reductions in moose carrying capacity will reduce wolf carrying capacity, though wolves have not obtained carrying capacity in the basin for several decades due to wolf control measures, hunting and trapping. In the absence of specific measures by ADF&G to protect wolves, they will never reach carrying capacity, and prey availability will have no limiting effect.
- . Minor component of habitat loss.

inundated.

--access corridor

- Devil Canyon
 - --impoundment and permanent facilities

--access corridor

• Minor component of total habitat loss.

reduce capacity for wolves.

wolf densities in the adjacent areas

. Reduction in carrying capacity of prey will

. No known den or rendezvous sites will be

. Small reduction in moose carrying capacity.

. Displacement of resident and migratory moose from the impoundment area during clearing may increase

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana
 - --impoundment clearing

--other areas

- Devii Canyon --all areas

. As described above.

temporarily.

(3) Barriers, Impediments, and Hazards to Movement:

- Watana
 - --impoundment and facilities . May reduce access to caribou and moose calving areas for some packs.
 - --access corridor

--downstream reaches

- Devil Canyon

-- all areas

- . Wolves may use the road to their benefit when
- . Open water in winter may be a hazard to wolves attempting to cross, but few wolves occur in downstream reaches.
- . As described above.

hunting ungulate prey.

TABLE E. 3.151 (Page 2)

- (4) Disturbance Related to Construction Activities:
 - construction activities

• Wolves are likely to respond similarly to all construction activities. Avoidance will occur initially, but habituation to predictable disturbances is likely.

• Den sites are most sensitive and wolves will abandon dens which are disturbed frequently. Pup mortality may result if dens are abandoned during the first week of life.

 Habituated wolves have the potential to become nuisance animals, increasing the likelihood of destruction and exposure of workers and their pets to rabies.

- Den sites are sensitive and will be abandoned if frequent air traffic occurs at low altitudes near dens. Pup mortality will result if dens are abandoned in the first week of life.
- Wolves will habituat to moderate levels of traffic. Wolves will probably avoid the corridor during periods of high traffic levels.
- Much of the current harvest is illegal and the illegal harvest will increase in the absence of better control. Current legal harvest is also high (bag limit = 7 wolves) and will increase. The current annual take is 40-45% of the population.
- Habituated animals will become pests increasing the likelihood of their destruction and the possibility of exposure of humans to rabies.

Particularly susceptible at den sites.

- air traffic

- access road traffic
- (5) Increased Human Access:
 - hunting and poaching
 - increased human/wolf conflicts
 - increased recreational disturbance

TABLE E. 3, 152: ANTICIPATED AND HYPOTHESIZED IMPACTS TO WOLVERINE

- (1) Permanent Habitat Loss:
 - Watana

--Impoundment area and

• Wintering foraging habitat will be lost with a substantial decrease in availability of small mammel and grouse. Increase in availability of carrier in winter habitat, due to more rapid turnover in the moose population - the result of development caused sources of increased accidental mortality and predation, will occur. Changes in prey density will affect movements, densities and productivity.

Small area of abundant summer range.

. In winter will displace wolverine from

• May increase availability of prey in adjacent areas as other species are also displaced.

. Increased carrying capacity for moose and

• Smail area relative to wolverine ranges. Likely to increase availability of small mammal prey

ptarmigan may benefit wolverine. Likely a small

- Devil Canyon

--access corridor

-- impoundment and permanent . Minor loss of winter foraging habitat. facilities

--access corridor . As above for Watana

- (2) Temporary Habitat Loss and Habitat Alteration
 - Watana

-Impoundment clearing

- reclamined areas
- -transmission corridor
- -climatic-induced alteration
- -hydrologic-induced alteration
- Devil Canyon -aii areas

. Very small impact overali.

impoundment area.

after revegetation.

Impact.

. No impact.

. No Impact.

- (3) Barriers, Impediments, and Hazards to Movement:
 - Watana
 - -impoundment

-access corridor

- Devil Canyon
 - -impoundment
 - -access corridor

- May form home range boundaries for animals in basin. Altered movements and use patterns for individuals currently residing in basin are expected.
- Mortality from vehicle collisions unlikely source of mortality.
- Impediment or hazard to movements not anticipated. Small size of reservoir make altered use pattens and movements less important.
- Mortality due to collisions with vehicles unlikely.

TABLE E. 3. 152 (Page 2)

(4) Disturbance Associated with Construction Activities

(5) Increased Human Access

- hunting and poaching

- all construction areas and impoundment clearing
- Wolverine are likely to avoid all areas of active disturbance. Short term impact for most areas, without population level effects. Wolverine may avoid the access corridor during periods of heavy use for the duraton of construction. Impoundment clearing will cause dispersal from area. May utilize road kills as a food source - but only during periods of low traffic.
- Could become a serious impact if wolverine are not specifically protected by ADF&G management. Trapping is already the major source of mortality.
- vehicle collisions
- recreational disturbance
- . Uhlikely to become a major source of mortality.
- May become a serious impact. Wolverine are wide-ranging enough that they are likely to be able to avoid low level recreational disturbance. High levels of motorized vehicle noise and traffic would exclude wolverines from an area.

(1) Permanent Habitat Loss:

1

– Watana

--Impoundment

--access corridor

- . No active beaver lodges were found in the impoundment area.
- About 5-10 muskrats occur in the impoundment and borrow areas D and E.
- . Upper Deadman Creek provides habitat for 65 beaver. Reduction in number of beaver is anticipated due to road. Additional negative impacts are anticipated to result from adjacent material sites.
- . Muskrat likely occur in conjunction with beaver in upper Deadman Creek.

- Devil Canyon

--impoundment

- No beaver are known to occupy the reservoir area. However, beaver may colonize this reach between completion of Watana and completion of Devil Canyon dams. These animals will be displaced.
- . Beaver may successfully colonize this impoundment due to small annual drawdown, particularly during wet years. In other years, drawdown will occur at a critical period when food caches are being made and it is unlikely that they will be able to overwinter.
- . No muskrat habitat occurs in impoundment area.
- . Muskrat are known to overwinter in several lakes along the corridor between Watana and Devil Canyon.
- (2) Habitat Alteration and Temporary Habitat Loss

– Watana

--access corridor

--access corridor

--borrow areas

--hyrologic-induced alteration

- Borrow sites for the access corridor will remove habitat for approximately 40 of 65 beaver along Deadman Creek.
- 5 of 17 lakes surveyed in areas D and E and the impoundment zone supported overwintering muskrats.
- increased winter flows are likely to benefit beaver allowing overwintering in more sites than are currently available.
- . Stabilized flows will allow beaver greater security in anchoring food caches.
- . Lack of ice cover will allow colonization of much shallower reaches.
- Muskrat will likely benefit from increased number of beaver ponds downstream.

.

TABLE E. 3. 153 (Page 2)

- Devil Canyon

--borrow areas and campsite
 Area K and the campsite support approximately 10 beaver.
 --hydrologic-induced alteration
 Open water as far downstream as Talkeetna will allow colonization of waters currently too

shallow.

. Other impacts as described for Watana.

(3) Barriers, Impediments, or Hazards to Movement:

- access corridors

- May be insignificant source of mortality due to vehicle collisions.
- (4) Disturbance Related to Construction Activities:
 - Beaver and muskrat are not likely to be significantly affected by disturbance alone. Animals will be displaced as habitats are destroyed by development.

- (5) Increased Human Access
 - hunting and poaching

• Likely to effect a much larger area than any of the other development impacts. Prime habitat occurs in adjacent undisturbed areas which will remain relatively inaccessible. Impacts will depend on fur value fluctuations.

	Lakes Sampled	# Lakes With Pushups	Total # of Pushups
Watana			
Borrow Areas D & E Impoundment	8 9	0 5	0 13
Devil_Canyon			
Borrow Areas Impoundment	5 0	0 0	0 0

TABLE E.3.154: NUMBER OF LAKES WITH MUSKRAT PUSHUPS IN SPRING 1980 OCCURRING WITHIN BORROW AREAS AND IMPOUNDMENTS (data from Gipson et al. 1982)

TABLE E.3.155: ANTICIPATED AND HYPOTHESIZED IMPACTS TO SEMI-AQUATIC FURBEARERS (MINK AND OTTER)

(1) Permanent Habitat Loss:

– Watana

--impoundment area and permanent facilities

- Eliminates a substantial portion of good quality habitat for both species, 85 km of mainstem plus 15.6 km of stream habitat.
- . Reduce prey availability for both species.

- Devil Canyon

--Impoundment

- . Less severe than Watana, but similar.
- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana
 - --impoundment clearing

--reclaimed areas

--hydrologic-induced alteration

- (3) Barriers, Impediments, and Hazards to Movement:
- (4) Disturbace Related to Construction Activities:
 - impoundment clearing
 - construction sites

(5) Increased Human Access:

- increased hunting and poaching
- recreational disturbance

- Likely to eliminate mink and otter from the impoundment area. Decrease cover and prey availability.
- Will increase small mammal prey availability for mink.

 Downstream flow stabilization and open water will benefit otter and mink, Increased number of beaver will benefit both.

- . None.
- Likely to eliminate mink and otter from affected areas.
- . May disturb daily activities and force abandonment of aquatic habitats where they occur near construction zones,
- . May become serious impact. Few animals are currently taken from the area.
- . Both species are somewhat sensitive to disturbance and may suffer significantly from increased presence of fishermen and recreational river users in remaining river habitat.

TABLE E.3.156: ANTICIPATED AND HYPOTHESIZED IMPACTS ON FOX

some prey.

. As above for Watana.

- Watana --impoundment and other facilities
- . No known den sites lost. . Higher elevation areas are more heavily used.
 - . Loss of some summer prey, probably not limiting.

. Habitat destruction may increase availability of

. Will enhance availability of small mammal prey.

- Devil Canyon

(1) Permanent Habitat Loss:

--impoundment and other facilities . As above for Watana.

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana

--impoundment clearing

- --reclaimed areas
- Devil Canyon
 - --all areas
- (3) Barriers, impediments, or
 - Hazards to Movement:
 - Watana
 - --impoundment
 - --downstream
 - Devil Canyon

--all areas

(4) Disturbance Related to Construction Activities:

--impoundment clearing

--other sites

- . Will serve as home range boundary for resident animals, but will not prohibit movements across impoundment.
- Open water in winter may make crossings hazardous or infrequent.
- . As above for Watana.
- . Will temporarily displace foxes.
- . Habituation will occur to most disturbances.
- Den sites are sensitive to disturbance, particularly during early denning and early postpartum,
- . Habituated foxes can become pests, leading to increased probability of exposure to rables.
- Habituation will occur readily in the absence of hunting.

--access road traffic

TABLE E.3.156 (Page 2)

(5) Increased Human Access:

--hunting and poaching

--recreational disturbance

- Possible serious impact dependent on market price of fur.
- . Dens are particularly sensitive. . Habituated foxes can become pests.

82.000 **Access**

- (1) Permanent Habitat Loss:
 - Watana
 - --impoundment and permanent . Loss of forest habitat will result in considerable decrease in carrying capacity for all facilities species. . Loss of low elevation habitat near tributary mouths will eliminate lynx. . 100 marten (3.5 to 7.5% of basin pop.) will be lost. 766 ha of closed conifer- deciduous forest, 5% of total in Gold Creek and Watana watersheds. . Minor habitat loss will result in redistribution --access corridor of home ranges of those marten and weasel resident in adjacent forest areas. Little forest habitat occurs in Denali Highway to Watana section. - Devil Canyon --impoundment and permanent • Approximately 14 marten will be lost to D.C. impoundment. 729 ha of closed conifer-deciduous facilities forest, 5% of total, 9% of total in Gold Creek and Watana watersheds with both Watana and Devil Canyon Impoundments. 11.5% of Watana and Gold Creek watersheds marten population lost with both projects.

. Minor habitat loss, as with Watana with result in redistribution of home ranges of marten and weasel resident in adjacent forest.

- . Will eliminate forest habitat for all species. Most will abandon area.
- . 67 ha of closed conifer-deciduous, 908 of spruce forests. Revegetation is unlikely to restore conifer forests in the license period. Total closed conifer-deciduous for Watana is 833/15,986 ha = 5.2%. Total spruce forest for Watana is 10,924/346,637 = 3,1%,
- . No population level impacts anticipated due to habitat alteration.
- , Will eliminate forest habitat for all species.
- . 183 ha of closed conifer-deciduous, 194 of spruce forests total. Revegetation unlikely to restore conifer forests in license period. Total closed conifer-deciduous for both projects is 1016/15,986 ha = 6.4%. Total spruce forest for both projects is 11,118/346,637 = 3,2%.

--access corridor

- (2) Habitat Alteration and Temporary Habitat Loss:
 - Watana

--impoundment clearing

--reclaimed areas

--transmission corridor

- Devil Canvon

--impoundment clearing

--reclaimed areas

TABLE E. 3. 157 (Page 2)

--transmission corridor

(3) Barriers, Impediments and Hazards to Movement:

- Watana

--impoundment

--access corridor

--open water

- Devil Canyon

--impoundment

--access corridor

--open water

(4) Disturbance Related to Construction Activities:

--construction sites

--access road traffic

(5) Increased Human Access:

--hunting and trapping

--vehicle collisions

--recreational disturbance

. As described above for Watana.

• Will be a barrier to dispersal for marten. Will impede dispersal of lynx and weasel. Not a major impact. Animals in impoundment area will redistribute home ranges along impoundment areas.

. Increased mortality from road kills. Not a population level impact.

. A barrier to crossing for marten.

 Barrier to marten dispersal, perhaps also for lynx and weasel. Animals in impoundment area will redistribute home ranges along impoundment shore.

. As for Watana.

- . As for Watana
- . Marten habituate readily to disturbance. Effects on weasel probably minimal. Lynx may be more susceptible but are uncommon and will be able to avoid areas without population level impacts.

 Impacts as for other construction activities.
 Probably minimal. Most of access road traverses higher elevation habitats.

• Will become most significant mortality factor for marten.

. Weasel are rarely sought by trappers in the area.

. Unlikely to be population level impact.

. Unlikely to affect marten or weasel. Lynx are uncommon and will be able to avoid impacted areas.

TABLE E.3, 158: GENERAL TYPES OF IMPACTS TO RAPTORS (from Roseneau et al. 1981)

Disturbance

Construction and Operation Activities

 sudden loud noises (e.g., blasting, gas venting, etc.) can lead to panic flights and damage to nest contents

- noise, human presence, etc., can lead to disruption of daily activities

Aircraft Passage

- sudden appearance and noise can lead to panic flights and damage to nest contents

Human Presence Near Nests

- inadvertent chance occurrence of people (and dogs) near nests; people may be unaware of nest, raptors, or raptor alarm behavior
- deliberate curious passersby, naturalists, photographers, researchers can have impacts if safeguards are not taken

Direct Impacts

Intentionally Destructive Acts (as a result of increased public access)

shooting
legal or illegal removal of eggs, young, or adults
rolling of rocks off cliff tops
cutting of nest trees

Man-Made Structures and Obstructions

- raptors may be struck on roads where they may perch or feed

- may strike wires, fences, etc.

- may be electrocuted on power poles

- raptors sometimes attack aircraft, or may accidentally strike aircraft

Environmental Contaminants

 deliberate application and accidental release of insecticides, herbicides, petrochemicals, and toxic industrial materials can affect raptors and prey by affecting hormones, enzymes, shell thickness, bird behavior, egg fertility and viability, and survival rates of nestlings, fledglings, immatures and adults

Changes in Prey Availability

- decrease in prey abundance or loss of nearby hunting areas may affect territory size, efficiency of hunting, nest occupancy, nesting success, condition of adults and young
- changes may result from aircraft overflights, construction and maintenance activities, public access, etc.

Habitat Loss

Abandonment of area due to destruction of nest, perch or important hunting habitat

TABLE E.3.159: ANTICIPATED AND HYPOTHESIZED IMPACTS TO RAPTORS AND RAVENS

(1) Permanent Habitat Loss:

- Watana

--impoundment

--access corridor

- Devil Canyon

-- impoundment

--access road

Habitat Alteration and (2) Temporary Habitat Loss:

- Watana

--impoundment clearing

--borrow sites and reclaimed areas

- . 5 of 16 (31%) golden eagle nesting locations will be lost. Cliff nesting habitat will become extremely limi- ted.
- . 4 of 8 (50%) bald eagle nesting locations will be lost.
- No known gyrfalcon nesting locations will be lost although all cliff nests of other raptors can be considered potential gyrfalcon nests.
- . 1 of 3 (33%) known goshawk nesting locations will be lost. Nesting habitat is very scarce upstream of this nest.
- Considerable number of raven nesting locations and potential ciff habitat will be lost. However, no major impact to ravens.
- . Perching habitat on cliffs and large trees will be lost. Some hunting habitat will also be lost, although this is not expected to be a significant impact on any of the raptor species. . Tree nesting habitat for smaller raptors will be
- lost.
- . One bald eagle nesting location in Deadman Creek will be destroyed. Stand containing nest is best (possibly the only) bald eagle nesting habitat in Deadman Creek.
- . Minor amount of ground nesting habitat lost.
- . No cliff nesting habitat affected.
- . 2 of 16 (12%) golden eagle nesting locations. Cumulative loss to both projects 44-50% of known nest locations in basin.
- . No baid eagle nesting locations.
- . No gyrfalcon nesting locations.
- . 1 of 3 known goshawk nesting locations. However,
- nesting habitat is minimal in both impoundments. 4 of 21 (19%) previously used raven nesting iocations. A fifth nest will be only a few meters above impoundment level.
- . Some ground nesting habitat lost. No cliff nesting habitat affected.
- . 3 of the 4 baid eagle nests to be lost are tree nests in the impoundment.
- Tree nesting locations for smaller raptors and owis will be lost.
- . Clearing may make some small mammal prey more available.
- . 1 goshawk nesting location.
- . A golden eagle nesting location will be destroyed by Borrow Area E.
- . Revegetation will increase availability of small mammal prey.

(3)

(4)

transmission corridor	 Historically used peregrine falcon nest between Healy and Fairbanks. Probably will not be destroyed or made unusable. 2 gyrfalcon nests within 0.6 km of line. Electrocution of large raptors largest impact.
- Devil Canyon	
impoundment clearing	 Tree nesting locations for small raptors and owls will be lost. 1 goshawk nesting location lost.
borrow sites and reclaimed areas	 1 gyrfalcon nest may be located in Borrow Site K. Revegetation will increase availability of small mammal prey.
transmission corridor	. As for Watana.
Barriers, Impediments, and Hazards to Movement:	
none	
Disturbance Related to Construction Activities:	
- Watana	
impoundment clearing	 7 golden eagle nests susceptible to disturbance during clearing. 4 bald eagle nests susceptible. 1 gyrfalcon nest susceptible. 1 known goshawk nest susceptible. 12 raven nests susceptible.
borrow sites	 Golden eagle nest susceptible at Borrow Site E. May be destroyed. 1 goshawk nest susceptible at Borrow Site I. 2 raven nests susceptible at Borrow Site H.
access road	 1 bald eagle nest susceptible if it remains following construction of road in Deadman Creek.
air traffic	 Golden eagles particularly susceptible during nestling period. Other raptors susceptible but somewhat less sensitive.
transmission corridor	 Peregrine falcon nest susceptible if active during construction. 2 gyrfalcon nests susceptible.
- Devil Canyon	
impoundment clearing	 5 golden eagle nests susceptible to disturbance. 1 gyrfalcon nest susceptible. 6 raven nests susceptible.
dam construction	 1 golden eagle nest susceptible. 1 rayen nest susceptible.

TABLE E. 3. 159 (Page 3)

parte

--borrow sites

--access road

- . 1 gyrfalcon nest susceptible in Borrow Site K.
- 1 golden eagle nest in Watana-Devil Canyon section.
- 1 bald eagle nest in Gold Creek-Devil Canyon section.

(5) Increased Human Access:

--hunting and poaching

--recreational disturbance

- . Poaching unlikely to be major impact.
- May become significant impact, particularly to nests along impoundment shores.

		1	Cliff-Nes	ting Location	5
Species	Golo	den eagle	Bald eagle	Gyrfalcon	Common
Total known nesting locations		16	1	3	2
Total recently active nesting locations		9	1	3 ^d	7
Total inactive nesting locations		7 ^a	0	0	14
Recently active nests to be	Watana	4 ^b	1	0	,
destroyed by impoundment, borrow areas or camp sites	Devil Canyon Both	0 4 ^b	0 1	0 0	(
Inactive nests to be destroyed	Watana	2 ^C	0	0_	e
by impoundment, borrow areas or camp sites	Devil Canyon Both	1-2 3-4 ^c	0 0	0 1 ^e 1 ^e	4 10
Total active + inactive		7-8	1	1e	15
Percent of total to be destroyed by impoundment borrow areas or camp sites	Watana Devil Canyon Both	38% 6-12% 44-50%	100% 0% 100%	0% 33% 33%	52 19 71
Recently active nests	Watana	0	0	0	1
possibly affected by access and transmission routes	Devil Canyon Both	1 1	0 0	0 0	0
Inactive nests possibly	Watana	0	0	0	0
affected by access and	Devil Canyon	0	0	Ò	1
transmission routes	Both	0	0	0	1
Total active + inactive bo	th projects	1	0	0	2
Percent of total to be	Wa†ana	0%	0%	0%	5
affected by access and	Devil Canyon	6 %	0%	0%	5
transmission routes	Both	6%	0%	0%	10
Total nests affected	Watana	6	1	0 1 ^e	12
	Devil Canyon		0	1	5
	Both	8-9	1	1 ^e	17
Total proporton of nests	Watana	38%	100%	0%	57
affected	Devil Canyon		0%	33%	24
	Both	50-56%	100%	33%	81

^aDoes not include two nesting locations reported by White (1974), but not relocated in 1980 -White's original map, and may represent two of the total seven confirmed inactive golden eag

^bIncludes one nesting location (GE-8) that will be inundated and which is also approximately ^cIncludes one nesting location (GE=9) that will be inundated and that is also approximately 10 within Borrow Acea E (see Table E.3.161).

dincludes one nesting location (GYR-2) occupied by gyrfalcons in 1974 (White 1974) and by an

^eGYR-3 (recently inactive) may be within Borrow Area K (see Table E.3.161).

^fIncludes six confirmed active and six unconfirmed active raven nesting locations reported in ^qThis nesting location (R-21) may be affected by the presence of the access road, transmission ^{-h}Includes one bald eagle nesting location (BE-2) very near maximum operating level of 666 m (2 ¹This nesting location (BE-6) may be affected by the access corridor in Deadman Creek. ^jThis nesting location (BE-8) may be affected by the construction of the railroad between Dev

^kThis nesting location is only 0.2 km (0.1 mi) from Borrow Area 1 to be affected by Watana, b

		Tree Nesting	Locations		
raven	Total cliff nesting locations	Bald eagle	Goshawk	Total tree nesting locations	Total bald eagle
	4 1	7	3	10	8
	, 20	5	2	-	6
f	21	2	1	3	2
	10 0 10	3 ^h O _h 3 ^h	1 0 1	4 0 4	4 0 4
	8 6-7 13-15	0 0 0	0, 1, 1, 1, 1,	0 1 1	0 0 0
	23-25	3	2	5	4
9. 9. 9.	44 % 15-17% 56-61%	43% 0% 43%	33% 33% 66%	4 0% 1 0% 5 0%	50% 0% 50%
	1 1 2	1 ⁱ 1 ^j 2	0 0 0	1 1 2	1 1 2
q	0 1 1	0 0 0	0 0 0	0 0 0	0 0 0
	. 3	2	0	2	2
5 5 5 7	2% 5% 7%	14% 14% 29%	0% 0% 0%	10% 10% 20%	12¢ 12% 25%
	19 7-9 26-28	4 1 ^{.j} 5	1 1 2	5 2 7	5 1 6
% %	46% 17-22% 63-68%	57% 14% 71%	33% 33% 66%	50% 20% 70%	62% 12% 75%

E SUSITNA RIVER BASIN, ALASKA, THAT WOULD BE INUNDATED BY THE WATANA DEVELOPMENT OF ASSOCIATED ACCESS ROUTES AND TRANSMISSION ROUTES

1981. These two locations (GE-6 and GE-12) may have been mislocated on le nesting locations.

100 m (330 ft) north of Borrow Area J.

00 m (330 ff) north of Borrow Area J, and one location (GE-11)

unknown species (probably gyrfalcon) in 1980.

1974 (White 1974).

n corridor, and construction of the dam (see Table E.3.161).

THORN

2185 ft). Assumed lost due to shoreline erosion.

il Canyon and Gold Creek (see Table E.3.161).

ut will be inundated at a later date if Devil Canyon development occurs.

Nesting Location Number	Estimated ^a Elevation m (ft)	Project Action	Potential Effects
GE2	610 - 655 (2,000 - 2,150)	Filling Watana Reservoir	Inundat ion
GE4	564 (1,850)	Filling Watana Reservoir	Inundation
GE 5	549 (1,800)	Filling Watana Reservoir	Inundat ion
[Œ-6]	[<579 (<1,900)]	[Filling Watana Reservoir]	[Inundation; however, GE-6 may correspond to nearby GE-5. The elevation of this nesting location is unclear. White (1974) marked this nesting location at a place where suitable nesting habitat does not appear to occur.]
GE8	490 - 518 (1,600 - 1,700)	Watana Borrow Site J	Watana Borrow Site J is located within 0.2 km (0.1 mi) of GE-8 and considerable disturbance may occur during material excavation and construction of the dam.
		Filling Watana Reservoir	Inundat ion
GE -9	490 - 518 (1,600 - 1,700)	Watana Borrow Site J	Watana Borrow Site J is located less than 0.2 km (0.1 mi) of OE-9 and considerable distur- bance may result from material excavation.
	,	Filling Watana Reservoir	Inundat ion

TABLE E.3.161: RAPTOR AND RAVEN NESTING LOCATIONS IN THE MIDDLE SUSITNA BASIN, ALASKA, THAT MAY BE AFFECTED BY THE SUSITNA HYDROELECTRIC PROJECT DEVELOPMENT_____

No.

Children

TABLE E.3.161 (Page 2)

Nesting Location Number	Estimated ^a Elevation m (ft)	Project Action	Potential Effects
GE -10	1,189 (3,900)	Watana Borrow Site F	Minimal disturbance is anticipated although GE-10 lies about 1.1 - 1.3 km (0.7-0.8 mi) from Watana Borrow Site F. The elevation and location of the nest on the opposite side of Tsusena Butte from the borrow site will probably minimize any direct influence that excavation and/or transport of materials may have.
		Denali-Watana Access Road	Minimal disturbance is antici- pated since the road lies about 2.7-2.9 km (1.7-1.8 mi) to the southeast.
QE -11	490 - 518 (1,600 - 1,700)	Watana Borrow Site E	Nesting location will be physically destroyed as it lies within Watana Borrow Site E.
[GE -12]	[<549? (<1,800?)]	[Filling Devil Canyon Reservoir]	[Inundation; however, DE-12 may correspond to nearby DE-13. White (1974) marked this nesting location at a place where suit- able nesting habitat does not appear to occur.]
GE -13	427 - 442 (1,400 - 1,450)	Filling Devil Canyon Reservoir	Inundation

TABLE E. 3. 161 (Page 3)

.

Nesting Location Number	Estimated ^a Elevation <u>m</u> (ft)	Project Action	Potential Effects
GE -14	427 - 457? (1,400 - 1,500?)	Filling Devil Canyon Reservoir	Possible inundation. The elevation of this nest site is unclear. White (1974) marked this nesting location at a place where suitable nesting habitat does not appear to occur. E-14 may have been located on one of two small cliff areas 1.4-2.1 km (0.9-1.3 mi) further downstream.
GE-18 335 (1,100)	Watana-Devil Canyon Access Road and Bridge	The access road route is 0.2 km (0.1 mi) from and near the top of the cliff on which 0 ± -18 is located and the access road bridge crosses the river 0.8 km (0.5 mi) downstream from the nest location. Considerable disturbance may occur during construction.	
		Devil Canyon Dam Construction	The Devil Canyon damsite is 1.0 km (0.6 mi) upstream from GE-18 and considerable distur- bance may occur during construction.
		Devil Canyon Dam Substation and Transmission Corridor	The Devil Canyon Substation and transmission corridor is 0.8 km (0.5 mi) north of GE-18, and some disturbance may occur during construction.

.

TABLE E. 3. 161 (Page	4)
-------------------	------	----

Nesting Location Number	Estimated ^a Elevation m (ft)	Project Action	Potential Effects
	663 - 671 (2,175 - 2,200)	Filling Watana Reservoir	Possible inundation. BE-2 lies near the limit of the impound- ment flooding and the estimated elevation span of this nesting location extends slightly above and below the 666 m (2,185-ft) maximum operating level of the Watana reservoir.
BE3	579 (1,900)	Filling Watana Reservoir	Inundat ion
BE-4	540 - 549 (1,775 - 1,800)	Filling Watana Reservoir	Inundation
BE-5	497 - 503 (1,630 - 1,650)	Filling Watana Reservoir	Inundation
BE6	760 (2,500)	Denali-Watana Access Road	This nesting location lies 0.8 km (0.5 mi) east of the access road and considerable disturbance is anticipated.
BE-8	230 (750)	Devil Canyon Railroad	Devil Canyon railroad is 0.5 km (0.3 mi) from this nesting location and construction activities may result in considerable disturbance.

TABLE E. 3. 161 (Page 5)

...

))

Nesting Location	Estimated [®] Elevation		
Number	m (ft)	Project Action	Potential Effects
GYR-3	579 - 610? (1,900 - 2,000?)	Devil Canyon Quarry Site K	GYR-3 may lie within this quarry site and material excavation could result in the destruction of this nesting location. (Presence or absence of this nesting location needs to be rechecked.
GOS1	518 (1,700)	Filling Watana Reservoir	Inundation
GOS -2	442 (1,450)	Watana Borrow Site I	This material site is 0.2 km (0.1 mi) to the west of GOS-2 and considerable disturbances may result from excavation and transport of materials from this site.
		Filling Devil Canvon	Inundation (see potential effect

tilling Devil Canyon Reservoir Inundation (see potential effect of Watana Borrow Site I)

•

TABLE E.3.161 (Page 6)

Nesting Location Number	Estimated ^a Elevation m (ft)	Project Action	Potential Effects
R-3	641 (2,100)	Filling Watana Reservoir	Inundat ion
R-4	610 - 778 (2,000 - 2,550)	Filling Watana Reservoir	Possible inundation. The eleva- tion of R-4 is unclear. White (1974) marked the general loca- tion of R-4 in the vicinity of two small cliff areas on the north bank of the Susitna River. The nest was not found in 1980 or 1981 but is thought to be within the indicated elevations and potentially flooded by the 666 m (2185 ft) maximum opera- ting level of the Watana resevoir.
R-5	641 (2,100)	Filling Watana Reservoir	Inundation
R-6	610 (2,000)	Filling Watana Reservoir	Inundation
R-7	534 - 549 (1,750 - 1,800)	Filling Watana Reservoir	Inundat ion
R -8	519 (1,700)	Filling Watana Reservoir	Inundation
R-9	488 (1,600)	Watana Borrow Site J	Material excavation from Watana Borrow Site J for dam construc- tion will occur within the river basin as close as 0.2 km (0.1 mi) to R-9. Considerable disturbance may result from these activities prior to the filling of the reservoir and eventual flooding of this nesting location.
. · · · · ·		Filling Watana Reservoir	Inundation (see potential effect of Watana Borrow Site J)

TABLE E.3.161 (Page 7)

Nesting Location	Estimated ^a Elevation		
Number	m (ft)	Project Action	Potential Effects
R –1D	488 (1,600)	Watana Borrow Site J	Watana Borrow Site J is 0.1 km (330 ft.) from R-10 and considerable disturbance may result from excavation and transport of materials from this material site prior to the filling of the reservoir and eventual flooding of this nesting location.
		Filling Watana Reservoir	Inundation (see potential effect of Watana Borrow Site J)
R-11	564 (1,850)	Watana Borrow Site J	Watana Borrow Site J is 0.1 km (330 ft.) from R-11 and con- siderable disturbance may result from excavation and transport of materials from this material site prior to the filling of Watana reservoir and eventual flooding of this nesting location.
		Filling Watana Reservoir	Inundation (see potential effect of Watana Borrow Site J)
R_12	625 (2,050)	Watana Camp	The camp is 1.4 km (0.6 mi) west of R-12. Minimal disturbance is anticipated as a result of con- struction or use of the camp.
		Denali-Watana Access Road	The access road is 1.9 km (1.1 mi) west of R-12. Little or no disturbance is anticipated as a result of the proximity of the access road.
		Filling Watana Reservoir	Inundat ion

•

TABLE E. 3. 161 (Page 8)

Estimated^a Nestina Locat ion Elevation m (ft) Number **Project Action** Potential Effects R-13 549 (1,800) Watana Camp R-13 lies 2.4 km (1.5 mi) west Denali-Watana Access of the access road and 1 mi Road northwest of the Watana damsite; and as a result, little distur-Watana Damsite bance is anticipated. Transmission Corridor The transmission line is 0.3-0.6 km (0.2-0.4 mi) from R-13 and some disturbance may occur. R-14 549 - 580 Watana Borrow Site H This borrow site is 0.8 km (1.800 - 1.900)(0.5 mi) from R-14 and minimal disturbance is anticipated. R-15 519 - 580 Watana Borrow Site H This borrow site is 0.2 km (0.1 mi) from R-15 and consid-(1,700 - 1,900)erable disturbance may occur during excavation and transportation of materials from this site. R-16 442 (1,450) Filling Devil Canyon Inundation Reservoir R-17 442 (1,450) Filling Devil Canyon Inundat ion Reservoir R-18 427 (1,400) Filling Devil Canyon Inundat ion Reservoir R-20 Filling Devil Canyon 366 (1,200) Inundation Reservoir

- -

1 T 🎙

TABLE E.3.161 (Page 9)

Nesting Location Number	Estimated ^a Elevation m (ft)	Project Action	Potential Effects
R-21	427 (1,400)	Devil Canyon Dam Construction	The damsite is 0.7 km (0.4 mi) upstream from R-21 and consid- erable disturbance may result from construction-related activities associated with the dam.
		Watana-Devil Canyon Access Road	This road is 0.4 km (0.25 mi) from R-21 and lies near the top of the next cliff. Considerable disturbance may result from the construction and/or use of this road.

^aDifferences occur between elevations given here and those reported by Kessel et al (1982a). Original estimates were obtained by attempting to locate nests as accurately as possible on USCS 1:63 360 maps with contour intervals of 100 ft (majority) or 50 ft (Talkeetna Mountains C-1), but it was often difficult to precisely locate nests and to locate them relative to tightly-spaced contour intervals (Cooper 1982 pers. comm.). All elevations have been reviewed and some revisions were made; however, in some cases, estimates given here may contain errors of as much as 30.5 m (100 ft). All elevations must be considered approximate (unless otherwise noted) until the majority are rechecked with a precision altimeter.

TABLE E3.162: NEST NUMBERS AND STATUS (i = inactive, 74a = active in 74 and considered inac BE AFFECTED BY THE SUSITNA HYDRO PROJE

	WAT	ANA	DEVIL C		
	Destroyed by Inundation or Borrow Extraction	Disturbed by Access or Transmission Corridor	Destroyed by Inundation or Borrow Extraction	Disturbed by Access or Transmission Corridor	Distu Borrow Prior ta
GE	2 ^a , 4 ^a , 5 ^a , 8 ^a 9 ⁱ , 11 ⁱ		13 i 14 ?	18 ^a	8 ;
BE	2 ^a ?, 3 ⁷⁴ , 4 ^a , 5 ^a	6 ^a		8 ^a	
GYR			3 ^a ?		
GDS	1 ^a , 2 ⁱ		2 ⁱ		
R*	3 ^a , 4 ^a ?, 5 ^{74a} , 7 ^{74a} , 8 ^{74a} , 9 ^{74a} , 10 ^a , 11 ^{74a} , 12 ^a , 15 ^a	1 <i>3</i> ª	16 ^{74a} , 17 ^{74a} , 18 ^{74a} , 20 ⁱ	21 ^{74a}	9 ^{74a} ,

* R-12 and R-13 are also subject to disturbance from Watana Camp.

a = active, 74 = inactive in 74 & unknown more recently, tive more recently) OF RAPTOR NESTING LOCATIONS WHICH WILL CT AND THE SOURCE OF IMPACTS

÷...

	WATANA	}		DEVIL CANYON	
rbed During + Extraction o Inundation	Disturbed During Borrow Extraction Not to be Inundated	Disturbed During Clearing	Disturbed During Borrow Extraction Not to be Inundated	Disturbed During Borrow Extraction Prior to Inundation	Disturbed During Clearing
a, 9 ⁱ , 9	18 ^a	1 ^a , 2 ^a , 3 ^a , 4 ^a , 5 ^a , 9 ⁱ 2 ^a , 3 ⁷⁴ , 4 ^a , 5 ^a	18 ^a		11 <mark>,</mark> 13 <mark>,</mark> 14 , 15 ⁱ , 16 ^a
		1 ^a	3 ^a		2 ^a
2 ⁱ		1 ^a		2 ⁱ	2 ⁱ , 3 ^a
10 ^a , 11 ^{74a}	14 ¹ , 15 ^a	2 ^{74a} , 3 ^a , 4 ^a , 5 ^{74a} 6 ^{74a} , 7 ^{74a} , 8 ^{74a} , 9 ^{74a} , 10 ^a , 11 ^{74a} ,			16 ^{74a} , 17 ^{74a} , 18 ^{74a} , 19 ^a , 20 ⁱ , 21 ^{74a}

~```

المتحادثة

TABLE E.3.163: FACTORS THAT AFFECT THE SENSITIVITY OF RAPTORS TO DISTURBANCES (from Roseneau et al., 1981)

Characteristics of the Disturbance

- type of disturbance

- severity (speed, loudness, suddenness, persistence, etc.)

- frequency of occurrence

Characteristics of the Bird

- the individual (individual differences in response)

- sex

~ age

- 'mood' (a factor of recent activities, weather)
- territorial status (breeder, territorial non-breeder, or non-territorial floater)
- stage of annual life cycle (winter, migration, courtship, egg-laying, rearing young, etc.)
- occurrence of other disturbances or natural stresses at the same time
- previous experience with this type of disturbance (habituation may occur)

Topography

- nearness of disturbance to raptor or nest

- relative elevations (is nest or raptor above or below the disturbance? by what distance?)
- presence of screening features (trees, intervening hill)
- direction faced by nest relative to sun, wind, disturbance
- type of nest (exposed ledge, overhung ledge, cave)
- distance of nest above foot of cliff and below lip of cliff (i.e., 'security' of nest)

Time of Day

Weather at Time of Disturbance

Potential Predators Nearby

Type of Prey Utilized by the Bird (species, location, abundance)

TABLE E.3.164: INFLUENCE OF TIMING OF DISTURBANCE ON THE POSSIBLE EFFECTS ON RAPTORS (from Roseneau et al. 1981)

Timing	Possible Effects of Disturbance
Winter	Raptor may abandon nest, roosting cliff, or hunting area (e.g., gyrfalcon)
Arrival and courtship	Migrant raptor may be forced to use alternative nest site (if available), may remain but fail to breed or may abandon nest site
Egg-laying	Partial clutch may be abandoned and remainder (or full clutch) laid at alternative nest; breeding effort may cease or site may be abandoned
Incubation	Eggs may be chilled, overheated, or preyed upon if parents are kept off nest too long; sudden flushing from nest may destroy eggs; male may cease incubating; clutch or site may be abandoned
Nestling phase	Chilling, overheating, or predation of young may occur if adults are kept off nest; sudden flushing of parent may injure or kill nestlings; malnutrition and death may result from missed feedings; premature flying of nestlings from nest may cause injury or death; adults may abandon nest or site
Fledgling phase	Missed feedings may result in malnutrition or death; fledglings may become lost if disturbed in high winds; increased chance of injury due to extra moving about; parents may abandon brood or site
Night	Panic flight may occur and birds may become lost or suffer injury or death
General	Undue expense of energy; increased risk of injury to alarmed or defending birds; missed hunting opportunities

TABLE E.3.165: APPROXIMATE LOSSES SUSITNA BASIN AS A

Avian Habitats (plot numbers from Table E.3.139 in parenthesis)	Approximate Vegetation Type Equivalents	Total ha in GC and Watana Watersheds	Watana Permanent Facilities	Watana Borrow and Construction Sites	Total Watana
alpine tundra (1)	mat and cushion tundra, dwarf sedge shrub meadow and mesic sedge-grass tundra	249,359	0	70	70
dwarf-low birch (2,3)	low birch shrub	33, 549	492	321	813
low-medium shrub (4)	low mixed shrub	471,461	704	249	953
tall alder thicket (5)	tall shrubland	124,035	537	14	551
cottonwood forest (6)	closed balsam poplar forest	*** 1	3	0	3
paper birch forest (7)	closed birch forest	323	473	5	478
white spruce-paper birch forest (8,9)	open mixed conifer- deciduous forest	23, 387	1342	138	1480
white spruce forest (10)	closed conifer forest	323	0	0	0
white spruce scattered woodland (11)	woodland white spruce	17,322	397	140	537
black spruce dwarf dwarf forest (12)	woodland black spruce	138,612	3878	419	4297

***¹Closed balsam poplar forest stands were too small to be measured at the scale of the Gold Creek watershed maps. Most Stands are in river bottomlands and will be inundated. Numerous smaller star will not be affected.

***²Hectares affected are apparently greater than the total in the basin because of differences in s between basin and impoundment area maps. Many small closed birch stands will not be affected.

***³Data averaged when type represents more than one of Kessel et al.'s (1982a) census plots, see Ta

Watana 6 of Total <u>latershed</u> 0%	D.C. Permanent Facilities O	D.C. Borrow and Construction Sites 0	Total D.C. O	D.C. % of Total <u>Watershed</u> 0%	Total \$ Other <u>Projects</u> 0\$	Avian Density (Number of Territories/ 10 ha) 1981 4.8	Number of Breeding Species (1981) 10
2%	49	18	67	<1%	2%	22.2	8
<1%	4	0	4	0.0%	<1%	45,4	6
<1%	3	0	3	0.0%	<1%	12.5	10
*** 1	8	0	8	*** 1	100%	60 . 9	16
*** 2	433	0	433	*** 2	90 -1 00%	38.1	10
6%	286	0	286	1%	7%	38.2	17
0%	0	0	0	0\$	0%	15.7	8
3%	20	0	20	<1,%	3%	43.8	16
3%	133	0	133	<1,%	3%	24.8	. 13

ange-

· •••,

)F AVIAN HABITATS STUDIED IN THE MIDDLE RESULT OF THE SUSITNA HYDROELECTRIC PROJECT

ind Watana Is ___

Qual^{ger}

ale

ole E.3.139.

TABLE E.3.166: ESTIMATED NUMBER OF SMALL- AND MEDIUM-SIZED BIRDS THAT WOULD BE ELIMINATED THROUGH HABITAT DESTRUCTION AS A RESULT OF THE SUSITNA HYDROELECTRIC PROJECT (NUMBERS WERE DERIVED FROM THE DENSITIES OF SPECIES TERRITORIES ON THE RESPECTIVE BIRD CENSUS PLOTS IN 1981, MULTIPLIED BY THE AREA OF CORRESPONDING VEGETATIVE TYPES TO BE ALTERED OR DESTROYED BY THE PROJECT AND PERCENT OF ESTIMATED TOTAL NUMBER OF BREEDING BIRDS WITHIN 16 KM (10 MI.) OF THE SUSITNA RIVER BETWEEN THE MCLAREN RIVER AND GOLD CREEK)

(from kessel unpub, tables)

No.

No.

100

1

	Watana Fac	llity	Devil Cany Facility	on	Access Road (Devil Canyon to Denali Highway)	Transmission Line (Between Watana and Gold Creek)	Total	
	No. Birds	\$	No. Birds	%	No. Birds	No. Birds	No. Birds	%
Spruce grouse	464	9,9	242	5,2	4	26	736	15.7
Willow ptarmigan	40	1.8	4	0.2	18		62	2,9
Am, golden plover		•		•	12		12	0,2
Greater yellowlegs	10	3.8					10	3,8
Common snipe	1,550	3,9	496	1.2	6		2,052	5,1
Least sandpiper	•	• -		••-	8		8	0.4
Baird's sandpiper					8 8		8	0,1
Hairy woodpecker	232	9.9	122	5,2	2	12	368	15.7
N. 3-toed woodpecker	238	8.5	102	3.6	2	4	346	12.4
Gray jay	522	4.8	188	1.7	8	14	732	6.7
Boreal chickadee	2,084	8,5	416	1.7	6	36	2,542	10.3
Brown creeper	232	9.9	122	5.2	2	12	368	15.7
American robin	838	6.2	48	0.4	14		900	6,6
Varied thrush	2,560	8.1	1,238	3.9	10	80	3,888	12.3
Hermit thrush	2,104	7,7	1,060	3.9	18	58	3,240	11.9
Swalnson's thrush	4,494	10.7	2,360	5.6	28	180	7,062	16.9
Grav-cheeked thrush	4.068	7.3	240	0.4	12	24	4,344	7.8
Arctic warbler	1,440	1.4	56	0.1	140	_ ·	1,636	1.6
Ruby-crowned kinglet	7,628	8.1	1,160	1.2	14	64	8,866	9.4
Water pipit	,,010	0.1	1,100	1 4 E	12	64	12	0,1
Yeilow-rumped warbler	9,428	9.6	3,314	3.4	38	240	12.020	13.3
Blackpoll warbier	3,564	8.7	804	1.9	10	48	4,426	10.8
Northern waterthrush	596	10.0	312	5.3	4	32	944	15,9
Wilson's warbier	5,308	2.0	988	0.4	356	108	6.760	2,5
Common redpoll	3,304	5.2	900	1.4	54	70	4,328	6.8
Savannah sparrow	5,550	1,7	184	0.1	416		6,150	1,9
Dark-eyed junco	6,212	7.2	1,616	1.8	38	124	7,990	9.3
Tree sparrow	9,142	2.0	420	0.1	550	124	10,112	2.2
White-crowned sparrow	5,540	3.4	296	0.2	156		5,992	3.7
Fox sparrow	5,386	7.0	604	0,2	22	48	6,060	7.8
Lapland longspur		/.0	004	0.0	20	-0	20	0,1
Total Number Breeding Birds (rounded off)	82,500		17,300		1,200		103,000	

TABLE E.3.167:	TOTAL AVERAGE	DAILY TRAFFIC	C ON ACCESS	ROAD AND DENALI
	HIGHWAY DURING			
(dat	ta from Frank (Orth & Associa	ites, Inc.	1982)

Denali Highway ¹	Case A*	Case B**
Cantwell to Fish Creek:		
DOT non-project related traffic projections Project related passenger vehicles Project support materials vehicles Project heavy trucks Total	320 384 20 70 794	320 240 20 70 650
Fish Creek to McClaren River:		
DOT non-project related traffic projections Project related passenger vehicles Project support materials vehicles Project heavy trucks Total	130 384 20 <u>70</u> 604	130 240 20 <u>70</u> 460
Access Road		
Project related passenger vehicles Project support materials vehicles Project heavy trucks Total	674 20 70 508	484 20 70 426

- * Assumes each commuting worker uses a private vehicle one vehicle per worker.
- ** Assumes the application of a 1.72 commuter worker to private vehicle ratio. This ratio represents selected results of a study that examined worker/ vehicle ratios in major eastern U.S. power plants under construction in 1978 and 1979 (Metz, W.C. 1981. Worker/Vehicle Ratios at Major Eastern Power Plant Construction Sites: A Time of Change. Traffic Quarterly 35 (3): 433-443. July 1981.
- ¹ Denali Highway estimates include Alaska Dept. of Transportation projected 1990 Average Daily Traffic independent of the Susitna project.

Species	Sensitive 2 Time Period	Aerial 3 Activity	Minor Ground Activity	Major Ground Activity	Facility Siting	Habitat Disturbance
Peregrine falcon	April 15- August 31	1 mi h or 1500 ft v	1 mi	2 mi	2 mi	2 mí
Syrfalcon	February 15- August 15	1/4 mi h or 1000 ft v	1/4 mi	1/4 mi	1/2 mi	-
Golden eagle ⁴	March 15- August 31	1/2 mi h or 1000 ft v	1/4 mi	1/2 mi	1/2 mi	-
Bald eagle ⁴	March 15- August 31	1/4 mi h or 1000 ft	1/8 mi	1/4 mi	1/2 mi	1/8 mi

TABLE E.3.168: STATE OF ALASKA TEMPORAL AND SPATIAL PROTECTION CRITERIA FOR NESTING RAPTORS1

Explanatory Notes

Raptor nest sites are assumed occupied until June 1 each year. After that date, protection measures for a specific nest site can be withdrawn for the remainder of the year if the nest is documented to be non-active.

It should be noted that any activity, disturbance, or habitat alteration that may affect historic or currently active peregrine falcon nest sites must be reviewed by the U.S. Fish and Wildlife Service, Office of Endangered Species, to evaluate the potential for detrimental impacts to the welfare of this endangered species.

<u>Restrictions</u> - The restriction columns provide temporal and spatial protection measures necessary to minimize disturbance to sensitive wildlife areas from aerial activity, minor ground activity, major ground activity, and the siting and operation of facilities.

Aerial activities include the potential disturbance effects from both fixed-wing aircraft and helicopters. The disturbance and "startling" impacts of low-level aircraft activity are of particular concern during raptor nesting.

Minor ground activity is characterized by limited, short-term, reconnaissance and exploration-type programs that do not involve significant amounts of personnel, equipment, surface disturbance, or noise. Examples of minor ground activity include foot reconnaissance, field inventories, topographic surveys, resistivity surveys, and some borehole/test pit exploration activities.

Major ground activity is characterized by extensive construction-related disturbance involving significant amounts of personnel, equipment, surface disturbance, noise, or vehicular activity. The duration of this disturbance may be either short-term or long-term, but the magnitude of overall activity is such that sensitive wildlife areas could be adversely affected. Typical major ground activities include clearing, pad construction, blasting, ditching, pipe laying, materials site development, and facility construction.

Facility Siting - The concerns of facility siting in proximity to sensitive wildlife areas include the long-term impacts of facility operation during duration of the project and the effects of habitat alteration on the integrity of wildlife use areas. Continuously occupied or operating facilities may generate noise or activity disturbance that could preclude wildlife occupation of a sensitive use area for the duration of the project. Alteration of adjacent habitats beyond the boundary of a defined wildlife use area may also discourage or preclude continued use of a sensitive area by wildlife.

