

FIRST DRAFT

1983 PHASE II ADULT ANADROMOUS INVESTIGATIONS
/ SUSitna river hydro aquatic studies

by

B. M. Barrett, F. M. Thompson and S. N. Wick.

Alaska Departmant of Fish and Game Sustha Hymro Acuatic Studies

2207 Spenard Road
Anchorage, Alaska 99503

PREFACE

This report was prepared for the Alaska. Pouer Authority (APA) and its principal contractor, Harza-Ebasco Susitna Joint Venture by Alaska Department of Fish and Game (ADFGG) staff. It is one of several reports that will provide the basis for evaluating the proposed Susitna Hyaroelectric project. The sole purpose of this report is to specifically address the 1983 adult anadromous fisheries studies contracted to ADF\&G by APA, Other APA contracted investigators will evaluate development and operation impacts and appropriate migration measures for the proposed Susitna Hydroelectric project as pertinent to anadromous fish and other resources.

All questions concerming this report should be directed to:

> Thomas W. Trent
> Aquatic Studies Coordinator
> Alaska Department of Fish and Game
> Su Hydro Aquatic Studies Program
> 2297 Spenard Read
> Anchorage, Alaska 99503
> Telephone (907) 2747583

TABLE OF CONTENTS

PACE
PREFACE \dagger
TABLE OF CON: :NTS $i 1$
LIST OF FIGURES viil
LIST OF TABLES xv
LIST OF PLATES xxiil
ACKMONL EDGEMENTS xxy
LIST OF APPENDIX FIGURES PART B
LIST OF APPENOLX TABLES part b
1.0 OBJECTIVES 1
2.0 METHODS 2
2.1 Eulachon 2
2.1.1 Intertidal 2
2.1.2 Main Channe? 7
2.2 Adult Salmon. 8
2.2.1 Main Chamel Escapement Monitoring. 8
2.2.1.1 Sonar Operations 10
2.2.1.2 Fishwheel Operations 11
2.2.1.3 Tagging Operations 12
2.2.1. Age, Longth and Sex composition Sampling. 14
2.2 .1 .5 Fecundrty Sampling 15
2.2 .2 Gpawning Ground and Tag Recovery 17
2.2.2.1 Sloughs and sireams 18
2.2.2.1.1 Chinook Saimon Index Counts 18
2.2.2.1.2 Observation Lffe Surveys 19
2.2.2.1.3 Egg Retention Sampling 20
2.3 Bering Cisco 21
2.4 Data Analysis and Evaluation. 21
2.4.1 Eulachon 21
2.4.2 Salmon Tag and Recapture Escapement Estimates 21
2.4.3 Calculation of Main Chamnel Escapement Timing 24
2.4.4 Age Determination. 24
2.4.5 Slough Escapement. 25
3.0 RESULTS AMO DISCUSSION 27
3.1 Eulachon 27
3.1.1 Intertida? 27
3.1.2 Main Channel 39
3.2 Adult Salmon. 52
3.2 .1 Chimook Salmon 53
3.2.1.1 Intertidal to Talkeetna. 53
3.2 .1 .1 .1 Main Channel Escapenent Monitoring 53
3.2 .1 .2 Talkestna to Upper Devil Canyon. 69
3.2 .1 .2 .1 Haim Chamel Escapenent Monitoring. 64
3.2.1.2.2 Spawning Ground Surveys 69
3.2.1.2.2.1 Main Channel 69
3.2.1.2.2.2 Sloughs and Streams. 71
3.2.1.3 Escapement Index Surveys 73
3.2.2 Sockeye Salmon 78
3.2.2.1 Intertidal to Talkeetna. 78
3.2.2.1.1 Main Channel Escapement Monitoring. 78
3.2.2.1.1.1 First Run. 78
3.2.2.1.1.2 Second Run 82
3.2.2.1.1.3 Fecundity 89
3.2.2.1.2 Spawning Ground Surveys 91
3.2.2.1.2.1 Sloughs and Streams 91
3.2.2.1.2.1.1 First Run 91
3.2.2.1.2.1.2 Second Run. 93
3.2.2.2 Talkeetna To Upper Devil Canyon 94
3.2.2.2.1 Main Chanel Escapement Monitoring. 94
3.2.2.2.1.1 First Run 94
3.2 .2 .2 .1 .2 Second Run 95
3.2 .2 .2 .2 Spawning Ground Surveys. 99
3.2.2.2.2.1 Main Chawne? 99
3.2 .2 .2 .2 .2 Streams 99
3.2 .2 .2 .2 .3 Sloughs 100
3.2 .2 .2 .2 .3 .1 Observation Life. 100
3.2 .2 .2 .2 .3 .2 Escapment 104
3.2 .2 .2 .2 .3 .3 Egg Retemtion. 308
3.2.3 Pink Salmon 109
3.2.3.1 Intertidal to Talkeetna 109
3.2.3.1.1 Main Channel Escapement Monitoring 109
3.2.3.1.2 Fecundity 112
3.2.3.2 Talkeetna To Upper Devil Canyon 117
3.2.3.2.1 Main Chamel Escapement Monttoring 117
3.2.3.2.2 Spawning Ground Surveys 119
3.2.3.2.2.1 Main Channel 119
3.2.3.2.2.2 Sloughs and Streams 121
3.2.4 Chum Saimon 123
3.2.4.1 Intertydal to Talkeetna. 123
3.2.4.1.1 Main Channel Escapement Monitoring. 123
3.2.4.1.2 Fecundity 131
3.2.4.2 Talkeetna To Upper Devil Canyon 136
3.2.4.2.1 Main Channel Escapement Monitoring 136
3.2 .4 .2 .2 Spawning Ground Surveys 141
3.2 .4 .2 .2 .1 Main Chamel 141
3.2 .4 .2 .2 .2 Streams 141
3.2.4.2.2.3 Sloughs 144
3.2.4.2.2.3.1 Observation LTe 14.4
3.2 .4 .2 .2 .3 .2 Escapenent Coumts 14
3.2 .4 .2 .2 .3 .3 Egg Retention 152
3.2 .5 Coho Salmon.
3.2 .5 .1 Intertial to Talkeetna. 154
3.2.5.1.1 Main Channel Escapement Monitoring 154
3.2.5.2 Talkeetna to Upper Devil Canyon 160
3.2.5.2.1 Main Channel Escapement Monitoring 160
3.2.5.2.2 Spawning Ground Surveys 165
3.2.5.2.2.1 Main Channel 165
3.2.5.2.2.2 Sloughs and Streams 165
3.3 Bering Cisco 168
3.3.1 Intertidal to Talkeetna 168
3.3.1.1 Main Chamel Escapement Monitoring 188
3.3.2 Talkeetna to Upper Devil Ganyon. 170
3.3.2.1 Main Channel Escapement Monitoring. 170
4.0 SUMMARY 171
4.1 Eulachon. 171
4.2 Adult Salmon 173
4.2.1 Chinook Saimon 174
4.2.1.1 Intersidal to Talkeetna. 174
4.2.\%.2 Talkeatna to Upper Devil Canyon 118
4.2.1.3 Escapement Index Surveys 180
4.2.2 Sockeye Salmon 181
4.2.2.1 Firse Rum. 181
4.2.2.2 Second Run 182
4.2.2.2.1 Intertidal to Talkeetna 182
4.2.2.2.2 Talkeetna to Upper Devil Canyon 186
4.2 .3 Pink Salmon 18:
4.2.3.1 Intertidal to Talkeetna. 190
4.2.3.2 Talkeetna To Upper Devil Canyon 193
4.2.4 Chum Salmon. 196
4.2.4.1 Intertidal to Talkeetna 196
4.2.4.2 Talkeetna To Upper Devil Canyon 200
4.2.5 Coho Salmon 203
4.2.5.1 Intertidal to Talkeetna 203
4.2.5.2 Talkeetna to Upper Devil Canyon. 207
4.3 Bering Cisco. 210
REFERENCES 21

LIST OF FIGURES

PAGE

> Figure 2-2.1. Susitna River intertidal with eulachon set net sites defined.

> Figure 2-2-2. Susitna River basin map showing field stations and major glacial streams.

Figure 2-3-1. Age composition by sex by first (a-b) and second (c-d) migrant pre-spawning condition eulachon collected from the Susitna River intertidal.

Figure 2-3-2. Eulachon set net catches at RM 4.5 with associated water temperatures and high tide heights.

Figure 2-3-3. Percent composition of eulachon spawning conditions per sex. sampled from RM 12.1 to 25.1 on May 24. 1983.

Pigure 2-3.4. Mean hourly and cumulative percent fishwheel catch of chinook samon by two day periods at Yentna and Sunshine stations.

Figure 2-3.5. Age composition of fishwhee intercepted chinnak Salmon at Ventva. Sunshine, Talkeetna and Curry stat?ons.
Figure 2-3-6. Length frequency distribution of chinook salmon at Yentna Station and length and age distribution of chinook salmon at Sunshine Station in 1983.63
Figure 2-3-7. Mean hourly and cumulative percent fishwheel catch
of chinook salmon by two day periods at Talkeetna
and Curry Stations.60
Figure 2-3-8. Migrational rates of chinook salmon between (a) 68Sunshine and Talkeetna stations, (b) Talkeetnaand Curry stations and (c) Sunshine and Currystations.
Figure 2-3-9. Length Frequency distribution of chinook salmon 70 sampled for age at Talkeetna and Curry stations.
Figure 2-3-10. Susitna River basin with chinook salmon index 74 streams defined.
Pigure 2-3-11. Age conposition of fishwee intercepted sockeye 83 sainon at Ventna. Sunshine. Talkeetna and curvy stations.
Figure 2-3wi2. Mean hourly and cmuratye percent fishwheel catch 87of sockeye saimon by two aly periods at Ventna andSunshine stations.
Figure $2-3-13$. Number of eggs for sockeye salmon sampled at 90Sunshine Station as a function of length andweight.
Figure 2-3-14. Destination of first run sockeye salmon tagged at 92 Sunshine Station on the Susitna River.
Figure 2-3-15. Mean houriy and cumulative percent fishwheel catch of sockeye salmon by two day periods at Telkeetna and Curry stations.96
Figure 2-3-16. Migrational rates of sockeye salmon between (a) 98Sunshine and Talkeetna stations, (b) Talkeetnaand Curry stations and (c) Sunshine and Currystations.
Figure 2-3-17. Periodicities of restricted visibility conditions 101
and sockeye ssmon life observations in 1983 at sloughs Moose. 8 and 11.
Pigure 2-3-18. Percent frequency of egg numbers retalned by 109
fomale sockeye salmon sampled in slough habitats above RM 98.6 in 1983.

Figure 2-3-19. Mean hourly and cumulative percent fishwheel catch
of pink salmon by two day periods at Yentna and Surshine stations.

Figure 2-3-20. Number of eggs for pink saimon sampled at Sunshine $\quad 116$
Station as a function of length and weight.

Figure 2-3-21. Mean hourly and cumulative percent fishwheel catch 118
of pink salmon by two day periods at Talkeetna and
Curry stations.

Figure 2-3-22. Migrational rates of pink salmon between (a) Sunshine and Talkeetna stations (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations.

Figure 2-3-23. Peak pink salmon ground and helicopter counts of 122 (a) Indian River and (b) Portage Creek.

Figure 2-3-24. Mean hourly and cumiative percent fishwieel catch of chum saimon by two day periods at Yentna and Sunshine stations.

Figure $2-3-25$. Provisional discharge data from July 1 through August 30128
for the Sustcra and Yentna rivers.
Figure 2-3-25. Age composition of fishwheel intercepted chum salmon at Yentna, Sunshine, Talkeetna and Curry stations.

Figure 2-3-27. Number of eggs for chum salmon sampled at Sunsnine Station as a function of length and weight.

Figure 2-3-28. Mean hourly and cumulative percent fishwheel catch of chum salmon by two day periods at Talkeetna and Curry stations.

Figure 2-3-29. Migrational rates of chum almon between (a) Sunshine
and Talkeetna stations, (b) Talkeetna and Curry Stations and (c) Sunshine and Curry stations.

Figure 2-3-30. Peak chum saimon ground and helicopter survey
counts of (a) Indian River and (b) Portage Creek.

Figure 2-3-31. Periodicities of restricted visibility conditions and chum samon life observations in 1983 at sloughs Moose. 84 and 11.

Figure 2-3a32. Chum. Salmon live counts by date in sloughs 9. 11 and 21.

Figure $2-3-33$. percent prequency of agh numbers retatned by fenale
Figure 2-3-34. Mean hourly and cumulative percent fishwheel catch of coho salmon by two day periods at Yentna and Sunshine stations. 156

> Figure 2-3-35. Mean hourly and cumulative percent fishwheel catch of coho salmon by two day periods at Talkeetna and Curry stations.
Figure 2-3-36. Age composition of fishwheel intercepted coho salmon 159
at Yentna, Sunshine, Talkeetna and Curry stations.
Figure 2-3-37. Migrational rates of coho salmon between (a) Sunshine 164 and Talkeetnas (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations.
Figure 2-3-38. Peak coho salmon ground and hellicopter survey counts 167
of (a) Indian River and (b) Portage Creek.
Figure 2-4-1. Minimum Susitna River chinook samon escapement for 176 1982 and 1983 .
Pigure 2uns. 2 . Migrationat timing of chinook saimon based on 17
frishoheel carches at selected locations on the Susthia River in 1982, 1982 and 1983.
Figure 2-4-3. Minimum Susitna River sockeye salmon escapenents 184 for 1981, 1982 and 1983.
Figure 2-4-4. Migrational timing of sockeye salmon based on 185
fishwheel catches at selected locations on the Susitna River in 1981, 1982 and 1983.
Figure 2-4-5. Minimum Susitna River pink salmon escapements for 191
1981, 1982 and 1983.
Figure 2-4-6. Migrational timing of pink salmon based on fishwheel 192 catches at selected locations on the Susitna River in 1981, 1982 and 1983.

Figure 2-4 7. Minimum Susitna River chum salmon escapements for 198 1981. 1982 and 1983.

Figure 2-4-8. Migrational timing of chum salmon based on fishwheel 199 catches at selected locations on the Sustina River in 1981, 1982 and 1983.

Prgure 2-4.9. Minimum Susitna River coho salmon escapements for 1981. 1982 and 1983.

Figure 2-a-10. Migrational timing of coho salmon based on fishwheel

LIST OF TABLES

PAGE
Table 2-2-1. Operation schedules at màin channel Susitna and 10 Yentna River monitoring stations.
Table 2-2-2. Tag type and color code used at Sunshine, 13 Talkeetna and Curry stations.
Table 2-2-3. Location and schedule at tag recovery surveys of 18 selected spawning areas between RM 84 and 98.6.
Table 2-3-1. Eulachon set net catches in Susitna River 28 intertidal.
Table 2-3-2. Dip net catches of eulachon in the Susitna River 31 intertidal at river mile 4.5 with corresponding water temperatures.
Table 2-3-3. Sumarization of sex compostition samples (not 33
weighted by CPUE) from eulachon dip net catches at RM 4.5 in 1983.
Table 2-3-4. Length and weight of pre-spawning condition first 35 and second migration eulachon segregated by aye and sex from dip not samples in the Susitna River intertidal.
Table 2-3-5. Eulachon spawning area in Susitna River main 40 channel.
Table 2-3-6. Summarization of sex composition samples from 48 eulachon collected in 1983 by dip netting and electroshocking between Susitna river mile 4.5 and
60.0 .
Table $2-3-7$. Length and weight of pre-spawning condition 51 eulachon segregated by age and sex from samples collected in the Susitna River intertidal and main channel.
Tabie 2-3-8. Minimum Susitna River salmon escapements for 53 sockeye, pink, chum and coho salmon in 1983.
Table 2-3.9. Escapement of chinook salmon 350 mm or less in 54
length at Sunshine, Talkeetna and Curry stations.
Table 2-3-10. Petersen population estimates with associated 95\% 55 confidence intervals of chinook saimon migration to Sunshine, Talkeetna and Curry stations.
Table 2-3-11. Sumary of fishwheel catcnes by species and 58 smpling Tocations.
Table 2-3-12. Analysis of chinook salmon lengths, in millimeters, by age class from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations. 59
Table $2-3-13$. Analysis of chinook salmon age data by percent from escapement samples collected at Ventna. Sunshine, Talkeetna and Curry stations.62
Table $2-3 \mathrm{~m} .14$, Sex ratios of male and female chinook salmon by 65 age from escapenent samples collected at Yentna, Sunshine, Talkeetna and Curry stations.
Table $2-3-15$. Chinook saimon peak escapenent counts for stream 72 habitats above RM 98.6 in order of contribution.
Table 2-3-16. 1983 escapement surveys of chinook salmon index 75
streams in the Susitna River drainage.
Table 2-3-17. Chinook salmon peak survey escapement counts of 77 Susitna River basin streams from 1976 to 1983.
Tabie 2-3-18. Petersen population estmate of the first rum 79 sockeye salmon escapement to Sunshine Station.
Table 2-3-19. Analysis of sockeye salmon age data by percent 82 from escapement samples collected at Ventna. Sunshine, Talkeetna and Curry stations.
Table $2-3-20$. Analysis of sockeye salmon lengths, in millimeters, by age class from escapement samples 80 collected at Yentna, Sunshine, Talkeetna and Curry stations.
Table 2-3-21. Sex ratios of male and female sockeye salmon by 84 age from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations.
Table 2-3-22. Apportioned sonar counts of chinook, sockeye. 86 pink, chum and coho salmon at Yentna Station.
Table 2-3-23. Petersen population estimates with associated 95% 86 confidence intervals of the sockeye salmon escapenents to Sunshine, Talkeetna and Curry stations.
Table 2-3-24. Mumber of eggs. length, weight and associated 89 stuthstics for all sockeye salmon sampled for fecundicy at Sunshine Station.
Table 2-3-25. Escapement survey counts of tagged and untagged93 first run sockeye salmon tagged at Sunshine Station.
Table 2-3-26. Summary of mean number of days individual sockeye 101 salmon were observed in sloughs Moose, 8 a and 11.
Table 2-3-27. Percentages of sockeye salmon monitored for 103 observation life that spawned by habitat zone in sloughs Moose, 8A and I1.
Table 2-3-28. Sockeye salmon peak survey counts of slough 105 habitats above RM 98.6
Table 2-3-29. Total 1983 sockeye salmon slough escapements 106 between RM 98.6 and 161.0
Table 2-3-30. Egg retention of sockeye salmon at selacted slough 108 habitats between RM 98.6 and 161.
Tabie 2-3-31. Petersen population estmates with associated 95% 110 confidence intervals of pink salmon migration to Sunshine, Talleetna and curry stations.

Table 2-3-32. Analysis of pink samon length in mill meters from
Table 2-3-33. Number of eggs, length, weight and associated statistics for all pink salmon sampled for fecundity at Sunshine Station. 115
Table 2-3.34. Pink salmon peak escapement counts for stream habitats 123
above RM 98.6 in order of contribution.
Table 2-3-35. Petersen population estimates with associated 95\% 124 confidence intervals of chum salmon migration to Sunshine, Talkeetna and Curry stations.
Table 2-3m36. Analysis of chum salmon age data by percent from 129 escapement samples collected at Ventna, Sunshine, Talkeetna and Curry stations.
Table 2-3-37. Analysis of chum salmon lengths, in millimeters by 132 age class from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations.
Table 2-3-38. Sex ratios of male and female chum salmon by age 134 from scapement samples collected at Ventna, Sunshine, Talkeetna and Curry stations.
Table 2-3-39. Number of eggs, length, weight and associated 135 statlstics for all chum salmon sampled for fecundity at Sumshine station.
Table 2-3.40. Chum salmon peak escapement counts for stream 142habitats above RM 98.6.
Table 2-3-41. Summary of mean number of days individual chum 145salmon were observed in sloughs Moose, A^{\prime}.8A, 9 and 11.
Table 2-3-42. Percentages of chum salmon monitored for observation 148life that spawned by habitat zone in sloughs Moose,$A^{\prime}, 8 A, 9$ and 11.
Table 2-3.43. Chum salmon peak escapement counts for slough 149 habitats above RM 98.6.
Tabie $2-3-44$. Total 1983 chum salmon slough escapements between 1.49 RM 98.6 and 161.0.
Table $2-3-45$. Egg retention of chum saimon at selected spawining 153 habitats between RM 98.6 and 161.
Table 2-3-36. Petersen population estimetes with associeted 95% 154confidence intervals of coho salmon migretion coSunshine. Talkeetna and Curyy stations.
Table 2-3-47. Anelysis of coho salmon age data by percent from escapement samples collected at Yentna. Sunshine. Talkeetna and Curry stations.
Tabie 2-3-48. Analysis of coho salmon lengths in millimeters, 161
by age class from escapement samples collected
at Ventna, Sunshine, Talkeetna and Curry stations.
Table 2-3-49. Sex ratios of male and female coho saimon by age 162 from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations.
Table 2-3-50. Cono saimon peak escapenent counts for stream habitats 168 above RII 98.6 in order of abundance.
Table 2-3-51. Summary of 1983 Bering cisco interceptions by 169 location and gear type.
Table 2-4m1. Escapement by species and sampling location for 1981. 175 1982 and 1983.
Table 2-4. 2. Minimum Susitna River salmon escapenents for sockeye. 183pink, chum and coho saimon in 1981. 1982 and 1982.

LIST OF PLATES

Plate 2-2-1.	Sinking gill net set in the Susitna River
	intertidal.

Plate 2-2-2. Remoying eulachon from a set net set in the 5 Susitna River intertidal.

$$
\begin{aligned}
& \text { Plate 2-2-3. Electroshocking eulachon in the lower susitnä } \\
& \text { River. }
\end{aligned}
$$

Plate 2-2-4. One of twelve fishwheels operated on the Yentna 11 and Sunshine rivers in 1983.
Plate 2-2-5. Chinook salmon being tagged with a Petersen disc 13
tag.
Plate 2-2-6. Chum salmon tagged with a Floy $\mathrm{FT}-4$ spaghetti tag. 14
Plate 2-3m1. Eulachon set net catch at RM 4.5 on May 23. 1983. 32
Plate 2-3-2. Dead and dying pre-spawning aulachon. mainly females 44 at RM 17 or May 24. 1983.
Pate $2-3-3$. Thousands of 'stressed, pre-spawning condition 46 eulachon dying at Ru 17. May 24. 1983.
Plate $2-3-4$. Dead unspawned eulachon in the Susitna River at 47 RM 17.1.

ACKNOWL EDGEMENTS

Project funding was provided by the State of Alaska, Alaska Power Authority. Assistance in the collection of data was provided by the following Alaska Department of Fish and Game staff:

Fisheries Biologists	Fisheries Technicians
Beers, Dean	Bad, ley, Albert
Bigler, Jeffrey	Blaney, Alden
Gustin, Richard	Crowe, Thomas
Kerkvliet, Carol	Fusco, Robert
Richard, Craig	Harris, Patricia
Sharp, Dan	Jones, Craig
Volk, Don	Patrick, James
	Stratton, Barry
	Wilkey, Robert

Additional credit is due Carol Kerkviiet for assisting in the preparation of the sections on eulachon, and chum and sockeye salmon observation life data.

The authors wish to thank Jene and Rose Jenne (Three Rivers Union), the Alaska Rallroad and Robert Bacon for field support services.

Appreciation is also extended to Thomas Trent, Larry Bartlett, Robert Dieryck and Kyle Watson and other ADF\&G staft for their admimistrative support.

Special thanks is given to Allen Bingham and staff for dasa processing seryices. Mary Gressett for typing this report and Sally Donovan for cartography services.

Investigations were conducted to accomplish three principal objectives:

1. Provide a third continuous year of salmon escapenent evaluation to substantiate production and between year variabllity within sub reaches of the Susitna River drainage with major emphasis on the Talkeetna to Upper Devil Canyon reach.
2. Define where salmon spawning occurs upstream of RM 98.6 in slough and stream habitats.
3. Detemmine seasonal distribution and reidive abundance of eulachon in the Susitna River.

Anadromous fish species addressed in this report are:

Eulachon	$\frac{\text { Thaleichthys pacificus }}{\text { Pacific Salmon }}$
Onchorhynchus sp.	
chinook Salmon	0. tshawytscha
Sockeye Salmon	0. nerka
Pink Salmon	0. gorbuscha
Chum Saimon	0. keta
Coho Saimon	0. kisutch
Dering cisco	Coregonus laurettae

2.1 Eulachon

2.1.1 Intertidal

From May 10 to June 8, 1983, a standard sinking gill net measuring 25 feet (ft.) long, 5 ft. deep with 1.5 inch (in.) stretch mesh was fished intemittently at two locations in the Susitna River intertidal. sites II and III (Figure 2-2-1), according to the following schedule:

1. May 10 through May 16 - Once every high tide beginning on the second high tide on May 10.
2. May 17 through May 23 - Once every fourth high tide.
3. May 24 through June 8 - Once every fifth high tide minimum.

At each fishing location the net was released perpendicular to the river channel using a 20 ft . riverboat powered by a 75 horsepower (hp) jet outboard. The net was secured at each end by a 20 pound (1b.) navy anchor and marked at each surface end with a single 18 in . diameter buoy. (Plate 2-2-1).

Set net sites II and III were fished 30 minutes each during each selected high tide. The only exception to this was netting was terminated at any time in the 30 minute period of a set when a visual observation indicated 200 or more eulachon in the net. Fishing time began at site iI, 15 minutes following high tide and at site IIL, 45 minutes preceding high tide. Fishing

2.0 METHODS

2.1 Eulachon

2.1.1 Intertidal

From May 10 to June 8, 1983, a standard sinking gill net measuring 25 feet (ft.) long, 5 ft. deep with 1.5 inch (in.) stretch mesh was fished intermittently at two locations in the Susitna River intertidal, Sites II and III (Figure 2-2-1), according to the following schedule:
> 1. May 10 through May 16 - Once every high tide begiming on the second high tide on Play 10.
2. May 17 through May 23 - Once every fourth high tide.
3. May 24 through June 8 - Once every fifth high tide minimum.

At each fishing location the net was released perpendicular to the river channel using a 20 ft . riverboat powered by a 75 horsepower (hp) jet. outboard. The net was secured at each end by a 20 pound (1b.) navy anchor and marked at each surface end with a single 18 in . diameter buoy. (plate 2-2-1).

Set net sites II and III were fished 30 minutes each during each selected high tide. The only exception to this was netting was terminated at any time In the 30 minute period of a set when a visual observation indicated 200 or more eulachon in the net. Fishing time began at site 11.15 minutes following high tide and at Site 11r. 45 minutes preceding high tide. Fishing

Figure 2-2-1. Sustina River intertidal with set net sites defined. Adult Anadromous Investigations. Su Hydro Studies. 1983.
time at each location was recorded to the nearest minute. The time of high tide for the Susitna River intertidal was determined by subtracting 36 minutes from the 1983 high tide table for the Anchorage District (U.S. Coast Guard, 1982).

Plate 2-2-1. Sinking gili net set in the Susitna River intertidal. Adult Anadromous Investigations, Su Hydro Studies, 1983.

The eulachon caught at each set net location were separated into two categories: inmigrants and outmigrants. The prewspawning and spawning condition eulachon were classified as inmigrants and postospawing condtion eulachon as outmigrants. The rationale for placing pre-spawning and spawning condtition eulachon into a singie category was that after a net caught fish

Was taken out of the gear it was nomally damaged to the extent that the distinction between the condition of pre-spawner and spawner was not ciearly definitive (Plate 2-2-2). Net caught post-spawning eulachon, however, were easy to distinguish between pre and spaming condition eulachon and were classified as outmigrants. All spawning condition classifications were detemined by morphological examination and when necessary by exerting siight hand pressure to the abdominal region of each fish.

Plate 2-2-2. Removing eulachon from a set net set in the Susitna River intertidal. Adult Anadromous Investigations, Su Hycro Studies. 1983.

The criterta used to classify the male spawning development stages was sonewat subjective due to free expulston of milt among male fish in the premspawning and spawnirg conditions. The criteris followed was:

Pre-spawners - bright coloration and thick milt.

Spawners - dark coloration and watery milt.

Post-spawners - essentially void of milt.

Female spawning condition classifications were detemined by objective means by the following criteria:

Pre-spawners - eggs are not expelled freely.

Spawners - eggs are expelled freely.

Post-spawners - essentially void of eggs.

Using a hand held dip net 100 eulachon were collected for sex, age, length. and weight composition data at Site II either prior to, or after set netting at the site. The minimum amount of time expended to obtain the 100 fish sample was 0.5 hrs . and the maximum, 1.0 hrs. All eulachon caught by dip netting were sorted and recorded by spawning condition and sex. Age, length and weight samples were taken from the first 10 pre-spawning eulachon per sex caught.

For age detamination, the two otoliths were taken from each eulachon and stored in a water dampened paper towel in an individually labeled via?. The leigths were taken from the tip of mouth to the fork of tail to the nearest milhmeter (mn). Weights were registered to the nearest decigram (0.1 a)
with an Ohaus, Triple Beam balance. Sex was determined by morphological examination and when necessary by exerting siight hand pressure to the abdomunal region of each fish.

2.1.2 Main Channel

The main channel reach between RM 4.5 and 60 was sampled daily for eulachon presence and spawning areas from May 15 to June 6, 1983 using a combination of an electroshocking equipped boat and hand held dip nets (plate 2-2.3). The electroshocking unit was a Model VVP-3E Coffett electroshocker powered by a 3500 watt Homelite generator. Input into the electroshocker was 230 volts of alternating current (A.C.) and the output, direct current (D.C.). The output was set-ap with the anode (t) electrode wired to a hand supported dip net and the cathode (-) electrode grounded to the boat hull. Activation of the circuit ranged from five to 10 seconds followed by a 20 to 40 second pause to avoid herding fish. The most effective output for electroshocking eulachon was 1.0 to 2.0 amps . Rubber hipboots and gloves were worn by the electroshocking crew, and a circuit breaker switch wired to the generator and in easy reach of the boat operator provided addtional safety precautions.

The criteria used for determining whether a Susitna River main channel stee was or was not a spawning area was based on a definition that from a single sampling using dip net or electroshocking gear a spawning area would produce 25 vigorous free-swimaing eulachon with at least two of the 25 fish being females with one female in spawning condition. The basis for implementing this procedure can be found in the Phase II. ADFFG/Su Hydro Adult Anadronous Report. 1382 (MOFR日, 1982).

Plate 2-2-3. Electroshocking alachon in the lower Susitna River, Adult Anadromous Investigations, Su Hydro Studies.

In addition to sampling the main channel Susitna River for eulachon presence and spawning areas, 10 pre-spawning eulachon per sex were collected by dip netting for age, length and weight data at three day intervals from May 15 to June 6, 1983.

2.2 Adult Salmon

2.2.1 Main Channel Escapement Monitoring

Four escapenent montoring stations were operated in 1983 on the Susitna and Yentna rivers at locations indicated in Figure $2 .-2-2$ according to the schedule in Table 2-2m1. A map of each escapement monitoring station can be found in Appendix 2 a A.

Figure 2-2-2. Susitna River basin map showing field stations and major glacial streams, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Table 2-2-1. Oparation schedules at main chamel Susitna and Yentna River escapenent monitoring stations, Adult Anadromous investigations, Su Hydro Studies, 1983.

Sampling Site	Location		Period	
	River	River Mile	Begin	End
Yentna				
Station	Yentna	04	6/30	9/5
Sunshine Station	Susitna	80	6/3	9/11
Talkeetna Station	Susitna	103	6/7	$9 / 12$
curry Station	Susitna	120	6/9	9/14

Two basic gear types were used to monitor Susitna and Yentna rivers salmon escapements. On the Yentna River (RM 28) at Yentna Station (TRM 04) two 1980 Model Bendix side scan sonar (SSS) counters were deployed in combination with two fishwheels. On the Susitna River at Sunshine (RM 80) and Talkeetna (RM103) stations four fishwheels were operated at each of these sites. Further upstream on the Susitna River at Curry Station (RM 120) two fishwheels were used to intercept saimon escapements.

2.2.1.1 Sonar Operations

The two SSS counters, one off each bank, at Yentna Station (TRM 04) on the Yentna River (RM 28) were operated consistent with the 1980 Side Scan Sonar Counter Installation and Operation Manual by Bendix Corporation (1980). Counter accuracy was checked four or more thmes dally by hand tallying fish
registened echos on a dodel 323 . Sony 0scilloscope. Counter adjustments were made when the percent agreement between hand tallied oscilloscope counts and SSS counts for a 30 or more minute period was less than 90 percent. Fish counts registered on each counter were apportioned by catch composite data from a nearby fishwheel operated on a scheduled 24 hour a day basis.

2.2.1.2 Fishwheel Operations

The fishwheels used at Ventna (TRM 04). Sunshine (RM 80); Talkeetna (RM 103) and Curry (RM 120) stations in 1983 were of a 1931 design by ADFGG/Su Hydro Adult Anadromous staff (Plate 2-2-4). Construction specifications.

Plate $2-2-4$. One of 12 fishwheels operated on the Yentna and Sustha rivers in 1983. Adult Anadromous Investigations. Su Hydro Studies. 1983.
maintenance and deployment procedures can be found in the 1981 Phase is ADFAG/Su Hydro Adult Anadromous Report and 1982 and Phase II, ADF\&G/Su Hydro Adult Anadromous Report (ADF\&G, 1981 and 1982). All fishwheels used on the project were operated 24 hours a day except for occasional shut-downs for maintenance, debris and at Sunshine Station, excessive catches which could not always be processed because of safety and man-power limitations.

