ø

SUMMARY OF HYDRAULIC CONDITIONS AND HABITAT FORECASTS AT 1984 MIDDLE RIVER STUDY SITES

DRAFT REPORT

Prepared for: ALASKA POWER AUTHORITY

Prepared by:

N. Diane Hilliard Shelley Williams E. Woody Trihey R. Curt Wilkinson Cleveland R. Steward, III

May 1985

TABLE OF CONTENTS

	Page
LIST OF FIGURES	vi
LIST OF TABLES	xii
LIST OF PLATES	xiii
ACKNOWLEDGEMENTS	xv
I. INTRODUCTION	I-1
II. RELATIONSHIPS BETWEEN MAINSTEM DISCHARGE, SITE FLOW AND WATER SURFACE ELEVATION	II-1
INTRODUCTION	II-1
METHODS	II-3
Staff Gage Location and Installation Data Collection Analysis	II-3 II-6 II-7
RESULTS	II-9
Site 101.2R. Site 101.5L. Site 101.7L. Site 105.8L. Site 112.6L. Site 114.1R. Site 115.0R. Site 118.9L. Site 119.1L. Site 119.2R. Site 125.2R. Site 130.2R. Site 131.3L. Site 131.7L. Site 132.6L. Site 133.8R. Site 137.5R. Site 139.7L. Site 139.4L. Site 147.1L.	II-10 II-10 II-11 II-11 II-11 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-12 II-13 II-13 II-13 II-13 II-13 II-13 II-14 II-14 II-14 II-14
DISCUSSION	II-35

TABLE OF CONTENTS (Continued)

III.	CALIBRAIT	FON AND APPLICATION OF IFG HYDRAULIC MODELS	III-1
	INTRODUCTI	10N	III-1
	METHODS		III-11
	Site Gener Gener Gener	Installation and Data Collection ral Techniques for Hydraulic Model Calibration ral Techniques for Hydraulic Model Verification ral Techniques for Hydraulic Model Application	III-11 III-14 III-18 III-26
	RESULTS		III-32
	Site	101.2R	III-32
		Site Description Calibration Verification Application	III-32 III-36 III-41 III-41
	Site	101.5L	III-45
		Site Description Calibration Verification Application	III-45 III-49 III-52 III-52
	Site	112.6L	III - 55
		Site Description Calibration Verification Application	III-55 III-61 III-64 III-4
	Site	119.2R	III -6 8
		Site Description Calibration Verification Application	III-68 III-72 III-73 III-76
	Site	131.7L	III-79
		Site Description Calibration Verification Application	III-79 III-82 III-87 III-91

Page

TAELE OF CONTENTS (Continued)

	Site	132.6L	III-93
		Site Description Calibration Verification Application	III-93 III-95 III-102 III-102
	Site	136.0L	III-105
		Site Description Calibration Verification Application	III-105 III-109 III-111 III-111
	Site	147.1L	III-117
		Site Description Calibration Verification Application	III-117 III-120 III-121 III-121 III-121
۳۷.	CALIBRATI	ON AND APPLICATION OF DIHAB MODELS	
	INTRODUCT	ION	
	METHODS		
	Site Gener Gener	Installation and Data Collection ral Techniques for DIHAB Model Calibration ral Techniques for DIHAB Model Application	·
	RESULTS		
	Site	101.7L	
		Site Description Calibration Application	
	Site	105.8L	
		Site Description Calibration Application	
	Site	114.1R	
		Site Description Calibration Application	

Page

.

Site	115.0R
	Site Description Calibration Application
Site	118.9L
	Site Description Calibration Application
Site	119.1L
	Site Description Calibration Application
Site	125.2R
	Site Description Calibration Application
Site	130.2R
	Site Description Calibration Application
Site	131.3L
	Site Description Calibration Application
Site	133.8R
	Site Description Calibration Application
Site	137.5R
	Site Description Calibration Application

TABLE OF CONTENTS (Continued)

Site	138.7L
	Site Description Calibration Application
Site	139.0L
	Site Description Calibration Application
Site	139.4L
	Site Description Calibration Application
REFERENCES	
APPENDICES	
Appendix	A - Summary of site-specific data collected to develop relationships between mainstem discharge, site flow and water surface elevation
Appendix	B - Data supporting calibration and application of IFG hydraulic models
Appendix	C - Data supporting calibration and application of DIHAB models

12:12

.

SUMMARY OF HYDRAULIC CONDITIONS AND HABITAT FORECASTS AT 1984 MIDDLE RIVER STUDY SITES

.

DRAFT REPORT

Prepared for: ALASKA POWER AUTHORITY

Prepared by:

N. Diane Hilliard Shelley Williams E. Woody Trihey R. Curt Wilkinson Cleveland R. Steward, III

May 1985

TABLE OF CONTENTS

	Page
LIST OF FIGURES	vi
LIST OF TABLES	xii
LIST OF PLATES	xiii
ACKNOWLEDGEMENTS	xv
I. INTRODUCTION	I - 1
II. RELATIONSHIPS BETWEEN MAINSTEM DISCHARGE, SITE FLOW AND WATER SURFACE ELEVATION	II-1
INTRODUCTION	II-1
METHODS	II-3
Staff Gage Location and Installation Data Collection Analysis	II-3 II-6 II-7
RESULTS	II-9
Site 101.2R. Site 101.5L. Site 105.8L. Site 105.8L. Site 112.6L. Site 114.1R. Site 115.0R. Site 118.9L. Site 119.1L. Site 119.2R. Site 125.2R. Site 130.2R. Site 131.3L. Site 131.7L. Site 132.6L. Site 133.8R. Site 136.0L. Site 137.5R. Site 139.7L. Site 139.4L. Site 147.1L. DISCUSSION.	II-10 II-10 II-11 II-11 II-11 II-12 II-13 II-13 II-13 II-13 II-14 II-35

TABLE OF CONTENTS (Continued)

III-1 CALIBRAITON AND APPLICATION OF IFG HYDRAULIC MODELS..... TTT. III-1 INTRODUCTION...... III-11 METHODS..... **III-11** Site Installation and Data Collection..... General Techniques for Hydraulic Model Calibration..... **III-14** General Techniques for Hydraulic Model Verification..... **III-18 III-26** General Techniques for Hydraulic Model Application..... **III-32** RESULTS **III-32** Site 101.2R...... Site Description..... **III-32 III-36** Calibration **III-41** Verification..... III-41 Application...... **III-45** Site 101.5L..... **III-45** Site Description..... Calibration..... **III-49** III-52 Verification..... **III-52** Application..... 1II-55 Site 112.6L..... Site Description..... III-55 111-61 Calibration **III-64** Verification..... III-4 Application..... Site 119.2R..... **III-68** Site Description..... **III-68** Calibration.... **III-72** III-73 Verification..... Application..... **III-76** Site 131.7L..... 1II-79 Site Description..... **III-79** Calibration..... **III-82 III-87** Verification..... Application..... III-91

Page

TABLE OF CONTENTS (Continued)

	Site	132.6L	III-93
		Site Description Calibration Verification Application	I1I-93 III-95 III-102 III-102
	Site	136.0L	III - 105
		Site Description Calibration Verification Application	III-105 III-109 III-111 III-111
	Site	147.1L	III-117
		Site Description Calibration Verification Application	III-117 III-120 III-121 III-121
IV.	CALIBRATI	ON AND APPLICATION OF DIHAL MODELS	
	INTRODUCT	ION	
	METHODS		
	Site Gene Gene	Installation and Data Collection ral Techniques for DIHAB Model Calibration ral Techniques for DIHAB Model Application	
	RESULTS		
	Site	101.7L	
		Site Description Calibration Application	
	Site	105.8L	
		Site Description Calibration Application	
	Site	114.1R	
		Site Description Calibration Application	

Page

÷

Site	115.0R
	Site Description Calibration Application
Site	118.9L
	Site Description Calibration Application
Site	119.1L
	Site Description Calibration Application
Site	125.2R
	Site Description Calibration Application
Site	130.2R
	Site Description Calibration Application
Site	131.3L
	Site Description Calibration Application
Site	133.8R
	Site Description Calibration Application
Site	137.5R
	Site Description Calibration Application

Site	138.7L
	Site Description Calibration Application
Site	139.0L
	Site Description Calibration Application
Site	139.4L
	Site Description Calibration Application
REFERENCES	
APPENDICES	
Appendix /	A - Summary of site-specific data collected to develop relationships between mainstem discharge, site flow and water surface elevation
Appendix I	 B - Data supporting calibration and application of IFG hydraulic models
Appendix (C - Data supporting calibration and application of DIHAB models

LIST OF FIGURES

Figure	II-1.	Middle river study sites	II-2
Figure	II-2.	Flow durations curves for June, July, August, and September, based on mean daily Susitna River discharges at Gold Creek, 1950-1984 and corre- sponding flow exceedence values for mean monthly discharges, 1981-1984	II-4
Figure	II-3.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 8 at site 101.2R	II-15
Figure	II-4.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 1 at site 101.5L	II - 16
Figure	II-5.	Stage discharge curves for cross sections 1, 3 and 4 at site 101.7L	II-17
Figure	II-6.	Stage discharge curves for cross sections 1 and 4 at site 105.8L	II-19
Figure	II-7.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 7 at site 112.6L	II-20
Figure	II-8.	Stage discharge curve for cross section 2 at site 114.1R	II-21
Figure	II-9.	Stage discharge curve for cross section 1 at site 115.0R	II-21
Figure	II-10.	Stage discharge curve for cross section 2 at site 118.9L	II-22
Figure	II-11.	Stage discharge curve for cross section 2 at site 119.1L	II-22
Figure	II-12.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 3 at site 119.2R	II-23
Figure	II - 13.	Stage discharge curve for cross section 1 and relationships between mainstem discharge, site flow and water surface elevation for cross section 2 at site 125.2R	II-24
Figure	II-14.	Stage discharge curve for cross section 2 at site 130.2R	II-26

Page

Page

.

Figure II-15.	Stage discharge curve for cross sections 1 and 3 at site 131.3L	II-26
Figure II-16.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 3 at site 131.7L	II-27
Figure II-17.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 132.6L	II - 28
Figure II-18.	Stage discharge curve for cross section 3 at site 133.8R	II-29
Figure II-19.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 136.0L	II-30
Figure II-20.	Stage discharge curves for cross sections 1 and 2 at site 137.5R	II-31
Figure II-21.	Stage discharge curve for cross section 2 at site 138.7L	II-32
Figure II-22.	Stage discharge curve for cross section 2 at site 139.0L	II-32
Figure II-23.	Stage discharge curve for cross section 2 at site 139.4L	II-33
Figure II-20.	Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 147.1L	II-34
Figure III-1.	Middle river IFG and DIHAB modeling sites	III-1
Figure III-2.	Juvenile chinook salmon suitability criteria for depth applicable to clear and turbid water habitats. Source: Schmidt et al. 1984	III-27
Figure III-3.	Juvenile chinook salmon suitability criteria for velocity applicable to clear and turbid water habitats. Source: Schmidt et al. 1984, EWT&A and WCC 1985	III-28
Figure III-4.	Cover suitability criteria recommended for use in modeling juvenile chinook habitat under clear and turbid water conditions. Sources: Schmidt et al. 1984, EWT&A and WCC 1985	III-29

Figure III-5.	Cross sections for 101.2R study site depicting water surface elevations at calibration dis- charges of 25 and 279 cfs	III-34
Figure III-6.	Comparison between measured and adjusted cross sections 1, 3 and 4 at 101.2R study site	III-38
Figure II1-7.	Comparison of observed and predicted water surface profiles from calibrated model at 101.2R study site	III-39
Figure III-8.	Comparison between water surface elevations forecast by the calibrated hydraulic models and the stage-flow relationship for 101.2R cross section 8	III-40
Figure III-9.	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 101.2R modeling site	III-42
Figure III-10.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 101.2R modeling site	III-46
Figure III-11.	Cross sections for 101.5L study site depicting water surface elevations at calibration dis- charges of 1696 and 4500 cf	III-48
Figure III-12.	Comparison of observed and predicted water surface profiles from calibrated model at 101.5L study site	III - 51
Figure III-13.	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 101.5L modeling site	III-54
Figure III-14.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 101.5L modeling site	III-56
Figure III-15.	Cross sections for 112.6L study site depicting water surface elevations at calibration dis- charges of 215, 355, 721 and 1430 cfs	III-59
Figure III-16.	Comparison between measured and adjusted cross sections 2, and 8 at 112.6L study site	III-63
Figure III-17.	Comparison of observed and predicted water surface profiles from calibrated models at 112.6L study site	III-65

Figure	III-18.	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 112.6L modeling site	III-67
Figure	III-19.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 112.6L modeling site	III-69
Figure	III-20.	Cross sections for 119.2R study site depicting water surface elevations at calibration dis- charge of 316 cfs	III-71
Figure	III-21.	Comparison between measured and adjusted cross sections 1, 2 and 3 at 119.2R study site	III-74
Figure	III-22.	Comparison of observed and predicted water surface profiles from calibrated model at 119.2R study site	III-75
Figure	III -23 .	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 119.2R modeling site	III-77
Figure	III-24.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 119.2R modeling site	III-80
Figure	III - 25.	Cross sections for 131.7L study site depicting water surface elevations at calibration dis- charges of 18, 55, 150 and 240 cfs	III-83
Figure	III-26.	Comparison between measured and adjusted cross sections 2, 6 and 7 at 131.7L study site	III-88
Figure	III-27.	Comparison of observed and predicted water surface profiles from calibrated model at 131.7L study site	III-89
Figure	III-28.	Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 131.7L cross section 3	III-90
Figure	III-29.	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 131.7L modeling site	III-92
Figure	III-30.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 131.7L modeling site	III-94

 Figure III-32. Comparison between measured and adjusted cross section 9 at 132.6L study site	Figure III-3	 Cross sections for 132.6L study site depicting water surface elevations at calibration dis- charges of 27 and 141 cfs 	I - 96
 Figure III-33. Comparison of observed and predicted water surface profiles from calibrated model at 132.6L study site	Figure III-3	2. Comparison between measured and adjusted cross section 9 at 132.6L study site II	I-99
 Figure III-34. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 132.6L cross section 3 III-101 Figure III-35. Project ons of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 132.6L modeling site III-104 Figure III-36. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 132.6L modeling site III-106 Figure III-37. Cross sections for 136.0L study site depicting water surface elevations at calibration discharges of 81, 153 and 265 cfs III-108 Figure III-38. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III-110 	Figure III-3	3. Comparison of observed and predicted water surface profiles from calibrated model at 132.6L study site III	-100
 Figure III-35. Project ons of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 132.6L modeling site III-104 Figure III-36. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 132.6L modeling site III-106 Figure III-37. Cross sections for 136.0L study site depicting water surface elevations at calibration discharges of 81, 153 and 265 cfs III-108 Figure III-38. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III-110 	Figure III-3	4. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 132.6L cross section 3 III	-101
 Figure III-36. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 132.6L modeling site III-106 Figure III-37. Cross sections for 136.0L study site depicting water surface elevations at calibration discharges of 81, 153 and 265 cfs III-108 Figure III-38. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III-110 	Figure III-3	 Project ons of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 132.6L modeling site III 	-104
Figure III-37. Cross sections for 136.0L study site depicting water surface elevations at calibration dis- charges of 81, 153 and 265 cfs III-108Figure III-38. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III-110	Figure III-3	5. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 132.6L modeling site III	-106
Figure III-38. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III-110	Figure III-3	 Cross sections for 136.0L study site depicting water surface elevations at calibration dis- charges of 81, 153 and 265 cfs	-108
	Figure III-3	3. Comparison of observed and predicted water surface profiles from calibrated model at 136.0L study site III	-110

Figure III-39. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 136.0L cross section 4..... III-114
Figure III-41. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 136.0L modeling site..... III-115

Figure III-42. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 136.0L modeling site..... III-116

Figure	III-43.	Cross sections for 147.1L study site depicting water surface elevations at calibration dis- charges of 1907 and 5600 cfs	III-11 9
Figure	III-44.	Comparison of observed and predicted water surface profiles from calibrated model at 147.1L study site	III-122
Figure	III-45.	Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 147.1L modeling site	III-124
Figure	III-46.	Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 147.1L modeling site	III - 126

LIST OF TABLES

Pa	ge
----	----

II-6	Identification codes for staff gages	Table II-1.
I I I - 4	Description of habitat transformation cat- egories. Source: Aaserude et al. 1985	Table III-1.
III-3	Types of hydraulic models applied at 1984 middle river modeling sites for rearing chinook	Table III-2.
III-12	Substrate code classification	Table III-3.
III-12	Cover code classification	Table III-4.
III-30	Cover suitability criteria recommended for use in modeling juvenile chinook habitat under clear and turbid water conditions. Source: Schmidt et al. 1984 and EWT&A and WCC 1985	Table III-5.
III-37	Hydraulic data available to calibrate IFG-4 model for site 101.2R	Table III-6.
III-49	Hydraulic data available to calibrate IFG-2 model for site 101.5L	Table III-7.
III-61	Hydraulic data available to calibrate the IFG-2 model for site 112.6L	Table III-8.
III-72	Hydraulic data available to calibrate the IFG-4 model for site 119.2R	Table III-9.
III - 86	Hydraulic data available to calibrate the IFG-4 model for site 131.7L	Table III-10.
III-98	. Hydraulic data available to calibrate the IFG-4 model for site 132.6L	Table III-11.
III-109	. Hydraulic data available to calibrate the IFG-4 model for site 136.0L	Table III-12.
III-120	Hydraulic data available to calibrate the IFG-2 model for site 147.1L	Table III-13.

LIST OF PLATES

Page

Plate III-1.	Modeling site 101.2R on June 1, 1982 at mainstem discharge: 23,000 cfs	III-33
Plate III-2.	Modeling site 101.5L on June 1, 1982 at mainstem discharge: 23,000 cfs	III-47
Plate III-3.	Modeling site 112.6L on September 6, 1983 at mainstem discharge: 16,000 cfs	III-57
Plate III-4.	Modeling site 119.2R on June 1, 1982 at mainstem discharge: 23,000 cfs	III-70
Plate III-5.	Modeling site 131.7L on June 1, 1982 at mainstem discharge: 23,000 cfs	III-81
Plate III-6.	Modeling site 132.6L on June 1, 1982 at mainstem discharge: 23,000 cfs	III-85
Plate III-7.	Modeling site 136.0L on June 1, 1982 at mainstem discharge: 23,000 cfs	III-107
Plate III-8.	Modeling site 147.1L on June 1, 1982 at mainstem discharge: 23,000 cfs	III - 118
Plate IV-1.	Modeling site 101.7L on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-2.	Modeling site 105.8L on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-3.	Modeling site 114.1R on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-4.	Modeling site 115.0R on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-5.	Modeling sites 118.9L and 119.1L on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-6.	Modeling site 125.2R on June 1, 1982 at mainstem discharge: 23,000 cfs	
Plate IV-7.	Modeling site 130.2R on September 6, 1983 at mainstem discharge: 16,000 cfs	
Plate IV-8.	Modeling site 131.3L on June 1, 1982 at mainstem discharge: 23,000 cfs	

LIST OF PLATES (Continued)

Plate IV-9.	Modeling site 133.8R on June 1, 1982 at mainstem discharge: 23,000 cfs
Plate IV-10.	Modeling site 137.5R on June 1, 1982 at mainstem discharge: 23,000 cfs
Plate IV-11.	Modeling sites 128.7L, 139.0L and 139.4L on June 1, 1982 at mainstem discharge: 23,000 cfs

ACKNOWLEDGEMENTS

Preparation of this report was funded by the Alaska Power Authority as part of the licensing studies for the proposed Susitna Hydroelectric Project. The engineering and environmental studies being conducted to support the Application for License are directed by Harza-Ebasco Susitna Joint Venture.

ADF&G Su Hydro provided essential support for the successful completion of the field studies, rating curve analysis and model calibration. In addition ADF&G had lead responsibility for data base management and preparation of the three appendices which accompany the main text. The ADF&G Su Hydro staff who participated in the field studies, analyses, and report preparation are listed below:

Andy Hoffmann	Sheryl Salasky
Karen Meier	Kathy Johnson
John McConnaughy	Jim Anderson
Kathy Sheehan	Jeff Bigler
Dan Kingsley	Allen Bingham
Mary Shiffer	Donna Buckholtz
	Alice Freeman

John McConnaughy developed and applied numerous computer programs which facilitated data reduction and model calibration. In addition he produced the site specific WUA and time series plots. Allen Bingham selected the statistical analyses and assembled the data base necessary to test the degree to which models were calibrated. Special recognition is given Karen Meier for completing the rating curve analysis and drafting section II of this report as well as coordinating the ADF&G effort which supported the preparation of this work.

ХV

PART I

INTRODUCTION

This report presents data reduction methods and results of the 1984 field studies conducted by E. Woody Trihey and Associates (EWT&A) and the Alaska Department of Fish and Game Su Hydro Aquatic Studies Group (ADF&G Su Hydro) in the Talkeetna-to-Devil Canyon segment of the Susitna River (Middle River). Although field studies and analyses described in this report were completed by a joint EWT&A and ADF&G Su Hydro study team, the primary responsibility for the field study design, hydraulic model calibration and preparation of this report rests with EWT&A. Thus the information and technical interpretations in this report are the responsibility of EWT&A and do not necessarily represent the opinion of the Alaska Department of Fish and Game.

The response of fish habitat to naturally occurring variations in streamflow could not be cost-effectively evaluated solely by monitoring a system as large as the middle Susitna River. Therefore, at the onset of the 1982 field studies the U.S. Fish and Wildlife Service's Instream Flow Incremental Methodology (IFIM) (Bovee 1982) was selected as a means of quantifying the response of aquatic habitats to changes in streamflow. PHABSIM is a collection of computer programs associated with the IFIM which can be applied to simulate instream hydraulic conditions and the corresponding amount of available fish habitat for selected species/life stage. The PHABSIM modeling system is intended for use in those situations where the flow regime and channel structure are the major factors influencing the availability of fish habitat (Trihey 1979). The PHABSIM computer programs include the IFG-2

I-1

and IFG-4 hydraulic models, and the HABTAT program. The HABTAT program integrates hydraulic model output with species specific habitat suitability criteria to calculate weighted usable areas (WUA), an index value representing the availability of potential fish habitat as a function of streamflow. Habitat modeling results presented in this report are limited to juvenile chinook salmon (<u>Oncorhynchus tshawytscha</u>) and spawning chum salmon (<u>O. keta</u>). These species/life stages have been identified as primary evaluation species for the Middle River (EWT&A and WCC 1985). Habitat variables important to rearing fish differ significantly from those of adult spawners. Therefore, different modeling concepts and combinations of physical habitat variables are used to evaluate the response of spawning and rearing habitats to incremental changes in streamflow.

The IFG-2 and IFG-4 hydraulic models were calibrated for eight side channels of the Middle River and linked with the HABTAT program to forecast the influence of incremental changes in streamflow on juvenile chinook rearing habitat. A modified version of the HABTAT program (DIHAB) was developed by EWT&A to calculate WUA directly from measured depths and velocities at observed streamflows thereby eliminating the need for hydraulic simulation models in those instances where the WUA response is principally determined by flow effects on depth. The DIHAB model was applied at 14 mainstem margin and backwater areas to evaluate the influence of mainstem discharge on chum salmon spawning habitat.

This report consists of an introduction and three technical sections, each supported by a technical appendix, which describe the field data and analytical procedures used to model the response of juvenile chinook and

I-2

spawning chum habitat to incremental changes in streamflow. The first technical section (Part II) describes the stage-discharge and site flow analysis which presents various relationships between mainstem discharge, site-specific flow, and water surface elevation that are extensively used in subsequent analyses to: appraise the accuracy of calibrated IFG models, estimate sitespecific water surface elevations at modeling sites for different mainstem discharges, and convert the mainstem hydrograph into a site-specific flow hydrograph.

In Part III of this report, calibration procedures for the eight IFG hydraulic models are described in detail and WUA forecasts obtained by linking the calibrated hydraulic models to the HABTAT model are presented for juvenile Suitable rearing conditions for juvenile chinook are dependent on chinook. cover and low to moderate velocities. The Susitna River conveys glacial runoff during the summer growing season, and the associated turbidities provide cover for rearing chinook (Schmidt et al. 1984). Therefore, under natural conditions, object cover (such as provided by substrate, debris, or overhanging vegetation) is generally not as important a factor to juvenile chinook in turbid water habitats of the middle river as it would be in a large non glacial river. Habitat suitability criteria for cover, velocity and depth used in this report are based upon data collected in Middle River habitats (Schmidt et al. 1984) have been derived as described in EWT&A and WCC 1985. Rearing habitat for juvenile chinook at each study site is expressed as the relationship between WUA and mainstem discharge. In addition \wedge time series WUA \checkmark plots based on the 1984 USGS record of average daily streamflows for the Susitna River at Gold Creek are provided to indicate the temporal stability of

I-3

rearing conditions at the study sites throughout the open water growing season (May 20 - September 15).

South and the second seco

Part IV of this report presents the evaluation of chum spawning habitat using the direct input habitat model (DIHAB) developed by EWT&A. The availability of chum salmon spawning habitat is highly dependent upon the presence of upwelling and suitable substrate (Estes and Vincent-Lang 1984). Although the location of upwelling areas is generally fixed, use of these areas by spawning chum is influenced by mainstem discharge. High velocities may periodically limit the availability of upwelling areas, or abnormally low mainstem discharges during the spawning season may dewater or limit access to upwelling areas.

Since most of the reported chum spawning in side channel and mainstem habitats occurs along shoreline margins or in backwater areas (Barrett et al. 1984), depth is the principal variable influencing the response of the WUA curve to variation in discharge. Hence the direct input habitat model (DIHAB) which can utilize site-specific stage-discharge relationships as input data was chosen over the IFG hydraulic models which also require detailed measurement of velocity for proper calibration.

Habitat suitability criteria for spawning chum salmon used with the direct input model are based on data collected in the middle river (Estes and Vincent-Lang 1984), and review of pertinent literature (Steward 1985). Chum spawning habitat is described at each study site as a relationship between WUA and mainstem discharge, as well as by time series plots based on 1984 average daily streamflow records for the Susitna River at Gold Creek.

1-4

PART II

RELATIONSHIPS BETWEEN MAINSTEM DISCHARGE, SITE FLOW AND WATER SURFACE ELEVATION

INTRODUCTION

The proposed Susitna hydroelectric project would alter the natural flow regime of the middle Susitna River, thereby influencing the mainstem water surface elevation (stage) which in turn affects stage and flow in side channel areas. During the 1984 field season, staff gages were installed to monitor changes in water surface elevations at 22 mainstem and side channel study sites (Figure II-1). Site specific data were collected to develop relationships between mainstem discharge, site flow and water surface elevation. Generally, these relationships can be described by discontinuous linear regression equations using logarithmic transformed variables.

The objective of this portion of the 1984 middle river modeling studies was to monitor water surface elevation at mainstem and side channel study sites and obtain site-specific flow measurements to develop quantitative relationships between: a) mainstem stage and mainstem discharge (WSEL vs. Q); b) site flow and stage (q vs. WSEL); and c) site flow and mainstem discharge (q vs. Q). These relationships are extensively used in the calibration and application of models used to evaluate chinook rearing habitat (Part III of this report), and in the application of direct input habitat models for chum salmon spawning (Part IV of this report).

Figure II-1. Middle river study sites.

Flow duration analyses are useful in comparing discharge magnitudes of a particular year to those occurring over the historical period of record. Figure II-2 shows the range of mean daily discharges at Gold Creek between 1950 and 1984 for the months of June, July, August, and September, as well as the percent of time flows were equalled or exceeded.

The 50-percent exceedence value represents a typical medium discharge, the 90-percent, a typical low discharge, and the 10-percent, a typical high. The exceedence value corresponding to the mean monthly discharges during the years 1981, 1982, 1983, and 1984 are also shown in Figure II-2.

METHODS

<u>Staff gage location and installation</u>: Leopold and Stevens staff gages graduated in 0.01 foot increments from zero to 3.33 feet were installed at all modeling sites during August 1984. Staff gages were located on each cross section within the IFG study sites to facilitate obtaining water surface elevations without surveying long distances when collecting multiple sets of calibration data from the hydraulic models. Often as many as three tiered staff gages were installed per cross section to span the variations in WSEL which was associated within the range of mainstem discharges being monitored. Each staff gage was surveyed to a known elevation (project datum) previously established throughout the middle river by R&M Consultants, Inc. from 1980 through 1982. This allowed conversion of site-specific water surface elevation readings to a common elevation throughout the middle river.

II-3

Figure II-2. Flow durations curves for June, July, August, and September, based on mean daily Susitna River discharges at Gold Creek, 1950-1984 and corresponding flow exceedence values for mean monthly discharges, 1981-1984.

August

Figure II-2. Flow durations curves for June, July, August, and September, based on mean daily Susitna River discharges at Gold Creek, 1950-1984 and corresponding flow exceedence values for mean monthly discharges, 1981-1984.

**

Staff gage locations were identified by river mile (RM), location within the site, position relative to flow level (high, medium, low) and the associated cross section number (Table II-1).

Table II-1. Identification codes for staff gages.

al an		nan in der Bereichen der B	Betra the compared was made and the distance of the state	יער אין אין אייראר אין אין אייראר איין אין אייראר אייראר אייראר אייראר אייראר אייראר אייראר אייראר אייראר אייר	tinini te
	Location in Site	Code	Flow Level	Code	
	Mainstem	М	High	A	
	Side Channel	S	Medium	B	
	Side Channel Mouth	W	Low	С	
	Side Channel Head	Н			
	Other	Х			
	Spawning Sites	Р			

Low water gages were typically installed and surveyed to a known elevation in September when the medium flow gages were about to be dewatered because of receding streamflows.

<u>Data Collection</u>: Staff gage readings were obtained at three to five different mainstem discharge levels during the August through October field season. Gage height was read to the nearest 0.01 ft. Water surface elevations were surveyed by differential leveling to the nearest 0.01 ft if the staff gages were dewatered, and during cross section and thalweg surveys.

Site-specific flow measurements were obtained at one cross section in each IFG model site at a minimum of three different mainstem discharges. The discharge

cross section was located in a stable portion of the study site where the velocity distribution remained relatively constant over a range of flows. Most discharge cross sections were located at the head of a riffle or in the transition zone between a riffle and run.

Flow measurements were obtained using a top-set wading rod and Marsh-McBirney electronic flow meters, or Price AA meters. Depth and velocity measurements were taken across each cross section at 20 to 25 points (verticals) in accordance with standard methods of the U.S. Geological Survey. If the flow velocity was not perpendicular to the cross section, the flow angle was recorded. Site flow was calculated with a hand calculator or an Epson HX-20 portable computer using the formula:

$$q = \sum_{i=1}^{n} (d_i) \times (w_i) \times (V_i) \times \alpha_i$$

where:

More detailed procedures for staff gage location and streamflow measurement may be found in the FY84 ADF&G Su Hydro Aquatic Studies Procedures Manual (ADF&G Su Hydro 1984).

Average daily streamflows for the Susitna River at Gold Creek were obtained from the U.S. Geological Survey gaging station located at Gold Creek (USGS 15292000). Instantaneous discharges were calculated from a time-lag analysis in those instances when rapidly rising or falling mainstem discharges complicated use of mean daily values.

Streamflow and water surface elevation data were tabulated in a Analysis: Wordstar file using an IBM PC XT and transferred to a Lotus file for graphing as log/log plots. Water surface elevation (y-axis) was plotted against mean daily discharge at Gold Creek (x-axis) for the 22 study sites. Plots of water surface elevation at the site and site flow versus mainstem discharge were also prepared for the eight IFG model sites. Each plot was visually inspected for outliners and, if necessary, the erroneous data points were corrected. Least squares regression equations describing relationships between the dependent and independent variables were calculated for each staff gage using a programmable HP 41 CF calculator. Extrapolation limits of the regression equations were established based on several factors: the number of data points, channel geometry, and breaching or controlling mainstem discharge. The breaching flow for each side channel study site was determined from field data or inspection of aerial photographs taken at several different mainstem discharges (Klinger-Kingsley 1985). The reviewed data were transferred to the Boeing mainframe computer for final analysis to confirm regression equations and for final plotting.

The relationship between side channel flow or stage and mainstem discharge is dependent upon the location of the staff gage in the side channel (head or mouth) and whether the side channel is breached or not breached. Observations regarding the breached or non-breached condition of the side channel were recorded with each staff gage reading. This information was used to interpret the computer graphics and identify the influence of mainstem stage on breaching the head of the side channel or causing a backwater at the mouth. Observvations regarding breached and non-breached conditions also assisted with identifying the mainstem discharge above which side channel flow was "controlled" by mainstem discharge. An inflection point on the site flow versus mannetem discharge plot identifies the transition from non-controlled to controlled flow conditions in the side channel. In general, the controlling mainstem discharge is equal to or slightly greater than the breaching discharge depending upon the shape of the chanrel cross section at the head of the side channel (Aaserude et al. 1985).

RESULTS

Site specific flow and water surface elevations were monitored from August through October 1984, spanning the range of mainstem discharges of 4,000 to 34,200 cfs, as measured at Gold Creek. Whenever the mainstem discharge was sufficient to breach the side channel study sites (generally 8,000 to 10,000 cfs), direct relationships between mainstem discharge and side channel flow and water surface elevations were obtained. When channels were unbreached, their water surface elevations were influenced by local inflow, channel geometry and mainstem backwater. The site flow was influenced by upwelling, tributary inflow or local runoff. Hence relationships were not determined for these conditions.

Mainstem discharges at Gold Creek in 1984 were similar or slightly lower than typical discharges determined from the 35 year record (Figure II-2). Mean monthly discharges for June, July, August, and September corresponded to flow exceedence values of 50, 29, 52, and 73 percent, respectively.

11-9

Three relationships (site-specific water surface elevation versus mainstem discharge, site flow versus site-specific water surface elevation, and site flow versus mainstem discharge) are presented on one page for each IFG model site. The relationships between site-specific water surface elevations and mainstem discharge are presented for each of the 14 direct input model sites (Figures II-3 to II-24). Figures A-1.1 to A-1.7 present the water surface elevation of the discharge plots for all IFG cross sections with the exception of the discharge cross sections. Tables A-1.1 through A-1.22 present the data used in all plots and in the development of regression equations.

<u>Site 101.2R</u>: As indicated by inflection points in Figure III-3, the side channel breaches at 9,200 cfs and becomes controlled at 10,300 cfs. Staff gages at cross sections 2 and 5 are located in the right channel which becomes active at 14,000 cfs. The gravel bar which separates the main and right channels becomes submerged near 18,000 cfs and consequently, the same water surface elevation occurs in both channels above that flow.

is not an entres of the

<u>Site 101.5L</u>: The channel is controlled by the mainstem at discharges greater than 5,000 cfs. A large backwater area is present at the mouth of the channel. As mainstem discharge increases, the effect of mainstem backwater on stage extends further upstream. This is reflected in the inflection points for the stage-discharge curves which occur at increasingly higher mainstem discharge with increasing distance from the mouth of the channel (Figure II-4).

-10
Three relationships (site-specific water surface elevation versus mainstem discharge, site flow versus site-specific water surface elevation, and site flow versus mainstem discharge) are presented on one page for each IFG model site. The relationships between site-specific water surface elevations and mainstem discharge are presented for each of the 14 direct input model sites (Figures II-3 to II-24). Figures A-1.1 to A-1.7 present the water surface elevation of the discharge plots for all IFG cross sections with the exception of the discharge cross sections. Tables A-1.1 through A-1.22 present the - .a used in all plots and in the development of regression equations.

they all and a

<u>Site 101.2R</u>: As indicated by inflection points in Figure III-s, the side channel breaches at 9,200 cfs and becomes controlled at 10,300 cfs. Staff gages at cross sections 2 and 5 are located in the right channel which becomes active at 14,000 cfs. The gravel bar which separates the main and right channels becomes submerged near 18,000 cfs and consequently, the same water surface elevation occurs in both channels above that flow.

<u>Site 101.5L</u>: The channel is controlled by the mainstem at discharges greater than 5,000 cfs. A large backwater area is present at the mouth of the channel. As mainstem discharge increases, the effect of mainstem backwater on stage extends further upstream. This is for the stage-discharge curves which oc discharge with increasing distance from II-4).

<u>Site 101.7L</u>: A backwater area extends from below cross section 1 upstream to cross section 2 at mainstem discharges of 9,600 cfs or less. A gravel bar extends from the head to cross section 1 along the right side of the channel which is overtopped at 9,600 cfs. The amount of flow over the gravel bar determines the flow at cross section 1. Cross sections 2 through 4 are only affected by backwater above 9,600 cfs until the head of the site is breached at discharges greater than 23,000 cfs (Figure II-5).

<u>Site 105.8L</u>: The mainstem channel shape is constant below a discharge of 24,000 cfs. As indicated by the inflection points in Figure II-6, the water surface elevation associated with 24,000 cfs is coincident with a change in cross sectional geometry.

<u>Site 112.6L</u>: The channel is controlled by the mainstem at discharges greater than 5,000 cfs. At the discharge cross section, a linear curve describes the relationship between discharge and water surface elevation for the entire mainstem range of 5,000 to 35,000 cfs (Figure II-7). When developing the relationship between site flow and mainstem discharge, a high correlation was found to exist between the lower four data points. Including the fifth data point, resulted in a much lower correlation, suggesting an inflection point exists in the relationship. The physical explanation for the change in slope is probably the head berm geometry. Near 10,800 cfs the water surface elevation at the head berm may coincide with a cross sectional grade break at the channel entrance. <u>Site 114.1R</u>: Flow enters the study site at discharges greater than 5,000 and at 10,000 cfs through two channels. The flow in the channel is controlled above 8,800 cfs (Figure II-8).

<u>Site 115.0R</u>: Backwater from the mouth of the side channel extends upstream to cross section 1 at all discharges greater than 10,400 cfs (Figure II-9). Below 10,400 cfs, low flow is maintained by upwelling. Two heads a rect flow into the site and breach at 12,000 and 23,000 cfs.

Sites 118.9L and 119.1L: The mainstem channel shape is constant throughout the range of available data (Figures II-10 and II-11).

<u>Site 119.2R</u>: The side channel is controlled by the mainstem at all discharges greater than 10,000 cfs (Figure II-12). Above 23,000 cfs, the left bank is inundated and a change in the flow-discharge relationship can be expected. The lower half of the side channel, described by cross sections 1, 2, and 3, persists as a backwater area throughout the mainstem range of 5,000 to 23,000 cfs. The upper half of the side channel, represented by cross sections 4 and 5, is dry at discharges less than 10,000 cfs.

<u>Site 125.2R</u>: The side channel is breached at discharges greater than 4,300 cfs and becomes controlled at 6,210 cfs (Figure II-13).

Site 130.2R: Below a mainstem discharge of 16,100 cfs, flow is maintained throughout the study site by upwelling and is somewhat influenced by b. kwater (Figure II-14). Above 16,100 cfs the sand bar which separates the channel from the side channel is overtopped.

II-12

<u>Site 131.3L</u>: Flow enters the channel through two locations at 9,000 and 10,700 cfs. At 9,000 cfs, flow enters between cross sections 2 and 3. Flow through the head is controlled at all cross sections at discharges greater than 10,700 cfs (Figure II-15).

<u>Site 131.7L</u>: The three heads that direct flow into the channel breach at discharges of 5,000, 10,000 and 14,500 cfs. The study site is first breached at 5,000 cfs and controlled by the mainstem at discharges greater than 7,470 cfs (Figure II-16).

<u>Site 132.6L</u>: The two heads which direct flow into the side channel breach at discharges of 10,000 and 14,500 cfs. Ponded water is present between cross sections 5 through 9 at 10,000 cfs and dries up near 8,000 cfs. The channel flow is controlled by the mainstem at 11,900 cfs (Figure II-17). Above 23,100 cfs the water surface elevation at the lower two cross sections is influenced by backwater from the mainstem.

<u>Site 133.8R</u>: The mainstem channel shape is constant below a discharge of 15,600 cfs. The water surface elevation associated with 15,600 cfs is coincident with a change in cross sectional geometry as indicated by the inflection point in Figure II-18.

<u>Site 136.0L</u>: The channel is controlled by the mainstem at discharges greater than 5,000 cfs. Even at extremely high discharges, it remains distinctly separate from the mainstem; water does not flow across the island constituting the right bank, nor are there any overflow channels which might direct or

II-13

divert water into or from the side channel at high flows. The cross sectional geometry is relatively constant throughout the site. Thus, the relationships developed are valid throughout the mainstem range of 5,000 to 35,000 cfs (Figure II-19).

<u>Site 137.5R</u>: Below 11,800 cfs the flow is maintained by upwelling throughout the study site. At discharges greater than 11,800 cfs, a backwater extends upstream throughout the site (Figure II-20). Flow begins entering the channel over the gravel bar at 23,000 cfs but is not significant enough to change the stage-discharge relationship for the site.

<u>Site 138.7L</u>: The mainstem channel shape is constant throughout the range of available data (Figure II-21).

<u>Site 139.0L</u>: Flow is maintained throughout the study site at discharges below 12,000 cfs. Above 12,000 cfs, the gravel bar separating the channel from the mainstem is overtopped. This overtopping discharge is reflected by a change in the WSEL versus Q relationship in Figure II-22.

<u>Site 139.4L</u>: The mainstem channel shape is constant throughout the range of available data (Figure II-23).

<u>Site 147.1L</u>: This large side channel is controlled by the mainstem at discharges greater than 5,000 cfs. Like site 136.0L, the side channel is not influenced by overflow channels or cross flow from the mainstem, even at high discharges. The relationships between site flow, mainstem discharge, and water surface elevation are valid throughout the mainstem range of 5,000 to 35,000 cfs (Figure II-24).

Figure II-3. Pelationships between mainstem discharge, site flow and water surface elevation for cross section 8 at site 101.2R.

MRINSTER DISCHARGE HI GOLD CREEK LIDODOFSI

A

 $r^2 = 1.00$ r = 2

Figure II-4. Relationships between mainstem discharge, site flow and water surface elevation for cross section 1 at site 101.5L.

Figure II-5. Stage discharge curves for cross sections 1, 3 and 4 at site 101.7L.

¢

Figure II-5. Stage discharge curves for cross sections 1, 3 and 4 at site 101.7L.

Figure II-6. Stage discharge curves for cross sections 1 and 4 at site 105.8L.

Figure II-7.

Relationships between mainstem discharge, site flow and water surface elevation for cross section 7 at site 112.6L.

Figure II-8. Stage discharge curve for cross section 2 at site 114.1R.

Figure II-9. Stage discharge curve for cross section 1 at site 115.0R.

Figure II-11. Stage discharge curve for cross section 2 at site 119.1L.

II-22

Figure II-12. Relationships between mainstem discharge, site flow and water surface elevation for cross section 3 at site 119.2R.

Figure II-13. Stage discharge curve for cross section 1 and relationships between mainstem discharge, site flow and water surface elevation for cross section 2 at site 125.2R.

Figure II-13. Stage discharge curve for cross section 1 and relationships between mainstem discharge, site flow and water surface elevation for cross section 2 at site 125.2R.

Figure II-15. Stage discharge curve for cross sections 1 and 3 at site 131.3L.

Figure II-16. Relationships between mainstem discharge, site flow and water surface elevation for cross section 3 at site 131.7L.

MAINSTER MUSCHARGE AT ROLD DOEEK CODDES

Figure II-17. Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 132.6L.

÷....

11-29

Figure II-15. Stage discharge curve for cross sections 1 and 3 at site 131.3L.

Figure II-18. Stage discharge curve for cross section 3 at site 133.8R.

Figure II-19. Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 136.0L.

Figure II-20. Stage discharge curves for cross sections 1 and 2 at site 137.5R.

II-32

Figure II-22. Stage discharge curve for cross section 2 at site 139.0L.

Figure II-23. Stage discharge curve for cross section 2 at site 139.4L.

II-33

Figure II-24. Relationships between mainstem discharge, site flow and water surface elevation for cross section 4 at site 147.1L.

DISCUSSION

The relationships between site flow and middle river discharge were developed for mainstem controlled conditions at each study site. High regression coefficients and general knowledge of the sites indicate the relationships expressed as logarithmic regression equations are reliable over the range of mainstem discharge for which data are available. Inspection of aerial photography and familiarity with the sites provided sufficient evidence of flow conditions outside the range of available field data to extend the relationship somewhat beyond the range of available field data.

Pretty exciting! Abiow by bluer Server the of selected The is drucked

PART III

CALIBRATION AND APPLICATION OF IFG HYDRAULIC MODELS

INTRODUCTION

The middle river modeling analysis may be viewed as consisting of three steps. The initial step involved the collection and analysis of biologic data to determine the seasonal distribution of fish by species and life phase within middle river habitats and to identify the behavioral responses (or preferences) of life phase to physical habitat variables. This work was principally conducted by ADF&G Su Hydro during the 1982 and 1983 field seasons (Schmidt et al. 1984, Estes and Vincent-Lang 1984).

Second, the study sites are established which represent typical habitats and sufficient field data are collected to describe anticipated changes in physical habitat conditions due to streamflow alterations. With regard to the middle river modeling studies, hydraulic simulation models are extensively used to forecast anticipated changes in depths and velocities. Calibration and application of these hydraulic models is the subject of this section of the middle river modeling (MRM) report.

The third step involves the application of habitat suitability criteria (developed in Step 1) in combination with the calibrated hydraulic models to simulate the response of fish habitat to incremental changes in depth and velocity. This analysis is facilitated by using the IFG HABTAT model which is capable of evaluating other habitat variables such as substrate composition and cover. Habitat response to streamflow variations is portrayed by an index called weighted usable area (WUA). WUA forecast are presented for juvenile chinook at each study site in this section of the report but will be discussed in a subsequent report by EWT&A.

ł

Two different hydraulic models were applied in the MRM studies - the IFG-2 and Selection of one hydraulic model over the other depends on three IFG-4. considerations. These include (1) the level of resolution of the aquatic habitat microhabitat desired (2) the level of effort available for commitment to field data collection and (3) site-specific considerations. The IFG-2 model is a water surface profile program (step backwater model) which is based on uniform flow theory. It is most applicable to stream reaches with relatively mild gradient and uniform cross section (g^{*} 'ually varied flow conditions). The IFG-4 model is an empirical model based on regime theory and regression analysis. It provides greater latitude for application to stream reaches with non-uniform gradient and irregular cross section (rapidly varied flow conditions). One or two sets of field data are recommended for calibration of the IFG-2 model, whereas a minimum of three data sets are recommended to calibrate the IFG-4 model.

Both IFG hydraulic models are based on the assumption that steady flow conditions exist within a rigid stream channel. Streamflow is defined as "steady" if the depth of flow and velocity at a specific location remains constant throughout the time interval under consideration. This definition is commonly accepted to mean that the discharge remains constant through the study site during the time interval required to collect a set of calibration data. A stream channel is "rigid" if it (1) does not change shape during the time period required to collect all sets of calibration data, and (2) does not change shape while conveying natural streamflows of the magnitude to be simulated (Trihey 1980).

Prior to initiating the 1984 MRM studies, approximately 130 side channel or mainstem locations were selected as candidate study sites by EWT&A based on examination of aerial photography. Side channels and side sloughs at which habitat models had been developed by ADF&G Su Hydro prior to 1984 were excluded from the site selection process. Each candidate study site was classified into one of eleven habitat categories according to the habitat transformation it underwent as the mainstem discharge decreased from 23,000 cfs to 9,000 cfs (Table III-1). This approach to study site selection was chosen because a notable transition is expected to occur in existing mainstem and side channel habitat as a result of project induced changes in the natural flow regime of the middle river. A total of eight study sites were selected for detailed hydraulic analysis in 1984 (Table III-2 and Figure III-1).

Table III-2. Types of hydraulic models applied at 1984 middle river modeling sites for rearing chinook. Sites are identified by river mile and orientation to the river bank looking upstream (L=left; R=right).

Site	Type of Model
101.2R	7 cross section IFG-4
101.5L	5 cross section IFG-2
112.6L	9 cross section IFG-2
119.2R	5 cross section IFG-2
131.7L	7 cross section IFG-4
132.6L	9 cross section IFG-4
136.0L	6 cross section IFG-4
147.1L	6 cross section IFG-2

Category	Description	
0	Tributary mouth habitats that persist as tributary mouth habitat at a lower flow.	
I	Upland slough and side slouth habitats that persist as the same habitat type at a lower flcw.	
II	Side channel habitats that transform to side slough habitats at a lower flow and possess upwelling which appears to persist throughout winter.	
ĪĪI	Side channel habitats that transform to side slough habitats at a lower flow but do not appear to possess upwelling that persists throughout winter.	
IV	Side channel habitats that persist as side channel habitats at a lower flow.	
٧	Indistinct mainstem or side channel areas that transform into distinct side channels at a lower flow.	
VI	Indistinct mainstem or side channel habitats that persist as indistinct areas at a lower flow.	
VII	Indistinct mainstem or side channel areas that transform to side slough habitats at a lower flow and possess upwelling which appears to persist throughout winter.	
VIII	Indistinct mainstem or side channel habitats flow which transform to side slough habitats at a lower flow but do not appear to possess upwelling which persists throughout winter.	
IX	Any water course that is wetted that dewaters or consists of isolated pools without habitat value at a lower flow.	
х	Mainstem habitats that persist as mairstem habitat at a lower flow.	

Table III-1. Description of Habitat Transformation Categories

* Habitats were based on a reference flow of 23,000 cfs

Source: Aaserude et al. 1985.

Figure III-1. Middle river IFG and DIHAB modeling sites.

Figure III-1. Middle river IFG and DIHAB modeling sites.

Figure III-1. Middle river IFG and DIHAB modeling sites.

Figure III-1. Middle river IFG and DIHAB modeling sites.

Figure III-1. Middle river IFG and DIHAB modeling sites.

Figure III-1. Middle river IFG and DIHAB modeling sites.
Habitat categories that were well represented by existing models were not studied further during the 1984 field season.

METHODS

<u>Site Installation and Data Collection</u>: A varying number of cross sections and staff gages were installed at each study site to describe pools, riffles, and runs. Cross sections were also positioned at the transitions between riffles and pools.

Methods for installing staff gages are described in Part II of this report and the FY84 ADF&G Su Hydro Aquatic Studies Procedures Manual. Cross section profiles were determined for each cross section with a level and survey rod. Horizontal distances between headpins were measured to the nearest 1.0 ft by stadia survey or measuring tapes. Streambed elevations were measured to the nearest 0.1 ft using differential leveling techniques. In conjunction with the cross section survey, the water surface elevation was determined at the left and right waters edge, and depth of flow was measured at a minimum of three points on each cross section.

Substrate composition and the associated cover value were visually estimated and recorded across each transect. Substrate composition was classified using the criteria presented in Table III-3 (Estes and Vincent-Lang 1984). Cover was described using a two-digit code following Schmidt et al. (1984), in which the first digit refers to the cover type and the second digit identifies the percent cover (Table III-4). The presence of upwelling groundwater was visually determined at each cross section during October 1984 and April 1985.

Substrate	Visually Estimated Particle Size	Classification
	an a	4
Silt		2
Sand		3
Small Gravel	1/8-1"	4 5 6
Large Gravel	1-3"	7
Rubble	3-5"	9 10
Cobble	5-10"	11
Boulder	>10"	13

Table III-3. Substrate code classification.

Table III-4. Cover Code Classifica+ion.

COVER	CODE	PERCENT COVER	CODE
<pre>silt, sand emergent vegetation aquatic vegetation 1-3" gravel 3-5" rubble > 5" cobble, boulder debris overhanging riparian vegetation undercut bank</pre>	1 2 3 4 5 6 7 8 9	0-5 6-25 26-50 51-75 76-100	.1 .2 .3 .4 .5

The IFG-4 hydraulic model requires that the water surface elevation be identified for each cross section at which no flow occurs. This elevation is called the stage of zero flow and generally corresponds to the streambed elevation in riffles and runs and the downstream hydraulic control for pools. The stage of zero flow is not required when applying the IFG-2 model.

Thus at all IFG-4 sites, the stage of zero flow at each cross section within the study site was determined from the surveyed streambed profile. Streambed elevations of hydraulic controls downstream of the study sites were estimated for use in the model calibration procedures.

Depth and velocity information necessary for model calibration were collected at each site using a Marsh-McBirney or Price AA velocity meter and a topsetting wading rod. Water depth was measured to the nearest 0.05 foot and velocities were measured to 0.1 feet per second. These measurements were classified as either "calibration" or "shoreline" data. Calibration data were collected for use with the IFG-4 model at the smaller study sites and were obtained at verticals across an entire cross section. Shoreline data were collected at the larger study sites and were obtained at verticals on that portion of the cross section extending from each bank out into the channel until either the depth or velocity was limiting to field personnel. Shoreline data were used in the IFG-2 model to provide high resolution along the channel margins where fish habitat might exist. Depths and velocities used in the mid channel cells of the model were estimated from cross section and water surface profiles and apportion...ent of discharge using the continuity equation. <u>General Techniques for Hydraulic Model Calibration</u>: Calibration of the IFG-4 model was undertaken following recommended IFG guidelines (Main 1978 and Milhous et al. 1984) as supplemented by Trihey and Hilliard (1984). Guidelines suggested by Trihey and Hilliard include:

- Forecasting depths and velocities for streamflows representing the anticipated extrapolation limits of the calibrated model during the initial calibration runs.
- 2. Visual examination of water surface profile plots for each calibration discharge as well as the streamflows representing the upper and lower extrapolation limits of the model.

If the observed and predicted water surface profiles do not agree, or the forecast water surface profiles for the upper and lower extrapolation flows appear unreasonable (i.e. water flowing uphill or conflicting with the slope of the calibration profile) the following procedures were completed through an iterative process.

- Examine the stage of zero flow to see that it has been correctly defined.
- b. Check that cross section coordinates have been correctly calculated and transferred to the IFG-4 input deck.
- c. Check that the right and left bank water surface elevations have been properly used to provide a horizontal water surface

across the cross section. If a large discrepancy exists between right and left bank water surface elevations, adjust the streambed elevations to cause a horizontal water surface elevation to exist.

d. Adjust the calculated water surface elevations at each cross section within the following limits to provide more realistic forecasts of water surface profiles for the extrapolation flows:

flat gradient ± 0.02 ft
steep gradient ± 0.05 ft

- e. If steps a through d do not result in reliable water surface profiles for the extrapolation flows, it is quite possible the stage discharge relationship is non-linear, and more reliable hydraulic simulations will result from high and low flow models used in combination rather than one model to simulate the entire flow range of interest. Therefore, separate the field into two subsets and develop two hydraulic models follow-
- 3. After reasonable water surface profiles are forecast by model, $\mathcal{W}_{\mathcal{V}}$ review the velocity adjustment factors (VAF's) in accordance with the IFG guidelines.

III-15

10

While reviewing the VAF's, measured velocities were adjusted ± 0.10 ft/sec in low velocity areas or ± 10 percent if in excess of 2 ft/sec, and extremely small non-zero velocities (.01 to .05 ft/sec) or abnormally large Manning's "n" values (.1 to .9) were assigned to pool and shoreline areas where zero velocity was reported in order to improve the predictive capability of the IFG-4 model over the range of extrapolation flows.

Calibration of IFG-2 models also followed recommended IFG guidelines and was supplemented by procedures developed by EWT&A to utilize the shoreline depth and velocity data collected over a wide range of flows and the well-defined rating curves developed for several cross sections in the study site. The primary approach in calibrating IFG-2 models was adjustment of Manning's "n" values for each cell along the cross section until predicted shoreline velocities and water surface profiles agreed with the field data.