- Derived from "Sensitive Wildlife Areas of the Northwest Alaskan Gas Pipeline Corridor," C. E. Behlke, State Pipeline Coordinator, letter to E. A. Kuhn, NWA, July 15, 1980 (see footnote 4 below). Protection criteria are accepted guidelines followed by the Alaska Dept. of Fish and Game and the U.S. Fish and Wildlife Service.
- ² Sensitive time periods listed here differ somewhat from broader phenological periods listed in Table E.3.129, but are specifically designed to encompass the great majority of nesting pairs during what are considered to be the most critical portions of the breeding season.
- ³ h = horizontal; v = vertical.
- Sensitive time period dates were modified to reflect earlier nesting by some golden eagles that may winter in the Alaska Range in the milder years (Roseneau, unpubl, data) to allow for later fledging of some baild eagle nestlings (see Table E.3.129).

TABLE E.3.169: ESTIMATED MITIGATION COSTS FOR COMPENSATION FOR MOOSE, BROWN BEAR AND BLACK BEAR FORAGING HABITAT LOSS

Progra	m	Estimated Cost
A. <u>Co</u>	ntrolled Burning (Compensation for moose and bears)	
1.	Objective:	(
	To increase browse and berry production on 6400 acres* of forested land	
2.	Location:	
	Vicinity of Watana Creek	
3,	Cost Elements - Construction Period:	
	a. Labor for professional planning and fire control, 1987–1993	\$ 80,000
	b. Equipment and logistics	\$ 20,000
	c. Land lease - 1600 acres**	\$ 640,000
	<u>\$80,000</u> X 8 years	\$
	Total Construction Period Costs	\$ 740,000
4.	Cost Elements - Operation Period (average annual costs):	
	a. Repeat burn, 2002-2008 (or as required)	\$ 2,000
	b. Land lease - 1600 acres**	\$ 80,000
	Total Average Annual Operation Costs 82,000/yr.	\$

B. <u>Clearing</u> (compensation for moose)

1. Objective:

To increase browse production on 16,000*** of forested land

2. Location:

Either side of the Susitna River floodplain downstream from Devil Canyon

TABLE E.3.169 (page 2)

ı

<u>1</u>	Estimated Cost
Cost elements - Construction period:	
a. Labor and equipment	
16,000 acres \$600/acre	\$9,600,000
Total Construction Period Costs	\$9,600,000
Costs elements - Operation Period (average annual costs):	
a. Two repeat clearings during license period	\$ 384,000
Total Average Annua! Operation Costs	\$ 384,000
	 a. Labor and equipment 16,000 acres @ \$600/acre

* Estimation of areas required presented in Section 4.4.2(b) - Mitigation Plan 6.
** It is arbitrarily assumed for this analysis that 4800 acres of federal or state land are obtained through interagency agreement, and that 1600 acres of privately owned land are leased. It is further assumed that the land is leased at 5% purchase value per year, that purchase value is \$1000/acre, and that 8 years of lease payments are during the construction phase. phase and 50 years in the operation phase.

*** it is arbitrarily assumed for this analysis that 16,000 acres of state or federal land are obtained through interagency agreement.

Estimated Cost (1982 doilars) Program A. Aerial Photography 1. Objective: To monitor changes in downstream browse availability for moose in in order to allow complete mitigation. Location: 2. The river floodplain between Devil Canyon and Cook Inlet 3. Cost Elements - Construction Period Photography flights, printing, vegetation mapping and analysis, 1988 or 1989 a. \$10,000 Total Project Construction Costs \$10,000 4. Cost Elements - Operation Period (average annual cost) Photography flights, printing, vegetation mapping and analysis, at 10 year intervals. a. \$10,000 X 5 \$1,000 - = -\$ 1,000/year 50 year Total Project Average Annual Operation Costs

TABLE E.3.170: ESTIMATED MITIGATION COSTS FOR AERIAL PHOTOGRAPHY OF VEGETATION IN THE DOWNSTREAM FLOODPLAIN

\$ 1,000/year

Program Element					Estimated_Cost (1982_dollars)
1.	Pro	gram Design	\$ 500/ site x 10 =		\$ 5,000
2.	Construction				
	a. b.	Materials L ab or**	\$ 250/site x 10 = \$1100/site x 10 =		2,500 11,000
				Subtotal	\$1 3, 500
3.	Placement***				
	a. b.	Labor Transportation (Helicopter)	70/hour x 80 = 400/hour x 30 =		5,600 12,000
		(hericopcer)		Subtotal	\$17 , 600
			Project Construction Costs:	TOTAL	<u>\$36,100</u>

TABLE E.3.171: ESTIMATED MITIGATION COSTS FOR BALD EAGLE HABITAT MODIFICATION*

 Construction wand placement of artificial nests in trees modified for this purpose, and modification of other trees to allow eagles to build own nests (10 artificial nests assumed).

** Includes artificial nest fabrication.

I.

*** Includes time spent locating trees suitable for modification. Assumes 1 to 3 tree modifications and 1 to 2 nest placements at each site.

Pro	gram	Element		Estimated Cost (1982 dollars)
1.	Pro	gram Design		\$ 5,000
2.	Con	struction		
	a.	Materials - Platforms \$ 150 x 10 = - Artificial Nests 50 x 10 =		1,500 500
	b.	Labor - Platforms 25/hour x 60 = - Artificial Nests 25/hour x 60 =		1,500 1,500
		•	Subtotal	\$ 5,000
3.	Pla	cement*		
	a. b.	Labor 70/hour x 80 = Transportation 400/hour x 8 = (Helicopter)		5,600 3,200
			Subtotal	\$ 8,800
		Project Construction Costs:	TOTAL	<u>\$18,800</u>

TABLE E.3.172: ESTIMATED MITIGATION COSTS FOR DESIGN, CONSTRUCTION, AND PLACEMENT OF 10 NEST PLATFORMS WITH ARTIFICIAL NESTS FOR GOLDEN EAGLES (on transmission towers)

* Placement includes supervision by raptor biologist of installation, and assumes use of contractor crew labor during erecton of towers. Cost per site would increase if fewer sites were chosen, because of fixed logistic requirements.

Pro	gram Element			Estimated Cost (1982 dollars)
1.	Program Design			\$ 1,000
2.	Construction			
	a. Materials	\$30/box x 20 =		300
	b. Equipment c. Labor	25/hour x 20 =		1,000 <u>500</u>
			Subtotal	\$ 1,800
3.	Placement*			
	a. Labor b. Transportation (Helicopter)	70/hour x 40 = 400/hour x 12 =		2,800 4,800
	(neticohcer)		Subtotal	\$ 7,600
			TOTAL	<u>\$ 9,400</u>

 TABLE E.3.B173:
 ESTIMATED MITIGATION COSTS FOR DESIGN, CONSTRUCTION, AND

 PLACEMENT OF 10 NEST BOXES FOR CAVITY-NESTING RAPTORS

* Placement includes locating appropriate habitat and sites within that habitat, plus physical installation, including any final modifications to create natural settings.

TABLE E.3.174: ESTIMATED MITIGATION COSTS FOR MODIFICATION OF CLIFF LOCATIONS TO PROVIDE GOLDEN EAGLE NESTING HABITAT*

Pro	gram Element			Estimated Cost (1982 dollars)
1.	Program Design**	\$1,000/ site x 10 =		\$10,000
2.	Construction			
	a. Materials*** b. Labor**** c. Transportation***** (Helicopter)	\$1,000/site x 10 = 70 hour x 280 = 400/hour x 50 =		10,000 19,600 20,000
	(Helicopter)	5	Subtotal	\$49,600
	Proje	ct Construction Costs: 1	TOTAL	<u>\$59,600</u>

* Assumes 10 cliff locations and 2 to 3 cliff modifications per location.
** Requires prior completion of aerial surveys to establish candidate locations.
*** Includes explosives, rock drills, cement, hand tools, climbing gear, etc.
**** Costs heavily dependent on site conditions actually encountered.

**** Separate trips required to transport explosives.

Pro	gram Element		4	Estimated Cost (1982 dollars)
1.	Program Design*	\$3,000/site x 4 =		\$12,000
2.	Construction			
	a. Materials** b. Labor*** c. Transportation**** (Helicopter)	\$4,000/site x 4 = 70 hour x 600 = 400/hour x 32 =		16,000 42,600 12,800
	(Helicopter)	,	Subtotal	\$70,800
	Proje	ct Construction Costs:	TOTAL	\$82,800

* Involves removal of overburden to expose bedrock cliffs; a maximum of four locations is assumed.

** Costs will vary with equipment and explosives requirements.

*** Costs will vary with professional drilling and blasting requirements.

**** Separate trips required to transport explosives.

TABLE E.3.176:	THE SUCCESS OF ARTIFICIAL NESTING STRUCTURES INSTALLED ON POWER POLES AND TRANSMISSION TOWERS
(excer	pted from Olendorff et al. 1981)

Location	Type and No. of Structures	*No. Occupied (and species)	
Illinois	1 wooden nestbox	1 (kestrel)	
East Germany	30 iron platforms on poles	Almost all used each year (ospreys)	
Colorado	12 wooden platforms 1975 25 nestboxes 1976 25 nestboxes 1977 25 nestboxes	None 12 (kestrel) 19 (kestrel) 24 (kestrel)	
Idaho	6 wooden platforms (2 to 4 years each)	4 (golden eagle) 1 (red-tailed hawk) 1 (osprey) **1 (bald eagle)	
Idaho Oregon	40 steel platforms on towers	too early for results	
North Dakota	20 wooden or wire mesh platforms	too early for results	
Oregon, Washington, Montana	1977 4 wooden/ fiberglass platforms 1978 5 wooden/ fiberglass platforms 1979 5 wooden/ fiberglass platforms	1 (red-tailed hawk) 1 (osprey) 1 (osprey) 1 (osprey)	

*Minimum number of times used in time periods specified. **A pair occupied a platform early one season, but did not nest successfully.

TABLE E.3.177: BOTANICAL RESOURCES MITIGATION STUDIES

PRO	GRAM	SCHEDULE	ESTIMATED COST
(1)	Transmission corridor surveys for candidate threatened or endangered plants: Section 3,2,1	1983	\$100,000*
(2)	Mapping of wetland, browse, and general vegetation types: Section 3.2.1	1983	\$350,000*
(3)	Moose browse characterization study: Section 3,4,2	1983 or 1984	\$100,000*
(4)	Alphabet Hills burn study: Section 3,4,2	1984 and future 1984 and future	\$ 75,000* (first year only)
(5)	Downstream floodplain photography: Section 3,4,2	1988 and 10-year Intervals	\$ 10,000** (flight and analysis

* included in project capital cost for construction. ** Expenditure beyond project capital cost.

I.

TABLE E.3.178: WILDLIFE MITIGATION SUMMARY

1

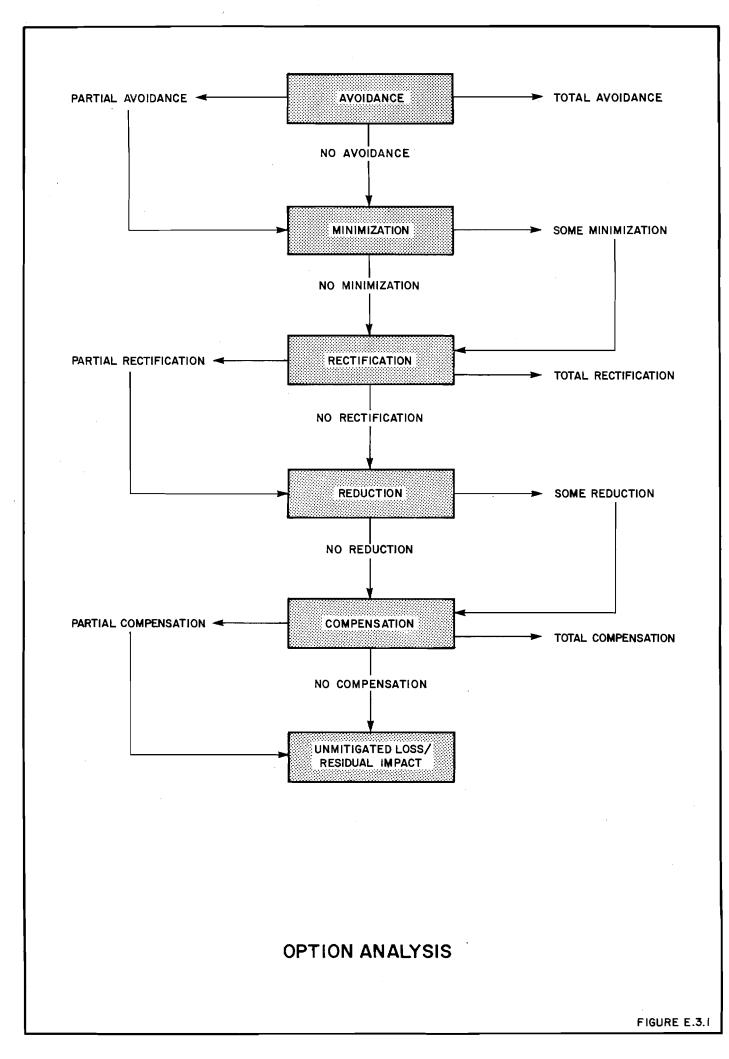
Mitigation Plans	Target Species	<u>Schedu I e</u>	Estimated Expenditure Beyond Project Capital Cost		
Monitoring Study i (frequency and location of access road and railroad mortality)	moose, caribou	Throughout construction and operation	None		
Monitoring Study 2 (downstream aerial photography to monitor vegetation changes)	moose	1988 and 10-year intervals thereafter	\$10,000 per flight and analysis		
Monitoring Study 3 (caribou movements)	caribou	Throughout construction and operation	None		
Monitoring Study 4 (records of impoundment crossing and related mortality	moose, caribou, brown bear, black bear	Throughout Operation	None		
Monitoring Study 5 (seasonal use and distri- bution of use of Jay Creek mineral lick)	dall sheep, moose	1983 and 3 years after filing	None		
Monitoring Study 6 (den locations)	brown bear, black bear, woy and fox	Throughout construction	None		
Monitoring Study 7 (woy population data)	woy (ungulates)	Throughout construction and 3 years into operation			
Monitoring Study 8 (beaver numbers and distribution)	beaver	Throughout construction and operation	None		
Monitoring Study 9 (raptor nest sites)	golden eagle, baid eagle, gep falcan, peregrine falcon, goshawk (and other raptors)	Throughout construction and into operation as indicated in Mitigation Plan 20	None		
Monitoring Study 10 (swan nest sites)	trumpeter swan	Construction phase	None		
Monitoring Study 11 (browse productin)	moose	Throughout construction (beginning in 1983 in Alphabet Hills) and operation	None		
			· ·		
Mitigation Plan 1 (impoundment clearing)	all species (in particular moose, black ber, furbearers, raptors, waterbirds and small birds and	2-3 years prior to filing, with modifica- tions to avoid sensitive areas	None		

mammals)

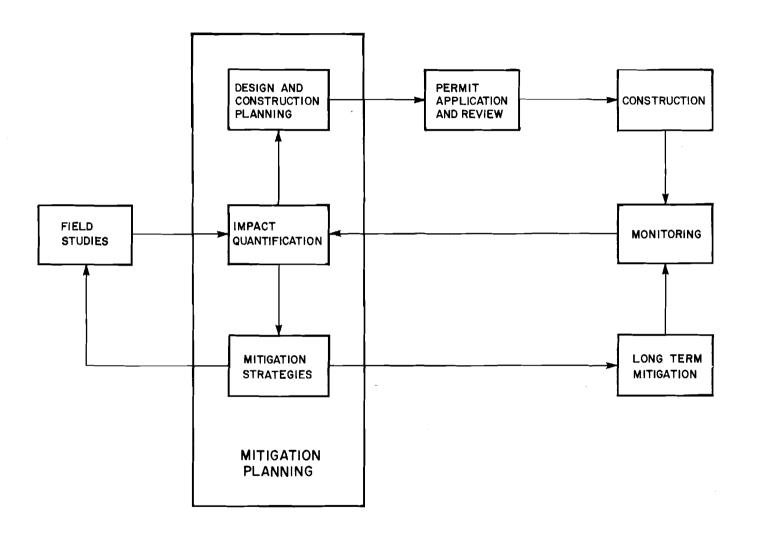
TABLE E.3.178 (page 2)

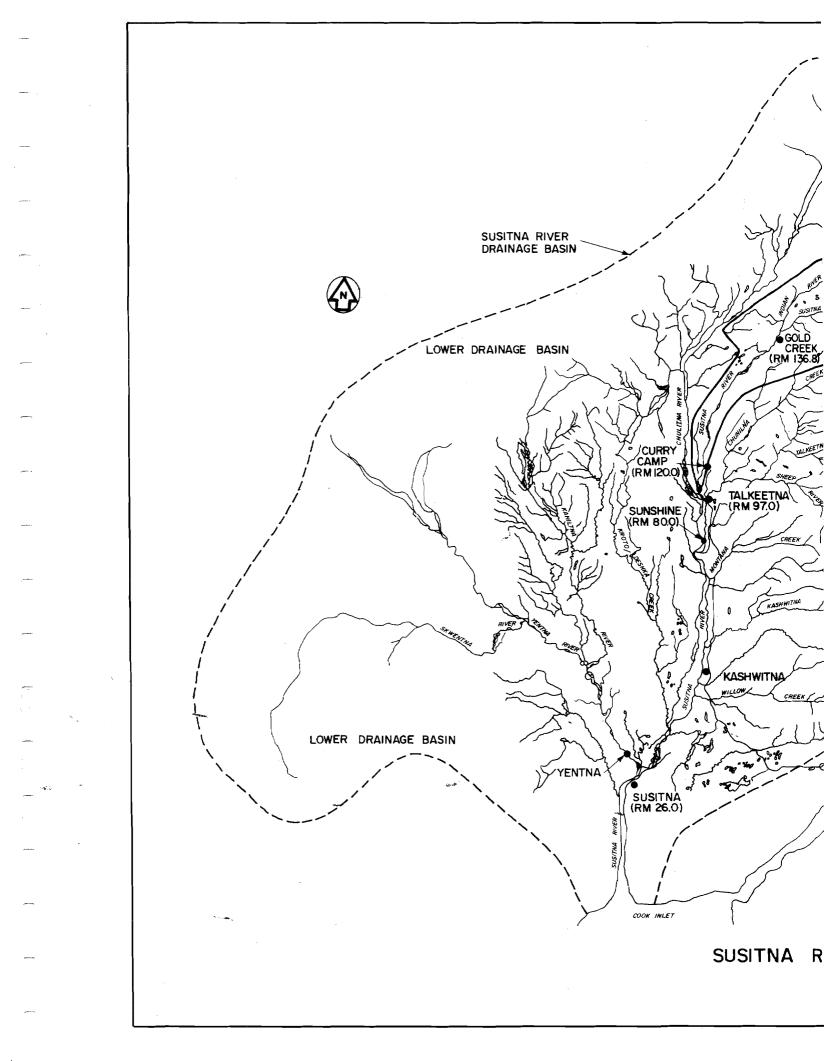
 $\widetilde{}$

Т

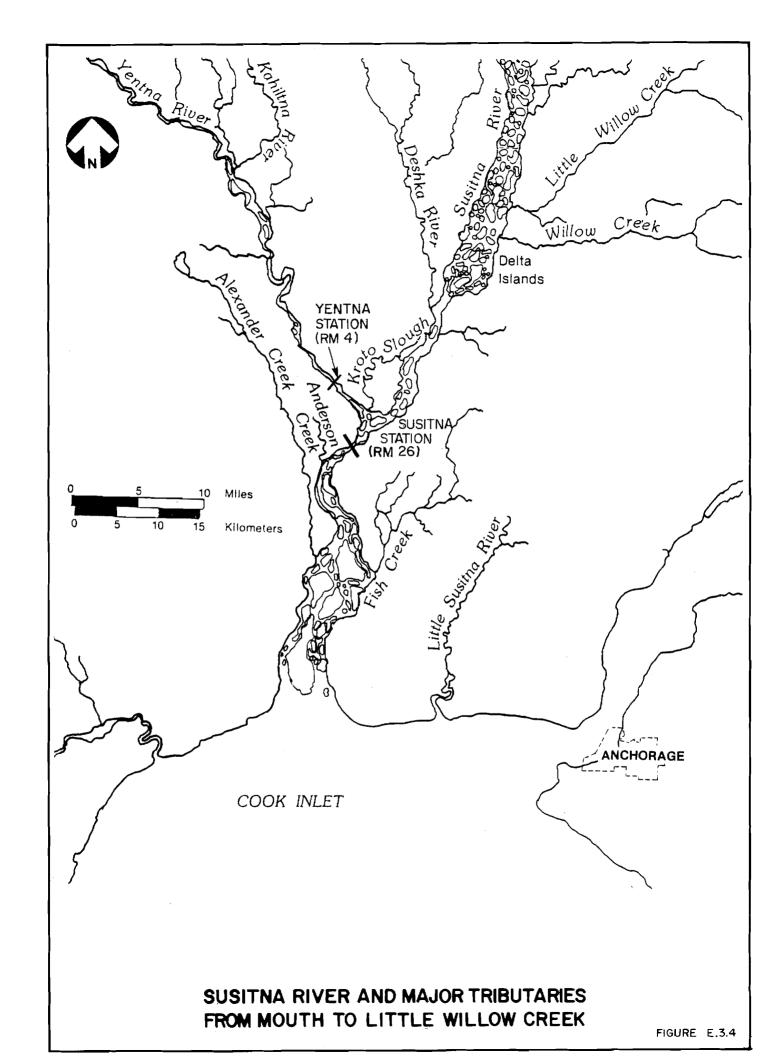

Mitigation Plans	Target Species	Schedule	Estimated Expenditure Beyond Project Capital Cost
Mitigation Plan 2 (minimize habitat loss) [,]	all species (in particular forest dwelling species, also aquatic and semi-aquatic furbearers	Throughout construction	None
Mitigation Plan 3 (revegation)	moose, brown bear, black bear, accipiters, small mammals	After abandonment of temporary sites, immediately following road construction on shoulder	None
Mitigation Pian 4 (transmission corridor design)	enhancement for moose and bird and mammal inhabitants of early seral communities; will reduce or mini- mize impacts to forest species	Construction and periodic clearing as needed during operation	None
Mitigation Plan 5 (maintain river temperature as close to normal as possible	moose (other species will also benefit from reduction in winter open water barrier)	Operation	None
Mitigation Plan 6 (enhancement on replace- ment lands)	moose; brown and black bears will also benefit from burning program	Construction and periodic enhancement as needed throughout operation	\$10,340,000 in construction phase and \$82,000 per year in operation phase
Mitigation Plan 7 (moose model and related studies)	moose	Throughout construction and operation	None
Mitigation Pian 8 (controlled moose hunt)	moose	Prior to filing	None
Mitigation Plan 9 (impoundment debris monitoring and removal)	moose, caribou, brown and baick bear	Throughout filing and operation	None
Mitigation Pian 10 (protect sensitive areas from disturbance)	dal sheep, caribou, wolf, fox, golden eagle, bald eagle, gyrfalcon, trumpeter swan, brown and black bear, moose	Throughout construction	None
Mitigation Plan 11 (design changes to access road to avoid caribou calving area)	car i bou		None
Mitigation Pian 12 (central vehicle traffic)	car i bou	Throughout Construction	None
Mitigation Pian 13 (exposure of new soll at Jay Creek mineral lick)	dali sh ee p	As needed (see monitor- ing study 5)	None

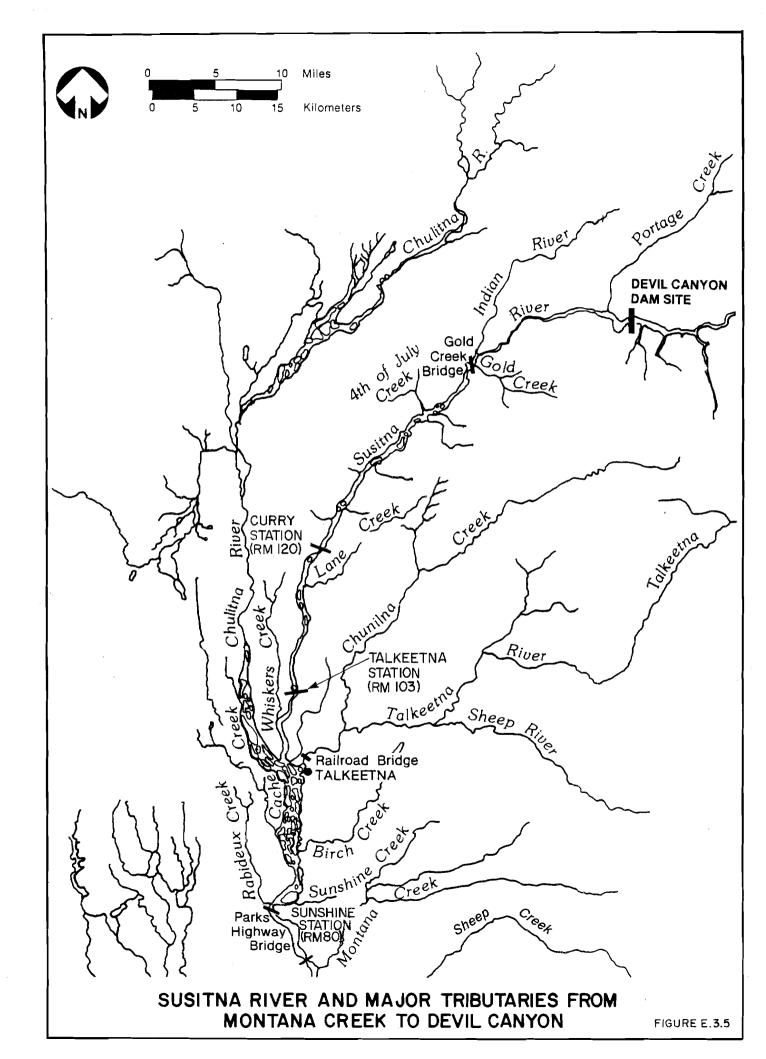
j j. 用物 開始

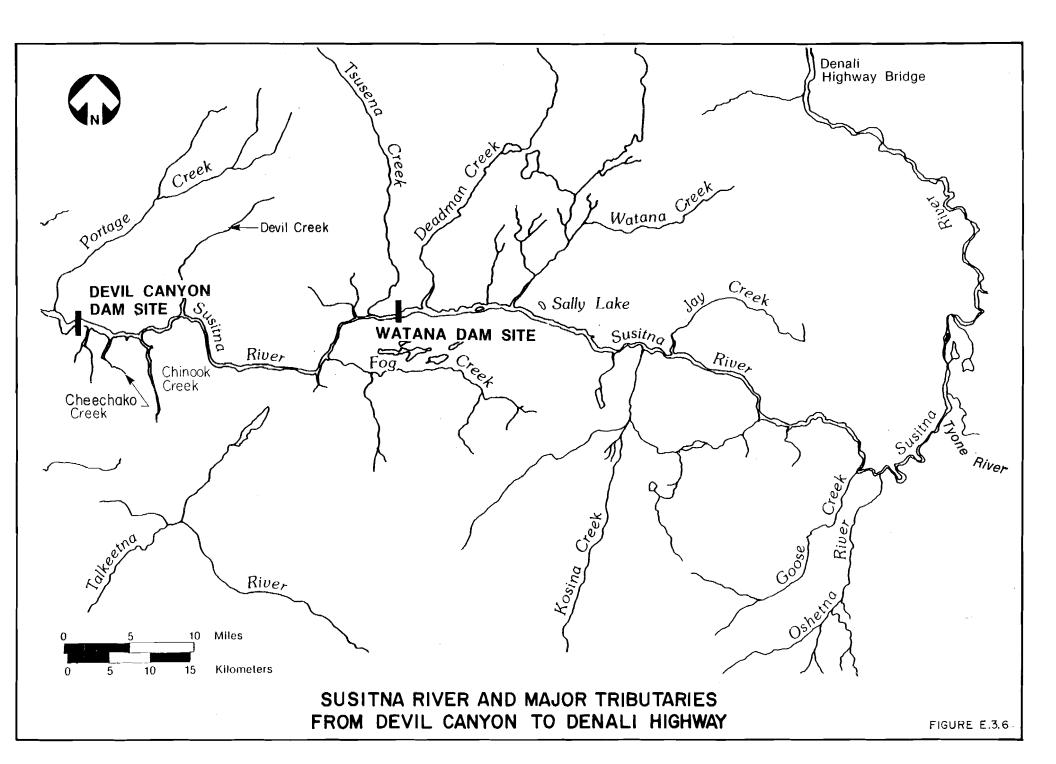

TABLE E.3.178 (page 3)

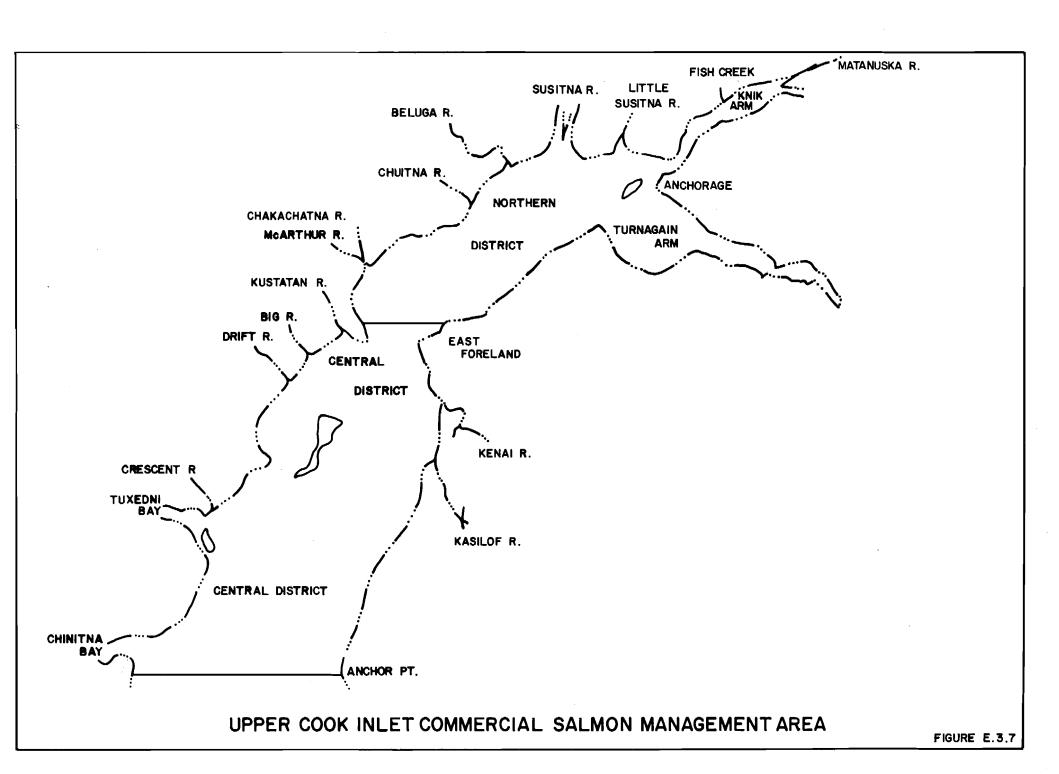

Mitigation Plans	Target Species	<u>Schedu le</u>	Estimated Expenditure Beyond Project Capital Cost
Mitigation Plan 14 (avoid overharvest)			None
Mitigation Plan 15 (avoid creation of	brown bear, black bear, fox, wolf	Throughout construction and operation	None
Mitigation Plan 16 (minimize or compensate for reduction in food availability for bears)	brown bear and black bear	Throughout construction and operation	None
Mitigation Plan 17 (minimize habitat loss for aquatic furbearers)	beaver, muskrat, mink and otter	Road construction	None
Mitigation Plan 18 (beaver model)	beaver	Throughout construction and operation	None
Mitigation Plan 19 (slaugh enhancement)	beaver, muskrat, mink and otter	Throughout operation	None
Mitigation Plan 20 (avoid destruction of raptor nesting locations)	raptors	Construction	None
Mitigation Plan 21 (compensation for un- avoidable loss of raptor nesting locations)	raptors	During construction and into operation as required for 100\$ compensation	\$206,700
Mitigation Pian 22 (avoid electrocution of raptors)	eagles	Construction	None
Mitigation Plan 23 (minimize loss of forest habitat)	black bear, marten, small birds, small mammais, red fox	Construction	None

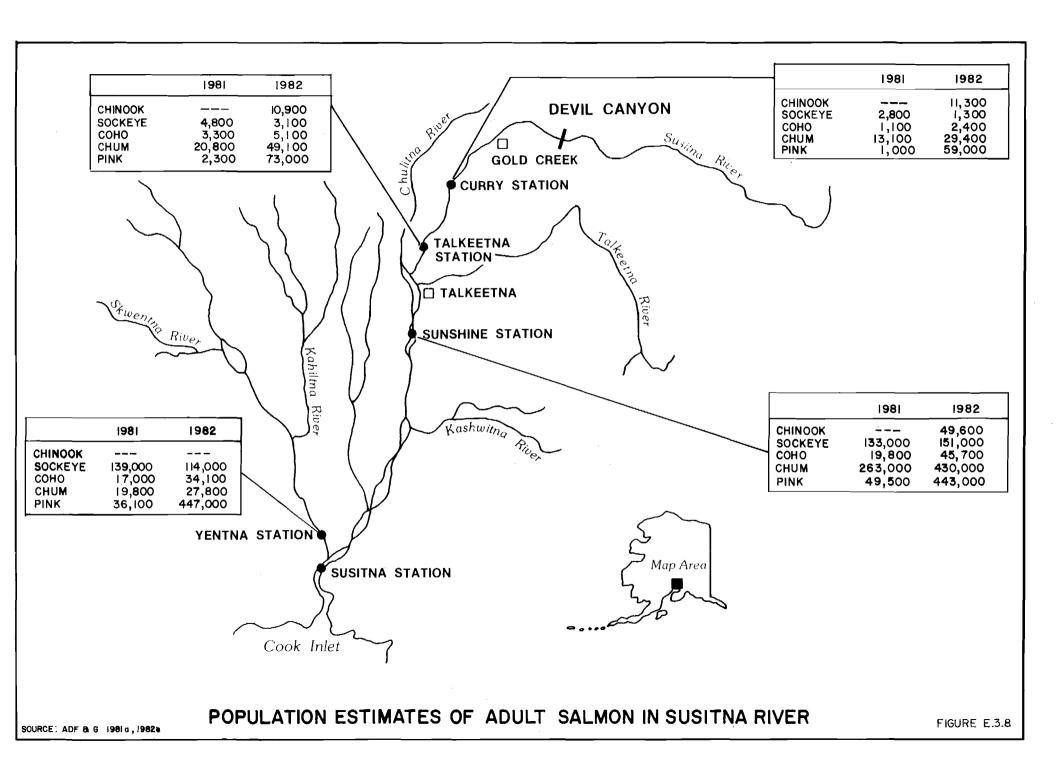
1 .


RELATIONSHIP OF FIELD STUDIES AND MONITORING TO IMPACT ASSESSMENT AND MITIGATION PLANNING






VER DRAINAGE BASIN



(Contraction)

Contra de

100 14530 1 ALC DE COL , and a (Second)

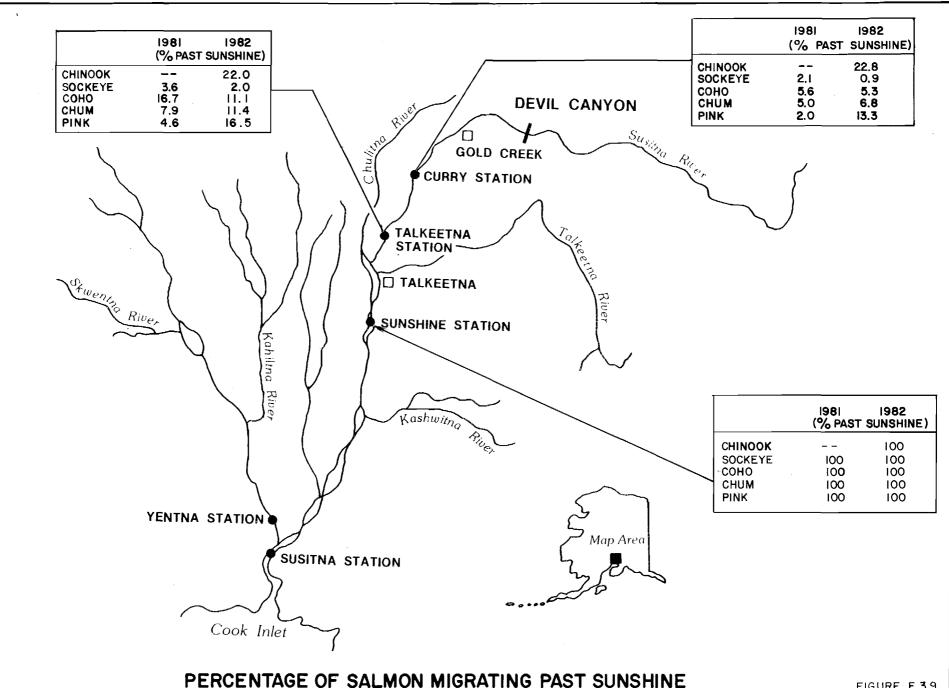
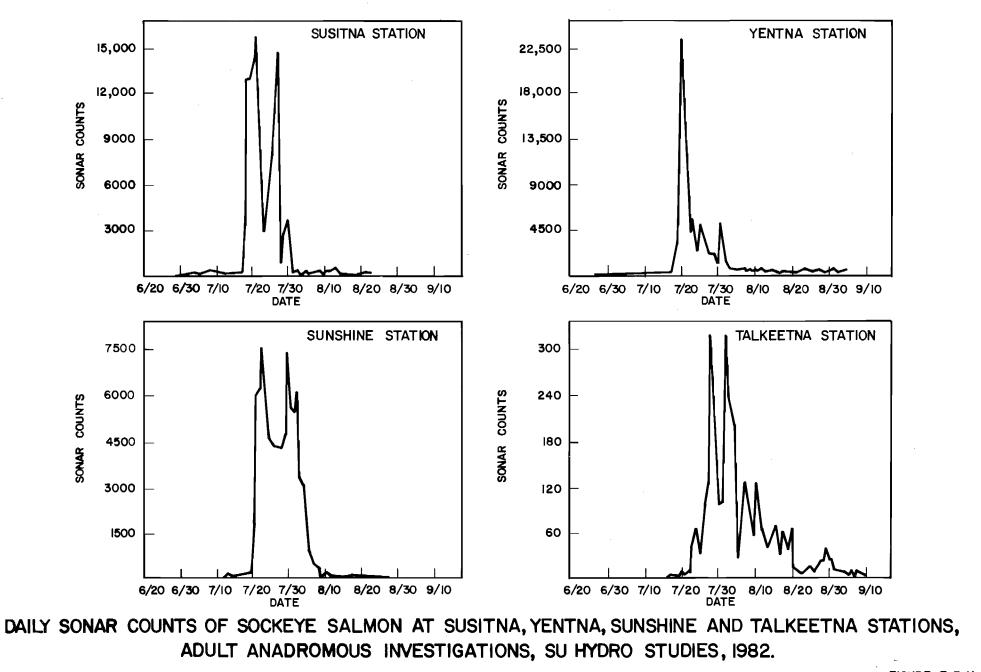
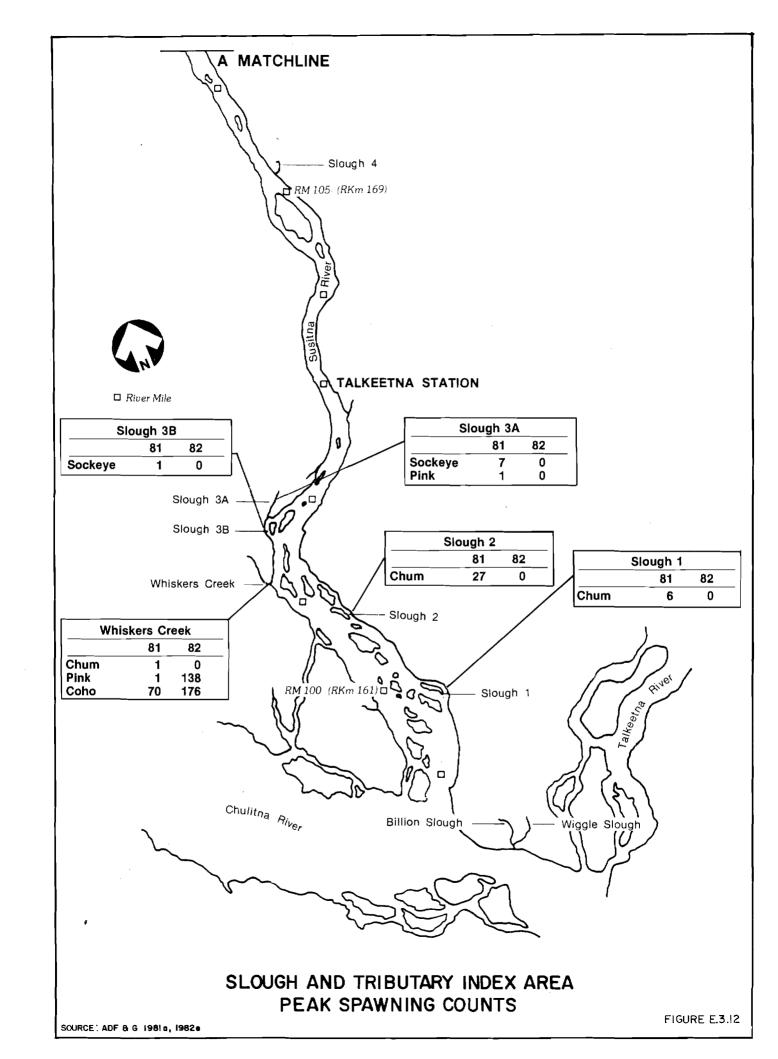
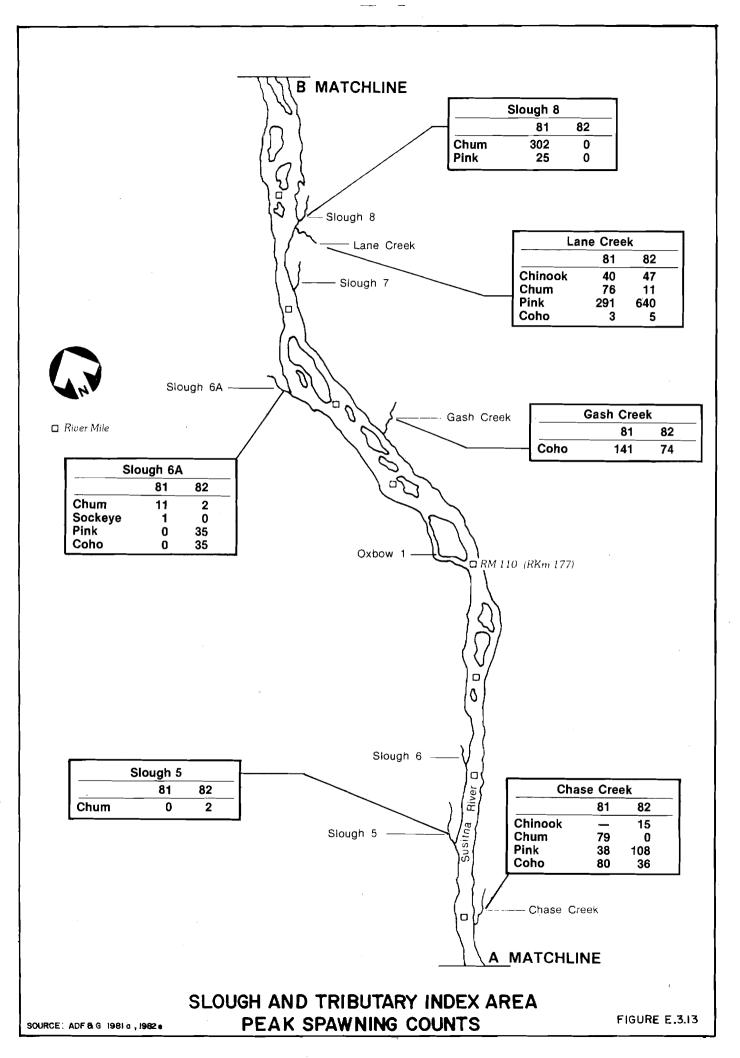


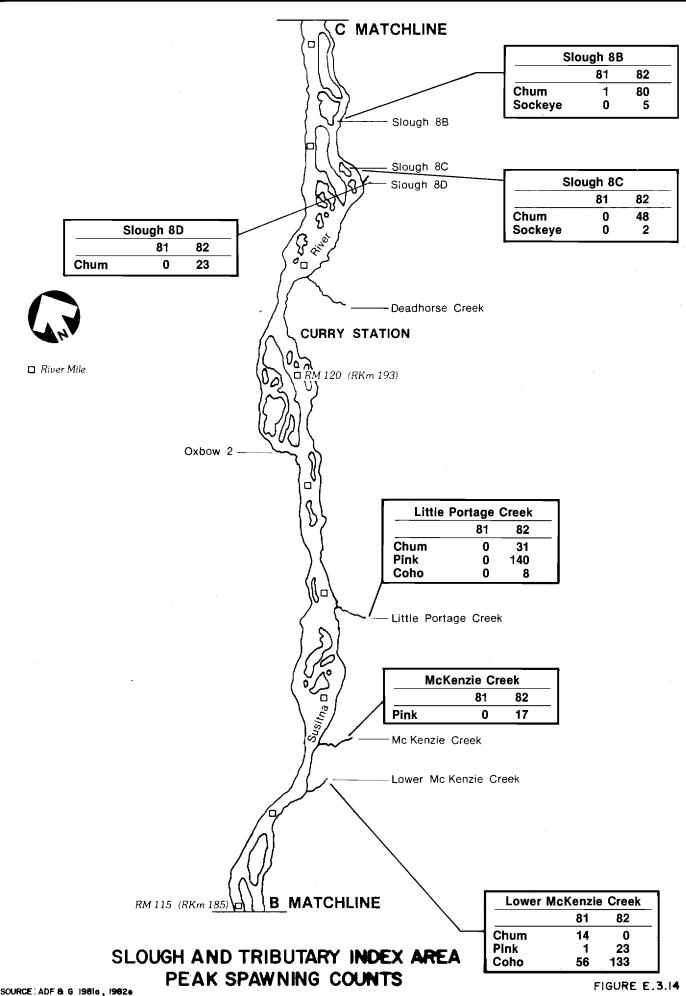
FIGURE E.3.9

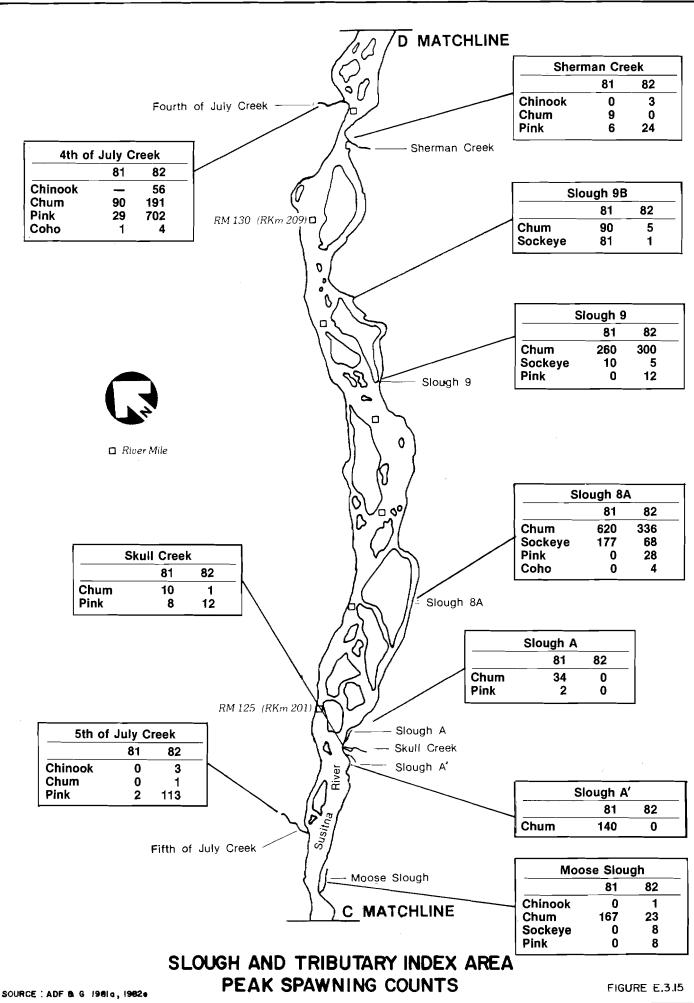
ACTIVITY	MONTH											
	JAN	FEB	MAR	APR	MAY	JUNE	JUL	AUG	SEP	ост	NOV	DEC
CHINOOK ADULT PASSAGE SPAWNING												
INCUBATION/EMERGENCE												
REARING SMOLTING												
PINK ADULT PASSAGE SPAWNING INCUBATION/EMERGENCE OUTMIGRATION												
CHUM ADULT PASSAGE SPAWNING INCUBATION/EMERGENCE									0 1111			
REARING OUTMIGRATION	,											
LEGEND: INTENSE ACTIVITY MODERATE ACTIVITY TIMING OF LIFE STAGES OF SALMON IN THE SUSITNA RIVER FROM TALKEETNA TO DEVIL CANYON SHEET I OF 2												
(SOURCE: ADF & G 19814, 19815, 19814, 1981 19828, 1982f; AND MORROW 1980	a, 1981e, 1981f .)	,1982a,									FIGU	RE E.3.10