2.2.1.3 Tagging Operations

In 1983 all chinook ($\downarrow 351$ mm length), sockeye, pink, chum and coho salmon caught in fishwheels at Sunshine (RM 80), Talkeetna (RM 103) and Curry (RM 120) stations were marked with color coded Petersen disc or Floy FT-4. spaghett tags and released. (Plate $2-2-5$ and $2-2-6$). The petersen disc tags were used for all chinook salmon and for the sockeye; pink, chum and coho salmon at Curry Station. At Sunshine and Talkeetna stations Floy FT-4. spaghetti tass were used for marking the sockeye, pink, chum, and coho salmon (Table 2-2-2). A percentage of the spaghetti and disc tags were numbered to provide data on travel time of species between stations. All recaptures made at upstream sampling locations were released following species identification and recording of tag type, color and number.

The methodology followed for applying the Petersen disc and Floy FTA. spaghett tags is covered in the Phase 1, ADF\&G/Su Hydro Adult Anadromous Report, 1981 (AOF\&G, 1981).

Table 2-2-2. Tag type and color code used at Sunhine, Talkeetna and Curry stations, Adult Anadronous Investigations, Su Hydro Studies, 1983.

Sampling Site	River Mile	Tag	
		Type	Color
Sunshine Station	80	Fim/4/Spaghetti Petersen Disc	white and red pink
Talkeetna Station	103	FT-4/Spaghetti Patersen Disc	$\begin{aligned} & \text { green } \\ & \text { to } \end{aligned}$
Curry Station	120	Petersen Disc	int. orange

Plate 2-2-5. Chinook salmon being tagged with a Petersen disc tag, Adult Anadromous investigations, Su Hydro Studies, 1983.

Plate 2-2-6. Chum salmon tagged with a Floy FT.4 spaghetti tag, Adult Anadromous Investigations. Su Hydro Studies, 1983.

2.2.1.4 Age, Length and Sex Composition Sampling

Sixty chinook, 30 sockeye, 20 chum and 20 coho salmon were sampled dally for age, length and sex from fishwheel catches in 1983 at Yentna (TRM 04), Sunshine (RH 80), Talkeetna (RM 103) and Curry (RM 120) stations. Thirty pink salmon were also sampled dally for length and sex data at these sites.

No age samples were obtained from pink salmon due to their generally recognized age of two years. Age sampling was accomplished by collecting the "preferred scale" from each fish located two rows dorsal to the Tateral Ine on a diagonal between the posterior insertion of the dorsal fin and the banterior insertion of the anal fin. All length measurenents were taken from
mid-aye to fork of tall to the nearest 10 mm on chinook salmon, and five m on the other saimon species. Sex determinations were made from morphological examinations. The average time for composite age, length and sex sampling was about 25 seconds per fish. Each fish was released immediately following sampling.

2.2.1.5 Fecundity Sampling

In 1983. Susitna River sockeye, pink and chum salmon fecundities were determined from samples collected at Sunshine Station (RM 80). A total of 25 sockeye, 22 pink and 27 chum salmon were obtained between July 28 and 31 for use in the analysis. Samples were collected throughout population length ranges with emphasis placed on the 540.560 mm range for sockeye salmon and the $590-610$ mm range for chum salmon. There was no emphasis placed on a specific length range when collecting pink salmon.

Ppior to egg removal all salmon were measured to the nearest mm (FL) and weighed to the nearest gram (g). In addition, sockeye and chum salmon each had three scales removed from the preferred area and mounted on gum cards for later age determimation.

The eggs were removed from the famale salmon, bagged, placed in coolers and transported to Talkeetna for freezing. The counting process began by boiling the eggs of each sample for approximately five minutes Once the eggs had separated from each other the watar was drained off and the eggs enumerated by means of a volumetric estimation method. Pink and chum salmon tecundtties

Were derived by filling a 50 milliliter (mi) graduated cylinder to the 50 ml level with eggs and counting each egg in the graduated cylinder.

This process was repeated three times for each female. The mean number of eggs from the three sampling trials was multiplied by the number of times the 50 ml graduated cylinder was filled to the 50 ml level for each sample. Residual eggs for each sample (those left that did not fill a 50 ml volune) were individually counted and added to the total estimate obtained by the volumetric method. This can mathematically be represented by the following formula:

Total number of eggs in sample $=A(Y)+r$
where: $A=$ Mean number of eggs in the three 50 ml volumetric sampling trials.
$Y=$ Number of times the 50 ml graduated cylinder was filled for each sample.
$r=$ Residual number of eggs from sample, individually counted.

Sockeye salmon egg diameters were smaller than pink and chum salmon and approximately one half of the total number of eggs filled a 50 ml volume.

Therefore, only one 50 ml sampling trial was performed. In all other respects the counting procedures used were identical to those of pink and chum salmon.

2.2.2 Spawning Ground and Tag Recovery Surveys

2.2.2.1 Sloughs and Streams

In 1983, all known and suspected chinook salmon spawning areas in the Susitna River drainage ufstream of the Chulitna River confluence (RM 98.6) were twice surveyed between July 15 and August 9. The surveys were conducted by helicopter and where possible on foot. Each of the spawning areas were surveyed in its entirety except Chase Creek (Rat 106.9) which was surveyed for the first mile.

Additional escapement surveys, non-specific to chinook salmon, were made near weekly between July 25 and October 11 of all probable salmon spawning streams and sloughs between RM 98.6 and 161.0 in 1983. The sloughs were surveyed in their entirety and streams to standard index areas on fout. The exceptions were Indian River (RM138.6) and Portage Creek (RM 148.9) which were surveyed also by helicopter to their upper spawning limits, and Cheechako (RM 152.4), Chinook (RM 157.6) and Devil (RM 161.0) creeks located above Devil Canyon that were always surveyed by helicopter to their upper spawning limits.

Tag recovery surveys were also made in 1983. Crews surveyed selected spawning areas between RM 80 and 98.6 for live tagged and untagged fish. In addition tag recovery surveys were also conducted in conjunction with scheduled slough and stream escapement surveys above RM 08.6. The areas and schedule of tag recovering surveys conducted below RM 90.6 are presented in Table 2-2-3.

All spawing ground surveys including those conducted for tag recoveries were perfomed by trained observers outfitted with polaroid sunglasses and hand held tally counters.

Table $2-2-3$. Location and schedule of tag recovery surveys of selected spawning areas between RM 84 and 98.6. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Spawing Area	Location U	Perlod	Frequency
Answer Creek	84.1	$9 / 15-28$	Once
Question Creek	84.1	$9 / 15-25$	Once
Birch Creek	88.4	$8 / 10-25$	Once
(lower)		$9 / 15-28$	Once
Fish Creek	97.1	$8 / 10-25$	Twice
Clear Creek	97.1	$7 / 20-8 / 7$	Once
Pralie Creek	97.1	$7 / 20-8 / 7$	Once
Byers Creek	98.6	$8 / 10-15$	Once
Troublesome Creek	98.6	$9 / 5-15$	Once
Chulitna River	98.6	$7 / 25-8 / 7$	$7 / 25-8 / 7$

1/
Location designated by miver mile for the confluence of the spawning area on the junction of its receiving waters fith the Susitna River main ctammel.

2.2.2.1.1 Chinook Salmon Index Surveys

In 1983. Index surveys of the chinook escapenent were conducted in pre-selected spawning areas in the Susttha River drainage (ADFGG, 1981). The index surveys conducted above pM 98.6 were perfomed as defined in Section 2.7 .1 .5 . The surveys in index areas downstream of R 48.6 were conducted

Detween July 13 and August 3 by ADF\&G, Region II, Sport Fish Division staff with some assistance from ADF\&G, Su Hydro personnel.

The chinook salmon index surveys in 1983 were performed by helicopter, foot and inflatable raft depending on accesstbility. All observers conducting index surveys wore polaroid sunglasses and used hand held counters.

2.2.2.1.2 Observation Life Surveys

At Curry Station (RM 120) between July 6 and September 9, 1983130 sockeye and 667 chum salmon were fishwheel caught then marked and released with large, individually numbered Petersen disc tags (Section 2.2.1.3). An additional 13 sockeye and 13 chum salmon were similarly marked and released off the mouths of Moose Slough (RM 123.5) and Slough 11 (RM 135.3) on August 11 and 14, 1983 respectively. These fish were captured using a standard beach seine (60 ft . long, 6 ft . deep, 1.5 in . stretch mesh).

In 1983. five slough habitats upstream of RM 120 were irtensely surveyed for marked sockeye and chum salmon released from Curry Station (RM 120) and off the mouths of Moose Slough (RM 123.5) and Slough 11 (RM 123.5). The study sloughs were Moose (RM 123.5), A' (RM 124.6), 8A (RM 125.1).9 (RM 128.3) and 11 (RM135.3). The surveys were perfomed between August 11 and October 12 at minimum four day intervals. Ongoing with this work, enumeration surveys of live and dead salmon by species were conducted between July 26 and October 8 in these and other known slounhs between RM 98.6 and 161.0 at seven day intervals (section 2.2.2).

Identification of individually tagged sockeye and chum salmon in the five study sloughs was accomplished on foot and through occasional use of a powered riverboat. The observers were outfitted with polarized sunglasses and polarized 7×35 Bushnell binoculars to improve observation. A record was kept of ach tagged fish siting. Infomation recorded included the date of observation, fish tag number, species, sex, behavior and 'ocation within the habitat. There were two categories of fish behavior recorded for live tagged fish. These were: either a fish was milling (ripening) or it was spawning. Milling activity was assessed by a judgemental observation of thens being no 'significant' caudal fin erosion, and spawning activity by the fish bearing 'significant' caudal fin erosion or observed spawning. Within slough lacations fish sitings were recorded by habitat zone. These zones were standardized reaches between major riffles areas as depicted in Appendix Figures $2-6-2$ thru $2-G=5$. Due to an absence of major riffle groups in Slough A^{\prime} (RPM 124.6), no record was made of individual fish locations in this slough.

2.2.2.1.3 Egg Retention Sampling

In 1983 sockeye and chum salmon female carcasses were checked for egg retention in several slough and main channel spawning habitats between PM 98.6 and 161.0. There wes no preadefined minimum or maximum number of femele sockeye or chum salmon sample: in this study. Sampling intensty was based on the availahility of fist wherein whenever an escarement survey crew encountered an intact dead fomale sockeys or chur silmon the abonmen was incisioned and the eggs hand tallied and recorded.

2.3 Bering Cisco

In 1983, the Bering Cisco escapement into the Susitna River was not specifically sampled. However, a record was kept of the date and location of each catch made in association with other scheduled sampling operations.

2.4 Data Analysis and Evaluation

2.4.1 Eulachon

An analysis was conducted using the students T test (Dixon and Massey, 1969) and the Mann-Whitney median test (Daniel, 1978) to test a null hypothesis that lengths of first and second run eulachon were not significantly different at the 95 percent confidence levels.

2.4.2 Saimon Tag and Recapture Escapement Estimates

Adult salmon escapements to Sunshine (RM 80), Talkeetna (RM 103) and Curry (RM 120) stations were calculated using tas and recapture population estimation techniques with the exception of chinook salmon less than 351 man in length which were considered separately. Escapements were derived according to the following fomula (Ricker, 1975):

$$
\hat{N}=(m+1)(c+1) /(n+1)
$$

where:

$$
\begin{aligned}
m= & \text { Number of fish successfully marked }=\text { (number } \\
& \text { originally tagged) - (tag retention (R) factor) }
\end{aligned}
$$

$c=$ Total number of fish examined for marks (tags) during sampling census

$$
\begin{aligned}
r= & \text { Total number of marked (tagged) fish observed during } \\
& \text { sampling census }
\end{aligned}
$$

$\hat{N}=$ nopulation estimate

The 95 percent confidence limits around N were determined by using the following formila (Dixon and Massey, 1969):

$$
\begin{gathered}
r / c+1.96 \sqrt{\frac{r / c(1-r / c)}{c}}<r / c<r / c-1.96 \sqrt{\frac{r / c(1-r / c)}{c}}=.95 . \\
\text { and; } \quad \begin{array}{c}
r / c \\
\text { upper }
\end{array}(1 / m)<1 / N<r / c_{\text {lower }}(1 / m)
\end{gathered}
$$

Tag losses for all adult salmon species except chinook salmon were estimated for each station from data collected during repetitive surveys of spawning areas. Data used for this detemination were restricted to those surveys in which visibility conditions allowed positive identification of shed tags, tag scarred fish (where applicable) and live tagged fish (A, andix Table 2-6-2). Tag retention by tag type and tagging location was calculated in the following manner:

$$
R=\frac{T}{S+T}
$$

where:

$$
\begin{aligned}
T= & \text { Number of live tagged fish observed by tag type and tagging } \\
& \text { station. }
\end{aligned}
$$

$S=$ Number of shed tags by tag type and tagging station and or when applicable number of tagged scarred fish.
$R=$ Tag retention factor

Chinook salmon tag losses were calculated in essentially the same manner with the exception that tag loss infomation from fishwheel recaptures were included in the analysis. Survey and fishwheel tag retention factors were calculated, weighted by sample size and reported as the ovepull tag retention factor for chinook samon (Appendix Table 2-G-1).

The formula used to estimate the number of chinook salmon length (FL) 350 min and less migrating to Sunshine, Talkeetna and Curry stations was:

$$
J=\frac{\hat{N} b}{e}
$$

where:

$$
\begin{aligned}
& A=\text { Population estimate for fish larger than } 350 \text { mm length (FL). } \\
& b=\text { number of fish intercepted at tagging location length (FL) } \\
& 350 \text { mm and less. }
\end{aligned}
$$

e = number of fish intercepted at tagging location larger than 350 mn lengén (FL).
$=$ Population estimate of fish length (FL) 350 mm and less.

2.4.3 Calculation of Main Channel Escapement Timing

Escapement timing by species was detemined for each of the main channel stations through interpretation of fishwheel catch rate data wherein the migration was defined to have 'started', 'reached a midpoint' and 'ended' on the date when 5.0 percent, 50.0 percent and 95.0 percent respectively of the cumulative daily mean hourly fishwheel catch was attained at the respective station.

2.4.4 Age Detemination

Adult salmon age detemmination was accomplished by standard scale analysis techniques using a portable microfiche reader (ciutter and Whitesel, 1956). Age classes are described using GllbertoRich notation. By this notation ages are presented in $X, f+1$ format where X is the total age of the fish and the subscript ith, the number of Preshwater annuli plus one. The addition of one to the freshwater age accounts for the year spent in freshwater prior to the fommtion of the first annulus. For example. age 5_{2} fish are those fish which return to spawn in their fifth year of life having migrated or smolted from freshwater to the marine enviromment in their second year of Iffe after
having spent one winter（plus one winter in which no annulus was formed） rearing in freshwater．

Total age for adult salmon，as reported in this text，represents only the age at which the fish retumed to spawn regardless of their freshwater life histories．

Eulachon ages were determined from otolith and are not reported in Gilbert－Rich notation but instead aged as to the total number of annuli observed．For example，eulachon reported to be age 3 would actually be in its fourth year of life．

$$
2
$$

2．4．5 Slough Escapement

Individual slough escapements of sockeye and chum salmon were calculated using 1983 observation life data and slough survey counts．Slough survey counts were plotted against date and areas beneath the curves were expressed in terms of fish－days．Areas were determined using a Moronic）Digitablet wo digitize：The total number of fish－dasper slough was divided by the mean observation life to estimate total slough escapement．For 1983 data individual observation life values were used in calculating total escapement for study sloughs and all other 1983， 1982 and 1981 total slough escapements were calculated using the 1983 composite mean observation life values．There were two exceptions to this method：1）when peak slough survey counts were less than 15 fish and 2）When spawning fish were counted on only one survey． Total slough escapements in these cases were calculated by adjusting the peak live and dead survey count．The adjustment was made as follows：

$$
\begin{equation*}
x=\frac{A}{B} \tag{T}
\end{equation*}
$$

where; x estimated slough escapement
$A=$ estimated total escapement of sloughs with peak surveys greater than 50 fish $B=$ peak live and dead survey counts in sloughs where counts totalled greater than 50 fish $T=$ slough surveys where peak live and dead counts were less than 15 fish or when fish were counted on one survey only.

Slough escapement estimates for pink salmon were made by adjusting peak live and dead survey counts. Peak surveys for a species with short spawning duration, as exhibited by pink salmons may account for 80 to 90 percent of the spawning population (Cousens et alos 1982). Less than ideal survey conditions made it appropriate to use the lower value for adjustment and all peak surveys were increased by a factor of 1.2 to estimate total slough escapement.

3.0 RESULTS AND DISCUSSION

3.1 Eulachon

3.1.1 Intertidal

In 1983, eulachon entered the intertidal reach of the Susitna River in two distinct migrations. The first migration began on or about May 10 , peaked on May 14 and ended on May 17 determined by set net and dip net catches (Tables 2-3-1 and 2-3-2). The second eulachon migration began on May 19, peaked on May 23 and ended on June 6, approximately.

The ripst migration of eulachon in 1983 was considerably smaller in magnitude than the second migration. The highest dally set net catch of inmigrant (pre-spawning and spawning condition) eulachon in the first migration was 3.7 per net minute fished (CPUE) recorded on May 13 while in the second migration, there were three days where daily set net catches were higher with CPUE's recorded of $11.3,13.0$ and 3.8 on May 21,23 and 26 , respectively (Plate 2-3-1). The highest dip net catches of inmigrants (pre-spawners) made during the first migration were 2.2 and 1.7 eulachon per dip net (CPUE) recorded on May 13 and 14 , respectively. During the second migration the highest dip net catches of pre-spawners were 41.7 CPUE and 49.0 CPUE on May 21 and 23, respectively. An estimated 7 to 72 times more eulachon éntered the Susitna River in the second migration than in the first migration based on an interpretation of set net and dip net CPuE values (Tables $2-3-1$ and 2-3-2).

In 1983, spawning and post-spawning eulachon were intercepted by dip net in the intertida? zone (Table 2-3-2). Catches of spawners were peincipally made

Table 2．3m．Eulachon set net catches in Susitna River intertidal，Adult Anadromous Imestigattons， Su Hydro Studies， 1983.

Date	Tide I		Location		Fishing Time			Eulachon Catch 5			CPUE $6 /$		
			Net	Total Min．	Inmo	Out－	Total						
	He．	Time				site	RN4	In	Out	Migrants		Mrgranes	
$5110 / 83$	27.8	1722	\＃3	2.3	1647	1710	23	2	0	2	0.9		
5／10／83	27.8	1722	\％${ }^{\text {\％}}$	4.5	1737	1807	30	7	0	7	0.2		
5／11／83	29.8	0532	73	2.3	0512	0530	18	4	0	4	0.5		
5／11／83	29.8	0532	\％2	4.5	0547	0617	30	21	0	21	0.5		
5／11／83	28.8	1802	蔀3	2.3	1720	1750	30	8	0	8	0.5		
$5 / 11 / 83$	28.8	1802	42	4.5	1817	1847	30	19	$)$	19	0.5		
5／12／83	30.7	0604	H3	2.3	0619	0649	30	7	0	7	0.7		
$5 / 12183$	30.7	060	\＃2	4.5	0720	0750	30	32	0	32	0.7		
5／12／83	29.5	184	\＃3	2.3	1759	1829	30	11	0	11	1.2		
5／12／83	29.5	184	\＃2	4.5	1859	1929	30	58	0	58	1.2		
5／12／83	31.4	0636	\＃3	2.3	0551	0621	30	86	0	86	2.5		
5／13／83	31.4	0636	\＃2	4.5	0651	0721	30	61	0	61	2.5		
$5 / 13 / 83$	29.7	1926	\＃3	2.3	1845	1915	30	66	0	66	3.7		
$5 / 13 / 83$	29.7	192	\＃2	4.5	1941	2011	30	157	0	157	3.7		
311483	31.7	0711	H3	2.3	0631	0701	30	28	0	28	3.3		
5／14／83	31.7	071	\％2	4.5	0726	0756	30	171	0	171	3.3		
5／14／83	29.6	2009	澵3	2.3	1924	1954	30	96	0	96	2.8		
$5 / 14 / 83$	29.6	2009	部	4.5	2024	2054	30	69	0	69	2.8		
5／15／83	31.5	0749	\％ 3	2.3	0704	0734	30	27	0	27	1.6		
5115183	31.5	0749	H2	4.5	0804	0834	30	70	0	70	1.6		
5／15／83	29.2	2055	\％${ }^{3}$	2.3	2010	2041	31	10	0	10	1.4		
5／15／83	29.2	2055	\＃2	4.5	2110	2140	30	75	0	75	1.4		

Table 2－3m．Continued．

Date	Tide－				Fishing Time			Eulachon Catch 5			CPUE $6 /$
			Location		Net		Total Min。	Inm Migrants	Out． migrants	Total	
	Ht．	Time	Site	RM 41	In	0ut					
5／16／83	30.7	0832	\＃3	2.3	0750	0820	30	1	0	1	13
5／16／83	30.7	0832	12	4.5	0847	0917	30	78	1	79	1.3
$5 / 17 / 83$	29.5	0922	\％ 3	2.3	0837	0907	30	4	1	5	0.8
5／17／83	29.5	0922	\＃2	4.5	0937	1007	30	44	8	52	0.8
5／19／83	26.6	1129	\％ 3	2.3	1044	1114	30	10	0	10	0.7
$5 / 19 / 83$	26.6	1129	\％	4.5	1144	1214	30	29	2	31	0.7
5／21／83	26.5	1420	\＃3	2.3	1335	1405	30	260	0	260	11.3
5／21／83	26.5	1420	\＃2	4.5	1435	1445	10	190	0	190	11.3
$5 / 23 / 83$	28.5	1634	43	2.3	1549	1604	15	140	0	140	33.
$5 / 23 / 83$	28.5	1634	\＃2	4.5	1649	1702	13	225	0	225	33.0
5／26／83	30.4	0604	\＃3	2.3	0521	0551	30	11.3	54	16%	3.8
5／26／83	30.4	0604	\＃2	4.5	0619	0649	30	115	56	171	3.8
$5 / 28 / 83$	29.0	2008	教3	2.3	1923	1953	30	94	87	181	
$5 / 28 / 83$	29.0	2008	湤	4.5	2023	2053	30	61	78	139	2.6
$5 / 31 / 83$	26.6	0844	\＃3	2.3	0759	0829	30	7	7	14	2.4
5／31／83	26.6	0844	H2	4.5	0859	0929	30	135	70	205	2.4
$6 / 03 / 83$	22.5	1121	\＃3	2.3	1036	1106	30	0	0	0	13
6／03／83	22.5	1121	顽2	4.5	． 1136	1206	30	77	38	115	1.3

Table 2－3－1．Contimed．

Date	Tide $1 /$				Fishi g Timc			Eulachon Catch $5 /$			CPUE $6 /$
			Location		Net		Total Min。	In－ Migrants	Out－ Migrants	Total	
	HC．	Tine 2	Site	RM 4	In	Out					
$6105 / 83$	22.6	1356	\％${ }^{3}$	2.3	1311	1341	30	0	1	1	0.3
6／05／83	22.6	1350	整2	4.5	1411	1441	30	15	6	21	0.3
6／06／83	23.8	1509	\＃3	2.3	1424	1454	30	0	0	0	0.1
6，06／83	23.8	1509	淮2	4.5	1524	1554	30	6	53	59	0.1
6／07／83	25.3	1608	蔀 3	2.3	1523	1553	30	0	1	1	0.0
6／07／83	25.3	1608	\％2	4.5	1623	1653	30	0	15	15	0.0
6／08／83	26.7	1658	\＃3	2.3	1613	1643	30	0	0	0	
6／08／83	26.7	1658	\＃2	4.5	1713	1743	30	0	0	0	0.0

High Tide In Feet
Miltary Time
Stce 都：（T14M R7W Section 17 AAC）
Stte 警：（TIAN R7W Section 5 AAC）
4／River Mile
Eulachon catch divided into inmmigrants and outmigrants wherein in－migrants imclude both premsawners and spawners，and out－migrants represent post－spawners
CPUE $=$ Hean Number of In－Migrants／Net Minute

 - Selcures-gns 70 dip to deqump											
$7^{\circ} \mathrm{Cl}$	$T^{\circ} 0$	$0^{\circ} 0$	$0^{\circ} 0$	SL	6	0	0	0	0	0	$8 / 9$
$88^{\circ} \mathrm{Cl}$	$\varepsilon^{\circ} 0$	$0^{\circ} 0$	0.0	001	88	0	0	2	0	0	1/9
2'21	$8^{\circ} 0$	$0^{\circ} 0$	00	c!	09	0	0	9	0	0	$9 / 9$
$2^{\circ} 8$	$0^{\circ} 0$	$0 \cdot 0$	$0^{\circ} 0$	08	E	0	0	0	1	0	9/9
--m	$2^{\circ} 0$	$2^{\circ} 0$	$0^{\circ} 0$	001	1	0	1	81	4	0	$8 / 9$
$0 \% \mathrm{OL}$	$*^{\circ} \mathrm{Z}$	$\varepsilon^{\circ} \varepsilon$	$0^{\circ} 0$	Gg	$\dot{\xi}$	6	0	9et	ELT	0	18/5
$2^{\circ} 6$	$2^{\circ} \mathrm{L}$	$z^{\circ} 9$	$2^{\circ} 0$	OE	¢T	T	0	80%	991	9	88/9
0%	$6^{\circ} \mathrm{T}$	$8^{\circ} \mathrm{C}$	$6^{\circ} 0$	81	91	$\varepsilon]$	01	96	808	89	92/9
$\varepsilon^{\circ} 8$	$0^{\circ} 0$	$9 \cdot 9$	0.67	2	0	0	19	0	$\varepsilon 1$	48	$82 / 9$
2%	$0^{\circ} 0$	$0^{\circ} \mathrm{E}$	$L^{\circ} \mathrm{T}$ ¢	ε	0	0	98	0	6	68	12/9
$9{ }^{\circ}$	$1^{\circ} 0$	$\because 0$	$\varepsilon^{\circ} 0$	925	0	0	22	015	42	21	65/9
$8^{\circ} 9$	$0^{\circ} 0$	$0^{\circ} 0$	$1^{\circ} 0$	08%	0	$\underline{1}$	9	4	1	01	$41 / 8$
0.9	$0^{\circ} 0$	$0^{\circ} 0$	$1{ }^{\circ} 0$	001	0	0	-	0	8	01	97/9
$8^{\circ} 9$	$0^{\circ} 0$	0.0	$1{ }^{\circ} 0$	981	0	0	ε	0	0	IT	92/9
$8^{\circ} \mathrm{G}$	$0^{\circ} 0$	$0^{\circ} 0$	$0^{\circ} 0$	49	0	0	0	0	1	2	95/9
$00^{\circ} 9$	$0^{\circ} 0$	$\varepsilon^{\circ} 0$	$L^{\circ} \mathrm{I}$	64	0	Z	98	0	-1	68	61/9
$9^{\circ} \mathrm{G}$	$0^{\circ} 0$	$\square^{\circ} 0$	$2^{\circ} 2$	$\varepsilon ¢$	0	2	IE	0	\%	89	Cl/s
$\square^{\circ} \mathrm{C}$	$0^{\circ} 0$	$1^{\circ} 0$	$L^{\circ} 0$	9ε	0	0	9	0	2	$6{ }^{\circ}$	25/9
$2^{\circ} 9$	$0^{\circ} 0$	1.0	$8^{\circ} 0$	-9	0	0	21	0	9	68	21/9
9%	$0^{\circ} 9$	$0^{\circ} 0$	$2{ }^{\circ} 0$	09	0	0	2	0	0	6	T2/S
$g^{\circ} \mathrm{E}$	$0^{\circ} 0$	$0^{\circ} 0$	$1{ }^{\circ} 0$	02	0	0	1	0	0	ε	11/5
$8^{\circ} 9$	$0^{\circ} 0$	$0^{\circ} 0$	$0^{\circ} 0$	08	0	0	2	0	0	0	01/9
	-350d	Gu!umeds $\sqrt{2}$ and	-2dd	$\sqrt{6}_{\text {Gunus? }}^{2,40 y 3}$	$-250 d$	Gu!umeds soleway	$\begin{aligned} & -24 d \\ & \text { 407e9 } \end{aligned}$	$-350 d$ nouperng	Gulumeds selen	-2id	2200

In the two periods from May 13 to 14 (first migration) ad May 26 to 31 (second migration). Postmsawning eulachon catches were made from May 17 to 19 (first migration), and from May 26 to June 8 (second migration). The largest post-spawning eulachon catches were recorded from May 26 to 31 at an average of 2.0 CPUE in the set nets and 4.2 CPUE in the dip nets (Table $2-3-1$).

Plate 2-3.1. Eulachon set nat catch at Res. 4.5 on May 23. in83. Adupt Anadronvus Investigations. Su Hydro Studies. 198.

Sex composttion data（not weighted by cpuc）collected from dip net caught eulachon at R⿵⿰丿⿺⿻⿻一㇂㇒丶一女刂 4.5 indicate prespawning males in 198% were more numerous Shan femies in the first migration（May $10-17$ ）and pre－spawning females were more mumerous than meles in the second migration fray 19 －June 8）．The respective male to female ratios were $1.8: 1$ and $0.8: 1$（Tabie $2-3-3$ ）． Comparatively，among spawning condition culachon the male to female ratios were $6.2: 1$ in the first migration and $25.9: 1$ in the second migration．The increase of males to females in spawning condition indicate that individual male eulachon pipen earlier and spawn over longer period than their female counterparts．A probable advantage of male eulachon having a longer spawning life than female culachon would be that the eggs released by a female would have a higher chance of being fertilized by avallable males due to the longer time individual males are in spawning condition compared to females．

Table 2－3－3．Sumarization of sex composition samples（not weignted by CPUE） fron eulachon dip net catches at RM 4.5 in 1983．Adult Anadromous Investigations，Su Hydro Studies，1983．

Development Stage	First Migration $1 /$			Second Migration $2 /$		
	$\begin{array}{r} \text { Samp } \\ \text { Males } \\ \hline \end{array}$	Size Females	$M: F$ Ratio	Samp Males	Size Fmales	MoF Ratio
pre－spawners	203	110	1．8：1	151	180	0．8．1
Spawners	31	5	$6.2: 1$	596	23	$25.9: 1$
Postspawners	4	0	－	465	116	4.0 .1

[^0]Age composition samples collected in 1983 from pre-spawning condition eulachon (weighted by set net CPUE data) indicate the first migration was comprised of two, three and four year old fish (Table 2-3.4 and Figure 2-3-1). Most of the first migration fish were three year olds which accounted for 92.6 percent of the males and 97.2 per cent of the females sampled. The same age groups were represented in the second migration of eulachon as in the first. The three year olds again were the most nunerous representing 92.3 percent of the males and 92.1 percent of the fenales sampled.

The 1983 results of length (TL) and weight composition sampling of dip net caught prespawning condition eulachon are presented in Table $2-3-4$. The results, weighted by CPUE set net data of inmigrants, indicate three year old fish averaged 212 mm anong the males and 203 m among the females in the first migration, and 207 m and 201 m respectively in the second migration. The average weights of three year old males and famales were 69.1 g and 60.2 g respectively in the first migration and 67.19 and 59.7 g in the second migration. The same size difference pattern was evident among the two and four year old fish of the first migration wherein they were generally larger in length and weight than corresponding age fish in the second migration. Students T and Manm-Whitney tests established that there was no signtficant differences in lengths at the 90 percent conficience level among the first and second migration female alachon sampled. For the age three male enlachon, both tests astablished at the 99 percent confidence level significant differances in lengths wherein the males were larger in the first migration than the males in the scond migration.

Table 2-3-4. Length and weight of prespawning condition first and second migration eulachon segregated by age and sex trom dip net samples in the Susitna River intertidal. Adult Anadromous investigathons, Su Hydro Studies, 1983.

Age	Length (mm)									Werght (9)		
	Sex	Migration	Sample Size	Range Limits	Mean	95\% Conf. Interval	Median	Sample size	Range Limits	Hean	95\% Com. Interval	Median
2	m	1st	2	191-216	203	---	202	2	50.6-68.8	59.1	----	58.6
3	m	1st	50	186-229	212	210-215	213	50	45.1-86.0	69.1	$66.9-71.2$	69.3
4	M	1st	2	200-222	$21 ?$	---	211	2	59.4-78.7	69.1	---	69.1
2	F	1 1st	1.	$195-195$	195	----	195	1	54.3-54.3	54.3	---	54.3
3	F	Ist	35	180-222	203	199-206	204	35	45.1-74.8	60.2	57.4-63.1	60.3
2	解	2nd	1	182-182	182	--	182	1	$44.2-44.2$	44.2	----	44.2
3	M	2nd	36	187-228	207	204-210	207	36	44.3-82.8	67.4	$64.7-69.4$	67.6
4	M	2nd	2	219-231	220	--*	219	2	$89.4-93.5$	89.6	--	89.5
2	F	2nd	2	174-193	191	-	192	2	43.4.48.0	47.3	--"..".	47.6
3	F	2nd	35	186-218	201	198-203	199	35	48.8 -71.3	59.7	57.5-62.0	59.6
4	F	2nd	1	203-203	203	---	203	1	60.6×60.6	60.6	-	60.6
AT1	All	Al!	202	179-231	205	204-206	204	202	43.4-93.5	64.2	63.0-65.4	63.6

[^1]

Figure 2-3-1. Age composition by sex of first (a-b) and second (c-d) migrant pre-spawning condition eulachon collected from the Susitna River intertidal, Adult Anadromous Investigations. Su Hydro Studies, 1983.