Required input data for an IFG-2 model includes the water surface elevations at the downstream cross section (Cross section 1) for each streamflow to be simulated. These elevations were obtained from the stage-discharge relationship developed for this cross section (refer to Section II). Stage-discharge curves developed at the other cross sections in the study site provided target water surface elevations with which to compare forecast water surface profiles. If the model predicted a low water surface elevation at a particular transect, the Manning "n" values were increased. Decreasing Manning "n" values dropped the water surface elevation. Once the desired water surface profile was attained for the calibration flow(s), the distribution of velocities across each cross section was compared with the available field observations. Plots of observed versus predicted velocities were used to identify cells where an adjustment in the Manning "n" value for individual cells was required. If individual "n" values were significantly altered in this process, the water surface elevation deviated from the target water surface elevation.

Manning "n" values generally decrease with an increase in discharge ^A result of streambed roughness having a reduced effect on retarding flow as depth of flow increases. The IFG-2 model accepts n-modifiers to account for this principle (Milhous et al. 1984). To maintain the characteristic shape of the velocity distribution pattern across the cross section (i.e., the general trend of high mid channel and low shoreline velocity areas), all "n" values at the cross section were multiplied by a constant factor; greater than 1.0 to raise the water surface elevation, and less than 1.0 to lower it. Typical n-modifier values ranged from 1.02 for low flows to 0.60 for extremely high flows. The apparent skew between n-modifiers for high and low flows exists because most calibration data were collected during low flow conditions and therefore "n" values do not require much adjustment to simulate low flows hydraulic conditions as they do to reproduce high flow observations.

A single IFG-2 model was not always adequate to reliably predict both low and high flow hydraulic conditions. This was primarily due to interaction between channel geometry and flow that altered the stage-discharge relationship such as the overtopping of gravel bars, or transformation of a riffle-pool sequence

III-17

to a run. The need for two models was evidenced by unrealistic velocity distributions, especially along the shorelines, between high and low flow forecasts.

<u>General Techniques for Hydraulic Model Verification</u>: The quality of each calibrated IFG-4 or IFG-2 hydraulic model was evaluated at two levels. Level one is a qualitative assessment of the models overall performance with regard to four evaluation criteria. Each model was given a numeric rating depending upon its degree of compliance with each criteria. Numeric ratings were assigned through a comparison of model performance with criteria, or through professional judgment. Application of professional judgment requires: an understanding of open channel hydraulics, familiarity with the study site, experience with the model, and knowledge of how the model will be used in the habitat analysis.

Numeric ratings assigned model performance for each of the four criteria may be either 0, 1 or 2 as defined below. The overall score, calculated by summing the numeric ratings for the four criteria, was used to indicate the overall quality of the calibrated models according to the following scale:

> Excellent 8 (maximum possible score) Good 7 Acceptable 5-6 Unacceptable <5; or zero for any evaluation category

Hrads Hitrating to defen goaldy afred broken in in shel, 72 Thise report on a normal

Criteria 1: How well does the model conform to the IFG and EWT&A calibration guidelines?:

- a. Plot water surface profiles, s age of zero flow, and streambed profile. Are they reasonable? To be reasonable, water must flow downhill; an increase in discharge should cause the pool/riffle sequence to drown out and the water surface profile to become more uniform in gradient; a decrease in discharge should cause the water surface profile to more distinctly reflect changes in stream bed gradient and riffle/pool profiles.
- b. Examine water surface elevations forecast by the calibrated model. Are the predicted water surface elevations over a broad range of discharges coincident with the stage-discharge curves for each site?
- c. Compare predicted depths and velocities at the calibration flows to field data. Do the predicted discharges agree with the discharges measured in the field for each cross section (IFG-4 model only)? Are the predicted velocities realistic? Are there more than few outliers for the extrapolated flows?

Rating:

2 = A model that can forecast both water surface elevations and velocities accurately.

- 1 = A model that can define water surface elevations and velocities accurately at the calibration flows but may not be able to reliably define both WSEL and velocities near the limits of the extrapolation range.
- 0 = A model that cannot accurately reproduce depths or velocities at the calibration flow.

Criteria 2: How well does the extrapolation range of the calibrated model conform to the desired range?

Subreaches of the overall extrapolation range of the calibrated model are rated excellent, good, acceptable or not acceptable depending upon the degree to which predicted water surface elevations coincide with the stage-discharge curve and VAF's coincide with IFG guidelines.

The first assumption made in this evaluation is that accurate stagedischarge curves are available for several cross sections in the study site. The ability to evaluate the forecasting capabilities of the model improve with an increasing number of well-defined stage discharge curves for the study site. By reviewing aerial photography and incorporating field experience it can be determined whether there is sufficient change in local channel geometry or flow patterns (such as other channels becoming overtopped at higher mainstem discharges) that may cause a significant change in the slope of the stage-discharge relationship above the range of available data.

Ratings:

- 2 = A model that can forecast water surface elevations coincident with the stage-discharge curve while retaining VAF's between 0.9 and 1.1 throughout the entire extrapolation range.
- 1 = A model that can forecast either VAF's or water surface elevations within the extrapolation range.
- 0 = A model that cannot forecast acceptable WSEL's or VAF's within the defined extrapolation range.

Criteria 3: Are the hydraulic models appropriately calibrated for the species and life stage being considered?

Study sites established to evaluate a particular species or life stage may not accurately represent microhabitat conditions important to another species or life stage. For example a good rearing site may not be an acceptable spawning site due to substrate composition or absence of upwelling. Carefully review the microhabitat characteristics of the study site in reference to life history requirements of the species or life stage being evaluated. Cross sections are properly located to accurately define the channel morphology which is of importance to the species and/or life stage of interest and that a sufficient number of verticals are included at each cross section to provide an accurate description of depth and velocity distribution.

- 2 = A model that provides sufficient precision in its hydraulic forecasts to be applied to both adult and juvenile life stages with an equally high level of confidence.
- 1 = A model that can provide a high level of precision for evaluating the life stage for which the study site was primarily established, but hydraulic forecasts are only considered "acceptable" for other species/life stages. Had cross sections and verticals within the study site been laid out differently, additional data collected, or a separate hydraulic model calibrated, a "2" rating would have been possible.
- 0 = Insufficient data were collected to calibrate the hydraulic model in the flow range of interest for the species/life stages to be evaluated.

Criteria 4: How well does the range of forecast depths and velocities compare with the depth and velocity suitability criteria?

Even though the model may not accurately reproduce depths or velocities from a hydraulic viewpoint, the erroneously predicted depths and velocities may occur within a range of values for which suitability indices are not sensitive. These ranges are unique to the particular set of habitat suitability criteria being applied. In general, hydraulic models for juveniles should accurately define low velocity areas (0.8 ft/sec), but need not be as accurate when velocities exceed 2 ft/sec. Depths of flow greater than 0.15 ft need only be approximate and are of little consequence in steep-sided channels where an error in the water surface elevation will not cause a notable change in top width. Hydraulic models for spawners should accurately define velocities up to 2 ft/sec, and depths up tc 1.0 ft.

Ratings:

- 2 = The hydraulic model provides accurate forecasts of depths and velocities present in the study site throughout the full ranges of depths and velocities for which suitability criteria are defined.
- 1 = Hydraulic forecasts are sufficiently accurate to describe the order of magnitude of the suitability index and therefore will result in a reliable habitat model even though the precision of the hydraulic forecasts are questionable.
- 0 = The hydraulic model is incapable of accurately identifying the order of magnitude of the habitat suitability index.

LEVEL TWO EVALUATION FOR IFG MODELS

Level two evaluation criteria were applied when the calibrated IFG-2 or IFG-4 model were not assigned an excellent rating during the level one evaluation. These analytical techniques can also be incorporated as additional steps in recommended model calibration procedures for other studies using the IFG hydraulic models.

The best method of evaluating the predictive capabilities of the hydraulic models would be to collect additional data sets near the limits of the extrapolation range that are not used in the calibration procedure and then compared with the model predictions. This method can seldom be applied, however. The analytical procedure which follows has been suggested by Wilmott (1981) for use with geographic models which face similar problems when evaluating differences between observed and predicted data.

IFG-4 Model:

and

A visual comparison is made between scatter plots of the observed and predicted depths and velocities at all cross sections for each calibration flow. A quantitative assessment can be made by computing several statistics which describe the differences between observed and predicted values. Pearson's Product-Moment Correlation Coefficient (r), Coefficient of Determination (r^2), the slope (b) and intercept (a) of a least squares regression between observed and predicted values have usually been reported as reliable measures of a model's predictive capabilities. Willmott (1981) has suggested computing additional statistics to better evaluate the predictive capability of the model. These variables include the systematic and unsystematic components of the root mean square error

 $RMSE_{S} = [N^{-1} \sum_{i=1}^{N} ((a + b0_{i}) - 0_{i})^{2}]^{0.5}$ $RMSE_{U} = [N^{-1} \sum_{i=1}^{N} (P_{i} - (a + b0_{i}))^{2}]^{0.5}$

as well as the total root mean square error

RMSE =
$$[N^{-1} \sum_{i=1}^{N} (P_i - O_i)^2]^{0.5}$$

where:

0 = Observed or field measured data

P = Model predicted data.

"If RMSE is all, or largely composed of RMSE_U" states Willmott, "perhaps the model is as good as it can be without major reworking." An index of agreement (d) may also be calculated to determine the degree to which a model's predictions are error free. The index of agreement is computed by

$$d = 1 - \frac{\sum_{i=1}^{N} (P_i - O_i)^2}{\sum_{i=1}^{N} [P_i - O_i + O_i - O_i]^2}$$

The value of d varies between 0.0 and 1.0 where a computed value of 1.0 indicates perfect agreement between the observed and predicted observations, and 0.0 denotes complete disagreement.

IFG-2 Model:

A visual comparison can be made of the observed and predicted velocity distribution plots for the IFG-2 models, where most of the observed data was obtained near the shoreline. In general, cells in the IFG-2 model do not coincide with verticals where field measurements were made, but rather with distinct changes in channel geometry, roughness, or habitat suitability. A representative velocity distribution "shape" was developed for each cross section, using calibration flow data, which typically extended the full width of the channel.

Where only shoreline data was available, the horizontal velocity distribution was modeled after either measured values obtained at a similarly shaped cross section at the site where a complete data set was available, or by simply estimating a mid-channel velocity distribution based on the channel geometry (i.e., the highest velocities should correspond to the deepest portion of the channel). This is a reliable method, since cross-sectional area and discharge are fixed and therefore the average channel velocity is defined.

<u>General Techniques for Hydraulic Model Application</u>: The calibrated hydraulic models were linked with the IFG HABTAT model to forecast WUA for juvenile chinook as a function of streamflow. Habitat suitability criteria (Curves) for each physical habitat variable sued in the HABTAT model were derived from field observations of juvenile chinook in side channel and side slough areas (Schmidt et al. 1984) as described by Trihey et al. 1985. The suitability criteria applied for juvenile chinook are summarized in Figures III-2, 3, 4 and Table III-5.

III-26

JUVENILE CHINOOK

DEPTH (FT)

Figure III-2.

2. Juvenile chinook salmon suitability criteria for depth applicable to clear and turbid water habitats. Source: Schmidt et al. 1984.

III-27

VELOCITY f.p.s.

Figure III-3. Juvenile chinook salmon suitability criteria for velocity applicable to clear and turbid water habitats. Source: Schmidt et al. 1984, EWT&A and WCC 1985.

PERCENT COVER by COVER TYPE

Figure III-4. Cover suitability criteria recommended for use in modeling juvenile chinook habitat under clear and turbid water conditions. Sources: Schmidt et al. 1984. EWT&A and WCC 1985.

Table III-5. Cover suitability criteria recommended for use in modeling juvenile chinook habitat under clear and turbid water conditions. Sources: Schmidt et al, EWT&A and WCC 1985.

Percent Cover	No Cover	Emergent Veg.	Aquatic Veg.	Debris & Deadfall	Overhanging Riparian	Undercut Banks	Large Gravel	Rubble 3"-5"	Cobble or Boulders <5"
			na Mitheofferendelsen ubsgess an un zins erflette heferte beständelse segnen vog	Clea	r Water (ADF	&G)	Ghandita ayal ayal da faran da kara aya aya aya		
0-5% 6-25% 26-50% 51-75% 76-100%	0.01 0.01 0.01 0.01 0.01	0.01 0.04 0.07 0.09 0.12	0.07 0.22 0.39 0.53 0.68	0.11 0.33 0.56 0.78 1.00	0.06 0.20 0.34 0.47 0.61	0.10 0.32 0.54 0.75 0.97	0.07 0.21 0.35 0.49 0.63	0.09 0.27 0.45 0.63 0.81	0.09 0.29 0.49 0.69 0.89
	n ar feilinge Lean Andre 2 van Staden Bernard an seine synthese sein	anna a fha an		Turb	id Water (EW	T&A) ¹		alay, Minister Hallen and Society and Society and Society and Society and Society and	nin (die Verschlieft und Antonio Generalitation der Generalitätionen)
0-5% 6-25% 26-50% 51-75% 76-100%	0.31 0.31 0.31 0.31 0.31	0.31 0.31 0.31 0.31 0.31 0.31	0.31 0.39 0.46 0.52 0.58	0.48 0.58 0.67 0.77 0.85	0.26 0.35 0.41 0.46 0.52	0.44 0.56 0.65 0.74 0.82	0.31 0.37 0.42 0.48 0.54	0.39 0.47 0.54 0.62 0.69	0.39 0.51 0.59 0.68 0.76

¹ Multiplication factors: 0-5% - 4.38%; 6-25% - 1.75; 26-50% - 1.20; 51-75% - 0.98; 76-100% - 0.85

Of particular interest are the separate suitability criteria for velocity and cover which apply under clear and turbid water conditions. Clear water habitats occur in side channel areas conveying base flows derived from groundwater or tributary inflow when the side channel is not breached by the turbid waters of the mainstem. The mainstem discharge at which the transition from clear to turbid water occurs depends on the streambed elevation at the head of the side channel relative to the water surface elevation of the mainstem. Water surface elevation versus mainstem discharge and site flow versus mainstem discharge relationships described in Section II of this report were used to determine at which site flows the clear or turbid water velocity and cover criteria were to be applied.

Within the HABTAT model the study site is comprised of a matrix of cells, each pcssessing flow-dependent hydraulic variables obtained from the calibrated models. Since the top width of the study site responds to incremental changes in streamflow, the total number of wetted cells and their cumulative surface area also vary with flow.

The HABTAT program evaluates the utility of each cell at a specified flow by calculating a joint preference factor, which in this study was defined as the product of the individual suitability values associated with the prevailing velocity, depth and cover conditions. Weighted usable area is calculated for each cell by multiplying its surface area by the joint preference factor. The WUA for the study site is the sum of the individual cell WUAs. When plotted as a function of discharge, the study site WUA indicates the site specified response of fish habitat to changes in flow. WUA is expressed in units of square feet per 1,000 linear feet of stream.

Total wetted surface area and WUA curves for juvenile chinook were obtained at the eight hydraulic modeling sites corresponding to a range of mainstem discharge from 5,000 to 35,000 cfs at Gold Creek. Surface area and WUA values for site flows outside the recommended extrapolation range of the hydraulic models were estimated using trend analysis and professional judgement. Instances where this was necessary are documented in Table B-6.

A time series plot of available juvenile chinook habitat was also developed for each site by interfacing a synth ized record of site flows during the 1984 rearing season (May 20 to September 15) with the WUA versus site flow function. The resulting figures enable evaluation of habitat conditions on a site-by-site basis over the summer growth period.

RESULTS

Site 101.2R

<u>Site Description</u>: This site is located 2.2 miles above the confluence of Chulitna River on the east bank of the Susitna River (Plate III-1). the study reach is 1,500 ft and varies from 350 ft wide in the lower half of the site to 250 ft wide in the upper half. Cross sections 1, 3, 4 and 9 describe the shallow, high velocity areas while crcss soctions 7 and 8 represent a deep, slow velocity area (Figure III-5). Cross section 6 separates the two areas. Cross sections 2 and 5 describe the small right channel and did not extend across the main channel as the hydraulic conditions at adjacent cross sections were similar. Cross sections 3 and 4 extend across a small backwater channel

Figure III-5. Cross sections for 101.2R study site depicting water surface elevations at calibration discharges of 25 and 279 cfs.

Figure III-5. Cross sections for 101.2R study site depicting water surface elevations at calibration discharges of 25 and 279 cfs.

along the left bank. Substrate is mainly cobble and large gravel throughout the site with a layer of silt in the left channel. Cover is available predominately from the rubble and cobble substrate present with some debris present.

The vegetated gravel bar along the left bank and across the channel head breaches at 9,200 cfs. Below 9,200 cfs, the site is ponded and only the wetted area near cross section one is connected to the mainstem. The right channel breaches at 14,000 cfs. Site flows of 10 and 0 cfs correspond to mainstem discharges of 10,400 and 7,400 cfs. At 23,000 cfs (mainstem), site flow exceeds 600 cfs.

This study site was selected to represent side channels that become dewatered at low discharges. Upwelling was suspected to maintain low baseline flow conditions and the site appeared to have potentially good rearing habitat although no previous utilization has been documented. An IFG-4 model was selected because of the non-uniform flow conditions present and the channel size.

Chum salmon adults have been observed to use the site but no redds were detected. Some juvenile chinook salmon have been observed in the site. Access to the site is difficult below 9,200 cfs. Passage upstream of cross section 1 is not possible in the unbreached condition.

<u>Calibration</u>: Table III-6 lists the data used to calibrate the hydraulic model for this site. Depth and velocity measurements were made across each cross

section at every calibration flow. Because cross sections 2 and 5 do not extend across the main channel, they were not included in the hydraulic model.

1007309100000000000000000000000000000000	na kana kisa mangana mana kana kana kana kana kana kana k		₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	04 <u>99-444</u> 0-999-999-999-999-999-999-999-
	Date	Flow (cfs)	Discharge (cfs)	
	and what constructs an an analysis what an analysis of the construction of the constru	-qatabager.com/ptore_dest/page/page/page/add/add/ptorest/dest/pager/add/ptorest/ dest/pager/add/ptorest/pager/add/add/ptorest/ dest/pager/add/ptorest/ dest/pager/add/ptorest/ dest/pager/add/ptorest/ dest/pager/add/ptorest/ dest/ dest/ptorest/ dest/ptorest/ dest/ptorest/ dest/ptorest/ dest/ dest/dest/ dest/dest/ dest/dest/dest/dest/dest/dest/dest/dest/		
	840830	265	15,300	
	840903	25	11,200	

Table III-6. Hydraulic data available to calibrate the IFG-4 model for site 101.2R.

The hydraulic model was established to describe the depths and velocities in the main channel. At discharges greater than 14,000 cfs, flow entered the right channel. The water surface elevations in the main and right channels differed across cross sections 1 through 5. The streambed elevations were raised in the right channel to maintain a horizontal water surface elevation across a cross section (Figure III-6). The backwater area at the mouth of the left channel also had different water surface elevations than the main channel. The streambed elevations in the left channel were also raised to maintain horizontal water surface elevations at cross sections 3 and 4. Observed and predicted water surface profiles from the calibrated model are shown in Figure III-7. The extrapolation limits are also p'otted. The IFG-4 model was calibrated with respect to depth by making comparisons between the stage-flow curves and the model predicted water surface elevations. The comparison made at the discharge cross section is illustrated in Figure III-8; similar comparisons were made at each cross section.

MEASURED

ADJUSTED

Figure III-7. Comparison of observed and predicted water surface profiles from calibrated hydraulic model at 101.2R study site.

Figure III-8. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 101.2R cross section 8.

<u>Verification</u>: An analytical analysis was made to compare the predictive capabilities of the model. Scatter plots comparing the observed and predicted depths and velocities (Figure B-2.1) indicate the model is capable of accurately predicting hydraulic data. Statistical tests were also made and the results summarized in Table B-5.

<u>Application</u>: An excellent rating was assigned from 9,200 to 17,600 cfs mainstem discharge. From 9,200 to 10,300 cfs, the baseline flow is estimated to be 10 cfs. Between discharges of 10,300 to 17,600 cfs, the site flow ranges from 10 to 600 cfs. As discussed in Part II of this report, there is a change in the flow versus stage relationship changes as the gravel bar which separates the main and right channels becomes overtopped. Because there is no data available to describe exactly how this change affects the flow-stage relationship, the upper limit of the excellent rating was set to be 17,600 cfs. The predictive capabilities also break down so it is no longer reliable above 17,600 cfs (600 cfs site flow).

	AND SHORE AND AN AN		a marka (Distriction		(*************************************													المربعة للاستاناتي				-								
-	and the second		at wells	1	1	Sciences.	4	-	1	f	- Change	-	in the second	1. a. y	1	-	and the second	all have not	2	Petition 6	And the	to cherry ally	a surgery	and the second	No.	al and a second s	tur at		eriteradiya	.
6000 14000											23	200	0						3	00(00									
									ň	∕lair	nste	em	Dis	cha	arge	e, c	fs			E	xce	ller	ıt] ט	Ina	_e	pta	ble

Total surface area and WUA curves for study site 101.2R are provided in Figure III-9. These curves are plc+ted to the same vertical scale, representing square feet per thousand feet of stream reach. A comparison of the two curves indicates the relative proportion of the wetted surface area containing rearing habitat for juvenile chinook at various mainstem discharges.

MAINSTEM DISCHARGE (CFS)

Figure III-9. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 101.2R modeling site.

Rearing habitat for juvenile chinook in the side channel is maximized at mainstem discharges in the vicinity of 11,000 cfs. The sharp rise in WUA which occurs near 9,000 cfs is caused by the site being breached and the associated increase in turbidity which provides additional cover value for juvenile chinook.

The WUA curve is also plotted in Figure III-9b at an expanded vertical scale to accent the response of raring habitat to incremental changes in discharge. The presence of turbid water and the distribution of water velocity are the primary determinants of the WUA response curve at this site. Although much of the site exists as riffle-run habitat, the channel gradient is low enough that water velocities do not become limiting to juvenile chinook until mainstem discharges exceed 16,000 cfs. The large vegetated gravel bar which separates the side channel from the mainstem and another large gravel bar in the lower portion of the study site which is exposed at low flows does not provide for any appreciable increase in rearing habitat at higher flows due to the low cover value of their sand and gravel substrates. Nevertheless, in relation to flow conveyance, this study site possesses fairly good habitat for juvenile chinook in the lower flow ranges (Figure III-9a).

The WUA forecasts were obtained using the HABTAT model linked with the IFG-4 model previously described in this site discussion. Because of the limited extrapolation range of this particular IFG-4 model the WUA and surface area curves were estimated for mainstem discharges less than 9,200 cfs and greater than 16,000 cfs.

The wetted surface area of the channel were estimated for discharges of 5,100 and 7,400 cfs using digitized measurements obtained from aerial photography, as described in Klinger-Kingsley (1985). These estimates, 31,600 and 46,500 sq ft/1,000 ft, were assigned to discharges of 5,000 and 7,000 cfs. Low turbidity habitat suitability criteria were used to forecast juvenile chinook WUA at 9,200 cfs (breaching flow for this side channel) and the amount of rearing habitat available under non-breached conditions was assumed to decline to zero at a constant rate between this discharge and 6,500 cfs. This assumption is supported by numerous field observations of clear standing water which is cut off from the mainstem. Although still contributing to total wetted surface area, clear ponded water provides progressively less suitable habitat for juvenile chinook as mainstem flows recede.

At mainstem discharges exceeding 16,000 cfs (the upper extrapolation limit of the IFG-4 model), estimates of the wetted surface area at 23,000 and 27,000 cfs were also obtained from aerial photography. Surface areas associated with discharges between 16,000 cfs and 27,000 cfs were interpolated. Surface area estimates for discharges greater tan 27,000 cfs were obtained by trend analysis; exponentially extending the surface area curve to a maximum of 210,000 sq ft/1,000 ft at 35,000 cfs.

The WUA curve for juvenile chinook was assumed to decay exponentially above 16,000 cfs. This trend is evident at other middle river side channel for which high flow hydraulic models are available. In addition extension of the WUA curve beyond 16,000 cfs using this technique does not appear inconsistent with the rate of decline forecast by the calibrated model for discharges less than 16,000 cfs. Additional information is provided in Table B-6.1.

III-44

Time series WUA and site flow plots are presented in Figure III-10a and b. Low site flows during late May and early September, corresponding to mainstem discharges of 9,000 to 13,000 cfs, resulted in comparatively high rearing habitat forecasts for these periods. High site flows during the intervening months produced low habitat forecasts.

<u>Site 101.5L</u>

<u>Site Description</u>: This site is located 2.2 miles above the confluence of the Chulitna River on the west bank of the Susitna River (Plate III-2). The study reach is 3,100 ft long and 430 ft wide. A large backwater area is present throughout the lower half of the site for the entire discharge range (5,000 to 35,000 cfs). One cross section describes the backwater area; a second describes the transition between low and high velocity areas. Three cross sections define the deep, fast area in the upper half of the study reach (Figure III-2). Cobble and rubble substrate predominate throughout the site. A thick layer of sand exists along the right bank of the mouth. The available cover is provided by large substrate with less than 25 percent considered acceptable.

This study site was selected to represent large side channels which remain side channels from 5,000 to 35,000 cfs. An IFG-2 model was selected because of the large size of the channel and its uniform shape. In addition, field reconnaissance indicated that rearing habitat was limited to the stream bank margins, and a limited amount of data would therefore be adequate to simulate channel hydraulics with an IFG-2 model.

Figure III-10.

D. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 101.2R modeling site.

Plate III-2. Modeling site 101.5L on June 1, 1982 at mainstem discharge: 23,000 cfs.

Figure III-11. Cross sections for 101. L study site depicting water surface elevations at calibration discharges of 1696 and 4500 cfs.

Channels B and C convey mainstem flow at all discharges and 10,000 cfs, respectively. Channel A becomes active at 12,000 cfs and redirects less than ten percent of the flow from the side channel to the mainstem. Site flows of 6,030, 2,400 and 1,640 cfs correspond to mainstem discharges of 23,000, 10,400 and 7,400 cfs respectively.

Spawning salmon have not been observed in the side channel. Juvenile chinook, coho and sockeye salmon have been identified in the site. The large backwater area at the mouth eliminates any access difficulty, and the deep channel allows passage throughout the site at all discharges.

<u>Calibration</u>: The data available to model the site included level surveys for cross sections 1, 2, and 5; rating curves developed by ADF&G at cross sections 2 and 5 (Estes and Vincent-Lang, 1984); and the hydraulic data summarized in Table III-7. Cross sections 3 and 4 were developed from the discharge measurement notes.

	MANDON THE TRUCK ALC IN COMPANY AND A COMPANY AND A COMPANY AND A COMPANY	an an Ang Malaning ang Panganan ang Kang ang kang ang Panganan ang Panganan ang Panganan ang Panganan ang Pang	Sector and a sector water and sector	an a
Date	Flow (cfs)	Discharge (cfs)	Calibration Cross Section(s)	Type*
841012	1622	6210	4	D
841001	1696	7830	5	D
840911	2213	9330	1, 2 3	S D
940921	2250	11,400	1, 2, 5	S

Table III-7. Hydraulic data available to calibrate the IFG-2 model for site 101.5L.

Table III-7	(Continued).			
940831	3530	14,300**	3	D
840820	4500	18,500	1, 2, 5	S

* D = Discharge measurements (includes mid channel and shoreline measurements)
 S = Shoreline measurements (does not include mid channel measurements)
 ** = Adjusted to instantaneous discharge

Two models were required to accurately describe the site for mainstem discharges of 5,000 to 35,000 cfs. Velocity profiles for site flows of 1,696 and 2,250 cfs at cross sections 1, 2, and 5 were similar. However, to simulate the velocity distribution across the channel at a site flow of 4,500 cfs required a different set of Manning's "n" values. Velocities increased gradually with distance from the water's edge at low flows, but rose quickly and approached maximum channel velocity much closer to shore at high flows.

The velocity profiles for the two measured flows at cross section 3 were very similar and represented low and medium flows through the site. Only low flow data were available for cross section 4.

In calibrating the two models with respect to depth, predicted water surface elevations at cross sections 2 and 5 were compared to the corresponding elevations calculated from the rating curves. Water surface elevations for cross sections 3 and 4 were checked by comparing the predicted top widths with the top widths determined from the discharge measurements. Water surface profiles based on IFG-2 output for the calibration f¹ows of 1,696, 2,250, and 4,500 cfs and for the flows corresponding to discharges of 5,000 and 35,000 cfs are shown in Figure III-12. Observed water surface elevations and rating curve water surface elevations are also shown.

Figure III-12.

. Comparison of observed and predicted water surface profiles from calibrated model at 101.5L study site.

<u>Verification</u>: Figures B-2.2 and B-2.3 show velocity profiles produced by the two IFG-2 models at cross section 5 for calibration flows of 1,696 and 4,500 cfs. The observed shoreline velocities for those flows are also plotted. The figures demonstrate that the set of "n" values that produces the proper velocity profile at the low flow does not accurately produce that of the high flow, and vice versa.

Application: The low flow IFG-2 model represents site conditions for mainstem discharges up to 10,600 cfs while the high flow model is applicable to mainstem discharges greater than 10,600 cfs. This breakpoint corresponds to a site flow of 2,500 cfs. By utilizing all available site information, including aerial photography, channel geometry and field experience, the limits for which the models can be considered excellent extend beyond the range of available data. The models were extrapolated beyond the data range to 5,000 cfs on the lower end of the low flow model and 23,000 cfs for the upper end of the high flow model. At 23,000 cfs, the channel geometry suggests that the total flow loss through the overflow channel is less than ten percent. Because this outflow is minor, the upper model limit was extrapolated from 23,000 to 35,000 cfs. However the overall rating for the high flow model for the mainstem range of 23,000 to 35,000 cfs was considered good. rather than excellent. The total wetted surface area and juvenile chinook WUA curves for the study site are presented in Figure III-13. In this figure the WUA and surface area curves are plotted to the same scale and expressed in identical units; i.e., square feet per 1,000 feet of stream. A comparison of the two curves gives an indication of the proportion of the study site which contains rearing habitat.

The application ranges and ratings are summarized below in the bar chart.

																												3
	I	1	l	1	-	1	I	l	I	-	Annual	Annound I	l		1	I	1	1			a second	A. ATTACH	I	denorate	and the	to inside	I	7. 1
6000						14	400	0						2	20	00						3	00(00				
							٨	Mai	nste	em	Dis	sch	arg	e, c	fs				Ex	cel	lent	t ·						
																			Go	od								

Site 101.5L is distinguished by a comparatively narrow range of juvenile chinook WUA for mainstem discharges between 5,000 and 35,000 cfs, suggesting that areas suitable for chinook raring are generally recruited and lost at comparable rates. Most of the rearing habitat is located in a narrow band along the right shoreline where velocities are not limiting (Williams 1985).

The response of the WUA curve to variations in mainstem discharge is diagrammed in Figure III-13 which is plotted on an expanded vertical scale. The increase in WUA forecasts associated with lower mainstem discharges reflect the influence of lower velocities. The WUA forecasts associated with lower flows at this site reflect the combined effect of overtopping discharges (in both overflow and secondary feeder channels) and the channel geometry on nearshore velocities. At higher flows the small increases observed in juvenile chinook habitat are due to the progressive development of a low-velocity backwater area at the lower end of the study site. The significance of these changes in habitat potential in response to streamflow, however, becomes relatively insignificant when viewed in relation to the wetted surface area of the side channel.

MAINSTEM DISCHARGE (CFS)

Figure III-13. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a funtion of discharge for the 101.5L modeling site.

WUA were forecast using low- and high-flow IFG-2 models linked with the HABTAT model to account for flow-dependent variations in shoreline velocity distribution. The side channel conveys turbid water at mainstem discharge less than 5,000 cfs. Therefore WUA for juvenile chinook was forecast using only turbid water habitat suitability criteria. Application of low and high flow WUA models resulted in separate WUA functions which were joined together to form the single habitat response curve presented in Figure III-13. This was accomplished by overlapping the WUA forecasts from the low and high flow models and choosing a discharge value which would effect the smoothest transition from one habitat response curve to the other. The selected value was 8,500 cfs (Table B-6.2).

The time series plot of WUA for juvenile chinook bears a strong resemblance to the daily streamflow record at the site for the May 20 to September 15, 1984 period (Figure III-14). Site flows during this period typically vary between 4,000 and 8,000 cfs, accompanied by changes in habitat potential ranging from 12,000 to 22,000 sq ft/1,000 ft. The seasonal variability of WUA is small. With the exception of a few high flow periods, site flows and juvenile chinook habitat at site 101.5L show a remarkable degree of temporal stability during the rearing season.

Site 112.6L

<u>Site Description</u>: This site is located approximately 2 miles downstream of Lane Creek on the west bank of the Susitna River (Plate III-3). The study reach is 4,100 ft long and varies between 500 and 700 ft wide. Eight cross

Figure III-14. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 101.5L modeling site.

Plate III-3. Modeling site 112.6L on September 6, 1983 at a mainstem discharge: 16,000 cfs.

sections were initially established during high mainstem discharges occurring in early August: cross sections 1, 2, 5, 6 and 7 describe low velocity areas; 3, 4 and 8 define high velocity areas. As flows receded during the fall, cross section 4 was relocated and an additional cross section, 3A, was added to better describe the shallow, high velocity area midway through the site (Figure III-15). Substrate composition is cobble and rubble with layers of silt and sand found in pool areas and in the backwater area located at the mouth. The large substrate provides cover, with less than 50 percent considered acceptable.

The side channel is breached at mainstem discharges greater than 5,000 cfs. The overflow channel along the right bank conveys side channel flow at discharges above 20,000 cfs. Pool and riffle sequences dominate the site below 10,000 cfs, and a gravel bar below the confluence of Slough 6A is exposed. At discharges above 10,000 cfs, the channel becomes a large run. Flows of 7,130, 1,230 and 377 cfs correspond to mainstem discharges of 23,000, 10,400 and 7,400 cfs.

This 'rrge study site was selected to represent large side channels which reduce to small side channels at low discharges. An IFG-2 model was selected because of the large size of the channel. Field reconnaissance indicated that rearing habitat was limited to streambank margins at high discharges, and a limited amount of data would therefore be adequate to simulate channel hydraulics with an IFG-2 model.

Figure III-15. Cross sections for 112.6L study site depicting water surface elevations at calibration discharges of 215, 355, 721, and 1430 cfs.

.

Figure III-15. Cross sections for 112.6L study site depicting water surface elevations at calibration discharges of 215, 355, 721 and 1430 cfs.

Salmon have not been observed spawning in the site. Chinook fry have been observed using the channel particularly below the confluence of Slough 6A. Access to and passage through the site are not problems in this side channel.

<u>Calibration</u>: The data available to model the site consisted of level surveys for all nine cross sections and the hydraulic data summarized in Table III-8.

Table III-8.	Hydraulic 112.6L.	data available to ca	librate the IFG-2 mode	l for site
Date	Flow (cfs)	Discharge (cfs)	Calibration Cross Section(s)	Туре*
841012	215	6210	7	D
840930	355	7500	6,8 1,2,3,3A,4,5,7	D S
840913	721	9000	7	D
840904-05	1430	10,800	8 1,2,3,3A,4,5,6,7	D S
840830	2980	15,300	6	D
840822	4820	19,100	1,2,3,4,5,6,7,8	S

* D = Discharge measurements (includes mid channel and shoreline

measurements).

S = Shoreline measurements (does not include mid channel measurements).

The IFG-2 model requires a horizontal water surface at each cross section. Field observations of this site indicated that this did not always occur. Of the several staff gages installed at each cross section, only data from the gage which best represented the largest portion of flow was used to calculate the target water surface elevations in the calibration process.

Adjustments were made to cross section survey data to create a horizontal water surface elevation at some cross sections. Observed depths for the calibration flow of 355 cfs (site flow) were plotted with the cross section survey data. Cross sections 2, 3, 3A,4 and 8 did not have horizontal water surface elevations and were modified as follows: where the plotted water surface elevation was lower than the representative water surface elevation, the streambed was raised by the difference in the two water surface elevations. Conversely, the streambed was lowered where the plotted water surface elevation was higher than the representative water surface elevation.

Well-defined rating curves based on mainstem flow were adopted for seven of $\bigwedge^{/}$ the nine cross sections. Data collected at cross section 3A and the new cross section 4 was insufficient to develop a good rating curve. Therefore these cross sections were calibrated with velocities only.

Overtopping of the gravel bar in the lower reach during high flow events causes a transformation in the velocity distribution across the site, and thus two hydraulic models were required.

In calibrating the models with respect to depth, predicted water surface elevations at all cross sections except 3A and 4 were compared to the corresponding elevations calculated from the rating curves. Water surface

ADJUSTED

Figure III-16.

Comparison between measured and adjusted cross sections 2 and 8 at 112.6L study site.

profiles based on IFG-2 output for the calibration flows and the flows corresponding to 5,000 and 35,000 cfs are shown in Figure III-17. Observed water surface elevations are also shown for the calibration flows, and rating curve water surface elevations are shown for the model limit flows.

<u>Verification</u>: Figures B-2.4 and B-2.5 show velocity profiles produced by the two IFG-2 models at cross section 3 for calibration flows of 355 and 4,820 cfs. The observed velocities for those flows are also plotted. The figures demonstrate that the set of "n" values that produces the proper velocity profile at the low flow does not accurately produce that of the high flow, and vice versa.

<u>Application</u>: The low flow model describes depths and velocities present in the channel for mainstem discharges up to 10,000 cfs. The high flow model is applicable to site flows corresponding to mainstem discharges greater than 10,000 cfs. The transition from low to high flow model occurs at a site flow of 1,070 cfs. Limits for the excellent quality rating were expanded from the limits defined by available data to the mainstem range of 5,000 to 35,000 cfs. Cross sections 3A and 4 describe a riffle area at low flows which becomes a run at higher discharges. Because of the limited data available to calibrate these cross sections at high flows, the high velocities are projected throughout the entire extrapolation range. Because these cross sections represent only about 10 percent of the total area of the site, and actual velocities at the high flow are probably beyond the usable range on the suitability curve, the overall model rating was not reduced from excellent.

Figure III-17. Comparison of observed and predicted water surface profiles from calibrated models at 112.6L study site.

The application ranges and ratings are summarized below in the var chart.

	1	ł	l	ł	1	I	ł	ł	1	ł	1	1	1	1	-	-]	ł	(and a second	I	1	I]	l	1		1		I	ł
6	800	0						1.	400	0						2	200	0						3	000	00			
									N	Mair	nste	em	Dis	cha	argo	e, c	fs							E>	ce	llen	Î		

In Figure III-18a total wetted surface area and juvenile chinook WUA are presented per 1,000 feet of stream at the same scale. Figure III-18b is plotted at an expanded vertical scale.

At discharges below 8,000 cfs the side channel conveys less than 10 percent of the total mainstem discharge and contains an extensive amount of low velocity turbid water habitat. Hence the WUA indices for juvenile chinook are quite large. Williams (1985) demonstrated that the shoreline area within Side Channel 6A possessing suitable chinook rearing velocities is five times greater at 13,500 cfs than at 33,000 cfs. Further, the wetted surface area possessing suitable velocities more than doubles as discharge decreases from 13,500 to 8,000 cfs.

The WUA response curve plotted in Figure III-18 accents the precipitous decline in habitat potential which accompanies the increase in mainstem discharge above 8,000 cfs. The secondary WUA peak, occurring near 16,000 cfs, results from the overtopping of a large mid-channel gravel bar in the lower portion of the study site. At higher discharges, velocities increase throughout the site, decreasing its value to juvenile chinook.

MAINSTEM DISCHARGE (CFS)

Figure III-18. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 112.6L modeling site.

WUA indices were forecast using low-and high-flow IFG-2 models linked with the HABTAT model. Because this side channel remains breached at mainstem discharges less than 5,000 cfs, turbid water suitability criteria were used for all habitat simulations. Separate WUA response curves were forecast using the high and low flow HABTAT models. The single habitat response curve presented in as Figure III-18a was developed by overlapping the WUA forecasts from the low and high flow models then averaging corresponding WUA values within the area of overlap to obtain a smooth transition (Table B-6.3).

Time series plots of the 1984 site flow and WUA indices reflect considerable variation in habitat potential (Figure III-19).

Site 119.2R

8

<u>Site Description</u>: This site is approximately 1.5 miles below Curry Station on the east bank of the Susitna River (Plate III-4). The study reach encompasses the entire side channel which is 1,800 ft long and 180 ft wide. Three cross sections were established to define the deep, low velocity area at the mouth and two cross sections to define the shallower, faster velocity area near the head of the channel (Figure III-20). A large backwater area is present at all flows and extends from the mouth up to cross section 3. Upwelling and groundwater seepage occur near cross sections 3 and 4 along the right bank. A small tributary enters from the right bank above cross section 3. Substrate varies from cobble and rubble at the upper two cross sections to silt in the backwater area. Riprap from the railroad is present along the right side of the channel and provides 5 to 25 percent acceptable cover.

Figure III-19. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 112.6 modeling site.

Plate III-4. Modeling site 119.2R on June 1, 1982 at mainstem discharge: 23,000 cfs.

Figure III-20.

Cross sections for 119.2R study site delicting water surface elevations at calibration discharge of 316 cfs.

The side channel is breached by the mainstem at 10,000 cfs. Below 10,000 cfs, cross sections 4 and 5 are dry; the backwater area at the lower end of the site persists even at 5,000 cfs. Above 23,000 cfs, the left bank becomes inundated and the site is a large run. Site flows of 1,180, 10 and 0 cfs correspond to mainstem discharges of 23,000, 10,400 and 7,400 cfs respectively.

This small side channel was selected to represent channels with high velocities at the head and low velocities at the mouth. An IFG-2 model was selected because of the limited data available.

Spawning salmon have not been observed in the side channel. Small numbers of juvenile chinook and sockeye salmon were identified in the site. The large backwater area at the mouth eliminates any access difficulty into the site. Passage through the site is possible below cross section 3 in unbreached conditions.

<u>Cal</u>	ibrat	tion:	The	data	ava	ilabi	le t	o mode	el the	e site	consi	sted	of	level	surveys
for	all	cross	sect	ions	and	the	hydr	raulic	data	summa	rized	in T	able	111 - 9).

Table III-9.	Hydraulic data 119.2R.	available to th	e calibrate IFG-2 mode	l for site
Date	Flow (cfs)	Discharge (cfs)	Calibration Cross Section(s)	Туре*
840831	71	13,600	3	D
840819	316	17,400	1,2,3,4,5	D

iadie III-9 (continued).	Table	III-9 (Continued)
--------------------------	-------	---------	------------

840824 1090 22,700 3 D)
------------------------	---

* D = Discharge measurements (includes mid channel and shoreline measurements)
S = Shoreline measurements (does not include mid channel measurements)

The streambed elevations shifted from August to September due to the high flows in the mainstem. Because most of the data was taken before the high flow event, the cross section elevatinos used in the hydraulic model were adjusted to agree with the discharge measurements (Figure III-21).

A velocity profile was developed for each cross section, based on the site flow of 316 cfs. Velocities associated with the other two flows were available only at cross section 3. Velocities predicted by the model were judged to be reasonable throughout the application range of 10,000 to 23,000 cfs (mainstem) based on channel geometry.

To calibrate the model with respect to depth, comparisons were made between observed and model predicted water surface elevations. Water surface profiles based on IFG-2 output for the three calibration flows and for the flows corresponding to discharges of 10,000 and 23,000 cfs are shown in Figure III-22. Observed water surface elevations for the calibration flows and rating curve water surface elevations for the model limit flows are also shown.

<u>Verification</u>: One model adequately reproduces the velocities over the range of available data (Figure B-2.6).

MEASURED

,

ADJUSTED

Figure III-21. Comparison of measured and adjusted cross sections 1, 2, and 3 at 119.2R study site.

Figure III-22. Comparison of observed and predicted water surface profiles from calibrated model at 119.2^R study site.

<u>Application</u>: The IFG-2 model was assigned an excellent rating for site flows of 15 to 1,240 cfs, corresponding to mainstem discharges of 10,000 to 23,000 cfs. At very high mainstem discharges, the site's flow regime changes dramatically. The large volume of water flowing through the site drowns out the backwater area, and the silty, vegetated left bank becomes inundated. The distribution of predicted velocities at the upper cross sections become unrealistic at flows above 23,000 cfs. Therefore, an unacceptable rating was assigned to the mainstem range of 23,000 to 35,000 cfs.

The application range and ratings are summarized below in the bar chart.

The wetted surface area and juvenile chinook WUA curves are presented in Figure III-23a. Both curves are plotted to the same scale and expressed in identical units; i.e., square feet per 1,000 feet of stream. The greatest proportion of the wetted surface area provides rearing habitat for juvenile chinook at mainstem discharges between 10,000 and 12,000 cfs.

The WUA curve plotted in Figure III-23b at an expanded vertical scale accents the rapid increase in rearing habitat associated with this site breaching near 10,000 cfs. This marked increase is attributed to turbid mainstem water entering the site and significantly increasing the cover value afforded juvenile chinook. As mainstem discharge increases beyond 13,000 cfs

Figure III-23. Projections of gross surface area and WUA of juvenile chinook salmon havitat as a function of discharge for the 119:2 modeling site.

velocities begin to reduce the rearing potential at this site. Above 24,000 cfs available rearing habitat is restricted to shoreline margins where sufficient object cover is available to retard velocity.

Because the extrapolation range of the hydraulic model was limited to a range of mainstem discharges from 10,000 to 22,000 cfs, it was necessary to estimate wetted surface areas and juvenile chinook WUA beyond the extrapolation limits of the hydraulic model. The wetted surface area was determined by digitizing enlarged air photographs obtained at mainstem discharges cf 5,100, 7,400 and 10,600 cfs. The surface area measurements at 5,100 and 7,400 cfs were the same. The ratio of the digitized surface area at 10,600 cfs to that forecast by the hydraulic model at the same flow was .47. This ratio was used to adjust the digitized surface areas from the 5,100 cfs and 7,400 cfs photography before using these surface areas to extent the forecast surface area curve from 10,000 cfs to 5,000 cfs.

Juvenile chinook WUA estimates for unbreached conditions are based on the assumption that rearing habitat potential declines at a constant range as mainstem discharge declines from the breaching flow of 10,000 to 7,400 cfs. The percentage of the total wetted surface area providing potential rearing habitat at 7,400 cfs was assumed to be roughly half, the proportion of clear water habitat present immediately preceding breaching. WUA values for mainstem discharges between 7,400 and 10,000 were linearly interpolated. Since wetted surface area remained constant as mainstem discharge declined from 7,400 to 5,100 cfs, WUA for juvenile chinook was assumed to remain constant.

An exponential decay function was used to extend the WUA curve beyond the upper extrapolation range of the calibrated hydraulic model. The decay function selected reproduced a habitat response trend evident to other middle river side channel sites. The surface area curve was extended from 22,000 cfs to 35,000 cfs using a positive exponential function. Both the surface area and WUA curves should be applied with discretion in the 23,000 to 35,000 cfs range even though Figure III-23 indicates errors associated with these curves would be insignificant. Table B-6.4 contains further detail regarding the synthesis of surface area and WUA response curves for this site.

Time series plots of WUA and average daily site flow (Figure III-24) indicate fairly low habitat potential for juvenile chinook exist at this site during mid-summer, but comparatively high WUA indices are associated with early summer and fall site flows. Rearing habitat is maximized at this site when the mainstem discharges range between 10,000 and 14,000 cfs (Figure III-23a), associated with typical mid-summer discharges (20,000 to 25,000 cfs). Hence, the time series plot, Figure III-24, reflects greater fluctuations in juvenile chinook habitat at this site than is evident for other side channel study sites during the open water season.

<u>Site 131.7L</u>

<u>Site Description</u>: This site is located directly above the confluence of Fourth of July Creek along the west bank of the Susitna River (Plate III-5). The study reach is 1,900 ft long and ranges from 250 ft wide in the lower half of the site to 400 ft in the upper half. Three cross sections define the

Figure III-24.

-24. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 119.2R modeling site.

Plate III-5. Modeling site 131.7L on June 1, 1982 at mainstem discharge: 23,000 cfs.

deep, low velocity area sand two cross sections describe the shallow faster velocity areas. Two cross sections were established in the transition areas below low and high velocity areas (Figure III-25). Cobble and rubble are the principle substrates found in the lower half of the site with gravel and rubble substrate being predominate in the upper half. Silt and sand deposits exist in pool areas and backwater zones. Cover is provided by the larger substrate and by two debris zones found in the site.

Three channels (A, B and C on Plate III-6) convey mainstem flow into the site at mainstem discharges of 5,000, 10,000 and 14,500 cfs. Site flows greater than 800, 79 and 15 cfs correspond to mainstem discharges of 23,000, 10,400 and 7,400 cfs.

This study site was selected to represent side channels that remain side channels for a broad range of discharges. Upwelling was suspected to maintain baseline flows and the site appeared to have good rearing habitat. An IFG-4 model was selected because of the non-uniform flow conditions and channel size.

Chum salmon have been observed spawning in the site. Juvenile chinook fry rear in the channel. Access to and passage through the site are not limited at any flow.

<u>Calibration</u>: To calibrate the IFG-4 model for the site, four data sets were collected at each cross section (Table III-10).

Figure III-25. Cross sections for 131.7L study site depicting water surface elevations at calibration discharges of 18, 55, 150, and 240 cfs.

Figure III-25. Cross sections for 131.7L study site depicting water surface elevations at calibration discharges of 1[°], 55, 150, and 240 cfs.

CALCULAR AND ADDRESS OF THE OWNER			
-	Date	Flow (cfs)	Discharge (cfs)
	840927	18	7470
	840919	55	9390
	840902	157	11800
	840817	250	14800

Table III-10. Hydraulic data available to calibrate the IFG-4 model for site 131.7L.

The input data required a stage of zero flow value to be assigned to each cross section. A large riffle area below the study site controlled the stage of zero at cross section one. Because a streambed profile was not surveyed for the site, the stage of zero flow was estimated during the iterative calibration process.

Horizontal water surface elevations were not maintained across three cross sections in the site. At cross section 2, the backwater area along the left bank had a lower water surface than the main channel and was raised to maintain a horizontal water surface. Along the right bank at cross sections 6 and 7, a shoal area raised the water surface to higher elevations than the main channel. The streambed was lowered at both cross sections to maintain a horizontal water surface across both cross sections. Also, along the left bank at cross section 7 was a backwater area which had a lower water surface than the main channel. These streambed elevations were also raised (Figure III-26).

A plot depicting the observed and predicted water surface profiles for the calibration flows as well as profiles for the extrapolation limits is shown in Figure III-27. Above 600 cfs, the reliability of the stage and velocity predictions decrease.

To calibrate the IFG-4 model with respect to stage, comparisons were made between the WSEL vs. q curve and the model predicted water surface elevations (Figure III-28). Similar comparisons were made at each cross section however, only the discharge cross section is shown here.

The performance of the calibrated model can be evaluated by comparing the observed and predicted water surface elevations, discharges and velocity adjustment factors (Table B-4.2). The difference in observed and predicted water surface elevations is generally less than 0.03 ft. The largest difference in observed and predicted discharges is 5 percent. The velocity adjustment factors range from 0.92 to 1.04, which indicates the models are suitably calibrated.

<u>Verification</u>: Figure B-2.7 are the scatter plots of observed and predicted depths and velocities. A reliable hydraulic model should be able to predict the same depth of velocity as observed in the field. The one-to-one relationship demonstrates the model is predicting accurately. The results of the statistical tests are shown in Table B-5. For both depth and velocity

MEASURED

ADJUSTED

Figure III-26.

Comparison between measured and adjusted cross sections 2, 6, and 7 at 131.7L study site.

Figure III-27. Comparison of observed and predicted water surface profiles from calibrated hydraulic model at 131.7L study site.

Figure III-28.

Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage-flow relationship for 131.7L cross section 3.

comparison, the RMSE_U is nearly equal to the RMSE, an indication the model is good. The index of agreement is 0.99 for depth and velocity another indication how well the model is predicting.

<u>Application</u>: The breaching discharge for the site was estimated at 5,000 cfs, and the channel flow becomes controlled by the mainstem at about 7,400 cfs. Baseline flow conditions of 5, 10 and 15 cfs occur at 5,000, 6,000, and 7,000 cfs mainstem, respectively. Above 7,400 cfs, an IFG-4 model was calibrated for site flows of 15 to 600 cfs (7,400 to 19,300 cfs mainstem), an excellent rating was assigned. An overall rating of unacceptable was assigned to the model between 19,300 and 35,000 cfs.

The application range and ratings are summarized below in the bar chart.

						verse vers	-
6000	14	000	2:	2000	3	0000	
		Mainstem [Discharge, c	fs E	xcellent	Unacceptable	e

Figure III-29a provide surface area and WUA response curves for this site. Because this side channel conveys mainstem water at 5,000 cfs only turbid water suitability criteria were used for juvenile chinook. The pronounced increase in WUA indices as mainstem discharge increases from 5,000 to 8,000 cfs (Figure III-29b) is associated with a rapid increase in wetted area possessing suitable rearing velocities rather than a change from clear to turbid water habitat discussed at other study sites.

Figure III-29. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 131.7L modeling site.

An extensive gravel bar located on the inside of the bend and near the head of this site (Plate III-5) exerts the greatest influence on the shape of the WUA curve at this site. As mainstem discharge increases above 5,000 cfs a large shallow riffle develops which provides juvenile chinook significant amounts of rearing habitat. At higher flows this shoal area is characterized by unsuitably high water velocities and the site's habitat potential diminishes accordingly.

The WUA and surface area response curves for this site were forecast using the HABTAT model linked to an IFG-4 hydraulic model calibrated for a range of mainstem discharge from 5,000 cfs to 23,000 cfs. A constant rate of change was assumed to exist for both curves as mainstem discharges increased to 35,000 cfs (Table B-6.5).

Time series plots (Figure III-30) indicates juvenile chinook habitat within the side channel remains relatively constant during the mid-summer months, however fairly large variations in habitat potential exist between mid-summer and late spring or early autumn habitat forecasts. Another notable feature of this site is the high levels of rearing habitat provided during the rearing period relative to other study sites.

Site 132.6L

<u>Site Description</u>: This site is located in the channel immediately upstream of 131.7L on the west bank of the Susitna River (Plate III-6). The study reach is 1,140 f: long and ranges from 140 ft wide at the mouth to 180 ft wide at the upper end of the study reach. Cross sections 1, 3 and 9 define the fast,

MONTH

Figure III-30.

Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 131.7L modeling site.

111-94

shallow areas. Cross sections 2 and 4-8 describe the deep, slow velocity areas. A small backwater area is present on the left bank of cross section 9 (Figure III-31). Silt and sand substrate is predominant throughout the deep area while cobble and rubble substrate is generally found in the shallow areas. Vegetation, including horsetails, lines the eft bank of the channel providing some cover.

Channels B and C breach at mainstem discharges of 10,000 and 14,500 cfs. Below 10,000 cfs, the water is ponded and eventually dries up. An overflow channel along the right ball conveys site flow at 25,000 cfs and redirects a small percentage of flow from the site to Channel A. A backwater area is present from the mouth up through cross section 2 at mainstem discharges greater than 23,100 cfs.

This site was selected to represent small side channels that remain small throughout a large range of discharges. An IFG-4 model was selected because of the small channel size and th non-uniform channel conditions.

No adult salmon have been observed in the site. However, a large number of chinook juvenile rear in the site. Access to and passage through the site are not possible below 10,000 cfs.

<u>Calibration</u>: To calibrate the IFG-4 model for this site, two data sets were collected at each cross section and are summarized in the following table.

Figure III-31. Cross sections for 132.6L study site depicting water surface elevations at calibration discharges of 27 and 141 cfs.