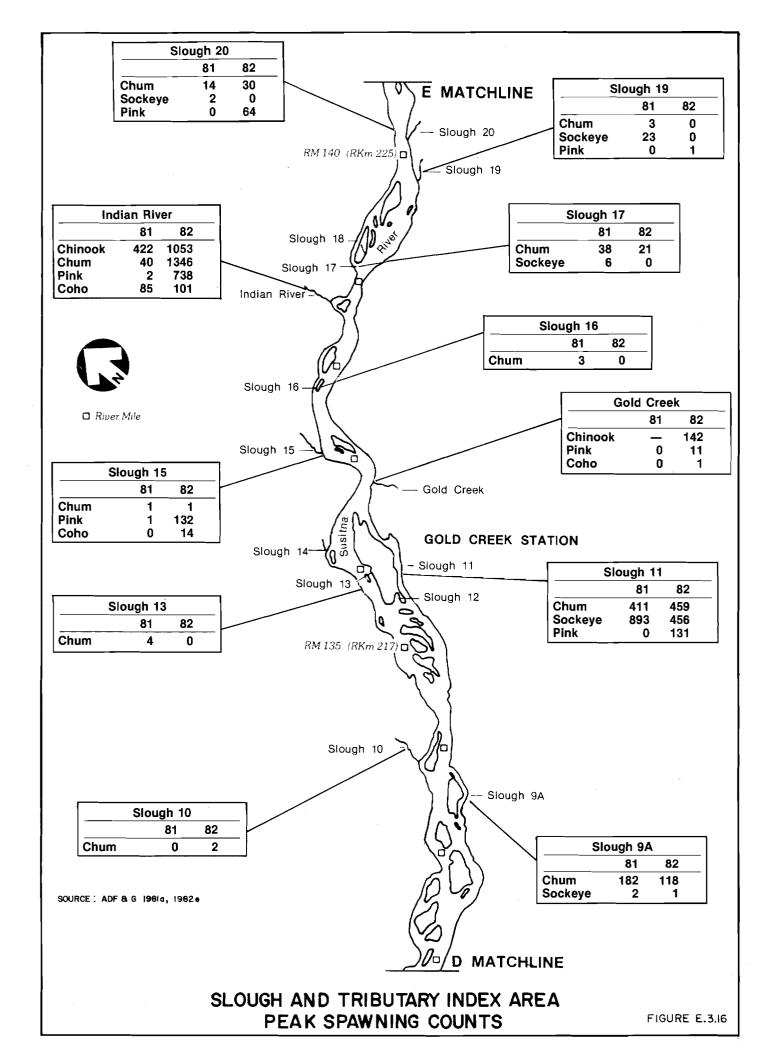

MONTH ACTIVITY JAN FFB MAR APR MAY JUNE JUL AUG SEP ОСТ NOV DEC 1 соно ADULT PASSAGE _ SPAWNING INCUBATION/EMERGENCE 11121 REARING SMOLTING SOCKEYE ADULT PASSAGE وجزج والتمكن SPAWNING INCUBATION/EMERGENCE t t t t t i t t t t t t REARING OUT MIGRATION * * JUVENILE SOCKEYE APPEAR TO BE ABSENT FROM THIS REACH

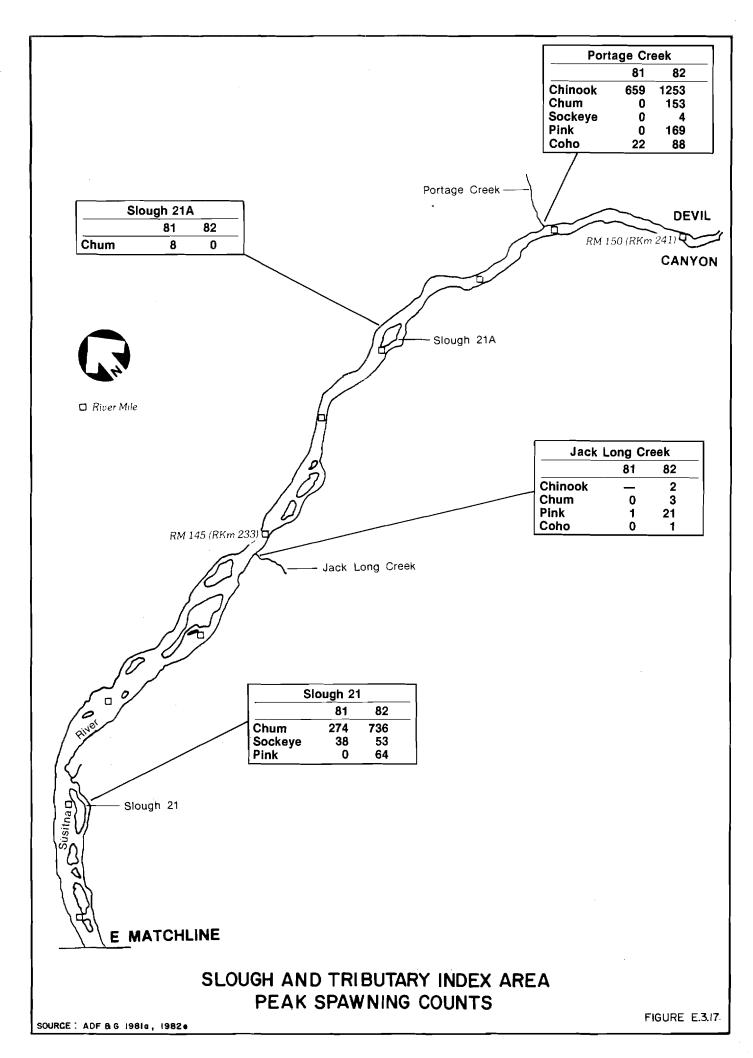

LEGEND:

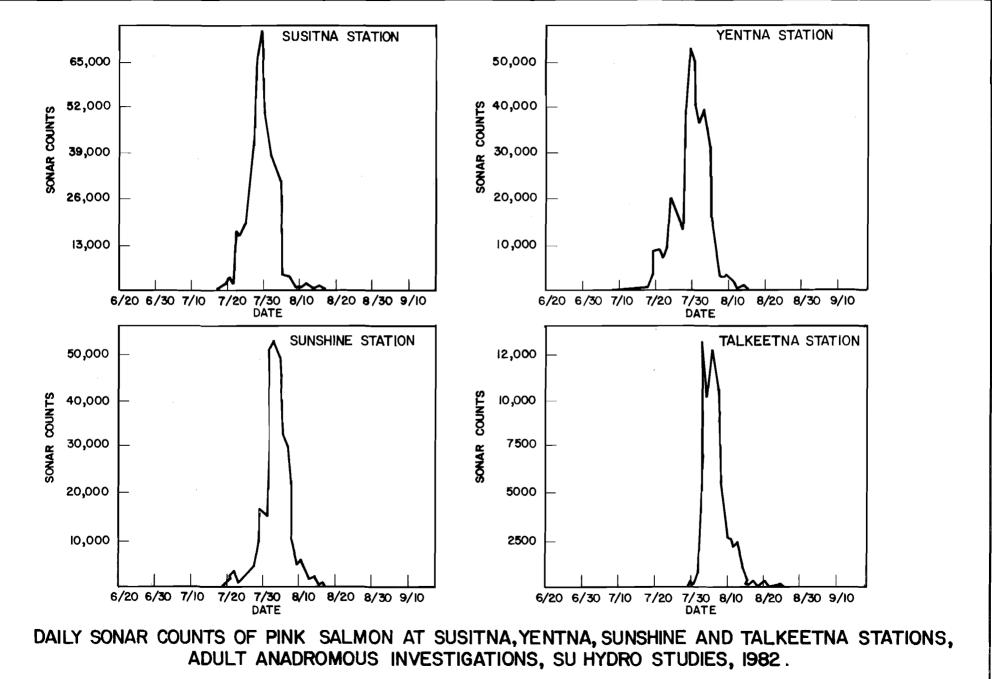

INTENSE ACTIVITY

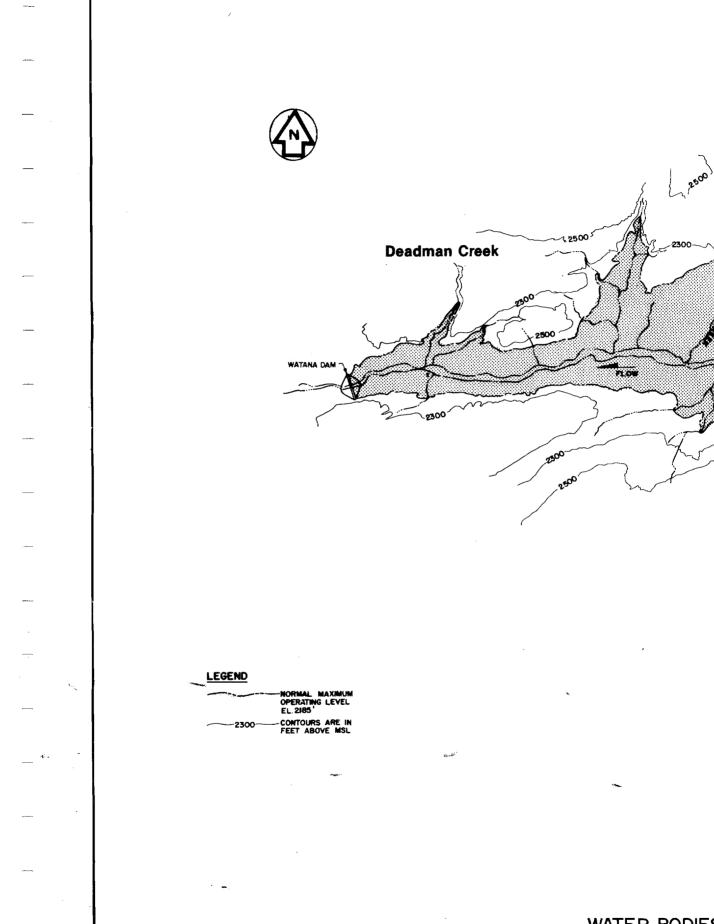

BEBBBBBBB MODERATE ACTIVITY


TIMING OF LIFE STAGES OF SALMON IN THE SUSITNA RIVER FROM TALKEETNA TO DEVIL CANYON SHEET 2 OF 2

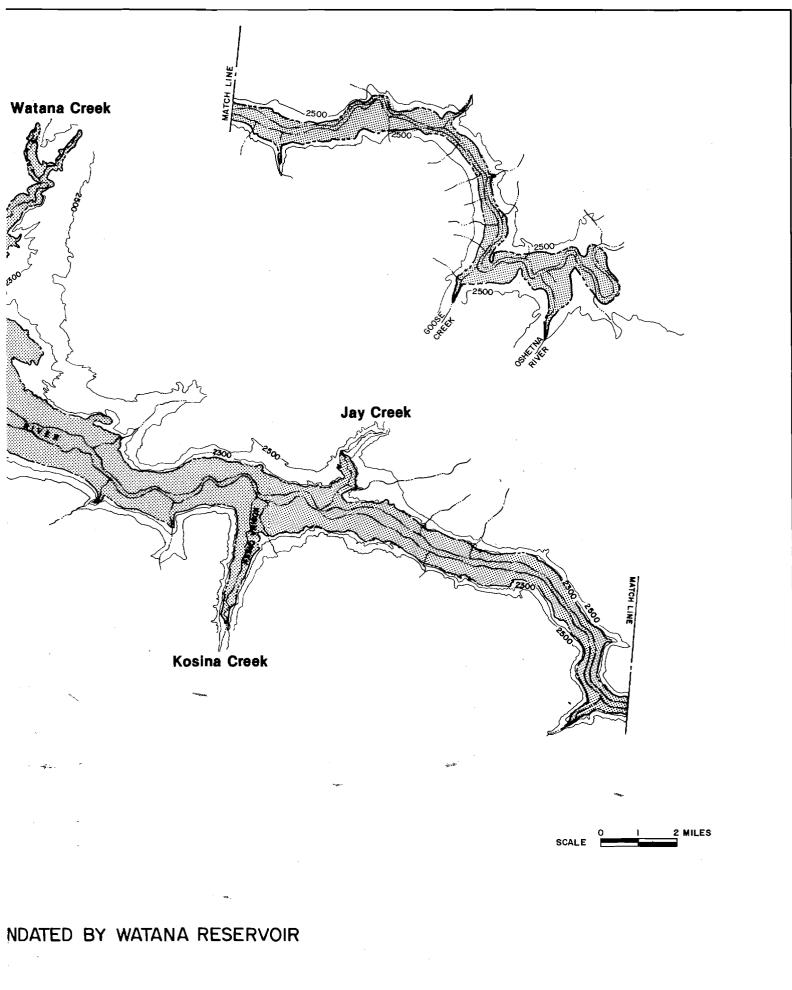


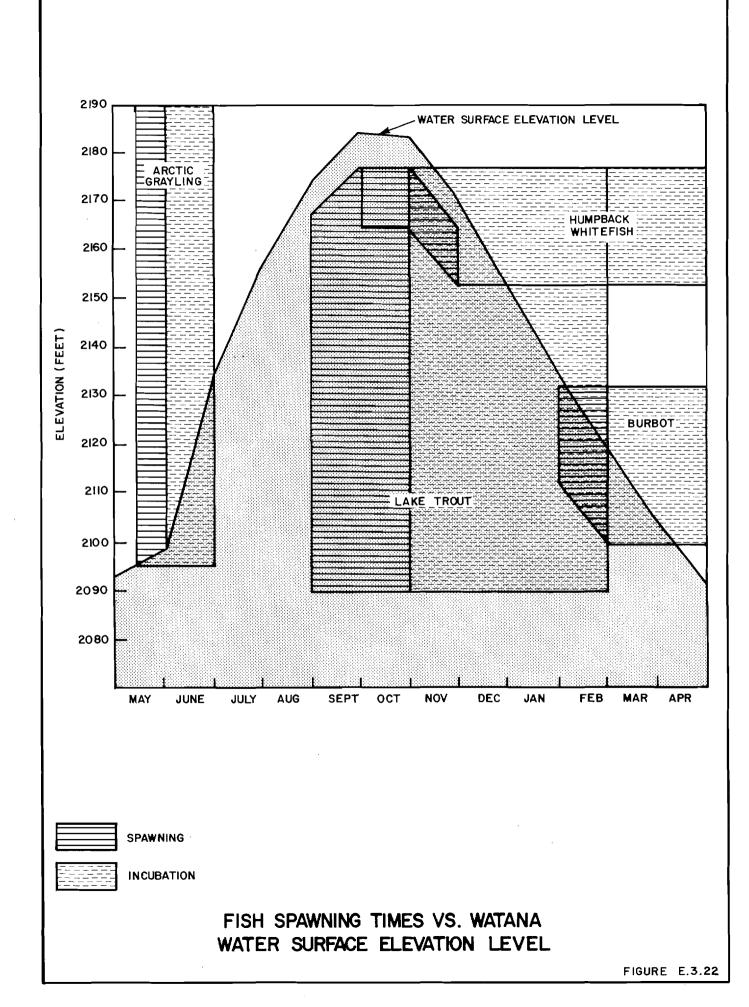


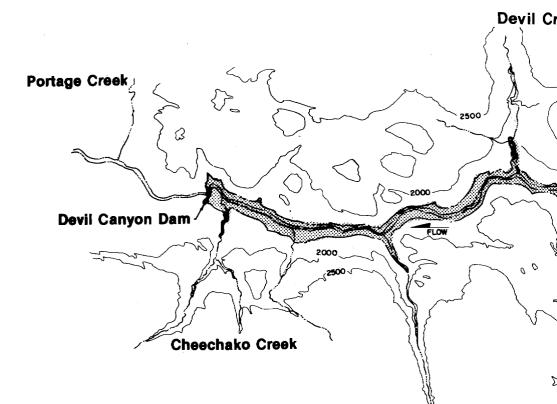




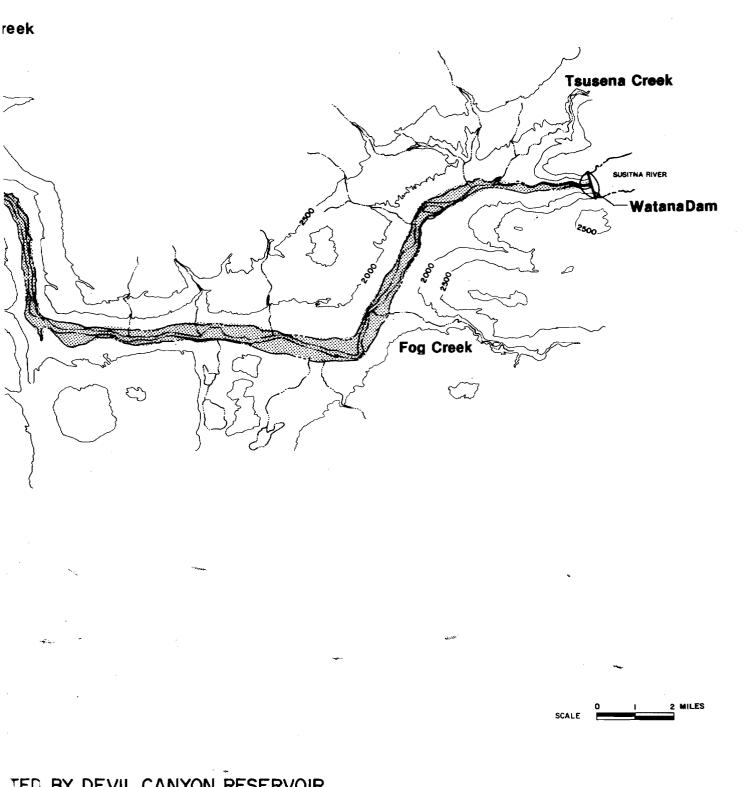
SUSITNA STATION YENTNA STATION 3750 4000 3000 3200 SONAR COUNTS SONAR COUNT 2250 2400 1500 1600 750 800 6/20 6/30 7/10 7/20 7/30 DATE 6/20 6/30 7/10 7/20 7/30 8/10 DATE 8/10 8/20 8/30 9/10 8/20 8/30 9/10 SUNSHINE STATION TALKEETNA STATION 12500 2500 SONAR COUNTS SONAR COUNTS 10000 2000 7500 1500 1000 5000 2500 500 6/20 6/30 7/10 7/20 7/30 8/10 DATE 6/20 6/30 7/10 7/20 7/30 DATE 8/10 8/20 8/30 9/10 8/20 8/30 9/10 DAILY SONAR COUNTS OF CHUM SALMON AT SUSITNA, YENTNA, SUNSHINE AND TALKEETNA STATIONS, ADULT ANADROMOUS INVESTIGATIONS, SU HYDRO STUDIES, 1982.

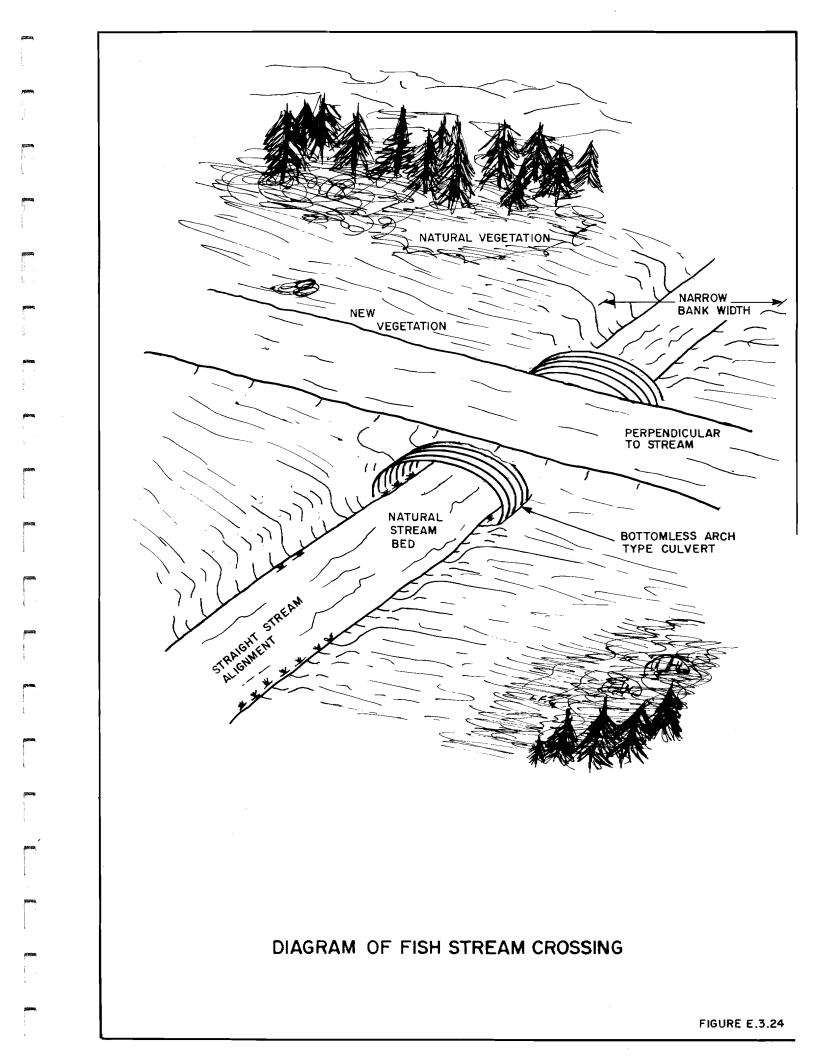

SUSITNA STATION YENTNA STATION 5000 6250 4000 **50**00 SONAR COUNTS 30000 50000 SONAR COUNTS 3750 2500 1000 1250 7/20 7/30 DATE 7/30 DATE 6/20 6/30 7/10 8/10 8/20 8/30 9/10 6/20 6/30 7/10 7/20 8/20 8/30 8/10 8/10 SUNSHINE STATION TALKEETNA STATION 3250 375 2600 300 SONAR COUNTS SONAR COUNTS 1950 225 1300 150 650 75 6/20 6/30 7/10 7/20 7/30 DATE 6/20 6/30 7/10 7/20 7/30 8/10 8/20 8/30 9/10 DATE 8/10 8/20 8/30 9/10 DAILY SONAR COUNTS OF COHO SALMON AT SUSITNA, YENTNA, SUNSHINE AND TALKEETNA STATIONS, ADULT ANADROMOUS INVESTIGATIONS, SU HYDRO STUDIES, 1982.

