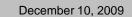
Susitna-Watana Hydroelectric Project Document ARLIS Uniform Cover Page

Title: Alaska Railbelt regional integrated resource plan (RIRP) : draft re presentation	SuWa 184	
Author(s) – Personal:		
Author(s) – Corporate: Black & Veatch		
AEA-identified category, if specified:		
AEA-identified series, if specified:		
Series (ARLIS-assigned report number): Susitna-Watana Hydroelectric Project document number 184	Existing numbers on document:	
Published by: [Overland Park, Kan. : Black & Veatch, 2009]	Date published: December 10, 2009	
Published for:	Date or date range of report:	
Volume and/or Part numbers:	Final or Draft status, as indicated: Draft	
Document type: Slide presentation. No commentary.	Pagination: 88 p.	
Related work(s):	Pages added/c	hanged by ARLIS:
Notes:		

All reports in the Susitna-Watana Hydroelectric Project Document series include an ARLISproduced cover page and an ARLIS-assigned number for uniformity and citability. All reports are posted online at <u>http://www.arlis.org/resources/susitna-watana/</u>

BUILDING A WORLD OF DIFFERENCE[®]

Alaska Railbelt


Regional Integrated Resource Plan (RIRP)

Draft Report Presentation

December 10, 2009

Agenda

- Introductory Comments and Introductions
- Project Overview/Executive Summary
- Situational Assessment
- Methodology Considerations
- Key Assumptions
- Susitna Analysis
- Summary of Results
- Financial Analysis
- Risks and Uncertainties
- Implementation Action Plan (2010-2012)
- Questions and Answers
- Concluding Comments

Consultant Team

- Black & Veatch Prime
- HDR, Inc. Susitna Analysis
- EPS, Inc. Transmission Stability Analysis
- Seattle-Northwest Securities Financial Analysis

Advisory Working Group Members

- Norman Rokeberg, Retired State of Alaska Representative, Chairman
- Chris Rose, Renewable Energy Alaska Project
- Brad Janorschke, Homer Electric Association
- **Carri Lockhart**, Marathon Oil Company
- **Colleen Starring**, Enstar Natural Gas Company
- **Debra Schnebel**, Scott Balice Strategies
- Jan Wilson, Regulatory Commission of Alaska
- Jim Sykes, Alaska Public Interest Group
- Lois Lester, AARP
- Marilyn Leland, Alaska Power Association
- Mark Foster, Mark A. Foster & Associates
- Nick Goodman, TDX Power, Inc.
- Pat Lavin, National Wildlife Federation Alaska
- Steve Denton, Usibelli Coal Mine, Inc.
- **Tony Izzo**, TMI Consulting

Project Overview / Executive Summary

BLACK & VEATCH

Some Definitions

- **REGA** means "Railbelt Electrical Grid Authority"
- GRETC means "Greater Railbelt Energy & Transmission Company"
- RIRP means "Railbelt Integrated Resource Plan"

Three Discrete Tasks

- **REGA** study determined the business structure for future Railbelt G&T
- **GRETC** initiative is the joint effort between Railbelt Utilities and AEA to unify Railbelt G&T
- **RIRP** is the economic plan for future capital investment in G&T and in fuel portfolios that GRETC would build, own and operate

What is an RIRP?

Current Situation

- Limited redundancy
- Limited economies
 of scale
- Dependence on fossil fuels
- Limited Cook Inlet gas deliverability and storage
- Aging G&T infrastructure
- Inefficient fuel use
- Difficult financing
- Duplicative G&T expertise

RIRP Study

- Plan that economically schedules what, when, and where to build, based on available fuel and energy supplies
- 50-year time horizon
- Competes generation, transmission, fuel supply and DSM/energy efficiency options
- Includes CO₂ regulation
- Includes renewable energy projects
- Arrives at a plan to build future infrastructure for minimum long-run cost to ratepayers
- Considers fuel supply options and risks

Limitations of RIRP

- Does not set State energy policy
- Directional
- Identified/generic/actual projects
- Agnostic to owner/developer of projects

GRETC Vision

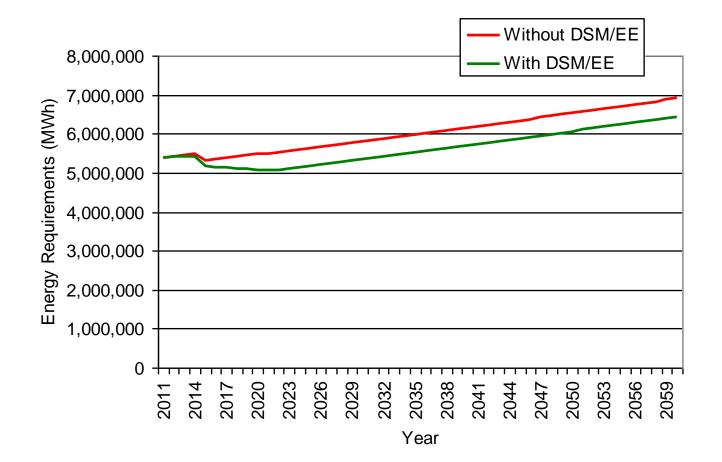
- A statutory company
- Privately owned not-for-profit company with public responsibilities defined in law
- Own and operate Railbelt power generators and transmission lines
- Build infrastructure specified in the RIRP
- Significant financial muscle to shoulder long-term debt
- Make use of State and federal financial underwriting
- To benefit all Railbelt ratepayers equally
- Regulated by RCA under tailored regulations or nonjurisdictional with strong bond covenants

