Queral

ALASKA DEPARTMENT OF FISH AND GAME SUSITNA HYDRO AQUATIC STUDIES REPORT SERIES

ALASKA DEPARTMENT OF FISH AND GAME SUSITNA HYDRO AQUATIC STUDIES

TASK 14 SUPPORT TECHNICAL REPORT

HYDROLOGICAL INVESTIGATIONS AT SELECTED LOWER SUSITNA RIVER STUDY SITES

by: Timothy Quane, Patrick Morrow, and Isaac Queral Aquatic Habit and Instream Flow Project

Prepared for:

ALASKA POWER AUTHORITY 334 W. FIFTH AVE. ANCHORAGE, ALASKA

ARRIS

Alaska Resources
Library \& Information Services
Anchorages, Alaska
TABLE OF CONTENTS Page
TABLE OF CONTENTSi
LIST OF FIGURES. vii
LIST OF TABLES xiii
LIST OF ATTACHMENT FIGURES xiv
LIST OF ATTACHMENT TABLES xxiii
1.0 OBJECTIVES OF STUDY 1
2.0 METHODS 2
2.1 Site Selection 2
2.2 Field Data Collection. 2
2.2.1 Stage. 2
2.2.2 Streamflow. 5
2.2.3 Channel Geometry. 5
2.2.3.1 Thalweg Profile. 5
2.2.3.2 Cross Section Profile. 6
2.3 Data Analysis 7
2.3.1 Stage and Streamflow 7
2.3.2 Initial Breaching and Controlling Discharges 8
2.3.2.1 Initial Breaching Discharge 8
2.3.2.2 Controlling Breaching Discharge 9
2.3.3 Backwater 10
2.3.4 Channel Geometry 10
2.3.4.1 Thalweg Profile. 11
2.3.4.2 Cross Section Profile. 11
3.0 RESULTS 13
3.1 Hooligan Side Channel (RM 35.2) 13
3.1.1 Site Description 13
3.1.2 Stage/Discharge Relationship. 16
3.1.3 Mainstem Breaching and Controlling Discharges 16
3.1.4 Channel Geometry 24
3.1.4.1 Thalweg Profile 24
3.1.4.2 Cross Section Profile 24
3.1.5 Backwater 25
3.2 Eagle's Nest Side Channel (RM 36.2) 25
3.2.1 Site Description 25
3.2.2 Stage/Discharge Relationship 27
3.2.3 Mainstem Breaching and Controlling Discharges 27
3.2.4 Channe1 Geometry 28
3.2.4.1 Thalweg Profile 28
3.2.4.2 Cross Section Profile. 29
3.2.5 Backwater 29
3.3 Kroto Slough Head (RM 36.3) 29
3.3.1 Site Description 29
3.3.2 Stage/Discharge Relationship 31
3.3.3 Mainstem Breaching and Controlling Discharges. 33
3.3.4 Channel Geometry 36
3.3.4.1 Thalweg Profile 36
3.3.4.2 Cross Section Profile 38
3.3.5 Backwater 38
3.4 Rotly Creek (RM 39.0) 38
3.4.1 Site Description 38
3.4.2 Stage/Discharge Relationship. 39
3.4.3 Channel Geometry 39
3.4.3.1 Thalweg Profite. 39
3.4.3.2 Cross Section Profile 42
3.4.4 Backwater 42
3.5 Bear Bait Side Channel (RM 42.9) 43
3.5.1 Site Description 43
3.5.2 Stage/Discharge Relationship. 43
3.5.3 Mainstem Breaching and Controliing Discharges 46
3.5.4 Channel Geometry 49
3.5.4.1 Thalweg Profile 49
3.5.4.2 Cross Section Profile 50
3.5.5 Backwater 50
3.6 Last Chance Side Channe! (RM 44.4) 50
3.6.1 Site Description 50
3.6.2 Stage/Discharge Relationship 51
3.6.3 Mainstem Breaching and Controlling Discharges 54
3.6.4 Channel Geometry 57
3.6.4.1 Thalweg Profile 57
3.6.4.2 Cross Section Profile 58
3.6.5 Backwater 58
3.7 Rustic Wilderness Side Channel (RM 59.5) 59
3.7.1 Site Description 59
3.7.2 Stage/Discharge Relationship 59
3.7.3 Mainstem Breaching and Controlling Discharges 62
3.7.4 Channel Geometry 65
3.7.4.1 Thalweg Profile. 65
3.7.4.2 Cross Section Profile 65
3.7.5 Backwater 66
3.8 Caswell Creek (RM 63.0) 66
3.8.1 Site Description 66
3.8.2 Stage/Discharge Relationship 69
3.8.3 Channel Geometry 69
3.8.3.1 Thalweg Profile 69
3.8.3.2 Cross Section Profile 70
3.8.4 Backwater 70
3.9 Island Side Channel (RM 63.2) 70
3.9.1 Site Description 70
3.9.2 Stage/Discharge Relationship 71
3.9.3 Mainstem Breaching and Controlling Discharges 73
3.9.4 Channel Geometry 80
3.9.4.1 Thalweg Profile 80
3.9.4.2 Cross Section Profile 80
3.9.5 Backwater 80
3.10 Mainstem West Bank Side Channel (RM 74.4) 82
3.10.1 Site Description 82
3.10.2 Stage/Discharge Relationship. 84
3.10.3 Mainstem Breaching and Controlling Discharges 86
3.10.4 Channe1 Geometry. 90
3.10.4.1 Thalweg Profile 90
3.10.4.2 Cross Section Profile 91
3.10.5 Backwater 91
3.11 Goose 2 Side ChanneT (RM 74.8) 94
3.11.1 Site Description 94
3.11.2 Stage/Discharge Relationship. 97
3.11.3 Mainstem Breaching and Controlling Discharges 97
3.11.4 Channel Geometry 100
3.11.4.1 Thalweg Profile 100
3.11.4.2 Cross Section Profile 102
3.11.5 Backwater 102
3.12 Circular Side Channel (RM 75.3) 103
3.12.1 Site Description 103
3.12.2 Stage/Discharge Relationship 105
3.12.3 Mainstem Breaching and Controlling Discharges 105
3.12.4 Channel Geometry 112
3.12.4.1 Thalweg Profile 112
3.12.4.2 Cross Section Profile 112
3.12.5 Backwater 112
3.13 Sauna Side Channel (RM 79.8) 115
3.13.1 Site Description 115
3.13.2 Stage/Discharge Relationship 117
3.13.3 Mainstem Breaching and Controlling Discharges 121
3.13.4 Channel Geometry 123
3.13.4.1 Thalweg Profile 123
3.13.4.2 Cross Section Profile 123
3.13.5 Backwater 124
3.14 Sucker Side Channel (RM 84.5) 124
3.14.1 Site Description 124
3.14.2 Stage/Discharge Relationship 126
3.14.3 Mainstem Breaching and Controlling Discharges 129
3.14.4 Channel Geometry 134
3.14.4.1 Thalweg Profile 134
3.14.4.2 Cross Section Profile 137
3.14.5 Backwater 137
3.15 Beaver Dam Slough and Side Channel (RM 86.3) 137
3.15.1 Site Description 137
3.15.2 Stage/Discharge Relationship 138
3.15.3 Mainstem Breaching and Controlling Discharges 141
3.15.4 Channel Geometry 144
3.15.4.1 Thalweg Profile 144
3.15.4.2 Cross Section Profile. 146
3.15.5 Backwater 146
3.16 Sunset Side Channel (RM 86.9) 147
3.16.1 Site Description 147
3.16.2 Stage/Discharge Relationship 150
3.16.3 Mainstem Breaching and Controlling Discharges 150
3.16.4 Channel Geometry 153
3.16.4.1 Thalweg Profile 153
3.16.4.2 Cross Section Profile 155
3.16.5 Backwater 155
3.17 Sunrise Side Channel (RM 87.0) 155
3.17.1 Site Description 155
3.17.2 Stage/Discharge Relationship 158
3.17.3 Mainstem Breaching and Controliing Discharges. 160
3.17.4 Channel Geometry 163
3.17.4.1 ThaTweg Profile. 163
3.17.4.2 Cross Section Profile 163
3.17.5 Backwater 165
TABLE OF CONTENTS (Continued) Page
3.18 Birch Creek Slough (RM 88.4) 165
3.18.1 Site Description 165
3.18.2 Stage/Discharge Relationship 167
3.18.3 Mainstem Breaching and Controlling Discharges. 170
3.18.4 Channel Geometry 171
3.18.4.1 Thalweg Profile. 171
3.18.4.2 Cross Section Profile 1.71
3.18.5 Backwater 171
3.19 Trapper Creek Side Channel (RM 91.6) 172
3.19.1 Site Description 172
3.19.2 Stage/Discharge Relationship 1.74
3.19.3 Mainstem Breaching and Controlling Discharges 178
3.19.4 Channel Geometry 180
3.19.4.1 Thalweg Profile 180
3.19.4.2 Cross Section Profile. 180
3.19.5 Backwater 181
4.0 SUMMARY 184
5.0 GLOSSARY 192
6.0 CONTRIBUTORS 197
7.0 ACKNOWLEDGEMENTS 198
8.0 LITERATURE CITED 199
9.0 ATTACHMENTS
LIST OF FIGURES Page
Figure 1 Task 14 study site locations 4
Figure 2 Overview of Hooligan (RM 35.2) and Eagle's Nest Side Channel (RM 36.2) 14
Figure 3 Location of Hooligan Side Channel study site (RM 35.2) 15
Figure 4 Hooligan Side Channel streamflow versus WSEL rating curve from Q site located 50 feet upstream from transect 3 17
Figure 5 Hooligan Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve from Q site located 50 feet upstream from transect 3 18
Figure 6 Comparison of rating curves for Hooligan Side Channel Q site located 50 feet upstream from transect 3 22
Figure 7 Location of Eagle's Nest Side Channel study site (RM 36.2). 26
Figure 8 Overview of Kroto Slough Head (RM 36.3) 30
Figure 9 Location of Kroto Slough Head study site (RM 36.3) 32
Figure 10 Kroto Slough Head streamflow versus WSEL rating curve at transect 2 Q Site 34
Figure 11 Kroto Slough Head streamflow versus mainstem discharge (cfs) at Sunshine Station (USGS 15292780) rating curve at transect 2 Q site. 35
Figure 12 Comparison of rating curves for Kroto Slough Head at transect 20 Site 37
Figure 13 Overview of Rolly Creek (RM 39.0) 40
Figure 14 Location of Rolly Creek study site (RM 39.0) 41
Figure 15 Overview of Bear Bait Side Channel (RM 42.9) 44
LIST OF FIGURES (Continued) Page
Figure 16 Location of Bear Bait Side Channel study site (RM 42.9) 45
Figure 17 Bear Bait Side Channel streamflow versus WSEL rating curve at transect 2 Q Site 47
Figure 18 Bear Bait Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site 48
Figure 19 Overview of Last Chance Side Channel (RM 44.4) 52
Figure 20 Location of Last Chance Side Channel study site (RM 44.4) 53
Figure 21. Last Chance Side Channel streamflow versus WSEL rating curve at transect 2 Q Site 55
Figure 22 Last Chance Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site 56
Figure 23 Overview of Rustic Wilderness Side Channe1 (RM 59.5) 60
Figure 24 Location of Rustic Wilderness Side Channel study site (RM 59.5) 61
Figure 25 Rustic Wilderness Side Channet streamflow versus WSEL rating curve at transect 4 Q Site. 63
Figure 26 Rustic Wilderness Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site 64
Figure 27 Overview of Caswell Creek (RM 63.0) and Is7and Side Channel (RM 63.2) 67
Figure 28 Location of Caswell Creek study site (RM 63.0) 68
Figure 29 Location of Island Side Channel study site (RM 63.2) 72
Figure 30 Island Side Channel streamflow versus WSEL rating curve at transect 1 Q Site 74
Figure 31 Island Side Channel streamflow versus WSEL rating curve at transect 6 Q Site 75
Figure 32 Island Side Channel streamflow versus mainstem discharge at Sunshine (USGS 15292780) rating curve at transect 1 Q Site 76
Figure 33 Island Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 6 Q Site 77
Figure 34 Comparison of rating curves for Island Side Channel transect 6 Q Site 79
Figure 35 Overview of Mainstem West Bank Side Channel (RM 74.4) and Circular Side Channel (RM 75.3) 83
Figure 36 Location of Mainstem West Bank Side Channel study site (RM 74.4) 85
Figure 37 Mainstem West Bank Side Channel streamflow versus WSEL rating curve at transect 1 Q Site 87
Figure 38 Mainstem West Bank Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 1 Q Site. 88
Figure 39 Comparison of rating curves for Mainstem West Bank Side Channel transect 1 Q Site. 89
Figure 40 Overview of Goose 2 Side Channel (RM 74.8) 95
Figure 41 Location of Goose 2 Side Channel study site (RM 74.8) 96
Figure 42 Goose 2 Side Channel streamf1ow versus WSEL rating curve at transect 2 Q Site 98
Figure 43 Goose 2 Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 0 Site 99
LIST OF FIGURES (Continued) Page
Figure 44 Comparison of rating curves for Goose 2 Side Channel transect 20 Site 101
Figure 45 Location of Circular Side Channel study site (RM 75.3) 104
Figure 46 Circular Side Channel streamflow versus WSEL rating curve at transect 1 Q Site 106
Figure 47 Circular Side Channel streamflow versus WSEL rating curve at transect 4 Q Site 1.07
Figure 48 Circular Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 1 Q Site 108
Figure 49 Circular Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site 109
Figure 50 Comparison of rating curves for Circular Side Channel at transect 4 Q Site 111
Figure 51 Overview of Sauna Side Channel (RM 79.8) 11.6
Figure 52 Location of Sauna Side Channel study site (RM 79.8) 118
Figure 53 Sauna Side Channel streamflow versus WSEL rating curve at transect ? Q Site 119
Figure 54 Sauna Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site 120
Figure 55 Comparison of rating curves for Sauna Side Channel transect 2 Q Site 122
Figure 56 Overview of Sucker Side Channel (RM 84.5) 127
Figure 57 Location of Sucker Side Channel study site (RM 84.5) 128
Figure 58 Sucker Side Channel streamflow versus WSEL rating curve at transect 2 Q Site 130
LIST OF FIGURES (Continued) Page
Figure 59 Sucker Side Channel streamflow versus WSEL rating curve at transect 5 Q Site 131
Figure 60 Sucker Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site. 132
Figure 61 Sucker Side Channe] streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 5 Q Site 133
Figure 62 Comparison of rating curves for Sucker Side Channel transect 2 Q Site 135
Figure 63 Comparison of rating curves for Sucker Side Channel transect 5 Q Site. 136
Figure 64 Overview of Beaver Dam Slough (RM 86.3) and Beaver Dam Side Channe1 (RM 86.3) 139
Figure 65 Location of Beaver Dam Slough and Beaver Dam Side Channel study site (RM 86.3) 140
Figure 66 Beaver Dam Side Channel streamflow versus WSEL rating curve at transect 4 Q Site 142
Figure 67 Beaver Dam Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site. 143
Figure 68 Comparison of rating curves for Beaver Dam Side Channel transect 4 Q Site. 145
Figure 69 Overview of Sunset Side Channei and Sunrise Side Channel study sites (RM 86.9 and RM 87.0) 148
Figure 70 Location of Sunset Side Channe1 study site (RM 86.9) 149
Figure 71 Sunset Side Channel streamflow versus WSEL rating curve at transect 1 Q Site 151
Figure 72 Sunset Side Channe? streamflow versus mainstem discharge at Sunshine (USGS 15292780) rating curve at transect 1 Q Site 152
Figure 73 Comparison of rating curves for Sunset Side Channel transect 1 Q Site 154
Figure 74 Location of Sunrise Side Channel study site (RM 87.0) 159
Figure 75 Sunrise Side Channel streamflow versus WSEL rating curve at transect 4 Q Site 161
Figure 76 Sunrise Side Channel streamflow versus mainstem discharge at Sunshine (USGS 15292780) rating curve at transect 4 Q Site 162
Figure 77 Comparison of rating curves for Sunrise Side Channel transect 4 Q Site 164
Figure 78 Overview of Birch Creek Slough study site (RM 88.4) 166
Figure 79 Location of Birch Creek Slough study site (RM 88.4) 168
Figure 80 Birch Creek Slough streamflow versus WSEL rating curve at transect 6 Q Site 169
Figure 81 Overview of Trapper Creek Side Channel study site (RM 91.6) 173
Figure 82 Location of Trapper Creek Side Channel study site (RM 91.6) 175
Figure 83 Trapper Creek Side Channe 1 streamflow versus WSEL rating curve at transect 4 Q Site 176
Figure 84 Trapper Creek Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site. 177
Figure 85 Comparison of rating curves for Trapper Creek Side Charnel Transect 4 Q Site 179
Figure 86 Susitna River hydrograph for May - October 1981, 1982, 1983 and 1984 at Sunshine Station (USGS 15292780) 185
LIST OF TABLES Page
Table 1 Task 14 study sites supported by the Physical Description Support Program 3
Table 2 A comparison of 1984 observations used to determine the initial breaching mainstem discharge at Task 14 study sites 20
Table 3 A comparison of flow estimates determined from equations developed from rating curves for contralling mainstem discharges 23
Table 4 A comparison of water surface elevations from transects located within Island Side Channel 81
Table 5 A comparison of water surface elevations from transects located within Mainstem West Bank Side Channel 92
Table 6 A comparison of water surface elevations from transects located within Circular Side Channe1 113
Table 7 A comparison of water surface elevations from transects located within Sauna Side Channe] 125
Table 8 A comparison of water surface elevations from transects located within Sunset Side Channel 156
Table 9 A comparison of water surface elevations from transects located within Trapper Creek Side Channel 182
Table 10 Initia] breaching discharges, controlling discharges and the corresponding stream- flows for the 1984 Task 14 study sites 187
Table 11 Summary of the extent of backwater and the corresponding mainstem discharge for Task 14 study sites 190
Figure A-1 Lower Susitna River Basin lag times referenced to Sunshine Station (USGS 15292780)A-5
Figure C-1 Thalweg profile of the study site at Hooligan Side Channel C-1
Figure C-2 Thalweg profile of the study site at Eagle's Nest Side Channel C-2
Figure C-3 Thalweg profile of the study site at Kroto STough Head C-3
Figure C-4 Thalweg profile of the study site at Rolly Creek C-4
Figure C-5 Thalweg profile of the study site at Bear Bait Side Channel C-5
Figure C-6 Thalweg profile of the study site at Last Chance Side Channel C-6
Figure C-7 Thalweg profile of the study site at Rustic Wilderness Side Channe? C-7
Figure C-8 Thalweg profile of the study site at Caswell Creek C-8
Figure C-9 Thalweg profile of the study site at Island Side Channel C-9
Figure C-10 Thalweg profile of the study site at Mainstem West Bank Side Channel. C-10
Figure C-11 Thalweg profile of the study site at Goose 2 Side Channe C-11
Figure C-12 Thalweg profile of the study site at Circular Side Channel C-12
Figure C-13 Thalweg profile of the study site at Sauna Side Channel C-13
Figure C-14 Thalweg profile of the study site at Sucker Side Channel C-14
Figure C-15 Thalweg profite of the study site at Beaver Dam Slough C-15
Figure C-16 Thalweg profile of the study site at Beaver Dam Side Channet C-16
LIST OF ATTACHMENT FIGURES (Continued). Page
Figure C-17 Thalweg profile of the study site at Sunset Side Channel C-1. 7
Figure C-18 Thalweg profile of the study site at Sunrise Side Channel C-18
Figure C-19 Thalweg profile of the study site at Birch Creek Slough C-19
Figure C-20 Thalweg profile of the study site at Trapper Creek Side Channel C-20
Figure D-1 Cross sectional profile obtained 50 feet upstream of transect 3 at Hooligan Side Channel D-1
Figure D-2 Cross sectional profile obtained at transect 2 of Eagle's Nest Side Channe 1 D-2
Figure D-3 Cross sectional profile obtained at transect 2 of Kroto Slough Head D-3
Figure D-4 Cross sectional profile obtained at transect 2 of Rolly Creek. D-4
Figure D-5 Cross sectional profile obtained at transect 2 of Bear Bait Side Channel D-5
Figure D-6 Cross sectional profile obtained at transect 2 of Last Chance Side Channel D-6
Figure D-7 Cross sectional profile obtained at transect 4 of Rustic Wilderness Side Channel D-7
Figure D-8 Cross sectional profile obtained at transect 4 of Caswell Creek. D-8
Figure D-9 Cross sectional profile obtained at transect 1 of Island Side Channel D-9
Figure D-10 Cross sectional profile obtained at transect 1 A of Island Side Channel D-10
Figure D-11 Cross sectional profile obtained at transect 2 of Island Side Channel D-11
LIST OF ATTACHMENT FIGLIRES (Continued) Page
Figure D-12 Cross sectional profile obtained at transect 3 of Island Side Channel D-12
Figure D-13 Cross sectional profile obtained at transect 4 of Island Side Channel D-13
Figure D-14 Cross sectional profile obtained at transect 4A of Island Side Channel D-14
Figure D-15 Cross sectional profile obtained at transect 5 of Island Side Channel D-15
Figure D-16 Cross sectional profile obtained at transect 6 of Island Side Channel D-16
Figure D-17 Cross sectional profile obtained at transect 1 of Mainstem West Bank Side Channel D-17
Figure D-18 Cross sectional profile obtained at transect 2 of Mainstem West Bank Side Channel D-18
Figure D-19 Cross sectional profile obtained at transect 2A of Mainstem West Bank Side Channe 1 D-19
Figure D-20 Cross sectional profile obtained at transect 3 of Mainstem West Bank Side Channel D-20
Figure D-21 Cross sectional profile obtained at transect 3A of Mainstem West Bank Side Channe1 D-21
Figure D-22 Cross sectional profile obtained at transect 3B of Mainstem West Bank Side Channel D-22
Figure D-23 Cross sectional profile obtained at transect 4 of Mainstem West Bank Side Channe! D-23
Figure D-24 Cross sectional profile obtained at transect 2 of Goose 2 Side Channel D-24
Figure D-25 Cross sectional profile obtained at transect 1 of Circular Side Channel D-25

LIST OF ATTACHMENT FIGURES (Continued)

Figure D-26 Cross sectional profile obtained at transect 2 of Circular Side Channel D-26
Figure D-27 Cross sectional profile obtained at transect 2A of Circular Side Channel D-27
Figure D-28 Cross sectional profile obtained at transect 3 of Circular Side Channel D-28
Figure D-29 Cross sectional profile obtained at transect 4 of Circular Side Channel D-29
Figure D-30 Cross sectional profile obtained at transect 5 of Circular Side Channel D-30
Figure D-31 Cross sectional profile obtained at transect 1 of Sauna Side Channel D-31
Figure D-32 Cross sectional profile obtained at transect 2 of Sauna Side Channel D-32
Figure D-33 Cross sectional profile obtained at transect 3 of Sauna Side Channel D-33
Figure D-34 Cross sectional profile obtained at transect 4 of Sauna Side Channel D-34
Figure D-35 Cross sectional profile obtained at transect 2 of Sucker Side Channel D-35
Figure D-36 Cross sectional profile obtained at transect 5 of Sucker Side Channel [1-36
Figure D-37 Cross sectional profile obtained at transect 1 of Beaver Dam Slough D-37
Figure D-38 Cross sectional profile obtained at transect 4 of Beaver Dam Side Channel [-38
Figure $\mathrm{D}-39$ Cross sectional profile obtained at transect 0 of Sunset Side Channel D-39
Figure D-40 Cross sectional profile obtained at transect 1 of Sunset Side Channel D-40
Figure D-41 Cross sectional profile obtained at transect 2 of Sunset Side Channel 0-41
Figure D-42 Cross sectional profile obtained at transect 3 of Sunset Side channel [-42
LIST OF ATTACHMENT FIGURES (Continued) Page
Figure D-43 Cross sectional profile obtained at transect 4 of Sunset Side Channel. D-43
Figure D-44 Cross sectional profile obtained at transect 5 of Sunset Side Channe1 D-44
Figure D-45 Cross sectional profile obtained at transect 6 of Sunset Side Channel D-45
Figure D-46 Cross sectional profile obtained at transect 4 of Sunrise Side Channel D-46
Figure D-47 Cross sectional profile obtained at transect 2 of Birch Creek Slough. [-47
Figure D-48 Cross sectional profile obtained at transect 6 of Birch Creek Slough D-48
Figure D-49 Cross sectional profile obtained at transect 1 of Trapper Creek Side Channel D-49
Figure D-50 Cross sectional profile obtained at transect 2 of Trapper Creek Side Channe1 D-50
Figure D-51 Cross sectional profile obtained at transect 3 of Trapper Creek Side Channel D-51
Figure D-52 Cross sectional profile obtained at transect 4 of Trapper Creek Side Channel D-52
Figure E-1 WSEL versus mainstem discharge (USGS 15292780) at Hooligan Side Channel 50 feet upstream of transect 3 (Q site) E-1
Figure E-2 WSEL versus mainstem discharge (USGS 15292780) at Eagle's Nest Side Channei transect 2 (Q site) E-2
Figure E-3 WSEL versus mainstem discharge (USGS 15292780) at Kroto Slough Side Channel transect 2 (Q site). E-3
Figure E-4 WSEL versus mainstem discharge \{USGS 15292780) at Bear Bait Side Channel transect 2 (Q site) E-4

LIST OF ATTACHMENT FIGURES (Continued)

Figure E-5 WSEL versus mainstem discharge (USGS 15292780) at Last Chance Side Channel transect 2 (Q site). E-5
Figure E-6 WSEL versus mainstem discharge (USGS 15292780) at Rustic Wilderness Side Channel transect 4 (Q site) E-6
Figure E-7 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channe 1 transect 1 (Q site) E-7
Figure E-8 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 1 A. E-8
Figure E-9 WSEL versus mainstem discharge (USGS 15292780) at Island Side channel transect 2. E-9
Figure E-10 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 3. E-10
Figure E-11 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 4. E-11
Figure E-12 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 4 A. E-12
Figure E-13 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 5. E-13
Figure E-14 WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 6 (Q site) E-14
Figure E-15 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 1 (Q site) E-15
Figure E-16 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 2 E-16
Figure E-17 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channe1 transect 2A E-17
LIST OF ATTACHMENT FIGURES (Continued) Page
Figure E-18 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3. E-18
Figure E-19 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3A. E-19
Figure E-20 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3B E-20
Figure E-21 WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 4. E-21
Figure E-22 WSEL versus mainstem discharge (USGS 15292780) at Goose 2 Side Channel transect 2 (Q site) E-22
Figure E-23 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 1 (Q site) E-23
Figure E-24 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 2. E-24
Figure E-25 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 2 A. E-25
Figure E-26 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 3. E-26
Figure E-27 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 4 (Q site) E-27
Figure E-28 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 5. $\mathrm{E}-28$
Figure E-29 WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channe] head E-29
Figure E-30 WSEL versus mainstem discharge (USGS 15292780) at Sauna Side Channe 1 transect 1 E-30
LIST OF ATTACHMENT FIGURES (Continued) Page
Figure E-31 WSEL versus mainstem discharge (USGS 15292780) at Sauna Side Channel transect 2 (Q site) E-31
Figure E-32 WSEL versus mainstem discharge (USGS 15292780) at Sauna Side Channel transect 3. E-32
Figure E-33 WSEL versus mainstem discharge (USGS 15292780) at Sauna Side ChanneT transect 4. E-33
Figure E-34 WSEL versus mainstem discharge (USGS 15292780) at Sucker Side Channel transect 2 (Q site) E-34
Figure E-35 WSEL versus mainstem discharge (USGS 15292780) at Sucker Side Channel transect 5 (Q site) E-35
Figure E-36 WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Slough transect 1 (Q site) E-36
Figure E-37 WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Side Channe 1 transect 4 (Q site). E-37
Figure E-38 WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Side Channel heãd. E-38
Figure E-39 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect 0. E-39
Figure E-40 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect 1 (Q site) E-40
Figure E-41 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect
2. E-41
Figure E-42 WSEL versus mainstem discharge (USGS15292780) at Sunset Side channel transect3... E-L.
Figure E-43 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect 4. E-43
LIST OF ATTACHMENT FIGURES (Continued) Page
Figure E-44 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect
5. E-44
Figure E-45 WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channe] transect 6. E-45
Figure E-46 WSEL versus mainstem discharge (USGS 15292780) at Sunrise Side Channel transect 4 (Q site) E.46
Figure E-47 WSEL versus mainstem discharge (USGS 15292780) at Birch Creek Slough head E-47
Figure E-48 WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 1 E-48
Figure E-49 WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 2 E-49
Figure E-50 WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 3 E-50
Figure E-51 WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 4 (Q site) E-5I
LIST DF ATTACHMENT TABLES Page
Table A-1 Distance in miles that a flood wave of a given magnitude will travel in a given time. A-4
Table B-1 Comparison of water surface elevations and streamflow, measured at Task 14 study sites, to mean daily mainstem discharge at Sunshine Station (USGS 15292780) B-1
Table C-1 Thalweg profile data obtained at Hooligan Side Channel (RM 35.2) C-21
Table C-2 Thalweg profile data obtained at Eagle's Nest Side Channel (RM 36.2) C-23
Table C-3 Thalweg profile data obtained at Kroto Slough Head (RM 36.3) C-24
Table C-4 Thalweg profile data obtained at Rolly Creek (RM 39.0) C-26
Table C-5 Thalweg profile data obtained at Bear Bait Side Channel (RM 42.9) C-27
Table C-6 Thalweg profile data obtained at Last Chance Side Channel (RM 44.4) C-28
Table C-7 Thalweg profile data obtained at Rustic Wilderness Side Channel (RM 59.5) C-29
Table C-8 Thalweg profile data obtained at Caswell Creek (RM 63.0) C-30
Table C-9 Thalweg profile data obtained at Island Side Channel (RM 63.2) C-32
Table C-10 Thalweg profile data obtained at Mainstem West Bank Side Channel (RM 74.4) C-33
Table C-11 Thalweg profile data obtained at Goose 2 Side Channel (RM 74.8) C-35
Table C-12 Thalweg profile data obtained at Circular Side Channel (RM 75.3) C-36
Table C-13 Thalweg profile data obtained at Sauna Side Channel (RM 79.8) C-38
Table C-14 Thalweg profile data obtained at Sucker Side Channe1 (RM 84.5). C-39
LIST OF ATTACHMENT TABLES (Continued) Page
Table C-15 Thalweg profile data obtained at Beaver Dam Slough (RM 86.3). C- -40
Table C-16 Thalweg profile data obtained at Beaver Dam Side Channel (RM 86.3). C-41
Table C-17 Thalweg profile data obtained at Sunset Side Channel (RM 86.9) C-42
Table C-18 Thalweg profile data obtained at Sunrise Side Channel (RM 87.0). C-44
Table C-19 Thalweg profile data obtained at Birch Creek Slough (RM 88.4) C-45
Table C-20 Thalweg profile data obtained at Trapper Creek Side Channel (RM 91.6) C-47
Table D-1 Cross sectional profile data obtained at Hooligan Side Channel 50 feet upstream of transect 3 D-53
Table D-2 Cross sectional profile data obtained at Eagle's Nest Side Channel transect 2 (RM 36.2) D-54
Table D-3 Cross sectional profile data obtained at Kroto Slough Head transect 2 (RM 36.3). D-56
Table D-4 Cross sectional profile data obtained at Rolly Creek transect 2 (RM 39.0) D-57
Table D-5 Cross sectional profile data cbtained at Bear Bait Side Channel transect 2 (RM 42.9) D-59
Table D-6 Cross sectional profile data obtained at Last Chance Side Channel transect 2 (RM 44.4) D-60
Table D-7 Cross sectional profile data obtained at Rustic Wilderness Side Channel transect 4 (RM 59.5) D-61
Table D-8 Cross sectional profile data obtained at Caswell Creek transect 4 (RM 63.0) D-62
Table D-9 Cross sectional profile data obtained at Island Side Channel transect 1 (RM 63.2) [-63
Table D-10 Cross sectional profile data obtained at Island Side Channel transect 1A (RM 63.2) D-65
LIST OF ATTACHMENT TABLES (Continued) Page
Table D-11 Cross sectional profile data obtained at Island Side Channel transect 2 (RM 63.2). D-67
Table D-12 Cross sectional profile data obtained at Island Side Channel transect 3 (RM 63.2) D-69
Table D-13 Cross sectional profile data obtained at Island Side Channel transect 4 (RM 63.2) D-71
Table D-14 Cross sectional profile data obtained at Island Side Channel transect 4A (RM 63.2) D-73
Table D-15 Cross sectional profile data obtained at Island Side Channel transect 5 (RM 63.2) D-75
Table D-16 Cross sectional profile data obtained at Island Side ChanneT transect 6 (RM 63.2) D-77
Table D-17 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 1 (RM 74.4) D-79
Table D-18 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 2 (RM 74.4) [. 81
Table D-19 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 2 A. D-83
Table D-20 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 3 (RM 74.4) D-85
Table D-21 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 3A (RM 74.4) D-87
Table D-22 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 3B (RM 74.4) D-89
Table D-23 Cross sectional profile data obtained at Mainstem West Bank Side Channel transect 4 (RM 74.4) D-90
TabTe D-24 Cross sectional profile data obtained at Goose 2 Side Channel transect 2 (RM 74.8) D-92
Table D-25 Cross sectional profile data obtained at CircuTar Side Channel transect 1 (RM 75.3) D-93
LIST OF ATTACHMENT TABLES (Continued) Page
Table D-26 Cross sectional profile data obtained at Circular Side Channel transect 2 (RM 75.3). D-95
Table D-27 Cross sectional profile data obtained at Circular Side Channel transect 2A (RM 75.3) D-97
Table D-28 Cross sectional profile data obtained at Circular Side Channel transect 3 (RM 75.3). D-99
Table D-29 Cross sectional profile data obtained at Circular Side Channel transect 4 (RM 75.3) D-101
Table D-30 Cross sectional profile data obtained at
Circular Side Channel transect 5 (RM 75.3). D-103
Table D-31 Cross sectional profile data obtained at Sauna Side Channe1 transect 1 (RM 79.8) D-105
Table D-32 Cross sectional profile data obtained at Sauna Side Channel transect 2 (RM 79.8) D-106
Table D-33 Cross sectional profile data cbtained at
Sauna Side Channel transect 3 (RM 79.8) D-108
Table D-34 Cross sectional profile data obtained at Sauna Side Channel transect 4 (RM 79.8) D-110
Table D-35 Cross sectional profile data obtained at Sucker Side channel transect 2 (RM 84.5) D-112
Table D-36 Cross sectional profile data obtained at Sucker Side Channel transect 5 (RM 84.5) D-113
Table D-37 Cross sectionat profile data obtained at Beaver Dam Slough transect 1 (RM 96.3) D-114
Table D-38 Cross sectional profile data obtained at Beaver Dam Side Channel transect 4 (RM 86.3). D-115
Table D-39 Cross sectional profile data obtained at Sunset Side Channel transect 0 (RM 86.9) D-116
Table D-40 Cross sectional profile data obtained at Sunset Side Channel transect 1 (RM 86.9) D-118
Table D-41 Cross sectional profile data obtained at Sunset Side Channel transect 2 (RM 86.9) D-120
Table D-42 Cross sectional profile data obtained at Sunset Side Channe1 transect 3 (RM 86.9) D-122
Table D-43 Cross sectional profile data obtained at Sunset Side Channel transect 4 (RM 86.9) D-124
Table D-44 Cross sectional profile data obtained at Sunset Side Channel transect 5 (RM 86.9) D-126
Table D-45 Cross sectional profile data obtained at Sunset Side ChanneT transect 6 (RM 86.9) D-128
Table D-46 Cross sectional profite data obtained at Sunrise Side Channel transect 4 (RM 87.0) D-130
Table D-47 Cross sectional profile data obtained at Birch Creek Slough transect 2 (RM 88.4) D-131
Table D-48 Cross sectional profile data obtained at Birch Creek Slough transect 6 (RM 88.4) D-132
Table D-49 Cross sectional profile data obtained at Trapper Creek Side Channel transect 1 (RM 91.6) D-133
TabTe D-50 Cross sectional profile data obtained at Trapper Creek Side Channel transect 2 (RM $91.6)$ D-135
Table D-51 Cross sectional profile data obtained at Trapper Creek Side Channel transect 3 (RM 91.6) D-137
Table D-52 Cross sectional profile data obtained at Trapper Creek Side Channel transect 4 (RM 91.6) D-139

The primary objective of this study was to provide hydraulic support to the Task 14 lower river Resident and Juvenile Habitat (RJHAB) modelling study. Correspondingly, the specific objectives of the study were: 1) to evaluate the response of stage and streamflow at Task 14 study sites to changes in mainstem discharge, 2) to describe the general characteristics of each Task 14 study site, 3) to describe the initial and controlling breaching discharges for each Task 14 study site, and 4) to describe the backwater conditions present within each Task 14 study site as a function of mainstem discharge.

2.0 METHODS

2.1 Site Selection

The Task 14 study sites are presented in Table 1 and Figure 1. These study sites were selected by Task 14 study personnel to meet the specific objectives of Task 14. Refer to the Task 14 summary report for the criteria used to select these study sites.

2.2 Field Data Collection

Stage, discharge, and channel geometry data were collected at each study site to evaluate the effect that mainstem discharge has on stage, streamflow, and backwater. Specific methods used in the field collection of these data are described below.

2.2.1 Stage

Stage data (water surface elevations) were obtained from staff gage measurements and surveyed water surface elevations. The specific procedures for obtaining stage data are presented in the ADF\&G procedures manual (ADF\&G 1984). Water surface elevations (WSEL) were determined from staff gage observations and surveys and are relative to the temporary bench mark (TBM) established for each study site. Because each TBM was assigned an elevation of 100.00 (feet), the resultant water surface elevations are relative to 100.00 feet and are not "true water surface elevations" tied into project datum.

Table 1. Task 14 study sites supported by the Physical Description Support Program.

Study Site
River Mile

Hooligan Side ChanneT 35.2
Eagle's Nest Side Channel 36.2
Kroto Slough Head 36.3
Rolly Creek 39.0
Bear Bait Side Channel 42.9
Last Chance Side Channe1 44.4
Rustic Wilderness Side Channel 59.5
Caswell Creek 63.0
Island Side Channel ${ }^{1} 63.2$
Mainstem West Bank Side Channe1 ${ }^{1} \quad 74.4$
Goose 2 Side Channe1 74.8
$\begin{array}{ll}\text { Circular Side Channel }{ }^{1} & 75.3\end{array}$
$\begin{array}{ll}\text { Sauna Side Channel } & \\ & 79.8\end{array}$
Sucker Side Channe1 89.5
Beaver Dam Slough and Side Channel 86.3
$\begin{array}{ll}\text { Sunset Side Channel }{ }^{1} & 86.9\end{array}$
$\begin{array}{ll}\text { Sunrise Side Channe1 } & 87.0\end{array}$
Birch Creek 88.4
Trapper Creek Side Channe ${ }^{1} \quad 91.6$
1 These side channel study sites were also included in the Task 36 study.

2.2.2 Streamflow

Streamflow measurements were collected from streamflow stations located within each of the study sites. These streamflow stations were located on selected RJHAB modelling transects. Standard USGS streamflow techniques employing either Price $A A$ or Pygmy flow meters were used to obtain the streamflow (discharge) measurements. In order to develop rating curves, stage measurements were also obtained at the time of each streamflow measurement. Specific procedures utilized in obtaining streamflow measurements are described in the ADF\&G procedures manual (ADF\&G 1984).

2.2.3 Channel Geometry

Thalweg and cross section profiles were determined at each Task 14 study site.

2.2.3.1 Thalweg Profile

Thalweg profiles were determined for each of the Task 14 study sites. These thalweg profiles represent the "best" determination of the channel thalweg by the visual assessment of field crews. Surveying for the development of the thalweg profile began at either the mouth of the side channel or the first hydraulic control downstream of the study site. The thalweg survey continued upstream to the first hydraulic control above the study site or to the head of the side channel or side slough.

Thalweg data were collected using the standard surveying techniques of differential leveling with significant morphological features selected as thalweg points (i.e., riffles, pools). At each of the thalweg points (or stations), the streambed elevation, water surface elevation, and distance between thalweg points was determined. All thalweg elevations are relative to the assigned elevation of the TBM established at each study site (100.00 ft).

When applicable, cross section profile data were also used to develop the thalweg profiles. The lowest elevation obtained from a cross section profile was compared to the thalweg elevation obtained at the cross section. When a difference in elevation occurred between the thalweg and cross section profile, the elevation from the cross section was used. The greatest difference in elevation detected was 0.3 ft .

Specific procedures for the collection of thalweg survey data are presented in the ADF\&G procedures manual (ADF\&G 1984).

2.2.3.2 Cross Section Profile

Cross sectional profiles were determined for each staff gage location within every Task 14 study site using the standard surveying techniques of differential leveling. Streambed elevations, water surface elevations, and horizontal distances from bank headpins were obtained for each cross sectional profile. Specific survey techniques and procedures used in the collection of cross sectional data are presented in the ADF\&G Procedures Manual (ADF\&G, 1984).

2.3 Data Analysis

2.3.1 Stage and Streamflow

Water surface elevation (WSEL) data obtained at each staff gage location were plotted against corresponding mean daily Susitna River discharge as determined by the United States Geological Survey (USGS) from their Sunshine gaging station (USGS 15292780). Due to the distance of several study sites from the Sunshine gaging station, several mainstem discharge values were determined from a time lag analysis provided by E.W. Trihey \& Associates (see Attachment A).

For each plot, a least squares regression equation was calculated when sufficient data were available. At several gage sites, more than one function was evident on a plot as illustrated by a change in the slope of the line drawn between the data points. For these cases, separate regression equations were calculated for each function. These regression equations enable estimates of water surface elevation to be determined from the range of USGS mainstem discharge values included in the plots.

Water surface elevations (WSEL) obtained from staff gages located at each streamflow measurement station were also plotted against the corresponding measured study site streamflow data ($Q_{S C}$). Several of the plots have more than one function as illustrated by a change in the slope of the line drawn between the data points. Under these cases, a
least squares equation is included for each function when sufficient data was available. These regression equations enable an estimate of streamflow from observed water surface elevation data.