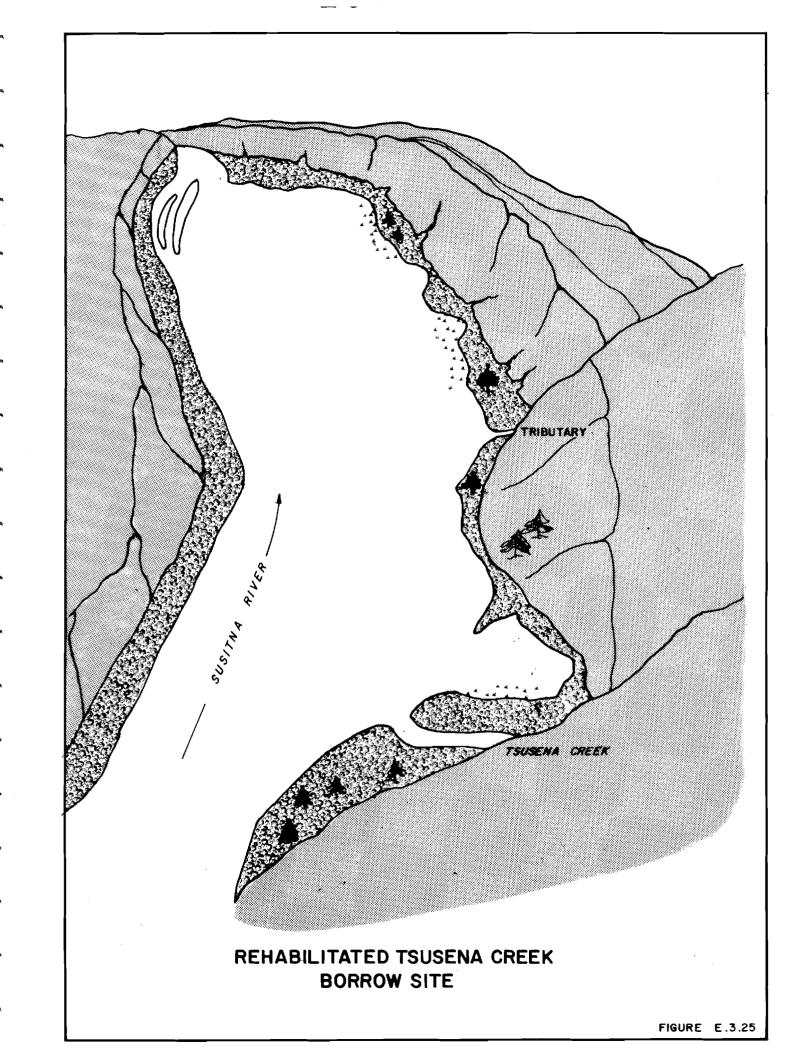


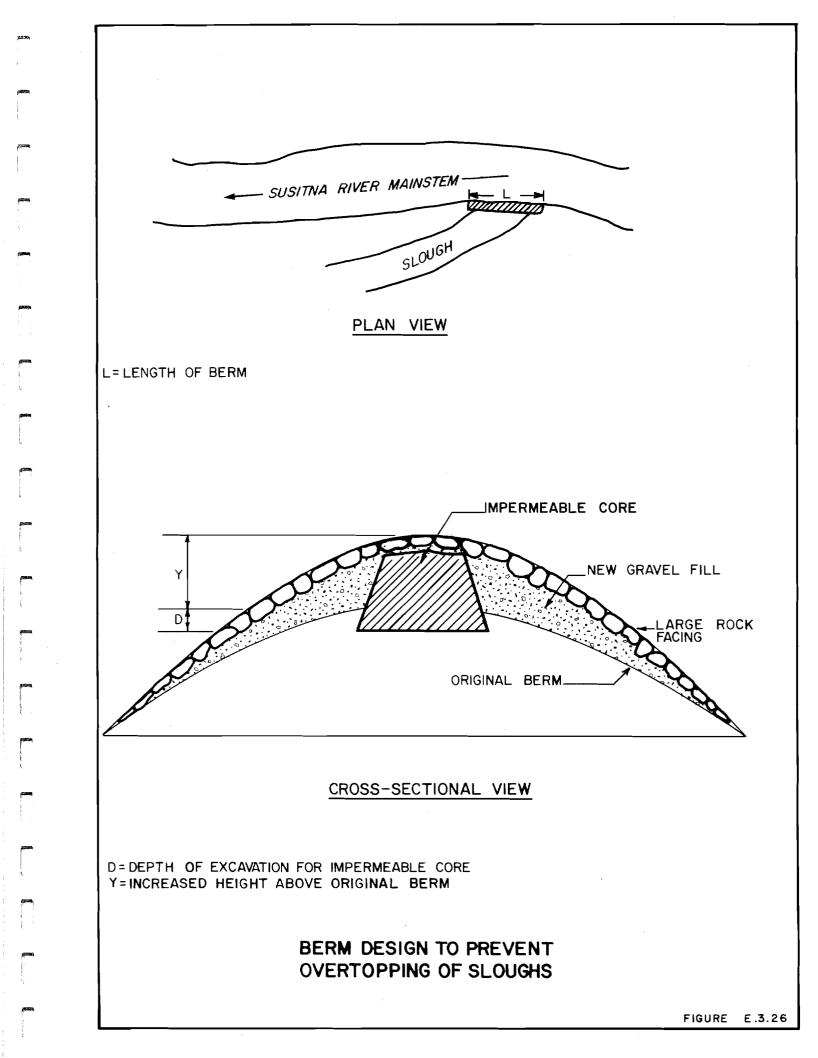

WATER BODIES TO BE INU

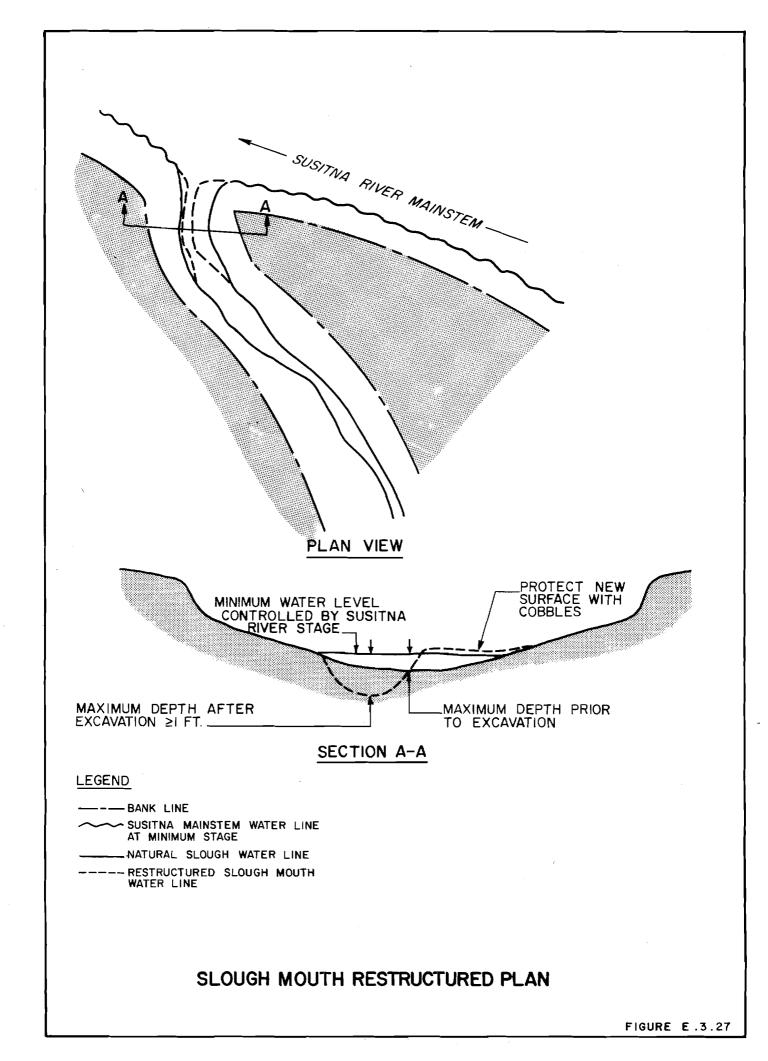
US ITNA

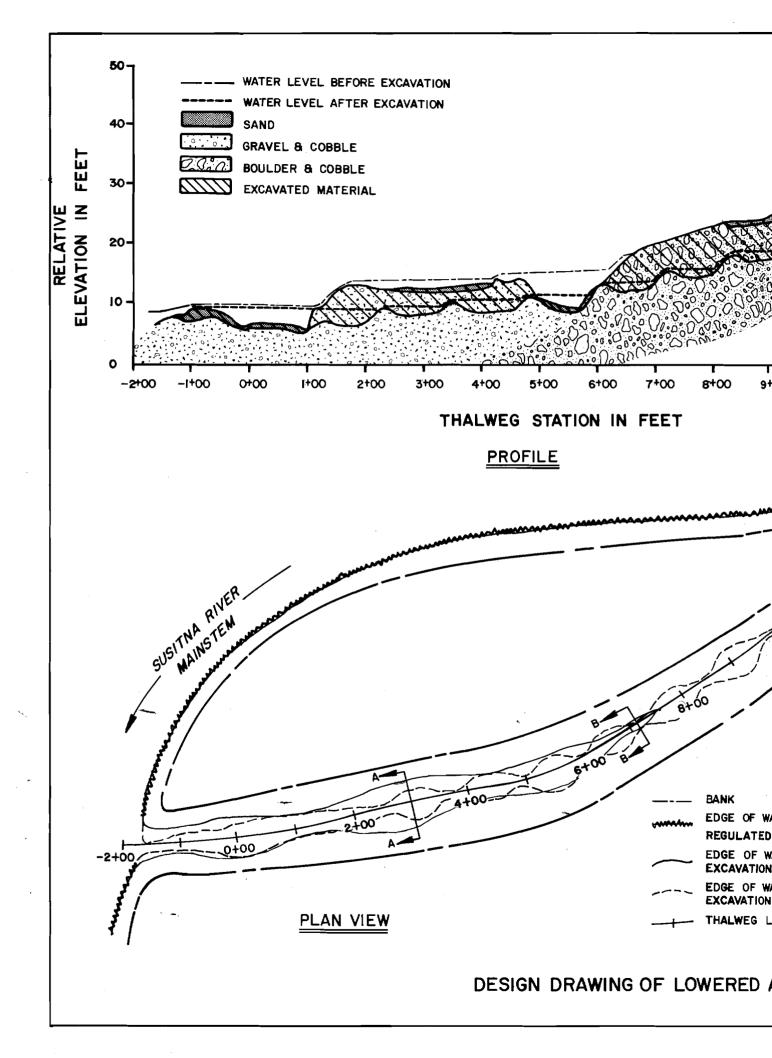


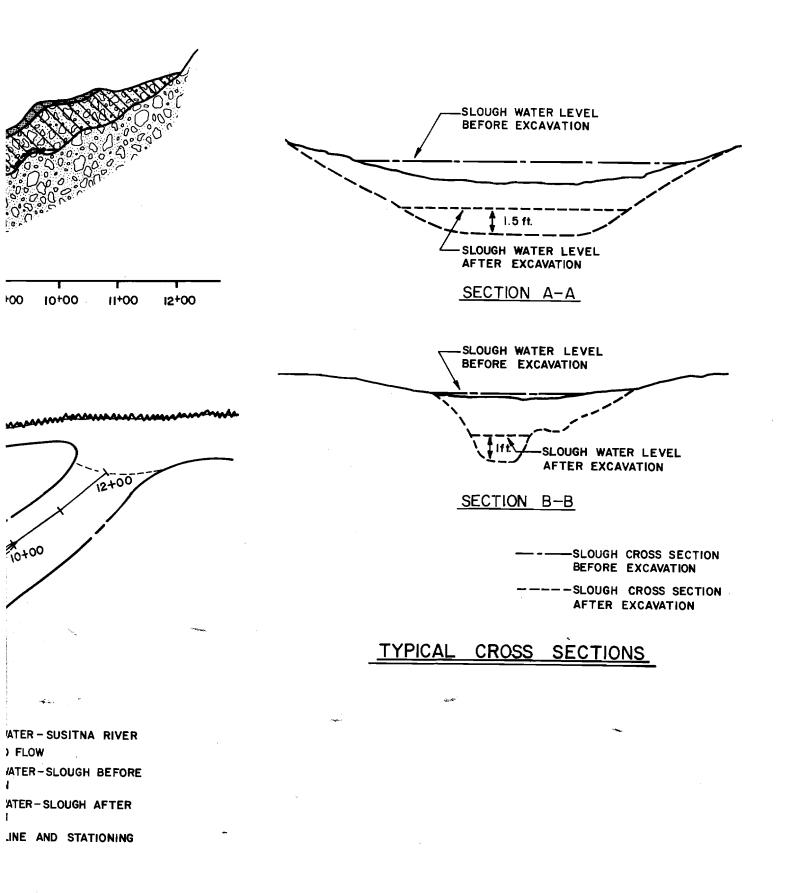


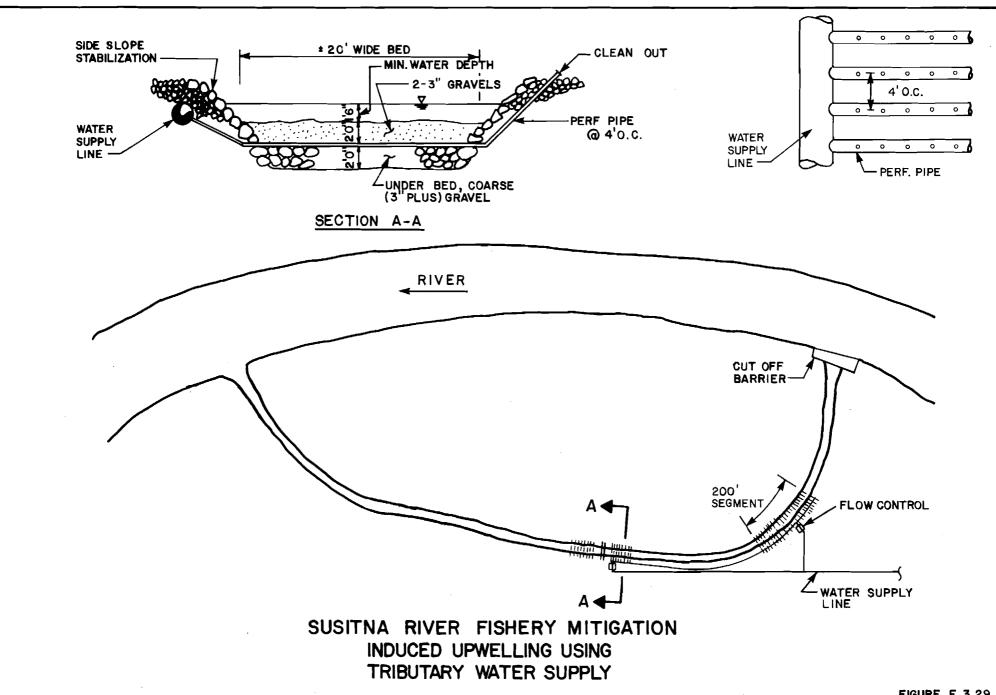

,	~NORMAL MAXIMUM OPERATING LEVEL EL. 1455
2000	CONTOUR IN FEET ABOVE MSL


WATER BODIES TO BE INUNDA

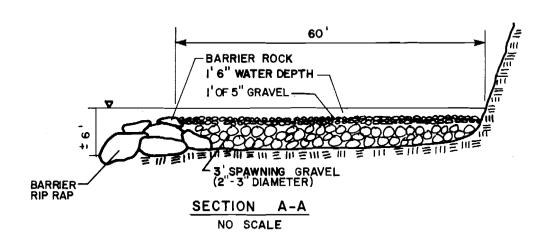


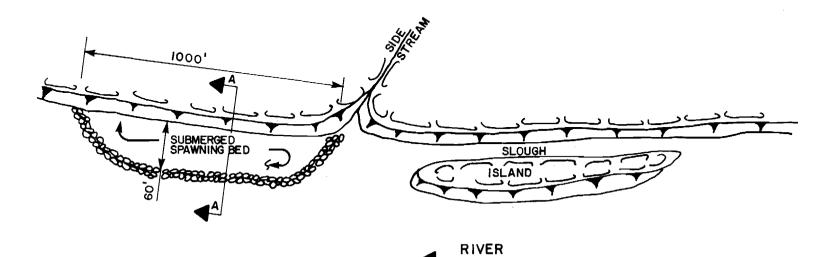

TED BY DEVIL CANYON RESERVOIR



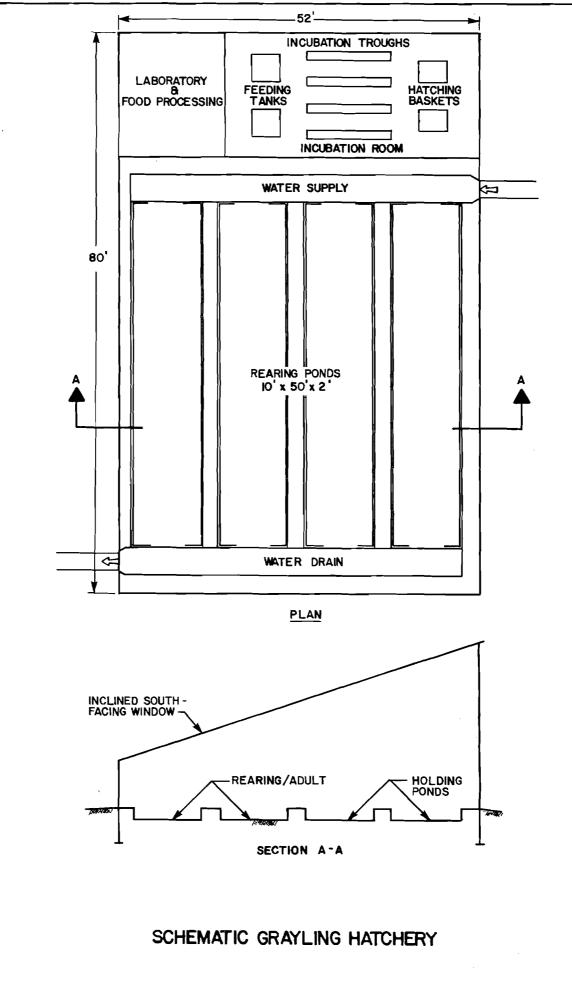


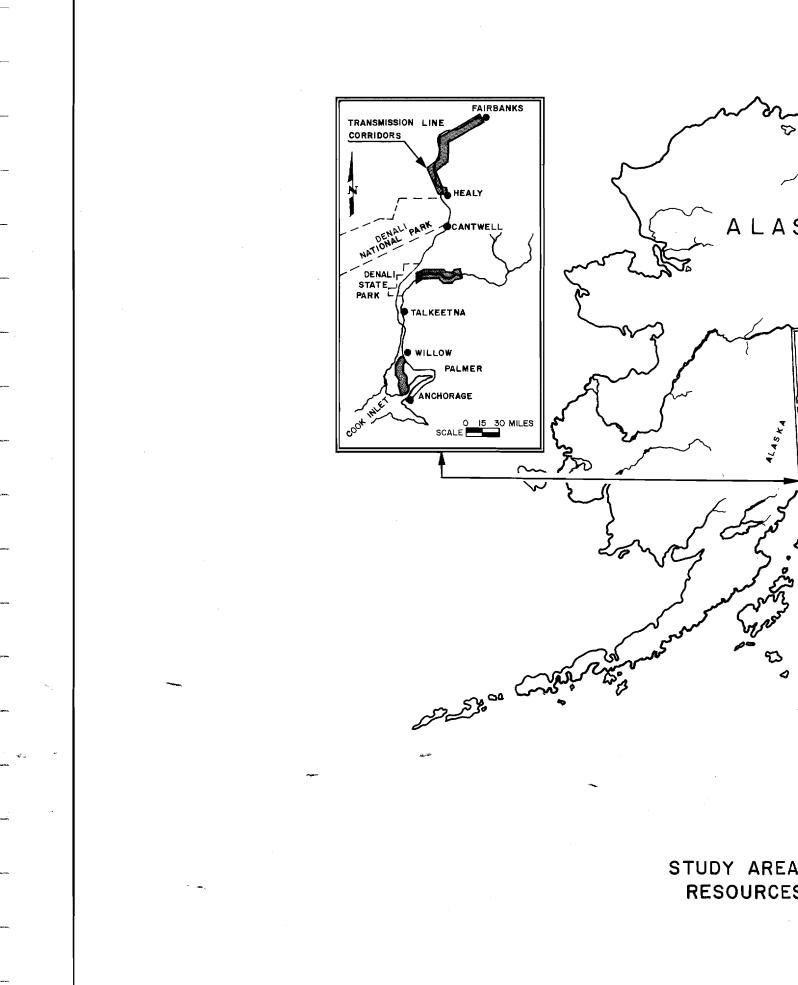
AND RESTRUCTURED SLOUGH

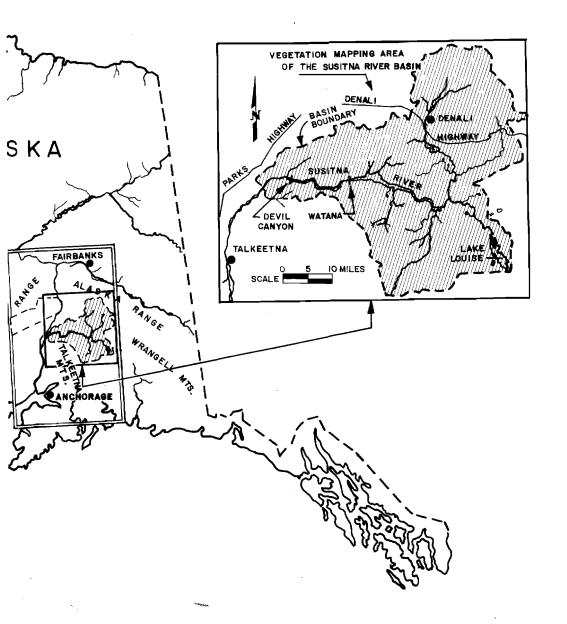


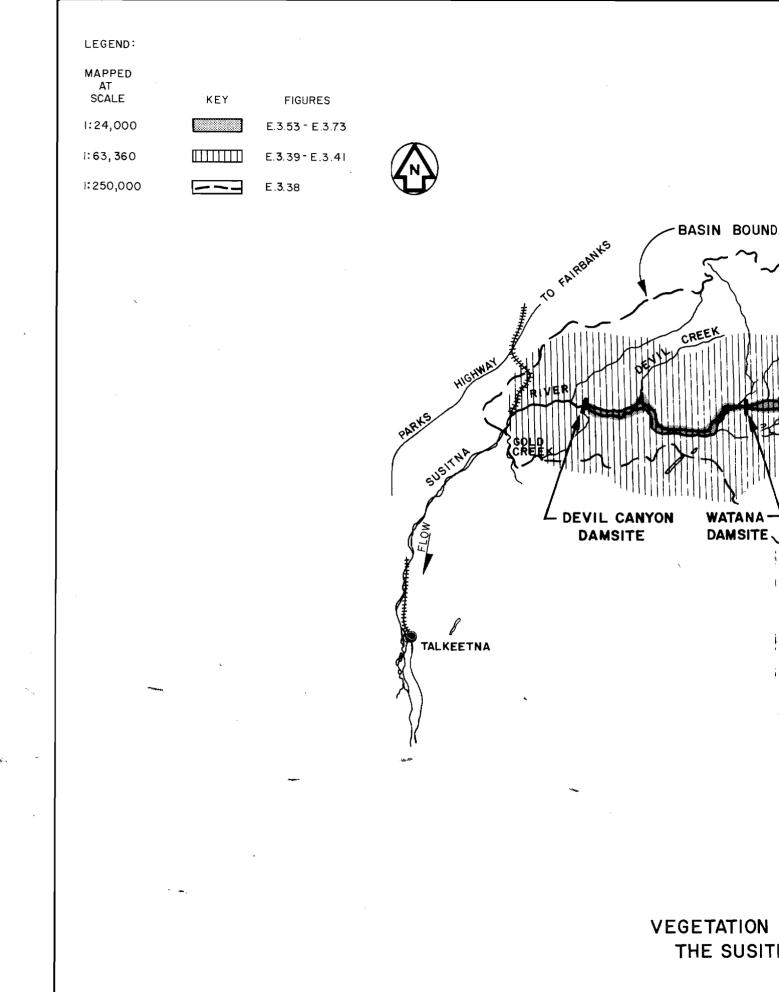

Canal State

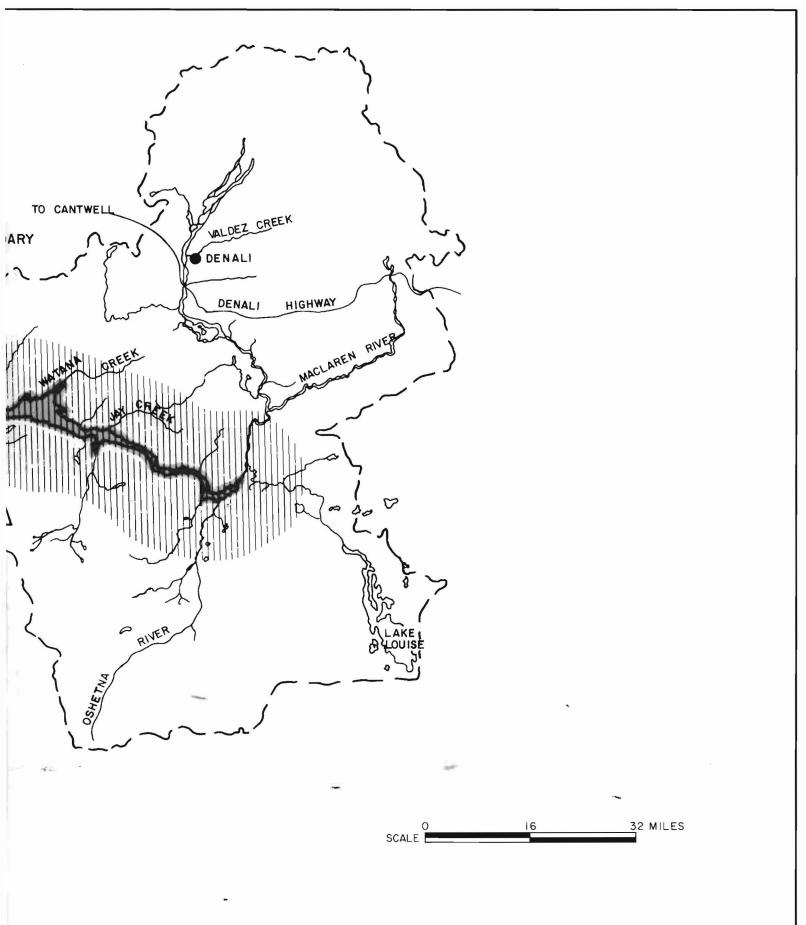
and the second

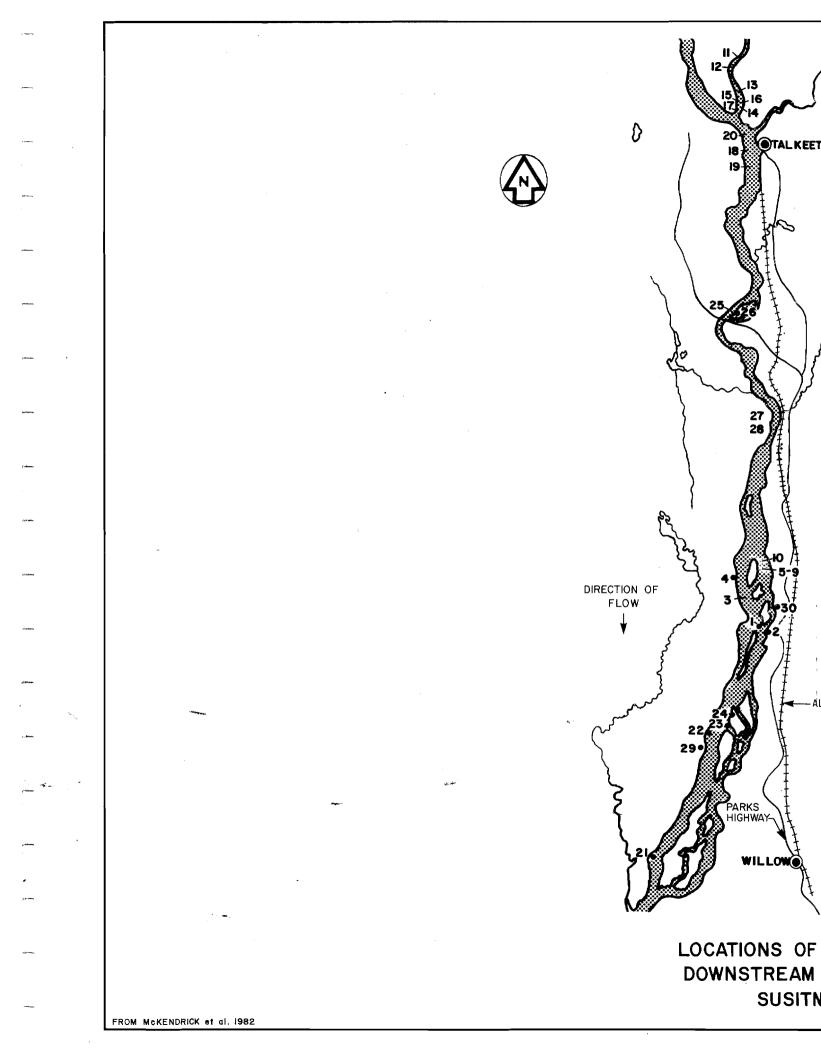

FIGURE E.3.29


huster

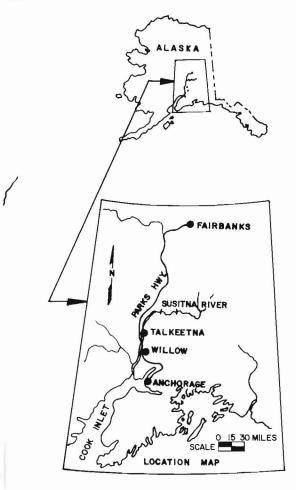


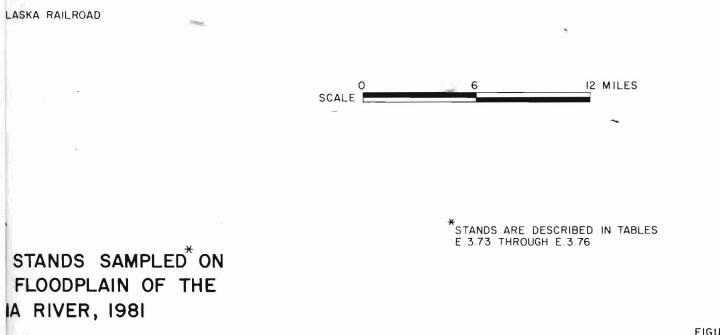

SUSITNA RIVER FISHERY MITIGATION MAIN STREAM SPAWNING BED

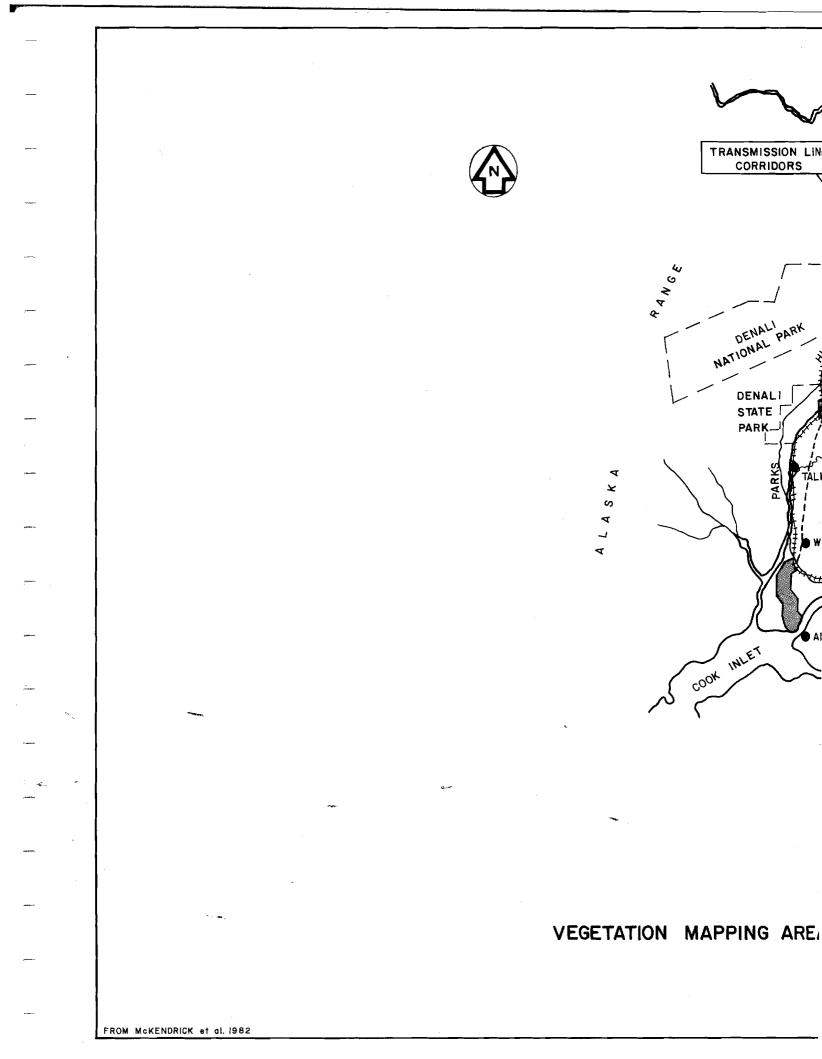


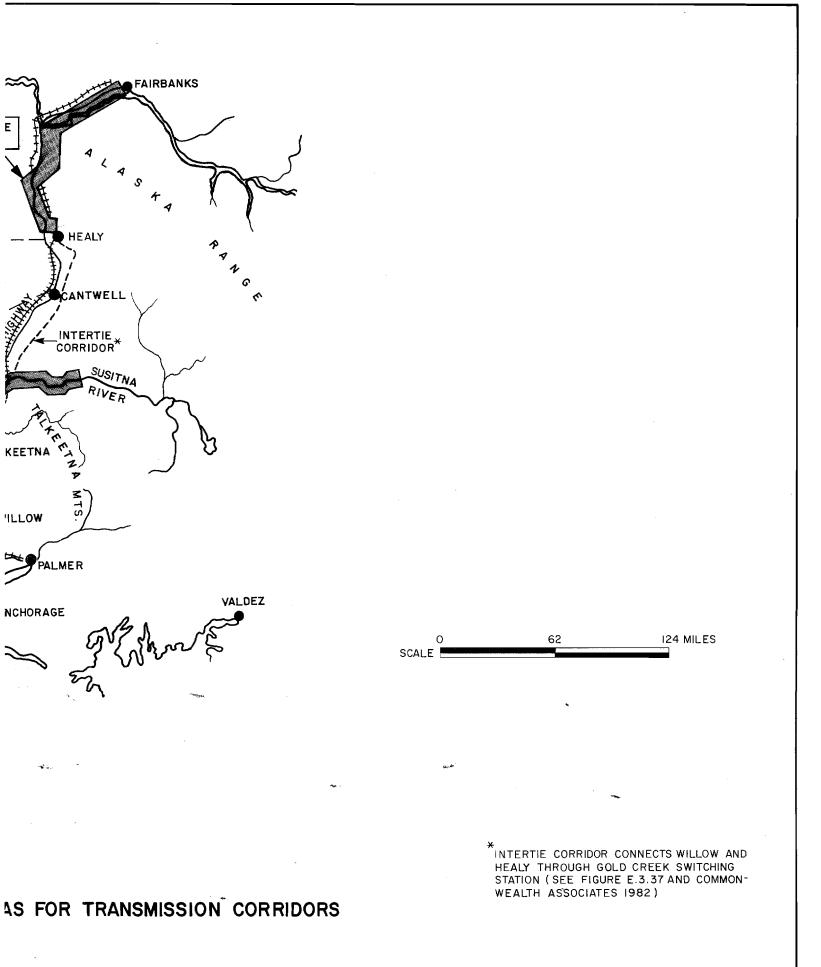


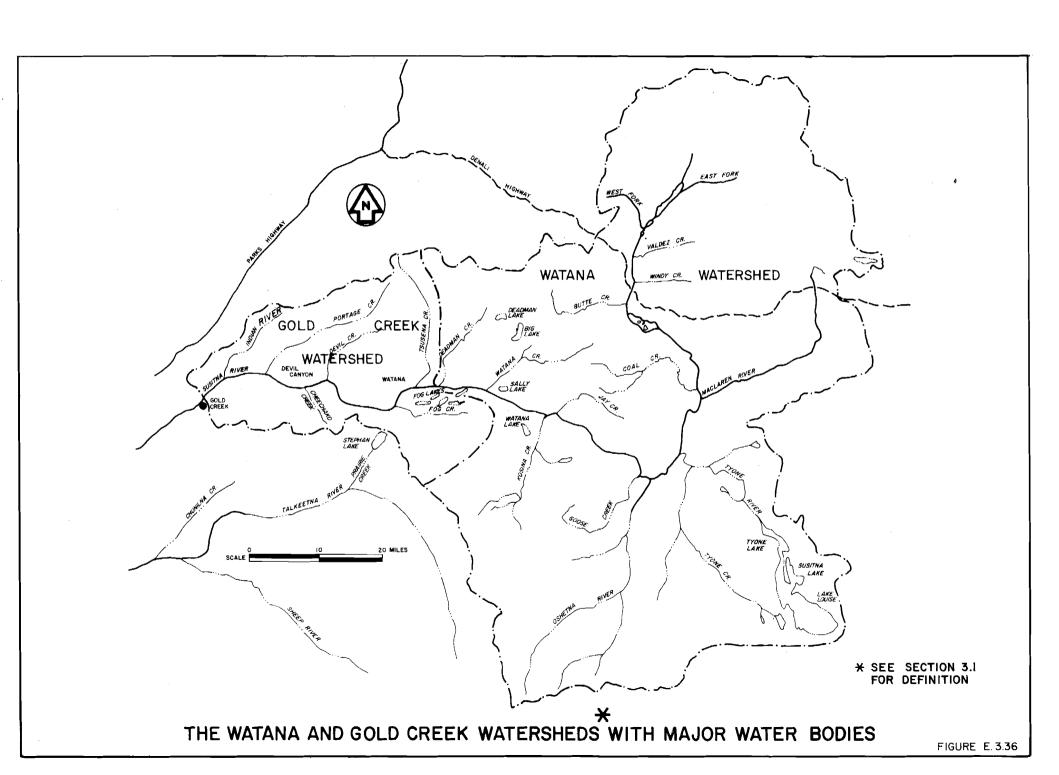
S AND WILDLIFE

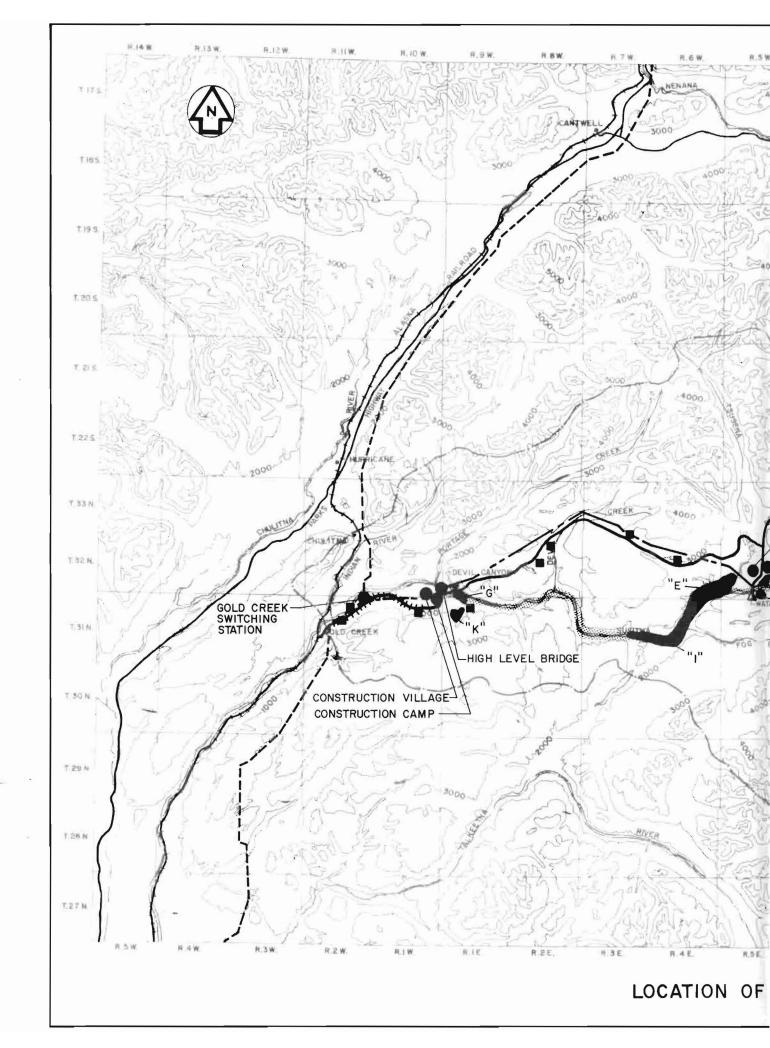


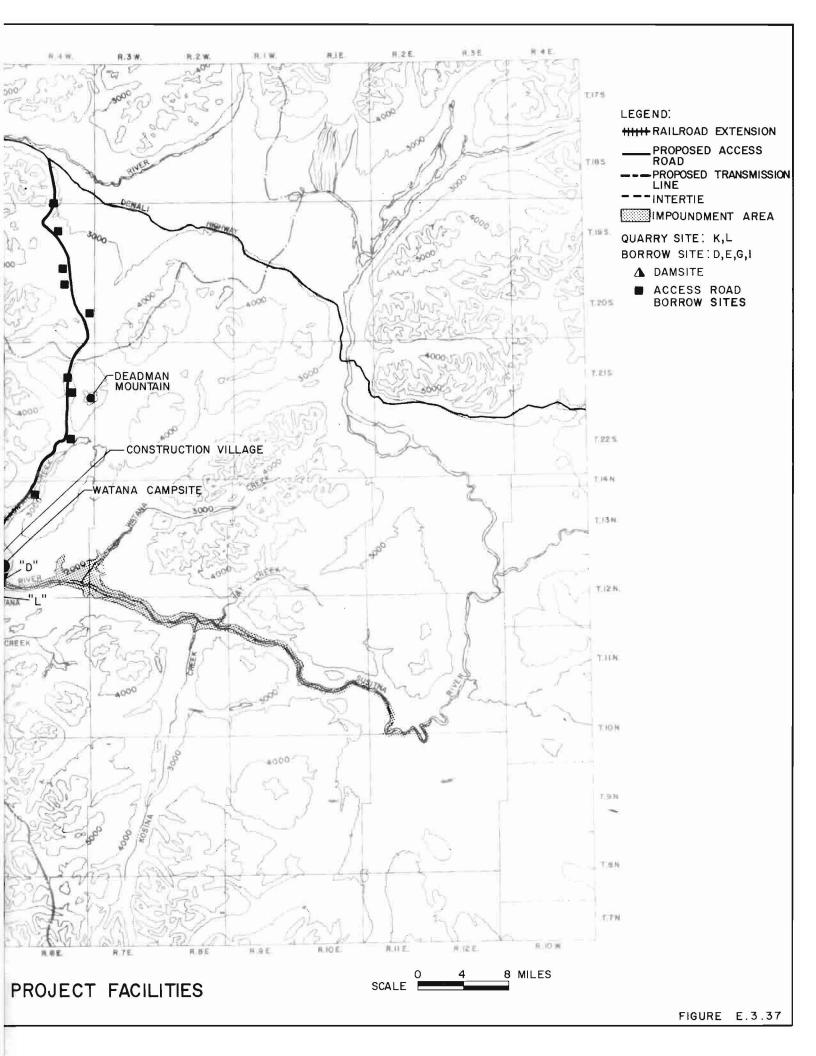

MAPPING AREAS OF NA RIVER BASIN

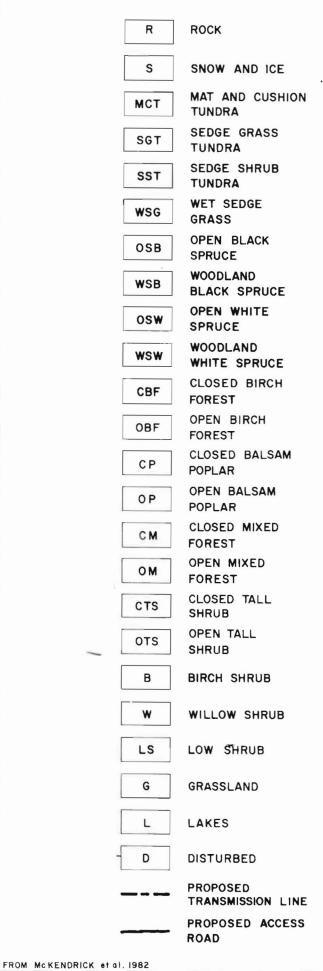



INA

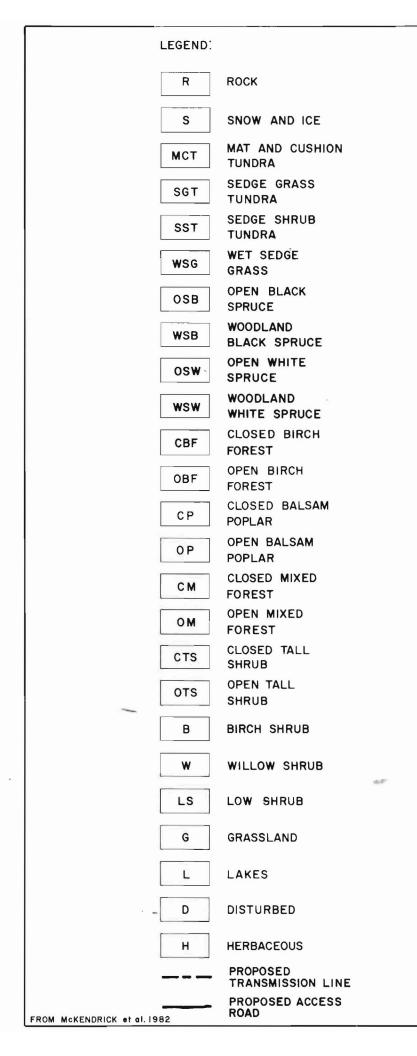

1

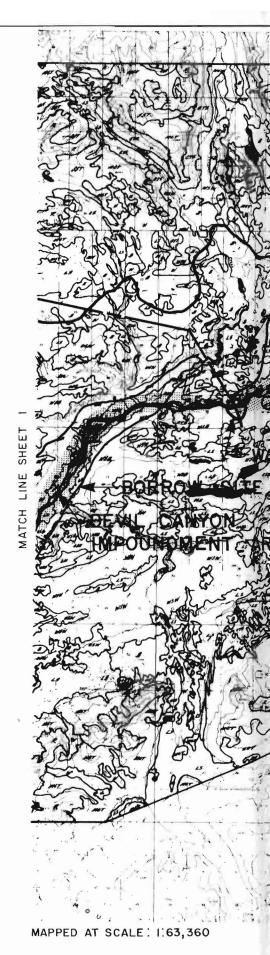


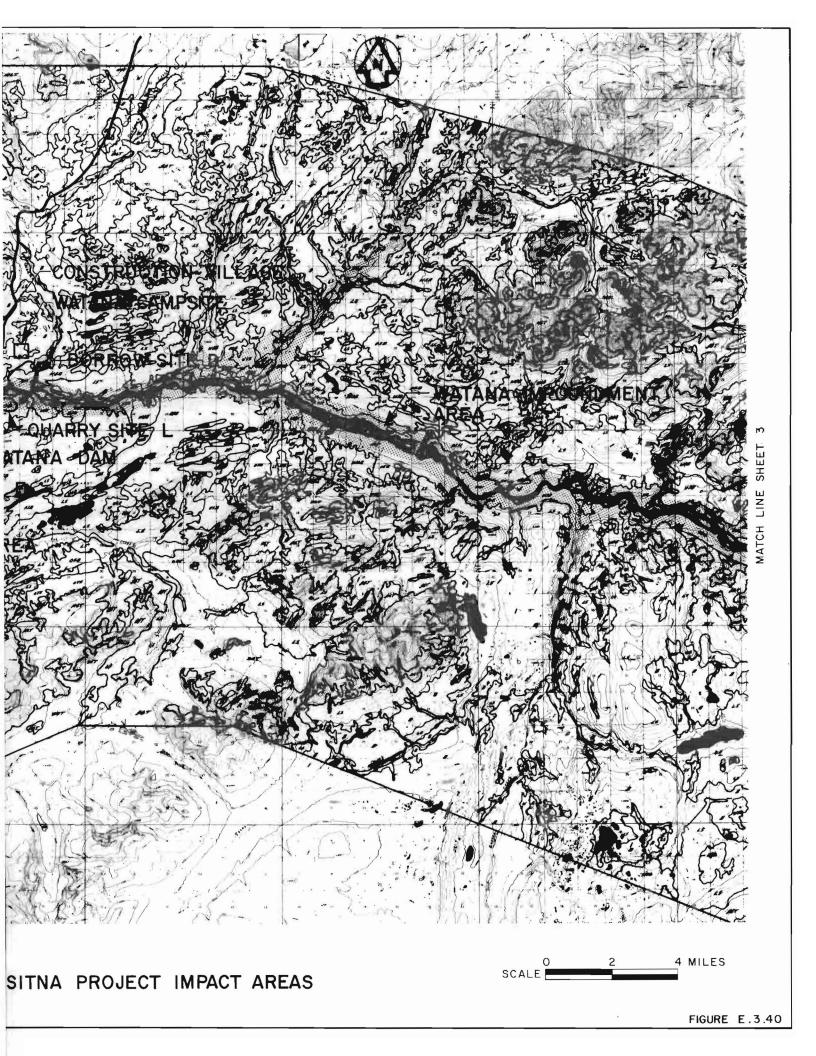


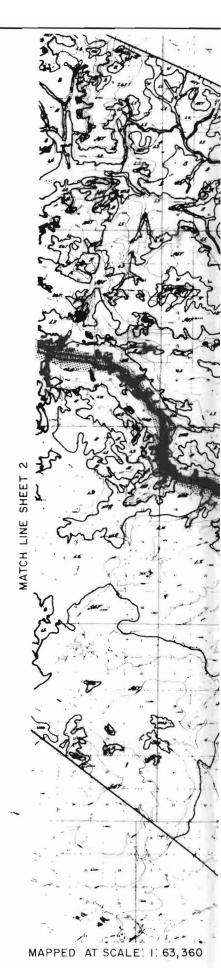


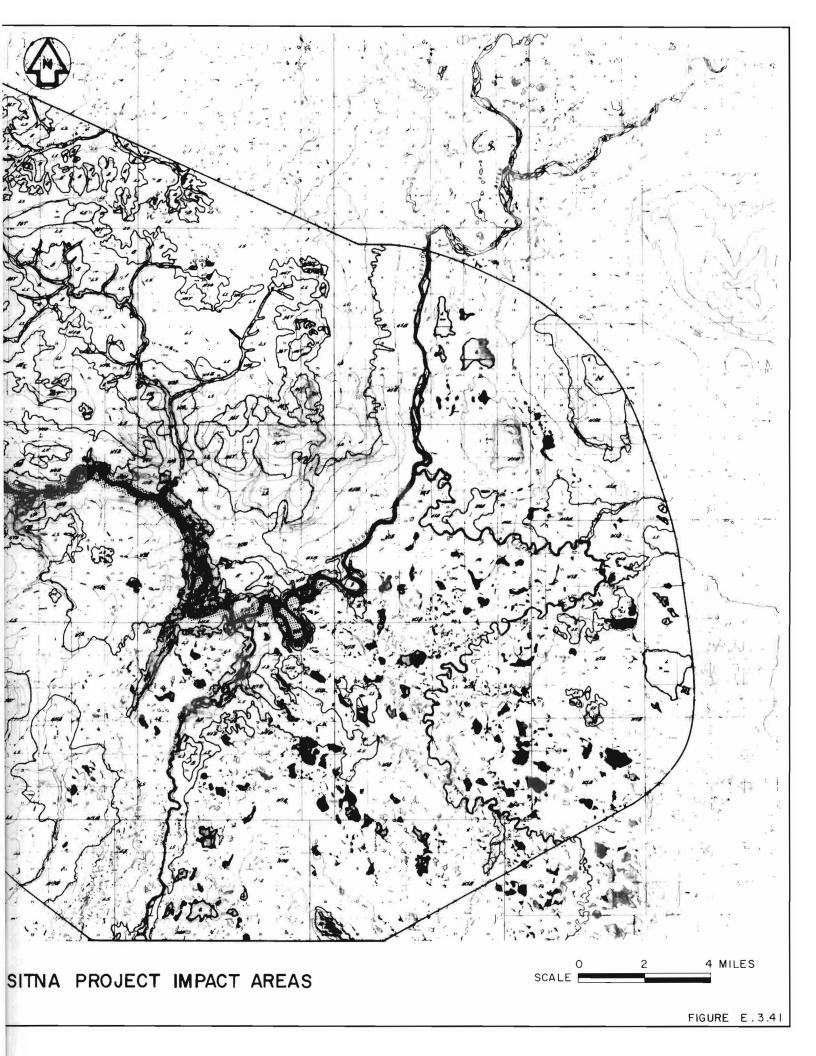
Inserted in pocket inside back cover


LEGEND:



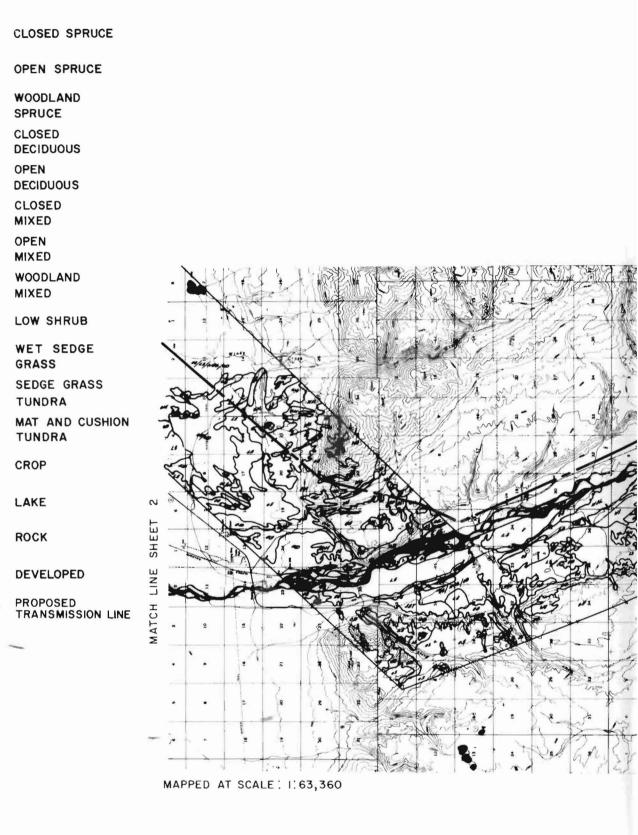

VEGETATION MAP OF SI


VEGETATION MAP OF SU



VEGETATION	ΜΔΡ	OF	SU
			00

	LEGEND	
	R	ROCK
	S	SNOW AND ICE
	MCT	MAT AND CUSHION TUNDRA
	SGT	SEDGE GRASS TUNDRA
	SST	SEDGE SHRUB TUNDRA
	WSG	WET SEDGE GRASS
	OSB	OPEN BLACK SPRUCE
	WSB	WOODLAND Black spruce
	osw	OPEN WHITE SPRUCE
	WSW	WOODLAND WHITE SPRUCE
	CBF	CLOSED BIRCH FOREST
	OBF	OPEN BIRCH FOREST
	CP	CLOSED BALSAM POPLAR
	0 P	OPEN BALSAM POPLAR
	СМ	CLOSED MIXED FOREST
	0 M	OPEN MIXED FOREST
	CTS	CLOSED TALL SHRUB
	OTS	OPEN TALL SHRUB
	В	BIRCH SHRUB
	W	WILLOW SHRUB
	LS	LOW SHRUB
	G	GRASSLAND
	L	LAKES
-	D	DISTURBED



FIGURES E.3.42 THROUGH E.3.47

Inserted in pocket inside back cover

FROM MCKENDRICK et al. 1982

VEGETATION MAP OF F

LEGEND:

CS

os

WS

CD

OD

CM

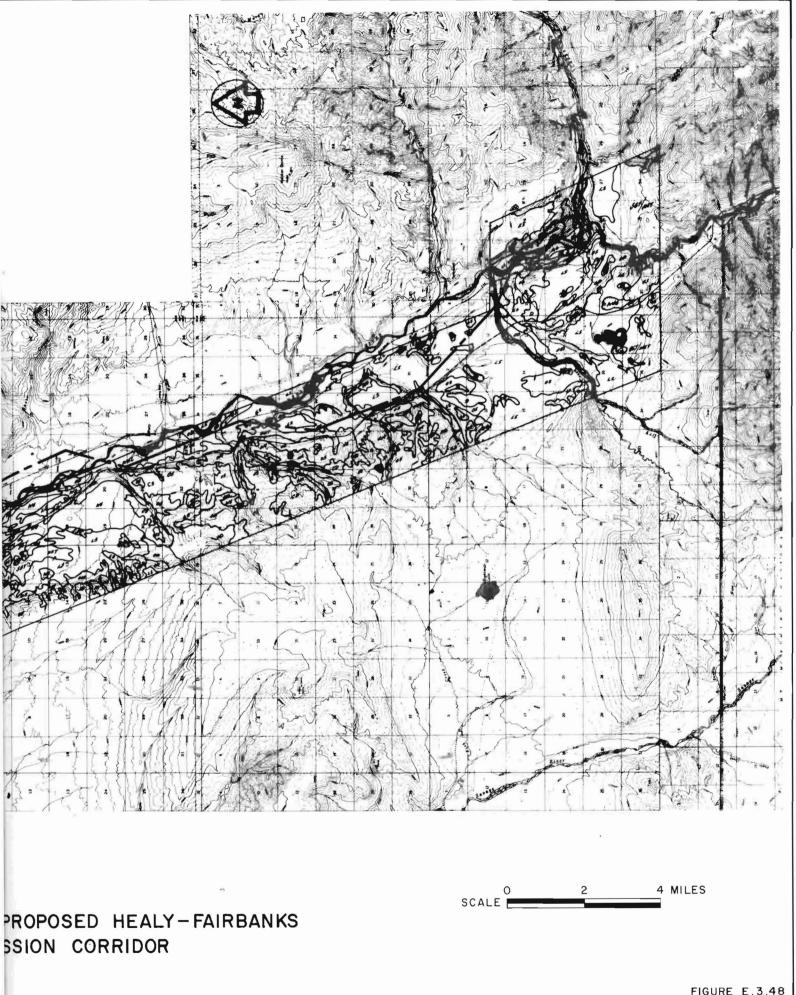
ΟM

WM

LS

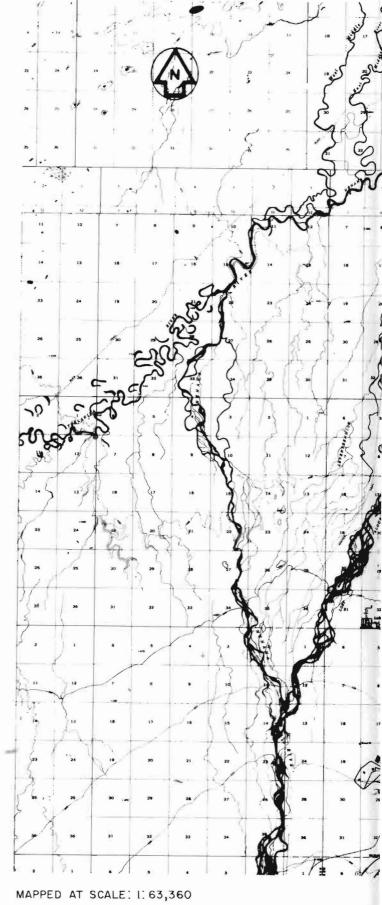
WSG

SGT

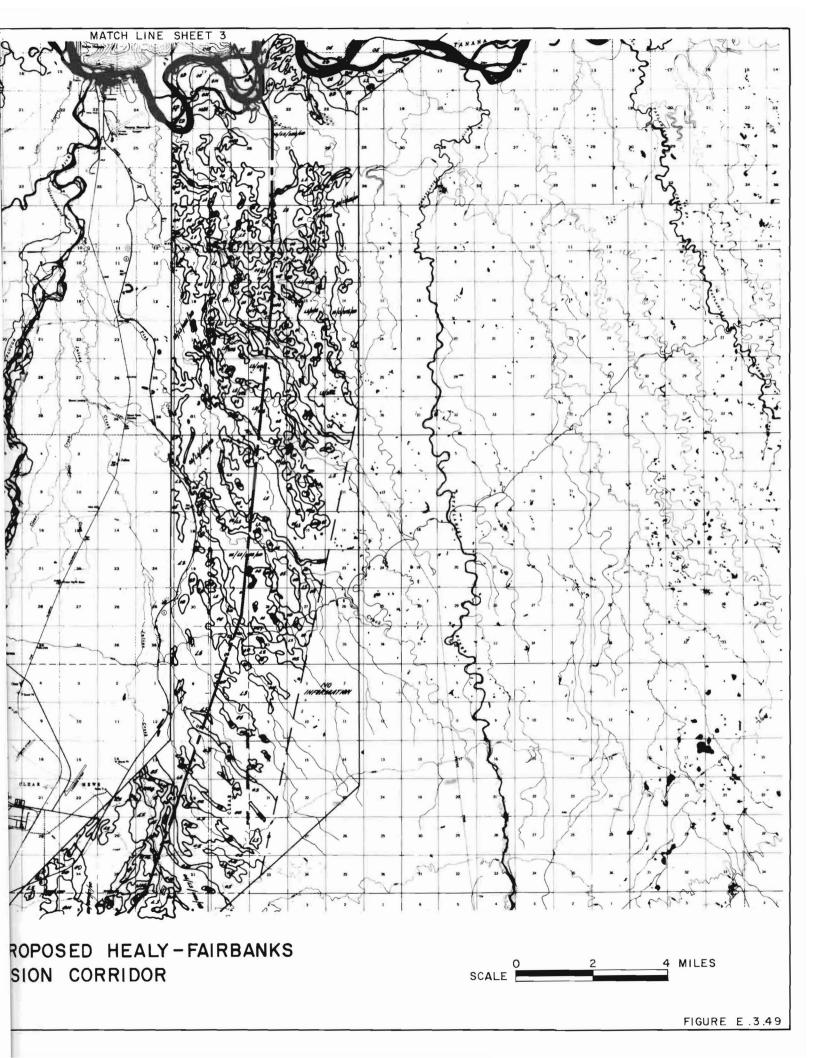

MCT

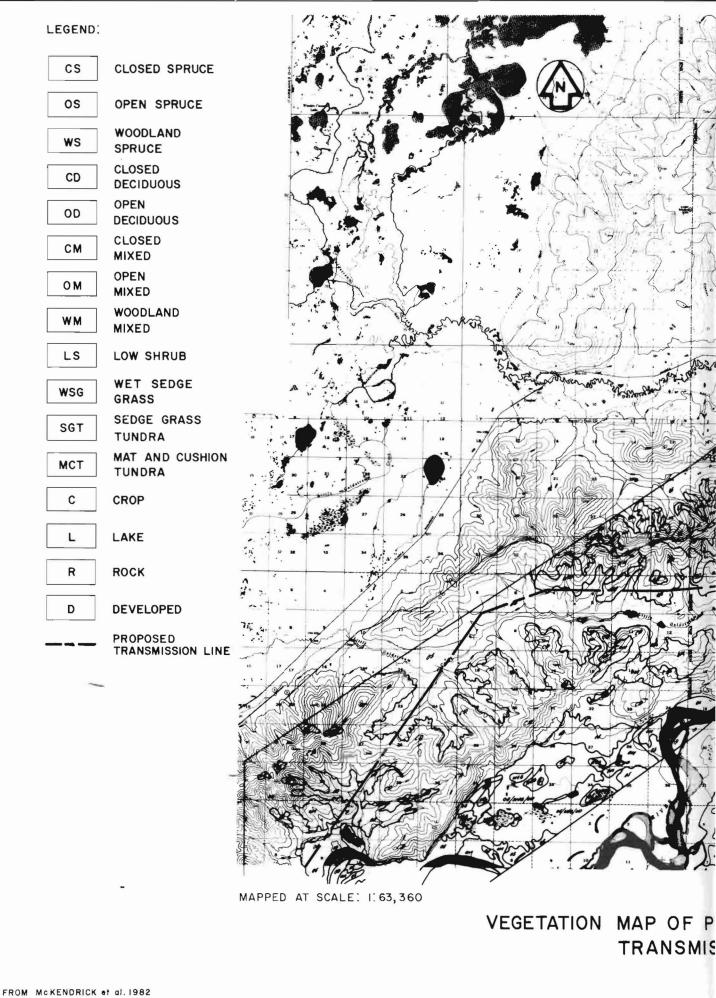
С

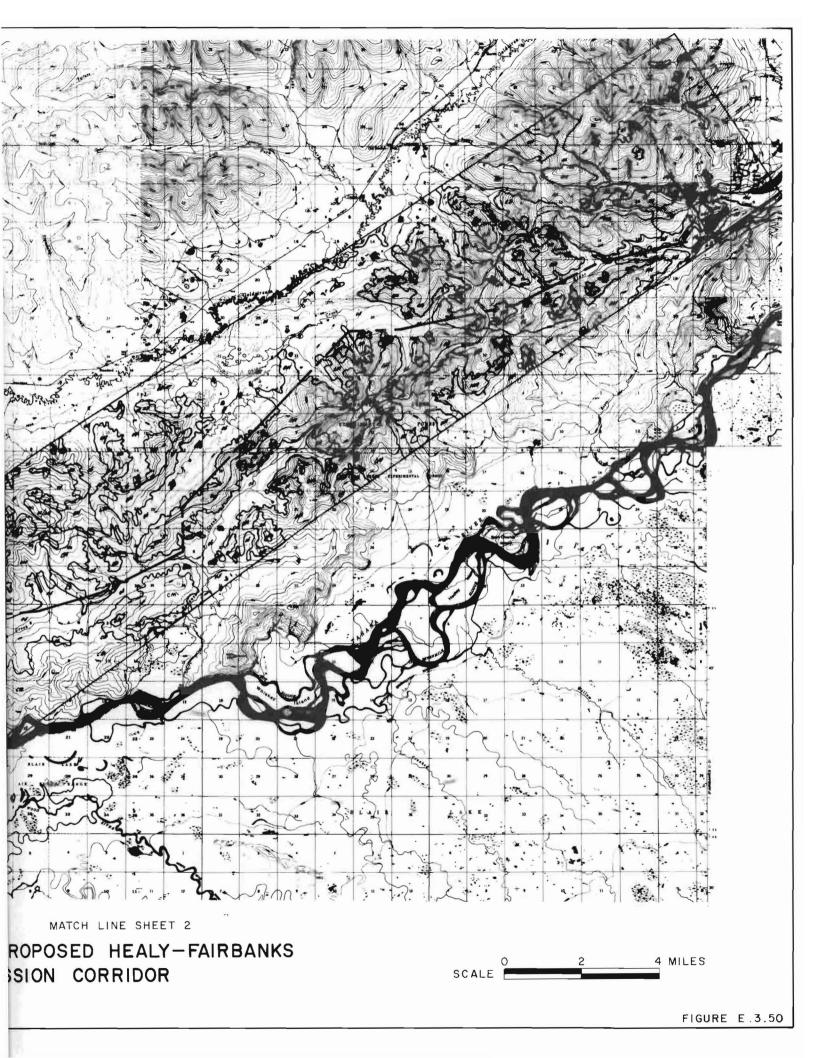
L


R

D

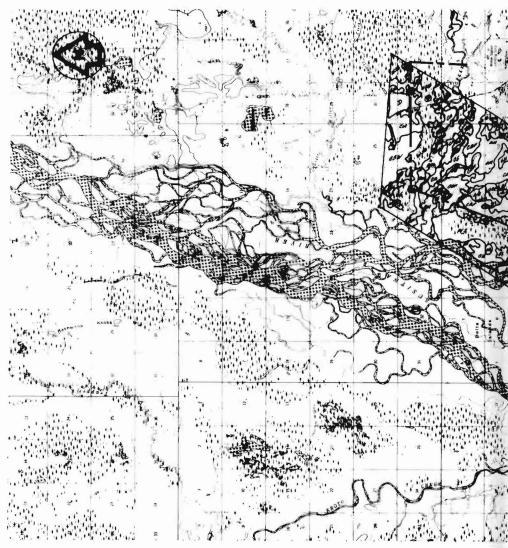

LEGEND:


CS	CLOSED SPRUCE
OS	OPEN SPRUCE
WS	WOODLAND SPRUCE
CD	CLOSED DECIDUOUS
OD	OPEN DECIDUOUS
СМ	CLOSED MIXED
0 M	OPEN MIXED
WM	WOODLAND MIXED
LS	LOW SHRUB
WSG	WET SEDGE GRASS
SGT	SEDGE GRASS TUNDRA
МСТ	MAT AND CUSHION TUNDRA
С	CROP
L	LAKE
R	ROCK
D	DEVELOPED
	PROPOSED TRANSMISSION LINE

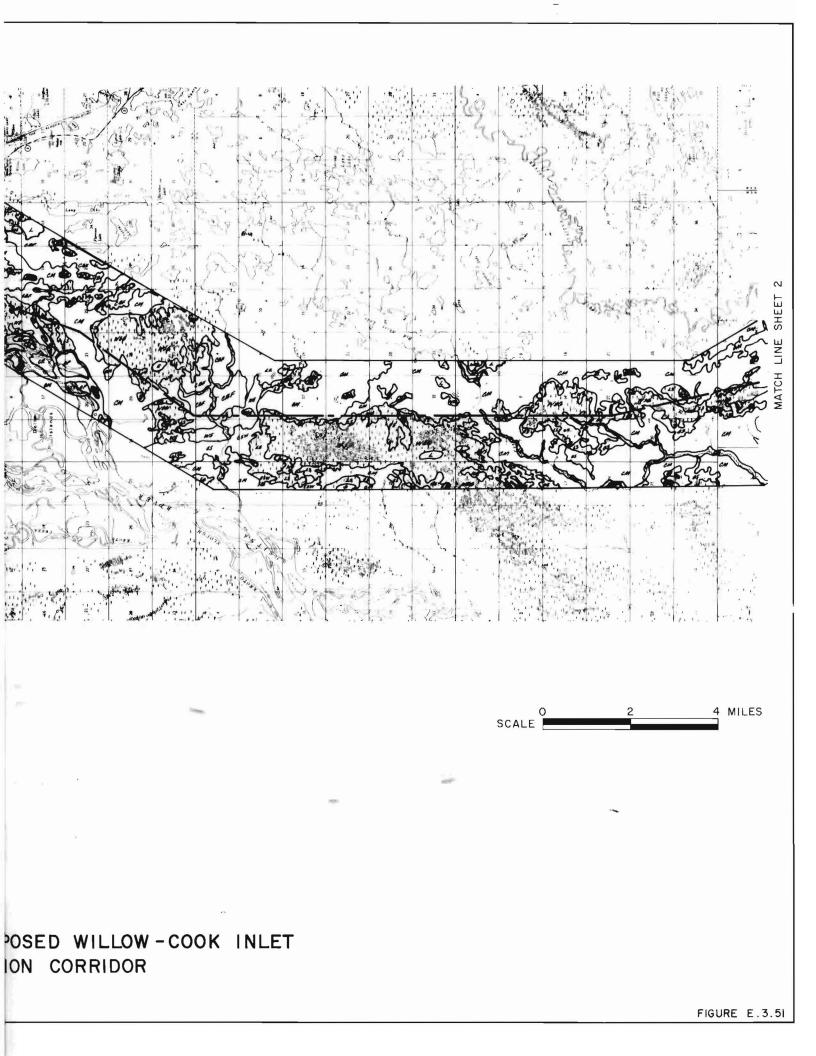


VEGETATION MAP OF P TRANSMIS

FROM MCKENDRICK et al. 1982



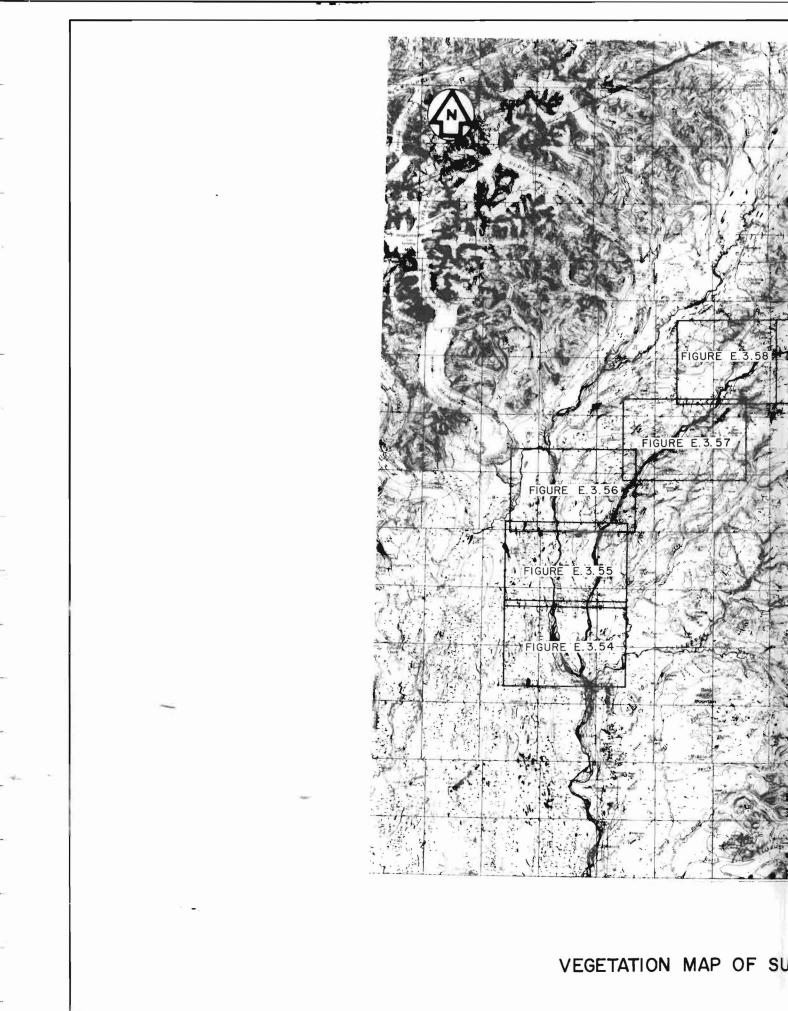
LEGEND:

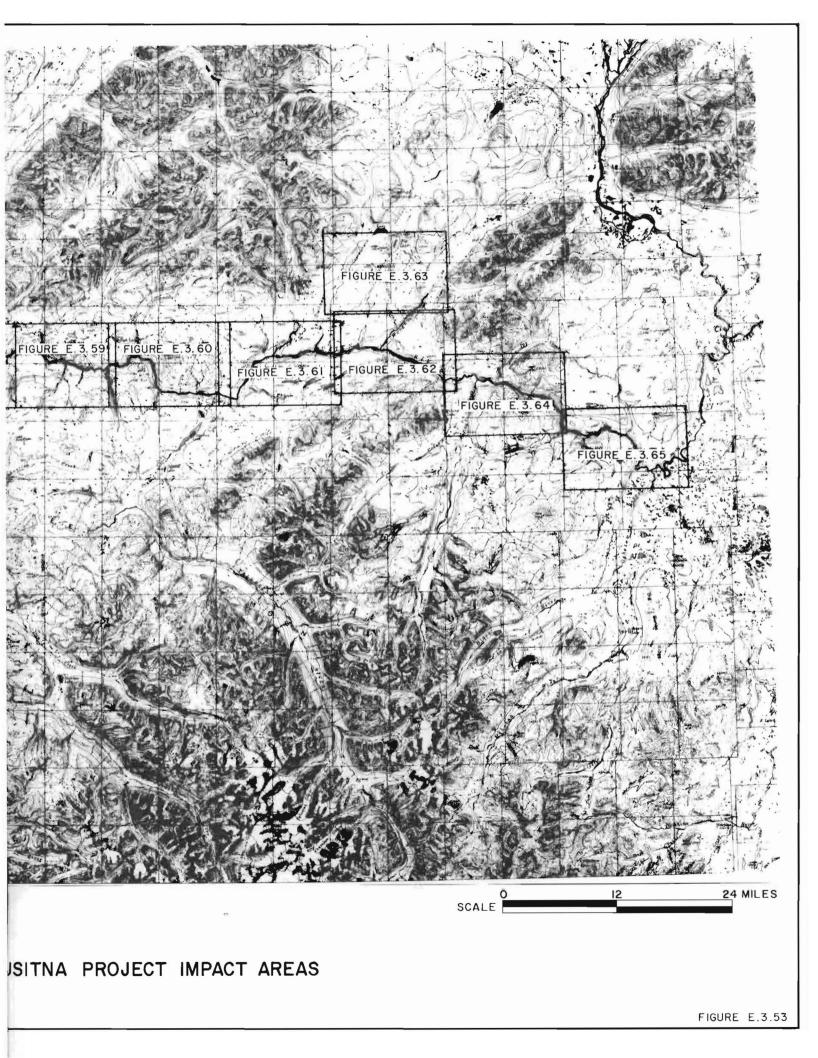

CS	CLOSED SPRUCE
WSG	WET SEDGE GRASS
OS	OPEN SPRUCE
WS	WOODLAND SPRUCE
CBF	CLOSED BIRCH FOREST
OBF	OPEN BIRCH FOREST
CP	CLOSED BALSAM POPLAR
OP	OPEN BALSAM POPLAR
СМ	CLOSED MIXED FOREST
0 M	OPEN MIXED FOREST
CTS	CLOSED TALL SHRUB
LS	LOW SHRUB
D	DISTURBED
L	LAKES
	PROPOSED TRANSMISSION LINE