Figure III-31. Cross sections for 132.6L study site depicting water surface elevations at calibration discharges of 27 and 141 cfs.

Date	Flow (cfs)	Discharge (cfs)
940901	27	12,700
840708	141	21,500

Table III-11. Hydraulic data available to calibrate the IFG-4 model for site 132.6L.

A horizontal water surface elevation did not occur at cross section 9 due to the small backwater area on the left side of the channel. The streambed elevations in this area were raised so that the left and main channel water surfaces had the same elevation (Figure III-32).

A plot depicting the observed and predicted water surface profiles for the calibration flows as well as profiles for the extrapolation limits is shown in Figure III-33. Because only two data sets are used in the model, the predicted water surface elevations are equal to the observed elevations. The depth and velocity predictions above a site flow of 300 cfs begin to breakdown; thereby setting 300 cfs as the upper limit of the model.

The IFG-4 model was calibrated using the previous described guidelines. Figure III-34 shows a comparison between the WSEL vs q curve and the model predicted water surface elevations for each cross section in the site, similar comparisons were made but shown here only for the discharge cross section.

Figure III-32.

Comparison between measured and adjusted cross section 9 at 132.6L study site.

Figure III-33. Comparison of observed and predicted water surface profiles from calibrated hydraulic model at 132.6L study site.

Figure III-34.

. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage- flow relationship for 132.6L cross section 3.

The calibrated model can be evaluated by comparing the observed and predicted water surface elevations, discharges and velocity adjustment factors (Table B-4.3). There is no difference in observed and predicted water surface elevations. The predicted discharges vary greatly from the mean at cross sections 1 and 8 as did the actual field measurements. The velocity adjustment factors ranged from 0.87 to 1.02.

<u>Verification</u>: Scatterplots (Figure B-2.8) and statistical tests (Table B-5) were made to compare the observed and predicted depths and velocities for th two point hydraulic model. The IFG-4 model is based on regression analysis and a two point regression connects both points. False precision is implied with a nearly perfect one-to-one relationship in the scatterplots and with the index of agreement (0.99).

Application: Site 132.6L breaches at 10,000 cfs and is controlled at 11,900 cfs mainstem. Baseline flow is estimated as 10 cfs for discharges below 10,000 cfs. For site flows of 10 to 17 cfs (10,000 to 11,900 cfs mainstem), the model is not able to forecast velocities accurately, reducing the rating for this flow range from excellent to good. The site was assigned an excellent rating for the 17 to 300 cfs range (11,900 to 25,000 cfs mainstem). Above 25,000 cfs the model was assigned an unacceptable rating.

The application range and ratings are summarized below in the bar chart.

			ŧ																19				*****				******	
	ân an an	199 - 194		B any	-	***	Amante	ł	-	٤	rationet	ł	Product a	- 1994	anninger.	J	aportan.		ser an	407 6	formation of	(Friends	W allings	and a	an Branch	noperally	a - des	4 7 0
6000						12	100	0						22	200	0						3	000	00				
							N	lain	nste	əm	Dis	cha	argi	e, c	fs			E	xce	ller	it			Un	acc	ep	tab	le

The surface area and juvenile chinook WUA curves for site 132.6L are plotted to the same vertical scale in Figure III-35a, with the WUA curve replotted to an enlarged scale in Figure III-35. In both figures surface area and WUA are expressed as square feet per 1,000 feet of side channel. A comparison of the two curves indicates the ratio between WUA and surface area is approximately 0.3 at 12,000 cfs declining toward 0.1 at 25,000 cfs.

This study site is breached at a mainstem discharge of 10,000 cfs and dewaters as mainstem flow continues to decline. The associated rapid decline in both wetted surface area and WUA is evident in Figure III-35. The juvenile chinook WUA curve drops suddenly when the side channel transforms from the breached to non-breached condition at 10,000 cfs. This is attributable to the site flow clearing thereby eliminating the cover value previously afforded juvenile chinook by turbid water. As mainstem discharge Jeclines toward 5,000 cfs, both the wetted surface area and WUA approach zero.

The surface area and habitat response curves were forecast with the HABTAT model and IFG-4 hydraulic model which had been calibrated for mainstem discharges between 10,000 and 30,000 cfs. For mainstem discharges between 30,000 and 35,000 both curves were extended using exponential functions as indicated in Table B-6.6.

For mainstem discharges less than the breaching flow of 10,000 cfs surface area and WUA estimates were obtained by using clear water criteria for juvenile chinook at 9,000 and 10,000 cfs to determine the magnitude of change in WUA attributable to the site flow clearing then reviewing air photo

Figure III-35. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 132.6L modeling site.

enlargements. At 7,400 cfs clear ponded water exists and the 5,100 cfs photography indicates the site is nearly dry. Digitized surface area measurements of ponded water connected to the mainstem at 7,400 and 5,100 cfs were used as a basis for interpolating surface areas between discharges of 10,000 and 5,000 cfs. WUA was assumed to decrease to zero at a constant rate through this range.

Time series analysis of 1984 site flow and Juvenile chinook WUA are presented as Figure III-36. Rearing potential was fairly stable throughout mid-summer 1984 with notable increases being apparent in late spring and early fall when mainstem discharges were approximately half their mid-summer level.

Site 136.0L

<u>Site Description</u>: This site is located approximately 1 mile downstream of Gold Creek along the west bank of the Susitna River (Plate III-7). The study reach is 580 ft long and 80 ft wide with steep banks. Slough 14 enters the channel 20 ft above the study site. Cross sections 1-4 and 6 define shallow high velocity areas while cross section 5 represents a deep, slower velocity area (Figure III-37). The substrate varies from cobble and rubble to gravel throughout the site. Debris and log jams are present along the right bank and provide cover.

The channel has been observed breached at mainstem discharges as low as 5,000 cfs. At moderate to high discharges, the channel appears to be a run. Site flows of 593, 77 and 32 cfs corresponds to mainstem discharges of 23,000, 10,400 and 7,400 cfs.

Figure III-36.

Time series plots of juvenile chinook salmon WUA as a function of discharge from Mav 20 to September 15, 1984 for 132.6L modeling site.

Plate III-7. Modeling site 136.0L on June 1, 1982 at mainstem discharge: 23,000 cfs.

Figure III-37. Cross sections for 136.0. study site depicting water surface elevations at calibration discharges of 81, 153 and 265 cfs.

This small study site was selected to represent small side channels that remain side channels. An IFG-4 model was selected because of the size of the channel.

Relatively few coho and chum spawners have been observed in the site. Juvenile chinook were caught in the side channel. Access into and passage through the site are not limited throughout the entire range of discharges (5,000 to 35,000 cfs).

<u>Calibration</u>: In order to calibrate the IFG-4 model for this site, three data sets were collected at each cross section (Table III-12).

Table III-12.	Hydraulic data av 136.0L.	ailable to calibr	rate the IFG-4 model for site
Dat	e	Flow (cfs)	Discharge (cfs)
8409	09	81	10600
8409	01	153	12700
8408	18	265	1.5600

No unique problems were encountered at this site following the calibration guideline. A plot depicting the observed and predicted water surface profiles for the calibration flows as well as profiles for the extrapolation limits is shown in Figure III-38. To calibrate the IFG-4 model with respect to stage, comparisons were made between the WSEL vs q curve and the model predicted

Comparison of observed and predicted water surface profiles from calibrated model Figure III-38. at 136.0L study site.

۰.

(feet) ELEVATION

III-110

water surface elevations (Figure III-3). Similar comparisons were made at each cross section however, only the discharge cross section is shown here.

The performance of the calibrated model is evident by comparing the observed and predicted water surface elevations, discharges and velocity adjustment factors (Table B-4.4). The difference in observed and predicted water surface elevations is usually 0.02 ft. The largest difference in observed and predicted discharge is 3 percent. The velocity adjustment factors range from 0.99 to 1.01, nearly a perfect correlation.

<u>Verification</u>: The scatterplots of observed and predicted depths and velocities are shown in Figure B-2.9. There appears to be more scatter in the depths than velocities but a one-to-one relationship can be observed from the plot. The results of the statistical tests are shown in Table B-5. Both depth and velocity comparisons of the RMSE_{U} is nearly equal to the RMSE (.167 compared to .170 and .157 compared to .165). The index of agreement for both variables is 0.99, indications of how well the hydraulic model is predicting cepth.

<u>Application</u>: An excellent rating was assigned for site flows of 10 to 1,750 cfs corresponding to 5,000 to 35,000 cfs mainstem, as shown below in the bar chart.

,	1	I	1	ļ	I	1		ļ	1	1	1	1		1]	I	1	1	-]	1	I	i	I)	ļ	-	I	1
ار 6	000	, C	1	•			1	400	00						2	200	0						3	000	00				

Figure III-39. Comparison between water surface elevations forecast by the calibrated hydraulic model and the stage- flow relationship for 136.0L cross section 4.

Total wetted surface area and WUA forecasts are provided for a mainstem discharge between 5,000 and 35,000 cfs (Figure III-41a and b). In the first figure both curves are plotted using a common vertical scale and are expressed in the same units. An eight fold increase in the vertical scale is used with Figure III-41b. Both the surface area and WUA curves for this site were forecast using an IFG-4 hydraulic model calibrated for mainstem discharges rangirg from 5,000 to 35,000 cfs.

Five of the six cross sections established at this small, high gradient side channel were located in riffle zones. The channel cross section lacks the gently sloped stream banks and gravel bars associated with other side channels. Consequently, velocities throughout this site tend to exceed those preferred by juvenile chinook salmon. Hence the rearing habitat potential steadily decreases between 5,000 and 18,000 cfs, but remains at nearly the same level through 35,000 cfs. This is primarily attributed to the large amount of shoreline debris and undercut banks which exist at this site. When this habitat response curve is compared to WUA curves for other sites, it is apparent that this site provides less rearing habitat on a per 1,000 ft basis than most other side channels. However, because the surface area of this side channel is also small, the proportion of the study site possessing suitable chinook habitat is actually greater than the proportion of some of the larger side channels.

The influence of shoreline debris and undercut banks on the temporal stability of chinook raring habitat at this site is evident in the time series plots presented as Figure III-42. Despite the rather erratic pattern of daily site

Figure III-41. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 135.0L modeling site.

Figure III-42. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 136.0L modeling site.

III-I16

flows, corresponding WUA indices are notably stable. Although low early summer and fall streamflows result in an increased habitat potential, this increase is not as pronounced as that which occurs at other side channel sites.

Site 147.1L

<u>Site Description</u>: This site is located on the left of Fat Canoe Island on the west bank of the Susitna River (Plate III-8). The study reach extends the entire length of the site (1,780 ft) and ranges from 350 ft wide at the mouth to 250 ft wide at the head. Six cross sections were established to define the deep, fast velocities in the channel (Figure III-43). The substrate is large cobble and boulder with a thick layer of sand along the right bank of the lower three cross sections. The available cover is provided by the large substrate.

The side channel has been observed breached at discharges as low as 5,000 cfs. Site flows of 6,670, 2,470 and 1,710 cfs correspond to mainstem discharges of 23,000, 10,400 and 7,400 cfs, respectively. This large study site was selected to represent large side channels that remain side channels at low mainstem discharges. An IFG-2 model was selected because of the large size of the channel and its uniform shape. Previous reconnaissance to the site indicated that rearing habitat was limited to the right streambank margin and a limited amount of data would be required to model this site with an IFG-2 model. Shoreline velocities were collected along both streambank margins.

Figure III-43. Cross sections for 147.1L study site depicting water surface elevations at calibration discharges of 1907 and 5600 cfs.
Adult salmon have not been observed at the site however some juveniles were observed along the right bank.

<u>Calibration</u>: The data available to model the site included level surveys for all six cross sections and the hydraulic data summarized in Table III-13.

499410041251291291291291291291291291291291291291291				na un formant porte Presional de la compacta de la Insura formant porte Presional de la compacta de la	
Date	ົ່າພ ີ່ s)	Discharge (cfs)	Calibration Cross Sections	Type*	
840917	1907	8130	2,4 1,3,5	D S	
840913	2154	9000	4	D	
940907	2650	10,700	1,2,3,4,5,6	S	
840829	4742	17,400	5	D	
840828	5300	19,000**	1,2,3,4,5,6	S	
840821	5600	20,000**	1,2,3,4,5,6	S	

Table III-13. Hydraulic data available to calibrate the IFG-2 model for site 147.1L.

* D = Discharge measurements (includes mid channel and shoreline measurements).

S = Shoreline measurements (does not include mid channel measurements)

** = Adjusted to instantaneous discharge

Two models were required to simulate side channel hydraulics over the mainstem range of 5,000 to 35,000 cfs. This is mainly due to the increasing proportion of side channel conveyance in the shelf area along the right bank at high flows. Velocity profiles were developed at each cross section based on the site flows of 1,907 and 5,600 cfs for the low and high flows hydraulic models, respectively. In calibrating the two models with respect to depth, predicted water surface elevations at cross sections 2 through 6 were compared to water surface elevations calculated from the rating curves over a wide range of flows. Water surface profiles based on IFG-2 output for the calibration flows of 1,907; 2,154; 2,650; 4,742; and 5,300 cfs and for the flows corresponding to mainstem discharges of 5,000 and 35,000 cfs are shown in Figure III-44. Observed water surface elevations for the calibration flows and rating curve water surface elevations for the model limit flows are also shown.

<u>Verification</u>: Figures B-2.9 and B-2.10 show velocity profiles produced by the two IFG-2 models at cross section 2 for calibration flows of 1,907 and 5,600 cfs. The observed velocities for those flows are also plotted. The figures demonstrate that the set of "n" values that produces the proper velocity profile at the low flow does not accurately produce that of the high flow, and vice versa.

<u>Application</u>: The low flow model represents site conditions for mainstem discharges up to 13,500 cfs, while the high flow model is applicable for mainstem discharges greater than 13,500 cfs. This breakpoint corresponds to a site flow of 3,500 cfs. Limits for which the models can be considered excellent exceed the range of available stage information. Models were extrapolated beyond the data range down to 5,000 cfs in the low flow model, and up to 35,000 cfs in the high flow model. The overall rating for both models is excellent.

Figure III-44. Comparison of observed and predicted water surface profiles from calibrated model at 147.1L study site.

The application range and ratings are summarized below in the bar chart.

	1		
6000	14000	22000	30000

Excellent

The wetted surface area and juvenile chinook WUA response functions for this study site, shown in Figure III-45a and b may be considered fairly representative of mainstem channel areas. The ratio of juvenile chinook WUA to surface area at this site is very low. Williams (1985) demonstrated that suitable rearing areas in large side channels of the middle river are

Mainstem Discharge, cfs

suitable rearing areas in large side channels of the middle river are primarily confined to nearshore zones, due to high (non-suitable) velocities existing elsewhere in the channels. Figure III-45b indicates a slight increase in juvenile chinook WUA with increasing discharge. However when viewed in perspective with wetted surface area, juvenile chinook WUA may be considered relatively constant between 5,000 and 35,000 cfs.

The surface area and WUA response functions were forecast using the high and low flow IFG-2 models previously described and the HABTAT model. Because this large side channel conveys mainstem water at discharges well below 5,000 cfs, only turbid water suitability criteria were used. The separate WUA curves forecast by the high and low flow models were similar within the range of overlap and intersected between 20,000 and 21,000 cfs. Therefore, WUA predicted by the low flow model was used for discharges of up to 20,500 cfs; above this discharge the high flow model was used.

Figure III-45. Projections of gross surface area and WUA of juvenile chinook salmon habitat as a function of discharge for the 147.1L modeling site.

Because of its large size and low breaching discharge, the site flow hydrograph strongly resembles that for the mainstem throughout the open water season (Figure III-46). The time series plot for juvenile chinook WUA responds little to streamflow fluctuation because of the relatively constant amount of shoreline habitat that exist. A similar time series response is evident for the 136.0L site where rearing habitat is also restricted to shoreline margins because of unsuitable mid channel velocities.

A microhabitat desting and all retaining - De free cohes sharing by extrupt led to Macrohabitat

Figure III-46. Time series plots of juvenile chinook salmon WUA as a function of discharge from May 20 to September 15, 1984 for 147.1L modeling site.

REFERENCES

- Aaserude, R.J., J. Thiele, and D. Trudgen. 1985. Categorization of aquatic habitats in the Talkeetna-to-Devil Canyon segment of the Susitna River, Alaska. Preliminary draft report. E. Woody Trihey and Associates and Arctic Environmental Information and Data Center, University of Alaska, Fairbanks. Alaska Power Authority. Susitna Hydroelectric Project. 1 vol.
- Alaska Department of Fish and Game, Susitna Hydro Aquatic Studies. 1984. Procedures Manual, May 1983 - June 1984. Final draft. Report for Alaska Power Authority, Anchorage, AK 131 pp.
- Barrett, B.M., F.M. Thompson, and S.N. Wick. 1984. Report No. 1. Adult anadromous fish investigations, May - October 1983. Susitna Hydro Aquatic Studies, Alaska Department of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1450. 1 vol.
- Bovee, K.D. 1982. A guide to stream habitat analysis using the instream flow incremental methodology. U.S. Fish and Wildlife Service. Instream Flow Information Paper No. 12. 1 vol.
- E. Woody Trihey and Associates and Woodward-Clyde Consultants. 1985. Instream flow relationships report. Volume 1. Working draft. Alaska Power Authority. Susitna Hydroelectric Project. 1 vol.

- Klinger-Kingsley, S. 1985. Response of aquatic habitat surface areas to mainstem discharge in the Talkeetna-to-Devil Canyon reach of the Susitna River, Alaska. Draft report. E. Woody Trihey and Associates. Alaska Power Authority. Susitna Hydroelectric Project. 1 vol.
- Main, R. 1978. IFG-4 program user's manual. U.S. Fish and Wildlife Service. 45 pp.
- Milhous, R.T., D.L. Wegner, and T. Waddle. 1984. Users guide to the Physical Habitat Simulation System. U.S. Fish and Wildlife Service. Instream Flow Information Paper 11. FWS/OBS - 81/43 Revised. 475 pp.
- Schmidt, D.C., et al. 1984. Report No. 2. Resident and juvenile anadromous fish investigations (May - October 1983). Susitna Hydro Aquatic Studies, Alaska Department of Fish and Game. Report for Alaska Power Authority, Anchorage, AK. Document 1784. 1 vol.
- Steward, III, C.R. (In preparation). Middle river aquatic habitat report. E Woody Trihey and Associates. Draft Report. Alaska Power Authority. Susitna Hydroelectric Project. 1 vol.
- _____. 1985. Suitability criteria recommended for use in IFR Habitat modeling studies of the middle Susitna River. E. Woody Trihey and Associates, Anchorage, AK. Technical memorandum. 11 pp.

- Trihey, E.W. 1979. The IFG incremental methodology. Pages 24-44 in G.L. Smith, ed. Workshop in instream flow habitat criteria and modeling. Colorado Water Resources Research Institute, Colorado State University, Fort Collins, CO. Information Series No. 40.
- _____. 1980. Field data reduction and coding procedures for use with the IFG-2 and IFG-4 hydraulic simulation models. Instream Flow Service Group. U.S. Fish and Wildlife Service, Fort Collins, CO.
- Trihey, E.W., and N.D. Hilliard. 1984. Supplemental guidelines for calibrating the IFG-4 hydraulic model. In Bredthauer, S.R., chairman. Alaska's Water: A critical resc rce. Proceedings of the Alaska Section, American Water Resources Association. Institute of Water Resources, University of Alaska. Fairbanks, Alaska. Report 1WR 106. 1 vol.
- Williams, S. 1985. The influence of project flows on hydraulic aspects of mainstem and side charnel rearing habitats in the middle river for the period May 20 to September 15. E. Woody Trihey and ASsociates, Technical Memorandum.
- Wilmott, C.J. 1981. On the validation of models, physical geography 2. V.H. Winston and Sons. p. 184-194.

SUMMARY OF HYDRAULIC CONDITIONS

.

.

AND HABITAT FURECASTS AT

1984 MIDDLE RIVER STUDY SITES

DRAFT REPORT

Appendix A Summary of site-specific data collected to develop relationships between mainstem discharge, site flow and water surface elevation

Prepared for:

ALASKA POWER AUTHORITY

Prepared by:

N. Diane Hilliard Shelley Williams E. Woody Trihey R. Curt Wilkinson Cleveland R. Steward, III

May 1985

APPENDIX FIGURES

- Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.
- Figure A-1.2 Stage discharge curves for cross sections 2 and 5 at site 101.5L.
- Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.
- Figure A-1.4 Stage discharge curves for cross sections 1, 2, 4 and 5 at site 119.2R.
- Figure A-1.5 Stage discharge curves for cross sections 1, 2, 4, 5, 6, 7, 8 and 9 at site 132.6L.
- Figure A-1.6 Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 136.0L.

Figure A-1.7 Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 147.1L.

APPENDIX TABLES

- Table A-1.1. Summary of site-specific data collected for rating curve analysis at RM 101.2R.
- Table A-1.2. Summary of site-specific data collected for rating curve analysis at RM 101.5L.
- Table A-1.3. Summary of site-specific data collected for rating curve analysis at RM 101.7L.
- Table A-1.4. Summary of site-specific data collected for rating curve analysis at RM 105.8L.
- Table A-1.5. Summary of site-specific data collected for rating curve analysis at RM 112.6L.
- Table A-1.6. Summary of site-specific data collected for rating curve analysis at RM 114.1R.
- Table A-1.7. Summary of site-specific data collected for rating curve analysis at RM 115.0R.
- Table A-1.8. Summary of site-specific data collected for rating curve analysis at RM 118.9L.
- Table A-1.9. Summary of site-specific data collected for rating curve analysis at RM 119.1L.
- Table A-1.10. Summary of site-specific data collected for rating curve analysis at RM 119.2R.
- Table A-1.11. Summary of site-specific data collected for rating curve analysis at RM 125.2R.
- Table A-1.12. Summary of site-specific data collected for rating curve analysis at RM 130.2R.
- Table A-1.13. Summary of site-specific data collected for rating curve analysis at RM 131.3L.
- Table A-1.14. Summary of site-specific data collected for rating curve analysis at RM 131.7L.
- Table A-1.15. Summary of site-specific data collected for rating curve analysis at RM 132.6L.
- Table A-1.16. Summary of site-specific data collected for rating curve analysis at RM 133.8R.
- Table A-1.17. Summary of site-specific data collected for rating curve analysis at RM 136.0L.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

- Table A-1.18. Summary of site-specific data collected for rating curve analysis at RM 137.5R.
- Table A-1.19. Summary of site-specific data collected for rating curve analysis at RM 138.7L.
- Table A-1.20. Summary of site-specific data collected for rating curve analysis at RM 139.0L.
- Table A-1.21. Summary of site-specific data collected for rating curve analysis at RM 139.4L.
- Table A-1.22. Summary of site-specific data collected for rating curve analysis at RM 147.1L.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

Figure A-1.1 Stage discharge curves for cross sections 1, 3, 4, 6, 7 and 9 at site 101.2R.

,

Figure A-1.2 Stage discharge curves for cross sections 2 and 5 at site 101.5L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure A-1.3 Stage discharge curves for cross sections 1, 2, 3, 3a, 4, 5, 6 and 8 at site 112.6L.

Figure 7.1.4 Stage discharge curves for cross sections 1, 2, 4 and 5 at site 119.2R.

Figure A-1.4 Stage discharge curves for cross sections 1, 2, 4 and 5 at site 119.2R.

Figure A-1.: Stage discharge curves for cross sections 1, 2, 4 and 5 at site 119.2R.

Figure A-1.5 Stage discharge curves for cross sections 1, 2, 4, 5, 6, 7, 8 and 9 at site 132.6L.

Figure A-1.5 Stage discharge curves for cross sections 1, 2, 4, 5, 6, 7, 8 and 9 at site 132.6L.

Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 136.0L. Figure A-1.6

Figure A-1.6 Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 136.0L.

Figure A-1.7

Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 147.1L.

Figure A-1.7 Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 147.1L.

Figure A-1.7 Stage discharge curves for cross sections 1, 2, 3, 5 and 6 at site 147.1L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
101.281	Cross Section 1	841006	1200	359.47		6,780
101	Of OBO DECEMBER	840925	1300	359.55	0	7,890
		840924	1310	359.46		8,290
		840924	1300	359.50		8,290
		840914	1815	359.24		8,800
		840912	1640	359.54		9,080
		840903	1310	359.15	25	11,200
		840903	1535	360.07		11,200
	840830	1150	361.08	280	15,300	
		840829	1712	361.41		17,400
		840808	1255	362.10		23,000
		840827	1605	362.95		27,700
101.282	Cross Section 2	840924		359.64		8,290
		840830	1240	360.08	. 8	15,300
		840829	1806	360.62		17,400
		840808	1400	361.49		23,000
		840327	1607	363.22		27,700
101.283	Cross Section 3	841006	1200	361.28		6,780
n, nar sái, tá sinn and hid	المعرية المحمد المحمد المعرية المحمد المعرية المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد الم	840925	1416	361.33	0	7,890
		840924	1300	361.31		8,290
		840924	1320	361.33		8,290
		840914	1815	361.29		8,800

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
101 263	Cross Section 3	840012	1600	361 20		9 080
(01.25)	Gross Section 3	840912	1000	361 31		9,000
(COML .)		840903	1525	361.80		11,200
		840903	1350	361.83	25	11,200
		840830	1445	362.05	286	15,300
		840829	1715	362.40		17,400
		840808	1250	362.97		23,000
101.254	Cross Section 4	841006	1155	361.23		6,780
		840925	1407	361.26	.2	7,890
		840924	1325	361.26		8,290
		840924		361.30		8,290
		840914	1820	361.26		8,800
		840912	1515	361.28		9,080
		840912		361.30		9,080
		840903	1422	361.85	27	11,200
		840830	1627	362.97	270	15,300
		840830	1606	362.98	270	15,300
		840829	1718	363.34		17,400
		840808	1245	363.88		23,000
101.255	Cross Section 5	840924		361.49		8,290
		840830	1638	363.08	0	15,300
		840829	1647	363.65		17,400
		840808	1355	364.36		23,000

ning time was while play that that there easy finds state and then down they gave then and any any have more and

Table A-1.1 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 101.2R.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
101.256	Cross Section 6	841006	1150	361.93		6,780
		840925	1340	361.96	.1	7.890
		840924	1330	361.96	• **	8,290
		840914	1830	361.94		8,800
		840912	1336	361.94		9,080
		840912	1345	361.99		9,080
		840903	1452	362.39	26	11,200
		840830	1700	363.10	273	15.300
		840829	1646	363.69		17,400
		840808	1350	364.44		23,000
01.257	Cross Section 7	841006	1145	361.89		6,780
		840925	1345	361.92	.4	7,890
		840924	1335	361.92		8,290
		840924		361.95		8,290
		840912	1308	361.94	0	9,080
		840912	1315	362.00		9,080
		840903	1525	362.39	19	11,200
		840830	1800	363.46	255	15,300
		840829	1640	363.92		17,400
		840808	1215	364.62		23,000
01.258	Cross Section 8	841006	1145	361.84		6,780
		840925	1315	361.90	1.1	7,890
		840924	1340	361.90		8,290

Table A-1.1 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 101.2R.

and then also these spect state state state state and anis size and then state that the state that the state state state state

AUG9 (198) (179)

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
		010010	1 00 0	6/3 AF		A AAA
101.258	Cross Section 8	840912	1239	361.95		9,080
(cont.)		840912	1245	362.01		9,080
		840903	1605	362.41		11,200
		840903		362.43	19	11,200 *
		840903	1605	362.45		11,200
		840830	1750	363.50	236	15,300
		840829	1542	363.92	533	17,400
		840808	1210	364.71		23,000
101.259	Cross Section 9	840924	1350	362.77		8,290
		840912	1145	362.83		9,080
		840903	1605	363.34	21	11,200
		840830	1832	364.01	269	15,300
		840829	1818	364.37		17,400
		840808	1200	364.97		23,000
101.2M1	Head	840925	1300	362.93		7,890
		840924		363.02		8,290
		840924	1400	363.03		8,290
		840912	1130	363.30		9,080
		840903	1700	363.81		11,200
		840830	1830	364.62		15,300
		840829	1633	365.01		17,400
		840808	1200	365.72		23,000

Table A-1.1 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 101.2R.

* Average of two separate WSEL observations.

-

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
101.2X1	Cross Section 1	841012		361.50	1622	6,210 7,830
		840911		361.85	2213	9,330
		840831		362.70	3530	14.300 *
		840820		363.17		18,500
		840825		365.20		28,900
101.2X2 **	Cross Section 2	831103	1525	362.57		4,500
		831027	1655	362.60		5,020
		821012	1633	362.73		7,950
		841002		362.70		7,980
		821009	1030	362.89		8,440
		821007	1415	362.96		8,640
		831011	1445	363.22		9,520
		830916	0940	363.29		10,500
		820822	1630	363.44		12,200
		830911	1010	363.55		12,200
		820823	1124	363.47		12,300
		831001	1505	363.83		13,200
		820909	1250	363.64		13,400
		820813	1420	363.70		13,600
		820927	1825	363.83		13,800

Table A-1.2Summary of site-specific data collected for rating curve analysis
at R.M. 101.5L.

* Instantaneous discharge estimated from time lag analysis. ** Same location as 1982 and 1983 gage 101.2M4.

taff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
A1 AVA 22	Outra Cartina D	910001	3616	363 07		14 (00
UI.ZAZ	cross Section 2	020903	1040	303.91		14,600
cont.)		020031	1317	304.07		10,000
		020007	134/	304.13		10,500
		020000	1920	304.22		10,000
	030729	1045	304.14		17,000	
		030720	1030	304.40		18,600
		830/22	1820	364.45		18,600
	830/20	0900	364.49		18,600	
		830822	1220	364.76		21,600
		830805	1635	364.82		21,700
		830619	1125	364.90		23 ,000
		830619	1830	364.99		23,000
		830617	1142	364.95		23,300
		830621	1730	365.24		24,000
		820920	1450	365.39		24,000
		830807	1450	365.25		25,000
		820715	1110	365.38		25,600
		830808	1920	365.63		26,000
		830703	1645	365.22		26,200
		830706	1405	365.27		26,300
		830828	1052	365.53		26,600

Table A-1.2 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 101.5L.

** Same location as 1982 and 1983 gage 101.2M4.

taff Gage Location Number within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
Ol.2X3 *** Cross Section 5	831103	1520	365.11		4,500
	831027	1650	365.19		5,020
	841012		365.23		6,210
	831020	1645	365.71		7,230
	841002		365.70		7,980
	831011	1441	365.92		9,520
	830916	1020	366.03		10,500
	830911	0930	366.33		12,200
	831001	1530	366.60		13,200
	830716	1145	366.82		16,400
	830529	1045	366.85		17,000
	830720	1830	367.16		18,600
	830722	1825	367.23		18,600
	830822	1255	367.64		21,600
	830805	1630	367.72		21,700
	830619	1120	367.68		23,000
	830617	1735	367.86		23,300
	830807	1455	368.07		2 : 000
	830808	1900	368.36		26,000
	830703		368.02		26,200
	830706	1400	368.11		26,300
	830828	1055	368.24		26,600

Table A-1.2 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 101.5L.

*** Same location as 1983 gage 101.2M6.

Table A-1.3	Summary	of	site-specific	data	collected	for	rating	curve	analysis
	at R.M.	10	1.7L.						

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
මහර දෙකුලා දමන්ම කියාව දෙකක දියාන දෙකක කියාම කියාම තිබෙම	আগে ৫৯৯ টারে গুরুত উঠাত ভিতা ভিতা জেরা বেঁচা কোনা হাঁচান হৈছে। বেঁচা গাঁৱাত বেঁচা বিটান	alata films class dans dass.	රුනා හිතල රැක ලබන	ක්ෂා බංග කිරම නාස දාක කියා	(1993) (1993) (1994) (1994) (1994) (1994) (1994) (1995) (1994) (1994) (1994)	tipnin grain datar kitan kitan kitan kitan kitan kitan kita
101.851	Cross Section 1	841002		366.69		7,980
		840921	1547	367.86		11,400
		840831	1126	368.49		13,600
		840830	1530	368.75		15.300
		840829	1530	369.11		17,400
		840713	1315	369.36		21,200
102.0P1	Cross Section 3	841002		368.21		7,980
		840921	1640	371.43		11,400
		840830	1200	372.35		15,300
		840820		372.80		18,500
		840810	1600	373.92		24,000
		840825	1525	376.15		29,800
02.0P2	Cross Section 4	841002		368.99		7,980
		840820		373.91		18,500
		840810	1600	375.00		24,000
		840825	1525	376.45		29,800

Table A-1.4	Summary o at R.M. 1	f site-specific 05.8L.	data co	ollected for	r rating curv	e analysis
Staff Gage Number	Location within site	een too oon naa goo goo goo goo goo goo goo boo boo goo g	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
105.6P0	Cross Section 1	840928 841001 840914 840914 840911	1230 1520 1600 1606 1500	397.31 397.47 397.70 397.71 397.90	aliga galak anak dirik dires ana	7,320 7,830 8,800 8,800 9,330
105.6P1	Cross Section 4	840928 841001 841001 840914 840911 840831 840830 840830 840820 840820 840825	1200 1617 1520 1600 1430 1210 1330 1330 1715 1155	400.11 400.22 400.23 400.38 400.51 401.43 401.68 401.74 402.10 402.94 402.62		7,320 7,830 7,830 8,800 9,330 13,600 15,300 15,300 15,300 18,500 24,000

elektr allerte foans kerne konse genee bezoe ander allere nordet allere g	usia nona daga dana tinu dika aya aya dala kain kan kan tan tan tan tan tan tan tan tan	alada Alada alalad kalada kalada Alada dalada dalada kalada Alada dalada dalada dalada kala	un artena albren ersten albene beitet buitet bilten	alaan darah darah kalan dalah darah d	annan annan annan aircea dhaara gunara annan aircean aircean aircean aircean aircean aircean aircean aircean ai		agan angan angan matar dalah angan gipak delah dalah sujuk tanah alah sebat delah delah delah delah delah delah
ekinin dekint mjulan kolate odnim kunsti kalasa käiten käiten dankat ekkint däyya o	uurin diamma disama dasama distafi diamma atatan diambin disatan disambi dasara tusuka ketaka disama diambin di	annan kasan kunar arinda danah dahar duana danan darah atasis danar distri darah darah darah di	an Bloch Bollik Medir White Abare Filling Mare	finn man dire dan gant dan	ana ang ang ang ang ang ang ang ang ang	1979, 1976, Angel, Kiturg 1970, 1994, 1994, 1994, 1994, 1 994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1994, 1	
Staff Gage Number	Location within site		Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
ganan minim ginan minim minim manan marimi ditua takan atkan	dese genn divid sind aver divid sins kont ann divid sins kont and	\$040	diada Antina manin Atanah dalah distri	Card ages here with	ארגעין איז	and the first start and and	
112.3X1C	Cross Section	1	841005	1500	450.60		7,080
(Low Flow)	Left Bank		840929	1555	450.60		7,410
			840930	1546	450.66		7,500
			840916		450.84		8,280
			840913		451.00		9,000
			840905	0830	451.31		10,400
112.3¥1B	Cross Section	1	840830		452.67		15,300
(High Flow)	Left Bank		840822	1230	453.42		19,100
			840810		454.06		24,000
112.351	Cross Section	1	841005	1500	450.75		7,080
	Right Bank		840916		450.96		8,280
	-		840914	1520	451.08		8,800
			840904		451.54		10,800
			840830		452.54		15,300
			840822	1248	453.28		19,100
			840810		454.06		24,000

Table A-1.5Summary of site-specific data collected for rating curve analysisat R.M. 112.6L.

Staff Gage Number	Location within site	iau 1937	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
112.3X2	Cross Section	2	841005	1500	451.36		7,080
	Left Bank		840929	1600	451.36		7,410
			840930	1540	451.43		7,500
			840916		451.61		8,280
			840913		451.78		9,000
			840905		452.10		10,400
			840830		453.25		15,300
			840822	1330	453.67		19,100
			840810		454.31		24,000
112.3S2C	Cross Section	2	841005	1500	451.91		7,080
(Low Flow)	Right Bank		840930	1540	452.06		7,500
	0		840916		452.14		8,280
			840914	1620	452.15		3,800
			840913	1700	452.25		9,000
			840904		452.40		10,800
12.3S2B	Cross Section	2	840830		452.85		15,300
(High Flow)	Right Bank		840822	1300	453.55		19,100
1987	~		840810		455.22		24,000

Table A-1.5 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 112.6L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
12.3X3C	Cross Section 3	841005	1500	452.54		7,080
Low Flow)	Left Bank	840929	1605	452.52		7,410
		840930	1512	452.59		7,500
		840916		452.68		8,280
		840914	1620	452.68		8,800
		840913		452.79		9,000
		840905		452.97		10,400
12.3X3B	Cross Section 3	840904		453.12		10,800
High Flow)	Left Bank	840822	1352	454.20		19,100
-13 2 -		840810		454.62		24,000
12.353	Cross Section 3	841005	1500	452.54		7,080
	Right Bank	840929	1640	452.56		7,410
	-	840930	1534	452.60		7,500
		840916		452.90		8,280
		840913	1700	453.00		9,000
		840904		453.35		10,800
		840830		454.37		15,300
		840822	1352	454.91		19,100
		840810	1540	455.39		24,000

Table A-1.5 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 112.6L.

terite stings store should been facto facto court along terms and a store store terms and a

lado sinis tinti shan dala titu sura puda kini kini tu Alat sinis tinti shan tuna tuna kini kini	n then non- non- new the this test that the the test the set of the test of the test of the test test test the test test test t	an shin dirin dirin kinin kinin tana tana dina dirin dirin dirin dirin kinin tang kan In shini duni dawa kang dalah dinin kinin - an yani yani duni kinin kini - a ya	9 42000 6000 6000 6000 6000 6000 6000 6	naam geberg geber konste kanste sager fanne kanste kalter namer datere kanste name geberg geber konste kanste kanste fanne fanne kalter vanste datere	nanis cisso dinak disel kont kanif kanif sawa (dise dinah dinah eksen din Analis disen tahun kalak ginak diser dakis diam disek disak kanif dinak dinak di	ar ginar danis lagan garat garan gapa gapa dalah disar gilah dinis dilah dinis disar an dana sasar jarah danis dinis dinas apan danis danis danis danis danis danis
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
110 38340	Cross Section 34	941005	1500	151 93		7 020
IIZ.JAJAU	Vross Section JA	041000	1610	434.21		7,000
	Lert oank	940929	1010	474.21		7,410
		040930	1430	434.20		7,500
		040910		434.33 LEL LL		0,200
		040913		454.40		9,000
		840903		404.03		10,400
112.3S3AC	Cross Section 3A	841005	1500	454.51		7,080
	Right Bank	840929	1620	454.52		7,410
	0	840916		454.60		8,280
		840916		454.61		8,280
		840905		454.79		10,400
112.3X4B (2	Cross Section 4	841005	1500	454.81		7.080
(Low Flow)	Left Bank	840929	1615	454.82		7,410
		840916		454.98		8,280
		840913	1700	455.14		9,000
		840905		455.30		10,400
		840905		455.31		10,400
112.3X4B (1) Cross Section 4	840830		456.00		15,300
(Low Flow)	Left Bank	840822	1430	456.36		19,100
	مده ترب من اين الله (بالاللاللال	840810	a. Troop of	456.67		24,000

Table A-1.5 (cont.) Summary site-specific data collected for rating curve analysis at R.M. 112.6L.

Nami mana tauta mana ginar kinda kinda alam alam diten atawa sawa anta kuna

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
		0/1005	1500	152 10		7 000
(12.3540	Cross Section 4	841005	1200	403.42		7,080
(LOW FIOW)	kight bank	841005	1522	423.43		7,080
		840929	1700	423.43		/,410
		040913	1/00	455.17		9,000
		040904		474.1/		10,000
112.3S4B	Cross Section 4	840830		455.56		15,300
(High Flow)	Right Bank	840822	1330	456.06		19,100
		840810		456.54		24,000
112.3X5	Cross Section 5	841005	1500	454.92		7,080
	Left Bank	840930	1320	454.97		7,500
		840916		455.11		8,280
		840913	1700	455.25		9,000
		840904		455.61		10.800
		840830		456.56		15,300
		840822	1445	457.10		19.100
		840810		457.43		24,000
112.385	Cross Section 5	840830		455.56		15,300
	Right Bank	840822	1350	456.16		19,100
	~	840810		456.80		24,000

Table A-1.5 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 112.6L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
12.3X6	Cross Section 6	840930	1130	455.13		7,500
	Left Bank	840916		455.22		8,280
		840913	1700	455.39		9,000
		840904		455.80		10,800
		840830		456.83		15,300
		840822	1510	457.47		19,100
12.356	Cross Section 6	840913	1700	455.53		9,000
	Right Bank	840904		455.91		10,800
		840830		456.87		15,300
		840822	1420	457.49		19,100
		840810		457.98		24,000
12.3X7	Cross Section 7	841012		455.17	215	6,210
	Left Bank	840930	1030	455.70	355	7,500
		840916		455.94		8,280
		840913	1700	456.19	721	9,000
		840904		456.79	1430	10,800
		840830			2980	15,300
		840822	1540	458.70		19,100
		840810		459.36		24,000

Table A-1.5 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 112.6L.

and data firm some come data from titles mens blick store firm firm data the store title store title store firm

