Susitna-Watana Hydroelectric Project Document ARLIS Uniform Cover Page

Title:		
Susitna and Chakachamna preliminary decision document, envir energy-cost	onmental-	SuWa 219
Author(s) – Personal:		
Author(s) – Corporate:		
HDR Alaska, Inc.		
AEA-identified category, if specified:		
AEA-identified series, if specified:		
Series (ARLIS-assigned report number):	Existing number	ers on document:
Susitna-Watana Hydroelectric Project document number 219		3-007-HDR
Published by:	Date published	
[Anchorage, Alaska: Alaska Energy Authority, 2010]	November	12, 2010
Published for:	Date or date ra	nge of report:
Prepared for Alaska Energy Authority		
Volume and/or Part numbers: Final or Draft status, as indicated:		
Document type:	Pagination:	
Preliminary decision document 28, [14], 12, 8 p.		
Related work(s): Pages added/changed by ARLIS:		hanged by ARLIS:
Notes:		
Downloaded from the Alaska Energy Authority's "Railbelt large h	ydro reports'	' webpage; available

All reports in the Susitna-Watana Hydroelectric Project Document series include an ARLIS-produced cover page and an ARLIS-assigned number for uniformity and citability. All reports are posted online at http://www.arlis.org/resources/susitna-watana/

as of June 16, 2014.

Susitna and Chakachamna Preliminary Decision Document Environmental-Energy-Cost

AIDEA -08-007-HDR

Prepared for: The Alaska Energy Authority

Prepared by:

HDR Alaska, Inc. 2525 C Street, Suite 305 Anchorage, AK 99503

November 12, 2010

Contents

1	Int	roduction		3
2	En	vironmen	tal Issues	4
	2.1	Sucitn	a Environmental Issues	/
	2.1	2.1.1	Fisheries Impacts	
		2.1.1	Botanical Impacts	
		2.1.2	Wildlife Impacts	
		2.1.4	Cultural Resource Impacts	
	2.2		chamna Environmental Issues	
	2.2	2.2.1	Fisheries Impacts	
		2.2.2	Botanical Impacts	
		2.2.3	Wildlife Impacts	
		2.2.4	Cultural Resources Impacts	
3	Dre		Energy Estimate	
J		-		
	3.1	•	ologic Analysis	
	3.2		ation of Average Annual Energy and Firm Winter Capacity	
	3.3		a Model Assumptions and Data Sources	
	3.4		chamna Model Assumptions and Data Sources	
		3.4.1	Environmental Flow	
		3.4.2	Alternatives Analysis	
	3.5	Mode	l Operation	17
4	Est	timates of	Probable Project Development Costs	20
	4.1	Susitn	a Project, Low Watana	20
		4.1.1	Cost Estimate History	20
		4.1.2	Expandability	20
		4.1.3	Quantities	21
		4.1.4	Unit Costs	21
		4.1.5	Indirect Costs	21
		4.1.6	Interest During Construction and Financing Costs	
		4.1.7	Changes from 1983 Design	
		4.1.8	Conclusions	
	4.2		schamna Project	
		4.2.1	Cost Estimate History	
		4.2.2	Quantities	
		4.2.3	Unit Costs	
		4.2.4	Indirect Costs	
		4.2.5	Interest During Construction and Financing Costs	
		4.2.6	Changes from the 1983 Bechtel Design	
		4.2.7	Conclusions	25
5	Su	mmary		26
6	Re	ferences		27

List of Tables

Table 1. Average Monthly and Annual Flow	11
Table 2. Summary of Energy Parameters	14
Table 3. Estimate of Probable Environmental Flows	
Table 4. Comparison of Potential Environmental Impacts Resulting from Chakachamna I	Lake
Hydro Alternatives	
Table 5. Firm Capacity and Average Annual Energy Estimates	17
Table 6. Chronology of Susitna Hydro Cost Estimates	
Table 7. Low Watana Project Cost Summary	22
Table 8. Chronology of Previous Chakachamna Hydro Cost Estimates	23
Table 9. Chakachamna Cost Summary Table	25
Table 10. Summary	26
List of Figures	
Figure 1. Project Locations	4
Figure 2. Mean Monthly Outflows and Derived Inflows for Chakachamna Lake, 1959-1972	
Figure 3. Energy Distribution by Month	
Figure 4. Chakachamna Lake Elevation by Month	
Figure 5. Chakachatna River Flows (Downstream of Lake) by Month	
Appendices	
Appendix A Chakachamna Energy Analysis Input and Results	
Appendix B Susitna Construction Cost Estimate	
Appendix C Chakachamna Construction Cost Estimate	

11/12/2010 ii

1 Introduction

In 2010, the Alaska State Legislature authorized the Alaska Energy Authority (AEA) to perform Railbelt Large Scale Hydro Planning, Design and Permitting. AEA is preparing a Preliminary Decision Document (PDD) that will compare and contrast two large hydroelectric projects, the Low Watana alternative for Susitna and Chakachamna. This document will lay out the known information and risks of the two projects. HDR Alaska was contracted by AEA to provide input into the environmental, energy and cost sections of the PDD. This report summarizes the results of that effort. The project alternatives reviewed were:

- Susitna Project, Low Watana Alternative. This potential project consists of the construction of a large storage reservoir on the Susitna River at the Watana site with a 700-foot-high dam and a four-unit powerhouse with a total capacity of 600 megawatts (MW). This "Low Watana" Alternative is described in detail in Susitna Hydroelectric Project, Conceptual Alternative Design Report (HDR Alaska 2009b).
- Chakachamna Project. This potential project consists of the inter basin transfer of water from a lake tap near the outlet of Chakachamna Lake through an approximately 11-mile-long tunnel to an underground powerhouse that would discharge to the McArthur River. The project would have a total installed capacity of 300 MW. This alternative is described in detail in the *Pre-Application Document, Chakachamna Project* (TDX Power 2009). In an attempt to quantify the effect of different regulation methodologies and environmental flow requirements, three variations of this project were also analyzed.

The Susitna project was recently studied in 2009, and much of the energy, cost, and environmental information in this document is taken verbatim from those reports. The Chakachamna project does not have a similar level of recent study and much of the energy and cost information has been reanalyzed for this report. The locations of the Susitna and Chakachamna projects are depicted on Figure 1 below.

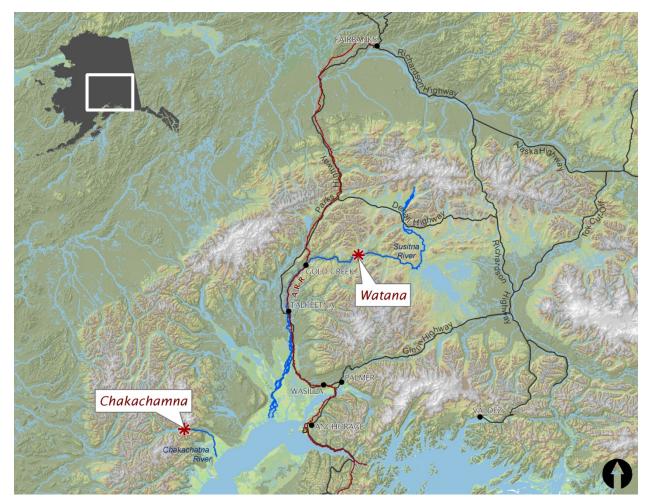


Figure 1. Project Locations

2 Environmental Issues

Development of a hydroelectric project on the Susitna River would face a variety of issues over the design lifetime. The design lifetime for a modern dam is greater than 100 years. The following discussion is not intended to be all inclusive but rather highlight the likely major areas of concern.

2.1 Susitna Environmental Issues

After the Susitna project was discontinued in 1986, a database of 3,573 documents was created. In September 2008, the 87 most relevant documents were scanned into HDR Alaska's files, and of these 18 of the most relevant environmental documents were summarized. A synthesis of the seven most-pertinent documents was completed. Because not all of the documents were summarized, some relevant information has likely been overlooked; however, most information was included in the synthesis.

These documents contain information on potential impacts of the proposed project and mitigation proposals for those impacts. Specifically, the documents deal with fisheries resources, botanical resources, wildlife resources, and cultural resources in the potential project area.

2.1.1 Fisheries Impacts

The fisheries resources have the highest potential to be impacted by the project. Most of the potential impacts would occur in the reservoir and the middle Susitna River downstream of the reservoir. There would be impacts due to changes in water quality, thermal activity, the water's suspended sediment load, reservoir draw-down fluctuations, impoundment zone inundation, flow regime, and lost fish habitat. Not all impacts to fish populations would be negative. For example, an increase in winter water temperatures could lead to the creation of more overwintering habitat and thus greater fish survival; however, the cooler spring water temperatures would slow fish growth.

In the Watana impoundment zone, 40 river miles of the Susitna River would be inundated and transformed into reservoir habitat. An additional 15 miles of four named tributary streams and numerous smaller unnamed tributaries and eight lakes would be inundated. There are nine species of fish occurring in the proposed impoundment zones: Arctic grayling, burbot, Dolly Varden, longnose sucker, round whitefish, humpback whitefish, lake trout, slimy sculpin, and Chinook salmon (Entrix 1985). Of these, Arctic grayling are the most abundant and have the potential to be impacted the most (Woodward-Clyde Consultants 1984). Arctic grayling would lose approximately nine miles of spawning habitat and would not likely populate the impoundment zone (Entrix 1985). River habitat would be transformed into lake/reservoir habitat that may be occupied by a different collection of fish species. Lake drawn down may limit recolonization of species dependent upon these areas for reproduction.

2.1.2 Botanical Impacts

The project area contains 295 vascular plant species, 11 lichen genera, and 7 moss taxa. Low Watana inundation would permanently remove 16,000 acres of vegetation. Most of the vegetation inundated would be spruce forest. An additional 836 acres of vegetation would be permanently removed due to access road construction. In the transmission corridor, effects on vegetation would be minimal due to intermittent placement of control stations, relay buildings, and towers.

There would be limited botanical impacts downstream from the reservoir(s). These involve changes to the vegetation due to a more stable environment. Due to flow regulation there would no longer be major flooding events, which destroy the riparian vegetation; instead, there would be succession of the riparian vegetation and colonization of new floodplains. The increase in winter water temperatures would decrease the amount of ice scouring that occurs, which would result in effects similar to those caused by the decrease in flooding.

Botanical resource mitigation would consist largely of compensation for permanently removed vegetation.

2.1.3 Wildlife Impacts

Within the Susitna River Basin there are 135 bird species, 16 small-mammal species, and 18 large mammal and furbearing species. There are currently no known listed endangered

species in the project area. There would be five classes of potential impacts to terrestrial vertebrates:

- 1. Permanent habitat loss, including flooding of habitat and covering with gravel pads or roads.
- 2. Temporary habitat loss and habitat alteration resulting from reclaimed and revegetated areas such as borrow pits, temporary right of ways, transmission corridors, and from alteration of climate and hydrology.
- 3. Barriers, impediments, and hazards to movement.
- 4. Disturbances associated with project construction and operation.
- 5. Consequences of increased human access not directly related to project activities.

Impacts on each species would be different based on species abundance and use of the habitat; however, major threats common to most species have been identified. Downstream of the Watana reservoir there may be an increase in preferred moose browse, thus increasing the moose population (Harza Ebasco 1985b). The Susitna development would impact mink and otter in the middle river by increasing the winter turbidities which would reduce the value of the mainstem as sight feeding habitat. Open water in the winter would have a positive effect on mink and otter (Harza Ebasco 1985b). Other impacts to animals downstream of the reservoir would be negligible (Harza Ebasco 1985b).

2.1.4 Cultural Resource Impacts

Within the proposed project area, 297 historic and prehistoric archaeological sites were located. An additional 22 sites were already on file. Sites located within 500 feet of the reservoir's maximum extent may be indirectly impacted due to slumping from shoreline erosion. Indirect impacts may also result from vandalism due to increased access to the sites. The project has the potential to impact 140 sites. None of these sites would occur in the proposed road corridor or transmission lines corridors. The majority of these sites are relatively small prehistoric sites.

Mitigation for the lost cultural resources would mostly occur through data recovery. Preservation would also be used for some sites. Options to consider include construction of protective barriers to minimize erosion, controlled burial, or fencing of the site to restrict access.

Currently, there are a variety of federal, state, and local land use plans that encompass the Susitna Basin.

2.2 Chakachamna Environmental Issues

Based on review of the existing information, field reconnaissance conducted in 2008, and preliminary discussions with agencies, tribes, and other stakeholders, TDX identified 18 potential impact types or information gaps in the PAD to provide an organizational framework for the Chakachamna licensing studies. From this list, key questions or information needs are identified that will require a multi-disciplinary approach to reach an understanding of how the proposed project may affect the areas resource values. Forty nine discreet studies were identified in the PAD to form the basis for determining potential project effects. A majority of these are fisheries based.

2.2.1 Fisheries Impacts

In our analysis we reviewed the eighteen issues identified by TDX, plus additional issues, and have highlighted three that we believe are the most important environmental questions that will determine the project's feasibility.

- 1. What impacts will lake level fluctuation have on shoal spawning in the lake and fish passage into lake tributaries?
- 2. How will reduced flows into the Chakachatna River affect fisheries habitat and groundwater input to wetlands in the Trading Bay refuge?
- 3. Will Chakachatna River sockeye salmon be falsely attracted to the McArthur River powerhouse tailrace?

Lake Level Fluctuations - Chakachamna Lake and the surrounding tributaries support abundant salmon and freshwater fisheries resources. Five significant tributaries and numerous minor drainages empty from the surrounding mountains into Kenibuna and Chakachamna Lakes. Of these, the Chilligan and Igitna Rivers provide significant sockeye salmon (*Oncorhynchus nerka*) spawning habitat. Bechtel estimated 1982 escapements at 38,600 and 2,900 for the Chilligan and Igitna Rivers, respectively (1983). More recent aerial survey data from the Alaska Department of Fish and Game (ADF&G) indicates that numbers may be substantially higher in some years than in others (Johnson and Blanche 2010). The lake tributary streams also provide habitat for Dolly Varden (*Salvelinus malma*) which are ubiquitous in the study area but especially abundant in the Chilligan and Igitna Rivers. Round whitefish (*Prosopium cylindraceum*) are present in Chakachamna Lake and may spawn in tributary streams, but such spawning has not been confirmed.

Studies in 1982 showed large numbers of adult sockeye salmon milling along the north shore of Chakachamna Lake and spawning was suspected but not confirmed. Sockeye are the only salmon species observed in Chakachamna Lake or its tributaries, with the exception of one record of Chinook salmon in 1981. Chakachamna Lake also provides habitat for resident lake trout (*Salvelinus namaycush*), Dolly Varden, and round whitefish. Lake trout probably spend their entire lives in the lake. The size of the lake trout population is unknown. Life histories of lake trout, Dolly Varden, and whitefish have not been investigated in Chakachamna Lake.

Under the proposed operational structure (base case), the lake level would fluctuate approximately 60 feet from the normal maximum pool elevation of 1,142 feet to the normal minimum pool elevation of 1,082 feet. If sockeye salmon spawn along lake shoals, it is likely that their spawning timing would coincide with the maximum pool elevation. The resulting eggs might subsequently be exposed and killed when the lake level drops to the minimum pool elevations in March or April. Similarly, lake trout spawning areas may be affected by the winter lake drawn down.

An additional impact relating to lake drawn down is the potential for down-cutting of the channel between Kenibuna and Chakachamna Lakes and the fluvial fans of lake tributaries such as the Chilligan River. This down-cutting could affect lake levels for Kenibuna and Shamrock lakes, and potentially affect fish passage into the lake tributaries such as the Chilligan and the Igitna Rivers.

Reduced Flows into the Chakachatna River - The proposed operation of the Chakachamna Hydroelectric project involves diverting a portion of the natural flow out of Lake Chakachamna to the powerhouse located in the McArthur River valley. In the base case, the average flow in the Chakachatna River will be reduced by 57 percent to 84 percent from June through November.

The Chakachatna River provides a migration corridor, spawning habitat, and rearing habitat for salmon. The uppermost 14 miles have a uniformly high gradient, and the primary fish value is as a migratory corridor for sockeye salmon and possibly resident species. Salmon spawning is documented within a short reach at the lower end of the Chakachatna River canyon area, within side channels upstream from the Straight Creek confluence and immediately downstream from Straight Creek. Key salmon habitats are associated with upwelling groundwater. These areas also provide rearing habitat and may be important overwintering refugia.

The lower Chakachatna River splits into three branches: Middle River, which flows southeast to Cook Inlet, the Chakachatna River, which flows south and joins the McArthur River near its mouth, and a third braided section called Noaukta Slough which joins the middle part of the McArthur River. At the time of the 1981–1983 studies, the low gradient channels in the lower Chakachatna and Middle Rivers provided significant rearing and feeding habitat for juvenile coho and sockeye salmon, Dolly Varden, pygmy whitefish (*Prosopium coulteri*), and adult rainbow trout (*Oncorhynchus mykiss*). Recent environmental reconnaissance (HDR Alaska 2008) indicates that most of the water from the Chakachatna River flows through Noaukta Slough, joining the McArthur River in its middle reaches.

Hydrologic ties to the Chakachatna and McArthur rivers appear important in supporting the lower elevation wetlands north of Noaukta Slough and in the Trading Bay State Game Refuge. Changes in the hydrology could affect floodplains, wetlands, and riparian habitats.

Project operation would substantially alter habitat characteristics of the mainstem Chakachatna River and may affect shallow groundwater regimes, thus impacting fish habitat values within sloughs, side channels, wetlands, and small clear water tributaries that are known to be important to fish.

False Attraction Resulting from Interbasin Water Transfer - Transfer of water from Chakachamna Lake to the upper McArthur River may cause false attraction of adult salmon to the powerhouse tailrace during their spawning migration. The tailrace is proposed to be located approximately 15 miles up the McArthur River from the Noakta Slough (Chakachatna River) confluence. The mixture of Chakachamna Lake water from the tailrace may confuse salmon migration and could prevent or delay the movement of salmon to spawning areas in Chakachamna Lake and its tributaries. The Chilligan River and Igitna River sockeye salmon stocks are the principal stocks dependent upon chemical cues from Chakachamna Lake waters to reach spawning areas in these lake tributary systems. The Chiligan stock is the most numerous salmon stock in the watershed and has been shown to be genetically distinguishable from other Cook Inlet sockeye salmon stocks (Habicht et al. 2007).

From October through April, more than 80% of the water leaving Chakachamna Lake will potentially be diverted through the power tunnel to the McArthur River valley. Critical months for salmon passage into and out of the lake occur between May and September, when 50% to 65% of the lake's discharge will be diverted to the upper McArthur River. It will be difficult to predict if the instream flows proposed for the project will sufficiently provide the chemical

signatures to orient migrating salmon to the Chakachatna River and/or to what extent salmon will be falsely attracted to the McArthur River tailrace.

2.2.2 Botanical Impacts

Botanical issues from the Chakachamna project are not explored in this document, but will likely result from construction of roads, transmission lines and barge landing facilities. Further impacts may result from groundwater changes resulting from reduced flows in the Chakachatna River, and their affect on wetlands in the Trading Bay Game Refuge.

2.2.3 Wildlife Impacts

Wildlife impacts from the Chakachamna project are not explored in this document.

2.2.4 Cultural Resources Impacts

Cultural resources impacts from the Chakachamna project are not explored in this document.

