APPENDIX 2-H
STOCK SEPARATION REPORT

By
David R. Bernard Glen Oliver Willian Goshert and Bev Cross

Alaska Department of Fish and Game Division of Commercial Fisheries Statewide Stock Biology Group

January, 1983

LIST OF EIGUPES

Ficure Page

1. Rap of Susitna River and sampling sites for sockeye salmon in 1982 3
2. Photograph of a sockeye salmon scale showing the three zones measured 5
3. Frequency histograms of the mostdiscriminating scale pattern variablesused to compare stocks of sockeye salmonnfrom within the Susitna River in 1982 10

LIST OF TABLES

n
TaioleBace

1. Variables computed from scale patterns for inclusion in the linear ciscriminant Eunction analysis 6
2. Age composition of sockeye salmon samples Irom Curry Station, Talkeetna Station, Larson Lake ('Talkeetna River), and Tokositna River (tributary to Chulitna River) 9
3. liean values and stanciard deviations of scale pattern variables 11
4. Four-way jackknife classification matrix frcia aiscriminant analysis of scale patterns on sockeye salmon of age 1.3 sampled from escapenents at Curry Station, Talkeetna Station, Tokositna Rivers, and Larson Lake in 1982 13
5. Three-way jackknife classification matrix from discriminant analysis of scale patterns on scckeye salmon or age 1.3 sampled from escapenents at Curry Station, Tokositna River, and Larson Lake in 1982 14
6. Two-way jackknife classification matrix from discriminant analysis of scale patterns on sockeye salmon of age 1.3 sampled from escapements at Curry Station and Tokositna River in 1982 15
7. 'Avo-way jackknife classification matrixfrom discriminant analysis of scale patternson sockeye salmon of age 1.3 sampled Iromescapements at Curry Station and Larson Lakein 1982 ... 16
8. Two-way jackknife classification matrixrrom ciscriminant analysis of scale patternson sockeye salnon of age 1.3 sampled fromescapements at Tokositna River and LarsonLake in 198217
Q. Nost poweriul scale pattern variables in the linear discriminant functions accorcing to the freguency they appear in all five mociels and to their strength in the two-way and three-way mocels 19

Scale pattern analysis with linear discriminant functions was used to examine the probable fate of sockeye salnon fry spawned upstream of Curry Station on the Susitna River. Scale samples were taken from sockeye salmon collected at Talkeetna Station, at Curry Station, from the Tokositna River, and from the confluence of the outlet from Larson Lake and the Talkeetna River. Fish aged 1.3 aominate the samples and are used in the analysis. Growth curing the first season of life (1977) is the most discrininating scale pattern variable. Scale patterns from fish sampled at Tokositna River and at Larson Lake are most different. Fish from Larson Lake grew slower for a longer period of time than did fish from the Tokositna River. Fish from Talkeetna Station on the Susitna River are more like fish sampled at Larson Lake on the Talkeetna River. Fish from Curry Station are misclassified as being frcm Tokositna River or from Larson Lake more often than from upstream of Curry Station. Sockeye salmon passing Curry Station are probably not a separate stock, but are strays from Talkeetna and Chulitna Rivers. Fry hatcned upstrean of Curry Station most probably die or move to the lower susitna to rear.

INTROOLUCTION

The Adult Anadramous Fisheries Studies of the Susitna Eycroelectric Project, Alaska Department of Fish anci Came is charged with describing the fisneries resources in the Susitna River with estimating probable impacts of proposed dams in the upper river. To meet this end, personnel of the Department conducted extensive field studies on the Susitna River in 1981. Field sampling in 1982 was altered to provide information not obtained through the program in 1981. This report, authored by personnel of the Statewide Biology Grcup in cooperation with the Adult Anadromous Fisheries Project, contains analysis of this new intormation.

Althougin an estimated 2,804 sockeye salmon (Oncorynchus nerka) passed Curry Station in 1981 (ADFG l981), no notable fry rearing activity was observeci north of this station that year (Eruce Barrett, personal communication). About 98.5 percent of the sockeye aciults caught at Curry Station have at least one fresimater check on their scales. If the spawn of the sockeye salmon that passed Curry Station did not remain upstream of this station to rear, then where did they go?

In 1982, personnel or the fault hadromous Fisheries Project collectec scales from sockeye salnon acults from four sites in the Susitna River watershed and gave these scales to the Statewiae Stock Diology Group for analysis. To indicate possible rearing locations for fry, we searched for similarities and differences anong scales patterns with linear ciscriminant anaiysis.

METHODS

Sample Collection:

Scales were taken from escapements of sockeye salmon at Curry Station on the Susitna River, at Talkeetna Station, at the confluence of the outlet from Larson Lake and the Talkeetna River, and at the Tokositna River which is a tributary to the Chulitna River (Figure l). Sockeye salmon were collected with fish wheels at Curry ank Talkeetna Stations. Scales were collected from the left side of the lish approximately two rows above the lateral line and on tne diagonal row cownarci from the posterior insertion of the dorsal fin (IISPCC 1961).

Ase Composition:

Sockeye salmon ages were determined through visual examination of scale samples. Scales were mounted on gum cards and impressions were mace in celluiose acetate (Clutter and Whitesel 1956). Ages were recorded in Europeanl notation. Pecause 1.3 fish predominate in the samples, only scales from these fish are used in the analysis.

[^0]

Figure 1. Map of Susitna River and sampling sites for sockeye salmon in 1982.

Comparison of Scale Patterns:

Scale lieasurements:

Scale impressions were magnilied to 100 power and projected onto a digitizing tablet using eguipnent sinilar to that described by Ryan and Christie (1976). Data were recorded onto computer diskettes from the digitizer tablet uncler control of a FORTPN progran executing on a microcomputer. Scale measurements were taken along a stanciarcizea axis approximately 20 degrees off the prinary axis and perpendicular to the sculptured field. The distance between each circulus in each ul three scale dattern zones was mousured. The zones were: scale focus to the last circulus of the first freshwater annulus; the last circulus of the Eirst Ereshwater annulus to the last circulus of the second Ereshwater annulus (the zone of flus growth); the last circulus of the second Ereshwater annulus to the last circulus of the iirst marine annulus. The three zones are shown in a photograph of a scale from an age 1.3 sockeye salmon (Figure 2). A set of 11 variables was then computed for each of these three zones (Table 1), Only normally distributed variables were used to build Linear discrimikant functions.

Although all scales were ageu, not all scales were measured. Scales from sockeye salmon other than age 1.3 were not measured. Also, no more than 100 randomly selected scales were measured from each sample; 100 is a number sufficiently large for linear discriminant analysis. If a sample contains less than 100 scales tran 1.3 tish, as co sariples from Curry Station and Eram Mokositna River, all usable scales were measured.

Figure 2. Photograph of a sockeye salmon scale showing the three zones measured.

Table 1. Variables contuted iran scale matterns for inclusion in the linear aiscribinant function analysis.

2 A discriminate function is built on scale variables for all saripled fish but one. The function is then used to classily the stock of that one fish. Since the stock of that one fish is known, so therefore is the verity of its classification. The procedure is then repeated only with a new fish excluded. The jackknife procedure continues until all sampled fish are classified.

Abstract

\section*{Lge Composition:}

Ot the 853 sockeye sumpleu, over two-thirds are age 1.3 tish (Table 2). This dominance is consistant over all sampling sites save Curry Station where ages are almost evenly distributed. However, the age composition of the tish sampled at Curry Station is probably a poor estinate of the age composition of the sockeye salmon that passeci this station vecause the sample is small and was taken over a 59-aay period. Although more tish were sampled at Talkeetna Station, the sanpting periou is long here also anu attects the precision or the estimate of age composition of fish that fassec this station as well.

Comparison of Scale Patterrs:

Variable Selection:
vost scale fattorn variables in the camplos are nomally distributed (e.g., Figure 3). Each of the two most discriminating variables (SIXl anc NCl) have similar stanuard ceviaticns in samples fron Talkeetna Staticn, Tokositna River, and Larson Lake, but have different means (Table 3). For both these variablee, their cistributis -: tine samele from Curry Station is somewnat binocial, especially for SIKl.

Table 2. Mje composition or sodteye salnon sabliles from Curry Station, Talkectna Station, Larson Larie ('íalkeetné River), anc Tokositna River (tributary to Chulitna River).

1/ Scale pattern variable measurec.

-

$$
2
$$

-

Figure 3. Frequency histograms of the most discriminating scale pattern variables used to compare stocks of sockeye salmon from within the Susitna River in 1982.

Table 3. Nean values and stanciarc deviations of normally distributed scale pattern variables. I/

Variable	Talkeetna St.		Curry St.		Tokositna River		Larson/Talkeetna	
	Hean	Stanclard Deviation	lean	Standard Deviation	Hean	Stanclard Deviation	Hean	Standard Deviation
THOL	42.6	5.2	42.2	6.5	46.1	6.7	42.2	5.3
FOUR1	64.6	7.9	64.7	10.3	71.9	8.8	64.5	7.1
SIXI	83.9	10.3	84.5	13.2	93.9	11.5	83.8	8.8
EIGITIl	96.6	25.4	91.0	36.3	98.6	41.8	97.9	19.6
MAXI	30.7	4.2	29.6	4.6	31.6	5.1	29.9	4.1
HIN1	6.2	1.4	6.4	1.6	7.1	1.9	6.0	1.3
HC1	10.9	2.0	9.9	2.1	9.3	1.9	10.7	1.8
ID1	125.8	22.3	118.7	22.7	125.6	27.9	123.9	19.4
Hall	3.4	1.0	3.1	1.2	2.7	0.9	3.3	0.9
TNO2	20.5	4.9	22.2	4.6	21.6	7.2	20.6	4.1
FOUR2	28.7	20.0	37.5	17.8	38.6	19.2	36.5	14.4
SIX2	26.1	31.9	31.2	32.7	31.9	35.4	25.2	30.8
EIGH2'2	8.4	25.4	17.8	35.4	15.3	34.2	5.5	20.3
Hax2	13.4	2.6	14.4	2.5	14.7	2.9	13.1	2.3
11 IN 2	8.2	2.0	8.1	1.7	9.2	1.9	7.9	1.8
LHAX2	2.9	1.8	2.9	1.9	2.8	1.7	2.8	1.8
NK2	4.9	2.1	5.6	2.2	5.3	2.3	5.3	1.6
ID2	51.7	22.8	62.2	23.4	61.9	26.6	54.0	16.9
$\mathrm{NCH}^{\text {H }}$	1.9	1.1	2.3	1.3	2.2	1.2	2.1	0.9
TV03	30.3	7.2	30.8	5.6	32.0	6.2	29.0	6.1
FOUR3	62.7	11.1	63.1	9.5	65.7	9.2	59.9	10.7
SIX3	97.6	13.9	96.4	11.3	100.4	11.5	93.4	12.9
EIGfi 3	133.8	16.6	131.0	13.4	135.7	13.8	129.3	15.1
MAX3	26.4	5.3	24.3	1.3	25.4	4.8	26.0	4.6
MIIN3	9.5	1.6	9.3	1.7	9.6	1.5	9.2	1.6
LMAX3	8.9	5.5	8.9	5.5	8.7	5.2	9.5	4.9
$\mathrm{irC3}^{\text {che }}$	22.6	2.4	23.6	3.4	22.9	2.6	22.9	2.4
ID3	357.3	40.6	362.3	47.9	361.3	38.	30.2	$3: .3$
Lemigit	576.4	35.5	565.1	43.2	574.3	26.4	570.7	27.9
HCH3	10.0	1.3	10.5	1.7	14.1	1.3	10.4	1.3

1/ Eased on 100 fish sampled at Talkeetna station, 43 fish at Curry Station, 94 fish at Tokositna River, and 100 at the confluence of the outlet fron Larson Lake and the Talkeetna River.

The overall accuracy of the four-way modiel (all samples included) is almost 50 percent (Table 4). Fish frori Larson Lake are nost like those from Talkeetna Station while Eish from Tokositna River are more unique. Fish from Curry Station ure most often misclasiliod as being tron either rokositna River or Larson Lake and are mischasisified more often than not. Cuescsing at the origin of fish anong four stocks would produce 25 percent accuracy; the accuracy for fish from Curry Station is little better than cuessing while accuracy for the other samples is two to three times better.

The overall accuracy of the three-way nocel (Curry-Tokositna-Larson) is about 62 percent (Table 5). Accuracy in classitying Larson Lake tish and Tokositna River fish is much higher than that for Curry station fish. Guesising the origin of fish among three stocks would produce a 33 percent accuracy, a level not even attained for fish ircm Curry Station. The percent of fish from Curry Station misclassified is split about evenly between the Tokositna River and Lärson Lake.

The overail accuracies of the two-way mociels is about 70 percent for Curry-Tokositna (Table 6), about 69 percent for Curry-Larson (Table 7), and about 81 percent for Tokositna-Larson (rable 3). Cuessing would prounce an accuracy of 50 percent; all two-way mociels, especially the Tokositna-Larson, discriminate wich accuracy much higher than 50 percent.

'idule 4. Four-way jackkrife clasitication matrix from discriminant anklysis of scale patterns on sockeye salmon of age 1.3 sampiec $\begin{aligned} \text { ran } \\ \text { escapements at Curry Station, }\end{aligned}$ Taikeetne Station, Tokositria Rivers, and Larson Lake in 1082.

Actual Grcup of Orlyin	Sanqle Size	Classiriced Group of Origin			
		Talkeetnã St.	Lásson/Talkeetna	'Tokositna R.	Curry St.
Talkcetina St.	100	. 43	. 28	. 15	. 15
Lairson/ialkeetna	100	. 20	. 46	. 13	. 21
'Lut:ositia fiver	54	. 08	. 08	. 67	. 17
Curry St.	43	. 08	. 33	. 26	. 33

Overall ciassitication accuracy $=.495$

Hote: Unuerimec proptions represent proportion correctly classified. All ctiter progortions are misclassified.

Fuwie 5. 'mree-way jact:knife classification matrix from aiscriminant andysis of suale putiterats un sockeye salmon of age 1.3 samplea Eran escafenent: at Curry station, 'orositna kiver, anu Larson Lake in 1982.

fatual Group of origin	Sample Size	Classifieu Grclip or (oriyin		
		Larson/Talkeetna	'lokositna R.	Curry St.
Lurson/ralticethá	100	.73	. 11	.16
'rokositha River	94	.13	.66	. 21
Curr ${ }^{\prime}$ St.	43	. 40	$\therefore \quad .35$. 25
Overall classification accuracy $=.616$				

 s 11 otior potorcions are misclassified.

'fuble 6. 'No-wa' jackniíe calssification matrix fran discriminant analysis of ecule fatterns on sockeye salmon of age 1.3 sumped run escapments at Curry síation, 'lowosi thà river, ank Larson Lake in losz.

[^1]fible 7. iwo-way jacknife calssification jatrix ran discriamant analysis of scale patterns on sockeye sämon of age 1.3 samplea ircin escaperments at Curry Station ana Larson Lake in 1502.

FCtual (rcle of Origin	Sarmie Size	Classifigu Group of Origin	
		Larson/lalkeetria	Curry St.
Larson/talkeetra	100	.72	.23
Curry St.	43	\%. 40	.60

CNerall classitication accuracy $=.685$
íoce: Uncerlined prortions represent proxortion currectly chassifieú. till ctncr propuions are misclassitied.
 Ealy is of scale fatterrs on wocheye salion ci dee 1.3 andiser iruat escapenchts at doncoitna River ank Lartson

iote: Unuerimat preorions represent preqution correctly classifiec. AD Can wequrtions are mischassitlec.

The scale pattern variables sIXl (length to the sixth circulus in the first zone) and NCl (number of circuli in the tirst zone) have the most discriminating power (Table 9). No variable apueared in all five models, but SIXl appeared in four and NCl appeared in three. Both variables accounted for much of the observed variation in in scale patterns, and both had their greatest independent effect in the Tokositna-Larson two-way model. The length or the first zone (IDl) dic not appear in any discriminant function. About 85 percent of the scales from Tokositna River had eight circuli in the first zone while about 97 percent from Larson Lake had eight, yet there is little difference in average size of the zonc between samples. Therefore as first year fry in 1977, fish in rokositna River grew faster for a shorter feriod of time than did their counterparts in Larson Lake.

In sumary, sampled fish from Tokositna River ana Larson Lake are the most different, fish sampled at Curry Station are more like Tokositna and Larson Lake fish than they are unique, ancifish sampleá at Talkeetna Station are more like Larson Lake Eish than any other. Differences (or the lack of cifierences) among samples are due to growth between hatching and the winter of 1977-8.

DISCUSSION

Scale pattern analysis is usually employed to separate the components of a mixed stock; for the stocks within the Susitna, scale pattern analysis is used to show similarities. As such, linear discriminant analysis provides
faule 9. bost purimi sume fattern variables in linear ciscrininant functions accoraing to the ruaber to the bubler ar times they ocur in five mociels and to tneir strength in the three－anti two－way かになた」と。

－	Five loucl：Pour		Four iomels	Inree fouels		Tho lociels	One	ciel		
	SIX1			ICl FUUK3		LEikgit	$\operatorname{mx} 2$			
				EIGITi2	$\mathrm{SIX} 2$					
						Wixl	LC3			
						illil2	［CHI 1 mm 3			
	Curry－rokosimic－iarson		Curry－Larsori		Curry－rokositna		＇Jokositna－Larson			
Power	Variaule	E－ratio 1／	Variable			r－ratic	Variable	P－ratio	Variable	F－ratio
liost	STK1	23.	1 M 2	5	SIXI	10.0	SIX	47.6		
1．0nt	BCl	12.2	LIGHT2	5.7	LEIGM	4.5	ICI	33.3		

1／F－rátic on resicuai variances．
＂necessary conditions＂to show what happens to fry spawned upstream of Curry Station；it does not provide definitive proot．Our analysis does show that 1） scale patterns of sockeye salmon passing Curry Station in 1981 are more like patterns on scales of fish taken from the escapements to the Tokositna River anc to Larson Lake than they are unique anci 2）scale patterns on scales from Larson Lake and Tokositna River are distinct for the 1977 year class．From these two facts（anci other information obtained in 1981），six hypotheses as to why no fry are found above Curry Station are possibly true：

1．Sockeye salmon acults that spawn in the sloughs upstream of Curry Station are homing to this area，anu their ery rear in lakes and slougbs in both the Chulitna andin the Tadkeetna watersheds．If true，fry must move down the Susitna to the tributaries then upstream．Imprinting must occur after spawning and betore fry move out of the main river and upstream in the tributaries．Fry select a watershed in which to overwinter according to which side of the Susitna they travel along as they move diownstream．

2．Sockeye salmon acults that spam in the slougus unstream of Cury etaticu are strays from either the Chulitna or the Talkeetna vatersheds，anclifieir firy rear in lakes or sloughs flowinc into either the chulitna or into the Talkeetna River．In either case，iraprinting must occur after fry enter the tributaries．

3．Sockeye saluon adults that spawn in the slougbs upstream of Curry Station are strays frch either the Coulitna or the Talkeetna watersheds，and their Ery are cisplaced downstrean to becone 0 －check fish．

4．Sockeye saluon adults that spawn in the sicurbs upstream of Curry Station
 survive in smah runcers．if at all．

5．A sicnificant number of cockeye saluon acilts that noss Cury etation are
 Curry Station，out move back cownstream to enter their natal streans．

6．Sockeye salmon adults that spavin uostreamof Curry Station are a separate stock whose iry rear in an area not sampleg．Neither the Tokositna River nor Larson Lake are rearing areas，but some area that has a heterogenous enviroment with parts similar to both these areas．

The last hypothesis is unlikely as well. Scale patterns on fish taken at Curry Station show these fish not to comprise a unicue croup, but two groups, one with scale patterns similar to patterns on fish from Larson Lake and one with patterns similar to those on fish from the Tokositna River. The existance of a single rearing area that could urounce such a group of scale patterns is not likely.