Plots of measured streamflow (Q_{SC}) versus mean daily mainstem discharge $\left(Q_{m S}\right)$ at the USGS Sunshine gaging station (USGS 15292780) were also developed. These plots include a least squares regression equation for each function. These equations enable site streamflow to be estimated from mean, daily mainstem discharge values (USGS 15292780).

2.3.2 Initial Breaching and Controlling Discharges

The breaching phenomenon has been partitioned into two discharge events; an initial breaching discharge and controlling breaching discharge event.

2.3.2.1 Initial Breaching Discharges

The mainstem discharge at Sunshine (USGS 15292780) required to initially overtop the head portions of each Task 14 study site is referred to as the "initial breaching discharge". This discharge was determined by field observations, aerial photographs, and stage/discharge relationships established for the site and is referenced to mean daily discharges as recorded at Sunshine.

2.3.2.2 Controlling Breaching Discharge

As progressively higher levels of mainstem discharge overtop the head portion of the study site the hydraulic conditions of the site become governed by mainstem discharge. The mainstem discharge at which the hydraulics become governed by mainstem discharge is referred to as the controlling breaching discharge.

To determine the controlling breaching discharge of each study site, the water surface elevation versus mainstem discharge plots were evaluated to identify changes in the relationship between stage and mainstem discharge from base flow conditions (unbreached condition) to the controlled breached condition. The base flow or unbreached condition is generally characterized in these plots as having minimal change in stage (WSEL) over a relatively large range of mainstem discharge whereas the controlled breached condition is generally characterized by larger changes in stage (WSEL) over corresponding increases in mainstem discharges. The initial point where stage begins to increase in proportion to corresponding increases in mainstem discharge is the controlling discharge.

Stage data is not always available at the point that the hydraulic condition is initially controlled by mainstem discharge. Therefore, à combined interpretation of stage data from each staff gage location in the study site, as well as a knowledge of the initial breaching discharge, are used to arrive at controlling breaching discharges.

2.3.3 Backwater

A generic analysis of backwater was performed for each study site utilizing available stage and channel geometry data. For the purposes of this report, a backwater area is defined as a water surface having the same or very similar water surface elevation between two or more points of measurement. Backwater was not strictly evaluated on the basis of water velocity.

To determine backwater conditions for six study sites (Island, Mainstem West Eank, Circular, Sauna, Sunset and Trapper Creek Side Channels) a table of the 1984 stage data for each study site was formatted to allow comparisons of water surface elevations over corresponding mainstem discharges for each of the staff gage locations in the study site. These six side channels were also included in the Task 36 modelling study and each consisted of several stage monitoring stations allowing a comparison of water surface elevations. The thalweg profile for the study site was also used to estimate the linear extent of the backwater at each study site where applicable.

2.3.4 Channel Geometry

Channel geometry data collected in support of Task 14 included both tha? weg and cross sectional profile data.

2.3.4.1 Thalweg Profile

Thalweg profiles consist of a series of streambed and water surface elevations determined for the deepest part of the stream channel, at the time of the survey, traversing the length of the study site. Water surface elevations were determined by adding the water depth at the thalweg point to the elevation surveyed for the thalweg point. Water was not always present at the time of the thalweg survey, and therefore may be absent from the thalweg profile. When available, streamflow were measured on the same date as the thalweg survey. In some instances, streamflow measurements could not be obtained due to low flow conditions and the flow was estimated. In either case, flows are indicated on the thalweg profile figure.

Streambed gradients were determined for each thalweg by dividing the difference between the thalweg elevation of the downstream portion of the thalweg profile and the thalweg elevation of the upstream portion, by the distance between these two points.

2.3.4.2 Cross Section Profile

Cross section profiles consist of a series of elevations perpendicular to the stream channel, beginning from the left bank (looking upstream) and continuing to the right bank, including all major changes in channel topography. As such, cross section data collected in this study were graphed as streambed elevations versus horizontal distance.

Cross sectional profiles are used to support modelling studies and to assist in determining the hydraulic conditions governing the study site. They were also used to assist in determination of the lowest channel elevation in developing thalweg profiles.

Abstract

3.0 RESULTS

\subsection*{3.1 Hooligan Side Channel (RM 35.2)}

3.1.1 Site Description

Hooligan Side Channel is located on the east bank of the main channel of the Susitna River at river mile 35.2 and is part of a side channel network (Figure 1). It is approximately 1.3 miles in length and is separated from the mainstem by a large vegetated island. The head of Hooligan Side Channel connects directly to the mainstem Susitna River whereas the mouth adjoins a side channel network. Breaching flows occurring in Hooligan Side Channel result from overtopping of the head directly by the main channel Susitna River. Prior to breaching, flow in this side channel is greatly reduced although several large pools remain.

During the 1984 open water field season the study site selected for Hooligan Side channel was located in the upper portion of the side channel (Figure 2). Stage was monitored at one location and streamflow was measured at this stage monitoring station (Figure 3). Charnel geometry data obtained from Hooligan Side Channel includes cross section and thalweg profiles. A cross section profile was obtained from the stage monitoring station and a thalweg profile was determined for that portion of the side channel that included the study site continuing upstream to the head of the side channel.

Figure 2. Overview of Hooligan (RM 35.2) and Eagle's Nest Side Channel (RM 36.2).

Figure 3. Location of Hooligan Side Channel study site (RM 35.2).

3.1.2 Stage/Discharge Relationship

In Hooligan Side Channel, measurements of water surface elevation were obtained at one stage monitoring station located 50 feet upstream from Transect 3 of the Task 14 study site. Recorded water surface elevations and the corresponding mean daily mainstem discharge at Sunshine (USGS 15292780) are presented in Attachment Table B-1. An initial review of this water surface elevation versus mainstem discharge plot indicated a substantial amount of scatter in the data. A lag time analysis was used to convert ten mean daily mainstem discharge values to instantaneous discharges. The instantaneous discharges reflect the lag time of the discharge from Sunshine Station (USGS 15292780) to Hooligan Side Channel. A plot of the water surface elevations versus mainstem discharges is presented in Attachment Figure E-1.

Measurements of streamflow in Hooligan Side Channel obtained at the stage monitoring station and the corresponding water surface elevations and mainstem discharges at Sunshine including instantaneous time lag discharges are presented in Attachment Table B-1. Plots of streamflow versus water surface elevation and streamflow versus mainstem discharge are presented in Figures 4 and 5, respectively.

3.1.3 Mainstem Breaching and Controlling Discharges

Breaching of Hooligan Side Channel is the result of overtopping of the head directly by the mainstem Susitna River. Field observations noted that the head of this side channel was barely breached at a mean daily

Figure 4. Hooligan Side Channel streamflow versus WSEL rating curve from Q site located 50 feet upstream from transect 3.

Figure 5. Hooligan Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve from Q site located 50 feet upstream from transect 3.
mainstem discharge of $23,500 \mathrm{cfs}$ and dry at $22,700 \mathrm{cfs}$ (Table 2). The mainstem discharge of $23,100 \mathrm{cfs}$ is the suggested initial breaching discharge although this side channel may be initially breached at some discharge between $22,700 \mathrm{cfs}$ and $23,500 \mathrm{cfs}$.

To evaluate the influence of mainstem discharge on the hydraulics of this side channel, a comparison of the rating curves developed for the streamflow station was performed (Figure 6). Due to limited stage data collected near the breaching flow, it was not possible to precisely determine the point at which the channel hydrautics are governed by the mainstem. The stage/discharge relationship depicted in Figure 6 was developed from available field data and from the experience gained at other sites. Using this analysis the controlling discharge was estimated at $23,500 \mathrm{cfs}$.

According to the water surface elevation versus streamflow rating curve (Figure 4), a side channel streamflow of 48.6 cfs has been estimated to occur at a mainstem discharge of $23,500 \mathrm{cfs}$. This estimated flow is slightly higher than the streamflow estimate (46.5 cfs) derived from the streamflow versus mainstem discharge rating curves (Figure 5) at a mainstem discharge of $23,500 \mathrm{cfs}$. Table 3 summarizes the estimates of flow as determined from the rating curves applicable above the controlling mainstem discharges.

Table 2. A comparison of 1984 observations used to determine the initial breaching mainstem discharge at Task 14 study sites.

Location	RM	Date	Head Condition	USGS Mean, Daily Discharge at Sunshine (cfs)	Source of Observation
Hooligan Side Channel	35.2	$\begin{aligned} & 840912 \\ & 840911 \end{aligned}$	Dry Barely Breached	$\begin{aligned} & 22,700 \\ & 23,500 \end{aligned}$	Field Observation Field Observation
Eagle's Nest Side Channel	36.2	$\begin{aligned} & 840926 \\ & 841009 \\ & 831025 \end{aligned}$	Breached Breached Dry	$\begin{aligned} & 19,000 \\ & 15,000 \\ & 13,900 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Kroto Slough	36.3	$\begin{aligned} & 840829 \\ & 840907 \\ & 830906 \\ & 840531 \end{aligned}$	Breached Dry Breached Dry	$\begin{aligned} & 47,600 \\ & 25,900 \\ & 36,600 \\ & 31,000 \end{aligned}$	Field Observation Field Observation Aerial Photography Field Observation
Bear Bait Side Channel	42.9	$\begin{aligned} & 840907 \\ & 840724 \\ & 830906 \end{aligned}$	Dry Breached Breached	$\begin{aligned} & 25,900 \\ & 55,200 \\ & 36,600 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Last Chance Side Channel	44.4	$\begin{aligned} & 840912 \\ & 840911 \\ & 830916 \end{aligned}$	Barely Breached Almost Breached Dry	$\begin{aligned} & 22,700 \\ & 23,500 \\ & 22,000 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Rustic Wilderness Side Channel	59.5	$\begin{aligned} & 841001 \\ & 840917 \\ & 830916 \end{aligned}$	Almost Breached Barely Breached Breached	$\begin{aligned} & 18,700 \\ & 20,400 \\ & 22,000 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Island Side Channel	63.2	840915 840831 830906	Dry Breached Barely Breached	$\begin{aligned} & 22,300 \\ & 38,000 \\ & 36,600 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Mainstem West Bank Side Channe]	74.4	$\begin{aligned} & 840930 \\ & 840926 \\ & 830916 \\ & 841001 \end{aligned}$	Dry Barely Breached Breached Dry	$\begin{aligned} & 17,800 \\ & 19,000 \\ & 22,000 \\ & 18,700 \end{aligned}$	Field Observation Field Observation Aerial Photograph Field Observation
Coose 2 Side Channel	74.8	$\begin{aligned} & 840902 \\ & 840913 \\ & 830906 \end{aligned}$	Barely Breached Dry Breached	$\begin{aligned} & 32,000 \\ & 22,700 \\ & 36,600 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Circular Side Channel	75.3	$\begin{aligned} & 840830 \\ & 840902 \\ & 830906 \\ & 930916 \end{aligned}$	Breached Dry Breached Dry	$\begin{aligned} & 40,800 \\ & 32,000 \\ & 36,600 \\ & 22,000 \end{aligned}$	Field Observation Field Observation Aerial Photograph Aerial Photograph
Sauna Side channe?	79.8	$\begin{aligned} & 840830 \\ & 840914 \\ & 830906 \end{aligned}$	Barely Breached Dry Almost Breached	$\begin{aligned} & 40,800 \\ & 24,000 \\ & 36,600 \end{aligned}$	Field Observation Field Observation Aerial Photograph
Sucker Side Channel	84.5	$\begin{aligned} & 840914 \\ & 840901 \\ & 840902 \\ & 830906 \\ & 830916 \end{aligned}$	Dry Barely Breached Barely Breached Breached Dry	$\begin{aligned} & 24,000 \\ & 35,000 \\ & 32,000 \\ & 36,600 \\ & 22,000 \end{aligned}$	Field Observation Field Observation Field Observation Aerial Photograph Aerial Photograph
Beaver Dam Side Channe ${ }^{\top}$	86.3	$\begin{aligned} & 840822 \\ & 840818 \\ & 840829 \\ & 830906 \\ & 830827 \end{aligned}$	Breached Dry Breached Dry Breached	$\begin{aligned} & 54,300 \\ & 45,400 \\ & 47,600 \\ & 36,600 \\ & 58,800 \end{aligned}$	Field Observation Field Observation Field Observation Aerial Photograph Aerial Photograph

Table 2 (Continued).

Location	RM	Date	Head Condition	USGS Mean, Daily Discharge at Sunshine (cfs)	Source of Observation
Sunset Side Channe 1	86.9	$\begin{aligned} & 840902 \\ & 830906 \\ & 830916 \end{aligned}$	Barely Breached Breached Dry	$\begin{aligned} & 32,000 \\ & 36,600 \\ & 22,000 \end{aligned}$	Field Observation Aerial Photograph Aerial Photograph
Sunrise Side Channel	87.0	$\begin{aligned} & 840818 \\ & 840902 \\ & 840906 \\ & 840916 \end{aligned}$	Breached Dry Breached Dry	$\begin{aligned} & 45,400 \\ & 32,000 \\ & 36,600 \\ & 22,000 \end{aligned}$	Field Observation Field Observation Aerial Photograph Aerial Photograph
Birch Creek Slough	88.4	$\begin{aligned} & 840812 \\ & 840713 \\ & 840822 \\ & 830827 \\ & 840727 \end{aligned}$	Barely Breached Dry Barely Breached Breached Barely Breached	$\begin{aligned} & 54,1001 \\ & 52,001^{1} \\ & 54,200 \\ & 58,800 \\ & 57,900^{1} \end{aligned}$	Field Observation Field Observation Field Observation Aerial Photograph Aerial Photograph
Trapper Side Channel	91.6	$\begin{aligned} & 840822 \\ & 840911 \\ & 830906 \\ & 830916 \end{aligned}$	Breached Dry Breached Dry	$\begin{aligned} & 54,300 \\ & 23,500 \\ & 36,600 \\ & 22,000 \end{aligned}$	Field Dbservation Field Observation Aerial Photograph Aerial Photograph

[^0]

Figure 6. Comparison of rating curves for Hooligan Side Channel Q site located 50 feet upstream from transect 3 .

Table 3. A comparison of streamflow estimates determined from equations developed from water surface elevation versus flow and flow versus mainstem discharge rating curves for the controlling discharge.

Site	Controlling ${ }^{\text {a }}$ Discharge	Rat Flow Es at Contro WSEL vs Streamflow	$\begin{aligned} & \text { urve } \\ & \text { te (cfs) } \\ & \text { Discharge } \\ & \text { Streamftow } \\ & \text { vs } Q_{\text {ms }} \end{aligned}$
Hooligan Side Channel	23,500	48.6	46.5
Eagle's Nest Side Channel	15,000	-.-b	_- b
Kroto Slough Head	38,000	55.4	67.3
Bear Bait Side Channel	_-_d	-_b	_. ${ }^{\text {b }}$
Last Chance Side Channel	24,000	-_b	1.3
Rustic Wilderness Side Channel	20,400	-. b	-_b
Island Side Channel	35,000	43.5	68.8
Mainstem West Bank Side Channel	19,600	$5.7{ }^{\text {c }}$	$5.7{ }^{\text {c }}$
Coose 2 Side Channel	32,000	26.3	21.7
Circular Side Channel	36,000	26.8	26.8
Sauna Side Channel	38,000	22.5	19.9
Sucker Side Channel TR2 TR5	29,000	$\begin{aligned} & 10.0 \\ & 24.5 \end{aligned}$	$\begin{aligned} & 10.2 \\ & 12.1 \end{aligned}$
Beaver Dam Side Channel	47,600	7.1	6.2
Beaver Dam Stough	__d	_-b	__b
Sunset Side Channel	32,000	45.8	41.4
Sunrise Side Channel	36,000	29.2	21.1
Birch Creek Slough	_-d	-_b	-_b
Trapper Creek Side Channel	44,000	$31.4{ }^{\text {c }}$	$31.4{ }^{\text {c }}$

a The controlling discharge is the mean, daily mainstem discharge at Sunshine (USCS 15292780) required to govern the hydraulic characteristics of side channel and side slough habitats.
b Insufficient information is available to estimate streamflow at the controling discharge.
c These stream flow values are actual measurements of discharge and are not estimated values.
d Insufficient information is available to determine the controlling discharge.

3.1.4 Channel Geometry

3.1.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Hooligan Side Channel during a non-breaching mainstem discharge of $19,600 \mathrm{cfs}$ and a side channel flow estimated to be less than 1 cfs . The thalweg survey data are presented in Attachment Table C-1 with the resultant thalweg profile being presented in Attachment Figure C-1. The thalweg profile extends from the head of the side channel downstream to 350 feet below transect 1 . The streambed gradient for the portion of Hooligan Side Channel included in the thalweg profile was 8.9 feet/mile.

3.1.4.2 Cross Section Profile

Cross sectional data were obtained at the only stage monitoring station located in Hooligan Side Channel during the 1984 open water season. The stage monitoring station was located approximately 50 feet upstream of transect 3 (Attachment Figure C-1). The cross sectional data are presented in Attachment Table D-1 with the resulting cross section presented in Attachment Figure D-1.

3.1.5 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure C-1) data, an area of backwater was not observed to occur in the Hooligan Side Channel study site. Pooling was
observed to occur between transects 2 and 5 during non-breaching mainstem discharges. This pooling is a result of the hydraulic control located between transects 1 and 2.

The Hooligan Side Channel study site was located near the upper portion of the side channel (refer to Section 3.1.1 of this memorandum) therefore observations of backwater occurring at the mouth of the side channel were not obtained in 1984.

3.2 Eagle's Nest Side Channel (RM 36.2)

3.2.1 Site Description

Eagle's Nest Side Channel is located on the east bank of the main channel of the Susitna River at river mile 36.2. It is approximately three miles in length and is separated from the mainstem by a network of side channels and vegetated islands. The head and mouth of the side channel connect directly to the mainstem Susitna River. Breaching of this side channel results from overtopping of the head directly by the mainstem Susitna River. During the 1984 open water field season the study site selected for Eagle's Nest Side Channel was 496 feet in length and was located in the upper portion of the side channel (Figure 2). Stage was monitored at one location and streamflow was measured at this stage monitoring station (Figure 7). Channel geometry data obtained from the side channel included cross section and thalweg profiles. A cross section profile was obtained at the stage monitoring station and a

Figure 7. Location of Eagle's Nest Side Channel study site (RM 36.2).
thalweg profile was determined for that portion of the side channel beginning at the study site and continuing upstream to the head.

3.2.2 Stage/Discharge Relationship

Measurements of the water surface elevations obtained at the stage monitoring station in Eagle's Nest Side Channel and the mean daily mainstem discharge at Sunshine (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. A plot of these water surface elevations versus mainstem discharges is presented in At,tachment Figure E-2.

In Eagle's Nest Side Channel only one measurement of streamflow was obtained at the stage monitoring station (Figure 7). The streamflow measurements obtained at this side channel and the corresponding water surface elevations are presented in Attachment Table R-1. Due to the lack of streamflow measurements, water surface elevation versus flow and flow versus mainstem discharge rating curves were not developed.

3.2.3 Mainstem Breaching and Controlling Discharges

The breaching of Eagle's Nest Side Channel occurs from overtopping of the head directly by the mainstem Susitna River. This side channel has been observed breached at a mainstem discharge of $15,000 \mathrm{cfs}$ (Table 2). During this field observation approximately 0.5 ft of water was observed flowing over the head. A review of aerial photographs of the side channel indicated that the head was dry at a mainstem discharge
of 13,600 cfs. From the field observations an initial breaching discharge of $14,000 \mathrm{cfs}$ has been selected for this side channel although the head may actually be initially breached at a mainstem discharge between $13,600 \mathrm{cfs}$ and $15,000 \mathrm{cfs}$.

Stage data was not collected at mainstem discharges below $15,000 \mathrm{cfs}$. The lack of stage data precludes an evaluation of baseflow (unbreached) hydraulics of this side channel. From the stage data presented in the water surface elevation versus mainstem discharge plot (Attachment Figure E-2) it is estimated that the hydraulics of this side channel are controlled at a mainstem discharge of approximately $15,000 \mathrm{cfs}$.

3.2.4 Channel Geometry

3.2.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Eagle's Nest Side Channel during a breaching mainstem discharge of $19,000 \mathrm{cfs}$ and a measured side channe1 flow of 21.2 cfs . The survey data are presented in Attachment Table $\mathrm{C}-2$ with the resultant thalweg profile presented in Attachment Figure $C-2$. The thalweg profile includes the study site and extends 450 feet upstream of transect 4. The streambed gradient for the portion of Eagle's Nest Side Channei included in the thalweg profile was 8.9 feet/mile.

3.2.4.2 Cross Section Profile

Cross sectional data were recorded at the only stage monitoring station located in Eagle's Nest Side Channel. This stage monitoring station was located on transect 2. The cross sectional data are presented in Attachment Table $D-2$ with the resulting cross section presented in Attachment Figure D-2.

3.2.5 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure C-2) data, an area of backwater was not observed to occur in the Eagle's Nest Side Channel study site. A large pool exists on the upper portion of the study site during non-breaching mainstem discharges as a result of the hydraulic control located between transects 2 and 3. As with Hooligan Side Channel, the Eagle's Nest Side Channel study site was located in the upper portion of the side channel (refer to section 3.2 .1 of this report) therefore observations of backwater occurring at the mouth of the side channel were not obtained in 1984.

3.3 Kroto Slough Head (RM 36.3)

3.3.1 Site Description

Kroto Slough is located on the west bank of the main channel of the Susitna River at river mile 36.3 (Figure 8). The slough consists of a

Figure 8. Overview of Kroto Slough Head (RM 36.3).
meandering channel approximately 7.8 miles in length. The mouth of the slough adjoins the Yentna River approximately 1.7 miles upstream from the mouth of the Yentna River. The head of Kroto Slough connects with a side channel of the Susitna River. Breaching flows occurring in Kroto Slough result from overtopping of the head by the adjoining side channel. Prior to breaching, flow in Kroto Slough is greatly reduced and the channel consists of a series of pools. During the 1984 open water field season the Kroto Slough study site was located in the upper portion of the slough.

Stage was monitored at one location in Kroto Slough and streamflow was measured at this stage monitoring station (Figure 9). Channel geometry data obtained from Kroto Slough included a cross section and thalweg profile. The cross section profile was obtained at the stage monitoring station and the thalweg was determined for that portion of the slough from the study site upstream to the head.

3.3.2 Stage/Discharge Relationship

Measurements of water surface elevations in Kroto Slough were obtained at the stage monitoring station which was located at transect 2 of the study site. The recorded water surface elevations and the corresponding mean daily mainstem discharge at Sunshine (USGS 15292780) are presented in Attachment Table B-1. A plot of the water surface elevations versus mainstem discharge is presented in Attachment Figure E-3. A time lag analysis was applied to three of the mainstem discharges and the

Figure 9. Location of Kroto Slough Head study site (RM 36.3).
resulting instantaneous mainstem discharges, rather than the mean daily discharges, are included in the water surface elevation versus mainstem discharge plot.

Streamflow measurements obtained in Kroto Slough at the stage monitoring station and corresponding water surface elevations are presented in Attachment Table B-1. A plot of the streamflow and water surface elevations was developed and is presented in Figure 10. Also streamflow data plotted against mainstem discharge is presented in Figure 11.

3.3.3 Mainstem Breaching and Controlling Discharges

Insufficient field data is available to determine precisely the breaching and controlling discharge for Kroto Slough. Recorded field observations indicated that the channel was breached at 36,600 cfs and non-breached at 31,000 cfs (Table 2). No additional information is available at discharges between 31,000 and $36,600 \mathrm{cfs}$.

To estimate the controling discharge it was assumed that the stage/discharge relationship (Attachment Figure E-3) for the nonbreached condition was nearly horizontal. This assumption is based on field observations and from reviewing data collected at other side channel study sites. A controlling discharge, of $38,000 \mathrm{cfs}$, was estimated from the stage/discharge curve as the point of intersection of the assumed non-breached condition and determined breached conditions of the stage/discharge relationship. It is also estimated that the initial

Figure 10. Kroto Slough Head streamflow versus WSEL rating curve at transect 2 Q Site.

Figure 11. Kroto Slough Head streamflow versus mainstem discharge (cfs) at Sunshine Station (USGS 15292780) rating curve at transect 2 Q site.
breaching discharge should occur at approximately 2,000 cfs below the controlling discharge, or at $36,000 \mathrm{cfs}$.

The rating curves developed for Kroto Slough were compared to evaluate the influence of mainstem discharge on the hydraulic condition of the slough (Figure 12) Using the equation developed for the water surface elevation versus streamflow rating curve at transect 2, a streamflow of 56.6 cfs was estimated to occur at the controlling discharge of 38,000 cfs. This streamflow estimate is less than the flow estimate of 67.3 cfs which was determined using the flow versus mainstem discharge rating curve.

3.3.4 Channel Geometry

3.3.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Kroto Slough during a non-breaching mainstem discharge of 19,600 cfs and an estimated slough flow of less than 1 cfs . The survey data are presented in Attachment Table C-3, with the resultant thalweg profile presented in Attachment Figure C-3. The thalweg profile includes the study site and the portion of the slough extending from the head downstream 300 feet below transect 1 . The streambed gradient for the portion of Kroto Slough included in the thalweg profile was 7.0 feet/mile.

Figure 12. Comparison of rating curves for Kroto Slough Head at transect 2 Q Site.

3.3.4.2 Cross Section Profile

Cross sectional data were recorded at the only stage monitoring station located in Kroto Slough. This stage monitoring station was located on transect 2. The cross sectional data are presented in Attachment Table D-3 with the resulting cross section presented in Attachment Figure D-3.

3.3.5 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure D-3) data, an area of backwater was not observed to occur in the Kroto Slough Head study site. The Kroto Slough Head study site was located near the head of the slough which is approximately 7.8 miles in length (refer to Section 3.3 of this report). Field observations were limited to the study site therefore observations of backwater occurring in the area of the slough mouth were not obtained in 1984.

3.4 Rolly Creek (RM 39.0)

3.4.1 Site Description

Rolly Creek is a small tributary located on the east bank of the main channel of the Susitna River at river mile 39.0 . This tributary is fed by an unnamed lake and flows westerly 6.4 miles before emptying into the Susitna River. Rolly Creek is a slow, meandering stream that drains a large low lying area.

During the 1984 open water field season the study site selected for Rolly Creek was located approximately 0.7 miles upstream from its mouth (Figure 13).

Stage was monitored at one location in Rolly Creek and streamflow was measured at this stage monitoring station (Figure 14). Channel geometry data obtained at this study site included a cross sectional profile at the stage monitoring station and a thalweg profile developed for the portion of the channel that included the study site.

3.4.2 Stage/Discharge Relationship

Measurements of water surface elevation and streamflow obtained at the stage monitoring station which was located on transect 2 in Rolly Creek and the corresponding mean daity mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. Because these water surface elevations were independent of mainstem discharge, water surface elevations versus mainstem discharge plots were not developed. A water surface elevation versus flow rating curve was also not developed due to the extensive backwater influence.

3.4.3 Channel Geometry

3.4.3.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Rolly Creek during a mainstem discharge of 17,700 cfs and a measured

Figure 13. Overview of Rolly Creek (RM 39.0).

Figure 14. Location of Rolly Creek study site (RM 39.0)
tributary streamflow of 10.9 cfs. The survey data are presented in Attachment Table C-4 with the resultant thalweg profile presented in Attachment Figure C-4. The thalweg profile extends from transect 6 of the study site downstream approximately 75 feet below transect 1 . The streambed gradient for the portion of the tributary included in the thalweg profile was 5.5 feet/mile.

3.4.3.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Rolly Creek. This stage monitoring station was located on transect 2. (Figure 14). The cross sectional data are presented in Attachment Table $D-4$ with the resulting cross section presented in Attachment Figure D-4.

3.4.4 Backwater

Based on available 1984 stage (Attachment Table $B-1$) and channel geometry (Attachment Figure $C-4$) data a backwater area was observed to extend at least 3,750 feet from the tributary mouth at a mainstem discharge of $52,500 \mathrm{cfs}$. This backwater influence was determined from a review of the streamflow measurements obtained at transect 2 and presented in Attachment Table B-1. Field observations have indicated that backwater occurs in Rolly creek mouth area throughout medium and high mainstem discharges although insufficient information is available to precisely determine the extent of backwater for this tributary.

3.5 Bear Bait Side Channel (RM 42.9)

3.5.1 Site Description

Bear Bait Side Channel is located on the west bank of the main channel of the Susitna River at river mile 42.9. It is approximately three miles in length and empties into the Deshka River approximately 0.6 miles upstream from the mouth of the Deshka River. The head of Bear Bait Side Channel connects directly to the main channel Susitna River. Breaching occurs when the head is overtopped by the main channel Susitna River. Prior to breaching, the upper portion of the side channel consists of a series of isolated pools.

During the 1984 open water field season the study site selected for Bear Bait Side Channel was located in the upper portion of the side channel (Figure 15). Stage was monitored at one location and streamflow was measured at this stage monitoring station (Figure 16). Channel geometry data obtained from Bear Bait Side Channel included a cross section and thalweg profile. A cross section profile was obtained at the stage monitoring station and a thalweg profile was developed for that portion of the side channel that included the study area continuing upstream to the head of the side channel.

3.5.2 Stage/Discharge Relationship

Measurements of water surface elevation were obtained in Bear Bait Side Channel at the stage monitoring station located on transect 2. Recorded

water surface elevations along with the mean daily mainstem discharge at Sunshine (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. Three water surface elevations recorded on August 13 , and 26,1984 were evaluated using a time lag analysis. The resulting instantaneous mainstem discharges were substituted for the mean daily mainstem discharges. Plots of these water surface elevations versus mainstem discharge are presented in Attachment Figure E-4.

Measurements of streamflow recorded in Bear Bait Side Channel at the stage monitoring station and the corresponding water surface elevations are presented in Attachment Table B-1. Plots of water surface elevation versus streamflow and mainstem discharge versus streamflow are presented in Figures 17 and 18.

3.5.3 Mainstem Breaching and Controlling Discharges

Breaching of Bear Bait Side Channel occurs by overtopping of the side channel head directly by the mainstem Susitna River. Based on field observations and aerial photography the head of the side channel was breached at $36,600 \mathrm{cfs}$ and non-breached at $25,900 \mathrm{cfs}$ (Table 2). No additional information from the site is available for mainstem discharges ranging between $25,900 \mathrm{cfs}$ and $36,600 \mathrm{cfs}$. Insufficient information is available to determine the initial breaching discharge for this side channet.

Figure 17. Bear Bait Side Channel streamflow versus WSEL rating curve at transect 2 Q Site.

Figure 18. Bear Bait Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site.

Limited stage data is available to evaluate the controlling discharge. A single stage observation was obtained for the non-breached conditions (Attachment Table B-1). This low flow stage observation suggests that substantial scour of the channel has occurred at the site as a result of the August 26 high flow event. Due to this scour this stage observation is not representative of base flow conditions when compared to the stage observations obtained for the breached conditions. It is because of a Tack of information defining the breached discharge and baseflow conditions for this side channel a controlling discharge for Bear Bait Side Channel has not been determined. A comparison of the rating curves for the streamflow station was not developed.

3.5.4 Channe1 Geometry

3.5.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Bear Bait Side Channel during a non-breaching mainstem discharge of $18,300 \mathrm{cfs}$ and an estimated side channel streamflow of less than 1 cfs . The survey data are presented in Attachment Table C-5 with the resultant thalweg profile presented in Attachment Figure $C-5$. The thalweg profile extends from the head of the side channel downstream to approximately 50 feet below transect 1. The streambed gradient for the portion of the side channel included in the thalweg profile was 1.9 feet/mile.

3.5.4.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Bear Bait Side Channel. This stage monitoring station was located on transect 2 (Figure 16). The cross sectional data are presented in Attachment Table D-5 with the resulting cross section presented in Attachment Figure D-5.

3.5.5 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure C-5) data a backwater area was observed not to occur in the Bear Bait Side Channel study site. The Bear Bait Side Channel study site is located in the upper portion of the side channel (see Section 3.5.1 of this report) therefore field observations of backwater occurring in the vicinity of the side channel mouth were not obtained in 1984.

3.6 Last Chance Side Channel (RM 44.4)

3.6.1 Site Description

Last Chance Side Channel is located in the Delta Isiand complex on the east bank of the west channel of the Susitna River at river mile 44.4. The side channel is approximately 1.1 miles in length and is separated from the mainstem by a large vegetated island. The head of Last Chance

Side Channel adjoins a small side channel which is connected to the mainstem Susitna River. Last Chance Side Channel empties directly into the mainstem Susitna River. Breaching flows in Last Chance Side Channel result from overtopping of the head by the adjoining small side channet. Prior to breaching flow is minimal with only a few pools remaining in the upper portion of the channel.

During the 1984 open water field season the study site selected at Last Chance Side Channel was located in the upper portion of the side channel (Figure 19). Stage was monitored at one location and streamflow was measured at this stage monitoring station (Figure 20). Channel geometry data obtained at Last Chance Side Channe1 include a cross section profile and a thalweg profile. A cross section profile was obtained for the stage monitoring station and the thalweg profile was determine for that portion of the side channel that included the study site and continued upstream to the head of the side channel.

3.6.2 Stage/Discharge Relationship

Measurements of water surface elevation obtained at the stage monitoring station at Last Chance Side Channel and the mean, daily mainstem discharges at Sunshine (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. Five stage measurements recorded on July 26, August 25, or August 27, 1984, were evaluated using a lag time analysis. For each of the observations, the lag time instantaneous mainstem discharge was substituted for the mean

Figure 19. Overview of Last Chance Side Channel (RM 44.4).

Figure 20.
Location of Last Chance Side Channel study site (RM 44.4).
daily discharge. A plot of these water surface elevations versus mainstem discharge are presented in Attachment Figure E-5.

Measurements of streamflow obtained at the stage monitoring station in Last Chance Side Channel and the corresponding water surface elevations are presented in Attachment Table B-1. A plot of these streamflows and the corresponding water surface elevations are presented in Figure 21. A plot of streamflow and mainstem discharge was also developed and is presented in Figure 22.

3.6.3 Mainstem Breaching and Controlling Discharges

Breaching of Last Chance Side Channel results from overtopping of the head by an adjoining side channel and not directly by the mainstem Susitna River. A field observation recorded on September 12 indicated that the head of the side channel was "barely" breached at a mean daily mainstem discharge of 22,700 cfs (Table 2). On September 11 a field observation noted that at $23,500 \mathrm{cfs}$ the head was "almost. breached" (Table 2). The discrepancy between the two field observations (22,700 cfs and $23,500 \mathrm{cfs}$) is probably because these values are mean daily discharge values and not instantaneous values. Because the time of day was not noted when these two field observations were recorded, the instantaneous discharge occurring during these observations cannot be determined. Since the hydrograph of Sunshine Station was dectining on September 11 (mean daily discharge $=23,500 \mathrm{cfs}$) and stabilizing on September 12 (mean daily discharge $=22,700 \mathrm{cfs}$), the September 12

WSEL (+90 PETI

Figure 21. Last Chance Side Channel streamflow versus WSEL rating curve at transect 2 Q Site.

Figure 22．Last Chance Side Channel streamflow versus mainstem discharge at Sunshine Station （USGS 15292780）rating curve at transect 2 Q Site．
observation is considered to be the most reliable. The suggested initial breaching discharge is therefore 22,700 cfs. An aerial photograph shows that Last Chance Side Channel was dry at a mainstem discharge of $22,000 \mathrm{cfs}$.

The stage data obtained at Last Chance Side Channel is limited to observations corresponding to mainstem discharges of $48,100 \mathrm{cfs}$ and greater. Because no stage data was recorded during unbreached periods, the controliing breaching discharge cannot be precisely determined. However, experience at other sites indicates that the controlling discharge for a site is generally 1,000 to 2,000 cfs greater than its breaching discharge. The controlling discharge for Last Chance Side Channel is estimated at approximately 24,000 cfs.

A comparison of the rating curves developed for the streamflow station (transect 2) was not possible due to insufficient stage data. This lack of stage data also prevented the development of a regression equation to estimate the water surface elevation corresponding to the controling discharge.

3.6.4 Channel Geometry

3.6.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Last Chance Side Channel during a non-breaching mainstem discharge of $18,300 \mathrm{cfs}$ and an estimated side channel streamflow of less than 1 cfs.

The survey data are presented in Attachment Table C-6 with the resultant thalweg profile presented in Attachment Figure C-6. The thalweg profile extends from the head of the side channel and continues downstream approximately 60 feet below transect 1 . The streambed gradient for the portion of the side channel included in the thalweg profile was 10.1 feet/mile.

3.6.4.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Last Chance Side Channel. This stage monitoring station was located on transect 2. The cross sectional data are presented in Attachment Table D-6 with the resulting cross section presented in Attachment Figure D-6.

3.6.5 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure C-6) data, a backwater area was observed not to occur in the Last Chance Side Channel study site. As with several side channel study sites, the study site for Last Chance Side Channel was located in the upper portion of the side channel (see Section 3.6.1 of this report). Field observations were limited to the study site of this side channel, therefore, backwater observations occurring in the side channel mouth area were not obtained in 1984.

3.7 Rustic Wilderness Side Channel (RM 59.5)

3.7.1 Site Description

Rustic Wilderness Side Channel is located on the east bank of the main channel of the Susitna River at river mile 59.5. It is approximately 7.2 miles in length and is separated from the mainstem by a complex network of islands and channels. The head of Rustic Wilderness Side Channel connects to a side channel of the mainstem Susitna River. The mouth connects with the east channel of the Susitna River at the upper end of the Delta Islands. Breaching flows occurring in Rustic Wilderness Side Channel result from overtopping of the head by the adjoining side channel. Prior to breaching, the channel is substantially dewatered and flow is greatly reduced. During the 1984 open water field season the study site selected for Rustic Wilderness Side Channel was located in the upper portion of the side channel (Figure 23). Stage was monitored at one location and stream flow was measured at this stage monitoring station (Figure 24). Channel geometry data obtained from Rustic Wilderness Side Channel included cross section and thalweg profiles. The cross section profile was obtained from the stage monitoring station and the thalweg profile was determined for that portion of the side channel that included the study site continuing upstream to the head of the side channel.

3.7.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at the stage monitoring station (transect 4) in Rustic Wilderness Side Channel and the

Figure 23. Overview of Rustic Wilderness Side Channel (RM 59.5).

corresponding mean daily mainstem discharge at Sunshine (USGS 15292780) are presented in Attachment Table B-1. A water surface elevation obtained on August 12 was evaluated using a time lag anatysis resulting in a corresponding instantaneous mainstem discharge. A plot of these water surface elevations versus mainstem discharges are presented in Attachment Figure E-6.

Measurements of streamflow obtained at the stage monitoring site and the corresponding water surface elevations and mainstem discharges are presented in Attachment Table B-1. A rating curve of streamflows versus water surface elevations was developed and is presented in Figure 25. The streamflow data was also plotted against mean daily mainstem discharge as a rating curve (Figure 26).

3.7.3 Mainstem Breaching and Controlling Discharges

At mean daily mainstem discharges of $20,400 \mathrm{cfs}$ and $18,700 \mathrm{cfs}$ the head of Rustic Wilderness Side Channel has been observed as "barely" breached and "almost" breached, respectively (Table 2). The mean daily discharge of $20,400 \mathrm{cfs}$ was within 100 cfs of the instantaneous value and the mean daily discharge of $18,700 \mathrm{cfs}$ was equal to the instantaneous value. Based on these field observations an initial breaching discharge of 19,000 cfs was chosen.

From a review of the water surface elevation versus mainstem discharge rating curve presented in Attachment Figure E-6 the hydraulics of this
\square
WSEL $1+90$ FEETI

Figure 25. Rustic Wilderness Side Channel streamflow versus WSEL rating curve at transect 4 Q Site.

Figure 26. Rustic Wilderness Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site.
side channel appear to be controlled at mainstem discharge of 20,400 cfs.

The lack of data between $20,400 \mathrm{cfs}$ and $38,000 \mathrm{cfs}$ precludes the ability to develop a comparison of rating curves for Rustic Wilderness Side Channel.
3.7.4 Channel Geometry

3.7.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Rustic Wilderness Side Channel during a non-breaching mainstem discharge of $17,700 \mathrm{cfs}$ and an estimated side channel streamflow of less than 1 cfs. The survey data are presented in Attachment Table C-7 with the resultant thalweg profile presented in Attachment Figure C-7. The thalweg profile extends from the head of the side channel and continues downstream approximately 650 feet below transect 1 . The streambed gradient for the portion of the side channel included in the thalweg profile was 8.7 feet/mile.

3.7.4.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Rustic Wilderness Side Channel. This stage monitoring station was located in transect 4. The cross sectional data are
presented in Attachment Table D-7 with the resulting cross section presented in Attachment Figure D-7.

3.7.5 Backwater

Based on available 1984 stage (Attachment TabTe B-1) and channel geometry (Attachment Figure C-7) data, a backwater area was observed not to occur in the Rustic Wilderness Side Channel study site. The study site was limited to the upper portion of the side channel (see Section 3.7 of this report) and observations of backwater at the side channel mouth were not obtained in 1984.

3.8 Caswell Creek (RM 63.0)

3.8.1 Site Description

Caswell Creek is a small tributary approximately six miles in length which drains Caswell Lake. Caswell Creek empties into an eastern channel of the Susitna River at river mile 63.0. Except during periods of low streamflow conditions a backwater area exists in the lower portion of the creek. The study area in Caswell Creek during the 1984 open water field season was located in the lower portion of the creek approximately 700 feet upstream from the mouth (Figure 27).

At Caswell Creek stage and streamflow were monitored at one location (Figure 28). Channel geometry data obtained from Caswell Creek included a cross section profile obtained at the stage monitoring station and a

thalweg profile. The thalweg profile was developed for that portion of the channel which included the study site and continued downstream to the mouth of the creek.

3.8.2 Stage/Discharge Relationship

Measurements of water surface elevation in Caswel1 Creek were obtained at the stage monitoring station located on transect 4 of the study site (Attachment Table B-1). Measurements of streamflow obtained at the stage monitoring station, the corresponding water surface elevation, and the corresponding mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. A plot of streamflow and water surface elevations was not developed due to backwater conditions caused by mainstem Susitna River discharge.