Stakeholder Involvement Process

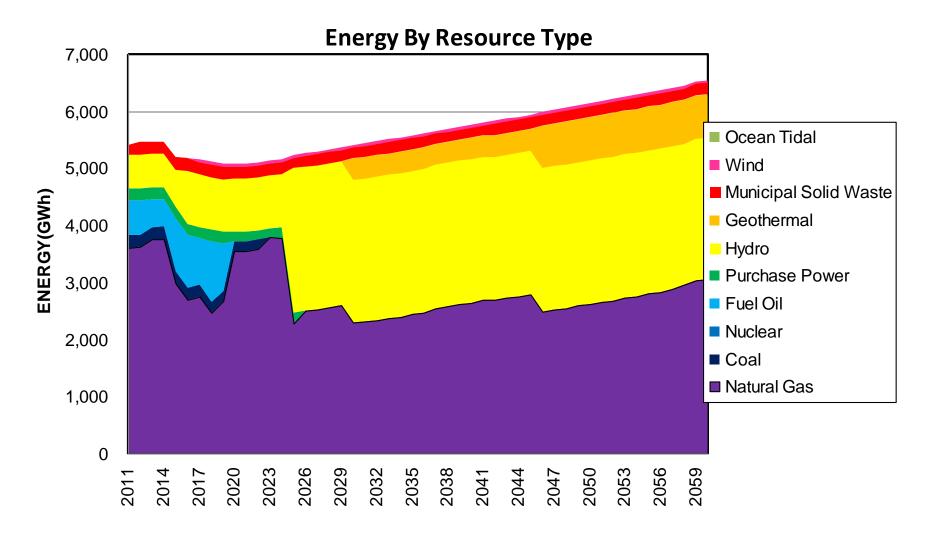
Public Presentations on Final Results, Conclusions and Recommendations

Key Drivers

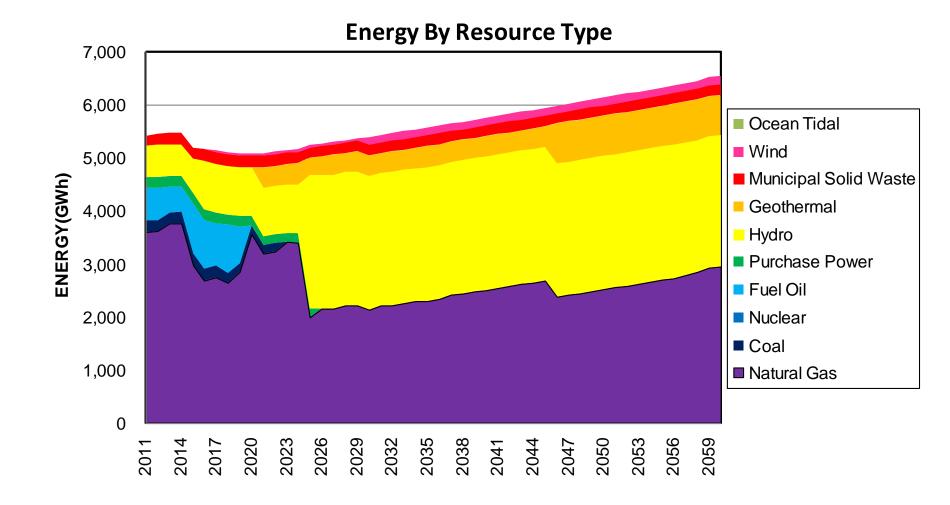
- Resource-specific risks
- Gas availability and price
- Acceptability of large hydro and other renewables
- Potential CO₂ costs
- Limited transmission network
- Required financing
- Regional vs. individual utility focus


