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ABSTRACT

During the three years of study of juvenile salmon outmigration from the
middle reach of the Susitna River, a correspondence has been noted
between the peaks of river discharge and the peaks of outmigration.
Further investigation of the relationship of outmigration to discharge
was required because two Targe hydroelectric dams have been proposed for
a region above the salmon rearing areas. These dams will markedly
change the downstream discharge and turbidity regimes, factors which
influence not only salmon outmigration, but almost all fish species and
1ife stages including juvenile salmon rearing. Box-Jenkins models were
developed for the 1983 and 1984 time series of river discharge, tur-
bidity, and chinook and sockeye salmon fry outmigration rates in order
to better understand the forces that shape the series and to statis-
tically describe the natural conditions as a baseline against which
future changes can be measured. The time series examined were described
by relatively simple models, using mostiy first-order autoregressive
terms. About 85% of the variance in turbidity for one day was explained
by the value for turbidity of the previous day. This figure was 44% for
chinook salmon outmigration and 43% for sockeye salmon outmigration, the
lower numbers - indicating the effect of behavioral decisions on bijo-
logical time series. Although the form of the time series plots of
discharge and chinook salmon outmigration was different between the two
years, the underlying stochastic processes which generated these series
were the same. Bivariate transfer function models were constructed for
turbidity and salmon outmigration rates which explain present values of
these variables in terms of their own past values as well as past values
of discharge.
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1.0 INTRODUCTION

While examining the plots of daily catch rate of outmigrating juvenile
- salmon at the Talkeetna Station outmigrant traps, an apparent correspon-
dence was noted between the peaks of the time series of mean daily
discharge and the time series of salmon outmigration {Hale 1983; Roth et
al. 1984). Correlation analysis showed that there was a relatively
strong relationship between discharge and the outmigration rates of
various species/age classes of salmon during certain periods of time.
The term outmigration rate is used here to mean the number of outmi-
grating fry captured at the traps per hour, not the distance travelled
per hour. This relationship is not simply a matter of a greater volume
of water being fished at higher discharges. The correlations of catch
rate of age O+ salmon with water velocity at the mouths of the traps
were not significantly different from zero (Roth et al. 1984, Appendix
A), There was in fact a greater number of fry per unit volume of water
at high levels of discharge than at low levels.

A correspondence between discharge rate and salmonid outmigration has
also been reported by other investigators (Cederholm and Scarlett 1982 -
coho salmon; Congleton et al. 1982 - chum and chinook salmon; Godin
1982; Grau 1982; Solomon 1982b). The selective advantages of this
behavior, according to Solomon (1982b), include easier passage over long
distances or shallow areas and protection from predators provided by
increased turbidity and by the large numbers resulting from a coor-
dinated mass migration in response to an environmental cue.

There are probably two mechanisms which account for this relationship in
the Susitna River. One 1is that the fish, which have gradually become
physiologically ready for outmigration by growth and in response to
photoperiod and temperature, are stimulated by a rise in mainstem
discharge to begin that outmigration (Grau 1982). The second mechanism
is that high flows physically displace the fish downstream. This latter
mechanism may frequently occur for fry rearing in side sloughs, particu-
larly for chum salmon (Oncorhynchus keta) and sockeye salmon (0. nerka).
The natal sloughs for many chum and sockeye salmon have berms at the
heads which prevent water from the mainstem from entering the site at
Tow levels of discharge. When high flows occur, the slough heads are
overtopped and the fry which had been rearing in low velocity water are
subjected to a strong current.

Because two large hydroelectric dams have been proposed for the Susitna
River in an area upstream of the rearing areas of the juvenile salmon
(Fig. 1), and because these dams would markedly alter the natural dis-
charge and turbidity regimes, it is necessary to quantify the relation-
ship between the discharge and turbidity regimes and the outmigration
patterns of the juvenile salmon. After the dams begin operation, the
annual patterns of river discharge and turbidity Tevel would be smoothed
- both would be lower than normal in the summer and higher than normal
in the winter. Also, the high frequency {daily) oscillations of these
two time series would be dampened; there would be less day to day
variation.
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There are many factors other than discharge and turbidity which affect
the outmigration timing of juvenile salmon including time of year, size
of fish, photoperiod, 1ight intensity, and temperature (Brannon and Salo
1982); however, discharge and turbidity bear further investigation
because of the changes in these two variables which would be caused by
the proposed dams. Changes in river flow can affect the survival rate
of young salmon (Stevens and Miller 1983). Potential negative effects
of an altered flow regime include accelerated or delayed timing of
outmigrations. Changes in outmigration timing may place the fish in
their rearing areas at an unfavorable time from the standpoint of food
supply, which could cause reduced survival (Hartman et al. 1967). Lower
discharge levels can result in a shorter distance covered per day
(Raymond 1968). Decreasing mainstem flows can lead to stranding of fish
in pools which have been isolated from the mainstem (Solomon 1982a).
Lower flows and clearer water than normal may also result in increased
predation (Stevens and Miller 1983).

Turbidity level in the Susitna River probably does not have much direct
effect on the daily number of fry which outmigrate or on the initiation
of outmigration. In clear water streams, however, an 1increase in
turbidity level can directly increase the number of outmigrating salmon
by providing cover from predators (Solomon 1982b). Turbidity level in
the Susitna River does change outmigration timing because fry in turbid
water outmigrate during the day as well as during the night (Godin 1982;
Roth et al. 1984). Clearing of the water could force the fry to shift
to a nocturnal outmigration to avoid predators. However, this would be
of marginal benefit for fry during the continuous daylight in June and
July at 63° N latitude.

To avoid or alleviate the above problems, it is necessary to understand
the mechanisms producing the present discharge, turbidity, and outmi-
gration regimes. Knowledge of the discharge-outmigration relationships
will be useful in trying to establish a post-project flow regime which
will not interfere with the natural outmigration timing.

Also, because discharge and turbidity level are important variables
affecting salmon 1ife stages other than the outmigration phase as well
as other species, it is necessary to statistically describe the natural
discharge and turbidity regimes as a baseline against which future
changes in these variables can be measured. Turbidity provides cover
for salmon fry {Suchanek et al. 1984; Part 2 of this report) but also
decreases primary production and affects the feeding, movement, and
distribution of many of the fish species present in the river. Turbi-
dity level after the dams begin operation will not only be influenced by
a changed discharge regime, but will also be directly changed by the
dams because settling of suspended sediment in the reservoir will create
a turbidity regime substantially different from the present regime.
Turbidity was included as a variable of interest in this paper more
because of its effect on other life stages and spec1es than because of
its effect on salmon outmigration.

Further, discharge is the major variable in the extensive instream flow
habitat mode11ng effort which has been conducted in the Susitna River;
turbidity is also an important factor (Hale et al. 1984; Suchanek et al.



1984; Part 2 of this report). The current discharge and turbidity
regimes that are driving these habitat models must be accurately
described so that the models can be put into a proper perspective.

1.1 Time Series Analysis

The statistical methods collectively known as time series analysis. are a
logical choice for analyzing the natural discharge, turbidity, and
outmigration regimes. A time series is a collection of observations
ordered 1in time such as daily water temperature measurements. Time
series analysis includes frequency domain (spectral analysis) and time
domain problems. Spectral analysis is concerned with transforming a
time series with a Fourier transform to a sum of sines and cosines (see
Priestley 1981) and is appropriate with periodic series such as the
classical example of the Canada 1lynx/snowshoe hare ten year cycle
(Bulmer 1978}. Methods for time domain problems (or Box-Jenkins models)
are referred to as ARIMA (autoregressive, integrated, moving average)
models (Box and Jenkins 1976). ARIMA models have been used extensively
in economic forecasting (Nelson 1973; Granger and Newbold 1977).

Time series are shaped by both deterministic and stochastic (random)
events. The series has a "memory" of the random events (or "shocks")
operating on the series, that is, the effect of these disturbances may
be apparent for several time units after the event occurred. One aspect
of time series analysis consists of removing deterministic trends from a
time series so that the values fluctuate around a mean level. A trans-
formation may be necessary to ensure a constant variance. The random
processes that generated the observed series can then be mathematically
defined. The residuals left over after this model is fitted should be
"white noise" {completely random) if the model is adequate.

Time series can be passed through a mathematical filter which changes
the form of the input series. A "low pass filter" dampens high frequency
perturbations and allows Tow frequency perturbations to pass unchanged.
This is useful in smoothing noisy time series so that the basic pattern
may be more readily observed. High pass filters are used when it is
desirable to remove obvious {low frequency) trends in order to focus on
the high frequency events.

Box-Jenkins models can be constructed using only the information con-
tained in the time series itself. For example, although the discharge
time series results from several independent variables including rain-
fall, air temperature, and solar insolation on the glaciers, it is not
necessary to quantify these inputs in order to model the output (dis-
charge). Information on the effects of all the inputs is already
contained in the past history of the discharge record. However, infor-
mation on the input series can be used in a transfer function model to
obtain an equation with more predictive power. This is a model where an
output series is a function of one or more independent input series as
well as its own past history.

An observed series is one realization of all possible time series which
could have been generated from a random process. Time series analysis
examines the nature of the probablistic process that generated the



observed series. The model should have similar properties to the
generating mechanisms of the stochastic process (Granger and Newbold
1977). Then, one can form summary statistics about the series and make
inferences about the nature of the stochastic process. After a model
has been developed, it can be used to test some hypothesis about the
generating mechanism of the time series, to forecast future values of
the series, or to make decisions on how to control future values of the
series (Granger and Newbold 1977).

1.2 Applications of Time Series Analysis

Time series analysis has been extensively used in examining physical
data, particularly in oceanography. Salas and Smith {1981) demonstrated
that ARIMA models can be used to model the time series of annual flows
in streams. Srikanthan et al. (1983) analyzed the time series of annual
flows in 156 streams in Australia. Time series models have also been
used to examine the effect of the Aswan dam on the discharge of the Nile
River and the effect of a hydroelectric dam on the discharge regime of
the Saskatchewan River (Hipel et al. 1978).

Time series analysis methods have been also been used in examining time
series of abundance and catch in marine fisheries (Van Winkle et al.
1979; Botsford et al. 1982; Peterman and Wong 1984; and Taylor and
Prochaska 1984). These methods have been used by Saila et al. 1980,

Mendelssohn 1981, Stocker and Hilborn (1981), Kirkley et al. (1982), and

Jensen (1985) for forecasting future abundance or catch of marine fish
stocks. Mendelssohn (1981) used transfer function models in addition to
univariate Box-Jenkins modeis to forecast fish catch. Botsford et al.
(1982) focused on searching for causal mechanisms of observed cycles in
salmon fisheries in California rather than - on defining models for the
fisheries.

Applications to freshwater fish ecology problems are much more limited.
Saila et al. (1972) used time series methods to cross correlate upstream
migration activity of the alewife to solar radiation and water tempera-
ture. O'Heeron and Ellis (1975) considered a time series model for
judging the effects of reservoir management on fish. Applications of
spectral analysis to ecological problems have been reviewed by Platt and
Denman (1975) and time series analysis in ecology was the subject of a

" symposium proceedings edited by Shugart (1978).

1.3 Objectives

The objective of this paper was to develop mathematical models for the
times series of mean daily Susitna River discharge at the Gold Creek
gaging station (river mile 136.7), daily turbidity level, and daily
outmigration rates of chinook salmon (Oncorhynchus tshawytscha) and
sockeye salmon (0. nerka) at the Talkeetna Station outmigrant traps
(river mile 103.0) during the open water seasons of 1983 and 1984,
Because time series analysis can provide an efficient summarization of a
data set by a few parameters (Hipel et al. 1978), these models will be
used to statistically describe the present conditions as a baseline
against which future changes can be measured. The discharge and tur-
bidity information will be useful for examining their relationship with




salmon fry outmigration as well as with other species and life history
stages. In addition, discharge was used as an input in transfer func-
tion models of discharge-turbidity, discharge-chinook outmigration and
discharge-sockeye outmigration in order to describe the relationship
between these variable and to be used as a possible technique to fore-
cast future values or to examine the probable effects of the proposed
dams.

