2\%10 ESTES

Subtask 7.10
Phase 1 Final Draft Stock Separation Feasibility Report
Adult Anadromous Fisheries Project ADF\&G / Su Hydro 1982

Subtask 7.10 Phase 1 Final Draft Stock Separation Feasibility Report Adult Anadromous Fisheries Project ADF\&G / Sur Hydro 1982

by
Alaska Department of Fish and Game Susitna Hydro Aquatic Studies 2207 Spenard Road Anchorage, Alaska 99503
for
Acres American Incorporated Liberty Bank Building, Main at Court Buffalo, New York, 14202

1. SUMMARY E-1
2. INTRODUCTION E-3
3. OBJECTIVES E-5
4. METHODS E-5
5. RESULTS AND DISCUSSION E-6
5.1 Cook Inlet Commercial Fishery E-6
5.2 Sockeye Salmon E-8
5.3 Chum Salmon E-14
5.4 Coho Salmon E-16
5.5 Pink Salmon E-19
5.6 Chinook Salmon E-21
6. RECOMMENDATIONS E-24
7. ACKNOWLEDGEMENTS E-25
8. LITERATURE CITED E-26

LIST OF TABLES

Table E.5.1 Commercial catch of upper Cook Inlet salmon E-9in numbers of fish by species, 1960-1981.
Table E.5.2 Commercial catch of Narthern District salmon E-10in numbers of fish by species, 1960-1981.
Table E.5.3 Commercial catch of Central District salmon E-11in numbers of fish by species, 1960-1981.
LIST OF FIGURES
PAGE
Figure E.5.1 Upper Cook Inlet management area. E-7
Figure E.5.2 Timing of sockeye, pink, coho and chinook E-13returns into the Kenai, Kasilof, Crescentand Susitna rivers.

LIST OF APPENDIX TABLES

	-	PAGE
Appendix Table EA-1.	Salmon abundance data for Upper Cook Inlet west side river systems.	EA-1
Appendix Table EB-1.	Salmon abundance data for Turnagain Arm river systems.	EB-1
Appendix Table EC-1.	Salmon abundance data for Knik Arm river systems.	EC-1
Appendix Table ED-1.	Salmon abundance data for Kenai Penninsula river systems.	ED-1
Appendix Table EE-1.	Salmon abundance data for mainstream Susitna River and main stream.	EE-1
Appendix Table EE-2.	Salmon abundance data for Yentna River subdrainage of the Susitna River.	EE-8
Appendix Table EE-3.	Salmon abundance data for the Talkeetna River subdrainage of the Susitna River.	EE-16
Appendix Table EE-4.	Salmon abundance data for the Chulitna River subdrainage of the Susitna River.	EE-18

1. SUMMARY

Five species of Pacific salmon return to freshwater systems, including the Susitna River, in Upper Cook Inlet. The Upper Cook Inlet commercial fishery harvests mixed stocks and species migrating north of Anchor Point, with a long term average catch of 2.8 million fish, worth approximately 17.9 million dollars.

The commercial sockeye salmon harvest has averaged 1.2 million fish the past ten years. This species is economically the most valuable species, receiving greatest emphasis in management and research. A stock identification program using scale pattern analysis has been developed to estimate stock contribution of major river systems to the commercial harvest. Estimates for the 1979 and 1980 fisheries show stock contribution by the Susitna River was 22.7% and 19.2\% respectively.

The Upper Cook Inlet chum salmon catch has averaged 707,000 fish the past ten years. Though available escapement data identify the Susitna River as the major producer, river systems on the west side of Cook Inlet are known to support chum salmon populations. Evaluation of west side production is necessary to determine the need for a stock separation program. Electrophoresis and scale pattern analysis are two options for stock identification, should a program prove necessary.

The Upper Cook Inlet coho catch has averaged 204,000 fish the past ten years. Though the Susitna River appears to be the single largest producing system in

Upper Cook Inlet, contribution of west side river systems must be addressed. Previous stock identification has been attempted with positive results using fish weight and scale pattern analysis. However, prior to implementing a stock identification program, major Upper Cook Inlet systems must be confirmed to estimate Susitna River contribution.

The ten year average catch for Upper Cook Inlet pink salmon is 146,000 and 1.7 million fish for odd and even years respectively. Two leading pink salmon producers are the Kenai and Susitna river drainages. However, production of west shore systems is unknown. When major producing river systems have been defined, electrophoresis and length-weight data should be examined as stock identification techniques.

Because migration timing relative to 25 June commercial season opening, Susitna River chinook salmon currently are not significantly exploited in the Upper Cook Inlet fishery; a stock separation program is not necessary at this time.

The Susitna River drainage is the largest watershed in the Cook Inlet basin. Though considered the highest salmon producing system in Upper Cook Inlet, quantitative contribution of the Susitna River to the commercial fishery is unknown due to the high number of intra-drainage spawning and rearing areas, the paucity of data on other known and suspected salmon producing systems in Upper Cook Inlet and the overlap in migration timing of mixed stocks and species in Cook Inlet harvest areas.

This report focuses on the feasibility of assessing the Susitna River contribution to the commercial salmon fishery in Upper Cook Inlet through a stock identification program and is intended to serve as a planning document. In preparing this report, fishery harvest data was examined and a literature review was conducted centering on stock identification techniques and escapement investigations in Upper Cook Inlet.

This study is part of the Fish Ecology (Subtask 7.10) Phase I investigations of the Susitna Hydroelectric Project.

The primary objectives of the fish ecology studies relative to Susitna Hydroelectric Project are to: (1) describe the fisheries resources of the Susitna River, (2) assess the impacts of development and operation of the Susitna Hydroelectric Project on these fisheries resources, and (3) propose the mitigation measures to minimize adverse impacts (Alaska Power Authority Susitna Hydroelectric Project, Environmental Studies Procedures Manual, Subtask 7.10, Fish Ecology Impact Assessment and mitigation planning, prepared
by Terrestrial Environmental Specialists August 1981). The task of meeting the first of these study objectives is the responsibility of the Alaska Department of Fish and Game (ADF\&G) under a reimbursable services agreement (RSA) with the Alaska Power Authority (APA) and the second and third are the responsibility of Terrestrial Environmental Specialists (TES).

3. OBJECTIVE

The purpose of this project was to identify and determine methods, means and feasibility of estimating Susitna River salmon stock contribution to the Upper Cook Inlet commercial fishery.

4. METHODS

Accomplishing the stated objective required examination of salmon harvest data for the Cook Inlet commercial fishery, and review of literature regarding the Upper Cook Inlet fishery programs and stock identification techniques.

To determine the contribution of Susitna River salmon to the Cook Inlet commercial fishery, assessment of salmon production in remaining Cook Inlet river systems is required. Therefore, salmon abundance data in freshwater systems was researched for chinook, sockeye, coho, pink and chum salmon. Whereas the term escapement in literature refers to the total number of adult salmon which have achieved spawning migration into freshwater, the terminology "escapement enumeration or counts" used in this text and appendices refers to sonar, weir or tower escapement monitoring. Reference to "survey counts" or "peak survey counts" is aerial or stream survey data. Aerial ground survey and escapement monitoring data were provided by the Alaska Department of Fish and Game (ADF\&G) Division of Commercial Fisheries, Fisheries Rehabilitation and Enhancement Division and Division of Sport Fish, Cook Inlet Aquaculture Association, Dowl Engineers, and Woodward-Clyde Consultants. Biologists from ADF\&G Division of Sport Fish, Cook Inlet Aquaculture Association and Woodward-Clyde

Abstract

Consultants were interviewed regarding observations of fish in areas which had been surveyed but as yet, not documented. Additional observations were provided by Dowl Engineers. Sport fish harvest data (Mills 1980) was included as an indicator of species presence, particularly where escapement or survey data was not available. The abundance data is tabled in the appendices by geographical area and listed by river system in alphabetical order.

5. RESULTS AND DISCUSSION

5.1 The Cook Inlet Commercial Fishery

Cook Inlet is divided into two management areas. The region north of the latitude of Anchor Point is Upper Cook Inlet and the area between the latitudes of Anchor Point and Cape Fairfield on the Kenai Peninsula is defined as Lower Cook Inlet. Commercial fisheries in Lower Cook Inlet are primarily terminal, occurring in small bays. Therefore, few salmon migrating to Upper Cook Inlet are intercepted in the lower inlet area (Middleton 1980). Upper Cook Inlet fisheries harvest stocks bound for river systems north of Anchor Point. These systems account for 78% of the salmon produced in the Cook Inlet area.

To regulate commercial catch and effort, Upper Cook Inlet is divided into two management sections, the Central and Northern districts. These districts in turn are broken into subdistricts (Figure E.5.i) and again into statistical areas. Both set and drift gill nets are fished in the Central District, and only set nets are legal in the Northern District. Five salmon species are harvested in Upper Cook Inlet fisheries. Most of the catch occurs in the

Figure E.5.1. Upper Cook Inlet Management Area, Adult Anadromous Investigations, 1902.

Central District (Tables E.5.1 - E.5.3). The commercial catch has averaged 2.8 million fish between 1970 and 1980 , with an ex-vessel value of 17.9 million dollars.

5.2 Sockeye Salmon (Oncorhynchus nerka)

Sockeye salmon is the species of highest value in the commercial fishery, receiving greatest attention in management and research by the Alaska Department of Fish and Game (ADF\&G). The commercial catch of sockeye salmon has averaged 1.2 million fish, the past ten years, with an ex-vessel value 6.9 million dollars (Table E.5.1). In 1981, about 1.4 million fish were harvested of which 43% were taken by the drift fleet in the Central District. The fishing season opens by regulation 25 June, except for the Western Subdistrict which opens 16 June. Fishing periods are scheduled Monday and Friday of each week, and are regulated by emergency order, depending on catch and escapement levels.

Major river systems in Upper Cook Inlet are glacially turbid, preventing visual monitoring of escapement. Consequently, hydroacoustic techniques are primarily employed. Side scan sonar counters are used to monitor escapement in the Kenai, Crescent, Kasilof, and Susitna rivers by ADF\&G, Division of Commercial Fisheries. Escapement is enumerated by weirs in Fish and Cottonwood creeks by ADF\&G Fisheries Rehabilitation and Enhancement Division (F.R.E.D.), and Packers and Wolverine creeks by Cook Inlet Aquaculture Association (C.I.A.A.). .