Evaluation Scenarios

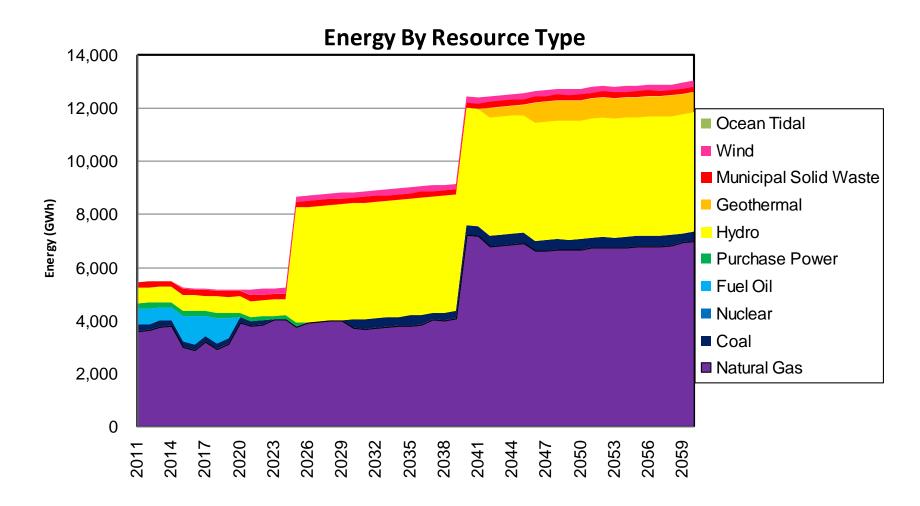
Base Case	Scenario 1A	Scenario 1B
High Growth Case	Scenario 2A	Scenario 2B
	Least Cost Level of Renewable	Force 50% s by 2025 (Energy)


Results – DSM/EE Resources

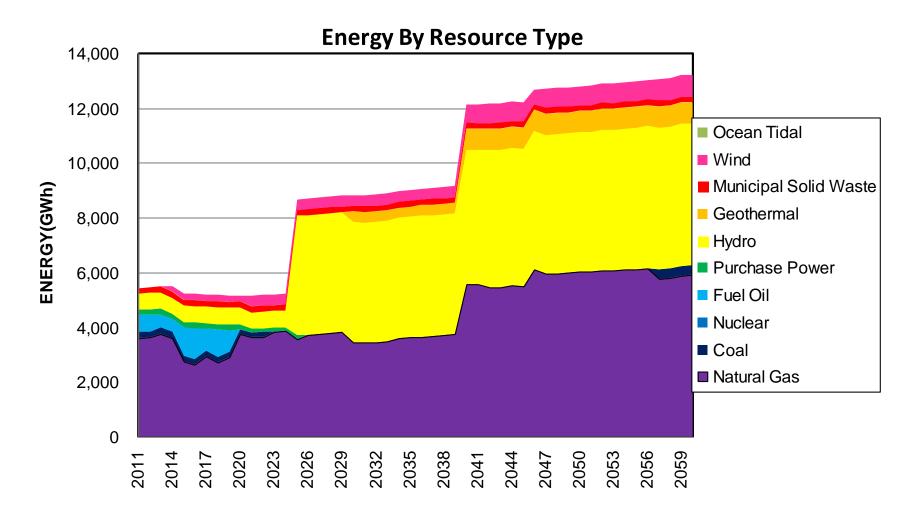
Energy Requirements (MWh)



Results – Scenario 1A



Results – Scenario 1B



Results – Scenario 2A

Results – Scenario 2B

Sensitivity Cases

- Scenario 1A Without DSM/EE Measures
- Scenario 1A With Committed Units Included
- Scenario 1A Without CO₂ Costs
- Scenario 1A With Higher Gas Prices
- Scenario 1A With Fire Island
- Scenario 1A Without Chakachamna
- Scenario 1A With Chakachamna Capital Costs Increased by 75%
- Scenario 1A With Susitna (Lower Low Watana Non-Expandable Option) Forced
- Scenario 1A With Susitna (Low Watana Non-Expandable Option) Forced
- Scenario 1A With Susitna (Low Watana Expandable Option) Forced
- Scenario 1A With Susitna (Watana Expansion Option) Forced
- Scenario 1A With Susitna (Watana Option) Forced
- Scenario 1A With Susitna (High Devil Canyon Option) Forced
- Scenario 1A With Modular Nuclear
- Scenario 1A With Tidal