3.8.3 Channe1 Geometry

3.8.3.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Caswell Creek during a mainstem discharge of $14,900 \mathrm{cfs}$ and à measured tributary streamflow of 27.5 cfs. The survey data for the thaiweg profile are presented in Attachment Table $\mathrm{C}-8$ with the resultant thalweg profile presented in Attachment Figure $\mathrm{C}-8$. The thalweg profile includes the Caswell Creek study site extending downstream 775 feet below transect 1 and upstream approximately 300 feet above transect 7.

The streambed gradient for the portion of the tributary included in the thalweg profile is 10.8 feet/mile.

3.8.3.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Caswell Creek. This stage monitoring station was located on transect 4. The cross sectional data are presented in Attachment Table D-8 with the resultant cross section presented in Attachment Figure D-8.

3.8.4 Backwater

Based on available 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure $\mathrm{C}-8$) data, mainstem discharge has been found to have a significant influence on backwater in Caswell Creek. The streamflow measurements obtained from Caswell Creek indicate backwater extended at least to transect 4, approximately 1,026 feet, at a mainstem discharge of $55,100 \mathrm{cfs}$. Although field observations indicate backwater occurs in Caswell Creek during medium and high mainstem discharge insufficient data is available to precisely determine the extent of backwater over the 1984 range of mainstem discharges.

3.9 Island Side Channel (RM 63.2)

3.9.1 Site Description

Island Side Channel is located between the main channel of the Susitna River and a large side channel that parallels the eastern bank at river
mile 63.2. This side channel is located downstream of a braided, vegetated floodplain and is not directly connected to the main channel Susitna River. It is approximately 0.7 miles in length with both the mouth and head portions adjoining side channel networks. Breaching flows in this side channel result from overtopping of the head by an adjoining larger side channel. Prior to breaching, side channel flow is greatly reduced with a series of pools remaining.

During the 1984 open water field season, the study site selected for Island Side Channel was located in the lower portion of the side channel (Figure 27). Stage was monitored at eight locations in the side channel with streamflow being measured at two of these stage monitoring stations (Figure 29). Cross section survey data were obtained at each stage monitoring station. Survey data for the development of a thaiweg profile were collected for that portion of the side channel beginning at the confluence of the adjoining side channel and terminating at the first hydraulic control above the study site.

3.9.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at each stage monitoring station located in Island Side Channel along with the mean daily mainstem discharges at Sunshine (USGS 15292780) corresponding to the date of the stage measurements are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharges are presented in Attachment Figures E-7 to E-14.

Figure 29. Location of Island Side Channel study site (RM 63.2).

Measurements of streamflow were obtained at the stage monitoring stations located on modelling transects 1 and 6 . These measurements of streamflow and the corresponding water surface elevations and mainstem discharges (USGS 15292780) are presented in Attachment Table B-1. Plots of these streamflows versus water surface elevations developed as rating curves are presented in Figures 30 and 31. In addition, the streamflow data was plotted against mean daily mainstem discharge as rating curves (Figures 32 and 33).

3.9.3 Mainstem Breaching and Controlling Discharges

Breaching of Island Side Channel is the result of overtopping of the head by an adjoining side channel. Based on aerial photograph interpretation (Table 2), the lowest mainstem discharge that has been observed to breach this side channel is 36,600 cfs (USGS 15292780).

Based on a review of Attachment Figure E-14, it has been determined that at mainstem discharges exceeding 35,000 cfs the hydraulics within this side channel are directly controlled by mainstem discharge. Following 35,000 cfs the water surface elevation at transect 6 increases dramatically with corresponding increases in mainstem discharge. The controlling discharge of $35,000 \mathrm{cfs}$ is lower than the observed breaching discharge of $36,600 \mathrm{cfs}$ as determined from aerial photography indicating that this side channel initially breaches below a mainstem discharge of $35,000 \mathrm{cfs}$. Insufficient field data is available to determine precisely the initial breaching discharge for Island Side Channel. The initial

Figure 30. Island Side Channel streamflow versus WSEL rating curve at transect 1 Q Site.
ISLAND SIDS CHANHEL TR 6 (Q SITE) RM 63.2
GRGE 063. 256

$$
Q_{S C}=10^{-0.2435}(\mathrm{WSEL}-89)^{4.2232}
$$

measured flow (crs)
Figure 31. IsTand Side Channe $\operatorname{streamflow~versus~WSEL~}$ rating curve at transect 6 Q Site.

Figure 32. Island Side Channel streamflow versus mainstem discharge at Sunshine (USGS 15292780) rating curve at transect 1 Q Site.

Figure 33. Island Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 6 Q Site.
breaching discharge for this side channel has been estimated as occurring approximately $1,000 \mathrm{cfs}$ below the controling discharge, or at 34,000 cfs. To evaluate the influence mainstem discharge has on the hydraulic conditions of this side channel, a comparison of the rating curves for transect 6 (Figure 34) was performed. Transect 6 is one of the two streamflow stations located at this side channel with the other being transect 1. Transect 6 was used for this comparison as the stage versus streamflow relationship is better defined for this transect than it is at transect 1 under both the breached and unbreached conditions.

A side channel streamflow of 43.5 cfs has been estimated to occur at the controlling discharge of $35,000 \mathrm{cfs}$ at transect 6 as determined from the stage versus streamflow rating curve (Figure 31). This estimated flow is lower than the streamflow estimate derived from the Transect 6 streamflow versus mainstem discharge rating curve (68.8 cfs) presented in Figure 33 for the mainstem discharge of 35,000 cfs. A similar comparison between flow estimates at transect 1 shows the stage versus streamflow rating curve to yield 47.3 cfs and the streamflow versus mainstem discharge rating to yield 61.4 cfs . Measurements of streamflow in the $30,000-41,000 \mathrm{cfs}$ range of mainstem discharge are necessary to validate this relationship.

Table 3 summarizes the estimates of flow as determined from the rating curves for controlling mainstem discharges.

Figure 34. Comparison of rating curves for Island Side Channel transect 6 Q Site.

3.9.4 Channe1 Geometry

3.9.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Island Side Channel during a non-breaching mainstem discharge of 17,800 cfs when the side channel flow was estimated to be less than 1.0 cfs. The survey data are presented in Attachment Table C-9 with the resultant thalweg profile being presented in Attachment Figure C-9. The thalweg profile extends from the mouth of the side channel to a point approximately 100 feet beyond the first hydraulic control upstream of the study site, approximately 1,500 feet upstream of the mouth of the side channel. Based on the thalweg profile, the gradient within the thalweg profile is 15.6 feet/mile.

3.9.4.2 Cross Section Profile

Cross sectional data were recorded at each of the eight transects located in Island Side Channel during the 1984 open water season. The cross sectional data are presented in Attachment Table D-9 to D-16 with the resulting cross section profiles presented in Attachment Figures D-9 to D-16.

3.9.5 Backwater

Based on a comparison of available 1984 stage (Table 4) and channel geometry data (Attachment Figure C-9), an area of backwater extends

Table 4. A comparison of water surface elevations from Task 14 staff gages located within Island Side Channel.

Date	TR 1	TR 1A	TR 2	TR 3	TR 4	TR 4A	TR 5	TR 6	Mainstem Discharge
840930	90.86	90.93	90.88	91.23	91.56	91.56	91.57	91.54	17,800
840927	---	---	---	---	---	---	91.57	91.56	18,300
840915	---	---	---	---	---	---	91.59	91.62	22,300
840919	---	91.37	91.33	---	---	---	---	---	28,400
840901	---	91.69	91.68	91.70	91.71	91.77	91.73	91.75	35,000
840831	91.90	91.93	91.89	91.90	91.90	91.94	91.94	91.95	38,000
840719	93.13	---	---	---	---	---	---	93.36	51,600
840712	93.33	---	---	---	---	---	---	93.67	54,100
840725	93.33	93.46	93.41	93.44	93.62	93.52	93.56	93.55	56,100
840725	93.54	93.56	93.52	93.48	---	93.66	---	93.61	56,100
840725	---	---	---	93.55	---	---	---	93.70	56,100
840704	93.55	---	---	---	---	---	---	93.84	58,600
840811	93.77	---	---	---	---	---	---	94.08	60,000
840811	---	---	---	---	---	---	---	94.08	60,000
840801	93.73	93.75	93.74	93.79	93.89	93.93	93.98	94.00	60,300
840626	93.95	---	---	---	---	---	---	94.30	64,800
840626	---	---	---	---	---	---	---	94.31	64,800
840807	94.17	94.16	94.16	94.24	94.34	94.31	94.44	94.40	66,700

through the study site to a point at least 1,100 feet upstream from the mouth of Island Side Channel at a mainstem discharge of 35,000 to 38,000 cfs. During mainstem discharges of $56,100 \mathrm{cfs}$ to $66,700 \mathrm{cfs}$, the backwater area decreases and only extends 570 feet from the mouth. This area of backwater results from the large side channel located at the mouth of Island Side Channel. Similar water surface elevations found to occur at transects 1-2 and 4-6 at a mainstem discharge of $17,800 \mathrm{cfs}$ are a result of pooling and not backwater.
3.10 Mainstem West Bank Side Channel (RM 74.4)
3.10.1 Site Description

Mainstem West Bank Side Channel is located on the west bank of the main channel Susitna River at river mile 74.4 (Figure 35). This side channel is approximately 2.2 miles in length with both the mouth and head of the side channel directly connected to the Susitna River. Two heads are located approximately 1.5 miles upstream of the study site which connect this side channel to the mainstem. At the study site, the side channel is confined on the west by a steep bank and on the east by a well vegetated island which separates it from the mainstem. The upper portion of the side channel above the study site is separated from the mainstem by a network of side channels and well vegetated islands. Within the study site, a minor channel is located on the east bank of the side channel. During nonbreached conditions, the side channe consists of a series of pools and small riffles. Groundwater provides the major contribution of flow prior to breaching of the head.

Figure 35. Overview of Mainstem West Bank Side Channel (RM 74.4) and Circular Side Channel (RM 75.3).

During the 1984 open water field season, the study site within this side channel was located in the lower portion of the side channel. Stage was monitored at seven locations, with streamflow measurements collected at only one of these stage monitoring stations (Figure 36). Cross section survey data were collected at each stage monitoring station. In addition, survey data for the development of a thalweg profile were collected from the first hydraulic control downstream of the study site to the first hydraulic control above the study site and through a portion of a minor channel on the east bank.

3.10.2 Stage/Discharge ReTationship

Measurements of water surface elevation obtained at each stage monitoring station located in Mainstem West Bank Side Channel along with the mean daily mainstem discharges (USGS 15292780) corresponding to the date of the stage measurements are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharge are preserited in Attachment Figures E-15 to E-21.

Measurements of streamflow were obtained at one stage monitoring station located on transect 1 . The streamflow measurements and corresponding water surface elevations and mainstem discharges at Sunshine (USGS 15292780) are presented in Attachment Table B-1.

Figure 36
Location of Mainstem West Bank Side Channel study site (RM 74.4).

A rating curve of the streamflow measurements and water surface elevations is presented in Figure 37. A rating curve of the streamflow data plotted against mean daily mainstem discharge is presented in Figure 38.

3.10.3 Mainstem Controliing and Breaching Discharges

Breaching of Mainstem West Bank Side Channel occurs as the result of the mainstem Susitna River overtopping at least one of the two side channel heads located approximately 1.5 miles upstream of the study site. Based on field observations, the side channel has been observed to be barely breached at a mainstem discharge of $19,000 \mathrm{cfs}$ and dry at $18,700 \mathrm{cfs}$ (Table 2). Based on these field observations an initial breaching discharge of $19,000 \mathrm{cfs}$ has been selected for this side channel.

To evaluate the influence mainstem discharge has on the hydraulic condition of this side channel, a comparison of the rating curves for transect 1 was performed (Figure 39). Based on a review of the stage versus mainstem discharge rating curve presented in Figure 39, it has been determined that at mainstem discharges greater than $19,600 \mathrm{cfs}$ the hydraulics within this side channel are directly controlled by mainstem discharge. This results from the breaching of one of the two heads of the side channel. The site flow that occurs at 19,600 cfs was measured to be 5.7 cfs (Attachment Table B-1). Table 3 summarizes the comparison of flow estimates determined from rating curve equations for the controlling mainstem discharge of $19,600 \mathrm{cfs}$.

Figure 37. Mainstem West Bank Side Channel streamflow versus WSEL rating curve at transect 1 Q Site.

Figure 38. Mainstem West Bank Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 1 Q Site.

Figure 39. Comparison of rating curves for Mainstem West Bank Side Channel transect 1 Q Site.

At mainstem discharges of both $22,000 \mathrm{cfs}$ and $32,000 \mathrm{cfs}$, the stage versus streamflow relationship for transect 1 and several of the remaining transects was determined to change. These changes are illustrated by changes in the slope of the line in each of the stage versus mainstem discharge rating curves for these transects (Attachment Figures E-15 to E-21). Based on field observations these changes are assumed to result from channel geometry and the diversion of flow through a small side channe1, located upstream of transect 4, away from Mainstem West Bank side channel.

3.10.4 Channe1 Geometry

3.10.4.1 Thalweg Profile

The thalweg profile of Mainstem West Bank was surveyed during a nonbreaching mainstem discharge of 14,700 cfs while the site flow was estimated to be less than 1 cfs . Two channels were surveyed; the main side channel and a smaller channel located on the east bank near the upper portion of the study site. The thaiweg of the main channel was surveyed from a pool located approximately 329 ft downstream of transect 1 and continued through the study site to a point approximately 210 ft above transect 4 . The survey data for the main channel thalweg profile are presented in Attachment Table $\mathrm{C}-10$ with the resultant thalweg profile being presented in Attachment Figure $\mathrm{C}-10$. The gradient within the thalweg profile was 12.3 feet/mile.

The smaller channel thalweg survey began on transect 2 and continued upstream approximately 600 ft including transects $2 \mathrm{~A}, 3$, and 3 B . The survey data for this thalweg profile are presented in Attachment Table C-10 with the resultant thalweg profile presented in Attachment Figure C-10.

3.10.4.2 Cross Section Profile

Cross sectional profiles were determined at each of the seven staff gage locations in Mainstem West Bank Side Channel. Four of these cross sections extended across the entire study site (transects 1, 2, 3 and 4) whereas two of the transects (transects $2 A$ and $3 B$) crossed only the east bank minor channel and one (transect 3A) crossed only the main channel of the study site. The data obtained for these cross sections are presented in Attachment Tables $D-17$ to $D-23$. These resultant cross section profiles are presented in Attachment Figures D-17 to D-23.

3.10.5 Backwater

Based on Table 5 and field observations, backwater did not occur in the study site throughout the 1984 sampling period. Similar water surface elevations occurring for transects 1-3 are the result of pooling and not backwater. The study site for Mainstem West Bank Side Channel was located a substantial distance upstream from the mouth of the side channel. A backwater area was observed throughout the majority of the 1984 field season at the mouth of this side channel but insufficient information is available to precisely determine the extent of backwater.

Table 5. A comparison of water surface elevations from Task 14 staff gages located within Mainstem West Bank Side Channel.

Date	TR 1	TR 2	TR 2A	TR 3	TR 3A	TR 3B	TR 4	Mainstem Discharge
841010	92.64	92.63	---	93.03	93.05	---	94.63	14,700
841001	---	---	---	---	93.37	---	---	18,700
840925	92.85	---	---	---	93.51	---	---	19,600
840915	93.90	93.74	---	93.80	94.04	---	---	22,300
840914	94.12	94.13	---	94.18	94.44	--	95.83	24,000
840903	---	-	94.90	94.97	95.21	95.06	96.39	29,000
840920	94.62	94.64	94.67	94.70	94.93	---	96.16	30,500
840902	94.94	94.98	94.99	95.04	95.29	---	96.46	32,000
840902	94.97	95.00	---	95.08	95.32	---	96.54	32,000
840817	95.49	95.60	---	-	-	---	97.22	42,500
840815	95.56	95.64	---	95.92	---	---	97.30	46,000
840724	96.02	--	---	-	--	---	---	55,200
840723	95.98	96.07	---	96.36	---	---	97.67	56,100
840712	95.96	---	---	---	---	---	---	54,100
84071.1	96.01	96.06	---	96.39	---	---	97.50	55,100
840711	96.08	96.09	-	---	---	---	97.70	55,100
840721	96.02	96.09	---	96.44	---	---	97.62	57,700
840721	96.03	96.14	---	---	---	---	---	57,700

Table 5 (Continued).

Date	TR 1	TR 2	TR 2A	TR 3	TR 3A	TR 3B	TR 4	Mainstem Discharge
840801	96.22	96.31	---	96.67	---	---	97.90	60,300
840801	96.24	96.32	---	---	---	---	---	60,300
840810	96.49	96.54	---	96.81	---	---	97.86	66,400
840810	96.54	96.62	---	96.94	---	---	98.19	66,400
840807	96.49	96.51	---	96.81	---	---	97.97	66,700
840827	97.14	---	---	---	---	---	---	79,700
840827	97.19	---	---	---	---	---	---	79,700

3.11 Goose 2 Side Channel (RM 74.8)

3.11.1 Site Description

Goose 2 Side Channel is approximately 1.4 miles in length and is located on the east bank of the Susitna River at river mile 74.8 (Figure 40). This portion of the Susitna River is considerably braided and both the head and mouth of Goose 2 are connected to side channels. An extensive \log jam exists at the head of the Goose 2 side channel which may influence the flow of water during an overtopping of the head. Goose 2 is separated from a network of small channels by a well vegetated island on its west bank and is confined on its east bank by a high, terraced wall.

Breaching flows occurring in Goose 2 result from overtopping of the head from the adjoining side channeT. Prior to breaching of Goose 2, streamflow is minimal with the channel substantially dewatered and composed of isolated pools.

During the 1984 open water field season the study site selected for Goose 2 Side Channel was located in the upper portion of the side channel. Stage was monitored at one location and streamflow was measured at this stage monitoring station (Figure 41). Channel geometry data obtained from Goose 2 Side Channel included cross section and thalweg profiles. A cross section was obtained at the stage monitoring station and a thalweg profile was determined for the portion of the side

Figure 40. Overview of Goose 2 Side Channel (RM 74.8).

channe1 including the study site and continuing upstream to the head of the side channel.

3.11.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at the stage monitoring station located in Goose 2 Side Channel are presented in Attachment Table B-1 along with the mean daily mainstem discharge (USGS 15292780) corresponding to the date of the stage measurement. A plot of these water surface elevations versus mainstem discharge are presented in Attachment Figure E-22.

Measurements of streamflow in Goose 2 Side Channel were obtained at one stage monitoring station (Figure 41) which was located on transect 2 of the study sites. These measurements of streamflow and the corresponding water surface elevation and mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. A plot of these streamflow and water surface elevations was developed as a rating curve to estimate streamflow from observed water surface elevations and is presented in Figure 42. The streamflow data was also plotted against mainstem discharge as a rating curve to estimate streamflow from mainstem discharge (Figure 43).

3.11.3 Mainstem Breaching and Controlling Discharges

Breaching of Goose 2 Side Channel results from overtopping of the head by a side channel and not directly by the mainstem Susitna River. This

$$
\begin{align*}
& \text { a } \\
& - \\
& - \\
& - \\
& - \\
& - \\
& -
\end{align*}
$$

Figure 42. Goose 2 Side Channel streamflow versus WSEL rating curve at transect 2 Q Site.

Figure 43. Goose 2 Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site.
side channel was observed as "barely" breached at a mainstem discharge of $32,000 \mathrm{cfs}$ and dry at $22,700 \mathrm{cfs}$ (Table 2). Assuming that the site is "barely" breached at 32,000 cfs it can be inferred that the site is likely initially breached at a discharge less than 32,000 cfs. Therefore, a mainstem discharge of $30,000 \mathrm{cfs}$ has been estimated as the initial breaching discharge.

Insufficient stage data is available to precisely determine the controlling breaching discharge for this side channel. However, based on the assumption that the side channel is initially breached at approximately 30,000 cfs and from a review of the stage/discharge relationship (Attachment Figure E-22) a controlling discharge of $32,000 \mathrm{cfs}$ is estimated for this side channel.

The rating curves developed at the Goose 2 Side Channel streamflow station were compared to evaluate the influence of mainstem discharge on the hydraulics of the side channel (Figure 44). Using $32,000 \mathrm{cfs}$ as the controlling discharge a streamflow estimate of 26.3 cfs was obtained using the flow versus water surface elevation rating curve (Figure 42). This estimate is higher than the flow estimate (21.7 cfs) determined from the flow versus mainstem discharge rating curve (Figure 43).
3.11.4 Channel Geometry

3.11.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Goose 2 Side Channel during a non-breaching mainstem discharge of 19,600

Figure 44. Comparison of rating curves for Goose 2 Side Channel transect 2 Q Site.
cfs and an estimated streamflow of less than 1 cfs. The survey data for the thalweg profile are presented in Attachment Table C-11 with the resultant thalweg profile presented in Attachment Figure C-11. The thalweg profile includes the head of the side channel continuing downstream to approximately 500 feet below transect 1 . The streambed gradient for the portion of the side channel included in the thalweg profile was 9.2 feet/mile.

3.11.4.2 Cross Section Profile

Cross section data were recorded at the only stage monitoring station located in Goose 2 Side Channel. This stage monitoring station was located on transect 2 (Attachment Figure $C-11$). The cross sectional data are presented in Attachment Table D-24 with the resultant cross section presented in Attachment Figure D-24.

3.11.5 Backwater

Based on availabie 1984 stage (Attachment Table B-1) and channel geometry (Attachment Figure $C-11$) data, a backwater area was observed not to occur in the Goose 2 Side Channel study site. The study site for Goose 2 Side Channel was located in the upper portion of the side channel (see Section 3.10.I of this report). The field observations for 1984 at Goose 2 Side Channel were 1 imited to the study site therefore backwater observations occurring in the side channel mouth area were not obtained in 1984.

3.12 Circular Side Channel (RM 75.3)

3.12.1 Site Description

Circular Side Channel is located on the west bank of the Susitna River at river mile 75.3 (Figure 35) . It is approximately 0.9 miles long and is separated from the mainstem by a large well vegetated island. Both the mouth and head of this side channel are connected to the mainstem Susitna River. An extensive backwater area has been observed to occur in the lower portion of the study site. A network of small channels at the head provide mainstem flow into the site after breaching. Prior to breaching, flow is greatly reduced and the channel is composed of large pools connected by small riffles.

During the 1984 open water field season, the study site within Circular Side Channel was located in the upper half of the side channet. Stage was monitored at six locations within the study site with streamflow measurements being collected at two of these stage monitoring stations (Figure 45). Stage was also monitored at the head of the side channel. Cross section survey data were collected at each of the stage monitoring stations except the stage monitoring station at the head. Survey data for the development of a thalweg profile were collected beginning at the first hydraulic control located downstream of the study site and was continued to the head of the side channel.

[^1]
3.12.2 Stage/Discharge Relationship

Abstract

Measurements of water surface elevations at each stage monitoring station located in Circular Side Channel along with the mean daily mainstem discharges (USGS 15292780) corresponding to the date of the stage measurements are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharges are presented in Attachment Figures E-23 to E-29. For transect 4 a gap exists between the lines depicting the nonbreached and breached condition. This gap is assumed to be the result of channel scour from the August 26 flood event.

Measurements of streamflow in Circular Side Channel were obtained at two stage monitoring stations located on transects 1 and 4 (Figure 45). These measurements of streamflows and the corresponding water surface eTevations and mainstem discharges (USGS 15292780) are presented in Attachment Table B-1. Plots of streamflows versus water surface eTevations developed as rating curves are presented in Figures 46 and 47. Rating curves of the streamflow data plotted against mainstem discharge are presented in Figures 48 and 49.

3.12.3 Mainstem Breaching and Controlling Discharges

Breaching of Circular Side Charnel is the result of direct overtopping of the head by the mainstem Susitna River. Insufficient field data is available to determine precisely the initial breaching and controlling discharge for Circular Side Channel. Field observations and a review of

Figure 46．Circular Side Channel streamflow versus WSEL rating curve at transect 1 Q Site．

WSEL i+ ES RCEII

Figure 47. Circular Side Channel streamflow versus WSEL rating curve at transect 4 Q Site.

Figure 48. Circular Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 1 Q Site.

Figure 49. Circular Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site.
aerial photographs indicate the head of the side channel to be breached at $36,600 \mathrm{cfs}$ and dry at 32,000 cfs (Table 2). A field observation at $35,000 \mathrm{cfs}$ found the side channel flowing clear indicating a nonbreached condition although the side channel head was not observed at the time. Upon close inspection of the aerial photograph at a breaching discharge of $36,600 \mathrm{cfs}$ the side channel was observed flowing turbid (Pers. Comm. 1984 Bill Ashton; R\&M Consultants) indicating a controlled hydraulic condition. Based on this information a controlling discharge of 36,000 cfs is estimated for Circular Side Channel. The initial breaching discharge of the site is estimated to also be $36,000 \mathrm{cfs}$ based on the field observations.

To evaluate the influence mainstem discharge has on the hydraulic condition of this side channel, a comparison of the rating curves for transect 4 was performed (Figure 50). Although two streamflow stations were located in Circular Side Channel (transects 1 and 4), transect 4 was selected for this comparison as it had a greater range of stage observations than transect 1 and was a better defined rating curve. The site flow that occurs at a mainstem discharge of $36,000 \mathrm{cfs}$ has been estimated to be 26.8 cfs based on stage versus streamflow rating curve for transect 4 (Figure 47). The estimate of 26.8 cfs is the same as the estimate of streamflow derived from the transect 4 streamflow versus mainstem discharge rating curve (Figure 49). Table 3 summarizes a comparison of streamflow estimates determined from equations developed from both rating curves for controlling mainstem discharges for transects 1 and 4.

Figure 50. Comparison of rating curves for Circular
Side Channel at transect $4 Q$ Site.

3.12.4 Channel Geometry

3.12.4.1 Thalweg Profile

Survey data for the development of the thalweg profile of Circular Side Channel was determined during a mainstem discharge of $14,700 \mathrm{cfs}$ (USGS 15292780) when the side channel flow was estimated to be less than 1 cfs. The thalweg survey extended approximately 2,800 feet beginning at the confluence of Circular Side Channel with another side channel and continuing to the head of the side channel. Survey data used to develop the thalweg profile are presented in Attachment Table C-12 with the resultant thalweg profile being presented in Attachment Figure C-12. The gradient within the thalweg profile is 14.3 feet/mile.

3.12.4.2 Cross Section Profile

Cross section data were obtained at each of the six transect locations within the study site. Survey data from these cross sections are presented in Attachment Tables $D-25$ to $D-30$ with the resultant cross sectional profiles being presented in Attachment Figures D-25 to D-30.

3.12.5 Backwater

Based on available stage data (Table 6) and a review of the thalweg profile for Circular Side Channel, backwater has not been observed to occur during non-breaching mainstem discharges.

Table 6. A comparison of water surface elevations from Task 14 staff gages located within Circular Side Channel.

Date	TR 1	TR 2	TR 2A	TR 3	TR 4	TR 5	Mainstem Discharge
841010	---	---	88.06	---	---	89.04	14,700
841009	---	---	---	---	---	89.10	15,000
840928	---	---	---	---	89.54	89.55	17,700
840914	---	---	---	89.45	89.72	89.73	24,000
840903	---	---	88.69	89.55	89.85	89.84	29,000
940920	87.87	---	88.67	89.50	89.77	89.76	30,500
940902	---	---	88.70	89.56	89.84	---	32,000
840830	89.10	89.27	89.33	90.06	90.40	---	40,800
840817	89.25	89.27	89.41	90.17	90.57	---	42,500
840817	89.28	89.30	---	90.20	90.60	---	42,500
840724	90.26	90.26	90.28	90.60	91.25	91.32	55,200
840724	90.26	---	90.31	90.67	91.26	91.32	55,200
840724	90.29	---	---	---	91.26	---	55,200
840724	90.30	---	---	---	91.29	---	55,200
840724	90.30	---	---	---	91.30	---	55,200
840710	---	---	---	90.51	91.13	---	52,500
840803	90.23	90.21	90.26	90.62	91.24	---	54,700
840803	90.24	---	---	---	---	---	54,700
840723	90.31	---	---	90.64	91.26	---	56,100
840811	90.81	90.77	---	91.01	91.58	-	60,000
840811	-	---	---	---	91.59	---	60,000

Table 6 (Continued).

Date	TR 1	TR 2	TR 2A	TR 3	TR 4	TR 5	Mainstem Discharge
840706	90.70	---	---	90.92	---	---	63,600
840706	90.70	---	---	---	---	---	63,600
840706	90.72	---	---	---	---	---	63,600
840824	90.78	90.80	90.81	91.03	91.54	---	64,800
840824	90.78	---	---	---	91.56	---	64,800
840626	90.99	---	---	91.15	---	---	64,800
840626	91.00	---	-	91.21	---	---	64,800
840807	91.24	91.19	91.18	91.32	91.83	---	66,700
840827	91.75	---	---	---	92.43	---	79,700
840827	91.82	---	-	---	92.49	---	79,700

At a mainstem discharge of $42,500 \mathrm{cfs}$, backwater has been determined to extend slightly past transect 2. At breaching mainstem discharges of 55,200 to $66,700 \mathrm{cfs}$, an area of backwater was found to occur upstream to a point approximately 90 feet above transect 2A. Insufficient stage data is available to describe the extent of backwater for mainstem discharges exceeding $66,700 \mathrm{cfs}$.

3.13 Sauna Side Channel (RM 79.8)

3.13.1 Site Description

Sauna Side Channel is located on the west bank of the Susitna River at river mile 79.8 (Figure 51). It is approximately 0.2 miles long. The mouth and head of the side channel are connected to the same larger side channel of the mainstem Susitna River. For the most part, Sauna Side Channel is confined on the west by a high bank and on the east by a large sparsely vegetated gravel bar. A smaller side channet enters just below the head of Sauna Side Channel on its west bank. This side channel conducts flow to the study site during high mainstem discharges, but dewaters before the head of Sauna Side Channel becomes unbreached. Breaching flows resuit from overtopping of the side channel that adjoins the head on the east bank of Sauna Side Channel. Prior to breaching, the channel is composed of two Targe interconnected poots whose water Tevels are maintained from ground water seepage originating from the vicinity of the head. An extensive \log jam exists at the head of Sauna Side Channei that likely influences the flow into this side channel.

Figure 5I. Overview of Sauna Side Channel (RM 79.8).

During the 1984 open water field season, the study site within this side channel was approximately 500 feet in length and was located approximately 2,000 feet from where the mouth of the larger side channel confluences with the mainstem. Stage was monitored at four locations with streamflow being measured at one of these stage monitoring stations (Figure 52). Cross section survey data were collected at each of the stage monitoring stations. Survey data for the development of a thalweg profile were collected beginning at the mouth and ending at the head of the side channel.

3.13.2 Stage/Discharge Relationship

Water surface elevations obtained at each of the stage monitoring stations located in Sauna Side Channel along with the mean daily mainstem discharge (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharges are presented in Attachment Figures $\dot{E}-31$ to E-33.

Measurements of streamflow in Sauna Side Channel were obtained at one stage monitoring station located on transect 2 . These measurements of streamflow and the corresponding water surface elevations and mainstem discharges (USGS 15292780) are presented in Attachment Table B-I. A plot of these streamflows versus water surface elevations was developed as a rating curve and is presented in Figure 53. In addition, the streamflow data plotted against mainstem discharge is presented in Figure 54.

\square
WEEL $1+85$ FEET)

Figure 53. Sauna Side Channel streamflow versus WSEL rating curve at transect 2 Q Site.

Figure 54. Sauna Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 2 Q Site.

3.13.3 Mainstem Breaching and Controlling Discharges

Breaching of Sauna Side Channel is the result of overtopping of the head by the adjoining side channel. Insufficient field data is available to determine precisely the initial breaching and controlling discharges for Sauna Side Channel. Field observations and a review of aerial photographs indicate the head of the side channel to be "barely" breached at $40,800 \mathrm{cfs}$ and "almost" breached at $36,600 \mathrm{cfs}(T a b l e 2)$.

Although the lowest discharge at which the mainstem was observed to breach Sauna Side Channel was 40,800 cfs, a controlling discharge of $38,000 \mathrm{cfs}$ is estimated for this channel. This controlling discharge was estimated by assuming that the stage/discharge relationship (Attachment Figure E-31 to E-33) for the nonbreached condition was nearly horizontal. This assumption is made because of the lack of nonbreached stage observations (1 observation only) and is considered reasonable based on observations and stage data collected at this site. The controlling discharge is scaled from the curve as the point of intersection ($38,000 \mathrm{cfs}$) of the nonbreached limb of the stage/discharge relationship. The initial breaching discharge is estimated to occur at 37,000 cfs based on field observations and assuming the site initially breaches within 1,000-2,000 cfs of the controlling discharge as observed at other side channel sites.

To evaluate the influence mainstem discharge has on the hydrautics of Sauna Side Channe1, a comparison of the rating curves for the streamflow station at transect 2 was performed (Figure 55). A side channel flow of

Figure 55. Comparison of rating curves for Sauna Side Channel transect 2 © Site.
22.5 cfs has been estimated to occur at the controlling discharge of $38,000 \mathrm{cfs}$ as derived from the stage versus streamflow rating curve. This compares to a streamflow estimate of 19.9 cfs determined from the streamflow versus mainstem discharge rating curve. Table 3 summarizes comparisons of streamflow estimates determined from transect 2 rating curves for controlling mainstem discharges of Sauna Side Channel.

3.13.4 Channel Geometry

3.13.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were collected at Sauna Side Channel during a mainstem discharge at Sunshine (USGS 15292780) of 15,000 cfs when the flow within the study site was estimated to be less than 1 cfs . The thalweg survey extended approximately 1,450 feet beginning at the mouth of the side channel continuing upstream through the study site terminating at the head of the side channel. The survey data used to develop the thalweg profile are presented in Attachment Table C-13 with the resultant thalweg profile being presented in Attachment Figure $\mathrm{C}-13$. A gradient of $10.4 \mathrm{ft} / \mathrm{mi}$ was determined for the thalweg profile.

3.13.4.2 Cross Section Profile

Survey data for the development of cross sectional profiles were obtained at each of the four transects located in Sauna Side Channel.

The survey data are presented in Attachment Tables D-31 to D-34 with the resultant cross sectional profiles being presented in Attachment Figures D-31 to D-34.

3.13.5 Backwater

Based on a review of the 1984 stage data (Table 7) and the thalweg figure for Sauna Side Channel (Attachment Figure C-13), it has been estimated that backwater does not occur in Sauna Side Channel during non-breaching mainstem discharges.

During breaching discharges of 54,600 to $56,700 \mathrm{cfs}$, an area of backwater was observed to occur throughout the Sauna Side Channel study site. At mainstem discharges exceeding $56,700 \mathrm{cfs}$, insufficient stage data is available to determine the extent of backwater.

3.14 Sucker Side Channel (RM 84.5)

3.14.1 Site Description

Sucker Side Channei is located on the east bank of the Susitna River at river mile 84.5. This side channel is symmetrical in shape and approximately 0.7 miles in length. Sucker Side Channel is part of a network of other side channels that braid through a complex of well vegetated islands. The head of Sucker Side Channel adjoins another side channel whereas the mouth connects to a channel of the mainstem Susitna

Table 7. A comparison of water surface elevations from Task 14 staff gages located within Sauna Side Channel.

Date	TR 1	TR 2	TR 3	TR 4	Mainstem Discharge
841009	88.75	89.00	88.90	89.02	15,000
840928	---	-	---	89.02	17,700
840914	---	---	---	89.02	24,000
840830	---	---	---	89.39	40,800
840817	89.15	---	---	89.29	42,500
840710	---	90.24	---	---	52,500
840823	90.63	90.61	90.64	90.65	54,600
840723	---	90.71	90.66	90.69	56,100
840723	90.70	90.73	90.72	90.69	56,100
840723	90.72	90.73	90.75	---	56,100
840802	90.73	90.75	90.75	90.79	56,700
840721	---	90.91	---	--	57,700
840828	---	91.09	---	-	59,900
840828	---	91.13	---	---	59,900
840706	---	91.18	---	---	63,600
840810	---	91.83	---	---	66,400
840810	---	91.85	---	---	66,400
840807	---	91.26	---	---	66,700
840625	---	91.82	-	---	67,100
840625	---	91.86	---	---	67,100

River. Breaching results from overtopping of the head by the adjoining side channel.

Prior to breaching, flow in the side channel is minimal and generally results from bank seepage. During high mainstem discharge a backwãter area was observed in the lower portion of the side channel.

During the 1984 open water field season the study site was located in the lower portion of the side channel (Figure 56). Stage measurements were collected at two locations in Sucker Side Channel with streamflow measurements obtained at each of the two stage monitoring stations (Figure 57). Channel geometry data obtained for Sucker Side Channel include cross section and thalweg profiles. Cross Section profiles were obtained at each stage monitoring location. The thalweg profile was determined from the mouth of the side channel continuing upstream to the first hydraulic control above the study site.

3.14.2 Stage/Discharge Relationship

In Sucker Side Channel measurements of water surface elevations were obtained at stage monitoring stations located at transects 2 and 5 . Recorded water surface elevations and the mean daily mainstem discharge (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharge are presented in Attachment Figures E-34 and E-35.

Figure 56.
Overview of Sucker Side Channe1 (RM 84.5).

Figure 57．Location of Sucker Side Channel study site（RM 84．5）．

Measurements of streamflow in Sucker Side Channel obtained at two stage monitoring stations and the corresponding water surface elevation and mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. Plots of these streamflow and water surface elevations were developed as rating curves to estimate streamflow from observed water surface elevations (Figures 58 and 59). The streamflow data was also plotted against mainstem discharge as rating curves to estimate streamflow from mainstem discharge (Figures 60 and 61).

3.14.3 Mainstem Breaching and Controlling Discharges

Breaching of Sucker Side Channel results from overtopping of the head by the adjoining side channeT. Insufficient field data is availabTe to precisely determine the initial breaching and controlling discharges for Sucker Side Channel. Field observations indicated that the channel was barely breached at $32,000 \mathrm{cfs}$ and non-breached at $24,000 \mathrm{cfs}$. No additional site information is available at mainstem discharges ranging between 32,000 and 24,000 cfs. A controling discharge of $29,000 \mathrm{cfs}$, was estimated by assuming that the stage/discharge relationship (Attachment Figures E-34 and E-35) for the non-breached condition was nearly horizontal. This assumption was based on observations and data recorded at this site. The controlling discharge is estimated from the curve as the point of intersection (29,000 cfs) of the non-breached and controlled (breached) conditions of the stage/discharge relationship. The initial breaching discharge of this side channel is estimated as occurring at approximately $1,500 \mathrm{cfs}$ below the controlling discharge, or at $27,500 \mathrm{cfs}$.

Figure 58．Sucker Side Channel streamflow versus WSEL rating curve at transect 2 Q Site．

WSEL $1+260$ FEETI

Figure 59. Sucker Side Channel streamflow versus WSEL rating curve at transect 5 Q Site.

Figure 60．Sucker Side Channel streamflow versus mainstem discharge at Sunshine Station （USGS 15292780）rating curve at transect 2 Q Site．

Figure 61. Sucker Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 5 Q Site.

To evaluate the influence of mainstem discharge on the hydraulics of this side channel a comparison of the rating curves for each of the streamflow stations was performed. (Figures 62 and 63). At transect 2 streamflow estimates of 10.0 cfs and 10.2 cfs were determined from the flow versus water surface elevation and flow versus mainstem discharge rating curves, respectively. At transect 5 streamflow estimates of 24.5 cfs and 12.1 cfs were determined from the flow versus water surface elevation and flow versus mainstem discharge rating curves, respectively.

3.14.4 Channel Geometry

3.14.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained at Sucker Side Channel during a non-breaching mainstem discharge of 19,000 cfs and an estimated side channel streamflow of less than 1 cfs . The survey data for the thalweg profile are presented in Attachment Table C-14 with the resultant thalweg profile presented in Attachment Figure C-14. This thalweg profile extended from the mouth of the side channel upstream approximately 1,300 feet above transect 6 . The streambed gradient for that portion of the side channel included in the thalweg profile was 7.2 feet/mile.

Figure 62. Comparison of rating curves for Sucker Side Channel transect 2 Q Site.

Figure 63. Comparison of rating curves for Sucker Side Channel transect 5 Q Site.

3.14.5 Backwater

Based on a comparison of 1984 stage data (Attachment Table B-1), a backwater area extends through the study site approximately 750 feet during mainstem discharges ranging from 66,400 to 76,200 cfs. Insufficient information is available to precisely determine the extent of backwater occurring in the side channel although field observations indicate that backwater occurred in the side channel mouth area throughout the majority of the 1984 field season.
3.15 Beaver Dam Slough and Side Channel (RM 86.3)

3.15.1 Site Description

Beaver Dam Slough and Side Channel are located on the east bank of the Susitna River at river mile 86.3. Both the slough and side channel are separated from the main channel Susitna River by a large side channel.

This side channel adjoins the head and mouth of Beaver Dam Side Channet, and the head of Beaver Dam Slough. The mouth of Beaver Dam Slough empties directly into Beaver Dam Side Channel. A substantial backwater area was observed to occur in Beaver Dam Slough.

During the 1984 open water field season the study site in Beaver Dam Slough was located near the mouth of the slough (Figure 64). The study site in Beaver Dam Side Channel included that portion of the side channel located downstream of the side channel/slough confluence (Figure 65).

Stage was monitored at one location in both the slough and side channel study sites. Streamflow measurements were obtained at each of these stage monitoring stations. Channel geometry data were obtained at both the sloughs and side channet study sites. Cross sections were obtained at each stage monitoring station. Thalweg profiles were surveyed through both the slough and side channel study sites.

3.15.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at each stage monitoring station located in Beaver Dam Slough and Beaver Dam Side Channel and the mean daily mainstem discharge (USGS 15292780) corresponding to the date of the stage measurement are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharge are presented in Attachment Figures E-36-E-38.

Figure 65. Location of Beaver Dam Slough and Beaver Dam Side Channel study site (RM 86.3).

