
by Bruce M. Barrect
Alaska Department of Eish and Game
Divisfon of Comercial Fisheries
Anchorage, Alaska Anchorage, Alaska

TK
1425
.58
423
no. 1612
D. VINCENT-LANG

OAYORD

Figures
1 . Devil Canyon in reference to the Susitna River watershed and northern Cook Inlet, Devil's Canyon Project, 1974.
2 Fishwheel located off the east bank of the Susitna River, Devil's Canyon Project, 1974.
3 Kap of the area encompassed in the Devil's Canyon study on the upper Susitna River, Devil's Canyon Project, 1974.
4 Average hourly cerch by species per day of east bank fishwieel operation at the Devil Canyon Eisiwheel camp, Devil's Canyon Project, 1974.
5 Refarence map of the dowstream recovery areas for salmon tagged at the Devil Canyon Fisinheel camp, Devil's Canyon Project, 1974.
Length frequency of the chum salmon catch from the east and west bank fishwheels, Devil's Canyon Froject, 1974.
Lengch frequency of the coho salmon catch from the east and west bank fisiwheels, Devil's Canyon Project, 1974.
8. Chum salmon escapement surveys of live Individuals in Sloughs No. 9, No. 11, No. 17, No. 20 and No. 21, Devil's Canyon Projeet, 1974.
Plik and Chum salmon escapement surveys of live individuals In Indian River, Fourth July Creek and Lane Creek, Devil's Canyon Iroject, 1974.
Profile of the Susitna River water temperatures recorded daily at six hour intervals with a Ryan Themograph, at Gold Creek and Devil Canyon fishwheel canp, Devil's Canyon ProJect, 1974.
11 Profile of water and afr temperatures recozded daily (1800 hours) at the eass bank fishwheel camp, Devil's Canyon Project, 1974.

1 East bank fishwheel catch of salmon iy species from July 23 through Seprember 11, Devil's Canyon Project, 1974.

2 West bank fishwheel catch of salmon by species from July 23 through September 8, Devil's Canyon Project, 1974.

3 Number of marked isish subulttad into the populations at the fishwheel camp and the number of cagged to uncagged fish observed on the spawning grounds with the resultant population estinates, Devil's Canyon Project, 1974.

4 Record of tagged salmon recovered below the Devil's Canyon fishwheel camp, Devil's Canyon Project, 1974.

Age and length samples of king salmon fry collected at Slough No. 3 and Chase Creek, Devil's Clanyon Project, 1974.

Peak chum, pink, coio and sockeye salmon escapement survey counts, Devil's Canyon Project, 1974.

Analysis of chum salmon age and length data by percent from escapement samples collected at Slough No. 9, Slough No. 20 , Slough No. 21, Indian River, Portage Creek and Fourth July Creek, Devil's Canyon Project, 1974.
Table Page
14 Analysis of coho salmon age and length dara by percent from 27 escapement samples collected ar Chase Creek, Whiskers Creek and Fourch July Creek, Devil's Canyon Project, 1974.
15 Analysis of sockeye sainon age and length data by percent 27 from escapement samples collected at Slougin No. 11 and Slougi No. 21, Devil's Canyon Paject, 1974.
16 Climatological observations at the Eishwheel camp, Devil's 29 Canyon Project, 1974.
Figure Page
1 Map of Slough No. 5 as composed on August 16, 1974. 43
Map of Slough No. 6 as composed on August 16, 1974. 44
Map of Slough No. 7 as composed on August 16, 1974. 45
Map of Slough No. 8 as composed on August $28,1974$. 46
Map of Slough No. 9 as composed on August 16, 1974. 47
Map of Slough No. 10 as composed on August 21, 1974. 48
Map of Sloughs No. 11, No. 12 and No. 13 as composed 49on August 9, 1974.
8 Map of Slough No. 14 as composed on August 30, 1974. 509
Map of Slough No. 15 as composed on August 5, 1974. 51
Map of Slough No. 16 as composed on August 16, 1974. 52
Map of Slough No. 17 as composed on fugust 8, 1974. 53
Map of Slough No. 19 as composed on August 21, 1974. 54
Map of Slough No. 20 as composed on August $21,1974$. 55
Map of Slough No. 21 as composed on September 24, 1974. 56
Table page
1 Number of live tagged and untagged fish by spectes observed 36-37during escapement surveys, Devil's Canyon Project, 1974.2 Escapement survey counts conducted on Sloughs No. 1, No. 2,38No. 3, No. 4, No. 5, No. 6, No. 7, and No. 8, Devil's CanyonProject, 1974.3 Escapement survey counts conducted on Sloughs No. ©, No. 10,No. 11, and No. 12, Devil's Canyon Project, 1974.
4 Escapement survey counts conducted on Sloughs No. 13, No. 14,No. 15, No. 16, No. 17 and No. 18, Devil's Canyon Project, 1974.
Escapement survey counts conducted on Sloughs No. 19, No. 20,and No. 21, Devil's Canyon Project, 1974.6 Escapement survey counts conducted on Indian River, Fourth42July Creek, Jack Long Creek, Porrage Creek, Lane Creek, andChase Creek, Devil's. Canyon Rroject, 1974.

The Susitna River watershed, located in she northern sector of the Cook Inlet basin, encompasses an area exceeding 19,000 square miles. Its fishery resources contribute a major proportion of the Cook Inlet comercial salmon harvest and provide a recreational base of sport fishing for Anchorage and the suriounding area. The Susitna River, of glacial origin in the Alaska =ange, is a migrational cortidor for the five species of Dacific salnon from Devil Canyon to its point of discinarge into Cook Inlet (Eigure l). The primary spaning and rearing areas are the clear water lakes and streams in the watershed.