Table E.5.1. Commercial catch of upper Cook Inlet salmon in numbers of fish by species, 1960-1981, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Year	Chinook	Sockeye	Coho	Pink	Chum	Total	
1960	27,512	923,314	311,461	$1,411,605$	659,597	$3,333,889$	
1961	19,737	$1,162,303$	117,778	34,017	349,628	$1,683,463$	
1962	20,210	$1,147,573$	350,324	$2,711,689$	970,582	$5,200,378$	
1963	17,536	942,980	197,140	30,436	387,027	$1,575,119$	
1964	4,531	970,055	452,654	$3,231,961$	$1,079,084$	$5,738,285$	
1965	9,741	$1,412,350$	153,619	23,963	316,444	$1,916,117$	
1966	9,541	$1,851,990$	289,690	$2,006,580$	531,825	$4,689,626$	
1967	7,859	$1,380,062$	177,729	32,229	296,837	$1,894,716$	
1968	4,536	$1,104,904$	470,450	$2,278,197$	$1,119,114$	$4,977,201$	
1969	12,398	692,254	100,952	33,422	269,855	$1,108,881$	
1970	8,348	731,214	275,296	813,895	775,167	$2,603,920$	
1971	19,765	636,303	100,636	35,624	327,029	$1,119,357$	
1972	16,086	879,824	80,933	628,580	630,148	$2,235,571$	
1973	5,194	670,025	104,420	326,184	667,573	$1,773,396$	
1974	6,596	497,185	200,125	483,730	396,840	$1,584,476$	
1975	4,790	684,818	227,372	336,359	951,796	$2,205,135$	
1976	10,867	$1,664,150$	208,710	$1,256,744$	469,807	$3,610,278$	
1977	14,972	$2,054,020$	192,975	554,184	$1,233,733$	$4,049,704$	
1978	17,308	$2,622,487$	219,234	$1,687,092$	571,925	$5,118,041$	
1979	13,713	920,780	259,956	74,318	654,462	$1,923,229$	
1980	12,497	$1,584,392$	283,623	$1,871,058$	387,078	$4,138,648$	
1981	11,548	$1,443,294$	494,294	127,857	842,849	$2,919,621$	

1979-1981; Preliminary data.

Table E.5.2. Commercial catch of Central District salmon in numbers of fish by species, 1960-1981, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Year	Chinook	Sockeye	Coho	Pink	Chum	Total
1960	19,294	775,067	167,084	969,420	541,043	$2,471,908$
1961	11,982	$1,084,929$	76,803	23,252	288,525	$1,48,491$
1962	10,425	$1,013,993$	177,441	$2,431,246$	826,549	$4,459,654$
1963	10,191	833,517	133,600	21,496	343,333	$1,342,137$
1964	4,363	809,791	284,726	$2,645,575$	952,126	$4,696,581$
1965	9,441	$1,380,775$	131,717	19,049	299,538	$1,840,520$
1966	8,119	$1,720,885$	209,122	$1,633,913$	496,188	$4,068,227$
1967	7,675	$1,261,997$	133,875	23,769	258,453	$1,685,769$
1968	4,065	964,329	313,802	$1,743,358$	$1,060,660$	$4,086,214$
1969	9,494	654,189	80,527	25,802	258,019	$1,028,031$
1970	6,887	664,795	192,767	640,201	752,674	$2,257,324$
1971	10,167	595,770	78,542	27,201	310,426	$1,022,106$
1972	11,174	794,087	61,587	537,750	610,368	$2,014,966$
1973	5,024	624,411	80,469	188,934	636,722	$1,535,560$
1974	6,427	455,622	153,087	440,854	360,350	$1,416,340$
1975	4,661	619,292	194,321	245,406	921,009	$1,984,689$
1976	10,466	$1,594,585$	171,564	$1,108,126$	455,510	$3,340,251$
1977	14,277	$1,950,605$	172,892	444,881	$1,208,336$	$3,790,991$
1978	16,634	$2,570,863$	171,978	$1,359,822$	534,594	$4,653,891$
1979	12,128	816,090	208,303	25,515	644,400	$1,706,436$
1980	11,440	$1,473,168$	180,842	$1,371,754$	368,597	$3,405,801$
1981	10,790	$1,193,826$	360,992	74,556	796,766	$2,436,930$

1979-1981; Preliminary Data

Table E.5.3. Conmercial catch of Northern District salmon in numbers of fish by species, 1960-1981, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Year	Chinook	Sockeye	Coho	Pink	Chum	Total
1960	8,218	148,247	144,377	442,185	118,954	861,981
1961	7,755	77,374	40,975	10,765	61,103	197,972
1962	9,785	133,580	172,883	280,443	144,033	740,724
1963	7,345	109,463	63,540	8,940	43,694	232,982
1964	168	160,264	167,928	586,386	126,958	$1,041,704$
1965	300	31,575	21,902	4,914	16,906	75,597
1966	1,422	131,105	80,568	372,667	35,637	621,399
1967	184	118,065	43,854	8,460	38,384	208,947
1968	471	140,575	156,648	534,839	58,454	890,987
1969	2,904	38,065	20,425	7,620	11,836	80,850
1970	1,461	66,419	82,529	173,694	22,493	346,596
1971	9,598	40,533	22,094	8,423	16,603	97,251
1972	4,912	85,737	19,346	90,830	19,780	220,605
1973	170	45,614	23,951	137,250	30,851	237,836
1974	169	41,563	47,038	42,876	36,490	168,136
1975	129	65,526	33,051	90,953	30,787	220,446
1976	401	69,565	37,146	148,618	14,297	270,027
1977	515	103,415	20,083	109,303	25,397	258,713
1978	669	51,624	47,256	327,270	37,331	464,150
1979	1,585	104,690	51,653	48,803	10,062	216,793
1980	1,057	111,224	102,781	499,304	18,481	732,847
1981	758	249,468	133,081	53,301	46,083	482,691

1979-1981; Preliminary Data

The Kasilof, Kenai, Susitna and Crescent rivers, and Fish Creek (Big Lake) are considered principle sockeye salmon producing systems in the Upper Cook Inlet fishery. Run timing of these major stocks overlap (Figure E.5.2) requiring a method to assess individual stock contribution to the commercial fishery.

Stock separation using scale pattern analysis has been used in the sockeye salmon fishery since 1978 (Bethe and Krasnowski 1979; Bethe, et al. 1980; Cross et al. 1981). This tool provides an inseason estimate of stock composition of the commercial catch by fishing period and assists in regulating fishery openings and closures. In addition, the catch allocation provided by stock identification combined with escapement data, estimates the season's return to each major river system.

Scale measurements, length and weight data have been used as variables for stock delineation with linear discriminant function analysis. Stock identification models are built from measurements representing fish of known origin, i.e. escapements. Measurements from unknown fish (catch samples) are then classified with the models to their river of origin. Systems currently included in the analysis are the Kasilof, Kenai, Susitna, and Crescent rivers and Fish Creek (Big Lake). In 1979, about 22.7% of the sockeye run to Cook Inlet was from the Susitna drainage and about 26.7% and 36.0% of the run was produced by the Kasilof and Kenai rivers, respectively (Cross 1981). The 1980 run composition by river system was 19.2% Susitna, 38.3% Kenai and 31.3% Kasilof (Cross 1981).

Success of the sockeye identification program varies each season and confidence intervals for these limits are wide. One problem is continual mis-

Figure E.5.2. Timing of sockeye, pink, coho and chinook returns into the Kenai, Kasilof, Crescent and Susitna. Rivers, Adult Anadromous Investigations, Su Hydro Studies, 1982.
classification of Susitna River sockeye to either the Kenai or Kasilof rivers. Clarification of the model could be addressed by possibly identifying substocks within the Susitna River drainage or refining pattern measurement techniques.

5.3 Chum Salmon (Oncorhynchus keta)

The commercial chum salmon catch has averaged 707,000 fish the past ten years. Chum salmon are second to sockeye salmon in economic value averaging 2.3 million dollars, ex-vessel. The 1981 fishery produced a catch of 842,000 chum salmon (Table E.5.1). Approximately 90% of the catch was taken by the Central District drift net fleet. During the 1981 season, the drift net fleet was harvesting substantial numbers of chum salmon by 27 June, continuing through mid-August. Chum salmon catches occur coincidentally with sockeye salmon in the fishery. At this time, the best data available regarding chum salmon and a good indicator of run strength for each area are twenty years of commercial catch statistics collected by statistical area and day. This data, however, has yet to be analyzed.

Survey and escapement data regarding chum salmon is limited (Appendices EA-EE). Production areas for chum salmon have been identified as Chinitna Bay, west shore river systems of Upper Cook Inlet, and the Susitna River. Escapement has been indexed into the Susitna River by sonar and tag/recapture operations, and into the Chinitna Bay by aerial survey. Though the Susitna River has been identified as the largest chum salmon producer, contribution by west shore systems is virtually unknown and may be significant. If it is
determined that the contribution of systems other than the Susitna River is insignificant, then a stock separation project is not necessary. However, should major chum salmon systems be identified, a stock separation program should be initiated.

In Bristol Bay, catch allocation of sockeye salmon stocks has been attempted where percent age composition of adult returns differs for each river system (Meacham and Nelson 1980). The possibility that salmon in west side systems may differ from Susitna River fish and may be distinquished by age composition should not be overlooked. Calculation of age and length data for chum salmon in the commercial catch has been non-existent, and for escapements, limited.

Both electrophoresis and scale pattern analysis have been used to distinguish between chum salmon populations. Electrophoresis is a biochemical method for detecting genetic differences in proteins. Because protein genotypes for individual fish can be identified, the same genetic characteristics may portray traits of a specific population. A basis for distinquishing between groups of populations of fish is then provided. Electrophoresis has proven successful in distinquishing between mature and immature chum salmon and identifying chum stocks to river of origin in a mixed stock situation (Okazaki 1979). Differences in chum salmon from western Alaska, central Alaska, and British Columbia have also been discerned by electrophoresis (Okazaki 1981).

Chum salmon caught in the north Pacific Ocean have been identified to continent of origin based on scale pattern analysis (Tanaka 1969). In addition, the ADF\&G stock separation program has examined the feasibility of identifying

Abstract

chum salmon stocks in Southeastern Alaska. This study has resulted in development and support of a project on chum salmon in that area (Cross, personal communication). Therefore, potential stock separation of Upper Cook Inlet chums by scale patterns warrants further investigation should several major producing systems be identified. Scale collection is a relatively simple process, compared to collection of electrophoresis tissue samples which require freezing within 24 hours of removal from the fish. Implementing a stock identification program by either scale pattern analysis or electrophoresis requires primary assessment of major production areas, run timing and collection of age-weight-length data from escapements. This information would assist in evaluating the necessity of a stock separation program and which approach to implement.