That fish moving past Curry Station are strays irom the Chulitna and the 'Ialkeetna watersheds is more probable than these fich being a separate stock. The estimated number of sockeye saimon passing Curry Station is only 2.1 percent of the sockeye salmon passing Sunshinc Station (nDFG 1981); since the Eish passing Sunshine Station contain all lish migratimg to the 'Ialieetra, Chuliena, and the upstrean Susitna Rivers, the small portion passing Curry Station coula easily represent strays.

What is the fate of the spawn from fish passing Curry Station? Again, the distances involved would make passage of fry down the Susitna and up the Chulitna or up the Talkeetna Rivers unlikely. lore probably, fry would move down the Susitna River to overwinter in sloughs, move out to Cook Inlet as 0 -check fish, or die. Any one (or all) of these three situations could have occurred in 1977. Whichever is the case, the result is extremely poor production from these fish. All 0-check fish represent only 1.5 percent of returning adults (Bruce Barrett, personal communication), and survival in river sloughs along the lower Susitna River must be substantial if the 2.1 percent of the spawning stock above Curry Station is important to the procurctivity of the Susistna River.

Fish passing Curry Station could have turned around and migrated back downstream, but this is not probable. Such a switch in direction would inflate estimates of escapement above the fishwheels at Curry Station although the estimate of the number passing the fistwheel would be correct. Yet peak spawning counts (a conservative estimate of the number of fish) in sloughs above Curry Station in 1981 are 1232, almost half the fish estinated passing the Station (ADFG 1981).

Most probably adult sockeye salmon passing Curry Station are strays from the Chulitna and Talkeetna Rivers and are not a separate stock. Host of thes fish spawn in sloughs above Curry Station, and their fry either move down to the Lower Susitna River to overwinter and/or die.

ACKNOHLEDGE ENTIS

Sam Sharr, Kathy Rowell, Scott licPherson, and Scott larshall providec valuable ideas for the analysis. Adaitionai thanks are due to Virginia Burton for shouldering the burden of constructing the tables in this report from our pigain notes, to Debbie Hicks for transcribing numbers, and to Scott licPherson for his art work.

LITERAIURE CITED

Alaska Departinent of Fish anu Game. 1981. Adult Anacomous Fisheries Project, Phase I Einal Draft Report. Alaska Power Authority and Susitna Hydroelectric Project. Susitna Hydro Aquatic Stuciies, 2207 Spenard Ra., Anchorage, AK 99503.

Clutter, R. and L. Whitesel. 1956. Collection and interpretation of sockeye salmon scales. Eull. Int. Pac. Salmon Fish. Conm., No. 9, 159 p.

Dixon, \%. and [1. Erown. 1979. Eionedical comuter programs p-series. Univ. of Calif. Press, Derkeley. 880 p.

Fisher, R. 1936. 'The use of multifle measurements in taxonomic problems. Ann. Eugenics. 7:179-188.

International North Pacific Fisheries Comission. 1963. Anrual Report 1961: 167 p .

Ryan, P. and in. Christie. 1976. Scale reading equipment. Fisheries and Marine Service, Canada, Technical Report No. PAC/T-75-8, 38 p .

Personal Conmunications
Barrett, B. Hemo dated September 23, 1982.

Appendix H:Comparison of scale patterns from

[^0]: 1 European formula: immerals ureceeding the ciecimal refer to the number of freshwater annuli; numerals following the decinal are the number of marine annuli. Total age is the sum of these two numivers plus 1.

[^1]: dil cther remerticas are misciabsílitu.