Anticipated populaton development in southcentral Alasika has stinulated Interest in harnessing hydropower for electrical energy. The Corps of Engineers has proposed a dam for Devil Canyon at a site located approximately tihree miles above Portage Creek, the northern most salmon rearing and spawning strean of the Susfina wacershei.

Recent information is not avallable on the extent of salmon utilizing the Susitna River and its tributaries between Devil Canyon and ies confiuence with the Chulitna River. Fleld investigations conducted by the Fish and wildife Service in 1956 document the presence of salmon in the Susitna River and in four tributary streams between Gold Creek and the proposed damsite (Anonymous, 1957). Anadromous species were not found to range above Devil Canyon. To obtain information pertinent toward assessing the fmpact of a hydroelectric complex at Devil Canyon, on anadromous fish habitat in the upper Susitha River between the proposed site and•the Chulitna River, an inventory program was initiated in 1974 to

Anonymous

1957 Progress Report, 1956 Field Investigations Devii Canyon Damsite, Susitna River Easin. U.S. Fish and Wildijfe Service, Juneau, Alaska, ISpp.

$-$
Figure l. Devil Canyon in reference to the Susitna River watershed and northern Cook Inlet, Devil's Canyon Project, 1974.

Figure 3. Map of the area encompassed in the Devil's Canyon study on the upper Susitna River, Devil's Canyon Project, 1974.
fatigue in the axles resulting Erom inferfor arc welcs and river debris. The east and west bank wheels were operated ar approxiaately 2.25 and 2.5 zevo:wutions per minute, respectively. Due to unpredictable fluctuations in river level, the wheels were Eished within 2 feet of the river bottom. Each wheel was equipped rith a 30 foot onshore lead angled approximately 45 degrees out frow the downtreaw end of the floats. The west bank fishwheel was operated at the end of a slack water section of the river channe 1 , and the east bank wheel ias fished at the cerminus of an eddy. Both Eishwneels ware positioned out Erom the banks by 20-30 foot spruce logs.

Fishwheel catches were recorded by species and salmon were tagged just below their dorsal fins with color and number coded 1 inch diameter Peterson discs. Buffer discs were also applied. Age-length-sex data were collected for all species with the exception of pinic salmor. After salmpling, the fish were imediately released.
m A straam survey camp was established August 1 and maintained through September 27 at the mouth of Gold Creek approximately 15 miles below the proposed Devil Canyon damsite. During the month of August and September aerial, boat, and foot reconnaissance surveys were undertaken to denote spawaing and rearing areas between the canyon and the confluence of the Chulitna and the Susitna Rivers. Tributary streams and sloughs were surveyed for adult spawners. Sloughs were also surveyed for rearing fry. Spawning areas were usually surveyed weekly, but occasionally unfavorable weather prohibited boat travel or afforded substandard survey conditions, thus zegating the maintenance of a strict susvey schedule. The two man crew stationed at the fishwheel camp surveyed the section of the Susitma River from the comunity of Chase to the Chulitna River.

Escafement strveys were conducred by a two man team; one individual enumeraned live spamers winle the sacond man counted carcasses. Tagged fish ware zecorded by tag color and when visibility conditions pernitzed, also by tag number. Seining, rod and reel, dip netting, and a uinimum of gill netting was conducted during these surveys to obtain representative age, length and ser composition samples of escapement. Seining was the preferred method employed on the streams and dip metting in the sloughs. AII individuals captured with tine exception of pink salmon, were scale sampled, measured (mid-eye to fork of tail) to the nearest milimeter, and sexed. The Eish were fin clipped to avoid resampling. Sloughs were surveyed in their entirety. Index markers representing survey termination points were established on the streams at distances usually one aalf mile upstream From their confluences with the Susitna River. Total stream escapement monitoring was not achieved due to manpower restrictions. Water and air temperatures were recorded during each survey, and water discharge data ware taken with a flow rod. While all adule and fry surveys were conducted by foot, a wide beamed sixteen-foot river boat, powered by a 40hp. outboard was employed for traveling between survey areas on the Susitna River. A similar craft was used to service the Eishwheels. Logistic support to the field stations was accomplished by afrcraft and raflroad.

Rearing fry investigatĩons were conducted in the sloughs; records were kepe on the number of fry observed, and when practical, a 15 foot minnow seine was fished to obtain fry identification samples. A portion of the salmon fry catch was sampled for species age and length (tip of snout to fork of tall) eveposition.

Climatological observacions were recorded daily at the fishwheel cemp. The weather factors monitored included air and water cemperatures, relative water level and general amospheric conditions. A Ryan thermograph was operared from

September 2 through 7 co monitor the lower Susitna River water temperatures ar the fishwheel camp. A sacond thermograph was utilized upriver during the same period near the Gold Creek survey camp.

The European formula, denoring age by number of winters spent in Eresiwa:er followed by a decimal point and zumber of winters reared in saltwater, is used for recordigg age data in this report.