MAPPED AT SCALE: 1:63,360

VEGETATION MAP OF PROF TRANSMISSI

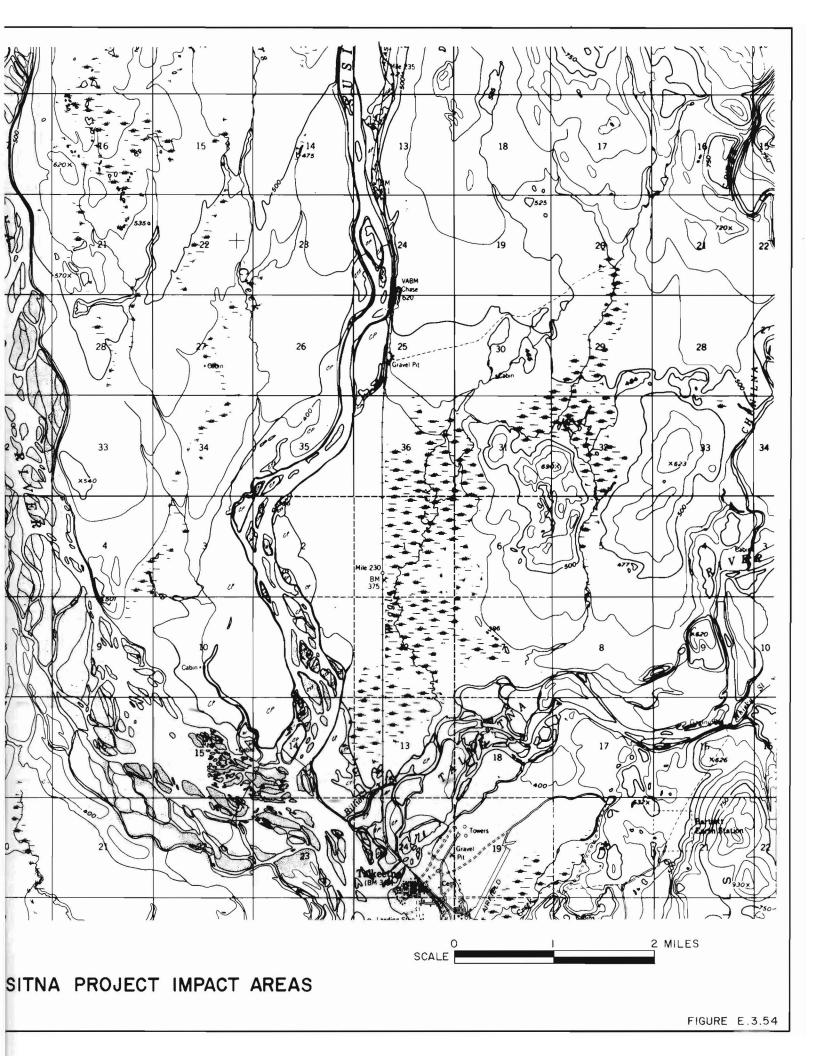
FROM MCKENDRICK et al. 1982

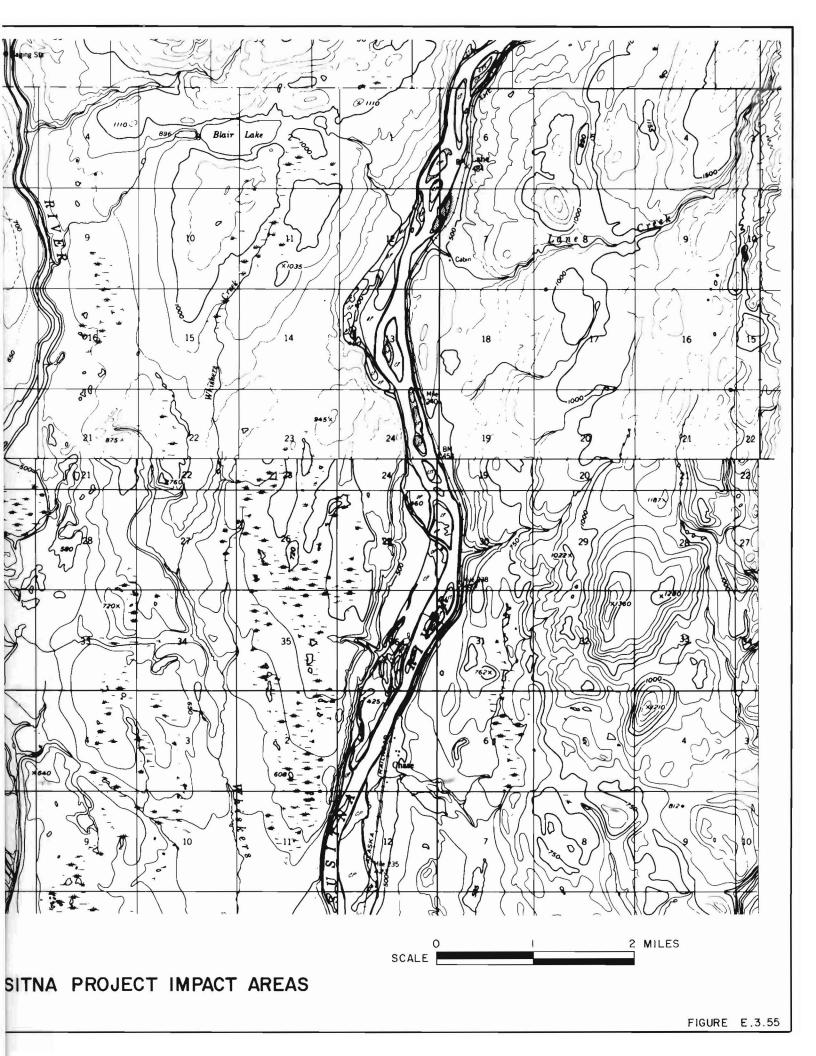



		-			دى			alt with a second	
LEGEND			2	'.°````````````````````````````````````		· · · ·	1/18		
CS	CLOSED SPRUCE		1			0	NU	1.5	
WSG	WET SEDGE GRASS							and a	
OS	OPEN SPRUCE			1 Alton	A start	Contraction of the	H. HE	52	7
WS	WOODLAND SPRUCE						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.1	
CBF	CLOSED BIRCH FOREST			1.	7.	3 · · · · · · · · · · · ·			
OBF	OPEN BIRCH FOREST		(Mallaine	Pa.		Tang f		ä. P. "s"	1 · · ·
CP	CLOSED BALSAM POPLAR				The second			N	
OP	OPEN BALSAM POPLAR		h inthe family	1. 1	The Alle				K
CM	CLOSED MIXED FOREST	_				1. 1		- D -	
ОМ	OPEN MIXED FOREST	SHEET		Bes 1	2	۰ ۲		5 7.	e .
CTS	CLOSED TALL SHRUB	LINE SH		- (3 S		j u	Anna Neo	and the second second
LS	LOW SHRUB	MATCH L			and the	and and a	STATIS		Sin he
D	DISTURBED	MA	Y IN M	- Contraction					A CAR
L	LAKES		200	A 5		A CAR		the state	(Crash
	PROPOSED TRANSMISSION LINE		to the	2		San An		E S	
			No Rect	Ser and	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				I. S.
		ę			2	Chinda	ien is		
	_	(and the second		14F.	7 39 M	1. 1. 8.	and a series
				1				To lar	2
									30
		*	Falter						
						1 34 - 1 1 1 - 2 AS		Corner and	and the second
			de la companya de la			65	af a state		0 m
	* -	N	APPED AT SCAL	E:1:63,36	0				
						VECET			

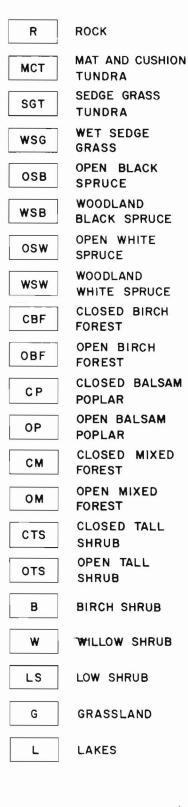
VEGETATION MAP OF PR TRANSMI

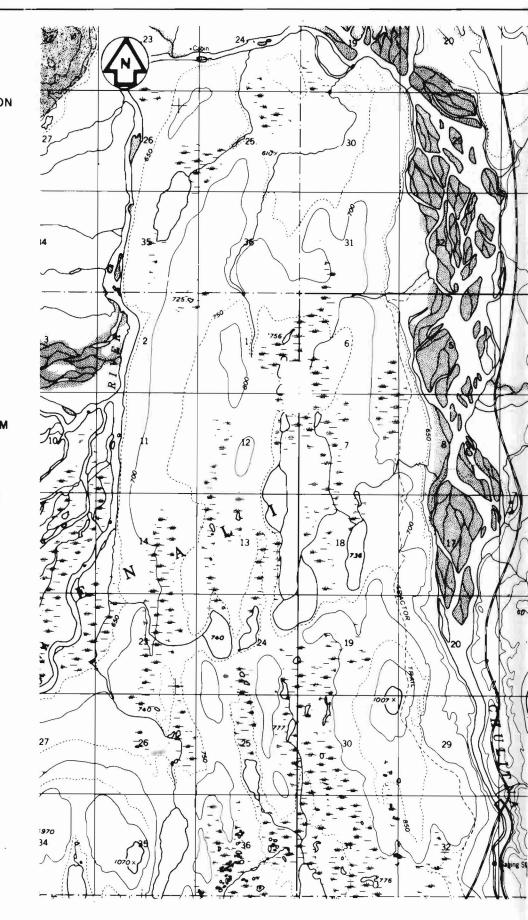
Г Г

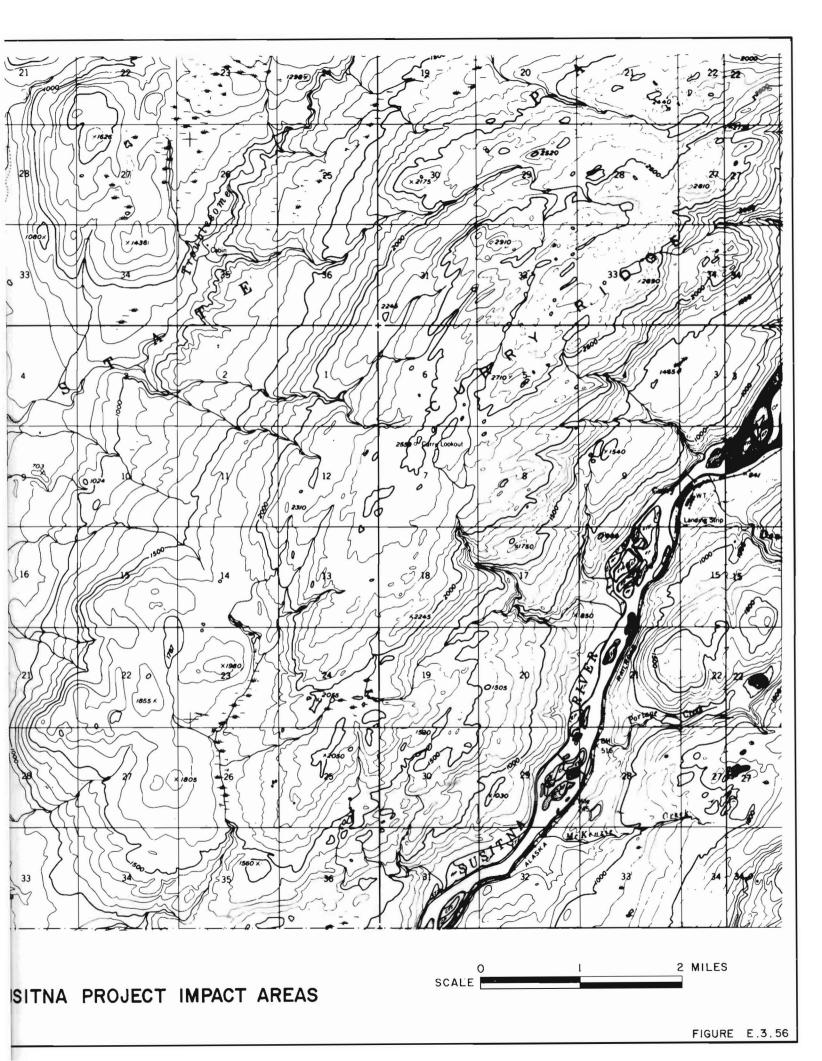




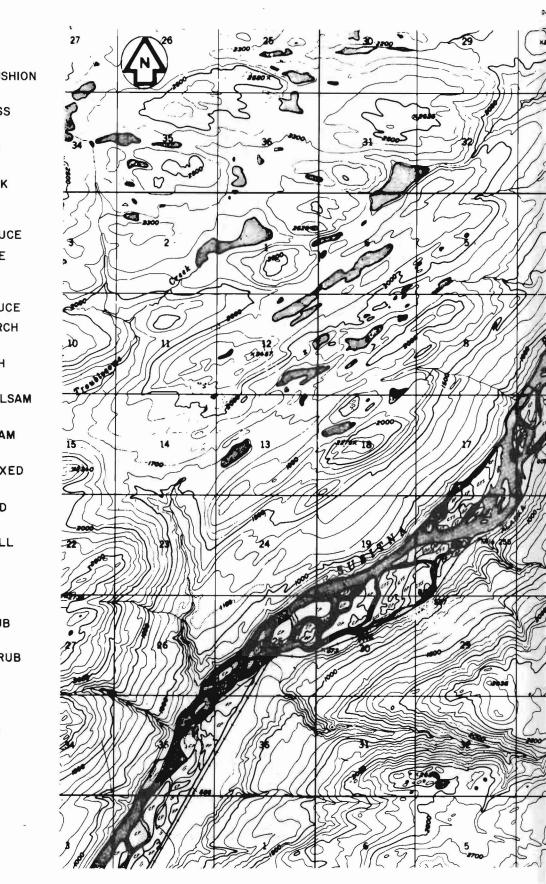
LEGEND:		
R	ROCK	
мст	MAT AND CUSHION TUNDRA	
SGT	SEDGE GRASS TUNDRA	
WSG	WET SEDGE GRASS	
OSB	OPEN BLACK SPRUCE	
WSB	WOODLAND BLACK SPRUCE	
osw	OPEN WHITE SPRUCE	
wsw	WOODLAND WHITE SPRUCE	
CBF	CLOSED BIRCH FOREST	
OBF	OPEN BIRCH FOREST	
CP	CLOSED BALSAM POPLAR	
OP	OPEN BALSAM POPLAR	
СМ	CLOSED MIXED FOREST	
ОМ	OPEN MIXED FOREST	
CTS	CLOSED TALL Shrub	
OTS	OPEN TALL SHRUB	
В	BIRCH SHRUB	
w	WILLOW SHRUB	
LS	LOW SHRUB	
G	GRASSLAND	
L	LAKES	
		22 22 Sootty
		Lake

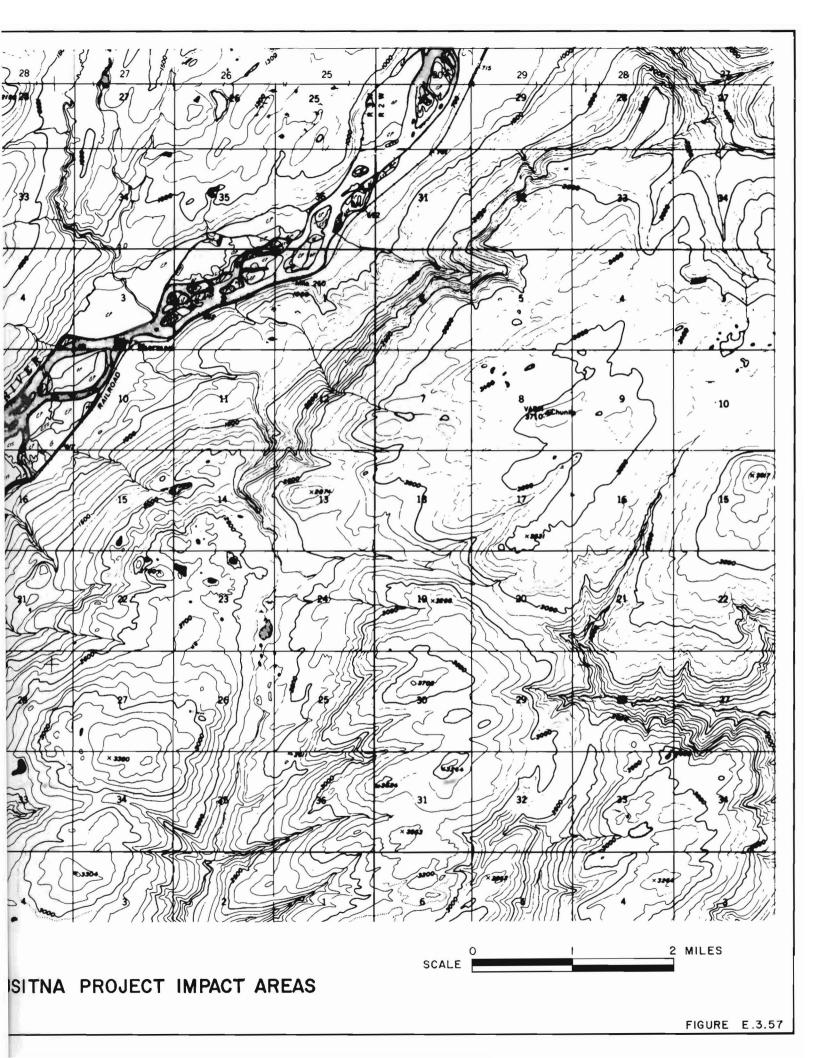

VEGETATION MAP OF SU




LEGEND:		
R	ROCK	
мст	MAT AND CUSHION	
SGT	TUNDRA SEDGE GRASS TUNDRA	
WSG	WET SEDGE GRASS	
OSB	OPEN BLACK SPRUCE	
WSB	WOODLAND BLACK SPRUCE	
osw	OPEN WHITE SPRUCE	
wsw	WOODLAND WHITE SPRUCE	
CBF	CLOSED BIRCH FOREST	
OBF	OPEN BIRCH FOREST	8 22 23
СР	CLOSED BALSAM POPLAR	
OP	OPEN BALSAM POPLAR	
СМ	CLOSED MIXED FOREST	
ом	OPEN MIXED FOREST CLOSED TALL	
стѕ	SHRUB OPEN TALL	
отѕ	SHRUB	
В	BIRCH SHRUB	
W	WILLOW SHRUB	
LS	LOW SHRUB	
L	LAKES	
	LARES	
	÷	Hrst in the che and the che an

L	Ε	G	Ε	N	D

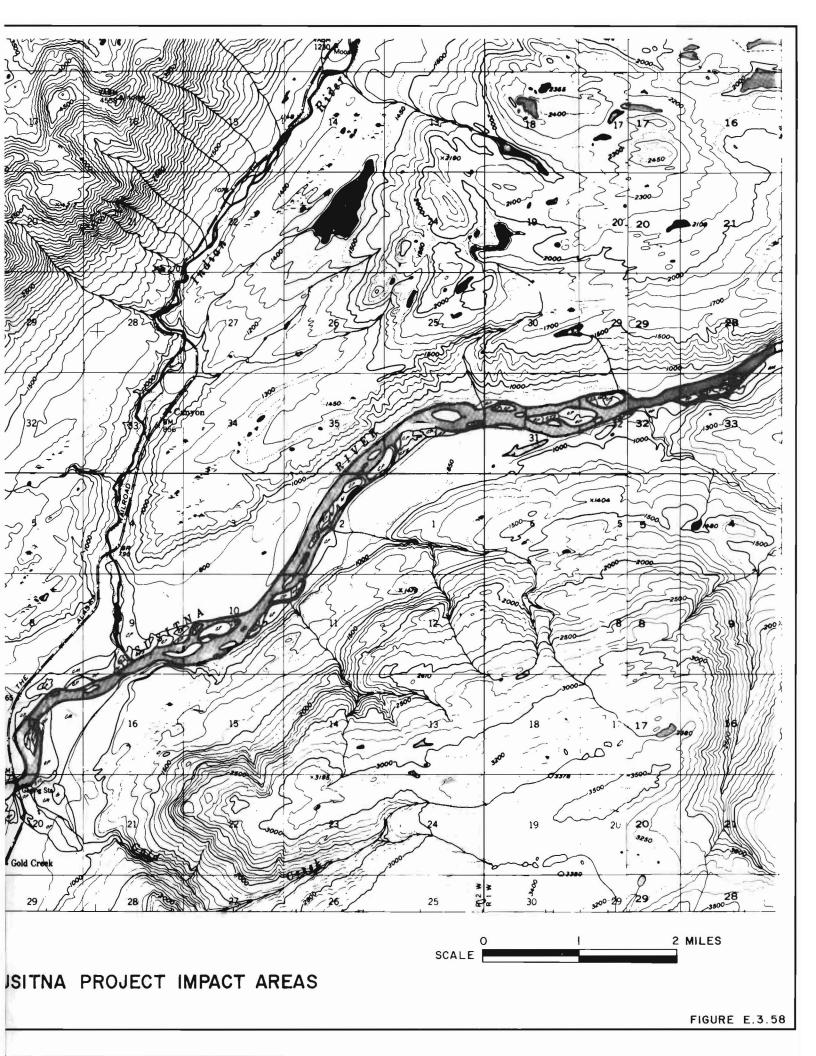




LEGEND:

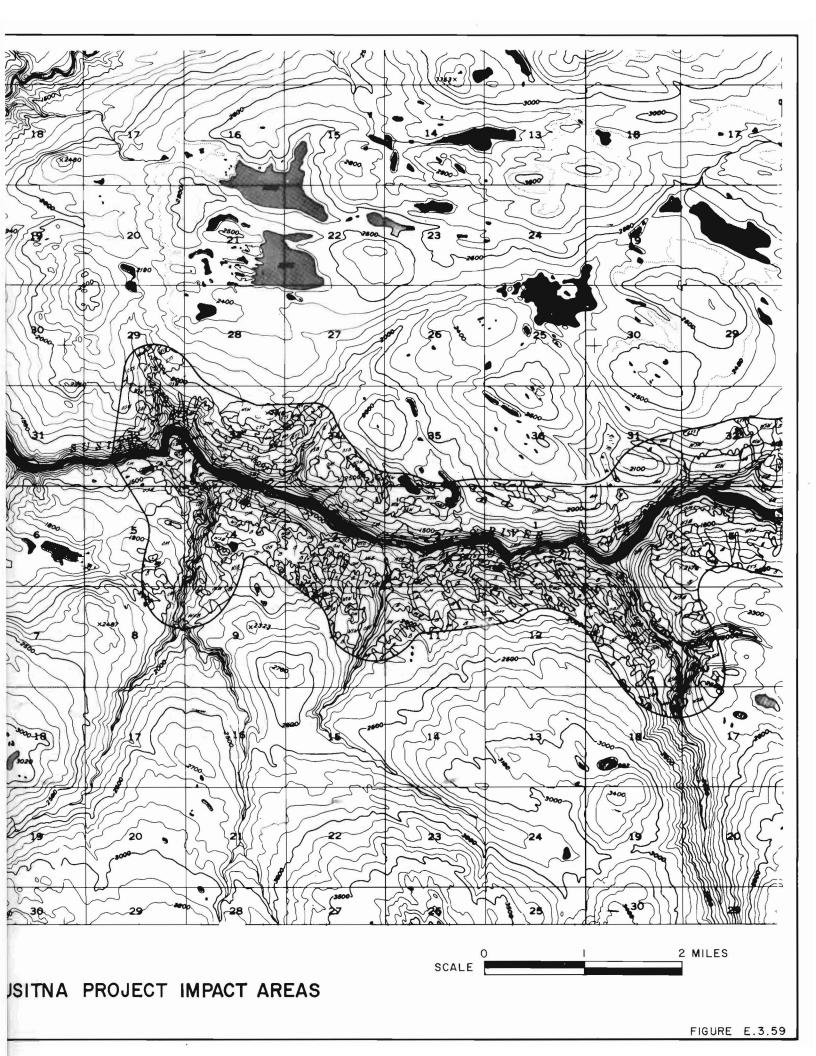
R	ROCK
МСТ	MAT AND CUSHIO TUNDRA
SGT	SEDGE GRASS TUNDRA
WSG	WET SEDGE GRASS
OSB	OPEN BLACK SPRUCE
WSB	WOODLAND BLACK SPRUCE
osw	OPEN WHITE SPRUCE
wsw	WOODLAND WHITE SPRUCE
CBF	CLOSED BIRCH FOREST
OBF	OPEN BIRCH FOREST
CP	CLOSED BALSAM POPLAR
OP	OPEN BALSAM POPLAR
СМ	CLOSED MIXED FOREST
0 M	OPEN MIXED FOREST
CTS	CLOSED TALL Shrub
OTS	OPEN TALL SHRUB
В	BIRCH SHRUB
W	-WILLOW SHRUB
LS	LOW SHRUB
G	GRASSLAND
L	LAKES

MAPPED AT SCALE: 1:24,000

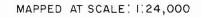


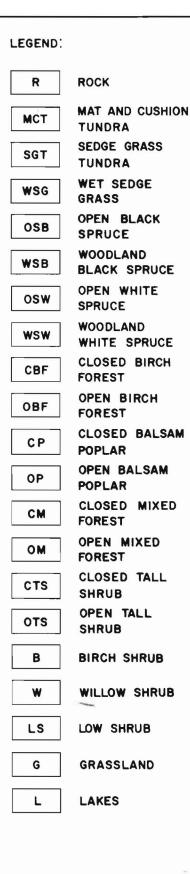
LEGEND					
R	ROCK				
МСТ	MAT AND CUSHION TUNDRA				
SGT	SEDGE GRASS TUNDRA				
WSG	WET SEDGE GRASS	22	3// [28 / B	24	
OSB	OPEN BLACK SPRUCE				
WSB	WOODLAND BLACK SPRUCE		2000	R K	
OSW	OPEN WHITE SPRUCE	28	26	250	T all
WSW	WOODLAND WHITE SPRUCE			- Cliffe	
CBF	CLOSED BIRCH FOREST			SALE.	
OBF	OPEN BIRCH FOREST	33 34	35		TIST AND AND
C P	CLOSED BALSAM POPLAR				
	OPEN BALSAM				NY MA
OP	POPLAR	6. 5. 128			31 57
CM					6
	POPLAR CLOSED MIXED	Mar 13			6
СМ	POPLAR CLOSED MIXED FOREST OPEN MIXED				
С М О М	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL				
CM OM CTS	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL				
CM OM CTS OTS	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB				
CM OM CTS OTS B	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB BIRCH SHRUB		and the second s		
CM OM CTS OTS B W	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB BIRCH SHRUB		and the second s		
CM OM CTS OTS B W LS	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB BIRCH SHRUB WILLOW SHRUB LOW SHRUB		and the second s		
CM OM CTS OTS B W LS G	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB BIRCH SHRUB WILLOW SHRUB LOW SHRUB GRASSLAND		and the second s		
CM OM CTS OTS B W LS G	POPLAR CLOSED MIXED FOREST OPEN MIXED FOREST CLOSED TALL SHRUB OPEN TALL SHRUB BIRCH SHRUB WILLOW SHRUB LOW SHRUB GRASSLAND		and the second s		

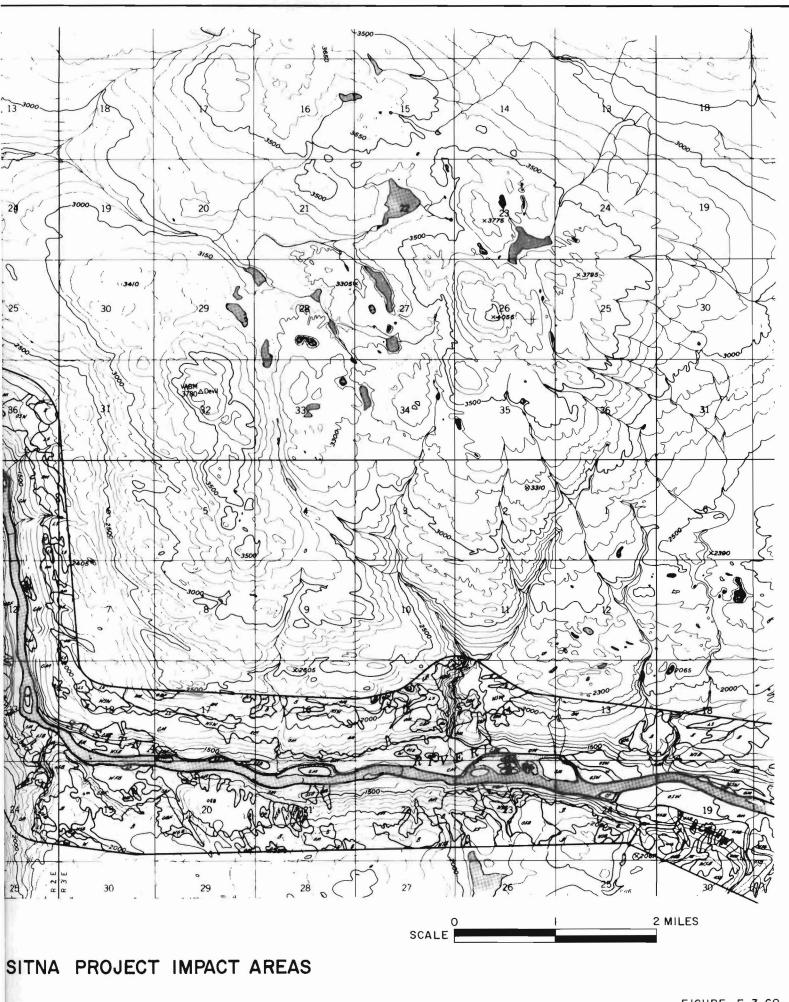
VEGETATION MAP OF SU


5

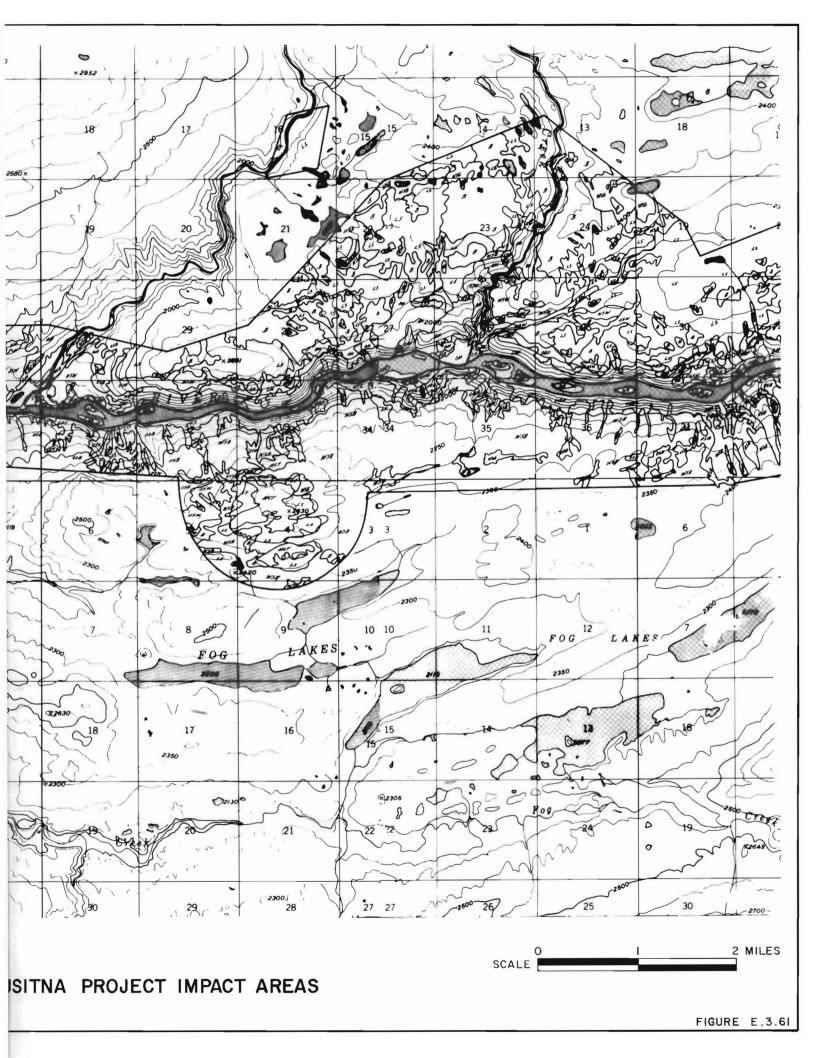
[




LEGEND	
R	ROCK
МСТ	MAT AND CUSHIC TUNDRA
SGT	SEDGE GRASS TUNDRA
WSG	WET SEDGE GRASS
OSB	OPEN BLACK SPRUCE
WSB	WOODLAND BLACK SPRUCE
OSW	OPEN WHITE SPRUCE
WSW	WOODLAND WHITE SPRUCE
CBF	CLOSED BIRCH FOREST
OBF	OPEN BIRCH FOREST
CP	CLOSED BALSAN POPLAR
OP	OPEN BALSAM POPLAR
СМ	CLOSED MIXED FOREST
OM	OPEN MIXED FOREST
CTS	CLOSED TALL Shrub
OTS	OPEN TALL SHRUB
В	BIRCH SHRUB
W	WILLOW SHRUB
LS	LOW SHRUB
G	GRASSLAND
L	LAKES



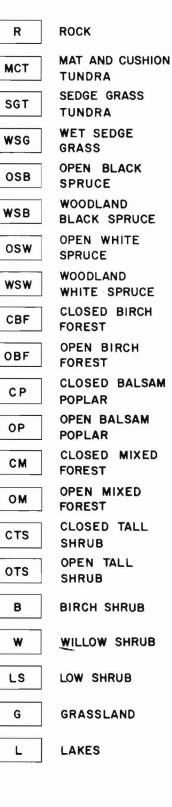
FROM	MCKENDRICK	et	ai.	1982
111014	HIC KENDINION	•		

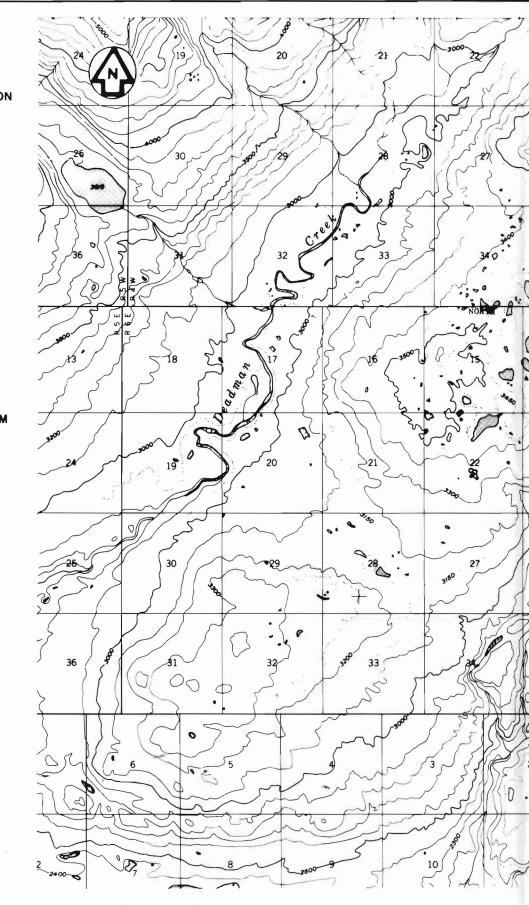


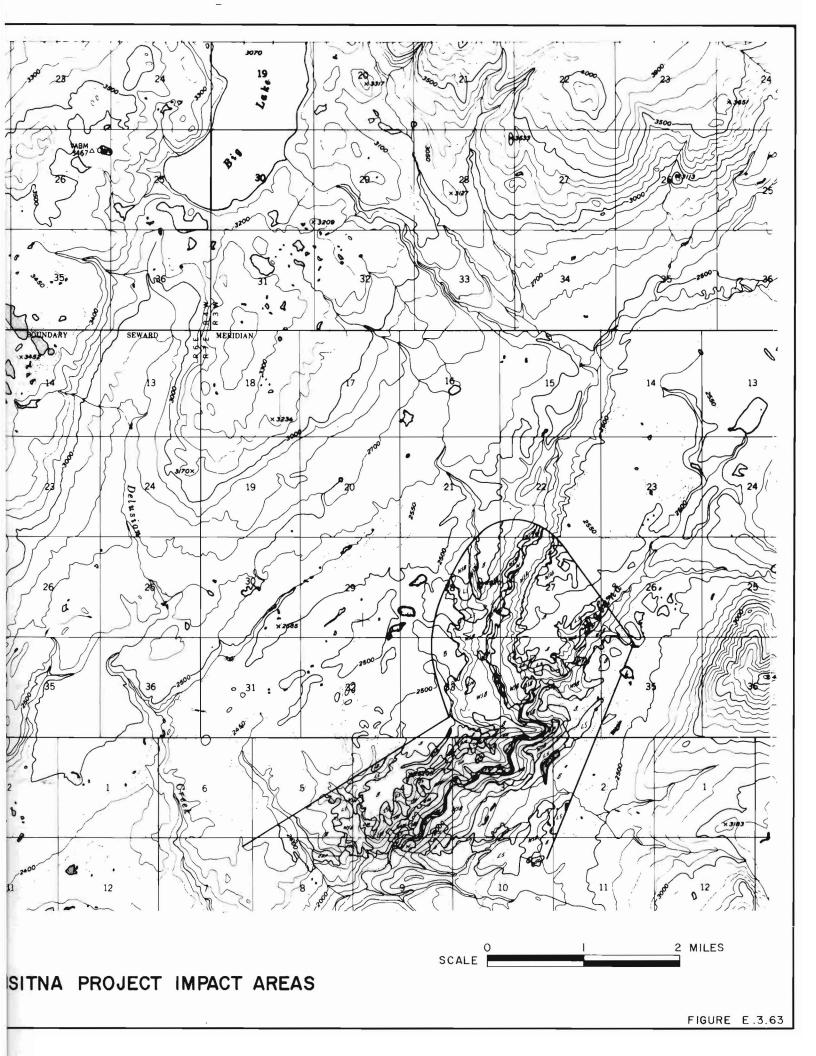
1

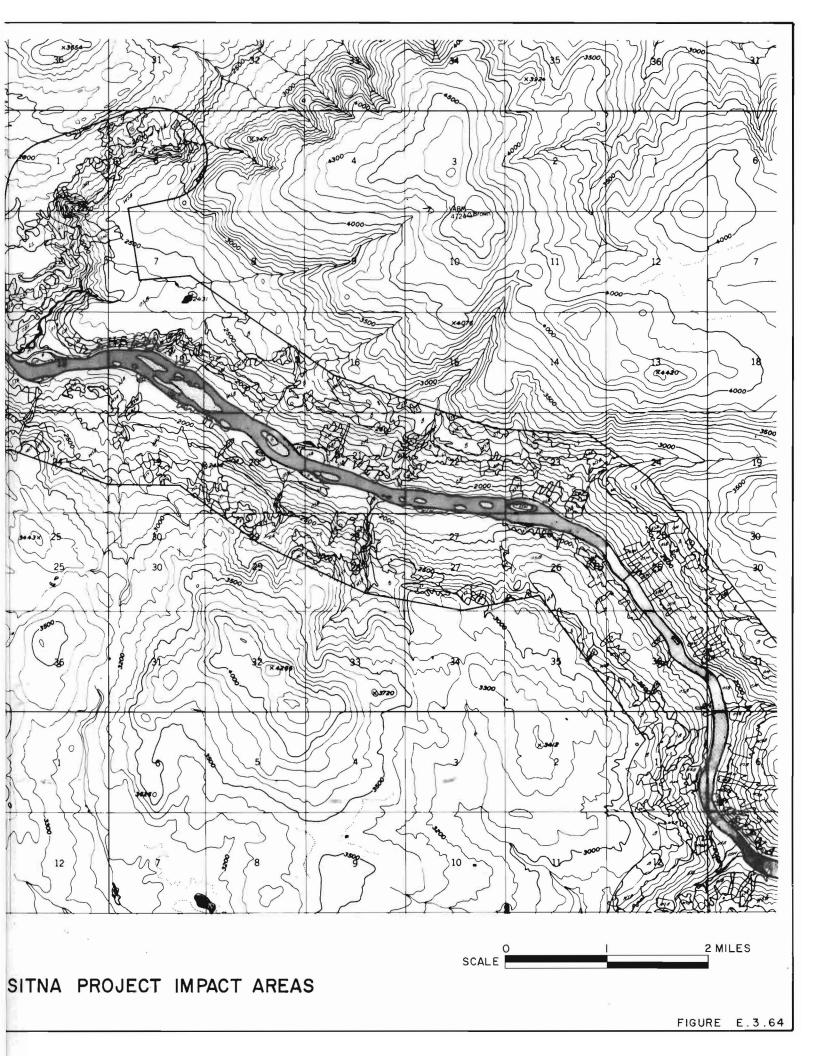
FIGURE E.3.60

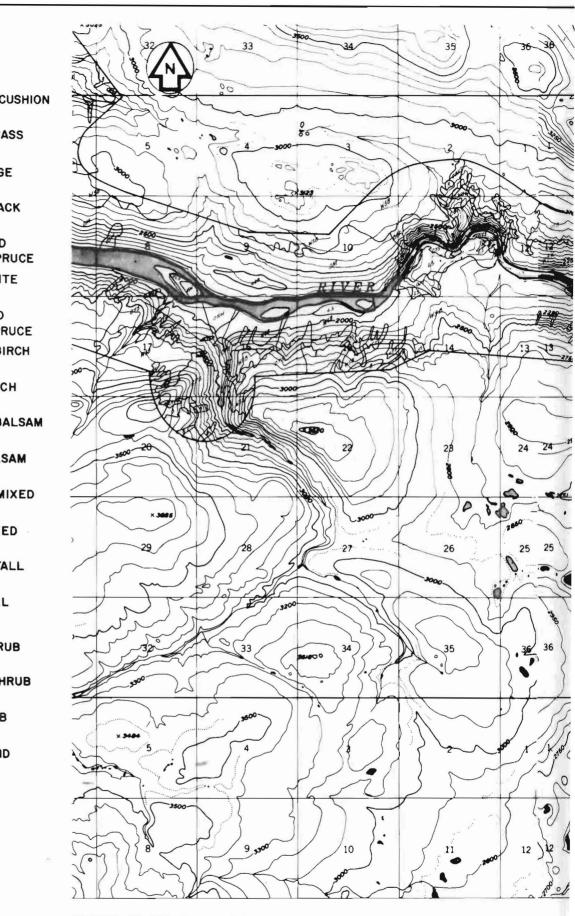
LEGEND		2950
R	ROCK	
MCT	MAT AND CUSHION TUNDRA	
SGT	SEDGE GRASS TUNDRA	
WSG	WET SEDGE GRASS	29202
OSB	OPEN BLACK SPRUCE	20 21 22 23 24
WSB	WOODLAND Black spruce	The Sing and the
OSW	OPEN WHITE SPRUCE	2500
WSW	WOODLAND WHITE SPRUCE	
CBF	CLOSED BIRCH FOREST	
OBF	OPEN BIRCH FOREST	30 33 35 35 36 36
CP	CLOSED BALSAM POPLAR	Strand Strand Torn Torn
OP	OPEN BALSAM POPLAR	A Contraction of the second se
CM	CLOSED MIXED Forest	
ΟΜ	OPEN MIXED FOREST	SCALE AND
CTS	CLOSED TALL SHRUB	The second of th
OTS	OPEN TALL Shrub	
В	BIRCH SHRUB	
W	WILLOW SHRUB	m
LS	LOW SHRUB	and the second s
G	GRASSLAND	Long the transferred to the tran
L	LAKES	The second secon
		28 ×2322 27 26 2450 25
	•	MAPPED AT SCALE: 1:24,000
		VEGETATION MAP OF SU
FROM MCKENDRI	CK et al. 1982	

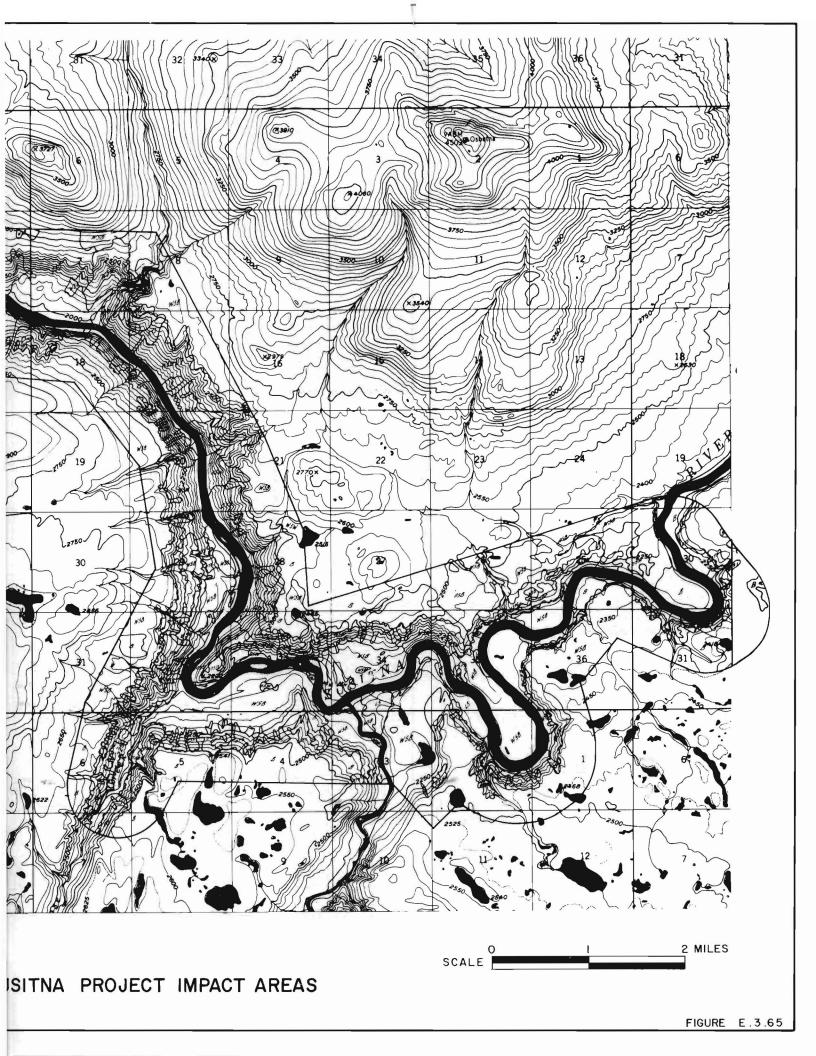


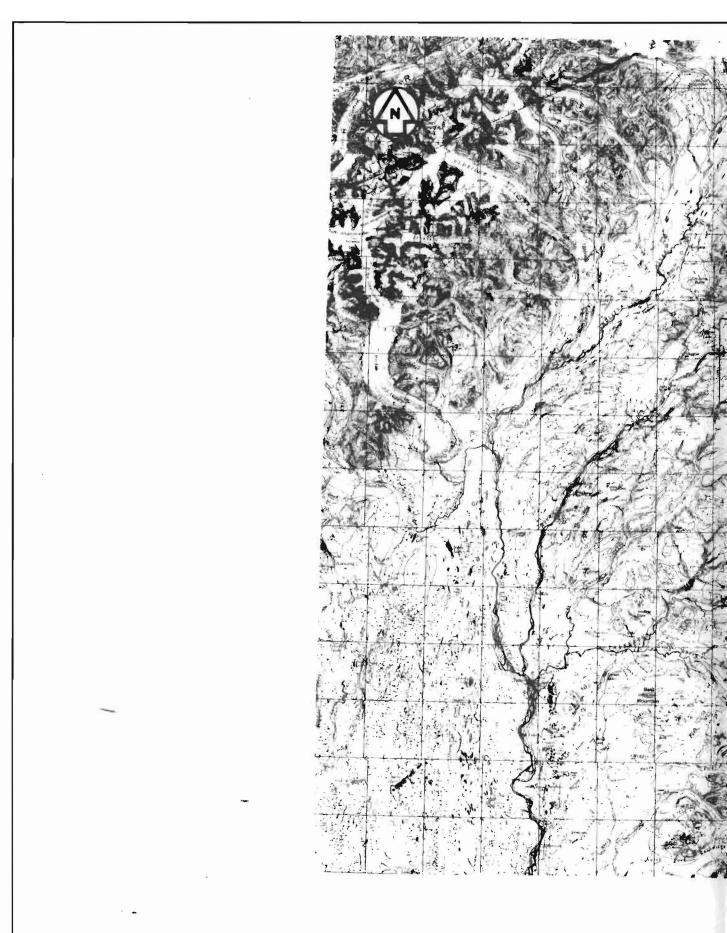

LEGEND:	
R	ROCK
MCT	MAT AND CUSHION TUNDRA
SGT	SEDGE GRASS TUNDRA
WSG	WET SEDGE GRASS
OSB	OPEN BLACK Spruce
WSB	WOODLAND BLACK SPRUCE
OSW	OPEN WHITE SPRUCE
WSW	WOODLAND WHITE SPRUCE
CBF	CLOSED BIRCH FOREST
OBF	OPEN BIRCH FOREST
CP	CLOSED BALSAM POPLAR
OP	OPEN BALSAM POPLAR
CM	CLOSED MIXED FOREST
0 M	OPEN MIXED FOREST
CTS	CLOSED TALL Shrub
OTS	OPEN TALL SHRUB
В	BIRCH SHRUB
W	WILLOW SHRUB
LS	LOW SHRUB
G	GRASSLAND
L	LAKES

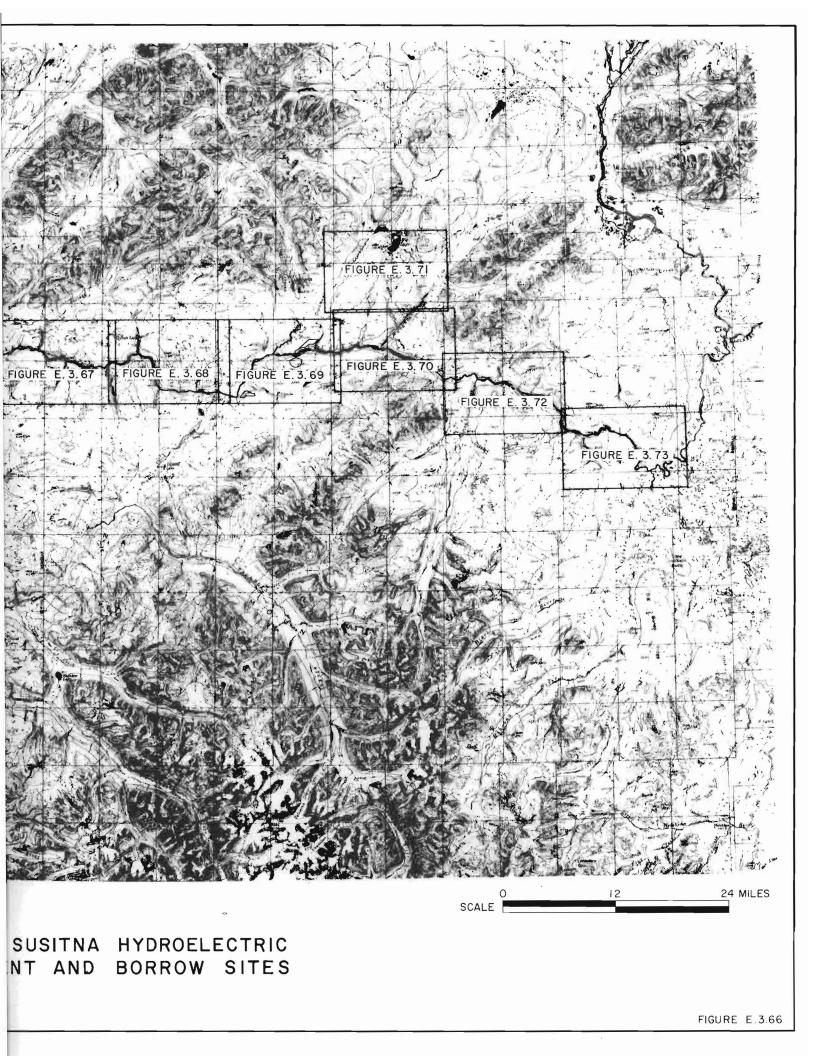


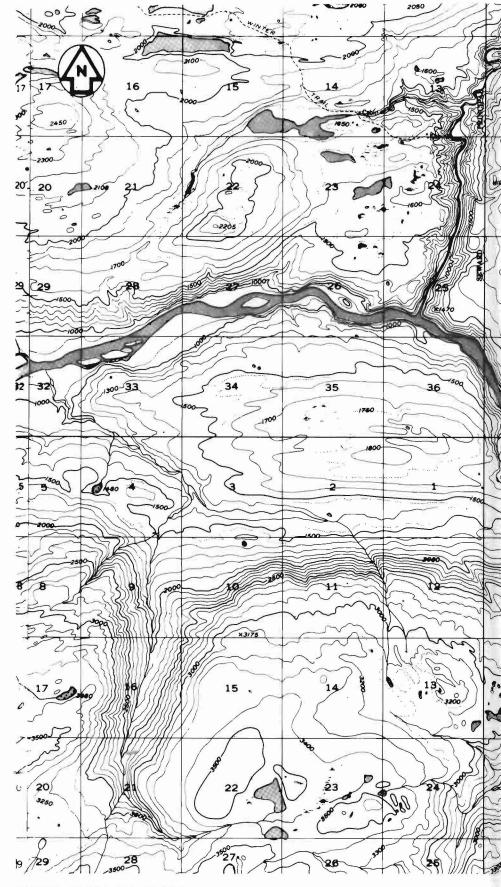

I EC	EN	D.
		υ.