Measurements of streamflow were obtained at the stage monitoring stations located at the slough transect 1 and at the side channel transect 4. These measurements of streamflow and the corresponding water surface elevation and mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. A plot of the streamflow and water surface elevations were developed as a rating curve for Beaver Dam Side Channel to estimate streamflow from observed water surface elevations and is presented in Figure 66. The streamflow data for the side channel was also plotted against mainstem discharge as a rating curve to estimate streamflow from mainstem discharge (Figures 67). Due to backwater conditions water surface elevation versus flow and flow versus mainstem discharge rating curves were not developed for Beaver Dam Slough.

3.15.3 Mainstem Breaching and Controlling Discharges

Breaching of Beaver Dam Side Channel is the result of overtopping of the head by the adjoining side channel. Beaver Dam Slough was not observed overtopped in 1984. The head of the side channel was observed breached at a mainstem discharge of $47,600 \mathrm{cfs}$ and dry at $45,400 \mathrm{cfs}$. The head was observed to be more than initially breached at a mainstem discharge of $47,600 \mathrm{cfs}$. Therefore, the initial overtopping of the side channel, (breaching discharge) is estimated to occur at approximately 46,000 cfs. Based on the breaching observation information and a review of the stage data presented in Attachment Figure E-37, the mainstem discharge of $47,600 \mathrm{cfs}$ has been chosen as the controlling discharge. Attachment

Figure 66. Beaver Dam Side Channel streamflow versus WSEL rating curve at transect 4 Q Site.

Figure 67. Beaver Dam Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site.

Figure E-37 shows that the lines depicting the base flow condition and the breached condition do not intersect. The gap between these lines is evidence that scour has probably occurred as a result of the August 26 flood event.

A comparison of the rating curves developed for the side channel is presented in Figure 68. Using the controlling discharge of 47,600 cfs a streamflow estimate of 7.1 cfs was derived from the flow versus water surface elevation rating curve. This flow estimate is very similar to the streamflow estimate of 6.2 cfs derived from the flow versus mainstem discharge rating curve.

3.15.4 Channel Geometry

3.15.4.1 Thalweg Profite

Survey data for the development of thalweg profiles were obtained for both Beaver Dam Slough and Side Channel during a non-breaching mainstem discharge of $19,600 \mathrm{cfs}$. Streamflow was measured to be 0.7 cfs and 0.5 cfs during these thalweg profiles for Beaver Dam STough and Side Channel, respectively. The survey data for these thatweg profiles are presented in Attachment Tables $\mathrm{C}-15$ and $\mathrm{C}-16$ with the resultant thalweg profiles presented in Attachment Figures $\mathrm{C}-15$ and $\mathrm{C}-16$. At Beaver Dam Slough the thalweg profile extended from the mouth of the slough continuing upstream above transect 5 approximately 940 feet. For Beaver Dam Side Channel the thalweg profile extended from the mouth of the side

Figure 68. Comparison of rating curves for Beaver Dam Side Channe] transect 4 Q Site.
channel upstream to the head of the side channel. The streambed gradient for that portion of Beaver Dam Slough included in the thalweg survey was 10.1 feet/mile. The streambed gradient for Beaver Dam Side Channel as determined by the thalweg profile was 13.5 feet/mile.

3.15.4.2 Cross Section Profile

Cross section data were recorded at each of the stage monitoring stations located in Beaver Dam Slough and Side Channel. These stage monitoring stations were located on transects 1 and 4 of Beaver Dam Slough and Side Channel, respectively. The cross sectional data are presented in Attachment Tables D-37 and D-38 with the resultant cross sections presented in Attachment Figures D-37 and D-38.

3.15.5 Backwater

Based on field observations on August 23 a backwater area extended at least 150 feet upstream from the sloughs mouth at a mainstem discharge of 54,600 cfs. Beaver Dam Slough was not observed breached in 1984. Increases in stage in the slough in 1984 resulted from an intrusion of water from Beaver Dam Side Channel entering the mouth of the slough. Backwater is estimated to occur in Beaver Dam Slough subsequent to breaching of Beaver Dam Side Channel or at $47,600 \mathrm{cfs}$ (the controling discharge for Beaver Dam Side Channe1).

Field observations for Beaver Dam Side Channel indicate that backwater occurs in the mouth area of this side channel during medium to high mainstem discharges. The precise extent of backwater and associated mainstem discharge to create the backwater has not been determined for this side channel due to insufficient data.

3.16 Sunset Side Channel (RM 86.9)

3.16.1 Site Description

Sunset Side Channel is located on the east bank of the Susitna River at river mile 86.9. It is approximately 1.1 miles in length and is separated from the main channel Susitna River on the west by a network of vegetated islands and side channels. The channel is confined on the east by a high cut bank. Prior to breaching, the side channel is composed of a sequence of pools and riffles. During this period, flow is maintained by groundwater seepage and upwelling. Subsequent to breaching, flows up to $3,900 \mathrm{cfs}$ have been measured.

During the 1984 open water field season, the study site within Sunset Side Channel was located in the lower portion of the side channel and was approximately 1,500 feet in length (Figure 69). Stage was monitored at seven locations with streamflow measurements being obtained at one of these stage monitoring stations (Figure 70). Cross section survey data were collected at all stage monitoring stations whereas survey data for the development of a thalweg profile were collected from the first control below the study site to the first control above the study site.

Figure 70. Location of Sunset Side Channel study site (RM 86.9).

3.16.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at each stage monitoring station located in Sunset Side Channel along with the mean daily mainstem discharges at Sunshine (USGS 15292780) corresponding to the date of the stage measurements are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharges are presented in Attachment Figures E-39 to E-45.

Measurements of streamflow in Sunset Side Channel were obtained at one stage monitoring station which was located on transect 1 . These measurements of streamflow and the corresponding water surface elevations and mainstem discharges are presented in Attachment Table B-1. A plot of these streamflows and water surface elevations developed as a rating curve is presented in Figure 71. These streamflow data plotted against mainstem discharge as a rating curve are presented in Figure 72.

3.16.3 Mainstem Breaching and Controlling Discharges

Breaching of Sunset Side Channel results from the direct overtopping of the head of the side channel by the mainstem Susitna River. Based on field observations and aerial photography this side channel was found to be "barely" breached at $32,000 \mathrm{cfs}$ and dry at $22,000 \mathrm{cfs}$. A review of the stage data presented in the transect 1 (streamflow station) water surface elevation versus mainstem discharge plot (Attachment Figure E-40) indicates that the hydraulics of Sunset Side Channei become

Figure 71. Sunset Side Channel streamflow versus WSEL rating curve at transect 1 Q Site.

Figure 72. Sunset Side Channel streamflow versus mainstem discharge at Sunshine (USGS 15292780) rating curve at transect 10 Site.
controlled by the mainstem at a discharge of $32,000 \mathrm{cfs}$. Based on this controlling discharge and the limited field observations an initial breaching discharge of $31,000 \mathrm{cfs}$ has been estimated for this side channel.

A comparison of the transect 1 rating curves (Figure 73) has been developed to evaluate the influence mainstem discharge has on the hydraulics of Sunset Side Channel. At the controlling discharge of $32,000 \mathrm{cfs}, \mathrm{flow}$ in this side channel has been estimated to be 45.8 cfs . This compares to an estimated flow of 41.4 cfs derived from the flow versus mainstem discharge rating curve. Table 3 summarizes the comparisons of flow estimates determined from equations developed from rating curves for controlling mainstem discharges for transect 1.

3.16.4 Channel Geometry

3.16.4.1 Thalweg Profile

Survey data for the development of a thalweg profile were obtained in Sunset Side Channel at a mainstem discharge of $17,400 \mathrm{cfs}$ while site flow was estimated to be 1 cfs. The thalweg profile extended upstream from approximately 400 feet below the mouth of the side channel through the study site to a point 2,500 feet into the side channe?. The survey data used to develop the thalweg profile are presented in Attachment Table $\mathrm{C}-17$ with the resultant thalweg profile being presented in Attachment Figure $\mathrm{C}-17$. Based on this thalweg profile, a gradient of 9.5 feet/mile was determined for the Sunset Side Channel.

3.16.4.2 Cross Section Profile

Cross section survey data were obtained at each of the seven transects located in Sunset Side Channe1. The survey data are presented in Attachment Table D-39 to D-45 with the resultant cross section profiles being presented in Attachment Figures D-39 to D-45.

3.16.5 Backwater

Based on available stage data (Table 8) and channel geometry data (Attachment Figure C-17), a backwater area does not occur in the side channel during unbreached conditions.

At breaching mainstem discharges ranging from $56,000-66,700 \mathrm{cfs}$, an area of backwater is estimated to extend upstream approximately 1,100 feet from the beginning of the thalweg profile to a point between transects 1 and 2. Above $66,700 \mathrm{cfs}$, insufficient stage data is available to determine the extent of backwater in Sunset Side Channel.

3.17 Sunrise Side Channel (RM 87.0)

3.17.1 Site Description

Sunrise Side Channel is located on the west bank of the Susitna River at river mile 87.0. It is approximately 0.5 miles long and is separated from the mainstem by vegetated islands (Figure 69).

Table 8. A comparison of water surface elevations from Task 14 staff gages located within Sunset Side Channel.

Date	TR 0	TR 1	TR 2	TR 3	TR 4	TR 5	TR 6	Mainstem Discharge
841005	---	-	---	93.74	---	94.75	94.74	16,500
840929	92.70	93.27	93.81	---	---	94.76	94.75	17,400
840930	---	93.27	93.79	93.69	94.11	94.75	94.75	17,800
840916	---	93.29	93.81	93.87	94.11	94.76	94.76	21,000
840912	---	93.29	93.81	93.78	94.29	94.78	---	22,700
840913	---	93.30	---	---	---	---	---	22,700
840914	---	---	93.81	93.87	94.31	---	---	24,000
840919	---	93.29	93.80	93.87	94.31	94.76	94.76	28,400
840902	---	---	---	---	---	---	94.88	32,000
840817	---	94.34	---	94.93	95.01	95.99	95.97	42,500
840816	---	---	---	95.02	95.10	96.06	96.05	44,000
840822	95.54	95.53	95.71	95.86	95.93	96.66	96.62	54,300
840803	95.60	95.58	95.68	95.95	95.93	96.72	96.69	54,700
840709	---	95.59	---	-	95.92	---	---	55,400
840709	---	95.69	95.94	96.01	96.08	96.79	---	55,400
840723	---	95.58	---	---	--	--	---	56,100
840723	95.58	95.58	95.64	95.85	95.95	96.65	---	56,100
840721	---	95.45	---	---	---	---	---	57,700
840722	95.09	95.67	95.76	95.86	95.96	96.68	96.64	57,800
840722	95.62	---	95.78	95.94	95.98	96.68	96.65	57,800

Table 8 (Continued).
$\left.\begin{array}{ccccccccc}\hline- & & \text { TR 0 } & \text { TR 1 } & \text { TR 2 } & \text { TR 3 } & \text { TR 4 } & \text { TR 5 } & \text { TR 6 }\end{array} \begin{array}{c}\text { Mainstem } \\ \text { Discharge }\end{array}\right]$

Breaching of this side channel by the mainstem results in substantial flow in the side channel whereas prior to breaching the channel is substantially dewatered. During high mainstem discharges a backwater area forms in the vicinity of the mouth.

During the 1984 open water field season the study site selected for Sunrise Side Channel was located in the lower portion of the side channel. Stage was monitored at one location with streamflow measurements obtained at this stage monitoring station (Figure 74). Channel geometry data obtained include both cross section and thalweg profiles. A cross section was surveyed at the stage monitoring station and a thalweg profile was determined from the mouth of the side channel continuing upstream to the first hydraulic control above the study site.

3.17.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at the stage monitoring station located in Sunrise Side Channel along with the mean daily mainstem discharge (USGS 15292780) corresponding to the date of stage measurement are presented in Attachment Table B-1. A plot of these water surface elevations versus mainstem discharge are presented in Attachment Figures E-46.

Measurements of streamflow in Sunrise Side Channel were obtained at the stage monitoring station which is located on transect 4. These measurements of streamflow and the corresponding water surface elevation and

Figure 74. Location of Sunrise Side Channel study site (RM 87.0).
mainstem discharge (USGS 15292780) are presented in Attachment Table B-1. A plot of these streamflow and water surface elevations was developed as a rating curve to estimate streamflow from observed water surface elevations (Figure 75).

The streamflow data was also plotted against mainstem discharge as a rating curve to estimate streamflow from mainstem discharge (Figure 76).

3.17.3 Mainstem Breaching and Controlling Discharges

Breaching of Sunrise Side Channel is the result of overtopping of the head directly by the mainstem Susitna River. The lowest mainstem discharge observed to overtop the head of this side channel is 36,600 cfs and was determined from a review of aerial photographs (Table 2). At 36,600 cfs a substantial volume of water overtopped the head. At a discharge of $32,000 \mathrm{cfs}$ the head of the side channel was observed dry. An estimated initial breaching discharge of $34,300 \mathrm{cfs}$ was chosen and is an average of the breaching discharge of $36,600 \mathrm{cfs}$ and the dry observation occurring at $32,000 \mathrm{cfs}$.

An absence of stage data below $45,400 \mathrm{cfs}$ precludes the precise determination of a controlling discharge for Sunrise Side Channel. Assuming the estimated breaching discharge of $34,300 \mathrm{cfs}$ is correct and that a controling discharge is usually within $2,000 \mathrm{cfs}$ of the breaching discharge, a controlling discharge of $36,000 \mathrm{cfs}$ has been estimated for this side channel. Additional stage data, primarily

Figure 75. Sunrise Side Channel streamflow versus WSEL rating curve at transect 40 Site.

$\begin{array}{ll}\text { Figure 76. } & \begin{array}{l}\text { Sunrise Side Channel streamflow versus } \\ \text { mainstem discharge at Sunshine (USGS } \\ \\ \\ \\ \\ \\ \text { Site. }\end{array}\end{array}$
during a non-breached condition, is necessary to precisely determine the controlling discharge for Sunshine Side Channel.

A comparison of the rating curves developed from transect 4 is presented in Figure 77. At the estimated controlling discharge of $36,000 \mathrm{cfs}$ a streamflow of 29.2 cfs was estimated from the flow versus water surface elevation rating curve. This compares to 21.1 cfs determined from the flow versus mainstem discharge rating curve.

3.17.4 Channel Geometry

3.17.4.1 Thalweg Profile

Survey data for the development of a thalweg profile for Sunrise Side Channel was obtained during a non-breaching mainstem discharge of 19,000 cfs and an estimated side channel streamflow of less than 1 cfs . The survey data for this thalweg profile are presented in Attachment Table C-18 with the resultant thalweg profile presented in Attachment Figure $\mathrm{C}-18$. This thalweg profile extended from the mouth of the side channel upstream to approximately 520 feet above transect 6 . The streambed gradient of the side channel included in the thalweg profile was 16.0 feet/mile.

3.17.4.2 Cross Section Profile

Cross section data were recorded at the stage monitoring station located in Sunrise Side Channel. This stage monitoring station was located on

Figure 77. Comparison of rating curves for Sunrise Side Channel transect 4 Q Site.

Abstract

transect 4 (Attachment Figure $\mathbf{C - 1 8}$). The cross sectional data are presented in Attachment Table D-46 with the resultant cross section presented in Attachment Figure D-46.

3.17.5 Backwater

Field observations indicate backwater was restricted to the mouth area of the side channel and the lower portion of the study site and occurred during medium to high mainstem discharges. Due to the limited 1984 stage data (Attachment Table B-1), the precise determination of the occurrence and the extent of backwater for Sunrise Side Channel was not possible.
3.18 Birch Creek Slough (RM 88.4)

3.18.1 Site Description

Birch Creek Slough is located on the east bank of the Susitna River at river mile 88.4 This slough is approximately 5 miles long with Birch Creek joining the slough about 1 mile upstream of Birch Creek Slough mouth. A road crosses the slough approximately 0.2 miles below the slough head through which breaching flow is restricted by a 24 inch diameter culvert. The culvert was observed to be substantially plugged by debris throughout the 1984 field season and served to control breaching mainstem water into the slough. Prior to breaching streamflow is maintained by Birch Creek with the slough upstream of Birch Creek
consisting of a series of isolated pools. Backwater was observed to occur in the lower portion of Birch Creek Slough except during periods of low mainstem discharge (Figure 78).

During the 1984 open water field season the study site in Birch Creek Slough was located approximately 0.3 miles downstream from the slough/creek confluence and approximately 0.7 miles upstream from the slough mouth. Stage was monitored at three locations and streamflow was measured at one of these stage monitoring stations (Figure 79). Channel geometry data obtained for the site included both cross section and thalweg profiles. Cross sections were obtained at each stage monitoring station with the exception of the head staff gage site. The thalweg profile was determined for only the portion of the slough that included the study site.

3.18.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at the stage monitoring stations located in Birch Creek Slough are presented in Attachment Table B-1. Birch Creek is located upstream of the slough study site. Plots of water surface elevation versus mainstem discharge for the stage monitoring stations located downstream of Birch Creek were not developed due to the influence of Birch Creek upon the stage observations. The water surface elevation versus mainstem discharge plot for the Birch Creek head stage monitoring station is presented in Attachment Figure E-47. Measurements of streamflow in Birch Slough were obtained at the stage monitoring station located on transect 6 . These measurements of

[^2]streamflow and the corresponding water surface elevation are presented in Attachment Table B-1. A plot of the streamflow and water surface elevations was developed as a rating curve to estimate streamflow from observed water surface elevations (Figure 80).

3.18.3 Mainstem Breaching and Controlling Discharges

Breaching of Birch Creek Slough results from overtopping of the head by the mainstem Susitna River. Based on field observations presented in Table 2, Birch Creek Slough has been described as "barely" breached at a mean daily mainstem discharge of $52,900 \mathrm{cfs}, 54,300 \mathrm{cfs}$ and $57,800 \mathrm{cfs}$. The instantaneous mainstem discharges at the time of these observations are $54,100 \mathrm{cfs}, 54,200 \mathrm{cfs}$ and $57,900 \mathrm{cfs}$, respectively. The mean daily discharge of $57,800 \mathrm{cfs}$ and the corresponding instantaneous discharge of $57,000 \mathrm{cfs}$ are USGS estimates occuring during a period when the USGS gaging station was non-functional. The head of the slough is primarily a silt bar subject to erosion and deposition. A discharge of $54,100 \mathrm{cfs}$ has been selected as the initial breaching discharge, due to the unstable nature of the berm at the head. Initial breaching discharge may fluctuate resulting from shifting of the substrate during high flow events.

A review of the water surface elevation versus mainstem discharge data recorded at transects 2 and 6 (Attachment Table B-1) indicate that the hydraulics of Birch Slough are substantially influenced by Birch Creek. Because of the influence of Birch Creek, a relationship between mainstem discharge and stage at transects 2 and 6 cannot be determined both

Figure 80 Birch Creek Slough streamflow versus WSEL rating curve at transect 6 Q Site.
transects are located downstream of Birch Creek). The controlling discharge cannot be determined from the available data due to the contribution of Birch Creek to streamflow in the slough.

3.18.4 Channel Geometry

3.18.4.1 Thalweg Profile

Survey data for the development of a thalweg profile for Birch Creek Slough was obtained during a non-breaching mainstem discharge of 18,300 cfs and measured slough flow of 34.0 cfs. The flow in the slough was contributed primarily by Birch Creek. The survey data for this thalweg profile are presented in Attachment Table C-19 with the resultant thalweg profile presented in Attachment Figure $\mathrm{C}-19$. This thalweg profile extended from the mouth of the slough upstream to approximately 700 feet above transect 5 . The streambed gradient of the slough included in the thalweg profile was 4.9 feet/mile.

3.18.4.2 Cross Section Profile

Cross section data were recorded at the two stage monitoring stations located in Birch Creek Slough. These stage monitoring stations corresponded to transects 2 and 6 (Attachment Figure C-19). The cross sectional data are presented in Attachment TabTes D-47 and D-48 with the resultant cross sections presented in Attachment Figures D-47 and D-48.

3.18.5 Backwater

During the 1984 open water field season the study site selected for Birch Creek Slough was located approximately 0.7 miles upstream from the mouth of the slough (see Section 3.14.1 of this report). Based on avaitable 1984 stage and channel geometry data a precise backwater analysis is not possible due to the location of the study site. Field observations indicate, however, backwater occurs at the mouth of the slough during all but low mainstem discharge.

3.19 Trapper Creek Side Channel (RM 91.6)

3.19.1 Site Description

Trapper Creek Side Channel is located on the west bank of the Susitna River and is approximately 5.0 miles in length. It is separated from the mainstem Susitna River by a complex of sand bars, small channels, and vegetated islands. The head portion of this side channe? is located in a complex of small channels and vegetated islands making it difficult to identify the origin of breaching flows (Figure 81). Depending upon mainstem discharge, the mouth of Trapper Creek Side Channel is also difficult to identify due to the presence of several intersecting small channels. At low mainstem discharges, the mouth of Trapper Creek Side Channel appears to extend downstream to river mile 90.3. Breaching flows in Trapper Creek Side Channel result from the overtopping of several overflow channels located throughout the upper portion of the side channeT. Prior to breaching, streamflow in Trapper Creek Side

Channel, is principally due to Cache Creek and ground water occurring in the upper reach of the side channel.

During the 1984 open water field season, the study site selected for Trapper Creek Side Channel was located in the lower portion of the side channel (Figure 82). Stage was monitored at four locations and streamflow was measured at one of these stage monitoring stations. Survey data for the development of cross section profiles was obtained from each stage monitoring station. Survey data for the development of a thalweg profile was obtained for only that portion of the side channel that included the study site.

3.19.2 Stage/Discharge Relationship

Measurements of water surface elevations obtained at each stage monitoring station located in Trapper Creek Side Channel along with mean daily mainstem discharges (USGS 15292780) corresponding to the date of the stage measurements are presented in Attachment Table B-1. Plots of these water surface elevations versus mainstem discharge are presented in Attachment Figures E-48 to E-51.

Measurements of streamflow in Trapper Creek Side Channel were obtained at one stage monitoring station located on transect 4. Measurements of streamflow and corresponding water surface elevations and mainstem discharges (IJSGS 15292780) are presented in Attachment Table B-1. A plot of these streamflows and water surface elevations developed as a rating curve is presented in Figure 83. The streamflow data was also

Figure 83. Trapper Creek Side Channel streamflow versus WSEL rating curve at transect 4 Q Site.
plotted against mainstem discharge as a rating curve and is presented in Figure 84.

3.19.3 Mainstem Breaching and Controlling Discharges

Breaching of Trapper Creek Side Channel is the result of the direct overtopping of the head of the side channel by the mainstem Susitna River. Based on aerial photography (Table 2), this side channe1 has been observed to be breached at a mainstem discharge as low as 36,600 cfs. The controlling mainstem discharge has been estimated from inspection of the stage versus mainstem discharge rating curve for transect 4 (Attachment Figure E-51) to be $44,000 \mathrm{cfs}$. The mainstem discharge of $44,000 \mathrm{cfs}$ was chosen because it is the point of intersection of the lines depicting the base flow unbreached condition and the breached condition observed at the streamflow station. This relationship is also presented in the water surface elevation versus mainstem discharge plots for transects 2 and 3 (Attachment Figures E-49 and E-50). Figure 85 illustrates a comparison of transect 4 rating curves that was developed to evaluate the influence mainstem discharge has on the hydraulics of Trapper Creek Side Channe1. At a mainstem discharge of $44,000 \mathrm{cfs}$ streamflow was measured to be 31.4 cfs .

The substantial differences in mainstem discharge between the lowest observed breaching discharge ($36,600 \mathrm{cfs}$) and the estimated controlling discharge ($44,000 \mathrm{cfs}$) is suspect. Based on observations from other study sites the initial breaching and controlling discharge are usually

Figure 84. Trapper Creek Side Channel streamflow versus mainstem discharge at Sunshine Station (USGS 15292780) rating curve at transect 4 Q Site.

Figure 85. Comparison of rating curves for Trapper Creek Side Channel Transect 4 Q Site.
similar. The breaching observation corresponding to $36,600 \mathrm{cfs}$ was determined from a 1983 aerial photograph. Based on the stage/discharge relationships for the nonbreached and breached condition presented in Attachment Figures E-48 to E-51 the initial breaching and controlling discharges for this side channel appear to be similar. Assuming the initial breaching discharge is less than and occasionally equal to the controlling discharge, an initial breaching is estimated to be 43,000 cfs.
3.19.4 Channel Geometry
3.19.4.1 Thalweg Profile

Survey data for the development of a thalweg profile was obtained from Trapper Creek Side Channel during a mainstem Susitna River discharge of $22,700 \mathrm{cfs}$ and a measured side channel flow of 16.4 cfs . The thalweg profile began approximately 150 feet downstream of the first control below the study site and extended upstream, through the study site, approximately 1,600 feet. The survey data used to construct the thalweg profile are presented in Attachment Table $C-20$ with the resultant thalweg profile being presented in Attachment Figure $\mathrm{C}-20$. Based on this thalweg profile, a streambed gradient of of 12.1 feet/mile was determined.

3.19.4.2 Cross Section Profile

Cross section survey data was obtained at each of the four transects located in Trapper Creek Side Channel. The survey data used to construct these cross sections are presented in Attachment Tables D-49 to D-52. The resultant cross section profiles are presented in Attachment Figures D-49 to D-52.
3.19.5 Backwater

Based on stage (Table 9) and channel geometry (Attachment Figure C-20) data, an area of backwater has not been observed in Trapper Creek Side Channel during both non-breaching and breaching mainstem discharges. At mainstem discharges ranging from 15,700 to $22,700 \mathrm{cfs}$, pooling was observed at transects 1,2 and 3 resulting from the hydraulic control located approximately 373 feet downstream from transect 1.

Table 9. A comparison of water surface elevations from Task 14 staff gages located within Trapper Creek Side Channel.

Date	TR 1	TR 2	TR 3	TR 4	Mainstem Discharge
841009	---	---	92.12	92.50	15,000
841006	91.92	91.90	92.14	92.51	15,700
840930	91.93	91.92	92.14	92.47	17,800
840917	91.95	91.93	92.19	92.53	20,400
840924	91.94	91.93	92.17	92.55	20,400
840918	91.95	91.95	92.18	92.60	20,900
840913	91.97	91.95	92.16	92.56	22,700
840911	---	---	92.14	92.56	23,500
840911	---	-	---	92.58	23,500
840816	92.34	92.00	92.15	92.70	44,000
840822	92.76	92.51	92.82	93.27	54,300
840803	92.93	92.69	93.02	93.18	54,700
840803	--.	---	---	93.42	54,700
840708	---	---	---	93.78	57,100
840819	92.90	92.69	93.04	93.23	57,200
840721	93.11	92.96	93.22	93.63	57,700
840721	93.15	93.00	93.32	94.08	57,700
840722	93.06	92.89	93.26	93.61	57,800
840722	-	---	---	93.62	57,800

Table 9 (Continued).

Date	TR 1	TR 2	TR 3	TR 4	Mainstem Discharge
840707	---	---	---	93.89	58,800
840707	---	---	---	93.89	58,800
840807	93.75	93.66	94.06	94.18	66,700
840807	93.76	93.68	94.08	94.21	66,700
840624	---	---	---	94.41	70,100
840624	---	---	---	94.75	70,100
840825	---	---	---	96.28	93,300
840825	---	---	---	96.42	93,300

4.0 SUMMARY

The stage, discharge, and channel geometry data presented in this technical report is the result of field investigations conducted from May to Octaber, 1984. During this period, mean daily Susitna River discharge at the USGS Sunshine gaging station (USGS 15292780) ranged from a low of $6,000 \mathrm{cfs}$ in May to a high of $104,000 \mathrm{cfs}$ in August. A review of the hydrograph developed from mean daily discharges recorded at Sunshine for the period of record (Figure 86) shows that daily flow during the 1984 open water field season generally followed previous years trends.

Based on evaluation of stage data collected at each study site during both the nonbreached and breached hydraulic conditions mainstem discharge was found to influence the hydraulic conditions of each of the Task 14 side channel and slough study sites. At Island, Circular, Sunset, Beaver Dam, Rustic Wilderness and Trapper Creek Side Channels sufficient data were obtained for the development of rating curves describing the relationship between mainstem discharge and study site water surface elevations during the unbreached hydraulic condition. This portion of the water surface elevation versus mainstem discharge rating curve is characterized by a regression line having little or no slope over incremental increases of mainstem discharge. Due to limited data, however, the portion of the rating curve for the non-breached condition has not been firmly established for any of these sites.

Figure 86. Susitna River hydrograph for May-October 1981,1982, 1983 and 1984 at Sunshine Station (USGS 15292780).

The determination of initial breaching discharges for each study site proved to be difficult as only limited observations were available which could be used to determine when study site breaching initially occurred. The range of mainstem discharge which afforded these observations, subsequent to study site selection, only occurred during a brief period in late August and early September during which time mainstem discharge decreased rapidly. As a result, the initial breaching discharges presented in this report are a compilation of field observations and reviews of aerial photographs. Aerial photography, however, does not always allow the resolution necessary for determining when the head of a study site is initially breached. A summary of the initial breaching discharges determined for the Task 14 study sites is presented in Table 10.

As progressively higher mainstem discharges overtop the head of the study site, the hydraulic conditions of the study site become controlled by mainstem discharge. The point at which this occurs is termed the controlling breaching discharge and is reflected on the water surface elevation versus mainstem discharge rating curves as a definite change in slope of the regression line. The non-breached conditions are usually reflected in these curves as having regression lines which are nearly horizontal or, in some instances, having a slight slope. Once the hydraulics of the study site become directly controlled by mainstem discharge the slope of the line dramatically changes due to the influence of mainstem discharge.

Table 10. Initial breaching discharges, controlling discharges and streamflow estimates corresponding to controlling discharges for the 1984 Task 14 study sites.

Location	River Mile	Initial Breaching Discharges	Crontrolling Breaching Discharges	Estim Streamflow Controlling WSEL vs Flow	ated (cfs) at Discharge Flow vs $Q_{\text {MS }}$
Hooligan Side Channel	35.2	23,100	23,500	46.5	48.6
Eagle's Nest Side Channel	36.2	14,000	15,000	--	--
Kroto Slough Head	36.3	36,000	38,000	55.4	67.3
Bear Bait Side Channel	42.9	25,900-36,600 ${ }^{\text {a }}$	-- ${ }^{\text {a }}$	-- ${ }^{\text {b }}$	-_ ${ }^{\text {b }}$
Last Chance Side Channel	44.4	22,700	24,000	--b	1.3
Rustic Wilderness Side Channel	59.5	19,000	20,400	--b	-_b
Istand Side Channel	63.2	34,000	35,000	43.5	68.8
Mainstem West Bank Side Channel	74.4	19,000	19,600	$5.7^{\text {c }}$	$5.7{ }^{\text {c }}$
Coose 2 Side Channel	74.8	30,000	32,000	26.3	21.7
Circular Side Channel	75.3	36,000	36,000	26.8	26.8
Sauna Side Channel	79.8	37,000	38,000	22.5	19.9
Sucker Side Channel TR2 TR5	84.5	27,500	29,000	10.0 24.5	$\begin{aligned} & 10.2 \\ & 12.1 \end{aligned}$
Beaver Dam Side Channel	86.3	46,000	47,600	7.1	6.2
Beaver Dam STough	86.3	- - ${ }^{\text {a }}$	-- ${ }^{\text {a }}$	--b	-_b
Sunset Side Channel	86.9	31,000	32,000	45.8	41.4
Sunrise Side Channe 1	87.0	34,300	36,000	29.2	21.1
Birch Creek Slough	88.4	54,100	_._d	_._d	-_d
Trapper Creek Side Channel	91.6	44,000	44,000	$31.4{ }^{\text {c }}$	$31.4{ }^{\text {c }}$

[^3]In most water surface elevation versus mainstem discharge rating curves, the lines defining the non-breached and breached controlled conditions intersect. Several gage sites, however, exhibited a gap in elevation between the nonbreached and controlled conditions. This is speculated to result from changes in channel geometry. A high flow event (104,000 cfs) occurred on August 26 which could have caused such channel movement. Field observations have noted that the character of the side channel morphology (gravel substrate) at each study site is susceptible to movement.

The information derived from the rating curves and the intial breaching information were used to determine the controlling discharges presented in Table 10. These controlling discharges are the best determination of the controlling mainstem discharges based on available data collected to date.

Because of the distances between the Sunshine gaging station and certain lower river study sites, a lag time curve was developed to analyze the travel time required for a flood wave to move from the Sunshine gaging station to the Susitna gaging station. Using this analysis, several water surface elevations presented in Attachment Table B-1 were evaluated for time lag. Time lag analysis was applied for those study sites located a substantial distance downstream of the Sunshine Station for periods of high flow events. A further discussion of the lag time curve development is found in Attachment A.

Thalweg profiles were developed for each of the Task 14 study sites. These thalweg profiles included that portion of the channel included in the study site only. From these thalwegs the gradient of the streambed for the study site was estimated and the thalwegs were used in determining extent of backwater when sufficient stage data were available. Table 11 summarizes the thalweg gradient for each study site.

Backwater areas were found to occur at several of the Task 14 study sties. The most apparent backwater areas were located at Caswell, Rolly and Birch Creeks, and Beaver Dam Slough. At Caswell Creek, Rolly Creek and Beaver Dam Slough backwater was reflected in the streamflow measurements. At several of the remaining study sites the stage data was too limited to precisely determine the extent of backwater. Also many study sites were located near the head of the side charnel or slough precluding a backwater analysis. Six Task 14 side channel study sites were also included in the Task 36 study (Island, Mainstem West Bank, Circular, Sauna, Sunset and Trapper Creek Side Channels). Due to the nature of the Task 36 study several stage monitoring stations were located in these side channels allowing a comparison of water surface elevations throughout the study site. A comparison of water surface elevations enabled a general backwater evaluation of these six side channels. A summary of the extent of backwater as determined by stage observations for these six side channels as well as the range of mainstem discharges corresponding to the occurrence of backwater is presented with the summary of thalweg gradients in Table 11.

Table 11. Summary of the extent of backwater and corresponding mainstem discharge for Task 14 study sites.

Location	RM	Extent of Backwater on Study Site Thalweg (ft)	Mainstem Discharge (cfs)	Gradient (ft/mi)	Head Condition
Hooligan Side Channel	35.2	$N / A^{\text {a }}$	---	8.9	---
Eagle's Nest Side Channel	36.2	N / A^{a}	---	8.9	---
Kroto Slough Head	36.3	N / A^{a}	---	7.0	---
Rolly Creek	39.0	3,750	52,500	5.5	Tributary
Bear Bait Side Channel	42.9	N / A^{a}	---	1.9	---
Last Chance Side Channel	44.4	$N / A^{\text {a }}$	---	10.1	---
Rustic Wilderness Side Channei	59.5	$N / A^{\text {a }}$	---	8.7	---
Caswell Creek	63.0	1,026	55,100 ${ }^{\text {b }}$	10.8	Tributary
Island Side Channel	63.2	$\begin{gathered} 1,100 \\ 570 \end{gathered}$	$\begin{aligned} & 35,000-38,000 \\ & 56,100-66,700 \end{aligned}$	15.6	Breached Breached
Mainstem West Bank Side Channel	74.4	N/A	N/A	12.3	Breached
Goose 2 Side Channel	74.8	N / A^{a}	---	9.2	---
Circular Side Channe 1	75.3	$\begin{aligned} & 1,141 \\ & 1,300 \end{aligned}$	$\begin{gathered} 42,500 \\ 55,200-66,700 \end{gathered}$	14.3	Breached Breached
Sauna Side Channel	79.8	Throughout study site (1,027 feet)	54,600-56,000	10.4	Breached
Sucker Side Channel	84.5	Throughout study site (750 feet)	66,400-76,200	7.2	Breached
Beaver Dam Slough	86.3	$\begin{array}{r} \mathrm{N} / \mathrm{A}^{\mathrm{b}} \\ 150 \end{array}$	$\begin{aligned} & 47,600 \\ & 54,600 \end{aligned}$	10.1	Non-Breached Non-Breached
Beaver Dam Side Channel	86.3	N / A^{C}	---	13.5	---

a Backwater was not present at study site.
Insufficient data available to determine upstream extent of backwater at higher mainstem discharges.
c Insufficient data available to determine occurrence and extent of backwater.

Table 11 (Continued).

Location	RM	Extent of Backwater on Study Site Thalweg (ft)	Mainstem Discharge (cfs)	$\begin{gathered} \text { Gradient } \\ (\mathrm{ft} / \mathrm{mi}) \end{gathered}$	Head Condition
Sunset Side Channel	86.9	1100	56,000-66,700	9.5	Breached
Sunrise Side Channel	87.0	$N / A^{\text {b }}$	---	16.0	---
Birch Creek	88.4	$N / A^{\text {b }}$	---	4.9	---
Trapper Creek Side Channel	91.6	N / A^{a}	---	12.1	N/A

[^4]5.0 GLOSSARY

Backwater Area - A reach of stream with reduced or no velocity and a rise in stage resulting from a hydraulic or physical barrier. Backwater areas in habitats adjacent to the Susitna River usually are due to an increase in mainstem discharge and occur at the mouth of or within a side channel or slough.

Breaching - The overtopping of the head of a side channel or side slough by the mainstem river.

Controlling Discharge - The mainstem discharge at Sunshine (USGS 15292780) required to breach the upstream end of the side channe 1 or side slough and govern the hydraulic characteristics within a side channel or side slough.

Cross Section Profile - A survey of the vertical section of a channel bottom taken at right angles to a survey line resulting in a ground/streambed profile.

Discharge - Discharge is defined as the volume rate of flow of water passing a specific location at a specific period in time, expressed as cubic feet per second (cfs). For the purpose of this report "discharge" will refer specifically to mainstem flow.

Flow - The movement of a volume of water from place to place. See Discharge and Streamflow.

Gaging Station - A location which has been established for monitoring stage, flow and/or discharge.

Gradient - Rate of change in vertical elevation per unit horizontal distance.

Head - The upstream end or point of origin of a lotic water body.

Initial Breaching Discharge - The mainstem discharge at Gold Creek which represents the initial point when mainstem water begins to enter the head of a side channel/side slough.

Mainstem - Consists of those portions of the Susitna River that normally convey water throughout the year. Both single and multiple channel reaches are included in this habitat category. Groundwater and tributary inflow appear to be inconsequential contributors to the overall characteristics of mainstem habitat. Mainstem habitat is typically characterized by high water velocities and well armored streambeds. Substrates generally consist of boulder and cobble size materials with interstitial spaces filled with a grout-like mixture of small gravels and glacial sands. Suspended sediment concentrations and turbidity are high during summer due to the influence of glacial melt-water. Discharges recede in early fall and the mainstem clears appreciably in October. An ice cover forms on the river in late November or December.

Mean Daily Discharge - The computed mean mainstem discharge per 24 hour period for a USGS gaging station.

Mouth - The downstream confluence of a lotic water body with another water body.

Observed Data - Values derived through a visual estimate or evaluation.

Rating Curve - A curve representing a simple relation between two variables to be used to determine values of the dependent variable as a function of the independent variable. The rating curves developed using project measurements of stage and discharge consist of discharge rating curves and stage rating curves. The discharge rating curves are used to determine streamflow as a function of mainstem discharge and streamflow as a function of water surface elevation. The stage rating curves are used to determine stage (water surface elevation) as a function of mainstem discharge.

Side Channel - Consists of those portions of the Susitna River that normally convey water during the open water season but become appreciably dewatered during periods of low mainstem discharge. Side channels may exist either in well defined overflow channels or in poorly defined water courses flowing through partially submerged gravel bars and islands along the margins of the mainstem river. Side channel streambed elevations are typically lower than the mean monthly water surface elevations of the mainstem Susitna River observed during June, July, and August. Side channels are
characterized by shallower depths, lower velocities and smaller streambed materials than the adjacent mainstem river.

Side Slough - Those channels located between the edge of the floodplain and the mainstem and side channels of the Susitna River. It is usually separated from the mainstem and/or side channels by well vegetated bars. An exposed alluvial berm often separates the head of the slough from mainstem discharge or side channel fiows. The controlling streambed/bank elevations at the upstream end of the side sloughs are slightly less than the water surface elevations of the mean monthly discharges of the mainstem Susitna River observed for June, July, and August. At intermediate and low-discharge periods, the side sloughs convey clear water from small tributaries and/or upwelling groundwater. These clear water inflows are essential contributors to the existence of this habitat type. The water surface elevation of the Susitna River generally causes a backwater to extend well up into the slough from its lower end. Even though this substantial backwater exists, the sloughs function hydraulically very much like small stream systems and several hundred feet of the slough channel often conveys water independent of mainstem backwater effects. At high discharges the water surface elevations of the mainstem river is sufficient to overtop the upper end of the slough. Surface water temperatures in the side sloughs during summer months are principally a function of air temperature, solar radiation, and the temperature of the loca? runoff.

Staff Gage - A non-recording staff, marked in graduations of hundredths of feet, used to monitor stage through observation.

Stage - The height of the water surface above an established datum plane. Stage can be converted to true water surface elevation if the observations are converted into project datum.

Streamflow - Same as discharge but refers specifically to side channel, slough and tributary flow whereas discharge denotes in the mainstem. See Discharge.

Thalweg Profile - A longitudinal profile that describes the streambed elevation of the deepest portion of mainstem, tributary, slough or other riverine habitats.

WSEL - Abbreviation for water surface elevation.

```
6.0 CONTRIBUTORS
```


PROJECT LEADER

Aquatic Habitat and Instream FTow Project Leader

PRIMARY AUTHORS

SECONDARY AUTHORS

REPORT COORDINATORS
EDITORS

DATA PROCESS.ING

DATA COLLECTION

DRAFTING

TYPING

Douglas Vincent-Lang

Tim Quane Pat Morrow Isaac Queral

Teri KekTak Tommy Withrow

Tim Quane
Douglas Vincent-Lang Teri Keklak

Allen Bingham
Alice Freeman
Donna Buchotz
Pat Morrow
Tommy Withrow
Isaac Queral
Glen Freeman
Doug Sonnerholm
Chris Kent
Sharie Methvin
Carol Hepler
Roxanne Peterson
Camille Stephens
Skeers Word Processing

7.0 ACKNOWLEDGEMENTS

The authors wish to thank Bob Aaserude and Diane Hilliard of E.W. Trihey \& Associates for providing their assistance with the study design, data reduction, and editing associated with this report. Special thanks to Larry Leveen of the U.S. Geological Survey for his effort in producing numerous instantaneous discharges in support of the time lag analysis. Funding for this study was provided by the State of Alaska, Alaska Power Authority.