Turbidity was chosen as a variable of interest because of its rela-
tionship with discharge and because of its importance in determining the
distribution of rearing juvenile salmon (Suchanek et al. 1984; Part 2 of
this report) and other species. It was selected more for this reason
than for its effect on salmon outmigration, so it was not used as an
input in a transfer function model with salmon outmigration. Chinook
salmon were chosen because this species rears in sloughs and side
channels affected by mainstem discharge and because chinook salmon have
been selected as the evaluation species of the impact assessment study
(EWT&A 1985). The sockeye salmon time series was chosen because mainstem
discharge affects sloughs which are both natal and rearing areas for
this species. While chinook salmon spawn mainly in tributaries in this
system, sockeye salmon spawn mostly in mainstem sloughs.
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2.0 METHODS
2.1. The Data

Mean daily discharge values for 1983 and 1984 (Fig. 2, Fig. 3) were
obtained from the U.S. Geological Survey gaging station on the Susitna
River at Gold Creek, river mile 136.7 (Still et al. 1984; U..S. Geolog-
ical Survey provisional data, 1984). The time frame examined was May 18
to August 30 (105 observations). Discharge levels begin to decline in
September when glacier melting decreases; hence, a longer series would
not be stationary. Throughout this paper, the unit for discharge is one
thousand cubic feet per second.

Daily water samples for turbidity (Fig. 2, Fig. 3) were taken at the
outmigrant trap station and measured with an HF Instruments Model No.
DRT-15B field turbidometer (Roth et al. 1984). Units are 1in nephelo-
metric turbidity units (NTU). Only the 1984 turbidity series was
examined. :

Outmigration rate (Fig. 2, Fig. 3) was measured by two outmigrant traps,
one on each bank, Tocated at river mile 103.0 {(Roth et al. 1984). The
rate is reported as number of fish per trap hour with catch from the two
traps combined. Only age 0+ fry were used in the analysis because the
traps were not efficient at capturing age 1+ fry and, consequently, the
numbers were low. Further, age 1+ chinook and sockeye salmon have
essentially completed their outmigration from this reach of river by the
end of July so the time series are shorter.

The chinook salmon time series for 1983 runs from May 18 (shortly after
ice-out) to August 30 (when outmigration is winding down), a total of
105 observations. The 1983 sockeye salmon data were not examined.
There were six days during the 105 day series when the outmigrant traps
were not fished - a one day, a two day, and a three day period. Although
values for gaps in time series can be estimated by a spline method, the
gaps in the outmigration series are short enough so that a simple
interpolation of values is sufficient (Sturges 1983).

In 1984, the traps were continuously operated from May 14 to October 6.
However, the series were cut off at the end of August in order to be
comparable to 1983 and to achieve a stationary series. About 98% of the
cumulative outmigration of age 0+ chinook and sockeye fry in 1984 had
occurred by the end of August.

2.2. Identification and Estimation of Time Series Models

Univariate models were developed for the four time series: discharge,
turbidity, and chinook and sockeye salmon outmigration. Methods for
developing Box-Jenkins ARIMA and transfer function models are described
in section 7.0. Basically, there are three steps in developing an ARIMA
model: model ddentification, parameter estimation, and diagnostic
checking (Box and Jenkins 1976). The autocorrelation (AC) and partial
autocorrelation (PAC) plots for each series were examined to help
identify possible autoregressive (AR) and moving average (MA) com-
ponents. A tentative model was developed and the parameters estimated.
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Insignificant components were removed from the model. The residuals were
checked to see if there was significant departure from the assumption
that they were white noise. If the residuals were white noise, the model
was considered to be adequate. If not, a new model was identified and
the process repeated until the residuals were reduced to a white noise
process.

A1l of the time series work was done using the BMDP statistical package
(Dixon et al. 1981). The BMDP Box-Jenkins program estimates parameters
by both the conditional least squares method and the backcasting method.
The estimates chosen for this paper were from whichever method gave the
Towest residual mean square.

The time series of mean daily discharge from May 18 to August 30 ap-
peared to be stationary so no differencing was done. A plot of the range
of sub-groups of the series against the mean of the sub-groups (as
suggested by Hoff (1983) indicated that a logarithmic transformation of
the data would be helpful in stabilizing the magnitude of the fluctua-
tions throughout the series; therefore, a model was also developed for
the natural log of the raw data. As the turbidity time series was
questionably stationary, models were developed for both the original
series and for a differenced series.

Models were developed for the chinook and sockeye salmon outmigration
rate time series on both the raw data and on data transformed by 1In
(x + 1). This transformation was used to avoid taking logarithms of
zero; there was zero catch on some days.

2.3 Transfer Function Models

Transfer function models (see section 7.0) were developed for discharge/
turbidity, discharge/chinook outmigration, and discharge/sockeye out-
migration. Only one input (discharge) was used. Multiple input transfer
function models (Liu and Hanssens 1980) or multivariate time series
models (Mendelssohn 1982) can be developed, but are substantially more
complex.

10
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3.0 RESULTS

3.1. Univariate Model for Mean Daily Discharge

The time series of mean daily discharge during the summer of 1983 is
shown in Fig. 4; the log-transformed data are in Fig. 6. Autocorre-
lation function (ACF) and partial autocorrelation function (PACF) plots
for the raw data are given in Fig. 5 and for the log- transformed data
in Fig. 7. In all the ACF and PACF plots, the "+" symbol on either side
of the vertical axis indicates the 95% confidence interval. The first
order autoregressive -component was strong in both the raw and the trans-
formed series. The ACF and PACF plots for the raw data indicated that a
moving average component was required. Models containing various combi-
nations of first and second order AR and MA terms were examined. Of the
acceptable models identified, the model with the Towest standard errors
on the parameter estimates and the least significant residuals was an
ARMA(2,2). However, the ARMA(1,1) was nearly as good as the ARMA (2,2)
so, in keeping with Box and Jenkins' (1976) advice that a parsimonious
model (i.e., the one with the fewest possible parameters) is desirable,
the ARMA(1,1) 1is considered the "best" model for the non-transformed
data. Parameter estimates were:

.992 with std. error of .0135

D> ©>
n

_..
I

= -,580 with std. error of .0807

The model is:

W, = 227 ,44-(/3/,:_,-2:.7)——.58 A, ¥ Ay

where: Y is the discharge level at time t and

a, is a white noise process at time t

t
Neither the mean nor any of the autocorrelations or partial autocorre-
lations of the residuals was significant; therefore, the model is
considered to be adequate. This equation can be interpretted as: The
discharge level for any given day is a function of (the mean level, 22.7
cfs, of discharge during the period) plus (most of the previous day's
discharge Tevel minus the mean level) minus (about half of the previous
day's noise component) plus (the given day's noise component).

The plots of both the ACF and PACF on the residuals from this model
showed a slightly significant spike at a Tag of 15 or 16 days. This
could indicate that the discharge time series has a periodicity of about
15 days, or slightly more than two weeks. This possibility was further
examined by spectral analysis. The spectrum of discharge (Fig. 8) did in

11
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Log—transformed discharge, 1983
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Figure 6. Log-transformed discharge time series, 1983 and 1984.
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fact indicate a peak at a frequency of .065 (a period of 15 days). It is
not known at this time if this periodicity is "real". It may be related
to weather patterns in the basin which control solar insolation (cloud
cover) and rainfall. A much longer time series of discharge would have
to be examined to answer this question. A periodic term could be added
to the ARMA(1,1) model (Box and Jenkins 1976) but, given the low signi-
ficance level of the periodicity, it does not seem appropriate at this
stage of model development.

Carrying the idea of parsimony a step further, it can be seen that an
ARMA(1,0) model using the log-transformed data is adequate and has the
lowest number of parameters. The parameter estimates for this model
were:

A

@, = .994 with std. error of < .00005

giving
I #y, = 100 + .99 (Im iy, ~100) + 2

A

The parameter qb was very close to unity. If ¢ﬁ were equal to 1.000, the
model would be reduced to a random walk model (Chatfield 1984). That is,
the log of the discharge for today is the same as the Tog of the dis-
charge for yesterday plus a random error term. When @ approaches 1.000
in a model with only one AR term, the series could be non-stationary
(Hoff 1983). To test this, the series was differenced. The residuals
from an ARIMA(1,1,0) model showed significant spikes, so the differenc-
ing did not help; the ARIMA(1,0,0) model is better.

The AC's on the residuals of the ARMA{1,0) model were a little better
than those of the ARMA(1,1} on the non-transformed data. However, the
mean of the residuals was slightly significant, so the ARMA(1,1) model
on the raw data is probably superior to this one.

The 1984 discharge time series is shown in Fig. 4 and Fig. 6. The ACF
and PACF plots (Fig. 9) were similar to those of 1983. An ARMA(1,1)
model on the 1984 raw data was adequate, as it was in 1983. Parameter
estimates were: y = 23.2; % .808 (std. error = .0638); and &, =
-.692 (std. error = .0750). An AR(l) mode1 on the log-transformed data
was also adequate but, again, had a slightly significant mean residual.
The ACF and PACF plots, using 1og -transformed data (Fig. 10), were
similar to those of 1983, but perhaps showed less indication of a moving
average process. The estimate for &Z was .994 (exactly the same as the
1983 data), with a standard error of 0.0001, and the estimate for y was
10.0.

3.2. Univariate Model for Turbidity

The time series for turbidity in 1983 (Fig. 11) was more complex than
that of discharge. The ACF and PACF plots (Fig. 12) indicated a strong
AR(1) component. However, AR(1), AR(2), and ARMA(1,1) models were not
adequate to explain the series.
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Susitna River Turbidity, 1983
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The series appears to border on being non-stationary because it in-
creases in the spring as glacier melt increases and then declines in the
fall. (This series would certainly be non-stationary over a longer time
frame because the turbidity level is very low in the winter). The slow
decay of the autocorrelations in the ACF (Fig. 12) also indicated
non-stationarity.

Further investigation using the raw data showed that the series had a
significant second order MA term, while the first order MA term was not

significant. Both first and second order AR terms were significant. This
gives the model: ‘

Gp = 1360+ 99 (Fea T D)+ 06 (e, - P61

+ .38, v A,

A

with std. errors: on (§, = .0122
A

on ¢, = .0234

on éi = ,0988

Note that even though the same notation is used, the white noise process
(@A) here is different from that in section 3.1.

While this ARMA model is adequate for the time frame examined, in
general, an integrated model (i.e., one with a differencing operation)
is probably more appropriate because of the suspected non-stationarity
of the raw data. The differenced series (Fig. 13), which represents
consecutive changes in the original series values, is clearly stationary
with a mean close to zero. The ACF and PACF plots for the differenced
series (Fig. 14) showed that the differenced series could be adequately
modeled with just the second order MA term; the first order autore-
gression term was not significant in the differenced series. The
equation is:

Z’t = .23 ?Lt-{ ¥ lt
where : L, = Ve ™ M

with std. error on é§2 = .0972 and the mean of the residuals insignifi-
cant.

3.3. Univariate Model for Age 0+ Chinook Salmon Outmigration

The time frame chosen for Age 0+ chinook salmon was the same as that of
discharge (Fig. 15). The plots of the ACF and the PACF for 1983 (Fig.
16) showed a strong first order autoregresssive component. In fact, an
ARMA(1,0) model, abbreviated as AR(1), adequately represents the data.
Although the plot of the range of sub-groups against the mean of the
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Age O+ Chinook Salmon, 1983
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Figure 15. Age O+ chinook salmon outmigration rate time series, 1983 and 1984.
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sub-groups indicated the need for a logarithmic transformation, the
residual AC's of an AR(1) model on the log- transformed data (Fig. 17)
were slightly larger (but still insignificant) than those of the AR(1)
model on the raw data. The standard error on @, , however, was lower
with the TJog-transformed data. ACF and PACF plots for the Tlog-
@ransformed data are shown in Fig. 18. The AR(1) model for the raw data
is:

Mg = 152 F b (e T 15+ A,

A
with standard error on Gb, = .0743.
The AR{1) model for the log-transformed data is:

’Q"\(?tu) = L7 ¥ .‘ll(ﬂm(’yt-, + 1) - 'é?) b4

A
with standard error on ¢‘ = .0363.
The mean of the residuals was not significant.

The time series plot for age 0+ chinook salmon outmigration in 1984
(Fig. 15) shows a different pattern from that of 1983. The fry did not
begin to migrate in 1984 until about June 12. The low level of out-
migration early in the season causes a time series which is non-
stationary. To avoid this problem, the time frame selected for 1984 ran
from June 12 to August 31 (79 cases). Analysis of this shorter series is
not as strong as that of the longer series in 1983 but the series is
long enough from a statistical point of view; Hoff (1983) suggests that
about 40 or 50 observations is the minimum necessary for attempting an
ARIMA model. Although logarithmic transformation did not appear to be
strictly necessary for the 1983 data, it was required (to produce an
AR(1) model) with the 1984 data, perhaps because of the shorter time
series in 1984,

The ACF plot for 1984 on the log-transformed data (Fig. 19) was similar
to that of 1983, although it did decay a little more quickly. The 1984
PACF plot (Fig. 19) was very similar to that of 1983 in indicating a
strong AR(1) component. The estimated value of ¢, in 1984 was 0.973 (very
close to that of 1983), with a standard error of 0.0265. The 1984 model
is:

Q’“('?/t”): 130+ A7 (A (4ew YHT1L30) v A
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The mean of the residuals was insignificant. This model does not differ
from that of 1983, except that the mean level was higher. This was a
result of a higher escapement of adult chinook salmon in 1983 than in
1982,

A11 three of “the ACF plots for chinook fry outmigration (Figs. 16, 18, .
and 19) had AC's after lag 18 which did not appear to decay further.
This may indicate the presence of a weak non-stationary or periodic
element which should be explored with subsequent data sets.

3.4. Univariate Model for Age 0+ Sockeye Salmon Qutmigration

Age 0+ sockeye salmon outmigration was examined from May 23 through
August 31, 1984 (Fig. 20). This time series showed a strong AR(1) compo-
nent (Fig. 21), similar to that of the chinook salmon time series.
However, neither an AR{1) model on the raw data or on the log-
transformed data was adequate. A MA(l) component was also significant in
the raw data, leading to the model: :

Me= 1LFC T8 (M., - L%)- 572, * %

A A
The standard error on gb,(.775) was .0681 and on 6% (-.567) was .0883.
Although the mean of the residuals was slightly significant, none of the
autocorrelations or partial autocorrelations were, so the model is
reasonable.

3.5. Discharge-Turbidity Transfer Function Model

The cross correlations for the residuals from the 1983 discharge series
and the 1983 turbidity series, both filtered by the ARMA(1,1) model for
~ discharge, had a significant spike at lag = 1 day (Fig. 22). This
suggisted a candidate model (Box and Jenkins 1976; McCleary and Hay
1980):

| w, B
A}t-‘ ‘_JlB /yt ¥ Nt

where: is the output series (turbidity)

Yt
w , and 51 are transfer function parameters

B is the backward shift operator

X, is the input series (discharge)

Nt is the noise component, an ARIMA model
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Figure 20.

Age O+ sockeye salmon outmigration rate time series, 1983 and 1984.
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Figure 21. Plots of autocorrelations and partial
autocorrelations for 1984 sockeye salmon

outmigration time series.

33



CROSS CORRELATIONS

-1.0 -..8 -.6 -.4 -.2 .0 .2 .4 .8 ‘.8 1.0
LA, q 1 L i i 1 i L
J ' ¥ L) 1 i L) L] 1} L
- 20 + = +
o + — +
o + = +
~ + - +
e + —
w5 + — +
- + +
) + +
= 4+ p—
E + - +
-10+ + = +
-y + oot +
- + +
- 4 — +
- + +
- 8= + -t +
- + - 4+
- + -+
- + - +
- + — +
0 + —
- + —— —
. +
- + +
- + +
3 + —
- + — +*
- + +
- + - +
R + — +
10~ + +
- + +
- 4 = +
- + = +
-1 + - +
195 + — +
- + — 4
-~ + +
- - — +
20+~ + —

Figure 22. Plot of cross correlations between the
residuals of the ARMA (1,1) discharge
model and the prewhitened turbidity
time series, 1983 data.
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The assumption that the ARIMA component of the model was white noise led
to significant AC's in the residuals series and was therefore rejected.
The ACF and PACF plots on the residuals from this model suggested an
AR(1) model for the Ny component, leading to the full model:

< ‘008 Z(t'
/?t -8 6 Te ¥ (- @, B

£

8.349 with std. error of 1.7044

N
i

= -0.559 with std. error of 0.1718

AS
1}

0.993 with std. error of 0.0009

The t statistic for each of these estimates was significant, leading to
the conclusion that discharge and turbidity are related by the equation:

R.35 B 44

t | + .56 8 Ne ¥ 1 -.99 8

The ACF and PACF plots on the residuals from this model showed no
significant spikes; therefore, the model is adequate.

3.6. Discharge-Chinook Transfer Function Model

After both the input series (discharge) and the output series (chinook
salmon outmigration rate) from 1983 were filtered by the ARMA(1,1) model
for the discharge series and the residuals from both series were cross
correlated, there was a significant correlation at lag = 1 day (Fig.
23). This suggested the transfer function model, as given by McCleary
and Hay (1980):

My = W Mo + 0 Ny

or, using the backward shift notation of Box and Jenkins (1976):

Ayt = W, B /Xt + N'b
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Figure 23. Plot of cross correlations between the
residuals of the ARMA (1,1) discharge
model and the prewhitened chinook salmon
outmigration time series, 1983 data.
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This model implies that the current day's discharge rate has an effect
on the next day's outmigration rate. The estimate of W, was 0.02. The
residual ACF using this model suggested that the assumption of white
noise for the Nicomponent was not valid; it appeared that an ARMA(1,0)
model would be appropriate. The full model is:

Ag’t; GOQB/Xt + |"¢'8

The parameters for this model were estimated as:
A
W,
A
@,
The t statistic on the estimate for W, was not significant. However,
because the practice of prewhitening the output series with the model
for the input series tends to underestimate the significance of the
results (Botsford et al. 1982) and because there was a significant cross
correlation between discharge and outmigration rate at a lag of one day,

it seemed best to leave this term in the model. This would have to be
verified with more years of data. The model is: -

.025 with std. error of .0249

.667 with std. error of .0751

; Ay
My = .025‘ B () + T30

The ACF and PACF for the residuals from this model showed no significant
spikes so we may conclude that the model is adequate.

This model does not imply that the discharge series is a strong predic-
tor for the outmigration series. But adding discharge does result in an
expression which has more predictive value than would be obtained by
looking at the outmigration series by itself.

3.7. Discharge-Sockeye Transfer Function Mode1‘

As with the discharge-chinook relationship, the cross-correlations of
the 1984 discharge and sockeye series, filtered by an ARMA(1,1) model
for discharge, showed a significant spike when the sockeye series was
lagged one day behind the discharge series (Fig. 24). This spike was
stronger for sockeye than it was for chinook. A candidate model {Box and
Jenkins 1976; McCleary and Hay 1980) was:
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The ACF and PACF plots on the residuals from this mode]l suggested an
ARMA(1,1) model for the Nt component, leading to the full model:

- w, B (“9|B> A
T e Y T (it

Parameter estimates were:

A
W, .206 with std. error < .00005

; -.190 with std. error .1848
' .952 with std. error .0483
Y

The t statistic for each of these estimates except ,5' was significant,
giving:

> Q> Oy
I

_.318 with std. error .1078

| +.328)
gy = 20 B(n) + ((\f.qj_g) 2,

where /)(t= discharge X 107
The ACF and PACF plots on the residual series from this model showed no

significant spikes and the mean of the residuals was barely significant;
therefore, the model is deemed adequate.
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4.0 DISCUSSION

Time series analysis is a useful method for dealing with time ordered
data sets, including ones that do not appear to make much sense at first
glance because they are too noisy or because they drift as a result of
‘random events. The modeling effort helps us to understand why the plots
look as they do and what factors shape them. It also is useful in trying
to understand what effect a change in the controlling factors might
produce.

The influence of discharge level on turbidity and chinook and sockeye
salmon outmigration is clearly seen upon inspection of Fig. 2 and Fig.
3. Of course, these latter three series are shaped by several factors
other than discharge, so the correlation coefficient between them and
discharge is not normally expected to be high, unless a relatively short
section is examined. For example, the discharge peak in early June of
1983 1is reflected in the other three series (Fig. 2)}. The bimodal
discharge peak in August of 1983 is reflected in the turbidity and the
chinook outmigration series, but only the first August peak is shown by
the sockeye outmigration series, This was because most age 0+ sockeye
salmon in the reach above the traps had left by the middle of August.
Similarly, the late August discharge spike in 1984 had no effect on the
sockeye series (Fig. 3). However, the high discharge peak in mid June
of 1984 is strongly reflected in the sockeye series because this was a
time when many age 0+ sockeye salmon were present in the reach.

Another example of a change in the relative effect of a discharge spike
is shown by the 1984 chinook salmon series. The high discharge peak is
mid-June had less effect on chinook outmigration than did the Tlower
discharge peak in late July, a time when more age 0+ chinook fry were
ready, because of physiological and behavioral reasons, to outmigrate.

The segments of the time series examined (discharge, turbidity, chinook
and sockeye salmon outmigration) were described by relatively simple
Box-Jenkins models, using mostly first-order terms. The usefulness of
Box-Jenkins models is shown by the relative simplicity of the models
developed for the salmon outmigration series; a visual inspection of the
plots of the raw data for these series (Figs. 15 and 20) gives the
impression of an erratic series of events. None of the series appeared
to require differencing (although turbidity was on the borderline) to
achieve stationarity nor did they appear to have a periodic component
(discharge being a possible exception) which would require seasonal
differencing. However, this should be re-examined when subsequent
seasons of data are available. A1l of the series showed a strong first
order autoregressive term, indicating that the value for any one day is
greatly influenced by the value for the previous day. Similar results
for the flow regimes of several streams in Australia was reported by
Srikanthan et al. (1983), who found that most of the discharge series
which were not white noise had a first order autoregressive term.

Examination of the autocorrelation coefficients of the four time series
at lag = 1 day (adjacent values) gives an idea of the smoothness of the
time series. Typically, the coefficient for physical/chemical variables
is higher than that of biological variables and the time series for
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discharge (Fig. 4) and turbidity (Fig. 11) are less jagged than those
for chinook salmon outmigration rate (Fig. 15) and sockeye salmon
outmigration rate (Fig. 20). Saila et al. (1972) reported similar
results for the autocorrelations of alewife upstream migration activity
in relation to incident solar radiation and water temperature.

The square of the autocorrelation coefficient at lag = 1 gives a measure

- of the percentage of the variance of the value for today which is

explained b&zwhat was measured yesterday (Murray and Farber 1982). 1In
1983, (.86)" = 74% of the variance of discharge for one day was
explained by the value for difcharge on the previous day. The percen-
tage for turbidity was (.92) F 85% while, for chinook salmon outmiz
grgtion rate, it was only (.66)° = 44%, and, for sockeye salmon, (.65)
= 42%. S

So, although fish tend to move in pulses more so than water or suspended
sediments, fish outmigration is far from being a random event. That is,
when an outmigration pulse occurs, the impetus has affected many fish
and the phenomenon extends over a three or four day period. When we
look at an outmigration time series, we are seeing the integrated
results of several factors operating on sub-groups of the population in
different locales. The fry in one slough may have emerged two weeks
earlier than those of another slough because of .a higher intragravel
temperature. Or the head of one slough may have overtopped at a lower
discharge level than the head of another slough, thus providing an
environmental cue to the two groups at different points in time. But
there is also a behavioral effect in that fry are stimulated to migrate
when they see other fry migrating. This is particularly true for those
species that form schools during outmigration. ‘

The turbidity time series was the only one examined which included a
second order term. The second order moving average term is likely
related to the random "shock" caused by a rising discharge (which is in
turn caused by rainfall) which resuspends sediment. It takes a few days
after the rainfall is over for this perturbation in turbidity level to
drop to the pre-rainfall level.

- The discharge-turbidity transfer function model does not necessarily

imply that discharge level is a strong causal factor for turbidity.
These two variables are correlated largely because when glacial melting
is high, both discharge and turbidity are high. This phenomenon pro-
vides the seasonal trend of the two series; the discharge of clear water
tributaries such as Portage Creek and Indian River (which increases
discharge but not turbidity) is a noise component. However, discharge
does in fact have some direct causal effect on turbidity by resuspending
sediments and other particles during a rapid rise in discharge level.
Certainly turbidity is not a cause of discharge, so it makes sense to
take discharge and noise as the input and turbidity as the output of a
transfer function model. The value of the model 1is that it allows
levels of turbidity for a few days ahead to be predicted from past
values of both turbidity and discharge.
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Turbidity level after the dams begin operation will not only be influ-
enced by a changed discharge regime, but will also be directly changed
by the dams because of settling of suspended sediments in the reservoir.

By building Box-Jenkins models for these four time series, a better
understanding of the processes which control these variables was
developed in that the structure of the random processes which generate
an observed series has now been specified. Also, we have statistically
described the natural time series as a baseline against which future
changes can be assessed. This description of the discharge and tur-
bidity regimes is important not only because of their effects on salmon
outmigration, but also because of their effects on other 1ife stages and
species. It is important to explore the effect on salmon outmigration
of a construction project which will change the basic rules, that is,
change the underlying physical processes. Whereas the present discharge
regime can be described as a mixed first order autoregressive and moving
average process, the discharge regime under a post-project scenario
could include entirely different terms.

An important point is that the underlying processes (the autoregressive
and moving average components) were essentially the same in 1983 and in
1984 even though the actual time series, or "realizations," looked very
different between the two years. This was true for both discharge and
for chinook salmon outmigration; only a single year of turbidity and
sockeye salmon outmigration was examined. Even though the discharge
peaks do not match between the two years and the mean Tlevels between
years may have been different, the process which generated these peaks
in both years was the same and can be described by an ARMA(1,1) model
with similar parameter estimates for both years.

In a sense, the proposed dams would operate 1ike a gigantic low pass
filter on the discharge regime, dampening out the high frequency pertur-
bations and letting the low frequency {annual cycle) events pass, but at
a reduced amplitude. In ather words, there are two effects of intro-
ducing a reservoir into this system: 1) the day-to-day changes in
discharge would be smoothed and 2) the general discharge Tevel would be
higher than normal in winter and lower than normal in summer. However,
this is an oversimplification because a new element would be present if
the dams are built - namely, power demand. Power demand is not in phase
with the natural discharge fluctuations, so dam operation to accommodate
power demand will change the mechanisms which generate the current
discharge regime.

The important question is, how would the salmon outmigration rates be
affected if these discharge spikes were not present, as with a dam-
requlated discharge regime? Further, what effects would these changes
have on the population survival rate? Relatively high levels of dis-
charge, and possibly four or five day peaks, in the late spring and
early summer may be necessary to facilitate normal outmigration timing
of juvenile salmon. On the other hand, very high discharge levels at
this time of year, which occur naturally, may be harmful to juvenile
chinook salmon if these floods displace the fry downstream from what
would otherwise be their rearing areas.
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Time series analysis is a statistical tool which has many potential
applications to the Susitna River Aquatic Studies Program. It would be
useful to build Box-Jenkins models for the 36 year record of discharge
at Gold Creek gaging station. Because this information is continuous, it
can be digitized as monthly, weekly, daily, or even hourly means.
Turbidity, temperature, and dissolved gas time series. cpuld also be
modeled in. this manner. Developing time series models for.the proposed
post-project discharge regime to see whether the post-project discharge
regime is also an ARMA(1,1) process would be informative in assessing
dam-related effects. Intervention analysis, which is an extension of
Box-dJenkins models concerned with a natural or human caused change to a
system, would be an appropriate method to use (Box and Tiao 1975; Hipel
et al. 1978; Thompson et al. 1982). One could determine if the inter-
vention {construction of the dams) would have a significant effect on
the time series processes. This method has been used to model the
effects of the Aswan dam on the Nile River and of the Gardiner dam on
the South Saskatchewan River in Canada (Hipel et al. 1978). Before and
after mean levels can not be compared using normal analysis of variance
because the observations are serially correlated.

Developing forecast models for the annual return of adult salmon or the
annual total number of outmigrants would be an excellent use of time
series analysis. The adult salmon return of a particular year is
strongly related to the return of the previous year (that is, when catch
is high one year, it tends to be high for several years) and there is
probably a periodic component based on strong year classes. MWith such a
model, one could predict the size of next year's adult salmon return, a
piece of information which would be very useful to both fishery and
hydroelectric dam managers. However, the time series of adult salmon
return to the Susitna River 1is not long enough (only seven or eight
years of data) to develop Box-Jenkins models. A minimum of about 40 or
50 observations is necessary (McCleary and Hay 1980; Huff 1983),
although the method has been applied by Jensen (1985) to fish catch data
with as few as 32 observations. The annual abundance of adult chinook
and coho salmon in the California marine fishery has been successfully
examined with time series analysis by Botsford et al. (1982) and
Peterman and Wong (1984) have looked at sockeye salmon cycles in British
Columbia and Bristol Bay. For the present, analysis of salmon time
series in the Susitna River will have to be restricted to daily rates of
a single year.
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7.0 BOX-JENKINS ARIMA AND TRANSFER FUNCTION MODELS

Box-Jenkins models can be summarized as follows (Box and Jenkins 1976;
McC]eary and Hay 1980; Chatfield 1984) Suppose there is a time series

t = 1..N. Then y, is a moving average process of order g (or an
Mﬁ q) process) if

Me= 8,8y + 6,24 * Gdc, ¥ o T Op Li-g

where ©; are constants and &, = 1. The term a,1s a white noise pro-
cess. wh1te noise consists of a series of random shocks, each dis-
tributed normally and 1ndependent1y about a zero mean with a constant
variance. The series y; is an autoregressive process of order p (or an
AR(p} process) if

Ye = By, F ¢a‘yt-z*' coo T B e T4

where 9’5; are constants. This is similar to a multiple regression model
except that y, 1is regressed not on independent variables but on past
values of itself. A first order autoregressive process, AR(l)}, has the
form:

Pyt = ¢l "yt-g t a'1:

Box and Jenkins (1976) define a backward shift operator B as:
m
B8 (Yt) -

Form=1,

BYt = Yt_| or, the previous value.
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Using B, the AR(1) equation can be written:

Ay

AT

\

Time series resulting from a mixture of AR and MA processes are called
ARMA(p,q) models and have the form:

A?,t = ¢' 7(:" + ... + ¢P 76'P ¥ 16 +
6.4y, t ... * O,

Using the backward shift operator B, an ARMA (1,1) may be written as:
- (- B"tl-@B}ZL

ARMA (p,q) models are appropriate only when the time series is station-
ary. Stationary in an ARMA model means that there is no systematic
change in the mean or the variance over time and that there are no
strictly periodic variations (Chatfield 1984); in other words, the mean,
variance, and autocovariance are not dependent on time. Time series
which are not stationary can sometimes be handled by "differencing" the
series. Taking the difference of adjacent values gives a differencing
order, d, of one:

V"Yt = Yt h Yt-d } 4=

Such models are said to be "integrated" and are denoted by ARIMA(p.d,q)
where p is the order of the autoregressive component, d is the order of
differencing, and q is the order of the moving average component.

Time series with seasonal variations, such as would occur in a multiple
year series of daily water temperature measurements, can be made sta-
tionary by seasonal differencing. For example, the value for April 15 of
one year 1is subtracted from the value for April 15 of the following
year, and so on for all days of the year.

It has been assumed above that the time series had a mean value of zero.
With stationary time series which have a non-zero mean, the mean has to
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be subtracted from every y; term. For example, the form of an AR(1l)
model would be:

“}t" M ¢, ('}’t—t-/")*' Ay

The autocorrelation function plays a major role in identifying and
building time series models. A regular correlation coefficient measures
the correlation between N pairs of observations on two variables. The
autocorreiation coefficient is somewhat similar except that it measures
the correlation between all observations of the same variable at a given
distance apart in time (that is, between Y and x for all values of
t, where k = time lag). Also, the covar1ance is es 1mated only over N-k
pairs of observations {McCleary and Hay 1980). Autocorrelation coeffi-
cients at different lags indicate the extent to which one value of the
series is related to previous values and can be used to evaluate the
duration and the degree of the "memory" of the process. The autocorre-
Tation function {ACF) is the set of autocorreiation {AC) coefficients at
different lags associated with a time series; a plot of the ACF is
cailed a correlogram (Chatfield 1984).

The ACF is defined as:

e e (Yool
AC 'k Viariauce (_Yt_\

and is estimated by:

N-k - <
Zi (Yt* Y)(Ytulz - Y)
ACF, = . "Nk
k 3 (Y- N
T+

A partial autocorrelation (PAC) coefficient measures the excess corre-
lation at T1ag k which is not accounted for by an autoregressive model of
order k-1. The set of PAC's at different lags associated with a time
series is called the partial autocorrelation function (PACF).

There are three steps in developing an ARIMA model: model identifica-
tion, parameter estimation, and diagnostic checking (Box and Jenkins
1976) ARIMA model building is an iterative process. The first thing to
do is to Took at a plot of the time series. Time series that are not
stationary must be made so by trend removal which can be accomplished by
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such methods as differencing the series or by polynomial (or other)
regression. Examination of the autocorrelation function (ACF) and the
partial autocorrelation function (PACF) of a stationary series helps to
identify a possible ARIMA model. The next step is to estimate the
parameters of the model and again examine the ACF and PACF plots, this
time on the residuals from the model. This process is repeated until the
residuals show no significant AC's or PAC's at any lag, which indicates
that the residuals consist of only a white noise process.

When there is an independent variable which is also a time serjes, a
transfer function model can be developed. This model consists of the
transfer function component from the independent variable as well as the
ARIMA component (or noise component) from the dependent variable
(McCleary and Hay 1980} and can be represented as:

Y, = F(Xey) v N

where: Y, is the output time series

X, is the input time series

t
f(X¢-p,) is the transfer function component

Ng 1s the noise or ARIMA component

Transfer function models can be bivariate {when there is one independent
variable) or multivariate (more than one independent variable).

The steps to take in developing a transfer function model (Box and
Jenkins 1976; McCleary and Hay 1980; Dixon et al. 1981) are: (1) develop
an ARIMA model for the input series, obtaining the pre-whitened input
(residuals), (2) filter the output series by the model for the input
series, (3) cross-correlate the residuals from the first two steps, (4)
identify the form of the transfer function component from the cross
correlation function, (5} assuming the errors are white noise, estimate
the values for the parameters, (6) identify an ARIMA model for the
residuals, (7) if the ARIMA component is not white noise, combine the
ARIMA component with the transfer function component to form a new
model, (8f estimate the parameter values, and (9) examine the ACF and
PACF plots on the residuals from the new model to see if the model is
adequate. .
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