Results – Economics

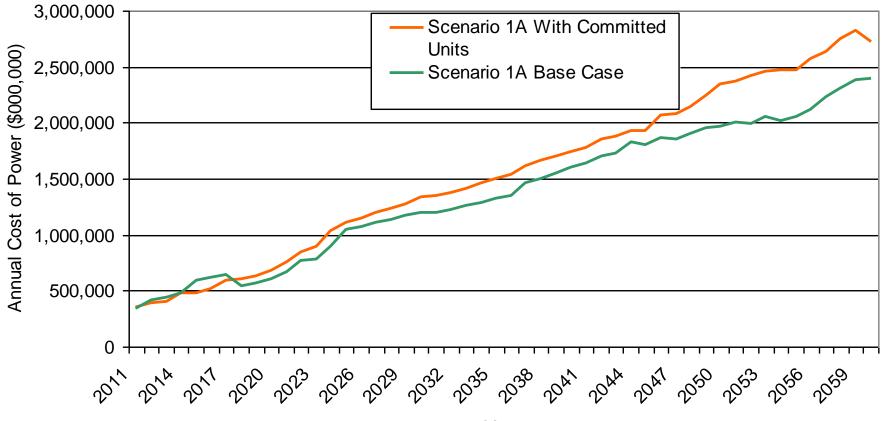
Case	Cumulative Present Value Cost (\$000,000)	Average Cost (¢ per kWh)	Renewable Energy in 2025 (%)	Total Capital Investment (\$000,000)			
Scenarios							
Plan 1A	\$12,925	4.60	49.17%	\$10,035			
Plan 1B	\$12,916	4.59	54.78%	\$10,014			
Plan 2A	\$20,978	4.29	53.57%	\$18,226			
Plan 2B	\$21,507	4.40	55.55%	\$22,175			
	Sensitivi	ties	·				
1A Without DSM/EE Measures	\$13,262	4.40	51.10%	\$9,791			
1A With Committed Units Included	\$13,863	4.93	32.03%	\$9,592			
1A Without CO ₂ Costs	\$10,402	3.70	14.36%	\$8,685			
1A With Higher Gas Prices	\$14,945	5.31	61.94%	\$9,798			
1A With Fire Island	\$12,965	4.61	54.78%	\$10,502			
1A Without Chakachamna	\$13,273	4.72	22.80%	\$9,179			
1A With Chakachamna Capital Costs Increased by 75%	\$13,273	4.72	22.80%	\$9,179			
1A With Susitna (Lower Low Watana Non- Expandable Option) Forced	\$15,209	5.41	54.70%	\$13,166			
1A With Susitna (Low Watana Non-Expandable Option) Forced	\$14,898	5.30	60.18%	\$14,742			
1A With Susitna (Low Watana Expandable Option) Forced	\$15,437	5.49	60.18%	\$15,274			
1A With Susitna (Low Watana Expansion Option) Forced	\$15,943	5.67	61.58%	\$15,902			
1A With Susitna (Watana Option) Forced	\$16,281	5.79	61.82%	\$16,049			
1A With Susitna (High Devil Canyon Option) Forced	\$16,238	5.77	61.82%	\$16,016			
1A With Modular Nuclear	\$12,591	4.48	49.05%	\$9,864			
1A With Tidal	\$12,198	4.34	59.10%	\$10,052			

Results – Emissions

Case	CO ₂ (million tons)	NO _x (million tons)	SO ₂ (million tons)
	Scenarios		•
Plan 1A	176,205	222	36
Plan 1B	169,440	216	33
Plan 2A	287,321	281	240
Plan 2B	250,460	245	75
	Sensitivities	•	
1A Without DSM/EE Measures	181,208	242	242
1A With Committed Units Included	219,645	351	273
1A Without CO ₂ Costs	222,614	295	383
1A With Higher Gas Prices	166,406	248	268
1A With Fire Island	166,934	223	39
1A Without Chakachamna	219,110	223	35
1A With Chakachamna Capital Costs Increased by 75%	219,110	223	35
1A With Susitna (Lower Low Watana Non- Expandable Option) Forced	158,703	210	35
1A With Susitna (Low Watana Non- Expandable Option) Forced	127,589	207	38
1A With Susitna (Low Watana Expandable Option) Forced	127,589	207	38
1A With Susitna (Low Watana Expansion Option) Forced	140,912	208	38
1A With Susitna (Watana Option) Forced	138,140	209	39
1A With Susitna (High Devil Canyon Option) Forced	134,780	208	39
1A With Modular Nuclear	162,858	224	37
1A With Tidal	153,908	213	33