8.0 LITERATURE CITED

> Alaska Department of Fish and Game (ADF\&G). 1984. Su Hydro Aquatic Studjes (May 1983 - June 1984) Procedures Manual. Final Draft. Prepared for Alaska Power Authority Anchorage, Alaska.
U.S. Geological Survey (USGS). 1978. Surface water records of Cook. Inlet Basin, Alaska, through September 1975. Open-file Report 78-498 (basic data).
\qquad - 1982. Water Resources Data for Alaska: Water Year 1981. USGS Water Data Report AK-81-1. Anchorage, Alaska.
\qquad . 1983. Water Resources Data for Alaska: Water Year 1982. USGS Water Data Report AK-82-1. Anchorage, Alaska.
\qquad - 1984. Water Provisional Summary of 1984 Water Resources Data for Alaska.

Abstract

Stage and discharge values in the lower Susitna River can range considerably during a 24 hour period as evidenced by inspection of the Sunshine Station hydrograph (USGS 15292780). This is particularly true for peaking discharge periods resulting from storm events. To develop correlations for rating curves of stage and streamflow data between specific side channels and the mainstem during peaking mainstem discharge events the use of instantaneous mainstem discharge values is necessary.

To obtain instantaneous mainstem discharge values at sites that are some distance downstream from the reference gaging station requires an assessment of the basin lag time. Lag time is the time required for a flood wave to move down a drainage basin from the gaging station to the study site.

To evaluate instantaneous site specific measurements of stage and discharge at study sites during high flow events it is necessary to determine the magnitude of the flood wave and the time of day the wave influenced the site specific measurements. To determine the discharge represented by the flood wave requires an assessment of the velocity (v) of the wave;

$$
v=x / t
$$

where

$$
\begin{aligned}
x= & \text { distance from reference gage to site } \\
t= & \text { time required for flood wave to travel from the } \\
& \text { reference gage to the site. }
\end{aligned}
$$

To assess the velocity of several flood waves, the hydrographs for Sunshine and Susitna Stations were analyzed (USGS 15292780 and 15294350 , respectively). Four peak events of varying magnitude that could be clearly distinguished in both hydrographs were selected for analysis. The objective was to determine the time it took for each flood wave to travel the 58.1 miles between gaging stations. The following values were obtained from the USGS (Larry Leveen, pers. comm., $1 / 31 / 85$).

	Type of Event	Sunshine Discharge	Time	Susitna Discharge	Time
Date	Peak	86,900	0900	135,000	2330
July 27	Peak	64,000	2300	150,000	1600
August 19-20	Peak	114,000	0300	171,000	1400
August 26	Peak	24,500	1030	54,500	2400
September 14-15					

From these values, flood wave velocities were calculated.

	Time (hrs)	Velocity (ft/sec)	Sunshine Q (cfs)
	14.5	5.88	86,900
July 27	17.0	5.01	64,000
August 19-20	11.0	7.75	114,000
August 26	37.5	2.27	24,500
September 14-15			

A logarithmic regression relationship was developed between flood wave velocity and discharge at Sunshine Station. This equation is as follows:
$V=10^{-3.086} Q^{0.785}, r^{2}=0.996$.

Attachment Table A-1 provides a tabulation of the distance in miles that a flood wave of a given magnitude will travel in a given time interval for the lower Susitna River. Attachment Figure A-1 provides a graphic representation of the data presented in Attachment Table A-1. To determine the instantaneous mainstem discharge occurring at a study site, the following procedure was used:

1) the instantaneous mainstem discharge at Sunshine was determined corresponding to the time of day for a site specific stage observation;
2) the distance of the study site from the Sunshine station was determined;
3) the instantaneous mainstem discharge and the distance were plotted in Attachment Figure A-1 to determine the lag time of the flood wave;

Attachment Table A-1. Distance in miles that a flood wave of a given magnitude will travel in a given time.

Lag Time (Hours)	15,000	20,000	30,000	Magnitude of Flood Wave (cfs) 40,000							60,000	80,000	90,000	100,000	150,000

Attachment Figure A-1. Lower Susitna River Basin lag times referenced to Sunshine Station (USGS 15292780).
4) the lag time was subtracted from the time of the stage observation to yield the time of day the flow wave was measured at the Sunshine station. The instantaneous mainstem discharge at Sunshine station for this revised time is the discharge corresponding to the site specific stage measurement.

Attachment Table B-1. Comparison of water surface elevations and streamflow, measured at Task 14 study sites, to mean daily mainstem discharge (cfs) at Sunshine (USGS 15292780).

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \quad(c f s) \end{aligned}$	```Mainstem Discharge (cfs)```
Hooligan Side Channel TR 3	840925	1710	91.28		19,600
(035.2S1 at RM 35.2)	840917	1040	91.27		20,400
	840725	1600	93.33		53,300 ${ }^{\text {a/ }}$
	840711	1200	93.36	688.5	55,100
	840724	1050	93.39	696.4	55,200
	840829	1330	93.35		55,400 ${ }^{\text {a/ }}$
	840808	1330	93.87		64,700 ${ }^{\text {a/ }}$
	840808	1220	93.83		65,200 ${ }^{\text {a/ }}$
	840808	1106	93.83	1087.5	65,600 ${ }^{\text {a/ }}$
	840828	1245	94.40		71,900 ${ }^{\text {a/ }}$
	840825	1340	95.00	2288.0	80,300 ${ }^{\text {a/ }}$
	840825	1600	95.28		85, $3000^{\text {a/ }}$
	840825	1710	95.39		87,500 ${ }^{\text {a/ }}$
	840826	1430	96.68		113,000 ${ }^{\text {a/ }}$

a/ Discharge value is instantaneous and was determined using a time lag analysis.

Attachment Table B-1. continued.

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	```Mainstem Discharge (cfs)```
Eagles Nest Side Channel TR 2 (036.2S1 at RM 36.2)	841009	1630	90.13		15,000
	840928	1530	90.28		17,700
	840926	1250	90.41		19,000
	840926	1350	90.41	21.2	19,000
	840917	1115	90.48		20,400

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\underset{(\mathrm{cfs})}{\text { Streamf low }}$	Mainstem Discharge (cfs)
Kroto Slough Head TR 2	840925	1225	89.74		19,600
(036.3s1 at RM 36.3)	840711	1600	91.65	290.6	55,100
	840724	1345	91.60	268.1	55,200
	840724	1530	91.61		55,200
	840829	1400	91.40		59,100 ${ }^{\text {a/ }}$
	840808	1520	92.44	530.0	65,900
	840808	1600	92.44		65,900
	840808	1655	92.47		65,900
	840809	1100	92.44		68,300
	840727	1300	94.77		85,500 ${ }^{\text {a/ }}$
	840825	1835	94.69	1771.6	89,700 ${ }^{\text {a/ }}$
	840825	2020	94.82		93,300
	840825	2110	94.90		93,300

a/Discharge value is instantaneous and was determined using a time lag analysis.

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	Streamflow (cfs)	Mainstem Discharge (cfs)
Rolly Creek TR 2	841011	1530	92.36		14,200
(039.0Tl at RM 39.0)	840928	1605	93.31		17,700
	840928	1540	93.32	10.9	17,700
	840830	1500	93.96		40,800
	840815	1800	93.87		46,000
	840813	1730	94.41		48,100
	840710	1510	94.71	2.9	52,500
	840724	0939	94.89		55,200
	840809	1001	95.70		68,300
	840809	1001	95.73		68,300
	840730	1600	96.34		70,500
	840826	1600	96.04		104,000

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	Mainstem Discharge (cfs)
Bear Bait Side Channel TR 2	840927	1110	88.50		18,300
(042.9S1 at RM 42.9)	840813	1330	91.95		48,800 ${ }^{\text {a/ }}$
	840710	1215	92.21	188.9	52,500
	840724	1611	92.36	242.6	55,200
	840724	1645	92.39		55,200
	840731	1200	93.15		64,900
	840808	1811	93.08	547.3	65,900
	840826	1700	96.86		110,000 ${ }^{\text {a/ }}$
	840826	1400	97.08	2512.4	113,000 ${ }^{\text {a/ }}$

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \quad(c f s) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Last Chance Side Channe 1 TR 2	840813	1400	93.36		48,100
(044.4S1 at RM 44.4)	840725	1150	94.33	165.4	56,100
	840725	1220	94.33		56,100
	840809	1220	95.26	476.2	68,300
	840809	1244	95.28		68,300
	840726	1430	95.37		70,500 ${ }^{\text {a/ }}$
	840726	1430	95.40		70,500 ${ }^{\text {a/ }}$
	840827	1250	96.67		86,200 ${ }^{\text {a/ }}$
	840827	1030	96.71	1219.6	87, $9000^{\text {a/ }}$
	840825	1630	96.72		89,700 ${ }^{\text {a/ }}$

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	```Streamflow (cfs)```	```Mainstem Discharge (cfs)```
Rustic Wilderness Side Channel TR 4 (059.5S1 at RM 59.5)	840928	1140	92.83		17,700
	840930	1500	92.81		17,800
	841001	1230	92.85		18,700
	840917	1450	92.94		20,400
	840831	1400	94.83		38,000
	840712	1645	95.84	607.4	54,100
	840812	1230	95.87		54, $800{ }^{\text {a }}$
	840725	1508	95.86	642.3	56,100
	840828	1650	95.91		59,900
	840828	1425	95.95		59,900
	840828	1510	95.96	781.6	59,900
	840809	1615	96.29	921.2	68,300
	840809	1700	96.30		68,300
	840729	1430	96.49		71,900

a/ Discharge value is instantaneous and was determined using a time lag analysis.

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Caswel1 Creek TR 4 (Q Site)	841009	1140	93.58	27.5	15,000
(063.0T4 at RM 63.0)	841001		93.43		18,700
	840926		93.39		19,000
	840915		93.38		22,300
	840818	1500	94.89		45,400
	840719	1330	95.48		51,600
	840711	1530	95.85	11.9	55,100
	840724	1100	95.57		55,200
	840802	1430	95.80		56,700
	840706	1400	96.21		60,400
	840626	1420	$96.47{ }^{\circ}$		64,800

Attachment Table B-1. continued

Location	Date	Time	$\begin{gathered} \text { WSEL } \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Island Side Channe 1 TR 1 (Q Site)	840930		90.86		17,800
(063.2S1 at RM 63.2)	840831	1300	91.90		38,000
	840719	1215	93.13		51,600
	840712	1530	93.33	379.0	54,100
	840725	1300	93.33	303.0	53,500 ${ }^{\text {a/ }}$
	840725	2010	93.54		56,100
	840704	1150	93.55		58,600
	840811	1630	93.77	515.0	60,000
	840801	1430	93.73		60,300
	840626	1500	93.95		64,800
	840807	1325	94.17		66,700

a/ Discharge value is instantaneous and was determined using a time lag evaluation.

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & \text { Mainstem } \\ & \text { Discharge (cfss) } \end{aligned}$
Island Side Channe 1 TR 1A	840930		90.93		17,800
(063.2S7 at RM 63.2)	840919	1200	91.37		28,400
	840901	1330	91.69		35,000
	840831		91.93		38,000
	840725	1745	93.46		56,100
	840725	1940	93.56		56,100
	840801		93.75		60,300
	840807	1325	94.16		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Island Side Channel ${ }^{\text {TR } 2}$	840930		90.88		17,800
(063.2S2 at RM 63.2)	840919	1210	91.33		28,400
	840901		91.68		35,000
	840831		91.89		38,000
	840725	1710	93.41		56,100
	840725	1935	93.52		56,100
	840801		93.74		60,300
	840807	1325	94.16		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & \text { Mainstem } \\ & \text { Discharge (cfs) } \end{aligned}$
Island Side Channel TR 3	840930		91.23		17,800
(063.2S3 at RM 63.2)	840901		91.70		35,000
	840831		91.90		38,000
	840725	1550	93.44		56,100
	840725	1500	93.48		56,100
	840725	1900	93.55		56,100
	840801		93.79		60,300
	840807	1325	94.24		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{gathered} \text { WSEL } \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Island Side Channel TR 4	840930		91.56		17,800
(063.2S4 at RM 63.2)	840901	1500	91.71		35,000
	840831		91.90		38,000
	840725	1850	93.62		56,100
	840801		93.89		60,300
	840807	1325	94.34		66,700

Attachment Table B－1．continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge（cfs）
Is land Side Channel TR 4A	840930		91.56		17，800
（063．2S8 at RM 63．2）	840901		91.77		35，000
	840831		91.94		38，000
	840725	1400	93.52		56，100
	840725	1830	93.66		56，100
	840801		93.93		60，300
	840807	1325	94.31		66，700

Attachment Table B-1. continued

Attachment Table B－1．continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	Mainstem Discharge（cfs）
Is land Side Channel TR 6 （Q Site）	840930		91.54		17，800
（063．2S6 at RM 63．2）	840927	1400	91.56		18，300
	840915		－91．62		22，300
	840901	1300	91.75		35，000
	840831	1230	91.95		38，000
	840719		93.36		51，600
	840712	1130	93.67	394.9	54，100
	840725	1220	93.55	337.7	53，600 ${ }^{\text {a／}}$
	840725	1620	93.61	359.5	54，200 ${ }^{\text {a／}}$
	840725	1915	93.70		56，100
	840704		93.84		58，600
	840811	1150	94.08	543.0	60，000
	840811	1425	94.08		60，000
	840801		94.00		60，300
	840626	1520	94.30		64，800
	840626	1520	94.31		64，800
	840807		94.40		66，700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	Streamflow (cfs)	Mainstem Discharge (cfs)
Mainstem $W \backslash B$ S. Chan. TR1 (Q Site) (074.4S1 at RM 74.4)	841010	1430	92.64	. 5	14,700
	840925	1005	92.85	5.7	19,600
	840915	1110	93.90	73.1	22,300
	840914		94.12		24,000
	840920	1450	94.62	309.9	30,500
	840902		94.94		32,000
	840902	1231	94.97	449.6	32,000
	840817		95.49		42,500
	840815		95.56		46,000
	840712	1050	95.96	1260.0	54,100
	840711	1130	96.01		55,100
	840711	1130	96.08		55,100
	840724	1600	96.02	1267.0	55,200
	840723	1950	95.98		56,100
	840721		96.02		57,700
	840721		96.03		57,700
	840801		96.22		60,300
	840801		96.24		60,300
	840810	1745	96.49		66,400
	840810	1445	96.54	1910.0	66,400
	840807	1205	96.49		66,700
	840827	1240	97.14		79,700
	840827	1010	97.19	2814.1	79,700

Attachment Table B-l. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Mainstem West Bank Side Chan. TR 2 (074.4S2 at RM 74.4)	841010		92.63		14,700
	840915		93.74		22,300
	840914		94.13		24,000
	840920	1535	94.64		30,500
	840902		94.98		32,000
	840902	1503	95.00		32,000
	840817		95.60		42,500
	840815		95.64		46,000
	840711	1215	96.06		55,100
	840711	1215	96.09		55,100
	840723	1950	96.02		56,100
	840723	1950	96.07		56,100
	840721		96.09		57,700
	840721		96.14		57,700
	840801		96.31		60,300
	840801		96.32		60,300
	840810	1805	96.54		66,400
	840810	1805	96.62		66,400
	840807	1205	96.51		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Mainstem West Bank Side Chan. TR 2A	840903	1230	94.90		29,000
(074.4S5 at RM 74.4)	840920		94.67		30,500
	840902		94.99		32,000

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	```Mainstem Discharge (cfs)```
Mainstem West Bank Side Chan. TR 3 (074.4S3 at RM 74.4)	841010		93.03		14,700
	840915		93.80		22,300
	840914		94.18		24,000
	840903		94.97		29,000
	840920	1323	94.70		30,500
	840902	1604	95.04		32,000
	840902		95.08		32,000
	840815		95.92		46,000
	840711	1300	96.39		55,100
	840723	1950	96.36		56,100
	840721		96.44		57,700
	840801		96.67		60,300
	840810	1805	96.81		66,400
	840810	1805	96.94		66,400
	840807	1205	96.81		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\underset{(c f s)}{\text { Streamflow }}$	Mainstem Discharge (cfs)
Mainstem West Bank Side Chan. TR 3A (074.4S6 at RM 74.4)	841010		93.05		14,700
	841001	1120	93.37		18,700
	840925	1210	93.51		19,600
	840915		94.04		22,300
	840914		94.44		24,000
	840903	1100	95.21		29,000
	840920	1248	94.93		30,500
	840902	1628	95.29		32,000
	840902		95.32		32,000

Attachment Table B－1．continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge（cfs）
Mainstem West Bank Side Chan．TR 3B （074．4S7 at RM 74．4）	840903		95.06		29，000

Attachment Table B-1. continued

Location	Date	Time	$\begin{gathered} \text { WSEL } \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { Streamf low } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Mainstem West Bank Side Chan. TR 4 (074.4S4 at RM 74.4)	841010	1430	94.63		14,700
	840914	1145	95.83		24,000
	840903		96.39		29,000
	840920	1239	96.16		30,500
	840902	1845	96.49		32,000
	840902	1715	96.54		32,000
	840817		97.22		42,500
	840815		97.30		46,000
	840711	1400	97.50		55,100
	840711	1400	97.70		55,100
	840723	1950	97.67		56,100
	840721	1215	97.62		57,700
	840801	1601	97.90		60,300
	840810	1810	97.86		66,400
	840810	1810	98.19		66,400
	840807	1205	97.97		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	Streamflow (cfs)	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Goose 2 Side Channel TR 2 (Q Site)	840902	1933	214.66		32,000
(074.8S2 at RM 74.8)	840830	1200	215.07		40,800
	840815	1105	214.96		46,000
	840710	1720	215.38	108.0	52,500
	840720	1115	215.27		52,600
	840723	1530	215.42	114.0	56,100
	840802	1140	215.51		56,700
	840705	1030	215.63		59,800
	840828	1155	215.82	213.8	59,900
	840626	1200	215.87		64,800
	840810	1650	215.78	209.0	66,400

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	Mainstem Discharge (cfs)
Circular Side Chan. TR 1 (Q Site) (075.3S1 at RM 75.3)	840920	0855	87.87	. 5	30,500
	840830	1700	89.10		40,800
	840817	1700	89.25		42,500
	840817	1740	89.28	43.1	42,500
	840803		90.23		54,700
	840803		90.24		54,700
	840724	1855	90.26		55,200
	840724	1855	90.26		55,200
	840724	1140	90.29	204.2	55,200
	840724	1225	90.30	191.0	55,200
	840724	1330	90.30		55,200
	840723		90.31		56,100
	840811	1250	90.81	281.4	60,000
	840706		90.70		60,400
	840706		90.70		60,400
	840706		90.72		60,400
	840824	1235	90.78		64,800
	840824	1235	90.78		64,800
	840626	1045	90.99		64,800
	840626	1045	91.00		64,800
	840807	1245	91.24		66,700
	840827	1800	91.75		79,700
	840827	1615	91.82	745.5	79,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \quad(\mathrm{cfs}) \end{aligned}$	```Mainstem Discharge (cfs)```
Circular Side Channe 1 TR 2	840830		89.27		40,800
(075.3S2 at RM 75.3)	840817		89.27		42,500
	840817	1830	89.30		42,500
	840803		90.21		54,700
	840724	1905	90.26		55,200
	840811	1225	90.77		60,000
	840824	1230	90.80		64,800
	840807	1245	91.19		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	Streamflow (cfs)	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Circular Side Channel TR 2A	841010		88.06		14,700
(075.3s6 at RM 75.3)	840903		88.69		29,000
	840920	0930	88.67		30,500
	840902		88.70		32,000
	840830		89.33		40,800
	840817	1940	89.41		42,500
	840803		90.26		54,700
	840724	1905	90.28		55,200
	840724	1600	90.31		55,200
	840824	1230	90.81		64,800
	840807	1245	91.18		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Circular Side Channel TR 3	840914	1330	89.45		24,000
(075.3S3 at RM 75.3)	840903		89.55		29,000
	840920	0946	89.50		30,500
	840902	1904	89.56		32,000
	840830	1445	90.06		40,800
	840817	1545	90.17		42,500
	840817	1923	90.20		42,500
	840710	1455	90.51		52,500
	840803	1105	90.62		54,700
	840724	1200	90.67		55,200
	840724	1910	90.60		55,200
	840723	1645	90.64		56,100
	840811	1225	91.01		60,000
	840706	1100	90.92		60,400
	840824	1225	91.03		64,800
	840626	1040	91.15		64,800
	840626	1040	91.21		64,800
	840807	1245	91.32		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
```Circular Side Channel TR 4 (Q Site) (075.3S4 at RM 75.3)```	840928	1610	89.54		17,700
	840914		89.72		24,000
	840903		89.85		29,000
	840920	1010	89.77	. 5	30,500
	840902		89.84		32,000
	840830		90.40		40,800
	840817		90.57		42,500
	840817	1740	90.60	49.6	42,500
	840710	1415	91.13	150.0	52,500
	840803		91.24		54,700
	840724	1330	91.25	200.2	55,200
	840724	1910	91.26		55,200
	840724	1015	91.29	192.5	55,200
	840724	1105	91.30		55,200
	840723		91.26		56,100
	840811	1220	91.58		60,000
	840811	1105	91.59	295.0	60,000
	840824	1220	91.54		64,800
	840824	1220	91.56		64,800
	840807	1245	91.83		66,700
	840827	1555	92.43		79,700
	840827	1425	92.49	860.0	79,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{aligned} & \text { Mainstem } \\ & \text { Discharge (cfs) } \end{aligned}$
Circular Side Channel TR 5	841010		89.04		14,700
(075.3S5 at RM 75.3)	841009		89.10		15,000
	840928		89.55		17,700
	840914		89.73		24,000
	840903		89.84		29,000
	840920	1020	89.76		30,500
	840724	1500	91.32		55,200
	840724	1915	91.32		55,200

$0 \varepsilon-\varepsilon$

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamf low } \\ & \text { (cfs) } \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Circular Side Channel Head	840710	1600	91.81		52,500
(075.3H3 at RM 75.3)	840723	1520	92.00		56,100
	840624	1515	92.99		70,100

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	```Streamflow (cfs)```	```Mainstem Discharge (cfs)```
Sauna Side Channel TR 1	841009		88.75		15,000
(079.8S1 at RM 79.8)	840817	1030	89.15		42,500
	840823	1550	90.63		54,600
	840723		90.70	54.0	56,100
	840723	1300	90.72		56,100
	840802		90.73		56,700

Attachment Table B-1. continued

Location	Date	Time	WSEL   (ft)	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem   Discharge (cfs)
Sauna Side Channel TR 2 (Q Site) (079.8S2 at RM 79.8)	841009		89.00		15,000
	840710	1040	90.24	37.8	52,500
	840823	1500	90.61		54,600
	840723	1200	90.71	52.0	56,100
	840723	1215	90.73	50.0	56,100
	840723	1220	90.73		56,100
	840802	1645	90.75		56,700
	840721	1545	90.91		57,700
	840828	1055	91.09		59,900
	840828	0925	91.13	57.6	59,900
	840706	1515	91.18		60,400
	840810	1350	91.83		66,400
	840810	1255	91.85	67.5	66,400
	840807		91.26		66,700
	840625	1600	91.82		67,100
	840625	1600	91.86		67,100

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Sauna Side Channe 1 TR 3	841009		88.90		15,000
(079.8S3 at RM 79.8)	840823	1510	90.64		54,600
	840723	1540	90.66		56,100
	840723		90.72	55.0	56,100
	840723	1414	90.75		56,100
	840802		90.75		56,700

Attachment Table B-l. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\underset{(\mathrm{cfs})}{\substack{\text { Streamflow }}}$	Mainstem   Discharge (cfs)
Sauna Side Channel TR 4	841009		89.02		15,000
(079.8S4 at RM 79.8)	840928	1045	89.02		17,700
	840914	1700	89.02		24,000
	840830		89.39		40,800
	840817		89.29		42,500
	840823	1510	90.65		54,600
	840723		90.69	45.0	56,100
	840723	1625	90.69		56,100
	840802	1510	90.79		56,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	```Mainstem Discharge (cfs)```
Sucker Side Channe1 TR 2 (Q Site) (084.5S2 at RM 84.5)	840913		261.50		22,700
	840914	1110	261.52		24,000
	840902		261.83		32,000
	840901	1700	261.97		35,000
	840831	1845	262.35		38,000
	840816		262.94		44,000
	840816		262.95		44,000
	840829	1755	263.16		47,600
	840710	1045	263.52	75.2	52,500
	840823	1235	263.85		54,600
	840709	1052	263.90		55,400
	840805		264.16		57,700
	840805		264.18		57,700
	840722		263.95		57,800
	840722		263.97		57,800
	840810	1320	264.84		66,400
	840810	1020	264.89	181.2	66,400
	840625	1445	264.81		67,100
	840726	1310	265.58		76,200
	840726	1310	265.64	263.6	76,200
	840726	1450	265.70		76,200
	840826	1805	267.01		104,000
	840826	1645	267.08	619.0	104,000

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & \text { Mainstem } \\ & \text { Discharge (cfs) } \end{aligned}$
Sucker Side Channel TR 5	840913	1715	262.77		22,700
(084.5S5 at RM 84.5)	840914	1210	262.78		24,000
	840902	1136	262.91		32,000
	840816		263.38		44,000
	840710	1525	263.82	76.7	52,500
	840823	1150	264.00		54,600
	840709		264.09		55,400
	840805		264.32		57,700
	840722		264.11		57,800
	840810	0900	264.97	177.0	66,400
	840625	1500	264.88		67,100
	840627	1100	264.78	172.6	67,200
	840726	1035	265.42		76,200
	840726	1025	265.44	231.0	76,200
	840726	1115	265.47		76,200
	840726	1245	265.58		76,200
	840826	1630	267.21		104,000
	840826	1350	267.34	682.9	104,000

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	$\begin{aligned} & \text { Mainstem } \\ & \text { Discharge (cfs) } \end{aligned}$
Beaver Dam Slough TR 1 (Q Site)	840929	1420	92.84		17,400
(086.3S1 at RM 86.3)	840925	1645	92.85	. 7	19,600
	840917	1125	92.84		20,400
	840916	1305	92.83	. 7	21,000
	840914	1540	92.85		24,000
	840901	1315	93.14		35,000
	840831		93.22		38,000
	840829	1210	93.62		47,600
	840804		94.08		53,900
	840804	1220	94.08		53,900
	840823	1055	94.00		54,600
	840724		93.84		55,200
	840724		93.85		55,200
	840709	1620	93.99		55,400
.	840708	1230	94.14		57,100
	840819		94.24		57,200
	840819		94.24		57,200
	840808	1930	95.20		65,900
	840625		95.28		67,100
	840627	1440	95.37	0.0	67,200
	840726	1900	96.48		76,200

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamf low } \\ & \text { (cfs) } \end{aligned}$	Mainstem   Discharge (cfs)
```Beaver Dam Side Chan. TR 4 (Q Site) (086.3S4 at RM 86.3)```	840929		92.68		17,400
	840925	1700	92.69	. 5	19,600
	840917		92.70		20,400
	840916	1200	92.69	. 6	21,000
	840901		92.89		35,000
	840831		92.94		38,000
	840829		93.55		47,600
	840804	1500	94.00		53,900
	840823	1015	93.89		54,600
	840823	1030	93.93		54,600
	840724		93.79		55,200
	840709		93.98		55,400
	840709	1310	94.00	20.5	55,400
	840708		94.06		57,100
	840819	1630	94.60		57,200
	840808	1920	95.12		65,900
	840808	1935	95.13		65,900
	840808	1715	95.17	122.0	65,900
	840625		95.18		67,100
	840625	1730	95.19		67,100
	840625	1315	95.21		67,100
	840627	1320	95.20		67,200
	840627	1320	95.24	122.2	67,200
	840726	1540	96.16		76,200
	840726	1715	96.23	303.8	76,200
	840726	1830	96.41		76,200
	840826	2000	97.29		104,000
	840826	1840	97.35	644.0	104,000

Attachment Table B－1．continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	```Mainstem Discharge (cfs)```
Beaver Dam Head	840823	0950	95.38		54，600
（086．3H4 at RM 86．3）	840709	1115	95.52		55，400
	840808	1700	96.52		65，900

Attachment Table B-1, continued

Location	Date	Time	$\begin{gathered} \text { WSEL } \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Sunset Side Channel TR 0	840929		92.70		17,400
(086.9S0 at RM 86.9)	840822	1600	95.54		54,300
	840803	1535	95.60		54,700
	840723	1230	95.58		56,100
	840722	1225	95.09		57,800
	840722	1650	95.62		57,800
	840808	1655	96.67		65,900
	840807	1450	96.68		66,700

Attachment Table B-1. continued

Location	Date	Time	WSEL (ft)	$\begin{aligned} & \text { Streamf1ow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
$\begin{aligned} & \text { Sunset Side Channel TR } 1 \text { (Q Site) } \\ & (086.9 \mathrm{Sl} \text { at RM } 86.9) \end{aligned}$	840929	1440	93.27	1.0	17,400
	840930		93.27		17,800
	840916		93.29		21,000
	840912	1305	93.29	1.4	22,700
	840913	1440	93.30		22,700
	840919	0915	93.29		28,400
	840817		94.34	127.0	42,500
	840822	1600	95.53		54,300
	840803	1540	95.58		54,700
	840709	1705	95.59	533.0	55,400
	840709	1200	95.69		55,400
	840723	0940	95.58	446.0	56,100
	840723	1040	95.58		56,100
	840721	1205	95.45		57,700
	840722	1210	95.67	496.0	57,800
	840808	1625	96.63		65,900
	840808	1240	96.67	944.7	65,900
	840807	1450	96.69		66,700
	840825	1500	99.42	3895.0	93,300
	840826	0910	99.88		104,000

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Sunset Side Channe 1 TR 2	840929	1140	93.81		17,400
(086.9S2 at RM 86.9)	840930		93.79		17,800
	840916		93.81		21,000
	840912	1510	93.81		22,700
	840914	1500	93.81		24,000
	840919	0925	93.80		28,400
	840822	1510	95.71		54,300
	840803	1555	95.68		54,700
	840709	1300	95.94		55,400
	840723	1415	95.64		56,100
	840722	1450	95.76		57,800
	840722	1235	95.78		57,800

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cfs}) \end{aligned}$	Mainstem Discharge (cfs)
Sunset Side Channel TR 3	841005		93.74		16,500
(086.953 at RM 86.9)	840930		93.69		17,800
	840916		93.87		21,000
	840912	1510	93.78		22,700
	840914	1525	93.87		24,000
	840919	0939	93.87		28,400
	840817	1530	94.93		42,500
	840816		95.02		44,000
	840822	1440	95.86		54,300
	840803	1450	95.95		54,700
	840709	1415	96.01		55,400
	840723	1210	95.85		56,100
	840722	1950	95.86		57,800
	840722	1315	95.94		57,800
	840808	1655	96.86		65,900
	840807	1450	96.89		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (\mathrm{cf} s) \end{aligned}$	Mainstem Discharge (cfs)
Sunset Side Channel TR 4	840930		94.11		17,800
(086.9S4 at RM 86.9)	840916		94.11		21,000
	840912	1505	94.29		22,700
	840914	1615	94.31		24,000
	840919	0948	94.31		28,400
	840817	1530	95.01		42,500
	840816		95.10		44,000
	840822		95.93		54,300
	840822	1440	95.93		54,300
	840803	1502	95.92		54,700
	840709	1500	96.08		55,400
	840723	1140	95.95		56,100
	840722	1820	95.96		57,800
	840722	1455	95.98		57,800
	840808	1650	96.89		65,900
	840807	1450	96.96		66,700

Attachment Table B－1．continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	Streamflow （cfs）	Mainstem Discharge（cfs）
Sunset Side Channel TR 5	841005		94.75		16，500
（086．9S5 at RM 86．9）	840929	1140	94.76		17，400
	840930	1444	94.75		17，800
	840916	1830	94.76		21，000
	840912	1500	94.78		22，700
	840919	1000	94.76		28，400
	840817	1430	95.99		42，500
	840816	1345	96.06		44，000
	840822	1435	96.66		54，300
	840803	1545	96.72		54，700
	840709	1600	96.79		55，400
	840723	1115	96.65		56，100
	840722	1520	96.68		57，800
	840722	1930	96.68		57，800
	840808	1650	97.31		65，900
	840807	1450	97.36		66，700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	```Mainstem Discharge (cfs)```
Sunset Side Channel TR 6	841005		94.74		16,500
(086.9S6 at RM 86.9)	840929	1140	94.75		17,400
	840930		94.75		17,800
	840916		94.76		21,000
	840919	1030	94.76		28,400
	840902	1520	94.88		32,000
	840817	1330	95.97		42,500
	840816		96.05		44,000
	840822	1435	96.62		54,300
	840803	1545	96.69		54,700
	840722	1830	96.64		57,800
	840722	1605	96.65		57,800
	840808	1650	97.21		65,900
	840807	1450	97.29		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (c f s) \end{aligned}$	Mainstem Discharge (cfs)
Sunrise Side Channel TR 4 (Q Site) (087.0S4 at RM 87.0)	840818	1315	94.96		45,400
	840829	1600	95.22		47,600
	840822	1425	95.47		54,300
	840709	1005	95.66		55,400
	840708	1700	95.68	202.8	57,100
	840708	1115	95.76		57,100
	840805		95.76		57,700
	840805		95.80		57,700
	840722		95.52		57,800
	840722	1700	95.53	150.8	57,800
	840722		95.56		57,800
	840807	1615	96.32		66,700
	840807	1420	96.38	472.0	66,700
	840625	1145	96.54		67,100
	840826	1250	99.05		104,000
	840826	1000	99.21	3220.0	104,000

Attachment Table B-1. continued

Location	Date	Time	WSEL (ft)	$\begin{gathered} \text { Streamflow } \\ (\mathrm{cfs}) \end{gathered}$	$\begin{gathered} \text { Mainstem } \\ \text { Discharge (cfs) } \end{gathered}$
Birch Creek Slough TR 2	840928		283.16		17,700
(088.4S2 at RM 88.4)	840927	1635	283.20		18,300
	840916		283.16		21,000
	840720	1330	283.10		52,600
	840822	1350	283.28		54,300
	840803	1300	283.19		54,700
	840708	1710	283.19		57,100
	840722	1515	283.19		57,800
	840707	1400	283.30		58,800
	840828	1705	283.89		59,900
	840820	1430	283.31		63,300
	840808	0900	283.31		65,900

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	Mainstem Discharge (cfs)
Birch Creek TR 6 (Q Site) (088.4S1 at RM 88.4)	840928		283.60		17,700
	840927	1150	283.62	34.0	18,300
	840927	1610	283.62		18,300
	840916		283.61		21,000
	840720	1330	283.50		52,600
	840822	1355	283.67		54,300
	840803	1300	283.58		54,700
	840708	1620	283.52	31.7	57,100
	840722	1350	283.56	37.5	57,800
	840707	1400	283.57		58,800
	840828	1600	284.25	120.4	59,900
	840820	1430	283.60		63,300
	840808	0905	283.58	35.7	65,900
	840625	1650	283.91		67,100
	840623	1300	284.28		73,500

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & \text { (ft) } \end{aligned}$	Streamflow (cfs)	Mainstem Discharge (cfs)
Birch Slough Head	840713	1105	310.19		52,400
(088.4M7 at RM 88.4)	840812	1100	310.29		52,900
	840822	1300	310.19		54,300
	840722	1225	310.37		57,800
	840807	1315	311.04		66,700
	840622	1440	311.52		72,000

Attachment áole B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	Mainstem Discharge (cfs)
Trapper Creek S/C TR 1	841006		91.92		15,700
(091.6S2 at RM 91.6)	840930		91.93		17,800
	840924		91.94		20,400
	840917		91.95		20,400
	840918	1710	91.95		20,900
	840913	1000	91.97		22,700
	840816	1735	92.34		44,000
	840822	1210	92.76		54,300
	840803	1600	92.93		54,700
	840819	1110	92.90		57,200
	840721	1650	93.11		57,700
	840721	1510	93.15		57,700
	840722	1135	93.06		57,800
	840807		93.75		66,700
	840807	1255	93.76		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{gathered} \text { WSEL } \\ (\mathrm{ft}) \end{gathered}$	$\underset{(\mathrm{cfs})}{\mathrm{Streamflow}}$	Mainstem Discharge (cfs)
Trapper Creek S/C TR 2	841006		91.90		15,700
(091.6S3 at RM 91.6)	840930		91.92		17,800
	840917		91.93		20,400
	840924		91.93		20,400
	840918	1635	91.95		20,900
	840913	1000	91.95		22,700
	840816	1715	92.00		44,000
	840822	1210	92.51		54,300
	840803	1600	92.69		54,700
	840819		92.69		57,200
	840721	1445	92.96		57,700
	840721	1710	93.00		57,700
	840722	1135	92.89		57,800
	840807		93.66		66,700
	840807	1255	93.68		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & (c f s) \end{aligned}$	Mainstem Discharge (cfs)
Trapper Creek S/C TR 3 (091.6S4 at RM 91.6)	841009		92.12		15,000
	841006		92.14		15,700
	840930		92.14		17,800
	840924		92.17		20,400
	840917		92.19		20,400
	840918	1600	92.18		20,900
	840913	1000	92.16		22,700
	840911	1510	92.14		23,500
	840816	1625	92.15		44,000
	840822	1205	92.82		54,300
	840803	1600	93.02		54,700
	840819		93.04		57,200
	840721	1220	93.22		57,700
	840721	1530	93.32		57,700
	840722	1135	93.26		57,800
	840807		94.06		66,700
	840807	1255	94.08		66,700

Attachment Table B-1. continued

Location	Date	Time	$\begin{aligned} & \text { WSEL } \\ & (f t) \end{aligned}$	$\begin{aligned} & \text { Streamflow } \\ & \text { (cfs) } \end{aligned}$	```Mainstem Discharge (cfs)```
Trapper Creek S/C TR 4 (Q Site) (091.6S1 at RM 91.6)	841009		92.50		15,000
	841006		92.51		15,700
	840930		92.47		17,800
	840917		92.53		20,400
	840924		92.55		20,400
	840918	1625	92.60	15.9	20,900
	840913	1000	92.56	16.4	22,700
	840911	1150	92.56	17.8	23,500
	840911	1400	92.58		23,500
	840816	1445	92.70	31.4	44,000
	840822	0950	93.27		54,300
	840803		93.18		54,700
	840803	1500	93.42		54,700
	840708	1130	93.78	459.0	57,100
	840819		93.23		57,200
	840721	1310	93.63	389.0	57,700
	840721	1530	94.08		57,700
	840722	0935	93.61	372.0	57,800
	840722	1020	93.62		57,800
	840707	1530	93.89		58,800
	840707	1600	93.89		58,800
	840807		94.18		66,700
	840807	1115	94.21	867.8	66,700
	840624	1120	94.41		70,100
	840624	1500	94.75		70,100
	840825	1000	96.28	3158.8	93,300
	840825	1230	96.42		93,300

ATTACHMENTC

HOOLIGAN SIDE CHANNEL THALWEG PROFILE

SURVEY DATE: 840925
IATER SURFACE ON SURVEY DATE: ----
ESTIMATED SITE FLOW: < 1.0 cfs
MAINSTEM DISCHARGE (SUNSHINE): $19,600 \mathrm{cfs}$ THALWEG GRADIENT: 8.9 feel/mile

Attachment Figure C- 1. Thalweg profile of the study site at Hooligan Side Channel.

EAGLE＇S NEST SIDE CHANNEL
 THALWEG PROFILE

SURVEY DATE： 840926
WATER SURFACE ON SURVEY DATE：－－－－
MEASURED SITE FLOW： 21.2 cIz
MAINSTEM DISCHARGE（SUNSHINE）：19，000 cis THALWEG GRADIENT： 8.9 feal／mile

Attachment Figure C－2．Thalweg profile of the study site at Eagle＇s Nest Side Channel．

KROTO SLOUGH HEAD

 THALWEG PROFILESURVEY DATE: 840925
WATER SURFACE ON SURVEY DAT
MEASURED SITE FLOW: 0.0 cts
MAINSTEM DISCHARGE (SUNSHINE): 19,600 cts
THALWEG GRADIENT: 7.0 feet/mile

Attachment Figure C-3. Thalweg profile of the study site at Kroto Slough Head.

ROLLY CREEK THALWEG PROFILE
SURVEY DATE： 84092 B
hater surface on survey date：－－．－
MEASURED SITE FLOW： 10.9 els
MAINSTEM DISCHARGE（SUNSHINE）：17，700 gIB
thalweg gradient； 5.5 teot／mila
$?$

streambed station（foal）

Attachment Figure C－4．Thalweg profile of the study site at Rolly Creek．

BEAR BAIT SIDE CHANNEL THALWEG PROFILE

SURVEY DATE: 840927
WATER SURFACE ON SURVEY DATE: ----
MEASURED SITE FLOW: 0.0 cfs
MAINSTEM DISCHARGE (SUNSHINE THALWEG GRADIENT: 1.9 feet/mile

Attachment Figure C-5. Thalweg profile of the study site at Bear Bait Side Channel.

LAST CHANCE SIDE CHANNEL THALWEG PROFILE

SURVEY DATE： 840927
SURVEY DATE： 840927
WATER SURFACE ON SURVEY DAT
MEASURED SITE FLOW： 0.0 cfs
MEASUNED SITE FLOW： 0.0 cha THALWEG GRADIENT： 10.1 foot／mile
－6

Attachment Figure C－6．Thalweg profile of the study site at Last Chance Side Channel．

RUSTIC WILDERNESS SIDE CHANNEL

 THALWEG PROFILESURVEY DATE: 840928
MATER SURFACE ON SURVEY DATE: -
MEASURED SITE FLOW: O.O cfs
MAINSTEM DISCHARGE (SUNSHINE): $17,700 \mathrm{cf}$ THALWEG GRADIENT: 8.7 fett/mila

Attachment Figure C-7
Thalweg profile of the study site at Rustic Wilderness Side Channel.

CASWELL CREEK THALWEG PROFILE

SURVEY DATE: 841009
WATER SURFACE ON SURVEY DATE: --_-
MEASURED SITE FLOW; 27.5 cfs
MAINSTEM DISCHARGE (SUNSHINE): $14,900 \mathrm{cfs}$ THALWEG GRADIENT: 10.8 feet/mile

Attachment Figure C-8. Thalweg profile of the study site at Caswell Creek.
-

ISLAND SIDE CHANNEL THALWEG PROFILE

SURVEY OATE: 840930

MAINSTEM DISCHARGE (SUNSHINE): $17,800 \mathrm{cf}$.
THALWEG GRADIENT: 15.6 foat/milo

C-9

Attachment Figure C-9. Thalweg profile of the study site at Island Side Channel.

Attachment Figure C-10. Thalweg profile of the study site at Mainstem
West Bank Side Channel.

GOOSE 2 SIDE CHANNEL

 THALWEG PROFILESURVEY DATE: 840925
MEASURED SITE FLOW: O.O cfs
MAINSTEM DISCHARGE (SUNSHINE): 19,600 cfa
THALWEG GRADIENT: 9.2 leel/mile

Attachment Figure C-11. Thalweg profile of the study site at Goose 2 Side Channel.

CIRCULAR SIDE CHANNEL
 THALWEG PROFILE

SURVEY DATE: 841010
hater surface on surver date; m-
MEASURED SITE FLOW: 0.0 cis
MAINSTEM DISCHARGE (SUNSHINE): $14,500 \mathrm{ctz}$
THALWEG GRADIENT: 14.3 /tol/mile

Attachment Figure C-12. Thalweg profile of the study site at Circular Side Channel.

SAUNA SIDE CHANNEL
 THALWEG PROFILE

SURVEY DATE: 841009
SURVEY DATE: 841009
WATER SURFACE ON SURVEY DATE: --...
ESTIMATED SITE FLOW: $<10 \mathrm{cts}$
MAINSTEM DISCHARGE (SUNSHINE): $14,900 \mathrm{ctz}$
THALWEG GRADIENT: 10.4 fett/mila

Attachment Figure C-13. Thalweg profile of the study site at Sauna Side Channel.

SUCKER SIDE CHANNEL
 THALWEG PROFILE

SURVEY DATE: 840926
WATER SURFACE ON SURVEY DATE: -_-
WATER SURFACE ON SURVEY DAT
MEASURED SITE FLOW: 0.0 cfs
MAINSTEM DISCHARGE (SUNSHINE)

Attachment Figure C-14. Thalweg profile of the study site at Sucker Side Channel.

BEAVER DAM SLOUGH
 THALWEG PROFILE

SURVEY DATE: 840925
SURVEY DATE: B4O9RS
WATER SURACE ON SURVEY DAT
WATER SURFACE ON SURVEY DATE: --. -
MEASURED SITE FLOW: O. 7 cts
MAINSTEM DISCHARGE (SUNSHINE): $19,600 \mathrm{c} / \mathrm{s}$
THALWEG GRADIENT: 10.1 tast/mila

$\begin{array}{ll}\text { A.tachment Figure C-15. } & \text { Thalweg profile of the study site at Beaver } \\ \text { Dam Slough. }\end{array}$

BEAVER DAM SIDE CHANNEL
 THALWEG PROFIL

SURVEY DATE: 840925
WATER SURFACE ON SURVEY DATE: --_
MAINSTEM DISCHARW: OS Cis
THALWEG GRADIENT: 13.5 teat/mila

Attachment Figure C-16. Thalweg profile of the study site at Beaver Dam Side Channel.

SUNSET SIDE CHANNEL

CIVEY DATE ALEG PROFIL

SURVEY DATE: 840929
Water surface on surver date: -
MEASURED SITE FLOW: 1.01 cts
MAINSTEM DISCHARGE (SUNSHINE): $17,400 \mathrm{cti}$
THALWEG GRADIENI THALWEG GRADIENT: 9.5 foot/mila

Attachment Figure C-17. Thalweg profile of the study site at Sunset Side Channel.

SUNRISE SIDE CHANNEL

THALWEG PROFILE
SURVEY DATE: 840926
WATER SURFACE ON SURVEY DATE: -...-
ME ASURED SITE FLOW: O.O CFI
MAINSTEM DISCHARGE ISUNSHINE: $19,000 \mathrm{cI}$
MAINSTEM DISCHARGE (SUNSHINE):
THALWEG GFADIENT: 16.0 IGol/mila
$\underset{\sim}{6}$
$\stackrel{\infty}{\infty}$

Attachment Figure C-18. Thalweg profile of the study site at Sunrise Side Channel.

BIRCH CREEK SLOUGH THALWEG PROFILE

SURVEY DATE: 840927
 WATER SURFACE ON SURVEY DATE: -
 MEASURED SITE FLOW: 340 cfs

MAINSTEM DISCHARGE (SUNSHINE): 18,300 cfe THALWEG GRADIENT. 4.9 toet/mito

Attachment Figure C-19. Thalweg profile of the study site at Birch Creek STough.

TRAPPER CREEK SIDE CHANNEL

SURVEY DATE: 840913
Water surface on sufvey date: ----
MEASURED SITE FLOW: 16.4 cts
MAINSTEM DISCHARGE (SUNS HINE): $22,700 \mathrm{cts}$
THALWEG GRADIENT: I2.) (Aet/mila
THALWEG GRADIENT: 12.1 fact/mile

staeamegd station (tegi)

Attachment Figure C-20. Thalweg profile of the study site at Trapper Creek Side Channel.

Attachment Table c-1. Thalweg profile data obtained at Hooligan Side Channe1 (RM 35.2).

Date: 840925
Time Start: 1420 End: 1640
Site Flow: $0.0(\mathrm{cfs})^{\mathrm{a}}$
USGS Discharge: 19,600 (cfs $^{\text {b }}$ TBM: ADF\&G 30.2 S1 LB 840711

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)	DESCRIPTION
$0+00$	89.31	89.46	
$0+20$	89.53	89.57	
$0+48$	89.77	89.92	
$0+60$	89.20	90.04	
$0+72$	88.26	90.04	
$0+88$	84.27	90.05	
$0+99$	85.11	90.07	
$1+09$	85.46	90.04	
$1+19$	85.46	90.05	
$1+29$	85.72	90.05	
$1+39$	85.67	90.05	
$1+51$	85.34	90.03	
$1+64$	85.89	90.01	
$1+89$	86.09	90.03	
$2+09$	87.06	90.06	
$2+27$	86.98	90.03	
$2+39$	86.17	90.06	
$2+61$	85.72	90.04	
$3+00$	86.14	90.04	
$3+54$	87.22	90.04	Transect 1
$4+26$	89.86	90.03	
$4+73$	90.05	90.13	
$4+89$	90.54	90.63	
$5+35$	90.60	90.65	

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-1 (Continued).

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)	a DESCRIPTION
$6+00$	90.83	90.88	
$6+67$	91.10	91.25	Transect 2
$7+02$	91.06	91.23	
$7+71$	90.35	91.30	
$8+32$	88.43	91.28	
$8+79$	88.55	91.27	
$9+62$	89.74	91.27	Transect 3 staff gage $35.2 S 1$
$10+21$	89.73	91.29	
$11+21$	90.15	91.27	
$12+97$	90.07	91.26	
$13+53$	88.92	91.26	Transect 4
$14+10$	88.35	91.27	
$14+53$	88.07	91.27	
$15+00$	88.03	91.29	
$16+00$	88.28	91.31	
$17+00$	87.51	91.20	
$17+30$	87.38	91.27	
$17+80$	88.15	91.28	
$18+12$	87.48	91.28	Transect 5
$18+35$	91.11	91.26	
$19+25$	92.57	$0 R Y$	
$20+04$	91.51	$0 R Y$	Junction with mainstem

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-2. Thalweg profile data obtained at Eagle's Nest Side Channe1 (RM 36.2)

Date: 840926 Gage No.: 36.2S1C
Time Start: 1050 End: 1230 Gage Reading Start: 0.52 End: 0.52
Site Flow: 21.2 (cfs) 2
USGS Discharge: 19,000 (cfs) ${ }^{\text {b }}$ TBM: ADF\&G 36.2S1 LB 840917

STATION (ft)	THALWEG ELEVATION (ft)	WSEL c (ft)	DESCRIPTION
$0+00$	86.81	90.12	
$0+50$	88.42	90.11	
$0+76$	88.06	90.12	Transect 1
$1+20$	89.34	90.18	
$1+47$	89.56	90.20	
$1+61$	89.85	90.23	
$2+59$	89.87	90.40	Transect 2 staff gage 36.2 S1
$3+00$	90.02	90.65	
$3+80$	90.42	91.02	
$4+54$	90.54	91.44	
$4+80$	90.64	91.52	Transect 3
$5+28$	90.28	91.50	Transect 4
$5+72$	90.08	91.54	
$6+00$	89.28	91.54	
$7+00$	88.19	91.57	
$8+00$	89.51	91.56	
$9+00$	87.99	91.53	
$10+00$	88.02	91.56	
$11+00$	89.49		
$12+00$	90.03		
$12+20$	90.39		

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-3. Thalweg profile data obtained at Kroto Slough Head (RM 36.3).

Date: 840925
Gage No.: 36.3S1C
Time Start: 1000 End: 1150
Gage Reading Start: 0.72 End: 0.73
Site Flow: $0.0^{\text {a }}$
USGS Discharge: 19,600 (cfs) ${ }^{\text {b }}$ TBM: ADF\&G 36.3S1 LB 840711

STATION (ft)	THALWEG ELEVATION (ft)	WSEL C (ft)	DESCRIPTION
$0+00$	89.46	89.76	
$0+10$	89.55	89.75	
$0+23$	89.60	89.74	
$0+50$	89.40	89.76	
$0+70$	89.31	89.77	
$0+77$	89.55	89.77	
$0+91$	89.59	89.79	
$1+00$	89.56	89.75	
$1+10$	89.52	89.72	
$1+27$	89.42	89.78	
$1+47$	89.56	89.76	Transect 1
$1+73$	89.36	89.75	
$1+88$	89.42	89.74	
$2+11$	89.35	89.75	
$2+30$	89.22	89.74	
$2+57$	89.27	89.75	
$2+86$	89.25	89.75	
$3+00$	89.03	89.75	
$3+40$	88.85	89.76	
$3+83$	88.98	89.74	
$4+60$	88.16	89.76	Transect 2
$4+70$	88.95	89.75	
$5+00$	89.14	89.76	
$5+30$	88.98	89.74	

a Estimated streamflow at time of the thalweg measurement.
b Mean daity mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-3 (Continued).
\(\left.$$
\begin{array}{cccl}\hline \begin{array}{c}\text { STATION } \\
(\mathrm{ft})\end{array} & \begin{array}{c}\text { THALWEG } \\
\text { ELEVATION }(\mathrm{ft})\end{array} & \begin{array}{c}\text { WSEL }^{\mathrm{a}} \\
(\mathrm{ft})\end{array}
$$ \&

\hline \& \& \&

\hline 5+65 \& 88.60 \& 89.76 \&

DESCRIPTION\end{array}\right]\)| |
| :--- |
| $5+90$ |

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-4. Thalweg profile data obtained at Rolly Creek (RM 39.0).

Date: 840928
Time Start: 1155 End: 1330
Gage No.: 39.0T1C
Gage Reading Start: 1.17 End: 1.16
Site Flow: 10.9 (cfs) $^{\text {a }}$
USGS Discharge: 17,700 (cfs) ${ }^{\text {b }}$
TBM: ADF\&G 39.0T1 LB 840710

$\underset{(\mathrm{ft})}{\text { STATION }}$	THALWEG ELEVATION (ft)	${\underset{(\mathrm{ft})}{\text { WSEL }}{ }^{\text {C }}}^{(2)}$	DESCRIPTION
0+00	91.35	92.05	
0+82	91.54	92.12	Transect 1
$1+40$	91.29	92.18	
1+74	91.72	92.21	
2+62	91.18	92.30	Transect 2 staff gage 39.0T1
$3+00$	91.49	92.35	
$3+54$	90.84	92.43	
4+02	91.39	92.44	Transect 3
4+74	91.96	92.50	
$5+74$	91.99	92.63	
6+00	92.00	92.62	
6+72	91.17	92.65	
7+40	91.51	92.70	
$7+71$	92.36	92.71	
$8+27$	92.13	92.78	
$8+88$	92.58	92.78	
$9+00$	92.54	92.83	
$9+80$	92.41	92.93	
$10+56$	92.37	93.02	
10+70	92.42	93.02	Transect 4
11+60	92.59	93.15	
$12+00$	92.65	93.17	
12+74	92.58	93.21	
13+70	92.44	93.29	
$15+00$	92.90	93.38	
15+40	92.66	93.37	Transect 5
15+95	92.39	93.35	Transect 6

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-5. $\quad \begin{aligned} & \text { Thalweg profile data } \\ & \text { Channe } \\ & \text { (RM 42.9). }\end{aligned}$

Date: $840927 \quad$ Gage No.: 42.9S1
Time Start: 1030 End: 1200
Site Flow: 0.0 (cfs) ${ }^{\text {a }}$
USGS Discharge: $18,300(\mathrm{cfs})^{b}$ TBM: ADF\&G 42.9S1 LB 840710

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
0+00	89.22	DRY	
0+33	90.22	DRY	
0+52	89.99	DRY	Transect 1
1+03	90.53	DRY	
$1+17$	90.81	DRY	
1+72	88.49	88.51	
1+90	87.44	88.49	Transect 2 staff gage 42.951
2+20	86.01	88.50	
2+75	87.89	88.49	
$3+00$	85.34	88.51	
$3+30$	86.38	88.49	
3+58	88.48	88.50	Transect 3
3+65	90.68	DRY	
$3+80$	90.94	DRY	
$4+21$	90.71	DRY	
$4+80$	90.03	DRY	
$5+28$	88.30	88.32	Transect 4
$5+77$	86.66	88.34	Transect 5
6+00	85.92	88.32	
$6+27$	88.25	88.27	
$6+70$	86.27	DRY	
7+10	89.17	DRY	
7+70	89.32	DRY	
$8+23$	89.15	DRY	
$8+54$	89.53	DRY	

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C－6．Thalweg profile data obtained at Last Chance Side
ChanneT（RM 44．4）．

Date： 840927 Gage No．：44．4S1
Time Start： 1300 End： 1430 Gage Reading Start：Dry End：Dry
Site Flow： $0.0(\mathrm{cfs})^{\mathrm{a}}$
USGS Discharge： 18,300 （cfs）$^{\text {b }}$ TBM：ADF\＆G $44.4 S 1$ LB 840725 USGS

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION（ft）	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
0＋00	91.78	91.97	
0＋63	91.94	91.99	Transect 1
1＋30	91.96	92.01	
2＋27	92.34	92.38	
3＋04	92.57	DRY	Transect 2 staff gage 44．4S1
3＋93	93.58	DRY	
5＋00	93.26	93.28	
6＋60	93.03	93.28	
$6+00$	92.97	93.27	
6＋32	92.76	93.26	Transect 3
6＋46	93.24	93.28	
$6+63$	93.36	DRY	
$6+71$	93.27	93.29	
$6+81$	92.88	93.28	
7＋07	93.23	93.26	
7＋40	93.26	CRY	
$7+90$	93.48	DRY	
$8+40$	93.29	93.31	
$8+77$	92.41	93.35	Transect 4
$9+30$	92.15	93.36	
10＋06	92.91	93.36	Transect 5
10＋31	93.37	93.39	
10＋56	93.80	DRY	Transect 6
11＋06	93.67	DRY	

a Estimated streamflow at time of the thalweg measurement．
b Mean daily mainstem discharge at Sunshine USGS gaging station （15292780）corresponding to date of thalweg measurement．
c Water surface elevation determined at each thalweg point during survey of thalweg profile．

Attachment Table C-7. Thalweg profile data obtained at Rustic Wilderness Side Channel (RM 59.5).

Date: 840928	Gage No.: 59.5S1B
Time Start: 1020 End: 1300	Gage Reading Start: Dry End: Dry
Site Flow: $0.0(\mathrm{cfs})^{\text {a }}$	
ISGS Discharge: $17,700(\mathrm{cfs})^{\text {b }}$	TBM: ADF\&G $59.5 S 1$ RB 840712

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
0+00	88.61	90.55	
0+26	90.24	90.54	
0+83	90.19	90.55	
1+86	89.90	90.55	
2+69	88.82	90.56	
$3+42$	88.15	90.55	
4+53	89.24	90.55	
6+52	89.54	90.74	Transect 1
7+74	90.45	90.56	
$8+74$	91.24	DRY	Transect 2
$9+52$	91.56	DRY	
10+84	91.28	92.09	
12+35	92.42	92.61	
12+98	92.46	92.61	Transect 3
$13+82$	92.48	92.67	
$14+53$	92.56	92.81	
15+50	92.67	92.83	
$16+07$	92.11	92.82	
$16+86$	92.57	92.83	Transect 4 staff gage 59.5S1
$17+22$	92.78	93.00	
$17+97$	92.32	93.05	Transect 5
18+65	92.21	93.02	
19+17	92.76	93.01	
20+00	92.49	93.32	
20+77	92.73	93.28	
21+08	93.67	DRY	
21+44	91.34	93.33	

a Estimated streamflow at time of the thalweg measurement.
b
Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-8. Thalweg profile data obtained at Caswell Creek (RM 63.0).

Date: 841009 Gage No.: 63.0T4A
Time Start: 0930 End: 1140 Gage Reading Start: 1.16 End: 1.16
Site Flow: 27.5 (cfs) $^{\text {a }}$
USGS Discharge: 14,900 (cfs) $^{\text {b }} \quad$ TBM: ADF\&G Caswe11 Cr. TR 4 LB 840711

STATION (ft)	THALWEG ELEVATION (ft)	WSEL $^{\mathrm{c}}$ (ft)	
$00+00$	90.24	91.86	
$00+85$	90.21	91.82	
$01+90$	90.57	91.96	
$02+86$	90.48	91.91	
$03+75$	90.38	92.00	
$04+59$	90.64	91.96	
$05+45$	90.85	92.14	
$05+72$	91.35	92.21	
$06+11$	91.55	92.48	
$06+96$	91.18	92.59	
$07+60$	91.73	92.93	
$07+74$	91.63	93.01	Transect 1
$07+92$	91.41	92.98	
$08+41$	92.23	93.26	
$08+87$	92.10	93.46	
$09+17$	92.32	93.47	Transect 2
$09+56$	91.17	93.47	
$10+12$	92.13	93.53	
$10+43$	92.36	93.58	Transect 3
$10+79$	91.87	93.58	
$11+11$	92.76	93.73	Transect 4
$11+75$	92.53	93.78	Transect 5
$12+25$	92.78	93.91	Transect 6
$13+02$	92.33	93.87	
$13+39$	92.73	94.03	
$14+19$	93.06		
$14+56$	92.24		

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-8 (Continued).

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)	DESCRIPTION
$14+92$	92.25	94.19	Transect 7
$15+29$	92.70	94.25	
$15+85$	91.85	94.38	
$16+08$	92.96	94.40	
$16+83$	92.85	94.54	
$17+39$	93.81	94.66	

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-9. Thalweg profile data obtained at Island Side Channel (RM 63.2).

Date: 840930
Time Start: 1000 End: 1115
Gage No.: 63.2S6B

Site Flow: $1.0(\mathrm{cfs})^{\mathrm{a}}$
USGS Discharge: 17,800 (cfs) ${ }^{\text {b }} \quad$ TBM: ADF\&G Island TBM RB 1984

STATION (ft)	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
$00+00$	88.47	90.22	
$00+73$	90.27	90.73	
$01+38$	90.30	90.75	
02+34	90.70	90.82	
02+90	89.10	90.86	Transect 1 staff gage 63.2S1
03+15	87.97	90.89	
03+54	87.30	90.93	Transect 1A staff gage 63.2S7
04+22	89.00	90.88	Transect 2 staff gage 63.2 S 2
04+90	89.79	90.89	
05+20	90.80	90.87	
05+67	90.30	91.23	Transect 3 staff gage 63.253
06+50	91.40	91.56	Transect 4 staff gage 63.254
07+38	90.91	91.56	Transect 4A staff gage 63.258
07+97	89.22	91.56	
08+64	88.60	91.57	Transect 5 staff gage 63.255
09+37	88.72	91.55	
10+37	89.02	91.54	Transect 6 staff gage 63.2S6
11+94	91.22	91.54	
$13+15$	92.65	DRY	
$14+13$	92.64	DRY	
$15+18$	91.07	92.22	

a Measured streamflow at time of the thatweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-10. Thalweg profile data obtained at Mainstem West Bank Side Channel.

Date: 841010
Time Start: 1235 End: 1415
Site Flow: 1.0 (cfs) ${ }^{\text {a }}$ USGS Discharge: $14,700(\mathrm{cfs})^{b}$

Gage No.: 74.4S1B
Gage Reading Start: Dry End: Dry

TBM: ADF\&G Mainstem West Bank TBM RB 840915

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
00+00	91.73	92.43	Begin main channel
00+64	91.71	92.44	
01+18	91.59	92.46	
01+46	92.43	92.61	
02+18	91.99	92.62	
03+29	91.10	92.64	Transect 1 staff gage 74.4S1
03+98	91.25	92.62	
04+95	91.60	92.63	Transect 2 staff gage 74.4S2
05+74	91.88	92.63	
06+58	92.25	92.62	
07+00	92.50	92.76	
07+38	92.37	92.79	
07+90	92.51	92.78	
08+06	92.78	93.04	
08+64	92.71	93.03	Transect 3 staff gage 74.4S3
09+07	93.00	93.05	Transect 3A staff gage 74.456
09+84	93.08	93.29	
$10+44$	93.10	93.46	
$11+18$	93.90	94.10	
$11+78$	94.12	94.34	
12+19	93.74	94.34	
12+52	94.09	94.32	
$12+87$	94.52	94.63	Transect 4 staff gage 74.4S4
13+56	94.90	95.15	
$14+17$	95.04	95.25	
14+97	94.32	95.28	End main channel

a Measured streamflow at time of the thaiweg measurement.
b
Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table $\mathrm{C}-10$ (Continued).

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-11. Thalweg profile data obtained at Goose 2 Side Channel (RM 79.8).

Date: 840925
Time Start: 1000 End: 1300
Site Flow: 0.0 (cfs) ${ }^{\text {a }}$
USGS Discharge: 19,600 (cfs) ${ }^{\text {b }}$

Gage No.: 74.8S2B
Gage Reading Start: Dry End: Dry

TBM: GOOSE 2 TR2 RB 1984

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{\text {C }} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
00+00	212.00	212.90	
00+05	212.89	213.00	
00+37	213.49	213.60	
00+72	213.42	213.73	
01+50	212.41	213.70	
01+95	211.40	213.62	
02+50	213.41	213.69	
03+19	213.10	213.68	
03+71	212.70	213.69	
04+16	213.31	213.71	
04+69	212.59	213.69	
05+60	212.71	213.69	Transect 1
06+24	212.40	213.69	
07+09	213.41	213.68	
07+72	213.92	DRY	
08+77	214.53	DRY	Transect 2 staff gage 74.8 S 2
09+73	213.72	DRY	
10+66	214.23	DRY	
11+82	215.85	DRY	Transect 3
12+53	215.40	DRY	
$13+45$	216.39	DRY	
14+38	216.00	DRY	
15+21	215.93	DRY	
15+99	213.75	215.27	
17+08	211.10	215.27	
18+08	214.49	215.27	
18+84	216.16	DRY	
20+46	214.91	215.74	Junction with mainstem

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-12. Thalweg profile data obtained at Circular Side Channel (RM 75.3).

Date: 841010
Time Start: 0900 End: 1140
Gage No.: 75.351B
Gage Reading Start: Dry End: Dry
Site Flow: 0.0 (cfs) ${ }^{\text {a }}$
USGS Discharge: $14,500(\mathrm{cfs})^{\mathrm{b}}$
TBM: ADF\&G Circular TBM RB 840824

$\begin{gathered} \text { STATION } \\ (\mathrm{ft}) \end{gathered}$	THALWEG ELEVATION (ft)	$\begin{gathered} \text { WSEL }{ }^{C} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
00+00	82.57	85.52	
00+53	82.52	85.51	
01+54	84.44	85.54	
$02+35$	83.36	85.52	
04+02	85.17	85.50	
04+50	85.64	85.66	
05+21	86.87	DRY	
06+80	87.15	DRY	
07+26	83.46	87.16	
07+97	85.12	87.16	
08+70	85.10	87.14	
09+39	87.30	DRY	Transect 1 staff gage 75.3S1
10+34	87.86	DRY	
$11+41$	88.32	DRY	Transect 2 staff gage 74.3\$2
$12+10$	87.52	88.06	Transect 2A staff gage 74.356
13+29	87.88	88.08	
$13+95$	89.30	DRY	Transect 3 staff gage 75.353
$14+90$	89.48	DRY	
$16+33$	89.13	DRY	Transect 4 staff gage 75.3S4
$16+70$	89.04	DRY	
$17+20$	88.04	89.04	
$18+00$	86.90	89.04	Transect 5 staff gage 74.355
19+37	88.61	89.05	
20+65	88.00	89.17	
21+14	88.63	89.14	
21+51	89.35	DRY	
21+82	88.85	89.06	
$22+49$	88.13	89.07	
22+98	88.62	89.04	
$23+34$	89.08	DRY	
$23+84$	88.53	88.93	

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-12 (Continued).
\(\left.$$
\begin{array}{cccc}\hline \begin{array}{c}\text { STATION } \\
(\mathrm{ft})\end{array} & \begin{array}{c}\text { THALWEG } \\
\text { ELEVATION }(\mathrm{ft})\end{array}
$$ \& \begin{array}{c}WSEL

(\mathrm{ft})\end{array} \& DESCRIPTION\end{array}\right]\)| | | DRY |
| :--- | :--- | :--- |
| $24+17$ | 88.93 | 88.90 |
| $24+70$ | 87.47 | 88.90 |
| $25+00$ | 86.64 | 88.94 |
| $25+32$ | 88.84 | DRY |
| $25+95$ | 88.86 | DRY |
| $26+62$ | 88.76 | DRY |
| $27+56$ | 90.06 | |

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-13. Thalweg profile data obtained at Sauna Side Channel (RM 79.8).

Date: 841009
Time Start: 1320 End: 1500
Gage No.: 79.8S2B

Site Flow: 1.0 (cfs) $^{\text {a }}$
USGS Discharge: 15,000 (cfs) ${ }^{\text {b }}$
Gage Reading Start: Dry End: Dry

TBM: ADF\&G Sauna TBM LB 840823

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{gathered} \text { WSEL }{ }^{\text {C }} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
00+00	87.49	87.67	
00+79	87.68	87.87	
01+43	84.44	87.84	
02+09	87.43	87.86	
03+05	88.06	88.28	
03+99	88.31	88.51	
05+16	88.60	88.75	Transect 1 staff gage 79.851
06+21	88.70	88.90	
06+99	88.83	89.00	Transect 2 staff gage 78.8 S 2
07+68	88.87	89.00	
08+54	84.79	88.99	
09+09	87.48	88.90	Transect 3 staff gage 79.8S3
09+68	88.57	88.92	
10+27	87.50	89.02	Transect 4 staff gage 79.854
10+80	88.94	89.00	
11+76	89.20	DRY	
12+59	89.74	DRY	
$13+25$	90.00	DRY	
13+69	88.98	DRY	
14+06	87.01	89.16	
$14+28$	87.56	89.02	
$14+45$	90.33	DRY	
14+57	87.79	88.84	Junction with side channel

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-14. Thalweg profile data obtained at Sucker Side Channel (RM 84.5).

```
Date: 840926 Gage No.: 84.5S2C
Time Start: 1120 End: 1250 Gage Reading Start: Dry End: Dry
Site Flow: 0.0 (cfs)
```

STATION (ft)	THALWEG ELEVATION (ft)	$\begin{aligned} & \text { WSEL }{ }^{C} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
00+00	261.03	DRY	
00+52	261.15	DRY	
01+32	261.29	DRY	Transect 1
02+49	261.25	DRY	Transect 2 staff gage 84.5S2
03+43	261.37	DRY	
04+43	261.96	DRY	Transect 3
$05+40$	261.48	DRY	
06+48	262.53	DRY	Transect 4
07+60	262.29	DRY	Transect 5 staff gage 84.5 S 5
08+46	261.96	DRY	
10+05	261.91	DRY	
11+12	262.58	DRY	
12+04	262.74	DRY	
$13+17$	262.28	DRY	
$14+12$	262.89	DRY	
$15+20$	262.94	DRY	
16+36	263.54	DRY	
$17+97$	263.66	DRY	
19+25	261.80	263.46	
20+05	261.37	263.46	
$21+03$	263.88	DRY	

a Estimated streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thaiweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment TabTe C-15. Thalweg profite data obtained at Beaver Dam Slough (RM 86.3).

Date: 840925
Time Start: 1540 End: 1640
Site Flow: 0.68 (cfs) ${ }^{\text {a }}$ USGS Discharge: 19,600 (cfs) ${ }^{\text {b }}$

Gage No.: 86.3S1C
Gäge Reading Start: 1.42 End: 1.42

TBM: ADF\&G Beaver Dam TBM RB 840914

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)	DESCRIPTION
$00+00$	90.36	92.70	
$00+91$	92.29	92.81	
$01+45$	92.00	92.83	Transect 1 staff gage 86.351
$02+36$	21.47	92.83	Transect 2
$03+07$	91.96	92.84	
$03+94$	91.30	92.84	Transect 3
$05+34$	91.66	92.90	Transect 4
$05+83$	92.27	92.89	Transect 5
$07+22$	91.49	92.92	
$08+72$	90.54	92.94	
$10+47$	91.17	92.91	
$11+66$	92.29	92.89	
$12+57$	92.80	93.07	

a
Measured streamflow at time of the thatweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thaiweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-16. Thalweg profile data obtained at Beaver Dam Side Channel (RM 86.3).
Date: 840925 Gage No.: 86.354D

Time Start: 1350 End: 1646 Gage Reading Start: 1.35 End: 1.35
Site Flow: 0.47 (cfs) $^{\text {a }}$
USGS Discharge: 19,600 (cfs) $^{\text {b }} \quad$ TBM: ADF\&G Beaver Dam TBM RB 840914

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION (ft)	$\begin{gathered} \text { WSEL }{ }^{\text {C }} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
00+00	90.93	91.51	
00+18	91.25	91.55	
00+63	91.34	91.64	
01+51	90.70	91.65	
02+21	90.48	91.66	Transect 1
02+78	91.04	91.66	
03+38	91.60	91.91	
04+48	91.60	92.25	Transect 2
05+42	92.40	92.63	
06+32	92.29	92.66	Transect 3
07+13	91.25	92.69	
07+87	88.74	92.68	Transect 4 staff gage 86.354
08+28	87.88	92.70	
09+05	88.15	92.67	
09+18	91.85	92.77	
09+95	92.06	92.72	
10+83	90.42	92.76	
11+16	90.18	92.72	
$11+50$	92.55	92.66	
12+56	92.42	DRY	
$13+84$	94.15	DRY	
14+87	93.23	DRY	
$15+25$	94.83	DRY	
$15+92$	91.19	DRY	

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-17. Thalweg profile data obtained at Sunset Sicie Channel (RM 86.9).

Date: 840929
Time Start: 1140 End: 1430
Gage No.: 86.9S1C
Gage Reading Start: 0.47 End: 0.47
Site Flow: 1.01 (cfs) $^{\text {a }}$
USGS Discharge: 17,400 (cfs) ${ }^{\text {b }}$
TBM: ADF\&G Sunset TBM LB 840822

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALNEG ELEVATION (ft)	$\begin{gathered} \text { WSEL }{ }^{\text {C }} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
00+00	91.59	92.08	
00+52	91.99	92.31	
01+41	90.92	92.31	
02+81	91.92	92.29	
03+70	91.98	92.39	
04+43	92.15	92.57	
05+37	91.67	92.61	
06+13	90.65	92.53	
06+95	92.15 d	92.58	
07+48	$92.30{ }^{\text {d }}$	92.70	Transect 0 staff gage 86.950
09+12	92.92 d	93.18	
09+89	92.60	93.26	Transect 1 staff gage 86.951
11+34	93.08	93.34	
12+18	93.60 d	93.85	
12+39	$93.40{ }^{\text {d }}$	93.79	Transect 2 staff gage 86.9S2
$13+91$	92.97	93.85	
15+24	92.01	93.83	Transect 3 staff gage 86.953
$15+90$	93.60	93.86	
$16+45$	$94.34{ }_{\text {d }}$	94.60	
$17+40$	$94.20{ }^{\text {d }}$	94.62	Transect 4 staff gage 86.9 S 4
18+06	94.40	94.69	
19+78	92.30	94.71	Transect 5 staff gage 86.955
$21+34$	${ }^{92.20} \mathrm{~d}$	94.72	
$22+38$	$90.60{ }^{\text {d }}$	94.82	Transect 6 staff gage 86.9S6

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.
c
Water surface elevation determined at each thalweg point during survey of thalweg profile.
d
Thalweg elevation determined at each thalweg point from cross section profiles from the hydraulic model rather than from the original
thalweg survey.

Attachment Table C-17 (Continued).

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)	DESCRIPTION
$23+72$	92.07	94.73	
$24+88$	93.33	94.73	
$25+21$	94.57	94.74	
$26+45$	95.04	95.20	
$28+31$	95.75	95.91	
$29+64$	96.32	96.48	

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table $\mathrm{C}-18$ ．Thalweg profile data obtained at Sunrise Side Channel（RM 87．0）．

Date： 840926 Time Start： 1530 End： 1640		Gage No．：87．0S4C Gage Reading Start：Dry End：Dry	
Site Flow： USGS Dischar	$\begin{aligned} & 0(c f s)^{\mathrm{a}} \\ & : \quad 19,000(\mathrm{cfs})^{b} \end{aligned}$	TBM：	ADF\＆G Sunrise S．C．TR4 RB 1984
$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	THALWEG ELEVATION（ft）	$\begin{aligned} & \text { WSEL }{ }^{C} \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
00＋00	91.69	91.81	
01＋09	92.26	DRY	
02＋42	92.54	DRY	Transect 1
02＋97	93.21	DRY	
03＋50	93.26	DRY	Transect 2
04＋82	93.38	DRY	
05＋73	93.47	DRY	Transect 3
07＋32	94.22	DRY	Transect 4 staff gage 87．0S4
08＋39	94.87	DRY	
09＋57	95.63	DRY	Transect 5
10＋75	95.79	DRY	
$11+86$	96.17	DRY	Transect 6
12＋70	96.68	DRY	
$13+71$	95.84	DRY	
$14+54$	96.01	DRY	
$15+83$	95.89	DRY	
16＋95	96.83	DRY	

a
Estimated streamflow at time of the thalweg measurement．
b Mean daily mainstem discharge at Sunshine USGS gaging station （15292780）corresponding to date of thalweg measurement．

C Water surface elevation determined at each thalweg point during survey of thalweg profile．

Attachment Table C-19. Thalweg profile data obtained at Birch Creek Slough (RM 88.4).

Date: 840927
Time Start: 1115 End: 1540
Site Flow: $34.0(\mathrm{cfs})^{\text {a }}$
USGS Discharge: $18,300(\mathrm{cfs})^{\text {b }}$

Gage No.: 88.4S1B
Gage Reading Start: 1.31 End: 3.31

TBM: R\&M Consultants Birch Creek 89.3 S1 LB 1982

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)
$00+00$	276.59	278.76
$01+08$	278.67	279.45
$03+29$	280.34	281.07
$05+00$	279.91	281.16
$06+47$	279.81	281.25
$07+91$	280.18	281.33
$09+52$	279.74	281.38
$10+57$	280.19	281.45
$12+31$	280.40	281.53
$13+78$	280.48	281.68
$14+77$	279.61	281.77
$15+12$	280.88	281.78
$16+62$	280.63	281.85
$18+11$	281.09	281.84
$19+15$	279.26	282.04
$19+43$	281.52	282.04
$20+72$	280.86	282.17
$22+14$	280.90	282.30
$23+23$	281.15	282.38
$24+40$	282.00	282.38
$25+52$	280.99	282.49
$26+31$	281.49	282.50
$27+57$	281.36	282.57
$29+42$	281.36	282.66
$30+25$	281.67	282.73
$31+14$	281.53	282.77
$32+39$	281.43	282.78

a Measured streamflow at time of the thalweg measurement.
b Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-19 (Continued).

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)
$33+51$	281.55	282.92
$34+60$	281.66	282.92
$35+60$	281.47	282.98
$37+01$	281.56	283.14
$37+53$	281.18	283.04
$38+21$	282.03	283.09
$39+25$	281.64	283.15
$39+56$	281.91	283.13
$40+13$	281.88	293.23
$40+55$	282.31	283.31
$41+13$	282.35	283.48
$41+76$	282.46	283.66
$42+97$	281.27	Transect 1
$44+09$	282.06	283.57
$44+93$	282.70	283.62
$45+38$	282.54	283.69
$46+13$	281.84	283.75
$46+88$	282.20	283.90
$47+27$	282.16	283.97

a Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Table C-20. Thalweg profile data obtained at Trapper Creek Side Channe1 (RM 91.6).

Date: 840913 Gage No.: 91.6S1C
Time Start: 1000 End: 1224 Gage Reading Start: 0.72 End: 0.72
Site Flow: 16.4 (cfs) $^{\text {a }}$ USGS Discharge: 22,700 (cfs) ${ }^{\text {b }}$ TBM: ADF\&G Trapper TBM RB 840822

STATION (ft)	THALWEG ELEVATION (ft)	WSEL (ft)
$0+00$	89.36	90.29
$0+55$	90.07	90.62
$1+08$	90.61	91.09
$1+66$	91.49	91.94
$2+44$	90.71	91.96
$3+32$	90.39	91.96
$4+10$	90.11	91.95
$4+82$	89.79	91.96
$5+39$	90.00	91.96
$6+23$	90.21	Transect 1 staff gage $91.6 S 2$
$7+23$	90.42	91.96
$8+25$	90.60	91.98
$9+29$	90.79	91.98
$10+42$	91.47	91.98
$11+42$	91.70	92.15
$12+08$	92.04	Transect 2 staff gage $91.6 S 3$
$13+17$	91.80	92.43
$14+01$	92.25	92.54
$15+81$	92.98	93.31

a Measured streamflow at time of the thalweg measurement.
b
Mean daily mainstem discharge at Sunshine USGS gaging station (15292780) corresponding to date of thalweg measurement.

C Water surface elevation determined at each thalweg point during survey of thalweg profile.

Attachment Figure D-1. Cross sectional profile obtained 50 feet upstream of transect 3 at Hooligan Side Channel.

EAGLES NEST S/C

GADE 36.251

Attachment Figure D-2. Cross sectional profile obtained at transect 2 of Eagle's Nest Side Channel.

Attachnent Figure D-3. Cross sectional profile obtained at transect 2 of Kroto Slough Head.

Attachment Figure D-4. Cross sectional profile obtained at transect 2 of Rolly Creek.

Attachment Figure D-5. Cross sectional profile obtained at transect 2 of Bear Bait Side Channel.

Attachment Figure D-6. Cross sectional profile obtained at transect 2 of Last Chance Side Channel.

RUSTIC WILDERNESS S/C

gage no: 5e.5s1

Attachment Figure D-7. Cross sectional profile obtained at transect 4 of Rustic Wilderness Side Channel.

Attachment Figure D-8. Cross sectional profile obtained at transect 4 of Caswell Creek.

Attachment Figure D-9. Cross sectional profile obtained at transect 1 of Island Side Channel.

GAGE NO: 63.257

Attachment Figure D-10. Cross sectional profile obtained at transect 1A of Island Side Channel.

Attachment Figure D-11. Cross sectional profile obtained at transect 2 of Island Side Charinel.

ISLAND S/C TR3
GAGE NO: 63.2S3

Attachment Figure D-12. Cross sectional profile obtained at transect 3 of Island Side Channel.

```
|
| 10101
```


-13
ISLAND S/C TRA
gabe no: 63.254

Attachment Figure D- 13. Cross sectional profile obtained at transect 4 of Island Side Channel.

Attachment Figure D-14. Cross sectional profile obtained at transect 4A of Island Side Channel.

Attachment Figure D- 15. Cross sectional profile obtained at transect 5 of Island Side Channel.

Attachment Figure D-16. Cross sectional profile obtained at transect 6 of Island Side Channel.

MAINSTEM WEST BANK TR1

Attachment Figure D- 17. Cross sectional profile obtained at transect 1 of Mainstem West Bank Side Channel.

Attachment Figure D-18. Cross sectional profile obtained at transect 2 of Mainstem West Bank Side Channel.

MAINSTEM WEST BANK TR2A

 GAGE NO: 74.455

Attachment Figure D- 19. Cross sectional profile obtained at transect 2A of Mainstem West Bank Side Channel.

Attachment Figure D- 20. Cross sectional profile obtained at transect 3 of Majnstem West Bank Side Channel.

MAINSTEM WEST BANK TR3A
GAGE NO: 74.456

Attachment Figure D-21. Cross sectional profile obtained at transect 3A of Mainstem West Bank Side Channel.

MAINSTEM WEST BANK TR3B
GAGE NO: 74.4S7

Attachment Figure D-22. Cross sectional profile obtained at transect 3B of Mainstem West Bank Side Channel.
MAINSTEM WEST BANK TR4
GAGE NO: 74.454

Attachment Figure D-23. Cross sectional profile obtained at transect 4 of Mainstem West Bank Side Channel.

Attachment Figure D-24. Cross sectional profile obtained at transect 2 of Goose 2 Side Channel.

CIRCULAR S/C TR 1

GAGE NO: 75.351

Attachment Figure D-25. Cross sectional profile obtained at transect 1 of Circular Side Channel.

CIRCULAR S/C TR 2
GAGE NO: 75.352

Attachment Figure D-26. Cross sectional profile obtained at transect 2 of Circular Side Channel.

Attachment Figure D-27. Cross sectional profile obtained at transect 2A of Circular Side Channel.

CIRCULAR S/C TR 3
GAGE NO: 75.353

Attachment Figure D-28. Cross sectional profile obtained at transect 3 of Circular Side Channel.

Attachment Figure D-29. Cross sectional profile obtained at transect 4 of Circular Side Channel.

Attachment Figure D-30. Cross sectional profile obtained at transect 5 of Circular Side Channel.
-

SAUNA S/C TR1

GAGE NO: 79.8S1

Attachment Figure D-31. Cross sectional profile obtained at transect 1 of Sauna Side Channel.

Attachment Figure D-32. Cross sectional profile obtained at transect 2 of Sauna Side Channel.

Attachment Figure D-33. Cross sectional profile obtained at transect 3 of Sauna Side Channel.

 GAGE NO: 79.8S4

Attachment Figure D-34. Cross sectional profile obtained at transect 4 of Sauna Side Channet.

SUCKER S/C TRZ
GAGE NO: 84.552

Attachment Figure D-35. Cross sectional profile obtained at transect 2 of Sucker Side Channel.

Attachment Figure D-36. Cross sectional profile obtained at transect 5 of Sucker Side Channel.

Attachment Figure D-37. Cross sectional profile obtained at transect 1 of Beaver Dam Slough.

BEAVER DAM SIDE CHANNEL TR4
GAGE NO: B6.3S4

Attachment Figure D-38. Cross sectional profile obtained at transect 4 of Beaver Dam Side Channel.

Attachment Figure D-39. Cross sectional profile obtained at transect 0 of Sunset Side Channel.

Attachment Figure D- 40. Cross sectional profile obtained at transect 1 of Sunset Side Channel.

Attachment Figure 0-41. Cross sectional profile obtained at transect 2 of Sunset Side Channel.

Attachment Figure D-42. Cross sectional profile obtained at transect 3 of Sunset Side channel.

Attachment Figure D-43. Cross sectional profile obtained at transect 4 of Sunset Side Channel.

Attachment Figure D－44．Cross sectional profile obtained at transect 5 of Sunset Side Channel．

Attachment Figure D-45. Cross sectional profile obtained at transect 6 of Sunset Side Channel.

SUNRISE S/C TR4

GAGE NO: 87.054

Attachment Figure D-46. Cross sectional profile obtained at transect 4 of Sunrise Side Channel.

Attachment Figure D-47. Cross sectional profile obtained at transect 2 of Birch Creek Slough.

Attachment Figure D-48. Cross sectional profile obtained at transect 6 of Birch Creek Slough.

TRAPPER CREEK S/C TR 1 GAGE NO: 91.6S2

Attachment Figure D- 49. Cross sectional profile obtained at transect 1 of Trapper Creek Side Channel.

TRAPPER CREEK S/C TR2 GAGE NO: 91.653

Attachment Figure 0-50. Cross sectional profile obtained at transect 2 of Trapper Creek Side Channe1.

Attachment Figure D-51. Cross sectional profile obtained at transect 3 of Trapper Creek Side Channel.

Attachment Figure D-52. Cross sectional profile obtained at transect 4 of Trapper Creek Side Channel.

$$
\begin{array}{ll}
\text { Attachment Table D-1. Cross sectional profile data obtained during the } \\
& 1984 \text { field season at Hoolican Side Channel } 50 \\
\text { feet upstream of transect } 3 \text { (RM } 35.2)
\end{array}
$$

Date: 840925
Time: 1710

TBM: ADF\&G 30.2S1 LB 840711
LBHP: ADF\&G 30.2S1 LB 840711
RBHP: ADF\&G 30.251 RB 092584

Gage No: 35.2S1B
Gage Reading: 1.50
WSEL: 91.25
TBM elevation: 100.00
LBHP elevation: 100.00
RBHP elevation: 96.22

STATION (ft)	TRUE ELEVATION (ft)	OESCRIPTION
$0+00$	100.0	LBHP
$0+00$	99.76	GB LBHP ${ }^{\text {a }}$
$0+06$	99.70	Top left bank
$0+22$	96.10	
$0+39$	95.77	
$0+60$	94.69	
$0+83$	93.65	
$1+12$	92.21	
$1+21$	91.24	
$1+35$	89.71	
$1+53.5$	90.63	
$1+65$	91.26	Right water surface water surface
$1+83.6$	93.20	
$1+94$	95.76	GB RBHPC
$2+09$	95.84	
$2+14.7$	96.22	
$2+14.7$		

a Elevation relative to 100.00 ft , assigned to the study site TBM.
b
Ground beside left bank headpin.
c Ground beside right bank headpin.

Attachment TabTe D-2. Cross sectional profile data obtained during the 1984 field season at EagTe's Nest Side ChanneT at Transect 2 (RM 36.2).

Date: 840926
Time: 1250

TBM: ADF\&G 36.2S1 LB 840917
LBHP: ADF\&G 36.251 LB 840917
RBHP: ADF\&G 36.2S1 RB 840926

Gage No: 36.2S1C
Gage Reading: 0.52
WSEL: 90.43
TBM elevation: 100.00
LBHP elevation: 100.00
RBHP elevation: 98.61

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	100.0	LBHP
0+00	99.56	GB LBHP ${ }^{\text {b }}$
0+03	99.38	Top of bank
0+05	98.29	
0+10	97.95	
0+13	96.13	
0+16	93.42	Bottom of bank
0+24	93.41	
0+36	93.78	
0+45	93.78	
0+52	92.65	
0+65	94.46	
0+74	95.29	
0+81	95.74	
0+80	96.65	
$1+41$	97.91	
1+46	95.79	
1+57	95.94	
1+83	95.25	
$2+12$	95.64	
2+19	93.48	
$2+30$	94.10	
2+49	92.91	

a Elevation relative to 100.00 ft . assigned to the study site TBM.
b Ground beside left bank headpin.

Attachment Table D-2 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	TRUE ELEVATION (ft)	DESCRIPTION
$2+66.4$	90.43	Left water surface
2+74	90.06	
2+83	89.87	GB staff gage 36.2S1C
2+89	89.88	
2+98	90.09	
3+03.5	90.42	Right water surface
$3+23$	91.26	
$3+33$	90.43	
3+53	92.18	
3+65. 6	98.06	GB RBHP ${ }^{\text {d }}$
3+65.6	98.61	RBHP

Attachment Table D-3. Cross sectional profile data obtained during the 1984 field season at Kroto Slough Head at Transect 2 (RM 36.3).

Date: 840925
Gage No: 36.3S1C
Time: 1225
Gage Reading: 0.74
WSEL: 89.74
TBM: ADF\&G 36.3S1 LB 840711
LBHP: ADF\&G 36.3S1 LB 840711
TBM elevation: 100.00
LBHP elevation: 100.00
RBHP: ADF\&G 36.3S1 RB 840925
RBHP elevation: 101.11

	TRUE STATION (ft)	EVATION (ft)

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
C Ground beside right bank headpin.

Attachment Table D-4. Cross sectional profile data obtained during the 1984 field season at Rolly Creek at Transect 2 (RM 39.0).

Date: 840928	Gage No: 39.0T1C Time: 1345
	Gage Reading: 1.16
WSEL: 92.28	

Gage No: 39.OT1C
.16

TBM elevation: 100.00
RBHP elevation: 102.49

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	100.00	LBHP
0+00	99.60	$G B L^{\text {L }}$ (${ }^{\text {b }}$
0+08	100.02	
0+15	99.34	Top L.B
0+18	98.39	Mid bank
$0+21$	95.35	Bottom LB
0+28	94.16	
0+35	93.22	
0+39	92.28	Left water surface
0+41	92.19	
0+43	92.28	Right water surface
0+50	92.24	Left water surface
0+52	92.16	
0+56	92.25	Right water surface
0+64	92.31	
0+71	92.51	
0+75	92.29	Left water surface
0+89	92.23	
1+01	92.30	Right water surface
1+06	92.28	Left water surface
$1+11$	91.99	Main channel
1+19	91.91	Mid main channe 1
1+32	91.93	

Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-4 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+34$	91.98	DESCRIPTION
$1+38$	91.18	
$1+40$	91.46	Right water surface
$1+41$	92.28	
$1+50$	93.48	Bottom of bank
$1+59$	94.25	Mid RB
$1+68$	96.12	Top RB
$1+73$	100.25	GB RBHP
$1+80$	101.82	RBHP
$1+84$	101.95	
$1+84$		

a Ground beside right bank headpin.

Attachment Table D-5. Cross sectional profile data obtained during the 1984 field season at Bear Bait Side Channel at Transect 2 (RM 42.9).

Date: 840927
Time: 1110

TBM: ADF\&G 42.9S1 LB 840710
LBHP: ADF\&G 42.9S1 LB 840710
RBHP: ADF\&G 42.9S1 RB 840727

Gage No: 42.951
Gage Reading: None
WSEL: 88.50
TBM elevation: 100.00
LBHP elevation: 100.00
RBHP elevation: 98.79

$\begin{gathered} \text { STATION } \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATIONa } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
0+00	100.00	LBHP
0+00	99.45	GB LBHP ${ }^{\text {b }}$
0+07	98.92	Top of bank
0+17	96.56	Mid bank
0+19	95.23	Bottom of bank
0+29	93.73	
0+32	92.49	
0+48	92.56	
- $0+78$	92.22	
$0+91$	90.05	
1+04	88.50	Left water surface
1+09	87.57	
1+17	87.44	
$1+21.5$	88.49	Right water surface
1+26	90.89	
1+27	92.24	
1+33	93.26	
1+39	96.05	
$1+41$	98.35	Top RB
$1+46$	98.26	GB RBHP ${ }^{\text {c }}$
$1+46$	98.29	RBHP
Elevation relative to 100.00 ft assigned to the study site TBM.		
Ground beside left bank headpin.		
c Ground besi	bank headpi	

Attachment Table D-6. Cross sectional profile data obtained during the 1984 field season at Last Chance Side Channel at Transect 2 (RM 44.4).

Date: 840927
Gage No: 44.4SI
Time: 1445
Gage Reading: Dry
WSEL: Dry
TBM: ADF\&G 44.4S1 LB 840725
LBHP: ADF\&G 44.4SI LB 840725
TBM elevation: 100.00
RBHP: ADF\&G 44.4SI RB 840927
LBHP elevation: 100.00
RBHP elevation: 102.02

STATION $(f t)$	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	100.00	LBHP
$0+00$	99.59	GB LBHP ${ }^{\text {a }}$
$0+03$	98.86	
$0+05$	98.63	Top LB
$0+07$	98.99	Mid bank
$0+10$	97.57	Bottom LB
$0+15$	94.75	
$0+24$	93.99	
$0+46$	92.96	
$0+69$	93.19	
$0+91$	93.02	
$1+02$	92.57	Bottom RB
$1+08$	94.25	Mid bank
$1+13$	96.40	Top RB
$1+17$	100.26	GBRBHP
$1+24$	101.31	
$1+27$	102.35	
$1+28$		
$1+28$		

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
C Ground beside right bank headpin.

Attachment Table D-7. Cross sectional profile data obtained during the 1984 field season at Rustic Wilderness Side Channel at Transect 4 (RM 59.5).

Date: 841001
Gage No: 59.5S1
Time: 1230
Gage Reading: 0.23
WSEL: 92.90
TBM: ADF\&G 59.5S1 RB 840712
LBHP: ADF\&G 59.5S1 LB 841001
TBM elevation: 100.00
RBHP: ADF\&G 59.5 S 2 RB 840712
LBHP elevation: 98.76
RBHP elevation: 100.00

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	98.76	LBHP
$0+00$	98.31	GB LBHP
$0+05$	97.79	Top LB
$0+06$	96.94	Bottom LB
$0+17$	94.99	
$0+24$	95.63	
$0+36$	95.22	
$0+48$	93.52	
$0+70.4$	92.90	
$0+76$	92.57	
$0+85$	92.89	GB staff gage
$0+91$	94.89	Right water surface
$1+04$	99.10	Bottom RB
$1+06$	99.51	Top RB
$1+14.8$	100.00	GB RBHP
$1+14.8$		RBHP

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
c Ground beside right bank headpin.

Attachment Table D-8. Cross sectional profile data obtained during the 1984 field season at Caswell Creek at Transect 4 (RM 63.0).

Date: 841009
Time: 1140

TBM: LBHP
LBHP: ADF\&G Caswell Cr Tr 4 LB 840711
RBHP: 1/2" Rebar

Gage No: 63.DT4A
Gage Reading: 1.16
WSEL: 93.57
TBM elevation: 100.00
LBHP elevation: 100.00
RBHP elevation: 99.35
\qquad

STATION
(ft)
$0+00$
$0+00$
$0+07.9$
$0+09.7$
$0+10.7$
$0+12.7$
$0+15.7$
$0+19.7$
$0+24.7$
$0+29.7$
$0+36.7$
$0+39.7$
$0+41.7$
$0+43.3$
$0+52.3$
$0+52.3$
100.00
98.84
97.05
93.56
93.11
92.76
92.88
92.92
92.82
92.87
92.99
93.04
93.57
95.71
98.81
99.35

LBHP
GB $\angle B H P^{b}$
Top LB
Left water surface
GB staff gage
a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
c Ground beside right bank headpin.

Attachment Table D-9 . Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 1 (RM 63.2).

Date: 840901
Time: 1300

TBM: ADF\&G Island TBM RB 1984
LBHP: ADF\&G TR1 LB 840725
RBHP: ADF\&G IsTand S.C. TR1 RB 840725

Gage No: 63.2S1A
Gage Reading: Dry WSEL: 091.69

TBM elevation: 100.00
LBHP elevation: 95.99
RBHP elevation: 98.81

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
	96.00	Left bank head pin
$0+00$	95.7	GB LBHP
$0+00$	95.6	
$0+02$	95.1	
$0+12$	94.8	
$0+14$	94.4	
$0+16$	94.2	
$0+20$	94.2	
$0+30$	93.0	
$0+40$	93.8	
$0+48$	93.9	
$0+52$	93.5	
$0+54$	93.3	
$0+60$	93.4	
$0+70$	93.0	
$0+80$	93.0	
$0+88$	92.8	
$0+92$	92.4	
$1+02$	91.9	
$1+12$	91.69	
$1+20$		
$1+26$		
$1+28$		
$1+34$		

[^5]Attachment Table D-9 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+38$	90.4	
$1+42$	90.3	
$1+50$	90.7	
$1+56$	90.6	
$1+62$	90.1	
$1+68$	89.1	
$1+72$	89.1	
$1+76$	89.4	
$1+80$	89.6	Right water surface
$1+82$	90.6	Undercut
$1+86$	91.69	
$1+87$	95.3	GB RBHP
$1+87.1$	98.6	RBHP
$1+92$	98.4	
$1+94$	98.81	
$1+96.5$		

a Ground beside right bank headpin.

Attachment Table D-10. Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 1.

Date: 840901
Time: 1300

TBM: ADF\&G Island TBM RB 1984
LBHP: ADF\&G TR1 LB 840725
RBHP: ADF\&G Island S.C. TR1 RB 840725

Gage No: 63.2S1A
Gage Reading: Dry
WSEL: 091.69
TBM elevation: 100.00
LBHP elevation: 95.99
RBHP elevation: 98.81

TRUE
STATION
(ft)
$\underset{(f t)}{\text { ELEVATION }^{a}}$
DESCRIPTION

$0+00$	96.25	Left bank head pin
$0+00$	95.9	GB LBHP
$0+02$	95.9	
$0+10$	95.3	
$0+18$	94.6	
$0+28$	94.3	
$0+32$	94.3	
$0+34$	94.3	
$0+44$	93.6	
$0+50$	93.3	
$0+52$	93.1	
$0+62$	93.7	
$0+68$	93.6	
$0+78$	93.6	
$0+84$	92.9	
$0+86$	92.6	
$0+96$	91.2	
$1+06$	91.69	
$1+16$		
$1+26$	$1+32$	
$1+34$		

a Elevation relative to 100.00 ft . assigned to the study site TBM.
b Ground beside left bank headpin.

Attachment Table D-10 (Continued).

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
$1+40$	91.0	
$1+46$	90.5	
1+50	90.3	
1+54	90.0	
$1+60$	89.8	
$1+64$	89.2	
1+68	88.5	
$1+70$	88.3	
1+74	87.6	
$1+76$	87.3	
$1+80$	87.3	
$1+84$	87.6	
$1+86$	88.1	
$1+88$	88.8	
$1+90$	89.7	
$1+92$	90.7	
1+93	91.69	Right water surface
1+94	92.1	
1+96	92.6	
2+00	93.4	
2+02	93.6	
2+04	94.3	
2+06	94.6	
2+07	96.6	Cutbank
2+10	98.1	
$2+20$	98.2	
2+20.5	98.2	GB RBHP ${ }^{\text {a }}$
2+20.5	98.74	RBHP

a Ground beside right bank headpin.

Attachment Table D-11. Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 2.

Date: 840901
Time: 1400

TBM: ADF\&G Island TBM RB 1984
LBHP: ADF\&G TR2 LB 840725
RBHP: ADF\&G Island S.C. TR2 RB 840725

Gage No: 63.2 S 2 B
Gage Reading: 00.4.6
WSEL: 91.70
TBM elevation: 100.00
LBHP elevation: 95.94
RBHP elevation: 99.05

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION }^{\mathrm{a}} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	95.94	Left bank head pin
0+00	95.5	GB LBHP ${ }^{\text {D }}$
0+02	95.5	
0+08	95.0	
0+12	94.1	
0+14	93.3	
$0+22$	93.4	
0+26	93.5	
0+36	93.7	
0+46	93.6	
0+56	93.7	
0+66	94.3	
0+68	94.3	
0+78	94.1	
0+88	93.4	
0+98	93.0	
1+08	92.8	
1+18	92.5	
1+28	92.1	
$1+32$	91.8	
$1+34$	91.70	Left water surface
1+38	91.3	

[^6]Attachment Table D-11 (Continued).

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$1+42$	90.7	
$1+46$	90.2	
$1+50$	90.0	
$1+54$	89.7	
$1+60$	89.6	
$1+64$	89.4	
$1+68$	89.0	
$1+72$	89.8	
$1+76$	90.2	
$1+78$	90.8	
$1+80$	91.7	Right water surface
$1+83$	94.9	
$1+84$	96.3	
$1+86$	97.5	GB RBHP
$1+88$	98.3	RBHP
$1+90$	98.5	

a Ground beside right bank headpin.

Attachment Table D-12. Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 3.

${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM. b Ground beside left bank headpin.

Attachment Table D-12 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+60$	91.2	
$1+64$	91.3	
$1+72$	91.4	
$1+82$	91.4	
$1+88$	90.8	
$1+90$	90.3	
$1+94$	90.9	
$1+96$	91.68	
$1+99$	92.3	
$2+00$	94.6	Right water surface
$2+02$	98.9	
$2+04$	99.15	
$2+08$		
$2+08$		

a Ground beside right bank headpin.

Attachment Table $\mathrm{D}-13$. Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 4.

Date: 840901
Time: 1500

TBM: ADF\&G Island TBM RB 1984
LBHP: ADF\&G TR4 LB 840725
RBHP: ADF\&G Island S.C. TR4 RB 840725

Gage No: 2S4B
Gage Reading: 00.29
WSEL: 091.68
TBM elevation: 100.00
LBHP elevation: 97.16
RBHP elevation: 100.02

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	97.17	Left bapk head pin
$0+00$	96.6	GB LBHP ${ }^{\text {a }}$
$0+02$	96.5	
$0+06$	95.5	
$0+16$	94.8	
$0+26$	94.3	
$0+30$	93.6	
$0+36$	93.6	
$0+38$	93.1	
$0+48$	93.0	
$0+50$	32.8	
$0+60$	92.5	
$0+70$	92.3	
$0+80$	91.9	
$0+86$	91.68	
$0+96$	91.6	
$1+00$	91.6	
$1+02$	91.4	
$1+12$	91.7	
$1+22$	91.68	
$1+32$		
$1+42$		
$1+45$		

${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
b
Ground beside left bank headpin.

Attachment Table D-13 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+54	92.2	
$1+60$	92.5	
1+66	92.4	
1+68	92.1	
$1+76$	91.8	
$1+80$	91.5	
$1+84$	92.0	
1+86	92.5	
1+88	97.3	
$1+90$	97.5	
1+92	98.6	
1+96	99.5	
$1+98.2$	99.5	GB RBH $\mathrm{P}^{\text {a }}$
$1+98.2$	100.01	RBHP

a Ground beside right bank headpin.

Attachment Table D-14. Cross sectional profile data obtained during the 1984 field season at IsTand Side Channe 1 at transect 4A (RM 63.2).

Date: 840919
Time: 1340
Gage No: 63.2S8B
Gage Reading: Dry
WSEL: 91.56
TBM: ADF\&G Island TBM RB 1984
TBM elevation: 100.00
LBHP: ADF\&G TR4A LB 840725
RBHP: ADF\&G Island S.C. TR4A RB 840725 RBHP elevation: 99.04
\(\left.$$
\begin{array}{ccl}\hline & \begin{array}{c}\text { TRUE } \\
\text { STATION } \\
(\mathrm{ft})\end{array}
$$ \& \begin{array}{c}ELEVATION

(\mathrm{ft})\end{array}\end{array}\right]\)| DESCRIPTION |
| :--- |
| $0+00$ |
| $0+00$ |

a Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-14 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+00	91.2	
$1+04$	91.3	
1+08	91.3	
1+12	91.0	
1+14	91.1	
$1+18$	91.0	
$1+22$	91.0	
1+26	91.2	
$1+30$	91.3	
$1+33.5$	91.56	Right water surface
$1+44$	91.9	
$1+46$	92.5	
$1+47$	92.8	
$1+52$	93.8	
1+62	93.6	
$1+72$	93.5	
$1+76$	93.0	
$1+78$	93.3	Bottom right bank
1+84	94.9	Top right bank
1+94	94.8	
2+00	95.2	
2+01	95.2	
$2+15$	98.0	
2+17	98.4	GB RBHP ${ }^{\text {a }}$
2+17	99.04	RBHP TR, ${ }^{\text {a }}$

[^7]Attachment Table D-15. Cross sectional profile data obtained during the 1984 field season at Island Side Channel at transect 5.

Date: 840919
Gage No: 63.2S5B
Time: 1400

TBM: ADF\&G Island TBM RB 840725
LBHP: ADF\&G TR 5LB 840725
RBHP: ADF\&G Island S.C. TR 5 RB 840725

Gage Reading: Dry WSEL: 91.57

TBM elevation: 100.00
LBHP elevation: 096.82 RBHP elevation: 099.68

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \substack{\text { ELEVATION } \\ (\mathrm{ft})} \end{gathered}$	DESCRIPTION
0+00	96.82	Left bank head pin
0+00	96.3	$G B \quad L B H P^{b}$
$0+10$	96.0	
$0+16$	96.0	LB Top
0+19	95.0	
0+22	93.8	
0+23	93.6	
0+24	93.5	
0+25	93.5	
0+35	92.6	
0+45	91.8	
0+50	91.57	Left water surface
0+54	91.2	
0+58	91.1	
0+62	90.9	
0+66	90.7	
0+70	90.4	
0+74	90.1	
0+78	89.8	
0+82	89.7	
0+86	89.4	
0+90	88.9	

${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM. ${ }^{\mathrm{b}}$ Ground beside left bank headpin.

Attachment Table D-15 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	TRUE ELEVATION (ft)	DESCRIPTION
0+94	88.6	
0+98	89.0	
1+02	89.3	
$1+06$	90.0	
1+10	90.9	
$1+12.5$	91.57	Right water surface
$1+13$	91.7	
1+17	92.9	
1+18	93.2	
1+19	93.7	RB Bottom
$1+25$	98.6	RB Top
$1+33$	99.1	GB RBHP ${ }^{\text {a }}$
$1+33$	99.69	RBHP

${ }^{\text {a }}$ Ground beside right bank headpin.
Attachment Table D-16. Cross sectional profile data obtained during the
1984 field season at Island Side Channel at
transect 6 .

Date: 840919
Time: 1425

TBM: ADF\&G Is 7and TBM RB 1984
LBHP: ADF\&G TR 6 LB 840725
RBHP: ADF\&G Island S.C. TR 6 RB 840725

Gage No: 63.2S6B
Gage Reading: Dry WSEL: 91.57

TBM elevation: 100.00
LBHP elevation: 097.25
RBHP elevation: 099.41

	TRUE STATION (ft)	ELEVATION (ft)
$0+00$	97.25	DESCRIPTION
$0+00$	96.4	Left bank head pin
$0+10$	96.3	
$0+20$	95.9	
$0+26$	95.5	
$0+27$	95.7	
$0+28$	95.8	
$0+29$	95.0	
$0+34$	94.9	
$0+35$	94.3	
$0+45$	93.5	
$0+55$	92.9	
$0+56$	92.4	
$0+66$	92.3	
$0+76$	91.9	
$0+86$	91.8	
$0+96$	91.59	
$0+97$	91.1	
$1+02$	90.6	
$1+04$		
$1+08$		
$1+12$		

[^8]Attachment Table D-16 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
$1+16$	90.0	
$1+20$	89.3	
1+24	89.1	
$1+25$	89.2	
$1+28$	89.0	
$1+32$	89.3	
$1+36$	89.8	
I+40	90.7	
$1+43$	91.54	Right water surface
$1+44$	91.9	
$1+48$	93.7	PB Bottom
1+52	98.5	RB Top
1+61	98.8	GB RBHP ${ }^{\text {a }}$
$1+61$	99.42	RBHP

a Ground beside right bank headpin.

Attachment Table D-17. Cross sectional profile data obtained during the 1984 field season at Mainstem West Bank at transect 1.

Date: 840902
Gage No: 074.4S1C
Time: 1230
Gage Reading: 01.50
WSEL: 94.96
TBM: ADF\&G Mainstem W/B TBM RB 840915
TBM elevation: 100.00
LBHP: ADF\&G Rebar LBHP elevation: 99.47
RBHP: ADF\&G 74.4S1 TR1 RB 840711 RRHP elevation: 99.96

	TRUE STATION (ft)	ELEVATION (ft)
$0+00$	99.47	OESCRIPTION
$0+00$	99.3	Left bank head pin
$0+01$	99.0	
$0+03$	98.2	
$0+05$	98.4	
$0+06$	96.9	
$0+08$	96.0	
$0+10$	94.93	
$0+12$	94.2	
$0+16$	93.8	
$0+20$	92.8	
$0+23$	92.2	
$0+26$	91.8	
$0+28$	91.5	
$0+32$	91.1	
$0+37$	92.5	
$0+47$	92.2	
$0+57$	92.3	
$0+67$	92.4	
$0+77$		
$0+87$	$0+97$	

[^9]Attachment Table D-17 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+07	92.4	
1+14	92.6	
1+24	93.1	
1+32	93.7	
1+36	94.0	
$1+42$	94.5	
$1+47$	94.6	
$1+52.5$	94.93	Right water surface
$1+57$	95.1	
1+67	95.5	
$1+71$	95.6	
1+75	96.0	
$1+78$	96.1	
1+86	96.7	
1+93	97.5	
$2+00$	97.8	
$2+06$	98.4	High water mark
2+11	99.0	
2+17	98.5	
2+19	98.0	
2+21	97.7	
2+26	98.2	
2+33	98.6	
$2+35$	99.7	
$2+36$	99.7	$G B \quad$ RBHi ${ }^{\text {a }}$
2+36	99.97	RBHP

a Ground beside right bank headpin.

Attachment Table D-18 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+47$	95.2	
$1+57$	96.0	
$1+67$	96.7	
$1+71$	96.9	
$1+73$	97.1	
$1+80$	97.8	
$1+87$	98.5	
$1+92$	99.1	
$1+97$	98.6	
$2+00$	98.2	
$2+04$	98.9	
$2+12$	99.9	
$2+16$	100.04	
$2+17$		
$2+17$		

a Ground beside right bank headpin.

Attachment Table D-19. Cross sectional profile data obtained during the 1984 field season at Mainstem West Bank at transect 2A.

Date: 840903
Time: 1230

Gage No: 74.4S5C
Gage Reading: 00.56 WSEL: 94.90

TBM elevation: 100.00
LBHP elevation: 96.53
RBHP elevation: 99.38

TBM: ADF\&G Mainstem W/B TBM RB 840915
LBHP: ADF\&G Rebar
RBHP: ADF\&G Rebar
.

TRUE
STATION ELEVATION ${ }^{\text {a }}$
(ft)
$0+00$
$0+00$
$0+01$
$0+04$
$0+08$
$0+19$
$0+29$
0+34
0+36
0+38
$0+40$
$0+42$
$0+44$
$0+46$
$0+48$
$0+50$
$0+60$
$0+70$
$0+80$
0+88
$0+89$
96.53
96.1
96.1
96.1
95.9
95.5
95.4
94.85 Left water surface
94.7
94.5
94.5
94.5
94.5
94.6
94.6
94.9
95.5
95.3
95.9
96.4
96.5

Left bank head pin
GB LBHP ${ }^{B}$

Right water surface

DESCRIPTION

Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-19 (Continued).

STATION (ft)	TRUE ELEVATION (ft)	CESCRIPTION
$0+90$	96.6	
$0+94$	98.4	
$0+96$	98.5	GB REHiPa
$0+99$	99.1	RBHP
$0+99$	99.37	

a Ground beside right bank headpin.

Attachment Table D-20. Cross sectional profile data obtained during the 1984 field season at Mainstem West Bank at transect 3.

Date: 840902
Gage No: 74.4S3C
Time: 1600
Gage Reading: 1.50
WSEL: 95.18
TBM: ADF\&G Mainstem W/B TBM RB 840915 LBHP: ADF\&G Rebar
RBHP: ADF\&G 74.4S3 TR3 RB 840711 RBHP elevation: 101.03

STATION $(f t)$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa }_{(f t)}^{(f)} \end{gathered}$	CIESCRIPTION
0+00	101.16	Left bapk head pin
0+00	100.9	$\mathrm{GB} \text { LBHP }{ }^{\text {b }}$
0+01	100.8	
0+03	101.2	Top LB
0+04	97.6	
0+07	97.3	
0+08	96.5	
$0+11$	95.18	Left water surface
0+15	94.4	
0+18	93.8	
0+25	93.1	
0+32	93.1	
0+42	92.7	
0+52	92.8	
0+62	92.9	
0+72	93.3	
0+82	93.7	
0+92	94.7	
0+98	95.18	Right water surface
$1+02$	95.5	
$1+12$	96.1	
$1+22$	96.3	

[^10]Attachment Table D-20 (Continued).

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
1+26	96.4	
$1+34$	96.6	
$1+38$	96.99	Middle, gravel bar
$1+40$	96.7	
$1+50$	96.5	
1+60	96.5	
1+65	96.7	
$1+70$	96.3	
$1+71$	96.2	
1+81	95.5	
$1+91$	94.89	Left water surface
2+01	94.4	
2+11	93.9	
$2+17$	94.3	
2+19	94.9	Right water surf. bottcm RB
2+20	99.5	
$2+25$	100.6	
2+29	100.9	
$2+29.5$	101.0	GB RBHP ${ }^{\text {a }}$
$2+29.5$	101.04	RBHP

Attachment Table D-21. Cross sectional profile data obtained during the 1984 field season at Mainstem West Bank at transect 3 A.

Date: 840903
Time: 1100

Gage No: 74.4S6C
Gage Reading: 1.82
WSEL: 95.20
TBM elevation: 100.00
LBHP elevation: 101.15
RBHP elevation: 96.92

	TRUE STATION (ft)	ELEVATION (ft)
$0+00$	101.15	DESCRIPTION
$0+00$	100.8	Left, bank head pin
$0+01$	100.7	GB LBHP
$0+03$	97.7	
$0+04$	98.6	
$0+05$	98.1	
$0+08$	96.9	
$0+10$	95.8	
$0+11$	95.09	
$0+12$	94.0	
$0+14$	93.4	
$0+24$	93.4	
$0+25$	93.2	
$0+26$	93.3	
$0+32$	93.3	
$0+35$	93.0	
$0+40$	93.0	
$0+50$	93.8	
$0+60$		
$0+66$	$0+76$	
$0+86$		

[^11]Attachment Table D-21 (Continued).

STATION (ft)	TRUE ELEVATION (ft)	[ESCRIPTION
$0+96$	94.8	
$1+00.5$	95.2	Right water surface
$1+10$	95.8	
$1+20$	96.2	
$1+30$	96.4	
$1+40$	96.6	
$1+45$	96.8	
$1+46$	96.93	GB RBHP
$1+46$		

${ }^{\mathrm{a}}$ Ground beside right bank headpin.

Attachment Table D-22. Cross sectional profile data obtained during the 1984 field season at Mainstem West Bank at transect 3B.

Date: 840903
Time: 1220

Gage No: 74.4S7C
Gage Reading: 1.20
WSEL: 95.06
TBM elevation: 100.00
LBHP elevation: 97.91
RBHP elevation: 102.02

STATION $(f t)$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	97.91	Left bapk head pin
0+00	97.6	GB LEHP ${ }^{\text {b }}$
0+01	97.5	
0+08	97.2	
$0+11$	97.0	
$0+19$	97.1	
$0+20$	97.0	
0+30	96.7	
$0+40$	95.9	
0+46	95.4	
0+49	94.84	Left water surface
0+51	94.6	
0+53	94.3	
0+55	94.1	
0+57	93.9	
0+59	94.0	
0+61	94.4	
0+62	94.5	Right water surface
0+66	101.9	CB ${ }^{\text {c }}$
0+67.5	101.6	GB RBHP ${ }^{\text {C }}$
0+67.5	102.02	RBHP

a
Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
C Ground beside right bank headpin.

Attachment Table D-23. Cross sectional profite data obtained during the 1984 field season at Mainstem West Bank at transect 4.

Date: 840902
Gage No: 74.454C
Time: 1715
Gage Reading: 00.83
WSEL: 96.53
TBM: ADF\&G Mainstem W/B TBM RB 840915
TBM elevation: 100.00
LBHP: ADF\&G Rebar
RBHP: ADF\&G 74.4S4 TR4 RB 840711
LBHP elevation: 100.03
RBHP elevation: 100.99

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	100.03	Left bapk head pin
$0+00$	99.7	
$0+01$	99.7	GB LBHP
$0+06$	99.5	
$0+10$	99.1	
$0+20$	98.8	
$0+30$	98.5	
$0+33$	96.3	
$0+35$	96.44	
$0+35.5$	95.3	
$0+38$	95.0	
$0+41$	94.7	
$0+51$	95.0	
$0+61$	95.0	
$0+71$	95.0	
$0+81$	95.1	
$0+91$	95.4	
$1+01$	95.7	
$1+11$	95.9	
$1+21$		
$1+31$		
$1+41$		

${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside Teft bank headpin.

Attachment Table D-23 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
1+44	96.1	
1+48	96.0	
1+56	96.3	
1+61	96.1	
1+63	96.2	
$1+68.5$	96.5	Right water surface
$1+73$	96.9	
1+83	97.0	
1+93	96.8	
2+03	97.1	
$2+13$	97.4	
2+23	97.6	
$2+33$	98.3	
2+37	98.3	
$2+46$	98.5	
2+48	98.3	
2+52	98.2	
2+54	97.3	
2+56	96.9	
2+61	96.8	
2+65	98.6	
2+68	98.7	
2+69	99.2	
2+71	99.5	
2+78	99.4	
$2+86$	99.3	
2+88	99.3	
2+97	99.1	
3+13	98.8	
3+31	100.9	GB RBHP ${ }^{\text {a }}$
$3+31$	100.99	RBHP

a Ground beside right bank headpin.

Attachment Table D-24. Cross sectional profile data obtained during the 1984 field season at Goose 2 Side Channel at transect 2.

Date: 840925
Time: 1230

Gage No: 74.8S2
Gage Reading: Dry WSEL: Dry

TBM elevation: 217.17
LBHP elevation: 221.17
RBHP elevation: 217.17

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	221.17	LBHP
$0+00$	220.17	GB LBHPb
$0+11$	219.92	Top LB
$0+27$	217.19	
$0+44$	216.72	Toe LB
$0+49$	215.00	
$0+70$	214.15	
$0+90$	215.53	
$1+09$	214.59	Toe RB
$1+26$	214.61	Mid RB
$1+38$	216.17	Top RB
$1+43.5$	217.48	RBRBP
$1+51$	216.82	
$1+61.6$	217.18	
$1+61.6$		

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
C Ground beside right bank headpin.

Attachment Table D-25. Cross sectional profile data obtained during the 1984 field season at Circular Side Channel at transect 1 .

Date: 840905
Time: 0900

TBM: ADF\&G Circular TBM RB 840824
LBHP: ADF\&G TR1 LB 840724
RBHP: ADF\&G Circular S.C. TR1 RB 1984

Gage No: 75.3S1
Gage Reading: No reading taken WSEL: 87.67

TBM elevation: 100.00
LBHP elevation: 94.06
RBHP elevation: 94.06
true

STATION	TRUE
(ft)	ELEVATION
(ft)	

DESCRIPTION

$0+00$	94.06	Left bank head pin
$0+00$	93.7	GB LBHP b^{\prime}
$0+07$	94.1	
$0+13$	91.7	
$0+15$	91.3	
$0+26$	91.0	
$0+36$	90.5	
$0+46$	89.9	
$0+56$	88.9	
$0+63$	88.4	
$0+72$	88.3	
$0+74$	87.9	
$0+84$	87.6	
$0+94$	87.64	
$1+01$	87.6	
$1+04$	87.3	
$1+14$	87.5	
$1+24$	87.69	
$1+34$	88.1	
$1+42$	89.2	
$1+46$		
$1+50$		

${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM. ${ }^{\mathrm{b}}$ Ground beside left bank headpin.

Attachment Table D-25 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+54$	89.6	DESCRIPTION
$1+56$	90.2	
$1+59$	91.8	GB RBHP
$1+60.6$	93.7	RBHP
$1+60.6$	94.06	

a. Ground beside right bank headpin.

Attachment Table D-26. Cross sectional profile data obtained during the 1984 field season at Circular Side Channel at transect 2.

Date: 840905
Gage No: 75.3S2
Time: 0930
Gage Reading: No reading taken WSEL: 88.45

TBM: ADF\&G Circular TBM RB 840824
LBHP: ADF\&G TR2 LB 840724
RBHP: ADF\&G Circular S.C. TR2 RB 840724

TBM elevation: 100.00
LBHP elevation: 96.50
RBHP elevation: 99.66

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	96.50	Left bank head pin
$0+00$	96.1	$G B L B H P^{\circ}$
0+04	95.9	Top of bank.
0+10	90.8	Bottom LB
0+13	89.6	
0+23	89.3	
0+24	89.4	
0+34	89.5	
0+44	89.5	
0+54	89.6	
0+64	89.9	
0+70	89.7	
0+71	89.6	
0+81	89.5	
0+90	89.3	
0+91	89.3	
1+01	88.8	
1+11	88.5	
1+14	88.45	Left water surface
$1+24$	88.4	
1+26	88.3	
1+31	88.5	Right water surface

a Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-26 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
		DESCRIPTION
$1+36$	88.7	
$1+45$	88.7	
$1+46$	88.6	
$1+53$	89.8	Bottom RB
$1+54$	90.8	Top RB
$1+58$	93.3	GB RBHP
$1+59$	99.0	RBHP
$1+66$	99.66	
$1+69$		
$1+69$		

a Ground beside right bank headpin.
Attachment Table D-27. Cross sectional profile data obtained during the
1984 field season at Circular Side Channel at
transect 2 A .

Date: 840905
Time: 1000

TBM: ADF\&G Circular TBM RB 840824
LBHP: ADF\&G TR2A LB 840724
RBHP: ADF\&G Circuiar S.C. TR2A RB 840724 RBHP elevation: 99.68

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	99.46	Left bapk head pin
$0+00$	98.9	GB LBHP ${ }^{\text {b }}$
0+07	98.3	Top of bank
0+12	94.6	
0+14	90.2	Bottom LB lindercut
0+16	89.5	Inundated logs
0+17	89.02	Left water surface
0+19	88.6	
0+20	88.7	
0+25	89.02	Right water surface
0+27	89.1	
0+28	89.3	
0+38	89.2	
0+45	89.9	
0+56	89.9	
0+57	90.0	
0+67	90.5	
0+77	90.3	
0+87	90.3	
0+97	90.2	
$1+07$	90.3	
$1+13$	90.3	

a Elevation relative to 100.00 ft . assigned to the study site TBM. ${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-27 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+14	90.2	
$1+24$	90.0	
$1+25$	90.0	
$1+35$	89.3	
$1+37$	89.1	
$1+48$	88.65	Left water surf. màin channe?
$1+49$	88.4	
$1+59$	87.6	
1+69	88.6	
1+70	88.65	Right water surf. main channel
$1+72$	88.8	
$1+73$	89.1	
$1+75$	89.6	
$1+76$	89.8	
1+81	92.6	
$1+84$	94.2	
$1+87$	95.5	Bottom of cut bank
1+88	98.2	
$1+90$	99.2	Top RB
$1+92.5$	99.4	GB RBHP ${ }^{\text {a }}$
$1+92.5$	99.70	RBHP

${ }^{\mathrm{a}}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside Teft bank headpin.

Attachment Table D-28 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (f t) \end{aligned}$	DESCRIPTION
1+39	89.51	Left water surface
$1+49$	89.1	
1+59	89.3	
$1+63$	89.49	Right water surface
1+74	91.0	
$1+78$	90.9	
1+79	90.9	
$1+89$	91.3	
$1+99$	91.7	
$2+04$	92.5	
$2+11$	93.9	High water mark
$2+13$	95.1	a
$2+14.5$	95.8	GB RBHP ${ }^{\text {a }}$
$2+14.5$	96.10	RBHP

a Ground beside right bank headpin.

Attachment Table D-29. Cross sectional profile data obtained during the 1984 field season at Circular Side Channel at transect 4.