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
119 307	Groop Soction 7	941012			215	6 210
~~~ <i>~</i> , <i>),) {</i>	Right Bank	841012			255	7 500
	Alghe Dank	840913		456.47	721	9,000
		840904		456.85	1450	10,800
		840830		458.13	2980	15,300
		840822	1445	458.52		19,100
		840810		459.31		24,000
112.3X8	Cross Section 8	840930	1018	457.59		7,500
	Left Bank	840914	1515	458.21		8,800
		840913	1700	458.17		9,000
		840904	1109	458.79		10,800
		840904	1048	458.80		10,800
		840822	1625	460.45		19,100
112.358	Cross Section 8	841005	1505	458.60		7,080
	Right Bank	840930		458.66		7,500
	-	840914	1515	458.95		8,800
		840913	1700	458.99		9,000
		840904		459.24		10,800
		840830		460.01		15,300
		840822	1500	460.36		19,100

Land and then the state the time time time time time time time the time the time to state the state time to state

Table A-1.5 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 112.6L.

Table A-1.6	Summary	of	site-specific	data	collected	for	rating	curve	analysis	
	at R.M.	114	+.IR.							

තිවෙම බබන් මොසා බහා නියාල දියක දියක් දියක් දියක් දියක් දියක් දියක්	r කරන් කිසියා දකාව කියය කියා. කරන කරන කරන කියා තියා දිනය දිනය කියා කරන කියා කියා කරන කියා දියා කරන කරන කරන			and and allow allow and a state that the allow allow allow and the state the state allow		
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
114.OP1	Cross Section 2	841005 840926 841001 840914 840911 840823 840812	1130 1153 1447 1650 1240 1200	468.44 468.39 468.43 468.60 468.87 471.00 471.14		7,080 7,680 7,830 8,800 9,330 17,900 19,000
920 1555 Mill 1560 (554 (344 576 455 (326 455 455 455			4 6030 0000 C.20 0000 6000 6000 6			2943 1511 1512 1515 1516 1516 1516 1516 1516

.

.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
114.9P1	Cross Section 1	840926	1300	474.46		7,680
		841001		474.41		7,830
		840914	1540	474.48		8,800
		840911	1145	474.48		9,330
		840920	1120	474.52		10,400
		840816	1353	475.55		14,500
		830526	1830	475.77		16,000
		840823	1425	476.23		17,900
		830720	1305	476.06		18,600
		830715	1330	476.39		18,600
		830611	1930	476.19		19,000
		830613	1155	476.35		19,900
		830612	1830	476.40		20,000
		830803	1245	476.81		21,600
		830805	1435	476.74		21,700
		830806	1933	477.04		23,800
		830824	1530	477.31		24,700
		830808	1134	477.38		26,000
		830825	1115	477.58		27,400
		830826	17 55	478.70		31,700

sitting allows starts builts allow allow deare start, distor allow

Table A-1.7

Summary of site-specific data collected for rating curve analysis at R.M. 115.0R.

Table A-1.8	Summary	of	site-specific	data	collected	for	rating	curve	analysis	
	at R.M.	118	3.9L.						-	

සයක තිබත් දෙනා අතර අතුන ද්වාහ දිනාන දිනාක දිනාක පිතා පමණ කියිව	නයා රැක කාර එකා හාම ක්ෂා නිමා කාල කාල කාල කාම කාල නිමා කියා කියා කරන කරන කරන කරන කාල කාල කාල කරන කියා කියා.	uzano distri situay dalam dialita kitalin distri distri distri distri kitalia kanati alkana distri	r dana apsa data dalih tilin dara 12	nga alman haran darina daren statin alman duran duran diren diren	40.00 come milite antie force dans dans antie antie antie antie antie antie	
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
118.9P1	Cross Section 2	841004 840930 840926 840914 840914 840910 840922 840831 840815 840815	1720 1528 1500 1300 1735 1414 1300 1400 1415	507.53 507.52 507.61 507.86 507.91 508.02 508.16 508.94 509.24 509.25		7,380 7,500 7,680 8,800 8,800 9,890 10,300 13,600 15,100
		840823 840812	1645 1500	509.76 509.90		17,900 19,000

Table A-1.9	Summary of at R.M. 11	site-specific 9.1L.	data co	ollected for	r rating curv	e analysis
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
119.1P1	Cross Section 2	841004 840930 840926 841001 840914 840910 840922 840815 840812	1645 1655 1708 1000 1111 1810	509.25 509.27 509.33 509.35 509.58 509.76 509.94 511.05 511.83		7,380 7,380 7,500 7,680 7,830 8,800 9,890 10,300 15,100 19,000

•

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
119.2W1	Mouth	840928		508.23		7.320
		840906		508.89		10.300
		840922	1523	508.92		10.300
	840819	1045	510.19		17,400	
		840812		510.41		19,000
		840824	1029	510.95		22,700
119.281	Cross Section 1	840914	1330	508.58		8,800
		840906		508.88		10,300
		840906		508.89		10,300
		840922	1515	508.93		10,300
		840922	1520	508.95		10,300
		840905	1805	508.89	0	10,400
		840831	1514	509.54		13,600
		840815		509.76		15,100
		840819	1045	510.20	317	17,400
		840819	1215	510.22		17,400
		840824	1030	511.00		22,700
		840824	1225	511.11		22,700
		840809		511.27		24,500

Table A-1.10Summary of site-specific data collected for rating curve analysis<br/>at R.M. 119.2R.

Staff Gage Number	Location within site	n data	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
119,282	Cross Section	2	841005	0915	508.28		7,080
20. 45 g ⁻ U Carl 65 800		634	840914	1330	508.60		8,800
			840906		508.90		10,300
			840922	1500	508.94		10,300
			840905	1730	508.90	0	10,400
			840831	1525	509.56		13,600
			840819	1335	510.26	338	17,400
			840824	1030	511.05		22,700
			840824	1224	511.24		22,700
119.253	Cross Section	3	841005	0930	508.28		7,080
			840914	1330	508.60		8,800
			840906		508.89		10,300
			840922	1500	508.95		10,300
			840905	1700	508.90	0	10,400
			840831	1526	509.54	71	13,600
			840815		509.75		15,100
			840819	1430	510.27	300	17,400
			840824	1112	511.13		22,700
			840824	1145	511.19	1090	22,700
			840824	1220	511.24		22,700
			840809		511.42		24,500

Table A-1.10 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 119.2R.

anne danis diani iline diani diani tang

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
119.254	Cross Section 4	841005	0945	508.49		7,080
		840914	1330	508.59		8,800
		840906		508.86		10,300
		840922	1510	508.92		10,300
		840905	1645	508.88	.2	10,400
		840815		509.99		15,100
		840819	1330	510.75	348	17,400
		840824	1041	511.61		22,700
119.285	Cross Section 5	840914	1330	510.90		8,800
		840906		511.25		10,300
		840922	1515	511.33		10,300
		840905	1600	511.25	.2	10,400
		840831	1702	512.10		13,600
		840815		512.43		15,100
		840819	1640	512.83	317	17,400
		840824	1042	513.56		22,700
		840824	1229	513.70		22,700

Table A-1.10 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 119.2R.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
125.001	Cross Section 1	840929		555.84		7.410
se 2092 s	ALADD DCCFTOIL 1	840930	1255	556.21		7,500
		840913		556.39		9,000
		840910		556.54		9,890
		840831	1744	557.25		13,600
		840814		57.61		16,100
		840819	1710	557.91		17,400
		840822	1440	558.02		19,100
125.0P2	Cross Section 2	841018	1200	555.39	8	4,300
		841012		557.10	169	6,210
		840929		557.50		7,410
		840930	1255	557.59		7,500
		840926	1921	557.67	329	7,680
		840915	1150	557.86		8,520
		840913	1400	557。97	657	9,000
		840910	1650	558.12		9,890
		840831	1736	558.82		13,600
		840814		559.24		16,100
		840819	1700	559.47		17,400
		840822	1615	559.69		19,100

Table A-1.11	Summar y	of	site-specific	data	collected	for	rating	curve	analysis
	at R.M.	12:	5.2R.						

these areas state and a train state train these state date date and state they state and state and state and state area as

Table A-1.1	2 Summary of at R.M. 130	site-specific .2R.	data co	ollected fo	r rating curv	e analysis
Staff Gage Number	to the data that has been and that that has also and and the set of the set of the been and the	ern enn her den der den der den ben her den	na 200 in	when the active	Flow (cfs)	Discharge (cfs)
129.8P1	Cross Section 2	841004	1445	605.71		7,380
		840927		605.70		7,470
		840930		605.70		7,500
		840926	1615	605.66		7,680
		840915	1015	605.74		8,520
		840910	1535	605.86		9,890
		840816		606.39		14,500
		840814	1550	606.56		16,100
		840814		606.57		16,100
		840821	1745	606.97		19,900
		840821	1745	606.99		19,900
		840811		607.63		22,500
		840827	1110	608.60		27,700
		840826	1556	609.01		31,700

A-55

Table A-1.1	3 Summary of a at R.M. 131	site-specific . ³ L.	data co	ollected for	c rating curv	e analysis
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
131.1P1	Cross Sect on 3	840928 841004 840927 840926	1150 1430	616.26 616.26 616.25 616.24		7,320 7,380 7,470 7,680
		840913 840907 840902 840814	1700 1830 1445	616.29 616.37 616.49 617.06		9,000 10,700 11,800 16,100
		840814 840821	1644	617.07 617.68		16,100 19,900
131.1P2	Cross Section 1	840929 840927	1830	614.30 614.31		7,410 7,470
		840926 840913 840907 840902	1405 1730 1830	614.33 614.50 614.96 615.26		7,680 9,000 10,700 11.800

when were even even and when them them they were their their

Table A-1.14	Summary	of	site-specific	data	collected	for	rating	curve	analysis	
	at R.M.	131	.71.						-	

diridir Hitlin Kunit Klinin Kulan Kuran Gatar Kular Kular Kular Kular	a පිටන ශිබර් කියන නිර්ව තිබෙ බර්ජා බාසා ඇත් කාශ කාන බර්ම බර්ම කියට කියට කාන තිබ්ම බර්ෂා කාශ කොප වෙන නිශා බදාම අ	alaya dintin dalah dalah dinah disila disila dintin dintin dintin disila dinah dinah disila disila	a kolev tinde Gauge Bolle Biele Gille	daria della tano Jaro della mate dina deve darie della della d	2121 (2022 (2020) (2020) (2020) (2020) (2020) (2020) (2020) (2020) (2020)	an creat work with with the sease with the sease with whith and a create with
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
121 502	Creas Easting 3	041010		616 35	2 0	6 010
101.000	cross Section 3	041012	100/	CL. 010	2.9	0,210
		840927	1234	010.0/	20	/,4/0
		840919	1407	616.92	57	9,390
		840907	17 50	617.13	87	10,700
		840902	1720	617.32	159	11,800
		840831	1700	617.58	247	13,600
		840817		617.51	248	14.800
		840828	1330	618.11	625	21.000
		840811		618.18		22,500
		840827	1124	619.38		27,700

dame come
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
132.551	Cross Section 1	840907		625.36		10.700
		840901	1010	625.52	29	12,700
		840828	1146	626.09		21,000
		840708	1250	626.05	131	21,500
		840707	1700	626.15		21,900
		840711	1500	626.23		23,100
		840827	1145	627.27		27,700
132.582	Cross Section 2	840914	1310	625.33		8,800
		840907	1500	625.49		10,700
		840907		625.50		10,700
		840901	1040	625.65	28	12,700
		840828	1147	626.27		21,000
		840708	1330	626.28	146	21,500
		840707	1700	626.34		21,900
		840711	1500	626.41		23,100
		840827	1145	627.29		27,700
		840827	1145	627.31		27,700
32.583	Cross Section 3	840907		625.94	10	10,700
		840901	1051	626.28	27	12,700
		840828	1206	627.16		21,000
		840708	1415	627.29	170	21,500
		840707	1700	627.14		21,900
		840711	1505	627.39		23,100

Table A-1.15Summary of site-specific data collected for rating curve analysis<br/>at R.M. 132.6L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
32.584	Cross Section 4	840907	1415	627.08		10,700
		840901	1112	627.23	26	12,700
		840828	1154	627.86		21,000
		840708	1445	627.95	150	21,500
		840707	1700	627.96		21,900
		840711	1505	628.05		23,100
		840827	1149	628.47		27,700
32.585	Cross Section 5	840914	1335	626.90		8,800
		840907	1400	627.17		10,700
		840907		627.19		10,700
		840901	1127	627.41	27	12,700
		840828	1156	628.06		21,000
		840708	1600	628.10	136	21,500
		840707	1700	628.14		21,900
		840711	1510	628.23		23,100
		840827	1150	628.67		27,700
		840827	1154	628.68		27,700
32.586	Cross Section 6	840907		627.18		10,700
		840907	1330	627.19		10,700
		840901	1146	627.43	27	12,700
		840901	1003	627.44	27	12,700
		840828	1158	628.09		21,000
		840708	1635	628.16	120	21,500
		840707	1635	628.16		21,900
		840711	1510	628.27		23,100
		840827	1153	628.71		27,700

Table A-1.15 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 132.6L.

,

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
132.557	Cross Section 7	840914	1345	626 91		8.800
<i>ا انا اس</i> و م <i>نه اب</i> £	OLOBS DECEION /	840907	2040	627.16		10,700
		840907	1300	627.17		10,700
		840901	1204	627.43	24	12,700
		840901	1001	627.44	24	12,700
		840828	1200	628.11	estr V	21,000
		840708	1700	628.17	136	21,500
		840707	2100	628.20		21,900
		840711	1515	628.30		23,100
		840827	1156	628.74		27,700
132.588	Cross Section 8	840914	1345	627.00		8,800
		840907		627.27		10,700
		840901	1000	627.50	33	12,700
		840901		627.51	33	12,700
		840828	1202	628.17		21,000
		840708	1740	628.20	129	21,500
		840707		628.24		21,900
		840711	1515	628.33		23,100
		840827	1158	628.83		27,700
32.589	Cross Section 9	840914	1400	627.92		8,800
		840907	1200	628.04		10,700
		840901	0958	628.10	22	12,700
		840901	1245	628.12	22	12,700
		840828	1204	628.33		21,000
		840708	1800	628.40	149	21,500
		840707	1700	628.37		21,900
		840711	1515	628.47		23,100
		840827	1200	628.84		27,700

Table A-1.15 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 132.0L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
133.7P1	Cross Section 3	840926	1215	649.23		7,680
		840925	1735	649.26		7,890
		840911	1755	649.42		9,330
		840919	1605	649.46		9,390
		840910	1505	649.45		9,890
		840910	1830	649.47		9,890
		840922	1555	649.52		10,300
		840920	1720	649.57		10,400
		840814		650.27		16,100
		840814	1150	650.32		16,100
		840821	1530	650.71		19,100
		840828	1542	650.72		21,000
		840824	1550	651.43		22,700
		840827	1245	651.84		27,700
		840827	1245	651.86		27,700
		840827	1030	651.98		27,700
		840825	1425	652.48		29,800
		840826		652.72		31,700

.

Table A-1.16

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
36.051	Cross Section 1	840909	1113	674.64	76	10,600
		840901	1605	675.14	150	12,700
		840818	1100	675.81	246	15,600
		840818	1100	675.85		15,600
		840828	1724	676.67		21,000
		840827	1604	678.06		27,700
36.0S2	Cross Section 2	840915	1745	674.49		8,520
		840914	1100	674.56		8,800
		840909		674.84		10,600
		840909	1155	674.88	80	10,600
		840908		674.92		10,900
		840901	1710	675.31	162	12,700
		840818	1130	675.97	281	15,600
		840828	1725	676.78		21,000
		840827	1603	678.04		27,700
36.053	Cross Section 3	840915	1520			8,520
		840914	1130	675.02		8,800
		840909	1228	675.31	79	10,600
		840909		675.32		10,600
		840908		675.36		10,900
		840901	17 50	675.77	149	12,700
		840818	1145	676.39	241	15,600
		840828	1610	676.99	413	21,000
		840827	1608	678.21		27,700

Table A-1.17Summary of site-specific data collected for rating curve analysis<br/>at R.M. 136.0L.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
24 004		0/1000				7 ( 00
36.054	Cross Section 4	841003	1645	675.03		7,680
		840915	1/45	6/5.15		8,520
		840914	1145	6/5.21		8,800
		840909	10/0	6/5.48	00	10,600
		840909	1340	675.61	88	10,600
		840908		675.61	60. ema A	10,900
		840901	1800	675.82	154	12,700
		840818	1324	676.65	253	15,600
		840828	1622	677.36	413	21,000
		840811	1815	677.56		24,500
		840827	1615	678.54		27,700
		840827	1616	678.60		27,700
36.0S5	Cross Section 5	840915	1745	676.04		8,520
		840914	1200	676.05		8,800
		840909		676.33		10,600
		840909	1405	676.43	79	10,600
		840908		676.38		10,900
		840901	1830	676.61	153	12,700
		840818	1330	677.10	273	15,600
		840828	1700	677.62		21,000

Table A-1.17 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 136.0L.

Table A-1.17 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 136.0L.

සංකා කරන කරන කියන කායා කායා කියන් කියන් වර්ග කියන කියන් වෙය	ৰ প্ৰায়ত উদ্ধন গঠেন হোৱা হোৱা হৈছে। হাঁহেৰ উদ্ধান উদ্ধান উদ্ধান উদ্ধান হোৱা হোৱা হৈছে। ইয়েই উচ্চান উদ্ধান হাজৰ হোৱা হৈছে। গাঁহেৰ গৈছে ব	राजा केलन संगण प्रथम लेखन दोग्रा रहेका देवला देवला दिवन दिवल प्रथम सेवल संगण केल काले देवल	. 49037 49645 63669 49744 49793 49793	මෙන්න කිෂාව කියාව කියාම කියාව කියාව කියාව කියාව කියාව කියාව කියාව	राजान साउंदर क्रीडान क्षेत्रक राजांक द्वाराज क्ष्ट्राज क्ष्ट्राज क्षेत्रांन क्षित्रण द्वात्रक क्ष्मान द्वाराज	ana and and and and and and and and and
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
136.0S6	Cross Section 6	840915	1745	676.30		8,520
		840914	1215	676.35		8,800
		840909	1440	676.63	84	10,600
		840909		676.64		10,600
		840909	1440	676.67		10,600
		840908		676.78		10,900
		840901	1900	676.97	154	12,700
		840818	1400	677.53	288	15,600
		840828	1730	677.96		21,000
		840827	1617	678.91		27,700

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
137.4P1	Cross Section 1	840928		690.03		7,320
		840929	1540	690.02		7,410
		841003	1600	690.02		7,680
		840914	1230	690.05		8,800
		840910	1335	690.02		9,890
		840902		690.22		11,800
		840812	1630	692.02		19,000
		840812	1630	692.13		19,000
		840821	1509	692.19		19,900
		840828	1749	692.15		21,000
		840828	1751	692.17		21,000
		840827	1545	693.52		27,700
		840826	1500	695.16		31,700
137.4P2	Cross Section 2	840928		690.71		7,320
		840929	1540	690.64		7,410
		841003	1600	690.70		7,680
		840914	1230	690.71		8,800
		840910	1335	690.76		9,890
		840812	1630	692.01		19,000
		840812	1650	692.02		19,000
		840821	1508	692.19		19,900

Table A-1.18Summary of site-specific data collected for rating curve analysis<br/>at R.M. 137.5R.

nan sinta dalah dalah dalah dalah dalah dalah pinta sawa minta kana kana kana tana tana binta dalah kana dalah

Bight distri giver free slige nous same blank when when basis								
alisiin dollafi doran Minril alisen adiise salidii shishii dollaa dalaan	ferr eine sind find den sein sein ann ann ann ann den den den den sind sind find tern sin shed dist sind bes s	inna dina waa dina dinir cono colo dina dina kana kana kana kana kana	a Baine Brann Againe Againe Anna A	nen blans fonsk diven dørm akter opper som åtter besør over	n Gara kanar daga angga lakin tista angja diari dina dina dina kanar kart	danu kana alim daan kaap digu kasu kasu kalin kalin alim daan daan daan daan daa		
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)		
dintin kining protos Adrint discur sigtar viperi torras sidelija potas	diging gyaja talah alami nanin nanin kalan dalam kinak silah dinink talam mula halah kalan	stabil vigitis singer apient apient	faces books don't Chron	and the state state and the state	elanda alaman terceta debain antari etakan etakan	adinadi nisezi dikisi nisek adissi adintu dalam dikasi sutar		
138.7P1	Cross Section 2	840910	1325	706.04		9,890		
		840920	1642	706.26		10,400		
		840902		706.55		11,800		
		840816	1450	707.25		14,500		
		840815	1 53 5	707.40		15,100		
		840823	1500	707.77		17,900		
		840812	1230	708.06		19,000		
		840812		708.10		19,000		
		840821	1502	708.20		19,900		

Table A-1.19Summary of site-specific data collected for rating curve analysis<br/>at R.M. 138.7L.

Table A-1.2	0 Summary of a at R.M. 139	site-specific .0L.	data co	ollected fo	or rating curv	e analysis
Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
139.0P1	Cross Section 2	840910 840920 840902 840816 840823 840812 840812 840828 840828	1320 1328 1430 1218 1410 1817 1447	708.96 708.97 708.99 709.53 709.96 710.31 710.33 710.31 712.62		9,390 10,400 11,800 14,500 17,900 19,000 19,000 21,000 31,700

-

Table A-1.2	Summary of at R.M. 139	site-specific .4L.	data co	ollected fo	r rating curv	e analysis
Staff Gage Number	Location within site	Date was not as an an an	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
139.4P1	Cross Section 2	840929 841003 840918 840910 840902 840816 840823 840812 840821	1610 1310 1707 1300 1512 1100 1545 1458	712.63 712.72 712.83 712.89 713.38 713.64 714.00 714.18 714.38		7,410 7,680 8,370 9,890 11,800 14,500 17,900 19,000 19,900

their man lines to a plan the second second the second terms to be second to be

Staff Gage Number	Lo. with	cation hin site	gen arma	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
147.0M1	Cross	Section	1	840917		812.25		8,130
				840913	0930	812.50		9,000
				840907	1312	812.90		10,700
				840829	1600	814.08		17,400
				840813		814.33		19,000
				840828	1910	814.53		19,000 *
				840821	1150	814.75		20,000 *
47.0M2	Cross	Section	2	840917		813.54		8,130
				840913	. 0930	813.87		9,000
				840829	1600	815.25		17,400
				840813		815.36		17,600
				840828	1922	815.63		19,000
				840821	1210	815.77		20,000
47.0M3	Cross	Section	3	840917		814.67		8,130
				840913	0930	814.92		9,000
				840907	1250	815.19		10,700
				840829	1600	816.24		17,400
				840813		816.34		17,600
				840828	1940	816.59		19,000
				840821	1225	816.74		20,000 *

* Instantaneous discharge estimated from time lag analysis.

Staff Gage Number	Location within site	Date	Time	WSEL (ft)	Flow (cfs)	Discharge (cfs)
1.47 OMA	Cross Section 4	0/0017				1820 500 900 800 500 500 500 500 500 500 500 500 5
147 . Vri4	cross Section 4	84091/	0000	815.12	1860	8,130
		040913	0930	815.34	2236	9,000
		040907	1233	815.72	1710	10,700
		840829	1000	816.69	4/40	17,400
	v	040013	1050	816.89		17,600
		040028	1950	817.09		19,000 %
		040021	1235	817.24		20,000 %
		840709	1230	81/.46		21,400
47.OM5	Cross Section 5	840917		815.54		8,130
		840913	0930	815.80		9,000
		840907	1220	816.13		10,700
		840829	1600	817.20		17,400
		840813		817.44		17.600
		840828	2000	817.61		19,000 *
		840821	1247	817.76		20,000 *
47.0м6	Cross Section 6	840917		816.13		8 130
		840913	0930	816.38		9,000
		840829	1600	818.00		17 400
		840813		818,18		17 600
		840821	1256	818.51		20 000 ±

Table A-1.22 (cont.) Summary of site-specific data collected for rating curve analysis at R.M. 147.1L.

* Instantaneous discharge estimated from time lag analysis.

## SUMMARY OF HYDRAULIC CONDITIONS

# AND HABITAT FORECASTS AT

# 1984 MIDDLE RIVER STUDY SITES

### DRAFT REPORT

Appendix B Data supporting calibration and application of IFG hydraulic models

Prepared for:

ALASKA POWER AUTHORITY

Prepared by:

N. Diane Hilliard Shelley Williams E. Woody Trihey R. Curt Wilkinson Cleveland R. Steward, III

May 1985

#### APPENDIX FIGURES

- Figure B-1.1 Streambed profile at site 101.2R main channel.
- Figure B-1.2 Streambed profile at site 101.2R left channel.
- Figure B-1.3 Streambed profile at site 101.2R right channel.
- Figure B-2.1 Scatterplots of observed and predicted depths and velocities from the calibrated IFG-4 hydraulic model at 101.2R.
- Figure B-2.2 Comparison of observed velocities and velocities predicted by low flow IFG-2 model at site 101.5L, cross section 5.
- Figure B-2.3 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 101.5L, cross section 5.
- Figure B-2.4 Comparison of observed velocities and velocities predicted by low flow IFG-2 model at site 112.6L, cross section 7.
- Figure B-2.5 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 112.6L, cross section 7.
- Figure B-2.6 Comparison of observed velocities and predicted IFG-2 model at site 119.2R, cross section 3.
- Figure B-2.7 Scatterplots of observed and predicted depths and velocities from the calibrated IFG-4 hydraulic model at 131.7L.
- Figure B-2.8 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 132.6L, cross section
- Figure B-2.9 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 136.0L, cross section
- Figure B-2.10 Comparison of observed velocities and velocities predicted by low flow IFG-2 model at site 147.1L, cross section 2.
- Figure B-2.11 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 147.1L, cross section 2.

#### APPENDIX TABLES

- Table B-1.1. Streambed profile at site 101.2R main channel.
- Table B-1.2. Streambed profile at site 101.2R left channel.
- Table B-1.3. Streambed profile at site 101.2R right channel.
- Table B-2.1. Cross section elevations, substrate and cover data at site 101.5R.
- Table B-2.2. Cross section elevations, substrate and cover data at site 101.2L.
- Table B-2.3. Cross section elevations, substrate and cover data at site 112.6L.
- Table B-2.4. Cross section elevations, substrate and cover data at site 119.2R.
- Table B-2.5. Cross section elevations, substrate and cover data at site 131.7L.
- Table B-2.6. Cross section elevations, substrate and cover data at site 132.6L.
- Table B-2.7. Cross section elevations, substrate and cover data at site 136.0L.
- Table B-2.8. Cross section elevations, substrate and cover data at site 147.1L.
- Table B-3.1. IFG-4 calibration velocities (ft/sec) at site 101.2R.
- Table B-3.2. IFG-4 calibration velocities (ft/sec) at site 131.7L.
- Table B-3.3. IFG-4 calibration velocities (ft/sec) at site 132.6L.
- Table B-3.4. IFG-4 calibration velocities (ft/sec) at site 136.0L.
- Table B-4.1. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 101.2R hydraulic model.
- Table B-4.2. Comparison between observed and predict^d water surface elevations, discharges, and velocities for site 131.7L hydraulic model.
- Table B-4.3. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 132.6L hydraulic model.

- Table B-4.4. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 136.0L hydraulic model.
- Table B-5. Statistics evaluating predictive capability of IFG-4 hydraulic models.
- Table B-6.1. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 101.2R.
- Table B-6.2. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 101.5L.
- Table B-6.3. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 112.6L.
- Table B-6.4. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 119.2R.
- Table B-6.5. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 131.7L.
- Table B-6.6. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 132.6L.
- Table B-6.7. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 136.0L.
- Table B-6.8. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook usable area (WUA) forecast for the site at 147.1L.



Figure B-1.1 Streambed profile at site 101.2R - main channel.



Figure B-1.2 Streambed profile at site 101.2R - left channel.

Figure B-1.3 Streambed profile at site 101.2R - right channel.

Streambed Station (ft)	Streambed Elevation (ft)	WSEL (ft)	Comments
-3+05	356.15	358.67	Pool
-2+45	358.44	358.67	Riffle
-1+45	359.17	359.45	Riffle
0+00	358.68	359.55	Cross section 1 - SG 101.2S1
0+43	359.52	360.45	Transition
0+50	360.49	360.50	Transition
0+88	360.56	360.95	
2+60	360.51	361.17	Pool
2+80	361.01	361.19	Pool
3+93	360.69	361.33	Cross section 3 - SG 101.2S3
5+95	360.81	361.26	Cross section 4 - SG 101.2S4
6+70	360.01	361.40	Pool
7+63	361.24	361.58	Riffle
8+50	361.48	361.96	Cross section 6 - SG 101.2S6
9+80	360.14	361.96	Pool
10+33	360.45	361.92	Cross section 7 - SG 101.2S7
10+65	359.91	361.92	Pool
11+40	360.51	361.92	Riffle
12+75	360.49	361.90	Cross section 8 - SG 101.2S8
13+15	360.62	362.05	Pool
15+10	36?.54	362.79	Cross section 9 - SG 101.2S9B
15+43	362.44	362.79	Pool
15+70	362.67	362.80	Transition
16+38	362.22	362.80	Pool
17+:5	363.13	DRY	
18+25	362.47	363.05	

Table B-1.1. Streambed profile at site 101.2R main channel; surveyed on August 24-25, 1984 (TBM ID: R&M LRX-6 LB 1980).

	Comments	WSEL (ft)	Streambed Elevation (ft)	Streambed Station (ft)
converges	Left channel (	359.50	358.24	0+20
nnel	with main char			
	Poo1	359.70	359.75	1+25
	Pool	360.20	358.64	2+78
		DRY	362.13	3+53
3 - SG 101.253	Cross section	DRY	362.13	3+78
4 - SG 101.254	Cross section	DRY	362.48	5+65
		DRY	363.07	6+78
		DRY	362.25	6+88
		DRY	363.52	7+13
		DRY	362.49	7+50
		DRY	362.68	7+70
		DRY	363.86	8+13
6 - SG 101.256	Cross section	DRY	364.59	8+45

Table B-1.2.	Streambed	profile at	site	101.2R lef	t channel;	surveyed
	on August	24-25, 1984	(TBM	ID: R&M L	RX-6 LB 198	0).

Streambed Station (ft)	Streambed Elevation (ft)	WSEL (ft)	Comments
0+00			Cross section 1
0+96	359.92	DRY	Cross section 2 - SG 101.2S2
2+29	359.88	DRY	
3+71	36 .08	DRY	Cross section 3
5+01	361.52	DRY	
5+55	362.15	DRY	
5+62	362.17	DRY	Cross section 4
7+51	<b>^</b> ;0.37	362.05	Cross section 5 - SG 101.2S5,
			Pool
8+06	362.57	DRY	
8+31	362.87	DRY	
8+56	362.33	DRY	
9+56	363.11	DRY	Diverges from main
			channel

Table B-1.3.	Streambed	profile	at	site	101.2	? right	channel;	surveyed
	on August	24-25,	1984	(TBM	ID:	R&M LRX	-6 LB 198	30).

Table B-2.1	Cross cover	s section data at	eleva	tions, 101.2R	substrate and
line war with tails link din and link from the diff off-	Hor	Bed	989 (96) 499 (950 46) tak	a nagan dalam dalam nagan nagan nagan d	
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Section 1	0.0	366.10	1	8.4	LB Headpin
Station 0+00	2.0	365.60	1	8.4	Top of bank
	8.0	362.10	7	4.3	Bottom of bank
	16.6	361.10	7	4.3	
	18.0	360.80	7	4.3	
	20.0	360.60	7	4.3	
	22.0	360.40	7	4.3	
	24.0	360.10	/	4.3	
	26.0	359.90	/	4.3	
	28.0	359.00	/	4.3	T 0 17
	30.0	359.70	7	4.3	LWE
	32.0	350 50	7	4.3	
	34.0	250 50	7	4.3	
	38.0	359 50	7	4.3	
	40.0	359.40	7	4.3	
	42.0	359.30	7	4.3	
	43.0	359.40	7	4.3	
	44.0	359.30	7	4.3	
	46.0	359.30	7	4.3	
	48.0	359.20	7	4.3	
	50.0	359.10	7	4.3	
	52.0	359.00	7	4.3	
	54.0	358.80	7	4.3	
	55.0	358.70	7	4.3	
	56.0	358.60	7	4.3	
	58.0	358.60	- 7	4.3	
	60.0	358.80	7	4.3	
	62.0	358.90	7	4.3	
	64.0	358.90	7	4.3	
	65.0	359.00	7	4.3	
	66.0	359.00	7	4.3	
	68.0	359.10	7	4.3	
	/0.0	359.30	7	4.3	
	/2.0	359.50	7	4.3	₩ <b>2, 9, 17,</b> %%
	13.0	339.30	/	4.3	RWE
	14.U 74 0	357.00	/	4.3	
	70.U 72 A	322.20	7	4.3	
	10.U 80 0	260.10	1	4.) / )	
	00.0	200.20	1	*.3	

1928 4629 6949 6949 1927 1949 4644 4644 4659 465 686 686 686 686 696 496 196 196 196 476 476 476 486 486 486

Table B-2.1 (cont	.) Cross cover	data at	site	101.2R	substrate and
	Hor	Bed	1999: 000: 000: 000: 000: 1994	b alife angle teles anns haus adan a	
Location	Dist	Elev		-	
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Section 1	84.0	360.70	7	4.3	
Station 0+00	86.0	360.60	7	4.3	
(cont.)	88.0	360.70	7	4.2	
	90.0	360.70	7	4.2	
	92.0	360.90	7	4.2	
	94.0	361.00	7	4.2	
	96.0	361.10	7	4.2	
	98.0	361.10	7	4.2	
	124.0	361.80	2	4.2	
	148.0	361.20	2	4.2	
	218.0	362.90	10	8.1	
	249.5	361.60	10	8.1	
	272.0	361.10	10	5.2	
	274.0	360.90	10	5.2	
	276.0	360.90	10	5.2	
	278.0	360.70	10	5.2	
	282.0	360.60	10	5.2	1 F T T
	203.0	300.20	10	J.2 5 n	LWE
	200.0	300.20	10	⊃.∠ 5 0	
	290.0	260.20	10	5.2 5.2	
	293.0	360.10	10	J.2 5 7	
	294.0	360.20	10	5.2	
	302 0	360.20	10	5 2	
	306.0	360.30	10	5.2	
	308.0	360.20	10	5.2	RWE
	310.0	360.40	10	5.2	2
	314.0	360.70	10	5.2	
	318.0	360.90	10	5.2	
	322.0	360.90	10	5.2	
	323.0	361.10	10	5.2	
	334.0	361.50	1	5.2	Bottom of bank
	350.0	363.70	1	5.2	
	357.0	368.30	genneg.	8.3	RB Headpin
Cross Section 2	297.5	362.25	7	5.2	Top of LB stake
Station 0+98	323.5	361.35	7	5.2	
	356.5	359.86	8	5.2	
	393.0	361.74	8	5.2	
	401.0	363.77	1	8.3	
	409.5	367.97	1	8.3	Top of bank
	410.0	373.68	1	8.3	RB Headpin

bla B-2 (cont) (ross section elevations substrate and

	• •12: 000 620: 000 620: 000 600 600 6				•
هوه دون های کاه ۱۹۵۵ کور کور بود اوه اوه دور. اوه اوه دور دوره های بود دور	5 4735-1405 MED 10427 and 1890 4874 4996 M	an Car ann ann ann Sin Sin ann ann ann agu	- ann ann ann aice aine ann ann	a 1349-4605 4546 4550 4646 456, a	uny made datas asses quine milito, caque estats actas queso e prio estito que
	Hor	Bed			
Location	Dist	Elev			
Within Site	(£t)	(ft)	Sub	Cov	Comments
Cross Section 3	0.0	366.20	1	8.4	LB Headpin
Station 3+74	5.0	365.00	1	2.1	Top of bank
	14.0	362.20	1	1.1	
	16.0	362.20	1	1.1	
	20.0	362.40	ę	1.1	
	24.0	362.20	1	1.1	
	28.0	362.20	1	1.1	
	32.0	362.20	1	1.1	
	36.0	362.10	1	1.1	
	40.0	362.00	1	1.1	
	44.0	362.10	1	1.1	
	46.0	362.20	1	1.1	
	48.0	362.00	1	1.1	
	49.0	362.30	1	1.1	
	50.0	362.60	1	1.1	
	54.0	362.70	1	1.1	
	67.0	362.50	9	5.2	
	77.0	363.20	8	5.2	
	87.5	362.60	8	5.3	
	90.0	362.30	8	5.3	
	92.0	362.10	8	5.3	
	96.0	362.20	8	5.3	
	100.0	362.00	8	5.3	
	104.0	362.00	8	5.3	
	108.0	361.80	8	5.3	
	114.0	361.70	8	5.3	
	116.0	361.70	8	5 2	
	118.0	361.40	8	5 2	
	120.0	361 30	8	5 2	IWF
	120.0	361 10	Q Q	5 9	اسط ۶۹ سط
	124.0	361 10	Q Q	J . 4. 5 3	
	124.0	360 80	0 Q	J. 4. 5. 9	
	120.0	361 00	0	J.4 5 0	
	120.0	320 00 201.00	0	ノ・ム	
	120.0	300.00	Ŏ O	2.2 E 1	
	132.0	300.00	ŏ	5.2	
	134.0	300.70	ŏ	5.2	
	130.0	300.80	ð	5.2	
	130.3	300.70	ð	5.2	
	138.0	300.90	ŏ	5.2	
	140.0	300.70	ŏ	3.2	
	142.0	360.80	8	5.2	

Table B-2.1 (cont.) Cross section elevations, substrate and cover data at site 101.2R.

Table B-2.1 (cont	.) Cross cover	section data at	eleva site	tions, 101.2R.	substrate and	
	nga ngan inga ngan ngan ngan ngan anga dapa dalar dalar		1960 - ANDER - ELLE - BELLE BELLE - BELLE -	1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 199	a maga agan agan agan agan agan agan saja séda (fina séda alam sigi) mani katin digin katin sigin saja n mana agan agan agan agan agan saja séda (fina séda alam sigi) mani katin digin katin sigin katin katin seba	
	Hor	Bed				
Location	Dist	Elev				
Within Site	(ft)	(ft)	Sub	Cov	Comments	
Cross Section 3	144.0	360.90	8	5.2		
Station 3+74	146.0	360.90	8	5.2		
(cont.)	148.0	360.80	8	5.2		
	150.0	360.90	8	5.2		
	152.0	361.00	8	5.4		
	154.0	361.10	ŏ	5.2		
	156.0	361.20	ð	5.2		
	158.0	301.10	õ	5.2 5.3		
	160.0	301.20	0	2.4 5.2	DUE	
	162.0	301.30	0	J.4 5 7	VMD	
	164.0	261.10	Q	J.2 5 7		
	160.0	361.20	0 2	5.2		
	170.0	301.30	2 2	52		
	172.0	361 40	8	5.2		
	174 0	361.50	8	5.2		
	176:0	361.40	8	5.2		
	178.0	361.50	8	5.2		
	180.0	361.50	8	5.2		
	182.0	361.50	8	5.2		
	184.0	361.60	8	5.2		
	186.0	361.70	8	5.2		
	188.0	361.70	8	5.2		
	189.5	361.80	8	5.2		
	192.0	361.80	8	5.2		
	196.0	361.80	8	5.2		
	200.0	362.10	8	5.2		
	204.0	362.00	8	5.2		
	208.0	362.10	8	5.2		
	212.0	362.30	8	5.2		
	216.0	362.50	8	5.2		
	220.0	362.50	8	5.2		
	224.0	362.60	8	5.2		
	227.0	362.60	10	5.2		
	322.0	362.60	10	4.2		
	339.0	362.60	10	4.2		
	340.0	302.40	10	4.2		
	344.U 3/7 E	302.4U	10	4.6		
	341.3	302.30	10	4.2 /. 9		
	332.0	304.40	10	4.2		
	570.0	302.00	10	4.2		

Table B-2.1 (c	cont	.) (ross cover	data at	site	101.2R.	Substrate and
	00. 1980: 1969: 4946 -			939 - 9339 - 9359 - 9368 - 9869 - 9869 - 98	ana marka ditun laban valan dalah disa Marka sampa dalah valah valah valah valah	- Alle gant alle som state alle dans spän sätte
		Hor	Bed			
Location		Dist	Elev	<u> </u>	<b>a</b>	C
Within Site		(ft)	(£t)	Sub	Cov	Comments
Conne Section	2	276 5	362 60	8	7.2	Bottom of bank
Cross Section	2	381 0	366.50	1	9.4	Top of bank
(cont.)		381.5	367.10	1	9.4	RB Headpin
Cross Section	4	0.0	366.10	1	8.3	LB Headpin
Station 5+64		3.0	364.90	1	2.2	Top of bank
		7.0	363.50	10	5.3	
		23.0	363.40	10	5.2	
		62.0	363.70	2	8.4	Bottom of bank
		111.0	364.80	2	5.2	
		123.0	363.30	10	5.3	
		147.0	363.00	10	5.3	
		151.0	362.50	10	5.3	
		155.0	362.40	10	5.3	
		159.0	362.40	10	2.3	
		163.0	361.90	10	2.3 5.2	
		164.0	301.70	10	5.3	
		160.0	361.00	10	J.J 5 3	
		170 0	361 40	10	5.3	
		172.0	361.30	- 20	5.3	LWE
		174.0	361.10	8	5.3	awr I V Gae
		176.0	361.00	8	5.3	
		178.0	361.00	8	5.3	
		180.0	361.10	8	5.3	
		182.0	361.20	8	5.3	
		184.0	361.10	8	5.3	
		186.0	361.10	7	5.3	
		188.0	361.20	7	5.3	
		190.0	361.00	7	5.3	
		192.0	360.90	7	5.3	
		194.0	360.90	7	5.3	
		196.0	361.00	10	5.3	
		198.0	360.80	10	5.3	
		200.0	360.80	10	5.3	
		202.0	360.80	10	5.3	
		204.0	360.70	10	5.3	
		200.0	360.70	10	2.3 5 1	
		208.0	361.00	10	5.3	
		21U.U	361.00	10	J. 3 E 3	
		212.0	361.00	10	5.5	

-2 (ant) Cross section elevations, substrate and

Table B-2.1 (cont.)	) Cross cover	section data at	eleva site	tions, 101.2R.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 4 Station 5+64 (cont.)	214.0 216.0 218.0 220.0 222.0 224.0 226.0 230.0 232.0 234.0 236.0 238.0 240.0 243.0 247.0 251.0 255.0 259.0 263.0 266.2 331.0 362.0 369.0 369.0 369.0 383.0 387.0 389.0 391.0 393.0 394.0 408.0 413.0	361.10 361.10 361.40 361.40 361.50 361.30 361.30 361.60 361.60 361.60 361.60 361.70 361.80 361.80 361.80 361.80 362.30 362.20 362.40 362.80 362.90 362.90 363.00 362.90 362.90 362.90 363.00 363.00 363.00 363.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.333333333333333333333333333333333333	RWE Bottom of bank Top of bank

Table B-2.1 (c	ont.	) Cross cover	section data at	eleva site	tions, 101.2R.	substrate and
الله الله الله الله الله الله الله الله		. 429. 679. 559. 459. 459. 459. 459. 459. 459.	4989 9889 9833 9870 9881 9855 9855 9856 9856 9856 9856 9856 9856	1227 - 1427 - 1227 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 - 1228 -	1.75 - 1.75 - 1.75 - 1.75 - 1.75 - 1.75 - 1.75 - 1.75	n 122 and 123 and 120 a
		Hor	Bed			
Location		Dist	Elev			
Within Site		(ft)	(£t)	Sub	Cov	Comments
Conne Contina	5	104 0	965 59	1	î 1	Top of cond bor
Cross Section	2	109.0	366 56	1	404	TOP OF Send Der
Station / Ji		207 0	364.50	1	11	
		207.0	364.40	1	1 9	
		211.5	364.43	1	1 1 1 1	
		230.0	361.00	1	1.1	Pattan of out book
		230.3	306.10	1	1.1	Tes as sut bank
		244.0	30%.1/	1	1.1	100 01 CUL Dank
		230.0	313.12	1	1.1	ko neaupin
Cross Section	6	0.0	365.40	1	5.2	LB Headpin
Station 8+37		29.0	365.10	2	5.2	
		42.0	363.90	10	5.2	
		62.0	362.90	10	5.3	
		66.0	362.80	10	5.3	
		70.0	362.60	10	5.3	
		74.0	362.40	10	5.3	
		78.0	363.00	10	5.3	
		80.0	362.30	10	5.3	
		82.0	362.10	10	5.3	
		84.0	362.20	10	5.3	
		86.0	362.00	10	5.3	
		88.0	362.00	10	5.3	LWE
		90.0	361.90	10	5.3	
		92.0	361.90	10	5.3	
		94.0	361.90	10	5.3	
		96.0	361.90	10	5.3	
		98.0	361.80	10	3.3	
		100.0	361.90	10	2.3	
		102.0	361.90	10	2.3	
		104.0	301.90	10	2.3	
		100.0	301.80	10	2.3	
		108.0	301.90	10	<b>).)</b>	
		110.0	301.70	Ö Ö	).) 5 )	
		112.U	301.70	Õ	2.3	
		114.0	00.100	ŏ	2.3	
		110.0	301.90	ŏ	2.3	
		110.0	301.10	ŏ	2.3	
		120.0	301.00	ð	J.3 5 9	
		144.0	361.70	0	ン・3 だっ	
		12 .0	301./0	0	J. 3 E 1	
		120.U	301./0	ð	5.5	

ation alorations autotrata and 

------

arrise states when a ball states and a

Table B-2.1 (cont	.) Cross cover	section data at	eleva site	tions, 101.2R.	substrate and
	، میکند میکند بیکند بیکنه بیکند میکند میکند میکند میک		1950 - 1971 - 1981 - 1995 - 1995 - 1995	هایک هویک هویک میکو میکو میکو میکو میکو هویک هویک میکو میکو میکو میکو میکو	an ann ann ann ann ann ann ann ann ann
	Hor	Bed			
Location	Dist	Elev	<b>.</b> .	-	
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Soction 6	128 0	361 60	8	53	
CLUSS Section 0	120.0	361.70	8	5.3	
(cost )	130 0	361.70	8	5.3	
(conc.)	132.0	361 60	8	5.3	
	132.0	161 60	8	5 2	
	134.0	361 60	2	5.2	
	130.0	361 60	Q Q	5.3	
	1/0.0	361 60	S S	5.5	
	140.0	361 60	8	53	
	144 0	361 50	0 8	5.5	
	146 0	361 60	Ř	5.3	
	148.0	361.60	8	5.3	
	150.0	361.60	8	5.3	
	152.0	361.60	8	5.3	
	154.0	361.70	8	2.3	
	155.0	361.60	8	5.3	
	156.0	361.70	8	5.3	
	158.0	361.70	8	5.3	
	160.0	361.70	8	5.3	
	162.0	361.60	8	5.3	
	164.0	361.70	8	5.3	
	165.0	361.80	8	5.3	
	165.0	361.90	8	5.3	
	170.0	362.10	8	5.3	
	172.0	362.00	8	5.3	
	173.5	362.00	8	5.3	RWE
	176.0	362.10	8	5.3	
	178.0	362.00	8	5.3	
	180.0	362.30	8	5.3	
	182.0	362.40	8	5.3	
	186.0	362.40	8	5.3	
	190.0	362.50	8	5.3	
	194.0	362.50	8	5.3	
	198.0	362.50	8	5.3	
	202.0	362.70	8	5.3	
	206.0	362.90	8	5.3	
	209.0	363.10	8	5.2	
	211.5	363.50	10	5.2	
	248.5	363.10	10	5.2	
	250.0	363.00	10	5.2	
	252.0	362.70	10	5.2	

-2 (cont) Cross contion elevations substrate and

	cover	data at	site	101.2R.	
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 6 Station 8+37 (cont.)	254.0 256.0 258.0 262.0 262.0 266.0 272.0 276.0 278.0	362.90 363.00 362.70 363.10 363.10 364.70 365.60 369.60 370.20	10 10 10 10 10 10 2 1 1	5.2 5.2 7.2 7.2 7.2 7.2 9.3 8.4 8.4	RB Headpin
Cross Section 7 Station 10-23	0.0 43.0 79.0 80.0 82.0 84.0 90.0 92.0 94.0 96.0 98.0 100.0 102.0 104.0 102.0 104.0 105.0 112.0 114.0 115.0 116.0 116.0 120.0 122.0 124.0 126.0 126.0 128.0 132.0 132.0 134.0	365.20 364.00 363.60 363.40 363.20 362.90 362.50 362.50 362.50 362.00 361.50 361.50 361.80 360.80 360.60 360.60 360.40 360.40 360.40 360.40 360.40 360.50 360.50 360.50 360.50 360.50 360.70 360.50 360.70 360.50 360.70 360.50 360.70 360.50 360.70 360.50 360.70 360.50 360.70 360.70 360.50 360.70 360.70 360.50 360.70 360.70 360.70 360.70 360.50 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.70 360.	$\begin{array}{c}1\\2\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\10\\$	5.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	LB Headpin

Table B-2.) (cont.) Cross section elevations, substrate and

٠

alaan waxay alaala garah kasar alaan dalah maray alaan iyoo iyoo kasar kasar

Table B-2.1 (cont	.) Cross	s section data at	eleva site	tions, 101.2R	substrate and •
	aga alip dija alip alip alip alib alib () di	an anga mina dala dala dala dala dala dala dala da	1945 - 1956 - 1956 - 1956 - 1956 - 1956 1945 - 1956 - 1956 - 1956 - 1956 - 1956	. WAR, WIGH "THE WIGH WIGH WAR W	
	Hor	Bed			
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Section 7	136.0	360.30	10	5.2	
Station 10+23	140.0	360.40	10	5.2	
(cont.)	141.0	360.50	10	5.2	
	142.0	360.70	10	5.2	
	144.0	360.50	10	5.2	
	148.0	360.00	10	5.2	
	151.0	360.20	10	5.2	
	152.0	360.20	10	5.2	
	156.0	360.10	10	5.2	
	158.0	360.40	10	5.2	
	160.0	360.10	10	5.2	
	164.0	360.30	10	5.2	
	166.0	360.50	10	5.2	
	168.0	360.30	10	5.2	
	172.0	360.20	10	5.2	
	174.0	360.60	10	5.2	
	176.0	360.30	10	5.2	
	180.0	360.60	10	5.2	
	182.0	361.10	10	5.2	
	184.0	360.80	10	5.2	RWE
	188.0	361.10	10	5.2	
	190.0	361.60	10	5.2	
	192.0	361.50	10	5.2	
	194.0	361.90	10	5.2	
	196.0	361.90	10	5.2	
	198.0	362.00	10	5.2	
	200.0	362.00	10	5.2	
	202.0	362.10	10	5.2	
	203.0	361.90	2	5.2	
	204.0	362.10	2	5.2	
	206.0	362.40	2	5.2	
	208.0	362.50	2	5.2	
	210.0	362.70	2	5.2	
	214.0	363.00	2	5.2	
	218.0	363.40	2	5.2	
	222.0	363.40	2	5.2	
	224.0	363.50	2	5.1	
	256.5	366.40	1	9.4	Bottom of cut bank
	262.0	370.00	1	8.4	Top of bank
	264.0	3/4.10	1	8.4	KB Headpin

Table B-2.1 (cont.)	) Cross cover	section data at	eleva site	tions, 101.2R.	substrate and
	ala ann ann ann ann ann ann ann ann ann	andra andra quede antes altes della altes della della d	222 423 424 422 434 423	9 1823 1930 1939 1939 1939 1939 1939 1939 193	9 496 426 486 496 496 496 678 486 486 486 486 486 486 485 497 488 486 486 497 497 496 486
	Hor	Bed			
Location	Dist	Elev		_	<b>-</b> .
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Section 8	0.0	366.10	1	8.2	LB Headpin
Station 12+79	7.0	365.90	4	1.1	-
	27.0	363.60	2	1.1	
	34.0	363.90	2	1.1	
	40.0	363.50	2	1.1	
	42.0	363.40	2	1.1	
	44.0	363.20	2	1.1	
	48.0	362.90	2	5.1	
	52.0	362.70	2	5.1	
	54.0	362.60	7	5.1	
	56.0	362.50	/	5.1	
	60.0	362.20	/	5.1	
	64.0	304.30	/	<b>J</b> .1 E 1	
	64.U 66 D	362.20	7	J.1 5 1	
	50.0 68 N	362.10	7	J.1 5 1	
	70 0	362.00	7	5 1	
	72.0	362.00	7	5.1	
	73.4	361.90	7	5.1	
	74.0	362.00	11	5.1	LWE
	76.0	361.80	11	5.1	
	78.0	361.90	11	5.1	
	80.0	361.80	11	5.1	
	82.0	361.70	11	5.1	
	84.0	361.70	11	.5.1	
	88.0	361.80	11	5.1	
	92.0	361.60	11	5.1	
	96.0	361.80	11	5.1	
	100.0	361.50	11	5.1	
	104.0	361.30	11	5.1	
	110.0	361.20	11	5.1	
	112.0	51.10	11	J.1 5 1	
	110.0	) 00	11	J.1 5 1	
	120.0	3-1- 7	11	J.1 5 1	
	120.0	300.2	11 11	J.1 5 1	
	124.0	360.80	11	51	
	128.0	360.60	11	5.1	
	132.0	360.60	11	5.1	
	136.0	360.50	11	5.1	
	140.0	360.40	11	5.1	
	-				

Table B-2.1 (cont.)	Cross cover	section data at	eleva site	tions, 1 101.2R.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cruss Section 8 Station 12+79 (cont.)	144.0 145.0 148.0 152.0 156.0 160.0 164.0 168.0 172.0 176.0 178.0 179.0 180.0 182.0 184.0 182.0 184.0 188.0 192.0 196.0 213.5 221.5 224.0	360.40 360.50 360.50 360.60 360.80 361.00 361.20 361.20 361.90 361.90 361.90 362.00 362.00 362.20 362.20 362.30 362.20 362.50 363.50 364.10 365.50 369.60	$\begin{array}{c} 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11$	$5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.4 \\ 8.4$	RWE RB Headpin
Cross Section 9 Station 14+62	$\begin{array}{c} 0.0\\ 27.5\\ 36.5\\ 40.0\\ 44.0\\ 48.0\\ 52.0\\ 56.0\\ 60.0\\ 64.0\\ 68.0\\ 72.0\\ 80.0\\ 82.0\\ 80.0\\ 82.0\\ 84.0\\ 88.0\\ 92.0\\ 94.0\\ 96.0\\ \end{array}$	366.10 363.50 364.00 363.90 363.70 363.60 363.60 363.80 363.70 363.50 363.40 363.40 363.20 363.20 363.20 363.20 363.10 363.10	$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3	LB Headpin

.

.

	Hor	Bed			
Location	Dist	Elev			
lithin Site	(ft)	(ft)	Sub	Cov	Comments
ayah akah upat anti apa apa ata kan aya ata ata	982) alife align 4938 4944	une arge and active and a			alara alara tata naga ayan dara dara dara dara
ross Section 9	100.0	363.10	12	5.3	
tation 14+62	104.0	363.00	12	5.3	
cont.)	108.0	363.10	12	5.3	
	112.0	363.10	12	5.3	
	116.0	362.90	12	5.3	
	119.5	362.80	12	5.3	LWE
	120.0	363.00	12	5.3	
	124.0	362.70	12	5.3	
	127.5	362.50	10	5.3	
	128.0	362.80	10	5.3	
	132.0	362.50	10	5.3	
	136.0	362.60	10	5.3	
	140.0	362.90	10	5.3	
	142.0	362.70	10	5.3	
	144.0	362.80	10	5.3	
	148.0	362.60	10	5.3	
	152.0	362.70	10	5.3	
	156.0	362.80	10	5.3	
	158.0	362.70	10	5.3	
	160.0	363.00	10	5.3	
	162.0	363.00	10	5.3	
	166.0	363.00	10	5.3	
	168.0	362.90	10	5.3	
	170.0	362.90	10	5.3	
	174.0	363.00	10	5.3	
	176.0	362.80	10	5.3	
	178.0	363.00	10	5.3	
	182.0	363.00	10	5.3	RWE
	184.0	363.10	10	5.3	
	186.0	363.00	10	5.3	
	188.0	363.20	10	5.3	
	190.0	363.80	10	5.3	
	192.4	364.00	10	5.3	
	197.0	364.60	10	4.2	
	212.0	366.80	1	9.4	
	215.0	371.30	1	8.4	
	216.5	371.50	1	8.4	RB Headpi

Table B-2.1 (cont.) Cross section elevations, substrate and cover data at site 101.2R.

Table B-2.2	Cross cover	section data at	eleva site	ations, 101.5L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 1 Station 0+00	<pre>^.0 10.0 19.0 42.0 119.0 176.0 259.0 278.0 297.0 301.0 307.0 317.0 429.0 451.0</pre>	367.60 362.80 361.60 358.00 357.50 358.00 359.30 361.10 361.30 363.00 363.10 364.60 365.00	1 1 1 7 7 7 7 7 7 7 7 1	8.2 8.2 8.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	LB Headpin LWE RWE
Cross Section 2 Station 12+23	467.0 0.0 12.0 14.0 21.0 58.0 104.0 251.0 288.0 325.0 367.0 425.0 437.0	365.70 368.20 367.90 364.60 362.80 360.90 360.50 361.00 361.10 361.20 361.20 365.90 365.90	1 1 1 1 10 10 10 10 10 8 1	8.1 8.2 8.2 8.2 8.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 4.1 8.1	RB Headpin LB Headpin Top of bank LWE RWE RB Headpin
Cross Section 3 ³ Station 19+16	<ul> <li>0.0</li> <li>62.0</li> <li>78.0</li> <li>1J6.0</li> <li>126.0</li> <li>136.0</li> <li>156.0</li> <li>186.0</li> </ul>	370.80 364.80 362.00 360.90 361.00 361.30 361.30 360.60	1 12 10 10 10 10 10	8.2 6.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	LB Headpin
		<b>Vala a</b> l			
----------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------	--------------------------------------------------
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
කාල කාල අනුම ඇතිම මහති හැකි කරන මහති ඒකාල එකා ත්රා	3000 4500 4507 4000 4500	alan data atau alite data data	ucan eligis croix		alata alata dada dalar alata alata alata alata a
Cross Section 3* Station 19+16 (cont.)	206.0 246.0 276.0 306.0 416.0 417.0	360.90 362.30 363.80 364.80 366.60 368.00	10 10 1 1 1 1	5.2 5.2 8.1 8.1 8.1 8.1	Next to HP RB Headpin
Cross Section 4* Station 24+47	0.0 21.0 58.0 88.0 108.0 128.0 158.0 158.0 218.0 248.0 278.0 338.0 413.0 461.0 466.0	369.80 367.50 364.50 361.40 361.30 361.90 360.90 362.40 363.40 363.40 363.40 364.50 364.70 365.90 368.10	1 12 10 10 10 10 10 10 10 10 10 8 8 8 8 1	8.2 8.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	LB Headpin RB Headpin
Cross Section 5 Station 31+08	$\begin{array}{c} 0.0\\ 24.0\\ 74.0\\ 103.0\\ 140.0\\ 165.0\\ 252.0\\ 344.0\\ 399.0\\ 430.0\\ 463.0\\ 466.0\end{array}$	372.40 369.90 365.70 364.80 364.20 364.10 361.40 364.00 365.60 368.60 369.70 370.50	1 1 12 10 10 10 10 10 10 8 1 1	8.2 8.2 8.2 6.2 5.2 5.2 5.2 5.2 5.2 5.2 4.1 8.1 8.1	LB Headpin LWE RWE RB Headpin

Table B-2.2 (cont.) Cross section elevations, substrate and cover data at site 101.5L.

Date of survey: Oct. 2, 1984. Reference elevation: R&M Alcap 101.2W1 LB 1982.

* Cross section not surveyed but determined from discharge measurement.

able B-2.3	Cross	s section r data at	eleva site	tions, 112.6L	substrate a
an, ang	প্ৰ পাল পৰাল পালে কাৰ পালে কেন্দ্ৰ কৰাৰ কালে ব	998 BED 4096 ABD 4096 4096 4090 4090 4090	. නෙමම පැවති මෙලය නොවා ප්රේ	ে মাইটা ব্যাইও মাইটা বীষ্ণুৰ হাটে ভাঁৱৰ ব	साथ रहता काहा थावा रहता हरता काल काल प्रेला लाहर थावा का
* . *	Kyr	Bed			
Location	Dist	Elev	A .	~	
. LNIN SILE	(ft)	(ft)	Sub	Cov	Comments
oss Section 1	0.0	456.36	1	1.1	LB Headpin
ation 0+00	1.0	456.20	1	1.1	4
	10.0	453.90	1	1.1	
	11.0	453.66	8	5.1	
	20.0	452.10	8	5.1	
	23.0	451.46	9	5.2	
	40.0	451.50	9	5.2	
	60.0	451.60	9	5.2	
	63.0	451.57	9	5.2	
	80.0	451.10	9	5.2	
	85.0	450.86	9	5.2	LWE
	97.0	449.08	9	5.2	
	100.0	449.20	9	5.2	
	119.0	449.91	9	5.3	
	120.0	449.70	9	5.3	
	125.0	448.48	9	5.3	
	149.0	447.70	9	5.3	
	150.0	447.70	9	5.3	
	180.0	448.30	9	5.3	
	200.0	448.70	9	5.3	
	202.0	448.71	11	5.3	
	230.0	450.03	9	5.2	
	260.0	450.30	9	5.2	
	264.0	450.32	7	4.1	
	290.0	449.00	7	4.2	
	273.0	449.12	3	1.1	
	313.0	44/.66	3	1.1	
	331.0	440.14	9	5.2	
	340.0	440./0	У	5.2	
	3/0.0	441.10	У	3.2	
	3/4.0	441.22	У	3.2	
	371.U	447.34	ð	3.2	
	400.U	447.30	ð	5.2	
	420.U	449.04	9	<b>J</b> .Z	
	44U.U	449.30	9	5.2	
	402.J 100 0	430.33	9	<b>5.</b> 2	
	480.U 7.00 c	431.00	У 0	<b>3</b> .2	8) f 1m
	40V.J 104 0	430.97 152 19	У 1	<b>J</b> .Z	KWE
	473.U	422.12	1	1.1	

.

1989 1999 1999 1999 1999 1990 1992 1997 1997 1997 1998 1998 1998 1998 1998	201 43 44 54 449 439 439 439 439 439		, 			
स्टर तरक काफ प्रतंत पंत्री सीव काम रहा। पता पता पता पता साम साम साम साम साम स		agan daga nado nado nila nila diga diga diga	5- 896 (966 COB- 006 COB 406 606 606	මැත බෝට ධාරා ගෙන රාජ අවම	999 435 436 439 459 459 459 45	an ann ann 460 mar 1994 ann 499 499 496 496 496 497
		Hor	Bed			
Location		Dist	Elev			
Vithin Site		(ft)	(ft)	Sub	Cov	Comments
and Conting	1	505 O	455 26	1	1 1	
cross section . Station 0+00	7	512 5	460.08	1	1.1	
(cont.)		520.5	460.24	1	1.1	RB Headpir
Cross Section	2	0.0	459.95	3	1.1	LB Headpir
Station 3+97		1.0	458.90	3	1.1	
		4.0	455.70	3	1.1	
		21.0	455.50	3	1.1	
		35.0	451.75	9	5.2	
		47.0	451.37	9	5.2	LWE
		55.0	450.87	9	5.3	
		75.0	450.70	9	5.3	
		95.0	450.60	9	5.3	
		106.0	450.46	9	5.3	
		115.0	450.10	9	5.3	
		124.0	449.65	9	5.3	
		135.0	449.80	9	5.3	
		157.0	450.10	9	5.3	
		160.0	450.20	9	5.3	
		170.0	450.60	9	5.3	
		180.0	450.90	9	5.3	
		187.0	451.25	9	5.3	
		190.0	451.00	9	5.3	
		198.0	450.30	9	5.3	
		239.0	450.70	9	5.3	
		240.0	450.70	9	5.3	
		290.0	450.70	9	5.3	
		311.0	450.70	9	5.3	
		340.0	450.70	9	5.3	
		376.0	450.70	9	5.3	
		390.0	450.60	9	5.3	
		440.0	450.40	9	5.3	
		440	450.40	8	5.3	
		480.0	450.90	8	5.3	
		500.0	451.20	8	5.3	
		502.0	451.20	8	5.3	
		520.0	450.80	8	5.3	
		539.0	450.40	9	5.3	
		540.0	450.50	9	5.3	
		545.0	451.10	9	5.3	
		547.0	451.30	9	5.3	RWE

Table B-2.3 (cont.) Cross section elevations, substrate and cover data at site 112.6L.

and and the and and and and and and the the test of the set of the set of the and the and the set of the set of the set

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		COVEL	uala al	SILE	4770771	•
$\begin{array}{c ccc} & Hor & Bed \\ \hline \\ \text{Dist Elev} & (ft) & (ft) & Sub & Cov & Comments \\ \hline \\ $	405 406 406 406 400 400 400 400 400 400 400	9999 4994 9999 4996 4996 4996 4996 4996			, 1934, 1938, 1988, 1988, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1998, 1	
Location Dist Elev Within Site (ft) (ft) Sub Cov Comments Cross Section 2 550.0 $452.30 \ 9 \ 5.3$ Station 3+97 560.0 $455.60 \ 3 \ 1.1$ (cont.) 567.0 $460.78 \ 3 \ 1.1$ RB Headpin Cross Section 3 0.0 $463.77 \ 3 \ 1.1$ LB Headpin Station 8+36 1.0 $463.10 \ 3 \ 1.1$ 10.0 $457.11 \ 3 \ 1.1$ Bottom of cut bas $48.0 \ 452.80 \ 9 \ 5.3$ LWE 50.0 $452.40 \ 9 \ 5.3$ 90.0 $452.10 \ 9 \ 5.2$ 110.0 $451.10 \ 9 \ 5.2$ 121.0 $451.80 \ 9 \ 5.2$ 130.0 $452.40 \ 9 \ 5.2$ 200.0 $453.10 \ 9 \ 5.2$ 223.0 $453.40 \ 9 \ 5.2$ 223.0 $453.40 \ 9 \ 5.2$ 223.0 $453.40 \ 9 \ 5.2$ 230.0 $453.60 \ 9 \ 5.2$ 230.0 $453.60 \ 9 \ 5.2$ 230.0 $453.60 \ 9 \ 5.2$ 243.0 $453.77 \ 9 \ 5.3$ 335.0 $452.80 \ 9 \ 5.2$ 243.0 $453.40 \ 9 \ 5.2$ 243.0 $453.60 \ 9 \ 5.3$ 340.0 $453.60 \ 9 \ 5.3$ 355.0 $452.80 \ 9 \ 5.3$ 360.0 $453.60 \ 9 \ 5.3$ 360.0 $453.60 \ 9 \ 5.3$ 360.0 $450.60 \ 9 \ 5.3$ 370.0 $451.60 \ 9 \ 5.3$ 400.0 $450.50 \ 12 \ 6.3$ 400.0 $450.90 \ 9 \ 5.3$ 500.0 $451.90 \ 9 \ 5.3$		Hor	Bed			
Within Site (ft) (ft) Sub Cov Comments   Cross Section 2 550.0 452.30 9 5.3   Station 3+97 560.0 455.60 3 1.1   (cont.) 567.0 460.78 3 1.1 RB Headpin   Cross Section 3 0.0 463.77 3 1.1 LB Headpin   Station 8+36 1.0 463.10 3 1.1 Bottom of cut ba   48.0 452.80 9 5.3 JWE   50.0 452.80 9 5.3 JWE   90.0 452.00 9 5.2 JUD.0 451.90 9 5.2   110.0 451.90 9 5.2 JUD.0 452.40 9 5.2   120.0 452.80 9 5.2 JUD.0 452.40 9 5.2   130.0 452.40 9 5.2 JUD.0 452.40 9 5.2   200.0 453.10 9 5.2 ZUD.0 453.10 9 5.2   200.0 453.77 <	Location	Dist	Elev			
Cross Section 2 Station 3+97 (cont.) $567.0$ $452.30$ 9 5.3 Station 3+97 (cont.) $567.0$ $460.78$ 3 1.1 RB Headpin Cross Section 3 Station 8+36 1.0 $463.77$ 3 1.1 10.0 $463.10$ 3 1.1 10.0 $457.11$ 3 1.1 10.0 $452.80$ 9 5.3 90.0 $452.80$ 9 5.3 90.0 $452.80$ 9 5.3 90.0 $452.00$ 9 5.2 110.0 $451.90$ 9 5.2 121.0 $451.80$ 9 5.2 121.0 $452.00$ 9 5.2 121.0 $452.40$ 9 5.2 130.0 $452.40$ 9 5.2 120.0 $452.80$ 9 5.2 120.0 $453.80$ 9 5.2 200.0 $453.80$ 9 5.2 200.0 $453.80$ 9 5.2 200.0 $453.80$ 9 5.2 200.0 $453.40$ 9 5.2 200.0 $453.40$ 9 5.2 200.0 $453.60$ 9 5.2 200.0 $453.60$ 9 5.2 200.0 $453.60$ 9 5.3 335.0 $452.80$ 9 5.3 335.0 $452.80$ 9 5.3 330.0 $453.60$ 9 5.3 400.0 $450.60$ 9 5.3 400.0 $450.11$ 12 6.3 400.0 $450.50$ 12 6.3 485.0 $450.95$ 9 5.3 500.0 $451.90$ 9 5.3 500.0 $451.90$ 9 5.3	Within Site	(ft)	(ft)	Sub	Cov	Comments
$\begin{array}{c} \mbox{Cross Section 2} & 550.0 & 452.30 & 9 & 5.3 \\ \mbox{Station 3+97} & 560.0 & 455.60 & 3 & 1.1 \\ \mbox{(cont.)} & 567.0 & 460.78 & 3 & 1.1 & \mbox{RB Headpin} \\ \mbox{Cross Section 3} & 0.0 & 463.77 & 3 & 1.1 & \mbox{LB Headpin} \\ \mbox{Station 8+36} & 1.0 & 463.10 & 3 & 1.1 \\ \mbox{10.0 } & 457.11 & 3 & 1.1 & \mbox{Bottom of cut ba} \\ & 48.0 & 452.80 & 9 & 5.3 & \mbox{LWE} \\ & 50.0 & 452.40 & 9 & 5.3 \\ \mbox{90.0 } & 452.40 & 9 & 5.3 \\ \mbox{90.0 } & 452.10 & 9 & 5.2 \\ \mbox{110.0 } & 451.90 & 9 & 5.2 \\ \mbox{121.0 } & 451.80 & 9 & 5.2 \\ \mbox{130.0 } & 452.80 & 9 & 5.2 \\ \mbox{130.0 } & 452.80 & 9 & 5.2 \\ \mbox{130.0 } & 452.80 & 9 & 5.2 \\ \mbox{169.0 } & 452.80 & 9 & 5.2 \\ \mbox{169.0 } & 452.80 & 9 & 5.2 \\ \mbox{169.0 } & 452.80 & 9 & 5.2 \\ \mbox{169.0 } & 452.80 & 9 & 5.2 \\ \mbox{169.0 } & 452.80 & 9 & 5.2 \\ \mbox{200.0 } & 453.10 & 9 & 5.2 \\ \mbox{200.0 } & 453.10 & 9 & 5.2 \\ \mbox{200.0 } & 453.40 & 9 & 5.2 \\ \mbox{200.0 } & 453.60 & 9 & 5.2 \\ \mbox{200.0 } & 453.27 & 9 & 5.3 \\ \mbox{310.0 } & 453.20 & 9 & 5.3 \\ \mbox{3309.0 } & 453.27 & 9 & 5.3 \\ \mbox{3309.0 } & 453.27 & 9 & 5.3 \\ \mbox{340.0 } & 452.60 & 9 & 5.3 \\ \mbox{340.0 } & 452.60 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.46 & 9 & 5.3 \\ \mbox{340.0 } & 450.90 & 12 & 6.3 \\ \mbox{340.0 } & 450.90 & 12 & 6.3 \\ \mbox{340.0 } & 450.90 & 12 & 6.3 \\ \mbox{340.0 } & 450.90 & 9 & 5.3 \\ \mbox{340.0 } & 450.90 & 9 & 5.3 \\ \mbox{340.0 } & 450.90 & 9 & 5.3 \\ \mbox{340.0 } & 450.90 & 9 & 5.3 \\ \mbox{340.0 } & 450.90 & 9 & 5.3 \\ \mbox{340.0 } &$						
Station 3+97 (cont.) $560.0$ $455.60$ $3$ $1.1$ 567.0 $460.78$ $3$ $1.1$ RB Headpin Cross Section 3 $0.0$ $463.77$ $3$ $1.1$ LB Headpin Station 8+36 $1.0$ $463.10$ $3$ $1.1$ 10.0 $457.11$ $3$ $1.1$ Bottom of cut ba 48.0 $452.80$ $9$ $5.3$ LWE 50.0 $452.40$ $9$ $5.390.0$ $452.10$ $9$ $5.210.0$ $452.00$ $9$ $5.2121.0$ $451.80$ $9$ $5.2130.0$ $452.00$ $9$ $5.2130.0$ $452.00$ $9$ $5.2130.0$ $452.00$ $9$ $5.2130.0$ $452.00$ $9$ $5.2121.0$ $451.80$ $9$ $5.2122.0$ $453.10$ $9$ $5.2200.0$ $453.10$ $9$ $5.2200.0$ $453.10$ $9$ $5.2200.0$ $453.40$ $9$ $5.2200.0$ $453.40$ $9$ $5.2230.0$ $453.40$ $9$ $5.2230.0$ $453.40$ $9$ $5.2243.0$ $453.40$ $9$ $5.3310.0$ $452.80$ $9$ $5.3310.0$ $453.30$ $9$ $5.3310.0$ $453.30$ $9$ $5.3310.0$ $453.30$ $9$ $5.3335.0$ $452.80$ $9$ $5.3340.0$ $450.60$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.46$ $9$ $5.3400.0$ $450.90$ $12$ $6.3485.0$ $450.90$ $12$ $6.3485.0$ $450.90$ $12$ $6.3485.0$ $450.90$ $12$ $6.3485.0$ $450.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $451.90$ $9$ $5.3500.0$ $450.40$ $10$ $5$	Cross Section	2 550.0	452.30	9	5.3	
$ \begin{array}{cccc} ({\rm cont.}) & 567.0 & 460.78 & 3 & 1.1 & {\rm RB \; Headpin} \\ \hline \\ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Station 3+97	560.0	455.60	3	1.1	
$\begin{array}{c} \mbox{Cross Section 3} & 0.0 & 463.77 & 3 & 1.1 & \mbox{LB Headpin} \\ \mbox{Station 8+36} & 1.0 & 463.10 & 3 & 1.1 \\ & 10.0 & 457.11 & 3 & 1.1 & \mbox{Bottom of cut bar} \\ & 48.0 & 452.80 & 9 & 5.3 & \mbox{LWE} \\ & 50.0 & 452.80 & 9 & 5.3 & \mbox{LWE} \\ & 50.0 & 452.40 & 9 & 5.3 \\ & 90.0 & 452.10 & 9 & 5.2 \\ & 10.0 & 451.90 & 9 & 5.2 \\ & 110.0 & 451.90 & 9 & 5.2 \\ & 121.0 & 451.80 & 9 & 5.2 \\ & 130.0 & 452.80 & 9 & 5.2 \\ & 169.0 & 452.80 & 9 & 5.2 \\ & 169.0 & 452.80 & 9 & 5.2 \\ & 200.0 & 453.10 & 9 & 5.2 \\ & 200.0 & 453.10 & 9 & 5.2 \\ & 223.0 & 453.40 & 9 & 5.2 \\ & 267.0 & 454.71 & 7 & 4.3 \\ & 309.0 & 453.27 & 9 & 5.3 \\ & 310.0 & 453.30 & 9 & 5.3 \\ & 335.0 & 452.80 & 9 & 5.3 \\ & 340.0 & 452.60 & 9 & 5.3 \\ & 403.0 & 450.60 & 9 & 5.3 \\ & 403.0 & 450.46 & 9 & 5.3 \\ & 403.0 & 450.46 & 9 & 5.3 \\ & 403.0 & 450.46 & 9 & 5.3 \\ & 438.0 & 450.11 & 12 & 6.3 \\ & 440.0 & 450.10 & 12 & 6.3 \\ & 480.0 & 450.90 & 12 & 6.3 \\ & 480.0 & 450.90 & 12 & 6.3 \\ & 480.0 & 450.90 & 12 & 6.3 \\ & 480.0 & 450.99 & 5.2 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 451.90 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 & 5.3 \\ & 50.0 & 50.95 & 9 $	(cont.)	567.0	460.78	3	1.1	RB Headpin
Station $8+36$ 1.0 463.10 3 1.1 10.0 457.11 3 1.1 Bottom of cut ba 48.0 452.80 9 5.3 LWE 50.0 452.80 9 1.1 70.0 452.40 9 5.3 90.0 452.10 9 5.3 90.0 452.00 9 5.2 110.0 451.90 9 5.2 121.0 451.80 9 5.2 130.0 452.00 9 5.2 150.0 452.40 9 5.2 169.0 452.80 9 5.2 200.0 453.10 9 5.2 200.0 453.60 9 5.2 223.0 453.40 9 5.2 230.0 453.60 9 5.2 267.0 454.71 7 4.3 309.0 452.80 9 5.3 310.0 453.30 9 5.3 310.0 453.30 9 5.3 310.0 453.30 9 5.3 335.0 452.80 9 5.3 LWE 340.0 452.60 9 5.3 370.0 451.60 9 5.3 400.0 450.60 9 5.3 403.0 450.46 9 5.3 403.0 450.11 12 6.3 400.0 450.10 12 6.3 400.0 450.50 12 6.3 485.0 450.95 9 5.3 500.0 451.90 9 5.3 500.0 45	Cross Section	3 0.0	463.77	3	1.1	LB Headpin
10.0 $457.11$ 3 1.1 Bottom of cut ba 48.0 $452.80$ 9 5.3 LWE 50.0 $452.80$ 9 1.1 70.0 $452.40$ 9 5.3 90.0 $452.10$ 9 5.2 110.0 $451.90$ 9 5.2 121.0 $451.80$ 9 5.2 130.0 $452.00$ 9 5.2 130.0 $452.40$ 9 5.2 169.0 $452.80$ 9 5.2 200.0 $453.10$ 9 5.2 200.0 $453.40$ 9 5.2 230.0 $453.40$ 9 5.2 230.0 $453.40$ 9 5.2 267.0 $454.71$ 7 4.3 309.0 $452.80$ 9 5.3 310.0 $453.30$ 9 5.3 310.0 $453.30$ 9 5.3 335.0 $452.80$ 9 5.3 370.0 $451.60$ 9 5.3 400.0 $450.60$ 9 5.3 400.0 $450.70$ 0 $50.70$ 0 $50.70$ 0 $50.70$ 0 $50.70$ 0 $50.70$ 0 $50.$	Station 8+36	1.0	463.10	3	1.1	ž.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0	457.11	3	1.1	Bottom of cut bank
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		48.0	452.80	9	5.3	LWE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		50.0	452.80	9	1.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		70.0	452.40	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		90.0	452.10	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		94.0	452.00	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		110.0	451.90	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		121.0	451.80	9	5.2	-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		130.0	452.00	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		150.0	452.40	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		169.0	452.80	9	5.2	RWE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		170.0	452.80	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		200.0	453.10	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		223.0	453.40	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		230.0	453.60	9	5.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		267.0	454.71	7	4.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		309.0	453.27	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		310.0	453.30	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		335.0	452.80	9	5.3	LWE
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		340.0	452.60	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		370.0	451.60	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		400.0	450.60	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		403.0	450.46	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		420.0	450.30	9	5.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		438.0	450.11	12	6.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		440.0	450.10	12	6.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		460.0	450.50	12	6.3	
485.0 450.95 9 5.3 500.0 451.90 9 5.3 516.0 453.86 12 6.2 pup		480.0	450.90	12	6.3	
500.0 451.90 9 5.3		485.0	450.95	9	5.3	
		500.0	451.90	9	5.3	
J10.U 4J2.00 12 0.3 KWE		516.0	452.86	12	6.3	RWE
520.0 453.00 12 6.3		520.0	453.00	12	6.3	
589.0 455.57 12 1.1		589.0	455.57	12	1.1	
596.0 459.72 1 1.1 Edge of vegetati		596.0	459.72	1	1.1	Edge of vegetation
598.5 464.73 1 1.1 RB Headpin		598.5	464.73	1	1.1	RB Headpin

Table B-2.3 (cont.) Cross section elevations, substrate and cover data at site 112.6L.

anna anna anna anna anna anna anna ann	High with with this taux such such side, as	an anala unter adar anter estes atom attor adar	, (1998) MARIE MELLE MARIE MARIE MELLE	i willin sinta willin adam utam ahay t	962 - 1055 - 4055 - 4055 - 4057 - 4165 - 6166 - 4166 - 4166 - 4166 - 4166 - 4
ngin falla wana wana anin anin dana dana anin kata kata kata kata anin anin anin anin anin anin anin a	Hor	Bed	: 4470-4575, ango anak-ango ang	0: 4000: 4000: 1200; staak ájas, 4.20 (	1889 6020 6280 6780 6621 1630 1630 7530 6239 6800 4
Location	Dist	Elev			
lithin Site	(ft)	(ft)	Sub	Cov	Comments
ross Section 34	0 0	458 34	0	5 2	IR Unadair
tation 10+38	1.0	458.10	ģ	5.5 5.3	rp Headhil
amenes da má	11.0	455.94	ģ	5.2	
	20.0	454.90	9	5.3	
	27.0	454.21	9	5.3	LWE
	40.0	453.90	9	5.3	404 V V (948
	51.0	453.56	9	5.3	
	60.0	453.30	9	5.3	
	80.0	452.80	9	5.3	
	83.0	452.74	9	5.3	
	98.0	451.82	9	5.3	
	100.0	452.00	9	5.3	
	116.0	453.54	9	5.3	
	120.0	453.30	9	5.3	
	149.0	454.23	9	5.3	RWE
	150.0	454.30	9	5.3	
	169.0	455.82	9	5.2	
	1/9.0	454.92	9	5.2	LWE
	100.0	454.90	9	5.2	
	199.0	452.19	9	5.2	
	220.0	433.00	У О	5.2	8.***
	223.U 255 A	434.90	9	). <u>/</u>	RWE
	289.0	454 10	7 0	ン。ム ち 2	IWE
	290.0	454.10	7 9	J.J 5 2	LNE
	299.0	453.20	o o	5.3	
	325.0	453.50	9	5.3	
	330.0	453.50	9	5.3	
	370.0	453.90	9	5.3	
	384.0	454.00	9	5.3	
	403.0	453.10	9	5.3	
	410.0	453.50	9	5.3	
	416.0	453.00	9	5.3	
	432.0	453.22	9	5.3	
	446.0	453.49	9	5.3	
	450.0	453.40	9	5.3	
	481.0	452.36	9	5.3	
	490.0	452.50	9	5.3	
	529.0	453.11	9	5.3	
	530.0	453.10	9	5.3	
	570.0	453.40	9	5.3	

\$

lable B-2.3 (c	cont.)	cover	data at	eleva site	112.6L.	substrate and
94 1996 1995 1996 1996 1996 1995 1996 1997 1997 1997 1997 1997 1997 1997	a calan adap dikin d	uzzu ana unia unia ana	41 -428. 438. 948. 948. 948. 948. 948. 438. 438. 438. 438. 4	9999 W200 1993) 1994 1994 1994 1994	6 4569 469 459 459 459 459 459 459 459	n main man mini man nan nan nan nan nan nan nan nan nan
	Н	lor	Bed			
Location	D	ist	Elev			
Vithin Site	(	(ft)	(ft)	Sub	Cov	Comments
के बहुत ब्हाइत हालक दावाल प्रदान गढ़िक गढ़िक करता कहात कहात		- 404 0000 0000	जहरू कोई० केइन पाठन व्यक्त व्यक्त	4000 4000 KNO	1880 - 1976), 1880-	-1976 6756 6756 6756 6523 6238 6356 6566
Cross Section	3A 58	9.0	453.62	9	5.3	
Station 10+38	61	0.0	453.90	9	5.3	
(cont.)	62	1.0	454.11	9	5.3	RWE
	66	9.0	455.79	9	5.3	
	67	0.0	456.00	9	5.3	
	67	9.0	457.34	9	5.3	
	69	3.5	460.06	9	5,3	RB Headpin
Cross Section	4	0.0	459.33	9	5.3	LB Headpin
Station 12+92		1.0	458.80	9	5.3	
		5.0	456.97	9	5.3	
	1	3.0	455.20	9	5.3	LWE
	1	5.0	454,90	9	5.3	4000 · · · · 4000
	2	7.0	453.40	9	5.3	
	3	0.0	453.40	9	5.3	
	4	7.0	453.49	ó	5.3	
	6	0.0	453.80	9	5.3	
	8	6.0	454.20	, o	5.3	
	g	0.0	454.40	9	5.3	
	11	0.0	455.20	ó	5.2	RWE
	14	8.0	456.89	ģ	5.2	1/1/19
	17	7.0	455.22	9	5.2	IWE
	20	0.0	454.30	9	5.2	2004 F 7 1 2002
	20	8.0	453.92	9	5.3	
	23	0.0	453.58	12	6.3	
	26	0.0	453.90	12	6.3	
	26	2.0	453.94		5.3	
	29	0.0	453.90	9	5.3	
	32	0.0	453.90	9	5.3	
	34	1.0	453.93	9	5.3	
	25	0.0	453.80	ó	5.5 5 2	
	22	0.0	453 20	ó	2.J K 2	
	20 40	8 0	452 95	9	. 3	
		0.0 0 0	452 20	9	J.J 5 2	
	** 1. /. /.	0.0	33.0U 454 10	7	J.J 5 1	
	स्ट्रस् 1. 1.	0.U 6 0	4J4.1V /s/ 95	У 0	J. 5 E 9	
	4444 1. 77		4J4.43 1,58 no	У 0	5.5	
	4/	0.0 7 0	4JJ.UU 155 15	ソフ	2.3	BLIE
	4/ E3	4.U 0 0	4JJ.13 156 96	7	4.5	KWE
	) L E E	60	400.00	1	4.6	
	)) 20	0.0	420.20	/	4.2	
	5/	υ.υ	420.10	1	4,2	

.

Table R-2.3 (cont.) Cross section elevations, substrate and

	cover	data at	site	112.6L	
	n alaya kumin alama a	99 MERS 4889 MER 4529 MER 4897 MER 4899 MER	anne alte dist ante ann	a data: 4000 onde 1000 data, 2	999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -
	Hor	Bed			
cation	Dist	Elev			
hin Site	(ft)	(ft)	Sub	Cov	Comments
			625		
ss Section 4	600.0	455.80	7	4.2	
tion 12+92	630.0	455.40	/	4.2	
nt.)	636.0	455.27	7	4.2	
	650.0	455.30	7	4.2	
	670.0	455.20	7	4.2	
	690.0	455.20	7	4.2	
	693.0	455.19	3	1.1	
	710.0	456.10	3	1.1	
	729.0	456.99	3	1.1	
	730.0	457.30	3	1.1	
	738.0	459.56	3	1.1	RB Headpin
s Section 5	0.0	459.26	3	8.3	LB Headpin
ion 15+41	1.0	458.60	3	8.3	
	3.0	457.19	3	8.3	
	10.0	455.90	3	8.3	
	14.0	455.11	3	1.1	LWE
	20.0	453.50	9	5.2	
	31.0	453.54	9	5.2	
	40.0	453.70	9	5.2	
	70.0	454.32	9	5.2	
	100.0	453.90	9	5.2	
	130.0	453.40	9	5.3	
	160.0	453.40	9	5.3	
	195.0	453.30	9	5.3	
	200.0	453.30	9	5.3	
	240.0	453.40	9	5.3	
	277.0	453.47	9	5.3	
	280.0	453.50	9	5.3	
	310.0	453.90	9	5.3	
	318.0	453.07	9	5.3	
	340.0	454.20	9	5.3	
	370.0	454.60	9	5.3	
	380.0	454.71	9	5.3	
	400.0	455.30	9	5.3	
	405.0	455.38	9	5.2	RWE
	433.0	456.26	9	5.2	
	440.0	456.30	9	5.2	
	490.0	456.40	9	5.2	
	491.0	456.43	9	5.2	

the R-2 2 (cont) Cross section elevations, substrate and

Table B-2.3 (cont.)	Cross cover	section data at	eleva site	ations, 112.6L.	substrate and
	9 4939 4336 1346 4351 4352 4356 4356 4356 43	27 480 675 486 951 488 488 488 488 4	88 888 689 688 889 68 89 986 683 886 88	5 400 905 400 909 409 409 400 400	
	Hor	Bed			
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
				<b>F A</b>	
Cross Section 5	343.0	435./6	9	5.2	
Station 15+41	5 'J.U	436.20	У О	5.2	
(cont.)	500.0	438.40	y y	5.2	
	505.0	420.40	9	5.2	
	393.0	456.20	9	5.2	
	607.0	432.66	3	1.1	
	610.0	455.80	3	1.1	
	630.0	456.60	3	1.1	
	648.0	457.30	3	1.1	
	653.0	461.50	3	1.1	RB Headpin
Cross Section 6	0.0	460.88	1	1.1	LE Headpin
Station 19+86	1.0	460.80	1	7.2	
	20.0	457.87	1	7.2	
	30.0	456.50	1	7.2	
	38.0	455.26	9	7.2	LWE
	40.0	455.20	9	7.2	
	60.0	454.70	9	7.2	
	80.0	454.07	9	5.2	
	110.0	453.00	9	5.2	
	114.0	452.99	9	5.2	
	140.0	452.70	9	5.2	
	154.0	452.64	9	5.2	
	180.0	452.70	9	5.2	
	220.0	452.80	9	5.2	
	240.0	452.92	9	5.2	
	260.0	453.20	9	5.2	
	284.0	453.51	9	5.2	
	290.0	453.70	9	5.2	
	315.0	454.57	9	5.2	
	320.0	454.70	9	5.2	
	350.0	455.20	9	5.2	
	355.0	455.34	9	5.2	RWŁ.
	370.0	456.20	9	5.2	
	390.0	457.32	9	5.2	
	414.0	457.97	9	5.2	
	435.0	460.90	9	5.2	RB Headpin
				0: 10:00 10:00 10:00 10:00 00:00 00:00	

	cover data at site 112.6L.						
Location	Hor	Bed Flev		a anta ding-attar anta dagi dista d			
Within Site	(ft)	(ft)	Sub	Cov	Comments		
Cross Section 7	0.0	466.59	12	9.3	LB Headmin		
Station 30+34	1.0	461.31	12	9.3	<i>ମାରଙ୍କର ଓ ଓ ରୋ</i> ହା କରୁବ		
	10.0	459.10	12	9.3			
	11.0	458.81	12	5.3			
	20.0	458.20	12	5.3			
	40.0	457.00	12	5.3			
	46.0	456.59	12	5.3			
	50.0	456.50	12	5.3			
	60.0	456.40	12	5.3			
	70.0	456.30	12	5.3			
	80.0	456.10	12	5.3			
	90.0	455.95	12	6.3	LWE		
	110.0	455.50	12	6.3			
	140.0	454.80	12	6.3			
	143.0	454.68	9	5.3			
	1/5.0	452.90	У 0	2.3			
	100.0	452.80	צ 19	J.J 6 2			
	200.0	7J2.J7 452 50	12	0.J 6 3			
	238 0	452.00	0	53			
	240.0	453.00	12	6.3			
	270.0	453.70	9	5.3			
	271.0	453.71	9	5.3			
	298.0	454,67	9	5.2			
	300.0	454.80	9	5.3			
	320.0	455.70	9	5.2			
	326.0	456.04	9	5.2	RWE		
	330.0	456.20	9	5.2			
	350.0	457.40	9	5.2			
	354.0	457.55	12	6.2			
	370.0	457.90	12	6.2			
	379.5	458.08	12	6.2			
	390.0	458.90	12	6.2			
	410.0	460.50	12	6.2			
	411.0	400.36	12	0.2			
	421.U	403.38	12	0.2	кы неадріп		
		200 with with sizh ann sizh ann agus an					

-

Table B-2.3 (cont.) Cross section elevations, substrate and

Table B-2.3 (cont.)	Cross cover	section data at	eleva site	tions, 112.6L.	substrate and
		10 m	an enn enn enn enn enn enn		
Location	nor Dict	Dec Flou			
Within Site	015L (ft)	(ft)	Sub	Cov	Comments
	( &  6 ) 	ر باید میں میں میں میں دی	~~~~		
Cross Section 8	0.0	470.80	1	8.2	Bottom of cut bank
Station 40+98	1.0	469.10	1	8.2	
	3.0	465.81	1	9.2	
	7.0	463.60	1	8.3	
	10.0	463.10	1	8.3	
	25.0	460.70	1	8.3	
	27.0	457.86	9	5.3	LWE
	30.0	459.90	9	5.3	
	38.0	458.60	9	5.3	
	40.0	458.20	9	2.3	
	42.U	437.70	9	5.5	
	50.0	437.40	۳ 0	J.J E 2	
	JZ.U 70 0	437.30	7 0	J_J 5 1	
	80.0	457 80	9	J.J 5 2	
	82 0	457 90	9	ン・ン ち え	
	85.0	457.72	9	5.2	
	90.0	458,40	9	5.2	
	91.0	458.50	9	5.2	
	110.0	458.40	9	5.2	
	120.0	458.40	9	5.2	
	122.0	457.94	7	4.3	
	124.0	458.40	7	4.3	
	141.0	458.15	7	4.3	
	160.0	458.30	7	4.3	
	164.0	458.30	7	4.3	
	200.0	458.35	9	5.3	
	220.0	458.00	9	5.3	
	248.0	457.38	9	5.3	
	260.0	457.30	9	5.3	
	280.0	457.07	<u>لا</u>	5.3	
	300.0	437.00	9	2.3	
	360 0	431.14	У 0	J.J 5 1	
	260.U 267 A	431.00	7	J.J 5 9	
	302.0	431.02 150 90	7 0	J.J 5 2	
	200.U 400 0	4J0.2U 458 20	7 0	J.J 5 2	
	410.0	458.75	9	5.3	RWF
	430.0	459.10	9	5.3	a + ? (ad)
	437.0	459.20	Ő,	5.3	
	10100	マチャンション			

Reference elevation: R&M LRX-16 RB 1980.

Ð

Table B-2.4	Cross section elevations, substrate and cover data at site 119.2R.						
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments		
Cross Section at Mouth Station -3+51	0.0 47.0 104.0 130.0 163.0 184.0 194.0 198.0 203.0	511.00 508.71 508.25 507.20 506.91 507.05 509.55 508.15 511.23	1 1 1 1 1 1 12 12	7.1 7.1 7.1 7.1 7.1 7.1 7.1 9.1 9.1	Bottom of bank LWE RWE Half way up bank		
Cross Section 1 Station 0+00	0.0 10.5 26.0 32.0 84.0 152.0 168.0 180.0 195.0	514.94 510.12 508.92 508.40 508.00 506.30 506.20 508.83 514.63	1 1 1 1 1 1	8.2 7.1 7.1 7.1 7.1 7.1 7.1 7.1 8.3	LB Headpin LWE RWE RB Headpin		
Cross Section 2 Station 3+80	0.0 29.5 39.5 48.5 76.0 92.0 108.0 125.0 149.0 162.0	513.53 510.56 508.89 507.94 507.00 506.40 506.50 505.03 508.85 514.21	1 1 3 3 4 4 13 13	8.2 5.1 5.1 6.1 6.1 6.1 6.1 5.2 5.2	LB Headpin LWE RWE RB Headpin		
Cross Section 3 Station 5+96	0.0 10.0 36.5 59.0 87.5 117.0 147.0 161.0 172.0 173.0	513.69 513.48 510.73 508.90 508.20 508.04 506.75 508.87 511.73 516.86	3 3 11 11 11 11 11 11 11	8.2 8.1 5.2 5.2 5.2 5.2 5.2 5.2 5.2 8.4	LB Headpin LWE RWE RB Headpin		

B-31

	cove	r data at	site	119.2R	
120 939 939 939 939 935 935 635 927 927 028 029 429 429 429 429 429 429 429 429 429 4	900 200 400 400 400 400 400 400 400 400 4	20 4351 4863 4385 4369 909 4955 4855 485 90 495 485 485 485 485 485 485 485 485	- 4528- 4538- 4539- 4539- 4539- 4539-	a ana) dana anta anta dana anah a a anah dana anta anta dana anah a	25 000 MBB MBB 455 456 456 450 450 450 450 450 450 450 450 450 450
	Hor	Bed			
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Section 4	0.0	515.26	11	8 1	IB Headnin
Station 9+93	18.5	513.71	11	8.1	PR HEGRATH
	52.0	512.71	11	5.2	
	65.0	511.98	11	5.2	
	85.0	509.82	11	5.2	
	120.0	509.90	11	6.2	LWE
	137.0	507.90	11	6.2	RWE
	151.0	508.86	11	6.3	
	173.0	512.28	11	6.3	
	176.0	513.79	11	8.4	RB Headpin
Cross Section 5	0.0	515.52	3	6.2	LB Headpin
Station 14+46	27.5	514.36	3	6.2	-
	57.5	513.72	1	6.2	
	90.0	513.68	8	6.2	
	149.0	512.72	10	6.2	
	158.0	512.72	10	6.2	
	1/9.5	512.2/	10	6.3	
	173.3	J11.42	10	5.3	* * * * *
	223.U 21.6 E	J11.21	10	0.3	LWE
	240.J 202 E	511.42	10	0.2	nue
	202 O	JII.21	10	0.2 2 1	<b>KWE</b>
	306.0	515.57	1 1	6 1	RB Headain
	~~~ <b>~</b>	ఆ చచ్చతి	*	Ve J	un meanhim