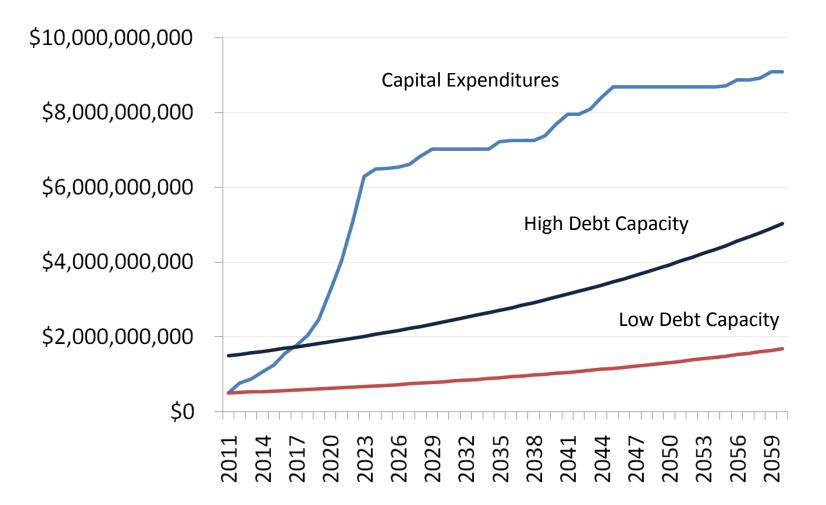
Conclusions – Preferred Resource Plan

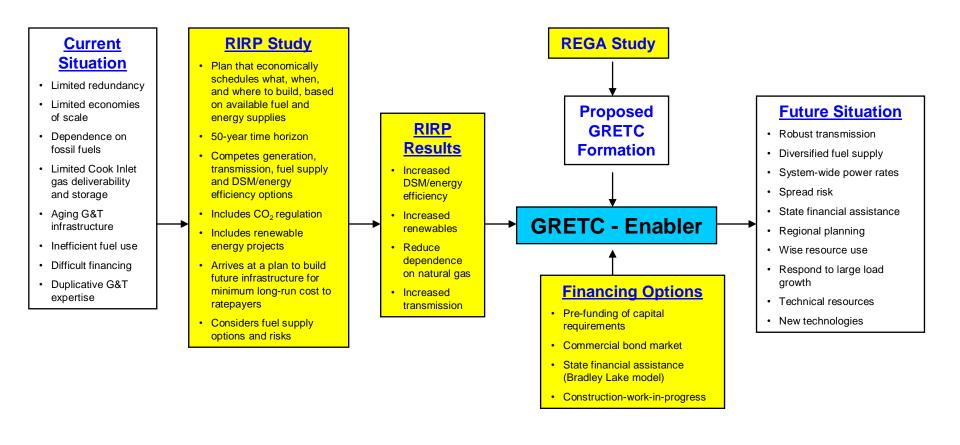
- DSM/EE Programs (2011)
- Anchorage and GVEA MSW (2012)
- Fire Island Wind (2012)
- Southcentral Power Plant (2013)
- Glacier Fork Hydro (2015)
- Nikiski Wind (2017)
- Anchorage Simple Cycle Turbine (2018)
- GVEA Combined Cycle (2020)
- Parallel pursuit of Chakachamna/Susitna/Glacier Fork
- Multiple transmission projects



Conclusions – Other

- Regional resource plan historical cross-road
- Increased reliance on DSM/EE and renewables
- Robust transmission network
- Need for frequency regulation
- Spreading of risks
- Foundation for economic development
- Cost of renewables future if large hydro is not development
- Larger loads = lower unit costs