3 Preliminary Energy Estimate

3.1 Hydrologic Analysis

Susitna Project. To develop an energy estimate for the Susitna project, a hydrologic record was created by a drainage area proration of daily flow data from United States Geological Survey (USGS) gage 15292000 at Gold Creek. USGS gage 15292000 has a period of record from water years 1950–1996 and 2002–2010.

Chakachamna Project. To develop an energy estimate for the Chakachamna project, a hydrologic record was created using daily flow data from USGS gage 15294500 on the Chakachatna River at the outlet of Lake Chakachamna. USGS gage 15294500 has period of record from water years1959–1972. Using this gage information and rating curves obtained from the USGS, simulated daily inflows into Lake Chakachamna were derived. Figure 2 shows mean monthly inflows and outflows in cubic feet per second (cfs) for Lake Chakachamna for the period of record.

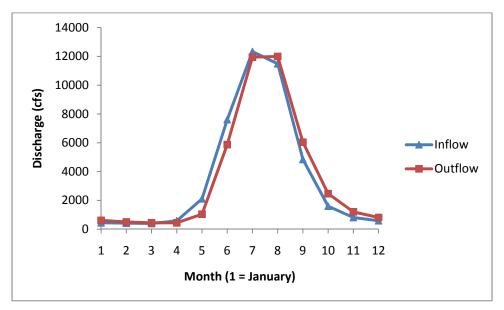


Figure 2. Mean Monthly Outflows and Derived Inflows for Chakachamna Lake, 1959-1972

Table 1 shows the average monthly and annual flow at the Watana site and inflow into Lake Chakachamna for their respective period of records.

Month	Susitna River at Watana (cfs)	Lake Chakachamna Inflow (cfs)
Jan	1,342	446
Feb	1,162	410
Mar	1,090	401
Apr	1,429	584
May	11,668	2,109
Jun	22,297	7,432
Jul	20,117	12,507
Aug	17,982	11,443
Sep	11,567	4,985
Oct	5,336	1,600
Nov	2,269	814
Dec	ec 1,601 588	
Annual	8,202	3,636

Table 1. Average Monthly and Annual Flow

3.2 Evaluation of Average Annual Energy and Firm Winter Capacity

The amount of energy that can be produced from hydroelectric projects is a function of the amount of available water and, in the case of storage projects, how the available water can be regulated (systematically released). In addition to the average annual energy, the firm capacity attainable during winter months is of particular importance. For hydroelectric projects, the firm capacity is almost always lower than the installed generation capacity for a project. For the purposes of this study work, firm capacity is defined as:

"The amount of power the project can generate on a continuous basis from November 1 through April 30 with 98% reliability."

It should be noted that this is only one manner of regulation. The water can be regulated in a variety of different means in order to achieve other objectives, such as peaking, spinning reserve, or backup capacity.

The average annual energy and winter plant capacity was estimated using HDR Alaska proprietary energy modeling software customized for this particular purpose. Major assumptions used in the modeling efforts are presented below.

3.3 Susitna Model Assumptions and Data Sources

• This potential project consists of the construction of a large storage reservoir on the Susitna River at the Watana site with a 700-foot-high dam and a four-unit powerhouse with a total installed capacity of 600 MW. This "Low Watana" alternative is described in detail in Susitna Hydroelectric Project, Conceptual Alternative Design Report (HDR Alaska 2009b).

- Inflow hydrology was based upon USGS gage 15292000 located at Gold Creek on the Susitna River and scaled by a drainage area correction factor for the Watana dam site. Data up to and including water year 2008 was used to allow the results to match the 2009 study.
- Reservoir capacity and area curves were based on information presented in the 1985 Federal Energy Regulatory Commission (FERC) application.
- Tailwater curves were obtained from the 1985 FERC application.
- Operating reservoir levels were obtained from the 1985 FERC application.
- Environmental flow release constraints were as presented in the 1985 FERC application and scaled according to drainage areas for the Watana site.
- Evaporation coefficients were obtained from the 1985 FERC application. Total reservoir evaporation was estimated in the 1985 FERC application to be between one and three inches per month in summer, with negligible evaporation during winter months.
- Equipment performance was based on vendor data obtained in 2008 specifically for the Watana project.
- Headloss estimates were based on the water conveyance design from the 1985 FERC application.
- The reservoir was assumed to start full at the beginning of the simulation and was allowed to fluctuate over the remaining period of the simulation.
- Generation from November 1 to April 30, "winter," was at a constant capacity level ("block loaded").
- Generation from May 1 to October 31, "summer," was to maximize energy with the objective of the reservoir being full on November 1.
- Rule curves for summer target reservoir elevations were developed using a mass balance approach. The ratio of the average monthly inflow volume to the average annual inflow volume during each of the reservoir filling months were used to set target elevations for the reservoir.
- Energy losses of 1.5 percent for un-scheduled outages and 2 percent for transformer losses were applied to the total generation.
- Active storage remained constant over the simulation period. Dead storage in the reservoir was assumed to be sufficient to contain sedimentation loads.
- No ramping rate restrictions were imposed on either reservoir drawdown or downstream flow.

3.4 Chakachamna Model Assumptions and Data Sources

This potential project consists of the inter basin transfer of water from a lake tap near the outlet of Chakachamna Lake through an approximately 10.8-mile-long tunnel to an underground powerhouse that would discharge to the McArthur River. The powerhouse would have a total generating capacity of 300 MW.

The base case for analysis was the project as described in the Pre-Application Document (PAD), Chakachamna Project (TDX Power 2009). Key features are described below.

- A lake outlet weir would be located at the outlet of Chakachamna Lake with an assumed crest elevation of 1142.
- Upstream and downstream fish passage would be provided by an operating plan that would minimize lake fluctuation during the summer to provide passage for adult salmon via the natural river channel. The adult salmon migration period is assumed to be July 15 to October 15.
- A fish passage tunnel would be included to allow downstream passage of juvenile salmon, to allow upstream passage of adult salmon during unusual low water years and to pass environmental flows when the lake level is below the elevation of the lake outlet weir.
- The preliminary environmental flow recommendations suggested for the Chakachatna River in the PAD. Based on the Montana Method (Tennant 1972) these provide environmental flows during the months of April to September of 1094 cfs or lake inflow, whichever was less, and during the months of October through March the minimum environmental flow was assumed to be 365 cfs or lake inflow, whichever was less.
- Outflow hydrology was based upon USGS gage 15294500 located on the Chakachatna River at the outlet of Chakachamna Lake. Only years with a full water year of record were used. Inflow hydrology to lake was determined by adding the volume of the daily change in lake storage to the outflow. Daily change in lake levels was calculated by applying USGS rating curves to the daily outflow record, and the resulting change in storage was calculated using the Chakachamna Lake elevation-capacity curve in the 1983 Bechtel Chakachamna Hydroelectric Project Interim Feasibility Assessment Report.
- Tailwater was assumed to be constant at elevation 210.
- Equipment performance was based on representative equipment efficiencies. Headloss estimates were based on the water conveyance design and performance statements provided in the PAD.
- The reservoir was assumed to start full at the beginning of the simulation and was allowed to fluctuate over the remaining period of the simulation.
- Generation from November 1 to April 30, "winter," was at a constant capacity level ("block loaded").
- Generation from May 1 to October 31, "summer," was to maximize energy with the objective of the reservoir being full on November 1 and to provide for fish passage through the natural lake outlet from July 15 to October 15.
- Energy losses of 1.5 percent for un-scheduled outages and 2 percent for transformer losses were applied to the total generation.
- Active storage remained constant over the simulation period. Dead storage in the reservoir was assumed to be sufficient to contain sedimentation loads.
- No ramping rate restrictions were imposed on either reservoir drawdown or downstream flow.

Key input parameters related to energy generation are shown in Table 2 below.

Table 2. Summary of Energy Parameters

	Susitna	Chakachamna
	Low Watana	Base Case
Dam Height (ft)	700	n/a
Gross Head (ft)	557	927
Net Head (Max Flow) (ft)	543	750
Maximum Plant Flow (cfs)	14,500	5,400
Number of Units	4	3
Nameplate Capacity (MW)	600	300
Maximum Pool Elevation (ft)	2014	1142
Minimum Pool Elevation (ft)	1850	1083
Tailwater Elevation (Max Flow) (ft)	1457	210
Usable Storage (acre-ft)	2,704,800	885,000

3.4.1 Environmental Flow

The preliminary environmental flow recommendations suggested for the Chakachatna River in the PAD are based on the Montana Method (Tennant 1972) as presented in the Bechtel report on the project in 1983. The Bechtel report assumed environmental flows during the months of April to September of 1094 cfs or lake inflow, whichever was less. During the months of October through March, the minimum environmental flow was assumed to be 365 cfs or lake inflow, whichever was less. These amounts of discharge are rated as "fair to degrading" flows in the Montana Method. This method was developed for and has primarily been used on rivers in the lower 48 states, which show little similarity to the glacially driven and highly seasonal flows of the Chakachatna River. Winter time flows using this method drop below historic average monthly flows, potentially resulting in freeze-out of spawning beds located outside the main river thalweg or in side channel areas. Summertime flows provided may not be sufficient to attract adult spawners confused by the discharges into the McArthur drainage or to provide for upstream passage through the canyon area located below Chakachamna Lake. Additionally, this environmental flow method does not take into consideration the groundwater hydrology feeding wetlands of the Trading Bay Game Refuge. While it is outside of the scope of this document to complete the environmental flow analysis needed to adequately address all of the environmental issues in the Chakachamna watershed, Table 3 below provides an estimate of environmental flows that may be more likely to be viewed favorably by permitting agencies. It should be noted, however, that these flows have not been reviewed or endorsed by any permitting agencies. Determination of environmental flows for the project will ultimately be the result of a detailed analysis of instream flow data by conducted by a multiagency review team.

Table 3. Estimate of Probable Environmental Flows

Month	Minimum Flow (cfs)	I NOTES	
October	1,250	50% of mean monthly flow: provides water to Noaukta Slough to attract adult coho spawners and protect historic side channel spawning habitats.	
November	600	50% of mean monthly flow: provides water to Noaukta Slough to attract adult coho spawners and protect historic side channel spawning habitats.	
December	600	75% of mean monthly flow: protects incubation in Chakachatna/Noaukta Slough spawning beds.	
January	500	100% of mean monthly flow: protects incubation in Chakachatna/Noaukta Slough spawning beds.	
February	500	100% of mean monthly flow: protects incubation in Chakachatna/Noaukta Slough spawning beds.	
March	500	100% of mean monthly flow to protect incubation in Chakachatna/Noaukta Slough spawning beds.	
April	500	100% of mean monthly flow: protects incubation in Chakachatna/Noaukta Slough spawning beds.	
May	750	75% of mean monthly flow: protects juvenile rearing in Chakachatna/Noaukta Slough areas and provides for outmigration of smolts from lake.	
June	2,000	33% of mean monthly flow: provides water for outmigration of smolts from lake and feeds groundwater to Trading Bay Refuge wetlands.	
July	4,000	33% of mean monthly flow: provides water to attract spawning adults to Chakachatna/Noaukta as opposed to McArthur, provides adequate flow for adult passage through canyon below lake outlet, and feeds groundwater to Trading Bay Refuge wetlands.	
August	4,000	33% of mean monthly flow: provides water to attract spawning adults to Chakachatna/Noaukta as opposed to McArthur, provides adequate flow for adult passage through canyon below lake outlet, and feeds groundwater to Trading Bay Refuge wetlands.	
September	2,000	33% of mean monthly flow: provides water to attract spawning adults to Chakachatna/Noaukta as opposed to McArthur, provides adequate flow for adult passage through canyon below lake outlet, and feeds groundwater to Trading Bay Refuge wetlands.	

3.4.2 Alternatives Analysis

To evaluate the effect of increased minimum environmental flow requirements in the Chakachatna River and/or the effect of lake level fluctuations, two alternatives to the base case were also evaluated. Environmental issues surrounding project operations generally revolve around three main issues: 1) habitat affected by flows in the bypass reach; 2) upstream and downstream fish passage; and 3) habitat affected by lake level fluctuations.

• Alternative #1 – Base Case with Probable Environmental Flow. Alternative 1 is the same as the Base Case except that:

- Environmental flow requirements are revised as described in Table 3 above.
- The lake level fluctuations are not restricted.
- Alternative #2 Base Case with Probable Environmental Flow & Minimization of Lake Fluctuation. Alternative 2 is the same as the Base Case except that:
 - Environmental flow requirements are revised as described in Table 3 above.
 - The maximum lake level fluctuation would be 15 feet below the weir outlet.

A comparison of potential environmental impacts resulting from each alternative are presented in Table 4.

Table 4. Comparison of Potential Environmental Impacts Resulting from Chakachamna Lake Hydro Alternatives

Issue	Base Case	Alternative 1	Alternative 2			
Lake Level Fluctuation						
Impacts to shoal spawning areas for sockeye salmon and lake trout	Significant impacts to incubating eggs due to draw down	Significant impacts	Least significant case but impacts may still occur			
Access to inlet streams (Chilligan and Igitna) for sockeye spawners	Not likely to be impacted	Could be impacted due to drawn down	Not likely to be impacted			
Adult salmon passage into lake	Minor to moderate, passage via natural outlet 87% of time	Significant, dependent upon using fish tunnel 91% of the time	Minor to moderate passage via natural outlet 87% of time			
Smolt outmigration from lake	Unknown, smolts 100% dependent on fish passage tunnel	Unknown, smolts 100% dependent on fish passage tunnel	Unknown, smolts 100% dependent on fish passage tunnel			
Chakachatna / McArthur Issues						
False attraction of Chakachamna sockey spawners to the McArthur powerhouse	Likely to occur	Least likely case but may still occur	Least likely case but may still occur			
Noauktna Slough and Chakachatna side channel spawning and rearing habitats	Moderate impacts possible from winter freeze-out	Lower impacts than Base Case	Lower impacts than Base Case			
Trading Bay Wildlife Refuge						
Groundwater fed wetland habitats	Moderate impacts	Lower impacts than Base Case	Lower impacts than Base Case			

Under the Base Case and Alternative 1 the lake level would fluctuate approximately 60 feet from the normal maximum pool elevation of 1,142 feet to the normal minimum pool elevation of 1,082 feet. If sockeye salmon spawn along lake shoals, their spawning timing would coincide with the maximum pool elevation. The resulting eggs might subsequently be exposed to freezing temperatures and killed when the lake level drops to the minimum pool elevations in March or April. Similarly, lake trout spawning areas may be affected by the winter lake drawn down.

An additional impact relating to lake drawn down is the potential for down-cutting of the channel between Kenibuna and Chakachamna Lakes and the fluvial fans of lake tributaries such as the Chilligan River. This down-cutting could affect lake levels for Kenibuna and Shamrock lakes, and potentially affect fish passage into important tributaries such as the Chilligan and Ignina Rivers. Portions of Kennibuna Lake and the Igitna River the Neacola River, and upper portions of the Chilligan River all fall within the boundary of the Lake Clark National Park.

Lake level affects adult salmon passage into the lake in Alternative 1, where the natural outlet is not available to spawning adults 91% of the time. In this alternative, fish will be dependant upon using the two mile long fish passage tunnel. There is uncertainty whether fish will be willing to use the tunnel volitionally. In all cases the fish passage tunnel will be required for smolt outmigration.

In Alternative 2, the lake level is minimized to 15 feet below the weir outlet. While this amount of drawdown may exceed natural lake level fluctuation, it is the scenario offering the least impact to lake habitats.

3.5 Model Operation

Daily inflow data was used to determine each alternative's ability to meet a range of winter energy production targets and maximize summer generation. For each day from November through April the flow through the powerhouse was limited to the amount necessary to satisfy a prescribed capacity demand given the available head, environmental flow constraints, and reservoir operational restrictions. During the months of May through September, energy production each day was maximized if the reservoir elevation was above the target rule curve. If the reservoir elevation was below the target rule curve then generation was curtailed. The simulation was repeated at various increasing winter load demands until the maximum firm capacity was determined. The resulting firm capacities and average annual energy estimates are presented in Table 5. Detailed input assumptions and results of these energy analyses are provided in Appendix A of this report.

• •	C	
Alternative	98% Winter Capacity (MW)	Average Annual Energy Production (GWh)
Susitna	245	2,600
Chakachamna, Base Case	170	1,300
Chakachamna, Alternative 1	140	1,100
Chakachamna, Alternative 2	30	860

Table 5. Firm Capacity and Average Annual Energy Estimates

The energy distribution by month for each of the above alternatives is shown in Figure 3 below.

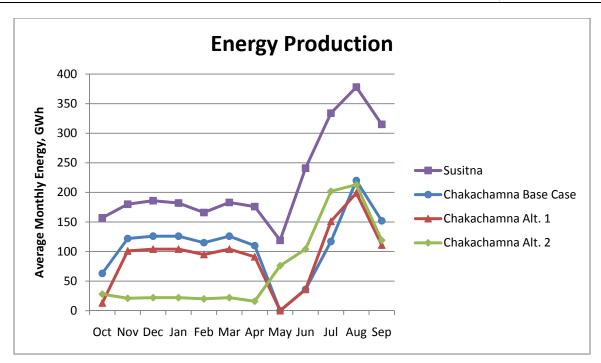


Figure 3. Energy Distribution by Month

As can be seen by these results, the firm winter capacity and average annual energy production estimates can vary significantly based upon the assumed environmental constraints placed upon the project. For Chakachamna, increased environmental flow requirements (Alternatives 1 and 2) reduce the amount of water that is available for generation, thereby lowering the annual energy. Reduced use of reservoir storage greatly limits the amount of energy that can be produced during the winter months (Alternative 2).

For Susitna, environmental flow requirements are met by water being used for energy production passing through the generating units and then being released into the natural stream channel. The effect of changed environmental flows is to change the timing of the energy production but not necessarily the average annual amount of generation.

For Chakachamna, limiting lake fluctuation (Alternative 2) to minimize the affect on upstream spawning will decrease the amount of runoff that can be captured, thereby decreasing the average annual generation. Figure 4 shows the post-project lake elevation by month for the base case and the two alternatives.

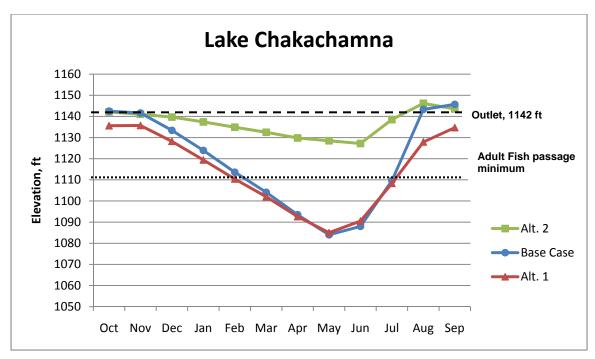


Figure 4. Chakachamna Lake Elevation by Month

Flows in the Chakachatna River during project operation will be comprised of environmental flow releases and spill as shown in Figure 5 Since the powerhouse discharges return to the McArthur River, the net flows in the Chakachatna River are reduced in all cases.