RESULTS

Migrational Invescigations

A total of 1,015 salmon (Oncorbyncins sp.), were caught during the period July 23 through September 11 in the two fishwheels. This total included 160 pink (0. goriuscha), 568 chum (0. keí), 244 coho (0 . kisuich). 39 sockeye (0. nerka), and 4 king salmon (0 . tschoulytscha). Approximately 92 percent of the total sample was caught in the east banle ftsbwhent. Tables 1 and 2 represent the species catch by date, for the east and west bank fishwheels, respectively. Comparison of catch by date between the two wheels indicates that a minor proportion of the fish migration occurred along the west bank of the river ar the west bank fishwheel site. A graph of the mean hourly catch by day at the east bank fisinheel is presented in Figure 4. Approximately 76 percent of the pink salmon migzation occurred in the seven day period of July 30 through August 5. The chum salmon migration peaked on August 12 when 10.9 percent of the tothal catch occurred; approximately 45 percent of the total chum catch was ootained during the period of August 11 through 17 . The daily catch rate of coho salmon at the Eishwheel camp was zelatively stable compared to that of the pink or chum salmon; approximazeiy 52 percent of the coho catch occurred during the period of August 12 through August 24. Sockeye salmon catches were =elatively low. Ten of the 39 sockeye salmon caught were capturad in the east jank Fishwheel on August 15 and 16 . The
 Project, 1974.

Table
2. West bank fishwheel catch of saimon by soecies from july 23 through Sentamber 8, Jevil's Canyon Project, 1974.

Figure 1. Averane hourly catch by species per day of east bank fishwheel operation at the Devil Canyon fishwheel camp, Devil's Canyon Project, 1974.

```
king salmon migration occutred prior to tine installation or the Eishwhemis and
onif four menbers of the species ware captured at the camp.
The Petersen mark and recapture formula was used to obtain esimazes of the pink, chum and sockeye salmon populations migrating in the Susitna River at tie fishwheel camp (Table 3). The pecarsen and confidence limit formulas and tie population estimates with 95 percent confidence limits are:
\[
N=\frac{m}{r} c \quad \pm \sqrt{\frac{(N-m)(N-c)}{m c(N-1)}}
\]
```


where:

```
\(N=\) estimate of the populacion
\(m=\) number of fisi tagged in the population
\(c=\) number of fish sampled
\(r=\) uumber of tagged fish sampled
\begin{tabular}{lr} 
Chum & \(24,286 \pm 2,602\) \\
Pink & \(5,252 \pm 998\) \\
Sockeye & \(1,008 \pm 224\)
\end{tabular}
Insufficient numbers of spawning coho salmon were observed to obtain a credible estimate of the population. The limited data suggests the coho population ranged from 4,000 to 9,000 Itsh.
These estimares were based upon cummiarive escapement survey data, on the number of live untagged to live tagged spawners in the sloughs and index aress of the streams, collected under "fair, good, or excellent" survey condicions as judged by the survey crew (Appendix Table 1). Tag loss and tagging induced mortality, not considered in computing the estimates, wouid reduce by direct proportion the population estimates. However, since spawning ground surveys revealed no tag scared fish and tags removed from carcasses usually required pliers, tag loss was probably minimal. In addition, tagging induced mortali上y was also probably minimal due to the capture and mark procedures used and the
```

usual robustness of adult salmon during thelr Einal migrarion to spawning zrouncs. Thus, while some positive bias would be incroduced by not including adjustants for these two factors, it is unlikely that the bias would be significanc fron a practical viewpoint.

Table 3. Number of marked fish submiteed into the populations and the mumber of tagged to untagged Eish observed on the spawning grounds with the resultant population estimates, Devil's Canyon Project, 1974.

Species	```Number Fish Tagged (m) (F1shwineel)```	Number Fish Sampled (live counts)			Population Estimates (N)
		Untagged	Tagged (r)	Total (c)	
Chum	568	3090	74	3164	24,286
Pink	160	732	23	755	5,252
Sockeye	39	322	- 13	336	1,008
Coho	244	130	5	135	~

The population estimates do not zeflect spawning ground densities above the fishwheel camp, but rather only the populations that were susceptible to capture at the fisinheel sites. Significant tag returns by sportsmen fishing below the camp in conjunction with visual sightings of tagged fish by Deparcment biologists surveying salmon index areas south of Talkeetna, indicate that a proportion of the salmon tagged were not destined to spawn above the fishwheel camp but rather below it (Tajle 4 and Figure 5). The practical implications are: (1) eithe some marked fish tended to become disoriented die to disruption associated with the capture-tagging process and proceeded to migrate downstream finally spawning in a place different frrom their homestream, (2) both marked and unmarked fish

Table 4. Record of tecced salman racovare: belo: the Devil's Caryon fishwhes camp, Devil's Canyon Project, 1974.

passing the tagging sita were not all destined for spawning areas upstresm of the site and some later migzated downstran to spawn in areas below the size or (3) some combination of these two situations. In any case the result is that tine population estiㄱates would be over-estimates of actual spawning abcve the tagging site. In the case of (1) above, the population estimates would also be over-estimates of the umber of fish migrating past the site.

Chum salmon age samples collected at the fishwheel camp depict the escapement as being composed primarily of 3 and 4 year old fish (Table 5). Approxiwately 43 percent of the chum saimon were produced from the 1971 parent year stock. The sex ratio was 1 female to 1.6 males.

Escapoment sampling of coho salmon revealed that the prominent age class of the migrants was 2.1 or 4 year old fish from 1970 brood year, and tine sex composicion was 1 female to 1.1 males (Table 6).

Length frequency distributions are given in Figures 6 and 7 for chum and T coho salmon catches at the fishwheel camp. Chum salmon averaged 584.0 millimeters in length and similarly coho 516.3 millipeters.