LEGEND		31 32 32 y 33 33 34 36 400
R	ROCK	2000 12500 - 2
мст	MAT AND CUSHION TUNDRA	
SGT	SEDGE GRASS TUNDRA	
WSG	WET SEDGE GRASS	
OSB	OPEN BLACK SPRUCE	
WSB	WOODLAND	
OSW	BLACK SPRUCE OPEN WHITE	
wsw	SPRUCE WOODLAND	The second second second
CBF	WHITE SPRUCE CLOSED BIRCH	
OBF	FOREST OPEN BIRCH	
	FOREST CLOSED BALSAM	
CP	POPLAR OPEN BALSAM	10 20 20 mm 23 23 23 23 23 23 23 23 23 23 23 23 23
OP	POPLAR CLOSED MIXED	
CM	FOREST OPEN MIXED	29 29 29 29 29 29 29 29 29 29 29 29 29 2
OM	FOREST CLOSED TALL	29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
CTS	SHRUB OPEN TALL	
OTS	SHRUB	
В	BIRCH SHRUB	
W	WILLOW SHRUB	
LS	LOW SHRUB	5
G	GRASSLAND	
L	LAKES	x age and a log of the second se
	· •	MAPPED AT SCALE: I:24,000


LEGEND:	
R	ROCK
МСТ	MAT AND CUSHION TUNDRA
SGT	SEDGE GRASS Tundra
WSG	WET SEDGE GRASS
OSB	OPEN BLACK Spruce
WSB	WOODLAND BLACK SPRUCE
OSW	OPEN WHITE SPRUCE
wsw	WOODLAND WHITE SPRUCE
CBF	CLOSED BIRCH FOREST
OBF	OPEN BIRCH FOREST
CP	CLOSED BALSAM POPLAR
OP	OPEN BALSAM POPLAR
CM	CLOSED MIXED Forest
0 M	OPEN MIXED FOREST
CTS	CLOSED TALL SHRUB
OTS	OPEN TALL SHRUB
В	BIRCH SHRUB
W	WILLOW SHRUB
LS	LOW SHRUB
G	GRASSLAND
L	LAKES



WETLAND MAP OF PROJECT IMPOUNDME

LEGEND

PSS	PALUSTRINE SCRUB – SHRUB
PE	PALUSTRINE EMERGENT
PF	PALUSTRINE FORESTED
LE	LACUSTRINE EMERGENT
L	LAKE

MAPPED AT SCALE 1: 24,000 CLASSIFICATION : COWARDIN et al. 1979

WETLAND MAP OF SUSIT

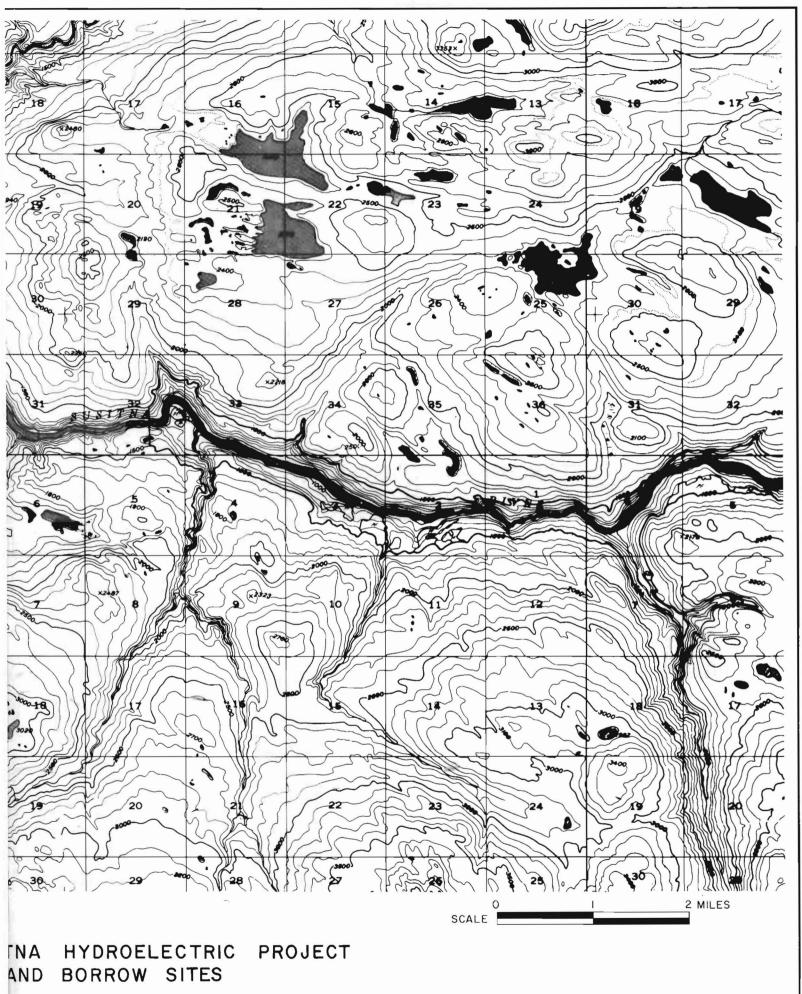
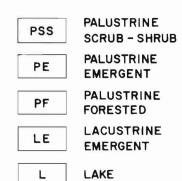
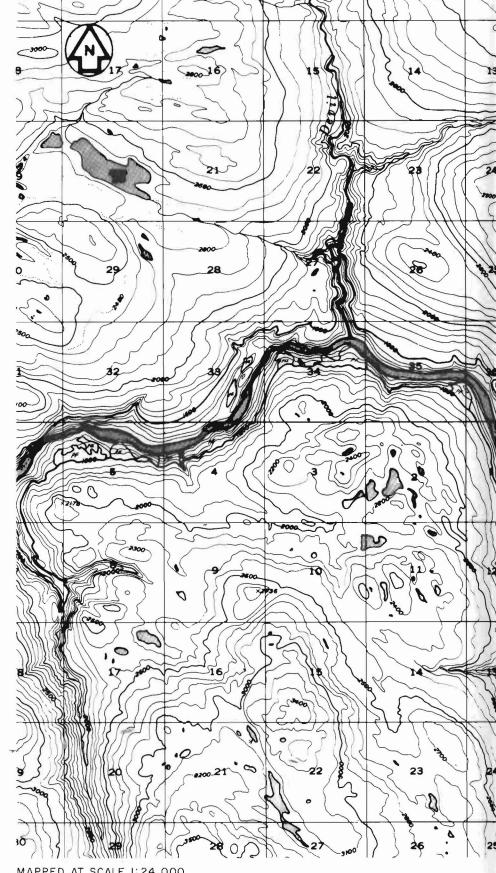




FIGURE E. 3.67

LEGEND:

MAPPED AT SCALE 1:24,000 CLASSIFICATION: COWARDIN et al. 1979

WETLAND MAP OF PROJECT IMPOUNDM

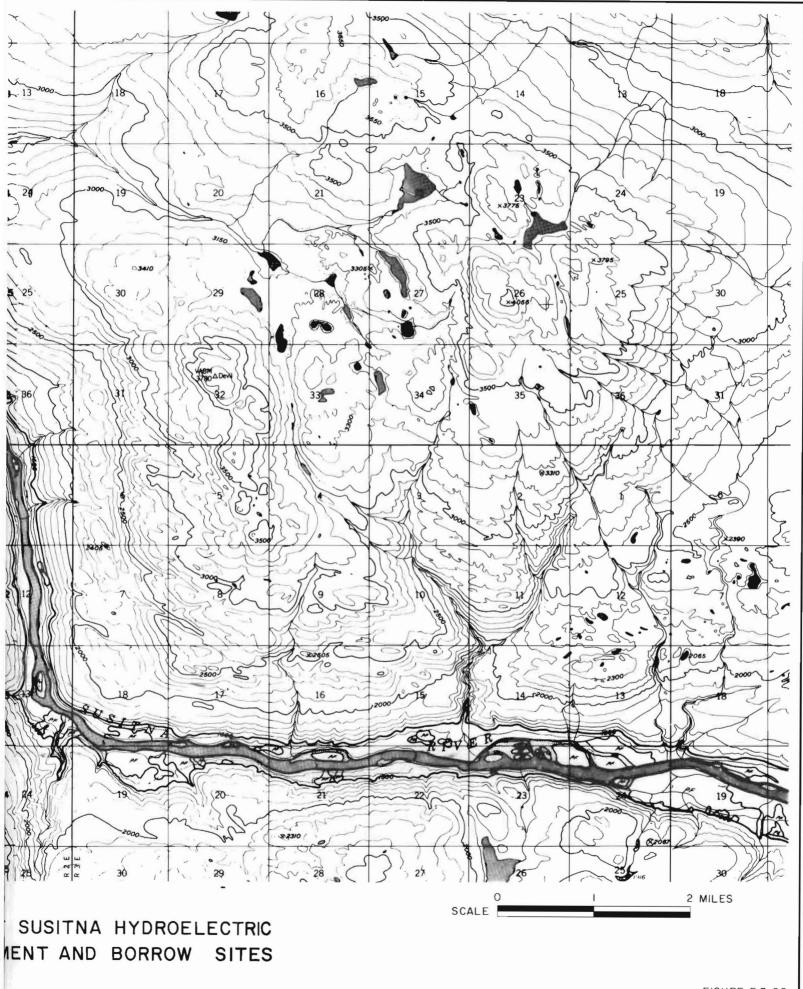
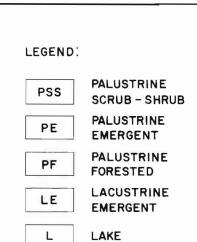
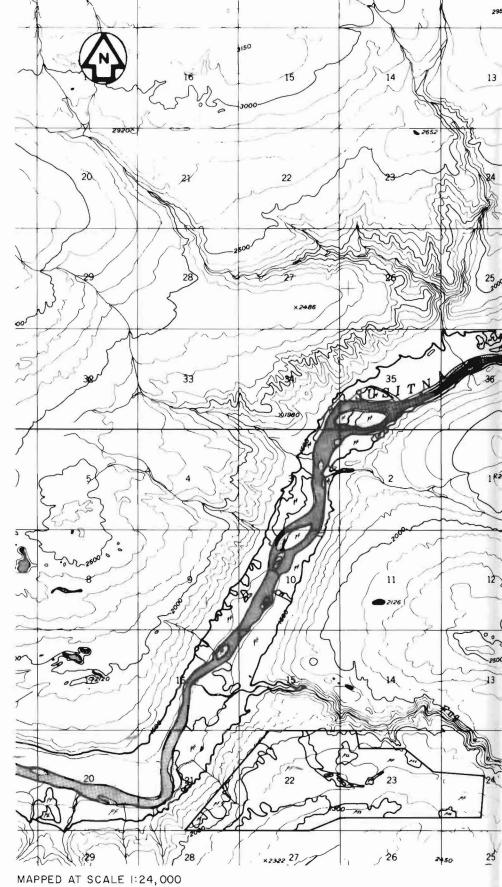




FIGURE E.3.68

MAPPED AT SCALE 1:24,000 CLASSIFICATION: COWARDIN et al. 1979

WETLAND MAP OF SUS IMPOUNDMENT

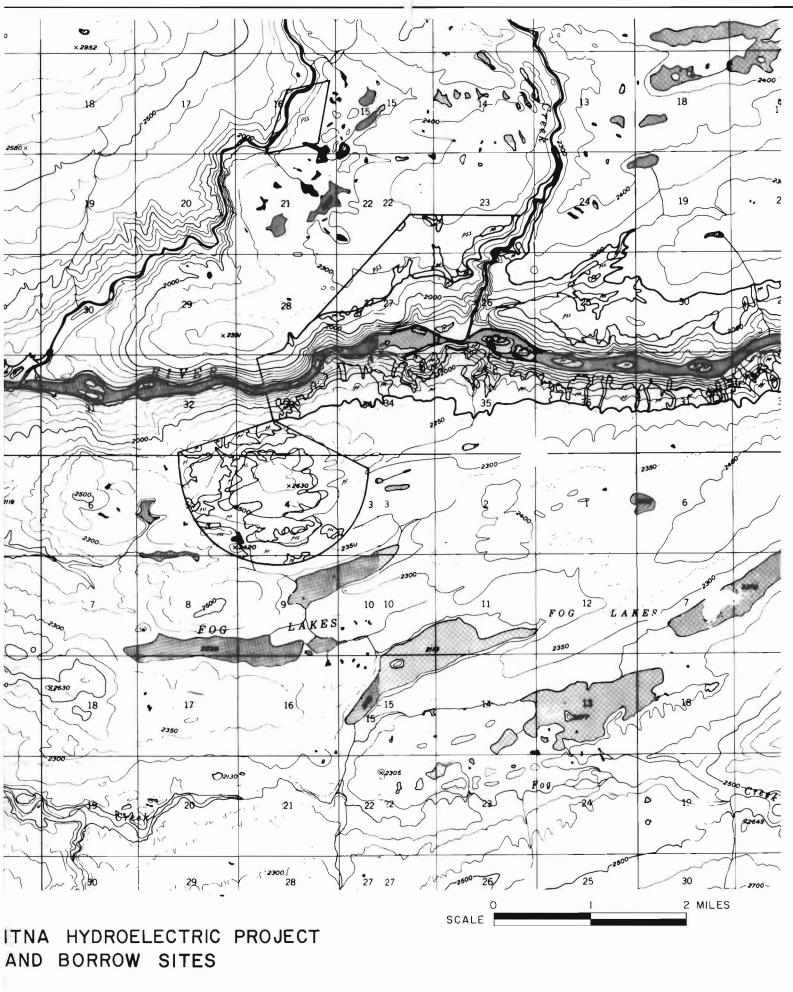
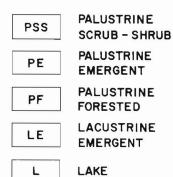
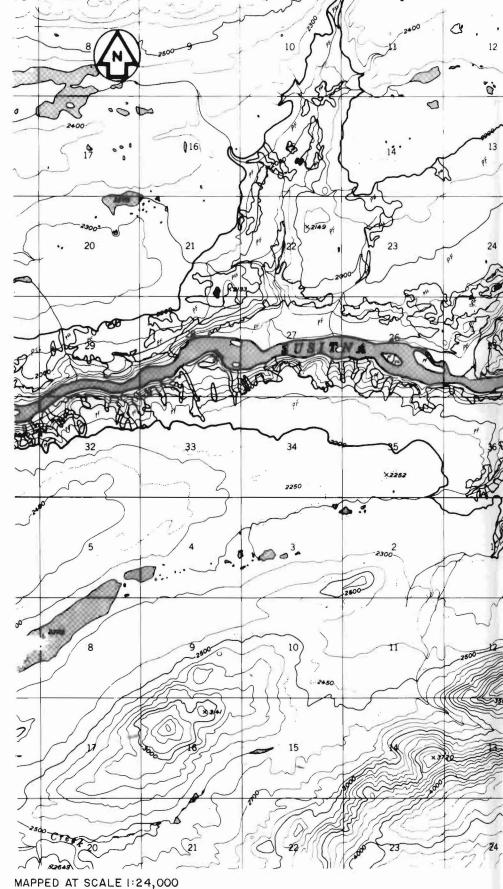
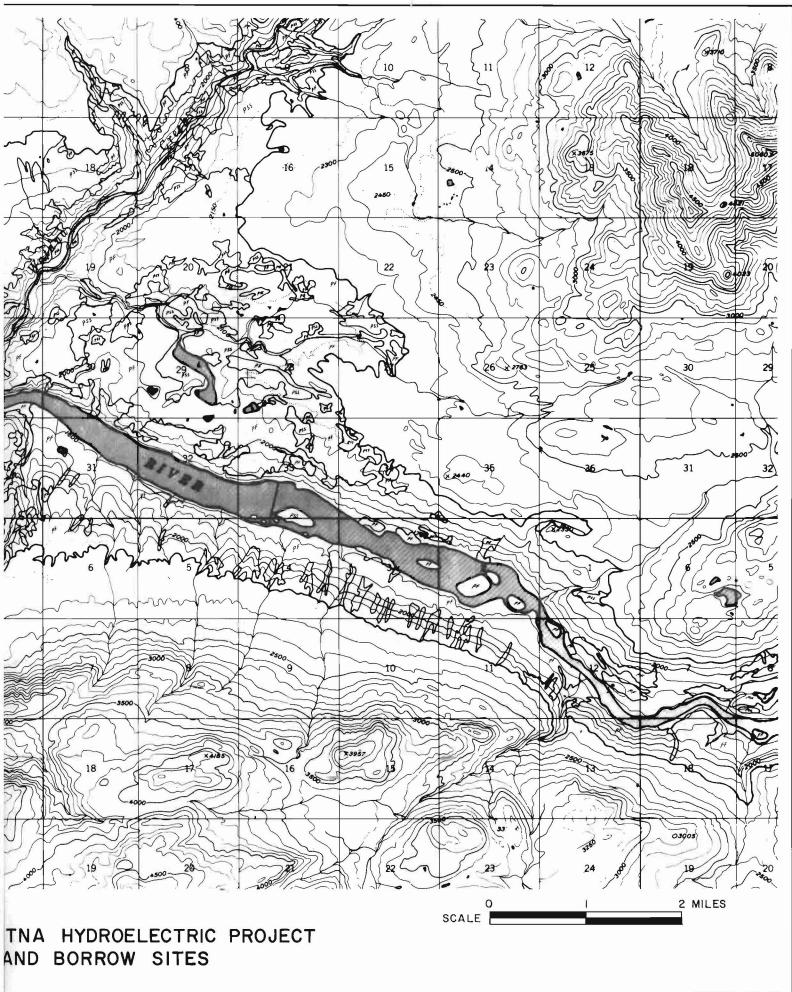
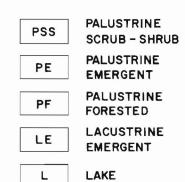
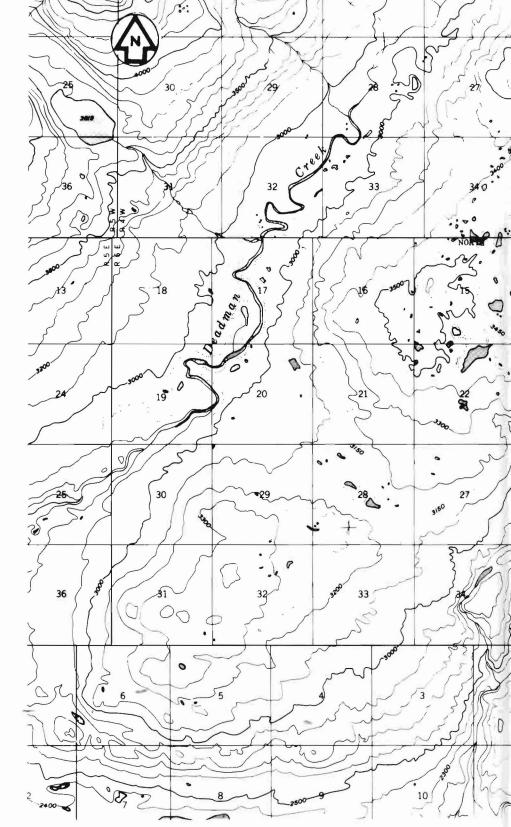




FIGURE E.3.69

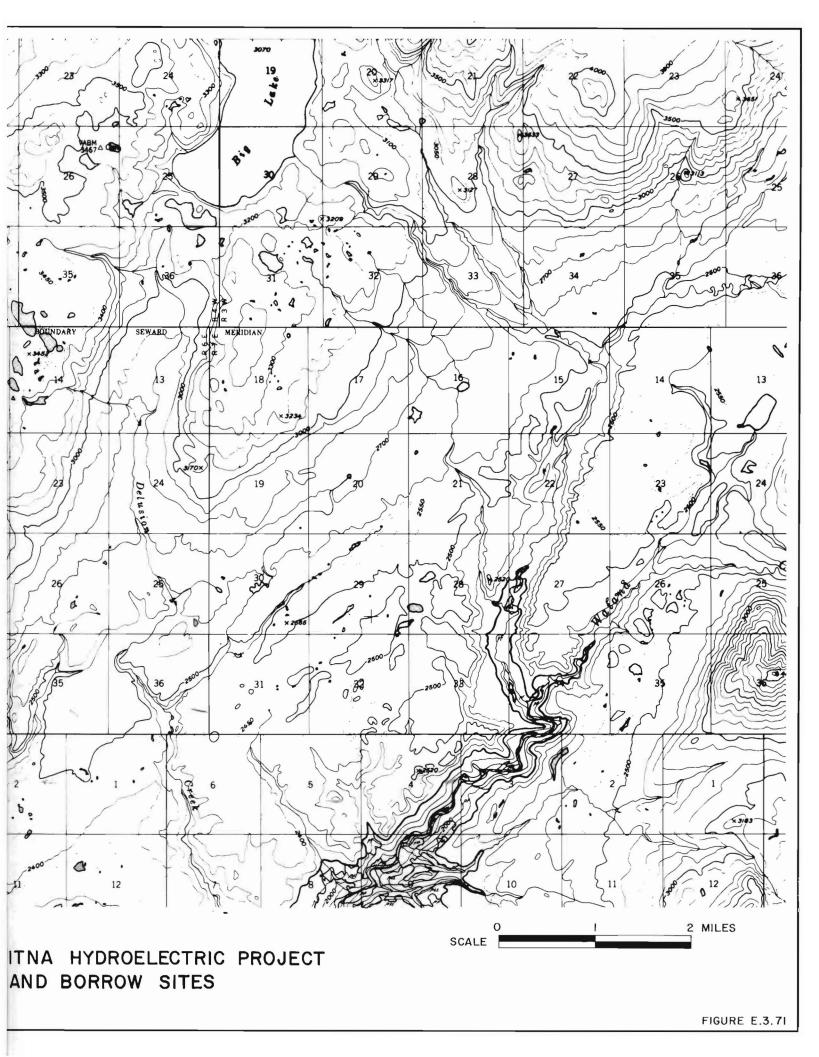

LEGEND:

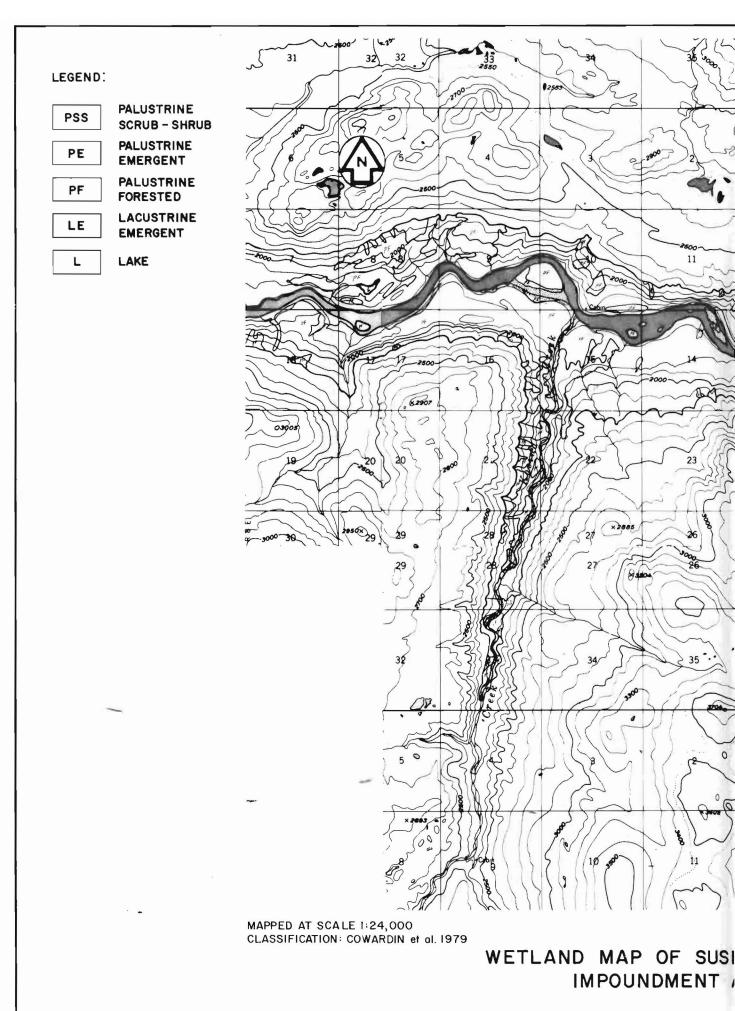



MAPPED AT SCALE 1:24,000 CLASSIFICATION: COWARDIN et al. 1979

WETLAND MAP OF SUSI

LEGEND:

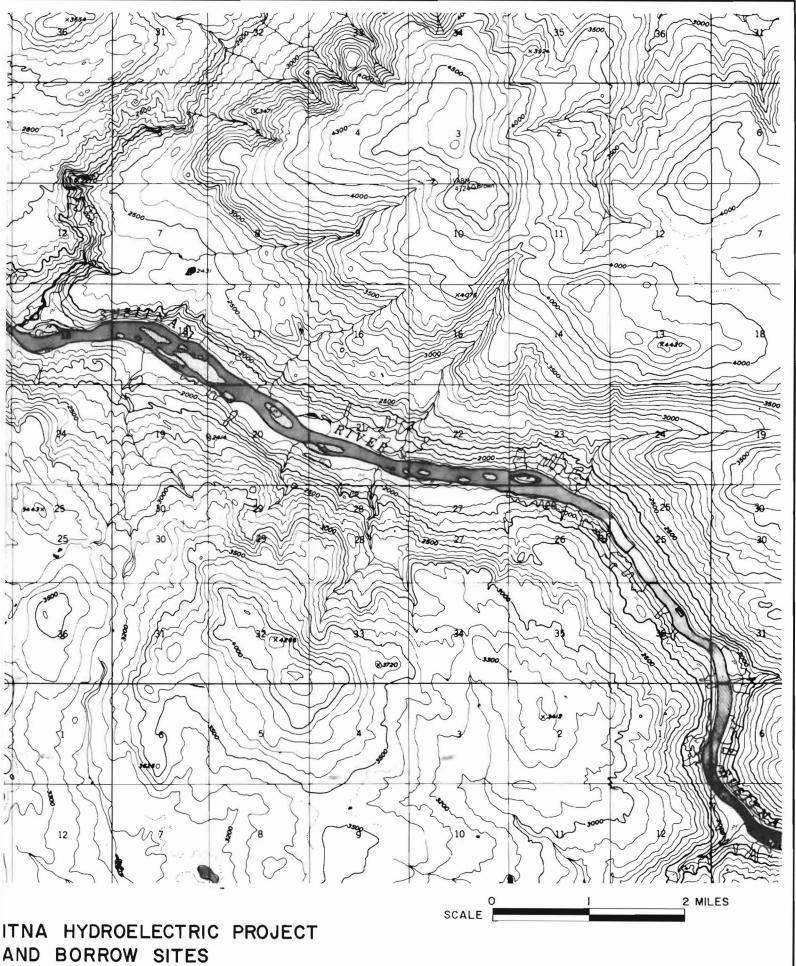



20

MAPPED AT SCALE 1:24,000 CLASSIFICATION : COWARDIN et al. 1979

WETLAND MAP OF SUS

1



FROM McKENDRICK et al. 1982

et al. 1982

AND BORROW SITES

PSS

PE

PF

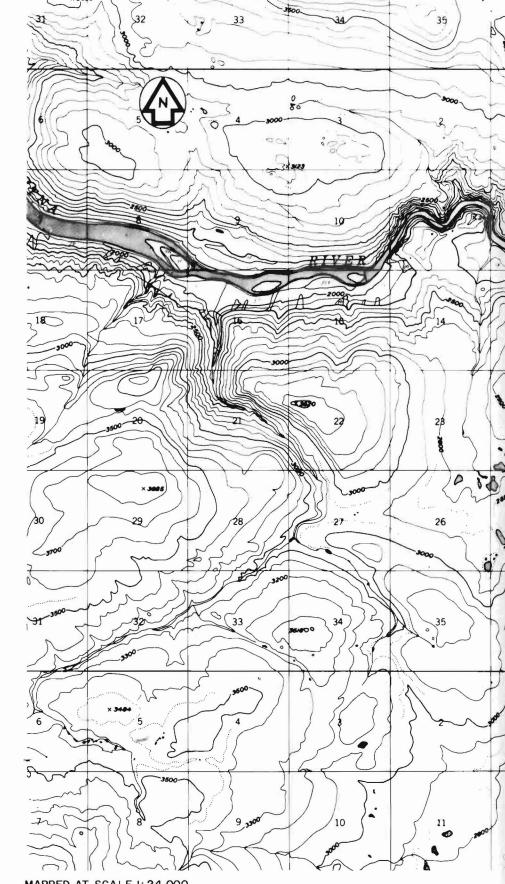
LE

L

PALUSTRINE

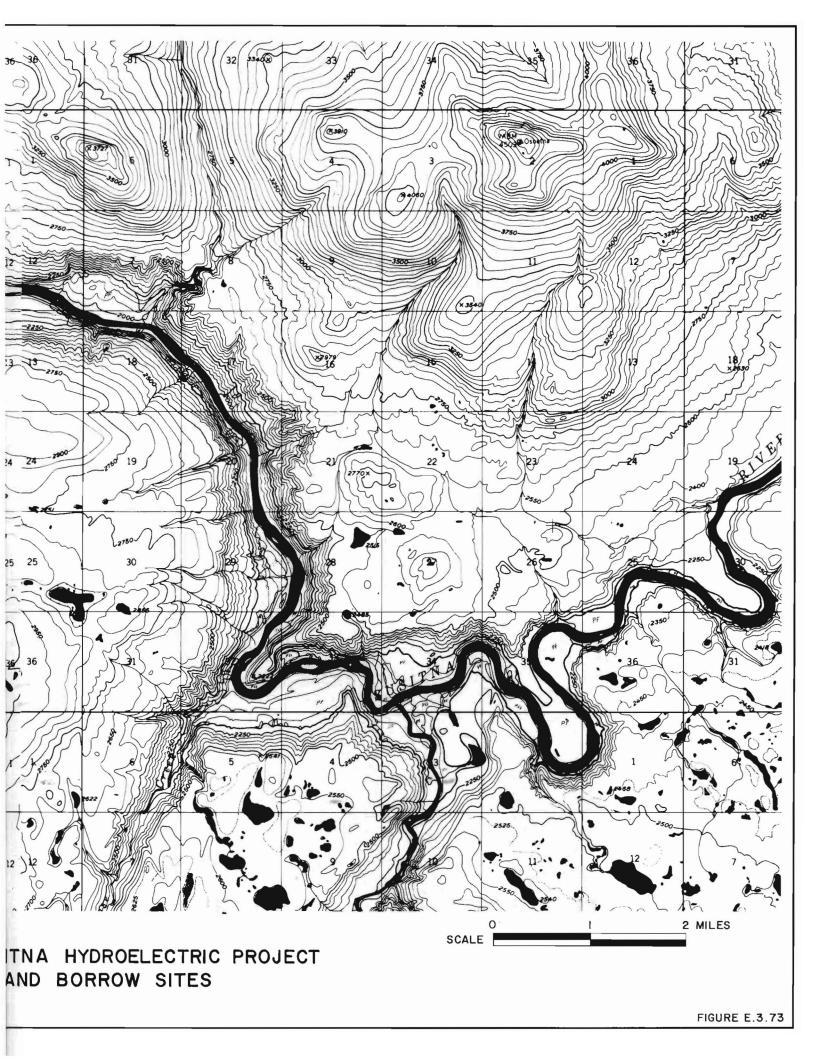
PALUSTRINE

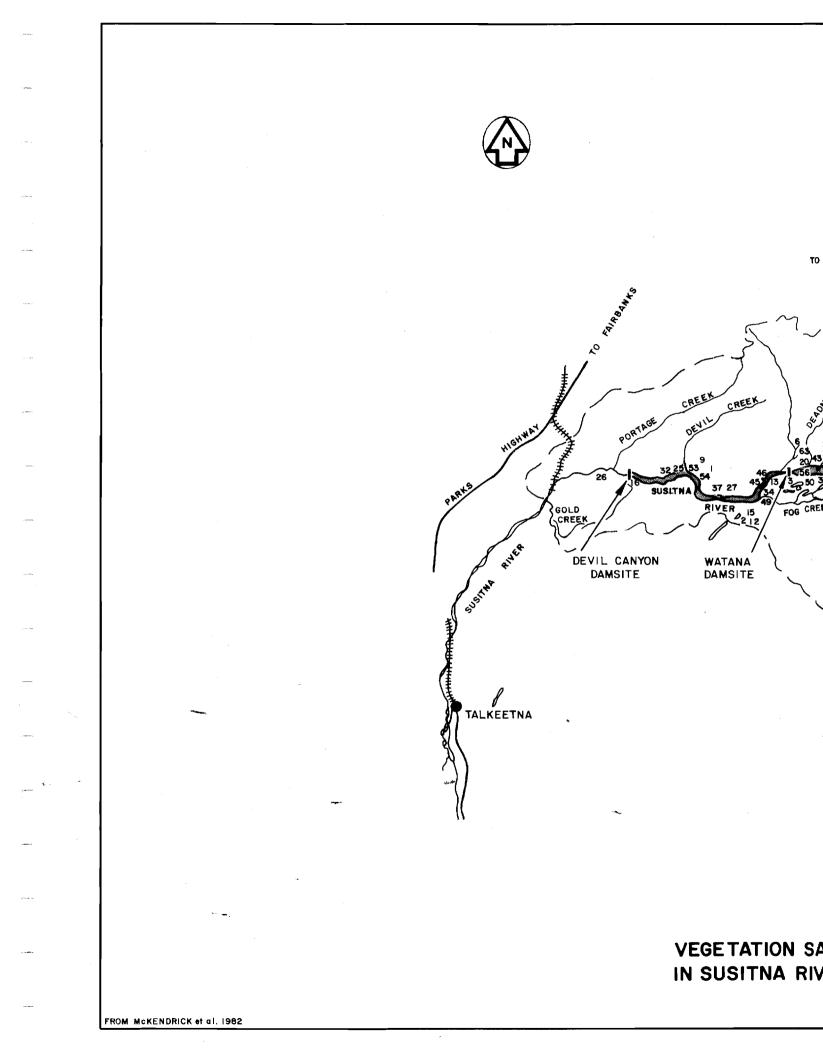
EMERGENT PALUSTRINE

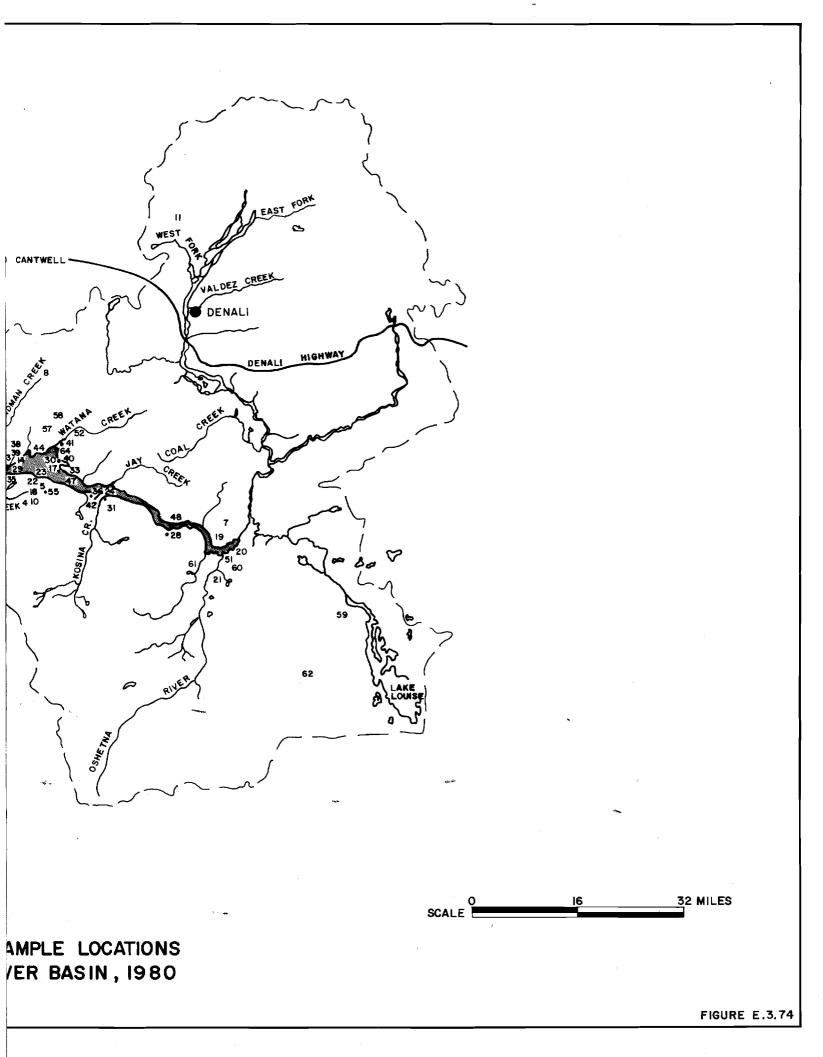

FORESTED

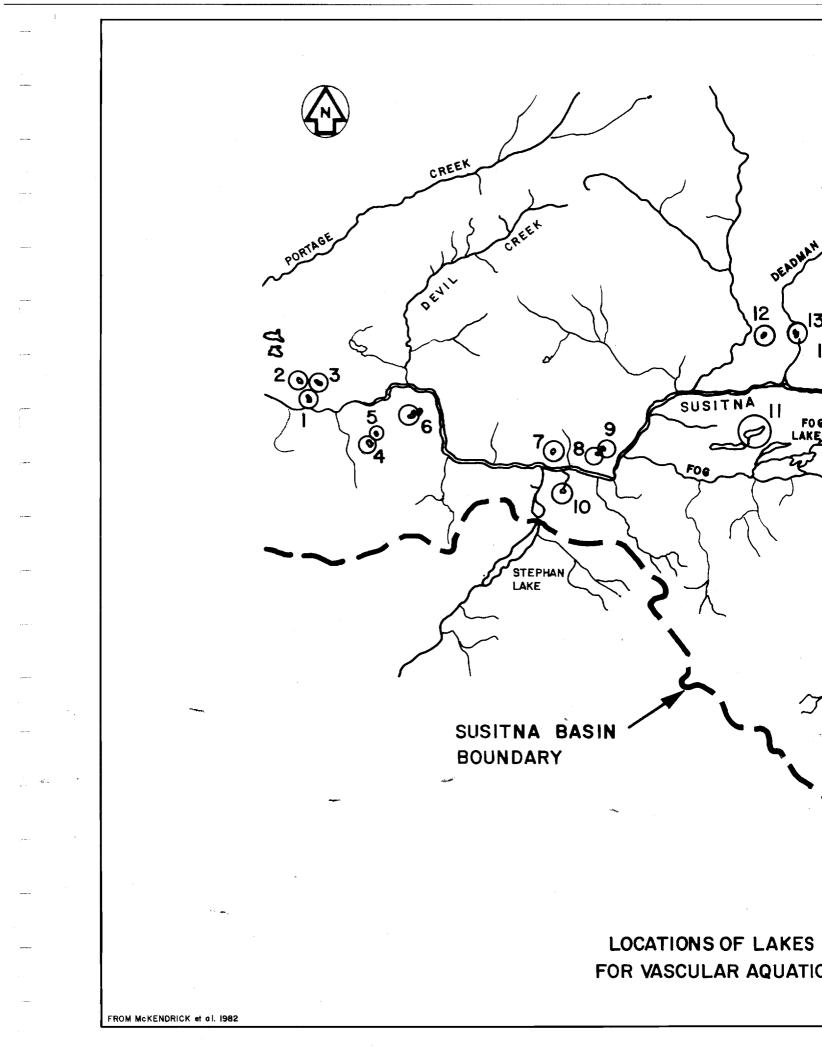
EMERGENT

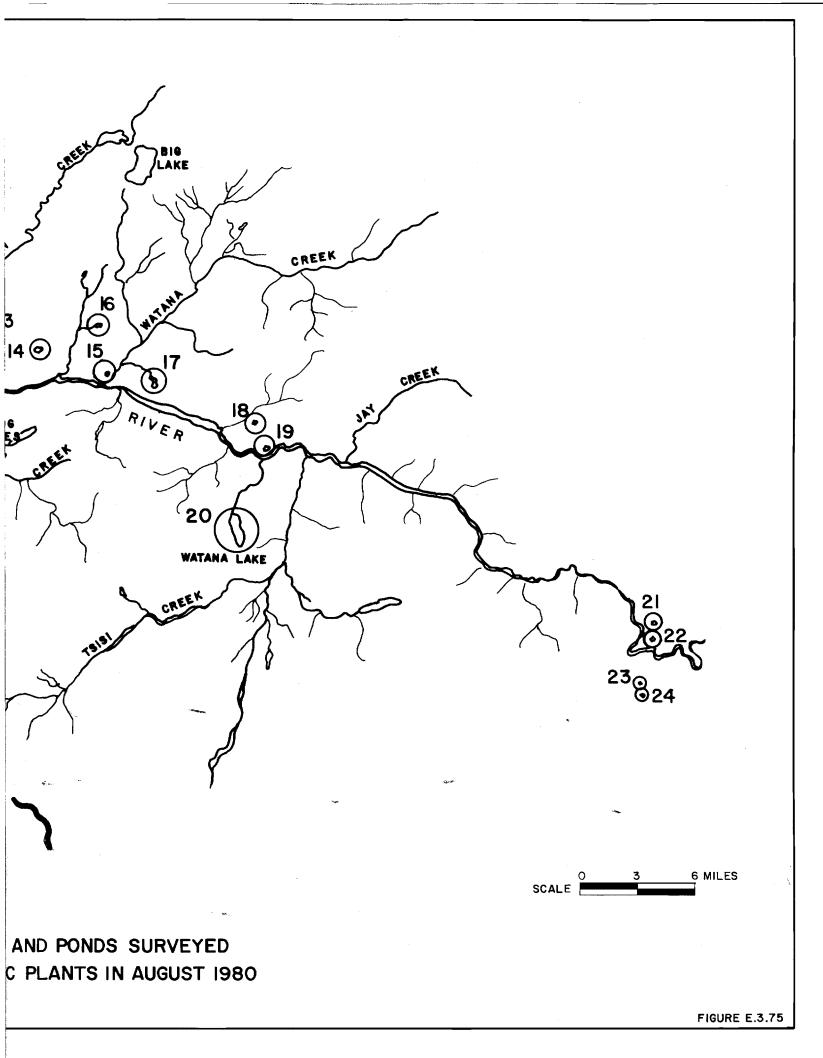
LAKE

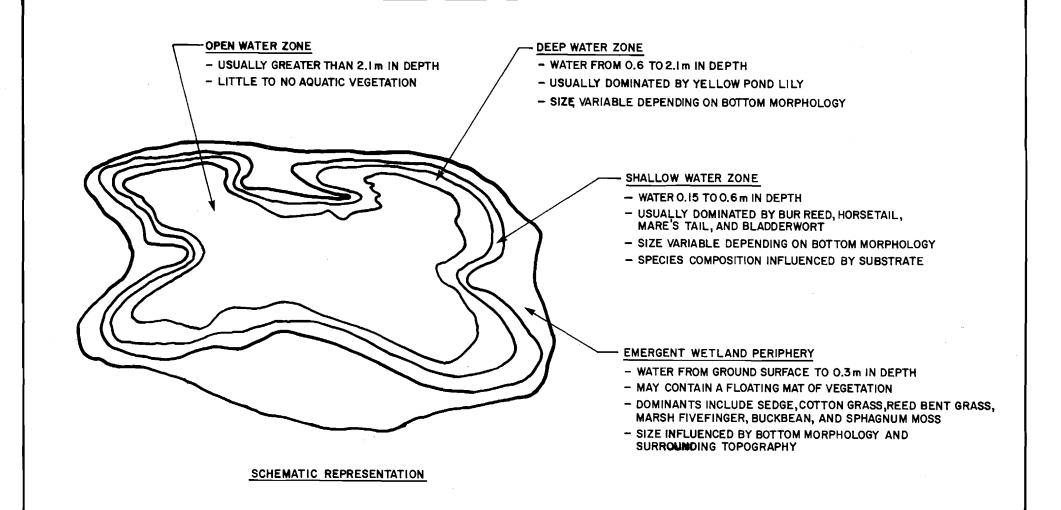

LACUSTRINE

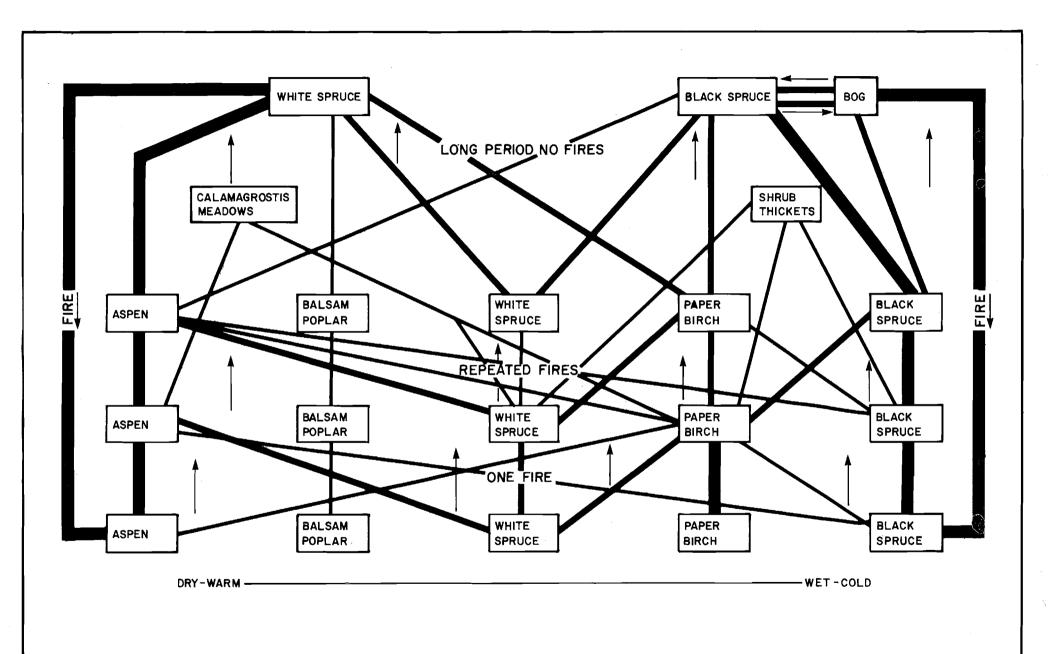

SCRUB - SHRUB



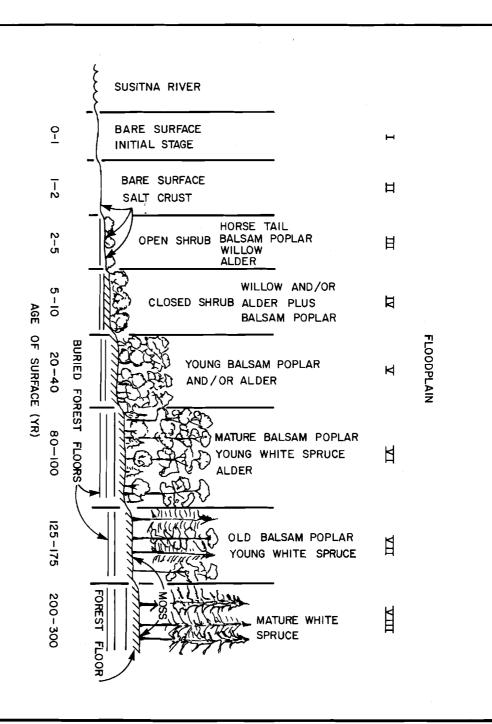

MAPPED AT SCALE 1: 24,000 CLASSIFICATION: COWARDIN et al. 1979


WETLAND MAP OF SUS

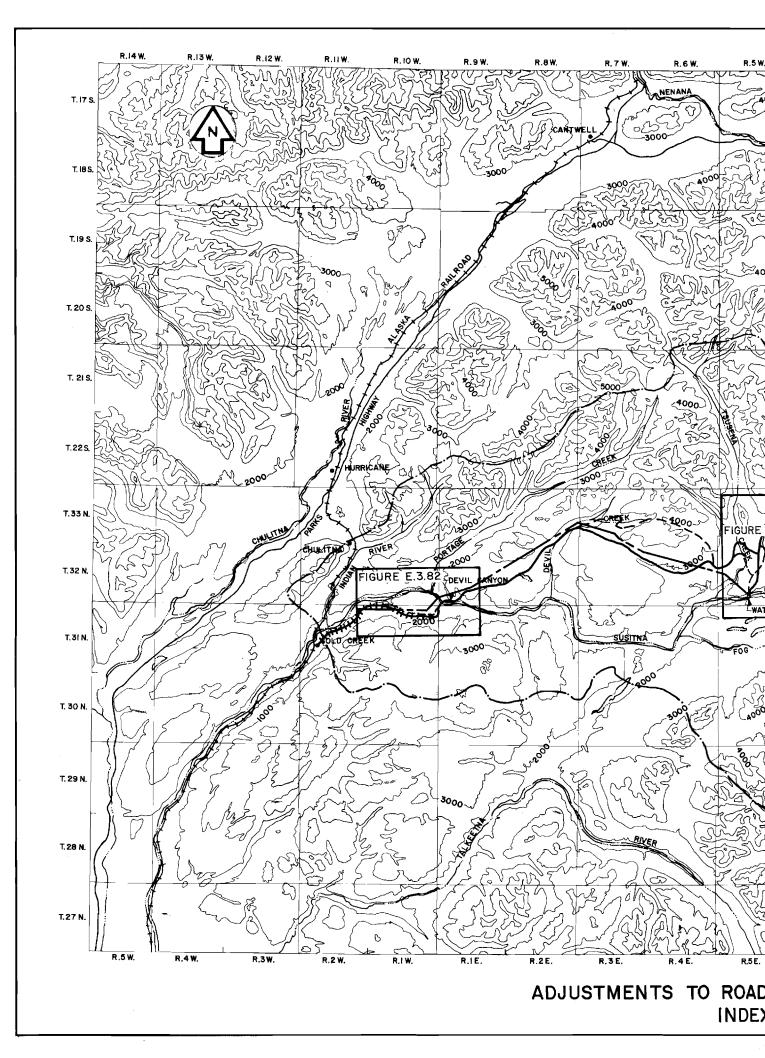




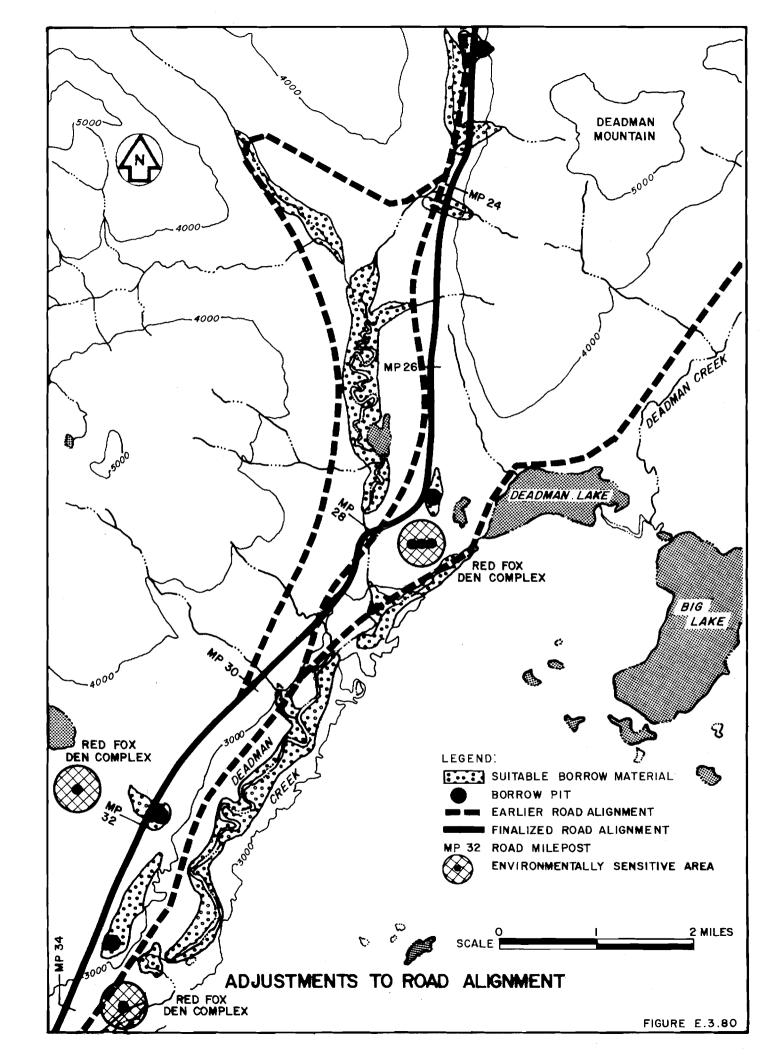
A SCHEMATIC REPRESENTATION OF THE DOMINANT VEGETATION ASSOCIATED WITH MANY OF THE LAKES AND PONDS OF THE SUSITNA BASIN