5.4 Coho Salmon (Oncorhynchus kisutch)

Upper Cook Inlet coho salmon rark third in commercial value. Since 1960 , the commercial catch has averaged 240,000 fish. The 1981 season produced the best harvest since statehood of 494,070 coho salmon (Table E.5.1). Distribution of the catch has gradually shifted with increased gear efficiency and drift net fleet participation. In the early 1950's, 50% of the Upper Cook Inlet catch was taken by Northern District set nets with the drift net fleet accounting for 10% of the harvest. Comparatively, in 1981, the Northern District set net and Central District drift net fishery provided 27% and 48% of the harvest, respectively. Coho salmon catches have usually peaked in the Northern District set net fishery 25 July and in the Central drift net fleet, Kalgin Island and west side set net fisheries about 21 July.

Based on run timing and fish weight, major coho salmon stocks have been identified as Kenai, Kasilof or Susitna River fish (Middleton 1980). The problem with this stock definition is the term Susitna refers to all systems in the Northern District. Significant numbers of coho salmon have been documented in the Northern District by aerial and ground surveys, escapement enumeration and sport fish harvest. These systems include Fish Creek (Big Lake), Little Susitna River, Susitna River, Cottonwood Creek and systems on the west side of the Inlet. In the Central District, coho salmon are known to return to the Kenai, Kasilof, and Crescent rivers, Packers Creek (Kalgin Island) and west side systems. Run strength information is documented only for the Kenai River, Susitna River, Fish Creek, Cottonwood Creek and Packers Creek. Run magnitude and contribution to the commercial fishery of coho salmon returns to remaining areas is unknown (Appendices EA-EE).

The Susitna River coho salmon run begins in early July and is coincidental to the Fish Creek, Kasilof River and early Kenai River runs in the commercial fishery. Timing of late run Kenai River fish appears distinct from these other stocks (Figure E.5.2). Crescent River returns begin in mid-August and continue into fall. Late coho salmon returns to other west side rivers have also been reported, but abundance and run timing are unknown. Should run timing of any of these populations be distinct from the Susitna River returns, they need not be considered for a stock identification model, thereby simplifying the design of the program. However, these run characteristics must be examined before any system can be eliminated from such a study.

Identification of coho salmon stocks exploited by the commercial fishery has been attempted using fish weight (Wadman 1976). Coho salmon from Northern

District rivers vary in weight between systems yet overall are significantly. smaller than fish from the early Kenai and Kasilof river returns. Apportioning the commercial catch to system of origin was also attempted, using fish weight as criteria. Results indicated that prior to 23 July, the drift net fleet harvested mostly small coho salmon, or fish migrating to the Northern District (Larry Engel, Personal Communication). Commercial catch data has not been analyzed for stock identification of coho salmon since the 1976 study.

A feasibility study performed by Robertson (1979) examined classification of Cook Inlet coho salmon populations by scale patterns. Scales from adult salmon captured in the Kenai and Susitna rivers were used for known samples and overall, self-classification was high (89.0% and 72.2% respectively). Stock composition estimates of the fishery indicated, with one exception, that most fish captured on the western side of the Inlet were bound for the Susitna River and catches in east side fisheries were from the Kenai River. Analysis however, of the Central District west side set net fishery showed an extremely high proportion of Kenai River fish in the stock composition estimate. These results may have been misleading due to presence of unknown stocks in the catch that were not included in the model as known samples. Scale characteristics of these unknown samples were similar to Kenai River fish, least comparable to Susitna River fish and classified accordingly. The weakness of the analysis was attributed to not having representative samples from all major systems.

It is possible to include additional variables other than scale information to the linear discriminant model. Because fish weight appears to differ signifi-
cantly between groups, the addition of this variable to the analysis may provide a key to a successful classification model.

The feasibility of a coho stock identification study based on scale pattern analysis and fish weight should be examined, once production of west side streams and run timing of west side coho returns has been determined.

5.5 Pink Salmon (Oncorhynchus gorbuscha)

Upper Cook Inlet pink salmon returns exhibit even year run strength. The catch since 1960 has averaged 146,000 in odd years and $1,671,000$ for even years. About 127,900 pink salmon were harvested in 1981 (Table E.5.1). Approximately 42% and 43% of the catch was taken by the Northern set net and Central District drift net fisheries, respectively. Though the Kasilof River supports a small run, the Kenai and Susitna river systems are considered primary producers of pink salmon in the Upper Inlet. Pink salmon have also been documented in the west side river systems (Appendices EA-EE). As with the other salmon species, the importance of west side production is unknown and needs to be addressed.

Pink salmon escapement into the Susitna River peaks about 20 Juiy, whereas Kenai River fish peak about two weeks later (Figure E.5.2). Kenai Peninsuła pink salmon migrate close to the eastern shore and are caught primarily by the east side set net fishery. Pink salmon moving into the Northern District are harvested by the drift net fleet, when more valuable species become less abundant (Middleton 1980). The best source of information concerning run
strength and timing, as with chum salmon, is historical catch data, yet to be analyzed. With exception of that for the Susitna River, escapement and available weight and length data is minimal for pink salmon.

Absence of a freshwater growth zone and small differences found in marine growth patterns appear to limit application of scale pattern analysis as a stock separation tool for pink salmon. Therefore, scale pattern analysis is usually bypassed. Scale pattern analysis of British Columbian and. Alaskan fish distinguished between even and odd year returns, but correctly classified samples only to region and not river or origin (Bilton 1971). A feasibility study of Southeastern Alaskan pink salmon showed little potential for using scale characteristics as a means for stock identification (Robertson 1978). Therefore, scale pattern analysis is a technique that should be disregarded for Upper Cook Inlet.

Stock identification of pink salmon has been accomplished using electrophoresis with varying degrees of success. The major drawback with this technique is that frequently differences between stocks occur only over wide geographical regions larger than the Upper Cook Inlet area (Johnson 1979). In contrast, however, studies in Prince William Sound were able to differentiate between stocks of several streams and subpopulations within one stream (Nickerson 1979). In the same paper, Nickerson noted that differences in length-weight data for pink salmon were useful in differentiating between populations.

Electrophoresis appears to be the best option for pink salmon stock identification. Assessing the contribution of west side pink salmon stocks to the commercial fishery, confirming the differences in run timing, and sampling systems that will be classified as major producing systems for length, weight and tissue samples are necessary for preliminary investigation of any stock specific characteristics.

5.6 Chinook Salmon (Oncorhynchus tschwyatscha)

Three Upper Cook Inlet stocks of chinook salmon have been tentatively identified as Kenai, Kasilof and Susitna river fish. Abundance data for chinook salmon has been limited mainly to aerial surveys conducted by ADF\&G, and catch statistics of the freshwater sport fishery (Mills 1980). Chinook salmon have also been documented in the Little Susitna River and in many east and west side streams (Appendices EA-EE). However, abundance information is not complete because many river systems have not been completely surveyed (Appendices EA-EE).

The Susitna River chinook salmon run begins in late May and peaks in mid-June. Therefore Susitna River fish have mostly passed through the area in which they would be subject to the commercial fishery prior to the season opening 25 June. In 1964, the continued depressed condition of Susitna chinook salmon stocks resulted in changing the opening date of the commercial fishery from mid-May to the end of June. Commercial catches of chinook salmon in the Upper Cook Inlet fishery since that time have primarily been Kenai and Kasilof river fish.

About 11,500 chinook salmon were caught in the 1981 commercial fishery. Of this total, only 364 fish were caught in the Western Subdistrict prior to 25 June opening for the remainder of the Upper Cook Inlet fisheries. Therefore, assuming these fish are the end of the Susitna River run, commercial exploitation is minimal. Though commercial effort is much less for chinook - salmon than other species, the subsistence and recreational harvests are substantial. In 1980 , about 2,270 and 16,650 fish were taken in the subsistence and sport fisheries, respectively (Mills 1980).

Positive results have been attained in feasibility analysis of using scale patterns to differentiate between chinook salmon populations. Preliminary studies on the Yukon River resulted in high self-classification of upper, middle, and lower river fish (McBride 1981). This program is being expanded to refine the classification estimates by spawning population and to apportion commercial catches. Feasibility analysis of Upper Cook Inlet chinook has also been examined (Bethe 1978). Escapement samples from Susitna, Kenai, Ninilchik and Anchor rivers were collected and analyzed. Separability was high for all two-way comparisons, (range 72.0% to 73.3%) and for Susitna River fish versus combined samples from Kenai, Anchor and Ninilchik rivers (range 71.0% to 83.2%)

Because Susitna River chinook salmon presently are not exploited by the commercial fishery, a stock identification program is not necessary at this time. Even if a program were attempted, the number of fish currently harvested commercially is too small to obtain adequate numbers of samples for analysis. Should commercial catch levels again become substantial, escapement
assessment for all systems, an inventory of the west side populations, and consideration of use of scale pattern analysis or electrophoresis for stock separation should be examined.

6. RECOMMENDATIONS

To pursue a program that will assess the contribution of Susitna River salmon stocks to the Upper Cook Inlet commercial fishery, the following are first year recommendations:

1. Develop an inventory system to determine characteristics (timing, length, weight, age) of salmon runs to west side systems of Upper Cook Inlet. This data will help to determine the feasibility of pursuing a stock identification program. The accuracy of any stock identification program is also dependent on the entirety of the known samples used to build the model. Should the west side systems not be considered, the actual contribution by the Susitna River drainage wilt be misrepresented.
2. Escapement sampling for age-weight-length information currently implemented in major sockeye salmon producing systems should be expanded to include chum and coho salmon. Length-weight data and tissue samples for electrophoresis should also be collected from pink salmon. This data combined with run timing and information regarding west side systems will provide the basis for determining if stock specific characteristics are present for each species by which a stock separation program may be developed.

7. ACKNOWLEDGEMENTS

The commercial catch and stream survey data tabled in this report were primarily from information compiled by the ADF\&G Division of Commercial Fisheries, Cook Inlet staff. ADF\&G escapement and survey data were also provided by Bob Chlupach of Fisheries Rehabilitation and Enhancement Division and Larry Engel, Steve Hammerstrom, Kelly Hepler and Stan Kubik of the Sport Fish Division. Tom Mears (Cook Inlet Aquaculture Association), Mike Joyce (Woodward-Clyde Consultants), and Ron Dagan (Dowl Engineers) also provided abundance estimates. Appreciation is extended to the ADF\&G Cook Inlet commercial fisheries staff for their support and report review.