Sockeye salmon sampled Erom the fishwheel catches were produced Erom the 1969 through 1971 parent year (Table 7). Approximately one third of the sockeye had wintered one year in fresh water and two winters in the ocean prior to their returns as adults to the spawning grounds. Precocious maies (1.1 age) conprised 29.6 percent of the sample. The sex composition was 3 females to 1 male. Rearing Fry and Escapement Investigations

On survevs conducted to locate potential salmon rearing and spawning sloughs on the Susitna River between Portage Croek and the Chulitna River, 21 slougis were found (Figure 3). Rearing fish were observed in all 21 of chese back water aroas. Adult salmon were present in nine of the 21 sloughs surveyed.

Table 5. Analysis of chum samon a an and sex data by percent fmm estabenent

Table 6. Analysis of coho salmon age and sex data by cercent from escapenent samples collected at the fishwheel camp, Devil's Canyon Project, 1974.

$\begin{gathered} \text { Year } \\ \text { of } \\ \text { Return } \\ \hline \end{gathered}$	Age Class			Brood Year		Samole Size
	1.7	2.0	2.1	1970	1971	
1974	Percent 19.4	0.8	79.8	79.8	20.2	100.3
	Number 25	I	103	103	26	129

	Sex Ratio		Sample
	Male	Female	Size
Percent	52.5	47.5	100.0
Number	138	125	263

Table 7. Anelysis of sockaye salmon age and sex data by percent from escaoement samples collected at the fishwheel camp, Devil's Canyon froject, 1974.

Figure 6. Length frequency of the chum salmon catch from the east and west bank fishwheels, Devil's Canyon Project, 1974.

Figure 7. Length frequency of the coho salmon catch from the

Appendix Tables 2-5 sumarize the rearing fry and aduit salmon densicies observed in each of tiese slougis.

Coho fry populations were soted in 12 of the 21 sloughs surveyed and the fry aged from seven of these were produced exclusiveiy from the 1973 parent stock (0.0 age). Samples collected in Sloughs No. 3, No. 4, No. 5 and No. 6 were comprised of both 0.0 age and 1.0 age coho Ery (Table 8).

Sockeye fry samples were collected in Sloughs No. 3 and No. 5 ; these Eish were produced from the 1973 brood stock (Table 9). King salmon fry of the 0.0 age class were obtained only from Slough No. 3 and were produced from the 1973 parent year (Table 11).

Fry sampling were conducted on Chase, Lane and Whiskers Creeks. Coho fry were found in all three creeks. King and sockeye fry were also found in Chase Creek; the results are presented in Tables 9-11.

Chm salmon spawning occurred in Sloughs No. 6, No. 9, No. 11, No. 14, No. 16, No. 17, No. 19, No. 20 and ko. 21. Spawning densities exceeded 100 fish in three of these sloughs (No. 9. No. 20 and No. 21). The peak chum salmon spawning period occurred during the first three weeks of September (Figure 8).

Sockeye salmon were observed comspawning with chums in Sloughs No. 9, No. 11, No. 19 and No. 21. The highest density of sockeye spawners occurred in Slough No. 11 with 79 recorded on Seprember 22. Sockeye spawning extanded from the second week of August through the month of September.

Escapement survey counts conducted in the clear water tributary streams do not reflect the total number of spawning saimon in these streams, but only the population density by species within the index areas (Appendix Tabie 5). On Fourth July Creek and Lane Creek salmon spawning was not considered signíicant above the index markers as the bulk of spawning occurred well below these marisers.
(
Table 8. Age and lenoth samples of coho salmon fry collected at Slounhs No.1, No.3, Ho.5, No.6, No.9, No. 10 , No.15, No. 16 No.17. and No.20, Devil's Canyon Project; 1974.

Slough No.	Date	SampleSize	0.0 Ane Class			1.0 Ane Class		
			Percent Composition	$\begin{aligned} & \text { Hean } \\ & \text { Length (awi) } \end{aligned}$	Standard Deviation	Percent Compusition	Length (unu)	Standard Deviation
3	8/18	8	0.0			100.0	97.1	9.2
	$9 / 2$	8	87.5	54.6	4.2	12.5	105.	-
4	8/21	8	12.5	53.0	-	87.5	106.7	5.2
5	9/5	6	66.7	61.2	2.7	33.3	96.5	12.0
6	9/9	18	83.3	59.1	4.6	16.7	83.3	7.5
9	8/9	8	100.0	56.1	4.2	0.0		
10	8/16	4	100.0	59.7	5.7	0.0		
	$8 / 19$	4	100.0	58.5	0.5	0.0		
	8/21	8	100.0	63.5	2.7	0.0		
14	8/6	4	100.0	52.5	5.3	0.0		
	8/30	8	100.0	59.2	4.7	0.0		.
15	8/8	8	100.0	49.4	2,8	0.0		
	8/19	8	100.0	50.6	3,3	0.0		
16	8/7	8	100.0	42.1	3.3	0.0		
	8/19	8	100.0	53.9	4.0	0.0		
17	8/8	8	100.0	49.9	4.1	0.0		
	$8 / 21$	8	100.0	57.1	4.3	0.0		
20	$8 / 2$	8	100.0	55.7	6.6	0.0		
	8/8	8	100.0	55.9	4.5	0.0		

Tayre 9. Nge and length samples of sockeye salmon, fry collected at Slough No. 3, Slough Ho. 5 and Che e Creek;
Devil's Canyon Project, 1974.

Area Surveyed	Date	Sample stze	0.0 Age Class			
			Percent Composition	$\text { Lenoth }(\mathrm{nm})$	Standard Deviation	
Slough No. 3	8/22	2	100.0	60.5	0.7	
	9/2	8	100.0	61.7	4.3	
Slough No. 5	9/5	8	100.0	54.9	7.3	
Chase Cr.	$\begin{array}{r} 8 / 21 \\ 8 / 31 \\ \hline \end{array}$	1	$\begin{aligned} & 100.0 \\ & 100.0 \end{aligned}$	58. 57.5	6.4	

Table 10. Age and length samples of coho salmon fry collected at Chase, Lane and Hhiskers Creeks, Devil's Canyon Project, 1974.

Area Surveyed	Date	Sample Size	$\cdots 0.0$ noe Cyass			1.0Age Class		
			Percent Composition	Length (nuw)	5 tandard Deviation	Percunt Conmosition	$\begin{aligned} & \text { Mean } \\ & \text { Length (mu) } \end{aligned}$	Stancard Deviation
Chase Cr.	8/16	10	100.0	68.8	10.5	0.0		
	8/31	10	90.0	63.1	8.6	10.0	125.0	
Lane Cr.	8/28	1	100.0	50.0	-	0.0		
Whiskers Cr.	8/5	26	100.0	51.8	6.8	0.0		
	8/2	3	100.0	56.6	3.7	0.0		
	8/30	5	100.0	55.1	6.9	0.0		
	9/7	8	100.0	59.0	4.0	0.0		

Table 11. Age and length samples of king salmon fry collected at Slough No. 3 and Chase Creek, Devil's Canyon Project, 1974.

「igure 8. Chum salmon escapement surveys of live individats in stourhs :10. 9, Ho. 11, :10. 17, Mo. 20, and No. 21, Devil's Canyon Project, 1974.

Pink salmon were found in Indian River, Fourth July, Lane, Porrage and Gole Creeks. $1 /$ The aajor peak of pink salmon spawning occurred during the first three weeks of Auguse (Figure 9). Chum salmon also spamed in these streams with the exception of Lane and Gold Creeks. Chum spawning occurred primarily during the last two weeks of August and the first three weeks of September.

Coho salmon spawned in Indian River, Fourth July, Portage, Whiskers and Chase Creeks. Escapement survey data suggests the peak oin spawring occurred during the first two weeks of Seprember.

Surveyors did not observe sockeye salmon spawning in any of the tributary streams although one unspawned carcass was Eound on Chase Creek. Local resi-. dents report that sockeye spawn in Chase Lake located approximately one quarter mile above the index area.

The peak survey councs of pink, chum, coho and sockeye saimon in the slougis and within the index azeas of the streans are presented in Table iz. Jased upon chese raw data, the minimum population of salmon by species spawning, in the Susitna River watershed between Portage Creek and the Chulitna River, is as. follows:

Pink Salmon	1,036
Chum Salmon	2,753
Coho Salmon	307
Sockeye Salmon	104

The peak stream index counts presented in Teble 12 do nor represent the absolute saimon abundance $1 n$ these streams, but only a portion of their peak abundance levels. The author suggests that major spawning occurs well above the Index markers on Indian River and Portage Creek, and contends that the index marker on the latter stream may represent less than 20 percent of the streans optimum spawning area.

1/ One spawned pink salmon was observed August 16, in Gold Creek, 100 yards ajove its confluence with Susitna River. Local residents reported that 16 pinks were spawing in the canyon of Gold Creek, during the first week of August.

3
Figure 9. Pink and chum salmon escapement surveys of live individuals in Indian River, Fourth July Creek, and Lane Creek, Devil's Canyon Project, 1974.

Table 12. Peak chum, pink, coho and sockeye salmon escapenent survey counts, Devil's Canyon Project, 1974.

Area Surveyed	Date	Density		
		Live	Dead	Total
Indian R.	8/19	483	94	577
Fourth July Cr.	8/16	133	26	159
Portage Cr.	8/18	103	35	218
Lane Cr.	8/9	81	1	82
	Total	800	156	1,036

Sockeye Salmon Surveys

Area Surveyed	Date			Density		
Live	Dead	Total				
Slough No.9	$9 / 5812$	8	0	8		
Slough No.11	$9 / 22$	79	0	79		
Slough No.19	$8 / 21$	3	0	3		
Slough No.21	$9 / 18$	13	0	13		
Chase Cr.	$8 / 16821$	0	1	1		
	Total	103	1	104		

Area Surveyed	Date	Density		
		Live	Dead	Total
Slough :lo. 6	8/28	1	0	1
Slough Ho.9	9/5	466	45	511
Slough Ho. 11	9/17	19	14	33
Slough Ho. 14	8/30	2	0	2
Slough Mo. 16	8/19830	2	0	2
Slough No. 17	9/13	12	12	24
Slough No. 19	9/24	0	4	4
Slough No. 20	9/5	101	6	107
5 lough No. 21	9/18	205	463	668
Sub	Total	808	511	1352
Indian R.	9/10	182	349	531
Fourth July Cr.	9/11	300	294	591
Portage Cr.	8/10	265	11	276
	Total	1555	1198	275.3

Chum salmon aged from escapement samples collected on the spawniag gaouncis were approximarely 36 percent tinee and four year old fish produced from the 1970 and 1971 parent stocks. A summary of the age and length dace collected by stream and slough are outlined in Table 13.

Age samples obtained from coho salmon spawning in the tributary streams infer that the escapement was predominancly four year old fish (2.1 age) Erom the .2970 brood year. Table 14 presents a sumary of the coino salmon age and length data collected by stream. Sociceye salmon age data were collected in Sloughs No. 11 and No. 12 , the results are sumarized in Table 15. A majority (64. 3 percent) of the sockeye had spent one winter in fresh water and two winters in the ocean prior to their return as adults from the 1970 brood year.

Individual maps were composed for sixteen of the twenty-one sloughs surveyed (Appendix Figure 1-14). The primary salmon spawning areas and the relative suriace composifion of the botrom substrats in these sloughs are denoted on the maps. Warm water seepages (springs) were observable in all but six of the sloughs (No. 1, No. 2, No. 3, No. 4, No. 5 and No. 8).

Predation on spawning fish by raptors and carnivorous mamals was relatively light on the streams and sloughs surveyed. Bald eagles were observed feeding on salmon in Indian River, and Fourth July Creek. Brown bear sign, although sparce, was observed on Slougis No. 9, No. 20 and No. 21. Black bear sign was notac on Chase Creek, Whiskers Creek, Indian River and Slough No. 9.

Historic Information

Historic information obtalned by the stream survey crew during interviews with local residents suggest that " 10 years ago'sloughs No. 12 and No. 13 supporred 'large' spawning populations of chum salmon, but in recent years rechannelization of the Susitna River near these sloughs has de-watered major

Table :13. Analysis of chum salmon age and length data by percent from escapenent samples collected at slough No. 9, Slough No. 20, Slough No. 21. Indian River, Portage Creek and Fourth July Creek, Devil's Canyon Project, 1974.

Area Sampled	Sanple Size	$\overline{0.2}$	$\frac{\text { Age }}{0.3}$	$\frac{1 \text { ass }}{0.4}$	0.5	1968	$\begin{gathered} \text { Brood } \\ -1969 \end{gathered}$	$\frac{\text { Year }}{1970}$	1971	Sample size	$\begin{gathered} \text { Mean } \\ \text { Length (mun) } \end{gathered}$	Standard Deviation
Slough No. 9	39	35.9	46.2	17.9	0.0	0.0	17.9	16.2	35.9	40	579.2	35.9
Slough No. 20	20	50.0	40.0	10.0	0.0	0.0	10.0	10.0	50.0	20	500.7	49.3
Slough :10.21	36	52.8	36.1	11.1	0.0	0.0	11,1	36.1	52.8	40	563.7	38.5
Indian River	20	65.0	20.0	10.0	5.0	5.0	10.0	20.0	65.0	21	579.0	11.9
Portage Cr.	13	46.2	46.2	7.7	0.0	0.0	7.7	46.2	46.2	13	559.2	11.2
Fourth July Cr.	23	26.1	47.8	26.1	0.0	0.0	26.1	47.8	26.1	25	591.5	39.2

Table"14. Analys is of colio salimon ane and length data by percent from escapement samples collected at Chase Creek, Indian River, Portage Creek, Whiskers Creek and Fourth July Creek, Devil's Canyon Project; 1974.

Area Sampled	Sample Size	Are Class				Brond Year			$\begin{aligned} & \text { Sanule } \\ & \text { Size } \end{aligned}$	$\begin{gathered} \text { Nean } \\ \text { Length (mun) } \end{gathered}$	Standard Deviation
Chase Cr.	7	0.0	0.0	100.0	0.0	0.0	100.0	0.0	16	534.9	43.4
Indian R.	13	7.7	0.0	92.3	0.0	0.0	92.3	7.7	24	508.1	53.1
Portage Cr.	16	6.3	0.0	81.3	12.5	12.5	81.3	6.3	28	519.5	49.2
thiskers Cr.	5	0.0	0.0	100.0	0.0	0.0	100.0	0.0	10	590.6	48.5
Fourth July Cr .	4	0.0	25.0	50.0	25.0	25.0	50.0	25.0	5	533.0	81.9

Table 15. Analysis of sockeye salmon age and length data by percent from escapement samples collected at Slough ilo. 11 and Slough No. 21, Devil's Canyon Project, 1974.

Area Sampled	$\begin{gathered} \text { Sample } \\ \text { Size } \end{gathered}$	1.1	$\frac{\text { Age Clas }}{1.2}$	2.1	$\frac{\text { Bros }}{1970}$	$\frac{\text { Year }}{1971}$	Sample Size	$\begin{gathered} \text { Mean } \\ \text { Length (nm) } \end{gathered}$	Standard Deviation
Slough No. 11	14	28.6	64.3	7.1	71.4	28.6	20	524.2	60.4
Slough No. 21	1	0.0	100.0	0.0	100.0	0.0	-	-	-

portions of the spawing grounds．＂Last year two chums were ooserved by a local resident in Slough No．12．If was further reported that＂in Slough No． 13 chum and sockeye－salmon spawned fin＇high＇densities in the mid 1960 ＇s，but in the last five years the numbers of fish have declined，possibly due to migraticnal barrfers（beaver dams）prohibiting the salmon accessibility to portions of the spawning grounds．＂
＂Large＂escapements of king，chum and pink salmon in Gold Creek were observ－ ed by the restdents of Gold Creeic in the 1960° s，but＂in recent years only＇low＇ numbers of salmon，primarily pinks，have spawned in this stream．＂

An＂unnamed＂craek，an east side tributary stream of che Susitna River at Sherman，Alaska was reported by residents to have had its＂last＇large＇escape－ ment of pink salmon in 1966．During the sumer of 1967 the stream de－watered in all but its＇upper＇section．Spaming salmon have not been observed in this stream since 1966．＂In 1974 during the months of July and August stream flow was sub－surface in the first one hundred yard section of the stream；suriace flow occurred at the mouth of the stream in early September．