A comparison of 1983 Cook Inlet tidal heights and Susitna River water temperatures and eulachon immigrant catches is provided in Figure 2-3-2. The inmigrant (prespawning and spawning condition) eulachon set net catches occurred in the Susitna River at high tides ranging from 27.8 to 31.7 feet and water temperatures between 4.5 and $7.5^{\circ} \mathrm{C}$. The first eulachon migration peak catch was made on May 13 at a high tide of 29.7 feet and water temperature at $6.6^{\circ} \mathrm{C}$. Comparatively the second migration catches of inmigrants occurred at high tides ranging from 22.1 to 30.5 feet with water temperatures ranging from 6.0 to $10.5^{\circ} \mathrm{C}$ (Figure $2-3-2$). When set net catches peaked on May 23 the high tide was 28.5 feet and the water temperature $8.3^{\circ} \mathrm{C}$ (Figure 2-3-2).

A comparison of 1983 Susitna River water temperatures and Cook Inlet high tide heights with intertidal set net catches of inmigrant eulachon shows no apparent correlation (figure 2-3-2). The onset of the eulachon migration into the Susitna River may, however, be influenced by water temperature. In the Stikine River (Alaska) the eulachon migration begins with ice breakup at temperatures below $4^{\circ} \mathrm{C}$ (Franzel and Nelson. 1981). In 1983. the lower (RM 0-10) Susitna River was substantially free of ice after May 8. On May 10 eulachon were just begimming to enter the Susitna River and the water temperature was $4.8^{\circ} \mathrm{C}($ at $R \mathrm{M} 4.5$) which would indicate a generally similar situation as reported for eulachon in the Stikine River with an exception that slighty wamer water temperatures were recorded at the onset of the nagration in the susitna River.

On the Columbia River (Washington). Smith and Scaffeld (1955) found the eulachon migration and avallablity to be corpelated whth temperatures around

Figure $2-3-2$. Eulachon set net catches at RM 4.5 with associated water temperatures and high tide heights, Adult Anadromous Investigations, Su Hydro Studies, 1983.

7 to $8^{\circ} \mathrm{C}$. In the Susitna River intertidal reach in 1983 approximately 50 percent of the set net catches of first migration inmigrant culachon were made between May 13 and 14 with water temperatures ranging between 6.0 and $7.5^{\circ} \mathrm{C}$. During the second migration approximately 50 percent of the catches were made between May 21 and 23, 1983 at water temperatures between 8.0 and $9.0^{\circ} \mathrm{C}$. It can be generally concluded that the major movement of eulachon into the Susitna River occurs following icemout between water temperatures of 6.0 and $9.0^{\circ} \mathrm{C}$.

3.1.2 Main Channel

The results of sampling the Susitna River main chanmel (RM $4.5-60.0$) in 1983 for eulachon presence, spawning habitat and sex composition are presented in Table 2-3-5.

The first migration of eulachon which passed through the intertidal reach between lay 10 and 17, 1983 initiated spawning in the Susitna River main chamel on or about may 15 and concluded spawning on may 22, approximately (Table 2-3-5). The second migration, which was intercepted in she intertidal reach from May 19 to Dune 6, began spawning in the Susitna River main chanel on or about May 23. Spawning was essentially over among second migration fish by June 5.

In 1983 the upper spawning limit of first migration eulachon in the Susitna River main chanel was approximately MM 28.5 and among fish of the second migration. R 50.5 (Table $2-3-5$). The largest concentrations of eulachon in both migrations were found downtream of RM 28.0 (Ventng piver confluence).

Table 2－3－5．Eulachon spawning areas in Susitna River main channel．Adult Anadromous Investigations，Su Hydro Studies， 1983.

Date	Spawning Location		Water 2t			Substrata 7ype	Eulachon Catch 3						General Natitite Notes
	R星 $1 /$	Qographic Code	Temp．	Depth	Velocity		Male			Femate			
							Pre	Sp．	Postc－	Prem	Sp．	Post－	
5／1星	12.5	SEMOTMLACT	\cdots	130	1.0	100\％shly	10	镸	2	7	1	1	cutbants
8／15	13.8	SSWOTNO2MAK	6．4	140	1.5	100\％stity sand	24	48	18	18	5	怱	
$5 / 17$	23.0		5．4．	170	2.0	75\％gravel 255 samd	4	11	2	7	1	0	
$5 / 20$	9.8	ST5\％07U10บบ8	7.4	100	1.5	100\％ 111 \％sand	22	10	2	10	2	0	
8／20．	12.5	S15WOTM 11 ACL	7.8	130	1.0	100\％ร ficy sand	18	33	1	10	6	0	cutban ${ }^{\text {a }}$
$5 / 20$	18.2	S16N07\％22And	－	100	1.0	90\％sand 10% gravel	14	13	8	3	3	0	
$5 / 21$	15.0	ST6007以 5 cem	8．1	130	1.4	60\％sand fow gravel	5 仡	64	5	22	\％	0	
5／21	25．5	S17notur2aca	－	120	2.0	100\％silty smu	87	13	3	5	2	0	cutbent
5／22	23.5	317MO7L22MCA	7.8	120	2.0	000\％silky samd	16	14	0	17	2	0	cutbunk
$3 / 22$	27.1	S17N07423RAb	7.8	130	1.5	100\％5ilty sumu	38	3	I	18	2	0	cutbaum
5／22	27.3	\＄174074130t	7.6	110	1.0	2002\％5illy sand	11	21	2	5	3	0	cutbank
$5 / 22$	27.1	S17N07w 3DCu	\％${ }^{4} 6$	150	\cdots	100\％5ilty sand	2	4	0	30	2	0	back eddy： cuebank
$5 / 23$	9.0	S3507MSMDA	8.0	110	1.0	100\％silty sand	5	15	0	26	5	0	
$5 / 23$	9.7	S5W07nDOCOH	7.6	100	0.5	1000\％sand ind gravel wix	10	14	0	38	5	0	cutbank
$5 / 23$	21．4	516w07u09cci		160	1.0	100\％sily sand	26	13	0	25	2	0	beach
$5 / 23$	22.1	\＄16407409nctis	6．6．8	\cdots	－	\cdots	16	10	0	34	1	3	
$5 / 23$	23.0		7.8	170	2.0	75% gravel 25% sand	28	21	0	43	5	0	
3／24	12.5	SESWOMIMMCD	6．6	－	\cdots	100\％silty sand	3	11	1	50	10	1	catback
$5 / 24$	13．${ }^{2}$	\＄55407山云施	6.6	80	2.0	100\％silty smad	2	15	0	69	15	0	ctubank
$5 / 24$	13.3	STSNOTHULDDC	\％．6	110	1.5	100\％syity samd	1	4	0	35	8	9	cutbanle
$5 / 24$	13．4．8	S3W07\％o2ccc	7.6	120	1．3		4	20	0	20	呂	0	
$5{ }^{5} \mathrm{~L}$	13.8	Stwhe7hozals	8．7	\cdots	－	100\％sand	5	12	0	38	9	1	
$5 / 24$	13.8	S15：\％7wo2AcA	7.8	130	1.6	100% 3 ${ }^{1} 4$	5	8	0	8	1	3	gradual slope
3／2\％	14．7	STBNOTMSSCT	8.0	40	3.0	100 最 sand hid grayifi mix	6	15	0	19	8	\％	gradul slope
3124	14.9	SI6N074359Cl	6.8	－	\cdots	100\％511ty samo	2	19	0	45	22	0	
5／2采	35．0	STKNaTh35nmb	7.6	\cdots	\pm	100\％sand ind gravel wix	7	30	0	26	8	0	
5／24	15．5	STM 474350 D	7.0	120	2.0	1004 5114\％sand	4	16	b	8	14	0	cutbank

Date	Spawning Location		Mater ${ }^{2}$			Substete Typw	Eulachon Catch 3/						General Habitat Motes
	RM ${ }^{1 /}$	teographic code	Temp.	Depth	Velocity		Male			Female			
							Pre	Sp.	Post.	Pre	Sp.	Poste	
5/24	15.5	S16NOTH35ABD	7.8	130	3.0	100\% stity sand	2	12	0	32	29	1	cutbank
5/2d	15.7	51600743504	5.8	100	-	100\% stity sand	4	18	0	50	9	0	back eddy
$5 / 24$	16.2	S16MO7L26C0	8.0	\bigcirc	,	100\% silly sand	4	14	0	56	5	0	beach
5124	16.5	\$16MOTH26800	7.0	130	1.0	100\% silty samd	3	3	0	60	10	0	
512	27.1	516+07N2688C	7.8	130	-	100\% sility sand	1	8	0	39	8	0	
$5 / 24$	17.2	\$20NO7L26BBE	7.2	100	1.5	100\% sllty sand	1	46	0	3	6	0	
5/24	17.7	S16no7uz3bab	8.2	150	2.0	100\% silty sand	$2{ }^{2}$	54	0	50	9	0	
$5 / 24$	18.2	S16NTH2? ${ }^{\text {a }}$	7.2	100	1.0	90% satuld 10\% gravel	6	94	0	4	28	2	
$5 / 2{ }^{3}$	18.7	S16nOTME2ABA	7.4	130	1.0	75% gravel	0	25	5	0	3	1	
5/24	19.3	516N07N2208A	6.6	140	-	25\% Samd 100% silley sand	2	39	1	1	3	4	back eddy
$5 / 24$	19.8	\$16MOTH6Am	7.1	100	3.0	100% silty sand	0	32	0	7	10	2	cutbank
$5 / 24$	19.8	S16007409CDI	8.8	80	1.5	100\% silty sand	0	47	3	9	7	8	
$5 / 24$	21.3	\$16WOTMOLACC	9.8	80	2.0	100\% stiry sand	0	42	7	4	8	12	
$5 / 24$	22.5	S16nOTMOSABD	7.4	120	4.0	100% silt	0	25	0	0	12	0	cutbunk
5694	23.7	S17007433BA	8.0	100	-	100\% savid	0	40	2	12	7	2	back eddyo cutback
$5 / 24$	24.8	S17nonezact	8.6	90	1.5	50% sand 50% aravel	0	54	0	20	18	0	
$3 / 29$	6.1	\$16NOTHOYDCB	8.0	-	\therefore	$100{ }^{\text {c }}$ S 11 ty samd	2	11	16	0	2	5	
$5 / 25$	9.0	\$55007U158C0	7.6	120	1.0	-	3	22	0	1	3	0	
$5 / 25$	9.8	\$15N0741000	7.6	\cdots	-	100% silt and grovel mix	1	18	2	2	7	1	
$5 / 25$	11.9	S5W1TMLCC:	8.0	90	2.0	100\% silt and gravel mix	1	35	2	1	7	0	cutback
$5 / 25$	14.3	S15mozueraba	7.4	150	2.5	100\% slly sand	0	24	3	2	4	1	cutback
$5 / 25$	17.1	S15N0716CBD	8.1	\cdots	-	100% silty sand	0	27	0	0	42	0	cutback
$8 / 25$	19.0	S1600722868	7.4	140	3.0	100\% stley samd	0	12	1	3	11	2	gradual slope
$3 / 25$	22.0	S16NOTMDHEDA	7.8	80	2.0	100\% same	0	8	1	5	18	0	gradual slope
5/25	24.8	\$17W07M33AB8	9.4	90	1.5	${ }^{100 \%}$ silty sand	1	19	2	5	22	2	gradual slope
$5 / 25$	27.8	S1707M138CA	8.4	70	1.5	100\% silcy samd	0	18	0	2	12	0	
$5 / 25$	29.6	S17006W07cce	8.5	70	1.5	100\% 5ilty sand	0	$2{ }^{4}$	0	4	6	0	gradual slope
$5 / 25$	32.6		8.2	100	2.0	100\% stly sand	1	23	0	15	9	0	

Table 2-3-5. Continued.

[^2]2) Temperature recorded to nearest 0.10 C , depth to nearest nocin and surface veloctty to nearest 0.5 ft/sec.
3) Eulachon catch: Pre = prespawners: Sp. spawners; posto a post-spawners

Although extent of utilization was not detemmined both migrations penetrated the Yentna River (RM 28.0).

A total of 61 separate eulachon spawning areas were identiried in the susitha River main chamel in 1983. Ten of the locations supported first migration spawning and 57 of the sites supported spawning by second migration fish. At least six of the ten spaming areas identified as first migration spanning areas were also used for spawning by second migration fish. Approxinutely 70 percent of all the first and second migration spawning areas located were berween RM 12 and 27.

In 1983 the first migration eulachon spawning areas identified were 1 ated in moderate surface velocity areas near cutbanks where the riverbed composition was mainly loose sands and gravels. The surface velocity at these sites ranged from 1.0 te 2.0 点 $/ \mathrm{sec}$ and averaged 1.5 fe/see: Depths averaged 130 cm and ranged fron 100 to 170 cm . Water temperaturas ranged from 5.8 to $8.1^{\circ} \mathrm{C}$ and averaged $7.3^{\circ} \mathrm{C}$.

The spawning areas located for the second migration of sulachon in 1983 were characteristically similar to those identified for the first migraton. However, overall the second migration spawners spawned in higher veloctty areas and showed less preference toward areas offshore of cutbanks. Surface velocities at the second migration cuiachon spawning areas ranged from 0.5 to 3.5 ft/sec and averaged 2.0 ft/sec. Depths ranged from 40 to 170 cm and averaged 100 cm . The water temperatures ranged from 6.6 to 11.49 g and averaged $8.3^{\circ} \mathrm{C}$.

The minor variation. in spawning habitat utilization among first migration eulacion and second migration eulachon in 1983 was probably due in part to the marked difference in abundance between the two migrations. The first migration was at least seven times saller than the second migration. Spact Was probably less of a limiting factor for first migration eulachon than for: second migration fish. Inasmuch as the majority of all spawning sites used by first migration spawers were utilized by second migration spawners. crowding lifely forced second migration fish to uthlize 'less preferred? spawning ham itats or die prior to spawning as subsequently addressed (plate 2-3-2).

plate $2-3$ \% Dead and dying pre-spawhimg culachon. mutury fenmies, at pM 17 on May 24, 1983. Rdult Rnad: mous Investigations. Fin Hydro Studtes. 1383.

In addition to the suspected utilization of 'less preferred spawning habitat' by second migration eulachon, observations made at one location indicate that the 1983 second eulachon migration into the Susitna Piver experienced crowing to a lavel that introduced stress with associated mortality. The observations referenced were noted on Hay 24,1983 , one day following the peak catch of second migration fish in the intertidal reach. On this date, hundreds of thousands (visual estimate) of eulachon were migrating along the banks of the Susitna River between RM 12.5 and 24.3. At the same time eulachon were spawning between RM 17.2 and 18.2 . These fish which were spawning were noticeably thin, had dull coloration, and fin erosion, not atypleal of spawning condition fish. By contrast, nearly all of the second migration eulachon around and below RM 17.1 were in prespawning condition with bright coloration and no recognized fin erosion, a bypical appearance of prespawning condition fish. Atypical of pre-spamers however, was thas these fish were crowded near shore to the extent that the ones closest to the surface were half out of the water and roling over on their sides (Plate 2-3-3). The banks adjacent to this location (RM 17.1) were littered with dead, unspawned eulachon in depths up to four feet (plate 2-3-4). The majority (80%) of these were fenale carcasses. Comparatively. where spaning was occumping above Rh 17.1 between RM 17.2 and 18.2 , approximately 80% of the fish were live, spawning males. The masses of dead, unspawned fanale eulachon observed in the area of Wh 17: and the spawning activity moted just upstrean can not be rully explanned. However. there may possibly be a physiological mechanism that causes pre-spawning females to stop migration and die rather than enter a spaning area that already supports "high" denstries of spawners. Lagler et al (1962) indicate chat many elements of fish bohavhor ant physlology are denslty dependant. and pophtation densty at
any instant is the function of natally versus mortality. The natural regulation of premspawning eulachon fnto a spawning area may be toward insuring optimum egg fertilization.

Plata 2-3w3. Thousands of 'stressed", prewspawing condition eulachon dying at Rit 17. May 24, 1983. Adult Anadrontous Investigations. Su Hydro Studies. 1983.

Plate 2m3-4. Dead unspawned eulachon in the Susitna River at RM17.1. Adult Anadromous Investigations. Su Hydro Studies. 1983.

Sex composition sampling of first and second migration eulachon in 1983 indicated that male to female eulachon ratios differ between spawning development stages (Table 2m3-6). Unweighted catch samples collected of frist migration fish showed male to female average ratios for pre-spawners at 1.2:1. spawners at $18.9: 1$ and postos, awners at 15.6:1. In the second
migration, pre-spamer ratios averaged $0.6: 1$, spawners $4.7: 1$ and post spawners 3.4:1. The changes in sex ratios are due to differences in length of spawning time between sexes wherein individual males ripen earlier and remain in the river longer than individual females, and a stress associated mortality in the female population at 'high' spawning densities.

Table 2-3-6. Summarization of sex composition samples collected in the 1983 season by dip netting and electroshocking between Susitna river mile 4.5 and 60.0. Aduit Anadromous Investigations, Su Hydro Studies. 1983.

I/ Pirst migration samples collected from 5/10-5/17 for pre-spawners. $5 / 10-5 / 22$ for spawners and 5/10-5/23 for post-spawners.
$2 /$ second migration samples collected from $5 / 18-6 / 6$ for pre-spawners, $5 / 23-6 / 6$ for spawners and 5/24-6/6 for post-spawners.

Variations in second migration culachon sex ratios between spawing development stages is further Illustrated through Figure $2-3.3$. The sex composition samples cellected from 1,956 second migration fish between ph

Figure 2-3-3. Percent composition of eulachon spawing conditions per sex, sampled from RM 12. 1 to 25.1 on May 24, 1983. Adult Anadromous Investigations. Su Hydro Studies. 1983.
12.1 and 25.1 on May 24, 1983 indicate that overall, female eulachon were more abundant than males by a ratio of $0.8: 1$. In comparing subsample collections above and below R 17.1 where the previously referenced stress associated mortality was noted, the data indicates that more females were in prespawning condition than males, more males were in spawning condition than females and lastly. more females were in post spawning condition than male eulachon. Whereas the overall male to female ratio between RM 12.1 and 25.1 was $0.8: 1$ the subsample ratios above RM 17.1 averaged $2.3: 1$ and below PM 1\%.1, 0.A:1. Differential male and female migration rates, spawing time. sexual development and mortality are probable causes for the observed differences in sex ratios.

A total of 267 first and second migration eulachon were successfully aged from sampling efforts in 1983 between RM 4.5 and 60. The infomation has been summarized in Table $2-3-7$ along with corresponding length, weight and sex. The data in Table $2-3 \times 6$ were not weighted by CPUE due to variations in sampling intensity and collection sites. The results indicate that three year old eulachon comprised the majority of both migrations and two and four year old eulachon were prasent in both migrations. The three year old fish accounted for approximately 90.4 percent of the males and 95.5 percent of the females sampled in the first migration. and 83.3 percent of the males and 91. 4 percent of the fenales in the second migration samples. As indicated in Table $2-3.7$, there were no notable differences in the unweighted length and weight data between the samples of first and second migration fish.

No empirical estimate of the cotal 1983 escapement of pirst and second migration eulachon is avallable for the Susitna River. General crew

Table 2-3-7. Length and welght of pre-spawning condition eulachon segregated by age and sex from samples collected in the Susitna River intertidal and main channel. Adult Anadromous Investigations, Su hydro Studies. IS83.

Age	Sex	Maction	Length				Weight					
			n	Range	\bar{x}	95\% C.I. $1 /$	Median	n	Range	\%	95\% C.I. I/	Medran
2	M	1st	4	191-216	199	-"-	195	4	50.6-68.8	57.1	\cdots	54.5
3	M	1st	57	178-229	210	208-212	210	57	39.4 -86.0	67.1	64.7-69.6	57.1
4	M	1st	2	200-222	211	-->	211	2	59.4-78.7	69.1	--m	69.1
2	F	$15 t$	2	188-195	192	---	192	2	53.00 .54 .3	53.7	\cdots	53.7
3	F	1st	43	180-222	202	199-205	202	43	42.3-76.6	59.7	$57.1-62.2$	59.2
4	F	1st	0	- -	-	-	-	0	-	-	-...-	-
2	m	2na	4	182-208	198	-	201	4	44.2-65.1	55.7	-	56.8
3	M	2nd	65	187-228	209	207-211	210	65	4.4.3-84.3	68.1	$66.1-70.1$	68.5
4	M	2nd	9	213-231	221	-...-	229	9	66.9 .93 .5	79.8	-....	79.3
2	F	2nd	4	179-193	185	---	183	4	40.4-48.0	43.8	---	43.4
3	F	2nd	74	176-221	203	201.-205	203	74	45.3-77.3	60.7	59.1-62.3	60.1
4	F	2nd	3	199-212	205	---	203	3	$60.2-71.1$	64.0	---	60.6
A11 21	All	All	308	176-231	206	205-207	206	308	39.4m93.5	64.2	$63.2-65.3$	64.4

1 Contidence Irterval
Composite of all aged and non-aged eulachon
observations of eulachon densities particularity associated with the second migration indicate that the Susitna River in 1983 supported an escapement ranging in the millions of fish.

In 1983, there was only a minor amount of sport fishing effort was expended in the Susitna River for eulachon. In the thirty days of crew sampling operations only two parties of fishermen were observed dip netting eulachon on the Susitna River main channel. Overall, the total sport fish catch of eulachon below RM 28 in 1983 was probably in the range of 500 to 2,000 fish.

3.2 Adult Salmon

The estimated escapements of Pacific salmon into the Susitna River basin for 1983 with exception of chinook salmon are reported in Table 2-3-8. These estimates should be consifered conservative as they do not account for salmon escapements to systems between 8 g 0 and 80 except the Yentna River (RM 28). Minimum saimon escapements for the Susitna River reach above RM 80 are quantified in sections 3.2.1.1 and 3.2.1.2.1 of this report.

Specific results of the 1983 salmon escapement work follow by order of species and river reach. The order of presentation of salmon species are: chinook, sockeye, pink, chum and coho salmon. The river reach divisions are: (1) from the intertidal (RM 0.0) to Talkeetna (RM 98.6): and (2) from Talkeetna to Upper Dev*" Camon (RM 161.0).

Table 2-3a8. Minimum Susitna River salmon escapenents for sockeye, pink. chum and coho salmon in 1983. Adult Anadromous Investigations, Su Hydro Studies. 1983.

Year	Escapement Estimates $4 /$				
	Sockeye $2 /$	Pink	Chum	Coho	Total
1983	176,200	101,300	276,800	24,100	578.400

Defined as the sumation of the Yentna River escapenent obtained by side scan sonar at Yentna Station and the Susitna River escapenent obtained by tag/recapture population estimates at Sunshine Station. These estimates do not include escapements to Susitna River tributaries above RM 6 and below RM 77 excluding the Yentna River (RM 28).

2 Sockeye salmon escapment estimates do not include first run sockeye salmon.

3.2.1 Chinook Salmon

3.2.1.1 Intertidal to Talkeetna
3.2.2.1.1 Main Channel Escapement Monitoring

In 1983 a percentage of the chinook saimon escapement into the Yentna River (RM 28) passed over the two SSS counters and were caught in the two fishwheels operated at. Yentna Station (TRM 04) (Appendix $2-6$ and 2-D). However, most of the escapement had already passed Yentma Station by June 30, 1983 the first day this station was fully operational (ADF\&G. 1982). For this reason the 1983 chinook salmon escapement into the Ventna River can not be quantified.

The 1983 chinook salmon escapement to Sunshine Station (RM 80) on the Susitna River was monitored. The escapement was an estimated 91,200 fish (Tables $2-3-9$ and $2-3-10$). This estimate includes 45,300 fish larger than 350 min in length and 1,700 fish smaller than this which migrated along the east side of the river, and 42,000 fish larger than 350 mm in length and 2,300 fish smaller than this which migrated along the west side of the Susitna River at RM 80 (Tables 2-3-9 and 2-3-10).

Table 2-3-9. Escapement of chinook salmon 350 mm or less in length at Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigetions, Su Hydro Studies. 1983.

Chinook Saimon Escapement $\& 350$

Sunshine Station	Talkeetna		
Fast Bank	West Bank Total	Station	Curry
1.671	2,259	3.930	2.723

The reason the (1983) chmook salmon escapement to Sunshine Station (RM 80) was computed into two submestimates of the number of rish which traveled. along the east and west banks of the Susitna River at Sunshine Station was due to differences in tag to untagged ratios. The surveys performed on the east side of the Susitna River which is defined as the reach between RM 80 and 98.6 and the upper Susitna River drainage above RM 98.6 revealed an overall ratic of tagged to untagged chinook salmon spawners of 1:15.3. Tag recovery surveys on the west side of the Susitma River of west side entering tributamies between R 80 and 98.6 , provided tagged to untagged ratios

Table 2-3-10. Petersen population estimates with associated 95% confidence intervals of chinook salmon migration to Sunshine, Talkeetna and Curry stations. Adult Anadromous Investigations, Su Hydro Studies, 1983.

| Pa meter $1 /$ | | Population Estimate Location 2/ |
| :---: | :---: | :---: | :---: | :---: | :---: |

1) $m=$ Number of fish marked (adjusted).
$c=$ Total number of fish examined for marks during sampling census.
$r=$ Total number of marked fish observed during sampling census.
$\hat{N}=$ Population estimate.
C.I. $=$ Confidence interval around N.

2 Chinook salmon escapenents do not include fish 350 min and less in length (H).

3/ All totals are a summation of east and west bank values and do not represent calculated population estimates.
averaging 1:136.3. These ratios indicate two possibilities: (1) the chinook salmon escapement to RM 80 was segregated with the Chulitna River stocks (RM 98.5) migrating along the west side of the river at RM 80 . and the east side tributary and Susitna River stocks above RM 98.6 migrating along the east river bank at RM 80: and (2) the chinook salmon escamenent to RP 80

Was not sampled equally on the east and west sides of the river even though fishing effori was identical with two fishwheels operated on each side. Based on these probable factors it was decided that east and west bank migrat ng fish should be treated incependently as two separate populations in estimating the total chinuok salmon escapement to PM 80 . Tn accomplishing this the tagged chinook samon release data generated on the east side of the Susitna River at RM 80 was combined with tag recovery survey data collected from east side spawning areas to compute an east side escapenent estimate. The west side escapement was somputed in the same manner using west side tag release and tag recovery data.

From fishwheel catches at Ventna Station (TRM 04) it can be detemmined hat the 1983 migration of chinook salmon into the Yentna River (Ry 28) bigen sometime before June 30 and encet in the first week of August (Appeidix Table 2-D-3 and Figure 2-3-4). It can be further concluded that there was; no strong migrational preference for chinook salmon movenent along one bank or the other after June 30 . The north bank fentna station fichwheel intercaptec 57.5 percent and the south bank fishwheel captured 42.5 percent of the total station catch (Appendix Tables 2.D-1 and 2-D-2).

The overall timing of the 1983 chinook simm migration at Sunshine Stat'on (RH 80) can be detemmed from the total catch of 3,832 fish in the foum fishwheals operated at this location between June 3 and September 11 (Table $2-3-14$ And Figure 2 m-an). The migration essentially covered a 31 duy period which began on June 9 , reached a mipoint on dune 18 and ended ch July 9. The peak migration occurred on June if. The average fishohee catch on this date was approximately 3.7 chmook salmon per hour. A plot of the
 GUNE HR UULY

AUG.
㖛 S SPT, - 1

Figure 2-3-4. Mean hourly and cumulative percent fishwheet catch of chinook saimon by two day periods at Yentna and Sunshine stations. Adult Anadromous Invest gations. Su Hydro Studies, 1983.
dally ast and west bank fis:wheel catches at Sunshine Station indicate that the majority of the escapement traveled along the east side of the river based upon 90.3 percent of the total staton catch being caught in the east bank fishwheels (Appendix 2-D). The results from tag recovery surveys performed upstream of RM 80 on the east and west sides of the piver indicated the diffarence in interception ratios between the east and west bank fishwheels was primarily related to fishwheel efficiency where the east bank fishwheels caught in the range of six percent of the escapement on the east side of the river and the west bank fishwheels intercepted about one percent of the west bark escapement.

Table 2-3-11. Summary of fishwheel catches by species and sampling locations, Adult Anadromous Investigations, Su Hydro Studies. 1983.

Sampling Location	River Mile	Catch				
		Chinook	Sockeye	Pink	Chum	Coho
Yentma Station	04	87	4,648	4,489	775	574
Sunshine station	80	3.832	8,147	3,085	17,600	2,254
Talkeetna Station	103	1,030	536	2,213	2,467	422
Curry Station	120	1.054	201	589	861	93

The results of sampling chinook calmon for age at Yentna River (RM 28) and Sunshine Station (RM 80) are summarized in Table $2-3-12$ and Figure 2-3.w5. An insufficient number of samples were collected at Yentna Station (TRM 04) to deftne other than that the escapenent included fish ranging from three to

Table 2-3-12. Analysis of chinook salmon lengths, in millimeters. by age class from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations. Adult Anadronous Investigations, Su Hydro Studies, 1983.

$\begin{aligned} & \text { collection } \\ & \text { site } \end{aligned}$	Age Clas:	n	Range Limits	Neat	95\% Comf. Interval 3	Medram
		$m 1 / 2$	W F	\cdots P	M F	H
Yentna Station	$\begin{aligned} & 3_{2} \\ & 6_{2} \\ & 5_{2} \\ & 6 \\ & 6_{2} \\ & 7_{2} 4 \\ & 414 \end{aligned}$	5 1 1 - 2 2 2 1 1 58 83	$286-367$ - 442 524 - $542-785$ $825-845$ $750-872$ 940 945 $286-940$ $436-985$ $286-985$	323 442 524 0 664 835 811 940 945 530 741 594 	- \cdots - - - - - \cdots \sim \cdots $470-592$ $680-802$	325 428 525 0 664 835 814 940 945 399 779 590
Sunshine station	$\begin{aligned} & 3_{2} \\ & 4_{2} \\ & 5_{1} \\ & 5_{2} \\ & 6_{2} \\ & 7_{2}^{2} 4 \\ & A L 4 \end{aligned}$	19 - 41 10 1 - 338 170 238 352 46 92 936 810 1745	$325-110$ - $360-720$ $445-690$ 635 - $420-1015$ $455-1100$ $550-1200$ $505-1250$ $710-1250$ $715-1040$ $325-1250$ $430-1250$ $325-1250$	373 - 522 548 635 - 631 670 879 873 993 927 714 815 761	$363-322$ - $495-548$ $49-604$ $620-642$ $649-602$ $861-896$ $862-883$ $963-1022$ $915-940$ $702-726$ $305-826$ $752-769$	370 515 555 635 \cdots 610 630 900 390 1000 923 655 870 790
Talkeetna Station	$\begin{aligned} & 3_{1} \\ & 3_{2} \\ & 4_{1} \\ & 4_{2} \\ & 5_{1} \\ & 5_{2} \\ & 6_{2} \\ & 7_{2} \\ & M_{1} 4 \end{aligned}$	9 - 340 - 1 - 56 5 5 2 176 41 60 126 9 32 634 268 902	$300-400$ - $290-430$ - 430 - $330-680$ $960-530$ $530-720$ $590-730$ $460-860$ $500-840$ $680-1100$ $630-1000$ $870-1040$ $830-1050$ $290-1100$ $460-1050$ $290-1100$	343 - 346 - 430 - 492 494 616 650 616 023 854 840 956 927 555 795 626	- - $342-349$ - - - $464-520$ - $605-628$ $597-650$ $828-879$ $628-853$ - $904-949$ $541-570$ $779-811$ $613-640$	340 - 350 - 430 - 515 450 620 660 610 800 840 840 960 315 560 820 620

Table 2-3-12. Continued.

		8		Rang	Hits			95\% con	trval 3		
Ste	Class	m $1 /$	52	1	F	M	F	\%	\%	\%	5
curry	$3 \frac{1}{1}$.	-	280-355	\because	313	-	-	-	313	\cdots
Station	3_{2}	65	-	300-100	-	346	-	$340-352$	-	345	\cdots
	42	27	1	$360-680$	510	499	510	463-529	-	300	510
	5_{2}	158	16	$460-810$	600.790	62%	675	6117-637	643-707	530	670
	6.	129	180	$530-1100$	700-970	845	848	629.861	234-349	860	840
	72	31	103	840-1140	800-1070	1001	924	$977-1025$	916-932	1000	930
	AL2 -	535	372	280-1140	510-1070	565	855	645.683	847-869	650	860
		907		280-1140		783		731-756		809	

$1 /$ Bhles.
2 Femles.
3 Confidence Interval of the Mean.
If Conpostre of all aged and non-aged samples.

Figure 2-3-5. Age composition of fishwheel intercepted chinook salmon at Yentna. Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.
seven years old. At Sunshine Station 1,307 legible scales collected indicated the escapenent was approximately 85 percent five and six year old fish (Figure 2-3-5). The balance of the escapement sample was comprised of fish seven. four and three years old in order of abundance. Nearly all the fish sampled for age from Sunshine Station were fish that had gone to sea in their second year of life (Table 2-3m13).

Table 2-3m. Analysis of chinook salmon age data by percent from escapement samples collected at Yentna, Sunshine, Talkeetna and Curpy stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Collection Site	n	Age Class $1 /$							
		31	3_{2}	41	42	51	5_{2}	62	${ }^{7} 2$
Yentna Station	15	-	33.3	-	13.3	=	13.3	26.7	13.3
Sunshine Station	1307	-	1.5	-	3.9	0.1	38.9	45.0	10.6
Talkeetna Station	- 664	1.4	21.1	0.2	9.2	1.1	32.9	27.9	6.2
Curre Station	712	0.3	9.1	-	3.9	-	24.4	43.5	18.8

I/ Gilbert-Rich Notation

Length composition data was collected from fishwheel caught chinook salmon at Yentna (TRM 04) and Sunshine (RM 80) stations in 1983. The results are summarized in Figure 2-3-6 and Table 2-3-12. The data indicates a near linear relationship between chinook salmon age and length at both stations. The average chinook salmon length measured at Yentna Station was 594 mm and at Sunshine Station. 761 mm. Sex composition data collected at these stations indicates males were more numerous than females among the three and

Figure $2-3-6$. Length frequency distribution of chimook salmon at Yentna Station and length and age distribution of chinook salmon at Sunshine Station in 1983. Adult Anadromous Investigations. Su Hydro Studies, 1983.
four year old fish, and more females than males among fish five, six and seven years old (Table 2-3-14).