Cross, B.A. 1981. Origins of sockeye salmon in the upper Cook Inlet fishery of 1980 based on scale pattern analysis. Alaska Department of Fish and Game, Informational Leaflet, in press, Anchorage, Alaska, USA.

Dagan, R. 1981. Personal Communication. Dowl Engineers, Anchorage, Alaska.

Engel, L. 1981. Personal Communication. Alaska Department of Fish and Game, Division of Commercial Fisheries, Palmer, Alaska.

Joyce, M. 1981. Personal Communication. Woodward-Clyde Consultants, Anchorage, Alaska.

Kubik, S. 1981. Personal Communication. Alaska Department of Fish and Game, Division of Sport Fish, Anchorage, Alaska.

Johnson, K.R. 1979. Genetic variation in populations of pink salmon (Oncorhynchus gorbuscha) from Kodiak Island, Alaska, M.S. Thesis, University of Washington, Seattle, Washington, USA.

McBride, D.N. 1981. Yukon River chinook salmon stock separation studies. Alaska Department of Fish and Game, Report to the Legislature, Juneau, Alaska, USA.

Meachem, C.P. and M.L. Nelson. 1980. Bristol Bay sockeye salmon (Oncorhynchus nerka) 1977-A compilation of catch and escapement data. Alaska Department of Fish and Game Technical Data Report, No. 40. Juneau, Alaska, USA.

Middleton, K. 1981. Stock status report, Cook Inlet. Alaska Department of Fish and Game, in press, Anchorage, Alaska, USA.

Mills, M.J. 1980. Statewide harvest study-1979 data. Alaska Department of Fish and Game, Div. of Sport Fish, Federal Aid Report, Vol. 22-1B, Juneau, Alaska, USA.
. 1980. Statewide harvest study-1980 data. Alaska Department of Fish and Game, Div. of Sport Fish, Federal Aid Report, Vol. 22-1C, Juneau, Alaska, USA.

Nickerson, R. 1979. Separation of some pink salmon (Oncorhynchus gorbuscha Walbaum) subpopulations in Prince William Sound, Alaska by length-weight relationships and horizontal starch gel electrophoresis. Alaska Department of Fish and Game, Informational Leaflet No. 181, Juneau, Alaska, USA.

Okazaki, T. 1979. Genetic differences and possible origins of maturing and immature chum salmon (Oncorhynchus keta) in autumn collections near the southern Kuril Islands. Bull. Far Seas Fish. Res. Lab, No. 17.

- 1981. Geographical distribution of allelic variations of enzymes in chum salmon, Oncorhunchus keta populations of North America. Bull. Jap. Soc. Sci. Fish. $47(4)$ 507-514.

Robertson, T. 1979. 1978 Cook Inlet coho salmon pattern analysis. Alaska Department of Fish and Game, unpublished report, Anchorage, Alaska, USA.
. 1979. 1978 Southeastern pink salmon scale pattern analysis. Alaska Department of Fish and Game, unpublished report, Anchorage, Alaska, USA.

Tanaka, S., M.P. Shepard and H.T. Bilton. 1969. Origin of chum salmon (Oncorhynchus keta) in offshore waters of the North Pacific in 1956-1958 as determined from scale studies. INPFC Bull. 26:57-155.

Wadman, R.D. 1976. Coho salmon status report. Alaska Department of Fish and Game Division of Sport Fish, unpublished report, Anchorage, Alaska, USA.

APPENDIX EA
SALMON ABUNDANCE DATA FOR UPPER COOK INLET WEST SIDE SYSTEMS

[^0] 3/ All entries are aerial or ground stream survey data unless otherwise designated.

Appendix Table EA-1. Continued.

Appendix Table EA-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Corments
North Fork	$\begin{aligned} & 1976 \\ & 19900 \\ & 1990 \\ & 1980 \\ & 1981 \end{aligned}$	$\begin{aligned} & 8 / 19 \\ & 7 / 01 \\ & 8 / 19 \\ & 7 / 13 \end{aligned}$	0	$\begin{array}{r} 10,000 \\ 3,840 \\ 3,750 \end{array}$	$1,250$	0	0	
Wolverine Creek	$\begin{array}{r} \text { Before } \begin{array}{r} 1970 \\ 1981 \\ 1981 \\ 1981 \end{array} ~ \end{array}$	$7 / 13$ $9 / 30$	0	$\begin{array}{r} 900 \\ 17522 \end{array}$	400	0	0	Coho present Escapement count (weir), T.M., CIAA
Buchitna Creek	1981	7/07	0	0	0	0	0	T.M. , CIAA
Cannery Slough	Personal Comi	7/13	0	Present	Signif.	0	Present	$\begin{aligned} & \mathrm{T} \cdot \mathrm{M} . ; \\ & \mathrm{K} ., \mathrm{CI} A \mathrm{~A} \end{aligned}$
Chakachama River System								
Chakachatna Lake	$\begin{array}{r} \text { Before } 1970 \\ 1980 \\ 1981 \end{array}$	$\begin{aligned} & 9 / 02 \\ & 9 / 14 \end{aligned}$	Present	Present	$\begin{array}{r} 50 \\ \text { Present } \end{array}$	Present	5,000	Max. count 590 sockeye (1955) T. M., CIAA Mike Joyce, Woodward and Clyde Consultants (M.J., WKC)
Chilligan River	$\begin{array}{r} \text { Before } 1970 \\ \text { Personal Comm. } 9980 \end{array}$	9/14	12	10,000				fax. count 2,000 sockeye (1952) M.J., WMC S.K., SF
Kenibuna Lake	Before 1970							Few sockeye observed (1952)
Hedrthur River		$\begin{aligned} & 9 / 14 \\ & 7 / 15 \end{aligned}$	Present	$\begin{array}{r} \text { Present } \\ 40 \end{array}$	Present Present		5,000	Good run of sockeye in West Creek (1961) M.J., Whc S.K., SF
Hiddle River	Before 1970 $\begin{array}{r}1980 \\ 1981 \\ \text { Corm. }\end{array}$ Personal	$\begin{aligned} & 9 / 02 \\ & 9 / 14 \end{aligned}$	Present	0	0 Present Present	0	Present	
Neacola River	$\text { Personal Corm. } \begin{gathered} 1981 \\ \hline \end{gathered}$	9/14		Present			Present	$\begin{aligned} & \text { M.J., WC } \\ & \mathrm{S} . \mathrm{K}: / \mathrm{SF} \end{aligned}$
Noautka Slough	Personal Cormi			5,000		present	Present	S.K.gé nimbers of fry, M.J. WKC
Snodgrass Creek	Before 1970							Sockeye and coho present (1961)
Straight Creek		9/14	$\begin{array}{r} 5 \\ 59 \\ 59 \\ 24 \\ 108 \\ 126 \end{array}$	3,000				
	Personal Corm.		100	3,000		Present	5,000	S.K.: ${ }_{\text {SF }}$

Appendix Table EA-1. Continued.

Area		Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Coriments
Chinitna Bay	Before	1970							7,000-8,000 chums (1959-60)
Chinitna River		$\begin{aligned} & 1980 \\ & 1981 \\ & 1981 \\ & 1981 \end{aligned}$	$\begin{aligned} & 9 / 10 \\ & 8 / 03 \\ & 8 / 05 \\ & 8 / 15 \end{aligned}$			200	$\begin{array}{r} 100 \\ 1,000 \\ 2,200 \end{array}$		
Clearwater Creek		$\begin{aligned} & 1971 \\ & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1976 \\ & 1978 \\ & 1979 \\ & 1970 \\ & 1980 \\ & 1980 \\ & 1981 \\ & 1981 \end{aligned}$	$\begin{aligned} & 8 / 15 \\ & 8 / 18 \\ & 8 / 22 \\ & 8 / 17 \\ & 8 / 21 \\ & 8 / 12 \\ & 8 / 21 \\ & 8 / 25 \\ & 9 / 10 \\ & 8 / 03 \\ & 8 / 15 \end{aligned}$				$\begin{array}{r} 5,000 \\ 8,450 \\ 1,4800 \\ 4,400 \\ 12,500 \\ 12,700 \\ 6,500 \\ 1,350 \\ 2,250 \\ 5,000 \\ 1,000 \\ 6,150 \end{array}$		*
East Glacier Creek		1980	9/10				25		
Fritz Creek	Before	$\begin{array}{r} 1970 \\ 1978 \\ 1979 \\ 1980 \\ 1900 \end{array}$	$\begin{aligned} & 8 / 12 \\ & 8 / 21 \\ & 8 / 22 \\ & 9 / 10 \end{aligned}$			200	$\begin{array}{r} 800 \\ 700 \\ 1,000 \\ 100 \end{array}$		$11,000 \text { chums (1966) }$
		1981 1981	$88 / 03$				200	50	
Inishin River	Before	1970							65)
Johnson River	Before	$\begin{aligned} & 1970 \\ & 1980 \end{aligned}$	9/10			600	300		500 coho, 50 pinks (1955)
Marsh Creek	Before	1970						810	35,000 chums (1963)
Middle Glacier Creek Portage Creek	Before	1980	9/10				200		5 chums (1965)
Red River		1980	9/10	0	0	0	0	0	
Silver Salmon Creek	Before	1970							e and chum runs; Max. count 60 inks (1961)
West Glacier Creek		1980	9/10			400	200		
Chuitna River	Before								Max. count 17 chinook, 40 coho, 20 chums and 600-700 pinks (1958)
		$\begin{aligned} & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \\ & 1979 \end{aligned}$		$\begin{array}{r} 149 \\ 171 \\ 629 \\ 1,984 \\ 1,981 \\ 1,130 \\ 1,246 \end{array}$					