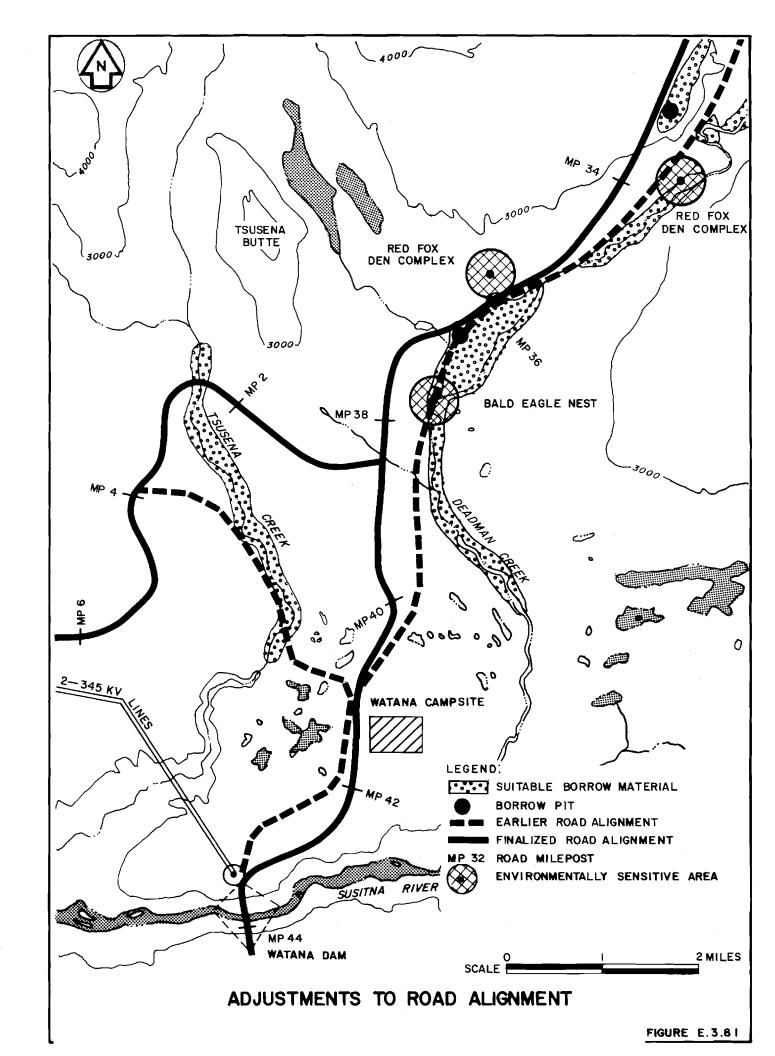

PATTERNS OF FOREST SUCCESSION FOLLOWING FIRE IN ALASKA

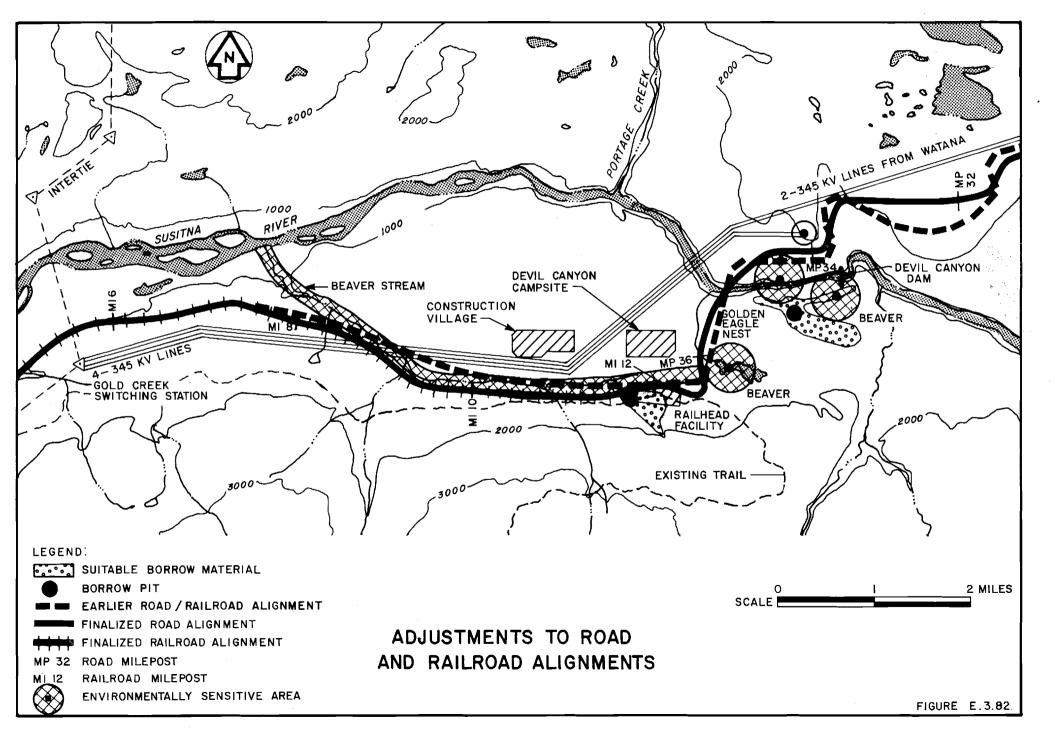
FROM VIERECK & SCHANDELMEIER 1980

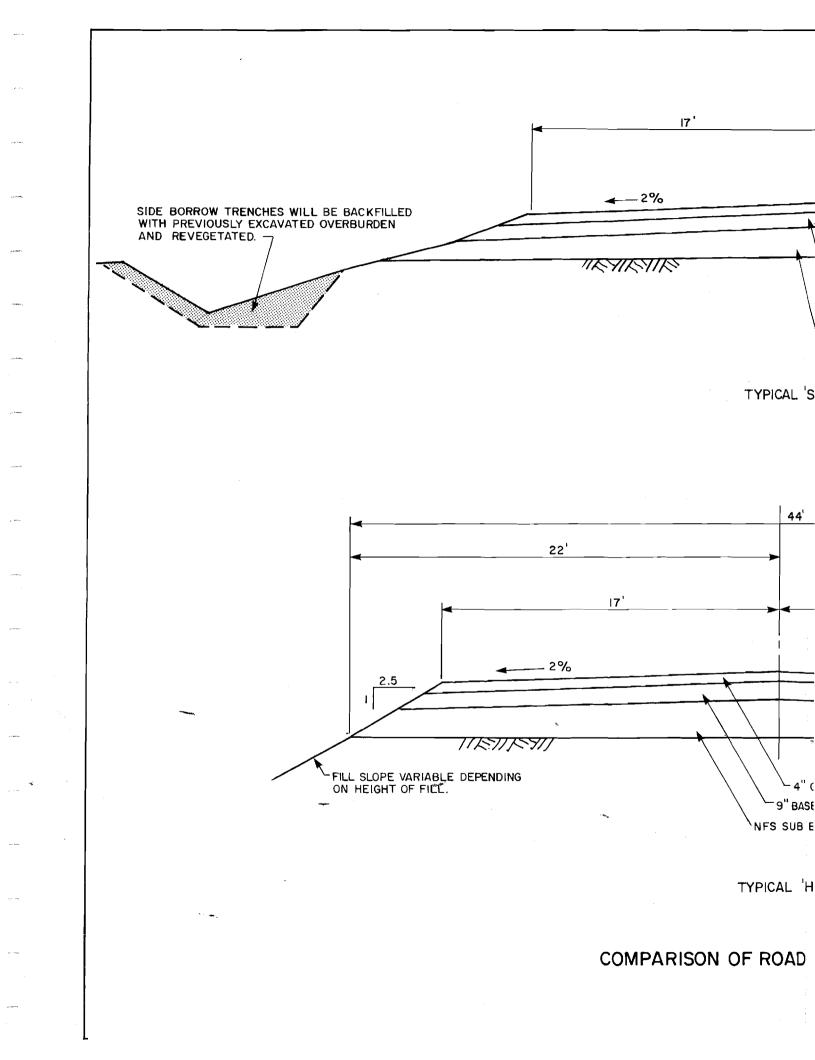

FIGURE E.3.78

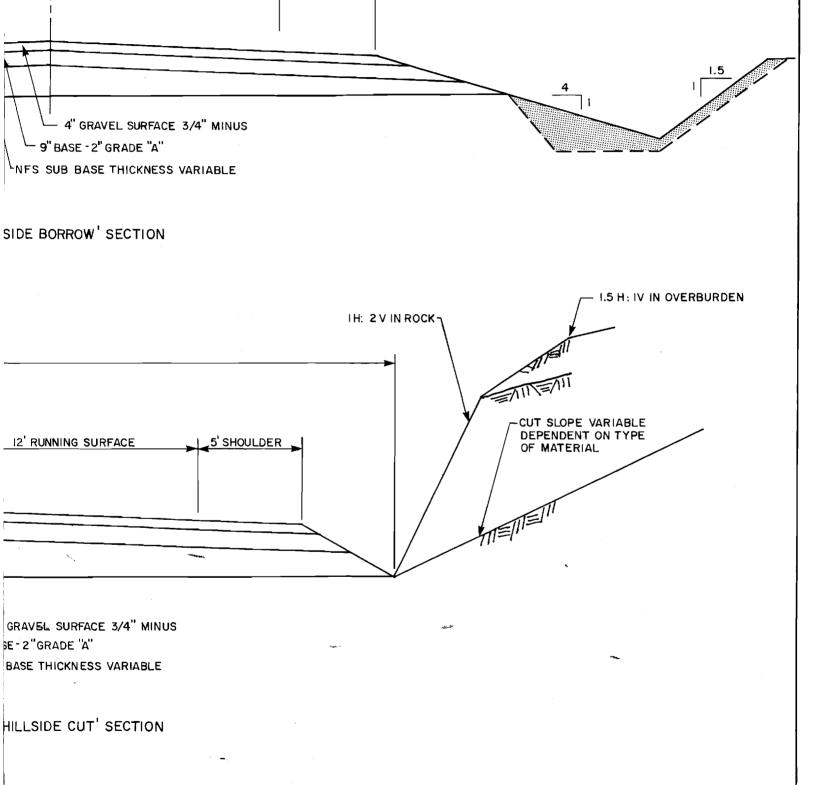

SOURCE: VAN CLEVE AND VIERECK 1981


PRIMARY SUCCESSION ON THE SUSITNA FLOODPLAIN




Circles of the local division of the local d





CONSTRUCTION TECHNIQUES

12'RUNNING SURFACE

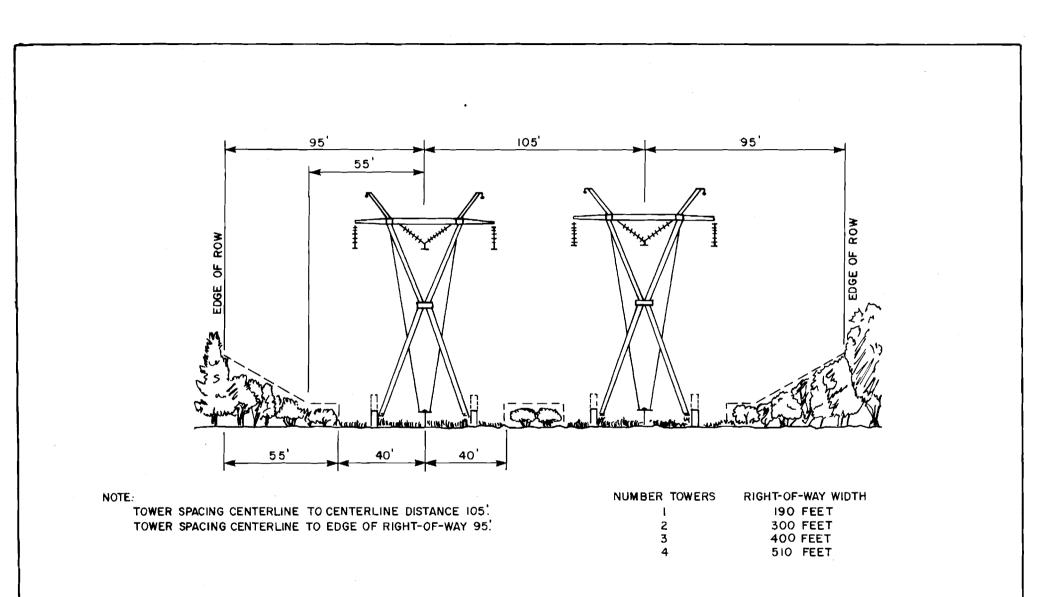
5 SHOULDER

14' 14' 3' 22 1.5 H: IV IN OVERBURDEN 19' -IH: 2V IN ROCK 9 TINETIK - CUT SLOPE VARIABLE DEPENDENT ON TYPE OF MATERIAL 2 2' BALLAST 1.5 2'SUB BALLAST SUBGRADE

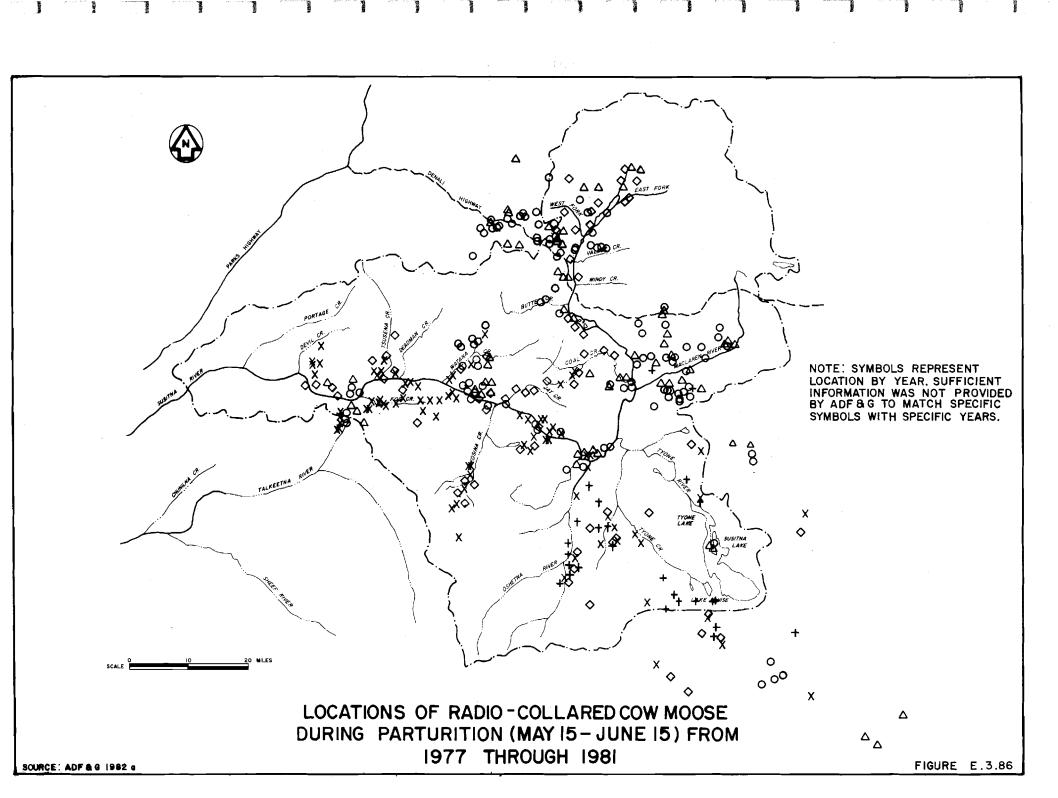
77/25/17/25/17

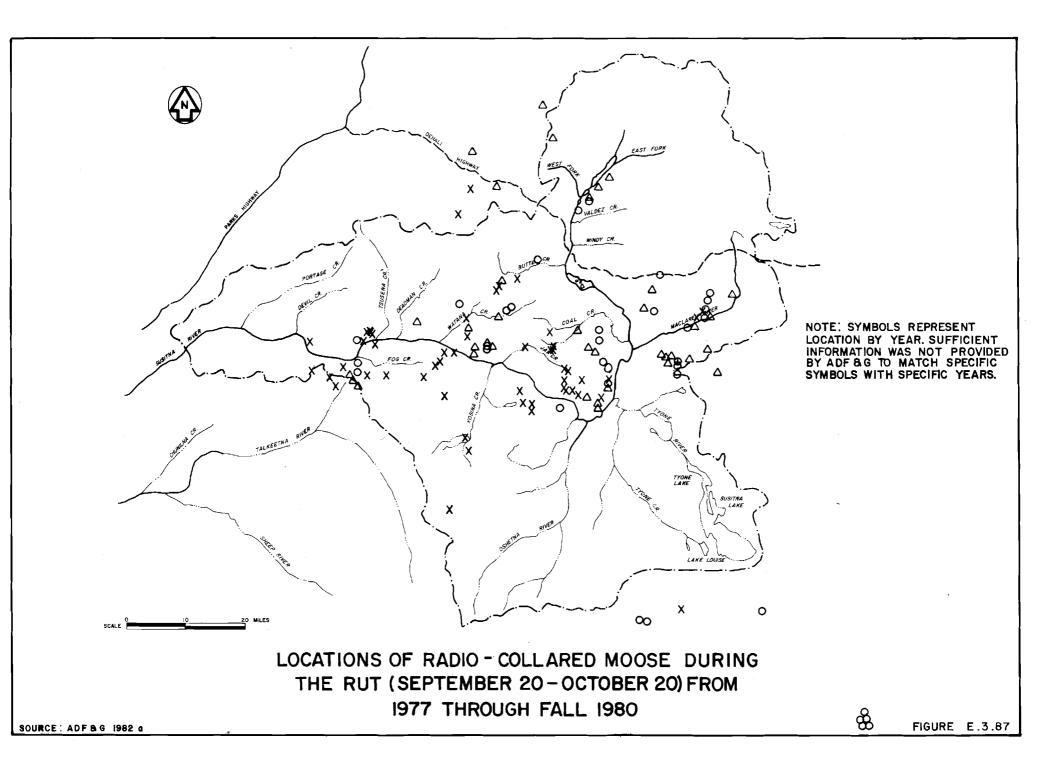
)

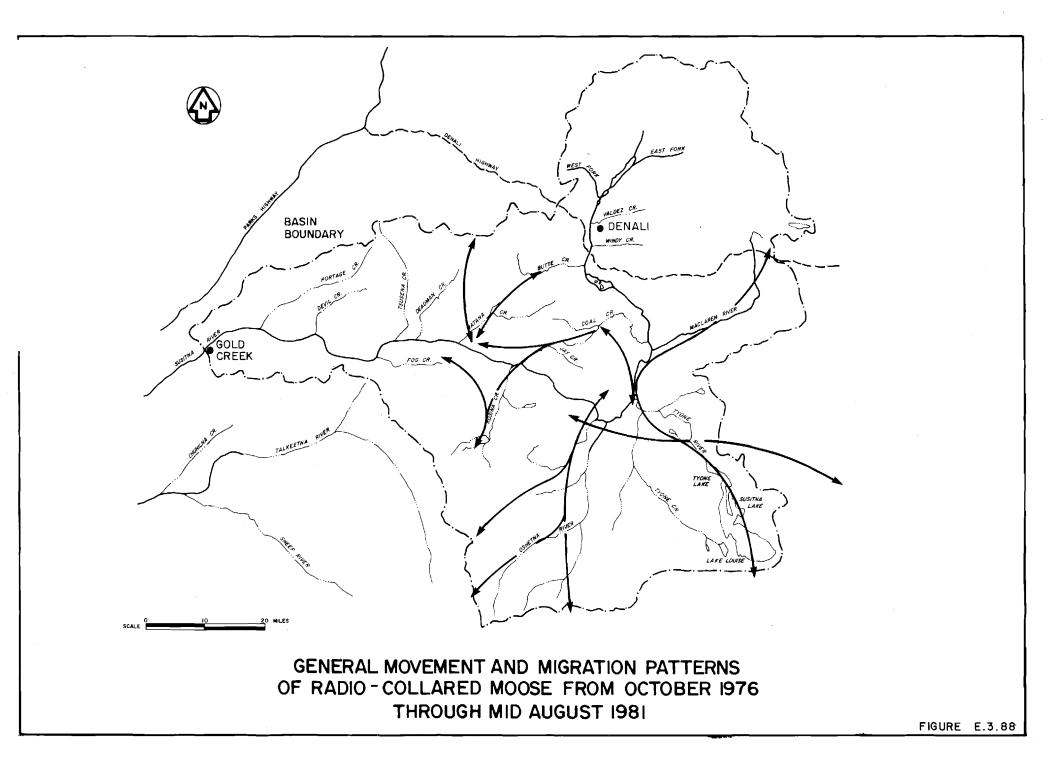
1

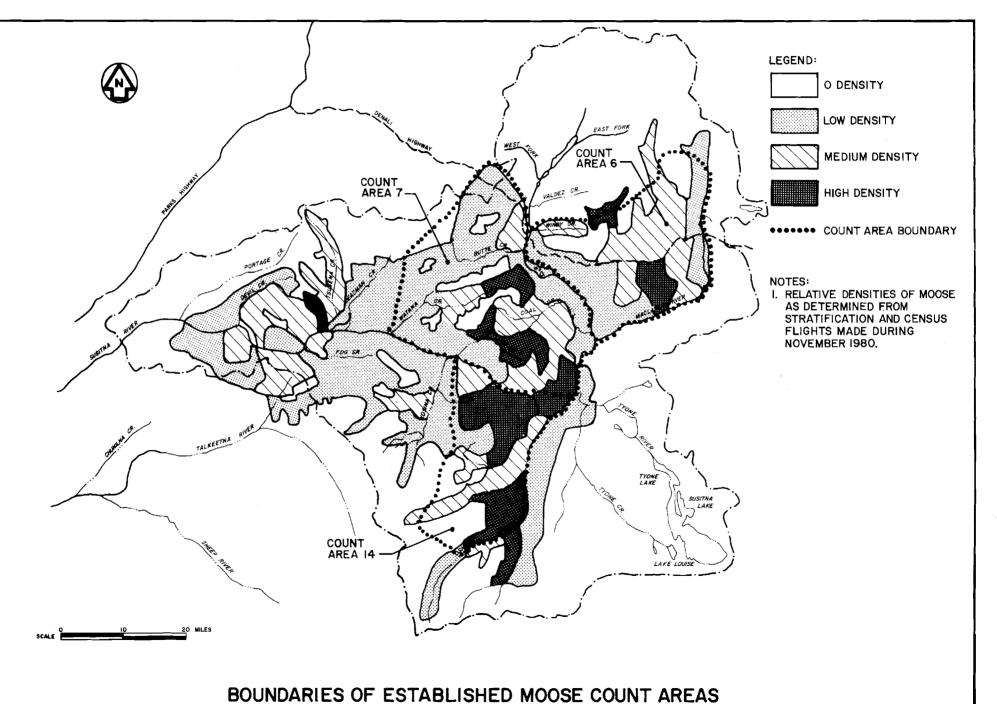

1

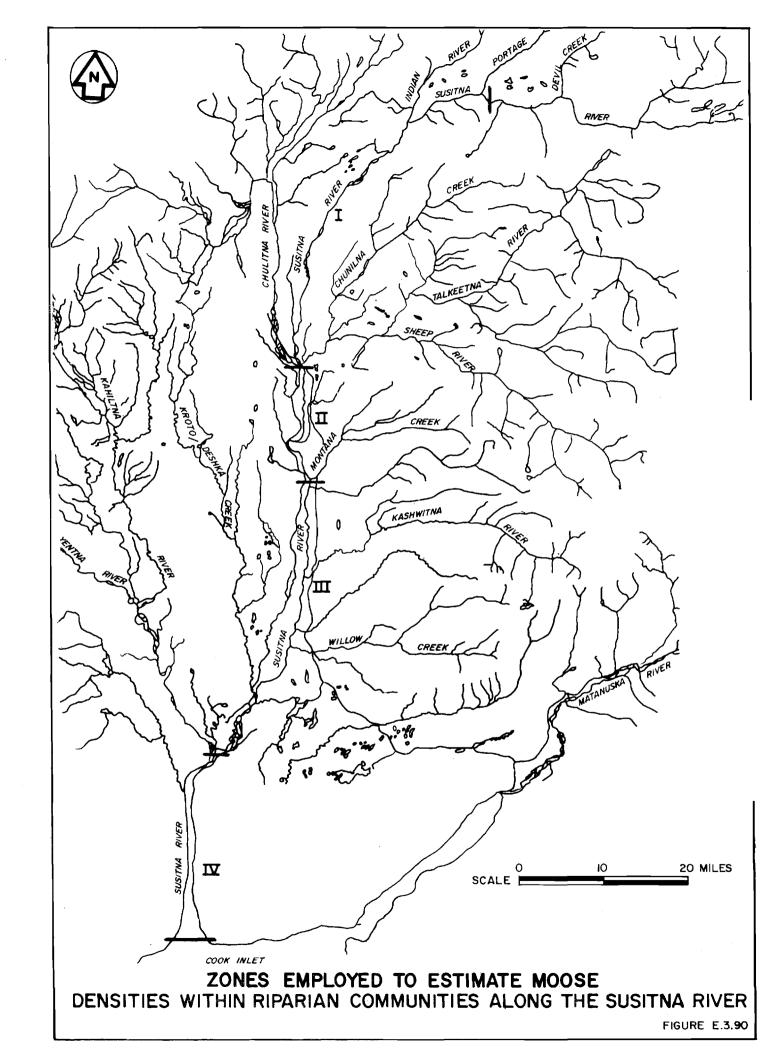
1

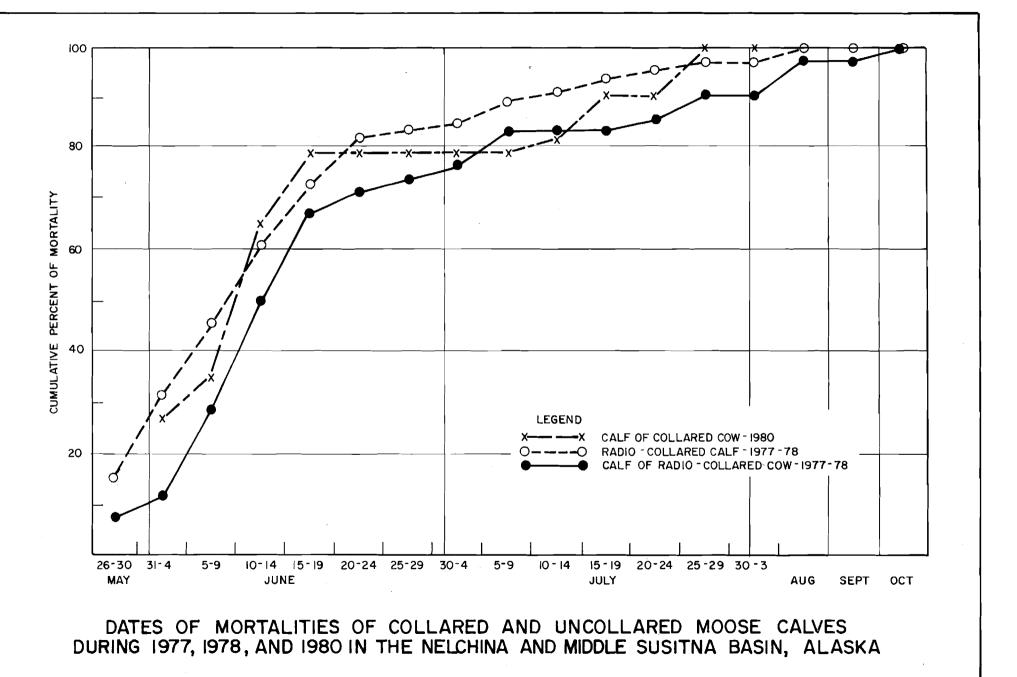

1.5


ł

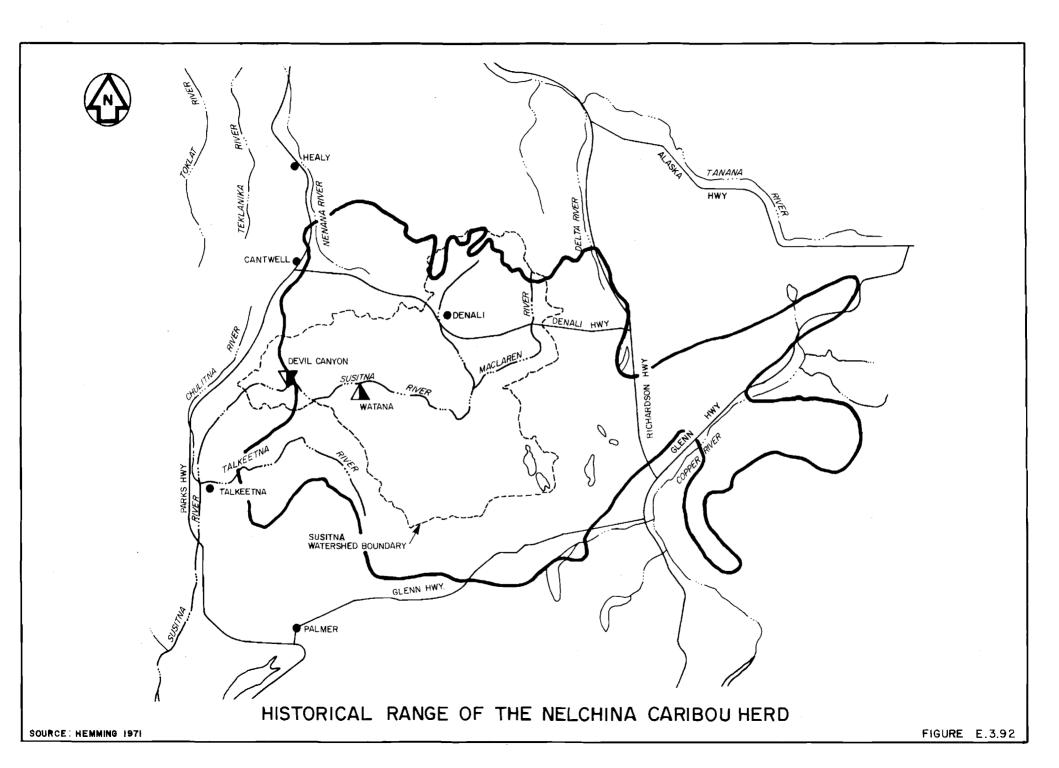

TYPICAL HILLSIDE CUT OF RAILROAD CROSS SECTION




TYPICAL TRANSMISSION RIGHT - OF - WAY CROSS SECTION



Canal Second


and the second

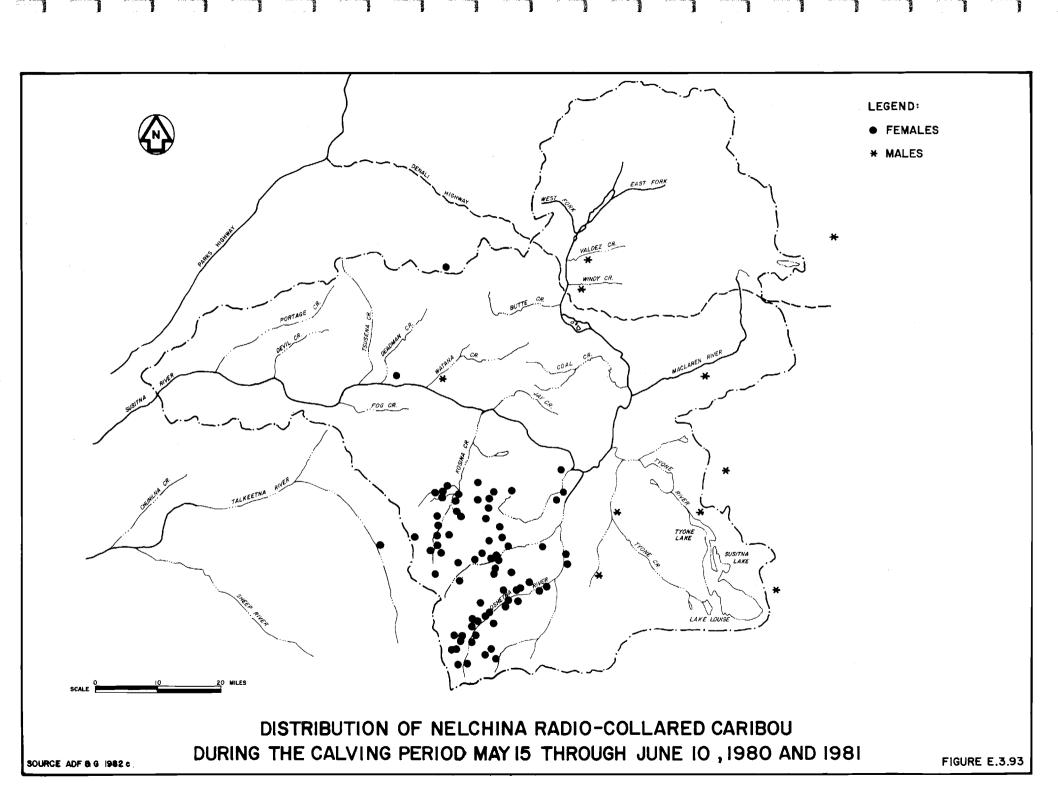
and a second

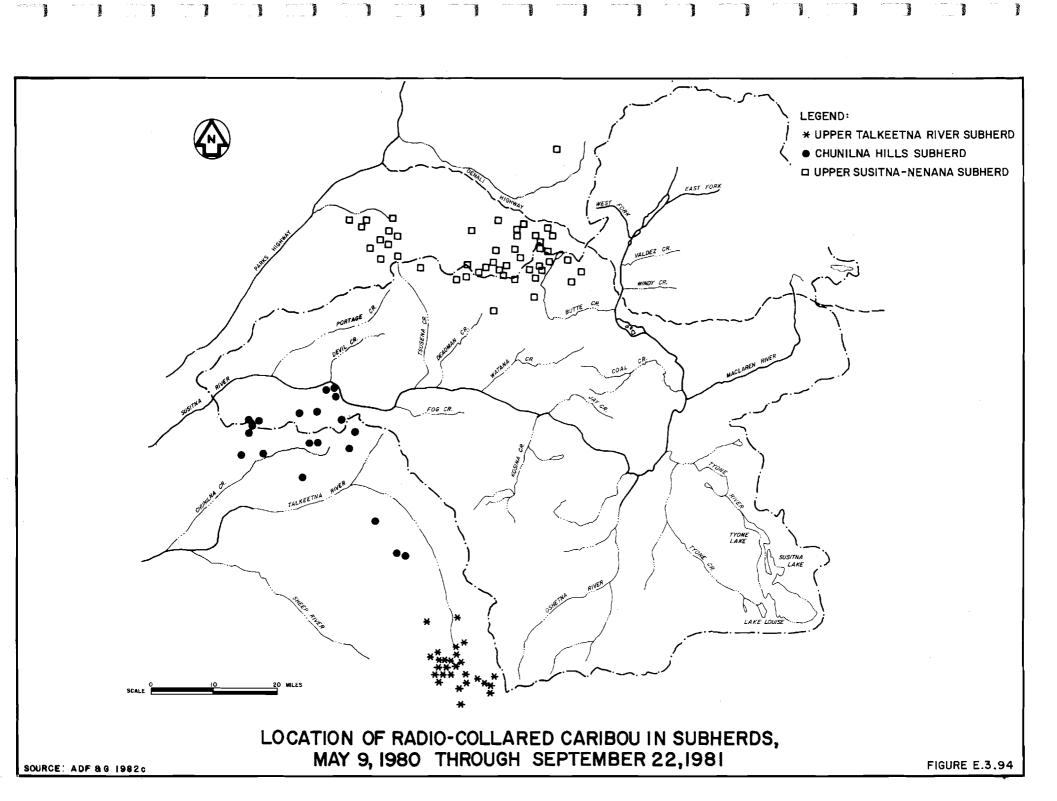
SOURCE: ADF&G 1982 a

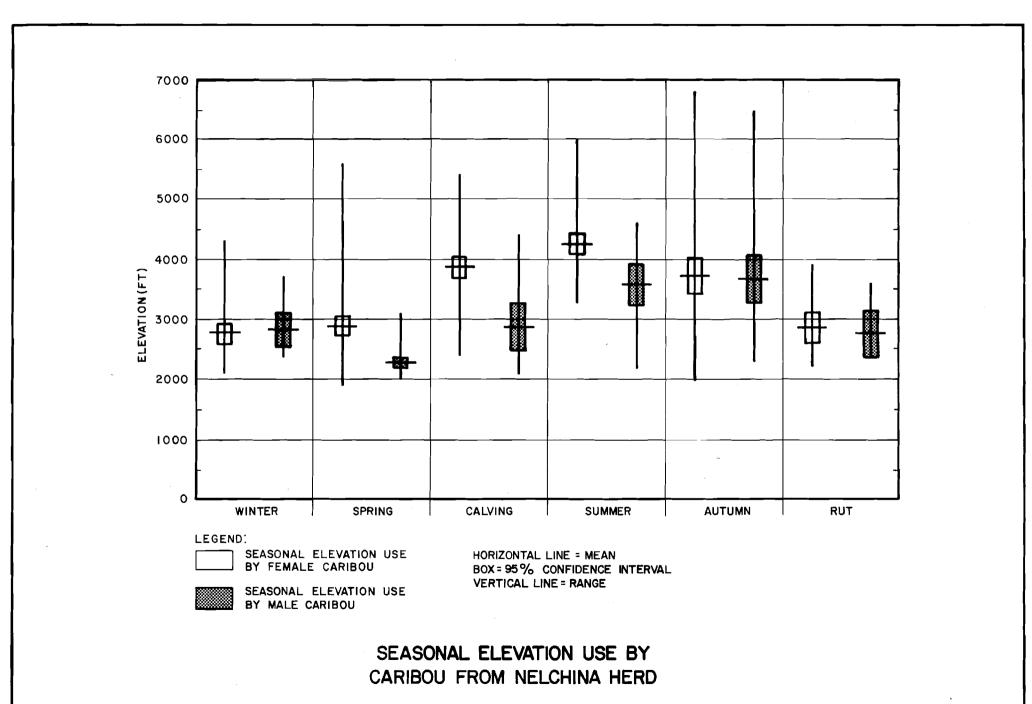
FIGURE E.3.91

1

1


and the second


Market

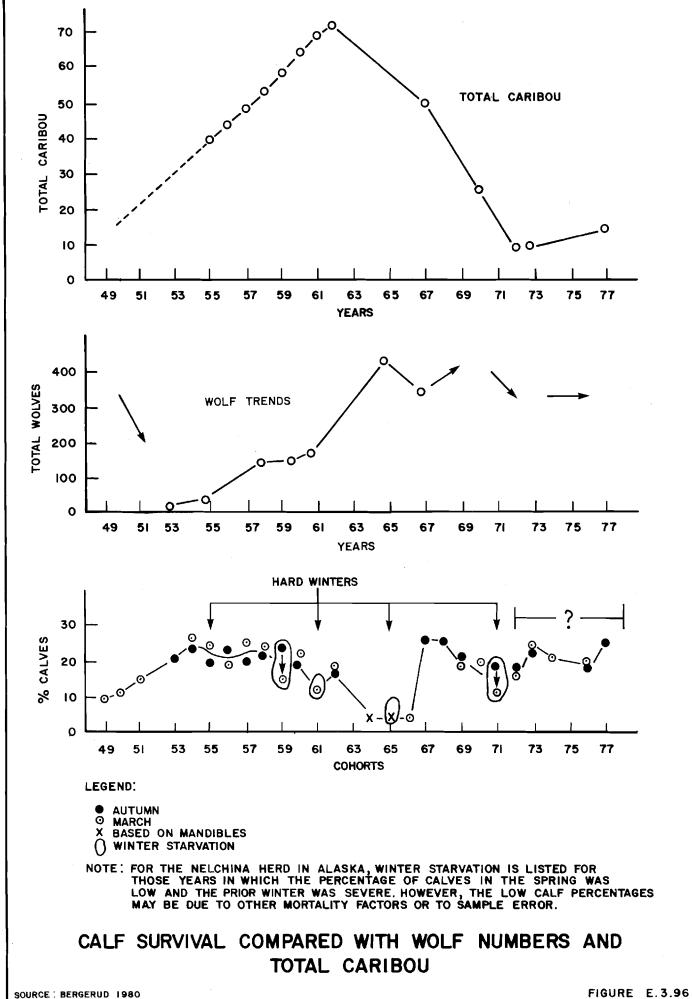

1

-

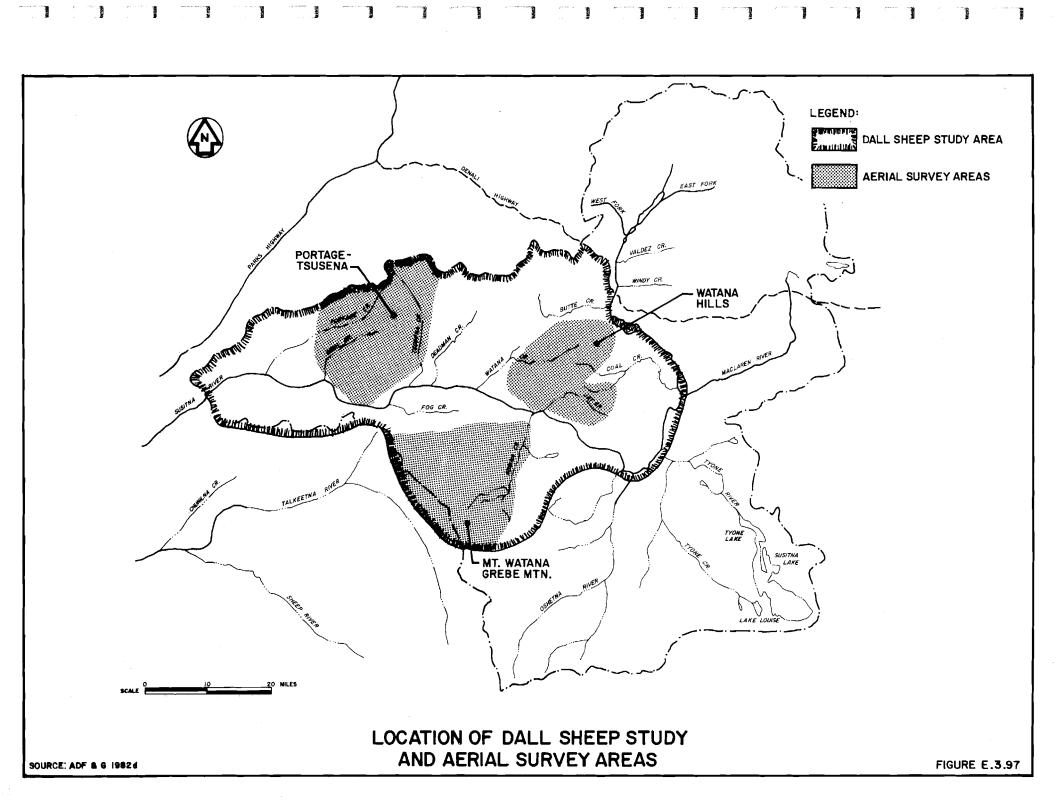
Contraction of the

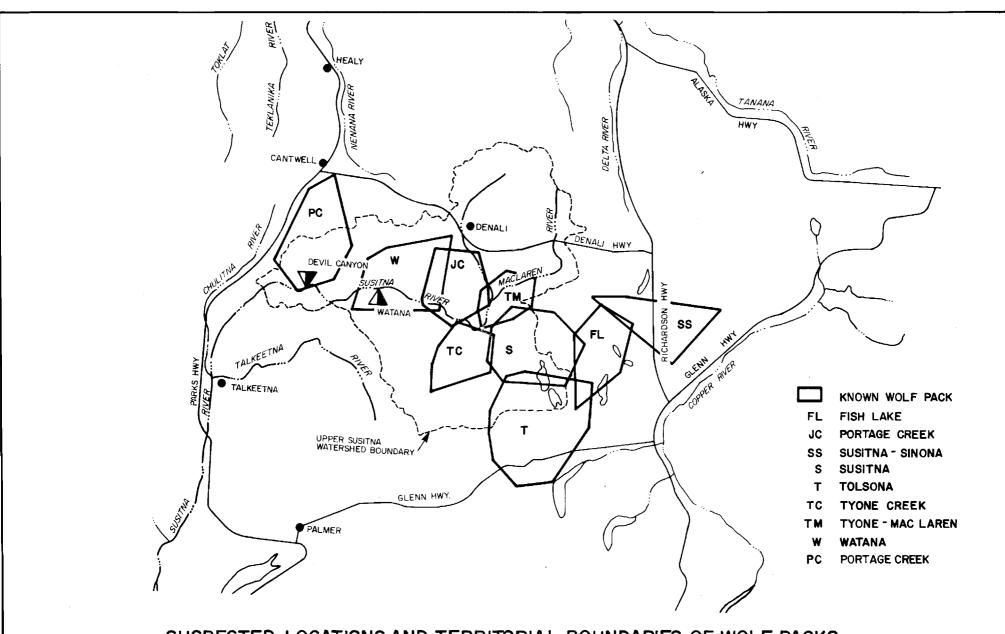
)

NAME


]

SOURCE: ADF & G 1982 c


and a


all states

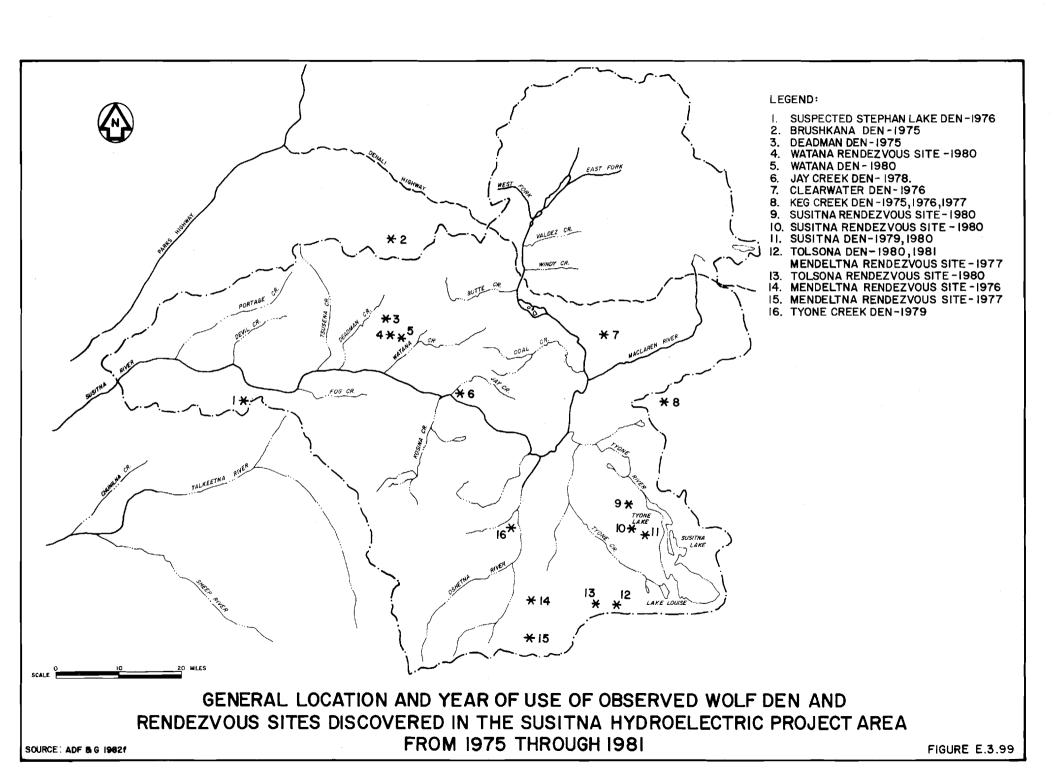
í 1

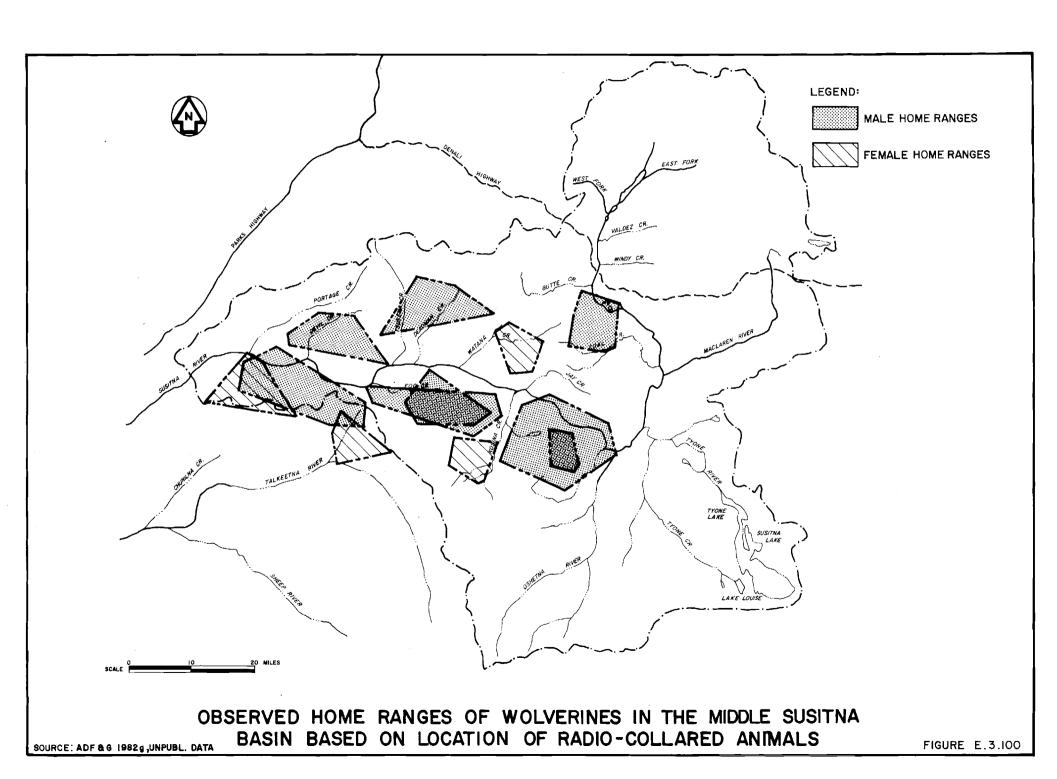
SOURCE : BERGERUD 1980

1

SUSPECTED LOCATIONS AND TERRITORIAL BOUNDARIES OF WOLF PACKS INHABITING THE SUSITNA HYDROELECTRIC PROJECT AREA DURING 1980 AND 1981

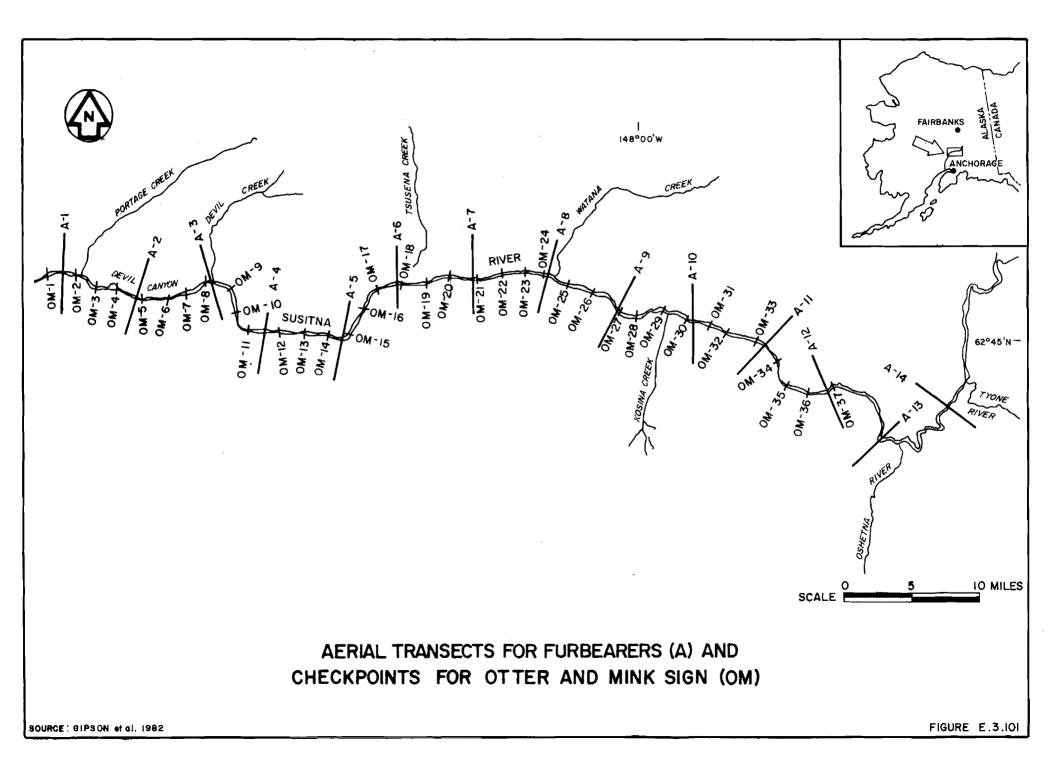
Clean Provide Provide


1


1

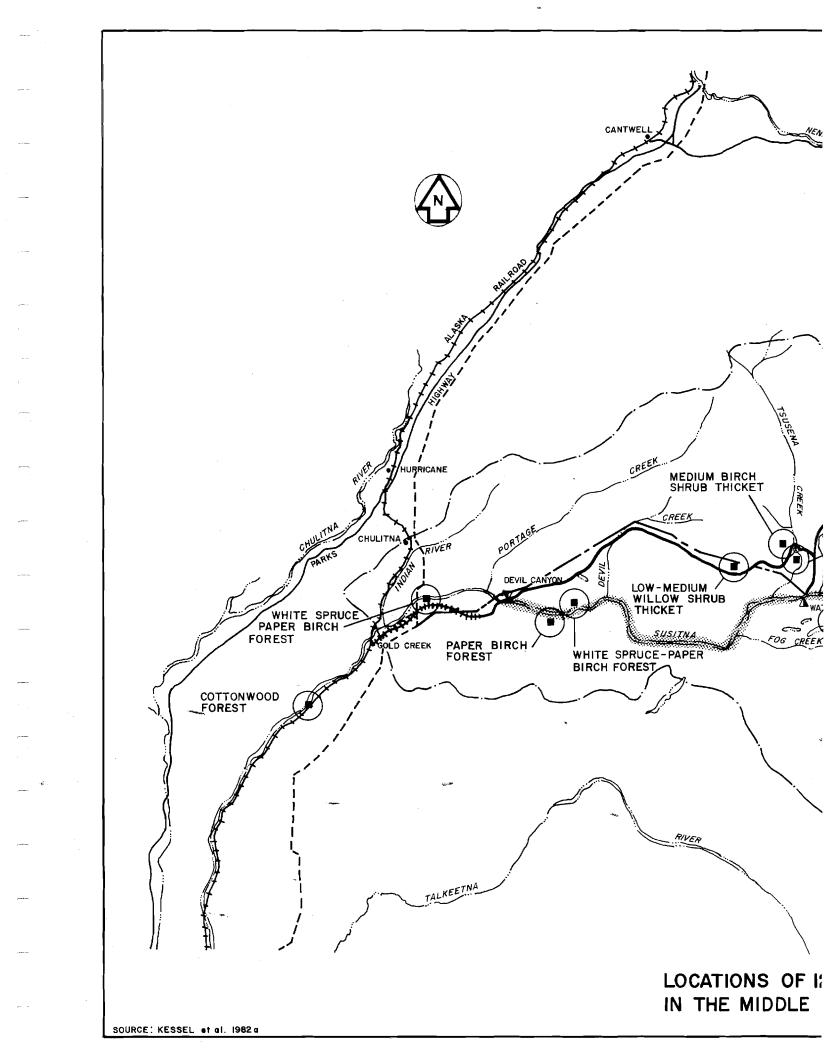
1

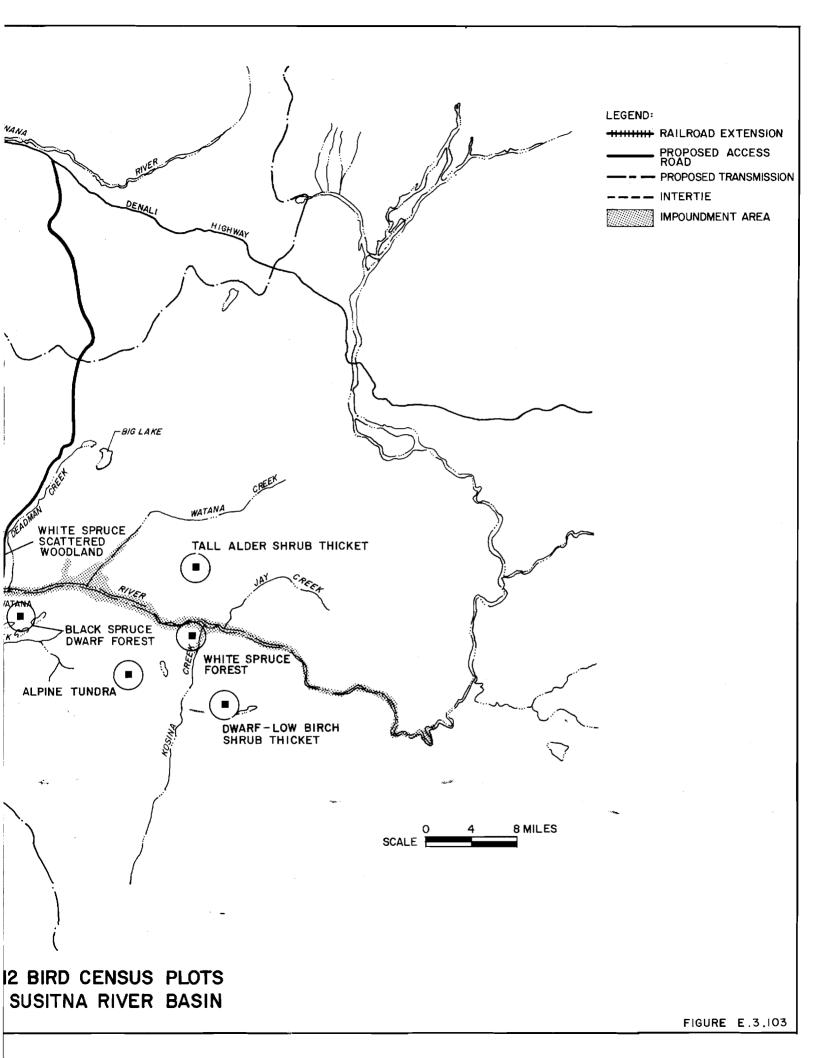
Front

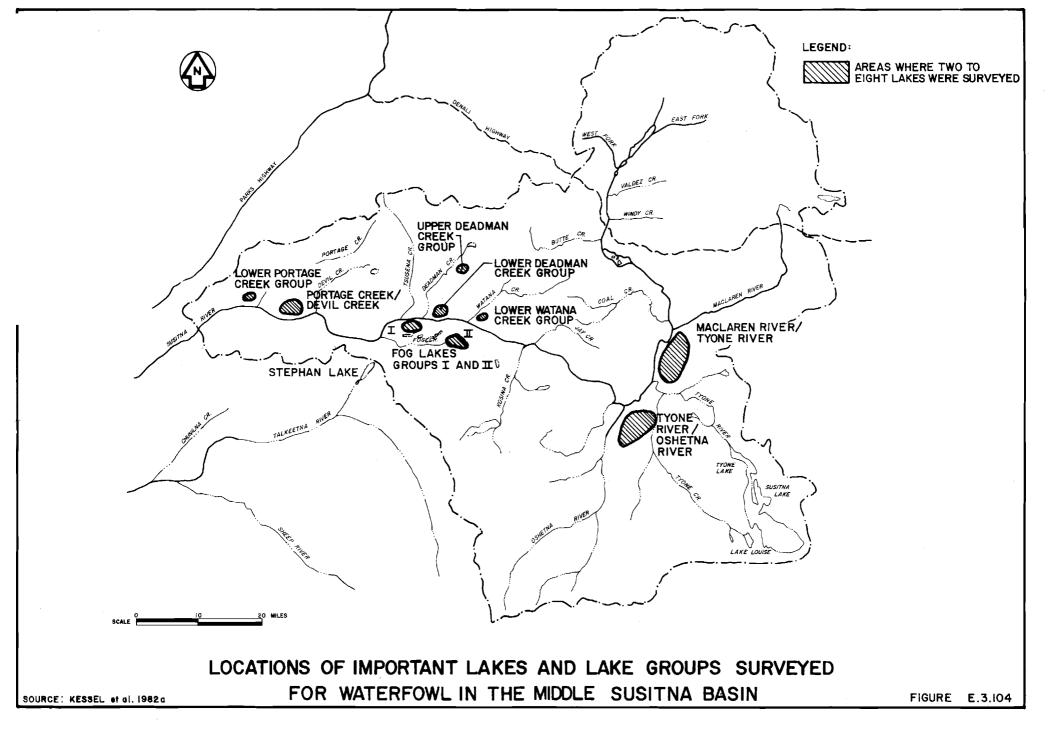

and a second

Less 1

1.


LEGEND: **O PRIMARY SITE** • SECONDARY SITE O PRIMARY ALTERNATE SITE EAST FORK ▲ TERTIARY SITE △ SHELTER SITE VALDEZ CH WINDY CR. CAC 0 •م FOG CR. LAKE SUSITNA LAKE LAKE LOUIS SCALE NOTE: SEE TABLE E.3.89 FOR RED FOX DEN CLASSIFICATION SYSTEM. LOCATION AND CLASSIFICATION OF FOX DENS


SOURCE: GIPSON et al. 1982 -


1

, in the second s

FIGURE E.3.102

75 SCOTTIE-DESPER CREEK NO'S 15,16, 17, 1/3 OF 20 70 MOON LAKE AREA MIDWAY LAKE 30 WB [3] WATERBODIES 25 SPECIFIC 20 WB 107 MURDER LAKE WB 106 STEPHAN LAKE ЧO VALUES WB_145 CLARENCE 15 LAKE IMPORTANCE WB059 FOG LAKES-WB 148 WATANA LAKE **WB 105** 10 WB130 DEADMAN LAKE WB 069 WB 064-067 PISTOL LAKE GROUP WB 135 5 WB134 WB 121-128 DELUSION CREEK GROUP WB104 WB103 WB 060 WB 035 WB 038 WB129 BIG LAKE FOG LAKES WB 037 0

IMPORTANCE VALUES OF WATER BODIES FOR MIGRANT WATERFOWL IN THE MIDDLE SUSITNA BASIN, UPPER TANANA RIVER VALLEY, AND SCOTTIE CREEK AREA - FALL 1980

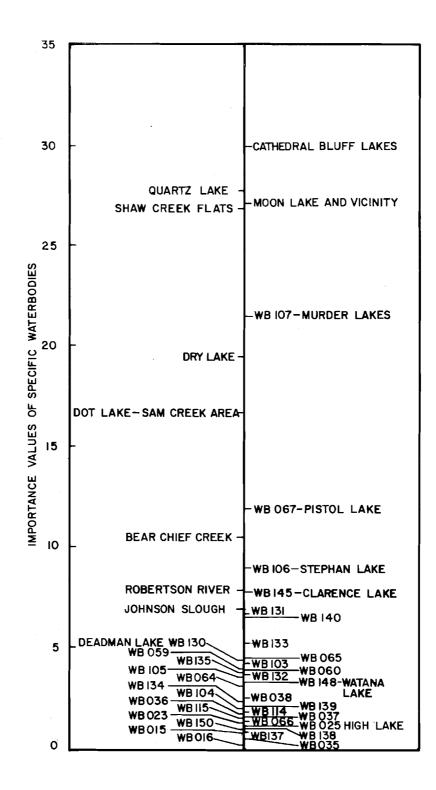
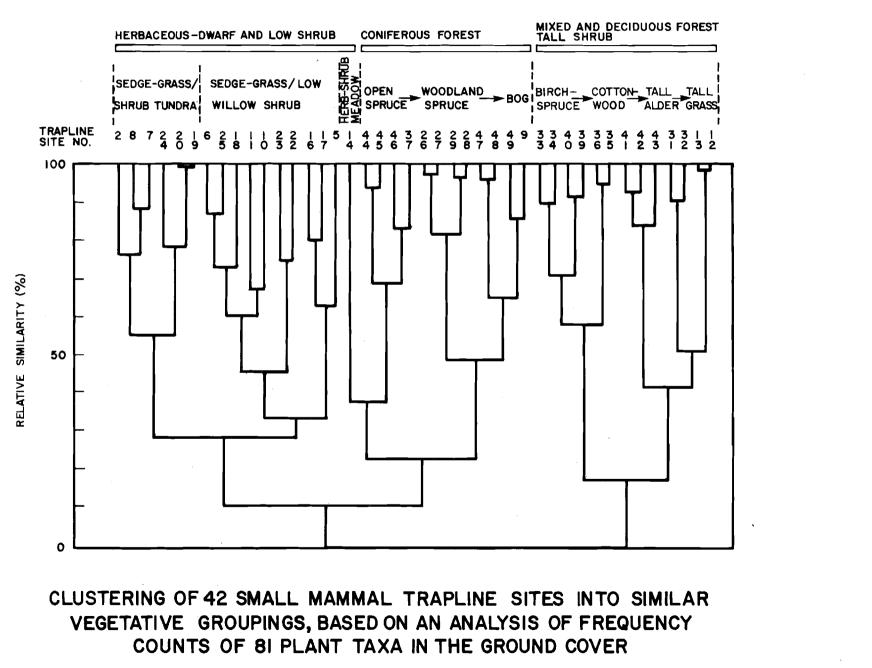
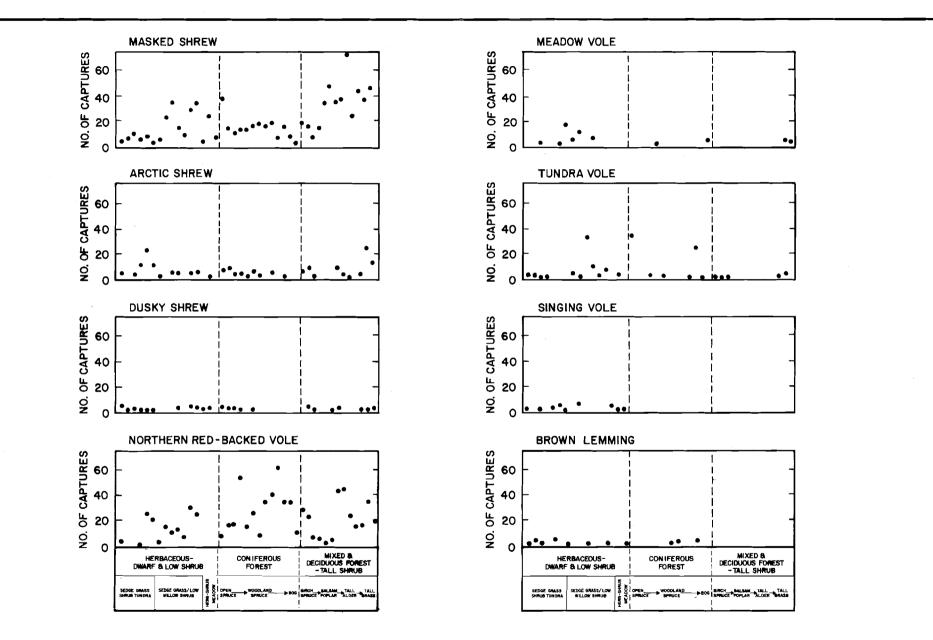
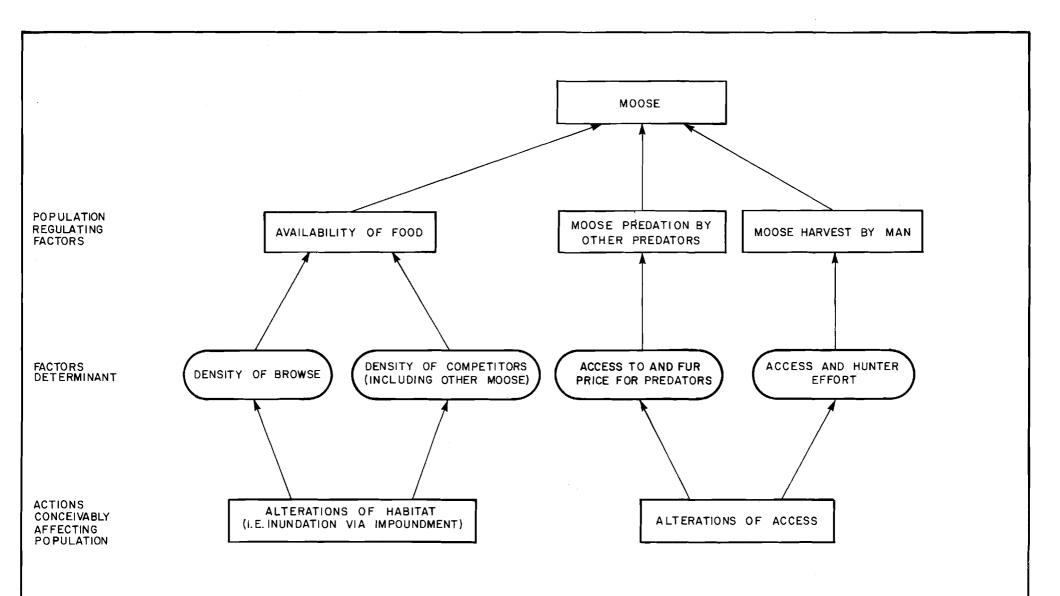
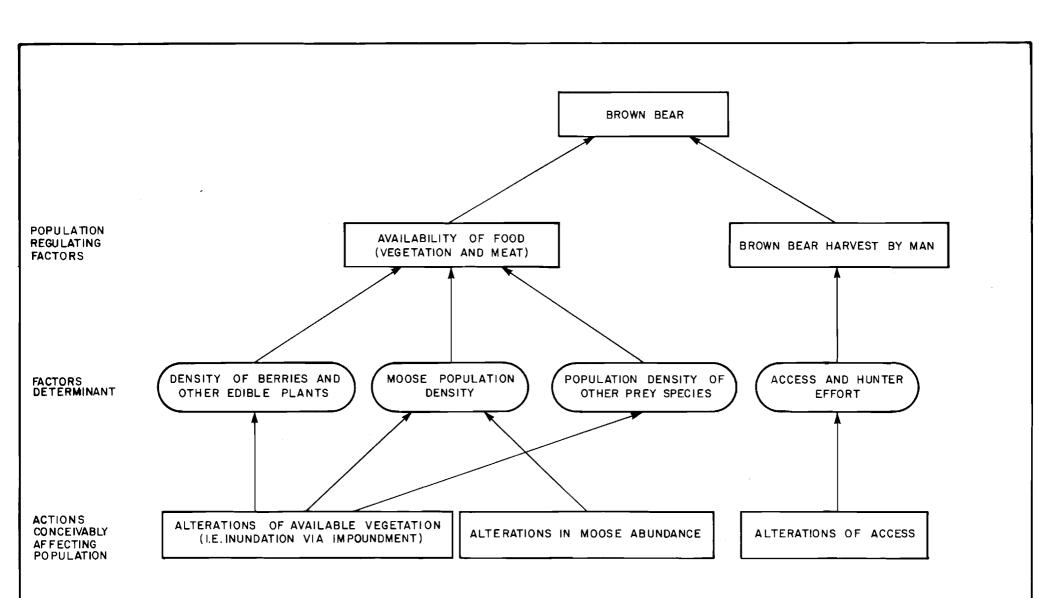




FIGURE E.3.106.



المناة البسنة الرئيسة السيبة الرابة السبب الرسيب البسبي البسب الربين السبب السبية السبب البسب البيب



ABUNDANCE PATTERNS OF EIGHT SMALL MAMMAL SPECIES RELATIVE TO VEGETATION TYPES AT 42 SITES IN THE SUSITNA RIVER BASIN, ALASKA JULY 29-AUGUST 30, 1981

SOURCE: KESSEL et al. 1982a

PROBABLE FACTORS REGULATING MOOSE POPULATIONS IN THE SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

Nort

1

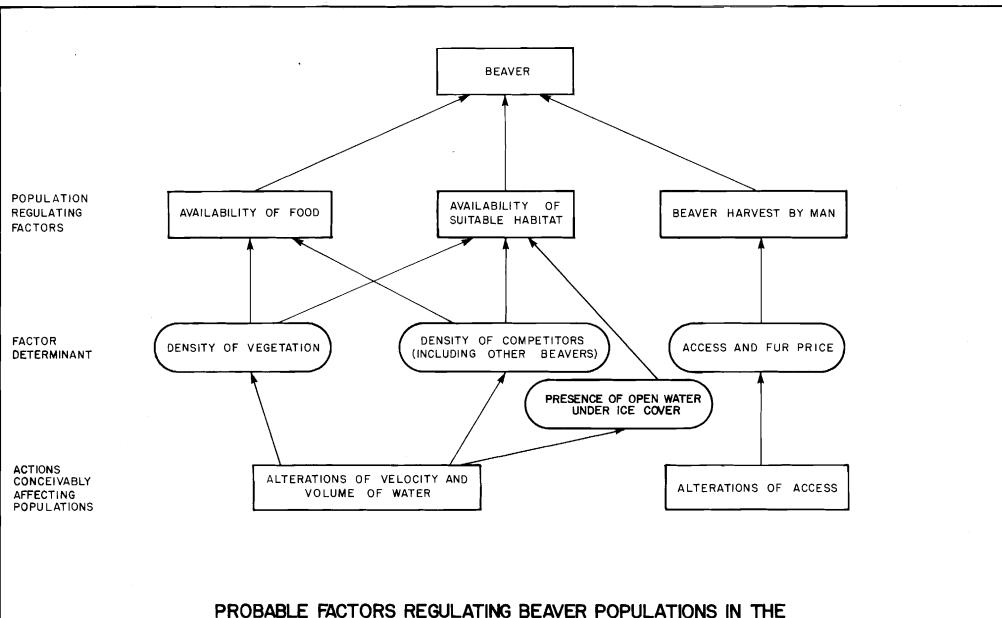
PROBABLE FACTORS REGULATING BROWN BEAR POPULATIONS IN THE SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

BLACK BEAR POPULATION AVAILABILITY OF FOOD AVAILABILITY OF FOREST REGULATING BLACK BEAR HARVEST BY MAN (VEGETATION AND MEAT) AND DEN SITES FACTORS DENSITY OF BERRIES AND DENSITY OF BEARS AND AMOUNT DENSITY OF ANIMAL FACTORS DETERMINANT ACCESS AND HUNTER OTHER EDIBLE PLANTS PREY SPECIES OF AVAILABLE FOREST EFFORT ACTIONS ALTERATIONS OF HABITAT CONCEIVABLY ALTERATIONS OF ACCESS (I.E. INUNDATION VIA IMPOUNDMENT) AFFECTING POPULATION

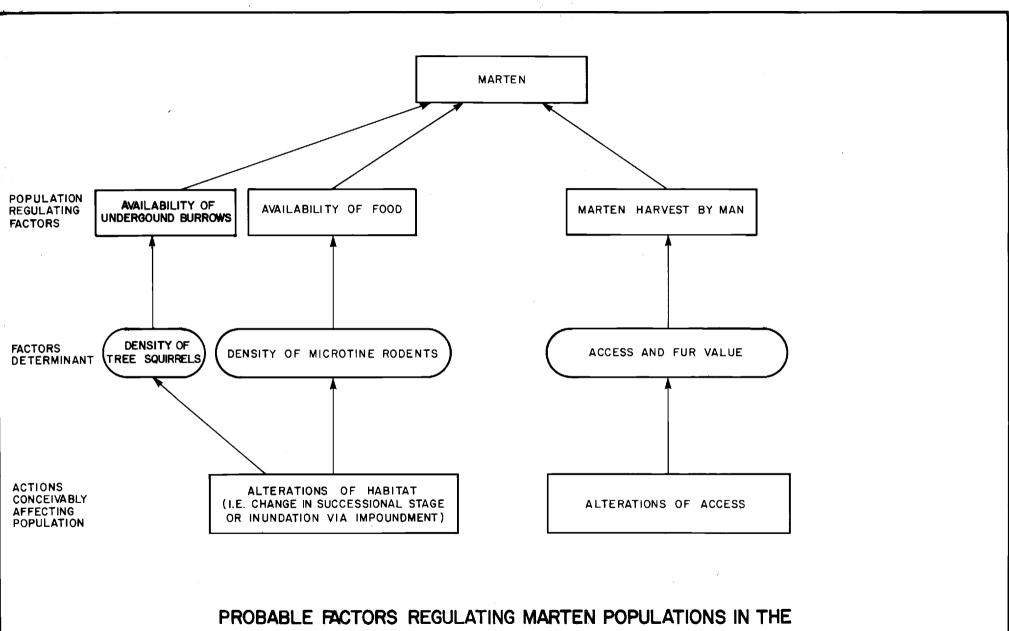
PROBABLE FACTORS REGULATING BLACK BEAR POPULATIONS IN THE SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

1

i a


Party of the second

WOLF POPULATION AVAILABILITY OF FOOD WOLF HARVEST BY MAN REGULATING FACTORS FACTORS DENSITY OF MOOSE DENSITY OF CARIBOU ACCESS AND FUR PRICE DETERMINANT ACTIONS ALTERATIONS OF HABITAT LOCATION OF WINTER HERDS CONCEIVABLY ALTERATIONS OF ACCESS (I.E. INUNDATION VIA IMPOUNDMENT) AFFECTING


POPULATION

PROBABLE FACTORS REGULATING WOLF POPULATIONS IN THE SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

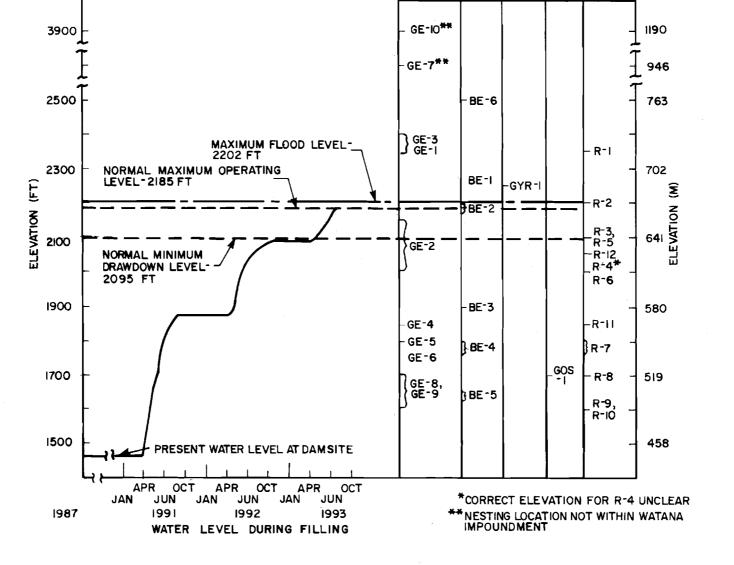
100

SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

SUSITNA BASIN AND ACTIONS THAT MIGHT AFFECT THESE POPULATIONS

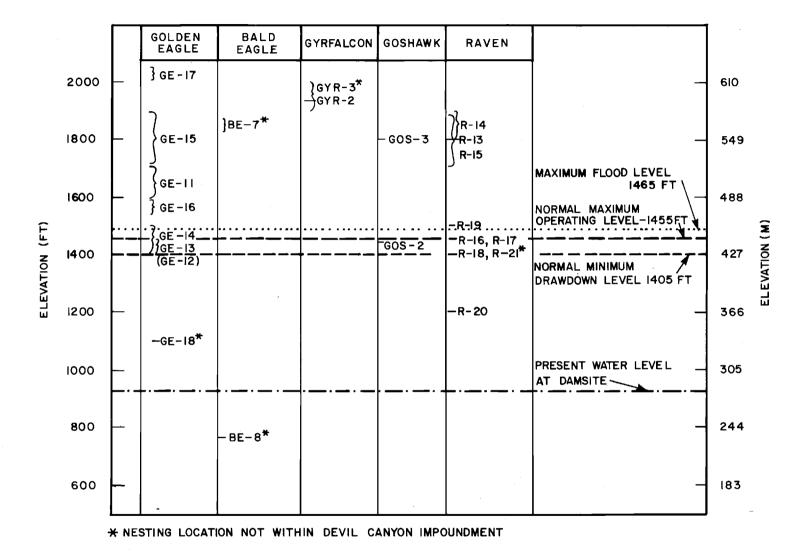
- Caracteria

1


1

1

- And

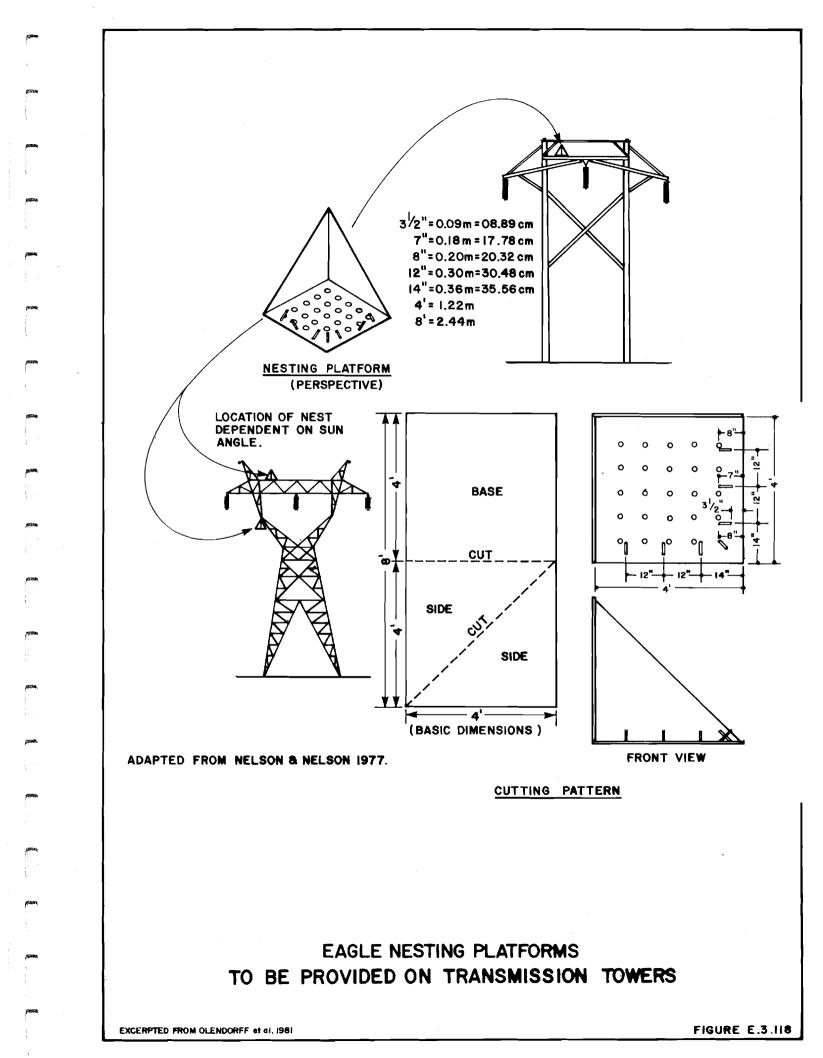

±1 dans 1

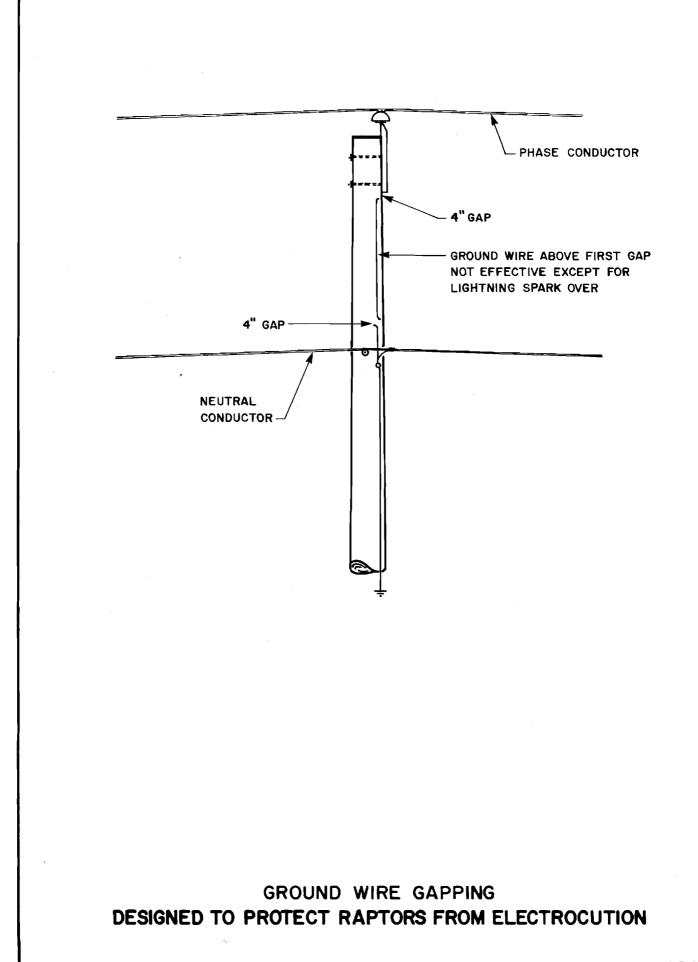
at months

ELEVATIONS OF RAPTOR AND RAVEN NESTS IN THE VICINITY OF THE WATANA IMPOUNDMENT AREA IN RELATION TO FILLING AND OPERATION WATER LEVELS

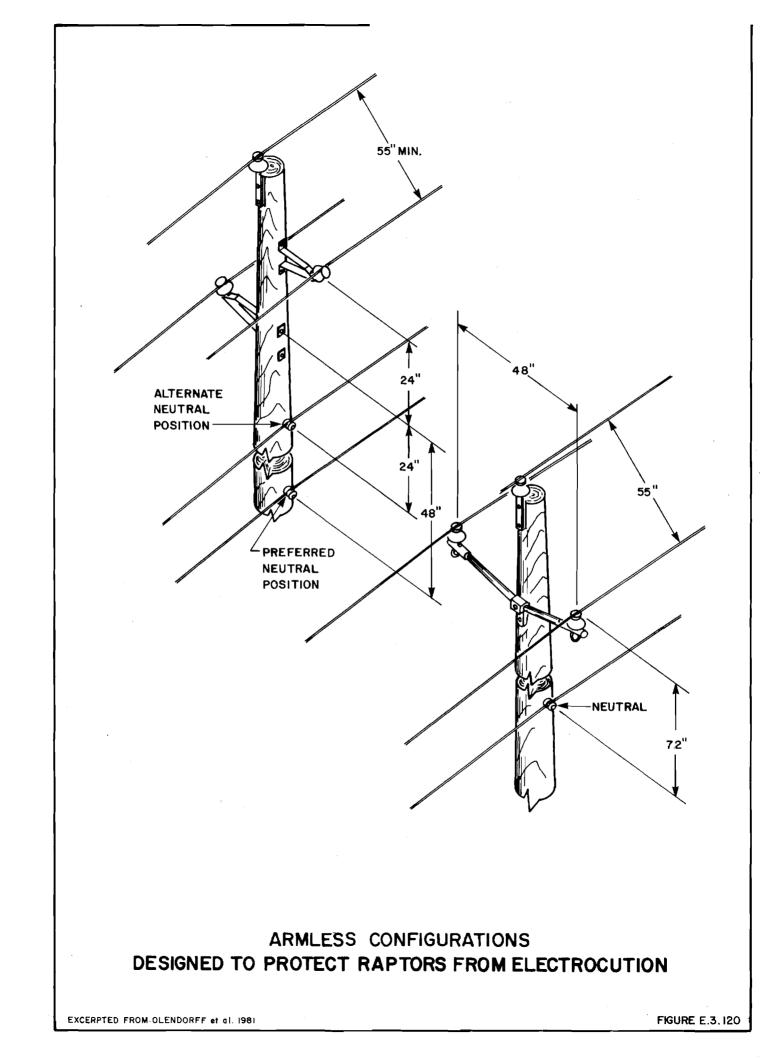
and the second

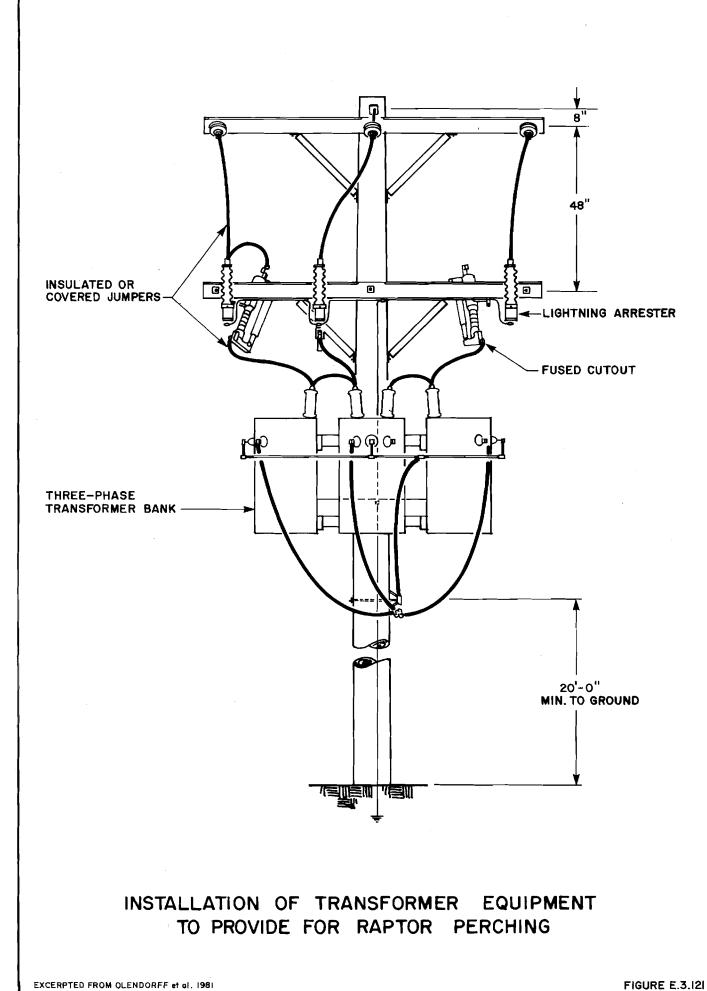
CHANGES IN ELEVATION OF THE DEVIL CANYON RESERVOIR DURING OPERATION AND ELEVATIONS OF RAPTOR AND RAVEN NESTS IN THE PROXIMITY OF THE IMPOUNDMENT ZONE

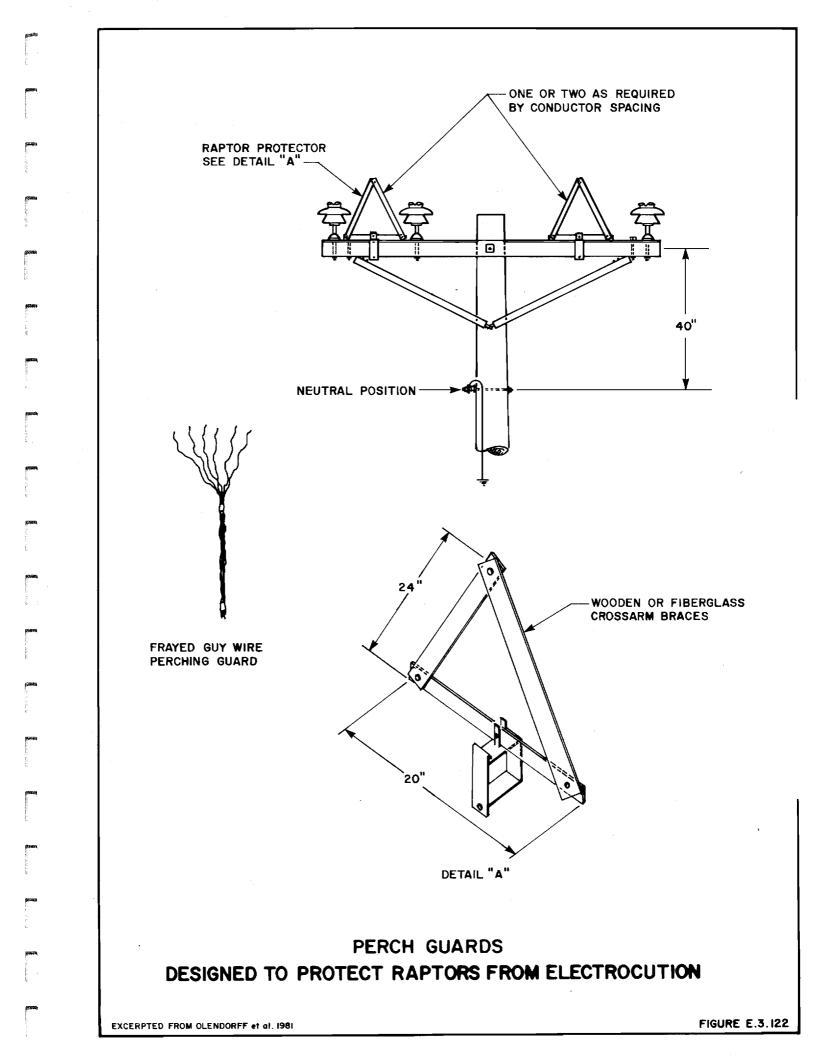

and and a

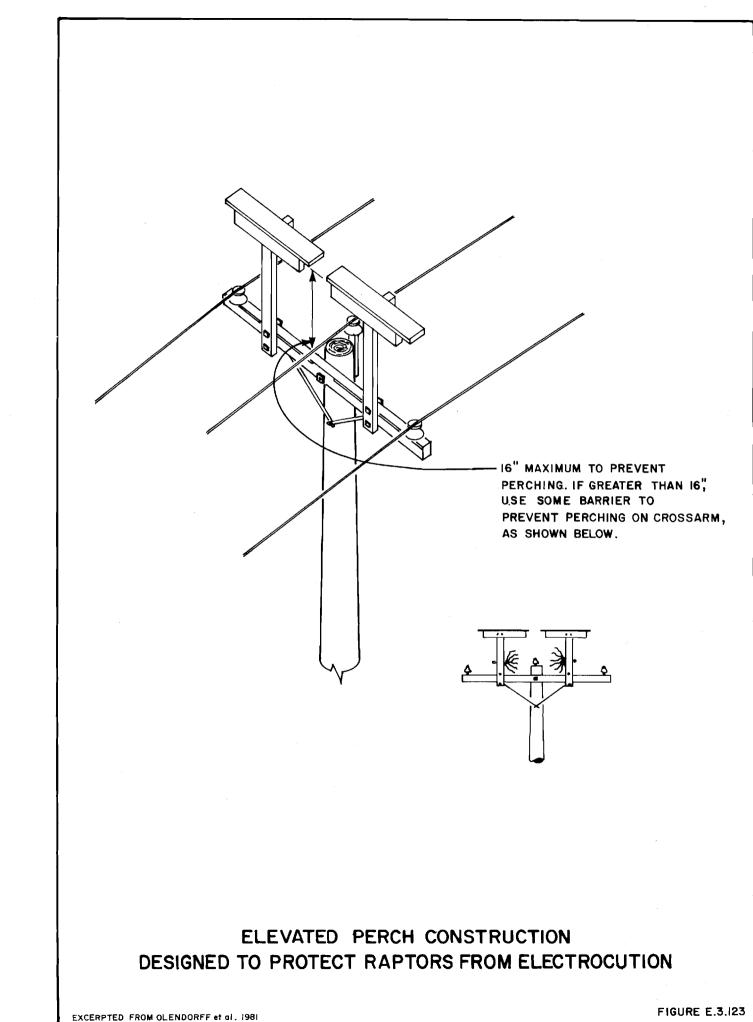

LETINE AND LANGE BROWSE AVITABLE LANGE BROWS

LEGEND:


 WILLOW, SEED REPRODUCTION WILLOW, VEGETATIVE REPRODUCTION
 BIRCH, SEED REPRODUCTION
 PIRCH SEED BEDRODUCTION
 BIRCH, VEGETATIVE REPRODUCTION
 ASPEN, VEGETATIVE REPRODUCTION


RELATIVE AMOUNTS OF MOOSE BROWSE AVAILABLE COMPARED WITH THE TIME SINCE FIRE OR OTHER DISTURBANCE IN INTERIOR ALASKA





EXCERPTED FROM OLENDORFF et al. 1981