Climatological Observations

Climatological data were collected dafly，at approximately 1800 hours，at the fishwheel camp from July 23 through September 11 （Table 16）．The maximum and minimum air temperaturas recorded were $75^{\circ} \mathrm{F}$ ，and $48^{\circ} \mathrm{F}$ ．，raspectively．The maximum recorded water temperature was $62^{\circ} \mathrm{F}$ ．and Minimum $48^{\circ} \mathrm{F}$ ．Atmospheric oó－ servations conduczad during the 51 day period indicated that six days were cloudless or had cloud cover not exceeding 5 percent of the sky，and nine days were completely overcast．The Sustena River level fluctuared a maximum of 3.3 feet from July 24 through September 11．The maximum twenty－four hour period fluctuation in the river＇s level dccurred on August 27 and 28 when the river rose 2.3 feet．

Table 16. Climatological ubservations at the fishwheel camp, Devil's Canyon Project, i974.

Thernog=apin readings of Susitna River water Eemperatures Eron Sepzarjer 4 through September 11 at the Gold Creek and fishwheol starions are presented in Figure 10. The data suggests significant diumal warming and nocrurnal cooling of the river at che fishwheel station but relatively low fluctuation in dėly water temperatures at Gold Creek (Figures 10 and 11).

Water flow measurements recorded on Indian River, Lane, Fourch July and Gold Creeks are as follows:

These streams were at or near peak flood stages during the period of August 28 through September 4.

DISCUSSION AND SIMATARY

Fishwheels operating in the lower portion of the study area provided migrational timing, age-length-sex composition and abundances levels by salmon species. Chum and pink salmon dominated the catches. The major pink salmon migration oceurred during the last week of July and the first week of August, and correspondingl; for chum salmon in the second and third weeks of August. Three and four year old fish comprised 81.6 percent of the chum salmon catch. Coho salmon were abundant in the E iver from mid-August to mid-September. Age samples indicared that coho escapement was predominately four year old fish.

Twenty-one sloughs were identified and surveyed for che first time; E fining coho fry were observed in twelve of these, and spawning chum salmon in nine of che sloughs. In Eour of the sloughs sockeye salmon co-spawned with chum salmon.

Pink salmon spawned in Indian River, Fourth July, Lane, Portage and Gold Creeks; chum salmon also spawned, in these streams, with the exceptions of Lane and Gold Creeks.

Figure 10 Profile of Susitna River water temperatures recorded daily at six hour intervals, wlth a Ryan Thermograph, at Gold Creek and Devil Canyon fishwheel camn, Devil's Canyon Project, 1974.

Figure 11. Profile of water and air tempratures recorded dafly($\because 1300$ hours $)$ at the east bank fish:heel.

Plok salmon spawned primarily during the first through chird weeks of fugust. The major period of chum spawning in the streams occurred from mich-August to mid-September, and during the first three meeks of September in the sloughs. Spawning coho salmon were zecorded in Indian River, Fourth Juiy, Zorsage, Whiskers, and Chase Creeks.

An estimated 24,286 chum, 5,252 pink and 1,008 sockeye salmon migrared at the fishwineel station as determined from the tag and recovery program. The cono salmon population was estimared to range from 4,000 to 9,000 individuals. Tag returns from chum, pink and sockeye salmon spawning below the fishwheel station suggest that a significant but unknown proportion of the salmon captured in the fisiwheels were willing fish and not migrating to spawing grounds above the tagging station.

A minimum of 1,036 pink, 2,753 cham, 307 coho and 104 sockeye-salmon spawned in the streams and sioughs of the Susitna kirer between tine Chuifona River tributary and Portage Creek as determined from peak slough and stream index escapement counts.

Twelve of the sloughs surveyed were barren of spawning salmon. Althougn Slough No. 10 is included in these, it contained a relatively abundant population of rearing coho fry, during the month of August. Springs are prevalent in tinis slough, and the surface stratum is composed of approximately 95 percent sandy silt and 5 percent cobbles and boulders. The author suggests that the slough has the potential to supporc'a spawning population of chum salmon, and it would be feasiole to weir a portion of the slough and force spawn a donor stock of chum salnon above the structire.

The water levels in the sloughs are maincained in part by the Susitna River. Stream surveyors noted less rearing iry in the sloughs during low water
periods, but significanty higier densizfes of fry milling in the confluences of the sloughs with the river. Physical access into the sloughs for the escapement was considered optimum during the period of August " 28 to September 7 which coincided with a flood period on the Susita River. Reduction in the water flow of the Susitma River in the last two weeks of September resulted in less than adequate accessibilicy for the salmon into the upper spawang pools of Slough No. 21.
Significant gravel displacement occuraed in the streams during tine late August-early September flood. A portion of the plnk salmon spawn may have been destroyed as a consequence.
A contlmuation of field investigations is requized to provide additional information necessary for evaluating potential increases and decrease in fisheries nabitat resulting from the construction of a hydroelectric complex on the upper Susitna River. Monitoring the physical, chemical and biological properties of tie sloughs during spring, sumer, fall and winter seasons would provide qualitative data for determining the critical components limiting production in resident and anadromous fish populations. Assessing water quality directly below the proposed Devil Canyon dam is imperative prior to establishing standards acceptable for migrant and rearing fish. The following studies are required:

1) Monitoring seasonal fluctuations in water temperatures, dissolved gesses and suspended solids in the Susitna River at Chase and Gold Creeks.
2) Monitoring seasonal changes in relative water levels, $\mathrm{pH}, \mathrm{D}, \mathrm{O}$, and water temperatures in the sloughs.
3). Repetitive adult spamer and fry surveys inthe sloughs and streams to determine seasonal and annual density and distrioution iluctuations.
3) Inriver species sampling to determine annual fluctuarions in abundance levels, age composition, and migrational patteras of adult anadromous fish populations in the Susitna River north of Talkeetna.
4) Monitoring food cycle relationships in the sloughs as relate to fry production.
5) Composite sampling the bottom suostrate in the sloughs.

Primary funding of this study was obtained through the National Marine

Fisieries Service.

Appreciarion is given to the following dedicated men whom provided the tectaical assistance necessary to conduct this work. Geoffrey Caroli

David Colwell, PH.D
Mark Follansbee
Tyler Gilmer
Michael Stratton
Special credit is due David Colwell for his expertise as a river boatman and his outstanding performance In the field as a Fisheries Biologist I. Gratitude is due the Fish and Wildife Service for use of a river boar.
escapement surveys; Devil's Cariyon Projeci, 1974.

Chum Salmen Surieys

Area Surveyed	Date	Suriny Conditions	Number fisn sampled (live counts)			$\begin{aligned} & \text { Ratios } \\ & (c / r) \\ & \hline \end{aligned}$
			Untarced	taoced (r)	total (c)	
Souugh Mo.6.	8/28	Fair	1	0	1	0.0
Slough No. 9	8/10	Fair	1	0	1	0.0
	8/16	Fair	2	0	2	0.0
	8/29	Fair	125	4	129	32.3
	9/1	Fair	324	7	331	47.3
	9/5	Good	458	8	466	58.3
	$9 / 12$	Good	187	1	188	188.0
	9/17	food	37	0	37	0.0
Slough No. 17	9/10	Good	26	1	27	27.0
	9/13	Good	20	1	21	21.0
	$9 / 17$	Fair	18	1	19	19.0
	9/22	Fair	10	1	11	11.0
	9/27	Exce 1	1	0	1	0.0
Stough No. $148 / 30$		Good	2	0	2	0.0
Slough No. 16	8/19	Fair	2	0	2	0.0
Stough No. 17	9/9	Good	14	0	14	0.0
	9/13	Excel	12	0	12	0.0
	9/24	Fair	3	0	- 3	0.0
Slough No. 19	8/21	Fair	2	0	2	0.0
STough Mo. 20	8/21	Good	2	0	2	0.0
	9/5	Good	99	2	101	50.5
	9/9	Excel	56	0	56	0.0
	9/13	Exce1	20	0	20	0.0
	9/18	Exce1	1	0	1	0.0
Slough No. 21	9/11	Good	206	9	215	23.9
	9/18	Good	197	8	205	25.6
	9/24	Good	40	3	43	14.3
Indian R.	8/6	frood	6	0	6	0.0
	8/7	Good	5	0	5	0.0
	8/8	Good	7	0	7	0.0
	8/17	Good	58	0	58	0.0
	8/19	Good	338	- 5	343	68.6
	9/10	Fair	176	6	182	30.3
Fourth July Cr.	8/2	Fair	2	0	2	0.0
	8/9	Eair	14	0	14	0.0
	$9 / 1$	Fair	200	4	204	51.0
	9/11	good	290	10	300	30.0
	9/16	Good	128	3	131	43.7
Totals			3090	74	3164	42.8

Appendix
Table T. (centinued)

Appendix
Talile 2. Escapenent survey counts conducted on Sloughs No. 1. Mo. 2, No. 3, No. 4, No. 5, No. 6, No. 7 and No. B. Devil's Canyon Project. 1974.

Appendix

Table 3. Escapement survey counts conducted on Slouqhs Ho. 9, No. 10, No.11 and No. 12, Devil's Canyon Project. 1974.

Appendix
Table 4. Escapement survey counts conducted on Sloughs No, 13, No. 14, No. 15. Mo. 16, No. 17. and No. 18, Devil's Canyon Project. 1974,

Appendix
Table 5. Escapement survey counts conducted on Sloughs Mo. 19. No. 20 and No. 21. Devil's Canyon Project, 1974.

6.10
6. Escapement survey counts conducted on Ind Chase Creek, Devil's Canyon Project, 1974

Appendix Figure 1 , Map of Slough No. 5 as composed on August 16, Devil's Canyon Project, 1974.

(
$+-$
101

Appendix Figure 5
Map of Slouch Mo. 9 as composed on August 16, Devil's Canyon Project, 1974.

Appendix figure 7 . Map of Sloughs :io. 11, No. 12 and No. 13 as confosed on Auaust 9, Devil's Canyon Project, 1974.

Appendix Figure 8 . Map of Slough ilo. 14 as Composed on August 30, Devil's Canyon Project, 1974.

Appendix Figure 9. . Map of Slouah 110. 15, as composed on Aunust 5, Devil's Canyon Project, 1974.

Appendix Figure 10 - Map of Slouch No. 16: as composed on August 8, Devil's Canyon Project, 1974.
I.

Appendix figure 11. Map of Slough Mo. 17 as composed on August 8 , Devil's Canyon Project, 1974.

Appendix Figure 12 . Map of Slough Mo. 19 as composed on August. 21, Devil's
Canyon Project, 1974.

Appendix figure 13 . Map of 5lough No. 20 as composed on August 16 , Devil's Canvnn...prniort 1974.

Appendix figure 14 . Map of Slough No. 21 as composed on September 24, Jevil's