Appendix Table EA-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Chuitna River		$\begin{aligned} & 7 / 14 \\ & 7 / 16 \\ & 8 / 03 \\ & 8 / 04 \\ & 8 / 05 \\ & 8 / 06 \\ & 8 / 24 \\ & 8 / 25 \\ & 9 / 24 \\ & 9 / 25 \\ & 9 / 27 \\ & 9 / 28 \end{aligned}$	$\begin{array}{r} 165 \\ 370 \\ 35 \\ \text { Present } \\ 6 \\ 1 \end{array}$	Present		Present	1	
Congahbuna Lake	1981	7/15	0	0	0	0	0	T.M., CIAA
Old Tyonek Creek	Before 1970							Sockeye, coho, and pinks present (1961)
Crescent River System Crescent Lake (Grecian Lake)								
	Before 1970							Max. count 132 sockeye (1954); chums, pinks and chinook present (1961)
	$\begin{aligned} & 1970 \\ & 1972 \\ & 1974 \end{aligned}$			$\begin{array}{r} \text { Present } \\ 10,000 \\ 69 \end{array}$				
	1975	$\begin{aligned} & 9 / 17 \\ & 8 / 16 \end{aligned}$		Signif.				
Stream \$1	$\text { Before } 1970$	9/01		Present				Max. count 2,500 sockeye (1952)
Stream \#2		8/15		Present				Max, count 1,000 sockeye (1952) Sockeye present in Septenter
Stream 13	Before 1970							Max. count 6 sockeye (1954)
Stream 14	Before 1970			Present				Max. count 250 sockeye (1952)
Crescent River	$\text { Before } \begin{array}{r} 1970 \\ 1979 \\ 1980 \\ 1981 \end{array}$			$\begin{aligned} & 87,000 \\ & 91,000 \\ & 41,213 \end{aligned}$				Max. count 2,000 sockeye (1952) Escapement count $\begin{gathered}\text { sonar } \\ \text { Escapement } \\ \text { count }\end{gathered}$ $\begin{array}{l}\text { Escapement count } \\ \text { Escapenent } \\ \text { count }\end{array}$ sonar sonar $\}$, cohos present in mid-August
Dog Creek	Before 1970							Thousands of chums (1959-1961)
Drift River	$\text { Eefore } \begin{array}{r} 1970 \\ 1980 \\ \hline \end{array}$	9/10	0	0	0°	0	0	Cohos present in fall (1961) T.M., CIM

Appendix Table EA-1. Continued.

Appendix Table EA-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Nigishlama River	1980	9/02	0	0	0	0	0	T.M., CIAA
Packers Lake (Kalgin Is.)	Before 1970							Max. count 100000 sóckeye (1926); 5,600 coho (1952)
	1970	$8 / 01$		500				
	1971	9/10		3,356				
	1972	10/09		298				
	1974			1,454				
	1980			16,400 13,000	2,000		Present	T.M. ${ }_{\text {T, }}$
	1981				440		2,040	
Polly Creek	Before 1970							
								Maxticounts 2,000 coho: pinks and chums present
	1980	8/29				10,000		T.M., CIAA
Redoubt Creek	Before 1979	7/21	0	0	0	0	0	Cohos present (1961) T.N., CIAA
South Fork Creeks	1981			2,000				T,M., CIAA
Theodore River	Before 1970							Max. count 67 chinook (1962)
	$\begin{aligned} & 1970 \\ & 1971 \\ & 1972 \end{aligned}$		36 0					
	+993		205					
	1976		1,032					
	1977	7/23	2,263					
	1979		512					
	1980	7/06		0	0	0	0	T. $\mathrm{M}_{0}, \mathrm{CI}$ CIA
	Personal Come.				1,000		5,000	S.K., SF
Three Mile Creek	Personal Comm.	6/27	0	$1,000$	0	0	5,000	$\begin{aligned} & \text { T.M.: } \operatorname{CIA} \\ & \text { S.K.: } \\ & \text { SF } \end{aligned}$
Tuxedni Ray								
Bear Creek	1980	9/20	0	0	0	0	0	T.M., CIAA
Difficult Creek	1980	9/16	0	0	0	0	0	T.M., CIAA
Hungryman Creek	1980	9/16	0	0	0	0	0	T. ${ }^{\text {, , CIM }}$
Open Creek	1980	9/16	0	0	0	0	0	T.H., CIAA
Tuxedni River	1980	9/16		50	60			T.M., CIAA
Unnaned Tux. Streams	1980	9/16	0	0	0	0	0	T.M., CIAA

Appendix Table EA-1. Continued.

frea	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Corments
Waddell Lake	1980 19891 1981 1981	$8 / 25$ $7 / 21$ A 911	0	$\begin{array}{r} 500 \\ 1,200 \\ 1, \end{array}$	0	0	0	
Westforeland Lakes	1981	7/07	0	0	0	0	0	
Miskey Jack Slough	Before 1970							Cohos present (1961)
\#13 Creek	$\text { Before } \frac{1970}{1970}$				Present			Cohos present in fall (1961-69)
414 Creek	$\text { Before } 1970$				Present			Cohos present in fall (1961-69)
\#23 Creek	Before 1970							Pinks present (1960)
\# 24 Creek	Before 1970							Pinks present (1960)
425 Creek	Before 1970							Cohos and pinks present (1961)

APPENDIX EB
SALMON ABUNDANCE DATA FOR TURNAGAIN ARM RIVER SYSTEMS

Appendix Table EB-1. Salmon abundance data for Turnagain Arm river systems, compiled from escapement enumeration programs ${ }^{1 /}$, sport fish harvest datas ${ }^{-1}$, and aerial/. ground surveys ${ }^{\perp,}$, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Look Courtesy of Naska Department of Fish and Cane Div, of Comercial Fisheries, Div, of Sport Fish and Fisheries Rehabilitation and Enhancement Div. (FRED),
2 Mills, Michael $\mathrm{J}, 1980$. Statewide Harvest Study - 1979 Data. Alaska Department of Fish and Game Div. of Sport Fish, Feder al Aid Report, Vol, 22 Study Sill

3/ All entries are aerial or ground stream survey data unless otherwise designated.

Appendix Table EB-1. Continued.

APPENDIX EC
SALMON ABUNDANCE DATA FOR KNIK ARM
RIVER SYSTEMS

Appendix Table EC-1. Salmon abundance data for Knik Arm river systems, compiled from escapement enumeration Brograms $^{-1}$, sport fish harvest data $=$, and aerial/ground surveys $1,3 /$, Adult Ánadromous Investigations,' Su Hydro Studies, 1982.

1/ Courtesy of Alaska Department of Fish and Gane Div, of Cormercial Fisheries Div, of Sport Fish and Fisheries Rehabilitation and Enhancenent Div. (FRED);
 3/ All entries are aerial or ground stream survey data unless otherwise designated.
)
Appendix Table EC-1. Continued.

Appendix Table EC-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Corments
Little Susitna River	$\begin{array}{r} 1973 \\ \frac{1979}{198} \\ 1980 \end{array}$		$\begin{aligned} & 374 \\ & 880 \\ & 646 \end{aligned}$	2, 127	3,382	3364	3,918	Sport fish harvest Sport
Horsehce Lake	Before 1970							Max count 45,000 pinks (1964), 2 chinook (1958)
Matanuska River	$\begin{aligned} & \text { Before } 1970 \\ & \text { Personal Corm. } \end{aligned}$			2,500	150	2;500		Chinook present T. M 'CTAA, Kings River confluence 1981 'observations
Bodenburg Slough	1972 1973 1973 1973 1973 1973 1973 1974 1974 1974 1974 1974 1975 1975 1975 1975 1975 1976 1976 1976 1976 1977 1977 1977 1977 1978 1978 1978	$8 / 21$ $8 / 24$ $8 / 27$ $8 / 30$ $9 / 04$ $9 / 16$ $8 / 23$ $8 / 29$ $9 / 04$ $9 / 12$ $8 / 21$ $8 / 25$ $8 / 29$ $9 / 05$ $9 / 23$ $8 / 23$ $8 / 02$ $9 / 07$ $9 / 12$ $8 / 30$ $8 / 06$ $9 / 15$ $8 / 22$ $9 / 11$,					Peak survey count.
Granite Creek	Before 1970							Max. count sockeye 116 (1959), chum 61 (1957)
Noose Creek	$\begin{aligned} & 1970 \\ & 1971 \\ & 1971 \\ & 1972 \\ & 1972 \\ & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \end{aligned}$	$\begin{aligned} & 7 / 24 \\ & 1 / 29 \\ & 7 / 38 \\ & 7 / 31 \\ & 8 / 01 \\ & 8 / 01 \\ & 8 / 01 \\ & 7 / 28 \end{aligned}$		$\begin{array}{r} 120 \\ 22 \\ 10 \\ 15 \\ 6 \\ 36 \\ 32 \\ 55 \\ 101 \end{array}$				
Hud Lake	Before 1970							Max. count 90 sockeye (1957)
Hancy Lake	Before $\begin{array}{r}1970 \\ 1972 \\ 1972 \\ 1972 \\ 1972 \\ 1973\end{array}$	$\begin{aligned} & 8 / 15 \\ & 9 / 07 \\ & 9 / 11 \end{aligned}$		$\begin{aligned} & 5,000 \\ & 1,530 \\ & 1,73 \\ & 1,783 \end{aligned}$				Max, count 7,000 sockeye (1954) Peak survey count Peak survey count

Appendix Table EC-1. Continued.