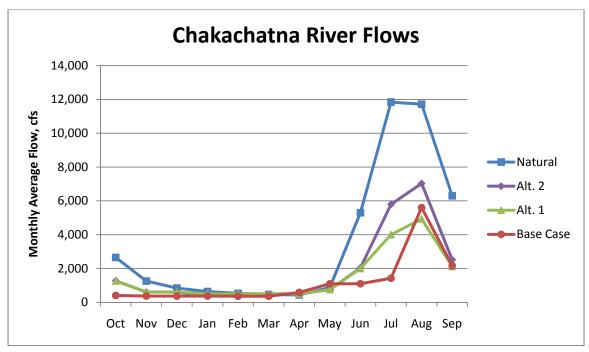


Figure 5. Chakachatna River Flows (Downstream of Lake) by Month

4 Estimates of Probable Project Development Costs

4.1 Susitna Project, Low Watana

4.1.1 Cost Estimate History

In 1982/83, a detailed cost estimate to develop the complete Watana/Devil Canyon project was prepared. In 1985/86, a revised cost estimate to develop a staged Watana/Devil Canyon project was prepared. In March 2009, an estimate for the Low Watana project was prepared, and in November 2009 this estimate was revised for a Low Watana Non-Expandable alternative. The following discussion details the basis for the cost estimates for the Watana projects, the assumptions that were used in creating those estimates, and provides a summary of the projected construction costs. Table 6 provides a chronology.

Date	Source	Estimated Construction Cost	Comments			
1982/83	Acres. Susitna Hydroelectric Project Feasibility Report	\$5.0 billion (01/1982 dollars)	Watana/Devil Canyon alternative			
1985/86	Harza Ebasco. Susitna Hydroelectric Project, Draft License Application	\$5.5 billion (1986 dollars)	Staged Watana/Devil Canyon alternative			
Nov.	HDR Alaska. Susitna	\$4.5 billion	Low Watana-non expandable alternative.			
2009 Hydroelectric Project. Conceptual Alternatives Design Report. Final	· ·	(11/2008 dollars)	Based on 1982 estimate			
	Design Report. Final		Quantities from 1982 estimate			
Draft. (p. 18)		t. (p. 18)	Unit costs in \$2008			
			Water-to-wire turbine-generator equipment estimates from 2008 budget pricing provided by manufacturers.			
			Transmission Costs of 4.5M/mile (EPS 2009)			
			Road Access from Denali Highway			
			Contingency of 20% of direct construction costs			
			Project licensing, environmental studies, engineering design, and construction management were estimated at 11 percent of direct construction costs including contingency.			

Table 6. Chronology of Susitna Hydro Cost Estimates

4.1.2 Expandability

The Low Watana alternative, as proposed in previous studies, included provisions for eventual expansion of the dam from 700 feet to a height of approximately 885 feet and an increase in powerhouse capacity from 800 MW to 1,200 MW. The most notable of these provisions are the design of the dam cross-section and construction of the powerhouse and water conduits to their ultimate capacity. The non-expandable alternative contains no provisions for future expansion.

For the Low Watana Expandable alternative, the dam cross-section is expanded on the upstream side to provide the opportunity to later raise the dam. This results in additional fill material due to the wider base. The powerhouse, powerhouse equipment, and water conveyance scheme would be built to house six turbine-generator units, but only four would be initially installed.

For the Low Watana Non-expandable alternative, the cross-section is narrower and does not accommodate expansion at a later time. Similarly the powerhouse and water conduit features are sized for only four turbine/generator units.

4.1.3 Quantities

Quantities for the construction cost estimates were based upon detailed estimates developed as part of the 1982 Acres feasibility study for the full sized Watana project and the Devil Canyon project. To estimate the quantities of the smaller Watana alternatives, the full sized Watana quantities were scaled based on the size of the development.

4.1.4 Unit Costs

U.S. Cost, a company specializing in creating cost estimates for large capital infrastructure projects, developed unit prices for the materials detailed in the 1982 estimate in 2008 dollars. For the water-to-wire turbine-generator equipment estimates, budget pricing for the Watana alternative was requested directly from manufacturers. The water-to-wire equipment includes turbines, generators, turbine shutoff valves, and other miscellaneous mechanical and electrical equipment, including installation costs. The equipment costs for other smaller alternatives were developed by scaling the Watana vendor quotes on a per kilowatt basis.

4.1.5 Indirect Costs

A contingency of 20 percent was added to the direct construction costs to reflect level of design and uncertainty in the project. Project licensing, environmental studies and engineering design were estimated at 7 percent of direct construction costs. Construction management was estimated at 4 percent of the direct construction costs and has been included as a separate line item.

4.1.6 Interest During Construction and Financing Costs

Costs associated with interest during construction and project financing are not included in the estimates.

4.1.7 Changes from 1983 Design

The camps, access roads, and transmission lines infrastructure assumptions used in the 1983 configuration have been modified as discussed below.

4.1.7.1 Camps

Reductions were made in the scale of the permanent and construction camps needed to accommodate the workers. These changes were made based on the fact that permanent town facilities would no longer be necessary due to advances in remote project operation. It was also assumed that due to modern construction methods, the number of construction personnel could be reduced. It was assumed that 825 people would need to be housed for the Low Watana alternative. In 1983, it was originally assumed that housing would be provided for 3,000 people plus families. Budget pricing for the construction camp was provided by vendors.

4.1.7.2 Access Roads

Access is assumed to be via the Denali Highway from the north. The route would include the upgrade of 21 miles of the Denali Highway to a construction grade road and the construction of approximately 40 miles of new road to the Watana site. The price per mile of new road has been assumed at \$3M/mile which is the current budgetary estimate of the Alaska Department of Transportation and Public Facilities for the road to Bettles and Umiat from the Dalton Highway, which is similar in nature to the road that would be required for a Susitna project. Upgrading of the Denali Highway has been assumed to be \$1M/mile, and local site roads have been estimated at \$750k/mile.

4.1.7.3 Transmission Lines

A separate study (EPS 2009) investigated the transmission lines and interconnection requirements for the entire Alaska railbelt region as part of the Regional Integrated Resources Plan process. This study estimates that a transmission line from the project site to the substation at Gold Creek would cost approximately \$4.5M/mile. Substation costs are estimated at \$16M per location. No costs have been assumed to increase or modify the regional transmission grid beyond the Gold Creek substation.

4.1.8 Conclusions

The approach, methodology, and assumptions previously described resulted in the estimated project costs shown in Table 7. Detailed costs are included in Appendix B.

Table 7. Low Watana Project Cost Summary

FERC Line #	Line Item Name	Low Watana (\$Millions)
71A	Engineering, Env., and Regulatory (7%)	\$ 236
330	Land and Land Rights	\$ 121
331	Power Plant Structure Improvements	\$ 115
332.14	Reservoir, Dams and Tunnels	\$ 1,538
332.59	Waterways	\$ 590
333	Waterwheels, Turbines and Generators	\$ 297
334	Accessory Electrical Equipment	\$ 41
335	Misc Power Plant Equipment	\$ 21
336	Roads, Rails and Air Facilities	\$ 232
350-390	Transmission Features	\$ 224
399	Other Tangible Property	\$ 16
63	Main Construction Camp	\$ 180
71B	Construction Management, 4%	\$ 135
Total Subtotal		\$ 3,746
Total Contingency		\$ 749
Total (Million	\$ 4,500	

4.2 Chakachamna Project

4.2.1 Cost Estimate History

In 1982, a detailed cost estimate was prepared for developing the Chakachamna project. In 2008 and 2009, reevaluations of this original estimate were completed with some alternative arrangements. The following discussion details the basis for these previous cost estimates for the Chakachamna project, the assumptions that were used in creating those estimates, and provides a summary of the projected construction costs.

Table 8. Chronology of Previous Chakachamna Hydro Cost Estimates

Date	Source	Total Cost (\$ Billion)	Comments
March 1983 (Constructi on Estimate completed in January 1982).	Bechtel. Chakachamna Hydroelectric Project Interim Feasibility Assessment Report. Section 8-1	\$1.32	Alternative E
July 2009	TDX Power, Inc. Pre- Application Document (p. 1-3)	No cost information in PAD	PAD noted following engineering and economic modifications from 1983 Bechtel report: 1. Decreasing diameter of power tunnel to 21 feet. 2. Decreasing installed capacity to 300 MW 3. Decreasing powerhouse hydraulic capacity to 5,400 cfs 4. Eliminating most of the power tunnel's proposed concrete lining through selection of a tunnel boring machine as construction method 5. Reducing number of turbines to three 6. Relocating and redesigning outlet structures to minimize exposure to potential glacial hazards. 7. Shortening the length of new transmission line to 42 miles.
February 2010	Black & Veatch. Alaska Railbelt Regional Integrated Resources Plan Study. (p. 10-26)	\$1.6, Estimate provided by developer	Includes transmission costs of \$58 million.

4.2.2 Quantities

Quantities for the construction cost estimates were based upon estimates developed as part of the 1983 Bechtel report.

4.2.3 Unit Costs

Unit prices for the materials detailed in the Bechtel 1982 estimate were inflated to 2008 dollars so that the project would be comparable to the estimate for the Susitna project. The US Bureau of Reclamation (USBR) publishes construction cost index that encompasses the period of 1982 to 2008. Their composite index is based on a hypothetical project consisting of a concrete dam, earthen dam, powerplant, and transmission system. The increase in the USBR composite index for the period of January 1982 to December 2008 was 211 percent. This index was used to inflate the majority of the unit prices.

For the water-to-wire turbine-generator equipment estimates, the budget pricing developed for the Chakachamna project was developed by scaling the Susitna project vendor quotes on a per kilowatt basis.

For the access roads, the unit prices from the Susitna project were used. For the transmission lines the unit prices from the Susitna project were reduced by 50 percent based on input from EPS.

4.2.4 Indirect Costs

A contingency of 20 percent was added to the direct construction costs to reflect level of design and uncertainty in the project. Project licensing, environmental studies and engineering design were estimated at 7 percent of direct construction costs. Construction management was estimated at 4 percent of the direct construction costs, and has been included as a separate line item.

4.2.5 Interest During Construction and Financing Costs

Costs associated with interest during construction and project financing are not included in the estimates.

4.2.6 Changes from the 1983 Bechtel Design

Modifications to the assumptions used in the 1983 configuration are discussed below.

4.2.6.1 Land and Land Rights

No land and land rights costs were included in the 1982 Bechtel estimate. The estimate included a placeholder until more detailed work could be done on this aspect of the project. To make the cost estimates similar to the Susitna estimate, \$75 million was added to the Chakachamna estimate. This value is approximately half of what was assumed for Susitna.

4.2.6.2 Fish Screening

No fish screening costs for the intake were included in the 1982 Bechtel estimate. It was assumed that these would be required. The estimate included a \$5 million placeholder until more detailed work could be done on this aspect of the project.

4.2.6.3 Power Tunnel

The 1982 Bechtel estimate assumed construction using a tunnel boring machine and a full concrete lining of the tunnel. The need for a lining is realistic assumption given the unknown nature of the rock and the high water velocities expected in the tunnel. The Bechtel estimate was based upon a 53,400-foot-long, 24-foot-finished diameter tunnel. The estimated quantities indicate that a 1.5-foot-thick lining was assumed.

The current project configuration assumes a 57,000 foot-long, 21-foot finished diameter tunnel. A 1.5-foot-thick lining was assumed to be required.

4.2.6.4 Transmission Lines

The 1982 Bechtel estimate assumed that power transmission lines would extend 82 miles from the project site to Anchorage. For this estimate the length of the power transmission line was reduced from the project site to regional distribution grid at Beluga (50 miles). The current estimate assumes a triple-circuit design with a unit price of \$3.9 million per mile (EPS 2010).

4.2.6.5 Camps

No camp costs were included in the 1982 Bechtel estimate. The estimate includes a \$90 million placeholder until more detailed work could be done on this aspect of the project. This value is approximately half of the value assumed for the Susitna project.

4.2.7 Conclusions

The approach, methodology and assumptions previously described resulted in the estimated project costs detailed below in Table 9. Detailed costs are included in Appendix C.

Table 9. Chakachamna Cost Summary Table

FERC Line	Line Item Name	Chakachamna
#		(\$Millions)
71A	Engineering, Env., and Regulatory (7%)	\$ 151
330	Land and Land Rights	\$ 75
331	Power Plant Structure Improvements	\$ 105
332.14	Reservoir, Dams and Tunnels	\$ 1,147
332.59	Waterways	\$ 123
333	Waterwheels, Turbines and Generators	\$ 181
334	Accessory Electrical Equipment	\$ 20
335	Misc Power Plant Equipment	\$ 15
336	Roads, Rails and Air Facilities	\$ 172
350-390	Transmission Features	\$ 232
399	Other Tangible Property	\$ 0
63	Main Construction Camp	\$ 90
71B	B Construction Management, 4%	
Total Subtotal		\$ 2,400
Total Contingency		\$ 480
Total (Million	\$ 2,880	

5 Summary

The energy and cost results of this report are summarized in Table 10. The primary environmental issues for both projects are fisheries related. The inter basin transfer of water proposed for the Chakachamna project creates a conflict between the probable environmental flows needed to preserve the fishery and the overall project energy production. For Susitna, environmental flow requirements are met by water being used for energy production passing through the generating units and then being released into the natural stream channel. The effect of changed environmental flows is to change the timing of the energy production but not necessarily the average annual amount of generation.

Table 10. Summary

Alternative	Description	Installed Capacity (MW)	98% Winter Capacity (MW)	Average Annual Energy Production (GWh)	Construction Cost (\$ Billion)	Alternative
Low Watana	Rockfill Dam on Susitna River	600	245	2,600	\$4.5	Low Watana
Chakachamna Base Case	Chakachamna Project as proposed by TDX	300	170	1,300	\$2.9	Chakachamna Base Case
Chakachamna Alternative 1	Chakachamna Project with Probable Environment Flows	300	140	1,100	\$2.9	Chakachamna Alternative 1
Chakachamna Alternative 2	Chakachamna Project with Probable Environment Flows and restricted lake level fluctuation	300	30	860	\$2.9	Chakachamna Alternative 2

6 References

- Acres. 1982. Susitna Hydroelectric Project Feasibility Report. Volume 2 Engineering and Economic Aspects. Section 16 Cost Estimates.
- Bechtel Civil & Minerals Inc. (Bechtel). 1983. *Chakachamna Hydroelectric Project Interim Feasibility Assessment Report*. (Note: Cost estimate completed in 1982).
- Black & Veatch. 2010. Alaska Railbelt Regional Integrated Resources Plan (RIRP) Study. Entrix. 1985. Impoundment area impact assessment and mitigation plan. Susitna Hydroelectric Project Impact Assessment and Mitigation Report No. 2. Entrix, Inc., Under contract to Harza-Ebasco Susitna Joint Venture. Prepared for the Alaska Power Authority.
- EPS. 2009. Susitna Hydro Transmission Study. Report to AEA dated October 22, 2009.
- Habicht, C., W. Templin, T. Willette, L. Fair, S. Rayborn, and L. Seeb. 2007. *Post season stock composition analysis of Upper Cook Inlet sockeye salmon harvest, 2005 2007.* Fishery Manuscript No. 07-07. Alaska Department of Fish and Game, Commercial Fisheries, Anchorage, AK.
- Harza Ebasco. 1985a. Susitna Hydroelectric Project Draft License Application. Exhibit D Project Costs and Financing. Section 1 Estimates of Cost.
- _____. 1985b. Susitna Hydroelectric Project Draft License Application. Volume 11. Exhibit E Chapter 3 Sections 4, 5, 6 & 7 Fish, Wildlife and Botanical Resources.
- _____. HDR Alaska. 2008. Field Reconnaissance Interim Summary Report, Chakachamna Hydro Project. Prepared for TDX Power, Inc.
- _____. 2009. Susitna Hydroelectric Project, Project Evaluation, Interim Memorandum, Final, March 2009.
- ______. 2009. Susitna Hydroelectric Project, Conceptual Alternatives Design Report, Final Draft. November 2009.
- Johnson, J. and P. Blanche. 2010. Catalog of waters important for spawning, rearing, or migration of anadromous fishes Southcentral Region, Effective June 1, 2010. Alaska Department of Fish and Game, Special Publication No. 10-06, Anchorage.
- TDX Power, Inc. 2009. *Pre-Application Document, Chakachamna Project (FERC No. 12660)*. Prepared for the Federal Energy Regulatory Commission.
- Tennant, D.L. 1972. A method for determining instream flow requirements for fish, wildlife and aquatic environment. In: *Pacific Northwest River Basin Commission Transcripts of Proceedings, March 15-16, 1972*, Pacific Northwest River Basin Commission, Portland, Oregon. 3-11.

USBR. Construction Cost Trends. http://www.usbr.gov/pmts/estimate/cost_trend.html

U.S. Cost 2008. 1982 to 2008 Cost Estimate for Susitna Hydroelectric Project.

USGS. Open file streamflow records.

Woodward-Clyde Consultants. 1984. *Susitna Hydroelectric Project: Fish Mitigation Plan.* Prepared for the Alaska Power Authority.

Appendix A: Chakachamna Energy Analysis Input and Results

Chakachamna - PAD Base Case Energy Generation Estimate

DATA FILE USED: chinflow.QCH

MODEL DESCRIPTION

PIPE #	LENGTH	DIAMETER	MANNING'S n	MINOR LOSSES
1	28500	252	.016	.5
2	28500	252	.016	0
3	1000	282	0.2	1

MAX POOL ELEV : 1142 MIN POOL ELEV : 1083 DESIGN FLOW: 5400 GROSS HEAD: 932

NET HEAD @ FULL LOAD: 750.2

NAMEPLATE CAPACITY (MW): 302 @ 1 POWER FACTOR

TARGET FIRM CAPACITY (MW): 170

STATION SERVICE LOSS: 0
TRANSFORMER LOSS: 2
TRANSMISSION LOSS: 0
SCHEDULED DOWN TIME: 1.5

RESERVOIR

STAGE /	STORAGE
760	0
810	350000
860	500000
1060	3000000
1160	4500000
1210	5600000

USABLE STORAGE: 885000

SIMULATED PRODUCTION IN MEGAWATT-HOURS

YEAR	OCT	NOV	DEC	JAN	FEB	MAR
APR	MAY	JUN	JUL	AUG	SEP	TOTAL
1960	46,992	122,400	126,480	126,480	118,320	126,480
81,240	0	34,632	104,736	225,648	97,272	1,210,680
1961	56,592	122,400	126,480	126,480	114,240	126,480
122,400	0	0	70,248	226,200	199,224	1,290,744
1962	50,496	122,400	126,480	126,480	114,240	126,480
122,400	0	20,808	141,480	226,152	173,472	1,350,888
1963	40,008	122,400	126,480	126,480	114,240	126,480
81,600	0	0	97,200	226,440	184,272	1,245,600
1964	79,872	122,400	126,480	126,480	118,320	126,480
110,160	0	27,768	97,752	226,056	154,920	1,316,688
1965	42,312	122,400	126,480	126,480	114,240	126,480
103,896	0	0	0	204,096	218,928	1,185,312

1966	97,944	122,400	126,480	126,480	114,240	126,480
89,760	0	12,072	104,472	208,560	217,656	1,346,544
1967	90,648	122,400	126,480	126,480	114,240	126,480
108,000	0	48,600	170,928	227,448	196,080	1,457,784
1968	82,872	122,400	126,480	126,480	118,320	126,480
122,400	0	62,472	144,168	226,392	93,384	1,351,848
1969	27,120	122,400	126,480	126,480	114,240	126,480
122,400	0	48,672	170,808	203,664	78,504	1,267,248
1970	126,840	122,400	126,480	126,480	114,240	126,480
122,400	0	20,760	104,880	206,760	77,280	1,275,000
1971	56,304	122,400	126,480	126,480	114,240	126,480
122,400	0	193,920	224,064	227,640	118,824	1,559,232
1972	26,376	122,400	126,480	126,480	118,320	126,480
122,400	0	0	85,032	226,488	170,760	1,251,216
AVERAGE	63,414	122,400	126,480	126,480	115,495	126,480
110,112	0	36,131	116,598	220,119	152,352	1,316,060
AVG CAP	85	170	170	170	170	170
153	0	50	157	296	212	150

TARGET CAPACITY EXCEEDANCE: 98.3%

AVERAGE PLANT FACTOR: 0.50

BEGINNING RESERVOIR ELEVATIONS

YEAR MAY	OCT JUN	NOV JUL	DEC	JAN SEP	FEB	MAR	APR
MAI	UUN	000	AUG	SEP			
1960	1142.0	1141.7	1132.9	1122.9	1112.3	1102.0	1090.6
		1111.0					
1961	1142.0	1141.7	1133.3	1125.0	1116.1	1107.7	1096.8
1084.9	1084.4	1103.0	1143.6	1145.2			
1962	1142.0	1141.6	1133.3	1124.2	1114.7	1105.7	1095.3
1085.1	1085.3	1111.3	1145.5	1146.6			
1963	1142.0	1141.3	1132.8	1123.0	1112.0	1102.1	1091.0
1082.9	1087.0	1102.4	1144.4	1148.6			
1964	1142.0	1141.6	1133.6	1124.9	1114.0	1104.3	1093.3
1082.9	1086.4	1112.0	1141.3	1147.5			
1965	1142.0	1141.7	1133.5	1124.3	1113.8	1103.7	1092.7
1082.9	1082.1	1091.8	1135.7	1146.0			
1966	1147.1	1141.9	1132.7	1122.5	1112.0	1102.1	1091.4
1082.9	1086.5	1111.0	1138.4	1145.9			
1967	1142.9	1141.0	1132.4	1122.8	1112.7	1103.1	1092.2
1083.0	1087.9	1113.9	1149.3	1147.5			
1968	1142.0	1141.3	1134.5	1124.6	1114.4	1104.8	1094.5
1084.4	1093.1	1113.5	1146.6	1145.3			
1969	1142.0	1141.9	1133.1	1123.6	1113.5	1104.2	1094.2
1083.8	1087.6	1115.9	1144.8	1142.0			
1970	1142.0	1141.6	1134.3	1124.9	1114.8	1105.8	1095.9
1086.5	1091.2	1111.0	1138.5	1142.4			
1971	1142.0	1141.8	1133.9	1123.6	1113.1	1103.8	1093.7
1085.9	1098.5	1125.3	1147.2	1146.4			
1972	1142.0	1141.6	1133.4	1124.0	1114.0	1104.4	1093.9
1083.2	1084.7	1102.4	1144.6	1146.9			

TARGET	1142.0	1142.0	1129.0	1120.0	1113.0	1105.0	1100.0
1100.0	1100.0	1111.0	1115.0	1142.0			
MIN	1111.0	1083.0	1083.0	1083.0	1083.0	1083.0	1083.0
1083.0	1083.0	1111.0	1111.0	1111.0			
AVG	1142.5	1141.6	1133.4	1123.9	1113.6	1104.1	1093.5
1084.0	1088.1	1109.6	1143.3	1145.7			

START POOL ELEV: 1142.0 ENDING POOL ELEV: 1142.0

MIN. POOL ELEV: 1082.1 JUN 1, 1965

STORAGE CHANGE (CFS): 0.0

ADULT FISH PASSAGE VIA LAKE OUTLET
July 15-July 31: 29.0%
Aug 1 - Oct 15: 98.4%

MONTHLY FLOW INFORMATION

APR	MAY	OCT JUN	NOV JUL	DEC AUG	JAN SEP	FEB AVG	MAR
AVG I	 NFLOW	1600	814	588	446	410	401
584	2109	7432	12507	11443	4985	3636	
MIF		365	365	363	365	357	358
582	1094	1094	1094	1094	1094		
SPILL		37	0	0	0	0	0
0	0	0	327	4505	1070		
CHAKA	CHATNA R	402	365	363	365	357	358
582	1094	1094	1421	5599	2164	1189	
POWER	HOUSE	1409	2520	2546	2574	2543	2637
2404	0	936	2863	5243	3644	2450	

THIS SIMULATION USED THE FOLLOWING EQUIPMENT EFFICIENCIES

% CAP	TURBINE	GENERATOR	COMBINED
0	0.0	0.0	0.0
5	0.0	92.0	0.0
10	73.3	92.3	67.6
15	82.8	92.6	76.6
20	89.1	93.0	82.9
25	93.2	94.2	87.8
30	92.2	95.2	87.7
35	90.3	95.8	86.5
40	91.3	96.3	87.9
45	92.4	96.7	89.3
50	93.1	96.9	90.3
55	93.4	97.1	90.7
60	92.6	97.3	90.1
65	91.8	97.4	89.4
70	92.5	97.5	90.2
75	93.2	97.6	91.0
80	93.4	97.7	91.3
85	93.1	97.8	91.0
90	92.1	97.8	90.1
95	91.1	97.8	89.1

Chakachamna Alt. 1 Energy Generation Estimate

DATA FILE USED: chinflow.QCH

MODEL DESCRIPTION

PIPE #	LENGTH	DIAMETER	MANNING'S n	MINOR LOSSES
1	28500	252	.016	.5
2	28500	252	.016	0
3	1000	282	.02	1

MAX POOL ELEV : 1142 MIN POOL ELEV : 1083 DESIGN FLOW: 5400 GROSS HEAD: 932

NET HEAD @ FULL LOAD: 750.2

NAMEPLATE CAPACITY (MW): 302 @ 1 POWER FACTOR

TARGET FIRM CAPACITY (MW): 140

STATION SERVICE LOSS: 0
TRANSFORMER LOSS: 2
TRANSMISSION LOSS: 0
SCHEDULED DOWN TIME: 1.5

RESERVOIR

STAGE /	STORAGE
760	0
810	350000
860	500000
1060	3000000
1160	4500000
1210	5600000

USABLE STORAGE: 885000

SIMULATED PRODUCTION IN MEGAWATT-HOURS

YEAR	OCT	NOV	DEC	JAN	FEB	MAR
APR	MAY	JUN	JUL	AUG	SEP	TOTAL
1960	50,544	100,800	104,160	104,160	97,440	104,160
92,664	0	13,536	147,672	177,696	7,128	999,960
1961	0	100,800	104,160	104,160	94,080	104,160
100,800	0	0	63,696	222,792	165,120	1,059,768
1962	0	100,800	104,160	104,160	94,080	104,160
100,800	0	20,808	217,584	220,848	85,632	1,153,032
1963	0	100,800	104,160	104,160	94,080	104,160
63,840	0	0	134,184	221,424	173,064	1,099,872
1964	0	100,800	104,160	104,160	97,440	104,160
100,800	0	41,640	147,192	220,896	78,768	1,100,016
1965	0	100,800	104,160	104,160	94,080	104,160
84,984	0	0	0	206,976	216,336	1,015,656

1966	79,680	100,800	104,160	104,160	94,080	104,160
100,800	0	6,648	126,360	184,488	114,432	1,119,768
1967	36,000	100,800	104,160	104,160	94,080	104,160
100,800	0	48,576	218,472	225,840	217,320	1,354,368
1968	7,200	100,800	104,160	104,160	97,440	104,160
100,800	0	103,752	210,720	222,192	64,440	1,219,824
1969	0	100,800	104,160	104,160	94,080	104,160
55,200	0	34,776	218,952	128,136	0	944,424
1970	0	100,800	104,160	104,160	94,080	104,160
100,800	0	31,320	126,072	113,448	0	879,000
1971	0	100,800	104,160	104,160	94,080	104,160
100,800	0	173,160	222,192	226,656	144,408	1,374,576
1972	0	100,800	104,160	104,160	97,440	104,160
84,240	0	0	133,872	221,736	173,088	1,123,656
AVERAGE	13,340	100,800	104,160	104,160	95,114	104,160
91,333	0	36,478	151,305	199,471	110,749	1,111,071
AVG CAP	18	140	140	140	140	140
127	0	51	203	268	154	127

TARGET CAPACITY EXCEEDANCE: 98.3%

AVERAGE PLANT FACTOR: 0.42

BEGINNING RESERVOIR ELEVATIONS

YEAR MAY	OCT JUN	NOV JUL	DEC AUG	JAN SEP	FEB	MAR	APR
				1119.9	1110.5	1101.4	1091.3
	1092.5		1126.2				
			1125.9		1110.6	1103.3	1093.5
1083.8	1084.7	1099.7	1129.2				
		1136.6	1129.1		1112.5	1104.6	1095.4
1087.4	1089.0	1111.3	1126.6				
1963	1135.0	1134.5	1126.8	1117.6	1107.9	1099.0	1089.2
1082.9	1088.4	1100.2	1126.8	1138.4			
1964	1135.9	1138.9	1131.7	1123.8	1114.1	1105.5	1095.9
1086.6	1091.4	1112.0	1124.4	1134.6			
1965	1135.1	1134.9	1127.4	1118.9	1109.6	1100.6	1090.8
1083.0	1083.6	1089.7	1121.7	1132.9			
1966	1145.1	1139.1	1130.6	1121.2	1111.8	1103.1	1093.7
1084.5	1089.6	1111.0	1124.3	1129.8			
1967	1136.7	1136.3	1128.5	1119.7	1110.7	1102.3	1092.6
1084.4	1090.7	1113.1	1135.9	1145.3			
1968	1136.6	1138.9	1132.8	1123.6	1114.7	1106.2	1097.2
1089.3	1099.4	1111.9	1127.7	1135.3			
1969	1131.7	1130.4	1122.3	1113.4	1104.5	1096.3	1087.4
1083.1	1088.3	1114.4	1127.2	1127.3			
1970	1130.1	1137.6	1131.0	1122.3	1113.4	1105.5	1096.9
1089.7	1095.8	1111.0	1124.5	1129.1			
1971	1131.6	1132.7	1125.5	1115.9	1106.6	1098.3	1089.5
1083.8	1097.8	1123.2	1142.2	1144.1			
1972	1134.4	1132.9	1125.4	1116.8	1107.9	1099.4	1090.2
1083.0	1085.9		1125.7				

TARGET	1137.0	1142.0	1129.0	1120.0	1113.0	1105.0	1100.0
1100.0	1100.0	1111.0	1125.0	1130.0			
MIN	1111.0	1083.0	1083.0	1083.0	1083.0	1083.0	1083.0
1083.0	1083.0	1111.0	1111.0	1111.0			
AVG	1135.6	1135.7	1128.2	1119.4	1110.4	1102.0	1092.6
1085.0	1090.5	1108.3	1127.9	1134.7			

START POOL ELEV: 1142.0 ENDING POOL ELEV: 1135.6

MIN. POOL ELEV: 1082.9 APR 27, 1963 STORAGE CHANGE (CFS): -10.2

ADULT FISH PASSAGE VIA LAKE OUTLET July 15-July 31: 3.6% Aug 1 - Oct 15: 10.2%

MONTHLY FLOW INFORMATION

APR	MAY	OCT JUN	NOV JUL	DEC AUG	JAN SEP	FEB AVG	MAR
							404
	NFLOW	1600	814	588	446	410	401
584	2109	7432	12507	11443	4985	3636	
MIF		1250	600	600	500	500	500
500	750	2000	4000	4000	2000		
SPILL		11	0	0	0	0	0
0	0	0	1	931	111		
CHAKA	CHATNA R	1261	600	600	500	500	500
500	750	2000	4001	4931	2111	1532	
POWER	HOUSE	322	2107	2126	2147	2115	2189
2003	0	943	3738	4851	2769	2117	

THIS SIMULATION USED THE FOLLOWING EQUIPMENT EFFICIENCIES

% CAP	TURBINE	GENERATOR	COMBINED
0	0.0	0.0	0.0
5	0.0	92.0	0.0
10	73.3	92.3	67.6
15	82.8	92.6	76.6
20	89.1	93.0	82.9
25	93.2	94.2	87.8
30	92.2	95.2	87.7
35	90.3	95.8	86.5
40	91.3	96.3	87.9
45	92.4	96.7	89.3
50	93.1	96.9	90.3
55	93.4	97.1	90.7
60	92.6	97.3	90.1
65	91.8	97.4	89.4
70	92.5	97.5	90.2
75	93.2	97.6	91.0
80	93.4	97.7	91.3
85	93.1	97.8	91.0
90	92.1	97.8	90.1
95	91.1	97.8	89.1

Chakachamna Alt. 2 Energy Generation Estimate

DATA FILE USED: chinflow.QCH

MODEL DESCRIPTION

PIPE #	LENGTH	DIAMETER	MANNING'S n	MINOR LOSSES
1	28500	252	.016	.5
2	28500	252	.016	0
3	1000	282	.02	1

MAX POOL ELEV : 1142 MIN POOL ELEV : 1083 DESIGN FLOW: 5400 GROSS HEAD: 932

NET HEAD @ FULL LOAD: 750.2

NAMEPLATE CAPACITY (MW): 302 @ 1 POWER FACTOR

TARGET FIRM CAPACITY (MW): 30

STATION SERVICE LOSS: 0
TRANSFORMER LOSS: 2
TRANSMISSION LOSS: 0
SCHEDULED DOWN TIME: 1.5

RESERVOIR

STAGE /	STORAGE
760	0
810	350000
860	500000
1060	3000000
1160	4500000
1210	5600000

USABLE STORAGE: 885000

SIMULATED PRODUCTION IN MEGAWATT-HOURS

YEAR	OCT	NOV	DEC	JAN	FEB	MAR
APR	MAY	JUN	JUL	AUG	SEP	TOTAL
1960	12,864	20,880	21,576	21,576	20,184	21,576
1,392	69,768	128,424	165,912	210,432	52,968	747,552
1961	7,992	20,880	21,576	21,576	19,488	21,576
20,880	39,768	50,232	194,448	225,888	160,416	804,720
1962	15,648	20,880	21,576	21,576	19,488	21,576
20,880	50,064	107,736	225,600	225,384	139,080	889,488
1963	2,304	20,880	21,576	21,576	19,488	21,576
6,264	59,664	21,984	217,992	225,840	156,648	795,792
1964	36,576	20,880	21,576	21,576	20,184	21,576
20,880	67,848	146,616	196,776	225,576	114,600	914,664
1965	6,048	20,880	21,576	21,576	19,488	21,576
16,008	6,936	840	130,920	225,840	218,376	710,064

1966	63,480	20,880	21,576	21,576	19,488	21,576
6,960	57,960	127,032	166,704	225,120	200,280	952,632
1967	69,408	20,880	21,576	21,576	19,488	21,576
7,512	73,536	148,104	225,600	226,920	169,536	1,025,712
1968	39,216	20,880	21,576	21,576	20,184	21,576
20,880	151,728	125,640	224,904	225,792	51,432	945,384
1969	0	20,880	21,576	21,576	19,488	21,576
20,880	61,992	136,416	225,840	125,232	25,080	700,536
1970	86,304	25,152	21,576	21,576	19,488	21,576
20,880	120,624	91,296	194,280	171,960	29,928	824,640
1971	20,736	20,880	21,576	21,576	19,488	21,576
20,880	184,296	215,040	226,416	226,944	76,848	1,076,256
1972	0	20,880	21,576	21,576	20,184	21,576
20,880	39,408	46,944	225,168	226,080	145,536	809,808
31100300	0.5.5.5	01 000	01 556	01 556	10 700	01 556
AVERAGE	-	21,209	=	21,576	· · · · · · · · · · · · · · · · · · ·	21,576
15,783	•	103,562	•	212,847	-	•
AVG CAP		29		29		29
22	102	144	271	286	165	98

TARGET CAPACITY EXCEEDANCE: 95.8%

AVERAGE PLANT FACTOR: 0.33

BEGINNING RESERVOIR ELEVATIONS

YEAR MAY	OCT JUN	NOV JUL	DEC AUG	JAN SEP	FEB	MAR	APR
1960	1142.0	1141.1	1139.3	1136.4	1133.6	1130.7	1127.3
1126.9	1129.6	1136.5	1146.3	1142.0			
1961	1141.0	1141.3	1139.8	1138.7	1137.6	1136.2	1133.1
1130.0	1127.0	1137.0	1148.6	1142.3			
1962	1142.0	1141.1	1139.8	1137.9	1136.2	1134.2	1131.8
1130.3	1127.0	1140.8	1146.8	1143.6			
1963	1142.0	1141.3	1139.7	1137.1	1133.9	1131.0	1127.9
1126.6	1127.0	1136.9	1146.0	1146.5			
1964	1142.0	1141.9	1140.8	1139.3	1136.2	1133.7	1130.7
1128.0	1127.0	1137.7	1144.4	1145.1			
1965	1142.0	1141.2	1139.9	1137.9	1135.1	1132.1	1129.1
1127.0	1126.9	1132.9	1147.4	1143.4			
1966	1146.4	1141.5	1139.2	1136.2	1133.4	1130.7	1127.9
1126.8	1127.0	1136.5	1144.6	1142.6			
1967	1142.0	1139.1	1137.4	1135.1	1132.7	1130.2	1127.2
1127.0	1127.0	1139.9	1149.5	1145.4			
1968	1142.0	1141.6	1141.7	1139.0	1136.5	1134.2	1131.8
1130.5	1127.0	1138.0	1147.1	1142.5			
1969	1140.9	1139.6	1137.7	1135.3	1133.0	1130.8	1128.7
1127.0	1127.0	1143.3	1144.6	1141.5			
1970	1142.0	1141.9	1141.1	1139.0	1136.6	1134.6	1132.7
1132.0	1127.0	1136.7	1143.7	1142.0			
1971	1142.0	1141.4	1140.4	1137.3	1134.5	1132.3	1130.1
1131.1	1127.7	1147.6	1145.7	1144.2			
1972	1141.6	1140.1	1138.8	1136.6	1134.4	1132.0	1129.6
1127.6	1127.0	1136.6	1146.3	1144.6			

TARGET	1142.0	1142.0	1129.0	1120.0	1113.0	1105.0	1097.0
1110.0	1125.0	1137.0	1147.0	1142.0			
MIN	1127.0	1127.0	1127.0	1127.0	1127.0	1127.0	1127.0
1127.0	1127.0	1127.0	1127.0	1127.0			
AVG	1142.1	1141.0	1139.7	1137.4	1134.9	1132.5	1129.8
1128.5	1127.2	1138.5	1146.2	1143.5			

START POOL ELEV: 1142.0 ENDING POOL ELEV: 1142.0

MIN. POOL ELEV: 1126.5 APR 16, 1960

STORAGE CHANGE (CFS): -0.1

ADULT FISH PASSAGE VIA LAKE OUTLET
July 15-July 31: 100.0%
Aug 1 - Oct 15: 87.3%

MONTHLY FLOW INFORMATION

APR	MAY	OCT JUN	NOV JUL	DEC AUG	JAN SEP	AVG	FEB	MAR
AVG I	NFLOW	1600	814	588	446		410	401
584	2109	7432	12507	11443	4985	3636		
MIF		1250	600	600	500		500	500
500	750	2000	4000	4000	2000			
SPILL		22	0	0	0		0	0
0	0	38	1792	3030	513			
CHAKA	CHATNA R	1272	600	600	500		500	500
500	750	2038	5792	7030	2513	1900		
POWER	HOUSE	603	554	549	551		539	554
419	1668	2559	4826	5079	2815	1739		

THIS SIMULATION USED THE FOLLOWING EQUIPMENT EFFICIENCIES

0 0.0 0.0 0.0 5 0.0 92.0 0.0 10 73.3 92.3 67.6 15 82.8 92.6 76.6 20 89.1 93.0 82.9 25 93.2 94.2 87.8 30 92.2 95.2 87.7 35 90.3 95.8 86.5 40 91.3 96.3 87.9 45 92.4 96.7 89.3 50 93.1 96.9 90.3 55 93.4 97.1 90.7 60 92.6 97.3 90.1 65 91.8 97.4 89.4 70 92.5 97.5 90.2 75 93.2 97.6 91.0 80 93.4 97.7 91.3 85 93.1 97.8 91.0 90 92.1 97.8 90.1	% CAP	TURBINE	GENERATOR	COMBINED
30 92.2 95.2 87.7 35 90.3 95.8 86.5 40 91.3 96.3 87.9 45 92.4 96.7 89.3 50 93.1 96.9 90.3 55 93.4 97.1 90.7 60 92.6 97.3 90.1 65 91.8 97.4 89.4 70 92.5 97.5 90.2 75 93.2 97.6 91.0 80 93.4 97.7 91.3 85 93.1 97.8 91.0	5	0.0	92.0	0.0
	10	73.3	92.3	67.6
	15	82.8	92.6	76.6
	20	89.1	93.0	82.9
50 93.1 96.9 90.3 55 93.4 97.1 90.7 60 92.6 97.3 90.1 65 91.8 97.4 89.4 70 92.5 97.5 90.2 75 93.2 97.6 91.0 80 93.4 97.7 91.3 85 93.1 97.8 91.0	30	92.2	95.2	87.7
	35	90.3	95.8	86.5
65 91.8 97.4 89.4 70 92.5 97.5 90.2 75 93.2 97.6 91.0 80 93.4 97.7 91.3 85 93.1 97.8 91.0	50	93.1	96.9	90.3
	55	93.4	97.1	90.7
95 91.1 97.8 89.1	65	91.8	97.4	89.4
	70	92.5	97.5	90.2
	75	93.2	97.6	91.0
	80	93.4	97.7	91.3
	85	93.1	97.8	91.0
	90	92.1	97.8	90.1

Appendix B: Susitna Construction Cost Estimate

HDR/AEA Susitna Hydroelectric Project Cost Estimates based on 1982 quantities By: HDR

By: Leanne Andruszkiewicz, E.I.T. Checked By: Kellen Roberts, E.I.T. Date: 10/15/2009 2008 Dollars

Low Watana (Non-Expandable) (4 Turbines)

FERC Line #		Sub Cate	egories		Description	ible) (4 Turbines) Quantity	/ Units	200	8 Unit Price	Line F	Price	Total	
. LIVO LINE #	330	Jub Cale		and and La	and Rights	Qualitity	JIIII	200	O JIIILI HUG	LIIIC I	1100	rotal	
		0.1	_		and		1 LS	\$	120,870,000.00	\$	120,870,000		
		0.2			and Rights			•	,,	\$	-		
		0.3			isc Charges in Credit Above					\$	_		
					g					\$	_	\$	121,000,000
										\$	-	•	,,
	331		P	owerplant	Structure Improvements					\$	-		
		0.1			owerhouse					\$	-		
			0.11		Powerhouse and Draft Tube					\$	_		
				0.111	Excavation					\$	-		
					Powerhouse Vault Rock	8	1,667 CY	\$	90.12	\$	7,360,000		
					Draft Tube Rock		6,800 CY	\$	90.12		1,510,000		
				0.113	Surface Preparation/ Grouting		0	•		\$	-		
					Powerhouse	6	6,000 SF	\$	3.33	\$	220,000		
					Draft Tube	5	1,000 SF	\$	3.33	\$	170,000		
					Grout Curtain- Drill holes		9,200 LF	\$	27.63		810,000		
					Grout Curtain- Cement	1	1,667 CF	\$	81.10		950,000		
				0.114	Concrete and Shot Crete		0			\$	-		
					Powerhouse Concrete	2	1,733 CY	\$	692.87	\$	15,060,000		
					Powerhouse Concrete Overbreak		1,600 CY	\$	447.21		720,000		
					Powerhouse Reinforcing Steel		1,087 TON	\$	2,858.29	\$	3,110,000		
					Powerhouse 4" Shotcrete		7,333 SF	\$	10.14		280,000		
					Draft Tube Concrete		8,000 CY	\$	692.87	\$	5,540,000		
					Draft Tube Concrete Overbreak		1,667 CY	\$	447.21		750,000		
					Draft Tube Reinforcing Steel		660 TON	\$	2,858.29		1,890,000		
					Draft Tube 2" Shotcrete		4,067 SF	\$	5.45	\$	20,000		
				0.115	Support and Anchors		0			\$	-		
					Powerhouse Rockbolts 1" @ 25' Hy		647 EA	\$	1,234.86	\$	800,000		
					Powerhouse Rockbolts 1" @ 15'		1,313 EA	\$	735.81	\$	970,000		
					Powerhouse Steel Mesh	2	9,733 SF	\$	5.81	\$	170,000		
					Powerhouse Steel Support		91 TON	\$	12,671.94	\$	1,160,000		
					Draft Tube Rockbolts 1" @ 25' Hy		100 EA	\$	1,234.86	\$	120,000		
					Draft Tube Rockbolts 1" @ 12'		260 EA	\$	528.34	\$	140,000		
					Draft Tube Rockbolts 1" @ 9'		127 EA	\$	432.12	\$	50,000		
					Draft Tube Steel Mesh	1	2,600 SF	\$	6.55	\$	80,000		
				0.117	Holes (U/S of Powerhouse)	1	0,000 LF	\$	51.32	\$	510,000		
					Holes (Powerhouse Crown)	1	9,000 LF	\$	51.32	\$	980,000		
				0.118	Structural- Misc Steelwork					\$	-		
					Powerhouse and Draft Tube- Steel Crane Rails		1 LS	\$	10,276,309.00	\$	10,280,000		
				0.119	Architectural- Powerhouse		1 LS	\$	2,927,898.00	\$	2,930,000		
				0.11c	Mechanical					\$	-		
					Draft Tube Gates		4 SETS	\$	427,880.00	\$	1,710,000		
					Draft Tube Gate Guides		4 SETS	\$	202,680.00	\$	810,000		
					Draft Tube Crane		1 LS	\$	1,140,000.00	\$	1,140,000		
			0.12		Access Tunnels and Portals					\$	-		
				0.121	Excavation					\$	-		
					Main Tunnel	3	3,500 CY	\$	97.45	\$	3,260,000		
					Transformer Gallery Tunnel	1	1,833 CY	\$	97.45	\$	1,150,000		
					Grouting Gallery Tunnel		1,267 CY	\$	396.04	\$	500,000		

	Surge Chamber Access Tunnel	4,833 CY	\$	145.22	700,000
	Penstock Access Tunnel	41,000 CY	\$	145.22	\$ 5,950,000
	Penstock Elbow Access Tunnel	10,000 CY	\$	145.22	\$ 1,450,000
	Access Shaft Tunnel	867 CY	\$	145.22	\$ 130,000
	Connector Tunnel	1,267 CY	\$	379.26	\$ 480,000
	Portals Overburden	4,000 CY	\$	17.14	\$ 70,000
	Portals Rock	2,000 CY	\$	49.31	\$ 100,000
0.123	Surface Preparation	2,000 01	Ψ	10.01	\$ 100,000
0.123	Main Tunnel Slab	35,400 SF	\$	2.21	\$ 80,000
		•			,
	Penstock Access Slab	43,467 SF	\$	2.21	\$ 100,000
	Horizontal Portal	133 SF	\$	2.30	\$ -
	Inclined Portal	1,400 SF	\$	3.33	\$ -
0.124	Concrete and Shot Crete				\$ -
	Main Portal				\$ -
	Concrete Slab	20 CY	\$	406.27	\$ 10,000
	Concrete Walls	380 CY	\$	406.27	\$ 150,000
	Concrete Overbreak	33 CY	\$	368.48	\$ 10,000
	Reinforcing Steel	27 TON	\$	2,887.51	\$ 80,000
	Tunnels		•	_,	\$ -
	Concrete Slab Main Tunnel	1,300 CY	\$	503.90	\$ 660,000
	Concrete Plugs Penstock Elbow ACC	10,000 CY	\$	755.86	\$ 7,560,000
	Concrete Overbreak Main Tunnel 6"	,	\$	346.43	\$
		667 CY			230,000
	Reinforcing Steel	47 TON	\$	2,887.51	\$ 130,000
	2 " Shotcrete Main Tunnel	13,400 SF	\$	5.26	\$ 70,000
	2 " Shotcrete Transformer Gal	4,733 SF	\$	5.26	\$ 20,000
	2 " Shotcrete Surge Chamber Acc	2,600 SF	\$	5.26	\$ 10,000
	2 " Shotcrete Penstock Access	16,467 SF	\$	5.26	\$ 90,000
	2 " Shotcrete Penstock Elbow Acc	4,733 SF	\$	5.26	\$ 20,000
	2 " Shotcrete Access Shaft	200 SF	\$	5.26	\$ -
	2 " Shotcrete Grout Gallery	533 SF	\$	5.26	\$ -
	2 " Shotcrete Connector Tunnel	533 SF	\$	5.26	\$ -
0.125	Support and Anchors				\$ _
	Main Tunnel				\$ _
	Rockbolts 1" @12'	800 EA	\$	528.34	\$ 420,000
	Rockbolts 1" @ 9'	167 EA	\$	432.12	\$ 70,000
	Steel Mesh	42,000 SF	\$	6.37	\$ 270,000
		· · · · · · · · · · · · · · · · · · ·			
	Steel Support	44 TON	\$	12,801.49	\$ 560,000
	Main Tunnel Portal		_		\$
	Rockbolts 1" @15'	33 EA	\$	735.79	\$ 20,000
	Transformer Gallery Tunnel				\$ -
	Rockbolts 1" @12'	273 EA	\$	528.34	\$ 140,000
	Rockbolts 1" @ 9'	47 EA	\$	432.12	\$ 20,000
	Steel Mesh	15,000 SF	\$	5.89	\$ 90,000
	Steel Support	16 TON	\$	12,801.49	\$ 200,000
	Grouting Gallery Tunnel				\$ · <u>-</u>
	Rockbolts 3/4" @ 6'	107 EA	\$	327.15	\$ 30,000
	Steel Mesh	107 SF	\$	6.37	\$ -
	Steel Support	2 TON	\$	12,801.49	\$ 30,000
	··	2 10N	φ	12,001.49	\$ 30,000
	Surge Chamber Access Tunnel	450.54	•	500.04	-
	Rockbolts 1" @12'	153 EA	\$	528.34	\$ 80,000
	Rockbolts 1" @ 9'	33 EA	\$	432.12	\$ 10,000
	Steel Mesh	8,033 SF	\$	6.37	\$ 50,000
	Steel Support	9 TON	\$	12,801.49	\$ 120,000
	Penstock Access Tunnel				\$ -
	Rockbolts 1" @12'	953 EA	\$	528.34	\$ 500,000
	Rockbolts 1" @ 9'	160 EA	\$	432.12	\$ 70,000
	Steel Mesh	51,667 SF	\$	6.37	\$ 330,000
	Steel Support	39 TON	\$	12,801.49	\$ 490,000
	• •			•	

		Penstock Elbow Access Tunnel				\$	
		Rockbolts 1" @12'	280 EA	\$	528.34	э \$	150,000
		Rockbolts 1" @ 9'	80 EA	\$	432.12	\$	30,000
		Steel Mesh	15,000 SF	\$	6.37	\$	100,000
		Steel Support	20 TON	\$	12,801.49	\$	260,000
		••	20 1014	Ψ	12,001.43		200,000
		Access Shaft Tunnel				\$	
		Rockbolts 1" @12'	13 EA	\$	528.34	\$	10,000
		Rockbolts 1" @ 9'	13 EA	\$	432.12	\$	10,000
		Steel Mesh	620 SF	\$	6.37	\$	-
		Steel Support	5 TON	\$	12,801.49	\$	70,000
		Connector Tunnel	0.10.1	Ψ	.2,000	\$	
		Rockbolts 3/4" @ 6'	107 EA	\$	327.15	\$	30,000
		Steel Mesh	107 SF	\$	6.37	\$	-
		Steel Support	2 TON	\$	12,801.49	\$	30,000
	0.129	Architectural- Main Portal Doors	2 SETS	\$	158,371.90	\$	320,000
	0.12c	Mechanical Ventilation System	2 32.3	Ψ	100,011100	\$	-
0.13	020	Access Shaft				\$	_
	0.131	Excavation Rock	9,133 CY	\$	227.67	\$	2,080,000
	0.133	Surface Preparation Shaft	42,667 SF	\$	3.33	\$	140,000
	0.134	Concrete and Shot Crete	12,000	•		\$	-
		Concrete Lining	2,233 CY	\$	944.82	\$	2,110,000
		Concrete Overbreak 6"	813 CY	\$	551.14	\$	450,000
	0.135	Support and Anchors - Rockbolts 3/4" @ 6'	700 EA	\$	327.15	\$	230,000
	0.138	Structural Misc Steelwork	33 TON	\$	7,395.00	\$	250,000
	0.139	Architectural- control Building		•	,	\$	-
	0.13c	Mechanical Elevators	1 LS	\$	2,368,815.00	\$	2,370,000
0.14		Fire Protection Head Tank		•	,,-	\$	-
	0.141	Excavation	767 CY	\$	588.80	\$	450,000
	0.143	Surface Preparation	1,867 SF	\$	2.30	\$	· -
	0.144	Concrete & Shotcrete	,	•		\$	-
		Concrete	167 CY	\$	963.72	\$	160,000
		Concrete Overbreak 6"	30 CY	\$	406.27	\$	10,000
		Reinforcing Steel	7 TON	\$	2,858.29	\$	20,000
	0.145	Support and Anchors			,	\$	· -
		Rockbolts 1" @12'	17 EA	\$	528.34	\$	10,000
		Rockbolts 1" @ 9'	7 EA	\$	432.12	\$	· -
		Steel Mesh	800 SF	\$	6.30	\$	10,000
		Steel Support	2 TON	\$	12,671.95	\$	30,000
	0.148	Misc Steelwork	1 LS	\$	73,297.50	\$	70,000
	0.14c	Mechanical Piping/Valves				\$	-
0.15		Bus Tunnels (totals for 3 Bus Tunnels)				\$	-
	0.151	Excavation				\$	-
		Rock Horizontal	1,800 CY	\$	213.70	\$	380,000
		Rock Inclined	867 CY	\$	601.04	\$	520,000
	0.153	Surface Preparation- Tunnels	4,733 SF	\$	3.33	\$	20,000
	0.154	Concrete and Shotcrete				\$	-
		Concrete Slab	233 CY	\$	818.84	\$	190,000
		Concrete Overbreak 12"	167 CY	\$	472.41	\$	80,000
		Reinforcing Steel	12 TON	\$	2,858.29	\$	30,000
		2" Shotcrete	1,467 SF	\$	5.26	\$	10,000
	0.155	Supports and Anchors				\$	-
		Rockbolts 1" @ 25'	40 EA	\$	1,234.86	\$	50,000
		Rockbolts 1" @ 12'	93 EA	\$	528.34	\$	50,000
		Rockbolts 1" @ 9'	33 EA	\$	432.12	\$	10,000
		Steel Mesh	4,533 SF	\$	6.30	\$	30,000
		Steel Support	7 TON	\$	12,671.94	\$	90,000
0.16		Transformer Gallery Tunnel				\$	-

			0.161	Excavation- Rock	17,867 CY	\$	87.44		1,560,000	
			0.163	Surface Preparation	16,400 SF	\$	2.30	\$	40,000	
			0.164	Concrete and Shotcrete	4 000 014	•	4 000 07	\$	-	
				Concrete Base Slab	1,600 CY	\$	1,228.27	\$	1,970,000	
				Concrete Overbreak 12"H/6"V	513 CY	\$	377.93	\$	190,000	
			0.405	Reinforcing Steel	80 TON	\$	2,858.29	\$	230,000	
			0.165	Support and Anchors	400 54	•	4 004 00	\$	-	
				Rockbolts 1" @ 25'	400 EA	\$	1,234.86	\$	490,000	
				Rockbolts 1" @ 15'	180 EA	\$	735.81	\$	130,000	
				Steel Mesh	13,800 SF	\$ \$	5.81	\$	80,000	
			0.407	Steel Support	19 TON		12,671.94	\$	240,000	
		0.17	0.167	Drainage Holes	5,533 LF	\$	47.95	\$ \$	270,000	
		0.17	0.171	Cable Shafts	2.267 CY	\$	604.04	\$ \$	1 260 000	
			0.171 0.173	Excavation Rock Surface Preparation Shafts	2,267 CT 27,600 SF	э \$	601.04 3.33	\$ \$	1,360,000 90,000	
			0.173	•	27,600 SF	Ф	3.33	\$ \$	90,000	
			0.174	Concrete and Shotcrete	693 CY	¢.	1,763.66	\$ \$	1 220 000	
				Concrete Lining	533 CY	\$,	\$ \$	1,220,000	
			0.175	Concrete Overbreak 6"	433 EA	\$ \$	881.83 327.15	\$ \$	470,000 140,000	
			0.178	Supports and Anchors- Rockbolts 3/4" @ 6' Structural Misc Steelwork	433 EA 12 TON	э \$	15,602.00	\$ \$	190,000	
			0.176	Architectural- Enclosures	12 TON 1 LS	э \$	199,317.00		200,000	
			0.179 0.17c	Mechanical Hoist	2 EA	э \$	476,960.00	э \$	950,000	
		0.18	0.176		2 EA	φ	470,900.00	Ф \$	950,000	
		0.16	0.181	Dewatering (during Construction) Dewatering (Power Facilities)	1 LS	\$	1,336,798.50	\$	1,340,000	
		0.19	0.101	Instrumentation	1 L3	φ	1,330,790.30	Ф \$	1,340,000	
		0.19	0.191	Instrumentation	1 LS	\$	1,714,813.50	\$	1,710,000	
	0.2		0.131	Misc Buildings (Control Buildings)	1 LS	\$		\$	4,430,000	
	0.2			Permanent Town	(included in 63.5)	Ψ	4,400,000.00	Ψ	4,400,000	
	0.5			Tomanon Town	(included in 65.5)			\$	- \$	
								Ψ	•	_
332				Reservoir Dams and Waterways				\$	_	
<u>332</u>	0.1			Reservoir, Dams and Waterways Reservoir				\$ \$	-	
<u>332</u>	0.1	0 11		Reservoir	23 000 ACRE	\$	3 005 85	\$	- - 69 130 000	
<u>332</u>		0.11		Reservoir Reservoir Clearing	23,000 ACRE	\$	3,005.85	\$ \$	- - 69,130,000 -	
<u>332</u>	0.1			Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams	23,000 ACRE	\$	3,005.85	\$ \$ \$	- - 69,130,000 - -	
332		0.11	0.211	Reservoir Reservoir Clearing	23,000 ACRE	\$	3,005.85	\$ \$	- 69,130,000 - - -	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation	23,000 ACRE	\$	3,005.85	\$ \$ \$	- - 69,130,000 - - - -	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals	23,000 ACRE 221,000 CY	\$	3,005.85	\$ \$ \$ \$	69,130,000 - - - - - 20,400,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel	,	·		\$ \$ \$ \$ \$	- - -	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock	,	·		\$ \$ \$ \$ \$ \$	- - -	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel	221,000 CY	\$	92.33	\$ \$ \$ \$ \$ \$ \$	20,400,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock	221,000 CY 208,000 CY	\$	92.33 92.33	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20,400,000 - 19,200,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug	221,000 CY 208,000 CY	\$	92.33 92.33	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20,400,000 - 19,200,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal	221,000 CY 208,000 CY 700 CY	\$ \$	92.33 92.33 96.92	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	20,400,000 - 19,200,000 70,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only)	221,000 CY 208,000 CY 700 CY	\$ \$	92.33 92.33 96.92	***	20,400,000 - 19,200,000 70,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal)	221,000 CY 208,000 CY 700 CY 11,200 CY	\$ \$ \$	92.33 92.33 96.92 49.16	***	20,400,000 - 19,200,000 70,000 - 550,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY	\$ \$\$	92.33 92.33 96.92 49.16	***	20,400,000 - 19,200,000 70,000 - 550,000 - 5,310,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY	\$ \$\$	92.33 92.33 96.92 49.16	***	20,400,000 - 19,200,000 70,000 - 550,000 - 5,310,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY	\$ \$\$ \$ \$\$	92.33 92.33 96.92 49.16 49.16		20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY	\$ \$\$ \$ \$\$	92.33 92.33 96.92 49.16 49.16 17.14		20,400,000 - 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY	* ** * ** **	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16		20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000	
<u>332</u>			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY	* * * * * * * * * * * *	92.33 96.92 49.16 49.16 49.16 49.16 49.16	\$	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY	* ** * ** **	92.33 92.33 96.92 49.16 49.16 17.14 49.16 49.16	\$	20,400,000 -19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000	
332			0.211	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber	221,000 CY 208,000 CY 700 CY 11,200 CY 118,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY	* * * * * * * * * * * * * * * * * * * *	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16 49.16	\$	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000	
332				Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY 19,100 CY	\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16 49.16 101.98 110.73	· · · · · · · · · · · · · · · · · · ·	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000 - 1,860,000	
332			0.212	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber Rock Fill- Temp for Coffer Dam to Construct Upstream Portals	221,000 CY 208,000 CY 700 CY 11,200 CY 118,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY	* * * * * * * * * * * * * * * * * * * *	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16 49.16	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000	
332				Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber Rock Fill- Temp for Coffer Dam to Construct Upstream Portals Surface Preparation \ grouting	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY 19,100 CY	\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16 49.16 101.98 110.73		20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000 - 1,860,000	
332			0.212	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber Rock Fill- Temp for Coffer Dam to Construct Upstream Portals Surface Preparation \ grouting Upstream Upper Portal	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY 19,100 CY 23,000 CY	\$ \$\$ \$ \$\$ \$\$\$ \$\$\$	92.33 96.92 49.16 49.16 49.16 49.16 49.16 101.98 110.73 97.15 11.66	•••••••••••••••••••••••	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000 - 1,860,000 270,000	
<u>332</u>			0.212	Reservoir Reservoir Clearing Diversion Tunnels /Cofferdams Diversion Tunnels /Portals Excavation Upper Tunnel Rock Lower Tunnel Rock Excavate Concrete for Plug Upstream Upper Portal Rock Usable (Face Only) Upstream Lower Portal (Including Most Exc for Upper Portal) Rock Usable Rock Waste Downstream Portals Overburden Rock Usable Rock Waste Emergency Release Chambers Excavate Concrete for Plugs Gate Chamber Access Tunnel to Gate Chamber Rock Fill- Temp for Coffer Dam to Construct Upstream Portals Surface Preparation \ grouting	221,000 CY 208,000 CY 700 CY 11,200 CY 108,000 CY 21,750 CY 17,000 CY 120,000 CY 28,000 CY 1,800 CY 4,700 CY 19,100 CY	\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$	92.33 92.33 96.92 49.16 49.16 49.16 17.14 49.16 49.16 101.98 110.73	•••••••••••••••••••••••	20,400,000 19,200,000 70,000 - 550,000 - 5,310,000 1,070,000 - 290,000 5,900,000 1,380,000 - 180,000 520,000 - 1,860,000	

115,000,000

Inclined	8,600 SF	\$	3.33		30,000
Upstream Lower Portal				\$	-
Horizontal	1,300 SF	\$		\$	-
Inclined	14,900 SF	\$	3.33	\$	50,000
Downstream Upper Portal				\$	-
Horizontal	6,100 SF	\$		\$	10,000
Inclined	20,500 SF	\$	3.33	\$	70,000
Downstream Lower Portal				\$	-
Horizontal	600 SF	\$		\$	-
Inclined	5,600 SF	\$	3.33	\$	20,000
Grout Upper Tunnel Plugs				\$	-
Drill Holes	4,100 LF	\$	26.76	\$	110,000
Cement	820 CF	\$	81.10	\$	70,000
Grout Lower Tunnel Permanent Plugs				\$	-
Drill Holes	2,050 LF	\$	26.76	\$	50,000
Cement	410 CF	\$	81.10	\$	30,000
0.214 Concrete and Shotcrete				\$	-
Upper Tunnel				\$	-
Concrete Lining	42,400 CY	\$	566.89	\$	24,040,000
Concrete Lining Overbreak 6"	10,200 CY	\$		\$	3,210,000
Reinforcing Steel	24 TON	\$		\$	70,000
2" Shotcrete	56,000 SF	\$		\$	290,000
Lower Tunnel	55,555 51	*		\$,
Concrete Lining	37,600 CY	\$	566.89	\$	21,320,000
Concrete Lining for Plug	6,200 CY	\$		\$	2,660,000
Concrete Lining Overbreak 6"	10,000 CY	\$		\$	3,150,000
Reinforcing Steel	24 TON	\$		\$	70,000
2" Shotcrete	57,900 SF	\$		\$	300,000
Upstream Upper Portal	57,900 SF	Φ	5.20	\$	300,000
Concrete Headwall	3,200 CY	\$	651.93	\$	2,090,000
	,				
Concrete Lining	1,300 CY	\$		\$	850,000
Concrete Slab	750 CY	\$		\$	490,000
Concrete Piers	800 CY	\$		\$	520,000
Concrete Overbreak 12" H/6"V	300 CY	\$		\$	140,000
Reinforcing Steel	400 TON	\$	2,887.51	\$	1,160,000
Upstream Lower Portal				\$	
Concrete Headwall	4,500 CY	\$		\$	2,930,000
Concrete Lining	3,000 CY	\$		\$	1,960,000
Concrete Slab	300 CY	\$		\$	200,000
Concrete Piers	700 CY	\$		\$	460,000
Concrete Overbreak 12" H/6"V	350 CY	\$		\$	170,000
Reinforcing Steel	600 TON	\$	2,887.51	\$	1,730,000
Downstream Upper Portal				\$	-
Concrete Headwall	500 CY	\$	651.93	\$	330,000
Concrete Slab	100 CY	\$	651.93	\$	70,000
Concrete Overbreak 12" H/6"V	100 CY	\$	472.41	\$	50,000
Reinforcing Steel	40 TON	\$	2,887.51	\$	120,000
Downstream Lower Portal				\$	-
Concrete Headwall	2,500 CY	\$	651.93	\$	1,630,000
Concrete Slab	100 CY	\$	651.93	\$	70,000
Concrete Overbreak 12" H/6"V	150 CY	\$		\$	70,000
Reinforcing Steel	170 TON	\$		\$	490,000
Downstream Flip Bucket	. •	•	,	\$	-
Concrete Slab	800 CY	\$	651.93	\$	520,000
Concrete Walls	2,300 CY	\$		\$	1,500,000
Concrete Invert	1,200 CY	\$		\$	780,000
Concrete Overbreak 12" H/6"V	410 CY	\$		\$	20,000
Reinforcing Steel	280 TON	\$	2,887.51		810,000
Training Steel	200 1014	Ψ	2,007.01	Ψ	010,000

	Downstream Retaining Wall				\$	
	Concrete Slab	200 CY	\$	651.93	э \$	130,000
	Concrete Walls	2,000 CY	\$	651.93	\$	1,300,000
	Concrete Overbreak 12" H/6"V	110 CY	\$	472.41	\$	50,000
	Reinforcing Steel	90 TON	\$	2,887.51	\$	260,000
	<u> </u>	90 TON	Ф	2,007.31	э \$	260,000
	Emergency Release Chambers	15,300 CY	\$	755.86	э \$	11,560,000
	Concrete Plug	,				
	4" Shotcrete	2,790 SF	\$	10.13	\$	30,000
	Access Tunnel to Gate Chamber	40,000,05	•	5.00	\$	70.000
0.045	2" Shotcrete	12,800 SF	\$	5.26	\$	70,000
0.215	Supports and Anchors				\$	-
	Lower Tunnel	0.050.54	•	500.04	\$	-
	Rockbolts 1" @ 12'	3,650 EA	\$	528.34	\$	1,930,000
	Rockbolts 1" @ 9'	620 EA	\$	432.12	\$	270,000
	Steel Mesh	217,100 SF	\$	6.37	\$	1,380,000
	Steel Support	220 TON	\$	12,801.49	\$	2,820,000
	Upper Tunnel				\$	-
	Rockbolts 1" @ 12'	3,530 EA	\$	528.34	\$	1,870,000
	Rockbolts 1" @ 9'	600 EA	\$	432.12	\$	260,000
	Steel Mesh	210,200 SF	\$	6.37	\$	1,340,000
	Steel Support	213 TON	\$	12,801.49	\$	2,730,000
	Upstream Lower Portal				\$	-
	Rockbolts 1" @ 15'	240 EA	\$	735.81	\$	180,000
	Anchors 1" @ 25'	290 EA	\$	1,234.86	\$	360,000
	Upstream Upper Portal				\$	-
	Rockbolts 1" @ 15'				\$	-
	Anchors 1" @ 25'	130 EA	\$	735.81	\$	100,000
	Downstream Lower Portal				\$	· <u>-</u>
	Rockbolts 1" @ 15'	200 EA	\$	735.81	\$	150,000
	Downstream Upper Portal		•		\$	-
	Rockbolts 1" @ 15'	100 EA	\$	735.81	\$	70,000
	Retaining Wall Anchors 1" @25'	100 EA	\$	1,234.86	\$	120,000
	Emergency Release Chambers	100 2.1	Ψ	1,201.00	\$	-
	Rockbolts 1" @ 25'	100 EA	\$	1,234.86	\$	120,000
	Rockbolts 1" @ 15'	125 EA	\$	735.77	\$	90,000
	Steel Mesh	3,600 SF	\$	6.37	\$	20,000
	Steel Support	14 TON	\$	12,801.49	\$	180,000
	Metal to Roof Anchors 3/4" @ 6'	20 EA	\$	342.42	\$	10,000
	Access Tunnel to Gate Chamber	20 EA	Φ	342.42	\$	10,000
	Rockbolts 1" @ 12'	775 EA	\$	528.34	\$	410,000
	Rockbolts 1" @ 9'	240 EA	\$	432.12	\$	100,000
	Steel Mesh	39,900 SF	\$	6.37	\$	250,000
	Steel Support	55 TON	\$	12,801.49	\$	700,000
0.218	Structural- Misc Steelwork	2,775 SF	\$	93.61	\$	260,000
0.21c	Mechanical				\$	-
	Upstream Lower Gates				\$	-
	Gate Equipment	2 EA	\$	5,073,120.00	\$	10,150,000
	Upstream Upper Gates				\$	-
	Gate Equipment	2 EA	\$	2,840,080.00	\$	5,680,000
	Trashracks	1 LS	\$	1,777,500.00	\$	1,780,000
	Downstream Lower Outlet				\$	-
	Stoplog Guides	1 LS	\$	142,200.00	\$	140,000
	Stoplogs includes follower	1 LS	\$	1,967,100.00	\$	1,970,000
	Downstream Upper Outlet				\$	-
	Stoplog Guides	1 LS	\$	82,950.00	\$	80,000
	Low Level Release			•	\$	· -
	Slide Gates Include Steel Liner	9 EA	\$	3,517,470.00	\$	31,660,000
			•		\$	· · · · · · · · -

	0.22		Upstream Cofferdam				\$ -
		0.221	Excavation				\$ -
			Overburden Removal	1,000 CY	\$	11.56	\$ 10,000
		0.222	Fill				\$ -
			Rock Fill	38,400 CY	\$		\$ 420,000
			Fine Filter	16,600 CY	\$		\$ 610,000
			Coarse Filter	15,900 CY	\$		\$ 480,000
			Rock Shell	196,500 CY	\$		\$ 2,060,000
			Closure Dike	58,500 CY	\$		\$ 640,000
		0.000	Rip Rap	21,200 CY	\$		\$ 510,000
		0.223	Cutoff Slurry Wall	4.050, CV	\$		\$ - \$ 20,000
			excavation slurry wall	4,850 CY 43,600 SF	\$ \$		
		0.22d	Dewatering	43,000 5F	Ф		\$ 3,160,000 \$ -
		0.220	Initial Dewatering	1 LS	\$		\$ 5,810,000
			Dewatering Maintenance	1 LS	\$		\$ 22,380,000
	0.23		Down Stream Cofferdam	1 25	Ψ		\$ 22,300,000
	0.20	0.231	Excavation				\$ -
		0.201	overburden	5,000 CY	\$		\$ 60,000
			Rock	500 CY	\$		\$ -
			Removal of Cofferdam	14,500 CY	\$		\$ 200,000
		0.232	Fill	,	•		\$ -
			Rip Rap	1,800 CY	\$	24.26	\$ 40,000
			Closure Dike	15,200 CY	\$	10.90	\$ 170,000
		0.233	Cutoff Slurry Wall				\$ -
			Excavation	1,830 CY	\$	4.60	\$ 10,000
			Slurry Wall	16,500 SF	\$	72.44	\$ 1,200,000
0.3			Main Dam				\$ -
	0.31		Main Dam				\$ -
		0.311	Excavation				\$ -
			Overburden above el. 1470	2,026,000 CY	\$		\$ 23,360,000
			Overburden below el. 1470	5,320,000 CY	\$		\$ 58,840,000
			Rock Usable above el. 1470	1,289,000 CY	\$		\$ 55,470,000
			Rock Usable below el. 1470	478,000 CY	\$		\$ 20,900,000
			Rock Waste above el. 1470	1,950,000 CY	\$ \$		\$ 83,910,000 \$ 43,630,000
		0.312	Rock Waste below el. 1470 Fill- Estimated from Attatched Calculations	869,500 CY	Ф		\$ 43,630,000 \$ -
		0.312	Rip Rap (upstream)	409,000 CY	\$		э \$ 9,530,000
			Gravel (upstream)	6,659,000 CY	\$		\$ 136,910,000
			Coarse Filter (upstream)	925,759 CY	\$		\$ 26,720,000
			Fine Filter (upstream)	1,045,588 CY	\$		\$ 39,640,000
			Core (impervious)	6,300,000 CY	\$		\$ 159,830,000
			Fine Filter (downstream)	1,171,412 CY	\$		\$ 44,410,000
			Coarse Filter (downstream)	1,074,241 CY	\$		\$ 31,000,000
			Shell- Rock and Gravel	2,998,209 CY	\$		\$ 57,510,000
			Shell- Rock From Other Sources	1,445,000 CY	\$	10.09	\$ 14,580,000
			Cobbles (downstream Face)	530,000 CY	\$	16.35	\$ 8,670,000
			Road Base	12,000 CY	\$	34.42	\$ 410,000
			Frost Protection				\$ -
			Process Protection	960,000 CY	\$	10.31	\$ 9,900,000
			Place Protection	960,000 CY	\$		\$ 3,160,000
			Remove 1' Protect and Waste	93,000 CY	\$		\$ 670,000
			Scarify Core Surface	193 ACRE	\$		\$ 170,000
			Filter Fabric				\$ -
			Filter Fabric	592,000 SF	\$		\$ 520,000
		0.313	Surface Prep/ Grouting				\$ -
			Surface Preparation	4 040 000 05	•		\$ -
			Under Core/Filters above el. 1500	1,340,000 SF	\$	3.11	\$ 4,170,000

		Haday Ossa/Ellers halous of 4500	400,000,05	•	0.44	•	4 500 000
		Under Core/Filters below el. 1500	490,000 SF	\$	3.11		1,520,000
		Under Shell below et 1500	4,149,000 SF	\$	2.15	\$	8,920,000
		Under Shell below el. 1500	2,067,000 SF	\$	2.15	\$	4,440,000
		Consolidation Grout Drill Holes	550,000 LF	\$	11.91	\$ \$	-
		Cement	· · · · · · · · · · · · · · · · · · ·	\$ \$	67.81		6,550,000
			550,000 CF	Ф	67.81	\$	37,300,000
		Grout Curtain	272 000 1 5	•	00.70	\$	0.050.000
		Drill Holes	372,000 LF	\$	26.76	\$	9,950,000
		Cement	149,000 CF	\$	81.10	\$	12,080,000
		Dental Concrete	C0 000 CV	•	205.22	\$	-
	0.317	Dental Concrete	68,000 CY	\$	365.33	\$ \$	24,840,000
	0.317	Drainage	400,000 5	•	54.00		-
0.22		Holes	109,000 LF	\$	51.32	\$	5,590,000
0.32	0.004	Grout Galleries/Portals				\$ \$	-
	0.321	Excavation					-
		Tunnels/ Shafts- Core Area	0.400.00	•	004.00	\$	-
		Rock Horizontal	8,100 CY	\$	394.80	\$	3,200,000
		Rock Inclined	9,000 CY	\$	552.93	\$	4,980,000
		Rock Vertical	1,600 CY	\$	536.19	\$	860,000
		Tunnels/ Shafts- Access	40.400.004	•	224.22	\$	-
		Rock Horizontal	10,400 CY	\$	394.80	\$	4,110,000
		Rock Inclined	1,600 CY	\$	552.93	\$	880,000
		Portals				\$	
		Overburden Rock	2,900 CY	\$	17.16	\$	50,000
		Rock	800 CY	\$	49.16	\$	40,000
	0.323	Surface Preparation				\$	-
		Portals				\$	-
		Horizontal	24 SF	\$	2.30	\$	-
		Inclined	160 SF	\$	3.33	\$	-
						\$	-
	0.324	Concrete and Shotcrete				\$	-
		Tunnels- Core Area				\$	
		Concrete Plugs	800 CY	\$	428.32	\$	340,000
		Concrete Slab	1,800 CY	\$	944.82	\$	1,700,000
		Concrete Overbreak 6"	920 CY	\$	755.86	\$	700,000
		Reinforcing Steel	64 TON	\$	2,887.51	\$	180,000
		2" Shotcrete	12,000 SF	\$	5.26	\$	60,000
		Tunnels-Access				\$	-
		Concrete Slab	1,280 CY	\$	944.82	\$	1,210,000
		Concrete Overbreak 6"	640 CY	\$	755.86	\$	480,000
		Reinforcing Steel	48 TON	\$	2,887.51	\$	140,000
		2" Shotcrete	4,300 SF	\$	5.26	\$	20,000
		Shafts				\$	-
		2" Shotcrete	4,000 SF	\$	5.26	\$	20,000
		Portals				\$	-
		Concrete	16 CY	\$	406.36	\$	10,000
		Reinforcing Steel	2 TON	\$	2,887.51	\$	-
	0.325	Support and Anchors				\$	-
		Tunnels- Core Area				\$	-
		Rockbolts 3/4" @6'	1,400 EA	\$	327.15	\$	460,000
		Steel Mesh	2,400 SF	\$	5.37	\$	10,000
		Steel Support	16 TON	\$	12,801.49	\$	200,000
		Tunnels- Access				\$	-
		Rockbolts 3/4" @6'	960 EA	\$	327.15	\$	310,000
		Steel Mesh	880 SF	\$	5.37	\$	-
		Steel Support	16 TON	\$	12,801.49	\$	200,000
		Shafts				\$	-
		Rockbolts 3/4" @6'	280 EA	\$	327.15	\$	90,000

				Steel Mesh	800 SF	\$	5.37	\$ -		
				Portals				\$ -		
				Rockbolts 1" @15'	24 EA	\$		\$ 20,000		
			0.329	Architectural Portal Doors Portal Doors	1 LS	\$		\$ - \$ 30,000		
		0.33		Instrumentation	1 L3	φ		\$ 30,000		
		0.00	0.331	Instrumentation	1 LS	\$		\$ 17,320,000		
	0.4			Relict Channel				\$ -		
		0.41		Shore Protection				\$ -		
			0.411	Excavation	0.000.01/	•		\$ -		
			0.412	Overburden Stripping 2' thick Fill	2,200 CY	\$		\$ 30,000 \$ -		
			0.412	Dump and Spread				\$ -		
				Filter Material - 2' layer	2,200 CY	\$		\$ 70,000		
				Rock Spalls/ Rip Rap- 3' Ave	3,300 CY	\$		\$ 30,000		
				Shore Protection				\$ -		
				Rip Rap	24,000 CY	\$		\$ 580,000		
				Waste Rock	24,000 CY	\$		\$ 550,000		
		0.44	0.442	Channel Filter Blanket Fill				\$ - \$ -		
			0.442	Coarse Filter	2,900,000 CY	\$		\$ 98,170,000		
				Fine Filter	2,180,000 CY	\$	43.65			
				Rip Rap	182,000 CY	\$		\$ 4,420,000		
			0.443	Surface preparation				\$ -		
				Foundation Prep				\$ -		
				Clearing and Grubbing	460 ACRE	\$	3,963.11			
	0.5			Excavation Outlet Facilities	2,236,000 CY	\$	15.62	\$ 34,930,000	\$	1,537,690,000
	0.5	0.51		Outlet Facilities- (Intake Civil Work Include in Power Intake)	1 LS	\$	73,000,000	\$ 73,000,000	Φ	1,557,090,000
		0.52		Main (Chute) Spillway (Includes Civil Works for Outlet Facilities)	1 LS	\$	182,000,000	. , ,		
		0.53		Emergency Spillway	1 LS	\$	164,000,000	. , ,		
	0.6			Power Intake (Inc Inlet exec and Inlet Structure Civil Works for Outlet)	1 LS	\$	97,000,000			
	0.7			Surge Chamber	1 LS	\$	17,000,000			
		0.81		Head Race (Based on Penstock costs	1 LS	\$	28,000,000			
	0.9	0.82		Penstocks Tailrace Works (1 Portal with Combined Tailrace/Diversion Tunnel)	1 LS 1 LS	\$ \$	17,000,000 12,000,000			
	0.5			Taillace Works (11 ortal with Combined Taillace/Diversion Turner)	1 13	Ψ	12,000,000	Ψ 12,000,000	\$	590,000,000
									•	,,
333		1	Naterwl	neels, Turbines and Generators						
		0.11		Turbines and Governors						
			0.111	Supply						
	0.2		0.112	Install Generators and Exciters						
	0.2	0.21		Generators and Exciters (Supply and Install)						
		0.21	0.211	Generators and Exciters						
	0.3			Total Bid From Vendor (includes all equipment in this category)	4 EA	\$	74,200,000.00	\$ 297,000,000	\$	297,000,000
				Average from acquired quotes						
004			•	en Electrical Environment						
<u>334</u>	0.1		Accesso	ory Electrical Equipment Connections, Supports and Structures						
	0.1	0.11		Structures						
			0.111	Structures (included Below)						
		0.12		Conductors and Insulators						
			0.121	Generator Isolated Phase Bus	1 LS	\$	3,792,000.00			
			0.122	HV Power Cables and Accessories	1 LS	\$	1,540,500.00			
			0.123	LV Power Cables and Accessories	1 LS	\$	711,000.00			
			0.124 0.125	Control Cables and Accessories Grounding System	1 LS 1 LS	\$ \$	1,303,500.00 177,750.00			
			3.720	oaag 0,000	. 20	Ψ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 100,000		

1				luits and F																												
0.21																				1 LS	\$	4	74,000	.00	\$	4	70,000					
	Control I	id Control	ear and C	r and Con	I Control F	ntrol Ed	ol Equ	Equi	.quipr	ipmen	ent																					
	ransform	Transforr	xiliary Tra	iary Trans	ransform	sformer	rmers	ners	ers																							
1	arv Trans	iliarv Trar	Auxilia	Auxiliary 7	iarv Trans	Transf	ansfor	nsforr	forme	mers	s									4 EA	\$		83.8	311	\$	3	40.000					
																					•		,				_					
1												are								4 EA	•		1 504	300		6.0	20 000					
														hioloo						4 LA			1,504,	300		0,0	20,000					
			•																				=	-		_	-					
1							ctors	tors a	rs an	and G	Gene	nera	ator	ir Cub	abicles	#S				4 EA			50,000	.00		2	00,000					
																								-			-					
1	n boards	ch board	Switch	Switch bo	:h boards	oards	ds	S												1 LS		ξ	24,300	.00	\$	9	20,000					
0.3	ower Equ	Power Ed	ixiliary Po	iary Powe	ower Equ	ər Equir	Equipr	uipm	ipme	nent	1													-	\$		-					
1	ary Powe	iliary Pow	Auxilia	Auxiliary F	iary Powe	Power	wer E	er Ed	r Equ	quipm	ment	nt								4 EA	\$		100,0	000	\$	4	00,000					
1	purtenar	Appurtena	s and App	and Appurt	.ppurtenar	rtenanc	nance	ances	ces	S															\$		-					
											ards	s													\$		_					
0.32	•				•								arde							4 EA	•		200 (ากก	-	Ω	000 000					
1											rei no	Juan	iius	3						4 LA			200,0	000		0	00,000					
0.33																								-	-		-					
1.33 Supervisor and Telemeter System																								-			-					
1	and Tele	or and Te	ipervisor a	rvisor and	r and Tele	d Telen	eleme	leme	mete	ter Sy	Syste	tem	ก											-	\$		-					
0.4 Power Transformers \$	visor and	ervisor ar	Superv	Superviso	rvisor and	or and	and T	nd Te	Tele	emet	eter (r Sy	yste	em.							\$			-	\$		-					
1																					\$			-	\$		-					
0.41 Power Transformers \$	ners	ormers	Transform	nsformers	mers	'S															\$			-	\$		-					
0.411 Power Transformers							ers	rs																_	\$		_					
1										orc										7 = 1			2 571	120		10 0	00 000					
1	i iiaiisic	ici iialisi	I OWEI	I OWEI III	i Hallolo	ansion	3101111	UIIIIC	111613	513										, ,			2,571,	+23		10,0	00,000					
			•																		Ф			-			-					
1							_	_		_	_																-					
1																									-		-					
0.521	rhouse a	/erhouse	Powerh	Powerhou	rhouse a؛	use and	e and	and 7	nd Tra	Transf	ısforn	rme	er G	Jaller	əry					1 LS	\$	1,8	24,900	.00	\$	1,8	20,000					
0.6 Misc. Electrical Equipment	nnels and	unnels ar	cess Tun	ss Tunnel	unnels and	ls and	and R	nd Ro	Roa	oads	ŝ														\$		-					
Nisc Section Section	s Tunne	ess Tunn	Access	Access Tu	ss Tunne	unnels	nels a	els ar	s and	nd Ro	₹oads	ds								1 LS	\$	4	02,900	.00	\$	4	00,000					
0.61 Misc. Electrical Equipment 1 LS \$ 625,680.00 \$ 630,000 0.611																									\$		-					
0.61 Misc. Electrical Equipment 1 LS \$ 625,680.00 \$ 630,000 0.611	Fauinme	al Fauinm	lectrical F	trical Foui	Fauinme	ipmen ^r	nent	ent	nt																\$		_					
0.611 Misc. Electrical Equipment										ent															-		_					
0.7																				110	¢	-	25 600	00	Ψ	6	20 000					
0.7 Surface Accessory Equipment \$	Electrica	J. Electric	IVIISC. E	IVIISC. EIEC	Electrica	Cilical i	Cal	aı Eq	⊏qui	Juipme	пепі	а								I LS	Ф		25,000	.00		O	30,000					
0.71 34.5 kV and LV Equipment S 1 1 1 1 1 1 1 1 1		_		_																					-		-					
1																											-					
0.712								ıuipm	pme	nent															Ψ		-					
1 LS \$ 284,400 \$ 280,000	nboard	ichboard	Switch	Switchboa	chboard	ard	t													1 LS	\$		213,	300	\$	2	10,000					
0.73 Diesel Generator- Standby 2 EA \$ 347,550 \$ 700,000 0.74 Exterior Lighting 1 LS \$ 355,500 \$ 360,000 0.75 Mimic Board- Control Building 1 LS \$ 1,185,000 \$ 1,190,000 0.75 Mimic Board- Control Building 1 LS \$ 1,185,000 \$ 1,190,000 0.10 Auxiliary Systems- Underground \$ - \$ - 0.11 Station Water Systems \$ - \$ - 0.12 Fire Protection Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.13 Compressed Air Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ 1 LS \$ 1,777,500.00 \$ 1,780,000	S	les	Cables	Cables	es															1 LS	\$		450,3	300	\$	4	50,000					
0.73 Diesel Generator- Standby 0.731 Diesel Generator- Standby 2 EA \$ 347,550 \$ 700,000 0.74	ransform	Transfor	Aux Tra	Aux Trans	Fransform	sforme	rmers	mers	ers	j										1 LS	\$		284,4	400	\$	2	80,000					
0.731 Diesel Generator- Standby 2 EA \$ 347,550 \$ 700,000																							,				· _					
0.74												·\/								2 FA	\$		347	550	\$	7	000					
No. Section Section							natoi	atoi	51 01	Otanic	Пару	y								2 L/	Ψ		O+1,	550		,	00,000					
No.									_											410	•		255	-00	-	_	-					
335 Mimic Board- Control Building 1 LS	_				-		_	_	-											1 LS	Ф		355,	500		3	60,000					
Signature Sign											_														-		-					
335 Misc Powerplant Equipment \$ 0.1 Auxiliary Systems- Underground \$ 0.11 Station Water Systems \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems \$ 1,422,000.00 \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems 1 LS \$ 1,777,500.00 \$ 1,780,000	Board- (ic Board-	Mimic I	Mimic Boa	c Board- (ard- Co	d- Cor	Con	ontro	itrol Bu	Build	ding	ıg							1 LS	\$		1,185,0	000		1,1	90,000					
0.1 Auxiliary Systems- Underground \$ - 0.11 Station Water Systems \$ - 0.12 Fire Protection Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems \$ - \$ - 0.13 Compressed Air Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems \$ 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ - \$ -																									\$		-	\$ \$		41,	000,0	000
0.11 Station Water Systems \$ - 0.121 Station Water Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems \$ - \$ - \$ - 0.131 Compressed Air Systems 1 LS \$ 1,422,000.00 \$ 1,420,000.00 \$ 1,420,000.00 \$ 1,420,000.00 \$ 1,420,000.00 \$ 1,420,000.00 \$ 1,420,000.00 \$ 1,777,500.00 \$ 1,780,000	ent	ment	Equipme	quipment	nent	<u>t</u>																			\$		-					
0.11 Station Water Systems \$ - 0.12 Fire Protection Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems \$ - \$ - \$ - 0.131 Compressed Air Systems \$ 1,422,000.00 \$ 1,420,000 0.131 Compressed Air Systems \$ 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ - \$ -	ns- Unde	ems- Und	y Systems	Systems- L	ms- Unde	Underg	dergr	ergro	grour	ound	ł														\$		-					
0.111 Station Water Systems 1 LS \$ 2,488,500.00 \$ 2,490,000 0.12 Fire Protection Systems \$ - \$ - 0.121 Fire Protection Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems \$ - \$ - \$ - 0.131 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ - \$ -																									\$		-					
0.12 Fire Protection Systems \$ - \$ - \$ 0.121 Fire Protection Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems \$ - \$ - \$ 0.131 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ - \$											s									115	\$	24	88 500	00	\$	24	90 000					
0.121 Fire Protection Systems 1 LS \$ 1,422,000.00 \$ 1,420,000 0.13 Compressed Air Systems \$ - \$ - \$ - 0.131 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ - \$ -											•									. 20		_,	.00,000	-		_, .	-					
0.13 Compressed Air Systems \$ - \$ - 0.131 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ -											~~									110		1 /	22 000	-		1 1	20 000					
0.131 Compressed Air Systems 1 LS \$ 1,777,500.00 \$ 1,780,000 0.14 Oil Handling Systems \$ - \$ -											112									I LO		1,4	-22,000	.00		1,4	20,000					
0.14 Oil Handling Systems \$ - \$ -			•	•		-		•												4.1.5				-			-					
										ystem	∍ms									1 LS		1,7	77,500	.00		1,7	80,000					
0.141 Oil Handling Systems 1 LS \$ 1.185.000.00 \$ 1.190.000			_																					-			-					
	andling S	Handling '	Oil Har	Oil Handli	andling S	ing Sys	J Syst	Syste	/stem	ems										1 LS	\$	1,1	85,000	.00	\$	1,1	90,000					
0.15 Drainage & Dewatering \$ - \$ -	Dewate	& Dewat	ainage &	age & De	& Dewate	ewateri:	atering	ering	ing	j											\$			-	\$		-					
								_																								

0.13

Conduits and Fittings

			0.151		Drainage & Dewatering		2 EA	\$	1,738,000	\$	3,480,000		
		0.16	0.404	Hea	ating, Ventilation and Cooling System		4.1.0	\$	-	\$	-		
		0.17	0.161	Mis	Heating, Ventilation and Cooling System scellaneous	1	1 LS	\$ \$	1,777,500.00	\$ \$	1,780,000		
			0.171		Miscellaneous		1 LS	\$	1,185,000.00	\$	1,190,000		
	0.2	0.21			Systems- Surface Facilities xiliary Systems- Surface Facilities			\$ \$	-	\$ \$	-		
		0.21	0.211	Aux	Auxiliary Systems- Surface Facilities		1 LS	э \$	711,000	\$	710,000		
	0.3				Equipment			\$	-	\$	-		
		0.31		Pov	werhouse Cranes		0.54	\$	-	\$	-		
		0.32	0.311	Fle	Powerhouse Cranes		2 EA	\$ \$	1,800,000	\$ \$	3,600,000		
		0.02	0.321	Lio	Elevators		2 EA	\$	181,700		360,000		
		0.33		Mis	scellaneous Cranes and Hoists			\$	-	\$	-		
		0.34	0.331	Mod	Miscellaneous Cranes and Hoists		1 LS	\$ \$	505,500	\$ \$	510,000		
		0.34	0.341	IVIA	chine Shop Equipment Machine Shop Equipment		1 LS	э \$	2,022,000		2,020,000		
	0.4			General	Station Equipment			\$		\$	· · · -		
	0.5			Commur	nications Equipment		1 LS	\$	106,650.00		110,000	•	04 000 000
<u>336</u>			Roads, F	Rails and	Air Facilities					\$ \$	-	\$	21,000,000
<u> </u>	0.1	-		Roads						Ψ			
		0.11		Per	rmanent Roads	e.e.	00.14	•	4 000 000 00	•			
					Cost of road upgrades for 23 mi of Dena Cost of New road to 42 Mi of road to Wa		23 Mi 42 Mi	\$ \$			23,000,000.00 126,000,000.00		
		0.131		Site Roa			12 1	Ψ	0,000,000.00	Ψ	120,000,000.00		
				Cor	nstruction Roads			_		_			
					Site Roads Maintenance		20 Mile 141 MI/YF	\$ S \$	750,000.00 223,092.85		15,000,000 31,500,000		
					Walliterlance		141 1011/11	υ ψ	223,092.03	Ψ	31,300,000		
		0.132		Per	rmanent Roads			_		_			
					Permanent Roads		6 Mile	\$	1,287,997.42	\$	7,700,000		
	0.2			Rail									
			0.1		Railhead at Cantwell		1 LS	\$	14,000,000.00	\$	14,000,000		
	0.3	0.31		Airstrip	strip								
		0.01		Alle	Permanent Airstrip		1 LS	\$	13,000,000.00	\$	13,000,000		
					Temporary Airstrip		1 LS	\$	2,000,000.00	\$	2,000,000		
												\$	232,000,000
350-359		-	Transmiss	ion Plant			33 MILE	\$	5,700,000.00	\$	188,100,000.00		
							2 EA	\$	18,000,000.00	\$	36,000,000.00		
												\$	224,000,000.00
		9	General	<u>Plant</u>								7	224,000,000.00
<u>389</u>			Land and	d Land Ri	<u>ights</u> d Land Rights								
				Lana an	a Land Mighto			(ir	ncl in 330)				
<u>390</u>		3	Structur		nprovements								
				Structure	es and Improvements			(i)	ncl in 331.2)				
<u>391</u>			Office Fu	<u>ırniture</u> a	and Equipment			(11	10: 11: 00 1.2)				
		-		Office Fu	urniture and Equipment								
202			Trancas	rtation Fo	quipment			(ir	ncl in 399)				
<u>392</u>		-	<u>11411500</u>		<u>quipment</u> rtation Equipment								
				•	• •								

Total Project Max Plant Cap				\$	4,495,000,000
	<u>80</u>	Earnings/Expenses During Construction			
	<u>76</u> <u>77</u>	Administrative & Gen. Expenses Interest			
	72 75 76	<u>Taxes</u>			
	<u>71a</u> 72	Construction Management (4%) Legal Expenses	1 LS	\$ 135,000,000.00 \$	135,000,000
Subtotal	<u>71</u> 71a	Engineering (4%), Environmental (2%), Regulatory(1%)	1 LS	\$ 236,000,000.00 \$	236,000,000
Subtotal	Contingency	(20%)	1 LS	\$ 749,200,000.00 \$	749,000,000
	<u>69</u>	Fees Fees			
	<u>68</u>	Insurance <u>Mitigation Fishery, Terrestrial and Recreational)- Not Included</u>			
	<u>66</u>	Insurance			
	<u>65</u>	Superintendence Superintendence			
	<u>64</u>	<u>Labor Expense</u> Labor Expense			
				\$	180,000,000
	<u>63</u> 0.1	Main Construction Camp Main Construction Camp	1 LS	\$ 180,000,000 \$ 180,000,000	
	•	Construction Equipment		(incl in direct costs)	
	<u>62</u>	Construction Equipment		(incl in direct costs)	
	<u></u>	Temporary Construction Facilities		(incl in direct costs)	
	<u>61</u>	Temporary Construction Facilities			
		Indirect Costs		\$ - \$	16,000,000
		Other Tangible Property Saved Maintenance	1 LS 1 LS	\$ 16,000,000 \$ 16,000,000 \$ (231,220) \$ (230,000)	
	<u>399</u>	Other Tangible Property			
		Miscellaneous Equipment		(incl in 399)	
	<u>398</u>	Miscellaneous Equipment		(incl in 399)	
	<u>397</u>	Communications Equipment Communications Equipment			
		Power-Operated Equipment		(incl in 399)	
	<u>396</u>	Power-Operated Equipment		(incl in 399)	
	<u>395</u>	Laboratory Equipment Laboratory Equipment			
		Tools Shop and Garage Equipment		(incl in 399)	
	<u>394</u>	Tools Shop and Garage Equipment		(incl in 399)	
	<u>393</u>	Stores Equipment		("l.": 000)	
	202	Stores Equipment		(incl in 399)	

Appendix C: Chakachamna Construction Cost Estimate

CHAKACHAMNA HYDROELECTRIC PROJECT

Client: Alaska Power Authority Site: Chakachamna - Alternative E Original: November 1982 by Bechtel NOTE Costs are in 1982 Dollars

			Rounded
71A	Engineering, Env., and Regulatory (7%)	\$ 151,365,369	\$ 151,000,000
330	Land and Land Rights	\$ 75,000,000	\$ 75,000,000
331	Power Plant Structure Improvements	\$ 105,394,289	\$ 105,000,000
332.14	Reservoir, Dams and Tunnels	\$ 1,147,280,085	\$ 1,147,000,000
332.59	Waterways	\$ 123,421,232	\$ 123,000,000
333	Waterwheels, Turbines and Generators	\$ 181,170,000	\$ 181,000,000
334	Accessory Electrical Equipment	\$ 20,045,000	\$ 20,000,000
335	Misc Power Plant Equipment	\$ 15,403,000	\$ 15,000,000
336	Roads, Rails and Air Facilities	\$ 172,302,865	\$ 172,000,000
350-390	Transmission Features	\$ 232,345,945	\$ 232,000,000
399	Other Tangible Property	\$ -	\$ -
63	Main Construction Camp	\$ 90,000,000	\$ 90,000,000
71B	Construction Management, 4%	\$ 86,494,497	\$ 86,000,000
	Subtotal	\$ 2,400,222,282	\$ 2,400,000,000
	Contingency	\$ 480,044,456	\$ 480,000,000
	Total	\$ 2,880,266,739	\$ 2,880,000,000

CHAKACHAMNA HYDROELECTRIC PROJECT

Client: Alaska Power Authority Site: Chakachamna - Alternative E Original: November 1982 by Bechtel NOTE Costs are in 1982 Dollars

USBR 2008 2.11

N	IO. DESCRIPTION		Qunatity	Unit	Unit Costs	Amount	
		Land & Land Rights	1	LS	75,000,000	75,000,000	prorated to Low Watana total project cost
PC	OWER PLANT STRUCTURE & IMPROVEMENTS						
	Valve Chamber						
	Excavation and Supports		10,000	CY	580	5,802,500	
	Concrete & Reinforcing Steel		6,520		865	5,640,452	
	Structural Steel & Misc. Metals Round-Off		52	TON	3,798	197,496	
	Underground Powerhouse						
	Dewatering		1	LS	8,651,000	8,651,000	
	Excavation & Supports		58,900	CY	354	20,878,872	
	Drilling-Percus.& Rotary Concrete & Reinforcing Steel		12,700 13,100	LF CY	57 1,329	723,519 17,413,830	
	Structural Steel & Misc. Metals		300		11,183	3,354,900	
	Architectural		1	LS	2,110,000	2,110,000	
	Round-Off						
	Bus Galleries Between Power-						
	house & Transformer Vaults						
	Excavation & Supports		200	CY	1,741	348,150	
	Concrete		120	Су	612	73,428	
	Round Off						
	Transformer Gallery & Tunnels						
	Excavation & Supports		11,960	CY	612	7,318,324	
	Concrete & Reinf Steel Structural Steel & Misc. Metals		830 120	CY TON	971 8,018	805,598 962,160	
	Round Off		120	TON	0,010	902,100	
	Valve Chamber & Transformer						
	Gallery-Access Tunnels						
	Excavation & Supports Concrete		1,500 60	CY CY	528 612	791,250 36,714	
	Round-Off		60	Cĭ	012	30,714	
	Tourid Off						
	Powerhouse Access Tunnel						

NO. DESCRIPTION			Qunatity	Unit	Unit Costs	Amount
Portal Excavation	& Protection		56,000	CY	21	1,181,600
Portal Concrete &			1,000	CY	1,203	1,202,700
Tunnel Excavation	& Supports		24,000	CY	633	15,192,000
Tunnel Concrete	l-		900	CY	612	550,710
Tunnel Misc. Meta Subsurface Explor			30	TON	23,210	696,300
Mobilization	ation		1	LS	3,165,000	3,165,000
Exploratory Adit			1,000	LF	3,798	3,798,000
Core drilling			5,000	LF	295	1,477,000
Helicopter Service	ce		1	LS	1,266,000	1,266,000
Round Off						
Cable Way						
Concrete & Reinf.	Steel		1,000	CY	1,477	1,477,000
	ble Support panels		26	TON	10,761	279,786
Round-Off						
TOTAL POWER P	PLANT STRUCTURE & IMPRO	VEMENTS				
RESERVOIR DAM & WA	TERWAYS					
Reservoir						
Water Level Recor	rding		1	LS	211,000	211,000
1.1.0.						
Intake Structure Site exploration						
Mobilization			1	LS	316,500	316,500
Core Drilling			5,000	LF	169	844,000
Helicopter Service	ce		1	LS	316,500	316,500
Tunnel Excav. & S	Supports		10,000	CY	1,076	10,761,000
Tunnel Conc. & Re			90	CY	739	66,465
Lake-Tap (Final Ro	•		1	LS	5,275,000	5,275,000
Place & Remove T Diving Crew	emp. Conc		550	CY DAYS	1,477 21,100	812,350 1,266,000
Round-Off			00	DATS	21,100	1,200,000
		Fish Screening	1	LS	5,000,000	5,000,000
Intoka Cata Chaff						
Intake Gate Shaft Excavation & Supp			360	LF	36,925	13,293,000
Mass Surface Exca			50,000	CY	63	3,165,000
Concrete & Reinf.			5,200	CY	1,878	9,765,080
Misc. Metals, Gate				TONS	25,742	5,663,240
Access Road			1	MI	4,220,000	5,275,000
Round Off						
Fish Passage Fac	cilities					
Approach Channe						
Channel Excava			1,040,000	CY	24	24,796,720

NO. DESCRIPTION	Qunatity	Unit	Unit Costs	Amount
Slope Protection	90,000	CY	59	5,317,200
Round				
Upstream Portal				
Excavation in Rock	64,500	CY	63	4,082,850
Rock Bolts - Ch, LK, Mesh	1	LS	1,148,895	1,148,895
Dewatering During Construction	1	LS	105,500	105,500
Fence	400	LF	95	37,980
Round				
Upstream Fish Passage Facility				
Excavation & Support	16,550	CY	344	5,692,042
Concrete & Reinf. Steel	5,880	CY	1,601	9,416,761
Misc. Metal, Gates & Crane	1	LS	3,769,093	3,769,093
Electrical & Instrumentation.	1	LS	422,000	422,000
Round Off				
Downstream Fish Passage Facility				
Excavation & Support	8,900	CY	403	3,586,789
Concrete & Reinf. Steel	2,600	CY	1,340	3,483,610
Misc. Metal, Gates & Crane Electrical & Instrumentation.	1	LS LS	4,817,130 211,000	4,817,130 211,000
Round Off	'	LO	211,000	211,000
Access Tunnel				
Excavation & Support	122,500	CY	639	78,317,925
Concrete & Reinf. Steel Misc. Metal	22,800 1	CY LS	1,209 854,550	27,565,884 854,550
Electrical - Lighting	1	LS	487,410	487,410
Round Off	·		107,110	107,110
Fish Passage Facilities	0.000	0)/	440	700.070
Excavation & Support Concrete & Reinf. Steel	6,600 740	CY CY	112 1,642	738,078 1,214,769
Misc. Metal, Gate, etc.	1	LS	917,112	917,112
Round Off			2,	2,
Okalisaskatus Pissas				
Chakachatna River Flow Regulation				
River Bed Deepening	10,000	CY	20	200,450
Rip-Rap	1,000	CY	74	73,850
1 21	ŕ			•
Access Road	1	LS	633,000	633,000
Access Tunnel to Fish				
Passage Facilities				
Portals Excavation	700	CY	196	137,361
Tunnel Excavation & Support	3,350	CY	663	2,219,509

-	NO. DESCRIPTION		Qunatity	Unit	Unit Costs	Amount	
	Round Off						
	Chakachata Dike and Spillway Excavation and Slope Protection Concrete & Reinf. Steel Timber Bridge Dike Round Off		280,000 1,100 2,200 250,000	CY CY SF CY	62 686 317 2	17,428,600 754,325 696,300 395,625	
	Access Tunnel at Surge Chamber						
	Portal Excavation & Protection Tunnel Excavation & Supports Tunnel Concrete & reinf. Steel Grouting Contact & Pressure Watertight Bulkhead & Frame Round Off		6,000 14,000 1,700 2,260 27	CY CY CY CF TON	74 669 886 122 29,118	443,100 9,364,180 1,506,540 276,579 786,186	
	Power Tunnel TBM Excavation & Supports Concrete Grouting Round Off	Remove Exc & Concrete	53,400 267,000 540,000	LF CY CF	12,892 720 119		25.5' dia excavated, 24' finished Assume lining approx 1.5' thick
	redita en	TBM Labor & Equipment Excavation (22.5' dia.) Concrete	57000 838968.8 (216267.5 (CY	6446.05 340.9631279 719.51	367,424,850 286,057,409	Assumes half of cost is labor & equipmen 21' finished diameter Assume lining approx 1.5' thick
	Surge Chamber - Upper Excavation & Supports Concrete & Reinf. Steel Earthwork & Fencing_ Round Off		27,100 10,000 15,000	CY CY CY	745 1,884 57	20,184,893 18,842,300 854,550	
	Penstock - Horizontal Section Excavation & Supports Concrete & Reinf. Steel Grouting - Contact Round Off		12,000 5,100 2,600	CY CY CF	705 770 106	8,456,880 3,927,765 274,300	
	Excavation & Supports Concrete & Reinf. Steel Grouting - Contact		5,100	CY	770	3,927,765	

NO. DESCRIPTION		Qunatity	Unit	Unit Costs	Amount
Excavation & Supports		850	CY	928	789,140
Concrete & Backfill		500	CY	1,161	580,250
Round-Off					
Draft Tube Tunnels					
Rock Bolts & Grout		15,000	LF	61	917,850
Concrete & Reinf. Steel		2,975	CY	897	2,667,831
Round-Off					
Surge Chamber - Tailrace					
Excavation & Supports		5,000	CY	1,013	5,064,000
Tailrace Tunnel & Structures Cofferdam & Dewatering		1	LS	4,220,000	4,220,000
Portal Excay. & Protection		2,000	CY	4,220,000	274,300
Concrete & Reinf. Steel		1,200	CY	1,266	1,519,200
Walkway Bridge		1	LS	137,150	137,150
Stoplogs & Hoists		81	TON	17,935	1,452,735
Tunnel Excav. & Supports		20,000	CY	612	12,238,000
Plug Excavation		4,000	CY	106	422,000
Round-Off					
Tailrace Channel					
Channel Excavation		80,000	CY	19	1,519,200
River Training Works					
River Bed Deepening		50,000	CY	21	1,055,000
Mach 9 Floo		1	1.0	12.071.000	12 971 000
Mech & Elec.		'	LS	12,871,000	12,871,000
TOTAL RESERVOIR, DAM AND WATERWAYS	3				
Turbines & Generators					
Turbines			EΑ	17,892,800	
Generators			EA	12,660,000	
Round-Off	0. 7	200	B 43 A /	105.000	101 170 000
	Susitna equalization	366	MW	495,000	181,170,000
Accessory Electrical Equipment					
Equipment		1	LS	20,045,000	20,045,000
Misc. Power Plant Equipment					
Crane Bridge		1	EA	1,962,300	1,962,300
Other Power Plant Equip.		1	LS	13,440,700	13,440,700
Switchvard Structures		15 000	CV	53	704.050
Earthworks		15,000	CY	53	791,250

NO.	DESCRIPTION	Qunatity	Unit	Unit Costs	Amount
	Concrete & Reinf. Steel Struc. Steel & Misc.Meta]s Round-Off	3,800 225	CY TON	1,350 7,385	5,131,520 1,661,625
	Switchyard Equipment				
	Transformers 105 MVA Unit & Line Breakers	5 7	EA EA	2,173,300 390,350	10,866,500 2,732,450
	Switches & Lightning Arrestors	30	EA	71,740	2,152,200
	230 KV Cables Controls & Metering Equip. Round Off	18,000 1	LE LS	274 5,697,000	4,937,400 5,697,000
	Comunication and Supervisory Control	1	LS	3,376,000	3,376,000
	TRANSPORTATION FACILITIES				
	Causeway	19,600	CY	169	3,308,480
	Trestle Piles		TON	23,843	1,192,150
	Trestle Struct. Steel Trestle Reinf. Conc.	110 150	TON CY	7,385 1,477	812,350 221,550
	Facilities - Allowance	130	LS	4,220,000	4,220,000
	Round-Off	·		1,220,000	1,220,000
	Airport	54.500	0)/	0.4	4 000 000
	Earthwork Culverts	54,500 1,000	CY LF	34 137	1,839,920 137,150
	Subbase & Base	55,000	CY	30	1,624,700
	Building - Allowance	1	LS	633,000	633,000
	Round-Off				
	Access & Construction Roads				
	Mile 0+00 to 18+00				
	Earthwork Culverts		CY Li?	14 137	
	Bridges		SF	317	
	Subbase & Base		CY	32	
	Guard Rail		LF	53	
	Repair Existing Road		LF	21	
	Snow Fences		LF	74	
	Round-Off	Road Upgrade per Susitna 18	MI	1,000,000	18,000,000
	Mile 18+00 to 35+00				
	Earthwork		CY	14	
	Culverts		LF	169	
	Subbase & Base Guard Rail		CY LF	32 53	
	Gualu Naii		LF	55	

Repair Existing Road LF 21 LF 74	NO.	DESCRIPTION		Qunatity	Unit	Unit Costs	Amount
New Road per Susitna							
New Road per Susitna 17 Mi 3,000,000 51,000,000					LF	74	
Earthwork Culverts Bridge SF 317 Sp.		Round-Off	New Road per Susitna	17	MI	3,000,000	51,000,000
Earthwork Culverts Bridge SF 317 Sp.		Mile 35+00 to 39+00					
Bridge					CY	18	
Subbase & Base Cy 32		Culverts			LF	169	
Caural Rail		•			_	-	
Snow Fences Round-Off					_	-	
New Road per Susitna						-	
New Road per Susitna					LF	74	
Earthwork		Round-On	New Road per Susitna	4	MI	3,000,000	12,000,000
Earthwork		Walkway To Gate Shaft					
Guard Rail				1.200	CY	42	50.640
Bridge 200 SF 317 63,300							,
Riprap Round-Off Round-Round-Round-Round-Round-R							
Access Road to MacArthur Valley		Riprap		100	CY	74	
Earthwork 545,000 CY 15 8,049,650 Culverts 2,400 LF 158 379,800 Bridge Improvements 9,000 SF 148 1,329,300 Subbase & Base 105,000 CY 32 3,323,250 Guard Rail 6,000 LF 53 316,500 Snow Fences 3,000 LF 74 221,550 Access Road to Tailrace Tunnel Earthwork 56,000 CY 17 945,280 Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 <td< td=""><td></td><th>Round-Off</th><th></th><td></td><td></td><td></td><td></td></td<>		Round-Off					
Culverts 2,400 LF 158 379,800 Bridge Improvements 9,000 SF 148 1,329,300 Subbase & Base 105,000 CY 32 3,232,250 Guard Rail 6,000 LF 53 316,500 Snow Fences 3,000 LF 74 221,550 Round-Off T 74 221,550 Access Road to Tailrace Tunnel Earthwork 56,000 CY 17 945,280 Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,688 1,688,000		Access Road to MacArthur Valley					
Bridge Improvements 9,000 SF 148 1,329,300				,			
Subbase & Base 105,000 CY 32 3,323,250 Guard Rail 6,000 LF 53 316,500 Snow Fences 3,000 LF 74 221,550 Access Road to Tailrace Tunnel Earthwork 56,000 CY 17 945,280 Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000							
Guard Rail 6,000 LF 53 316,500 Snow Fences Round-Off 3,000 LF 74 221,550 Access Road to Tailrace Tunnel Earthwork 56,000 CY 17 945,280 Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000 1,688,000						_	
Snow Fences 3,000 LF 74 221,550							
Round-Off Access Road to Tailrace Tunnel Earthwork 56,000 CY 17 945,280 Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Round-Off							·
Earthwork Culverts Subbase & Base Subbase & Base Guard Rail Round-Off Access Road to Downstream Power Tunnel Earthwork Culverts Bridge Subbase & Base Culverts Signature Power Tunnel Culverts Signature Power Tunnel Signature Power Tunnel Signature Power Tunnel Culverts Signature Power Tunnel Signature Power Tunnel Culverts Signature Power Tunnel Signature Power Tun				3,000		77	221,000
Culverts 100 LF 169 16,880 Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688,000 1,688,000 1,688,000		Access Road to Tailrace Tunnel					
Subbase & Base 2,500 CY 42 105,500 Guard Rail 600 LF 53 31,650 Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000		Earthwork		56,000	CY	17	945,280
Guard Rail Round-Off Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall Round-Off 1,688 1,688,000							
Round-Off Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688,000							
Access Road to Downstream Power Tunnel Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000 1,688 1,688,000				600	LF	53	31,650
Earthwork 215,000 CY 21 4,445,770 Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000 1,688 1,688 1,688,000		Round-Off					
Culverts 800 LF 169 135,040 Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000 1,688 1,688,000				04= 00=	0) (.	4 4
Bridge 3,000 SF 317 949,500 Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall Round-Off 1,000 LF 1,688 1,688,000							
Subbase & Base 10,000 CY 44 443,100 Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall Round-Off 1,000 LF 1,688 1,688,000							•
Guardrail 9,000 LF 68 607,680 Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off 1,688 1,688,000 1,688 1,688,000		<u> </u>					•
Snowshed & Slide Fall 1,000 LF 1,688 1,688,000 Round-Off							•
Round-Off							•
Temporary Construction Roads				.,000		.,555	.,,
		Temporary Construction Roads					

NO. DESCRIPTION		Qunatity	Unit	Unit Costs	Amount	
Earthwork		61,000	CY	13	772,260	
Culverts		600	LF	169	101,280	
Bridge		3,000	SF	317	949,500	
Guardrail		2,000	LF	53	105,500	
Round-Off						
Road Maintenance						
Summer Season		45	МО	316,500	14,242,500	
Winter Season		30	MO	1,266,000	37,980,000	
Round-Off				.,_00,000	0.,000,000	
TOTAL ACCESS & CONSTRUCTION ROADS						
Transmission Line						
Clear & Grub			MI	474,750		
Transmission Line			MI	723,730		
Submarine Cable			MI	1,671,120		
Round-Off						
	T-Line to Beluga	50	MI	3,900,000	195,000,000	Estimated provided by AEA/EPS
	Construction Camp	1 1	LS	90,000,000	90,000,000	
TOTAL SPECIFIC CONSTRUCTION COST AT JANUARY 1982 PRICE					0.400.000.447	
LEVELS					2,162,362,417	
Engineering (4%), Environmental (2%), Regulat Construction Management (4%)	ory(1%)				151,365,369 86,494,497	
Contingency	20%				480,044,456	
,					2,880,266,739	