3.2.1.2 Talkeetna To Upper Devil Canyon

3.2.1.2.1 Main Channel Escapement Monitoring

The 1983 escapenent of chinook salmon at Talkeetna Station (RM 103) was an estimated 14,500 fish. Represented in this estimate are 11,800 chimook Salmon larger than 350 mm in length and 2,700 fish smaller than this length (Tables 2-3-9 and 2-3-10).

The 1983 chinook salmon escapement at Curry Station (RM 80) was an estimated 10,000 fish or about 1,800 fish less than the estimate for Talkeetna Station (RM 103) (Tables 2-3-9 and 2-3-10). About 9,500 of the 10,000 chinook salmon escapement estimate to Curry Station were fish larger than 350 min length. The balance of the estimate were fish smaller than this length.

Migration timings of the 1983 chinook salmon escapements to Talkeetna (RM 103) and Curry (RM 120) stations have been determined by interpretation of fishwheel catches (Figure 2-3-7). At Talkeetna Station, the migration began on June 18, reached a midpoint on June 28 and ended on July 21. The migration peaked on June 22 at an average catch rate of 0.8 fish per fishwheel hour. Seventeen miles up river at Curry station, the chinook migration began on June 18, reached a midpoint on June 25 and ended on July 13. The highest daily catch rate at this site occurred on June 23 with 1.9 fish per fishwheel hour being recorded (Appendix 2-D).

Table $2-3-14$. Sex ratios of male and female chinook salmon by age from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry Stations, Adult Anadromous Investigations. Su Hydro Studies. 1983.

Collection Site	Age	Sample Size	Number		sex Ratio (M:F)
			Males	Females	
Ventna Station	3	5	5	0	-
	4	2	1	1	1.0 .1
	5	2	0	2	-
	6	4	2	2	1.0 .1
	7	2	1	1	1.0 .1
	A11 -	83	58	25	$2.3: 1$
Sunshine Station	3	19	19	0	-
	4	51	41	10	$4.1: 1$
	5	509	339	170	2.0 .1
	5	590	238	352	$0.7: 1$
	7	138	46	92	$0.5: 1$
	A11 1/	1746	936	810	1.2:1
Talkeetna Station	3	149	149	0	-
	4	62	57	5	11.4 .1
	5	226	183	43	$4.3: 1$
	6	186	60	126	$0.5: 1$
	7	41	9	32	$0.3: 1$
	Al1 !	902	634	268	2.4:1
Curry Station	3	67	67	0	-
	4	28	27	1	27.0 .1
	5	174	158	16	9.9 .1
	6	309	129	180	$0.7: 1$
	7	134	31	103	$0.3: 1$
	All $1 /$	907	535	372	1.4:1

[^3]

Figure 2-3-7. Mean hourly and cumulative percent fishwhee catch of chinook salmon by two day periods at Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies. 1983.

In 1983, the majority of the chinook escapement migrated along the east bank of the Susitna River at both Talkeetna (RM 103) and Curry (RM 120) stations. Approximately 55 percent of the total 1,034 chinook salmon fishwheol catch at Talkeetna Station and 55 percent of the total 1,064 fishwheel catch at Curry Station were made by east bank fishwheels at these locations (Appendix Tables $2-D-9$ and 2-D-12). Inseason catch trends held relatively consistent between the east and west bank fishwheels at both locations as indicated in Figure 2-3-7.

The chinook salmon in 1983 averaged a migrational travel time between Talkeetna (RM 103) and Curry (RM 120) stations of 6.4 days based on a sample of 50 fish (figure 2-v-8). Computed to a daily travel rate these fish averaged a net speed of 2.7 milas per day between RM 103 and 120. In comparing migrational rates of fish tagged at Sunshine Station and later recaptured at Talkeetna and Curry stations it is evident that chinook salmon in 1983 either traveled at a faster rate or spent less time milling the further they ascended upstream. Fish tagged at Sunshine Station avaraged a net migration speed for the 23 miles to Talkeetna Station of 1.8 miles per day whereas to Curry Station, 40 miles above Sunshine Station their migration was faster at an average of 3.0 miles per day.

The results of age samples collected in 1983 from from 664 and 712 chinook salmon caught in fishwheels at Talkeetna (RM 103) and Curry (RM 120) stations are summarized in Tabie 2.3-13. Approximately 62 percent of the escapement sampled from Talkeetma Station were five and six year old fish. The balance of the sample was comprised of fish three. four and seven years ald in respective order. About 97 percent of the escapenent sample from Talkcetna

(a) Number of Doy bovMen Cuplupe

(b) Numbur of Days bevenem cogturge

Figure 2-3-8. Migrational rates of chinook salmon between (a) Sunshine and Talkeetna stations, (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations: Mdult Amadromole Investigations, Su Hydro Studies, 983.

Station were fish that had gone to sea in their second year of life. The remainder of the sample had gone to sea in their first year of life. At Cury Station five and six year ald fish represented 68 percent of the escapement sample with the remaining 32 percent represented by fish seven, three and four years old in order of contribution. Nearly all (97.7\%) the escapement sampled for age from Curry Station were fish that had gone to sea in their second year of life.

Length composition data of chinook salmon sampled at Talkeetna (RM 103) and Curry (RM 120) stations in 1983 are presented in Table 2-3-12 and Figure 2-3-9. The data indicate that the chinook salmon sampled at Talkeetna Station had about 115 mm less length than the fish sampled at Curry Station. The chinook saimon at Talkeetna Station averaged a length of 626 mm and at Curry Staction, 743 m.

Sex composition data collected at Talkeetna (RM103) and Curry (RM 120) stations in 1983 are presented in Table $2-3-14$. The sex ratio data indicate on overall male to female ratio of $2.1: 1$ and $1.4: 1$ respectively for samples collected at Talkeetna and Curry stations. At both stations there were more fomales among the six and seven year old fish than males. Among the three, four and five year old fish males were more numerous than females.

3.2.1.2.2 Spawning Ground Surveys 3.2.2.2.2.1 Man Channel

In 1983. there was no spectisic s moling for chimook salmon spaning in the Susitna River main chamel, reneral obsemations im 2983 by the crews

Frgure 2-3-9. Length frequency distribution of chinook salmon sampled for age in 1983 at Talkeetna and Curry stations. Adult Anadromous Investigations. Su Hydro Stuties. 1983.
assigned to main chammel stations at RM 80,103 and 120 and at Gold Creek (RM 136.7) provided no evidence that chinook salmon spawned in the Susitna River main channel. While these crews did not sight any chinook salmon spawning this should not be conside conclusionary that chinook saimon did not spawn in the Susitna River main chanmel in 1983.

3.2.1.2.2.2 Sloughs and Streams

A total of 35 slagh habitats between $P M 98.6$ and 16.0 were routinely surveyed for salmon escapements between July 25 and $0 c t o b e r$ 11, 1983. Twenty streams were likewise surveyed in this reach between July 15 and October 8 , 1983.

The results of the sloughs surveyed above Rim 98.6 indicate adult chinook salmon did not use these habitats in 1983 for spawing or milling. A single chinook salmon carcass was located in Slough 15 (RM 137.2) on July 25, 1983. Considering the close proximity of Slough 15 to Indian River (RM 138.6) it is likely this carcass was a wash out from indian River.

In 1983 chinook salmon were found in 11 streams above RM 98.6 (Table 2-3-15). A total of 4,432 chinook salmon were enumerated in the peak survey counts of these streams. The majority (97.8\%) of these counts were recorded at Indian River (RM 138.6) and Portage Creck (RM 148.9). The remaining nine streams accounted for 2.2 percent of the total peak count (Table 2-3-15).

It should be recognized that a peak survey count of chinook salmon probably does not represent more than about 52 percent of the total escapoment

Table 2-3-15. Chinook salmon peak escapenent counts for stream habitats above RM 98.6 in order of contribution, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Stream	Location$(\mathrm{RM}) 1 /$	Date	Number Counted			Percent Contribution
			Live	Dead	Total	
Portage Creek	148.9	7/25	3.123	17	3,140	70.8
Indian River	138.6	$7 / 25$	1.172	21	1.193	26.9
Cheechako Creek	152.5	8/1	25	0	25	0.6
Gold Creek	136.7	$7 / 24$	19	4	23	0.5
Chase Creek	106.9	8/11	8	7	15	0.3
Lane Creek	113.6	8/2	10	2	12	0.3
Chinook Creek	156.8	8/1	8	0	8	0.2
Whiskers Creek	101.4	8/4	3	0	3	0.1
4th of July Creek	131.0	8/2	4	2	6	0.1
Jack Long Creak	144.5	8/1	3	3	6	0.1
Devil Creek	161.0	8/1-2	1	0	1	< 0.1
		TOTAL	4,376	56	4,432	100.0

$1 /$
River Mile
(Neilsen and Geen, 1981). The total peak survey count in 1983 of 4, 132 fish to Il stream habituts above RM 98.3 probably represents an escapement in the range of 8,500 fish. Inasmuch as there has been no record of chinoak salmon spawning in the main chamel of the Susitna River above RM 98.6 and there was a complete survey of all suspectau and known salmon spawning mbutaries above RM 98.6 in 1983, it would be reasonable to assume that the 14,500 (1983) escapement estimate for Talkeetna Station (RM 103) represents a combination of both milling fish that reached RM 103 but spawned below RM 103
and fish which migrated past RM 103 to upstream spawning areas. Milling behavior characterized by, -imon ascending a river beyond their final spawning designation has been reported in several studies of Susitna River salmon escapements. Barrett (1974) reported that a portion of the adult salmon escapement that reached RM 103 in 1974 spawned in downstream spawning areas. Radio telemetry observations of four chinook salmon released at RM 103 in 1981 revealed that three of the four fish spawned above RM 103 and the remaining one fish spawned below this location (ADFiG, 1981). In 1982 five of seven radio tagged chinook saimon released at $R^{\prime *} .103$ spawned in tributaries below RM 103, including the Talkeetna River (RM 97.1) (ADP\&G, 1982). Chinook salmon tag recovery surveys conducted in Talkeetna River and Chulitna River (RM 98.5) tributaries this year further substantiate that a portion of the 1983 escapenent to RM 103 descended to downstream spawning areas (Appendix Table 2-G-4;

3.2.1.3 Escapement Index Surveys

In 1983, escapement surveys were conducted at 19 of 26 designated chinook Salmon spawning index streans in the Susitna River drainage (Figure $2-3-10$ and Table $2-3-16$). The results indicate escapements in 11 of the 19 index streams in 1983 were higher than the previous seven year average and nine of these streams supported escapements higher than any year between 1976 and 1982 (Table $2-3-17$). Overall, the 1983 chinook salmon escacement in the Susitia Piver drainage index streams was approximately six percent nigher than the escapement average for the previous seven years (1976m1982).

1. Alexander creek
2. TALACHLITHA
3. OUARTZ CREEK
4. CANYON CREEK
5. RED CREEK
6. LAKE CREEK
7. PETERS CREEK
8. DESHKA RIVER
9. BUNCO CREEK
10. CHULTTMA MIDDLE FORK
11. CHILITMA EAST FORK
12. CNUITMA RIVER
13. honolulu creek
14. PORTAGE CREEK
15. INDIAN RIVER
16. BYERS CREEK

1/. TROURLESOME CREEK
18. LANE CREEK
19. CLEAR CREEK
20. PRAIRIE CREEK
21. MONTANA CREEK
22. GOOSE CREEK
23. SHEEP CREEK
24. RASHITNA RIUER NORTH FORK
25. LITHE WILLOM CREEK
26. MLLLON CREEK

Figure 2-3-10. Susitna River basin with chinook salmon index streams defined. Adult Anadromous Investigations, Su Hydro Studies. 1983.

Tabla 2-3-16. 1983 escapement surveys of chinook salhon inder streams in the Susitna River drainage, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Stream Surveyed	Survey			No. of Chinook Salmon Counted		
	Date	Method	Conditions	Live	Dead	Total
Alexander Creek (Mouth to Lake)	7/19	Hel.	Good	3.755	0	3,755
Wolverine Creek (Alexander Cr. drainage)	7/19	Hel.	Good	491	0	491
Sucker Creek (hexander Cr. drainage)	7/19	Hel.	good	597	0	597
Bunco Creek	8/2	Foot	Good	277	2	523
Canyon Creek	7/13	S.Cub	Excellent	575	0	575
Cheechako Creek (Devil Canyon)	$\begin{aligned} & 7 / 24 \\ & 8 / 1 \end{aligned}$	Hel. Hel.	Excellent Excellent	16 25	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \end{aligned}$
Chinook Creek (Devil Canyon)	$\begin{aligned} & 7 / 24 \\ & 8 / 1 \end{aligned}$	Hel. Hel.	Excellent Excellent	4 8	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$
Chulitna River (Middle Fork)	$\begin{aligned} & 7 / 19 \\ & 8 / 3 \end{aligned}$	Raft Raft	Excellent Excellent	$\begin{array}{r} 3,842 \\ 883 \end{array}$	$\begin{array}{r} 4 \\ 75 \end{array}$	$\begin{array}{r} 3,846 \\ 958 \end{array}$
Clear Creek	8/1	Hel.	Good	758	48	806
Deshka River	$7 / 26$	Hel.	Excellent	19,237	0	19,237
Devil Creek	$8 / 2$	Hel.	Excellent	1	0	1
Goose Creek	7/18	Hel.	Fair	472	5	477
Indian River	$\begin{aligned} & 7 / 25 \\ & 8 / 2 \end{aligned}$	Hel. Hel.	Excellent Excellent	$\begin{array}{r} 1,172 \\ 417 \end{array}$	$\frac{21}{76}$	$\begin{array}{r} 1,193 \\ 493 \end{array}$
Kachwitna River (North Fork)	$7 / 18$	He?	Good	297	0	297
Lake Creek	7/26	Hel.	Excellent	7,025	50	7.075
Camp Creek (Lake Cr. drainage)	7/29	Hel.	Excellent	1,050	0	1,050
Sunflower Creek (Lake Cr. drainage)	7129	Hel.	Excellent	2.250	0	2.950
Lane Creek	$8 / 2$	Hel.	Excellent	\cdots	2	12

Table 2-3-16. Continued.

Stream Surveyed	Survey			No. of Chinook Salmon Counted		
	Date	Method	Conditions	Live	Dead	Total
Little Willow Creek	7/19	Hel.	Good	1,039	3	1.042
Montana Creek	7/14	Foot	Excellent	1,638	3	1.641
Peters Creek	$7 / 14$	Hel.	Excellent	2,272	0	2.272
Portage Creek	$\begin{aligned} & 7 / 25 \\ & 8 / 1 \end{aligned}$	Hel. Hel.	Excellent Excellent	$\begin{aligned} & 3,123 \\ & 2,172 \end{aligned}$	$\begin{array}{r} 17 \\ 384 \end{array}$	$\begin{aligned} & 3,140 \\ & 2,556 \end{aligned}$
Prairie Creek	7/20	Foot \& Cessna	Excellent	871	0	3,200
Sheep Creek	8/18	Hel.	Fair	942	3	945
Talachulitna River	7/29	Hel.	Excellent	9,714	300	10,014
Whlow Creek Parks Hwy to Mouth Canyon to Highway	$\begin{aligned} & 7 / 18 \\ & 7 / 19 \end{aligned}$	Hel. Raft	Good Excellent	83 690	0 4	$\begin{array}{r} 83 \\ 694 \end{array}$

Table 2-3-17. Chinook samon peak survey escapenent counts of Susitna piver Basin streams from 1976 to 1983 , Adult
Anadrorous Investigations, Su Hydro Studies. 1983.

Year								
Stream	1976	1977	1978	1979	1980	1981	1982	1983
Alexander Creek	5,412	9,246	5,854	6,215	a/	a/	2,546	3.755
Deshka River	21.693	39,642	24,639	27.385	a	a/	16,000 el	19.237
Whllow Creek	1:660	1.065	1,661	1,086	a/	1,357	592 d	-777
Lfelle Willow Creek	833	598	436	324 cl	-/	459	31.6	1.042
Rashwitna River (Worth Fork)	203	336	362	457	a/	557	156 dl	297
Sheep Creek	455	630	1,209	778	a/	1,013	527 d/	945
Goose Creek	160	133	283	b/	a/	262	140 d/	477
Montana Creek	1,445	1.443	881	1.09 cl	a/	814	887 -1	1,541
Lane Craek	b/	b/	b/	b/	b/	40	47^{-}	12
Indian River	537	393	$1{ }^{1}$	285	a/	422	1.053	1.193
Portage Creek	702	374	140	190	$\frac{1}{a l}$	659	1.253	3,140
Prairle Creek	6,513	5,790	5,154	a/	al	1,900	3,804	$3,200 \mathrm{e}$
Clear Creek	1.237	. 769	997	864 cl	a/	a/	-982	${ }_{806}$
Chulitna River (East Fork)	112	168	59	a/	-	-		b/
Chitlona River (MF)	1,870	1,782	900	a/	a/	a/	644 d	3,876
Chulitna River	124	229	62	a/	a/	a/	$100 \mathrm{~d} /$	\%
Honolulu Creek	24	36	13	37	a/	a/	27	b/
Byers Creek	53	69	ai	28	a/	a/	7 d/	bi
Troublesome Creek	92	95	a/	a/	a/	a/	36 d/	b/
Bunco Creek	112	136	a/	58	a)	a/	$198{ }^{-}$	523
Peters Creek	2,280	4.102	1,335	a/	a/	a/	a/	2,272
Lake Creek	3.735	7,391	8.931	4,196	a/	a/	3,577	7.075
Talachulitna River	1,319	1,856	1.375	3.648	a/	2.129	3,101	10,014
Camon Creek	44	135	b/	b/	b/	84	b/	5
Quartz Creek	b/	8	b/	b/	b/	8	b/	b/
Red Creek	b/	1.511	385	5/	5)	749	5]	D/

[^4]Chimok salmon escapenents to index streans in 1983 averaged approximately 50 percent more fish than in 1982 (Table 2-3-17). For the west side of the Susitna River below RM 97 the 1983 escapenent was approxinately 60 percent more than the 1982 escapement. The east side Susitna River index streams below RM 97 were not surveyed during the peak of spawning in 1982 and therefore no comparison can be made with the 1983 escapement data. The Talkeetna River drainage (RM 97.1) index streams in 1983 supported about 15 percent less escapement than in 1982. For the Chulitna River drainage (RM 98.5) the escapements were about 430 percent higher in 1983 than in 1982. In the jusitna River reach above RM 98.6 approximately 80 percent higher escapenents were realized in 1983 than in the previous year.

3.2.2 Sockeye Saimon

3.2.2.1 Intertidal to Talkeetna

3.2.2.1.1 Main Chamel Escapement Monitoring

3.2.2.1.1.1 First Run

The first run sockeye salmon escapement into the Ventna River (RM 28) was not monitored at Ventna Station (TRM 04) in 1983. This station was operational in late June 1983 which is after first run sockeye passed through the lower Yentma River.

Sunshine Station (RM 80) on the Susitna River main chanme? was operated early enough in the 1903 season to record the first r in sockeye salmon escapenent. An estimate of 3,300 first run sockeye salmon migrated past this location in 1983. The 95 percent confidence interval associated with this estimate was computed at 3,000 to 3,700 Fist (Table 2-3-18). Based on fishunel catches
the migration essentially began on June 6 at Sunshine Station, reachad a midpoint on June 10 and ended on June 19. The peak of migration occurred on June 14 at 3.7 fish per fishwhel hour (Appendix Table 2-D-6).

Table 2-3-18. Petersen population estimate it first run sockeya salmon escapenent to Sunshine Station. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Population River Estimate Location	Tagged	Examined for Tags (c)	Recaptures Population Estimate ((N)	95% Confidence Interval	
Sunshine Station	80	415	2,296	286	3,332	$3,006-3,737$

1/ Migration period of first run sockeye saimon extended from June 5 through June $28,1983$.

In 1983, the escapenent of first run sockeye salmon passed essentially along the east side of the Sunshine River at Sunshine Station (RM 80). The So east bank station fishwheels caught 399 first run fish and the two fishwheels operated off the west side caught only one (Appendix Table 2-D-6).

Age composition data was collected from 290 first run fish at Sunshine Station (RM 80) in 1983 (Table 2-3-19). The data indicated the escapenent was comprised mainly of four (26.9%) and five (72.4%) year old fish which had gone to sea after one winter in freshwater (Table 2-3-19).

Length data was collected fron 334 first run sockeye salmon at Sunshine Station (RM 80). The results are presented in Table $2-3-20$. The five and six year old males sampled at thit station averaged. larger length than the

Table 2-3-2\%. Analy, is of sockeye salmon lengths, in millimeters, by age class from escapement samples collec ed at Ventha, Sunshine, Talkeetna and Curry stations. Adult Anadromous Investigations. su byuro Scudies, 1983.

Table 2-3-20. Continued.

Table $2-3 \mathrm{~m} 19$. Analysis of sockeve salmon age data by percent from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Collection Site	n	Age Class $1 /$									
		3_{1}	32	41	4_{2}	43	${ }^{5}$	5_{2}	5_{3}	62	63
Yentma Station	1024	0.4	4.7	0.4	66.8	0.9	0.5	22.6	1.8	0.2	1.7
Sunshine Station First Run	290	\bigcirc	-	\cdots	26.9	${ }^{-}$	\bigcirc	71.4	0.7	1.0	\bigcirc
Second Run	994	0.1	-	0.3	63.4	0.5	0.1	33.7	1.7	-	0.4
Talkeetna Station	344	0.3	4.1	-	50.9	4.9	-	38.1	1.7	\cdots	-
Curry Station	118	0.8	5.9	-	69.6	2.5	0.8	18.7	1.7	-	-

1/ Gilbert-Rich Notation
females. The four year old females averaged a larger length than the four year old males. The overall average length of all maie and female first run sockeye salmon sampled at Sunshine Station was 515 mm.

Figure 2-3-11 provides a percent comparison of the male and female first run sockeye salmon sampled for age at Sunshine Station (RM 80) in 1983. The comparison indicates there were about an equal number of male and female four year old fish and about 25 percent more males than females among the five year old fish. The overall male to female ratio of all aged and non aged first run sockeye salmon sampled at this station wa: $1.3: 1$ (Table 2-3-21).

3.2.2.1.1.2 Second Run

The 1983 escapenents of second rum sockeye salmon were detemined in the Yentna Rever (RM 28) at Yentna Station (TRM 04) by SSS counters and in the

Figure 2-3-11. Age composition of fishwheel intercepted sockeye salmon at Ventna, Sunshine, Talkeetna and Curry stations. Adult Anadromous Investigations. Su Hydro Studies, 1983.

Takie $2-3-21$. Sex ratios of male and female sockeye salmon by age from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry Stations, Adult Anadromous Investigations, Sou Hydro studies, 1983.

Susitna River at Sunshine Station (RM 80) by the Petersen mark/recapture method (Table 2-3-8). The 1983 escapement into the Yentna River (RM 28) was an estimated 104,400 fish (Table 2-3-22). For the Susitna River at Sunshine Station (RM 80) the escapement was estimated to be 71,700 fist (Table 2-3-23).

The migrational timing of the 1983 second run sockeye salmon escapenents to Yentna (TRM 04) and Sunshine (RM 80) stations can be calculated from station fishwheel catches (Figure $2-3 \mathrm{~m} 12$). Based on fishwheel catch rates, the Yentna River (RM 28) migration began on July. 14, reached a midpoint on July 22 and ended on August 15. In the Susitna River at Sunshine Station the escapement migration began on July 17, reached a midpoint on July 23 and ended on August 14.

Fishwheel catches of second run sockeye salmon in the Ventna River (RM 28) at Yentna Station (TRM 04) and in the Susitna River at Sunshine Station (RM 80) indicate a migrational preference by the species to passage aiong the south bank at Yentna Station and the east bank of Sunshine Station assuming mixed stocks and no differential fishwheel selectivity. At Yentna Station the north bank fishwheel caught approximately 80 percent of the cotal station catch of 4,648 second rum sockeye samon (Appendix Table 2-0-1). The remaining percentage (20%) was landed in the south bank fishoneel. At Sunshine Station, the two east bank fishwneels caught approximately 67 percent of the total 7,707 station catch and the two west bank fishwheels caught the remaining 33 percent (Appendix Table 2-D-4).

Table 2-3-22. Apportioned sonar counts of chinook, sockeye, pink, chum and coho salmon at Ventna Station. Adult Anadromous Investigations, Su Hydro Studies, 1983.

| Sampling
 Location | Operational
 Period | $\frac{\text { Chinook }}{}$ | Sockeye | Pink | Chum | Coho |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yentna
 Station | $6 / 30$ to $9 / 5$ | 613 | 104,414 | 60,661 | 10,802 | 8,867 |

Table 2-3-23. Petersen population estimates with associated 95% confidence intervals of the sockeye salmon escapements to Sunshine, Talkeetna and Curry stations. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Parameter $\#$	Population Estimate Location		
	Sunshine Station $2 /$	Talkeetna Station	Curry Station
m	7.677	421	130
c	2,570	1.675	1.474
r	275	166	102
\hat{N}	71,745	4,248	1.879
95\% C.I.	64.537%	3,712-	1,582 ${ }^{\circ}$
95\% C. ${ }^{\text {a }}$	80,768	4.965	2,311

I $m=$ Number of fish marked (adjusted).
$c=$ Total number of fish examined for marks during sampling census.
$r=$ Tutal number of marked fish observed during sampling census.
A
$\hat{N}=$ Population estimata.
C. $1 .=$ Confidence interval around \hat{N}.

21 Suckeye salmon escapenent estimate fon Sunshine Station does not include the population estimme for first mu sockeye.

Frgure 2-3-12. Mean hourly and cumulative percent fishwheel catch of sockeye salmon by tho day periods at Yentha and Sunshine stations. Adult Anadromous Investigations, Su Hydro Studies. 1983.

Age composition data of second run sockeye salmon sampled in 1983 at Ventna (TRM 04) and Sunshine (RM 80) stations are provided in Table 2-3-19. The results indicate the escapement into the Yentna River (RM28) in 1983 was primarily four (66.8%) and five (22.6%) year old fish that had traveled to sea in their second year of life. Also represented in the Yentna River escapement sample were three (5.1\%) and six (1.9\%) year old fish, and four (1.3\%) and five (2.3\%) year old fish that had migrated to sea in their first or third years of life. Age samples collected at Sunshine Station (RM 80) in the Susitna River indicate the majority of the escapenent was comprised of four (63.4\%) and five (33.7%) year old fish that had left freshwater in their second year of life. Three and six year old fish represented less than one percent of the escapement sample from Sunshine station.

Length data from second migration sockeye salmon sampled at Yentna (TRA 04) and Sunshine (AM 80) stations in 1983 have been sumnarized in Table 2-3-20. The data indicate the sockeye saimon in the Yentna River (RM 28) averaged about 12 m smaller than the fish sampled in the Susitna River at Sunshine Station. The average length measured at Ventna Station was 494 mand and Sunshine Station 506 mm.

Sex composition data from escapenent sampling of second migration sockeye samon at Yentna (TRM 04) and Sunshine (RP 80) stations are presented in Table 2-3-21. Results indicate a higher numer of males than females at both stations. The overall male to famale patio of the Yentna River (mm 28) escapament sample calculates at 1.5:1 and for the Susitna River at Sunshine Station 0.9:1.

3.2.2.1.1.3 Fecundity

In 1983, sockeye salmon fecundities were detemined for Susitna River stocks from samples collected at Sunshine Station (RM 80). A total of 25 fenale sockeye salmon were sampled ior number of eggs between July 28 and 30 . The nean number of eggs per female sockeye salmon was approximately 3,543 and ranged in value from 2,954 to 4,792 eggs (Table 2-3-24).

Table 2-3-24. Number of eggs, length, weight and associated statistics for all sockeye salmon sampled for fecundity at Sunshine Station, Adult Anadromus Investigations, Su Hydro Studies, 1983.

Variables	Statistic Stre				
	Mean	Standard Deviceion	Standard Error of the Mean	Range	
Mumber of Eggs	25	3,543	530.7	105.1	$2,954-4,792$
Length (mm)	25	513	36.8	7.4	$465-575$
Weight (g)	25	1,979	495.4	99.1	$1,325-2,775$

The relationship between length and the number of eggs per female sockeye salmon was detemmined using regression and correlation analysis with the results of these analyses presented in Figure 2-3-13. The correlation between the two variables is "good' as indicated by a coefficiant of correlation (r) value of 0.73 . Replacing length with weight as the findependent variable also provides a 'good' linear relationship' $(r=0.78)$ as portrayed in Figure 2.3 m 13 .

Figure 2-3-13. Number of eggs for sockeye salmon sampled at Sunshine Station as a function of length and weight, Adule Anadromous Investigations, Su Hydro Studies, 1983.

Susttna River sockeye salmon fecundities can also be predicted by utilizing the following multiple regression equation:

$$
\begin{aligned}
& y_{c}=597.93+1.83\left(x_{1}\right)+1.01\left(x_{2}\right) \\
& \text { where: } \quad y_{c}=\text { predicted number of eggs } \\
& \qquad x_{1}=\text { length measurement } \\
& \quad x_{2}=\text { weight measurement } \\
& \text { and: coefficient of determination }\left(r^{2}\right)=.61 \\
& \\
& \text { corpelation coefficient }(r)=.78
\end{aligned}
$$

Any further analysis of these data for the purposes of predicting egg deposition should provide for sockeye salmon egg retention. This information is provided in report section 2.4. it should also be noted, for further analysis, that it was assumed there was essentially no differences in fecundities between Susitna River sockeye salmon stocks.

Analyses are also provided for sockeye salmon fecundities segregated by age. This infomation is presented in Appendix 2-F but because of the small sample sizes should be considered as infomative and not analytical in nature.

3.2.2.1.2 Spawning Ground Surveys

3.2 .2 .1 .2 .1 Sloughs and Streams

3.2.2.1.2.1.1 First Run

In 1983. Papa Bear Lake and its inlet stream were surveyed to provide tag recapture data for determining the first run sockeye samon escapement to Sunshine Station. Papa Bear Lake and its inlet stream are located in the

Talkeetna River watershed (RM 97.1) as shown in Figure \%u-14. The tag recovery results are provided in Table $2-3-25$.

The inlet stream of Papa Bear Lake wes the only apparent area where first run sockeye salmon spawned in 1983. Tag recovery collections and ground and aerial escapement surveys of other Susitna River tributaries in association with other work reported in Section 3.2 provided no information of first man escapement spawning elsewhere.

Figure 2-3-14. Destination of first run sockeye saimon tagged at Sunshine Stacion on the Susitna River in 1983. Adult Anadromous Investigations. Su Hydro Studies. 1983.

Based on escapenent surveys conducted at Papa Bear Lake and its iniet stream, first run sockeye salmon reached peak spawning between the second and fourth wecks of July 1983 (Tabie $2-3-25$). On the June 29 and 30 surveys of this area. nearly all the fish observed were holding off the mouth of the Papa Bear inlet stream with the exception of one fish which had ascended the inlet stream. On July 19, a relatively low number of fish (50-100) were holding off the mouth of Papa Bear Lake inlet stream and approximately 1300 fish had ascended the creek and were actively spawning.

Table 2-3-25. Escapement survey counts of tagged and untagged first run sockeye salmon tagged at Sunshine Station. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Area Surveyed	$\begin{gathered} \text { River } 1 / \\ \text { Hile } \end{gathered}$	Date	Survey Condictions	Sumshine Tags			
				Tagged (r)	Untagged	Total (c)	Ratio (c / r)
Papa Bar Lare	97.1	6/29	Good	134	676	810	6.1
Papa Bear Lake Inlet Stream	97.1	6/29	Excelient	0	1	1	0.0
Papa Bear Lake	97.1	6/30	Excellent	22	149	171	7.8
Papa Bear Lake	97.1	7/19	Poor 2f				
Pape Bear Lake Inlet Strean	97.1	7/19	Good	128	1175	2303	10.2

I/ Confluence of stream or receiving system with Susitna River mainstem.
2 Fish not surveyed for tag recovery data. Approximately $50-100$ sockeye salmon were miliing at the lake inlet.

3.2 .2 .1 .2 .1 .2 Second Rum

In 1983. second rum sockeye salmon escapenent surveys were conducted in five tributaries which enter the Sustma Rtver reach between R 80 and 97.8.

These surveys were perforned exclusively to provide tag recovery data for use in calculating an escapement estimate to Sunshine Station (RM 80). The results have been tabulated in Appendix Table $2-G-5$. The tag to untagged patios recorded for samples greater than 10 fish ranged from 1:2.3 to 1:18.3. Generally the highest ratios were recorded in the Chulitna Niver drainage (RM 57.8) and the lowest in the Talkeetna River drainage (RM 97.1).

3.2.2.2 Talkeetna to Upper Devil Canyon

3.2.2.2.1 Main Channel Escapement Monitoring

3.2.2.2.1.1 First Run

The four fishwheeis operated in the Susitna River in 1983 at Talkeetna Station (RM 103) caught a total of 11 first run sockeye samon between June 12 and 24 (Appendix Table $2-D-9$). Four of the 11 fish were caught in the two day period between June 2' and 22. Two of the 11 fish caught were recaptures from Sunshine Station (RM 80). The first recapture at RM 103 was made on June 13 of a fish that on June 9 had been released at RM 80 . The second recapture occurred on June 16 of a fish that had been tagged four days earlier Sumshine Station.