Appendix Table EC-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Corments
Ship Creek			$\begin{array}{r} 806 \\ 1,011 \\ 187 \\ 124 \\ 1,000 \end{array}$	Present	${ }_{301}^{512}$	Present	405	Sport fish harvest Sport fish harvest S.K., SP
Six Mile Creek	1980			300		100		T.M., CIAA, 1980 observations
Six Mile Lake	Personal Corm.			200	200			S.R., SF
Wasilla Creek	$\begin{aligned} & 1970 \\ & 1970 \\ & 1971 \\ & 1972 \\ & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1978 \\ & 1979 \\ & 1979 \\ & 1980 \end{aligned}$	$\begin{aligned} & 9 / 25 \\ & 9 / 2 B \\ & 9 / 21 \end{aligned}$			$\begin{array}{r} 101 \\ 94 . \\ 104 \\ 19 \\ 28 \\ 30 \\ 158 \\ 162 \\ 158 \\ 158 \\ 1,87 \\ \hline 3,555 \end{array}$	45	$\frac{136}{210}$	Sport fish parvest sport fish harvest
Wasilla Lake	Before 1970							$\mathrm{Max}_{(1960)}$ count 3,581 sockeye (1960) 1,161 coho
	1972	8/22		660				

APPEndix ED
SALMON ABUNDANCE DATA FOR KENAI PENINSULA RIVER SYSTEMS

Appendix Table ED-1. Salmon abundance data for Kenai Peninsula river systems, compiled from escapement enumeration programs ${ }^{1}$, sport fish harvest data', and aerial surveys $=$, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Bishop Creek	Before1970 1974 1976 1977 1981	$\begin{aligned} & 9 / 19 \\ & 8 / 20 \\ & 7 / 22 \\ & \text { Aug. } \end{aligned}$		$\begin{array}{r} 24 \\ 754 \\ \mathbf{7 , 0 0 0} \\ 2,000 \end{array}$				Max. count 23,000 sockeye (1958) Tam Mears Cook Inlet Aquaculture Association (T.M., CAA)
Bishop Lake	1981	9/03		170				T.M. , CIAA
Daniels Lake \& Creek	1981	9/03		2,000				T.M., CTAA
Parsons Lake \& Creek	1981	9/03	0	0	0	0	0	T.M., CTAA
Timberlost Lake \& Creek	1981	9/03		2				T.M., CTAA
Deep Creek	Before 1970							Max. count ${ }^{3} 9600$ chinook (1951): 13 coho (1958), 72 pink (1959)
	$\begin{aligned} & 1972 \\ & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \\ & 1979 \\ & 1980 \end{aligned}$		$\begin{array}{r} 530 \\ 220 \\ 740 \\ 610 \\ 1,680 \\ 990 \\ 7,010 \\ 1,93 \\ 1,818 \end{array}$	1,006	$\begin{aligned} & 749 \\ & 883 \end{aligned}$		795	Sport figh parvest Sport fish harvest.
Tustamena Drainage								
Kasil of River	Before1970 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981							Max. count 89,000 sockeye 1968 Escapement count (sonar Escapement estimate (partial survey \& sonar counts) Escapement count (sonar Escapement count sonar Escapement count (sonar)

 Cook Inlet Aquaculture Association (CIAA); Woodward-Clyde Consultants (WWC); Dowling Engineers Consulting Fimm (DE).
 3/ All entries are aerial or ground stream survey data unless otherwise designated.

Appendix Table ED-1. Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Area \& Year \& Date \& Chinook \& Sockeye \& Coho \& Chum \& Pink \& Comments

\hline \multirow[t]{15}{*}{} \& Before 1970 \& \& \& \& \& \& \&

\hline \& $$
1970
$$ \& $8 / 18$ \& \& 3,521 \& \& \& \&

\hline \& 1970 \& \& \& 6,9000 \& \& \& \& Peak survey count

\hline \& 1972 \& \& \& 27.735 \& \& \& \& Peak survey count

\hline \& $\begin{array}{r}1972 \\ 1972 \\ \hline 1072\end{array}$ \& 1/27 \& \& 350 \& \& \& \&

\hline \& 1972 \& $8 / 81$ \& \& 15.592 \& \& \& 2 \&

\hline \& 1972

1972 \& $8 / 15$ \& \& 10,261
13,785 \& \& \& $\frac{5}{2}$ \&

\hline \& 1972 \& $8 / 30$ \& \& 9,800 \& \& \& \&

\hline \& 1974 \& \& \& 1,454 \& \& \& \& Peak survey count

\hline \& $\begin{array}{r}1975 \\ 1975 \\ \hline 975\end{array}$ \& 8/14 \& \& 15,000 \& \& \& 39 \&

\hline \& $\begin{array}{r}1975 \\ 1976 \\ \hline 1976\end{array}$ \& $8 / 07$ \& \& 16,660
31,000 \& \& \& 1 \& Peak survey count

\hline \& 1973 \& $8 / 13$ \& \& 37:808 \& \& \& \&

\hline \& 1976 \& 8/26 \& \& 27,788 \& \& \& 24 \&

\hline \& 1978 \& \& \& 48.000 \& \& \& \& Peak survey count

\hline \& 1979
1981

1981 \& $$
\begin{aligned}
& 8 / 11 \\
& 1 / 20
\end{aligned}
$$ \& \& \[

$$
\begin{aligned}
& 22 ; 081 \\
& 10,000
\end{aligned}
$$
\] \& 0 \& 0 \& 15 \& T.M., CIAA

\hline \multirow[t]{11}{*}{| Bear Creek | |
| :---: | :---: |
| | |
| 10 | |
| 1 | |
| \sim | |} \& 1970

1971
1972 \& \& \& $\begin{array}{r}553 \\ 1,203 \\ \hline 300\end{array}$ \& \& \& \& Peak survey count Peak survey count

\hline \& 1972 \& 9/01 \& \& \& 1 \& 1 \& 3 \& Peak survey count

\hline \& 1973
1974 \& \& \& +166 \& \& \& 13 \& peak survey count Peak survey count

\hline \& 1975
1975

1975 \& $$
\begin{aligned}
& 8 / 13 \\
& 8 / 15 \\
& 8 / 22
\end{aligned}
$$ \& \& 181

326
281 \& \& $\frac{1}{1}$ \& 13
5 \&

\hline \& 1975 \& \& \& +328 \& \& \& 1 \& Feak survey count

\hline \& 1977 \& $8 / 06$
$8 / 11$ \& \& 1719
1,432 \& \& \& $\frac{14}{32}$ \&

\hline \& 1977 \& $8 / 18$ \& \& 1:621 \& \& \& 28 \&

\hline \& 1978 \& $8 / 13$ \& \& 1,181 \& \& 1 \& 13 \&

\hline \& 1979
1980 \& $8 / 10$ \& \& 360 \& \& \& 1 \&

\hline \& 1981 \& 4, 8 \& \& 1,508 \& \& \& \& T.M., CIAA

\hline \& 1981 \& $8 / 17$ \& \& 2,478 \& \& \& \&

\hline Cliff House Creek \& Before 1970 \& \& \& \& \& \& \& Max coum 7 , 000 bockeye (1949); 3 chums (1953): 7 pInks (1958)

\hline Coal Creek \& 1979 \& 8/30 \& \& 0 \& 0 \& 0 \& 0 \& T.M., CLAA

\hline
\end{tabular}

Appendix Table ED-1. Continued.

Appendix Table ED-1. Continued.

Appendix Table ED-1. Continued.

Appendix Table ED-1. Continued.

Area	Year	Date	Chinook	Scokeye	Coho	Chum	Pink	Comments
Hidden Lake	Before 1970 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980			$\begin{aligned} & 323 \\ & 1,398 \\ & 4,956 \\ & 1,690 \\ & 1,150 \\ & 1,375 \\ & 4,860 \\ & 4,1,55 \\ & 4,647 \\ & 5,762 \\ & 8,421 \end{aligned}$	307			
Jean Creek \& Lake	Before 1970 1974 1974 1975 1976 1976 1977 1977 1977 1978 1980 1981	8/28 $8 / 07$ $8 / 18$ $8 / 22$ $8 / 23$ $8 / 09$ $9 / 18$ $8 / 03$		$\begin{array}{r} 528 \\ 26,888 \\ 58 \\ 250 \\ 689 \\ 1199 \\ 1269 \\ 1,091 \\ 60 \end{array}$	2,389			Max. coint l,200 bockeye (1947) Escapement count (weir) T.M., CIAA T.M., CIAA
Johnson Creek	Before1970 1970 1971 1972 1973 1974 1974 1975 1975 1976 1976 1976 1977 1977 1978 1978 1978 1978 1979 1980	$\begin{aligned} & 8 / 27 \\ & 8 / 10 \\ & 8 / 20 \\ & 8 / 07 \\ & 8 / 09 \\ & 8 / 02 \\ & 8 / 11 \\ & 8 / 08 \\ & 8 / \frac{13}{24} \\ & 8 / 24 \\ & 8 / 01 \\ & 8 / 05 \end{aligned}$	0 8 0		8 8 $\begin{aligned} & 21 \\ & 98 \end{aligned}$	8 8 0	8 8 0	Max. count 625 Sockeye (1969) peak survey count
Juneau Creek \& Lake	Before 1970	$\begin{aligned} & 8 / 08 \\ & 8 / 83 \\ & 8 / 09 \\ & 8 / 12 \\ & \hline \end{aligned}$	$\begin{array}{r} 0 \\ 18 \\ 5 \\ 42 \\ 90 \\ \hline \end{array}$	$\begin{array}{r}0 \\ 15 \\ \hline\end{array}$	0	0	0 1	Max, count 72 chinook (1957); large numbers of sockeye (1936)

Appendix Table ED-1. Continued.

Appendix Table ED-1. Continued.

Appendix Table ED-1. Continued.

)

Appendix Table ED-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Camments
Seepage Creek	1978 1979 1980 1980 1981 1981 1981	$\begin{aligned} & 8 / 12 \\ & 8 / 30 \\ & 8 / 12 \\ & 7 / 01 \\ & 8 / 08 \end{aligned}$	0	$\begin{array}{r} 1,055 \\ 880 \\ 1,811 \\ 0 \\ 3,376 \end{array}$	0	0	0	Approx, 1,000 fish, species unknown, (T.M., CIAA)
Ship Creek	Before 1970							Max, count 650 pinks (1951)
Skilak River	1981	8/03	0	0	0	0	0	T.M., CXAA
Slikok Creek (Lake)	$\text { . Before } \begin{array}{r} 1970 \\ 1980 \end{array}$	8/03	8	8	8	8	8	Max. count 5 pinks (1957) T.M: : CIAA
Snow River	Before 1970							No fish observed (1952)
Soldotna Creek	Before 1970							No fish observed (1957)
Tern Creek	1979	7/21		1,693				
Trail Creek (Upper)	1973	8/02		124				See Morning Slough for additional counts
Trail Lake	Before 1970							No fish observed (1952)
Trail River	Before1970 1976 1977 1977 1977 1978	$\begin{aligned} & 8 / 17 \\ & 8 / 02 \\ & 8 / 11 \\ & 8 / 24 \\ & 8 / 13 \end{aligned}$		78 124 1206 35 31				Peak count 10,000 sockeye (1977)
Swanson River	Before 1970							Max. count 2,043 coho (1965)

APPENDIX EE
SALMON ABUNDANCE DATA FOR THE SUSITNA RIVER

Appendix Table EE-1. Salmon abundance data for Susitna River Mainstream and maip stream tributaries, compj]ed from escapement enumeration programs sport fish harvest data ${ }^{2}$, and aerial surveys, Adult Anadromous Investigations, Su Hydro Studies, 1982.