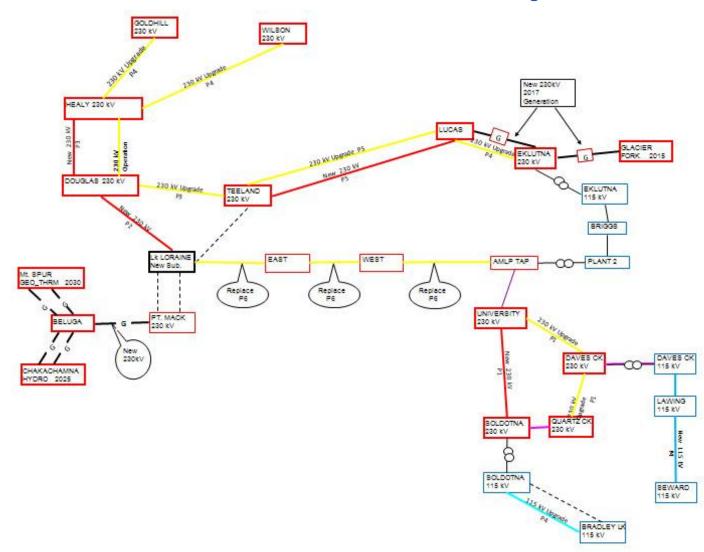

Conclusions – Regional or Individual Utility Future


Conclusions – Financing the Future

RIRP Plan 1A Capital Expenditures and Debt Capacity of the Railbelt Utilities

Conclusions – GRETC as the Enabler

10-Year Transition Period



Conclusions – Resource-Specific Risks

	Relative Magnitude of Risk/Issue						
Resource	Resource Potential Risks	Project Development and Operational Risks	Fuel Supply Risks	Environmental Risks	Transmission Constraint Risks	Financing Risks	Regulatory/ Legislative Risks
DSM/EE	Moderate	Limited	N/A	N/A	N/A	Limited - Moderate	Moderate
Generation Resource	Generation Resources						
Natural Gas	Limited	Limited	Significant	Moderate	Limited	Moderate	Moderate
Coal	Limited	Moderate- Significant	Limited	Moderate - Significant	Limited - Significant	Moderate – Significant	Moderate
Modular Nuclear	Limited	Significant	Moderate	Significant	Limited	Significant	Significant
Large Hydro	Limited	Significant	N/A	Significant	Significant	Significant	Significant
Small Hydro	Moderate	Moderate	N/A	Moderate	Moderate	Limited - Moderate	Limited
Wind	Moderate	Moderate	N/A	Limited	Moderate	Limited - Moderate	Limited
Geothermal	Moderate	Moderate	N/A	Moderate	Moderate – Significant	Limited – Moderate	Limited
Solid Waste	Limited	Moderate- Significant	N/A	Significant	Moderate	Limited – Moderate	Limited- Moderate
Tidal	Limited	Significant	N/A	Significant	Moderate - Significant	Moderate – Significant	Moderate - Significant
Transmission	Limited	Significant	N/A	Moderate	N/A	Significant	Moderate - Significant

Conclusions – Transmission Projects

Recommendations

- Form GRETC
- Establish State energy policies
 - Large hydro
 - DSM/EE
 - RPS and pursuit of other renewables
 - System benefit charge
- Select preferred resource plan
- Public outreach program

Recommendations (continued)

- Address level/form of State assistance
- Address short-term and long-term gas supply issues
- Develop regional portfolio of DSM/EE programs and provide start-up funding
- Begin detailed engineering/permitting activities associated with selected generation and transmission projects
- Pursue Chakachamna, Susitna and Glacier Fork to determine if any of these projects can be built

Recommendations (continued)

- Form regional entity (if GRETC is not formed) to develop DSM/EE programs and renewable projects
- Pursue Federal funding for DSM/EE programs and renewable projects
- Streamline siting/permitting process for transmission projects
- Develop regional frequency regulation strategy
- Develop competitive power procurement process and standard power purchase agreement

What it Means?

10% / 8%

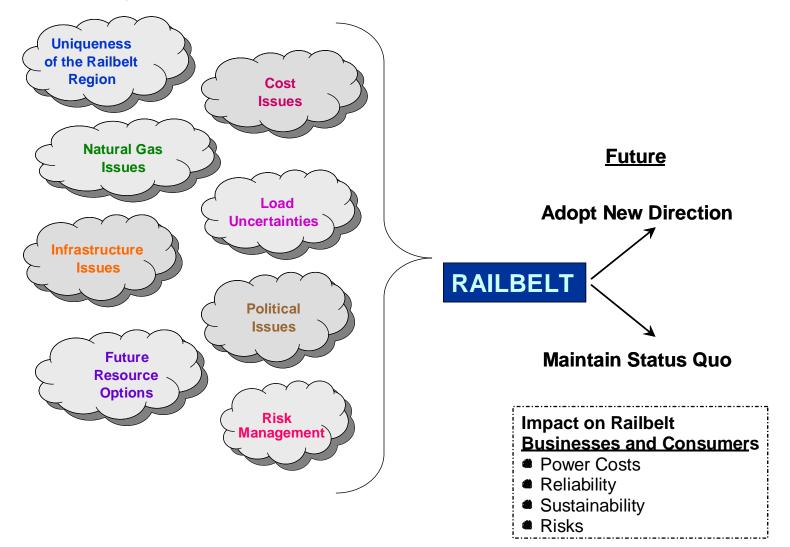
50%

\$10 billion

\$0.5 – \$1.5 billion

7.3%

Situational Assessment



History of Independent but Cooperative Decisions

- Infrastructure Investments
 - Alaska Intertie
 - Bradley Lake Hydro Project
- Gas Supply
 - ML&P's investment
 - Attractive historical prices
- Innovative Solutions
 - GVEA's BESS
- Joint Operations and Contractual Arrangements
 - Intertie Operating and Reliability Committees
 - Full requirements contracts
 - Economy sales

Summary of Issues

Methodology Considerations

Methodology Considerations

- Time horizon 50 years
- Models used Strategist[®] and PROMOD[®]
- Hydroelectric methodology
- Transmission analysis
- Financial analysis

Key Assumptions

General Assumptions

- RIRP conducted assuming GRETC in place
- Study period: 2011-2060

Objective Function:

2011 Cumulative Present Value Costs

Costs Included

- Railbelt system fuel costs
- Railbelt system non-fuel O&M costs
- Railbelt system CO₂ emission allowance costs
- Capital costs for new Railbelt generation
- Capital costs for new Railbelt transmission

Costs Not Included

- Existing generation capital costs
- Existing transmission capital costs
- Distribution costs

Evaluation Scenarios

Base Case	Scenario 1A	Scenario 1B	
High Growth Case	Scenario 2A	Scenario 2B	
	Least Cost Level of Renewable	Force 50% s by 2025 (Energy)	

Significant Load Growth Opportunities

- Large new loads (mines, etc.)
- Conversion from gas to electric space and water heating
- Electric vehicles

Resources Considered

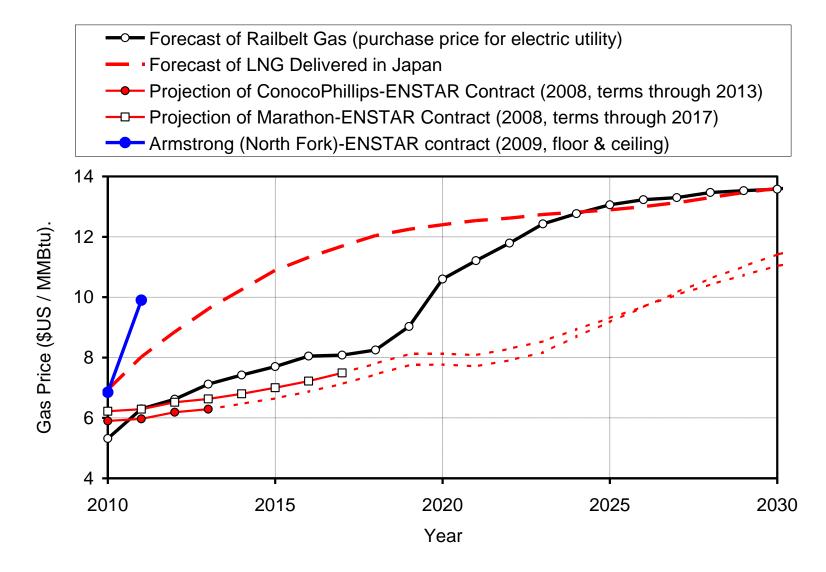
Demand-Side Management/Energy Efficiency (DSM/EE) Measure		
Categories	Conventional Generation Resources	Renewable Resources
Residential	Simple Cycle Combustion Turbines	Hydroelectric Projects
• Appliances	• LM6000 (48 MW)	• Susitna
• Water Heating	• LMS100 (96 MW)	Chakachamna
• Lighting	Combined Cycle	Glacier Fork
• Shell	• 1x1 6FA (154 MW)	• Generic Hydro – Kenai
• Cooling/Heating	• 2X1 6FA (310 MW)	Generic Hydro - MEA
Commercial	Coal Units	Wind
• Water Heating	Healy Clean Coal	• BQ Energy/Nikiski
Office Loads	• Generic – 130 MW	• Fire Island
• Motors		• Generic Wind – Kenai
• Lighting		• Generic Wind - GVEA
• Refrigeration		Geothermal
• Cooling/Heating		• Mt. Spurr
		Municipal Solid Waste
		• Generic – Anchorage
		Generic - GVEA
Other Resources Included in Sensitiv	ity Cases	•
Modular Nuclear		
• Tidal		

Planning Reserve Margin

- 30 Percent for GRETC
- No capacity credit is given for wind

Operating Reserves

- Operating reserves 150% times largest unit on the system times area's share
 - Area's share = area's largest unit / sum of all utility participants' largest units
- Spinning reserves 100% times largest unit on the system times area's share
 - BESS included as 27 MW of spinning reserve in GVEA's area
 - SILOs not included



Assumed Transmission System Transfer Capability

- Alaska Intertie
 - Current 75 MW south and north
 - 2024 130 MW south and north
- Southern Intertie
 - Current 60 MW south, 75 MW north
 - 2016 110 MW south, 120 MW north

Natural Gas Prices

CO₂ Allowance Costs

Year	\$/ton
2012	18.41
2020	39.70
2030	103.78
2040	213.91
2050	440.89
2060	564.38

Committed Units

Plant Name	Area	Capital Cost (\$000)	Maximum Winter Capacity (MW)	Commercia l Online Date
Southcentral Power Project	Anchorage	281,100	187	2013
ML&P 2500 Simple Cycle	Anchorage	43,200	33	2012
MLP LM6000 Combined Cycle	Anchorage	95,200	73	2014
Healy Clean Coal Project	GVEA	95,000	50	2011/2014
HEA Aeroderivative	HEA	(1)	34	2014
HEA Frame	HEA	(1)	42	2014
Nikiski Upgrade	HEA	(1)	77 (34 incremental)	2012
Eklutna Generation Station	MEA 269,900 180		2015	
Seward Diesel #N1	City of Seward	7,200	2.9	2010
Seward Diesel #N2	City of Seward	1,100	2.5	2011

(1)HEA has requested that their cost estimates remain confidential while they are obtaining their bids.

Transmission - GRETC Concept

Transmission system to be upgraded over time to remove transmission constraints that currently prevent the coordinated operation of all the utilities as a single entity. This is projected to happen within ten 10 years.

Starting Assumptions for Transmission Analysis

- Study to include all the utilities' assets 69 kV and above. These assets, over a transition period, flow into GRETC and form the basis for a phased upgrade of the system into a robust, reliable transmission system that can accommodate the economic operation of the interconnected system.
- Assumes that all utilities participate in GRETC with planning being conducted on a GRETC basis. The common goal will be the tight integration of the system operated by GRETC.