Date: 840905
Gage No: 75.3S4
Time: 1100
Gage Reading: No reading taken WSEL: 89.81

TBM: ADF\&G Circular TBM RB 840824
LBHP: ADF\&G TR4 LB 840710
TBM elevation: 100.00
RBHP: ADF\&G Circular S.C. TR4 840710

$\begin{gathered} \text { STATION } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { TRUE } \\ \substack{\text { ELEVATION } \\ (\mathrm{ft})} \end{gathered}$	DESCRIPTION
0+00	97.56	Left bank head pin
0+00	97.1	$G B L B H P^{b^{n}}$
0+01	96.8	
0+08	95.6	Top LB
0+10	94.4	
0+14	92.2	Bottom LB
$0+15$	91.9	
0+16	91.8	
0+22	91.7	
0+24	91.7	
0+34	91.5	
0+44	91.3	
0+45	91.4	
0+55	90.9	
0+65	90.5	
0+75	90.0	
0+78	89.80	Left water surface
0+88	89.4	
0+98	89.2	
1+08	89.1	
$1+18$	89.3	
$1+22$	89.5	

a Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-29 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+23	89.5	
$1+32$	89.4	
1+33	89.4	
1+42	89.81	Right water surface
$1+52$	90.9	
$1+53$	91.0	
$1+63$	91.5	
1+68	91.6	
1+69	91.7	
$1+73$	92.3	Bottom RB
$1+77$	93.9	
$1+78$	94.01	
1+88	93.7	
1+98	93.7	
2+02	94.3	
2+09	96.5	
2+12	97.7	GB RBHP ${ }^{\text {a }}$
$2+12$	97.84	RBHP

a Ground beside right bank headpin.

Attachment Table D-30. Cross sectional profile data obtained during the 1984 field season at Circular Side Channel at transect 5 .

Date: 840905
Gage No: 75.3S5
Time: 1130
Gage Reading: No reading taken WSEL: 89.77

TBM: ADF\&G Circular TBM RB 840824
LBHP: ADF\&G TR5 Lb 840724
TBM elevation: 100.00
LBHP elevation: 98.00
RBHP: ADF\&G Circular S.C. TR5 RB 840724 RBHP elevation: 96.59

TRUE
STATION
(ft)
$\operatorname{ELEVATION}^{\mathrm{a}} \mathrm{fft}^{\mathrm{a}}$
(ft)
DESCRIPTION

$0+00$	98.00	Left bank head pin
$0+00$	97.4	GB LBHP
$0+01$	97.3	
$0+04.5$	96.9	Top LB
$0+06$	93.8	Bottom LB
$0+10$	91.9	
$0+14.5$	89.76	
$0+24$	89.8	
$0+29$	90.3	
$0+35$	89.78	Right water surface
$0+40$	89.0	Top of gravel bar
$0+50$	88.1	
$0+60$	87.0	
$0+68$	86.9	
$0+70$	89.3	
$0+80$	89.6	
$0+90$	90.7	
$0+95$	91.5	
$1+05$	91.4	
$1+15$	91.4	

[^12]Attachment Table D-30 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+45	92.8	
$1+55$	93.5	
1+65	93.7	
$1+75$	93.1	
1+85	92.0	
1+95	92.4	
2+05	91.5	
$2+11$	90.7	Bottom of cut bank, overhanging
2+14	93.9	Top of cut bank
2+19	95.1	
2+26	95.8	
$2+26.5$	96.2	GB RBHP ${ }^{\text {a }}$
$2+26.5$	96.57	RBHP

Attachment Table D-31. Cross sectional profile data obtained during the 1984 field season at Sauna Side Channe? at transect 1 (RM 79.8).

Date: 840915
Time: 1400

TBM: ADF\&G Sauna TBM LB 840823
LBHP: ADF\&G Sauna S.C. TR1 LB 840723
RBHP: ADF\&G TR1 RB 840723

Gage No: 79.8S1C
Gage Reading: Dry WSEL: 88.75

TBM elevation: 100.00
LBHP elevation: 96.33
RBHP elevation: 94.45

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \substack{\text { ELEVATION } \\ (\mathrm{ft})} \end{gathered}$	DESCRIPTION
0+00	96.33	
0+00	95.9	GB LBHP ${ }^{\text {b }}$, mid bank
0+03	93.9	
0+06	92.9	
0+07	90.3	LB Bettom
0+17	89.1	
$0+22$	88.75	Left water surface
$0+23$	88.6	Thalweg
0+24	88.75	Right water surface
0+34	89.1	
0+44	89.2	
0+54	89.3	
0+64	89.6	Bottom of bank
0+74	91.2	Top of bank
$0+84$	91.6	
0+94	91.9	
0+95	91.9	
1+05	92.0	Bottom of RB
1+15	93.4	
1+23.3	94.1	GB RBHP ${ }^{\text {C }}$
$1+23.3$	94.46	RBHP

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
c Ground beside right bank headpin.

Attachment Table D-32. Cross sectional profile data obtained during the 1984 field season at Sauna Side Channet at Transect 2.

Date: 840915
Time: 1430

TBM: ADF\&G Sauna TBM LB 840823
LBHP: ADF\&G Sauna S.C. TR2 LB 1984
RBHP: ADF\&G TR2 RB 840723

Gage No: 79.8S2C
Gage Reading: Dry WSEL: 89.00

TBM elevation: 100.00
LBHP elevation: 92.94
RBHP elevation: 95.38

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	99.33	Left bank head pin
$0+00$	98.8	GB LBHP
$0+01$	98.9	Top left bank
$0+03$	96.6	Bottom LB
$0+04$	95.1	
$0+07$	94.7	
$0+08$	91.5	
$0+18$	89.2	
$0+28$	88.97	
$0+30.5$	87.5	
$0+40$	88.4	
$0+50$	88.6	
$0+60$	91.4	
$0+63.5$	91.8	
$0+73$	92.0	
$0+83$	92.3	
$0+93$	92.2	
$1+03$	92.2	
$1+08$	92.8	
$1+18$		
$1+28$		
$1+38$		

${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-32 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRIJE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+48	93.0	
$1+58$	93.2	
$1+68$	93.1	
1+78	93.1	
1+88	93.2	
1+92.5	93.1	GB REHP ${ }^{\text {a }}$
$1+92.5$	93.87	RBHP

Attachment Table D-33. Cross sectional profile data obtained during the 1984 field season at Sauna Side Channel at transect 3.

Date: 840905
Time: 1300

TBM: ADF\&G Sauna TBM LB 840823
LBHP: ADF\&G Sauna S.C. TR3 LB 840723
RBHP: ADF\&G TR3 RB 840723

Gage No: 79.8S3C
Gage Reading: Dry WSEL: 88.97

TBM elevation: 100.00
LBHP elevation: 99.33
RBHP elevation: 93.84

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	99.33	Left bank head pin
$0+00$	98.8	GB LBHP
$0+01$	98.9	
$0+03$	98.8	Top left bank
$0+04$	96.6	
$0+07$	94.7	
$0+08$	91.5	
$0+18$	89.2	
$0+28$	88.97	
$0+30.5$	87.5	
$0+40$	87.4	
$0+50$	88.2	
$0+60$	91.4	
$0+63.5$	91.8	
$0+73$	92.0	
$0+83$	92.3	
$0+93$	92.2	
$1+03$	92.2	
$1+08$	92.4	
$1+18$		
$1+28$		
$1+38$		

a Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{\mathrm{b}}$ Ground beside left bank headpin.

Attachment Tab7e D-33 (Continued).

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$1+48$	93.0	
$1+58$	93.2	
$1+78$	93.1	
$1+88$	93.1	GB RBHP
$1+92.5$	93.1	RBHP
$1+92.5$	93.87	

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-34. Cross sectional profile data obtained during the 1984 field season at Sauna Side Channel at Transect 4.

Date: 840905
Time: 1330

TBM: ADF\&G Sauna TBM LB 840823
LBHP: ADF\&G Sauna S.C. TR4 LB 840723
RBHP: ADF\&G TR4 RB 840723

Gage No: 79.8S4C
Gage Reading: 1.36
WSEL: 088.99
TBM elevation: 100.00
LBHP elevation: 100.57
RBHP elevation: 93.82

	TRUE STATION (ft)	ELEVATION (ft)
$0+00$	100.57	DESCRIPTION
$0+00$	100.0	Left bank head pin
$0+07$	99.8	Top LB
$0+08$	95.4	Bottom LB
$0+10$	93.7	
$0+13$	89.9	
$0+18$	88.99	
$0+21$	88.0	
$0+22$	87.5	
$0+24$	87.8	
$0+27$	88.8	
$0+31$	90.1	
$0+35$	90.5	
$0+45$	90.6	
$0+55$	91.3	
$0+65$	91.9	
$0+75$	92.5	
$0+85$	92.3	
$0+95$	91.9	
$0+98$	91.9	
$1+01$		

[^13]Attachment Table D-34 (Continued).

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$1+16$	92.3	
$1+17$	92.4	
$1+27$	92.9	
$1+37$	93.6	
$1+39$	93.6	GB RBHP
$1+41$	93.5	RBHP
$1+41$	93.83	

a Ground beside right bank headpin.

Attachment Table D-35. Cross sectional profile data obtained during the 1984 field season at Sucker Side Channel at TR 2 (RM 84.5).

Date: 840914
Time: 1110
Gage No: 84.5S2C
Gage Reading: 0.42
WSEL: 261.51
TBM: ADF\&G Sucker TBM LB 840823
LBHP: ADF\&G Sucker TR 2 LB 840914
TBM elevation: 269.71
RBHP: ADF\&G Sucker S/C TR 2 RB 1984
LBHP elevation: 268.81
RBHP elevation: 270.41

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	268.81	LBHP
0+00	268.66	GB LBHP ${ }^{\text {b }}$
0+08. 3	267.37	Edge of vegetation
0+15.7	267.26	Toe
0+20.7	264.58	
0+31.7	264.03	
0+45.7	264.61	
0+63.8	263.78	
0+73.1	262.92	
$0+90.7$	262.49	
0+94.7	263.24	
1+12.5	263.41	
1+18.9	261.50	Left water surface
$1+25.1$	261.52	Right water surface
$1+25.7$	261.25	Thalweg
1+33.4	262.78	
$1+36.7$	263.02	
$1+40.7$	266.48	
$1+45.7$	268.08	Edge of vegetation
$1+47.4$	270.22	GB RBHP ${ }^{\text {c }}$
1+47.4	270.41	RBHP

a Elevation relative to mean sea level assigned to the study site TBM.
b Ground beside left bank headpin.
c Ground besịde right bank headpin.

Attachment Table D-36. Cross sectional profile data obtained during the 1984 field season at Sucker Side Charnel at Transect 5 (RM 84.5).

Date: 840914
Time: 1210

Gage No: 84.5S5B
Gage Reading: 0.22
WSEL: 262.37
TBM elevation: 269.71
LBHP elevation: 269.00
RBHP elevation: 267.84

TBM: ADF\&G Sucker TBM LB 840823
LBHP: ADF\&G Sucker TR5 LB 840914
RBHP: ADF\&G Sucker S/C TR5 RB 1984

TRUE
STATION
(ft)
ELEVATION
(ft)
DESCRIPTION

0+00
$0+00$
$0+03.9$
$0+11.4$
$0+18.5$
$0+24.2$
$0+42.9$
$0+51.2$
$0+76.4$
$0+96.6$
$1+10.2$
$1+17.4$
$1+22.8$
$1+31.2$
$1+31.2$
269.00
268.76
268.90
264.65
264.31
264.04
264.41
264.26
262.73
262.29
262.74
264.49
264.19
267.46
2.67 .34

LBHP
GB LBHP ${ }^{\text {b }}$
Top, veg. line

Left water edge
Thalweg
Right water edge

GB RBHP ${ }^{\text {C }}$
RBHP
a Elevation relative to mean sea level assigned to the study site TBM.
b
Ground beside left bank headpin.
C Ground beside right bank headpin.

Attachment Table D-37. Cross sectional profile data obtained during the 1984 field season at Beaver Dam Slough at transect 1 (RM 86.3).

Date: 840914
Time: 1540

Gage No: 86.351C
Gage Reading: 1.42
WSEL: 92.85
TBM elevation: 100.00
RBHP: ADF\&G Beaver GR1 TR1 RB 840914 RBHP elevation: 100.05

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	97.75	LBHP
0+00	97.31	GB LBHP ${ }^{\text {b }}$
0+01	96.52	Edge of veg.
0+09	95.03	
0+18	93.80	Toe LB
0+20.3	92.79	Left water surface
0+26	92.12	
0+30.5	91.91	Thalweg
0+39	92.15	
0+44.5	92.00	
0+49.8	92.79	Right water surface
0+55.6	94.98	
0+61.5	99.57	
0+63.3	99.84	$G B \quad$ RBHP ${ }^{\text {C }}$
0+63.3	100.05	RBHP

a Elevation relative to 100.00 ft assigned to the study site TBM.
b Ground beside left bank headpin.
c Ground beside right bank headpin.

Attachment Table D-38. Cross sectional profile data obtained during the 1984 field season at Beaver Dam Side Channel at transect 4 (RM 86.3).

Date: 840916
Gage No: 86.3S4D
Time: 1200
Gage Reading: 1.36
WSEL: 92.67
TBM: ADF\&G Beaver Dam TBM RB 840914 TBM elevation: 100.00
LBHP: ADF\&G Beaver Dam Slough GR2 TR4LB LBHP elevation: 99.02
RBHP: ADF\&G Beaver GR2 TR4 RB 840914 RBHP elevation: 100.16

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION }^{\mathrm{a}} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	99.02	LBHP
0+00	98.61	GB LBHP ${ }^{\text {b }}$
0+02.4	98.25	Top LB
0+06	96.32	
$0+15.8$	94.50	
$0+22.4$	92.65	Left water surface
0+36.8	89.60	
$0+47.3$	88.74	
0+53.8	89.23	
$0+64.3$	91.29	
$0+68.8$	92.68	Right water surface
0+75.6	93.71	Toe
0+79.5	99.41	Top RB
$0+81.8$	99.91	GB RBHP ${ }^{\text {c }}$
0+81.8	100.16	RBHP
Elevation relative to 100.00 ft assigned to the study site TBM.		
Ground beside left bank headpin.		
Ground beside right bank headpin.		

Date: 840914
Time: 1400

TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TRO LB 840722
RBHP: ADF\&G 86.950 TRO 840722

Gage No: 86.9S0C
Gage Reading: Dry WSEL: 92.81

TBM elevation: 100.00
LBHP elevation: 101.66
RBHP elevation: 100.47 transect 0 (RM 86.9).

Attachment Table D-39 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$		DESCRIPTION
1+33	94.6	
1+43	94.6	
1+53	94.7	
1+63	94.6	
$1+73$	94.5	
1+83	94.6	
1+93	94.7	
2+03	94.8	
2+13	94.9	
2+23	95.1	
2+33	95.3.	
2+43	95.5	
2+44	95.5	
2+54	95.8	
2+64	96.1	
2+74	96.5	
2+84	96.6	
2+85	96.8	
2+95	97.2	
3+05	97.3	
3+15	97.5	
3+17	97.9	Bottom RB
$3+20$	98.4	Top RB
$3+30$	99.5	
$3+40$	99.4	
$3+41$	99.4	GB RBHP ${ }^{\text {a }}$
$3+41$	100.46	RBHP

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-40. Cross sectional profile data obtained during the 1984 field season at Sunset Side Channel at transect 1 .

Date: 840913	Gage No: 86.9S1C Tine: 1440
	Gage Reading: WSEL: 93.27
TBM: ADF\&G Sunset TBM LB 840822	
LBHP: ADF\&G TR1 LB 840722	TBM elevation: RBHP: ADF\&G 86.9S1

TRUE
STATION
(ft)

$0+00$	100.36
$0+00$	100.0
$0+03$	100.0
$0+06$	98.7
$0+07$	98.6

$0+17$
$0+18$
0+28
0+38
0+48
$0+58$
$0+62.5$
0+67
0+68
$0+78$
0+88
0+98
$1+02$
$1+10$
1+12
$1+22$
$1+32$
elevationa ${ }^{\text {a }}$
100.36
100.0
100.0
98.6
96.5
96.2
95.1
94.8
94.2
93.5
93.28
92.9
93.0
93.2
93.3
93.2
93.26
93.6
93.19
93.17
93.9
(ft) DESCRIPTION

Left bank head pin
GB LBHP ${ }^{\text {b }}$
Top of LB

LB bottom

Left water surface
Thalweg

Right water surface
Backwater pool left water surf. Backwater pool right water surf.
a
Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-40 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+42	94.1	
$1+52$	94.3	
1+62	94.6	
$1+72$	94.8	
1+82	95.2	
1+92	95.5	
2+02	95.7	
$2+12$	96.0	
2+22	96.1	
$2+23$	96.2	
2+33	96.3	
2+43	96.5	
$2+53$	96.8	
2+63	97.4	
2+73	97.7	
2+83	98.2	
2+93	98.7	
3+03	99.3	
3+04	99.4	GB RBHP ${ }^{\text {a }}$
3+04	99.45	RBHP

a Ground beside right bank headpin.

Attachment Table D-41. Cross sectional profile data obtained during the 1984 fietd season at Sunset Side Channel at transect 2.

Date: 840914
Time: 1500

TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TR2 LB 340722.
RBHP: ADF\&G 86.9S2 TR2 840709

Gage No: 86.9 S 2 B
Gäge Reading: 00.32
WSEL: 93.83
TBM elevation: 100.00
LBHP elevation: 100.49
RBHP elevation: 99.88

$\begin{gathered} \text { STATION } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION } \\ (f t) \end{gathered}$	DESCRIPTION
0+00	100.49	Left bapk head pin
0+00	100.0	GB LBHP ${ }^{\text {d }}$
0+03	99.9	Top LB
0+08	96.7	Bottom LB
$0+15$	97.2	
$0+16$	97.3	
0+26	96.4	
0+36	96.2	
0+46	96.4	
0+56	96.1	
0+66	95.7	
0+76	95.4	
0+77	95.3	
0+87	95.1	
0+90	95.0	
0+91	95.0	
0+95	94.7	
$0+96$	94.7	
1+06	94.6	
1+16	94.2	
1+26	94.0	
1+36	93.8	

[^14]Attachment Tab7e D-41 (Continued).

	STATION (ft)	TRUE ELEVATION (ft)
		DESCRIPTION

Attachment Table D-42. Cross sectional profile data obtained during the 1984 field season at Sunset Side Channel at transect 3.

Date: 840914
Gage No: 86.9S3B
Time: 1525
Gage Reading: 1.12
WSEL: 93.85
TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TR3 LB 840722
TBM elevation: 290.00
LBHP elevation: 100.32
RBHP: ADF\&G 86.9S4 TR4 840709 RBHP eTevation: 104.29

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION }^{\mathrm{a}} \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	100.32	Left bank head pin
0+00	100.0	GB LBHP ${ }^{\text {d }}$
0+05	100.0	Top LB
0+08	99.1	
$0+11$	97.6	
0+12	97.1	
0+14	96.3	Bottom LB
$0+18$	95.6	
$0+23$	96.1	
0+28	95.6	
0+29	95.5	
0+39	95.6	
0+49	95.7	
0+59	95.8	
0+69	95.9	
0+79	95.8	
0+89	95.5	
$0+90$	95.4	
$1+00$	95.2	
1+10	95.1	
$1+11$	95.1	
1+21	94.8	

Attachment Table D-42 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+22	94.8	
$1+32$	94.6	
1+42	94.5	
$1+52$	94.5	
1+62	94.3	
1+65.5	93.86	Left, water surface
1+75	92.8	
1+76	92.7	
1+85	92.0	Thalweg
1+95	92.5	
2+04	93.84	Right water surface
2+08	95.5	Bottom RB
$2+17$	104.2	
2+19	104.2	GB RBHP ${ }^{\text {a }}$
2+19	104.28	RBHP

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-43. Cross sectional profile data obtained during the 1984 field season at Sunset Side Channel at transect 4.

Date: 840914
Time: 1615

TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TR4LB 840722
RBHP: ADF\&G 86.9S4 TR4 840709

Gage No: 86.9S4B
Gage Reading: 00.74
WSEL: 94.55
TBM elevation: 100.00
LBHP elevation: 101.62
RBHP elevation: 104.26

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	101.62	Left bank head pin
0+00	101.3	GB LBHP ${ }^{\text {d }}$
0+06	100.5	Top bank
0+10	98.1	
0+12	96.4	Bottom LB
0+14	95.9	
0+18	95.5	
0+28	95.6	
0+31	95.5	
0+32	95.5	
0+42	95.8	
0+5?	96.0	
0+62	96.0	
0+67	96.0	
0+68	96.0	
0+78	95.8	
0+83	95.6	
0+93	95.2	
1+03	94.9	
1+13	94.57	Left water surface
$1+20$	94.4	Thalweg
$1+23$	94.4	

${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-43 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+24	94.4	
1+34	94.4	
$1+37$	94.53	Right water surface
$1+42$	94.7	
$1+43$	94.8	
$1+53$	95.3	
1+63	95.4	
1+73	95.4	
1+83	95.4	
1+93	95.1	
2+00	94.9	
2+01	94.8	
2+04	94.9	
2+05	94.8	
2+07	94.7	
2+08	95.0	
$2+12$	95.0	
$2+13$	94.7	
2+18	94.7	
2+21	94.4	
2+22	94.4	
2+24	94.28	Left water surface
2+29	93.8	
2+30	94.27	
2+31	94.6	
2+34	95.9	Bottom RB
2+38	102.3	Top RB
$2+43$	103.9	GB RBHP ${ }^{\text {a }}$
$2+43$	104.26	RBHP

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-44. Cross sectional profile data obtained during the 1984 field season at Sunset Side Channe? at transect 5.

Date: 840914
Time: 1710

TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TR5 LB 840722
RBHP: ADF\&G 86.9S5 TR5 840709

Gage No: 86.9S5B
Gage Reading: 1.14
WSEL: 94.74
TBM elevation: 100.00
LBHP elevation: 100.61
RBHP elevation: 102.42

STATION (ft)	TRUE ELEVATION (ft)	DESCRIPTION
$0+00$	100.61	Left bapk head pin
$0+00$	100.1	GB LBHP
$0+03$	99.7	Top LB
$0+08$	98.7	Bottom LB
$0+11$	98.7	
$0+13$	97.6	
$0+23$	96.8	
$0+30$	96.7	
$0+31$	96.6	
$0+35$	96.6	
$0+36$	96.5	
$0+37$	96.6	
$0+38$	96.5	
$0+39$	96.4	
$0+45$	96.4	
$0+46$	96.3	
$0+51$	95.7	
$0+52$	95.6	
$0+62$		
$0+79$		
$0+80$		

${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.

Attachment Table D-44 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
0+90	95.3	
$1+00$	94.8	
$1+02$	94.74	Left water surface
1+12	94.2	
1+22	93.6	
1+32	93.1	
1+37	92.8	
1+38	92.8	
$1+48$	92.6	
$1+57$	92.4	
1+58	92.3	
1+62	92.3	Thalweg
1+65	92.4	Thalweg
1+66	92.4	
$1+72$	93.0	
$1+75$	92.8	
$1+76$	92.8	
$1+81$	93.5	
$1+82$	93.6	
$1+86$	93.7	
1+87	94.1	
1+91	94.73	Right water surface
1+95	95.3	
$1+96$	95.7	
$2+01$	96.9	RB bottom
2+02	100.0	Top RB
$2+05$	101.7	
$2+10$	102.3	GB RBHP ${ }^{\text {a }}$
2+10		RBHP elevation not shot

Ground beside right bank headpin.

Attachment Table D-45. Cross sectional profile data obtained during the 1984 field season at Sunset Side Channel at transect 6.

Date: 840914
Time: 1800

TBM: ADF\&G Sunset TBM LB 840822
LBHP: ADF\&G TR6 LB 840722
RBHP: ADF\&G 86.9S6 TR6 840722

Gage No: 86.9S6C
Gage Reading: 00.45
WSEL: 94.77
TBM elevation: 100.00
LBHP elevation: 100.71
RBHP elevation: 103.13

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ \text { ELEVATION } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	100.71	Left bapk head pin
$0+00$	100.5	$G B L^{\text {L }}$ (${ }^{\text {b }}$
0+02	99.8	
0+09	100.3	Top LB
0+11	99.6	
0+12	99.1	Bottom LE
0+21	98.7	
0+22	98.6	
0+32	98.2	
0+42	97.7	
0+52	96.9	
0+62	96.1	
0+72	95.3	
0+80	94.74	Left water surface
0+90	93.9	
1+00	93.2	
1+10	92.5	
1+13	92.3	
1+14	92.2	
1+18	91.9	
$1+24$	91.7	
$1+30$	91.2	

a Elevation relative to 100.00 ft . assigned to the study site TBM.
${ }^{\mathrm{b}}$ Ground beside left bank headpin.

Attachment Table D-45 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	TRUE ELEVATION (ft)	DESCRIPTION
1+31	91.1	
1+34	90.8	
1+39	90.7	Thalweg
1+45	90.9	
$1+50$	91.2	
1+56	91.5	
$1+60$	92.1	
1+64	92.7	Bottom RB
1+65	94.75	Right water surface
1+66	95.2	
1+69	96.1	
1+71	99.2	
$1+77$	102.6	$G B R B H P^{\text {a }}$
1+77	103.14	RBHP

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-46. Cross sectional profile data obtained during the 1984 field season at Sunrise Side Channe 1 at transect 4 (RM 87.0).

Date: 840912
Gage No: 87.0S4
Time: 1600
Gage Reading: Dry
WSEL: Dry
TBM: ADF\&G Sunrise S.C. TR4 RB 1984
LBHP: ADF\&G Sunrise TR4 LB 840912
TBM elevation: 100.00
RBHP: ADF\&G Sunrise S/C TR4 RB 1984
LBHP elevation: 100.00
RBHP elevation: 100.00

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \text { ELEVATIONa } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	100.00	LBHP
0+00	99.55	GB LBHP ${ }^{\text {b }}$
0+07	99.20	Top of bank
0+17	96.74	Toe
0+99	95.57	
$1+54$	94.22	Thalweg
1+78	94.73	
$1+97$	95.57	
2+13	96.16	
2+36	97.01	
2+53	97.47	
2+62	97.93	
2+82	98.33	
2+89	99.67	GB RBHP ${ }^{\text {C }}$
2+89	100.00	RBHP
${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.		
Ground beside left bank headpin.		
${ }^{\text {c }}$ Ground beside	headpin.	

Attachment Table D-47. Cross sectional profile data obtained during the 1984 field season at Birch Creek Slough at transect 2 (RM 88.4).

Date: 840927
Time: 1635

TBM: R\&M Consultants 89.3S1 LB 1982
LBHP: ADF\&G Birch TR2 LB 1984
RBHP: ADF\&G Birch Cr S7 TR 2 RB 1984

Gage No: 88.4S2B
Gage Reading: 1.30 WSEL: 274.17

TBM elevation: 278.79
LBHP elevation: 293.50
RBHP elevation: 291.07

STATION (ft)	TRUE ELEVATION (ft)	
$0+00$	293.50	DESCRIPTION
$0+00$	292.46	LBHP
$0+09.5$	293.15	GB LBHP ${ }^{\text {b }}$
$0+15$	292.72	Top LB
$0+17.5$	288.57	Edge of bank
$0+25$	283.18	Mid-bank
$0+30$	282.99	Toe, left water surface
$0+39$	282.62	
$0+48$	281.20	
$0+55$	282.91	
$0+60$	282.17	
$0+66$	283.14	
$0+78$	283.64	
$0+87$	285.80	Right water surface
$0+93.5$	290.31	Toe RB
$1+00.5$	291.07	Mid bank
$1+00.5$		GB RBHP
		RBHP

${ }^{\text {a }}$ Elevation relative to 100.00 ft assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.
${ }^{C}$ Ground beside right bank headpin.

Attachment Table $D-48$. Cross sectional profile data obtained during the 1984 field season at Birch Creek Slough at transect 6 (RM 88.4).

${ }^{\text {a }}$ Elevation relative to 100.00 ft assigned to the study site TBM.
${ }^{b}$ Ground beside left bank headpin.
${ }^{c}$ Ground beside right bank headpin.

Attachment Table D-49. Cross sectional profile data obtained during the
1984 field season at Trapper Side Channe7 at
transect 1 (RM 91.6$)$.

Date: 840904 Gage No: 91.6S2D
Time: 1300
Gage Reading: Not obtained WSEL: 91.98

TBM elevation: 100.00
LBHP elevation: 96.74
TBM: ADF\&G Trapper TBM RB 840822
LBHP: ADF\&G TR1 LB 840721
RBHP elevation: 99.02

TRUE
STATION
(ft)
$0+00$
$0+00$
$0+01$
$0+10$
$0+20$
$0+30$
$0+40$
0+50
$0+54$
0+55
$0+64$
0+65
$0+75$
$0+76$
$0+86$
$0+89$
$0+90$
$1+00$
$1+10$
$1+18$
$1+19$
$1+23.5$
96.74
96.2
96.1
96.0
96.2
96.3
96.0
95.6
95.5
95.4
95.0
94.9
94.0
93.9
93.2
93.1
93.0
92.6
92.4
92.2
92.1
91.99

DESCRIPTION

Left bank head pin GB LBHP ${ }^{\text {b }}$

[^15]Attachment Table D-49 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+32	91.5	
1+33	91.4	
1+43	91.0	
$1+50$	90.8	
1+51	90.7	
1+61	90.5	
1+68	90.4	
1+69	90.4	
1+79	90.1	
1+84	90.0	
1+85	90.0	
1+93	90.0	
1+94	90.0	
2+04	90.1	
2+05	90.2	
2+13	90.5	
2+14	90.5	
2+22	91.4	
2+23	91.6	
2+26	91.97	Right water surface
2+34	92.93	
2+35	93.2	
2+45	94.7	
2+47	95.1	
2+53	95.6	
2+63	96.0	
2+73	96.1	
2+74	96.1	
2+84	96.4	
2+94	96.5	
2+98	96.9	
3+01	97.8	
3+09	97.2	
$3+10$	97.3	
3+14	97.5	
3+15	97.8	
$3+17$	98.1	
$3+18$	99.02	
$3+18$	98.2	$G B R B H P^{a}$

[^16]Attachment Table D-50. Cross sectional profile data obtained during the 1984 field season at Trapper Side Channel at transect 2.

Date: 840904
Time: 1330

TBM: ADF\&G Trapper TBM RB 840822
LBHP: ADF\&G TR2 LB 840721
RBHP: ADF\&G TR2 RB 840721

Gage No: 91.6S3C
Gage Reading: Not read WSEL: 92.00

TBM elevation: 100.00
LBHP elevation: 97.21
RBHP elevation: 97.21

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	$\begin{gathered} \text { TRUE } \\ (\mathrm{ft}) \end{gathered}$	DESCRIPTION
0+00	97.21	Left bank headpin
$0+00$	96.7	GB LBHP ${ }^{\text {d }}$
0+01	96.6	
0+10	96.2	
$0+20$	95.7	
0+30	95.9	
0+39	96.3	
0+40	96.4	
0+50	96.5	
0+60	96.7	
0+70	96.8	
0+80	96.8	
0+90	96.6	
0+99	96.4	
$1+00$	96.3	
1+10	96.0	
1+20	95.5	
$1+30$	95.1	
$1+31$	95.1	
$1+37$	94.8	
$1+38$	94.7	
$1+48$	94.1	

[^17]Attachment Table D-50 (Continued).

$\begin{aligned} & \text { STATION } \\ & (\mathrm{ft}) \end{aligned}$	TRUE ELEVATION (ft)	DESCRIPTION
1+58	93.6	
1+68	93.2	
1+78	92.8	
$1+79$	92.7	
$1+89$	92.4	
$1+98$	92.00	Left water surface
$2+08$	91.6	
2+18	91.1	
$2+28$	90.8	
$2+38$	90.7	
2+48	90.6	
2+58	90.7	
2+67	90.9	
2+68	91.0	
2+76	91.3	
2+77	91.4	
2+87	91.7	
2+93	91.99	Right water surface
$3+03$	92.4	
3+12	93.2	
$3+13$	93.5	
$3+22$	94.8	
$3+23$	94.9	
$3+33$	95.6	
$3+43$	96.5	
$3+44$	97.21	RBHP
$3+44$	96.7	GB RBHP ${ }^{\text {a }}$

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-51. Cross sectional profile data obtained during the 1984 field season at Trapper Side Channel at transect 3.

Date: 840904
Gage No: 91.6S4D
Time: 1400
Gage Reading: Not read WSEL: 92.18

TBM: ADF\&G Trapper TBM RB 840822
LBHP: ADF\&G TR3 LB 840721
TBM eTevation: 100.00
RBHP: ADF\&G TR3 RB 840721
LBHP elevation: 98.21

STATION (ft)	$\begin{gathered} \text { TRUE } \\ \substack{\text { ELEVATION } \\ (\mathrm{ft})} \end{gathered}$	DESCRIPTION
0+00	98.21	Left bank head pin
$0+00$	97.9	$\text { GB LBHP }{ }^{\text {D }}$
0+01	98.0	
$0+11$	98.2	
0+18	97.6	
0+19	97.2	
0+26	96.5	
0+27	96.4	
0+37	96.1	
0+47	95.8	
0+52	95.8	
0+53	95.8	
0+63	95.7	
0+73	95.2	
0+83	94.6	
0+93	94.2	
1+03	94.1	
1+13	93.8	
$1+23$	93.5	
$1+33$	93.2	
$1+34$	93.2	
1+44	92.8	

[^18]Attachment Table D-51 (Continued).

STATION (ft)	$\begin{aligned} & \text { TRUE } \\ & \text { ELEVATION } \\ & (\mathrm{ft}) \end{aligned}$	DESCRIPTION
1+54	92.5	
1+64	92.3	
$1+71$	92.18	Left water surface
1+78	92.1	
1+79	92.0	
$1+89$	91.8	
1+99	92.8	
2+09	92.7	
2+19	92.8	
2+31	92.0	
$2+32$	92.0	
$2+38.5$	92.17	Right water surface
2+48	92.3	
2+51	92.3	
2+52	92.2	
2+59	92.2	
2+60	92.1	
2+65	92.1	
2+74	92.6	
2+75	92.6	
2+85	93.5	
2+94	94.4	
2+95	94.5	
3+05	95.5	
3+08	95.8	
3+18	96.4	
3+28	97.1	
3+38	97.5	
$3+43$	98.0	
$3+44$	98.0	
3+54	98.4	
3+64	98.6	
3+74	98.2	
3+75	98.1	
$3+77.5$	98.52	RBHP
$3+77.5$	98.2	GB RBHP ${ }^{\text {a }}$

${ }^{\text {a }}$ Ground beside right bank headpin.

Attachment Table D-52. Cross sectional profile data obtained during the 1984 field season at Trapper Side Channel at transect 4.

Date: 840904
Time: 1430

TBM: ADF\&G Trapper TBM RB 840822
LBHP: ADF\&G TR4 LB 840721
RBHP: ADF\&G TR4 RB 840721

Gage No: 91.6S1D Gage Reading: Not read WSEL: 92.61

TBM elevation: 100.00
LBHP elevation: 98.21
RBHP elevation: 96.64

TRUE
STATION
(ft)
Elevationa ${ }^{\text {a }}$
(ft) DESCRIPTION

$0+00$	98.21
$0+00$	97.8
$0+01$	97.9
$0+03$	97.6
$0+04$	97.3
$0+10$	95.7
$0+12$	95.4
$0+13$	95.0
$0+14$	95.0
$0+24$	94.7
$0+34$	94.5
$0+44$	94.3

0+51
0+52
$0+62$
$0+70$
94.2
94.2
94.1
93.9
$0+71 \quad 93.9$
$0+81 \quad 93.6$
$0+91 \quad 93.4$
1+01
$1+10.5$
$1+14$
93.0
92.61 Left water surface
92.6

[^19]Attachment Table D-52 (Continued).

	TRUE STATION (ft)	ELEVATION (ft)
$1+24$	92.3	
$1+29$	92.0	
$1+39$	91.9	
$1+49$	91.8	
$1+57$	92.3	
$1+67$	92.61	
$1+75$	92.7	
$1+82$	92.9	
$1+83$	93.9	
$1+93$	93.1	
$2+03$	93.4	
$2+13$	94.6	
$2+23$	95.4	
$2+33$	95.7	
$2+43$	96.2	
$2+53$	96.2	
$2+63$	96.0	
$2+73$	95.3	
$2+78$	96.64	
$2+79$	96.4	
$2+82$		
$2+83$		
$2+83$		

${ }^{\text {a }}$ Ground beside right bank headpin.

ATTACHMENTE

MAINSTEM OISCMARGE AT SUNSHINE (1000CFSI
Attachment Figure E-1.
WSEL versus mainstem discharge (USGS 15292780) at Hooligan Side Channel 50 feet upstream of transect 3 (Q site).

Attachment Figure E-2. WSEL versus mainstem discharge (USGS 15292780) at Eagle's Nest Side Channel transect 2 (Q site).

Attachment Figure E- 3. WSEL versus mainstem discharge (USGS 15292780) at Kroto Slough Side Channel transect 2 (0 site).

Attachment Figure E-4. WSEL versus mainstem discharge (USGS 15292780) at Bear Bait Side Channel transect 2 (Q site).

Attachment Figure E- 5. WSEL versus mainstem discharge (USGS 15292780) at Last Chance Side Channel transect 2 (Q site).

Attachment Figure E－6．WSEL versus mainstem discharge（USGS 15292780） at Rustic Wilderness Side Channel transect 4 （Q site）．

$\begin{array}{ll}\text { Attachment Figure E-7. } & \text { WSEL versus mainstem discharge (USGS 15292780) } \\ & \text { at Island Side Channel transect } 1 \text { (Q site). }\end{array}$
$\begin{array}{ll}\text { Attachment Figure E-7. } & \text { WSEL versus mainstem discharge (USGS } 15292780 \text {) } \\ & \text { at Island Side Channel transect } 1 \text { (Q site). }\end{array}$

 at Island Side channel transect 2.

Attachment Figure E-10. WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 3.

Attachment Figure E-11. WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 4.

Attachment Figure E-12. WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 4A.

Attachment Figure E-13. WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 5.

Attachment Figure E-14. WSEL versus mainstem discharge (USGS 15292780) at Island Side Channel transect 6 (Q site).

Attachment Figure E-15. WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 1 (Q site).

Attachment Figure E-16. WSEL versus mainstem discharge (USGS 15292780)
at Mainstem West Bank Side Channel transect 2.

Attachment Figure E-18. WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3.

Attachment Figure E-19. WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3 A.

Attachment Figure E-20. WSEL versus mainstem discharge (USGS 15292780) at Mainstem West Bank Side Channel transect 3B.

Attachment Figure E-22. WSEL versus mainstem discharge (USGS 15292780) at Goose 2 Side Channe1 transect 2 (Q site).

Attachment Figure E-23. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 1 (Q Site).

Attachment Figure E-24. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 2.

Attachment Figure E-25. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 2A.

Attachment Figure E-26. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 3.

Attachment Figure E-27. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 4 (Q site).

[^20] at Circular Side Channel head.

Attachment Figure E－30．WSEL versus mainstem discharge（USGS 15292780） at Sauna Side Channel transect 1. at Sauna Side Channel transect 2 (Q site).

Attachment Figure E－32．WSEL versus mainstem discharge（USGS 15292780） at Sauna Side Channel transect 3.

[^21]

Attachment Figure E-34. WSEL versus mainstem discharge (USGS 15292780) at Sucker Side Channel transect 2 (Q site).

Attachment Figure E- 35. WSEL versus mainstem discharge (USGS 15292780) at Sucker Side Channel transect 5 (Q site).

Attachment Figure E- 36. WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Slough transect 1 (Q site).

Attachment Figure E-37. WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Side Channe? transect 4 (Q site).

Attachment Figure E-38. WSEL versus mainstem discharge (USGS 15292780) at Beaver Dam Side Channel Head.

Attachment Figure E－40．WSEL versus mainstem discharge（USGS 15292780） at Sunset Side Channel transect 1 （Q site）．

Attachment Figure E-42. WSEL versus mainstem discharge (USGS 15292780) at Sunset Side channel transect 3.

Attachment Figure E-43. WSEL versus mainstem discharge (USGS 15292780) at Sunset Side Channel transect 4.

Attachment Figure E－44．WSEL versus mainstem discharge（USGS 15292780） at Sunset Side Channel transect 5.

[^22] at Sunset Side Channel transect 6.

Attachment Figure E- 46. WSEL versus mainstem discharge (USGS 15292780) at Sunrise Side Channel transect 4 (Q site).

Attachment Figure E-48. WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 1.

Attachment Figure E-49. WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 2.

Attachment Figure E－50．WSEL versus mainstem discharge（USGS 15292780） at Trapper Creek Side Channel transect 3.

Attachment Figure E-51. WSEL versus mainstem discharge (USGS 15292780) at Trapper Creek Side Channel transect 4 (Q site).

[^0]: 1 Instantaneous mainstem discharge value.

[^1]: Figure 45．Location of Circular Side Channel study site（RM 75．3）．

[^2]: Figure 79．Location of Birch Creek Slough study site（RM 88．4）．

[^3]: a Insufficient information is available to determine initial breaching and controliting discharge.
 b Insufficient information is available to estimate streamflow at the controlling discharge.
 c These streamflow values are actual measurements of discharge and are not estimated values.
 d Birch Creek tributary influence precludes the determination.

[^4]: a Backwater was not present at study site.
 Insufficient data available to determine occurrence and extent of backwater.

[^5]: ${ }^{\mathrm{a}}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^6]: ${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^7]: a Ground beside right bank headpin.

[^8]: a Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^9]: a Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^10]: a Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^11]: ${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^12]: a Elevation relative to 100.00 ft . assigned to the study site TBM.
 b
 Ground beside left bank headpin.

[^13]: ${ }^{a}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^14]: ${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^15]: ${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^16]: ${ }^{\text {a }}$ Ground beside right bank headpin.

[^17]: ${ }^{\mathrm{a}}$ Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^18]: ${ }^{\text {a }}$ Elevation relative to 100.00 ft . assigned to the study site TBM. ${ }^{b}$ Ground beside left bank headpin.

[^19]: a Elevation relative to 100.00 ft . assigned to the study site TBM.
 ${ }^{b}$ Ground beside left bank headpin.

[^20]: Attachment Figure E-28. WSEL versus mainstem discharge (USGS 15292780) at Circular Side Channel transect 5.

[^21]: Attachment Figure E- 33. WSEL versus mainstem discharge (USGS 15292780) at Sauna Side Channel transect 4.

[^22]: Attachment Figure E-45. WSEL versus mainstem discharge (USGS 15292780)