-

Table B-2.4 (cont.) Cross section elevations, substrate and

Date of survey: Sept. 6, 1984. Reference elevation: USGS A107 1965.

Table B-2.5	Cros	s section r data at	eleva site	tions, 131.7L	substrate and •
đột văn văn đền tân đặt đặt đất đất đất đặt đất đột đất độ vớn đặt đơn vật đặt	ම තිබුල කිහිම කිරීමා පරිමා පරිමා කිහිම කිහිම කිහිම කිරීමා කි	1899 1000 4807 6889 4889 4889 4889 4886 4886 488	409 AND 400 AND 400 AND 400	8 6339 6820 6779 6239 6860 6369 6	
8 · · · · · ·	Hor	Bed			
Location Withim Site	Dist	Elev	• •	6	
within Site	(ft)	(11)	Sub	Cov	Comments
Cross Section 1	0.0	622.20	1	8.5	LB Headpin
Station 0+00	1.0	621.90	1	8.5	Beside headpin
	8.0	619.30	12	8.2	**
	26.0	616.90	12	5.2	
	29.0	616.10	12	5.2	LWE
	32.0	616.30	12	5.2	
	36.0	615.60	12	5.2	
	40.0	615.00	12	1.1	
	44.0	614.60	12	1.1	
	48.0	614.30	12	1.1	
	52.0	614.50	12	1.1	
	56.0	614.80	12	1.1	
	60.0	614.00	1		
<i>6.</i>	68 0	614.30	1	1.1 1 1	
<i>\$</i>	72 0	614.00	1		
	76.0	614 10	1 1	11	
	80.0	614.60	1	11	
	84.0	614.50	1	1.1	
	88.0	614.30	1	1.1	
	92.0	614.10	1	1.1	
	96.0	614.10	1	1.1	
	100.0	614.10	1	1.1	
	104.0	614.20	1	1.1	
	108.0	614.30	1	1.1	
	112.0	614.40	1	1.1	
	116.0	614.40	1	1.1	
	120.0	614.70	1	1.1	
	124.0	614.80	1	1.1	
	128.0	615.00	1	1.1	
	132.U	013.1U	1	1.1	
	170.0	013.40 618 80	1	1.1	
	140.0 177 O	615.JU	1	1.1	
	144.U 1/2 A	212 KU	1	1.1	
	152 N	615 50	1	1 . L 1 1	
	156 0	615 60	1 1	1.1 1.1	
	160.0	615.70	1	1.1	
	164.0	615.90	1	1.1	
	168.0	615.90	1	1.1	
	172 0	615 70	1	4 1	

Table B-2.5 (cor	nt.) Cross cover	s section data at	eleva site	ations, 131.7L	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 1 Station 0+00 (cont.)	176.0 180.0 184.0 188.0 192.0 196.0 200.0 204.0 208.0 212.0 216.0 220.0 224.0 228.0 232.0 234.0	615.80 615.80 615.50 615.20 615.20 615.20 615.20 615.20 615.20 615.30 615.30 615.60 615.60 615.50 615.80 616.20			
	236.0 237.0 251.0 258.0 263.0	616.90 616.80 618.80 621.10 624.00	1 1 1	1.1 1.1 8.2 8.2 8.2	Bottom of bank RB Headpin
Cross Section 2 Station 2+45	0.0 1.0 2.0 14.0 18.0 22.0 26.0 30.0 34.0 38.0 42.0 46.0 50.0 54.0 58.0 62.0 66.0 70.0 73.0	620.90 620.60 619.40 616.90 615.90 615.80 615.60 615.60 615.60 615.60 615.00 616.00 616.30 616.30 616.30 616.30 616.30	1 1 12 12 12 12 12 12 12 10 10 10 10 10 10 10 10 10 10	8.2 8.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5	LB Headpin Beside headpin LWE

	cover	data at	site	131.7L.	
n (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3	Hor	Bed	-17% sige alle alle alle dis dis dis	න්ඩා කාස ගාස කුව එහි 430 ක්	10 400 400 400 000 000 400 arts - a sub 400
Location	Dist	Elev			
Jithin Site	(ft)	(ft)	Sub	Cov	Comments
1 43 14 26 43 43 127 48 44 177		යාස සො සො දො දො සො ද සා ලා ද	400 400 400	aa aa aa	ब्राज्य संस्था करने करने प्राप्त स्थल करने
cross Section 2	78.0	616.30	10	5.2	
Station 2+45	81.0	616.30	10	5.2	
(cont.)	86.0	616.40	10	5.2	
(,	90.0	616.00	10	5.2	
	94.0	616.20	10	5.2	
	98.0	616.10	10	5.2	
	102.0	616.20	10	5.2	
	106.0	615.90	10	5.2	
	110.0	615.90	10	5.2	
	114.0	615.80	10	5.2	
	118.0	616.00	10	5.2	
	122.0	616.10	10	5.2	
	126.0	616.00	10	5.2	
	130.0	616.00	10	5.2	
	134.0	616.10	10	5.2	
	138.0	616.20	10	5.2	
	142.0	616.00	10	5.2	
	147.0	615.70	10	5.2	
	150.0	615.80	10	5.2	
	153.0	615.70	10	5.2	
	158.0	615.90	10	5.2	
	161.0	615.80	10	5.2	
	166.0	616.40	10	5.2	
	169.0	616.20	10	5.2	
	174.0	616.50	10).L 5 A	
	1//.0	616.20	10	J.2 5 9	
	182.0	616 40	10	5.6	
	100.0	616.40	10	J.2 5 3	
	190.0	616.50	10	J.4 5 3	
	194.0	616.50	10	ン。ム ま う	
	190.0	010.40 414 50	10	3.2 5 9	
	202.0	616.50	10	ン・ム ちつ	
	200.0	616.00	10	J.2 5 9	
	210.0	616 60	10	J.4 5 9	
	214.U 218 D	616 60	10	59	
	210.U 222 N	616 20	10	ン・ム	
	227 0	616.80	10	4.2	
	231.0	616.80	10	4.2	
	235.0	616.80	10	4.2	
	230 N		10	1.3	

able R-2 5 (cost) Croce section elevations substrate and

979 9760 979 980 980 980 980 980 980 980 980 980 98	485 485 485 485 485 485 486 486 486 486 486 486	20- 123) 123, 424 425 435 437 438 438 438 435	n ander aller ander aller aller aller	n alah alah dina dina dini alah dina d	49 496 496 496 496 496 496 498 498 499 499 499 491 486 490 490 490
	Hor	Bed			
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
95% Mila 442a 455 452a 453a 455a 455a 455a 455a 455a	ත්බා ක්ෂා ලැක දේශා ගලා	angan viêns - de nazar van de nazar	-248 - 420 - 420	940 400 400	
Cross Section 2	256.0	617.10	1	4.2	
Station 2+45	301.0	622.17	1	8.2	Beside headpin
(cont.)	301.0	622.24	1	8.2	RB Headpin
Cross Section 3	0.0	621.80	1	9.4	LB Headpin
Station 6+45	0.0	621.57	1	9.4	Beside headpin
	2.0	621.60	thereof	6.1	-
	15.0	617.60	1	6.1	
	24.0	617.50	1	6.2	
	26.0	617.20	1	6.2	
	28.0	617.10	1	6.2	
	30.0	617.10	1	6.2	
	32.0	617.10	1	6.2	
	34.0	616.60	12	6.2	LWE
	36.0	616.80	12	6.2	
	38.0	616.60	12	6.2	
	40.0	616.60	12	6.2	
	44.0	616.60	12	6.2	
	48.0	616.70	12	6.1	
	52.0	616.40	12	6.1	
	56.0	616.10	12	6.1	
	60.0	616.20	12	6.1	
	64.0	616.50	12	6.1	
	68.0	616.10	12	6.1	
	/2.0	616.00	12	6.1	
	/6.0	615.80	12	6.1	
	80.0	013.30	12	6.1	
	04.U	615.40	12	0.1	
	00.0	015.20	12	0.1	
	92.0	615.20	12	0.1	
	90.U	612.00	14	0.1	
	100.0	614.80	12	0.1	
	104.U	614.70	10	0.1	
	110.0	014.90	34	0.1	
	112°N	014.00	12	0.1	
	110.0	014.70	12	6.1	
	120.0	614.00	12	0.1	
	124.U	014.0U 611 70	12	0.1 < 1	
	122 0	614.10	12	0.1	
	136.0	614.90	12	0.1	
	130.0	014.90	12	6.1	

Table B-2.5 (cont.) Cross section elevations, substrate and cover data at site 131.7L.

Table B-2.5 (cont.)) Cross cover	section data at	elevat site l	ions, 31.7L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 3 Station 6+45 (cont.)	$140.0\\144.0\\148.0\\152.0\\156.0\\156.0\\160.0\\164.0\\168.0\\172.0\\176.0\\176.0\\180.0\\188.0\\192.0\\196.0\\198.0\\200.0\\202.0\\206.0\\208.0\\210.0\\212.0\\214.0\\216.0\\218.0\\266.0\\273.0\\273.0$	615.00 615.20 615.20 615.30 615.30 615.60 615.80 615.80 616.10 616.50 616.50 616.50 616.50 616.50 616.60 616.60 617.00 617.00 617.10 617.20 617.20 617.30 622.80 623.11 623.30	12 12 12 12 12 12 12 12 12 12 12 12 12 1	$\begin{array}{c} 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 6.1 \\ 7.1 \\$	Bottor of bank Top of bank Beside headpin RB headpin
Cross Section 4 Station 9+45	$\begin{array}{c} 0.0\\ 1.0\\ 7.0\\ 25.0\\ 27.0\\ 28.0\\ 30.0\\ 32.0\\ 34.0\\ 36.0\\ 38.0 \end{array}$	623.00 621.66 620.00 617.50 617.40 616.70 616.60 616.20 616.10 615.70 615.90	1 1 1 12 12 12 12 12 12 12	2.2 2.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2	LB Headpin Beside headpin LWE

B-37

	alah aluu aluu aluu ada dika dika dika dika dika d	88 900 - 100 - 10 0 - 108 - 108 - 108 - 108			
	Hor	Bed			
Location	Dist	Elev			
Vithin Site	(ft)	(ft)	Sub	Cov	Comments
States 4	41 6	615 60	12	6 1	
Cross Section 4	41.0	614 00	11	۵.1 ۲ 1	
(ant)	43.0	615 00	11	6 1	
	43.0	614 20	11	6 1	
	52 N	614.20	11	6 1	
	54 0	614 00	11	6 1	
	55 0	613 80	11	6 1	
	56 O	613 00	11	6 1	
	57.0	613.80	11	6.1	
	58.0	613.90	11	6.1	
	60.0	614.20	11	6.1	
	64.0	614.70	8	6.1	
	68.0	614.80	8	6.1	
	72.0	615.20	8	6.1	
	76.0	615.40	8	6.1	
	80.0	615.70	8	6.1	
	84.0	615.80	8	6.1	
	88.0	615.70	8	6.1	
	92.0	615.90	8	6.1	
	96.0	616.20	8	6.1	
	100.0	615.90	8	6.1	
	104.0	616.00	8	6.1	
	108.0	616.20	8	6.1	
	112.0	616.10	8	6.1	
	116.0	616.10	8	6.1	
	120.0	616.10	8	4.2	
	124.0	616.00	8	4.2	
	126.0	616.10	8	4.2	
	130.0	616.30	8	4.2	
	134.0	616.40	8	4.2	
	138.0	616.60	8	4,2	
	140.0	010./0	8	4.2	
	144.0	010.90	5 0	4.6	
	140.0	01/.00	ŏ	4.4	
	152.0	01/.20	ŏ	4.2	5 F 199
	157.0	617 20	2	4.2	KWL
	167 0	617.3U	ム つ	1.1 1 1	
	171 N	617 20	2 2	101 ; ;	
	175 0	617 40	2	1 1	
	170 0	617 KA	<u>ራ</u> ዓ	11 1	
	112.0	011.00	6	7.7	

Table B-2.5 (cont.) Cross section elevations, substrate and

Table B-2.5 (c	ont.) Cross coves	s section r data at	eleva site	tions, 131.7L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
	electric couple citation and the				40.10 40.1. 40.00 40.00 40.00 40.00 40.00
Cross Section Station 9+45 (cont.)	4 216.0 231.0 283.0 302.5 303.0	619.90 619.90 621.20 623.66 623.97	2 2 2 2 2	1.1 1.1 8.1 8.1	Beside headpin RB Headpin
Cross Section	5 0.0	622.89	1	8.4	LB Headnin
Station 11+90	0.0 4.0 7.0 9.0	622.39 622.30 618.00 617.10	1 1 1 12	8.4 9.3 9.3 7.3	LB neadpin Beside headpin LWE
	12.0 14.0 18.0	615.50 615.30 615.90	12 12 12	7.3 7.3 7.3	
	22.0 26.0 30.0	615.80 614.40 614.40	12 12 12	5.2 5.2 5.2	
	34.0 38.0 42.0 46.0	614.90 615.50 615.40	10 10 10	5.2 5.2 5.2 5.2	
	50.0 54.0 58.0	615.50 615.90 615.80	10 10 10	5.2 5.2 5.2	
	62.0 66.0 70.0 74.0	615.90 616.00 616.10 616.70	10 10 10	5.2 5.2 5.2 5.2	
	78.0 82.0 86.0	617.10 617.30 617.30	8 8 8	5.2 5.2 5.2	
	90.0 94.0 98.0	617.50 617.50 617.50	8 8 8	5.2 5.2 5.2	
	102.0 106.0 110.0 114.0	617.50 617.40 617.50 617.50	8 8 8 8	5.2 5.2 5.2 5.2 5.2	
	122.0 126.0	617.50 617.60	° 8 8	5.2 5.2 5.2	

Table B-2.5 (cont.)	Cross cover	section data at	eleva site	ntions, 131.7L.	substrate and
	n alaite allan dasan argan ataun ataun daga d n dalah alain daga dagan daga daga daga daga d	20 429 429 429 429 429 429 429 429 429 429	186 - 4660 - 2023 - 4860 - 4860 - 486 20- 2824 - 2826 - 2826 - 2826 - 282	69 4439 4546 4454 6560 6569 4566 556 14 4556 4657 656 465, 4558 4568 456	
	Hor	Bed			
Localion Within Site	Dist (f+)	Elev (ft)	C	Cou	Commonsta
Millill Jile			300		comments
Cross Section 5	130.0	617.60	8	4.2	
Station 11+90	134.0	617.70	8	4.2	
(cont.)	138.0	617.90	8	4.2	
	142.0	617.80	8	4.2	
	146.0	618.10	8	4.2	
	150.0	618.10	õ	4.2	
	154.0	610.10	0 8	4.L 4.7	
	276.0	620.10	1	4.2	
	380.0	621.50	1	8.1	
	391.0	623.42	1	8.1	Beside headpin
	391.0	623.69	1	8.1	RB Headpin
Cross Section 6	0.0	628.02	1	8.4	LB Headpin
Station 16+30	0.0	627.74	1	8.4	Beside headpin
	1.0	623.10	8	8.4	
	11.0	619.40	ŏ	5.2	\$ 1 \$ Fm
	14.0	616.70	0 2	2.2 5.2	LWE
	20.0	618.10	0 8	5 2	
	22.0	618.00	8	5.2	
	26.0	618.00	8	5.2	
	30.0	617.90	8	5.2	
	34.0	617.80	8	5.2	
	37.0	617.60	8	5.2	
	42.0	617.80	8	5.2	
	46.0	617.70	8	5.2	
	50.0	617.60	ð o	ン. ム エ つ	
	58 0	617.00	0 2	59	
	62.0	616.70	8	52	
	66.0	616.30	8	5.2	
	70.0	616.50	8	5.2	
	74.0	617.00	8	5.2	
	78.0	617.80	8	5.2	
	82.0	618.20	7	5.2	
	86.0	618.40	7	5.2	
	YU.U	018.50	6	5.2	
	72.U 06 n	610.0U	0 4	5.2	
	20.0 Q2 A	610.9U	o ∠).L E 3	
	20.0	010.70	0	2.2	

	Hor	Bed			
Location	Dist	Elev			
Vithin Site	(ft)	(ft)	Sub	Cov	Comments
					anda anga suna anga anga anga anga
Cross Section 6	104.0	618.90	6	5.3	
Station 16+30	106.0	619.20	6	5.3	
(cont.)	110.0	619.10	6	5.3	
	114.0	619.10	6	5.3	
	117.0	619.10	б	5.3	RWE
	122.0	619.00	6	5.3	
	126.0	619.00	6	5.3	
	130.0	619.00	б	5.3	
	138.0	619.00	6	5.3	
	146.0	619.00	6	5.3	
	151.0	619.10	6	5.3	
	154.0	619.20	6	5.3	
	162.0	619.40	6	5.3	
	166.0	619.60	6	5.3	
	170.0	619.40	6	5.3	
	174.0	618.90	6	5.3	
	178.0	618.90	6	5.3	
	182.0	618.90	6	5.3	
	188.0	618.90	6	5.3	
	192.0	618.80	6	5.3	
	196.0	618.80	6	5.3	
	200.0	619.00	6	5.3	
	204.0	618.80	6	5.3	
	208.0	618.90	6	5.3	
	212.0	619.00	0	2.3	
	210.0	610.90	0 ∠	2.3	
	220.0	619.20	0	J.J 5 1	
	224.U 222 A	619.20	0	フ. 3 まっ	
	220.0	619.20	6	5.5	
	232.0	619.20	6	フ.) こう	
	230.0	619.10	0	5.5	
	240.0	619.10	6	5.5	
	244.0	619.10	6	J.2 5 9	
	240.0	619.10	6	ノ.ム ミ ク	
	252 0	619.10	6	5.2	
	256.0	619.30	6	5 2	
	260.0	619.30	6	5.2	
	264.0	619.30	6	5.2	
	268.0	619.40	6	5.2	
		~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<b>S</b>	107 G Gat	

•

-L1. 8-9 5 (. alouations substant -----Case .

Table B-2.5 (d	cont.)	Cross cover	section data at	eleva site	ations, 131.7L.	substrate and
120 100 100 000 000 400 400 000 000 000 00	90-9453) 4335-4346-9354-4346-4	ৰাগত কাৰ্য্য ব্যক্ত	235 entre anti- 635 entre auto- auto- auto- 284 entre vien- duce anti- auto- auto- auto-	00- 540- 640- 600- 600- 60	89 400 909 409 400 400 400 400 400 400	
		Hor	Bed			
Location		Dist	Elev			
Within Site		(ft)	(ft)	Sub	Cov	Comments
Cross Section	6	276.0	619.40	6	5.2	
Station 16+30		280.0	619.30	6	5.2	
(cont.)		284.0	619.50	6	5.2	
		342.0	622.40	1	5.2	
		358.0	622.92	1	8.2	Beside headpin
	:	358.0	623.17	1	8.2	RB Headpin
Cross Section	7	0.0	626.66	1	5.2	LB Headpin
Station 19+05		2.0	626.21	1	5.2	Beside headpin
		8.0	620.40	1	5.2	
		10.0	620.00	8	5.2	
		14.0	619.70	8	5.2	
		18.0	619.90	ð	5.2	
		20.0	619.90	ŏ	<b>J.</b> 5 7	
		24.U 22 A	620.10	0	フ。ム 5 つ	
		20.0	620.10	0 2	ン.ム ミ ク	
		36.0	620.10	8	5.2	
		40.0	619.80	8	5.2	
		44.0	620.20	8	5.2	
		48.0	620.10	8	5.2	
		51.0	620.40	6	5.2	LWE
		54.0	620.90	6	5.2	
		71.0	621.20	8	5.3	
		84.0	620.90	8	5.2	
		88.0	620.20	8	5.2	
		92.0	619.50	8	5.2	
		96.0	619.30	8	5.2	
		100.0	619.10	8	4.2	
		104.0	619.50	8	4.2	
		110.0	620.10	ð	4.2	
		112.0	620.20	ŏ	4.2	
	4	120.0	620.00	0	4.2	
	-	120.0 126 D	620.10	0	4°2 1. 9	
	-	127.U	620.10	0 9	4.2 1. 7	
	-	132.0	620.00	0 6	₩.∠ 5 7	
	-	136.0	619.50	6	5.2	
		140.0	619.70	6	5.2	
	1	144.0	619.90	6	5.2	
	1	148.0	620.00	6	5.2	
				-		

Table B-2.5 (co	ont.)	Cross cover	section data at	eleva site	ations, 131.7L.	substrate	and
999 609 609 609 609 609 609 609 609 609	20 AND 400 AND	400 400 400 400 400 400 40	Bod	995 4995 6995 6995 6995 69	20 400 400 400 400 400 400 400 400	400 400 400 400 400 400 400 400 400 400	a dia dan dia
Location	U II	iet	Elav				
Within Site	(	Et)	(ft)	Sub	Cov	Comments	
පත ලංකා පොත්ත හා දැන්න දේ දේ දේ මම මම දෙක පොත්තෙන හා කොරොක හො		888 499 Y			~~~~	ब्दा की की बात का का का सा	
Cross Section	7 15:	2.0	620.00	6	5.2		
Station 19+05	15	6.0	619.90	6	5.2		
(cont.)	16	0.0	619.90	6	5.2		
	16-	4.0	620.00	б	5.2		
	16	B.O	619.80	6	5.2		
	17	2.0	619.70	6	5.2		
	17	6.0	619.70	6	5.2		
	17	8.0	619.70	6	5.2		
	18:	2.0	619.80	6	5.2		
	180	6.0	619.80	6	5.2		
	19	0.0	619.80	6	5.2		
	19	4.0	620.00	6	5.2		
	19	8.0	620.10	6	5.2		
	20	2.0	620.10	6	6.2		
	20	8.0	620.00	6	6.2		
	21	2.0	619.90	6	6.2		
	210	5.0	620.00	6	6.2		
	22	0.0	620.00	6	6.2		
	22	4.U 9 0	620.10	6	0.2		
	24	0.U 2 A	610.00	0	0.2		
	23. 23.	2.U < 0	619.90	0	0.2		
	20	0.0	620.10	6	0.2 6.2		
	24	6.0 / 0	620.10	6	0.2 6 7		
	24	9.0 R N	620.10	6	6 7		
	25	4.0	620.10	6	6.2		
	25	8.0	620.10	6	6.2		
	26	2.0	620.10	6	6.2		
	26	6.0	620.10	6	6.2		
	27	0.0	620.00	6	6.2		
	27	4.0	620.10	6	6.2		
	27	8.0	620.00	6	6.2		
	28	2.0	620.20	6	6.2		
	28.	5.0	620.00	6	6.2		
	28	8.0	620.20	6	6.2		
	29	0.0	620.00	6	6.2		
	29	4.0	620.40	6	6.2	RWE	
	29	8.0	620.20	6	6.2		
	30	2.0	620.70	6	5.2		
	30.	5.0	620.70	6	5.2		
	31	1.0	620.40	6	5.2		

₽

	Hor	Bed			
Location	Dist	Elev		_	_
Within Site	(£t)	(£t)	Sub	Cov	Comments
Cross Section 7	315.0	620.40	6	5.2	
Station 19+05	319.0	620.40	6	5.2	
(cont.)	323.0	620.40	6	5.2	
	327.0	620.40	б	5.2	
	331.0	620.40	6	5.2	
	335.0	620.40	6	5.2	
	339.0	620.40	6	5.2	
	343.0	620.40	6	5.2	
	347.0	620.40	б	5.2	
	351.0	620.40	6	5.2	
	355.0	620.50	6	5.2	
	359.0	620.50	б	5.2	
	362.0	620.50	6	5.2	
	367.0	620.70	6	5.2	
	414.0	622.60	10	5.2	
	432.0	623.26	10	8.4	Beside headpin
	432.0	623.83	10	8.4	RB Headpin

eaction alevation 2 5 (cont)

Hor   Bed     Within Site   (ft)   (ft)   Sub   Cov   Comments     Cross Section 1   0.0   630.20   1   2.5   LB Headpin     Station 0+00   8.7   626.10   1   2.5   JB Headpin     9.0   625.50   1   2.5   JB Headpin     10.0   625.40   10   5.2     10.0   625.30   10   5.2     11.0   625.30   10   5.2     12.0   625.30   10   5.2     11.0   625.30   10   5.2     12.0   625.00   10   5.2     12.0   625.30   10   5.2     12.0   625.00   10   5.3     31.0   624.80   10   5.3     32.0   625.00   10   5.3     33.0   625.20   10   5.3     33.0   625.20   10   5.3     33.0   625.20   10   5.3 </th <th>Table B-2.6</th> <th colspan="7">Cross section elevations, substrate and cover data at site 132.6L.</th>	Table B-2.6	Cross section elevations, substrate and cover data at site 132.6L.						
Location Within Site  Gross Section 1 Station 0+00 Station 0+00 Dist Elev (ft) (ft) Station 0+00 Dist Cross Section 1 Station 0+00 Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist		Hor	Bed	9 Cate white data Quija Wate van	9 000 010 010 010 010 000 000 0			
Within Site(ft)(ft)SubCovCommentsCross Section 1 $0.0$ $630.20$ 1 $2.5$ LB HeadpinStation 0+00 $8.7$ $626.10$ 1 $2.5$ $9.0$ $625.50$ 1 $2.5$ $9.3$ $625.50$ 1 $2.5$ $9.5$ $625.20$ 10 $5.2$ $10.0$ $625.30$ 10 $5.2$ $14.0$ $625.30$ 10 $5.2$ $14.0$ $625.30$ 10 $5.2$ $14.0$ $625.30$ 10 $5.2$ $21.0$ $625.20$ 10 $5.2$ $21.0$ $625.30$ 10 $5.2$ $24.0$ $625.00$ 10 $5.3$ $31.0$ $624.80$ 10 $5.3$ $32.0$ $625.20$ 10 $5.3$ $33.0$ $625.20$ 10 $5.3$ $34.0$ $625.20$ 10 $5.3$ $43.0$ $625.20$ 10 $5.3$ $43.0$ $625.20$ 10 $5.3$ $43.0$ $625.20$ 10 $5.3$ $44.0$ $625.20$ 10 $5.3$ $55.0$ $624.80$ 10 $5.3$ $55.0$ $624.80$ 10 $5.3$ $56.0$ $624.80$ 10 $5.3$ $57.0$ $624.60$ 10 $5.2$ $63.0$ $624.60$ 10 $5.2$ $64.0$ $624.60$ 10 $5.2$ $67.0$ $624.60$ 10 $5.2$ $67.0$ $624.60$ 10 $5.2$ $67.0$ $624.60$ <t< th=""><th>Location</th><th>Dist</th><th>Elev</th><th></th><th></th><th></th></t<>	Location	Dist	Elev					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Within Site	(ft)	(ft)	Sub	Cov	Comments		
$\begin{array}{c} \mbox{Cross Section 1} \\ \mbox{Station 0+00} \\ \end{array} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	बाल के बाहे की कि	6139 (660 (771) 623) (620)	4339 4439 4316 4020 4328 4459	600 000 exc	4000 4300 4000			
Station 0+00 8.7 626.10 1 2.5 9.0 625.50 1 2.5 9.3 625.50 1 2.5 9.5 625.20 10 5.2 10.0 625.40 10 5.2 12.0 625.30 10 5.2 14.0 625.30 10 5.2 16.0 625.20 10 5.2 LWE 20.0 625.40 10 5.2 21.0 625.30 10 5.2 24.0 625.00 10 5.2 24.0 625.00 10 5.3 29.0 625.00 10 5.3 31.0 624.80 10 5.3 32.0 625.20 10 5.3 33.0 625.20 10 5.3 33.0 625.20 10 5.3 34.0 625.20 10 5.3 35.0 624.90 10 5.3 39.0 625.20 10 5.3 39.0 625.20 10 5.3 39.0 625.20 10 5.3 31.0 624.80 10 5.3 35.0 624.90 10 5.3 35.0 624.90 10 5.3 36.0 624.90 10 5.3 39.0 625.20 10 5.3 43.0 625.20 10 5.3 44.0 625.20 10 5.3 45.0 10 5.3 55.0 624.90 10 5.3 55.0 624.80 10 5.3 55.0 624.90 10 5.3 55.0 624.90 10 5.3 55.0 624.90 10 5.3 55.0 624.90 10 5.3 55.0 624.00 10 5.2 63.0 624.60 10 5.2 63.0 624.00 10 5.2 64.0 624.60 10 5.2 63.0 624.70 10 5.2 64.0 624.60 10 5.2 70.0 624.70 10 5.2 72.0 625.50 10 2.2	Cross Section 1	0.0	630.20	1	2.5	LB Headpin		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Station 0+00	8.7	626.10	1	2.5			
9.3 $625,50$ 1 $2.5$ 9.5 $625,20$ 10 $5.2$ 10.0 $625,40$ 10 $5.2$ 12.0 $625,30$ 10 $5.2$ 14.0 $625,30$ 10 $5.2$ 16.0 $625,50$ 10 $5.2$ 18.0 $625,20$ 10 $5.2$ 21.0 $625,30$ 10 $5.2$ 24.0 $625,20$ 10 $5.2$ 28.0 $625,20$ 10 $5.3$ 31.0 $624,80$ 10 $5.3$ 32.0 $625,30$ 10 $5.3$ 33.0 $625,20$ 10 $5.3$ 36.0 $624,90$ 10 $5.3$ 36.0 $625,30$ 10 $5.3$ 36.0 $625,20$ 10 $5.3$ 40.0 $625,30$ 10 $5.3$ 44.0 $625,20$ 10 $5.3$ 51.0 $625,10$ 10 $5.3$ 51.0 $625,10$ 10 $5.3$ 52.0 $624,90$ 10 $5.3$ 51.0 $624,60$ 10 $5.3$ 52.0 $624,90$ 10 $5.3$ 51.0 $624,60$ 10 $5.2$ $63.0$ $624,90$ 10 $5.2$ $64.0$ $624,60$ 10 $5.2$ $64.0$ $624,60$ 10 $5.2$ $72.0$ $624,70$ 10 $5.2$ $72.0$ $624,70$ 10 $5.2$ $72.0$ $624,70$ 10 $5.2$ $74.0$ $624,70$ 10 $5.2$ $74.0$ $624,70$ 10		9.0	625.50	1	2.5			
9.5 $625.20$ 10 $5.2$ 10.0 $622.40$ 10 $5.2$ 12.0 $625.30$ 10 $5.2$ 14.0 $625.30$ 10 $5.2$ 18.0 $625.20$ 10 $5.2$ 18.0 $625.20$ 10 $5.2$ 21.0 $625.30$ 10 $5.2$ 24.0 $625.00$ 10 $5.2$ 28.0 $625.20$ 10 $5.3$ 31.0 $624.80$ 10 $5.3$ 32.0 $625.00$ 10 $5.3$ 33.0 $625.20$ 10 $5.3$ 36.0 $624.90$ 10 $5.3$ 39.0 $625.20$ 10 $5.3$ 34.0 $625.20$ 10 $5.3$ 44.0 $625.20$ 10 $5.3$ 45.0 $625.20$ 10 $5.3$ 46.0 $625.20$ 10 $5.3$ 51.0 $625.10$ 10 $5.3$ 52.0 $624.80$ 10 $5.3$ 53.0 $624.90$ 10 $5.3$ 54.0 $624.40$ 10 $5.3$ 55.0 $624.90$ 10 $5.3$ 55.0 $624.90$ 10 $5.2$ 63.0 $624.60$ 10 $5.2$ 64.0 $624.60$ 10 $5.2$ 70.0 $624.60$ 10 $5.2$ 70.0 $624.70$ 10 $5.2$ 70.0 $624.70$ 10 $5.2$ 70.0 $624.70$ 10 $5.2$ 77.0 $624.70$ 10 $5.2$ 77.0 $624.70$ 10 $5.2$		9.3	625.50	1	2.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		9.5	625.20	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0	625.40	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12.0	625.30	10	5.2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14.0	625.30	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.0	625.50	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18.0	625.20	10	5.2	LWE		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	625.40	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		21.0	625.30	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	24.0	625.00	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28.0	625.20	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		29.0	625.00	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		31.0	624.80	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32.0	625.30	10	5.5			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		35.0	625.00	10	2.3 5 2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	624.90	10	J.J 5 2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		39.0 40 0	625.20	10	J.J 5 2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		43.0	625.30	10	J.J 5 3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		44.0	625.20	10	5.3 5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		47.0	625.20	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		48.0	624.80	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		51.0	625.10	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		52.0	624.90	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		55.0	624.90	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		56.0	624.60	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		59.0	624.80	10	5.3			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		60.0	624.60	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		63.0	624.90	10	5.2			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		64.0	624.60	10	5.2			
68.0 624.70 10 5.2   70.0 624.60 10 5.2   72.0 624.70 10 5.2   74.0 624.90 10 5.2   76.0 625.00 10 2.2   77.8 625.50 10 2.2   78.0 625.50 10 2.2		67.0	624.70	10	5.2			
70.0 624.60 10 5.2   72.0 624.70 10 5.2   74.0 624.90 10 5.2   76.0 625.00 10 2.2   77.8 625.50 10 2.2   78.0 625.50 10 2.2		68.0	624.70	10	5.2			
72.0 624.70 10 5.2   74.0 624.90 10 5.2   76.0 625.00 10 2.2 RWE   77.8 625.50 10 2.2   78.0 625.50 10 2.2		70.0	624.60	10	5.2			
74.0 624.90 10 5.2 76.0 625.00 10 2.2 RWE 77.8 625.50 10 2.2 78.0 625.50 10 2.2		72.0	624.70	10	5.2			
76.0 625.00 10 2.2 RWE 77.8 625.50 10 2.2 78.0 625.50 10 2.2		74.0	624.90	10	5.2			
77.8 625.50 10 2.2 78.0 625.50 10 2.2		76.0	625.00	10	2.2	RWE		
78.0 625.50 10 2.2		77.8	625.50	10	2.2			
		78.0	625.50	10	2.2			

	Ch 4280 4880 488	cover	data at	site	132.6L.	
	19 ang 1999 ang		Red	435 688 989 688 683 483	a alap 400 600 600 600 (00 400 600 6	
Location		Dist	Elev			
Within Site		(ft)	(ft)	Sub	Cov	Comments
ব্যটাৰ ভাৱটো ভাল্পিক প্ৰচাৰ আগতে আগতে প্ৰথমে। পাঁৱটো প্ৰটাটা পাঁৱটো পাঁৱটো			adan dara dalah dalah dinin dalah		4338 4338 4389	
Cross Section	1	80.0	626.10	10	2.2	
Station 0+00	ab.	83.0	627.70	1	8.3	Top of bank
(cont.)		98.0	627.80	1	8.3	
		109.0	630.20	1	8.3	RB Headpin
	•	0.0	(20.20	1	0 E	
cross dection	6	0.0	630.30 627 10	1	4.J 0 3	LD READPIN
SUBLION 1724		4.U 10 5	676 20	۲ ۲	7.J 5 1	DOLLOW OL DSUK
		10.J 21 K	020.0U	1	J。6 5 2	
		37.7	620.30	1 1	しょう	
		34 N	626.20	ے 1	J.J 5 2	
		36.0	625.00	- 1	53	
		37.0	625.70	1	5.3	LWF
		38.0	625.40	1	5.3	
		40.0	625.30	1	5.3	
		42.0	625.20	1	5.3	
		44.0	625.30	10	5.3	
		46.0	625.20	10	5.3	
		48.0	625.10	10	5.3	
		50.0	624.80	10	5.3	
		52.0	624.70	10	5.2	
		54.0	<b>624.</b> 50	10	5.2	
		56.0	624.60	10	5.2	
		58.0	624.60	10	5.2	
		60.0	624.50	10	5.2	
		62.0	624.70	10	5.2	
		64.0	624.60	10	5.2	
		66.0	624.60	10	5.2	
		68.0	624.60	10	5.2	
		70.0	624.70	10	5.3	
		72.0	625.00	10	5.3	
		/4.0	625.00	10	5.3	
		/5.0	625.30	10	5.3	RWE
		78.0	625.70	10	5.3	
		80.0	625.90	10	5.3	
		82.U 94 0	020.10	10	5.3	
		04.U 84 0	020.UU	10	ン。Z 5 つ	
		00.0 88 0	676 20	10	リュム	
		00.0 00 0	676 20	10	ン。ム ミ つ	
		20.0	676 70	10	J.L E 1	
		76.U	020.20	10	3.2	

Table B-2.6 (cont.) Cross section elevations, substrate and

Table B-2.6 (cont.	) Cross cover	s section data at	eleva site	tions, 132.6L	substrate and
NG N	19 alija 4800 (1865 ana anno 4800 alija alija al	u 420 436 am 438 438 439 439 439	663) 1530 att: 603 616 634	9 867 1860 807 803 806 889 8	
	Hor	Bed			
Location	Dist	Elev		-	<b>.</b> .
Within Site	(ft)	(ft)	Sub	Cov	Comments
nuun saana noota saana saana saana saana saana saana saana	6000 ALIA 4000 4000 4004	920 ann 328 ann 328 ann		6300 6307 6800	agina anis anya anisa anisa anisa anisa
Cross Section 2	96.0	626.10	10	5.2	
Station 1+24	100.0	626.00	10	5.2	
(cont.)	104.0	626.30	10	5.2	
(	111.5	627.30	1	5.1	Top of bank
	139.0	629.60	1	5.1	
	161.0	630.90	1	5.1	RB Headpin
			-		· · · · · · · · · · · · · · · · · · ·
Cross Section 3	0.0	631.16	1	2.5	LB Headpin
Station 2+46	8.5	629.80	1	2.5	
	23.0	627.30	1	2.5	
	23.5	626.90	8	5.2	
	24.0	626.90	8	5.2	
	26.0	626.30	8	5.2	
	28.0	626.20	8	5.3	
	30.0	626.00	8	5.3	LWE
	32.0	626.10	8	5.3	
	34.0	625.90	8	5.3	
	36.0	625.90	8	5.3	
	38.0	625.80	8	5.3	
	40.0	625.30	8	5.3	
	42.0	624.90	8	5.3	
	44.0	625.10	8	5.3	
	40.0	625.10	8	5.3	
	40.U	625.40	0	2.3 5.3	
	50.0	625.00	0	2.3	
	54 O	625.00	Q	J.J 5 2	DUT
	50 0	626.10	0	J.J 5 1	RWL
	50.0 62 0	620.00	1	J.2 5 7	
	66 0	627.00	1	J.2 5 9	
	70.0	627.00	1	ノ、ム ち つ	
	70.0 74 N	627 10	1 1	J. 2 5 9	
	79.0	627.10	1 1	5.2 5.2	
	20.0 20 0	626 80	1	ン. ム ち つ	
	82 N	627 00	1 1	ン・ム 5 つ	
	84 N	627 00	1	J.2 5 9	
	86.0	626.90	1	5.2	
	88.0	627.00	1	5.2	
	90.0	627.30	1	5.2	
	- ~ * V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	👐 🗢 dua	

Table B-2.6 (	cont	.) Cross cover	section data at	eleva site	tions, 132.6L	substrate and
Cân c	1990 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 - 1930 -	1965 4126 4126 4126 4126 4126 4126 4126 412 1965 4126 4126 4126 4126 4126 4126 412	9 400 400 400 400 400 400 400 400 400	900 900 900 900 900 900 900	නෙක නවා අතු කත අවය යොද ය	99 498 499 499 490 499 490 499 499 499 499 499
		Hor	Bed			
Location		Dist	Elev	0 1	<b>C</b>	C
Within Site		(ft)	(11)	Sub	Cov	Comments
Croce Section	2	95 0	678 10	1	51	
Station 2+46	5	104.4	628.10	1	5.1	
(cont.)		139.5	630.25	1	5.1	RB Headpin
				a	. F	
Cross Section	4	0.0	631.00	1	2.5	LB Headpin
Station 3+90		1/.0	628.UU	1	2.5	Battan of hard
		20.0	627.30 627 50	o Q	4.3 1 2	Bollom or pank
		20.0 22 N	627.30	0 8	2.J 5 3	
		24.0	627.50	8	5.3	
		30.0	627.20	8	5.3	
		32.0	627.20	8	5.3	
	•	34.0	627.10	8	5.3	
		36.0	627.10	8	5.3	
		38.0	627.10	8	5.3	
		40.0	627.10	8	5.3	LWE
		42.0	627.00	8	5.3	
		44.0	627.20	8	5.3	
		46.0	626.80	8	5.3	
		48.0	626.50	8	5.3	
		50.0	626.30	8	5.2	
		51.0	626.30	8	5.2	
		53.0	626.10	8	5.2	
		55.U 57 0	626.30	ð	⊃.∠ 5.2	
		57.U 50 N	626.30	0	ここと	
		59.0 61 0	626.30	0 8	J.2 5 7	
		62.0	626.30	8	53	
		64.0	626.70	8	5.3	
		66.0	626.80	8	5.3	
		68.0	627.00	8	5.3	
		70.8	627.10	10	5.3	RWE
		72.0	627.20	10	5.3	
		74.0	627.10	10	5.3	
		76.0	627.20	10	5.3	
		78.0	627.20	10	5.3	
		80.0	627.20	10	5.3	
		84.0	627.20	10	5.3	
		86.0	627.10	10	5.3	
		88.0	627.20	10	5.3	
		90.0	627.30	10	5.3	

Table B-2.6 (cont.)	Cross cover	section data at	eleva site	ations, 132.6L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 4 Station 3+90 (cont.)	92.0 94.0 96.0 98.0 102.0 106.0 110.0 114.0 118.0 122.0 124.0 126.0 128.0 130.0 132.0 152.0 162.5 182.0 199.0	627.10 627.20 627.20 627.20 627.40 627.40 627.40 627.80 627.80 627.80 627.80 627.80 627.80 627.80 627.80 627.80 627.00 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.10 627.00 628.00 629.10 630.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	$5.3 \\ 5.3 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.2 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 \\ 5.1 $	RB Headpin
Cross Section 5 Station 5+11	$\begin{array}{c} 0.0\\ 40.0\\ 43.5\\ 44.0\\ 46.0\\ 48.0\\ 50.0\\ 52.0\\ 54.0\\ 54.0\\ 56.0\\ 58.0\\ 60.0\\ 62.0\\ 66.0\\ 68.0\\ 70.0\\ 74.0\\ 78.0\\ 80.0\\ 80.0\\ 82.0\\ 86.0\\ \end{array}$	631.00 628.10 627.80 627.15 626.80 626.60 626.60 626.40 626.40 626.40 626.60 626.60 626.60 626.60 626.60 626.60 626.70 626.70 626.60	1 1 10 10 10 10 10 10 10 10 10	$\begin{array}{c} 2.5\\ 3.2\\ 3.2\\ 3.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5.2\\ 5$	LB Headpin Top of bank LWE

B-49

Table B-2.6 (cont.	) Cross cover	section data at	eleva site	tions, 132.6L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 5 Station 5+11 (cont.)	90.0 92.0 94.0 98.0 102.0 104.0 106.0 110.0 114.0 116.0 122.0 124.0 124.0 124.0 126.0 128.0 130.0 134.0 136.0 138.0 136.0 138.0 140.0 140.0 142.0 144.0 146.0 146.0 146.0 152.0 154.0 152.0 154.0 152.0 154.0 152.0 152.0 154.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0 152.0	626.40 626.60 626.50 626.60 626.70 626.70 626.70 626.70 626.90 627.10 627.20 627.20 627.20 627.20 627.20 627.20 627.20 627.20 627.20 627.50 627.40 627.60 627.50 627.50 627.50 627.50 627.50 627.50 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 627.00 629.00 630.00	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	RWE Bottom of bank Top of bank RB Headpin
Cross Section 6 Station 6+94	0.0 25.0 29.0 30.0 32.0 34.0 36.0 38.0 42.0	631.80 629.10 628.20 628.00 627.40 626.30 626.60 626.60 627.10	1 1 11 11 11 11 8	2.5 2.3 2.3 2.2 2.2 5.2 5.2 5.2 5.2	LB Headpin LWE

Table B-2.6 (cont.)	Cross cover	section data at	elevat site l	ions, 32.6L.	substrate and
প্ৰথম মনে। মহাদ কাৰে প্ৰথম প্ৰথম প্ৰথম কৰা কৰা পৰা পৰা পৰা বিশ্ব কৰে। তাৰ কাৰ কাৰ হয়। প্ৰথ	nor no no no no no no no	Bed	ala utali kila van ulia usin unu	. 4640 - 1650 - 1650 - 1650 - 1650 - 1650 - 1650 - 1650 -	역동 영화 영국 위험 영화
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
राज स क प्रायन करते करते पहले स्वास स्वतः पहले स्वास	<b>uton alian alian alian</b>	ande anne ande adde alles aven.		1709 (gab cons	
Cross Section 6	44.0	627.20	8	5.2	
Station 6+94	46.0	627.00	8	5.1	
(cont.)	50.0	626.20	10	5.1	
	54.0	625.70	10	5.1	
	56.0	625.40	10	5.1	
	58.0	625.20	11	5.1	
	62.0	625.10	11	5.1	
	66.0	625.20	11	5.1	
	68.0	625.40	11	5.1	
	70.0	625.10	11	5.1	
	72.5	625.20	4 minut	5.1	
	74.0	625.20	]	5.1	
	76.0	625.30	1	5.1	
	78.0	625.60	1	5.1	
	80.0	625.70	1	5.1	
	82.0	625.70	1	5.1	
	84.0	625.90	1	5.1	
	86.0	626.00		5.1	
	88.0	626.00	1	5.1	
	90.0	626.00	1	1.1	
	92.0	626.20	1	1.1	
	94.0	626.30	1	1.1	
	96.0	626.50	1	1.1	
	98.0	626.40	1	1.1	
	100.0	626.70	1	1.1	
	102.0	626.00	1	1.1	
	104.0	620.90	1	1.1	رمان در می اور در می مرابع
	100.0	607 20	1	1.1	KWE
	110.0	627.20	1	4 4	
	112 0	627.30	1	1.1	
	112.0	627 50	1	1.1	
	114.0	627.50	1	11	
	112 0	677 20	1	1 1 1 1	
	120.0	627 00	1	1.1	
	122.0	628 10	1 1	1 1	
	124.0	628.20	1	1 1	
	139.0	629.00	<u> </u>	1 1	
	160.0	629,20	÷ 1	8 2	
	181.5	629 40	-	Q 7	PR Handain
		VE1, 40	å	ت ⊷ ∪	wh meanhin

-

.....

Table B-2.6 (cont.)	Cross cover	section data at	eleva site	tions, 132.6L.	substrate and
220 F120 420 430 400 400 400 400 400 400 400 400 40	adu alia mai tin Alia alia alia alia a	an 1955 Gan alar 1958 1656 1668 6676 6 an 1966 Gan alar 1656 6686 6686 68	121 232 202 202 202 202 202 202 202 202 202		999 999 999 999 999 999 999 999 999 99
	Hor	Bed			
Location	Dist	Elev		_	_
Within Site	(ft)	(ft)	Sub	Cov	Comments
Cross Sastion 7	0.0	621 60	1	9 S	IR Hoodsin
Station 8+57	12 2	678 20	- 1	2.5	rp meadhim
Station 0.22	20.2	677 90	1	2.2	
	20.0	627.60	1	6.2	
	22.6	627.40	1	6.2	
	23.5	627.60	1	6.2	
	24.0	626.90	1	6.2	LWE
	26.0	626.90	1	6.2	Quad ¥ ¥ viewel
	28.0	626.50	1	6.2	
	30.0	626.60	1	5.2	
	32.0	626.60	1	5.2	
	34.0	626.50	1	5.2	
	36.0	626.50	1	5.2	
	40.0	625.00	1	5.2	
	44.0	624.70	querd	5.2	
	48.0	624.80	1	5.2	
	52.0	624.70	1	5.2	
	56.0	624.70	1	5.2	
	58.0	624.60	1	5.2	
	60.0	624.70	1	5.2	
	62.0	624.90	1	5.2	
	64.0	624.80	1	5.2	
	66.0	625.10	1	5.2	
	68.0	625.30	1	5.2	
	70.0	625.40	1	1.1	
	72.0	625.60	1	1.1	
	74.0	625.70	1	1.1	
	76.0	625.90	1	1.1	
	/8.0	626.00	1	1.1	
	80.0	626.10	1	1.1	
	82.0	626.40	1	1.1	
-	84.0	020.00	1	1.1	
	80.U	626.80	1	1.1	
	00.U	02/.UU	1	1.1	
	<b>YU.U</b>	027.10	Ţ	1.1	
	92.U	627.20	1	1.1	KWŁ
	94.U 06 0	627.50	1	1.1 1 1	
	90.U 08 0	627.00	1	1.1	
	100.0	627 60	1	11	
	102.0	041.0V 697 00	1	1.1	
	102.0	021.90	1	7.7	

Table B-2.6 (cont.)	) Cross cover	section data at	eleva site	ations, 132.6L.	substrate and	
	199 1922, 1948 1939 ANN ANN ANN ANN ANN	999 gan 499 999 489 489 484 495 867 4	aan aasa eesa waxa aasa a	400 4200 6300 4800 6340 6340 4800 4800 4800		1995 - Callo -
	Hor	Bed				
Location	Dist	Elev	<u> </u>	<b>C</b>	<b>C</b>	
Within Site	(11)	(f()	SUD		Comments	
Cross Section 7	104.0	627.90	1	1.1		
Station 8+52	106.0	627.90	1	1.1		
(cont.)	108.0	628.20	1	1.1		
	116.0	628.30	1	1.1		
	121.5	627.60	1	1.1		
	131.5	629.40	2	1.1		
	145.0	629.50	1	5.1	88 TT 1 1	
	108.0	030.00	T	3.1	KB Headbin	
Cross Section 8	0.0	633.40	1	2.5	LB Headpin	
Station 9+79	18.0	628.20	1	7.2		
	20.0	627.30	1	7.2		
	21.0	627.30	1	7.2	LWE	
	22.0	627.10	1	1.2		
	24.0	020.9U	1	ン. L ち つ		
	20.0	621.00	11	J.2 5 9		
	20.0	627 00	11	5 2		
	32.0	626.70	11	5.2		
	33.0	626.90	11	5.2		
	36.0	626.50	11	5.2		
	39.0	626.80	11	5.2		
	40.0	626.20	11	5.2		
	43.0	626.40	11	5.2		
	44.0	626.20	11	5.2		
	47.0	626.00	11	5.2		
	48.0	626.30		5.2		
	51.U 52 0	626.20	11	ン. ミ つ		
	52.0 56 N	625.00	11	ン.J よう		
	60.0	625.90	11	5.3		
	64.0	626.20	11	5.3		
	67.0	626.10	11	5.3		
	68.0	625.90	11	5.3		
	72.J	625.70	11	5.2		
	75.0	626.10	11	5.2		
	76.0	625.60	11	5.2		
	79.0	625.80	11	5.2		
	80.0	625.60	PL A	5.1		
	83.0	625.60	1	5.1		
	84.0	625.60	Ţ	1.1		

Table B-2.6 (co	nt.) Cross cover	data at	eleva site	132.6L	substrate and
can dan dici wak dan wak dan kan ⇔s can dan wak wak dan dan d	1970 MIC 400 400 400 400 400 400 400 400 400 40	n allen willen werte ander onder oden witten omer	- MAN - 4300 - MAN - MAN - MAN - MAN - MAN	1. eta 4300 400 ann 603 ann 4	
	Hor	Bed			
Location	Dist	Elev	- ·	-	
Within Site	(£t)	(ft)	Sub	Cov	Comments
Croce Section 8	88 0	675 90	1	1 1	
Station 9+70	00.0 01 N	625.90	± 1	1 1	
(cont)	07 N	626.00	1	1 1	
(conc.)	92.0 95 A	626.20	1	11	
	95.0	620.00	1	1 1	
	08 0	627.00	د ۱	1 1	
	90.0 00 N	676 80	1	11	DUF
	100 0	620.00 627 00		4 1 1	<b>KWE</b>
	100.0	627.00	1	404	
	102.0	627.10	- 1	1 1	
	105.0	627.20	1	11	
	128.0	630 00	3	1 1	
	155.0	629.80	3	4.1	
	168.0	631.40	3	4.1	
	178.0	632.20	3	4.1	RB Headpin
Cross Section 9	0.0	631.10	1	2.5	LB Headpin
Station 11+31	4.0	628.60	1	2.5	-
	6.0	628.40	1	2.5	
	9.0	627.70	1	2.3	LWE
	12.0	627.50	1	2.1	
	14.0	627.30	1	2.1	
	16.0	626.70	1	7.1	
	. 19.0	626.10	11	7.1	
	25.0	626.20	11	7.1	
	28.0	626.60		7.1	
	32.0	626.80	11	/.1	ζα, έ τα
	34.0	62/./0	1	5.2	RWE
	30.0	020.40	1	<b>J.</b> 2	
	40.0	029.70	1	J.2 5 0	
	JJ.U 0/ 0	629.00	4	J. L 5 1	
	04.U 00 £	629.00	1	J. L 5 0	
	00.0	040.90	1	J. L 5 1	
	30.0 02 0	020.4U	1	J. L 5 7	
	72.U 0/ 0	620.20	1	J. L E 1	T LIT
	74.U 06 0	020.UU	ð	J. 2 5 7	LME
	70.U 62 A	621.90	0 Q	コ。ム	
	100 0	627 70	0 2	ノ. ム ち つ	
	103 0	627 60	0 2	5.2 5.7	
	102.0	627.00	D Q	ン。ム ち う	
	100.0	041.JU	0	2.4	

D 0 ( ( · ... • - 1 .... . . . . . . . ~ .

	Hor	Red			
Location	Dist	Elev			
lithin Site	(ft)	(ft)	Sub	Cov	Comments
					האלה הלונה אינוני אינויי אינוי אינויי אינוי אינויי אינויי אינויי אינויי אינויי אינויי
ross Section 9	112.0	627.60	8	5.2	
ation 11+31	116.0	627.70	8	5.2	
:ont.)	120.0	627.70	8	5.3	
	124.0	627.70	ŏ	2.3	× • • •
	12/.0	628.00	Ö	2.3	KWE
	130.0	628.20	õ	ວ. 3 ຂ່າ	1 1.175
	134.0	020.20 677 00	0	2.3 5.3	LWE
	134.0	627.90	0	2.3 5.2	
	140.0	627.00	o g	ン・ン ち え	
	142 0	627.20	0 8	ン。ン ち マ	
	144.0	627.20	8	53	
	148.0	627.60	8	4.2	
	152.0	627.50	8	4.2	
	156.0	627.70	8	4.2	
	158.5	627.60	8	5.2	RWE
	164.0	627.60	8	5.2	
	168.0	627.60	8	5.2	
	170.6	628.10	8	5.2	
	176.0	628.10	8	5.2	
	180.0	628.00	8	5.2	
	183.0	627.80	5	8.3	
	184.0	628.20	5	8.3	
	186.0	628.40	5	8.3	
	193.0	629.30	5	8.3	
	210.5	631.00	5	8.3	
	219.0	631.60	5	8.3	RB Headpin

*****
Table B-2.7	Cross section elevations, substrate and cover data at site 136.0L.					
	• ••••• 335: •255 455 455 553 1659 455 455	144 4446 4446 4446 4446 4446 4466 4466		- 4000 4800 4900 4000 4000 4000 4000 4000		
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments	
this all to be all all all all all all all all all al		anati diale anat diale diale diale			naan dach stadi ondah kaka dalan name	
Cross Section 1 Station 0+00	0.0 1.0 9.0	681.70 681.00 675.90	1 12 12	8.3 8.3 6.2	LB Headpin	
	14.0 16.0 18.0	674.20 674.20 674.30	12 12 12 12	0.2 7.1 7.1 7.1	LWE	
	19.5 23.0 25.0 26.0	674.60 674.60 674.50 674.40	12 12 2 2	7.1 7.1 7.1 7.1	kwe Lwe	
	28.0 30.0 32.0 34.0	673.90 674.00 674.10 674.00	فستل فسيل فس	7.1 7.2 7.2 7.2		
	36.0 38.0 40.0	673.60 673.40 673.30		7.2 7.2 7.2 7.2		
	42.0 44.0 46.0 48.0	673.10 673.30 673.60 673.80	1 10 10 10	7.2 7.2 7.2 7.2		
	50.0 52.0 54.0	673.90 673.90 674.30	10 10 10	7.2 7.2 7.2 7.2		
	58.0 60.0 62.0	673.60 673.10 672.50	12 12 12 12	7.2 7.2 7.2 7.2		
	64.0 66.0 68.0 70.0	672.50 672.70 673.10	6 6 6	7.2 7.2 7.2 7.2		
	72.0 74.0 76.0	673.20 673.20 674.00		7.2 7.2 7.2 7.2		
	78.7 80.0 80.9 82.0	674.60 674.00 675.10 675.60	1 8 8 8	8.2 8.2 8.2 8.2	RWE	

------

nto addite atomo atomo adonte native nitita alcito tatore nation antico addite antico da	este «Astale agtale activa				f 0020 4000 4040 4000 4000 4000 4000 4	88 480 496 495 495 495 495 495 495 495 495 495 495
		Hor	Bed			
Location		Dist	Elev			
Vithin Site		(ft)	(ft)	Sub	Cov	Comments
till villate states at 14 million at 15. Artific attack attack attack		2000 000 4000 4000 4000			ৰাজ বাক্য কান্য	ماهه جروه موزو ماها، طرول بالقام مؤردا هوه.
Cross Section	1	88.0	677.90	1	8.2	Bottom of banl
Station 0+00		91.5	682.50	1	8.4	Top of bank
(cont.)		93.5	683.00	1	8.4	RB Headpin
Cross Section	2	0.0	682.84	1	8.5	LB Headpin
Station 0+88		3.0	681.00	1	9.4	Top of bank
		4.0	677.40	1	9.4	
		17.0	676.10	12	4.1	
		20.0	676.00	12	4.2	
		22.0	675.80	12	4.2	
		24.0	675.60	12	4.2	
		26.0	675.40	12	4.2	
		28.0	674.80	12	4.2	
		30.0	675.10	12	4.2	
		32.0	674.90	12	4.2	
		34.0	674.77	12	4.2	LWE
		36.0	6/4.50	12	7.2	
		38.0	6/4.10	12	1.2	
		40.0	673.80	12	1.6	
		42.0	673.00	12	79	
		44.0	673.00	12	7.4	
		48 N	672.70	10	7 7	
		50.0	673 00	10	7 5	
		52.0	673.20	10	7.2	
		54.0	673.30	10	7.2	
		56.0	673.50	10	7.2	
		58.0	673.90	10	7.2	
		60.0	673.90	10	7.2	
		62.0	674.80	10	7.2	
		64.0	674.80	1	8.2	RWE
		73.0	681.00	1	8.4	
		76.0	683.30	1	8.4	
		78.5	684.91	1	8.4	RB Headpin
Cross Section	3	0.0	680.63	1	5.3	LB Headpin
Station 1+95		3.0	678.50	10	4.2	
		9.0	675.80	10	4.2	
		10.0	675.60	10	4.2	
		12.0	674.90	12	4.2	
		14.0	674.50	12	4.2	

Table B-2.7 (cont.) Cross section elevations, substrate and

-

$ \begin{array}{c} \label{eq:heating} \\ \hline \\ $	Table B-2.7 (cont.)	Cross cover	section data at	eleva site	tions, 136.0L.	substrate and
$ \begin{array}{c ccc} Hor & Bed \\ Dist & Elev \\ Within Site & (ft) & Sub & Cov & Comments \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$		। 	1933 6496 6499 6499 6496 6496 6496 6496 6	999 999 999 999 999 999 999 999	• 2018 4027 4036 (Jan 402) 4039 404	n ann ann ann ann ann ann ann ann ann a
Location Dist Elev Within Site (ft) (ft) Sub Cov Comments 		Hor	Bed			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Location	Dist	Elev	~	~	
Cross Section 3 Station 1+95 (cont.) 16.0  674.10  12  7.2 22.0  673.70  8  7.2 22.0  673.70  8  7.2 22.0  673.80  8  7.2 24.0  673.70  8  7.2 28.0  673.80  8  7.2 28.0  673.80  8  7.2 32.0  673.90  6  7.2 34.0  674.00  6  7.2 34.0  674.10  6  7.2 42.0  674.10  1  7.2 46.0  675.20  1  7.2 47.5  675.50  1  7.2 55.0  678.50  1  7.2 59.0  681.00  1  8.5 61.0  682.80  1  8.5  Top  of bank 63.0  683.86  1  8.5  RB  Headpin 7.5  677.50  12  6.3  Bottom  of bank 10.0  676.10  12  6.3  LWE 14.0  675.60  12  4.1 18.0  674.40  10  4.1 22.0  674.40  10  4.1 22.0  674.40  10  4.1 22.0  674.40  10  4.1 22.0  674.40  10  4.1 23.0  674.10  10  4.1 24.0  674.10  10  4.1 25.0  674.10  10  4.1 26.0  674.10  10  4.1 36.0  674.50  10  4.1 38.0  674.50  10  4.1 38.0  674.50  10  4.1	Within Site	(ft)	(£t)	Sub	Cov	Comments
Station 1+95 (cont.) 20.0  673.70  8  7.2 22.0  673.70  8  7.2 22.0  673.70  8  7.2 24.0  673.70  8  7.2 26.0  673.70  8  7.2 26.0  673.80  8  7.2 28.0  673.80  8  7.2 32.0  673.90  6  7.2 34.0  674.00  6  7.2 34.0  674.10  6  7.2 40.0  674.10  1  7.2 46.0  675.20  1  7.2 47.5  675.30  1  7.2 55.0  681.00  1  8.5 61.0  682.80  1  8.5  Top of bank $63.0  683.86  1  8.5  RB \ Headpin$ Cross Section 4 5tation 2+91 2.5  680.30  1  7.4 7.5  677.50  12  6.3 12.0  675.50  12  6.3 12.0  674.70  12  4.1 18.0  674.70  12  4.1 20.0  674.10  10  4.1 22.0  674.10  10  4.1 22.0  674.10  10  4.1 22.0  674.10  10  4.1 30.0  674.10  10  4.1 32.0  674.10  10  4.1 32.0  674.10  10  4.1 32.0  674.10  10  4.1 32.0  674.10  10  4.1 33.0  674.50  10  4.1	Cross Section 3	16.0	674.10	12	7.2	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Station 1+95	18.0	673.70		7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(cont.)	20.0	673.70	8	7.2	
$ \begin{array}{c} 24.0 & 673.70 & 8 & 7.2 \\ 26.0 & 673.70 & 8 & 7.2 \\ 28.0 & 673.80 & 8 & 7.2 \\ 30.0 & 673.90 & 8 & 7.2 \\ 32.0 & 673.90 & 6 & 7.2 \\ 34.0 & 674.00 & 6 & 7.2 \\ 38.0 & 674.30 & 6 & 7.2 \\ 38.0 & 674.10 & 6 & 7.2 \\ 42.0 & 674.10 & 6 & 7.2 \\ 42.0 & 674.10 & 6 & 7.2 \\ 44.0 & 675.20 & 1 & 7.2 \\ 44.0 & 675.50 & 1 & 7.2 \\ 47.5 & 675.30 & 1 & 7.2 \\ 47.5 & 675.30 & 1 & 7.2 \\ 47.5 & 675.30 & 1 & 7.2 \\ 59.0 & 681.00 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 63.0 & 683.86 & 1 & 8.5 \\ RB Headpin \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		22.0	673.80	8	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24.0	673.70	8	7.2	
$\begin{array}{c} 28.0 & 673.80 & 8 & 7.2 \\ 30.0 & 673.90 & 8 & 7.2 \\ 32.0 & 673.90 & 6 & 7.2 \\ 34.0 & 674.00 & 6 & 7.2 \\ 36.0 & 674.30 & 6 & 7.2 \\ 38.0 & 674.30 & 6 & 7.2 \\ 42.0 & 674.10 & 6 & 7.2 \\ 42.0 & 674.10 & 6 & 7.2 \\ 44.0 & 674.00 & 1 & 7.2 \\ 44.0 & 675.20 & 1 & 7.2 \\ 45.0 & 675.50 & 1 & 7.2 \\ 45.0 & 678.50 & 1 & 7.2 \\ 55.0 & 678.50 & 1 & 7.2 \\ 55.0 & 678.50 & 1 & 7.2 \\ 55.0 & 678.50 & 1 & 7.2 \\ 55.0 & 683.86 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 63.0 & 683.86 & 1 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5 \\ 7.8 & 8.5$		26.0	673.70	8	7.2	
$\begin{array}{c} 30.0 & 673.90 & 8 & 7.2 \\ 32.0 & 673.90 & 6 & 7.2 \\ 34.0 & 674.00 & 6 & 7.2 \\ 36.0 & 674.30 & 6 & 7.2 \\ 38.0 & 674.30 & 6 & 7.2 \\ 40.0 & 674.10 & 6 & 7.2 \\ 42.0 & 674.10 & 6 & 7.2 \\ 44.0 & 674.00 & 1 & 7.2 \\ 44.0 & 674.00 & 1 & 7.2 \\ 45.0 & 675.20 & 1 & 7.2 \\ 47.5 & 675.30 & 1 & 7.2 \\ 59.0 & 681.00 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 61.0 & 682.80 & 1 & 8.5 \\ 63.0 & 683.86 & 1 & 8.5 \\ RB \ Headpin \end{array}$		28.0	673.80	8	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		30.0	673.90	8	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32.0	673.90	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		34.0	674.00	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		36.0	674.30	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		38.0	674.30	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40.0	674.10	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		42.0	674.10	6	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		44.0	674.00	1	7.2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40.0	675.20	1	1.2	DUE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		47.J 55 0	678 50	1	7 2	RWE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		59.0	681.00	1	8.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		61.0	682.80	1	8.5	Top of bank
$\begin{array}{c} \mbox{Cross Section 4} \\ \mbox{Station 2+91} \\ \mbox{$2.5$} & 680.30 & 1 & 7.4 \\ \mbox{$2.5$} & 677.50 & 12 & 6.3 \\ \mbox{$10.0$} & 676.10 & 12 & 6.3 \\ \mbox{$12.0$} & 675.50 & 12 & 6.3 \\ \mbox{$12.0$} & 675.59 & 12 & 6.3 \\ \mbox{$12.5$} & 675.59 & 12 & 6.3 \\ \mbox{$12.5$} & 675.60 & 12 & 6.3 \\ \mbox{$14.0$} & 675.60 & 12 & 6.3 \\ \mbox{$16.0$} & 675.00 & 12 & 4.1 \\ \mbox{$18.0$} & 674.70 & 12 & 4.1 \\ \mbox{$20.0$} & 674.60 & 10 & 4.1 \\ \mbox{$22.0$} & 674.40 & 10 & 4.1 \\ \mbox{$24.0$} & 674.00 & 10 & 4.1 \\ \mbox{$26.0$} & 674.00 & 10 & 4.1 \\ \mbox{$30.0$} & 674.00 & 10 & 4.1 \\ \mbox{$30.0$} & 674.00 & 10 & 4.1 \\ \mbox{$32.0$} & 674.40 & 10 & 4.1 \\ \mbox{$34.0$} & 674.30 & 10 & 4.1 \\ \mbox{$34.0$} & 674.50 & 10 & 4.1 \\ \mbox{$38.0$} &$		63.0	683.86	1	8.5	RB Headpin
Station $2+91$ 2.5 $680.30$ 1 7.4 7.5 $677.50$ 12 6.3 Bottom of bank 10.0 $676.10$ 12 6.3 12.0 $675.50$ 12 6.3 12.5 $675.59$ 12 6.3 LWE 14.0 $675.60$ 12 6.3 16.0 $675.00$ 12 4.1 18.0 $674.70$ 12 4.1 20.0 $674.60$ 10 4.1 22.0 $674.40$ 10 4.1 24.0 $674.00$ 10 4.1 24.0 $674.00$ 10 4.1 26.0 $674.10$ 10 4.1 28.0 $674.00$ 10 4.1 30.0 $674.00$ 10 4.1 32.0 $674.10$ 10 4.1 34.0 $674.30$ 10 4.1 34.0 $674.30$ 10 4.1 36.0 $674.50$ 10 4.1	Cross Section 4	0.0	683.16	1	8.4	LB Headpin
7.5 $677.50$ 12 6.3 Bottom of bank 10.0 $676.10$ 12 6.3 12.0 $675.50$ 12 6.3 12.5 $675.59$ 12 6.3 LWE 14.0 $675.60$ 12 6.3 16.0 $675.00$ 12 4.1 18.0 $674.70$ 12 4.1 20.0 $674.60$ 10 4.1 22.0 $674.40$ 10 4.1 24.0 $674.00$ 10 4.1 24.0 $674.00$ 10 4.1 26.0 $674.10$ 10 4.1 30.0 $674.00$ 10 4.1 30.0 $674.00$ 10 4.1 32.0 $674.10$ 10 4.1 34.0 $674.30$ 10 4.1 36.0 $674.40$ 10 4.1 38.0 $674.50$ 10 4.1	Station 2+91	2.5	680.30	1	7.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.5	677.50	12	6.3	Bottom of bank
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0	676.10	12	6.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12.0	675.50	12	6.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12.5	6/5.59	12	6.3	LWE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14.0	675.00	12	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0	673.00	12	4.⊥ /.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	674.70	10	4°.1 / 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	674 40	10	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24.0	674.40	10	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26.0	674.10	10	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28.0	674.00	10	4.1	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		30.0	674.00	10	4.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		32.0	674.10	10	4.1	
36.0 674.40 10 4.1 38.0 674.50 10 4.1		34.0	674.30	10	4.1	
38.0 674.50 10 4.1		36.0	674.40	10	4.1	
		38.0	674.50	10	4.1	

entre etch whith whith etchs state aport state state state state card, white state state state state

Table B-2.7 (cor	nt.) Cross cover	section data at	eleva site	tions, 136.0L.	substrate and
	99 407 508 909 409 409 409 509 509 509 50	। बहुर काल प्राप्त काल कार पाठा प्राप्त थान - काले हाल कार कार कार कार पाठा प्राप्त कार	9355 7558 9379 4359 4359 4359 4359	ana aan wax ann an an an an an a	
	Hor	Bed			
Location	Dist	Elev	<b>•</b> •	~	
Within Site	(ft)	(£t)	Sub	Cov	Comments
Cross Section 4	40.0	674.60	10	4.1	
Station 2+91	42.0	674.80	8	4.1	
(cont.)	44.0	674.90	8	4.1	
	46.0	675.00	8	4.1	
	48.0	674.90	8	4.1	
	50.0	674.90	8	4.1	
	52.0	675.00	8	4.1	
	54.0	675.10	8	4.1	
	56.0	675.30	8	4.1	
	58.0	675.30	8	4.1	
	60.0	675.60	8	4.1	
	62.0	675.70	6	4.1	
	64.0	675.80	6	1.2	
	66.0	6/5.90	6	7.2	
	08.U	676.00	0	1.2	
	00.J 72.2	676.10	1	1.2	
	12.3	670.00	1	1.4 Q /.	Pottom of book
	04.J 84 5	683 16	1	0.~ 8 4	Top of bank
	87.5	684.41	1	8.4	RB Headpin
Cross Section 5	0.0	681.10	2	8.4	LB Headpin
Station 4+23	2.5	678.50	2	8.4	-
	13.7	677.10	б	6.1	
	14.0	676.60	6	6.1	
	16.0	676.60	6	6.1	
	17.0	676.35	6	6.1	LWE
	18.0	676.30	6	6.1	
	20.0	6/6.20	6	6.1	5. F 179
	22.0	6/0.30	0	0.1	RWE
	24.0	676 20	0	0.1	
	20.0	676.30	6	6.1	1 1.12
	20.0	676 30	10	6 1	
	32.0	676 10	10	6 1	
	34.0	675.80	10	6 1	
	36.0	675.60	13	8.2	
	38.0	675.40	13	8.2	
	40.0	675.30	13	8.2	
	42.0	675.30	13	8.2	
	44.0	674.90	13	8.2	
	46.0	674.90	13	8.2	

Table B-2.7 (cont.)	Cross cover	section data at	eleva site	tions, 136.0L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 5 Station 4+23 (cont.)	48.0 50.0 52.0 54.0 56.0 58.0 60.0 62.0 64.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0 78.0 78.0 79.8 80.5 83.0 89.0 91.0	674.70 674.40 674.20 673.70 673.70 674.30 674.30 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 673.90 674.10 675.90 677.70 677.80 680.82 685.40 686.10	13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12	8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2	RWE RB Headpin
Cross Section 6 Station 5+82	$\begin{array}{c} 0.0\\ 8.0\\ 8.5\\ 10.0\\ 11.0\\ 11.5\\ 12.0\\ 14.0\\ 16.0\\ 18.0\\ 20.0\\ 22.0\\ 24.0\\ 26.0\\ 28.0\\ 30.0\\ 30.0\\ 32.0\\ 34.0 \end{array}$	683.23 681.60 678.50 677.00 677.00 676.80 676.80 676.60 676.20 676.00 675.20 675.90 675.20 675.20 675.10 675.10 674.90	1 10 10 10 10 10 10 10 11 11 11 11 11 11	8.5 9.5 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.2	LB Headpin Top of bank LWE

Table B-2.7 (cont.)	Cross cover	section data at	eleva site	ations, 136.0L.	substrate and
	9999 9999 9999 5310 9799 9799 9799 9799	9400 4800 4800 4800 4800 4800 4800 4800			ਅਸ਼ਿਨ ਕਰਨ ਪੁੱਛੇਸ਼ ਅਹੁਨ ਕੁਰਨਾ ਪੁੱਛਾਂ ਸ਼ਰ੍ਹੇਤ ਕਰਨ ਸ਼ਰੂਲ ਸ਼ਰਦ ਹੋਣਾ ਹੋਣਾ ਸ਼ਰਦ ਹਨਾ ਸ਼ਰਦ ਕਰਨ ਕਰਨ ਕਰਨ ਕ
	Hor	Bed			
Location	Dist	Elev			
Within Site	(ft)	(ft)	Sub	Cov	Comments
ৰাটে ব্যক্তি ব্যাপ ব্যক্ত পায়ে এটে বঁথে বঁথে বিয়া পথক	nan, anda -1860: anda anim	48289 48394 48349 4638 4636 4638	400 AUD 400	-0254 10222 40155	1939 6259 6869 4868 4060 4837 4838 684
Cross Section 6	36.0	674.90	10	4.2	
Station 5+82	38.0	675.10	10	4.2	
(cont.)	40.0	675.10	10	4.2	
	42.0	675.20	10	4.2	
	44.0	675.10	10	4.2	
	46.0	674.90	10	4.2	
	48.0	675.00	10	4.2	
	50.0	674.80	10	4.2	
	52.0	674.80	10	4.2	
	54.0	674.80	10	4.2	
	56.0	675.20	10	4.1	
	58.0	675.50	10	4.1	
	60.0	676.00	10	4.1	
	62.0	676.70	6	4.1	RWE
	63.3	677.00	6	4.1	
	65.0	677.20	6	4.1	
	67.0	677.50	6	4.1	
	68.0	677.50	6	4.1	
	76.0	678.10	1	7.3	Bottom of bank
	79.0	681.00	1	9.5	Top of bank
	81.0	681.70	1	9.5	RB Headpin
Date of survey: Sep	t. 9. 1	984.			. Gur ann ann ann ann ann ann ann ann ann an

Reference elevation: R&M Alcap 136.5Q3 LB 1982.