Area	Year	Date	Chinook	Scokeye	Coho	Chum	Pink	Comments
Mainstem								
Susitra Station (bysten-wide estimates)	1979			38,000				
	1972			113,000				Chinook estimate from aerial surveys, thcludes sport harvest Chinook essimate fram aerial surveys, Includes sport harvest Chinook estimate from aerial surveys, includes sport haryest
	1973		15,000	40,000				
	1974		15,000	70,000				
	1975		11,500	108,000				
	1976		71,200	111,000			933,000	Escapement-population estimate; chinook estimate from aerial suryeys, includes sport hafvest Escapement-population estimate; chinook estimate
	1977		118,100	238,000	50,000	105,000	1,490,000	
	1978		81,100	94,000	100,800	148,000	2,478,100	from aerial suryeys includes sport harvest Escapement count (sonar): chinook estimate from
	1979		77,200	157,000		125,000		aerial surveys, includes sport harvest Escapement count (sonar), chinook estimate from
	1980			191,000		7,939	2,047,000	aerial surveys, includes sport harvest
	1981		60-70,000	340,232	33,470	46,461	113,349	aerial surveys, includes sport harvest Escapement count (sonar); chinook estimate from aerial surveys
Sunshine Station	1981			139,906	22,793	262,851	72,945	Abundance estimate (sonar) Mark/recapture estimate
Talkeetna Station	1981 1981			3,464 4,809	3,522 3,306	$\begin{aligned} & 10,036 \\ & 20,835 \end{aligned}$	$\begin{array}{r} 2,529 \\ 2,335 \end{array}$	Abundance estimate (sonar) Mark/recapture estimate
Curry Station	1981			2,804	1,146	13,068	1,041	Mark/recapture estimate
Tributaries								
Alexander Creek	Before 1970							Max count 1 868 chinook (1953) sockeye present (1964), 2,000 coho (1963), 100,000 pinks (1964); 500 chim (1963)
	$\begin{aligned} & 1978 \\ & 1978 \\ & 1972 \\ & 1973 \\ & 1974 \\ & 1975 \end{aligned}$	7/26	$\begin{array}{r} 280 \\ 890 \\ 202 \\ 2759 \\ 1,878 \end{array}$	2,720 BO	eye and			
1/ Courtesy of Alaska Department of Fish and Game Div, of Conmercial Fisheries, Div, of Sport Fish, and Fisheries Rehabilitation and Enhancenent Div. (FRED), and Cook Iniet Aquaculture Association (CIAA).								
Milis, Michael J. 1980. Statewide Harvest Study -1980 Data. Alaska Department of Fish and Game Div. of Sport Fish, Federal Aid Report, Vol. 22 study Sh-1C.								

Appendix Table EE-1. Continued.

Appendix Table EE-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Conments
Fish Lakes (Birch Creek)	$\begin{aligned} & 1976 \\ & 1976 \\ & 1976 \\ & 1976 \\ & 1976 \\ & 1977 \\ & 1978 \\ & 1978 \\ & 1988 \end{aligned}$	$\begin{aligned} & 8 / 24 \\ & 8 / 27 \\ & 9 / 03 \\ & 9 / 07 \\ & 8 / 22 \\ & 9 / 25 \\ & 8 / 18 \end{aligned}$		$\begin{array}{r} 82 \\ 25 \\ 47 \\ 611 \\ 79 \\ 242 \\ 299 \\ 2,100 \end{array}$	11 28		$\begin{aligned} & 48 \\ & 26 \\ & 14 \\ & 42 \end{aligned}$	Peak survey count Peak survey count
Fourth of July Creek	$\begin{aligned} & 1974 \\ & 1974 \end{aligned}$	$\frac{9}{8 / 11}$			26	594	159	
coose Creek	$\begin{array}{r} \text { Before } 1970 \\ 1970 \\ 1974 \\ 1975 \\ 1976 \\ 1976 \\ 1977 \\ 1978 \\ 1981 \end{array}$	$\begin{aligned} & 9 / 16 \\ & 7 / 03 \\ & 7 / 15 \\ & 7 / 23 \end{aligned}$	$\begin{array}{r} 41 \\ 13 \\ 160 \\ 104 \\ 104 \\ 138 \\ 262 \end{array}$			2		Chinook, chum present, max, count 5,000 plinks (1969)' 177 coho (1968)
Indian River	Before 1970	$\begin{aligned} & 7 / 30 \\ & 4 / 29 \\ & 7 / 25 \\ & 8 / 19 \\ & 9 / 104 \\ & 7 / 23 \\ & 10 / 29 \end{aligned}$	$\begin{array}{r} 35 \\ 110 \\ 102 \\ 102 \\ 31 \\ 35 \\ 537 \\ 393 \\ 114 \\ 285 \\ 422 \end{array}$		64	150	577	Max. count 1,002 chinook (1957) cook Inlet Aquaculture Ass'n (CIAA)
Kashwitna River-North Fork	Before $\begin{array}{r}1970 \\ 1971 \\ 1972 \\ 1973 \\ 1974 \\ 1975 \\ 1976 \\ 1977 \\ \hline 1978 \\ \hline 1989 \\ \hline\end{array}$		$\begin{array}{r} 31 \\ 31 \\ 183 \\ 103 \\ 303 \\ 203 \\ 336 \\ 362 \\ 457 \\ 557 \\ \hline \end{array}$					Chinook present, max count 10;000 pinks (1966)

Appendix Table EE-1. Continued.

Appendix Table EE-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Ptink	Corments
Moose Creek	1970 1971 1972 1973 1974 1975 1976 1978 1979 1981							-
Portage Creek		$\begin{aligned} & 7 / 30 \\ & 4 / 29 \\ & 4 / 27 \\ & 8 / 184 \\ & 8 / 43 \end{aligned}$			150	276	218	
Question Creek and Lake		$\begin{aligned} & 9 / 2 z \\ & 9 / 23 \end{aligned}$						Max. count 5,970 sockeye (1957)
Rabideaux Creek		9/29	99 Present		Present	$\begin{aligned} & 67 \\ & 91 \\ & 88 \end{aligned}$	Present	Chiṇook present S.R., SF
Red Shirt creek	Before 1970 1972 1973 1973 1974 19794 1979 19756 1976	$\begin{array}{r} 8 / 29 \\ 8 / 17 \\ 8 / 14 \\ 9 / 09 \\ 10 / 03 \\ 8 / 19 \\ 8 / 19 \\ 8 / 26 \end{array}$			100 0 0	0	0	Max. counts 2 2 600 sockeye (1952); 380 coho (1952) Peak survey count

Appendix Table EE-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Red Shirt Creek	$\begin{aligned} & 1976 \\ & 1976 \\ & 1977 \\ & 1976 \\ & 1978 \\ & 1979 \\ & 1980 \end{aligned}$	$\begin{aligned} & 9 / 14 \\ & 9 / 16 \\ & 8 / 24 \\ & 9 / 01 \\ & 9 / 07 \\ & 9 / 12 \\ & 8 / 25 \end{aligned}$		$\begin{array}{r} 117 \\ 130 \\ 43 \\ 13 \\ 645 \\ 650 \\ 600 \end{array}$	92			
Role Jo Lake Before		$\begin{aligned} & 8 / 16 \\ & 8 / 29 \\ & 8 / 17 \\ & 9 / 04 \\ & 8 / 29 \\ & 9 / 26 \\ & 8 / 24 \\ & 9 / 01 \end{aligned}$	0	$\begin{array}{r} 40 \\ 160 \\ 0 \\ 47 \\ 24 \\ 25 \\ 35 \\ 43 \\ 4 \end{array}$	0 0	0 0	0 0	Sockeye and coho present Peak survey count
Sheep Creek Before	$\begin{aligned} & 1970 \\ & 1972 \\ & 1972 \\ & 1973 \\ & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \\ & 1979 \\ & 1980 \\ & 1980 \end{aligned}$	$\begin{aligned} & 6 / 06 \\ & 8 / 01 \\ & 7 / 24 \\ & 7 / 26 \\ & 8 / 03 \end{aligned}$	Present 101 444 402 202 42 455 630 1,209 778 45 1,013	31	Present $\begin{array}{r} 462 \\ 430 \end{array}$	Present $\begin{aligned} & 682 \\ & 648 \end{aligned}$	Present $\begin{aligned} & 2,412 \\ & 6,362 \end{aligned}$	Max count 768 chinook (1958); 20,000 pinks (1958)/ chums present Nemo from Div. of Sport Fish Sport fish harvest Sport fish harvest
Sloughs 6,9,11,14,16,17,19,20,21	1974	B/28		103		1,352		
Sunshine Creek Before	$\begin{aligned} & 1970 \\ & 1979 \\ & 1980 \end{aligned}$		10 13	157 116	774 1,534	55 225	$\begin{array}{r} 700 \\ 2,408 \end{array}$	Max count 25 chinook (1963); 1,000 pinks (1962) sport fish parvest sport fish harvest
Trapper Creek Before	1970							Max. count 234 chínook (2964)
Willow Creek Before	$\begin{aligned} & 1970 \\ & \\ & 1970 \\ & 1971 \\ & 1972 \\ & 1972 \end{aligned}$		$\begin{array}{r} 640 \\ 165 \\ 370 \\ 11 \end{array}$					Max count 4,500 chinook (1947) 2,000 coho (1950) 20,000 chum (1950): 40,000 pink (1950)), 60 sockeye (1957) sport fish harvest

Appendix Table EE-1. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Willow Creek	1973	7/24	$\begin{array}{r} 678 \\ 981 \\ 1,904 \\ 1,407 \\ 1,760 \\ 1,665 \\ 1,259 \\ 1,357 \end{array}$					
	$\begin{aligned} & 193 \\ & 197 \\ & 1975 \\ & 1976 \end{aligned}$	$\begin{aligned} & 7 / 26 \\ & 8 / 04 \\ & 7 / 15 \end{aligned}$						-
	$\begin{array}{r} 1977 \\ 1979 \\ 1980 \\ \hline \quad 1981 \end{array}$			884	1,207	$\begin{aligned} & 562 \\ & 989 \end{aligned}$	23,445	Sport fish harvest sport fish harvest
	Personal Comm.					7,000	250,000	Larry Engel, ADFEG Div. of Sport Fish (L.E., SF) Max. abundance estimate from several years observations