No estimate was made of the 1983 escapement of first run sockeye salmon to Talketna station (RM 103) due to the lack of recaptures at Curry station (RM 120) and the absence of first run fish spawning areas above pm 103. The pirst rum sockeye salmon that migrated to Talkeeta Station in 1983 were probably milling fish which spawned below hen 103.

The two fishwhels at Cury Station (RM 120) on the Susitha River ran contruously between June 9 and July 5, 1983 without making any sockeye samon catches (Appendix Table 2-D-12). From this observation it can be concluded that first run sockeye samon did not migrate to or above pat 120 in 1983.

3.2.2.2.1.2 Second Run

The 1983 escapement of second run sockeye saimon to Talkeetna Station (RM 103) is estimated at approximately .200 fish and at Curry station (RM 120), 1,900 fish (Table 2-3-23). The 95 percent confidence interyal associated with these estimates are provided in Table 2-3-23.

The migrational timing of the 1983 escapements to Talkeetna (RM 103) and Curry (RM 120) stations have been determined from an analysis of the fishwheel catch data (Section 2.4.3). At Talkeetna Station the second run migration of socheye saimon began on July 15, reached a midpoint on August 1 and ended on August 18. The peak migration occurred on August 3 with 41 fish being caught in the four fishwheels. Upstream at curry station, the migration began on July 17 , reached a midpoint on August 5 and ended on August 25 (Figure 2-3-15). The peak catches were made on August 2, 12 and 13. Ten fish were landed each of these days in the two station fishwheels.

Based on fishwheel catches. 1983 second run fish had no strong preference to migration along the east or west banks of the Susitna fiver at Talkeetna Station (RM 103). The preference at (curry Station (RM 120) in 1983 was towards the east bank. About 80 percent of the station catch was made by the east benk fishwheel.

In 1983, a cotal of 101 second run sockeve salmon were recaptured at Talkeetna (RM 103) and Curry (RM 120) stations that had been earlier tagged at Sunshine Station (RM 80). Another 17 recaptures were made at Curry Station from releases at Talkeetna Station. The migration timing of these fish has been graphed in figure 2-3-16. In comparing the average travel times between Sunshine, Talkeetna and Curry stations it appears that migration speed increased and/or milling behavior decreased the further distance fish traveled upstream. The average net speed traveled between Sunshine and Talkeetna stations was 2.4 mpd, between Talkeetna and Curry stations 3.0 mpd, and between Sunshine and Curry stations 3.8 mpd (Figure 2-3-16).

Age composition deta of second run sockeye salmon sampled at Talkeetna (RM 103) and Curry (RM 120) stations in 1983 are presented in Table 2-3-19. The results indicate the majority of the escapenents to both locations were four and five year old fish which had traveled to sea after spending one winter in freshwater. Also represented were three year oid fish which accounted for less than seven percent of the sample from each station.

Length measurements collected from second run sockeye salmon at Talkeetna (RM 103) and Curry (RM 120) stations are sumarized in Tabie 2-3-20. In 1983 the second run fish averaged about 28 milarger length at Talketna Station than at Curry station. The average length measured at Talkeetna Station was 509 man and at Curry Scation 481 m.

Results of sampling second migration sockeye salmon for sex at Talkeetna (RM 103) and Curry (RM 120) stations are provided in figuve 2-3.31 and

figure $2-3-15$. Mean hourly and cumulative percent fishwheel catch of sockeye salmon by two day periods at Talkeetna and Curry stations. Adult Anadromous Investigations. Su Mydro Studies. 1983.

Figure 2-3-16. Migrational rates of sockeye salmon between (a) Sunshine and Talkeetne stations. (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Table 2-3-21. The data indicate there were a nigher number of males than females in nearly every age class sampled at both stations. The overall male to femaie sex ratio at Talkeetna Station was $1.6: 1$ and at curry station 1.6:1.

3.2 .2 .2 .2 Spawning Ground Surveys
 3.2 .2 .2 .2 .1 Main Channel

In 1983, there was no inclusive sampling of the Susitna River main channe? for sockeye salmon spawning. Project crews assigned to main channel escapement monitoring sites at Talkeetna (RM 103) and Curry (RM 120) stations did not observe any main channel spawning by this species in 1983. The stream and slough survey crew based at Gold Creek (RM 136.7) located a single spawning site that extended along the west bank of the Susitna River main channel between RM 138.6 and 138.9 (Appendix Table 2-Gm1). This site was located on September 15, and on that date it supported approximately 11 spawning sockeye salmon. A map depicting the location can be found in Appendix Table 2.6.- 10

3.2 .2 .2 .2 .2 Streams

A total of 20 stream habitats were surveyed in 1983 for sockeye salmon between pi 98.6 and 161.0. The results are presented in Appendix Table 2-G-3. A single sockeye samon was observed in Indian River (PM 138.6) on August 19. This was the only sockeye salmon observed in any Susitna River Stream habitat in 1983. It can be concluded that sockeye salmon spawning did not occur in stream habitats above R19 98.6 in 1983.

3.2 .2 .2 .2 .3 Sloughs

3.2 .2 .2 .2 .3 .1 Observation Lfe

A total of 77 sockeye salmon were monitored to define the average number of days a single fish could be visumlly seen in sloughs Moose (RM 123.5), 8A (RM 125.1) and 11 (RM 135.3). The results, presented in Table $2-3-26$, indicate differences existed between the observation life of male and femala sockeye wherein generally, the individual male sockeye salmon spent less time in a slough habitar than the individual. female. The conbined average observation life of both male and female sockeye salmon was 8.1 days in Moose Slough. 13.0 days in Slough 8 a and 14.5 days in Slough 11 . The differences between these numbers can be partially explained by differences in visibility in these sloughs (Figure 2-3-17). The lowest average observation life was recorded in Moose Slough, the slough which had the highest frequency of restricted visibilities. Comparatively, in slough 11 where the average observation life was the highest, visibility was the least restricted. The problem of restricted visibility however does not limit the usefuiness of the data for computing total sockeye salmon escapenent to slough habitats. The observation life surveys were conducted during the same time that regular escapement counts were conducted with both crews encountering similar visibility conditions. For example, several times the Susitna River breached the head of Moose Slough and restricted fish visibility. When this occurred the crew making findividual fish observations were often unable to locate fish previonmly identified. At least sone of the previously identified fish were probably present but not visible and therefore considered absent. The crew conducting escapement counts encountered the same conditions and registered

Table 2-3-26. Sumnary of mean number of days individual sockeye salmon were observed in sloughs Moose, 8 A and 11. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Slough$+\operatorname{RMI}$	Males			Pemales			Combined		
	7	Range (days)	Mean (days)	n	Range (days)	Mean (days)	n	Range (days)	Mean (days)
$\begin{gathered} \text { Moose } \\ \text { RM } 123.5 \end{gathered}$	3	$2.0-12.0$	9.1	4	8.0 -10.5	6.7	7	2.0-12.0	8.1
$\begin{gathered} 34 \\ R M 125.1 \end{gathered}$	13	2.0038 .0	10.2	3	18.0 .35 .0	25.0	16	$2.0-38.0$	13.0
$\mathrm{RM}^{11} 135.3$	35	$0.5 \sim 37.0$	13.0	20	2.0 .40 .0	17.2	55 Mean	$0.5-40.0$ average $=$	$\frac{14.5}{11.8}$

$1 /$
M = River Mle

macheym Salmon

Figure 2-3-17. Periodicies of restricted vistbility conditions and sockeye salmon Ifre observations in 1933 ab sloughs Moose, 8 ano 11. Adult Anadromous Investigetlons. Su fydo Studies, 1983.
corresponding results with the counts reflecting the presence of less fish then were probably present.

The average observation life of a sockeye simon using slough habitats in 1983 was 11.8 days detemined by averaging the observation life means from results recorded at sloughs Moose (RM 23.5), 8A (RM 125.1) and 11 (RM 135.3) (Tabie 2-3-26). This estimate will subsequently be appifed with the regular escapement count data to calculate the escapenent to sloughs other than Moose, $8 A$ and 11 between RM 98.6 and 161.0 where respective peak survey counts exceeded 15 fish. Escapement to sloughs Moose, $8 A$ and 11 will be detemmined in section 3.2 .2 .2 .2 .3 .2 by using the respective slough observation life estimate in conjunction with the respective slough escapement count data. The mathematical method for calculating total escapenent by respective slough habitat can be found in Section 2.4.

In 1983 between 57.1 and 76.4 percent of the sockeye salmon monitored for observation life in sloughs Moose (RM 123.5). 8A (RM 125.1) and 11 (RM :35.3) initiated or completed spawning in the slough of first recorded entry, (Table 2-3-27). The remainder $(23.6-42.9 \%$) did not spawn. These fish either departed the slough or died from bear predation or stranding. At least me of the seven sockeye salmon monitored in Moose Slough spawred el sewhere, as a fish observed in Moose Slough in mid August was later found in mid Septenber at Slough il where it was observed to have spawned. o? 55 sockeye saimon monitored in slough 11 one fish experienced premspawning mortaity by being stranded in a piffle. Ft sloughs Moose and 8 , there were no recorded mortallies associated with stranding.

Table 2-3-27. Percentages of sockaye salmon monitored for observation life that spawned by habitat zone in sloughs Moose, 8 A and 11, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Slough with RM I/	2	Percent Spawning	1	$\begin{gathered} \text { Spa:ning Location 3/ } \\ 2 \text { by Habitat Zone }_{4}^{4} \quad 5 \end{gathered}$					7	Percent Monspawning 4/
Moose RM 123.5	7	57.1	50.0	50.0	0.0	-	\cdots	-	$=$	42.9
8A RM 125.1	16	75.0	8.3	0.0	91.7	\cdots	-	-	-	25.0
$\frac{11}{R M} 135.3$	55	76.4	7.1	7.1	0.0	45.3	0.0	28.6	11.9	23.6

I/ RM = River Mile
2/ Total sample for all sloughs equals 78 fish; actually 77 individual fish were monitored with one individual occupying both Moose Slough and Slough 11.
3/ Habitat zones defined in Appendix Figures 2-G-2 thru 2-G-5. Adult Anadromous Investigations, Su Hydro Studies, 1983.
$4 /$ Includes miling fish and also bear killed and other non-spawning mortalities.

In the process of monitoring sockeye salmon for observation life a record was kept of where these fish spawned in sloughs Moose (RM 123.5), 8A (RM 125.1) and 11 (RM 135.3) in 1983 (Table 2-3-27). At Slough it where 42 spawning fish were monttored, approximately 86 percent of them spawned in the midde to upper reach of the slough above habitat zone 3 (Appendix Figure 2-G-5).

In Slough 8A, the predominate spawning area was zone 3 (Appendix Figure 2-G-3). And at Moose Slough, half of the sockeye salmon spawned in zone 1 and the balance used cone 2 (Appendix Figure 2-6-2).

3.2.2.2.2.3.2 Escejenent

A total of 35 slough habitats between RM 98.6 and 161.0 were surveyed in 1983 for sockeye salmon. The results are provided in Appendix Table 2. $\mathrm{G}_{\mathrm{a}}-2$.

The following il sloughs were found to contain sockeye salmon in 1983:

1. Slough 33 (RM 101.4)
2. Slough 9A (RM 133.8)
3. Moose Slough (RM 123.5)
4. Slough 10 (RM 133.8)
5. Slough 8A (RM 125.1)
6. Slough 11 (RM 135.3)
7. Slough (RM 126.3)
8. Slough 17 (RM 138.9)
9. Slough 9 (RM 128.3)
10. Slough 19 (RM 139.7)
11. Slough 21 (RM 141.1)

The scckeye salmon observed in these sloughs were considered second rum escapenent as determined from fishwhel catches and tag releases at Talkeetna (RM 103) and Curry (RP 120) stations (Section 3.2.2.2.1).

Sockeye salmon spawned in all but three of the slough: listed above. Sloughs 9. 9A and 10 were not considered spawning areas. Relacively few fish were seen in these sloughs and those observed were not paired-up or engaged in Spawning (Appendix Table 2-G-2).

The total peak court of sockrye salmon to slough habitats above RM 98.6 in 1983 was 558 fish less four fish reconted in peak counts of 5 loughs 9 , 9 A and 10 (Table 2-3-28). This total peak count of 554 does not represent total escapement or aven a consistent portion of the cotal escapenert. due to
variability in spawning timing and duration. A peak count is at best an escapement irdex (Cousens, et all. A more rellabie estimate of escapement to slough habitats can be obtained by developing, for each slough. a spawner abundance curve expressed in number of live fish days and tben calculating escapenent on the basis of mean observation life data provided in report Saction 3.2.4.2.2.3.1. These calculations have been accomplished in Table 2-3-29 for sloughs Moose, $8 A_{,} 11$ and 21 where the peak survey counts exceeded 15 fish. The escapements to sloughs $38, B, 17$ and 19 were computed by multiplying the respactive peak survey count by 1.9. This value represants the sumation of the value of the estimated slough escapement divided by the sumation of the tocal peak survey count for those sloughs with a peak suryey count of more than 49 fish.

Table 2-3-28. Sockeye salmon peak survey counts of slough habitats above RM 98.6, Adult Anadromous Investigations, Su Hydro. Studies, 1983.

Slough	Location (Rm_{m}) $1 /$	Date	Number Counted		
			Live	Dead	Total
38	101. $\frac{4}{}$	$9 / 19$	5	0	5
Moose	123.5	$9 / 9$	21	0	22
8A	125.1	$9 / 11$	63	3	66
B	126.3	$9 / 18$	5	0	5
2	128.3	$9 / 7$	2	0	2
9	133.8	9/1]	f	0	1
10	133.8	10/1	1	0	1
11	135.3	$9 / 11$	237	11	298
17	138.9	$9 / 22$	6	0	6
19	139.7	$9 / 9$	4	1	5
$21-14.1$		9/9	180	17	197
		TUTL	525	32	558

Table 2-3-29. Total 1983 sockeye salmon slough escapenents between RM 98.6 and 161.0 . Adult Anadronous Investigations, Su Hydro Studies. 1983.

Slough	River Wile	$\begin{gathered} \text { Total } \mathrm{H} \text { 别 } 1 / \\ \text { Days } \end{gathered}$	Peak Live-Dead Survey Count	Hean Observarion 2/ Life in Days	Slough Escepenent	\% of Totat Slough Escapement	\% of Curry Statyon Escapoment
30	14.4.4		5		$10^{2 /}$	0.9	0.5
Mooss	123.5	279.5	22	8.1	31	2.9	1.6
8A	125.1	18687.9	66	13.0	130	12.3	6.8
0	126.3		5		1021	0.9	0.5
11	135.3	8.182.0	248	14.5	564	53.2	29.7
17	138.9		6		1121	1.1	0.6
89	139.7		5		3027	0.9	0.5
21		$3,470.4$	197	11.8	49^{4}	27.8	15.5
TTAL		$13,539.7$	55	-	2,060	100.6	55.7

I/ Number of fish days were calculated for sloughs that, had peak survey counts >15 fish. Refer to Section 2. A for detailed data analysis procedures.

2 Totel slough escapement into sloughs having peak live-dead survey counts of ≤ 15 fish were computed by multiplying che peak live-dead survey count by 1.9 . This value represents the summation of the esthmated slough escapenent divided by the summation of the peak live-dead survey counts for all sloughs whth peak survey counts 250 fish.
3 3 1983 Curry station sockeye salmon escapement was approximately 1,900 fish.

In 1983 the total sockeye escapement to the slough habitats above RM 98.6 was approximately 1,060 fish as calculated by the manner previously described (Table 2-3-29). About 93 percent of this escapement occurred in sloughs 11, 21 and $8 A$ in order of contribution.

The estimated (1,060 fish) escapement of sockeye saimon to slough habitats above Rif 98.6 in 1983 is approximately 44 percent less than the same year astimated escapement (1,900) to the Susitna River at Curry Station (RM 80). The approximate 800 fish difference represents a combination of several factors. An unquantifiable number of milling fish reached RM 120 which spawned below RM 98.6 (Appendix Table 2-G-5). A percentage of the sockeye escapement spawned in the Susitna River main chamel above RM 98.6. The 1,900 fish population estimate for Curry Station has a 95 percent confidence finterval of 1,582 to 2,311 fish. The observation IIfe and peak survey count data have some undefined levels of error. While all of these. factors contributed to the 800 fish difference between the estimated total slough escapement and curry Station escapement estimate, the two factors most likely to have the greatest influence are the percentage of fish which migrated to RM 120 and then spawned below RM 98.6, and the 700 fish confidence level spread on the Curry Station escapement estimate.

Assuming the two 1983 escapenent estimates of second migration sockeye salmon to Curpy Station (nm 120) and slough habitats above RM 98.6 are accurate and that less than 100 sockeye samon spawned in the Susitna River main chamel above RM 98.5 in 1983, the best estimate of miling activity at curry scation
is that approximately 39 percent of the 1,900 fish escapement that reached this station in 1983 spawned beloy: RM 98.6. By the same analysis about 72 percent of the estimated 4,200 fish that reached Talkeetna Station in 1983 were probably milling fish that spawned below RM 98.6.

3.2.2.2.2.3.3 Egg Retention

In 1983. a total of 56 female sockeye salmon carcasses were sampled for egg retention for four slough habitats between RM 98.6 and 161.0. The results presented in Table $2-3-30$ indicate an average retention of approximately 250 eggs per female from combined samples at sloughs Moose (RM 123.5), 8A (RM125.1), 11 (RM 135.3) and 21 (RM141.1). Nearly all the females sampled in these sloughs had completely spawned. Approximately 79 percent of the females had retained less than 25 eggs each (Figure $2-3 \mathrm{~m} 18$). About seven percent of the sample were from fish that had retained more than 1,000 eggs each.

Table 2-3-30. Egg retention of sockeye salmon at selected slough habitats between PM 98.6 and 161. Adult Anadromous Investigations, Su Hydro Studies. 1983.

		Egg Retention		
$\begin{aligned} & \text { Slough } 1 / \\ & \text { with RM } \end{aligned}$	Sample Size	Mean	Median	Range
Moose Slough				
PM 123. ${ }^{\text {P }}$	1	7.0	*	-
Slough 8A				
RM125.1	2	0.0	-	0
Slough 11				
RM 135.3	33	384.7	1.5	0-3542
Slough 21				
RM 141.1	20	62.7	2.0	0.858
Composte of all				
sloughs sampled	56	249.2	2.0	0-3542

Figure 2-3-18. Percent frequency of egg numbers retained by female sockeye salmon sampled in slough habitats above RM 98.6 in 1983, Adult Anadromous Investigations, Su Hydro Studies, 1983.

3.2.3 Pink Salmon

3.2.3.1 Intertidal to Talkeetna

3.2.3.1.1 Main Channel Escapement Monttoring

Escapeneri estimates for Susitna River pink salmon were obtained for Yentna (TRM 04) and Sunshine (RM 80) stations in 1983 (Table 2-3.22 and 2-3031). The 1983 pink salmon escapement to the "entha River (RM 28) based upon the sonar counts at Yentra Station (TRM 04) was approximately 60,700 fish (Table 2-3-22). Dally and cumulative SSS counts for Yentha Station are presented in Appendix 2-C.

Table 2-3-31. Petersen population estimates with associated 95% confidence intervals of pink salmon migration to Sunshine, Talkeetna and Curry stations. Adult Anadromous Investigations: Su Hydro studies. 1983.

Parameter $1 /$	Population Estimate Location		
	Sunshine Station	Talkeetna Station	Curry Station
m	2.942	1,987	446
c	6.816	3,548	2,851
r	494	743	232
$\stackrel{\sim}{N}$	40.592	9,488	5,481
95\% C.I.	37.415-	8,918	4,879
	44,360	10,136	6,252

I/ w Number of fish marked (adjusted).
$c=$ Total number of fish examined for marks during sampling census.
r = Total number of marked fish observed during sampling census.
A
$\hat{N}=$ Population estimate.
C.I. $=$ Confidence interval around \hat{N}.

For the Susitna River at Sunshine Station (RM 80) the escapement was estimated to be 40,600 fish as determined by the Petersen method (Table 2-3-31). The 95% confidence interval for this estimate was computed at between 37,400 and 44,400 fish.

The two fishoweels at Yentwa station (TRM 04) captured 4,489 pimk salmon in 1983 (Table 2-3-11 and Appendix Table 2ans3). Daily Fishwheel catches Indicate the migration began, reached a midpoint and ended on July 14,26 and August 15. respectively (Figure $2-3-19$). The migration peak occurred on

Ds 5
Figure 2-3-19. Mean hourly and cumulative percent fishwheel catch of pink salmon by two day periods at Yentna and Sunshine stations. Adult Anadromous Investigations. Su Hydro Studies. 1983.

July 24 with 298 pink salmon caught in the two fishwheels for an average catch rete of 6.2 fish per hour. Pink salmon showed little migrational preference for either the north or south bank. The north bank fishweel intercepted 59.4 percent of the pink salmon and the south bank fishwheel captured the remaining 41.6 percent (Appendix 2-D).

At Sunshine Station (RM 80), fishwheels intercepted 3,085 pink salmon in 1983 (Table 2-3-11 and Appendix Tabie 2-0-6). Based on these catches, the migration began on July 20 , reached a midpoint on July 30 and teminated on August 15 (Figure 2-3-19). The peat fishwheel catch occurred on July 25. of the 3,085 fish intercepted at Sunshine Station, 91.6 percent were captured by the east bank fishwheels.

Length (FL) data associated with 1,126 Yentna Station (TRM 04) pink salmon samples and 987 fish from Sunshime Station (RM 80) are sumarized in Table 2-3-32 and Appendix 2-E. The average overall lenge:s at Yentna and Sunshine stations were 426 and 429 mm respectively. Females at Yentna Station were 11 mm smaller in length than males while Sunshine Station females averaged 12 mm less than males. of the 1.126 pink salmon sampled at Yentna Station 535 were males for a male to female sex ratio of $0.9: 1$ and 503 of the 987 fish sampled at Sunshine Station were males for a sex ratio of 1.0:1 (Table 2-3-32).

3.2.3.1.2 Fecundity

In 1983 Susitna River pink salmon fecundities were detemined from 22 samples collected at Sunshine Station (RM 30). These samples we obtained between

Table 2-3-32. Analysis of pink salmon lengths, in millineters, from escapement samples collected at Ventna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations. Su Hydro Studies, 1983.

cobrection		8		Sex Ratio		ge Limf				95\%	f. Inter	val 3		
Site	M	(F21	(m:F)	解		F	M	8	M		8	H	F
Yentna Station	535	1126	591	$0.9: 1$	$335-531$	$312-531$	312 mbs	432	421	4 30.434	425-428	419.423	431	423
Smshine Station	503	987	484	1.0.1	350-590	$345-590$	345.540	435	423	432-438	$427-13!$	421.425	430	420
Tabreebna Station	309	674	365	$0.8: 1$	310.605	310-605	$330-520$	128	426	425-431	$425-429$	423 m 429	425	425
Curry Station	199	391	192	1.0.1	365.645			425		922m 28 4 ${ }^{\text {a }}$			420	
 27 Famples. 3) Confldence interval of the														

July 29 and 31. Fecundities averaged 1,475 eggs per female and ranged from 1,125 to 1,975 eggs (Table 2-3-33).

Susitna River pink salmon fecundities appear to be similar to other Alaskan and Canadian stocks. Mcphail and Lindsey (1970) report large females may contain up to 2,000 eggs. Morrow (1980) lists the fecundity range between 800 and 2,000 eggs with larger females generally containing more eggs.

For the pink salmon sampled, length and weight were excellent indicators of the number of eggs per female as illustrated by correlation coefficients (r) of 0.97 and 0.87 respectively in the two regression analyses shown in Figure 2-3-20. The greatest predictive precision came from a multiple regression in which length and weight were both used as independent variables. The equation of the line had the form of:
$Y_{c}=3283.81+11.15\left(x_{1}\right)+(0.06)\left(x_{2}\right)$
where: $\gamma_{C}=$ predicted numbers of eggs
$x_{1}=$ length measurement
$x_{2}=$ weight measurement
and: coefficient of determination $\left(r^{2}\right)=0.93$
correlation coefficient $(r)=0.97$

Given the difficulty in collecting weight values from large numbers of fish in fieid situations and the smail difference im multiple and length regression r^{2} factors a very good estimate of pink salmon fecundities can be

Table 2-3-33. Number of eggs, length, weight and associated statistics for all pink salmon sampled for fecundity at Sunshine Station, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Variables	Statistic				
	Sample Size	Mean	Standard Deviation	Standard Error of the Mean	- Range
Number of Eggs	22	1,469	273.3	58.3	1,124-1,982
Length (mmi)	22	433	25.1	5.4	388-474
Werght (g)	22	1,044	269.5	57.5	$500-1,500$

Figure 2-3-20. Humber of eggs for pink salmon sampled at Sunshine Station as a function of length and weight, Adult Anadromous Investigations. Su Hycro Studies. 1983.
obtamed by using a length/number of eggs regression as illustrated in Figure $2-3-20$. These values assume tha. there is essentilly no difference ili fecundities of Susitna River pink salmon stocks.

3.2.3.2 Talkeetna to Upper Devil Canyon

3.2.3.2.1 Main Chaniel Escapenent Monitoring

The 1983 pink salmon escapement to Talkeetna Station (RM 103) was estimated to be 9,500 fish. The 95% confidence interval was calculated at 8,900 to 10,100 fish (Table 2-3-31). At Curry Station (PM 120) the pink salmon escapment in 1983 was 5,500 fish, about 4,000 less than the Talkeeina Station escimate (Table 2-3-31).

The four fishwheels at Talkeetna Station (RP 103) in 1983 caught a total of 2.213 pink salmon with 64.6 percent of the catch made by the two west bank fishwheels (Table 2-3-11 and Appendix Table 2-D-9). Based on fishwheel catch rate interpretation, the pink salmon miyration began on july 23 , simuleaneously reached a midpoint and peak on July 30 and ended on August 8 (Figure 2-3-21). The peak catch rate on July 30 was an average 3.2 fish per hour.

A total of 589 pink salmon were intercepted by the two fishwheels at Curry Station (PM 120) in 1983 (Tahie 2-3-11 and Appendix Table 2-0-12). The migration began and terminated on July 24 and August 12 with the peak and midpoint catch both occurning on August 1.0 of all pink samon captured at Curry station 64.2 percent were intercepted by the east bank fishwheel and 35.8 percent by the west bank fishwheel showing a preference "or migration along the east side of the Susitho River (Figure 2-3-21).

Figure 2-3-21. Hean hourly and cumulative percent fishwheel catch of pink sa?mon by two day periods at Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

In 1983, based on tagged fish recapture data, pink salmon averaged 3.9 days travelling between Sunshine (RM 80) and Talkeetna (RM 103) stations or 5.8 miles per day (Figure 2-3-22). The travel time between Talkeetna and Curry (RM 120) stations, based on 85 tag recaptured pink salmon at Curry Station. was 7.1 miles per day. The minimum recorded time between these two stations was one day and the maximum, fourteen days. Curry Station captured 26 Sunshine Station tagged pink salmon which computed to an upstream migrational speed of 7.5 miles per day between the two stations (Figure 2-3-22).

A total of 674 and 391 pink salmon were sampled for length (FL) and sex data at Talkeetna (RM 103) and Curry (RM 120) stations in 1983, respectively (Table 2-3-32). At Talkeetna Station approximately 8.4 percent more females than males were sampled for a male to female sex ratio of $0.8: 1$ ratio. The data indicates females averaged 2 mm less in length than the male samples. At Curry Station only 1.8 percent more males were sampled for a $1.0: 1$ ratio. Male and female pink salmon both averaged 425 mm in length at Curry Station in 1983.

3.2.3.2.2 Spawning Ground Surveys 3.2.3.2.2.1 Main Chamel

In 1983, no sampling crews were assigned the duty of assessing the Susitna River main channel for adult salmon spawning activity. Persomel assigned to main chamel escapement monitoring at Talkeetna (RM 103) and Curry (RM 120) stations in addtion to the Gold Creek stream and slough survey crew found no pink salmon spawning in the main channel above RM 98.6.

(a) Number of Days Betwen Cappures

(b)Number of Days Botween Caphuras

(c) Number of Day Bermon Captwres

Figure 2-3-2 2 Migrational rates of pink salmon between (a) Sunshine and Talkeetna stations, (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

3.2.3.2.2.2 Slough and Streams

In 1983, 35 slough habitats and 20 streams were surveyed for salmon presence between RM 98.6 and 161.0 (Appendix Table 2-G-2 and 2-G-3).

A total of 14 pink salmon were observed in 6 of the 35 sloughs surveyed above RM 98.6 in 1983. The majority of these fish (50%) were observed in Slough 20 (RM 140.0) while the remaining 50% were in sloughs 8 (RM 124.7), 8 A (RM 125.7), 15 (RM 137.2), 19 (RM 129.7) and 21 (RM 141.1). A11 14 of these fish were considered milling not spawning pink salmon and consequentially pink salmon slough escapement in 1983 was reported as zero fish (Appendix Table 2-G-11).

A total of 1,329 pink salmon were counted in the peak survey counts of 11 streams between RM 98.6 and 161.0 (Table $2-3-34$). The majority (88.1%) were observed in Indian River (RM 138.6) and Portage Creek (RM 148.9). The remaining 11.9 percent were located in the other 9 streams surveyed. It should be recognized these counts do not represent total pink salmon escapement but provide a measure of relative abundance.

Peak spawning of pink salmon in stream habitats in 1983 occurred during the first and third weeks of August (Table 2-3-34). Based on helicopter and foot surveys of Indian River (RM 138.6) and Portage Creek (RM 148.9) peak pink salmon spawning occurred between August 4 and 27 in both of these tributaries (Figure 2-3-23).

Figure 2-3-23. Peak pink salmon ground and helicopter survey counts of (a) Indian River and (b) Portage Creek, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Table 2-3-34. Pink salmon peak escapement counts for stream habitats above RM 98.6 in order of contribution, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Stream	Location$(\mathrm{RM}) 1 /$	Date	Number Counted			Percent Contribution
			Live	Dead	Total	
Indian River	138.6	8/19	837	49	886	66.7
Portage Creek	148.9	8/4	285	0	285	21.4
4th of July Creek	131.0	8/20	63	15	78	5.9
Lane Creek	113.6	8/15	28	0	28	2.1
Lower Mckenzie Creek	116.2	8/15	17	0	28	1.3
5 th of July creek	123.7	8/13	9	0	9	0.7
Gold Creek	136.7	8/7	7	0	7	0.5
Little Portage Creek	117.7	8/22	7	0	7	0.5
Chase Creek	106.9	8/12	5	1	6	0.5
Jack Long Creek	144.5	8/12	5	0	5	0.4
Skull Creek	124.7	8/20	1	0	1	0.1
		TOTAL	1,264	65	1,329	100.0

3.2.4 Chum Salmon

3.2.4.1 Intertidal to Talkeetna

3.2.4.1.1 Main Channel Escapement Monitoring

In 1983 chum salmon escapements were monitored in the Yentna River (RM 28) at Yentna Station (TRM 04) and the Susitna River at Sunshine Station (RM 80) (Table $2-3-8$). The Ventna River escapement detemined by SSS counters was estimated to be 10,800 fish (Table 2-3-22). The Susitna River escapenent at

Sunshine Station was an estimated 266,000 fish derived by the Petersen mark/recapture method (Table 2-3-35).

Table 2-3-35. Petersen population estimates with associated 95% confidence intervals of chum salmon migration to Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Parameter $1 /$
Population Estimate Location
Sunshine Station Talkeetna Station Curry Station

m	16,845	2,086	667
c	16,533	12,139	11,238
r	1,047	502	355
\hat{N}	265,997	50,442	21,115
$95 \% \mathrm{C} . \mathrm{F}$.	$251,266-$	$46,463 \cdots$	$19,154-$
	282,561	55,167	23,523

I/ $m=$ Number of fish marked (adjusted).
$c=$ Total number of fish examined for marks during sampling census.
$r=$ Total number of marked fish observed during sampling census.
\wedge
$N=$ Population estimate.
C.I. $=$ Confidence interval around \hat{N}.

The migrational timings of the 1983 chum salmon escapements into the Yentna River (RM 28) at Yentna Station (TRM 04) and Susitna River at Sunshine Station (RM 80) can be determined by fishwheel catch rate data (Appendix 2-0). From this infomation base the migration at Yentna Station began on July 15, reach a midpoint on July 30 and ended on August 23. At

Sunshine Station the onset of the migration began on July 22 , reached a midpoint in August 1 and ended on September 2.

A comparison of the inseason (1983) fishwheel catches at Yentna (TRM 04) and Sunshine (RM 80) indicates the chum salmon escapements passed these locations in two distinct waves (Figure 2-3-24). The bimodal migration recorded at these locations may be related to: (1) differential commercial fishing effort in Cook Inlet; (2) stock separation such as timing differences between stream and sloughs spawning stocks; and (3) variations in river discharge levels which caused migration cessation and or altered fistwheel catch efficiency. A preliminary review of the 1983 commercial salmon fishing data for Upper Cook Inlet indicates that fishing pressure was relatively static between early July and early August except for an eight day period beginning and ending on July 17 and 23 when extra fishing time was given to the inlet drift net fisherman. This extra fishing time resulted in 'very strong' catches. In fact the highest 1983 chum salmon catch in the Central District drift fleet was recorded on July 20 at approximately 123,000 fish. Sockeye, pink and coho saimon were also caught at seasonal high levels during the july 17 to 23 commercial openings (Ruesch, pers. comm.). Preliminary results of 1983 tag recovery data indicate that chum saimon averaged a 10 day travel time between the inlet fishery and the lower (RM 26) Susitna River (Tarbox, pers. comm.). It is therefore likely that the dranatic drop in inseason chum salmon catches at Yentna and Sunshine stations were at least partially influenced by commercial fishing in cook Inlet as the first migration wave at Yentna and Sunshine stations ended in the first week of August about 11 and 16 days respectively after the peak conmercial catch. In tems of whether an influencing factor of the chum salmon migration was stock separation there

Figure 2-3-24. Mean hourly and cumblative percent fishwheel catch of chum salmon by two day periods at Yentna and Sunshine stations, Adult Anadromous Investigations. Su Hydro Studies. 1983.
unfortunately was no concerted effort made to collect tags from carcasses from either sloughs or streams entering the Susitna River above Sunshine Station nor were there any spawning ground surveys performed in the Yentna kiver drainage for a data base to accurately determine this. However, stream and slough escapement were conducted in 1983 upstream of Sunshine Station and the data indicate chum salmon were not segregated by time of entrance to these habitats. The surveys indicate that chum salmon were abundant in both habitats during the last week of July in 1983. It can therefore be surmised that the first migration wave that passed Sunshine Station between July 22 and August 7 was comprised of both slough and stream spawning fish as the second migration wave did not began at Sunshine Station until after the second week of August. The second migration wave that passed Sunshine Station may well have been exclusively slough spawning fish but there is insufficient data to provide confirmation.

The third potential agent influencing chum migration in 1983 at Yentna (TRM 04) and Sunshine (RM 80) stations was river discharge levels. A plot of the 1983 Yentna River (RM 28) and Susitna River USGS provisional flow data for the months of July and August show that both river systems reached peak flows in the first week of August. (Figure $2-3-25$). This was the same time fishwheels catches declined at Yentna and Sunshine stations (Appendix 2-D). The sonar counts at Yentna Station also declined in this period. It appears that high water flows in early August may have caused a temporary delay in the chum salmon migrations at Yentna and Sunshine stations and corresponding declines in station fishwheel catches. At both stations when flows returned to pre-figh water levels chum salmon catches increased in the fishwheels and d.t the same time sonar counts also increased at Yentna Stathom.

Figure 2-3-25. Provisional discharge data from July I through August 30 for the Susitna and Yentna rivers, Idalt Anadromous Investigations, Su Hydro Studies. 1983.

Fishwheel catches recorded in 1983 at Ventna Station (TRM 04) indicace chum salmon had so strong migrational preference for the south or moth benk of the Yentna River (RM 28) at this location (Appendixes Table 2-0-1 and 2-0-2). The south bank Ventna Station fishwheel caught approximately the same number of fish (50.2\%) as caught by the north bank fishwheel (49.8\%) (Appendre 2-D).

In the Susitna River at Sunshine Station (RM 80) approximately 96 percent of the station catch was made in the two east bank operated fishwheels and the remaining four percent of the catch was made in the two west bank wheels. This would irdicate a strong migraticial preference of chum salmon at Sunshine Station to possage along the east side of the river compared to the west side based on the assumptions that stocks were mixed and fishwheel catch efficiency remained constant.

Age composition data was collected from 553 chum salmon at Yentna Station (TRM 04) and 1,043 chum salmon at Sunshine Station (RM 80) in 1983. The results have been presented in Table $2-3-36$. The majority of the escapement sampled at both stations were five and four yeur old fish in order of abundance (Figure 2-3-26). Other ages sampled included fish three and six years old. These ages accounted for less than three percent of the total age sample from each station.

Tabie 2-3-36. Analysis of chum saimon age data by vercent from escapement samples collected at Yentna, Sunshire, Talkeetna and Curry stations, Adult Anadromous Invest. ations, Su Hydro Studies, 1983.

Collection Ste	n	Age Class $1 /$			
		3_{1}	4.	51	61
Yentna Station	553	2.2	46.1	51.3	0.4
Sunshine Station	1043	0.3	40.1	58.4	1.2
Talkeetna Station	620	0.8	30.3	68.7	0.2
Curry suton	456	-	2\%9	72.1	-

Figure 2-3-26. Age composition of fishwheel intercepted chum salmon at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Length composite data from (1983) escapement sampling chum salmon at Yentna (TRM 04) and Sunshine (RM 80) stations are presented in Table 2-3-37 and Appendix Tables 2-E-13 and 2-E-14. The data indicate ch salmon averaged a slightly smaller length in the Ventna River than in the Susitna River at Sunshine Station. The respective aver ie 1 ragtns were 593 mm and 595 mm . At Yentna and Susitna rivers sampling locations femaie chum salmon were about 20 to 30 mm larger in length than the males.

Sex ratio data collected in 1983 from fishwheel caught chum salmon at Yentna (TRM 04) and Sunstine (PM 80) stations are summarized in Table 2-3-38. At both stations males were more numerous among the three, five and six year old fish sampled, and females out numbered males among the four year old fish sampled. The chum salmon male to female sex ratio without respect to age was computed to be 1.3:7 and for Sunshine Station 1.0:1.

3.2.4.1.2 Fecundity

Fecundities of 27 Susitna River female chum salmon were determined from samples collected at Sunshine Station (RM 80) between July 29 and 31, 1983. The mean fecundity was 3,189 eggs per female chum salmon and ranged in number from 2,478 to 4,076 eggs (Table 2-3-39).

Generally, the greater the length of a female salmon the more eggs th will contain. This relationship is apparent from the chum salmon sample collented at Sunshine Station (RM 80). A regression of length with the number of eggs per femaik resulted in an 'excellent linear relationship ($r=0.83$) as Hlustrated in Figure 2-3-27. Also portrayed in Pigure 2.3-27 is the

Tathe 2-3-37. Analysis of chum salmon lengths, in millimeters, by age class from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hyaro Studies, 1983.

Collection	Age	n	Range Limits	Mean	95\% Conf. Interval $3 /$	Median
Stte	Class	$m 1 / \quad \mathrm{F} 2$	1 M	$M \quad \mathrm{~F}$	M F	M
Yentens seation	$\begin{aligned} & 3_{1} \\ & 4_{1} \\ & 5_{1} \\ & 6_{1} \\ & 4 L \end{aligned}$	7 5 121 134 173 111 2 - 351 280 631	$492-528$ $452-553$ $452-666$ $489-652$ $448-700$ $509-658$ $558-610$ - $448-700$ $452-658$ $448-700$	508 515 582 570 616 598 584 - 602 582 593	- - $575-589$ $566-575$ $611-622$ $593-504$ - - $597-606$ $578-586$ $590-596$	504 526 584 572 621 500 584 - 606 583 596
Sunshine seation	$\begin{aligned} & 3_{1} \\ & 4_{1} \\ & 5_{1} \\ & 6_{1} \\ & A L L \end{aligned}$	- 3 168 250 339 271 10 $?$ 560 565 1125	- $515-540$ $410-685$ $450-650$ $495-750$ $460-750$ $500-895$ $650-720$ $410-895$ $450-750$ $410-895$	- 525 579 561 622 598 664 685 609 580 595	- - $573-585$ $557-565$ $618-626$ $593-603$ - - $605-613$ $577-584$ $592-597$	- 520 580 560 625 600 648 685 610 580 600
Talkeetna station	$\begin{aligned} & 3_{1} \\ & 4_{1} \\ & 5_{1} \\ & 6 \\ & A_{1} \end{aligned}$	2 3 89 99 281 145 1 - 491 287 728	$510-510$ $500-520$ $470-699$ $465-630$ $515-700$ $510-710$ 650 - $470-700$ $365-710$ $365-710$	510 512 585 572 625 610 650 - 614 594 606	- - $577-593$ $566-579$ $621-629$ $605-615$ - - $611-618$ $589-599$ $603-609$	510 515 590 575 630 610 650 - 620 600 610
Cury Station	$\begin{gathered} 4 \\ 5 \\ 4 \\ 41 \end{gathered}$	77 50 220 109 319 168 487	$505-640$ $470-640$ $500-715$ $555-690$ $500-715$ $445-690$ $445-715$	586 579 631 618 619 605 614	$579-592$ $569-588$ $627-635$ $613-623$ $615-623$ $599-610$	590 590 630 620 620 610 615

$1 /$ vales
$2 /$ Females
$3 /$ Confidence Interval of the Mean.
4/ Composite of all aged and non-aged samples.

Figure 2-3-27. Number of eggs for chum calmon sampled at Sunshine Station as a tunction of length and Weight, Adult Anadromous lnvestigations. Su Hyaro Studies. 1983.

Table $2-3-38$. Sex ratios of male and female chum salmon by age from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro studies, 1983.

Collection Site	Age	Sample size	Number		Sex Ratio (M:F)
			Males	Females	
Yentna Station	3	12	7	5	1.4:1
	4	255	121	134	0.9 .1
	5	284	173	111	1.6:1
	6	2	2	0	--
	All $1 /$	631	351	280	1.3:1
Sunshine Station	3	3	0	3	-
	4	418	168	250	0.7:1
	5	610	339	271	1.3:1
	6	12	10	2	$5.0: 1$
	A11 $1 /$	1125	560	565	1.0 .1
Talkeetna Station	3	5	2	3	$0.7: 1$
	4	188	89	99	$0.9: 1$
	5	425	281	145	1.9:1
	6	1	1	0	
	All $1 /$	728	441	287	$1.5: 1$
Curry Station	4	127	77	50	1.5:1
	5	329	220	109	2.0.1.
	Ail $1 /$	487	319	168	1.9:1

1 Includes all aged and non-aged samples.

Table 2-3-39. Number of eggs, length, weight and associated statistics for all chum salmon sampled for fecundity at Sunshine Station, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Variables	Statistic				
	Sample Size	Mean	Standard Deviation	Standard Error of the Mean	- Range
Number of Eggs	27	3,189	462.0	88.9	2,475-4,076
Length (imm)	27	617	43.1	8.3	524-708
Weight (g)	27	3,566	783.3	150.8	$2,225-5,475$

relationship between weight and fecundity which also has an 'excellent' correlation coefficient factor ($r=0.84$).

Utilizing both length and weight as independent predictor variables the following multiple regression equation was derived:

$$
Y_{c}=15.38+3.25\left(x_{1}\right)+0.33\left(x_{2}\right)
$$

$$
\text { where: } \begin{aligned}
y_{c} & =\text { predicted number of eggs } \\
x_{1} & =\text { measured length } \\
x_{2} & =\text { measured weight }
\end{aligned}
$$

and: coefficient of detemination $\left(r^{2}\right)=0.72$ coefficient of correlation $(r)=0.85$

Utilization of this data for predictive purposes must include an adjustment for egg retention. This information, for chum salmon, is provided in Section 3.2.4.2.2.3.3. It should also be noted that in calculating chum salmon fecundities it was assumed that there were essentially no stock differences in number of eggs per individual female for Susitna River stocks.

Chum salmon fecundity data was further reduced for analysis by age class. This information is presented in Appendix Table 2-G-15 but due to insufficient samples sizes should be considered informative and not analytical in nature.

3.2.4.2 Talkeetna to Upper Devil Canyon

3.2.4.2.1 Main Channel Escapement Monitoring

In 1983 chum saimon escapement estimates were obtained for the Susitna River chamel at Talkeetna (RM 103) and Curry (RM 120) stations by the Petersen mark/recapture method (Table 2-3-35). By this method the escapement to Talkeetna Station was estimated at 50,400 fish and to Curry Station at 21,100 fish. The 95 percent confidence limits associated to these estimates calculated at $46,500-55,200$ and $19,200-23,500$ fish, respectively.

The migrational timings of the 1983 chum salmon escapements to Talkeetna (RM103) and Curry (RM120) stations can be detemined by fishwheel catches made at these locations (Appendix 2-D). At Talkeetna Station the chum salmon migration began on July 25 , reached a midroint on August 1 and ended on August 29. Upstream 17 miles at curry station, the migration began an July 22, reached a midpoint on August 3 and ended on August 29.

In 1983, chum salmon fishwheel catches at Talkeetna Station (RM 103) totaled 2,467 fish and at Curry Station, 861 fish (Table 2-3-11). Catches were nearly equally distributed between the east and west bank fishwheels at Talkeetna Station (Figure 2-3-28). The two east bank fishwheels caught 47.3 percent of the station catch and the two west bank fishwheeis landed the remaining 52.7 percent. These catch percentages indicate chum salmon had a slight preference for movement along the west bank at this location. Upstream at Curry Station, chum salmon were more numerous along the east bank than the west bank (Figure 2-3-28). The east bank fishwheel caught 68.4 percent of the station catch. The remaining 31.6 percent was landed by the west bank fishwheel. The reported preference of chum salmon for migration along the west bank at Talkeetna Station and east bank at Curry Station should be considered valid assuming no stock differention or difference in catch efficiency between east and west bank operated fishwheels at either stacion. Probable factors influencing chum salmon migration along a particular bank preference are velocity, channel configuration and water depth.

The results of sampling the 1983 chum salmon escapements to Talkeetna (RM103) and Curry (RM 190) stations for age are frovided in Table 2-3-36. The data indicate the escapements to both stations were comprised nearly exclusively of five and four year old fish by respective order (Figure 2-3-26). Three and six year old chum salmon were represented at a minimal level at Talkeetna Station and were not at all present in the ascapement sampled at Curry Station.

Figure 2-3-28. Thean hourly and cumulative percent rishwhel catch of chum salmon by two day periods at Talkeetna and Curry stations, Aoult Anadromous Investigations, Su Hyaro Studies, 1983.

In 1983 chum salmon tagged at Sunshine Station (RM 80) were recaptured at Talkeetna (RM 103) and Curry (RM 120) stations. Recaptures were also made at Curry Station of fish released at Talkeetna Station. The results are provided in Figure 2-3-29. The data indicates chum saimon migrated upstream at an average rate of 3.8 mpd for the 23 miles between Sunshine and Talkeetna stations. Between the 17 miles from Talkeetna to Curry stations the average migration speed was less at 3.6 mpu . The overall travel rate between Sunshine and Curry stations was an average 4.7 mpd . The data, with outliners removed, would indicate that generally chum salnon ascended at a faster rate between Talkeetna and Curry stations than in the 23 miles reach downstream. (Figure 2-3-29).

Length composition data collected in 1983 at Talkeetna (RM 103) and Curry (RM 120) stations are provided in Table 2-3-37 and Appendix 2-E. Generally the male chum salmon sampled at these stations were a larger length than the females. The average chum salmon length measured at Talkeetna Station was 606 mm and at Curry Station, 614 mm .

Sex composition (1983) data collected from escapement sampling of the Susitna River main channel above Talkeetna (RM 97.1) are provided in Table 2-3-38. The male to female chum salmon sex ratio computed for Talkeetna Suation (RM 103) at 1.5:1. Upstream 17 miles at Curry Station (RM 120) the ratio was 1.9:1.

Figura 2-3-23. Migrational rates of chum salmon between (a) Sunshine and Talkeetna stations, (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations. Adult Anadromous Investigations, su hiviru stuates, 1983.

3.2.4.2.2 Spawning Ground Surveys

3.2.4.2.2.2.1 Main Channel

In 1983 no inclusive main channel spawning ground surveys were conducted. However, six main channel chum saimon spawning areas were found by the stream and slough sly vey crew stationed at Gold Creck (RM 137). A Iist of these spawning areas are provided in Appendix Table $2-G-1$. Maps of these locations are provideu in Appendix 2-G.

The six main channel spawning locations identified in 1983 were found between
 September 9 and October 1. The site supporting the highest number of spawners was located downstream of the mouth of Slough 11 (RM 136.3) at RM 136.1 (Appendix Figure 2-G-9). At this location a total of 177 chum salmon were observed on September 9 and 17,1983 . The numbers of spawning chum salmon observed at the other five locations ranged from 4 to 56 fish.

3.2.4.2.2.2 Streams

In 1983 a total of 20 streams were surveyed for salmon presence between PM 98.6 and 161.0. The results are provided in Appendi. Table 2-G-3.

Seven straams above Rf 98.6 were found to contain chum salmon in 1983 (Table 2-3-40). peak spawning ground counts substantiated a minimum escapement of 1.411 fish into these streams. The majority (38.4%) of she Fish were counted in Indian River (RM 138.6) and portage creck (RM 148.9).

Table 2-3-40. Chum salmon peak escapement counts for stream habitats above RM 98.6. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Stream	Location$(R M) 1 /$	Date	Number Counted		
			Live	Dead	Total
Lane Creek	113.6	8/15	6	0	6
Lower Mckenzie Creek	116.2	8/15	1	0	1
5 th of July Creek	123.7	8/5	6	0	6
4 th of July Creek	131.0	8/27	143	5	148
Indian River	138.6	8/27	287	435	722
Jack Long Creek	144.5	8/12	2	0	2
Portage Creek	148.9	8/26	424	102	526
		TOTAL	869	542	1,411

1/ River Mile

In 1983 fewer chum salmon were enumerated in Indian River (RM 138.6) by helicopter than were actually present based on a comparison of what was counted on the ground in the first mile of stream and the aerial counts by helicopter of the total 16 mile reach of stream from the mouth (Figure $2-3-30$). Considering 16 miles of stream were surveved by air and less fish were observed during the aerial census than on foot over the first stream mile, it could be concluded, aside from aerial counts providing a poor measure of Indian River escapement, that the First mile reach of Indian River in 1983 was an essential chum suimon spawning habitat of possibly more lue than the remaining (15 miles) upstream rach.

At Portage Creek (RM 148.9) in 1983, more chum salmon were counted by helfcopter in the total 25 mile reach of stream than on foot in the first

[^5]

quarter mile reach (Appendix 2-G-3). From a comparison of the timing differences between the ground and helicopter counts, it could be concluded that the first quarter mile reach of Portage Creek is mainly a migrational corridor and the majority of the fish enumerated in this reach on the ground counts were fish that spa, upstream (figure 2-3-30). If the first quarter mile reach of Portage creek were of similar spawning habitat value as the upper stream reach the difference in timing of the peak counts would not be as apparent as illustrated in Figure 2-3-30.

For 1985°, the chum salmon escapement counts of stream habitats above RM 98.6 provided a basis to determine when spawning occurred. From this information base chum salmon spawned in stream habitats from the last week of July through the second week of September (1983) with the peak of spawning occurring between the first and last weeks of August.

3.2.4.2.2.3 Sloughs

3.2.4.2.2.3.1 Observation Life

In 1983, a total of 67 chum salmon were monitored for observation life in sloughs Moose (RM 123.5), A' (RM 124.6), 8A (RM 123.1), 9 (RM 128.3) and 11 (1 m 135.3) The results are presented in Table $2-3-41$.

The average observation life of a chum samon in a slough habitat was 6.9 days as detemmined from the results of five sloughs studied in 1983 (Table $2-3.41$. However, observatton life averages yaried between sloughs and between male ard female chum samon. for examle chum salmon averaged 4.1

Table 2-3-41. Summary of mean number of days individual chum salmon were observed in sloughs Moose, A^{\prime}, $8 \mathrm{~A}, 9$ and 11. Adult Anadromous Imvestigations, Su Hydro Studies, 1983.

Slough$+\mathrm{RM} 1 /$	Males			Females			Combined		
	n	Range (days)	$\begin{aligned} & \text { Mean } \\ & \text { (days) } \end{aligned}$	n	Range (days)	Meăn (days)	n	Range (days)	Mean (days)
Moose RM 123.5	6	$2.5-11.0$	9.6	1	---	11.0	7	$2.5-11.0$	9.8
$\begin{aligned} & \mathrm{A}^{\prime} \\ & \text { RM } 124.6 \end{aligned}$	10	$2.0-14.5$	7.4	3	2.0 .8 .0	5.5	13	$2.0-14.5$	6.7
$\begin{aligned} & 8 \mathrm{~A} \\ & \mathrm{RM} 125.4 \end{aligned}$	3	4.0.6.0	4.7	2	$8.5-10.0$	9.3	5	4.0-10.0	6.5
$\stackrel{9}{R M 128.3}$	8	$1.0-10.0$	3.1	7	$2.0-10.0$	5.3	15	1.0-10.0	4.1
$\operatorname{RM}^{11} 135.3$	13	$1.5-15.5$	4.8	16	1.5-30.5	9.7	29 Mean	$1.5-30.5$ Average	$\frac{7.5}{6.9}$

[^6]observation days in Slough 9 (RM 128.3) whereas in slough 11 (RM 135.3) the average was 7.5 days. In these same sloughs the average observation life of male chum salmon was less than that recorded of female chum salmon. The difference in chum salmon observation life between sloughs can be partially attributed to variations im the visibility of fish in the sloughs. For example, as shown in Figure 2.3-31, visibility in 1983 was restricted in Slough 9 much of the time chum samon were present and it was here that chum salmon averaged the lowest observation life of 4.1 days. In those sloughs such as slough 9 where restricted visibility conditions were often encounted it was difficult to locate fish. This generally lead to less observation time per fish beang recorded in these habltats. There may be sone
differences in the average stream life of chum salmon between sloughs, with stream life being defined as a measure of the number of days a fish is physically present in a habitat without regard to visibility. However, a Iimitation of the observation life data is that influences of visibility and stream life can not be separated with a relatively small sample of fish such as in our case.

Figure 2-3-31. Periodicities of restricted visibility conditions and chum salmon life observations in 1983 at sloughs Moose. 84 and 11. Adult Anadromous Investigations. Su Hydro Studies, 1983.

In 1983, not all the fish monitored for observation life were confimed spawners (Table $2-3-42$). The percentage of non-confimed spawners varied between sloughs. At sloughs A' (RM 124.6) and 8A (RM 125.1) all the fish
monitored were observed at one time or another to be spawning. At Moose Slough (RM 123.5) only one of the seven fish monttored spawned. In slough. 9 (RM 128.3) and 11 (RM 135.3), 71.4 and 79.3 percent of the fish saupled respectively were observed spawning. The high percentage of non-spawners in Moose slough can be attributed in part to milling activity. Of the seven fish monitored six were classified as milling fish. Two of these fish later spawned in Slough 11.

Table 2-3-42 in comeination with Appendix Figures 2-6-2 thru 2-6-5 summarize where the chum salmon monitored for observation life in 1983 spawned within sloughs Moose (RM 123.5), 8A (RM 125.1), 9 (RM 128.3) and 11 (RM 135.3). The most obvious finding was that chum salmon generally had a higher preference towards the lower slough habitat zones for spawning than sockeye salmon. For example at Slough 11 approximately 90 percent of the chum salmon spawned in habitat zones 1 and 2 whereas about 85 percent of the sockeye salmon spawned above habitat zone 3 (Section 3.2.2.2.2.3.1).

3.2.4.2.2.3.2 Escapenent Counts

In 1983 a total of 35 sloughs habitats above RM 98.6 were surveyed for salmon presence. The results are presented in Appendix Tabie 2-G-2.

Twenty three of the 35 sloughs surveyed above R 98.6 were found to contaln chum salmon in 1983 (Table $2-3-43$). Eighteen of these sloughs were used for spawning. Sloughs 3 (RM 101.4), 5 (RM 107.6), 6A (RM 112.3), B0 (RM 121.8) and 10 (RM 33.8) were considered to be only militing areas based on the absence of carcasses and spaming activery.

Table 2-3-42. Percentages of chum simon monitored for observation life that spawned by habitat zone in sloughs Moose, $A^{\prime}, B A, 9$ and 11 , Adult Anadromous Investigations; Su Hydro Studies, 1983.

Slough with RM $1 /$	n	Percent Spawning	Spawning Locations by Habitat Zone $\frac{2 /}{}$							Percent $\mathrm{N}=$ spawning
										$3 /$
Moose RM 123.5	7	14.3	100.0	0.0	-	-	-	-	-	85.7
A^{\prime} RM 124.6	13	100.0	-	-	-	-	-	-	-	0.0
8 A RM 125.1	5	100.0	20.0	80.0	0.0	-	-	-	-	0.0
$\begin{aligned} & 9 \\ & \text { RM } 128.3 \end{aligned}$	14	71.4	0.0	40.0	60.0	-	-	-	-	28.6
$\begin{aligned} & 11 \\ & \text { RH } 135.3 \end{aligned}$	29	79.3	39.1	52.2	0.0	8.7	0.0	0.0	0.0	20.7

1/ RM = River Mile
2/ Habitat zones defined in Appendix Figures 2-6-2 thru 2-6-5, Adult Anadromous Investigations, Su Hydro Studies, 1983.
3/ Includes milling fish and also bear killed and other non-spawning mortalities.

The highest concentrations of spawning chum salmon were found in sloughs 11 $(2 \% .9 \%), 21(16.3 \%)$ and $9(14.6)$ between the second week of Rugust and the last week of September, 1983. Spawning peaked in these habitats between the last week of August and the first week of September (FIgure 2-3-32 and Appendix 2-6).

Table 2-3-43. Chum salmon peak escapement counts for slough habitats above RM 98.6. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Slough	Location (RM) $1 /$	Date	Number Counted		
			Live	Dead	Total
2	170.2	9/12	37	12	49
38	101.4	8/26	3	0	3
5	107.6	8/15	1	0	1
6A	112.3	9/5	6	0	6
80	121.8	8/3	1	0	1
8C	121.9	$9 / 9$	2	2	4
8 B	122.2	9/9	104	0	104
Moose	123.5	8/5	68	0	68
A^{\prime}	124.6	8/15	76	1	77
A	124.7	8/27	i	1	2
8A	125.1	8/30	34	3	37
B	126.3	9/11	3	4.	7
9	128.3	$9 / 11$	105	64	169
9 A	133.8	9/18	88	17	105
10	133.8	10/1	1	0	1
11	135.3	9/18	94	144	238
13	135.9	9/1	0	4	4
15	137.2	8/25	1	1	2
17	138.9	8/25	89	1	90
19	139.7	9/3	2	1	3
20	140.0	9/3	33	30	63
21	141.0	9/9	149	170	319
22	144.5	8/18	109	5	114
		TOTAL	1,007	460	1,467

I/ Rivermile

In 1983 the total peak spawning count of chum salmon to slough habitats above m 98.6 was 1.467 fish less 12 fish recorded in peak counts of sloughs 38,5, $6 A, 80$ and 10. (Table $2-3-44$). This count of 1,455 fish represents an findex of the total escapement (Cousens et. al.). An estimate of the total spawning escapenent has been provided in Tabie $2-3-44$ of 2,950 fish. This estimate represents about 14 parcent of the estmated chum samon escapenent to Cury

Table 2.3-34. Totai 1983 chum salmon slough escapements between RM 98.6 and 161.0 , Adult Anadromous Investigations, Su Hydro Studies, 1983.

Slough	River M1?	$\begin{aligned} & \text { Totay Fish } 1 / \\ & \text { Days } \end{aligned}$	Peak Live-Dead Survey Counc	Mean Observation Life in Days	\$lough Escapement	E of Total Slough Escapement	\% of Curry 3/ Station Escapement
2	100.2	659.0	49	6.9	96	3.3	0.5
8 C	427.9		4		$82 /$	0.3	0.1
88	12\%.2	$1{ }_{9} 799.8$	104	6.9	261	8.9	1.2
\%oose	123.5	848.1	68	9.8	86	2.9	0.4
$\mathrm{A}^{\text {B }}$	1296.6	$1,036.8$	77	6.7	155	5.3	0.7
A	124.7		2		421	0.1	0.1
8	125.1	730.0	37	6.5	112	3.8	0.5
8	126.3		7		14.21	0.5	0.1
9	128.3	8.765 .0	169	4.1	430	14.6	2.0
9 A	133.8	1.595 .6	105	6.9	231	7.9	1.1
11	135.3	5,055,2	238	7.5	67\%	22.9	3.2
13	135.9		4		$82 /$	0.3	0.1
15	137.2		2		421	0.7	0.1
17	138.9	1,143.4	90	6.9	166	5.6	0.8
19	139.7		3		621	0.2	0.1
20	140.0	713.1	63	6.9	103	3.5	0.5
21	1489.1	3,321.0	319	6.9	481	16.3	2.3
22	144.5	722.8	114	6.9	105	3.5	0.5
TOTL		19,387.3	1.455	-	2,944	100.0	13.8

1 Mumber of fish days were calculated for sloughs that had peak survey counts 15 fish. Refer to Section 2.4 for detailed data analysis procedures.
$2 /$ Total slough escapement into sloughs having peak live-dead survey counts of 15 fish were computed by multiplying the peak live-dead survey count by 2.0 . This value represents the summotion of the estimated slough escapenent divided by the sumation of the peak live-dead survey counte for all sloughs whth peak survey counts 50 fish.
3) 1983 Curry Station chum saimon escapement was approximately 21,100 fish.

Figure 2-3-32. Chum salmon live counts by date in sloughs 9, 11 and 21, Adult Anadromous Investigations, Su Hydro Studies, 1983.

 h
Sthion (RM 120) of 21, 100 fish. If about 3,000 chum salmon spawned in gemot
slough habitats above RM 98.6 then about 18,000 of the 21,000 chum salmon which migrated to curry station included fish which were milling and later spawned below Rn 98.6. and fish which entered and spawned in Sustina River main channel and stream habitats above RH 98.6.

3.2.4.2.2.3.3 Eg9 Retention

In 1983, a total of 229 female chum salmon carcasses were sampled for agg retention in 12 sloughs and one main channel spawning habitat between RM 98.6 and 161.0 (Table 2-3-45). The average egg retention from a composite of these samples was 114.1 eggs per female. The median retention was 5.0 eggs Which indicates nearly all the females sampled had completely spauned. Less than four percent of the females sampled died retaining more than 1,000 eggs each (Figure 2-3-33),

Figure 2-3-33. Percent frequency of egg numbers recained by female chum salmon sampled in slough hobltats above Rm 98.6 im 1983. Adult Amadronmus Imvestigntions. Su Hyuro Stuntes. 1983.

8818^{-9}	0 - 8		682	paidues subnols lle 10 anisuduan
0	\cdots	0	2	$\begin{gathered} \text { 9. } 2 \mathrm{~g} \text { W8 } \\ 22 \text { 4bnots } \end{gathered}$
+105-0	$9{ }^{\circ}$	$s^{\circ} 28$	79	7"1.7 Hx $1246 n 015$
6691-0	$0^{\circ} 6$	$8 \cdot 96$	2	0.07 药 0. ubnols
$241-2$	0\% 6	0:18	2	4"6et W8 5! yonols
20T-5	0×12	$\varepsilon^{\circ} 68$	\dagger	6.8ET W8 LI 46nols
88:8-0	$0^{\circ} 3$	$0 \cdot 097$	εS	E'SET H8 II ybrois
689-0	0'95	0.921	$\varepsilon 1$	$z^{\circ} \mathrm{CEI}$ W8 Iouvey ulew
-	-	$0^{\prime} 12$	T	$\begin{aligned} & 8 . \operatorname{EcI} \text { W8 } \\ & \forall 6 \text { 4enols } \end{aligned}$
994T00	0.6	botot	15	$\varepsilon .821$ Wd 6 46nols
L-i	0%	0%	2	$\begin{aligned} & \text { I'92I W8 } \\ & \text { 48 46nols } \end{aligned}$
792-0	$0^{\circ} 9$	1.99	L	$\begin{aligned} & 9^{\circ} \mathrm{DE} \text { W8 } \\ & \text { 46nols } \end{aligned}$
6LLT-0	$0 \cdot 9$	7.988	L	G"EuT Wd पbrols 2soon
-	-	$0^{\circ} 988$	I	$2^{\circ} 00 \mathrm{a}$ W8 2 ybnols
ә6uey	ue!pew	पeaw	$\begin{aligned} & \text { az!s } \\ & \text { a!dues } \end{aligned}$	$\begin{aligned} & \text { /T qu 4eher } \\ & \text { bugumeds } \end{aligned}$

- 886 " setpmas ouph

3.2.5 Coho Salmon

3.2.5.1 Intertidal to Talkeetna

3.2 .5 .1. i Main Channel Escapement Monitoring

The 1983 escapenent of coho salmon into the Yentna River (RM 28) was monitored by SSS counters located at Yentna Station (TRM 04). The escapement was approximated to be 8,850 fish (Table $2-3-22$). Daily coho salmon passage rates are presented in Appendix Table $2-C-3$ and Appendix Figure $2-C-1$.

At Sunshine Station (RM 80) the coho salmon escapement was estimated to be 15,250 fish in 1983 (Table 2-3-46). This value was derived using tag/recapture estimation technioues and had an associated 95 percent confidence interval of 13,450 to 17,600 fish (Table 2-3-46).

Table 2-3-46. Petersen population estimates with associated 95% confidence intervals of coho salmon migration to Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su-Hydro Studies. 1983.

Parameter -/	Population Estimate Location		
	Sunshine Station	Talkeetna Station	curry Station
m	2,24	364	70
c	1.243	275	117
p	183	41	10
N	15.235	2.441	819
95\% C.	13,437	1,904	514.
	\% 8.589	3,402	2.011

If $m=$ Number of fish marked (adjusted).
$\mathrm{c}=$ Tota. number of fish examined for marks during sampling census.
$p=$ Tokat number of manked fish observed during sampling census.
a
$M=$ Poptation estimate. C. ${ }^{W}$. Confidence interval around M.

In 1983, 574 coho salmon were intercepted by the two fishwheels operated at Yentna Station (TRM 04) and defined a 59 day migrational period (Table 2-3-11). Based on these fishwheel catches the migration began on July 7 , reached a midpoint on July 27 and extended through the last operational day, September 4. The migration peak occurred on approximately July 23 (Appendix Table 2-1-3; Aiso based on fishwheel captures, it was determined that coho salmon were more abundant along the south bank where 63 percent of the fishwheel catch at this station was recorded (Figure $2-3-34$).

By interpretation of fishwheel catch statistics it was found that the coho salmon migration to Sunshine Station (RM 80) in 1983 began on July 23, reached a midpoint on August 5 and was essentially complete by August 25. The migration reached a peak on August 4 (Appendix Table 2-0-6). From 2,254 fishwheel captures it was determined that coho salmon migrated primarily along the east bank where 82 percent of the interceptions at this station occurred (Table 2-3-11 and Figure 2-3-34).

The distribution of fishwheel catch per hour as a function of time is illustrated in Figure $2-3-34$ and reveais a distinct bimodal patcerm in the coho samon catch curve for fishwheels loctad on both banks of the river at Ventm (TRM 04) and Sunshine (RM 80) stations. This patsem is also apparent for the fishwheels located at Talkeetne (Rm 103) and Curry (RM 120) stations (Figure 2-3-35). Threa possible explanations may serve to explain this distribution. They are: 1) delayed response to coho salmon catches in the Cook inlet comercial fishery, 2) stock differences in migrational timing of cono samon and 3) altevation in migrational movements in response to a variation in seasonal Susitna River Gigcharges. In peviewing the fishoheel

Figure 2-3.34. Hean hourly and cumblative percent fishwheel catch of coho salmon by two day periods at Yentna and Sunshine stations. Adult Anacromous Investigations. Su Hydro Studies. 1983.
 Pmom JUNE $\rightarrow+\infty \quad$ UULY $\rightarrow+$ \qquad

Figure $2-3-35$. Rean hourly and cumblative percent fishwheel catch of cono salmon by two day periods at Talkeetna and Curry stations. Adult Anadromous Investigations. Su Hydro Studies, 1983.
catch figures it can be seen that the low catches occur an approximately the same days. August 9 and 10 at all four sampling stations. Differential migrational rates for individual stocks and low catches as a result of the commercial fishery would result in low points in the fishwheel catch distribution at time intervals corresponding to coho salmon migrational rates between stations. This however, is not the case and by examining 1983 USGS provisional Susitna and Ventna rivers discharge data it can be found that peak flows (flooding conditions) occurred on approximately August 10 and 11 in both rivers (Figure $2-3-25$). These peak flows correspond exactly to the low points in the fishwheel catch per hour curve and would seem to be the most plausible explanation to the bimodal catch distribution at these stations.

A portion of the 1983 coho saimon escapement passing Yentna (TRM 04) and Sunshine (RM 80) stations were sampled to identify population age composition. Results are summarized in Figure 2-3-36 and Table 2-3-4\%. Coho salmon migrating to Yentna Station were comprised of 80.4 percent four year old fish. 16.1 percent three year old fish and 3.5 percent five year old fish. All coho salmon sampled here spent at least one winter rearing in freshmater and 80.7 percent migrated to sea in their third year of life. Interestingly, 2.6 percent of the sample did not overwinter in the ocean environment instead returned in the fall of the same year they migrated to sea. At Sunshine Station 516 coho salmon scales were collected from the escapement (Table 2-3.47). Or these scales $63.3,35.9$ and 0.8 percents represented four. three and five year old fish, respectively. The majority of the coho samon sampled. 63. percent, outmigrated in their third year of life.

Figure 2-3-36. Age composition of fishweel intercepted coho saimon at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Length (FL) and related age information was also collected from a subsample of the coho salmon escapement at Yentna (TRM 04) and Surshine (R (80) stations in 1983 and the results are summarized in Table $2-3-48$. The mean length of all coho salmon measured at Yentna Station was 528 Thi. The composite mean length of all coho salmon meacured at Sunshine Station was 523 mm. Sex composition relative to age for coho salmon collected at Yentna and

Table 2-3-47. Analysis of coho salmon age data by percent from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies. 1983.

Collection Site	n	Age Class $1 /$					
		32	33	42	43	4	5_{4}
Yentra Station	311	14.5	1.6	0.3	79.1	1.0	3.5
Sunshine Station	516	35.9	-	0.2	63.1	-	0.8
Tal.eetna Station	231	39.4	-	0.4	60.2	-	-
Cury Station	47	46.8	-	-	53.2	=	-

I/ Gilbert-Rich Notation
Sunshine stations in 1983 indicate that males were consistently more abundant than females for all ages at boch sites, with overall sex ratios of 2.3:1 and 1.2:1 in the above station order (Table 2-3-49).

3.2.5.2 Talkeetna to Upper Devil Canyon
 3.2.5.2.1 Main Channel Escapement Monitoring

The coho salmon escapement to Talkeetna Station (RM 103) was approximately 2.450 fish in 1983 (Table 2m3-46). At Curry station (RM 120) the escapenent was esthated to be 820 coho salmom (Table $2-3-46)$. Both estmates include

Table 2-3-48. Analysis of coho salmon lengths, in millimeters, by age class from escapement samples collected at Ventha, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigacions, Su Hydro Studies. 1983.

		ก	Range Limits	Hean		hediun
St ${ }^{\text {ce }}$	Cides		H P	$M \quad F$	M F	M
Station		30 15 5 0 1 170 76 3 - 9 2 349 498 	$405-598$ $395-571$ $240-330$ 5 \cdots 531 $220-655$ $307-609$ $300-332$ - $552-625$ $542-597$ $240-679$ $368-612$ $240-679$	492 492 293 - - 531 543 536 315 - 596 570 527 530 528 	$472-511$ $464-521$ \cdots \cdots $534-551$ $528-549$ \cdots - $519-535$ - $522-539$	489 505 286 - - 531 556 552 315 592 570 548 542 544
Sunshive s.4.tion	$\begin{aligned} & 3_{2} \\ & 4_{2} \\ & 4_{3} \\ & 5_{4} \\ & 4 H \end{aligned}$	110 75 - 1 179 147 3 1 438 356 794 	$385-625$ $400-585$ - 475 $395-630$ $410-640$ $600-685$ 570 $385-665$ $400-640$ $385-665$	487 492 - 875 539 590 625 570 523 524 523	$478-496$ $480-502$ - - $531-547$ $534-547$ - - $517-528$ $519-530$ $520-527$.	488 500 $\%$ 475 545 540 630 570 520 530 565
Thiketera Station	$\begin{aligned} & 32 \\ & 3_{2} \\ & 4_{4} \\ & 4_{4} 4 / \end{aligned}$	39 32 1 77 62 226 361	$360-595$ $395-590$ 450 $430-640$ $450-380$ $340-590$ $395-700$ $340-700$	482 499 450 - 542 552 522 538 528	$468-496$ $481-517$ $530-553$ $542-561$ $514-530$ $530-546$ $522-534$	470 510 450 550 555 530 540 540
Curpl Statum	$\begin{gathered} 3_{2} \\ a_{3} \\ M U \end{gathered}$	16 6 17 8 48 24 72	$430-530$ $354-555$ $480-610$ $500-590$ $420-610$ $354-600$	477 480 554 553 518 530 522	$\begin{aligned} & 461-493 \\ & 534-575 \\ & 503-534 \\ & 509-535 \end{aligned}$	420 500 555 560 515 543 530

an unknown number of milling fish which returned downstream to spawn below the respective stations.

As depicted in Appendix Table 2-D-9 and Figure 2-3-35 fishwheel catches indicate the 1983 coho salmon migration at Talkeetna Station (RM 103) began on July 30 , reached a median on August 14 and was essentially complete by

Table 2-3-49. Sex ratios of male and female coho salmon by age from escapement samples collected at Yentna, Sunshine, Talkeetna and Curry stations, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Collection Site	Age	Sample Size	Number		$\begin{aligned} & \text { Sex } \\ & \text { Ratio } \\ & (M: F) \end{aligned}$
			Males	fenales	
Yentna Station	3	50	35	15	2.3:1
	4	250	173	77	2.2:1
	5	11	9	2	4.5:1
	All $1 /$	498	349	149	2.3:1
Sunshine Station	3	185	110	75	1.5:1
	4	327	179	148	1.2:1
	5	4	3	1	3.0:1
	All $1 /$	794	438	356	1.2:1
Talkeetna Station	3	91	59	32	$1.8: 1$
	4	140	78	62	1.3:1
	All $1 /$	361	226	135	1.7:1
Curry Station	3	22	16	6	2.7.1
	4	25	17	8	2.2:1
	All $1 /$	72	48	24	2.0 .1

1/ Includes all aged and non-aged samples.

September 7. The migration peak was on August 16. From the illustration of fishwheel catch rates portrayed in Figure 2-3-35 coho salmon were nore abundant along the west bank, where 69 percent of the fishwheel catch at this station was recorded.

At Curry Station (RM 120), the 1983 coho salmon fishwheel migration started on July 28, was mid-way through on August 12 and virtually complete by September 2 (Appendix Table 2-0-12 and Figure 2-3-35). The peak of nigration occurred on August 15. From the 93 fishwheel captures it is apparent that cono salmon were more prevalent along the east bank, where 63 percent of the fishwheel catch at this station occurred (Figure 2-3-35).

Recaptures of coho salmon tagged at Sunshine (RM 80) and Talkeetna (PM 103) stations in 1983 provide the basis for the migrational timing information Which is portrayed in Figure $2-3-37$. As illustrated, coho salmon required an average of 17 days or 1.4 mpd to navigate the distance of 23 miles between Sunshine and Talkeetna stations. Between Sunshine and Curry (RM 120) stations, a 40 mile distance. the average travel time was 21 days or 2.0 mpd. The 17 miles between Talkeetma and Curry stations were travelled by coho samon in an average of three days for a rate of 5.7 mpd.

Two hundred thirtyone and 47 coho salmon intercepted by fishweels located at Talkeetna (RM 103) and Curry (RM 120) stations were sampled for age in 1983. Results are summarized in Table $2-3-47$ and Figure 2 m 3 m 3 . The sample collected at Talkeetna Station segregated to 60.6 procent four year old fish and 39.4 percent three year old fish. The majority of the coho salmom. 60.2 percent, migrated to sea in their third year of life. Those sampled at cury

Figure 2-3-37. Migrational rates of coho salmon between (a) Sunshine and Talkeetna stations, (b) Talkeetna and Curry stations and (c) Sunshine and Curry stations, Adult Anadromous lnvestigations, Su Hyro Studies, 1.983.

Station wese comprised of 53.2 and 46.8 percent four and three year old fish, respectively. Again, the largest portion, 53.2 percent, migrated to sea in their third year of life.

Length (FL) and associated age data were also collected from a subsample of the coho samon intercepted at Talkeetna (RM 103) and Cury (RM 120) stations in 1983. The results of these measurements are presented in Tabie $2-3-48$ and Appendix 2-E. Coho salmon sampled at Talkeetna Station averaged 528 mm for all samples and at Curry Station the mean length was 522 min for all samples. The number of males was consistently greater than the number of females for all ages at both Talkeetna and Curry stations and as shown in Table 2-3-49 male to female sex ratios for all fish sampled were 1.7:1 and 2.0:1, respecturely.

3.2.5.2.2 Spawning Ground Surveys

3.2.5.2.2.1 Main Channel

There was no operational Susitna River main channal spawning survey prognam in 1983. However, while conducting slough and stream surveys one main chamel coho samon spawing site was located at midi.1. As illustrated in Appendix Figure $2-6-8$ this site was approximately 160 yards upstream from the confluence of tab of duly Creek. The coho samon were obsaryed near redd stres here on Uctace I (Appendix Thle 2-G-1).

3.2 .5 .2 .2 .2 slougns and Streams

All known Sustme River sloughs between 5498.6 and 10.0 wew repertively aspreyed for coto salmon presence of 1903. These sumevs were conducted
between July 26 anc October 8 with the results listed in Appendix Table 2-6-2.

Coho salmon were observed in three of the sloughs surveyed in 1983 although this presence was not considered to represent spawning but rather only milling activity (Appendix Table 2-G-2).

Streams tributary to the Susitna River above RM 98.6 and below 161.0 were also surveyed regularly for coho salmon in 1983 (Appendix Table 2-G-3). Ten streams were found to have cono salmon and were, as shown in Table 2-3-50, ranked in order of importance by percent contribution of peak survey counts. Hhiskers Creek (RM 101.4) and Indian River (RM 138.6) supported approximately 72 percent of the coho salmon spawning, based on peak survey counts. These counts do not represent total escapements into tributaries but were index counts used to establish relative abundance.

Survey observations indicate coho salmon spawning activity in streams reached a peak between the first week of September and the first week of October in 1983. At Whiskers Creek (RM 101.4) peak spawning occurred during the last two weeks of Septerber (Appendix Table 2-G-3).
from ground and nelliconter surveys of Indian River, illustrated in figure $2-3-38$, it was detemined that peak spaming occurred here during the second week of Septmber, approximately. Also. as shown in this figure the tima difference in peak survey counts between foot and helicopter surveys indrcate that the coho sarmon observed inttally during poot surveys of the first mile continue to move upstroan and presumably spamn in the midle ant upper reaches of Indian Rives.

Figure 2-3-38. Peak coho salmon ground and helicopter survey counts of (a) Indian River and (b) Portage Creek. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Table 2-3-50. Coho salmon peak escapement counts for stream habitats above RM 98.6 in order of contribution. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Stream	River Mile	Date	Survey Method	Number Counted			Percent Contribution
				Live	Dead	Total	
Whiskers Creek	101.4	9/24	Hel.	130	5	115	49.1
Indian River	138.6	9/10	Hel.	53	0	53	22.6
Gash Creek	111.6	$9 / 19$	Foot	18	1	19	8.1
L. McKenzie Creek	116.2	10/1	Foot	18	0	18	7.7
Portage Creek	148.9	$9 / 25$	Hel.	15	0	15	6.4
Chase Creek	106.9	10/1	Hel.	5	1	6	2.6
Ath of July Creek	131.0	$9 / 18$	Foot	2	1	3	1.3
Slash Creek	111.2	10/2	Foot	2	0	2	0.9
Lane Creek	113.6	9/19	Foot	2	0	2	0.9
Jack Long Creek	144.5	10/1	Hel.	1	0	1	0.6
		TOTAL		226	8	234	100.0

3.3 Bering Cisco

3.3.1 Intertidal to Talkeetna

3.3.1.1 Main Channel Escapement Monitoring

No provision was made to estimate Bering cisco escapenents or ascertain their migrational timing characteristics in 1983. However, incidental to adult samon studies. fishwheel catches of Bering cisco were recorded at both Ventna (TRM 04) and Sunshine (RM 80) stations (Table 2-3.51).

Table $2-3-51$. Summary of 1983 Bering cisco interceptions by location and gear type, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Sampling Location	River Mile	Gear Type	Date		Number Caught
Yentna Station	04	Fishwheel Capture Last Capture	$8 / 20$	$9 / 4$	24
Sunshine Station	80	Fishwheel	$8 / 28$	$9 / 10$	29
Talkeetna Station	103	Fishwheel	$8 / 30$	$9 / 10$	5
Main Channel	$101.0-$ 131.1	Gillnet and Electroshocker	$9 / 15$	$10 / 6$	9

At Yentna Station (TRM 04) fishwheels intercepted 24 Bering cisco in 1983. The first capture was recorded on August 20 and the last capture on September 4, the last day of fishwheel operation at this station (Appendix Table 2-D-3). There is insufficient infomation available to define any migrational timing characteristics. Most Bering cisco were found to migrate along the south bank where 67.7 percent of the stations fishwheel captures of Bering cisco occurred.

Sunshine Station (RM 80) -ishwheels, operational from June 3 until September 11, Intercepted 29 Bering cisco in 1983 (Appendix Table 2-D-6). The first recorded fishwheel catch was on August 28 with catches continuing through September 10 (Table 2-3-51). Bering cisco exhibited an affintty for migration along the east bank at this station as evidenced by 86.2 percent of the fishwheel catch occurring in cast bank fishwheels.

3.3.2 Talkeetna to Upper Devil Canyon

3.3.2.1 Main Channel Escapement Monitoring

There was no program designed specifically to monitor Bering cisco abundance, migrational characteristics or spawning activities in 1983. All information pertaining to Bering cisco was gathered incidental to adult salmon and resident and juvenile studies.

Talkeetna Station (RM 103) fishwheels, operating from June 7 through September 12. intercepted five Bering cisco in 1983 (Table 2-3-51). The first fishwheel captur: was recorded on August 30 and the last on September 10 (Appendix Table 2-3-9). Sixty percent (3) of these captures occurred in east bank fishwheels and 40 percent (2) in west bank fishwheels. No age, length or sex data were collected from the Bering cisco intercepted at this station.

Curry station (RM 120) fishwheels were operational from June 9 through September 14 in 1983. There were no recorded captures of Bering cisco in this time period at this station (Appendix Table 2-D-12).

While conducting related resident and juvenile studies, Su Hydro biologists captured or observed nine Bering cisco between September 16 and October 6 . 1983. Eight Bering cisco were electroshocked or gilinetted in main chamel sites between RM 101.0 and 102.2. The ninth was electroshocked near the confluence of Fourth of July Creek (RM 131.1) on October 6. None of the mine Bering cisco captured in the main chamel were in spauning condition at the time of capture.
2.0 SUMMARY

All references to 1981 and 1982 adult anadromous data mentioned in this summary are from the ADF\&G. Phase I (1981) and Phase II (1982) Adult Anadromous Fisheries reports.

4.1 Eulachon

In 1983, two migrations of eulachon entered the Susitna River. The first migration was intercepted in the intertidal reach between May 10 and 17 and the second migration from May 19 to June 6.

The upper limit of eulachon migration in the Susitna River for the (1983) first migration was approximately RM 28.5 and for the second migration, RM 50.5. The largest eulachon concentrations during both migrations occurred downstream of the Yentna River confluence ($R M 28$).

The first eulachon migration in 1983 spawned in the Susitna River main channel between May 15 and 22. Second migration fish also spawned in main channel river habitat between May 23 and June 5 . Fish of both migration used similar spawning habitats. The most common spawning areas were near eroding banks where bottom substrates included unconsolidated silty sand and gravel deposits. No eulachon spawning was found to have occurred in any clear water tributary or slough habitats.

In 1983, the frrst and second eulachon migrations into the Sustha River were romprised of two, three and four year old fris. Three year olds comprised about 90 percent of both migrations.

Eulachon in the first migration (1983) averaged larger length and weight than eulachon in the second migration. Significant difference in length occurred at the 99 percent confidence level between first and second migration eulachon.

Sex composition samples (1983) from RM 4.5 to 60.0 established that the first migration was comprised of more male eulachon than female eulachon by a ratio of 1.2:1. The second migration supported more females than males by a ratio of 0.6:1.

In 1983 male eulachons in both migrations ripened earlier and remained in spawning condition longer than female eulachons. The longer male spawning life was apparent in sex ratio samples collected of spauning and post spawning eulachon where males were more numerous than females by ratios ranging from 3.4:1 to $18.9: 1$.

Stress associated mortality was observed among second migration (1983) female eulachon in the area of RM 17 at a time when "high' spawning densities were noted upstream.

Sport fishing effort for eulachon on the Susitna River was minimal in 1983. The estimated (1983) harvest was in the range of 500 to 2,000 fish.

The first migration of eulachon finto the susitna River in 1983 amounted to somewhere in the range of several hundred thousand fish. The second migration was notably larger in magnitude in the range of several millon fish.

4.2 Adult Saimon

The first year of the ADF\&G Su Hydro Aquatic Studies Program, Adult Anadromous investigations was in 1981. In that year, second run sockeye, pink, chum and coho saimon were montored to determine the escapement returns to Susitna (RM 26), Yentna (TRM 04), Sunshine (RM 80), Taikeetna (RM 103) and Curry (RM 120) stations. The escapements were monitored with SSS counters at Susitna, Yentna, Sumshine and Talkeetna stations and additionally by tag/recapture methods at Sunshine, Talkeetna and Curry stations. In 1982, the second year of operations, chinook and first run sockeye salmon escapenents were additionally monitored at Sunshine, Talkeetna and Curry stations using the tag/recapture method. Other procedures used to quantify adult salmon escapenents at the five sampling stations in 1982 were the same as those followed in 1981.

In 1983, the third year of operation, Susitna Station (RM 26) was deleted from program for reasons defined in the Phase Ir. Adult Anadronous fisheries report, 1982. The SSS counters at Sunshine and Talkeetna stations were also deleted as a method for estimating escapement because of the duplication of effort and problems with SSS counter use in the Susitna River. (ADF\&G, 1982; Thompson and Barrett, 1983).

The following subsections provide a summary of our 1983 adult salmon investrgations in the Susitha and Yentna rivers and provides a comparison of these results with those obtained in 1981 and 1982.

4.2.1 Chinook Salmon
 4.2.1.1 Intertidal to Talkeetna

In 1983, the chinook salmon escapement to the Susitna River at Sunshine Station (RM 80) was monitored. The (1983) escapement to the Ventna River (RM 28) was only partially monitored due to a scheduled late start up date of June 30 at Yentna Station (TRM 04).

An estimated 91,200 chinook salmon escaped to the Susitna River at Sunshine Station (RM 80) in 1983 (Table 2-4-1). The escapement to this station in 1982 was about 42 percent lower at 52,900 fish (Figure 2-4a1). The 1981 escapement was only partially monitored and no estimate of the total escapement was made for that year.

At Sunshine Station (RM 80) chinook salmon migrated ou ar a longer period of time in 1983 than in 1982 (Figure 2-4-2). The migration in 1983 began on June 9. reach a midpoint on June 18 and ended on July 9. In 1982, the respective dates were June 18,30 and July 9.

Chinook salmon age samples were collected in 1983 at Yentna (TRM 04) and Sunshine (RM 80) stations. An insufficient sample was obtained at Ventra Station to define specific results. At Sunhine Station of 1,300 fish sampled, six year old fish were dommate (45\%). At this station in 1981, four year old fish were the most abundant (32%), and in 1982 again it was six year old fish (37\%). In all chree years at Sunshine ctation, fish three through seven yours old were smpled and nealy all were fish that had gone to sea in their econd year of Bre.

Table 2-4-1. Escapement by species and sampling location for 1981, 1982 and 1983, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Sampling Location	Year	Escapement I/					
		Chinook	Sockeye $2 /$	Pink	Chum	Coho	Total
Yentna Station	1981	3/	139,400	36,100	19,800	17,000	212,300
	1982		113,800	447,300	27,800	34,100	623,000
	1983		104,400	60,700	10,800	8,900	184,800
Sunshine Station	1981	$4 /$	133,500	49,500	252,900	19,800	465,700
	1982	52,900	151,500	443,200	430,400	45,700	1.123,700
	1983	91.200	71,700	40,600	266,000	15,200	- 480,800
Talkeetna Station	1981	4	4,800	2,300	20,800	3,300	31,200
	1982	10,900	3,100	73,000	49,100	5,100	141,200
	1983	14.500	4,200	9,500	50,400	2,400	78,300
Ascontelfer		8500	1060	2, 556	5700	4, 5	78,300
Curry Station	1981	$4 /$	2,800	1,000	13,100	1,100	18,000
	1982	11,300	1,300	58,800	29.400	2,400	103,200
	1983	10,000	1,900	5,500	21,100	800	38,800
							18,266

1/ Escapement estimates were derived from tag/recapture popuiation estimates except Yentra Station escapements which were obtained using side scan sonar.

2 Second run sockeye salmon escapement estimates.
3/ Yentna Station side scan sonar equipment was not operational on the dates required to estimate the total Ventna River chinook salmon escapement.

4/ Chinook salmon were not monitored for escapement in 1981.

Figure 2-4-1. Mmimum Sustna River chinook selmon escapements for 1982 and 1983. Adult Mnadromous Investigations, Su Hyro Studias, 1983.

Figure 2-4-2. Migrational timing of chinook salmon based on fishwheel catches at selected locations on the Sustma River in 1981, 1982 and 1983, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Cimook salmon measured for lengths at Yentna Station (TRM 04) averaged a longer iength at 594 mm in 1983 than at 513 mm in 1982. At Sunshine Station (RM 80) chinook salmon averaged longer lengths in 1983 than in 1982. Average lengths were 707 mm and 761 mm in 1982 ano 1983 respectively.

In 1983 at Ventna (TRM 04) and Sunshine (RM 80) stations both, more male chinook samon were caught in the fishwheels than females. Respective male to female ratios were $2.3: 1$ and 1.2:1. Males were also more numerous than females in 1982 at both stations by ratios of $6.4: 1$ and $1.2: 1$, respectively.

4.2.1.2 Talkeetna to Upper Devil Canyon

In 1983, chimook salmon escapements were monitored in the Susitna River main channel at Talkeetna (RM 103) and Curry (2M 120) stations (Table 2-4-1). Approximately 14,500 fish reached Talkeetna Station in 1983, about 35 percent Figher than the 1982 escapement level of 10,900 fish (Figure 2-4-1). At Curry Station the 1983 escapement was an estimated 10,000 fish. The 1982 escapement to this station was higher at approximately 11,300 fish.

The 1983 chinook salmon migration at Talkeetna (RM 103) and Curry (RM 120) stations occurred between the second week of June and the third week of July (Figure 2-4-2). The midpoint of the migration at Talkeetna Station was reached on June 28. In 1981 and 1982 the midpoint dates were June 25 and wily 4 , respectively. Upstream at Curry Station the chinook salmon migration In 1983 reached a midpoint in the fourth week of June on the 25th. In 1981 the midpoint was rach one day earlier on June 24 . and in 1982 eight days lator on duly 3.
of chinook salmon sampled for ane at Talkeetna Station (RM 103) in 1983 five year old fish were the most numerous comprising 34 percent of the sample. In contrast during 1981 , four (30%) and $\operatorname{six}(30 \%)$ year old fish were equally abundant and out ranked all other ages. In 1982, four year old fish were the most numerous (36%). Almost all chinook salmon sampled for age in 1981, 1982 and 1983 at Talkeetna Station had migrated to sea in their second year of life.

At Curry Station five year old fish out ranked all other ages sampled at 34 percent. In 1981, four year fish were the most nunerous, comprising 34 percent of the sample. In 1982 it was the six year old fish at 31 percent. Nearly all the fish sampled in all three years at this station had traveled to sea in their second year of life.

Chinook salmon sampled for lengths at Talkeetna Station (RM 103) in 1983 averaged 626 mm compared to 710 min and 642 mm in 1981 and 1982 respectively. Upstream 17 miles at Curry Station (RM 120) chinook salmon averaged longer lengths in 1983 than in 1981 or 1982. The average length measured was 668 mm. 725 mm and 743 mm in 1981, 1982 and 1983 respectively.

In 1983, males were more numerous than females among the chinook sampled at Talkeetna (RM 103) and Curry (RM 120) stations. This also occured in 1981 and 1982 at these stations. Respective male to female ratios at Takeetma Station were: 2.6:1 (1981), 2.3:1 (1982) and 2.1:1 (1983). At Curry Station these rathos were: 1.9:1 (1981). 2.3:1 (1982) and 1.4.1 (1083).

In 1983 and also in 1981 or 1982 no chinook salmon spawning habitats were found in the Susitna River main channel above RM 98.6. Also there were no slough habitats above RM 98.6 used by chinook salmon for spawning in 1981, 1982 or 1983. Chinook salmon spawning above RM 96.6 occurred in stream habitats in all three years. In 1983, 20 streams were surveyed and 11 supported chinook salmon. In 1981, three streams were surveyed for chinook salmon and all three served as spawning habitats. A total of 19 were surveyed in 1982 and 11 were found to have chinook salmon.

The two most utilized chinook salmon spawning areas above RM 98.6 in 1983 were Indian River ($R M$ 138.6) and Portage Creek (RM 148.9). These were also the two most utilized chinook salmon spawning streams in 1981 and 1982. The peak numbers of fish recorded in Indian River were $422,1,053$ and 1,193 fish respectively for years 1981, 1982 and 1983. At Portage Creek, the respective peak counts for these years totaled $659,1,253$ and 3,140 fish. As indicated the chinook salmon escapements to Indian River and Portage creek were higher in 1983 than in 1981 or 1982.

4.2.1.3 Escapenent Index Surveys

In 1983, chinook salmon escapenent surveys were conducted at 19 designated index streams scattered throughout the Susitna River drainage. Escapement counts averaged about six percent higher in 1983 than the previous seven year $(1976-82)$ average and 50 percent higher than in 1982. The largest percent increases were recorded in the Chulitna River drainage (RM 98.5) and upper Sustha River reach above pm 98.6. Several chinook salmon spammin areas in 1983 supported higher escapenents than in any year between 1976 and 1982.

4.2.2 Sockeye Salmon

4.2.2.1 First Run

In 1983, an estimated 3,300 first run sockeye salmon migrated past Sunshine Station (RM 80) which is 43 percent less than the 1982 escapement of 5,800 fish. From station fishwheel catches, the 1983 migration was determined to have begun on June 9 , reached a midpoint on June 13 and ended on June 21. These dates are all three days later than the respective dates for 1982. Based on fishwheel catches essentially the entire 1983 first run escapement migrated past Sunshine Station (RM 80) along the east bank of the Susitna River at this location (RM 80). In 1982, the same pattern was evident with 99.9 percent of the total station catch being made by the two east bank fishwheels.

In 1983, the first run escapement intercepted at Sunshine Station (RM 80) was comprised of 71 percent five year old fish and 27 percent four year old fish. In 1982, the return was approximately 90 percent five year old fish and six percent four year old fish. First run sockeye salmon sampled at Sunshine Station in 1983 averaged 23 mm smaller in length at 515 man than in 1982. Sex composition samples from the 1983 escapement indicated there were more males than fenales by a ratio of 1.3:1. In 1982. females were more numerous by a male to female ratio of $0.6: 1$.

In 1983 first rum of sockeye salmon migrating past Sunshine Station (RM 20) spawned as in 1982 in the Talkeetna aiver dralnage (m 97.1), specifically in the imet stream of Papa bear Lake. Peak spawning in 1983 occurred in this stream betwern the second and fourth weeks of July. In 1982, the peak
occurred sometime between the third week of July and the first week of August. No other areas above RM 80 were found to have supported first run sockeye saimon spawning in 1982 or 1983.

Based on fishwheel catches a number of first run fish migrating past Sunshine Station (RM 80) extended upstream to Talkeetna Station (RM 103) in 1982 and 1983. These fish were not documented any further upstream in the Susitna River than RM 103. The first run fish which reached Talkeetna Station in 1982 and 1983 were considered milling fish that later descended and spawned in Papa Bear Lake inlet stream.

4.2.2.2 Second Run

In 1983 the minimum (second run) sockeye salmon escapener", return to the Susitna River drainage was 176,000 fish (Table 2-4-2). Comparative escapements in 1981 and 1982 were 273,000 and 265,000 fish respectively. Escapement retums to Susitna River tributaries below RM 80 exciuding the Yentna River (RM 28) were not monitored in 1981. 1982 or 1983 and therefore these fish were not included in the above estimates.

4.2.2.2.1 Intertidal to Talkeetna

In 1983 and for the two previous years (second run) sockeye salmon escapments were monitored in the Yentna River (RM 28) at Yentna Station (TRM 04) and Susitna River at Sunshine Station (Rm 50). The 1983 escapenent Lo Yentha River was an estimated 104,400 fish and at Sunshina Station, 71,700 fish (Table $2-4-1$). These escapements were the lowest recorded since
monitoring began in 1981. The 1983 return was approximately 25 percent and 8 percent less than the escapement levels registered in 1981 of 139,400 fish and 1982 of 113,800 respectively (Figure $2-4-3$).

Table 2-4-2. Minimum Susitna River salmon escapements for sockeye, pink, chum and coho salmon in 1981, 1982 and 1983, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Year						Escapement Estimates $1 /$
	Sockeye $2 /$	Pink	Chum	Coho	Total	
	272,500	85,600	282,700	36,800	677,600	
	265,200	890,500	458,200	79,800	$1,693,700$	
	176,200	101,300	276,800	24,100	578,400	

1/ Defined as the summation of the Yentna River escapement obtained by side scan sonar at Yentna Station and the Susitna River escapement obtained by tag/recapture population estimates at Sunshine Station. These estimates do not include escapements to Susitna River tributaries above RH 6 and below RM 77 excluding the Yentna River (RM 28).
2) Sockeye salmon escapement estimates do not include first run sockeye salmon.

The migration timings of the 1983 second year sockeye salmon escapements to Ventna (TRM 04) and Sunshine (RM 80) stations have been compared with those for years 1981 and 1982 in Figure $2-4-4$. The 1983 escapement returns to both stations reached midpoints in the fourth week of July. In 1981 and 1982 the migration midpoints at these stations were reached in the same week except at Yentina Staticn in 1981 when it occurred in the third week of July.

Based on fishwhee? catches, the majorty of the (second run) 1983 sockeye sabmon escapment migrated past Yentna Station (TRM OA) off the north bank

Figure 2-4-3. Minimum Susitna River sockeye salmon escapenents for 1981, 1982 and 1983. Adult. Anadromous Investigations. Su Hydro Studies. 1983.

Figure 2-4-4. Migrational timing of sockeye salmon based on fishwheel catches at selected locations on the Susitna River in 1981, 1982 and 1983. Adult Anadromous Investigations, Su Hydro Studies, 198.
and at Sunshine Station (RM 80) off the east bank. In 1981 and 1982, the same migration pattern was observed,

In 1983 (second run) sockeye salmon escapements reaching Yentna (TRM 04) and Sunshine (RM 80) stations were mainly ($64-68 \%$) four year old fish. In 1981 and 1983, the majority $(57-84 \%)$ of the returns were five years old. Nearly all the sockeye salmon adults sampled at Yentna and Sunshine stations in 1981 through 1983 had smolted in their second year of life.

In 1983, the male to female sex ratio of second run sockeye salmon sampled at Yentas Station (TRM 04) was $1.5: 1$ and at Sunshine Station (RM 80) 1.3:1. These ratios in 1981 and 1982 were $1.2: 1$ and 2.1:1, ano 1.0:1 and $0.9: 1$ respectively by the same station order.

In 1983 a study was initiated to evaluate Susitna River sockeye salmon fecundities. From 25 samples collected at Sunshine Station (RM 80) it was detemined that fecundities ranged from 2,950 to 4,790 eggs and averaged 3.450 eggs. It was also found that length and weight relationships to fecundity were 'good' as determined by correlation coefficients (r) of 0.73 and 0.78 , respectively.

4.2.2.2.2 Talkeerna to Upper Devil Canyon

Im 1983. escapenents of second run sockeye salmen were monitored in the Susitna River at Tapkeetna (RM 103) and Cury (RM 120) stations. The 1983 escapement to Talkeetna Station was an estmated 4,200 rish and to Cumy Station. 17 mtles further upstream, 1.900 fish (Table 2u4m.). These
escapements were lower than in 1981 but higher than the 1982 estimates (Figure 2-4-3). In 1981 and 1982, Talkeetna Station received 4,800 and 3,100 fish escapements respectively. At Curry Station the escapements were 2,800 and 1,300 fish, respectively.

In 1983, the (second run) sockeye salmon escapement to Talkeetna (RM 103) and Curry (RM 120) stations began earlier than in 1981 or 1982 (Figure 2-4-4). In all three years the migration midpoints at these stations occurred between the fourth week of July and the first week of August.

In 1983 the second run escapenent migrating past Talkeetna Station (RM 103) showed no particular preference to movement along the east or west banks at this location. In 1981 and 1982 , similar results were recorded with easc and West bank fishwheel catches in each year being about equal. Upstream at Curry Station (RM 120) the migration preference in 1983 was toward the east bank as in 1981 and 1982.

The 1983 escapements of second run fish to Takeetna (RM 103) and Curry (RM 120) stations were fish three, four, five and six years old. The majority (56-72 \%) of the fish sampled at these stations was four year olas. In 1981 and 1982 the majority $(32-71 \%)$ was five years oids. In all three years, 90 percent or more of the second run sockeyc samon sampled at Talkeetna and Curry stations were fish which had migrated to sea in therm second year of life.

Second run sockeye samon sampled for length in 1983 at rakeetna (PM 103) and Cury (RM 120) station averaged 510 m and 490 mer respectively. Ir 1981 and
-982, sockeye salmon lengths at these stations averaged about 50 mm longer due mainly to higher percentages of five year old fish than in 1983.

In 1983, sockeye salmon second run males were more abundant than females at Talkeetna (RN, 103) and Curry (RM 120) stations. The respective ratios were 1.6:1 an' 2.6:1. i. 1981 females were more numerous than males and in 198, males were more numerous at these stations. The male to female ratios at Talkeetna Station in 1981 was $0.6: 1$ and in 1982, 1.3:1. At Curry Station the respective ratios were $0.8: 1$ and 2.1:1.

Main channel spawning by second run sockeye salmon occurred in 1983 at a single location along the Susitna River west bank between RM 138.6 and 138.9. A total of 11 sockeye salmon were observed spawning at this location on September 15. No other spawning sites were found in 1983. Spawning was not documented in the Susitna River main channel in 1981 or 1982.

In 1983. stream habitats above RM 98.6 were not occupied by spaning sockeye salmon. The same occurred on 1981 and 1982.

Sockeye samon in 1983 were monitored for observation life at three slough habitats above Rh 98.6 . The results indicate male and female sockeye salmon averaged 11.8 days of observation time. Generally less observation time was recorded in sloughs where vistbility was restricted. A number of the sockeye salmon montored did not spawn in the slough of first recorded entry. Some spawned elsewhere including other slough habitats and others died from bear predation or stranding.

Gecmd run sockeye salmon occupied 11 slough habitats above RM 98.6 in 1983. They spawned in eight of these sloughs. In 1981, 12 sloughs were occupled and 9 or these were spawning areas. In 1982 the respective numbers where 10 and 8. Peak sockeye salmon counts in slough habitats in 1983 totaled 558 fish which was lower than the peak counts of 1,241 fish in 1981 and 607 fish in 1982. In all three years the majority of these fish were counted at Slough 11 (RM 135.3).

The total 1983 sockeye salmon escape"ent to slough habitats (above RM 98.6; was estimated at 1,600 fish using same year observation life and survey count data. The 1981 and 1982 respective escapements were 2,178 fish and 1,488 fish subject to the assumption that sockeye salmon averaged the same observation life in 1981 and 1982 as in 1983 (Appendix Tables 2-6-9 and $2-6-10 \%$

2.2.3 Pink Salmon

The minimum pink salmon escapenent to the Susitna River in 1983 was estmated to be approximately 101,000 fish. This minimum escapement represents the low escapenent year in a two year cycle, typloal of pink salmon, and can be Gompared to escapements in 1982 and 1981 of 891,000 and $86,0 n 0$, respectively (Table 2-4-2). Escapersnts are reported as minimum values because they are derived by the summation of Yentna (TRM 04) and Sunshine (RM 80) stathas ascapements and do not inclurd return to systens betweer fu 0 and Re 80 with the exception of the Ventna Riven (RM 28).

4.2.3.1 Intertidal to Talkeetna

The Yentna River (RM 28) escapement of pink salmon as defined by SSS located at Yenta Station (TRM 04) was 60,700 fish in 1983. This is approximately 1.7 times greater than the escapement of 36,100 fish in 1981. In 1982, the dominant year of the two year cycie, the escapement was 447,300 pink salmon. Sunshine Station (RM 120) recorded a escapement of approximately 40,600 pink salmon in 1983. This was less than the 1981 escapement of 49,500 fish in 1981 (Figure 2-4-5). The 1982 escapement was 443,200 pink salmon (Table $2-4-1)$.

The midpoint of the pink salmon migration at Yentna Station (TRM 04) was July 26 in 1983 Figure 2-4-6. This compares to dates of July 23 and July 10 in 1982 and 1981, respectively. At Sunshine Station (RM 80) the midpoint of migration was reached on July 30 in 1983 and shows little variance by somparison to August 3 and August 1 migration midpoints 1 a 1982 and 1981 . respectively. As illustrated in Figure $2-4-6$ the dominant year run of pink salmon in 1982, has much tighter migration tming constraints than eithem 1983 or 1981 at both Yentna and Sunshine stations.

Based on fishwael captures, pink salmon were more abundant along the north bank (59.4 percent) at Yentna Station (TRM 04) In 2983. This is contrary to 1982 and 1981 where 63.2 and 54.5 percent of the interceptions occured in the south bank fishwheel at this station. At Sunshine Station (R0 80) over 90 percont of the pink samon fishwheel ratch was recorded in the two east Sank fishwhels for ench of the three years the escapement was montored.

Figure 2-4.b. Minimum Sustha piver pink salmon escapenents for 1981, 1982 and 1983, Adult Anarromous Invertigations, Su Hydro Studies. 1983.

Figure 2-4-6. Migrational timing f pink salmon based on fishwheel catches at selected locations on the Susitha River in 1981, 1982 and 1983, Adult Anadromous Investigations, Su Hydro Studies, 1983.

Length (FL) measurements taken from pink salmon at Yentna Station in 1983 had mean values of 432 mm for males and 421 mm for females. These lengths vere noticeably smaller than the those recorded in 1981. In 1981 average lengths for males and females were 478 mm and 471 mm , respectively. At Sunshone Station (RM 80) males and females averaged 435 mm and 423 mm , respectively in 1983. These average lengths are similar to those recorded in 1982, 441 mm and 423 m for males and females and smailer than 1981 fish which recorded average lengths of 445 mm and 449 mm for males and females, respectively.

The male to female sex ratio of pink salmon sampled at Yentna Station (TRM 04) in 1983 was 0.9:1. This is similar to the values recorded in 1982 and 1981 which were $0.8: 1$ and $1.0: 1$, respectively. For pink salmon sampled at Sunshine Station (RM 80) the male to female sex ratio was $1.0: 1,1.8: 1$ and 0.8:1 in 1983, 1982 and 1981, respectively.

Fecundity studies were conducted in 1983 only. From the 22 samples collected at Sunshine Station (RM 80) it was determined that pink salmon fecundities ranged from 1,125 to 1.975 and averaged 1,475 eggs per female. It was also concluded that the correlation between length and fecundity and weight and fec indity was excellent as indicated by correlation coefficients (r) of 0.97 and 0.87 , respectively.

4.2.3.2 Talkeema to Upper Devir Canyon

The 1983 pink salmon escapement to Talkeetna Station (RM 103) was approximately 9,500 fish. in 1981 and 1982 the escapements were approximated to be 2,300 and 73,000 pink salmon, rescectively. The escapement of pink

Salmon to Curry Station (RM 120) was estimated to be 5,500 fish in 1983. This compares to values of 1,000 and 58,800 in 1981 and 1982 (Table 2-4-1 and Figure 2-4-5).

The pink salmon migrational midpoint in 1983 as determined fron fishwheel catches occurred on July 30 at Talkeetna Station (RM 103). This is approximately one weak earlier than the midpoint of August 6 recorded in both 1981 and 1982. This pattern is repeated at Curry Station (RM 120) where the 1983 pink salmon migration midpoint of August 1 is approximately one week earlier than the midpoints recorded in 1981 and 1982 (Figure 2-4-6).

In 1983, based on tag recapture information, pink salmon required an average of 3.9 days to travel the 23 mile distance between Sunshine ($R M 80$) and Talkeetna (RM 103) stations. This compares to average times of 2.6 days and 7.4 days recorded in 1981 and 1982, respectively. The distance of 17 miles between Talkeetna and Curry (RM 120) stations was travelled in an average of 7.1 days in 1983, 10.0 days in 1982 and 6.0 days in 1981. The longer time required to migrate between Sunshine and Talkeetna stations and Talkeetna and Curry stations in 1982 may be attributed to between year differences in water temperature or water velocity or a combination of both.

Pink salmon measured for length (FL) at alkeetna (R1 103) and Cutry (Pan 120) stations in 1983 averaged 427 mind 425 mm , respectively. These are simitro to pink samon lengths collected in 1981 and 1982. Mean lengths for malos and temales were witmin eight mon of ach other for the pink salmor sample measured in 1981. 1982 and 1983.

The male to female ratio of pink salmon sampled at Talkeetna Station (RN 103) was 0.8:1 in 1983. In 1981 and 1982 nowever, males were equally or more abundant than females as evidenced by ratios of $1.2: 1$ and $1.0: 1$, respectively. At Curry Station (RM 120), the male pink salmon were as equally abundant as females in 1983 with a male to female sex ratio of $1.0: 1$. Comparatively, in 1981, males were less abundant than females by a ratio of $0.8: 1$ and in 1982 males were more numerous than females by a ratio of $2.5: 1$.

In 1983, 14 pink salmon were observed in slough habitats. All of these were considered milling not spawning fish. In 1982 however, an estimated 297 pink salmon spawned in slough habitats. The majority of these spawned in slough 11 (RM 135.3) (57.2 percent) and Slough 20 (RM 140.0) (25.2 percent). In 1981 an estimated 38 pink salmon spawned in slough 8 (RM 113.7). This represents the entire pink samon escapement to slough habitats in 198 . (Appendix Table 2-G-11).

Streams tributary to the Susitna River between RM 98.6 and 161.0 supported the majority of the pink salmon spawning in this river reach in 1983 and also in 1981 and 1982. For comparative purposes the peat pink salmon survey counts for all streams ware totalled and a streans relative importance was ranked by the percent contribution to this total. In 1983 this total was 1,329 pink salmon and the majority (88. I percenc) of these fish were observed in Indian River (R_{m} 138.6) and Portage Creek (RM I- 5.91 . Comparatively. in 1982 this total was considerably larger at 2.855 pink salmon. A total of 378 pink salmon were observed durng peak surveys in 1981 and only Chase Creek (RM 106.9) and Lane Creek comprised mere than ten percent of the total years peak survay counts. Three streams providod more than ten percent of ins
total in 1982 and they were: 1) Indian River (25.9%, 2) Fourth of July Creek (RM 131.1) (24.6\%) and 3) Lane Creek (RM 113.6) (22.4\%).

Peak of pink salmon spawning in streams based on survey counts occurred from the first to the third week of August in 1983, third to fourth week of August in 1981 and from the second to third week of August in 1982.

4.2.4 Chum Salmon

In 1983, chum salmon escapement to the Susitna River drainage was a minimum 277,000 fish (Table 2-3-2). Not included in this estimation were escapements to Susitna River tributaries below RM 80 with exception of the Yentna River (RM 28). Compared to 1981 and 1982 escapements of 283,000 and 458,000 fish respectively, the 1983 escapement was the lowest of the last three years.

4.2.4.1 Intertidal to Talkeetna

Chum salmon escapement estimates for 1983 were obtained for the Yentna River (RM 28) at Yentna Station (TRM 04) and Susitna River at Sunshine Station (18 80). The (1983) escapement returns to Ventna and Sunshine stations were an estimated 10,900 and 266,000 fish respectively (Table 2-4-1). As indicated by these numbers the Yentn River supported about four percent of the combred estimated escapenent 10 the two stetions.

The Yentha River ($\mathrm{R}_{\mathrm{i}} 28$) received a substantially smaller return of chum salmon in 102: Than in the two previous yaars. The Yentna Statun estimate In 1983 a00ut 45 percent less than the 1981 escapement of 19,800 fist and 60
percent less than the 1982 escapement of 27,800 fish. The Susitna River at Sunshine Station (RM 80) supported a 1983 escapement nearly identical to the 1981 escapement of 262,900 fish and about 60 percent of the 1982 escapement level of $430,400 \mathrm{fish}$ (Figure 2-4-7).

The 1981 through 1983 timings of the chum salmon migrations into the Yentna River (RM 28) at Yentna Station (TRM 04) and Susitna River at Sunshine Station (RM 80) are illustrated in Figure 2-4-8. The chum escapement returns to Yentna and Sunshine stations generally peaked earlier in 1983 than in 1981 or 1982 as detemined from fishwheel catches.

In 1983 a binodal chum salmon migration was recorded at both Yentena (TRM 04) and Sunshine (MM 80) stations. Two factors attributed to this event. The first was additional fishing time in the cook Inlet drift net fishery which resulted in seasonally 'high' catches. The second was 'high' flow events in the Yentna (RM 28) and Susitna rivers which caused a temporary migration delay.

The chum salmon escapement to Yentna Station (TRM 04) in 1983 exhibited no particular preference to migration along the north or south bank as indicated by station fishwheel catches. In 1981 and 1982 the majority of the escapement migrated off the north bank based on the catches.

In 1983 five year old fish were dommate (51-582) followed by four, three and six year old fish of the chum samon retums to Ventna (TRM 04) and Sumshine ($\mathrm{R}_{\mathrm{H}} 80$) stations. In 1981 ano 1982 four year fish were dominate (84-91\%) at these stations followed by five and thres year old fish.

Figure 2-4-7. Minimum Susitha River chum salwon escapements for 1981. 1982 and 1983. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Figure 2-4-8. Migrational timing of chum salmon based on fishwheel catches at selected locations on the Susitna River in 1981, 1982 and 1983. Adult Anadromous Investigations, Su Hydro Studies, 1983.

Sex composition sampling of the 1983 chum salmon escapement at Yentna (TRM O4) ano Sunshine (RM 80) stacions provided male to female ratios of 1.3:1 and $1.0: 1$ respectively. In 1982 the sex ratios were identical to those recorded in 1983 at these stations. In 1981, the respective ratios were 1.0:1 and 0.8:1 at Yentna and Smshine stations.

Specific infomation regarding Susitna River chum salmon fecundities were collected in 1483 only. The data collected from ε chum salmon samples at Sunshine Station (RM 80) provided the following information: 1) the average female chum salmon contained approximately 3,200 eggs, 2) fecundities ranged from 2,475 to 4,075 eggs and 3) length and weight were both 'highly' correlated to fecundity.

4.2.4.2 Talkeetna to Upper Devil Canyon

Escapenent retums of chum salmon in 1981, 1982 and 1983 were monitored at Susitna River main mannel locations Talkeetna (RM 103) and Curry (RM 120) stations (Table 2-4-1). The 1983 escapement to Talkeetna Station was approximately 50,400 fish and to Curry Station, 21,100 fish. Talkeetr.z Station sustained approximately a three percent higher escapement retum in 1983 than in 1982 of 49,100 fish ano a 140 percent higher retum than in 1981 of 20,800 fish upstraam at Curry Statien the 1983 escapement was about 00 percent lower than the 1982 : Furn of 29,40 fish and 00 percent higher than the 1981 ? etum of 13,100 fich (Figure 2-4 -7).

In 1933 he chum salmon migrathon hegan earlier at Talkeetna (rm 103) and Cury (nan 120) stathors than in 1981 or 1982 (figume 2-4.8). Cum samom
were generally abundant at both main channel stations in 1981, 1982 and 1983 during the month of Rugust.

Based on fishwheal catches chum salmon migrated in higher numbers along the west side of the Susitna River at Talkeetna Station (RM 103) than along the east side in 1983. At Curry Station (RM 120) most of the escapenent migrated along the east side of river at this location than off the west side. The same trend occurred in 1981 and 1982 at both stations.

In 1983 the escapement returns of chum salmon to Talkeetna (RM 103) and Curry (RM 120) stations were mainly five year old fish (69.72%) compared in 1981 and 1982 to four year old fish $(84-87 \%)$.

Chum salmon were measured for length at Talkeetna (RM 103) and Curry (RM 120) stations in 1981, 1982 and 1983. The lengths, generally averaged around 600 mm at the two stations in all three years.

In 1983 chum salmon males wera more numerous than females at Talkeetna (RM 103) and Curry (RM 120) stations. The same was found ir 1981 and 1982 at both stations. The male to female sex ratios at Talkeetna station were $1.3: 1$, 1.9:1 and $1.5: 1$ in 1981, 1982 and 1983 respectively. At Curry Station the respective ratios were 1.1:1.1.1:1 and 1.9:1.

Main chanel spawning by chum salmon was found in six areas of the Susitna River in 1983. The locations were distributed between RM115.0 and 138.9 . in 1981. there were four areas fdentified between 1 M 129.2 and 135.2, and in

1982 nine locations were found between RM 114.4 and 148.2. Main channel spawning occurred in the month of September in all three years.

Chum salmon spawned in seven stream habitats above RM 98.6 in 1983. The highest numbers of fish were recorded at Indian River (RM 138.6). In 1981 and 1982 both, eight stream habitats served as chum salmon spawning habitats. The highest escapement counts were again recorded at Indian River in 1981 and 1982. The peak chum salmon escapement count for all stream habitats in 1981, 1982 and 1983 was $245,1,748$ and 1,411 fish respectively.

Peak of chum salmon spawning occurred in stream habitats above RM 98.6 during the third and fourth weeks of August in 1983. In 1981 the peak occurred betweer the second week of August to the sccond week of September and in 1982, during the last week of August and the first week of September.

In 1983 chum saimon were monitored for observation life at five slough habitats above RM 98.6. The mean average observation life of chum salmon occupying these slough habitats was 6.9 days. Less observation time per fish was recorded in the study sloughs where visibility was poorest. The restricted visibility periods were directiy related to 'hi flows in the Sustina River. Not all of the chum montored for observation `fe in 1983 spawned in the slough of first reccrded entry. For example a number of chum salmon which entered Moose Slough (RM 123.5) were later found spawning in other slough habitats.

Upstream of pM 98.6 chum samon maimly used slough habitats for spawning in 1983. Twenty three sloughs were occupied by chum samon 171983 and 18 of
these were used for spawning. In 1981, 20 sloughs were occupied by chun salmon and in 1982, 17 sloughs were entered. The larged numbers of chum salmon spawners were recorded at sloughs 11 (RM 135.3) and 21 (RM 144.1) in 1983. In 1981 these sloughs were 8A (RM 125.1) and 11, and for 1982 sloughs 21 and 11. The peak salmon escapement count for all sloughs habitats surveyed above RM 98.6 in 1983 was 1,467 fish. This compares to 2,596 fish in 1981 and 2,244 fish in 1982.

The 1983 chum salmon escapenent to slough habitats (above RM 98.6) was an estimated 3,000 fish calculated from same year observation life and survey count data. The 1981 escapement to slough habitats was about 4,500 fish and for 1982, approximately 5,100 fish based on the assumpton that chum salmon had the same average observation life in those years as recorded in 1983. (Appendix Tables 2-G-12 and 2-G-13).

4.2.5 Coho Salmon

The minimum coho salmon escapement into the Susitna River basin was 24,000 fish in 1983. In 1981 and 1982 the minimum escapenents were 37,000 and 80,000 coho salmon, respectively. These escapements are considered minimum values because they do not include returns to systems between RM 0 and 80 with the exception of the Yentna River (RM 28) (Table 2-4-2).

4.2.5.1 Intertidal to Talkeetna

The 1983 escapement to Yentna Station (TRM 04) was 8,900 coho salmon the smal"est for the three year data base. The 1981 coho salmon escapement of

17,000 was one half of the 34,000 coho salmon escapement recorded in 1982. The number of tho salmon migrating to Sunshine Station (RM 80) was estimated to be $15,200 \mathrm{Tlsh}$ in 1983 again, the smallest escapement compared to 1981 and 1982 values of 19,800 and 45,700 fish, respectively (Table $2-4-1$ and Figure $2-4-9)$.

The coho salmon migration in 1983 reached a midpoint on July 27 at Yentna Station (TRM 04) based on fishwheel catches. This is four days earlier than the July 31 migration midpoint in 1981 and 6 days earlier than the 1982 migration midpoint of August 2. At Sunshine Station (RM 80) the August 5 coho salmon migrational midpoint in 1983 was also the earliest recorded for the three year period. In 1981 this date was August 12 and in 1982 August 20 (Figure 2-4-10).

The majority of the 1983 coho salmon escapement sampled at Yentna Station (TPM 04), 79.1 percent, were age class 43 fish. This was also true in 1981 and 1982 when 82.9 and 66.8 percent of the sample, respectively were age class 4_{3} fish. Age class 3_{2} coho salmon accounted for all but a few percent of the remaining coho salmon sampled for age 1983 and also in 1981 and 1982. Coho salmon sampled for age at Sunshine Station (RM 80) were also predominanty (63.1\%) age class 43 in 1983. Again, this is alsa the case in 1981 and 1982 when 65.1 and 50.1 percent of the sample were age class 4_{3} fish.

Lenths of age class 43 coho salmon, the predominant age class. collected at Yentna Station (TRM 04) in 1983 averaged 543 mm for males and 538 mm for fendes. In 1981, male coho salmon sampled at this station were smaller

Figure 2-4-9. Minimum Susitna River coho salmon escapenents for 1981. 1982 and 1983. Adult Anadronous Investigations. Su Hydro Studies. 1983.

Figure 2-4-10. Migrational timing of coho salmon based on fishwheel catches at selected locations on the Susitha River in 1981, 1982 and 1983, Adult Pnadromous Investigations, Su Hydre Studies, 1983.
averaging 541 mm and females were larger averaging 540 mm in length. Those fish sampled in 1983 were smaller than the coho salmon measured in 1982 when the average size for males and females was 549 mm and 544 mm , respectively. At Sunshine Station (RM 80) age class ${ }^{4} 3$ coho salmon averaged 539 mm and 540 mm for males and females, respectively. The 1983 coho salmon sampled for length were smaller than those sampled in both 1981 and 1982 when males and females averaged 541 mm and 542 mm and 564 and 551 mm in length respectively.

The overall male to female sex ratio was 2.3:1 at Yentna Station (TRM 04) in 1983. There was fever males present in 1981 when the sex ratio was 0.9:1 and males were more numerous in 1982 by a sex ratio of 2.3:1. Males were more abundant than females at Sunshine Station (RM 80; in 1983 by an overail sex ratio of 1.2:1. This was also the pattern exhibited in 1981 and 1982 when the sex ratios were $1.2: 1$ and $1.4: 1$, respectively.

4.2.5.2 Talkeetna to Upper Devil Canyon

The coho salmon escapement to Talkeetna Station (RM 103) in 1983 was estimated to be 2,400 fish. This was the lowest escapement recorded for the three year period the escapement was monitored. The escapement in 1981 was 3,300 coho salmon and in 1982 approximately 5,100 fish. The 1983 escapement of coho salmon to Curry Station (RM 120) was approximately 800 fish. This compares to 1981 and 1982 escapements of 1,100 and 2,400 , respectively (Table 2-4-1 and Figure 2-4-9).

The coho salmon migration at Talkeetna station (RM 103) began on July 30 in 1983. This is one week carlier than the approximate August beginming date
in both 1981 and 1982. The migration reached a median approximately the same time. August 12. in both 1983 and 1982. In 1981 this poirt was reached about two weeks later. August 26. At Curry Station (RM 120) the coho salmon migration began and reached a midpoint earlier in each successive year as depicted in Figure $2-4-10$.

Coho salmon migrational rates were slower in 1983 than 1981 and 1982. The rate of travel between Sunshine (RM 80) and Talkeetna (RM 103) was 1.4 mpd in 1983 compared to rates of 4.0 and 5.3 mpd in 1981 and 1982, respectively. This was also true for the coho salmon migrational rate between Talkeetna and Curry (RM 120) stations. In 1983 this distance was travelled at a rate of 5.7 mpd . In 1981 and 1982 the rates were 11.3 and 10.0 mpd , respectively.

From a sample of the escapement passing Talkeetna Station (RM 103) in 1983 it was determined that age class 4_{3} fish represented the largest portion of those fish sampled, 60.2 percent. This compares with 84.8 percent age 4_{3} fish in 1981 and 41.0 percent in 1982. Age class 3_{2} coho salmon were the dominant age class in 1982 when they totalled 59.0 percent of the sample. The Curry Station (RM 120) escapement of coho salmon generally were similar in age class composition to those sampled at Talkeetna Station. In 1983, age class 4_{3} fish comprised 53.2 percent of the sample compared to 68.8 and 46.0 percents in 1981 and 1982, respectively. Agaim, age class 3_{2} coho salmon were the dominant age class in 1982 representing 54.0 percent of those fish sampled.

In 1983, coho salmon sampled at Talkeetna (RM 103) and Curry (RM 120) stations averaged 528 mund 522 mm for all fish sampled, respectively. From
the samples collected at these stations in 1981 and 1982 and compared to 1983 information the most noticeable deviation occurs in 1982 when age class 3_{2} coho salmon ranged from 30 to 50 mm larger than the age class 3_{2} fish sampled in 1983 and 1981.

The overall coho salmon male to female sex ratio at Talkeetna Station (RM 103) in 1983 was 1.7:1. This cor ares to ratios of $1.5: 1$ and $1.5: 1$ in 1981 and 198\%, respectively. At Curry Station (RM 120) the overall male to female sex ratio in 1983 was $2.0: 1$ and compares to ratios of 2.0 .1 and $1.3: 1$ in 1981 and 1982, respectively. Generally, males were more abundant than females at these sampling sites for the three years the escapement was sampled.

One main channel coho salmon spawning site was located in 1983. This site was found at IM 131.1 approximately 150 yards above the confluence of Fourth of July Creek. No main channel spawning sites were located in 1982 while in 1981 a single spawning site was identified at Rm129.2.

There was no coho salmon spawning activity reported in slough habitats in 1983 or 1981. The only documented coho salmon spawning slough habitats occurred in 1982 when spawning activity was observed in Slough 8A (RM 125.1).

Coho salmon migrating to the Upper Susitna fiver (RM 98.7.161.0) are mimarily stream spawners. Peak stream survey counts represent only a portion of the escapenent for that stream and are used as a index of relative abundance and not an indication of total stream escapement.

For comparative purposes peak stream survey counts were totalled for all streams and the percent contribution of each stream to this totel was used to rank that streams relative importance for each year surveys were conducted. From this in 1983, a low escapement year, only two streams contributed more than ten percent to the total pazk stream survey counts. These tributarits were Whiskers Creek (RM 101.4) and Indian River (RM 138.6). This compares to 1981 and 1982 peak stream survey counts where five streams in each of the two years comprised more than ten percent of the total peak survey counts.

Peak coho salmon spawning in streams, based on survey counts, occurred from the first week of September to the first week of October in 1983 and comparatively, during the second and third week of September in 1981 and from the sccond week of September to the first week of October in 1982.

4.3 Bering Cisco

Bering cisco were not specifically sampled in 1983, although imformation obtained incidental to other fishery studies were recorded. Bering cisco were initially documented to occur in the Susina River during August of 1981. The escapement was monitored for migrational timing, relative abundance and population meristic information at susitna (RM 26), Ventna (TRM C4). Sunshine (RM 80) and Talkeetna (RM 103) in 1981 and 1982. Bering cisco were not known to occur above RM 103, approximately in either of these years.

In 1981. concurrent to main channel sampling Bering cisco were tagged. The taging program was suspended in 1982 although main channel spawning studies were contimued.

Probable successive vear spawning in Susitna River Bering cisco stocks was reported in the Phase II, ADF\&G/Su Hydro Adult Anadromous Report, 1982 (ADF\&G, 1982). This prowalility is further supported by the recapture of a Beriny cisco in Lower Cook Inlet in August of 1983 which had been initially tagged at RM 77.0 on October 5, 1981. This individual was caught in August of 1983. A necropsy of the specimen revealed that it was a gravid female. Scale analysis indicated the age of this individual was 5_{1}. The possibility exists that this female Bering cisco spawned as many as two times and was prepared to spawn again in 1983.

The known distribution of Bering cisco in the Susitna River was also extended in 1983. A single Bering cisco was captured at 4th of July Creek (RM 131.0) on October 6 redefining the upper limit of this species in tne Susitna River. The previous known upper limit of the Bering cisco range was RM 101.9 based on a single capture here in 1982.

REFERENCES

Aleska Department of Fish and Game. 1981. Adult anadromous fisheries project, phase I final draft report: Alaska Department of Fish and Game Su Hydro Aquatic Studies Program, Anchorage, Alaska, USA.

- 1982. Adult anadromous fish studies, volume 2 of phase If final data report. Alaska Department of Fish and Game Su Hydro Aquatic Studies Program, Anchorage, Alaska, USA.

Barrett. B. M. 1974. An assessment of the anadromous fish populations in the upper Susitna River watershed between Devil Canyon and the Chulitna River. Alaska Department of Fish and Game, Division of Conmercial Fisheries, Anchorage, Alaska, USA.

Bendix Corporation. 1980. Installation and operation manual side scan sonar counter (1980 Mode1). Report NO. SP-78-017, North Hollywood, Californias. USA.

Clutter, R. I and L. E. Whitesel. 1956. Collection and interprestion of sockeye samon scales. Bull. Int. Pac. Salmon Fish. Com. . No. 9.

Cousens, M. B. F., G.A. Thomas. C. G. Swam, and M. C. Healey. 1982. A review of salmon escapement estimation techniques. Canadian Technical Report of Fisheries and Aquatic Sciences, No. 1108 , Manamo, Bristish Columbia. Canada.

Daniel. W. W. 1978. Applied nonparametric statistics. Houghton Miffim Company, Boston, Massachusetts, USA.

Dixon, H. J. and R. J. Massey. 1969. Introduction to statistical analysis. McGray-Hill. New York, New York, USA.

Franzel, J. and K. A. Nelson. 1981. Stikine River eulachon (Thaleichthys pacificus). U.S. Forest Service Report, Petersburg Ranger District, Petersburg, Alaska, USA.

Lagler, K. F. and J. E. Bardach and R. R. Miller. 1962. Ichthyology. John Wiley and Sons, Inc. New York, New York, USA.

McPhail, J. D. and C. C. Lindsey. 1970. Freshwater fishes of morthwestern Camada and Alaska. Fisheries Research Board of. Canada. Bulletin 173. Ottawa, Canada.

Morrow, J. E. 1980. The freshwater fishes of Alaska. Alaska Northwest Pubilishing Company, Anchorage, Alaska, USA.

Neilson, J. D. and G.H. Geen. 1981. Enumeration of spawning salmon from spamer residence time and aerial counts. Transactions of the Anerican Fisherfes Socicty 110:554.556.

Ruesch. P. 1983. Personal Communication. Alaska Deparment of Pish and Came, Division of Commercial Pisheries. Soldotna. Alaska. USA.

Smith, W. E. and R. W. Scalfeld. 1955. Studies on Columbia River smelt Thaleichthys pacifirus (Richardson). Fisheries Research Papers, Washington Deparment of Fisheries, 1(2):2-26.

Tarbox, K. 1983. Personal Communication. Alaska Department of Fish and Game, Commercial Pisheries, Soldotna, Alaska, USA.

Thompson. F.M. and B. M. Barrett. 1983. Analysis of the species selectivity of fishwheels for the capture of adult saimon in the Susitna River In Synopsis of the 1982 aquatic studies and analysis of fish and habitat relationships. Alaska Deparment of Fish and Game Su Hydro Aquatic Studies Program, Anchorage, Alaska, USA.

[^0]: 1／First migration samples collected from $5 / 10-5 / 17$ for prewspawners， $5 / 10-5 / 22$ for spawners and $5 / 10-5 / 23$ frem post－spawners．
 2 Second migration samples collected from $5 / 18-6 / 6$ for presspaners， $5 / 23-6 / 6$ for spanners and $5 / 24-6 / 6$ for post．spamers．

[^1]: 1
 Comporite if alt aged and non-aged anlachon.

[^2]: $\Delta \quad$ \& $\quad=$ Rver Mne

[^3]: 1

[^4]: a/ No cotal count due to high turbid water
 Not counted
 Poor counting conditions
 Counts conducted after peak spawning
 Esthnted peak spawning count

[^5]: Peak chum salmon ground and hellcopter survey counts of (a) Indian River and (b) Portage Creek, Adult Anadromous Investigations, Su Hydro Studies, 1983.
 $\cdot 08-6-2 \quad 246415$

[^6]: I/ $R M=$ River Mile