Table B-2.8	Cross section elevations, substrate and cover data at site 147./L.					
	बहुबह प्रदेश गांडला पहले केवल प्रदेश गांडला प्रतिक साह	9 467 466 469 466 466 466 466 466 466 466		4000- 4000- 1000- 1000- 1000- 1000- 400		
Location	Hor Dist	Bed Elev				
Within Site	(ft)	(ft)	Sub	Cov	Comments	
Cross Section 1	0.0	820.50	1	8.5	LB Headvin	
Station 0+00	8.5	818,60	1	8.5		
	17.0	816.00	1	8.2		
	38.5	812.50	9	5.2	LWE	
	51.0	3.80	9	5.2		
	61.0	809.30	9	5.2		
	70.0	809.20	9	5.2		
	100.0	808.80	9	5.2		
	140.0	808.90	9	5.2		
	177.0	810.00	9	5.2		
	187.0	810.10	9	5.2		
	196.0	810.70	9	5.2		
	213.0	811.70	9	5.2		
	223.0	812.20	9	5.2	RWE	
	250.0	814.30	1	J.2 5 0		
	292.0	010.40	1	J.∠ 5 0		
	415.0	818.20	1	8.3	RB Headpin	
Cross Section 2	0.0	821.50	1	8.5	LB Headpin	
Station 3+62	8.0	817.40	1	8.5	-	
	27.0	813.70	12	6.3	LWE	
	35.0	813.10	10	5.2		
	43.0	812.50	10	5.2	•	
	60.0	811.90	10	5.2		
	70.0	810.90	10	5.2		
	110.0	810.30	10	5.2		
	1/0.0	810.50	10	5.4		
	200.0	012.00	10	).L 5 )		
	200.0	81* 40	10	5.2		
	222 N	812 50	10	5.2	RWE	
	223.0 277 A	814.00	12	5.2	77117	
	326.0	816.40	12	6.2		
	346.0	818.00	12	8.1		
	362.0	819.20	1	8.3	RB Headpin	
Cross Section 3	0.0	822.40	1	8.4	LB Headpin	
Station 7+17	1.5	820.50	1	8.4		
	7.0	818.60	1	8.4		
	27.0	814.90	12	6.3	LWE	

Table B-2.8 (cont.)	Cross cover	section data at	eleva site	tions, 1 147.1L.	substrate and
Location Within Site	Hor Dist (ft)	Bed Elev (ft)	Sub	Cov	Comments
Cross Section 3 Station 7+17 (cont.)	39.0 48.0 57.0 70.0 110.0 202.0 209.0 214.0 238.0 241.0 249.0 259.0 295.0 308.5 309.0	813.20 812.10 812.00 811.50 810.70 811.80 812.10 812.40 813.00 813.50 813.80 813.80 814.30 814.70 817.60 818.90 819.80	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	RWE RB Headpin
Cross Section 4 Station 10+00	0.0 11.0 18.0 32.5 40.0 60.0 80.0 100.0 120.0 140.0 140.0 180.0 200.0 220.0 230.0 238.0 245.0 282.0	830.00 820.70 818.00 815.30 813.40 811.90 811.30 810.90 810.90 811.50 811.60 811.60 811.90 812.60 812.90 813.50 815.20 818.50 820.80	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8.5 5.3 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.5	LB Headpin LWE RWE RB Headpin
Cross Section 5 Station 13+35	0.0 6.0 22.5 30.5 39.0	822.40 819.40 815.60 814.10 813.10	9 9 9 9	5.4 5.4 6.3 6.3 6.3	LB Headpin LWE

• B-63

Table B-2.8 (cont.	) Cross cover	s section data at	eleva site	tions, 147.1L.	substrate and
	- 4004 and (1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 19	9, 4949 4959 9999 4867 9466 4869 4869 4879 4	1222 - 24606 - 48766 - 48666 - 48766 - 49867 Duly - 48806 - 48606 - 48606 - 48606 - 48606 - 48606	4444 (1949) (1949) (1949) (1949) (1949) (1949) (1971) (1949) (1958) (1957) (1958) (1958)	n ange alle dae dae dae dae dae dae dae dae dae da
	Hor	Bed			
Location	Dist	Elev			<b>.</b>
Vithin Site	(ft)	(£t)	Sub	Cov	Comments
Cross Section 5	48.0	812.80	9	6.3	
Station 13+35	56.0	812.30	9	6.3	
(cont.)	100.0	811.80	9	6.3	
	150.0	811.40	9	6.3	
	165.0	811.80	9	6.3	
	189.0	812.80	9	6.3	
	198.0	813.90	9	6.3	
	201.0	814.70	12	6.3	
	206.0	815.50	12	6.3	RWE
	245.0	819.60	1	8.2	
	261.0	821.90	1	8.5	Beside headpin
	261.0	822.87	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8.5	RB Headpin
Cross Section 6	0.0	820.90	12	6.3	LB Headpin
Station 17+76	4.0	817.20	12	6.3	
	8.0	816.13	12	6.3	LWE
	12.0	814.70	12	6.3	
	16.0	814.00	12	6.3	
	24.0	813.50	12	6.3	
	27.0	813.30	12	6.3	
	00.0	812.10	12	6.3	
	110.0	812.00	12	6.3	
	140.0	812.70	12	0.3	
	155.0	013.30	12	0.3	
	160.0	014.30	12	0.3	
	177 0	012.20	12	0.0	0.10
	201 0	010.JU	12	0.3	KWL
	201.0	017.70	12	0.J	
	2JJ.U 221 A	020.20 201 20	12	0.L 6 î.	
	201.U 211 0	021.JU 200 00	12	0.4 6 2	DB Unadai-
	JTT'N	044.40	16	0.0	vo ueachiu

IFG-4 Calibration velocities (ft/sec) at site 101.2R.					
Hor Dist (ft)	Velocities at 279cfs	Velocities at 25 cfs			
0.0 2.0 8.0 16.6 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 34.0 36.0 34.0 36.0 34.0 36.0 34.0 36.0 38.0 40.0 42.0 43.0 44.0 45.0 55.0 54.0 55.0 54.0 55.0 56.0 58.0 60.0 62.0 64.0 65.0 66.0 65.0 58.0 60.0 62.0 64.0 65.0 58.0 60.0 62.0 64.0 67.0 72.0 73.0 74.0 78.0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.60\\ 1.05\\ 2.20\\ 2.00\\ 2.30\\ 2.30\\ 2.30\\ 2.30\\ 2.40\\ 2.38\\ 2.35\\ 2.50\\ 2.70\\ 2.85\\ 3.00\\ 3.25\\ 3.00\\ 3.25\\ 3.00\\ 3.25\\ 3.30\\ 3.50\\ 3.40\\ 3.35\\ 3.40\\ 3.35\\ 3.40\\ 3.50\\ 3.50\\ 3.35\\ 3.10\\ 3.50\\ 3.55\\ 2.85\\ 2.80\\ 2.32\\ 2.08\\ 2.10\\ 2.20\\ 1.60\\ 1.45\\ 1.37\\ 1.30\\ 1.35\\ 1.20\\ \end{array}$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.40 0.60 0.55 0.70 0.55 0.60 0.55 0.60 0.65 0.60 0.65 0.60 0.65 0.60 0.70 0.70 0.70 0.70 0.55 0.60 0.70 0.65 0.70 0.70 0.55 0.60 0.70 0.70 0.60 0.70 0.70 0.60 0.65 0.70 0.60 0.65 0.70 0.60 0.55 0.70 0.60 0.65 0.70 0.70 0.70 0.70 0.70 0.70 0.55 0.60 0.65 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.00 0.00			
	Hor Dist (ft) 0.0 2.0 8.0 16.6 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 42.0 43.0 44.0 43.0 44.0 43.0 44.0 43.0 50.0 52.0 54.0 55.0 54.0 55.0 55.0 56.0 58.0 60.0 62.0 64.0 65.0 66.0 67.0 72.0 73.0 74.0 73.0 74.0 78.0 80.0 82.0	HorVelocitiesDistat $(ft)$ 279 cfs0.00.00 $8.0$ 0.00 $8.0$ 0.00 $16.6$ 0.00 $18.0$ 0.60 $20.0$ 1.05 $22.0$ 2.20 $24.0$ 2.00 $26.0$ 2.30 $28.0$ 2.30 $30.0$ 2.40 $32.0$ 2.38 $34.0$ 2.35 $36.0$ 2.50 $38.0$ 2.70 $40.0$ 2.85 $42.0$ 3.00 $43.0$ 3.25 $44.0$ 3.30 $46.0$ 3.50 $55.0$ 3.35 $56.0$ 3.10 $58.0$ 3.05 $60.0$ 2.85 $62.0$ 2.80 $64.0$ 2.32 $65.0$ 2.10 $68.0$ 2.20 $70.0$ 1.60 $72.0$ 1.45 $73.0$ 1.37 $74.0$ 1.30 $76.0$ 1.35 $78.0$ 1.20 $82.0$ 1.25			

Location	Hor Dist	Velocities at 270 efe	Velocities at
WILDIN DILE	(IL)		25 CIS
Cross Section 1	84 0	1 15	0 00
Station A+AA	86.0	1 00	0.00
(cont.)	88.0	0.70	0.00
(002201)	90.0	0.50	0.00
	92.0	0.25	0.00
	94 0	0,00	0.00
	96.0	0.00	0 00
	98.0	0.00	0.00
	124 0	0.00	0.00
	148 0	0.00	0.00
	218.0	0.00	0.00
	249.5	0.00	0.00
	272.0	0.00	0.00
	274.0	0.05	0.00
	276.0	0,05	0.00
	278.0	0.05	0.00
	282.0	0.05	0.00
	285.0	0.10	0.00
	286.0	1,10	0.00
	290.0	0.10	0.00
	293.0	0.10	0.00
	294.0	0.05	0.00
	298.0	0.05	0.00
	302.0	0.05	0.00
	306.0	0.05	0.00
	308.0	0.03	0.00
	310.0	0.03	0.00
	314.0	0.03	0.00
	318.0	0.03	0.00
	322.0	0.00	0.00
	323.0	0.00	0.00
	334.0	0.00	0.00
	350.0	0.00	0.00
Cross Section 3	0.0	0.00	0.00
Station 3+74	5.0	0.00	0.00
	14.0	0.03	0.00
	16.0	0.03	0.00
	20.0	0.03	0.00
	24.0	0.03	0.00
	28 A	0 03	0.00

Location Within Site	Hor Dist (ft)	Velocities at 279 cfs	Velocities at 25 cfs
9988 99899 99999 99829 49829 4329 4329 4329 1428 4329 4329	alkar volda malan alkan alam	alikin alikin alikin alikin alikin alikin alikin alih alikin alih alikin alih	-1600 (1888) (2009 (2006) (480) (500) (480) (480) (480)
Cross Section 3	32.0	0.03	0.00
Station 3+74	36.0	0.03	0.00
(cont.)	40.0	0.05	0.00
	44.0	0.05	0.00
	46.0	0.05	0.00
	48.0	0.05	0.00
	49.0	0.05	0.00
	50.0	0,00	0.00
	54.0	0.00	0.00
	67 0	0.00	0.00
	77 0	0.00	0.00
	87 5	0.00	0.00
	07.5	0.00	0.00
	02 0	0.00	0.00
	92.0	1 00	0.00
	30.0	1.00	0.00
	100.0	1.00	0.00
	104.0	1.00	0.00
	108.0	1.80	0.00
	114.0	1.75	0.00
	116.0	2.05	0.00
	118.0	2.00	0.20
	120.0	2.00	0.25
	122.0	2.20	0.54
	124.0	2.40	0.59
	126.0	2.35	0.59
	128.0	2.35	0.74
	130.0	2.35	0.54
	132.0	2.30	0.59
	134.0	2.30	0.64
	136.0	2.30	0.69
	136.5	2.30	0.69
	138.0	2.30	0.69
	140.0	2.30	0.49
	142.0	2.25	0.69
	144.0	2.25	0.85
	146.0	2.25	0.00
	148.0	2.20	0.70 0 K0
	150.0	2.25	0.00
	152.0	2.25	0.00
	154 0	2 25	0.05

Location	Hor	Volopition	
	Dist	at	Velocities at
Within Site	(ft)	279 cfs	25 cfs
Cross Section 3	156.0	2.30	0.60
Station 3+74	158.0	1.88	0.55
(cont.)	160.0	1.90	0.50
	162.0	2.00	0.50
	164.0	2.30	0.45
	166.0	2.20	0.45
	168.0	2.25	0.50
	170.0	2.30	0.35
	172.0	2.40	0.30
	174.0	2.20	0.30
	176.0	2,00	0.20
	178.0	2.05	0.20
	180.0	2.10	0.15
	182.0	1,90	0.10
	184.0	1.70	0.10
	186.0	1.65	0.00
	188.0	1.60	0.00
	189.5	1.55	0.00
	192.0	1.50	0.00
	196.0	1 50	0.00
	200.0	1,00 A 95	0.00
	200.0	0.65	0.00
	204.0	0.55	0.00
	200.0	0.55	0.00
	212.0	0.10	0.00
	210.0 770 0	0.10	0.00
	220.0	0.10	0.00
	224.0	0.00	
	227.0	0.00	0.00
	322.0	0.00	0.00
	339.0	0.00	0.00
	340.0	0.20	0.00
	344.0	0.20	0.00
	347.0	U.15	0.00
	552.0	U.10	0.00
	356.0	0.00	0.00
	376.5	0.00	0.00
	381.0	0.00	0.00
	381.5	0.00	0.00

÷

Location Within Site	Hor Dist (ft)	Velocities at 279 cfs	Velocities at 25 cfs
	0.0	0.00	0.00
Cross Section 4	0.0	0.00	0.00
Station 3+64	3.0	0.00	0.00
	7.0	0.00	0.00
	23.0	0.00	0.00
	02.0	0.00	0.00
	111.0	0.00	0.00
	123.0	0.00	0.00
	147.0	0.00	0.00
	151.0	0.30	0.00
	155.0	1.05	0.00
	159.0	1.10	0.00
	163.0	2.00	0.00
	164.0	2.00	0.00
	100.0	2.10	0.20
	100.0	2.10	0.15
	170.0	1.00	0.25
	174.0	1 00	0.35
	174.0	1.90	0.55
	170.0	2.00	0.50
	120.0	2.00	0.40
	182 0	2.10	0.07
	184 0	2.10	0.60
	186 0	2.10	0.70
	188 0	2.00	0.70
	190.0	2.00	0.60
	192.0	1.97	0.70
	194.0	1.90	0.77
	196.0	1.87	0.75
	198.0	1.85	0.85
	200.0	1.88	0.67
	202.0	2.00	0.90
	204.0	2.05	0.90
	206.0	2.10	0.80
	208.0	2.05	0.70
	210.0	2.00	0.65
	212.0	2.00	0.60
	214.0	2.05	0.70
	216.0	1.90	0.60
	218.0	1.80	0.47
	220.0	1.50	0.40

Location	Hor Dist (6)	Velocities at 220 cfc	Velocities at
Althin Site	(IL)	2 TY CLS	
Cross Section 4	222.0	1.40	0,40
Station 5+64	224.0	1.50	0.15
(cont.)	226.0	1.61	0.12
	228.0	1.63	0.20
	230.0	1.55	0.20
	232.0	1.55	0.20
	234.0	1.55	0.00
	236.0	1.22	0.00
	238.0	1	0.00
	240.0	1.00	0.00
	243.0	1.10	0.00
	247.0	0.80	0.00
	251.0	0.60	0.00
	255.0	0.20	0.00
	259.0	0.20	0.00
	263.0	0.00	0.00
	266.2	0.00	0.00
	331.0	0.00	0.00
	362.0	0.00	0.00
	369.0	0.00	0.00
	383.0	0.00	0.00
	387.0	0.20	0.00
	389.0	0.00	0.00
	391.0	0.00	0.00
	393.0	0.00	0.00
	394.0	0.00	0.00
	400.0	0.00	0.00
	413.0	0.00	0.00
	410.0	0.00	0.00
	412.0	0.00	0.00
Cross Section 6	0.0	0.00	0.00
Station 8+37	29.0	0.00	0.00
	42.0	0.00	0.00
	62.0	0.00	0.00
	66.0	0.75	0.00
	70.0	1.20	0.00
	74.0	0.95	0.00
	78.0	1.25	0.00
	80.0	1.23	0.00
	82.0	1.20	0.00

Location Within Site	Hor Dist (ft)	Velocities at 279 cfs	Velocities at 25 cfs
دین کرد. میشد میک میک میک شکر میک میک میک میک میک	date data data data data data	1850 7889-1859 480 4821 4899 4838 4839 4859 4850 4860	nganga angga mengka tangga atang angkan, anggan atang anggan man
Cross Section 6	84.0	1.20	0.00
Station 8+37	86.0	1.20	0.00
(cont.)	88.0	1.40	0.20
	90.0	1.50	0.20
	92.0	1.60	0.30
	94.0	1.55	0.35
	96.0	1.55	0.30
	98.0	1.55	0.35
	100.0	1.47	0.35
	102.0	1.40	0.40
	104.0	1.47	0.40
	106.0	1 45	0.40
	108 0	1.50	0.50
	110.0	1.55	0.45
	112.0	1.65	0.55
	114 0	1 80	0.55
	116 0	1.70	0.50
	118 0	1.60	0.50
	120.0	1 75	0.50
	120.0	1 00	0.55
	174 0	1 67	0.05
	124.0	1 45	0.00
	120.0	1.70	0.70
	120.0	1 80	0.64
	1:0 0	1 05	0.04
	132 0	1 03	0.05
	134 0	1 00	0.0, 0.60
	136.0	2 00	0.00
	138 0	2.00	0.00
	140 0	2.05	0.65
	142 0	1 05	0.05
	1/6 0	1 00	0.05
	144.0	1 95	0.00
	140.0	1 00	0.00
	140.V 150 0	1.70	0.32
	150.0	4.00	U-33 A 55
	154.0	1./0	0.00
	104.0	1 50	0.00
	152.0	1.30	U.49 0.27
	120.0	1.00	0.3/

Location Within Site	Hor Dist (ft)	Velocities at 279 cfs	Velocities at 25 cfs
Cross Section 6	160.0	1.45	0.36
Station 8+37	162.0	1.30	0.35
(cont.)	164.0	1.50	0.40
	166.0	1.70	0.48
	168.0	1.50	0.30
	170.0	1.35	0.35
	172.0	1.45	0.20
	173.5	1.55	0.10
	176.0	1.50	0.10
	178.0	1.40	0.00
	180.0	1.43	0.00
	182.0	1.45	0.00
	186.0	1.25	0.00
	190.0	1.15	0.00
	194.0	1.00	0.00
	198.0	0.70	0.00
	202.0	0.42	0.00
	206.0	0.10	0.00
	209.0	0.00	0.00
	211.5	0.00	0.00
	248.5	0.00	0.00
	250.0	0.00	0.00
	252.0	0.00	0.00
	254.0	0.00	0.00
	200.0	0.00	0.00
	258.0	U. 25	0.00
	260.0	0.15	0.00
	202.0	0.00	0.00
	200.0	0.00	0.00
	212.0	0.00	0.00
	270.0	0.00	0.00
	2/8.0	0.00	0.00
Cross Section 7	0.0	0.00	0.00
Station 10+23	43.0	0.00	0.00
	79.0	0.00	0.00
	80.0	0.00	0.00
	82.0	0.00	0.00
	84.0	0.25	0.00
	86.0	0.40	0.00
	90.0	0.65	0.00

	site 101.2	2R.	
n tha dan tan dan ana dan tan tan tan dan dan dan dan dan dan dan dan dan d			
* . <b>.</b>	Hor	Velocities	Velocities
Location	Dist	at	at
hthin Site	(ft)	219 cfs	20 cfs
Cross Section 7	92.0	0.70	0.00
Station 10+23	94.0	0.75	0.00
(cont.)	96.0	0.75	0.10
	98.0	0.75	0.10
	100.0	0.77	0.10
	102.0	0.80	0.12
	104.0	0 75	0.12
	104.0	0.73	0°12 N 15
	102.0	0.75	0.1J 0.15
	100.0	0.75	0.10
	112 0	0.03	0.12
	114.0	0,70	0.10
	114.0	0.75	0.10
	115.0	0.00	0.11
	110.0	0.07	0.05
	110.0	0.00	0.05
	120.0	0.79	0.10
	122.0	0.84	0.08
	124.0	0.87	0.10
	126.0	0.90	0.10
	128.0	0.86	0.10
	130.0	0.84	0.15
	132.0	0.80	0.10
	134.0	0.83	0.10
	136.0	0.96	0.15
	140.0	1.03	0.20
	141.0	1.06	0.18
	142.0	1.10	0.16
	144.0	1.08	0.15
	148.0	1.08	0.12
	151.0	1.08	0.15
	152.0	1.02	0.18
	156.0	1.00	0.15
	158.0	0.98	0.13
	160.0	0.94	0.10
	164.0	0.93	0.12
	166.0	0.92	0.10
	168.0	0,86	0.10
	176.0	0.80	0.10
	180.0	0.80	0.10

I acation	Hor	Velocities	Velocities
Nithin Site	(ft)	at 279 cfs	ai 25 cfs
901 MICH 4819 4819 MIC 15-14 AMM 21-14 4916 4916 4916	report maans sõõge kallete kullete	nais nan dan ann ain ain ann ann a' a ann	
Cross Section 7	184.0	0.80	0.10
Station 10+23	188.0	0.70	0.10
(cont.)	190.0	0.85	0.10
	192.0	0.80	0.10
	194.0	0.70	0.10
	196.0	0.72	0.00
	198.0	0.65	0.00
	200.0	0.55	0.00
	202.0	0.50	0.00
	203.0	0.58	0.00
	204.0	0.56	0.00
	206.0	0.55	0.00
	208.0	0.53	0.00
	210.0	0.50	0.00
	214.0	0.30	0.00
	218.0	0.05	0.00
	222.0	0.05	0.00
	224.0	0.00	0.00
	256.5	0.00	0.00
	262.0	0.00	0.00
	264.0	0.00	0.00
Cross Section 8	0.0	0.00	0.00
Station 12+79	7.6	0.00	0.00
	27 0	0.00	0.00
	34.0	0.00	0.00
	40.0	0.00	0.00
	42.0	0.00	0.00
	44.0	0.33	0.00
	40.0	0.40	0.00
	52.0	0.00	0.00
	J4.0 52 A	0.70	0.00
	50.0	0.65	0.10
	60.0 42 0	0.05	0.10
	02.0 6/ A	0.00 0.70	
	04.0 66 A	0.70	0.10 0.10
	62.0	0.70	0.10
	70 O	0.83	0.10 A 1A
	72.0	0.85	0.10
	72 4	0.85	0 15

99, 199, 199, 199, 199, 199, 199, 199,	941944 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1		•
	Hor	Velocities	Velocities
Location	Dist	a t	at
Within Site	(ft)	<b>2</b> 79 cfs	25 cfs
nter mante vitato malto materi vitato vitato vitato vitato dato	ana dan nen aka nan	rease range, rables raises raises, while radius some radius, name	natas, labata nooma katasin angan angan angan angan katasin angan katasin angan
Cross Section 8	74.0	0.83	0.15
Station 12+79	76.0	0.80	0.15
(cont.)	78.0	0.83	0.15
	80.0	0.85	0.15
	82.0	0.80	0.12
	84.0	0.75	0.14
	83.0	0.70	0.15
	92.0	0.75	0.10
	96.0	0.80	0.10
	100.0	0.75	0.10
	104.0	0.75	0.10
	108.0	0.80	0.15
	112.0	0.80	0.15
	116.0	0.75	0.15
	118.0	0.80	0.15
	120.0	0.85	0.15
	121.5	0.92	0.15
	124.0	0.97	0.10
	128.0	0.92	0.10
	132.0	1.08	0.20
	136.0	1.03	0.25
	140.0	1.08	0.28
	144.0	0.92	0.28
	145.0	0.90	0.20
	148.0	0.88	0.23
	152.0	0.90	0.25
	164.0	0.95	0.35
	168.0	0.95	0.30
	172.0	1.00	0.22
	176.0	0.75	0.10
	178.0	0.60	0.10
	179.0	0.60	0.10
	180.0	0.50	0.10
	182.0	0.40	0.10
	184.0	0.30	0.10
	188.0	0.15	0.00
	192.0	0.50	0.00
	196.0	0.00	0.00
	213.5	0.00	0.00
	221.5	0.00	0.00
	226 0	0.00	0.00

Ф

موله مريف موجه فيهم شعب خلك ملك ملك محك محك محك المرك المرك المرك المرك الم	DILC INT. WY			
90 - 100 - 200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Hor	Velocities	Velocities	
Location	Dist	at	at	
Within Site	(£t)	279 cfs	25 cfs	
Cross Section 9	0.0	6.00	0.00	
Station 14+62	27.5	0.00	0.00	
	36.5	0.00	0.00	
	40.0	0.00	0.00	
	44.0	G.25	0.00	
	48.0	0.26	0.00	
	52.0	0.52	0.00	
	56.0	0.40	0.00	
	60.0	1.28	0.00	
	64.0	1.00	0.00	
	68.0	1.60	0.00	
	72.0	1.74	0.00	
	80.0	1.83	0.00	
	82.0	1.70	0.00	
	84.0	1.60	0.00	
	88.0	1.55	0.00	
	92.0	1.75	0.40	
	94.0	1.85	0.00	
	96.0	2.02	0.50	
	100.0	2.22	0.40	
	104.0	2.43	0.63	
	108.0	2.37	0.62	
	112.0	2.35	0.84	
	116.0	2.40	0.57	
	119.5	2.45	0.62	
	120.0	2.48	0.68	
	124.0	2.46	0.69	
	127.5	2.44	0.65	
	128.0	2.43	0.59	
	132.0	2,55	0.69	
	136.0	2.78	0.62	
	140.0	2.75	0.81	
	142.0	2.73	0.71	
	144.0	3.72	0.65	
	148.0	. 0	0.62	
	152.0	2.13	0.58	
	156.0	2.12	0.44	
	158.0	2.11	0.39	
	160.0	2.11	0.39	
	162.0	1.95	0.39	
			~ ~ ~ ~ ~ ~	

Location	Hor Dist	Velocities at	Velocities at
Within Site	(ft)	239 cfs	25 cfs
Cross Section 9	168.0	1.88	0.25
Station 14+62	170.0	1.75	0.25
(cont.)	174.0	1.76	0.25
	176.0	1.78	0.30
	184.0	1.40	0.20
	186.0	0.90	0.10
	188.0	0.45	0.00
	190.0	0.40	0.00
	192.4	0.00	0.00
	197.0	0.00	0.00
	212.0	0.00	0.00
	215.0	0.00	0.00
	216.5	0,00	0.00

-

Table B-3.2	IFG-4 Calibration velocities (ft/sec) at site 131.7 L.				
Location	Hor Dist	Velocities at	Velocities at	Velocities at	Velocities at
Within Site	(ft)	240 cfs	150 cfs	55 cfs	18 cfs
Cross Section 1	0.0	0 00	0 00	0 00	0 00
Closs Section 1	1 0	0.00	0.00	0.00	0.00
Station 0.00	8 0	0.00	0.00	0.00	0.00
	26.0	0.00	0.00	0.00	0.00
	20.0	0.00	0.00	0.00	0.00
	32.0	0.00	0.00	0.00	0.00
	36.0	0.20	0.15	0.10	0.05
	42.0	0.40	0.30	0.15	0.10
	44.0	0.50	0.40	0.20	0.09
	48.0	0.60	0.50	0.30	0.15
	52.0	0.65	0.50	0.30	0.15
	56.0	0.75	0.55	0.30	0.10
	60.0	0.75	0.60	0.40	0.20
	64.0	.75	0.60	0.40	0.20
	68.0	0.70	0.68	0.40	0.15
	72.0	0.70	0.65	0.40	0.15
	76.0	0.70	0.62	0.40	0.20
	80.0	0.70	0.60	0.35	0.20
	84.0	0.70	0.50	0.30	0.20
	88.0	0.60	0.50	0.20	0.10
	92.0	0.70	0.45	0.20	0.10
	90.0	0.70	0.50	0.17	0.05
	100.0	0.05	0.40	0.15	0.00
	104.0	0.47	0.30	0.20	0.10
	112.0	0.47	0.35	0.14	0.10
	116.0	0.50	0.37	0.13	0.05
	120.0	0.63	0.37	0.10	0.05
	124.0	0.63	0.37	0.10	0.05
	128.0	0.63	0.37	0.10	0.05
	132.0	0.35	0.30	0.12	0.02
	136.0	0.40	0.30	0.10	0.02
	140.0	0.40	0.28	0.10	0.02
	144.0	0.50	0.30	0.10	0.02
	148.0	0.50	0.30	0.11	0.02
	152.0	0.40	0.32	0.10	0.02
	156.0	0.50	0.35	0.10	0.02
	160.0	0.55	0.40	0.10	0.02
	164.0	0.55	0.50	0.07	0.02
	168.0	0.50	C.40	0.10	0.02
	172.0	0.60	0.35	0.09	0.02

	si	ite 131.7L.			
Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
Cross Section 1 Station 0+00 (cont.)	176.0 180.0 184.0 188.0 192.0 196.0 200.0 204.0 208.0 212.0 216.0 220.0 224.0 232.0 234.0 236.0 237.0 251.0 258.0 263.0	0.65 0.50 0.45 0.55 0.50 0.50 0.60 0.65 0.62 0.57 0.60 0.57 0.60 0.57 0.60 0.50 0.40 0.30 0.00 0.00 0.00 0.00	0.35 0.35 0.35 0.45 0.45 0.45 0.50 0.55 0.50 0.50 0.50 0.50 0.20 0.00 0.00 0.00 0.00 0.00	0.13 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cross Section 2 Station 2+45	$\begin{array}{c} 0.0\\ 1.0\\ 2.0\\ 14.0\\ 18.0\\ 22.0\\ 26.0\\ 30.0\\ 34.0\\ 38.0\\ 42.0\\ 46.0\\ 50.0\\ 54.0\\ 50.0\\ 54.0\\ 62.0\\ 66.0\\ 70.0\\ 73.0\end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.20\\ 0.25\\ 0.34\\ 0.40\\ 0.35\\ 0.35\\ 0.35\\ 0.40\\ 0.45\\ 0.40\\ 0.45\\ 0.40\\ 0.50\\ 0.50\\ 0.30\\ 0.50\\ 0.30\\ 0.50\\ 0.85\\ 1.00\\ 1.65\end{array}$	0.00 0.00 0.00 0.15 0.15 0.15 0.16 0.16 0.17 0.20 0.25 0.15 0.34 0.55 0.70 1.44	0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.10 0.15 0.06 0.19 0.30 0.33 0.45	0.00 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.12 0.20

# Table B-3.2 (cont.) IEG-4 Calibration velocities (ft/sec) at

site 131.7L.					the star late was done which which which uses have a
Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
Within Site Cross Section 2 Station 2+45 (cont.)	(ft) 78.0 81.0 86.0 90.0 94.0 98.0 102.0 106.0 110.0 114.0 122.0 126.0 130.0 134.0 134.0 138.0 142.0 134.0 138.0 142.0 153.0 158.0 161.0 153.0 158.0 161.0 166.0 174.0 177.0 182.0 190.0 198.0 202.0	240 cfs 1.70 1.95 2.15 2.25 2.20 2.10 2.15 2.00 2.10 2.05 2.10 2.35 2.15 2.25 2.20 1.64 1.65 1.55 1.70 1.75 1.75 1.80 1.65 1.75 1.80 1.65 1.75 1.40 1.20 1.25 1.30 1.10 1.20 1.15	150 cfs 1.60 1.70 1.96 2.00 2.00 1.85 1.61 1.76 1.79 1.80 1.60 1.50 1.50 1.50 1.50 1.28 1.22 1.35 1.40 1.44 1.50 1.60 1.60 1.60 1.60 1.63 0.64 0.63 0.90 0.80 0.75 0.82 1.00 0.87 0.84 0.83	55 cfs 0.50 0.50 0.65 0.75 1.20 1.20 1.24 1.27 1.29 1.16 1.02 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.90 1.00 0.90 0.75 0.87 0.85 0.80 0.85 0.80 0.80 0.38 0.38 0.24 0.20 0.20 0.21 0.21 0.28 0.48 0.20	18 cfs 0.10 0.20 0.30 0.40 0.35 0.54 0.58 0.63 0.90 0.65 0.45 0.60 0.58 0.60 0.58 0.60 0.58 0.60 0.45 0.60 0.45 0.60 0.33 0.32 0.40 0.35 0.33 0.32 0.40 0.15 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	206.0 210.0 214.0 218.0 222.0 227.0 231.0	$   \begin{array}{r}     1.05 \\     1.00 \\     0.90 \\     0.65 \\     0.40 \\     0.10 \\     0.00 \\   \end{array} $	0.74 0.68 0.39 0.15 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at

na anna mana mina anta kaba tana anna mina kita kita kaba anna mina mina tana mina mina anna anna anna

Table B-3.2 (cont.) IFG-4 Calibration veloci ⁺ ies (ft/sec) at site 131.7L.					
وهنه: درامة: درامة: مراجع مواده موله معلى معلم موله مراجع مراجع مراجع مراجع مراجع مراجع مراجع مراجع مراجع مراجع مربعة طريب مراجع مامية بركمة معينة معينة معينة معينة مراجع مراجع مراجع مراجع	99380 98504 98694 98796 98786 98784 98794 98794 98794 9	985 - 2005 - 2007 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 2016 - 201	یوهه مایند رویه میزاد دیده میند موید برین رای درین درین در	1976 - 1987 - 1982 - 1988 - 2080 - 1982 - 1982 - 1983 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 -	الله خان مای مای می و معنی می و می
Location Within Site	Hor Dist (ft)	Velociti@3 at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
ally have and and the other and the state with all all all all all all all all all al	theise which depth individ, signals and the	ngan anna anna anna anna anna anna chua anna	and and and and and and and and and	and note with and and and and and and and	-itte Cliff alle alle alle alle alle alle alle al
Cross Section 2 Station 2+45 (cont.)	235.0 239.0 256.0 301.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Cross Section 3 Station 6+45	0.0 2.0 15.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 44.0 48.0 52.0 56.0 60.0 64.0 68.0 72.0 76.0 80.0 84.0 88.0 92.0 96.0 100.0	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.20\\ 0.25\\ 0.27\\ 0.30\\ 0.35\\ 0.45\\ 0.35\\ 0.45\\ 0.45\\ 0.55\\ 0.65\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\ 0.55\\$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15 0.20 0.25 0.25 0.25 0.25 0.32 0.32 0.32 0.39 0.50 0.45	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.02 0.05 0.05 0.05 0.05 0.05 0.10 0.15 0.10 0.15 0.15 0.15 0.15 0.14 0.20 0.22 0.22 0.25 0.25 0.10 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.15 0.10
	104.0 108.0 112.0 116.0 120.0 124.0 128.0 132.0 136.0	0.70 0.80 1.00 1.00 0.85 0.90 0.90 1.00	0.50 0.55 0.65 0.85 0.75 0.75 0.75 0.85 0.90	0.35 0.40 0.40 0.40 0.40 0.30 0.35 0.30 0.35	0.15 0.10 0.20 0.20 0.09 0.15 0.15 0.15

ø

Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocitie at 18 cfs
alata dalah dalah gara citik dana wani alata dalah najar yana	-1899 WER SHOW WITH LEVEL LINES	andan yalah dalah digan daga dagan dalah atawa menja wapat	antin mijos Aldan algan ikain kilan onda anto kilan algan	andar anda anga santa inan anga anga anga anga	المريد المريد المريد المريد المريد مريدة. مريدة المريد المريد المريد المريد
Cross Section 3	140.0	1.00	0.85	0.40	0.15
Station 6+45	144.0	0.85	0.70	0.40	0.17
(cont.)	148.0	0.75	0.65	0.35	0.15
	152.0	0.77	0.68	0.38	0.10
	156.0	0.85	0.72	0.35	0.10
	160.0	0.80	0.70	0.35	0.10
	164.0	0.78	0.70	0.35	0.08
	168.0	0.80	0.75	0.32	0.08
	172.0	0.65	0.60	0.30	0.07
	176.0	0.65	0.50	0.25	0.07
	180.0	0.60	0.50	0.10	0.00
	184.0	0.65	0.50	0.15	0.00
	188.0	0.65	0.40	0.10	0.00
	192.0	0.55	0.35	0.10	0.00
	196.0	0.50	0.30	0.07	0.00
	198.0	0.45	0.25	0.00	0.00
	200.0	0.50	0.25	0.00	0.00
	202.0	0.3	0.15	0.00	0.00
	200.0	0.30	0.12	0.00	0.00
	200.0	0.20	0.10	0.00	0.00
	210.0	0.20	0.10	0.00	0.00
	214.0	0.20	0.00	0.00	0.00
	216.0	0.00	0.00	0.00	0.00
	218.0	0.00	0.00	0.00	0.00
	260.0	0.00	0.00	0.00	0.00
	266.0	0.00	0.00	0.00	0.00
	273.0	0.00	0.00	0.00	0.00
Cross Section 4	0.0	0.00	0.00	0,00	0.00
Station 9+45	1.0	0.00	0.00	0.00	0.00
	7.0	0.00	0.00	0.00	0.00
	25.0	0.00	0.00	0.00	0.00
	27.0	0.05	0.00	0.00	0.00
	28.0	0.10	0.05	0.00	0.00
	30.0	0.30	0.25	0.20	0.00
	32.0	0.55	0.35	0.25	0.10
	34.0	0.65	0.45	0.25	0.10
	36.0	0.75	0.50	0.25	0.10
	38.0	0.72	0.50	0.35	0.15
	41.0	0.81	0.55	0.45	0.25

- 4355 4555 4555

1050 ( \$60 ACO)

	r annar anthr aidean ais-ar surs, andar ai n annar sinar dhùr annar sear annar a	ین, سرین کی کرد بیش این در بیش بیش بیش این	لاین موان میکرد میکرد کرد. ایک موان میکرد میک میکرد میک میکرد می	کار است. کار است کار است کرد است کرد است است است است کرد است کرد است	ana ana ito ana anti ana ana ana ana ana ana ana ana an
	Hor	Velocities	Velocities	Velocities	Velocities
Location	Dist	at	at	at	at
Within Site	(ft)	24C cfs	150 cfs	55 cfs	18 cfs
Cross Section 4	43.0	0.80	0.60	0.50	0.30
Station 9+45	45.0	1.10	0.90	0.59	0.25
(cont.)	48.0	1.30	1.25	0.72	0.30
	52.0	1.30	1.25	0.70	0.35
	54.0	1.30	1.25	0.60	0.35
	55.0	1.40	1.25	0.65	0.38
	56.0	1.42	1.25	0.68	0.30
	57.0	1.40	1.20	0.68	0.30
	58.0	1.34	1.28	0.58	0.25
	60.0	1.50	0.90	0.40	0.20
	64.0	1.40	0.90	0.43	0.20
	68.0	1.30	1.00	0.40	0.10
	72.0	1.20	0.80	0.29	0.10
	76.0	1,15	0.60	0.14	0.08
	80.0	0.55	0.35	0.10	0.05
	84.0	0.35	0.23	0.10	0.05
	88.0	0.20	0.13	0.08	0.04
	92.0	0.30	0.19	0.10	0.05
	96.0	0.60	0.29	0.13	0.05
	100.0	0.65	0.30	0.10	0.03
	104.0	1.00	0.40	0.10	0.05
	108.0	1.00	0.50	0.10	0.05
	112.0	1.10	0.70	0.18	0.00
	116.0	1.10	0.60	0.15	0.00
	120.0	0.95	0.60	0.15	0.00
	124.0	1.00	0.73	0.20	0.00
	120.0	1.00	0.73	0.20	0.00
	120.0	0.90	0.65	0.20	0.00
	134.0	0.60	0.50	0.20	0.00
	1/0 0	0.00	0.35	0.00	0.00
	140.0	0.45	0.20	0.00	0.00
	149.0	0.40	0.20	0.00	0.00
	140.0 152 A	0.30	0.00	0.00	0.00
	157 N	0.13	0.00	0.00	0.00
	162 0	0.00	0.00	0.00	0.00
	167 0	0.00	0.00	0.00	0.00
	171 N	0.00	0.00	0.00	0.00
	175.0	0.00	0.00	0.00	0.00
	170 0	0.00	n nn	0.00	0.00

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at

alin main anni ainin ainin 1900, main anni anni ainin diar, ainin 1900, mari anni ainin jain jain ainin ainin a

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) site 131.7L.					ec) at
Location	Hor Dist	Velocities at	Velocities at	Velocities at	Velocities at
Within Site	(ft)	240 cfs	150 cfs	55 cfs	18 cfs
andito, antan ayun ayan, antan mann katan ayan, antan ayon ayon	nadar dillari sitan sakih nenja sokih.	nalisin maksin mahan manan dipapi daripi ni ini ni kiran dipapi daran.	-allife-allife-allife-allife-allife-allife-allife-allife-allife-allife-allife-allife-allife-allife	-alara (alar maga) dalar kajia dalar kajia dalar adalar kajiar kajiar	annihi wiliki alakik darin darin winin dana kalak vahat anan
Cross Section 4	216.0	0.00	0.00	G.00	0.00
Station 9+45	231.0	0.00	0.00	0.00	0.00
(cont.)	283.0	0.00	0.00	0.00	0.00
	303.0	0.00	0.00	0.00	0.00
Cross Section 5	0.0	0.00	0.00	0.00	0.00
Station 11+90	4.0	0.00	0.00	0.00	0.00
	7.0	0.00	0.00	0.00	0.00
	9.0	0.00	0.00	0.00	0.00
	12.0	0.25	0.20	0.15	J.00
	14.0	0.25	0.20	0.15	0.00
	18.0	0,25	0.20	0.15	0.09
	22.0	0.30	0.20	0.15	0.09
	26.0	1.05	1.00	0.42	0.20
	30.0	1.20	1.07	0.43	0.30
	34.0	1.35	1.15	0.60	0.20
	38.0	1.40	1.25	0.50	0.20
	42.0	1.65	1.15	0.65	0.25
	40.0	1.33	1.25	0.60	0.30
	50.0	1.75	1.40	0.60	0.30
	54.U	1.00	1.00	0.00	0.30
	20.U	1.20	1 00	0.45	0.23
	66 0	1 40	0.95	0.00	0.30
	70.0	1.45	0.80	0.20	0.10
	74.0	1.35	0.75	0.15	0.10
	78.0	1.10	0.40	0.00	0.00
	82.0	0.90	0.45	0.10	0.00
	86.0	0.90	0.45	0.00	0.00
	90.0	0.93	0.50	0.00	0.00
	94.0	0.95	0.50	0.00	0.00
	98.0	0.95	0.50	0.00	0.00
	102.0	0.85	0.40	0.00	0.00
	106.0	ე.60	0.30	0.00	0.00
	110.0	0.65	0.35	0.00	0.00
	114.0	0.48	0.30	0.00	0.00
	118.0	0.50	0.30	0.00	0.00
	122.0	0.45	0.20	0.00	0.00
	126.0	0.45	0.20	0.00	0.00
	130.0	0.50	0.00	0.00	0.00
	134.0	0.60	0.00	0.00	0.00

-----

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at site 131.7L.					
Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
Cross Section 5 Station 11+90 (cont.)	138.0 142.0 146.0 150.0 154.0 156.0 276.0 380.0 391.0	0.40 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cross Section 6 Station 16+30	0.0 1.0 11.0 14.0 17.0 20.0 22.0 26.0 30.0 34.0 37.0 42.0 46.0 50.0 58.0 62.0 66.0 70.0 74.0 78.0 82.0 86.0 90.0 92.0 96.0 96.0 98.0 104.0 106.0 110.0	0.00 0.00 0.00 0.65 1.20 1.60 1.90 2.05 2.00 1.90 1.95 1.75 1.75 1.70 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.00 0.95 1.05 0.94 1.20 1.10 0.95 0.90 0.75	0.00 0.00 0.00 1.00 1.30 1.60 1.90 1.60 1.73 1.67 1.50 1.49 1.37 1.32 1.26 0.93 0.70 0.84 0.86 0.68 0.68 0.68 0.65 0.65 0.55 0.45 0.37 0.30	0.00 0.00 0.00 0.45 0.53 0.70 1.05 0.90 1.00 1.20 1.13 0.92 0.65 0.50 0.60 0.59 0.48 0.52 0.48 0.52 0.48 0.52 0.48 0.30 0.33 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.25 0.40 0.65 0.60 0.60 0.60 0.60 0.40 0.53 0.29 0.30 0.32 0.28 0.28 0.28 0.28 0.26 0.30 0.25 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

site 131.7L.					an as han an a
هند. عمل العلم فعن هذه عام ، عام العام العلم العلم العام العام العام العام العام العام العام العام ا	Hor	Velocities	Velocities	Velocities	Velocities
Location	Dist	at	at	at	at 19 of o
Within Site	(11)	240 CIS	1JU CIS	JJ CIS	10 CLS
				~ ~ ~	0.00
Cross Section 6	117.0	0.55	0.25	0.00	0.00
Station 16+30	122.0	0.50	0.20	0.00	0.00
(cont.)	126.0	0.40	0.13	0.00	0.00
	130.0	0.30	0.12	0.00	0.00
	138.0	0.06	0.02	0.00	0.00
	146.0	0.06	0.02	0.00	0.00
	151.0	0.05	0.03	0.00	0.00
	154.0	0.05	0.03	0.00	0.00
	162.0	0.05	0.00	0.00	0.00
	166.0	0.05	0.00	0.00	0.00
	170.0	0.25	0.00	0.00	0.00
	174.0	0.70	0.36	0.00	0.00
	178.0	1.30	0.80	0.00	0.00
	182.0	1.30	0.75	0.00	0.00
	188.0	1.10	0.70	0.00	0.00
	192.0	0.90	0.60	0.00	0.00
	196.0	0.80	0.50	0.00	0.00
	200.0	0.70	0.48	0.00	0.00
	204.0	0.40	0.35	0.00	0.00
	208.0	0.29	0.20	0.00	0.00
	212.0	0.24	0.20	0.00	0.00
	216.0	0.30	0.20	0.00	0.00
	220.0	0.30	0.23	0.00	0.00
	224.0	0.30	0.15	0.00	0.00
	228.0	0.50	0.39	0.00	0.00
*	232.0	0.45	0.30	0.00	0.00
	236.0	0.29	0.20	0.00	0.00
	240.0	0.19	0.00	0.00	0.00
	244.0	0.00	0.00	0.00	0.00
	246.0	0.00	0.00	0.00	0.00
	248.0	0.00	0.00	0.00	0.00
	252.0	0.00	0.00	0.00	0.00
	256 0	0.00	0.00	0.00	0.00
	260.0	0.00	0,00	0.00	0.00
	200.0 92/ 0	n nn	n nn	0.00	ດ ກາ
	204.U 920 A	0.00	0.00	0.00	0.00
	200.0 272 A	0.00	0.00	0.00	0.00
	212.U 176 N	0.00	0.00	0.00	0.00
	£10.0	0.00	0.00	U . UU	0.00
			10 4000 0000 0000 0000 0000 0000 0000 0	n anna anns anns anns anns anns ann ann	

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at

site 131.7L.					
Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
Cross Section 6 Station 16+30 (cont.)	280.0 284.9 342.0 358.0	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Cross Section 7 Station 19+05	0.0 2.0 8.0 10.0 14.0 18.0 20.0 24.0 28.0 32.0 36.0 40.0 44.0 51.0 54.0 71.0 84.0 96.0 100.0 102.0 104.0 108.0 102.0 124.0 128.0 122.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.0 132.	0.00 0.00 0.00 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.50 1.00 1.00 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.03\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

# Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at

Table B-3.2 (cont.) IFG-4 Calibration velocities (ft/sec) at site 131.7L.					
Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
Cross Section 7 Station 19+05	160.0 164.0	2.30	1.98	1.27 1.10	0.69 0.59
(cont.)	168.0 172.0 176.0	2.00 1.80 1.70	1.56 1.56 1.56	1.30 1.17 1.20	0.79 0.79 0.80
	178.0 182.0 186.0	1.90 2.30 2.20	1.70 1.90 2.00	1.18 1.16 1.15	0.50 0.54 0.59
	190.0 194.0 198.0	1.90	1.05	0.90 0.67 0.57	0.40 0.30 0.10
	202.0 208.0 212.0	1.80 1.70 1.50	1.20 1.41 0.95	0.10 0.36 0.39	0.10 0.10 0.10
	210.0 220.0 224.0 228_0	1.40 1.55	1.20 1.30 1.42	0.40 0.50 0.50	0.35 0.21 0.15
	232.0 236.0 240.0	1.60 1.74 1.45	1.34 1.30 1.10	0.40 0.55	0.18 0.00
	244.0 248.0 254.0	1.16 1.25 1.25	0.95 0.90 0.85	0.35 0.25 0.10	0.00
	258.0 262.0 266.0	1.25 1.35 1.35	0.72 0.65 0.60	0.24 0.35 0.42	0.00 0.00 0.10
	270.0 274.0 278.0	1.28 1.35 1.06	0.65 0.94 0.95	0.35 0.25 0.20	0.10 0.10 0.10
	282.0 285.0 288.0	1.06 0.80 0.80	0.79 0.60 0.50	0.10 0.26 0.20	0.10 0.05 0.05
	290.0 294.0 298.0	0.80 0.45 0.45	0.40 0.25 0.20	0.10 0.00	0.00
	302.0 305.0 311.0	0.30 0.35 0.35	0.10 0.10 0.10	0.00	0.00 0.00 0.00
	315.0 319.0 323.0	0.65	0.25 0.20 0.25	0.00	0.00
	327.0 331.0 935 0	0.45 0.30	0.25 0.15 0.12	0.00	

Location Within Site	Hor Dist (ft)	Velocities at 240 cfs	Velocities at 150 cfs	Velocities at 55 cfs	Velocities at 18 cfs
438 459 569 429 434 456 458 459 659 659 659	4889 4939 4959 4.69 4688 4529	තරයා හැටම කරන කරන නිසා නිසා නිසා කරන කරන කරන කරන	बरोड कोठे तरहे। तरहे कोठे- चांदर प्रथंत प्रथंत चांदर रहड	තුනුමා පරාල පරාලා කරනා කිරීම වෙදින එබුලා වලාව වෙසින් පරිත	ब्दाप्र, स्ट.अ. (साठ) व्याप्त द्वापु स्वाप्त व्याप्त क्यां का क
Cross Section 7	339.0	0.30	0.10	0.00	0.00
Station 19+05	343.0	0.30	0.10	0.00	0.00
(cont.)	347.0	0.10	0.00	0.00	0.00
	351.0	0.01	0.00	0.00	0.00
	355.0	0.00	0.00	0.00	0.00
	359.0	0.00	0.00	0.00	0.00
	362.0	0.00	0.00	0.00	0.00
	367.0	0.00	0.00	0.00	0.00
	414.0	0.00	0.00	0.00	0.00
	432.0	0.00	0.00	0.00	0.00

.

.

Table B-3 2 (cont.) IFG-4 Calibration velocities (ft/sec) at

.

Table B-3.3	IFG-4 Calibration velocities (ft/sec) at site 132.6L.				
Location	Hor Dist	Velocities at	Velocities at		
WILDIN SILE	(ft)	141 cfs	2/ cfs		
· · ·					
Cross Section 1	0.0	0.00	0.00		
station 0-00	0./	0.00	0.00		
	9.0	0.00	0.00		
	y.3	0.00	0.00		
	9.5	0.00	0.00		
	10.0	0.60	0.00		
	12.0	0.50	0.00		
	14.0	1.50	0.00		
	16.0	2.10	0.00		
	18.0	2.20	0.00		
	20.0	2.20	0.00		
	21.0	2.20	0.95		
	24.0	2.00	1.15		
	28.0	2.80	1.30		
	29.0	2.20	1.60		
	31.0	1.95	1.20		
	32.0	1.80	1.30		
	33.0	1.90	1.50		
	30.0	2.20	1.32		
	39.0	2.20	1.10		
	40.0	2.2U 1.05	1.20		
	43.0	1.50	1.10		
	47 0	1 50	1.10		
	48 0	1 40	0.90		
	51.0	1 30	0.00		
	52.0	1.50	0.20		
	55.0	1.50	0.65		
	56.0	1,60	0.90		
	59.0	1.70	1.50		
	60.0	1.70	1.30		
	63.0	1.70	1,45		
	64.0	1.50	1.26		
	67.0	1.80	0.90		
	68.0	2.00	1.10		
	70.0	2.20	1.30		
	72.0	1.90	1.20		
	74.0	1.80	0.90		
	76.0	1.50	0.50		
	77.8	1.20	0.00		
	72 0	0 00	0 00		

	Hor	Velocities	Velocities
Location	Dist	at	at
Within Site	(ft)	141 cfs	27 cfs
Cross Section 1	80.0	0.00	0.00
Station 0+00	83.0	0.00	0.00
(cont.)	98.0	0.00	0.00
	109.0	0.00	0.00
Cross Section 2	0.1	0.00	0.00
Station 1+24	4.0	0.00	0.00
	18.5	0.00	0.00
	31.5	0,00	0.00
	32.0	0.00	0.00
	34.0	0.00	0.00
	36.0	0.00	0.00
	37.0	0.00	0.00
	38.0	0.00	0.00
	40.0	0,60	0.20
	42.0	0.90	0.10
	44.0	1.20	0.10
	46.0	1.75	0.32
	48.0	2.30	0.60
	50.0	2.50	0.47
	52.0	2.70	0.95
	54.0	3.00	1.15
	56.0	3.30	1.20
	.58.0	3.35	1.37
	60.0	3.40	1.30
	62.0	3.30	1.25
	64.0	3.20	1.30
	66.0	3.20	1.05
	68.0	3.20	0.90
	70.0	2.85	0.80
	72.0	2.50	0.80
	74.0	1.70	0.50
	76.0	0.90	0.45
	78.0	1.00	0.00
	80.0	0.56	0.00
	82.0	1.36	0.00
	84.0	0.21	0.00
	86.0	0.00	0.00
	88.0	0.00	0.00
	90.0	0.35	0.00
	02 0	0 68	0.00
	Hor	Velocities	Velocities
-----------------	-------	------------	------------
Location	Dist	at	at
Within Site	(ft)	141 cfs	27 cfs
Cross Section 2	96.0	0.40	0,00
Station 1+24	100.0	0.20	0.00
(cont.)	104.0	0.00	0.00
	111.5	0.00	0.00
	139.0	0.00	0.00
	161.0	0.00	0.00
Cross Section 3	0.0	0.00	0.00
Station 2+46	8.5	0.00	0.00
	23.0	0.00	0.00
	23.5	0.00	0.00
	24.0	0.85	0.00
	26.0	2.20	0.00
	28.0	2.30	0.00
	30.0	2.80	0.64
	32.0	2.80	0.65
	34.0	2.80	0.60
	36.0	2.80	0.70
	38.0	3.10	1.50
	40.0	3.20	2.22
	42.0	3.30	3.00
	44.0	3.40	2.00
	46.0	3.50	1.55
	48.0	3.30	1.35
	50.0	2.20	0.50
	52.0	2.00	0.40
	54.0	1.80	0.00
	58.0	1.60	0.00
	62.0	0.40	0.00
	66.0	0.40	0.00
	70.0	0.10	0.00
	74.0	0.07	0.00
	78.0	0.85	0.00
	80.0	0.90	0.00
	82.0	0.70	0.00
	84.0	0.80	0.00
	86.0	0.50	0.00
	88.0	0.25	0.00
	90.0	0.00	0 00

-

Table B-3.3 (cont.) IFG-4 Calibration velocities (ft/sec) at site 132.6L.

5. #

Location Within Site	Hor Dist (ft)	Velocities at 141 cfs	Velocities at 27 cfs	
	00.0	0.00	0.00	
cross Section 3	90.3	0.00	0.00	
Station 2740	93.U 104 4	0.00	0.00	
(cont.)	170 5	0.00	0.00	
	24/54	0.00	0.00	
Cross Section 4	0.0	0.00	0.00	
Station 3+90	17.6	0.00	0.00	
	18.0	1.20	0.00	
	20.0	1.40	0.00	
	22.0	1.80	0.00	
	24.0	2.00	0.00	
	30.0	1.60	0.00	
	32.0	1.70	0.00	
	34.0	1.80	0.00	
	36.0	1.80	0.00	
	38.0	1.90	0.50	
	40.0	2.00	0.40	
	42.0	1.90	0.40	
	44.0	2.00	0.40	
	46.0	2.10	0.40	
	48.0	2.20	1.00	
	50.0	2.30	1.60	
	51.0	2.40	1.60	
	53.0	2.40	1.70	
	55.0	2.60	1.75	
	57.0	2.40	1.60	
	59.0	2.30	1.60	
	61.0	2.00	1.45	
	62.0	2.00	1.15	
	64.0	1.90	0.90	
	66.0	1.80	0.75	
	68.0	1.60	0.35	
	70.8	1.50	0.70	
	72.0	1.50	0.00	
	74.0	1.60	0.00	
	76.0	1.70	0.00	
	78.0	1.90	0.00	
	80.0	1.60	0.00	
	84.0	1.40	0.00	
	86.0	0.90	0.00	
	88.0	0.90	0.00	

n and the set of the

Location	Hor Dist	Velocities at	Velocities at
Vithin Site	(Et)	141 cfs	27 cfs
Seen Conting 4	00.0	0.00	0.00
station 3+00	90.0 02 0	0.90	0.00
(cont )	92.0	0.90	0.00
(cont.)	94.0	0.90	0.00
	90.0	0.75	0.00
	98.0	0.60	0.00
	102.0	0.56	0.00
	106.0	0.48	0.00
	110.0	0.56	0.00
	114.0	0.30	0.00
	118.0	0.25	0.00
	122.0	0.00	0.00
	124.0	0.00	0.00
	126.0	0,00	0.00
	128.0	0.00	0.00
	130.0	0.00	0.00
	132.0	0.00	0.00
	152.0	0.00	0.00
	162.5	0.00	0.00
	182.0	0.00	0.00
	199.0	0.00	0.00
Cross Section 5	0.0	0.00	0.00
Station 5+11	40.0	0.00	0.00
	43.5	0.05	0.00
	44.0	0.20	0.00
	46.0	0.80	0.20
	48.0	1.10	0.35
	50.0	1.00	0.40
	52.0	1.10	0.35
	54.0	1.20	0.45
	56.0	1.30	0.45
,	58.0	1.30	0.35
	60.0	1.20	0.40
	62.0	1.20	0.40
	66.0	1.20	0.50
	68.0	1.20	0.50
	70.0	1.10	0.55
	74.0	1.00	0.40
	78.0	0.90	0.40
	80.0	0.80	0.45
	82.0	0.90	0.50

Location Within Site	Hor Dist (ft)	Velocities at 141 cfs	Velocities at 27 cfs	
Croce Section 5	86 0	1 00	0 //5	
Station 5+11	00.0 00.0	0.90	0.33	
(cont )	92 N	0.20	0.37	
	94.0	1.00	0.40	
	98.0	1 20	0.55	
	102 0	1 15	0.37	
	104 0	1 10	0.37	
	104.0	1.10	0.30	
	110.0	0.00	0.35	
	116.0	1 00	0.30	
	114.0	1 20	0.30	
	112 0	1 00	0.40	
	177 0	0.90	0.35	
	124.0	0.90	. 0.10	
	124.0	0.95	0.10	
	128 0	1 00	0.00	
	130 0	0 90	0.00	
	134 0	0.20	0.00	
	136 0	0.00	0.00	
	138.0	0.60		
	140.0	0.50	0.00	
	142.0	0.50	0.00	
	144.0	0.40	0.00	
	146.0	0.60	0.00	
	148.0	0.50	0.00	
	150.0	0.40	0.00	
	152.0	0.30	0.00	
	154.0	0.30	0.00	
	156.0	0,00	0.00	
	162.5	0,00	0.00	
	182.0	0,00	0.00	
	210.0	0.00	0.00	
Cross Section 6	0.0	0.00	0.00	
Station 6+94	25.0	0.00	0.00	
	29.0	0.00	0.00	
	30.0	0.00	0.00	
	32.0	0.35	0.00	
	34.0	0.50	0.15	
	36.0	0.70	0.15	
	38.0	0.90	0.15	

සක තම මස කාශ කත සහ සහ තම සහ කා කත කත කත කත සහ කත

Location Within Site	Hor Dist (ft)	Velocities at 141 cfs	Velocities at 27 cfs
কাইন প্রায় প্রায়- প্রায়- প্রায়- প্রায়- প্রায়- প্রায়- প্রায়- প্রায়- প্রায়-	and also also also also also	400-608-008-008-008-008-008-008-008-008-0	مراكل مركزه مر زند مايين مركزه بريزي مركزه مريز مركزه مريز مريز
Cross Section 6	42.0	0.90	0.10
Station 6+94	44.0	0.90	0.20
(cont.)	46.0	0,90	0.25
	50.0	0.80	0.30
	54.0	0.85	0.30
	56.0	1.00	0.30
	58.0	1,00	0.30
	62.0	0.93	0.30
	66.0	1.00	0.30
	68.0	0.90	0.30
	70.0	0.90	0.32
	72.5	0.90	0.22
	74.0	0.90	0.20
	76.0	0.90	0.30
	78.0	0.90	0.30
	80.0	0.85	0.30
	82.0	0,90	0.27
	84.0	0.90	0.30
	86.0	0.90	0.30
	88.0	0.90	0.30
	90.0	0.90	0.30
	92.0	0.90	0.30
	94.0	0.90	0.20
	96.0	0.90	0.20
	98.0	0.80	0.20
	100.0	0.80	0.15
	102.0	0.80	0.15
	104.0	0.80	0.00
	106.0	0.60	0.00
	108.0	0,50	0.00
	110.0	0.40	0.00 C
	112.0	6.40	0.00
	114.0	0,30	0.00
	116.0	0.30	0.00
	118.0	0.10	0.00
	120.0	0.10	0.00
	122 0	0.00	0.00
	124.0	0.00	0.00
	139.0	0.00	0.00
	160.0	0.00	0.00
	101 5	0.00	0.00

	Hor	Velocities	Velocities
Location	Dist	at	at
Within Site	(ft)	141 cfs	27 cfs
an ann aich aith aith ann ann ann ann ann ann	وجوره متحلة متعهد داركة تحتلنه شتبته		nata dillo deno Esta (123) dallo dello dello dello dello del
Cross Section 7	0.0	0.00	0.00
Station 8+52	18.2	0.00	0.00
	20.0	0.00	0.00
	22.0	0.00	0.00
	22.6	0.00	0.00
	23.5	0.00	0.00
	24.0	0.40	0.00
	26.0	0.20	0.00
	28.0	0.30	0.00
	30.0	0.70	0.00
	32.0	0.60	0°.00
	34.0	0.60	0.15
	36.0	0.60	0.15
	40.0	0.65	0.15
	44.0	0.70	0.25
	48.0	0.85	0.30
	52.0	0.80	0.25
	56.0	1.10	0.35
	58.0	0.90	0.40
	60.0	1.10	0.30
	62.0	1.10	0.35
	64.0	1.00	0.35
	66.0	1.00	0.30
	68.0	1.00	0.30
	70.0	1.00	0.40
	72.0	1.00	0.25
	74.0	1.00	0.30
	76.0	1.00	0.20
	/8.0	0.85	0.20
	80.0	0.90	0.10
	82.0	0.65	0.10
	84.0	0.60	0.10
	86.0	0.60	0.00
	88.0	0.60	0.00
	90.0	0.50	0.00
	92.0	0.50	0.00
	94.0	0.50	0.00
	96.0	0.50	0.00
	98.0	0.35	0.00
	100.0	0.30	0.00
	102.0	0.20	0.00

****

Location Within Site	Hor Dist (ft)	Velocities at 141 cfs	Velocities at 27 cfs
4000 4928 4924 1226 4936 4936 4938 4938 4938 4938 4938	-calls quark which solars as in galax	and with apply about an and the case when a to be about the	مرتویه دومی میرونه موارد مروود موارد مروود موارد مروود می
Cross Section 7	104.0	0.10	0.00
Station 8+52	106.0	0.10	0.00
(cont.)	108.0	0.00	0.00
	116.0	0.00	0.00
	121.5	0.00	0.00
	131.5	0.00	0.00
	145.0	0.00	0.00
	168.5	0.00	0.00
Cross Section 8	0.0	0.00	0.00
Station 9+79	18.0	0.00	0.00
	20.0	0.00	0.00
	21.0	0.00	0.00
	22.0	0.10	0.00
	24.0	0.20	0.01
	26.0	0.30	0.01
	28.0	0.40	0.05
	31.0	0.50	0.10
	32.0	0.50	0.10
	33.0	0.60	0.10
	36.0	0.70	0.10
	39.0	0.60	0.10
	40.0	0.60	0.10
	43.0	0.60	0.20
	44.0	0.60	0.20
	47.0	0.60	0.20
	48.0	0.5u	0.15
	51.0	0.60	0.20
	52.0	0.65	0.25
	56.0	0.70	0.25
	60.0	0.85	0.25
	64.0	0.90	0.20
	67.0	0.90	0.20
	68.0	0.90	0.20
	72.0	1.20	0.25
	75.0	1.30	0.35
	76.0	1.40	0.35
	79.0	1.40	0.30
	80.0	1.30	0.30
	83.0	1.30	0.40
	84 0	1 30	0 50

Location	Hor Dist	Velocities	Velocities	
Within Site	(ft)	141 cfs	al 27 cfe	
un and and the second and and and the second		400 400 400 400 400 400 400 400 400		
Cross Section 8	88.0	1.20	0.60	
Station 9+79	91.0	1.00	0.60	
(cont.)	92.0	0.80	0.50	
	95.0	0.80	0.50	
	96.0	0.60	0.30	
	98.0	0.60	0.30	
	99.0	0.50	0.25	
	100.0	0.40	0.20	
	102.0	0.30	0.15	
	103.0	0.20	0.10	
	105.7	0.10	0.00	
	128.0	0.00	0.00	
	155.0	0.00	0.00	
	168.0	0.00	0.00	
	178.0	0.00	0.00	
Cross Section 9	• 0.0	0.00	0.00	
Station 11+31	4.0	0.00	0.00	
	6.0	0.00	0.00	
	9.0	0.27	0.07	
	12.0	0.54	0.07	
	14.0	0.48	0.07	
	16.0	0.45	0.12	
	19.0	0.35	0.10	
	25.0	0.20	0.05	
	28.0	0.00	0.00	
	32.0	0.00	0.00	
	34.0	0.00	0.00	
	36.0	0.00	0.00	
	40.0	0.00	0.00	
	55.0	0.00	0.00	
	84.0	0.00	0.00	
	88.5	0.00	0.00	
	90.8	0.00	0.00	
	92.0	0.39	0.00	
	94.0	1.20	0.00	
	96.0	1.80	0.00	
	98.0	1.60	0.25	
	100.0	2.55	0.35	
	103.0	2.40	0.80	
	108.0	1.80	0.77	

.

කළ ' ආ රෝ හෝ හෝ නිස කත හෝ නික ක කත හෝ නික කත් හෝ නිත කත් හෝ නිත කත් කත කත කත කත කත කත හෝ නික කත් කත් කත් කත් ක

	Hor	Velocities	Velocities
Location	Dist	at	at
Within Site	(ft)	141 cfs	27 cfs
Cross Section 9	112.0	1.60	0.77
Station 11+31	116.0	1.10	0.56
(cont.)	120.0	1.00	0.54
	124.0	1.00	0.55
	127.0	1.70	0.35
	130.0	1.20	0.00
	132.0	2.30	0.00
	134.0	2.50	0.40
	136.0	2.50	0.55
	140.0	3.00	1.20
	142.0	2.70	1.20
	144.0	3.90	1.20
	148.0	3.20	1.20
	152.0	3.70	1.20
	156.0	2.45	0.80
	158.5	2.00	0.40
	164.0	0.96	0.30
	168.0	1.50	0.00
	170.6	1.00	0.00
	176.0	1.10	0.00
	180.0	1.05	0.00
	183.0	0.32	0.00
	184.0	0.00	0.00
	186.0	0.00	0.00
	193.0	0.00	0.00
	210.5	0.00	0.00
	219.0	0.00	0.00

.

IFG-4 site 1	Calibration ve 36.0L.	locities (ft/:	sec) at
Hor Dist (ft)	Velocities at 265 cfs	Velocities at 153 cfs	Velocities at 81 cfs
$\begin{array}{c} 0.0\\ 1.0\\ 9.0\\ 11.0\\ 14.0\\ 14.0\\ 16.0\\ 19.5\\ 23.0\\ 25.0\\ 26.0\\ 28.0\\ 30.0\\ 32.0\\ 34.0\\ 36.0\\ 32.0\\ 34.0\\ 36.0\\ 38.0\\ 40.0\\ 42.0\\ 44.0\\ 46.0\\ 48.0\\ 50.0\\ 52.0\\ 54.0\\ 56.0\\ 58.0\\ 60.0\\ 66.0\\ 68.0\\ 70.0\\ 72.0\\ 74.0\\ 76.0\\ 78.7\\ 80.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20.0\\ 20$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.07\\ 0.07\\ 0.07\\ 0.07\\ 0.10\\ 0.10\\ 0.10\\ 0.10\\ 0.40\\ 0.60\\ 0.65\\ 0.73\\ 0.86\\ 0.95\\ 1.38\\ 1.54\\ 1.71\\ 1.95\\ 2.40\\ 2.39\\ 2.76\\ 3.80\\ 4.28\\ 4.42\\ 4.56\\ 4.18\\ 3.80\\ 3.20\\ 2.38\\ 1.81\\ 1.40\\ 1.50\\ 1.10\\ 1.20\\ 1.20\\ 0.70\\ 0.70\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.03\\ 0.03\\ 0.03\\ 0.05\\ 0.05\\ 0.05\\ 0.05\\ 0.25\\ 0.45\\ 0.55\\ 0.62\\ 0.78\\ 0.75\\ 0.97\\ 1.20\\ 1.54\\ 1.73\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.26\\ 2.30\\ 3.29\\ 3.29\\ 3.29\\ 3.29\\ 3.29\\ 3.29\\ 3.50\\ 2.90\\ 1.85\\ 1.30\\ 1.15\\ 1.00\\ 0.95\\ 0.87\\ 0.73\\ 0.00\\ \end{array}$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.50\\ 0.50\\ 0.60\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\ 2.00\\$
	IFG-4 site 1 Hor Dist (ft) 0.0 1.0 9.0 11.0 14.0 16.0 18.0 19.5 23.0 25.0 26.0 28.0 30.0 32.0 34.0 32.0 34.0 36.0 38.0 40.0 44.0 44.0 46.0 44.0 46.0 52.0 54.0 52.0 54.0 52.0 54.0 52.0 54.0 58.0 60.0 64.0 66.0 68.0 70.0 72.0 78.7 80.0 80.9 82.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IFG-4 Calibration velocities $(ft/)$ site 136.0L.HorVelocitiesVelocitiesDistatat(ft)265 cfs153 cfs0.00.000.001.00.000.009.00.000.009.00.070.0314.00.070.0316.00.070.0318.00.100.0523.00.100.0525.00.100.0526.00.400.2528.00.660.4530.00.650.5532.00.730.6234.00.860.7836.01.380.9740.01.541.2042.01.711.5444.01.951.7346.02.402.2650.02.762.0052.03.802.5754.04.283.2956.04.423.2958.04.562.3066.02.381.8568.01.811.3070.01.401.1574.01.200.7380.00.700.0080.00.700.0080.00.700.0080.00.700.0080.00.700.0080.00.700.0080.00.700.0080.00.700.008

.

Table B-3.4	IFG-4 site 1	Calibration ve 36.0L.	locities (ft/:	sec) at
Location Within Site	Hor Dist (ft)	Velocities at 265 cfs	Velocities at 153 cfs	Velocities at 81 cfs
Cross Section 1	82.8	0.00	0.00	0.00
Station 0+00	88.0	0.00	0.00	0.00
(cont.)	91.5	0.00	0.00	0.00
	93.5	0.00	0.00	0.00
Cross Section 2	0.0	0.00	0.00	0.00
Station 0+88	3.0	0.00	0.00	0.00
	4.0	0.00	0.00	0.00
	17.0	0.00	0.00	0.00
	20.0	0.00	0.00	0.00
	22.0	1.00	0.00	0.00
	24.0	1.00	0.00	0.00
	26.0	1.80	0.00	0.00
	28.0	1.90	0.00	0.00
	30.0	2.00	1.10	0.00
	32.0	2.20	1.50	0.00
	34.0	2.30	1.80	0.80
	30.0	3.00	2.70	1.35
	30.0	3.20	2.80	2.20
	40.0	3.33	3.20	2.50
	42.0	4 30	3.50	2.50
	46.0	4.30	3.50	2.40
	48.0	4.45	3.80	2.65
	50.0	4.30	3.50	2.65
	52.0	4.20	3.95	3.50
	54.0	4.10	3.50	3.10
	56.0	3.60	3.30	3.00
	58.0	3.00	2.50	1.75
	60.0	1.80	0.95	0.58
	62.0	0.80	0.50	0.20
	64.0	0.40	0.00	0.00
	73.0	0.00	0.00	0.00
	76.0	0.00	0.00	0.00
Cross Section 3	0.0	0.00	0.00	0.00
Station 1+95	3.0	0.00	0.00	0.00
	9.0	0.00	0.00	0.00
	10.0	0.30	0.10	0.00
	12.0	0.60	0.25	0.00
	14.0	1.80	1.10	0.40

# (end )

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400 400 400 400 400 400 400 400 400 400	. අයුත අතින මෙත අනුත අනුත අනුත අනුත අනුත අනුත අනුත අනු	ه مشته هوی مشته بالای میرو مقله مشته مشته مشته بالای مشته بالای مشته بالای م به شنه مشته بالای مشته مشته بالدی مشته مشته بالدی مشته بالدی م		201 400 400 500 500 400 400 400 50 50 50 50 50 50 50 50 50
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Location Within Site	Hor Dist (ft)	Velocities at 265 cfs	Velocities at 153 cfs	Velocities at 81 cfs
$\begin{array}{c} \mbox{Cross Section 3} & 16.0 & 3.05 & 1.95 & 1.05 \\ \mbox{Station 1+95} & 18.0 & 3.90 & 2.50 & 1.60 \\ \mbox{(cont.)} & 20.0 & 3.59 & 2.80 & 1.87 \\ 22.0 & 3.60 & 2.80 & 2.12 \\ 24.0 & 3.74 & 2.80 & 2.12 \\ 26.0 & 4.30 & 3.00 & 2.12 \\ 28.0 & 4.00 & 3.10 & 2.10 \\ 30.0 & 4.07 & 3.00 & 2.02 \\ 32.0 & 4.03 & 2.40 & 1.85 \\ 34.0 & 4.00 & 2.80 & 1.70 \\ 38.0 & 3.60 & 3.80 & 2.80 & 1.70 \\ 38.0 & 3.60 & 3.00 & 1.85 \\ 40.0 & 3.25 & 2.50 & 1.87 \\ 42.0 & 2.90 & 2.60 & 1.83 \\ 44.0 & 2.00 & 1.85 & 1.70 \\ 46.0 & 0.80 & 0.30 & 0.15 \\ 47.5 & 0.10 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 63.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 10.0 & 0.50 & 0.00 & 0.00 \\ 12.5 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 16.0 & 1.98 & 1.70 & 1.00 \\ 18.0 & 2.20 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.50 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ 32.0 & 2$	atala alala dalah atala qalan alaga alaga qalan qalan alaga	400 400 atta atta atta atta	and and and the same and a state state when the same and	4330 6360 4725 4640 4833 4828 5850 4840 4844 4444	400 400 400 400 400 400 400 400 400 400
$\begin{array}{c cross Section 5 & 16.0 & 3.05 & 1.95 & 1.05 \\ (cont.) & 20.0 & 3.59 & 2.80 & 1.87 \\ 22.0 & 3.60 & 2.80 & 2.12 \\ 24.0 & 3.74 & 2.80 & 2.12 \\ 26.0 & 4.30 & 3.00 & 2.12 \\ 28.0 & 4.00 & 3.10 & 2.10 \\ 30.0 & 4.07 & 3.00 & 2.02 \\ 32.0 & 4.03 & 2.40 & 1.85 \\ 34.0 & 4.00 & 2.80 & 1.82 \\ 36.0 & 3.80 & 2.80 & 1.70 \\ 38.0 & 3.60 & 3.00 & 1.85 \\ 40.0 & 3.25 & 2.50 & 1.87 \\ 42.0 & 2.90 & 2.60 & 1.83 \\ 44.0 & 2.00 & 1.85 \\ 47.5 & 0.10 & 0.00 & 0.00 \\ 59.0 & 0.00 & 0.00 & 0.00 \\ 59.0 & 0.00 & 0.00 & 0.00 \\ 59.0 & 0.00 & 0.00 & 0.00 \\ 59.0 & 0.00 & 0.00 & 0.00 \\ 59.0 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 10.0 & 0.55 & 0.00 & 0.00 \\ 12.5 & 1.00 & 0.50 & 0.00 \\ 12.5 & 1.00 & 0.50 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 16.0 & 1.98 & 1.70 & 1.00 \\ 18.0 & 2.20 & 2.00 & 1.00 \\ 20.0 & 2.60 & 2.35 & 2.20 \\ 22.0 & 2.67 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.50 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.14 \\ \end{array}$	Casas Cashian 2	16.0	3 O E	1 05	1 05
$\begin{array}{c} \text{Station 1793} & 18.0 & 3.90 & 2.30 & 1.80 \\ (\text{cont.}) & 20.0 & 3.59 & 2.80 & 1.87 \\ 22.0 & 3.60 & 2.80 & 2.12 \\ 24.0 & 3.74 & 2.80 & 2.12 \\ 26.0 & 4.30 & 3.00 & 2.12 \\ 28.0 & 4.00 & 3.10 & 2.10 \\ 30.0 & 4.07 & 3.00 & 2.02 \\ 32.0 & 4.03 & 2.40 & 1.85 \\ 34.0 & 4.00 & 2.80 & 1.82 \\ 36.0 & 3.80 & 2.80 & 1.70 \\ 38.0 & 3.60 & 3.00 & 1.85 \\ 40.0 & 3.25 & 2.50 & 1.87 \\ 42.0 & 2.90 & 2.60 & 1.83 \\ 44.0 & 2.00 & 1.85 & 1.70 \\ 38.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 63.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.1 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 10.0 & 0.50 & 0.00 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 14.0 & 1.70 & 0.99 & 0.00 \\ 16.0 & 1.98 & 1.70 & 1.00 \\ 18.0 & 2.20 & 2.00 & 1.00 \\ 22.0 & 2.60 & 2.35 & 2.20 \\ 22.0 & 2.67 & 2.40 & 2.15 \\ 24.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.40 & 2.19 \\ 26.0 & 2.70 & 2.50 & 2.14 \\ 32.0 & 2.90 & 2.70 & 2.16 \\ 34.0 & 3.20 & 3.00 & 2.25 \\ 38.0 & 2.90 & 2.70 & 2.14 \\ \end{array}$	Cross Section 3	10.0	3.05	1.95	1.05
$\begin{array}{cccc} Cont.7 & 20.0 & 3.69 & 2.80 & 1.07 \\ 22.0 & 3.60 & 2.80 & 2.12 \\ 24.0 & 3.74 & 2.80 & 2.12 \\ 26.0 & 4.30 & 3.00 & 2.12 \\ 28.0 & 4.00 & 3.10 & 2.10 \\ 30.0 & 4.07 & 3.00 & 2.02 \\ 32.0 & 4.03 & 2.40 & 1.85 \\ 34.0 & 4.00 & 2.80 & 1.82 \\ 36.0 & 3.80 & 2.80 & 1.70 \\ 38.0 & 3.60 & 3.00 & 1.85 \\ 40.0 & 3.25 & 2.50 & 1.87 \\ 42.0 & 2.90 & 2.60 & 1.83 \\ 44.0 & 2.90 & 2.60 & 1.83 \\ 44.0 & 0.80 & 0.30 & 0.15 \\ 47.5 & 0.10 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 55.0 & 0.00 & 0.00 & 0.00 \\ 61.0 & 0.00 & 0.00 & 0.00 \\ 55.10 & 0.00 & 0.00 & 0.00 \\ 61.0 & 0.00 & 0.00 & 0.00 \\ 55.10 & 0.00 & 0.00 & 0.00 \\ 55.10 & 0.00 & 0.00 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 12.0 & 1.00 & 0.50 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 1.70 & 0.90 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0.00 & 0.00 & 0.00 \\ 14.0 & 0$	Station 1-95	10.0	3.90	2.50	1.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(cont.)	20.0	3.39	2.00	1.0/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		22.0	3.00	2.00	2.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		24.0	3.74	2.00	2.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.0	4.30	3.00	2.12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		20.0	4.00	3.10	2.10
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30.0	4.07	3.00	2.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.0	4.03	2.40	1.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		34.0	4.00	2.00	1.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30.0	3.80	2.80	1.70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		30.0	3.00	3.00	1.80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40.0	3.43	2.50	1.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		42.0	2.70	2.00	1.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		44.0	4.00	1.03	1.70
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		40.0	0.80	0.30	0.15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		47.J 55 0	0.10	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		50 0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		59.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		63.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0	0.00	0.00	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cross Section 4	0.0	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Station 2+91	2.5	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7.5	0.00	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0	0.50	0.00	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		12.0	1.00	0.50	0.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12.5	1.00	0.50	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		14.0	1.70	0.90	0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		16.0	1.98	1.70	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		18.0	2.20	2.00	1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.0	2.60	2.35	2.20
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		22.0	2.67	2.40	2.15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		24.0	2.70	2.40	2.19
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		26.0	2.70	2.40	2.09
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		28.0	2.60	2.40	1.92
32.02.902.702.1634.03.102.852.2036.03.203.002.2538.02.902.702.14		30.0	2.70	2.50	2.14
34.03.102.852.2036.03.203.002.2538.02.902.702.14		32.0	2.90	2.70	2.16
36.03.203.002.2538.02.902.702.14		34.0	3.10	2.85	2.20
38.0 2.90 2.70 2.14		36.0	3.20	3.00	2.25
		38.0	2.90	2.70	2.14

මට ඇත ලබන මෙන මෙන මෙන මෙන මෙන මෙන අටුම සෙල සෙල සෙල කළේ කළේ පෙන මෙන මෙන වෙත වෙත වැන සැලා වෙන වෙත වෙත වෙත සෙල මෙන

Location Within Site	Hor Dist (ft)	Velocities at 265 cfs	Velocities at 153 cfs	Velocities at 81 cfs		
				A # #		
Cross Section 4	40.0	3.20	3.00	2.25		
Station 2+91	42.0	3.50	3.00	2.20		
(cont.)	44.0	3.20	2.90	2.38		
	46.0	3.00	2.80	2.20		
	48.0	2.95	2.72	2.4/		
	50.0	3.00	. 2.12	2.38		
	52.0	3.10	2.84	2.00		
	54.0	3.20	2.90	1./0		
	50.0	3.1/	2.70	1.65		
	58.0	3.14	2.07	1.60		
	60.0	1.70	0.90	0.50		
	02.0	1.54	0.00	0.00		
	04.U	1.40	0.00	0.00		
	60.U	1.3/	0.00	0.00		
	00.U 60 5	1.40	0.00	0.00		
	00.J 77 3	0.00	0.00	0.00		
	12.J 29 5	0.00	0.00	0.00		
	02.J 84 5	0.00	0.00	0.00		
	87.5	0.00	0.00	0.00		
Cross Section 5	0.0	0.00	0.00	0.00		
Station 4+23	2.5	0.00	0.00	0.00		
	13.7	. 0.00	0.00	0.00		
	14.0	0.00	0.00	0.00		
	16.0	0.10	0.00	0.00		
	18.0	0.35	0.15	0.10		
	20.0	0.50	0.20	0.10		
	22.0	0.75	0.25	0.10		
	24.0	1.00	0.40	0.15		
	26.0	1.20	0.60	0.30		
	28.0	1.30	0.95	0.30		
	30.5	1.40	1.10	0.30		
	32.0	1.60	1.30	0.40		
	34.0	2.40	1.45	0.80		
	36.0	2.25	1.65	1.05		
	38.0	2.10	1.65	1.00		
	40.0	2.20	1.65	0.82		
	42.0	2.30	1./0	1.10		
	44.0	2.25	1.65	0.9/		
	46.0	2.20	1.40	0.95		
	48.0	2.45	1,90	1.35		

4

	9 489 489 689 489 489 489 489 489 489 489 489 489	• 659 657 559 659 659 659 659 659 659 659 659 659		
Location	Hor Dist	Velocities at	Velocities at	Velocities
Within Site	(ft)	265 cfs	153 cfs	81 cfs
Cross Section 5	50.0	2.70	1.75	1.00
Station 4+23	52.0	2.40	1.80	1.37
(cont.)	54.0	2.05	1.70	1.05
	56.0	2.10	1.70	1.03
	58.0	2.15	1.55	0.95
	60.0	2.17	1.65	0.75
	62.0	2.18	1.75	1.10
	64.0	2.40	1.50	0.90
	66.0	2.75	1.50	1.10
	68.0	2.38	1.70	0.95
	70.0	2.00	1.48	1.05
	72.0	1.70	1.30	1.00
	74.0	1.40	1.05	0.40
	76.0	1.00	0.50	0.25
	78.0	0.90	0.40	0.18
	79.0	0.00	0.00	0.00
	79.8	0.00	0.00	0.00
	80.5	0.00	0.00	0.00
	83.0	0.00	0.00	0.00
	89.0	0.00	0.00	0.00
	91.0	0.00	0.00	0.00
Cross Section 6	0.0	0.00	0.00	0.00
Station 5+82	8.0	0.00	0.00	0.00
	8.5	0.00	0.00	0.00
	10.0	0.00	0.00	0.00
	11.0	0.00	0.00	0.00
	11.5	0.00	0.00	0.00
	12.0	0.00	0.00	0.00
	14.0	1.00	0.63	0.00
	16.0	1.65	1.20	0.00
	18.0	1.85	1.30	0.60
	20.0	2.58	1.90	1.30
	22.0	3.10	2.00	1.62
	24.0	3.25	2.20	1.75
	26.0	3.33	2.50	1.90
	28.21	3.36	2.50	1.80
	30. C	3.35	2.40	1.90
	2.5. 9	3.33	2.70	1.97
	34.0	3.32	2.60	2.00
	36 0	2 21	2 50	1 05

-

Location Within Site	Hor Dist (ft)	Velocities at 265 cfs	Velocities at 153 cfs	Velocities at 81 cfs
Cross Section 6	38.0	2.95	2.60	2.25
Station 5+82	40.0	2.78	2.20	1.95
(cont.)	42.0	2.69	2.40	1.70
	44.0	2.65	2.30	1.60
	46.0	2.40	1.90	1.25
	48.0	2.40	2.05	1.10
	50.0	2.30	2.00	1.10
	52.0	2.05	1.40	0.90
	54.0	2.04	1.00	0.60
	56.0	1.90	1.20	0.55
	58.0	1.32	0.80	0.35
	60.0	0.98	0.00	0.00
	62.0	0.32	0.00	0.00
	63.3	0.00	0.00	0.00
	65.0	0.00	0.00	0.00
	67.0	0.00	0.00	0.00
	68.0	0.00	0.00	0.00
	76.0	0.00	0.00	0.00
	79.0	0.00	0.00	0.00
	81.0	0.00	0.00	0.00

Streambed Station	Water Ele	- Surface evation	Discha	Velocity	
(ft)	Observed	Predicted	Observed	Predicted	Adjustment
	(ft)	(ft)	(cfs)	(cfs)	Factor
Calibration	Flow 279 cf	ŝ		and an	Allena - Allen - General Calendary and Calendary - Allena - General Calendary - Allena - General Calendary - A
0+00	361.08	361.08	272.6	272.4	1.00
3+74	362.60	362.60	270.5	270.2	1.01
5+64	362.98	362.98	272.5	272.2	.99
8+37	363.20	363.20	258.0	257.7	.99
10+23	363.50	363.50	267.5	267.2	.97
12+79	363.50	363.50	243.8	243.6	1.00
14+62	364.01	364.01	270.5	270.2	1.01
Calibration	Flow 25 cfs	;			
0+00	360.07	360.07	25.1	25.1	.99
3+74	361.83	361.83	26.7	26.7	.98
5+64	361.85	361.85	28.9	28.9	.99
8+37	362.36	362.36	26.5	26.5	.96
10+23	362.95	362.45	21.9	21.9	.92
12+79	362.45	362.45	28.4	28.4	1.00
14+62	363.34	363.34	23.5	23.5	.96

Table B-4.1. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 101.2R hydraulic model.

en som af den med en se of den galanting af den med en se som af den med en se som af den se som af den se som	I STATE FOR THE REAL PROPERTY OF THE PARTY OF T	an a	<u>a na ang pang managan kanang kanang mang kanang kanang kanang kanang kanang kanang kanang kanang kanang kanang</u>	anagena desse construint en presentation y son Constituent Mansa	
Streambed Station (ft)	Water Elev Observed (ft)	Surface vation Predicted (ft)	Discha Observed (cfs)	rge Predicted (cfs)	Velocity Adjustment Factor
Calibration	Flow 240 cf	S	nad y ogan ser hvy dogana min skrim kan na krister form den fra Mello	enter monte de la constante de la constante de la companya de la companya de la companya de la companya de la c	<u>na sina kana kana kana kana kana na kana kan</u>
0+00 2+45 6+45 9+45 11+90 16+30 19+05	617.03 617.07 617.61 617.63 618.17 619.52 620.71	617.01 617.05 617.56 617.56 618.12 619.50 620.69	230.8 253.3 221.8 227.5 242.5 250.8 259.7	240.0 239.5 230.6 219.1 235.8 247.1 257.3	.98 .98 .97 .99 .98 .98 .99
Calibration	Flow 150 cf	S			
0+00 2+45 6+45 9+45 11+90 16+30 19+05	616.78 616.91 617.32 617.28 617.77 619.23 620.55	616.81 616.92 617.35 617.33 617.82 619.25 620.59	156.7 160.2 156.0 137.4 144.2 152.5 151.9	150.9 153.7 151.6 142.0 147.9 155.3 162.0	1.01 1.02 1.01 1.03 1.03 1.02 1.02
Calibration	Flow 55 cfs				
0+00 2+45 6+45 9+45 11+90 16+30 19+05	616.42 616.69 616.92 616.86 617.24 618.73 620.41	616.41 616.69 616.97 616.92 617.26 618.74 620.39	57.3 58.4 61.9 51.0 49.8 54.5 62.0	56.1 56.6 58.8 53.4 52.3 54.5 57.1	1.00 1.04 1.03 1.03 1.04 1.01 1.01
Calibration	Flow 18 cfs				
0+00 2+45 6+45 9+45 11+90 16+30 19+05	616.03 616.49 616.67 616.62 616.83 618.30 620.20	616.04 616.49 616.65 616.59 616.82 618.30 620.20	17.9 18.6 20.2 19.2 17.5 17.6 17.9	18.6 19.5 21.5 18.8 17.3 17.9 18.8	.92 .96 .99 .94 .94 1.00 .96

Table B-4.2. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 131.74 hydraulic model.

Streambed Station	Water Ele	Surface	Discha	Velocity	
(ft)	Observed	Predicted	Observed	Predicted	Adjustment
	(ft)	(ft)	(cfs)	(cfs)	Factor
Calibration	Flow 141 cf	Ŝ	an gine ann an sao ann an an ann an Anna ann a		
0+00	626.05	626.05	127.2	127.4	1.00
1+24	626.28	626.28	142.0	142.3	.99
2+46	627.29	627.29	145.9	146.2	1.01
3+90	627.95	627.95	145.2	145.5	1.02
5+11	628.10	628.10	140.2	140.5	.97
6+94	628.16	628.16	142.4	142.7	.96
8+52	628.17	628.17	142.2	142.4	.95
9+79	628.19	628.19	132.3	132.6	.98
11+31	628.43	628.43	142.7	142.9	1.00
Calibration	Flow 27 cfs	;			
0+00	625.33	625.33	23.1	23.1	1.00
1+24	625.65	625.65	27.2	27.2	1.00
2+46	626.28	626.28	26.5	26.5	.99
3+90	627.23	627.23	25.1	25.1	.98
5+11	627.41	627.41	26.4	26.4	.97
6+94	627.43	627.43	28.0	28.0	.96
8+52	627.43	627.43	29.2	29.2	.87
9+79	627.52	627.52	27.6	27.6	.99
11+31	628.09	628.09	26.5	26.5	.92

Table B-4.3. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 132.6L hydraulic model.

Streambed Station	Water Surface Elevation		Discha	Velocity	
(ft)	(ft)	(ft)	(cfs)	(cfs)	Factor
Calibration	Flow 265 cf	S			
0+00 0+80 1+95 2+91 4+23 5+82	675.81 675.97 676.39 676.65 677.10 677.53	675.78 675.94 676.37 676.61 677.10 677.49	266.4 268.1 274.3 273.0 263.0 268.4	266.4 267.3 272.4 270.3 266.9 264.4	1.00 .99 1.00 .99 .99
Calibration	Flow 153 cf	S			
0+00 0+88 1+95 2+91 4+23 5+82	675.14 675.31 675.77 676.00 676.72 676.97	675.18 675.35 675.80 676.07 676.72 677.04	151.8 158.5 148.7 157.2 156.9 151.4	151.0 158.8 150.1 160.1 152.1 156.2	.9) 1.00 1.00 1.00 1.01 .99
Calibration	Flow 81 cfs				
0+00 C+88 1+95 2+91 4+23 5+82	674.64 674.82 675.31 675.61 676.33 676.64	674.62 674.80 675.30 675.58 676.33 676.61	/8.2 87.1 75.8 88.3 78.3 86.6	78.3 86.9 75.3 87.3 79.3 84.9	1.00 1.00 1.00 1.01 1.00 .99

Table B-4.4. Comparison between observed and predicted water surface elevations, discharges, and velocities for site 136.0L hydraulic model.

Statistics evaluating predictive ability of IFG-4 hydraulic models. Table 8-5. TOTAL SYSTEM UNSYST 0 P Std O Std F RMSE đ N RMSE RMSE æ b Site S DEF 715 1.1704 1.1599 0.6114 0.6071 0.0023 0.9891 0.0957 0.0100 0.0943 0.9962 101.2RVEL 715 0.8910 0.9086 0.6363 0.6012 0.0532 0.9600 0.1269 0.0361 0.1212 0.9934 Site DEP 900 1.0175 1.0102 0.6251 0.6130 0.0155 0.9776 0.1262 0.0173 0.1245 0.9935 131.71 VEL 900 0.5370 0.5454 0.2917 0.2864 0.0186 0.9809 0.0770 0.0100 0.0755 0.9948 Site DEP 629 1.0732 1.0663 0.5619 0.5547 0.0157 0.9789 0.1284 0.0171 0.1273 0.9925 VEL 629 0.8495 0.8882 0.6349 0.5711 0.0988 0.9291 0.1659 0.0683 0.1511 0.9884 132.61 Site DEF 474 1.5189 1.5127 0.6589 0.6408 0.0478 0.9644 0.1701 0.0283 0.1673 0.9887 VEL 474 1.7559 1.7711 1.2827 1.2037 0.0878 0.9586 0.1647 0.0490 0.1572 0.9945 136.0L 

N = number of observations.

O, P = mean of observed and predicted values.

Std D, Std P = standard deviation of observed and predicted values. a, b = y-intercept and slope of least squares regression between D and P. RMSE = root mean square error, total, systematic and unsystematic. d = index of agreement.

* see Willmott (1981) for discussion and use of these statistics.



Figure B-2.1 Scatterplots of observed and predicted depths and velocities from the calibrated IFG-4 hydraulic model at 101.2R.



Figure B-2.2 Comparison of observed velocities and velocities predicted by low flow IFG-2 model at site 101.5L, cross section 5.



Figure B-2.3 Comparison of observed velocities and velocities predicted by high flow IFG-2 model at site 101.5L, cross section 5.









Figure B-2.7 Scatterplots of observed and predicted depths and velocities from the calibrated IFG-4 hydraulic model at 131.7L. The diagonal line in each plot represents a one-to-one relationship.



Scatterplots of observed and predicted depths and velocities from the constant calibrated IFG-4 hydraulic model at 132.6L. The diagonal line in each plot represents a one-to-one relationship.



Figure B-2.9 Scatterplots of observed and predicted depths and velocities from the calibrated IFG-4 hydraulic model at 136.0L. The diagonal line in each plot represents a one-to-one relationship.





Table B-6.1. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area and juvenile chinook weighted usable area (WUA) forecast for Site 101.1R. Rating curves are not available for the unbreached condition (<9,200 cfs); mainstem discharge versus site flow rating curve is inapplicable above 22,000 cfs. Low and high turbidity conditions are assumed for discharges below and above 9,200 cfs. SITE GROSS WSEL SURFACE JUVENILE MAINSTEM SITE DISCHARGE FLOW CHINOOK AREA WUA (cfs) (cfs) (ft) (sq. ft. / 1000 linear ft.) 5000 31588 1 0 4 0 4 39026 2 46463 1 -6000 --1471 2 7000 --58631 2 2 8000 -5570 11210 -----70798 2 9000 2 8 16 362.19 10000 83712 26261 11000 362.40 90471 29533 12000 32 362.60 99200 26931 13000 59 362.81 111981 24498 14000 104 363.01 127928 22709 140939 152865 158443 3 15000 177 363.22 20795 363.42 363.62 16000 290 18577 17000 463 17791 5 720 164242 3 18000 363.82 17042 5 19000 1092 364.03 170271 3 16328 5 20000 1622 364.23176541 3 15646 5 2363 183062 3 21000 354.43 5 14996 22000 3383 364.63 187100 3 5 14376 23000 364.83 188468 3 13783 5 24000 -365.03 189847 3 5 13218 25000 365.22 191237 3 - 140 12678 5 192637 3 26000 -365.42 5 12162 27000 -365.62 1 5 197317 11670 ----28000 365.82 3 198766 11199 5 -29000 366.02 200227 3 10749 5 30000 *10* 366.21 201699 3 10320 5 366.41 203182 3 31000 -5 9909 32000 -366.61 204678 3 9516 5 -33000 366.80 206186 3 9141 5 34000 -207705 3 367.00 5 3781 35000 -367.19 209237 3 8452 5 Surface area based on aerial photography measurements 1 2 Interpolated value 3 Surface area at time t calculated as surface area at time t-1 raised to 1.003. Ą Site ponded

5 WUA at time t calculated as WUA at time t-1 raised to 0.998. Table B-6.2. Mainstem discharge, site flow and water surface elevation (WSEL), wetted (gross) surface area nad juvenile chinook weighted usable area (WUA) forecast for Site 101.5L. High turbidity habitat suitability criteria were used for all discharges. The low and high flow IFG-2 models were used to forecast hydraulic conditions below and above 8,500 cfs, respectively. MAINSTEM SITE SITE GROSS JUVENIED DISCHARGE FLOW WSEL SURFACE CHINOOK AREA WUA (cfs) (cfs) (ft) (sq. ft. / 1000 linear ft.) 50001466361.4028065860001570361.4728427070001664361.5429091880001784361.6230069090002056361.80308659100002333361.9731449910002616362.15320018 362.32 
 2905
 302.00

 3198
 362.49
 331026

 3496
 362.66
 337097

 3798
 362.82
 342076

 362.99
 345779
 362.99 363.15 

 4729
 363.32

 5047
 363.48

 5368
 363.64

368698 6019 22000 363.80 363.96 364.12 364.27 364.43 7019 392111 364.59 364.74 364.30407211365.05410691365.21413092 8389 87309090365.309443365.519799365.6610156365.8110516365.96 32000 421598 

Table B-6.3.	Mainstem di elevation ( juvenile ch Site 112.6L criteria we flow IFG-2 conditions respectivel range of ov	scharge, s WSEL), wet inook weig . High tu re used fo models wer below and y. Surfac erlap are T models	ite flow a ted (gross hted usabl rbidity ha r all disc e used to above 10,5 e area and averages o	nd water s surface e area (Wi bitat sui harges. forecast l 00 and ll WUA value f output	surface area and UA) modele tability The low an hydraulic ,000 cfs, es within from both	d for d high the
			******			. 1996 1998 1998 1998 1996 1997 1997
MATNS	TEM STOP	C T	<b>πρ</b> α	DUCC	THUENTIE	
DISCH.	ARGE FLOW	WS	EL SU	IRFACE	CHINOOK	
				AREA	WUA	
(cf)	s) (cfs	) (f	t) (sq.	ft. / 100	00 linear	ft.)
erren under diene werde norde konst werde allen ander ander ander under allen a	dava vinta dupla untin datar nomo estra finita datar estas anda data		nggan 4506 senge wann wann senge filit term sinne wann		ign ange at 55 gebie of 26 times allits ange ande 1964	
5	000 9	6 449	. 93 2	41007	76512	
61	000 18	1 450	.29 2	80371	72545	
7	000 31	0 450	.61 3	18562	69149	1
8	000 49	3 450	.91 3	40249	63242	
9	000 74	2 451	.18 3	57920	51672	
10	000 106	9 451	.43 3	75250	40909	
11	000 148	8 451	.67 3	87719	28522	
12	000 180	8 451	.90 4	02981	22284	
13	000 214	1 452	.12 4	12202	20101	
14	000 250	4 452	.32 4	27124	19212	
15	000 289	6 452	.52 4	42689	22461	
16	000 331	8 452	.71 4	53276	24175	
17	000 377	1 452	.89 4	62377	24900	
18	000 425	5 453	.06 4	67125	22166	
19	000 476	9 453	.23 4	71074	19233	
20	000 531	4 453	.39 4	74600	16707	
21		453	.55 4	77784	14799	
22		8 453	.71 4	81584	13045	
23	000 713 000 700	1 403 0 454	.85 4	84249	11943	
24	000 /00 000 951	0 404 0 <i>ASA</i>	.00 4	00/90	10814	
20	000 001	0 404 A ASA	.14 4 00 A	01644	10000	
20	000 524	ч 404 1 лел	• 40 4 A9 A	02051	9300	
28	000 1080	Q 151	.76 7 85 <i>Л</i>	06166	0004	
20	000 1080	0 454	.55 <del>-</del> 68 <i>/</i>	08304	7706	
20	000 1950	3 151		00362	1330	
31	000 1330	Q <u>45</u> A	- Q3 K	00302	6/10	
30	000 1033	7 <u>455</u>	.55 5	02000	5000	
22 27	000 1529	8 <u>455</u>	17 K	05303 165292	0330 5676	
34	000 1628	2 455	.29 5	08227	5570	
35	000 1730	9 455	.40 5	10083	5075	
			• •			

l Interpolated val e

Table	B-6.4.	Mainst	em disch	harge, site flo	ow and wate	er su	rface ele	evati	on
		(WSEL)	, wetted	d (gross) sur	face area a	and j	uvenile c	:hino	ok
		weight	ed usabl	le area (WUA)	forecast f	for S	ite 119.2	R.	Low
		and hi	gh turbi	dity condition	ons were as	sume	d for dis	char	ges
		below	and abov	ve 10,000 cfs	. Rating c	urve	s were in	appl	ic-
		able i	n the 5–	-10,000 and 2	5-35,000 cf	's di	scharge 1	ange	•
				na anna anna anna anna anna anna anna					
	MATNST	RM	SITE	SITR	GROSS		JUVENTLE		
	DISCHA	RGE	FLOW	WSRI.	SURFACE		CHINOOK		
				6 6 VAD, 1865, VAD	AREA		WUA		
	(cfs	s)	(cfs)	(ft)	(sq. ft. /	100	0 linear	ft.)	
utalia valora intere annea marte marte	adara waan waxa waxa sadaa waxaa maadi sada	8. 1288 1835 1855 1945 Aug. 4945		na dagan danan danak sakak dagan najar katak sakar danan danan danan danan danan danan danan d	2996 walk alle dille tiper alle time alle dille dille dille		g jip azzna nygyp space skyla strak kayo stak dan		
	~ ~						10400	æ	
	50	000	-112	4678-	56282	1	10468	4	
	60		- Linear	4658-	56282	1	10468	4	
	70		-	4660-	55282	1	10468	4	
	80			4966-	62946	2	14239	2	
	90	100	ഷം കേ	-	76275	2	23389	2	
	100	000	15	508.83	88953		34430		
	110	000	25	509.03	93316		36815		
	120	000	40	509.23	105765		38833		
	130	000	61	509.42	108515		38365		
	140	000	90	509.61	111092		33527		
	150	)00	130	509.79	114256		28625		
	160	000	184	509.96	117710		23436		
	170	000	254	510.13	122129		19443		
	180	)00	344	510.29	127617		17479		
	190	000	459	510.45	130593		14588		
	200	000	603	510.61	132479		11345		
	210	000	782	510.76	137254		9960		
	220	000	1001	510.91	142216	3	8759	5	
	230	000	1268	511.06	147374	3	7717	5	
	240	000	1591	511.20	152734	3	6811	5	
	250	000	-		157364	3	6292	5	
	260	000			161177	3	6076	5	
	270	000	*ideate		165091	3	5868	5	
	280	000	10100		169108	3	5668	5	
	290	000			173231	3	5475	5	
	300	000			177463	3	5290	5	
	310	000			181807	3	5112	5	
	320	000		-	186267	3	4941	5	
	330	000	10409		190845	3	4776	5	
	340	000		-	195545	3	4617	5	
	350	100	40045	esilar.	200371	3	4464	5	

Constant surface area based on aerial photography measurements
 Interpolated value

3 Surface area at time t calculated as surface area at time t-1 raised to 1.001

4 WUA assumed equal to 18.6 percent of surface area

5 WUA at time t calculated as surface area at time t-l raised to 0.993 (22-25,000 cfs) or 0.998 (25-35,000 cfs)

Table	B-6.5. M j s	lainstem d elevation juvenile d Site 131.7 criteria w	lischarge (WSEL), hinook w 'L. High vere used	e, site f wetted ( weighted h turbidi l for all	low and wat gross) surf usable area ty habitat discharges	er sur ace ar (WUA) suitab	face ea and foreca ility	ist for
anan ang ang ang ang ang ang	19 4996 1799 4999 498 496 1894 1894 1894 1894 1894 1894 9 4999 4986 4998 4986 4986 1896 1896 1896 1896 1896	n anna anna -una anna anna anna anna ann	8 4655 4056 4250 4865 4860 4860 4860 486 8 465 4966 4865 1965 486 486 486 480 480	5 420 4275 1446 4325 1476 4326 4476 4456 4458 4458	500 000 000 000 500 500 000 000 000 000		1990, 4005 1991, 1992, 1992, 1995, 199 1997, 1998, 1998, 1998, 1992, 1997, 1997	
	ΜΑΤΝΟΤΕ	M STI	50	STTP	CDACC	TTT	UDNITD	
	DISCHAR	NGR FLC	. 15 NW	WSRI.	SUBBACE	0 U	NUVVK	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		* 4 5		APRA	· ·	WIIA	
400% 400k 440k 1650, 46/2 40	(cfs)	(cí	`s)	(ft)	(sq. ft. /	1000	linear	ft.
	500	0	7	616.24	109815		30214	
	600	0	13	616.40	123973		36623	
	700	0	21	616.56	132671		41588	
	800	10	33	616.71	137546		45776	
	900	0	49	616.86	141445		46487	
	1000	0	69	617.00	151533		46977	1
	1100	00	95	617.13	176337		47466	1
	1200	1 00	.27	617.26	189058		47956	
	1300	0 1	.66	617.39	199945		47491	
	1400	0 2	13	617.52	212707		45734	
	1500	10 2	68	617.64	218480		44188	
	1600	0 3	33	617.76	221802		41630	
	1700	10 4	07	617.88	225003		39721	
	1800	10 4	93	617.99	228212		37451	
	1900	0 5	90	618.11	231356		35713	
	2000	10 7	01	618.22	234829		34628	
	2100	30 00	125	618.33	238209		33964	
	2200	0 9	63	618.44	241542		33771	
	2300	0 11	.17	618.54	244858		32056	2
	2400	10 12	88	618.65	248153		31863	2
	2500	0 14	76	618.75	251413		31670	2
	2600	0 16	83	618.86	254655		31477	2
	2700	0 19	109	618.96	257640		31285	2
	2800	0 21	.55	619.06	260818		31092	2
	2900	0 24	23	619.16	263973		30899	2
	3000	0 27	14	619.26	267116		30706	2
	3100	0 30	28	619.36	270237		30514	2
	3200	0 33	67	619.45	273345		30321	C.
	3300	0 37	31	619.55	276433		30128	2
	3400	0 41	22	619.64	279509		29935	2
	3500	0 45	41	619.74	282572		29743	2
l Int	erpolated	value						

2 WUA at time t calculated as WUA at time t-1 raised to 0.995
Table	B-6.6.	Mainste tion (W chinook 132.6L. for dis curves	m di SEL) wei Lo char are	scharge , wette ghted u w and h ges bel inappli	e, site ed (gro isable nigh tu low and icable	flow ss) su area (rbidit above below	and wat irface a (WUA) fo y condi = 10,500 10,500	er sur rea ar recast tions cfs. cfs.	rface el nd juver t for Si are ass Rating	leva- nile te sumed	1
uriyan tahun kiyan ashin kejin. Tahun milan ajara rajay tamin	alam anno alba ilian anno teos anno albar a anno alba alba alba, anno anno assa assa assa a	na vezi est vezi ate azi zen vezi Ri ate est ate ate ate	anah siter anto adam	niyo dhun ana mayo sont alim il Alim alim alim alim ani ani	0), ande Ming State ware, ware, mane 16, anne, wroe, waart ware mane	4000 4025 4000 5405 4000 40 4007 4000 4044 405 405 40	na 1955. Mini 1955. Uta ajan man disa n mini man man man	ana ana aon maa mit a ana ana aon ana ani a	ter ande ande alles ande ande ande an	10 000 000 000 0 1 000 000 000 0	===
	MAINST	TEM ARGE	SITE FLOW		SITE WSEL	S	GROSS SURFACE AREA	JI (JVENILE CHINOOK WUA		
	(cf:	з)	(cfs)	(ft)	(\$9	1. ft. /	1000	linear	ft.)
	5(6(7(8(9(10(10(12) 11(12) 13(14) 15(15(15) 16(15) 16(17) 20(21(22) 23(24) 25(25) 26(27) 28(29)	000 000 000 000 000 000 000 000 000 00	$ \begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	0 2 7 4 2 1 3 7 4 3 6 2 2 7 6 0 9 5 6 4	- - - - - - - -		0 14976 29951 39165 48378 57592 57592 59274 63544 67533 72391 74895 78605 80215 82569 87157 91843 93754 98212 100202 102175 104025 107262 102398 111506 115114	1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1	0 2145 4290 6435 8580 16528 16791 17214 17695 18219 18207 17264 16508 14932 13221 12328 12464 11201 10602 10896 10314 9848 9982 10300 10209	2 2 2 4	
	300 310 320 330 340 350	000 000 000 000 000	69 78 88 99 111	u 3 4 2 1	627.94 627.81 627.88 627.94 628.01 628.07		121236 125569 130071 134748 139608 144659	3 3 3 3 3	9845 9665 9490 9317 9149	5 5 5 5 5 5	
l Su	face ar	ea based	on	aerial	photog	raphy	measure	ments			

2 Interpolated value

- 3 Surface area at time t calculated as surface area at time t-1 raised to 1.003
- 4 WUA assumed equal to low turbidity WUA forecast just prior to breaching
- 5 WUA at time t calculated as surface area at time t-1 raised to 0.998

MAINSTEM SITE SITE SITE SITE GROSS JUVENILE DISCHARGE FLOW WSEL SURFACE CHINOOK AREA WUA (cfs) (cfs) (ft) (sq. ft. / 1000 linear ft.)	Table	B-6.7. M e j s c	ainstem dis levation (W uvenile chi ite 136.0L. riteria wer	charge, site SEL), wetted nook weighte High turbi e used for a	flow and w (gross) su d usable ar dity habita ll discharg	ater s rface ea (Wl t suit es.	urface area and IA) forec ability	ast for
MAINSTEM SITE FLOW SITE WSEL SITE SURFACE JUVENILE CHINOOK AREA JUVENILE WUA (cfs) (cfs) (ft) (sq. ft. / 1000 linear ft.) 5000 12 613.90 28854 7662 6000 19 614.21 31895 7450 7000 28 614.77 37446 6114 9000 53 615.25 41025 5592 1 10000 69 615.25 41025 5592 1 11000 88 615.47 46746 5364 1 12000 110 615.68 49043 5398 13000 136 615.87 51636 5431 14000 165 616.07 52775 5193 15000 197 616.25 53875 4274 16000 233 616.42 54996 4135 17000 272 616.59 56226 3792 18000 315 617.76 63930 3866 23000<	anan anan sala sala san sa	da manga adhar dacha angan yakaya adhan manga manta manta Ba dabag muna samba manga dalam akaya adhah adaba dalam.	1000 1000 1000 1000 1000 1000 1000 100			anga cana cana tang ang ang		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MATNSTR	M SITR	STTR	GROSS		THURNTTR	
$\begin{array}{c cr} \begin{array}{c} \mbox{AREA} & \mbox{WUA} \\ \hline \mbox{(cfs)} & \mbox{(cfs)} & \mbox{(ft)} & \mbox{(sq. ft. / 1000 linear ft.)} \\ \hline \mbox{AREA} & \mbox{WUA} \\ \hline \mbox{(sq. ft. / 1000 linear ft.)} \\ \hline \mbox{Solution} \\ \hline Solut$		DISCHAR	GE FLOW	WSEL	SURFAC	R	CHINOOK	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					AREA		WUA	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	122160 Lillon adopt acces when an	(cfs)	(cfs)	(ft)	(sq. ft.	/ 100	0 linear	ft.)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		200			00054		6000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		500		613.90	28854		7662	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		500	0 19	614.21	31890		7450	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		200	0 20	614.00 61/ 77	30000 2711 k		6300	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		900	0 53	615 02	30388		5855	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1000	0 69	615.25	41025		5592	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1100	0 88	615.47	46746		5364	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1200	0 110	615.68	49043		5398	-40-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1300	0 136	615.87	51636		5431	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1400	0 165	616.07	52775		5193	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1500	0 197	616.25	53875		4274	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1600	0 233	616.42	54996		4135	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1700	0 272	616.59	56226		3792	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1800	0 315	616.76	57824		3350	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1900	0 362	616.92	59070		3366	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2000	0 414	617.07	60332		3892	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2100	0 469	617.22	61611		3945	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2200	0 529	617.37	62780		3936	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2300	0 593	617.51	63930		3866	
25000 735 617.78 65973 3838 26000 814 617.91 66662 3683 27000 897 618.04 67341 3748 28000 985 618.17 68019 3803 29000 1079 618.30 68673 3807 30000 1177 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2400	U 662	617.65	65004		3862	
26000 814 617.91 66662 3683 27000 897 618.04 67341 3748 28000 985 618.17 68019 3803 29000 1079 618.30 68673 3807 30000 1177 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2500	0 735	617.78	65973		3838	
27000 837 618.04 67341 3748 28000 985 618.17 68019 3803 29000 1079 618.30 68673 3807 30000 1177 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2000	0 814	610.01	66662		3683	
28000 1079 618.17 68019 3803 29000 1079 618.30 68673 3807 30000 1177 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2700	0 097	010.U4 610 17	67341		3748	
30000 1177 618.30 68673 3807 30000 1177 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2000	0 300	610.17	00013		3803	
31000 1281 618.42 69292 3817 31000 1281 618.54 69854 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		2000	0 1075 0 1177	010.JU	000/3		3807	
31000 1201 018.34 09804 3918 32000 1390 618.65 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		3000	0 1281 0 TTU	010.44 619 64	09292 60961		3817	
32000 1330 618.03 70302 3908 33000 1505 618.77 70753 3894 34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		3200	0 1300	610.04	702034		3319	
34000 1626 618.88 71183 3894 35000 1752 618.99 72227 3769		3500	0 1330 N 1606	010.00 R12 77	10302		3900	
35000 1752 618.99 72227 2769		2700	0 1696	610.77 610.90	71100		300V 9024	
AFTER WAR ALL LATER THE THE ALL LATER A		3500	0 1752	618.99	72227		3769	

1 Interpolated values

Table B	-6.8. Mainst elevat juveni Site 1 used t 21,000	em discharg ion (WSEL), le chinook 47.1L. The o forecast cfs.	ge, site flo wetted (gr weighted us low and hi hydraulic c	w and water a oss) surface able area (W gh flow IFG- onditions be	surface area and UA) forecast for 2 models were low and above
alla and and and and and and	1996 1997 1998 1998 1998 1998 1998 1998 1998	- 1994 - 1980 - 1994 - 2006 - 2006 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996	n allen anne must som aver ante alle den den som ante anne ante	1998 446° 4661 4466 4466 4866 4976 4986 1996 1996 4566 4566 4566 4 1998 496° 4661 1998 1998 1998 1996 1996 1996 1996 1	n)) wait wait wait waa uto waa waa waa aan aya aya waa aha waa aha aha dha dha
	MAINSTEM	SITE	SITE	GROSS	JUVENILE
	DISCHARGE	FLOW	WSEL	SURFACE	CHINOOK
	(cfs)	(cfs)	(ft)	(sq. ft. /	1000 linear ft.)
	9000 9500 mmm shalls when also mark the mark that when the	n capital militar allerta milita milita milita escata escata esc	an anna anna anna ann	and and also bet and and and also also and and also a	al F Anti- Anni - Anni
	5000	1066	811.56	181538	5341
	6000	1326	811.80	186579	5028
	7000	1594	812.03	191465	4661
	8000	1870	812.26	197141	4691
	9000	2154	812.48	202683	5318
	10000	2443	812.63	207274	5256
	11000	2738	812.90	211652	5313
	1200	3039	813.11	215714	5033
	13000	3344	813.31	219556	5441
	1-1000	3655	813.51	223252	6165
	10000	3969	813.70	226416	6250
	10000	4288	813.89	229353	6465
	17000	4011	814.08	232410	6118
	18000	4937	814.27	235319	6789
	19000	5207	814.45	238268	7267
	20000	5601	814.04	241216	7105
	21000	2000	814.82	240303	paat
	22000	02/8	810.00	249457	7814
	23000	6067	010.10	202493	8269
	24000	7215	010.30	200130	9303
	25000	7667	010.00	203030	9370
	27000	8021	Q15 Q7	201320	3340
	28000	8348	816 04	209711	3300
	20000	8728	816 21	201310	9700
	20000	9730	816 28	270103	0703
	31000	9464	816 54	272058	10120
	32000	9830	916 71	277199	0600 TAT93
	33000	10100	816 97	6/1144 970781	3043 2050
	34000	10570	817 02	213034 2200/1	0303
	35000	10943	817 20	200341	8202
	100 100 100 100 100	الموقع بن المحال المحال المحال	کرسة غميند جب تا سخب هسه	O V V T V V	0006