Appendix Table EE-2. Salmon abundance data for the Yentna River subdrainage of the Susitna River, compiled from escapement enumeration programs \perp, sport fish harvest dataf, and aerial surveys. Adult Anadromous Investigations, Su Hydro Studies, 1982.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Bear Creek	Personal Corm.		100				5,000	Stan Kubik, ADFEG Div, of Sport Fish ($\mathrm{S} . \mathrm{R}_{\text {, }}$, SF) Max. abundánce estimate from several year ${ }^{\prime}$ observations
Cache Creek	Personal Comm.		100				Present	S.K., SF
Camp Creek	Before 1970							Max. count 101 chinook (1965)
Canyon Creek			$\begin{array}{r} 10 \\ 3 \\ 43 \\ \hline 135 \end{array}$				Present	S.R., SF
Chelatna Lake	$\begin{aligned} & 1975 \\ & 1980 \\ & 1981 \end{aligned}$	$\begin{aligned} & 8 / 29 \\ & 8 / 29 \\ & 8 / 27 \end{aligned}$		$\begin{array}{r} 40 \\ 14,1200 \\ 1400 \end{array}$				
Spring Creek	Before1970 1972 1973 1974 1975	$\begin{aligned} & 8 / 29 \\ & 9 / 06 \\ & 9 / 01 \end{aligned}$	0	33 18 4	0	0	0	Max. count 142 sockeye (1954)
Christmas Tree Creek	Before1970 1972 1973 1973 1973 1973 1974 1974 1974 1975 1975 1976 1976 1978 1980 1980	$8 / 29$ $8 / 17$ $8 / 11$ $9 / 12$ $8 / 26$ $9 / 09$ $9 / 18$ $8 / 24$ $8 / 93$ $8 / 26$ $8 / 29$ $8 / 22$ $9 / 11$		50 0 29 40 Present 49 56 80 84 55 56 54 30 0 50				Sockeye present
Clearwater Creek	$\begin{aligned} & 1977 \\ & \text { Personal Comm. } \end{aligned}$		147				5,000	S.R., SF

I/ Courtesy of Alaska Department of Fish and Game Div. of Commercial Fisheries, Div. of Sport Fish, and Fisheries Rehabilitation and Enhancement Div. (FRED),
 3/ All entries are aerial or ground stream survey data, unless otherwibe designated.

Appendix Table EE-2. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Coffee Creek	Before $\begin{array}{r}1970 \\ 1972 \\ 1972 \\ 1973 \\ 1975 \\ 1975 \\ 1977 \\ 1978\end{array}$	$\begin{aligned} & 8 / 29 \\ & 8 / 30 \\ & 9 / 06 \\ & 8 / 30 \\ & 8 / 27 \\ & 8 / 27 \end{aligned}$	0	$\begin{array}{r} 254 \\ 24 \\ 70 \\ 73 \\ 23 \\ 18 \end{array}$	0	0	0	Sockeye present Coffee Creek and Snowslide Creek
Contact Creek	Personal Camm.		100			Present	1,000	S.K, SF
Cripple Creek	$\begin{aligned} & 1975 \\ & 1975 \\ & 1976 \\ & 1976 \\ & 1979 \\ & 1979 \end{aligned}$	$\begin{aligned} & 8 / 23 \\ & 8 / 30 \\ & 8 / 23 \\ & 9 / 12 \\ & 8 / 25 \end{aligned}$	$\begin{array}{r} 24 \\ 8 \end{array}$	$\begin{array}{r} 427 \\ 438 \\ 438 \\ 488 \\ 8 \end{array}$	8	8	8	
Crystal Creek	1972	$8 / 29$		33				
Deception Creek	$\begin{aligned} & 1978 \\ & 1979 \\ & 1981 \end{aligned}$		49 239 366					
Dickason Creek	Personal Corm.		Present				Present	S.K., SF
Donkey Creek	Personal Conm.		100	1,000			5,000	S.K., SF
Fish Lakes	$\begin{array}{r} \text { Before } 1970 \\ 1974 \\ 1981 \end{array}$		200	1,048	500			Sockeye escapements exceeding 1,000 (1950) Escapement count (weir) S. $\mathbf{K}_{\mathbf{H}}$, SF^{2}
Flag Creek	Personal Corm.						Present	S.K., SF
Friday Creek	1980	7/26	82					
Gagtian Creek	1981		Present				Present	S.K., SF
Grayling Creek	$\begin{array}{r} \text { Before } 1970 \\ 1975 \end{array}$	8/29				2		Chinook coho present in 1953, 5313 pinks (1954), 322 chums (1952)

Appendix Table EE-2. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink
Hewitt Lake							

Appendix Table EE-2. Continued

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Corments
Huckleberry Creek	$\begin{aligned} & 1975 \\ & 1976 \\ & 1977 \\ & 1978 \\ & 1979 \\ & 1980 \\ & 1980 \end{aligned}$	$\begin{aligned} & 9 / 03 \\ & 8 / 29 \\ & 8 / 26 \\ & 8 / 22 \end{aligned}$	$\begin{array}{r} 311 \\ 500 \\ 1,000 \\ 1,750 \end{array}$	$\begin{array}{r} 263 \\ 182 \\ 8 \end{array}$				peak burvey count peak survey count combined with Whiskey Lake count
Hungryman Creek	Personal Corm.		100	5,000				S.K., SF
Indian Creek	Personal Comm.		Present			Present		S.K., SF
Johnson Creek	Personal Comm.		Present		Present	Present		S.K., SF
Richatna	Personal comm.		$1,800$		10,000		10,000	S.R., SF
Lake Creek	Before $\begin{array}{r}1970 \\ 1970 \\ 1971 \\ \hline\end{array}$	7/26	189				700	Max, count 770 chinook (1969), 559 sockeye (1956)
		$8 / 30$ $7 / 26$	$\begin{array}{r} 120 \\ 120 \\ 714 \\ 531 \\ 535 \\ 3,28 \\ 37,135 \\ 8,931 \\ 4,196 \\ 1,796 \\ 7,005 \end{array}$	$\begin{array}{r} 112 \\ \\ \\ 440 \\ 4267 \\ 5,000 \end{array}$	$\begin{aligned} & 2,671 \\ & 2,351 \\ & 2,500 \end{aligned}$	$\begin{array}{r} 136 \\ 15,69 \end{array}$	$\begin{array}{r} 882 \\ 50,101 \\ 50,000 \end{array}$	Sport fish parvest Sport fish harvest S.K., SF
Martin Creek	Before $\begin{array}{r}1970 \\ 1974 \\ 1975 \\ 1976 \\ 1977\end{array}$		$\begin{array}{r} 23 \\ 791 \\ 1,661 \end{array}$					Chinook present
Moose Creek	Personal Comm.		present	600				S.R., SF
Nakochna River	Fersonal Comm		100				1,000	S.K., SF
Peters Creek			$\begin{array}{r} 124 \\ 8 \\ 1,489 \\ 3,042 \\ 4,000 \end{array}$		1,000		10,000	S.R., SF
Pickle Creek	Personal Corm.		100				5,000	S.K., SF

Appendix Table EE-2. Continued.

Area	Year	Date	Chinook	Sockeye	Coho	Chum	Pink	Comments
Puntella Lake	$\begin{aligned} & 1977 \\ & 1978 \\ & 1978 \\ & 1980 \end{aligned}$	$\begin{aligned} & 8 / 24 \\ & 8 / 24 \\ & 8 / 26 \\ & 8 / 22 \end{aligned}$		$\begin{array}{r} 2,100 \\ 1,185 \\ 550 \end{array}$				
Quartz Creek		$\begin{aligned} & 9 / 14 \\ & 8 / 17 \\ & 8 / 26 \\ & 9 / 04 \end{aligned}$	5	$\begin{array}{r} 250 \\ 60 \\ 150 \\ 450 \\ 125 \\ 180 \\ 1,210 \end{array}$	50		Present	Peak survey count peak survey count Peak survey count S.K., SF
Red Creek		8/24	$\begin{array}{r} 1,511 \\ 385 \\ 749 \end{array}$	0	0	0	$5,100$	Chinook present S.K., SF
Red Salmon Lake	$\begin{aligned} & 1973 \\ & 1974 \\ & 1975 \\ & 1976 \\ & 1976 \\ & 1977 \\ & 1977 \\ & 1978 \\ & 1978 \\ & 1980 \end{aligned}$	$9 / 14$ $9 / 09$ $8 / 29$ $9 / 02$ $9 / 14$ $8 / 24$ $8 / 09$ $8 / 24$ $8 / 22$		$\begin{array}{r} 250 \\ 160 \\ 142 \\ 1476 \\ 35 \\ 150 \\ 1772 \\ 200 \\ 235 \\ 1,100 \end{array}$	40 1 230		900	Peak survey count peak survey count peak survey count Peak survey count
Rich Creek	Personal Coxm.						few	S.K., SF
Shell Creek	Before 1970	$\begin{array}{r} 7 / 28 \\ 8 / 10 \\ 8 / / 18 \\ 8 / 14 \\ 8 / 26 \\ 9 / 09 \\ 10 / 03 \\ 8 / 29 \\ 8 / 17 \\ 8 / 25 \\ 9 / 14 \\ 8 / 24 \\ 9 / 07 \\ 9 / 04 \end{array}$		$\begin{array}{r} 5,000 \\ 0 \\ 50 \\ 200 \\ 295 \\ 35 \\ 64 \\ 90 \\ 950 \\ 2,027 \\ 900 \\ 170 \\ 120 \\ 344 \\ 127 \\ 5,000 \\ 5,100 \end{array}$	8 $\begin{array}{r} 15 \\ 20 \\ 0 \\ 1 \\ 0 \end{array}$ 55 200	0 0	5 0 0 $\begin{gathered} 0 \\ 3 \\ 0 \\ 76 . \\ 20 \end{gathered}$	Slgnif. numbers of sockeye Peak survey count Escapement count (weir) Escapement count (weir) Peak survey count

Appendix Table EE-2. Continued.

\therefore

Appendix Table EE-2. Continued.

Appendix Table EE-2. Continued.

Appendix Table EE-3. Salmon abundance data for the Talkeetna River subdrainage of the Susitna River, compiled from escapement enumeration programs ${ }^{-1}$, sport fish harvest data, and aerial/ground surveys ${ }^{2}$, Adult Anadromous Investigations, Su Hydro Studies, 1982.

$1 /$ Courtesy of Alaska Department of Fish and Game Div. of Commercial Fisheries, Div. of Sport Fish, and Fisheries Rehabilitation and Enhancement Div. (FRED),
 3/ All entries are aerial or ground strean survey data, unless otherwise designated.

Appendix Table EE-3. Continued.

Appendix Table EE-4. Continued.

Appendix Table EE-4. Continued.

[^0]:

