FUTURE LNG MARKETING IN JAPAN

OCTOBER, 1984

NISSHO IWAI CORPORATION
TABLE OF CONTENTS

LNG TRADE
1. WORLD LNG FLOW ... 3
2. WORLD LNG TRADE .. 4
3. HISTORY AND FORECAST OF LNG TRADE IN JAPAN 5
4. ENERGY FORECAST FOR JAPAN 6
5. LNG SUPPLY AND DEMAND 7
6. LNG MARKET SUMMARY 8

LNG USERS
1. JAPANESE LNG SERVICE AREAS 10
2. ELECTRIC POWER COMPANIES CONSUMPTION BY TYPE
 IN 1990 .. 11
3. ELECTRIC POWER COMPANIES LNG SUPPLY AND
 DEMAND IN 1990 ... 12
4. GAS COMPANIES FUEL CONSUMPTION BY TYPE IN 1990 13
5. GAS COMPANIES DEMAND ESTIMATE IN 1990 14
6. JAPANESE LNG USERS SUMMARY 16

NIC'S LNG PROJECT .. 17

RECEIVING TERMINALS 19
1. LNG RECEIVING TERMINALS 19
2. CHUBU ELECTRIC POWER CO., INC. AND TOHO GAS
 CO., LTD. .. 20
 - PLANT LAYOUT OF CHITA TERMINAL 21
 - PICTURE: CHITA TERMINAL 22
 - PICTURE: CHITA TERMINAL 23
3. THE KANSAI ELECTRIC POWER CO., INC. &
 OSAKA GAS CO., LTD. 29
 - PLANT LAYOUT OF SENBOKU I 30
 - PICTURE: SENBOKU I TERMINAL 31
 - PLANT LAYOUT OF SENBOKU II 32
 - PICTURE: SENBOKU II TERMINAL 33
 - PLANT LAYOUT OF HIMEJI TERMINAL 34
 - PICTURE: HIMEJI TERMINAL 35
4. CHUGOKU ELECTRIC POWER CO., INC. 36
 - PLANT LAYOUT OF YANAI TERMINAL 37
 - PICTURE: YANAI TERMINAL 38
5. KYUSHU ELECTRIC POWER CO., INC. &
 NIPPON STEEL CORPORATION 39
 - PLANT LAYOUT OF TOBATA TERMINAL 40
 - PICTURE: TOBATA TERMINAL 41
 - PLANT LAYOUT OF OITA TERMINAL 42
 - PICTURE: OITA TERMINAL 43
 - PICTURE: OITA TERMINAL 44

FINANCE
1. JAPANESE INSTITUTIONAL FINANCE 46
2. APPLICATION OF IMPORT CREDITS TO THE LNG PROJECTS ... 47

FUTURE MARKET ... 48
LNG TRADE
WORLD LNG FLOW

EXISTING CONTRACTED/COMMITTED

U.S.A. ALGERIA LIBYA U.A.E. EUROPE

JAPAN BORNEI MALAYSIA INDONESIA AUSTRALIA

ALASKA CANADA U.S.A.
WORLD LNG TRADE

(AS OF 1983)

<table>
<thead>
<tr>
<th>MARKET</th>
<th>SUPPLYING COUNTRY</th>
<th>QUANTITY (MILLION TON/Y)</th>
<th>SHARE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUROPE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRANCE</td>
<td>ALGERIA</td>
<td>6.46</td>
<td></td>
</tr>
<tr>
<td>BELGIUM</td>
<td>ALGERIA</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>SPAIN</td>
<td>LIBYA</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13.06</td>
<td>26%</td>
</tr>
<tr>
<td>U.S.A.</td>
<td>ALGERIA</td>
<td>4.70</td>
<td>9%</td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALASKA</td>
<td></td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>BRUNEI</td>
<td></td>
<td>5.14</td>
<td></td>
</tr>
<tr>
<td>U.A.E.</td>
<td></td>
<td>2.06</td>
<td></td>
</tr>
<tr>
<td>INDONESIA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARUN/BADAK</td>
<td></td>
<td>7.50</td>
<td></td>
</tr>
<tr>
<td>EXESS</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>BADAK EXPANSION</td>
<td></td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>ARUN EXPANSION</td>
<td></td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>MALAYSIA</td>
<td></td>
<td>6.00</td>
<td></td>
</tr>
<tr>
<td>CANADA</td>
<td></td>
<td>2.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32.06</td>
<td>65%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>49.82</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL 49.82
HISTORY AND FORECAST OF LNG TRADE IN JAPAN

ACTUAL FORECAST

MILLIONS OF TONNES

YEARS

INAU LEU

MALAYSIA

INDONESIA (ARUN EXPANSION)

ABU DHABI

ALASKA

BRUNEI

DEMAND

AUSTRALIA
ENERGY FORECAST FOR JAPAN
(Forecast by MITI in Nov. 1983)

UNIT: 10^6 K\text{e} OIL BASE

- **1982**
 - IMPORT OIL 52.5% (240 MM K\text{e})
 - LNG 12.1%
 - COAL 17.5%
 - NUCLEAR 10.8%
 - OTHERS 7.1%

- **1990**
 - IMPORT OIL 52.5% (240 MM K\text{e})
 - LNG 12.1%
 - COAL 17.5%
 - NUCLEAR 10.8%
 - OTHERS 7.1%

- **1995**
 - IMPORT OIL 48% (250 MM K\text{e})
 - LNG 12%
 - COAL 18%
 - NUCLEAR 14%
 - OTHERS 8%
LNG SUPPLY AND DEMAND

UNIT: MILLION TON/YEAR (BASED ON MITI FORECAST)

<table>
<thead>
<tr>
<th>1982 (ACTUAL)</th>
<th>1990 (FORECAST)</th>
<th>1995 (FORECAST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNDER OPERATION AS OF 1983</td>
<td>GAP 0 – 2.52</td>
<td>GAP 3.26</td>
</tr>
<tr>
<td></td>
<td>AUSTRALIA 3.00 – 5.88</td>
<td>AUSTRALIA 5.88</td>
</tr>
<tr>
<td></td>
<td>CANADA 2.90</td>
<td>CANADA 2.90</td>
</tr>
<tr>
<td></td>
<td>MALAYSIA 6.00</td>
<td>MALAYSIA 6.00</td>
</tr>
<tr>
<td>EXCESS OTHERS 0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXCESS INDONESIA 1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INDONESIA 7.5</td>
<td>INDONESIA 3.30 (ARUN EXP.)</td>
<td>INDONESIA 7.50</td>
</tr>
<tr>
<td></td>
<td>INDONESIA 3.20 (BADAK EXP.)</td>
<td>INDONESIA 3.20 (BADAK EXP.)</td>
</tr>
<tr>
<td>EXCESS INDONESIA 0.88</td>
<td></td>
<td>EXCESS INDONESIA 0.78</td>
</tr>
<tr>
<td>INDONESIA 0.88</td>
<td></td>
<td>INDONESIA 0.78</td>
</tr>
<tr>
<td>U.A.E. 2.06</td>
<td>U.A.E. 2.06</td>
<td>U.A.E. 2.06</td>
</tr>
<tr>
<td>BRUNEI 5.14</td>
<td>BRUNEI 5.14</td>
<td>BRUNEI 5.14</td>
</tr>
<tr>
<td>ALASKA 0.96</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LNG MARKET SUMMARY

- **JAPANESE LNG MARKET IS 65% OF WORLD LNG MARKET**
- **NIC HAS MAJORITY SHARE OF THE JAPANESE LNG MARKET SINCE 1977**
- **JAPANESE MARKET IS GROWING**
 - 1983 — 17.6 MILLION TON
 - 1990 — 36.5 MILLION TON
 - 1995 — 40.0 MILLION TON
- **THERE WILL BE A DEMAND-SUPPLY GAP FROM 1990 ON**
 - AND MANY PROJECTS ARE UNDER PLANNING AND EAGER TO MARKET
 - **INDONESIA EXPANSION** (3.0–4.5)
 - SAKHALIN (3.0)
 - QATAR (6.0)
 - MALAYSIA (MIRI) (1.0–1.5)
 - SULAWESI (0.5)
 - ALASKA (NORTH SLOPE) (12.0)
 - NATUNA (6.0)
 - THAILAND (1.5–3.0)
 - NEWZEALAND (1.0)
LNG USERS
JAPANESE LNG SERVICE AREAS

- HANDLED BY NIC (INDONESIA)
- HANDLED BY NIC (CANADA)
ELECTRIC POWER COMPANIES CONSUMPTION BY TYPE IN 1990

CHUBU ELECTRIC
- HYDRO 11.0%
- OIL 33.8%
- NUCLEAR 16.3%

KANSAI ELECTRIC
- COAL 2%
- HYDRO 13%
- OIL 15%
- NUCLEAR 48%

KYUSHU ELECTRIC
- OTHERS' 3.1%
- COAL 14.1%
- HYDRO 10.1%
- OIL 11.5%
- NUCLEAR 32.7%

CHUGOKU ELECTRIC
- OTHERS (LPG) 8.3%
- COAL 26.8%
- HYDRO 10.3%
- OIL 25.6%
- NUCLEAR 20.1%

DEMAND ESTIMATE IN 1990
- CHUBU ELECTRIC: 86.5 x 10^9 kWh
- KANSAI ELECTRIC: 104.7 x 10^9 kWh
- KYUSHU ELECTRIC: 53.7 x 10^9 kWh
- CHUGOKU ELECTRIC: 43.7 x 10^9 kWh
ELECTRIC POWER COMPANIES LNG SUPPLY AND DEMAND IN 1990

(CONTRACT BASE) UNIT: MILLION TON/YEAR

6.25

AUSTRALIA 0.9

INDONESIA 1.5
(BADAK EXP.)

INDONESIA 0.55
(EXCESS)

INDONESIA 1.7
(ORIGINAL)

UNDER OPERATION
AS OF 1983

CHUBU ELECTRIC

2.87

AUSTRALIA 0.9

INDONESIA (EXCESS) 0.17

KYUSHU ELECTRIC

INDONESIA (ORIGINAL) 1.5

ČHUGOKU ELECTRIC

AUSTRALIA 0.9

1.20

INDONESIA (ORIGINAL) 1.5
GAS COMPANIES FUEL CONSUMPTION BY TYPE IN 1990

49.0 x 10^{12} \text{ Kcal}

79%

4.8 x 10^{12} \text{ Kcal}

83%

OSAKA GAS

10.5 x 10^{12} \text{ Kcal}

LNG 8.8 x 10^{12} \text{ Kcal}

TOHO GAS
GAS COMPANIES DEMAND ESTIMATE IN 1990

49 x 10^{12} \text{ Kcal}

OTHERS 8%

10.5 x 10^{12} \text{ Kcal}

OTHERS 6%

OSAKA GAS

TOHO GAS
JAPANESE LNG USERS SUMMARY

- JAPANESE LNG USERS ARE MOSTLY PUBLIC UTILITIES
 6 ELECTRIC POWER COMPANIES (OUT OF 9) AND 3 MAJOR
 GAS COMPANIES ARE RECEIVING LNG
 - ELECTRIC POWER COMPANIES — 75%
 - GAS COMPANIES — 25%

- THERE ARE INDUSTRIAL LNG USERS; MARKET IS SMALL BUT GROWING
 - NIPPON STEEL CORPORATION, WORLD LARGEST STEEL MILL,
 HAS BEEN RECEIVING LNG FROM INDONESIA THROUGH NISSHO IWAI
 - NISSHO IWAI HAS BEEN ACTIVE TO DEVELOP THIS MARKET

- JAPAN HAS BEEN RECEIVING LNG SINCE 1969, HAS BEEN HONORING
 THE CONTRACT AND IN NO CASE JAPANESE LNG BUYERS HAVE CAUSED
 TAKE OR PAY PROBLEM
• ELECTRIC COMPANIES USE LNG AS BASE LOAD FUELS WHICH DO NOT FLUCTUATE WITH THE CHANGE IN TOTAL DEMAND, WHILE OIL AS SWING FUEL.

• ELECTRIC COMPANIES ARE HIGHLY DEPENDENT ON LNG.

• GAS COMPANIES ARE SIGNIFICANTLY HIGHLY DEPENDENT ON LNG.

• NO ALTERNATIVE TO LNG, SINCE JAPAN HAS ALMOST NO DOMESTIC GAS AND OIL PRODUCTION.

• ABOVE FEATURES REQUIRE:
 • CONSTANT & STABLE SUPPLY
 • LONG TERM SUPPLY SECURITY
 • EVEN DELIVERY OVER THE YEAR
 • SAFE & RELIABLE OPERATION OF PLANT & TRANSPORTATION
NIC’S LNG PROJECTS

- FIRST INDONESIAN PROJECT
 CONTRACT QUANTITY : 7.5 MILLION TONS PER YEAR
 DELIVERY STARTED : 1977

- SECOND INDONESIAN PROJECT
 CONTRACT QUANTITY : 3.2 MILLION TONS PER YEAR
 DELIVERY STARTED : 1983

- CANADIAN PROJECT
 CONTRACT QUANTITY : 2.9 MILLION TONS PER YEAR
 DELIVERY WILL START : BEGINNING OF 1987

- NIC’S LNG BUYERS (AS OF 1983)
 ELECTRIC POWER COMPANIES
 CHUBU ELECTRIC
 KANSAI ELECTRIC
 KYUSHU ELECTRIC
 CHUGOKU ELECTRIC
 CITY GAS COMPANIES
 OSAKA GAS
 TOHO GAS
 INDUSTRIAL USE
 NIPPON STEEL

- NIC COVERS 8 LNG RECEIVING TERMINALS OUT OF TOTAL 13 TERMINALS IN JAPAN (INCLUDING “PLANNED”)
RECEIVING TERMINALS
LNG RECEIVING TERMINALS

EXISTING
PLANNED

Unit: Thousand Kt
(TANK CAPACITY)

SENBOKU 1
180

SENBOKU 2
1125

HIMEJI 1
520

SODEGAURA
1380

CHITA 1
300

TOBATA
480

CHITA-2
480

HIMEJI 2
320

YUKKAICHI
320

OHGISIMA
420

NEGISHI
680

HIGASHI-NIIGATA
520

Hokkaido

Hokuriku

Tohoku

Kansai
(Osaka Gas)

Chugoku

Kyushu

Chubu
(Toho Gas)

YAMAT
400

OTTA
320

HIMEJI 2
320

(Toho Gas)
<table>
<thead>
<tr>
<th>Terminal</th>
<th>Tank Capacity</th>
<th>Status</th>
<th>Company</th>
<th>Source</th>
<th>Quantity</th>
<th>Start of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHITA I</td>
<td>300,000 KI (75,000 x 4)</td>
<td>Operating since 1977</td>
<td>Chubu</td>
<td>Indonesia (Original)</td>
<td>1.7 MM TON/Y</td>
<td>1977.8</td>
</tr>
<tr>
<td>(A)</td>
<td></td>
<td></td>
<td>Chubu</td>
<td>Indonesia (Excess from original)</td>
<td>Apr. 0.5 MM TON/Y</td>
<td>1983.</td>
</tr>
<tr>
<td>CHITA II</td>
<td>480,000 KI (80,000 x 6)</td>
<td>4 tanks in operating since 1983.2</td>
<td>Chubu</td>
<td>Indonesia (Badak Exp)</td>
<td>1.6 MM TON/Y</td>
<td>1983.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 tanks will be in operation since 1984.3</td>
<td>Toho</td>
<td>Indonesia (Badak Exp)</td>
<td>0.5 MM TON/Y</td>
<td>1983.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toho</td>
<td>Canada</td>
<td>0.15 MM TON/Y</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chubu</td>
<td>Australia</td>
<td>0.9 MM TON/Y</td>
<td>1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Toho</td>
<td>Australia</td>
<td>0.16 MM TON/Y</td>
<td>1988</td>
</tr>
<tr>
<td>(B)</td>
<td>YOKKAICHI</td>
<td>Under Construction (site preparation started in 1982 and completed 80% of site preparation)</td>
<td>Chubu</td>
<td>Canada</td>
<td>1.6 MM TON/Y</td>
<td>1987</td>
</tr>
</tbody>
</table>
PLANT LAYOUT OF CHITA TERMINAL

Plant Layout
1 LNG Carrier Berth
2 LNG Tanks 3,000 Kt x 4 units
3 Boil off Gas Compressors
4 LNG Pumps
5 Open Rack Type Vapourizers
6 Submerged Combustion Type Vapourizers
7 Control Center
8 Administration Office
9 Seawater Pumps

LNG Tanks
80,000 Kt x 2
(Will be Operated at 1984/3)

LNG Tanks
80,000 Kt x 4
CHITA TERMINAL
CHITA TERMINAL
PLANT LAYOUT OF YOKKAICHI TERMINAL
YOKKAICHI TERMINAL
KAWAGOE POWER PLANT
(SITE)
KAWAGOE POWER PLANT

(SITE)
JAPANESE INSTITUTIONAL FINANCE

IMPORT LOAN

- JOINT FINANCING BY EXIM AND COMMERCIAL BANKS IS AVAILABLE FOR THE IMPORTERS OF VITAL RESOURCES SUCH AS PETROLEUM AND GAS;
 - ON LONG-TERM BASIS, AND
 - AT LOW INTEREST RATE.

MECHANISM

JOINT FINANCE

EXIM

COMMERCIAL BANKS

LOAN

JAPANESE IMPORTER

EXPORTER OF RESOURCES

IMPORT OF GOODS

- VITAL RESOURCES INCLUDE ENERGY, MINERAL, RAW MATERIALS AND OTHERS INCLUDING AIRCRAFT.

- BORROWER SHOULD BE JAPANESE IMPORTERS, WHO EXTEND LOAN TO FOREIGN EXPORTER IN RETURN FOR THE IMPORT OF GOODS.
APPLICATION OF IMPORT CREDITS TO THE LNG PROJECT

<table>
<thead>
<tr>
<th>PROJECT</th>
<th>QUANTITY</th>
<th>FIRST DELIVERY</th>
<th>LENDER</th>
<th>BORROWER</th>
<th>AMOUNT</th>
<th>TERM</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDONESIA (ORIGINAL)</td>
<td>1 MM TON</td>
<td>1978</td>
<td>NISSHO IWAI</td>
<td>JILCO</td>
<td></td>
<td>APPROX 10 YEARS</td>
</tr>
<tr>
<td>INDONESIA (BADAk EXP.)</td>
<td>1.2 MM TON</td>
<td>1983</td>
<td>JAPANESE LENDING VEHICLES</td>
<td>INALCO</td>
<td>PERTAMINA</td>
<td>USS 8416 MILLION</td>
</tr>
<tr>
<td>INDONESIA (ARUN.EXP.)</td>
<td>3.3 MM TON</td>
<td>1984</td>
<td>JAPANESE LENDING VEHICLES</td>
<td>INALCO</td>
<td>PERTAMINA</td>
<td>USS 8416 MILLION</td>
</tr>
<tr>
<td>CANADA</td>
<td>2.9 MM TON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>APPROX 10 YEARS</td>
</tr>
</tbody>
</table>

NOTE-1 JILCO: JAPAN INDONESIA LNG CO LTD CONSISTING OF MAINLY LNG BUYERS AND NIC
-2 INALCO: INDONESIA LNG CO LTD CONSISTING OF MAINLY LNG BUYERS
-3 JAPANESE LENDING VEHICLE WILL BE FORMED CONSISTING OF MAINLY LNG BUYERS AND NIC
-4 PROJECT ARRANGED

- NISSHO IWAI, WAS THE FRONTIER TO ARRANGE APPLICATION OF IMPORT CREDITS TO THE LNG PROJECT IN THE INDONESIAN LNG PROJECT.
FUTURE MARKET
FUTURE MARKET

- ELECTRIC POWER USE
- CITY GAS USE
- INDUSTRIAL FUEL USE
ELECTRIC POWER USE

1. FUTURE GROWTH OF LNG DEMAND FOR ELECTRIC POWER USE IS DEPENDENT ON THE GROWTH OF NUCLEAR AND COAL

- NUCLEAR AND COAL GROWTH IS DESIGNED BY MITI RATHER RAPID AND STEEP, WHICH IS TOO OPTIMISTIC WHEN WE CONSIDER PUBLIC RESISTANCE AGAINST NUCLEAR POWER AND DISPOSAL OF ASH AND RELATIVE ENVIRONMENTAL PROBLEM WHICH IS INHERENT TO COAL BURNING.

- LNG HAS PHYSICAL ADVANTAGE AGAINST NUCLEAR AND COAL (CLEANNESS, BURNING EFFICIENCY ETC.) BUT IS NOT COMPETITIVE ESPECIALLY AGAINST NUCLEAR (PRICE-WISE)

- RIGID TAKE AND/OR PAY PROVISION IS ONE OF HINDRANCE FOR HIGHER LNG GROWTH
2. TERMS AND CONDITIONS OF LNG TRADE ESPECIALLY PRICING SYSTEM AND TAKE
AND/OR PAY SHOULD BE REVIEWED FOR GREATER LNG DEMAND CREATION IN
ELECTRIC POWER USE.

3. NIC COVERS AS MANY AS 8 LNG RECEIVING TERMINALS (OUT OF TOTAL 13
EXISTING AND PLANNED) WHICH GIVES GREAT ADVANTAGE TO NIC'S LNG
PROJECT DUE TO THE FOLLOWING REASONS,

(1) LNG PROJECT USUALLY REQUIRES PLURAL BUYERS BECAUSE IT INVOLVES
HUGE INVESTMENT
(2) LNG PROJECT REQUIRES A CERTAIN SIZABLE GAS SUPPLY VOLUME
(3) FLEXIBILITY OF LNG TAKING IS AVAILABLE AMONG NIC'S BUYERS
CITY GAS USE

1. LNG IS SUPPLIED ONLY IN TOKYO (TOKYO GAS), OSAKA (OSAKA GAS) AND NAGOYA (TOHO GAS) AREA IN JAPAN (NIC IS SUPPLYING LNG BOTH TO OSAKA GAS AND TOHO GAS)

2. SOME INCREASE IN RESIDENCIAL USE IN THESE AREA IS EXPECTED.

3. INCREASE FOR INDUSTRIAL USE IN THE VICINITY OF THE ABOVE NATURAL GAS SUPPLY LOOP AREA IS ALSO EXPECTED. (HALF MILLION TONS OF LNG WAS CONSUMED IN THE ABOVE 3 AREAS IN 1982)

4. MEDIUM AND SMALL SCALE CITY GAS COMPANIES WISH TO INDUCE LNG FOR THEIR NATURAL GAS SUPPLY AREA

5. TERMS AND CONDITIONS OF LNG TRADE ESPECIALLY PRICING SYSTEM AND TAKE AND/OR PAY SHOULD BE REVIEWED FOR GREATER LNG DEMAND CREATION IN CITY GAS USE
INDUSTRIAL FUEL USE

1. JAPANESE GOVERNMENT GUIDELINE IN DECEMBER, 1980 BASED ON "OIL SUBSTITUTE ENERGY LAW" WOULD ENHANCE GROWTH OF INDUSTRIAL LNG USE. THIS GUIDELINE STIPULATES THAT INDUSTRIAL USERS WHO ARE IN A POSITION TO HAVE ACCESS TO NATURAL GAS SUPPLY BY LNG MUST TRY THEIR BEST EFFORTS TO INDUCE IT FOR THEIR FUEL PURPOSES,

IN ORDER TO ENHANCE THIS EFFORTS, GOVERNMENT ASSISTANCE FOR FINANCIAL AND TAX ASPECTS ARE ALSO PROVIDED FOR INDUSTRIAL LNG USERS.

THE ABOVE GOVERNMENTAL GUIDELINE IS BASED ON SUCH FOLLOWING REASONS;
(1) TO LESSEN DEPENDENCE ON OIL
(2) TO DIVERSIFY ENERGY SOURCES
(3) CLEANNESS OF LNG
(4) HIGH EFFICIENCY OF COMBUSTION AND EASY HANDLING OF LNG
(5) STABLE SUPPLIABILITY OF LNG
(6) ADVANTAGEOUS SUPPLY SYSTEM THROUGH EXTENSION OF PIPELINE FROM EXISTING MAJOR PIPELINE SUPPLY SYSTEM

REASONS WHICH ARE LISTED BY INDUSTRIAL USERS FOR THEIR SWITCHING MOTIVE FROM CONVENTIONAL FUEL TO LNG

DIVERSIFICATION OF FUELS 43%
STABLE SUPPLY 20%
STABLE PRICING STRUCTURE 14%
ANTI-AIRPOLLUTION ADVANTAGE 10%
HIGH EFFICIENCY OF COMBUSTION 8%
OTHERS 5% (SOURCE: IEE REPORT, 1982)
2. ONLY 3 BIG CITY AREA IN JAPAN CONSUME LNG FOR RESIDENCIAL FUEL PURPOSE, NAMELY TOKYO, NAGOYA AND OSAKA.

IN THESE AREA, THEY ARE COMPLETING VERY LARGE PIPELINE LOOPS TO COVER THE RESIDENTS IN THEIR NATURAL GAS SUPPLYING AREAS.

THE CURRENT NATURAL GAS SUPPLY TO THE INDUSTRIAL USE CUSTOMERS ARE BEING ONLY MADE BY USE OF THIS NATURAL GAS PIPELINE LOOPS, WITH ONLY ONE EXCEPTION, HAVING CONSTRUCTED RATHER SMALL SCALE PIPELINE EXTENSIONS THEREFROM. SUCH BEING THE CASE, THE CURRENT NATURAL GAS SUPPLY TO THE INDUSTRIAL USE IS RATHER LIMITED.

ONLY ONE EXCEPTION IS NIPPON STEEL CORPORATION WHO CONSUMES LNG FOR THEIR STEEL MILL PURPOSE AND THEY IMPORT LNG FROM INDONESIA THROUGH NIC'S LNG PROJECT.
3. ANALYSIS ON PROSPECTIVE MARKET

As long as economic growth is rather slow and it is also expected it would remain the same in the future, large demand creation for industrial LNG use should be made by replacement of conventional fuels by LNG. We have attached data how potential market is big when such replacement is successfully done. Based upon this assumption, we think such prospective markets as below should be looked at.

(1) CONCEIVABLE MARKETS

Demand increase in 3 big cities by the existing natural gas supply loops which are owned and operated by 3 big city companies. (Market A)

Demand increase in such areas where natural gas supply loops are not covering but are located rather near-by existing LNG receiving terminals as Kitakyushu, Yokkaichi, and Himeji etc. (Market B)

Demand increase in the industrial areas where are located rather remote both from natural gas supply loops and the existing LNG receiving terminals. This includes the areas facing Seto Inland Sea. (Market C)
(2) HOW TO APPROACH THE CONCEIVABLE MARKETS

PHYSICAL DISTRIBUTION CONSIDERATION

MARKET A — AS PRIMARY FUNCTION OF MARKETING WOULD BE MADE BY 3 BIG CITY GAS COMPANIES IN THESE MARKETS, THERE WOULD NOT BE SO SIGNIFICANT ROLE FOR NIC EXCEPT FOR MARKETING COOPERATION TO THE CITY GAS COMPANIES.

MARKET B — NATURAL GAS SUPPLY WOULD BE MADE THROUGH PIPELINES WHICH ARE TO BE CONSTRUCTED FROM EXISTING LNG RECEIVING TERMINALS.

MARKET C — NATURAL GAS SUPPLY COULD BE MADE BY THE FOLLOWING METHODS.

A. PIPELINE SUPPLY FROM THE EXISTING OR FUTURE LNG TERMINALS.
B. DIRECT IMPORT BY SMALL SCALE LNG CARRIERS.
C. DISTRIBUTION OF LNG FROM NEW RECEIVING TERMINAL BY COASTAL TANKER, PIPELINE AND LORRY ETC.
COMMERCIAL CONSIDERATION

A. CONSIDERATION ON SOME NEW PRICING CONCEPT SO THAT INDUSTRIAL LNG PRICE CAN BE COMPETITIVE AGAINST CONVENTIONAL FUELS.

B. REVIEW OF TAKE OR PAY LEVEL SO THAT INDUSTRIAL LNG CUSTOMERS CAN ENJOY SOME FLEXIBILITY OF LNG TAKING.

C. CONSIDERATION OF LENGTH OF LNG SALES CONTRACT.

D. TIE-UP WITH CITY GAS COMPANIES AND INVOLVEMENT OF A CERTAIN PARTY WHO OWN THE OPTIMUM AND ADVANTAGEOUS CANDIDATE PLACE FOR LOCAL RECEIVING TERMINAL.

E. UTILIZATION OF JAPANESE INSTITUTIONAL FINANCE FOR CONSTRUCTION OF RELATIVE FACILITIES REQUIRED IN JAPAN ESPECIALLY FOR CONSTRUCTION OF THE LOCAL RECEIVING & DISTRIBUTION TERMINAL.

(3) DEMAND FORECAST FOR INDUSTRIAL LNG USE

IT IS VERY DIFFICULT TO MAKE A PRECISE DEMAND FORECAST FOR INDUSTRIAL LNG USE, AT THIS PRESENT TIME, IN MARKET A, B, C, IN TOTAL, AND WE WOULD LIKE TO EXPLORE OUR CONCEPT MORE DEEPLY IN THE FUTURE.

BUT, WE BELIEVE THERE IS CERTAINLY FAR LARGER POTENTIAL DEMAND THAN MITI'S FORECAST WHEN WE SUCCESSFULLY EXPLORE THE MARKETS IN A, B, C, WE FURTHER BELIEVE THAT NEW LNG MARKET CAN BE CREATED WITH FIRST DELIVERY OF LNG IN 1987~1989 IN THE CASE OF MARKET B AND C.
FUEL CONSUMPTION IN WESTERN JAPAN
FOR INDUSTRIAL USE IN 1981

REMARKS:
(1) LIGHT FUEL OIL (LFO)
 UNIT: 1,000 Kt
 KEROSINE
 DIESEL OIL
 FUEL OIL A
 HEAVY FUEL OIL (HFO)
 UNIT: 1,000 Kt
 FUEL OIL B
 FUEL OIL C
 LIQUEFIED PETROLEUM GAS (LPG)
 UNIT: 1,000 MT
(2) ●: LNG RECEIVING TERMINAL
 (EXISTING & PLANNED)

ZONE 3
- LFO 444
- HFO 6420
- LPG 334

ZONE 2
- LFO 1780
- HFO 3222
- LPG 400

ZONE 1
- LFO 1818
- HFO 6249
- LPG 641
Fuel Consumption by Industrial Sector in Western Japan by Region in 1981

Source: MITI
Table: NIC

<table>
<thead>
<tr>
<th>ZONE</th>
<th>PREFECTURE</th>
<th>LIGHT FUEL OIL</th>
<th>LPG</th>
<th>HEAVY FUEL OIL</th>
<th>LNG EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>KEROSINE (KL)</td>
<td></td>
<td>FUEL OIL A (KL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DIESEL OIL (KL)</td>
<td></td>
<td>LPG (TON)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FUEL OIL B (KL)</td>
<td></td>
<td>FUEL OIL C (KL)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>OIL (KL)</td>
<td></td>
<td>LPG</td>
<td>TTL</td>
</tr>
<tr>
<td>1</td>
<td>SHIZUOKA</td>
<td>118,041</td>
<td></td>
<td>23,522</td>
<td>1,683,978</td>
</tr>
<tr>
<td></td>
<td>AICHI</td>
<td>327,836</td>
<td></td>
<td>303,204</td>
<td>1,828,180</td>
</tr>
<tr>
<td></td>
<td>MIE</td>
<td>73,624</td>
<td></td>
<td>114,320</td>
<td>1,818,688</td>
</tr>
<tr>
<td></td>
<td>S-TTL</td>
<td>1,816,948</td>
<td></td>
<td>541,048</td>
<td>5,292,711</td>
</tr>
<tr>
<td>2</td>
<td>OSAKA</td>
<td>426,084</td>
<td></td>
<td>162,413</td>
<td>919,066</td>
</tr>
<tr>
<td></td>
<td>HYOGO</td>
<td>436,477</td>
<td></td>
<td>229,589</td>
<td>1,532,642</td>
</tr>
<tr>
<td></td>
<td>WAKAYAMA</td>
<td>18,673</td>
<td></td>
<td>27,758</td>
<td>714,288</td>
</tr>
<tr>
<td></td>
<td>S-TTL</td>
<td>1,780,526</td>
<td></td>
<td>409,788</td>
<td>3,687,406</td>
</tr>
<tr>
<td>3</td>
<td>OKAYAMA</td>
<td>59,990</td>
<td></td>
<td>172,562</td>
<td>1,669,868</td>
</tr>
<tr>
<td></td>
<td>HIROSHIMA</td>
<td>51,410</td>
<td></td>
<td>43,838</td>
<td>775,251</td>
</tr>
<tr>
<td></td>
<td>YAMAGUCHI</td>
<td>61,692</td>
<td></td>
<td>113,339</td>
<td>2,660,266</td>
</tr>
<tr>
<td></td>
<td>S-TTL</td>
<td>444,811</td>
<td></td>
<td>334,729</td>
<td>4,457,166</td>
</tr>
<tr>
<td>4</td>
<td>TOKUSHIMA</td>
<td>21,856</td>
<td></td>
<td>11,261</td>
<td>1,596,483</td>
</tr>
<tr>
<td></td>
<td>KAGAVA</td>
<td>20,439</td>
<td></td>
<td>8,404</td>
<td>57,876</td>
</tr>
<tr>
<td></td>
<td>EHIME</td>
<td>17,196</td>
<td></td>
<td>8,242</td>
<td>1,653,368</td>
</tr>
<tr>
<td></td>
<td>S-TTL</td>
<td>132,939</td>
<td></td>
<td>64,306</td>
<td>1,612,627</td>
</tr>
<tr>
<td>5</td>
<td>FUKUOKA</td>
<td>143,420</td>
<td></td>
<td>112,879</td>
<td>1,398,079</td>
</tr>
<tr>
<td></td>
<td>OITA</td>
<td>64,303</td>
<td></td>
<td>67,727</td>
<td>114,448</td>
</tr>
<tr>
<td></td>
<td>S-TTL</td>
<td>336,134</td>
<td></td>
<td>127,164</td>
<td>1,612,627</td>
</tr>
<tr>
<td></td>
<td>G-TTL</td>
<td>4,299,963</td>
<td></td>
<td>1,477,012</td>
<td>17,772,814</td>
</tr>
<tr>
<td></td>
<td>LNG-equivalent</td>
<td>3,002,974</td>
<td></td>
<td>1,329,311</td>
<td>18,773,266</td>
</tr>
<tr>
<td>Terminal</td>
<td>Tank Capacity</td>
<td>Status</td>
<td>Company</td>
<td>Source</td>
<td>Quantity</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>(A) SENBOKU I</td>
<td>180,000 Kℓ (45,000 x 4)</td>
<td>Operating since 1973</td>
<td>Osaka Gas</td>
<td>Brunei</td>
<td>0.63 MM TON/Y</td>
</tr>
<tr>
<td>(B) SENBOKU II</td>
<td>975,000 Kℓ (75,000 x 13)</td>
<td>Operating since 1977.8</td>
<td>Osaka Gas</td>
<td>Indonesia (Original) Canada</td>
<td>1.3 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td>150,000 Kℓ (75,000 x 2)</td>
<td>Planned</td>
<td>Kansai Electric</td>
<td>Indonesia (Original)</td>
<td>0.7 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Indonesia (Excess) Badak</td>
<td>0.2 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8 MM TON/Y</td>
</tr>
<tr>
<td>(C) HIMEJI</td>
<td>280,000 Kℓ (80,000 x 3, 40,000 x 1)</td>
<td>Operating since 1979</td>
<td>Kansai Electric</td>
<td>Indonesia (Original) Australia</td>
<td>1.70 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td>(For Kansai 80,000 x 3)</td>
<td>Planned</td>
<td></td>
<td></td>
<td>0.9 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td>560,000 Kℓ (For Osaka 80,000 x 4)</td>
<td>Under Construction</td>
<td>Osaka Gas</td>
<td>Canada Australia</td>
<td>0.55 MM TON/Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.50 MM TON/Y</td>
</tr>
</tbody>
</table>
PLANT LAYOUT OF SENBOKU I TERMINAL

Plant Layout

Senboku I

1. LNG Carrier Berths
2. LNG Aground Tanks
3. LNG Inground Tank
4. Sapheca Tank
5. LPG Tanks (Spherical Type)
6. Benzol Gas Compressor
7. Split Rack Type Vaporizer
8. Orr FRP Type Vaporizer
9. Air Compressor
10. Air Compressor
11. Air Compressor
12. Air Compressor
13. Air Compressor
14. Air Compressor
15. Air Compressor
16. Air Compressor
17. Air Compressor
18. Air Compressor
19. Air Compressor
20. Air Compressor
21. Air Compressor
22. Air Compressor
23. Air Compressor
24. Air Compressor
25. Air Compressor
26. Air Compressor
27. Air Compressor
28. Air Compressor
29. Air Compressor
30. Air Compressor
31. Air Compressor
32. Air Compressor
33. Air Compressor
34. Air Compressor
35. Air Compressor
36. Air Compressor
37. Air Compressor
38. Air Compressor
39. Air Compressor
40. Air Compressor
41. Air Compressor
42. Air Compressor
43. Air Compressor
44. Air Compressor
45. Air Compressor
46. Air Compressor
47. Air Compressor
48. Air Compressor
49. Air Compressor
50. Air Compressor
51. Air Compressor
52. Air Compressor
53. Air Compressor
54. Air Compressor
55. Air Compressor
56. Air Compressor
57. Air Compressor
58. Air Compressor
59. Air Compressor
60. Air Compressor
61. Air Compressor
62. Air Compressor
63. Air Compressor
64. Air Compressor
65. Air Compressor
66. Air Compressor
67. Air Compressor
68. Air Compressor
69. Air Compressor
70. Air Compressor
71. Air Compressor
72. Air Compressor
73. Air Compressor
74. Air Compressor
75. Air Compressor
76. Air Compressor
77. Air Compressor
78. Air Compressor
79. Air Compressor
80. Air Compressor
81. Air Compressor
82. Air Compressor
83. Air Compressor
84. Air Compressor
85. Air Compressor
86. Air Compressor
87. Air Compressor
88. Air Compressor
89. Air Compressor
90. Air Compressor
91. Air Compressor
92. Air Compressor
93. Air Compressor
94. Air Compressor
95. Air Compressor
96. Air Compressor
97. Air Compressor
98. Air Compressor
99. Air Compressor
100. Air Compressor
101. Air Compressor
102. Air Compressor
103. Air Compressor
104. Air Compressor
105. Air Compressor
106. Air Compressor
107. Air Compressor
108. Air Compressor
109. Air Compressor
110. Air Compressor
111. Air Compressor
112. Air Compressor
113. Air Compressor
114. Air Compressor
115. Air Compressor
116. Air Compressor
117. Air Compressor
118. Air Compressor
119. Air Compressor
120. Air Compressor
121. Air Compressor
122. Air Compressor
123. Air Compressor
124. Air Compressor
125. Air Compressor
126. Air Compressor
127. Air Compressor
128. Air Compressor
129. Air Compressor
130. Air Compressor
131. Air Compressor
132. Air Compressor
133. Air Compressor
134. Air Compressor
135. Air Compressor
136. Air Compressor
137. Air Compressor
138. Air Compressor
139. Air Compressor
140. Air Compressor
141. Air Compressor
142. Air Compressor
143. Air Compressor
144. Air Compressor
145. Air Compressor
146. Air Compressor
147. Air Compressor
148. Air Compressor
149. Air Compressor
150. Air Compressor
151. Air Compressor
152. Air Compressor
153. Air Compressor
154. Air Compressor
155. Air Compressor
156. Air Compressor
157. Air Compressor
158. Air Compressor
159. Air Compressor
160. Air Compressor
161. Air Compressor
162. Air Compressor
163. Air Compressor
164. Air Compressor
165. Air Compressor
166. Air Compressor
167. Air Compressor
168. Air Compressor
169. Air Compressor
170. Air Compressor
171. Air Compressor
172. Air Compressor
173. Air Compressor
174. Air Compressor
175. Air Compressor
176. Air Compressor
177. Air Compressor
178. Air Compressor
179. Air Compressor
180. Air Compressor
181. Air Compressor
182. Air Compressor
183. Air Compressor
184. Air Compressor
185. Air Compressor
186. Air Compressor
187. Air Compressor
188. Air Compressor
189. Air Compressor
190. Air Compressor
191. Air Compressor
192. Air Compressor
193. Air Compressor
194. Air Compressor
195. Air Compressor
196. Air Compressor
197. Air Compressor
198. Air Compressor
199. Air Compressor
200. Air Compressor
201. Air Compressor
202. Air Compressor
203. Air Compressor
204. Air Compressor
205. Air Compressor
206. Air Compressor
207. Air Compressor
208. Air Compressor
209. Air Compressor
210. Air Compressor
211. Air Compressor
212. Air Compressor
213. Air Compressor
214. Air Compressor
215. Air Compressor
216. Air Compressor
217. Air Compressor
218. Air Compressor
219. Air Compressor
220. Air Compressor
221. Air Compressor
222. Air Compressor
223. Air Compressor
224. Air Compressor
225. Air Compressor
226. Air Compressor
227. Air Compressor
228. Air Compressor
229. Air Compressor
230. Air Compressor
231. Air Compressor
232. Air Compressor
233. Air Compressor
234. Air Compressor
235. Air Compressor
236. Air Compressor
237. Air Compressor
238. Air Compressor
239. Air Compressor
240. Air Compressor
241. Air Compressor
242. Air Compressor
243. Air Compressor
244. Air Compressor
245. Air Compressor
246. Air Compressor
247. Air Compressor
248. Air Compressor
249. Air Compressor
250. Air Compressor
251. Air Compressor
252. Air Compressor
253. Air Compressor
254. Air Compressor
255. Air Compressor
256. Air Compressor
257. Air Compressor
258. Air Compressor
259. Air Compressor
260. Air Compressor
261. Air Compressor
262. Air Compressor
263. Air Compressor
264. Air Compressor
265. Air Compressor
266. Air Compressor
267. Air Compressor
268. Air Compressor
269. Air Compressor
270. Air Compressor
271. Air Compressor
272. Air Compressor
273. Air Compressor
274. Air Compressor
275. Air Compressor
276. Air Compressor
277. Air Compressor
278. Air Compressor
279. Air Compressor
280. Air Compressor
281. Air Compressor
PLANT LAYOUT OF SENBOKU II TERMINAL

Plant Layout

Senboku II

1. FMC Container Berth
2. Barge Berth
3. FNL Aboveground Lavor
4. LPG Tanks (Spherical Type)
5. Load Off Gas Compressors
6. Open Rack Type Vaporizers
7. OG-TRI EX Type Vaporizers
8. OG-TRI EX Type Vaporizers
9. Control Valve Adiabatic Unit
10. Boiler
11. Administration Office, Control Center
12. Guest House
13. Seawater Pumps
14. Warehouse, Maintenance Area
15. Coal Utilization Plant
SENBOKU II TERMINAL
PLANT LAYOUT OF HIMEJI TERMINAL

Plant Layout
Kansai Electric Power
1 LNG Carrier Bunk
2 LNG Tanks
3 Ballast Gas Compressor
4 Open Rack Type Saponifier
5 Seawater Pump
6 Control Center, Office

Osaka Gas
1 LNG Carrier Bunk
2 LNG Tanks
3 Ballast Gas Compressor
4 Saponifier
5 Seawater Pump
6 Control Center, Office
7 LPG Tanks
8 LPG Tanks (Piped to LPG Tank)
9 Calibration Valve After LPG Tank
10 Boiler
11 Workshop, Maintenance, etc.

Cold Utilization Plant
12 Air Preparation Unit
13 Cryogenic Utilizing
HIMEJI TERMINAL
THE CHUGOKU ELECTRIC POWER CO., INC.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Tank Capacity</th>
<th>Status</th>
<th>Company</th>
<th>Source</th>
<th>Quantity</th>
<th>Start of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>YANAI</td>
<td>560,000 Kℓ (80,000 x 7)</td>
<td>Settled agreement with fishermen for reclamation/under regulatory process</td>
<td>Chugoku Electric</td>
<td>Canada</td>
<td>0.3 MM TON/Y</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Australia</td>
<td>0.9 MM TON/Y</td>
<td>1988</td>
</tr>
</tbody>
</table>
PLANT LAYOUT OF YANAI TERMINAL
<table>
<thead>
<tr>
<th>Terminal</th>
<th>Tank Capacity</th>
<th>Status</th>
<th>Company</th>
<th>Source</th>
<th>Quantity</th>
<th>Start of Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOBATA</td>
<td>360,000 Kℓ (60,000 x 6)</td>
<td>Operating since 1977</td>
<td>Kyushu Electric</td>
<td>Indonesia (Original)</td>
<td>1.5 MM TON/Y</td>
<td>1977.7</td>
</tr>
<tr>
<td></td>
<td>120,000 Kℓ (60,000 x 2)</td>
<td></td>
<td></td>
<td>Indonesia (Excess from Original)</td>
<td>0.1 MM TON/Y</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nippon Steel</td>
<td>Indonesia (Original)</td>
<td>0.6 MM TON/Y</td>
<td>1977.9</td>
</tr>
<tr>
<td>OITA</td>
<td>400,000 Kℓ (80,000 x 5)</td>
<td>Completed Regulatory Processes for Construction</td>
<td>Kyushu Electric</td>
<td>Canada</td>
<td>0.3 MM TON/Y</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Australia</td>
<td>0.9 MM TON/Y</td>
<td>1988</td>
</tr>
</tbody>
</table>
PLANT LAYOUT OF TOBATA TERMINAL
TOBATA TERMINAL
OITA TERMINAL
OITA TERMINAL
FINANCE