Railbelt Transmission Projects

- Projects classified in following categories:
 - Transmission projects to connect new generation projects to the grid (Generation Interconnections)
 - Transmission projects to upgrade the grid required by new generation projects (Generation Upgrades)
 - Replacement projects that need to be done because of age and condition (Replacement)
 - Upgrade projects to the grid to implement the GRETC concept, based on existing generation (GRETC)

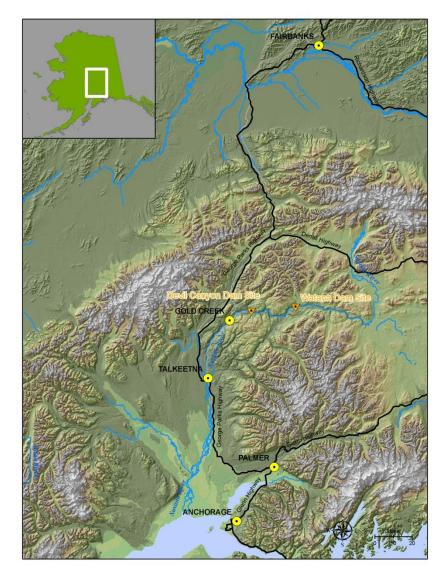
FAIRBANKS Load Profile – 2011 Peak 136 **GVEA** DELTA JUNCTION Area Load HEALY 238 MW MEA Area Load 146 MW WASILLA Anchorage Area Load BELUGA ANCHORAGE 412 MW WHITTIER AENAI 2 SOLDOTNA SEWARD Kenai 6 HOMER Area Load BRADLEY LAKE **HEA/SES** 97 MW NOTE: LOCATION FOR ELECTRICAL IS APPROXIMATE

December 10, 2009

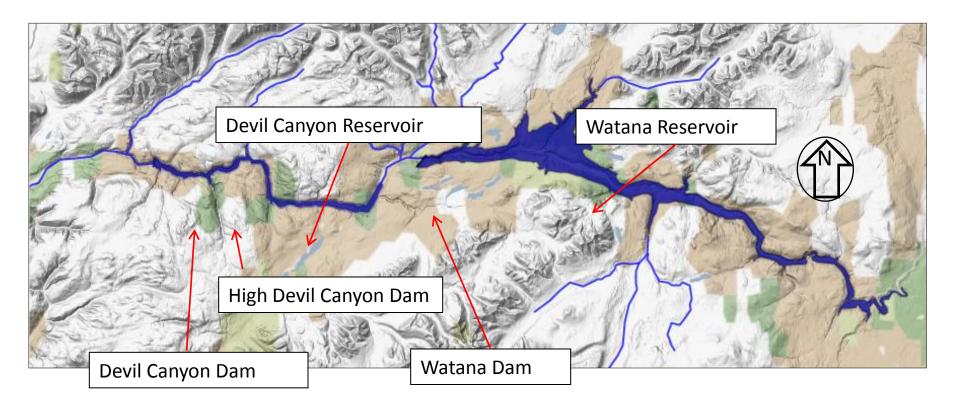
Recommended Transmission Projects

No.	Transmission Projects	Туре	Cost (\$000)	Priority
1	Soldotna – University	New Build (230kV)	\$161,250	1
2	Soldotna – Quartz Creek	Upgrade (230kV)	\$84,000	1
3	Quartz Creek – University	Upgrade (230kV)	\$112,500	1
4	Lake Lorraine – Douglas	New Build (230kV)	\$46,200	2
5	Douglas – Healy	Upgrade (230kV)	\$12,000	2
6	Douglas – Healy	New Build (230kV)	\$252,000	3
7	Beluga – Pt. Mackenzie	New Build (230kV)	\$67,700	3
8	Douglas - Teeland	Upgrade (230kV)	\$37,500	3
9	Healy – Gold Hill	Upgrade (230kV)	\$145,500	4
10	Healy – Wilson	Upgrade (230kV)	\$145,500	4
11	Soldotna – Bradley Lake	Upgrade (115kV)	\$61,800	4
12	Daves Creek – Seward	New Build (115 kV)	\$28,000	4
13	Eklutna – Lucas	New Build (230kV)	\$13,300	5
14	Lucas – Teeland	Upgrade (230kV)	\$26,100	5
15	Lucas – Teeland	New Build (230kV)	\$26,100	5
16	Pt. Mackenzie – Plant 2	Replacement (230kV)	\$32,200	6

Susitna Analysis



Susitna Hydroelectric Project



Project Location

Potential Project Sites

Evolution of Susitna Project Studies

1983	Submittal of FERC license application
1985	Revised FERC license
	Phased project development
1986	Project shelved
	Reason was drop in price of fossil-fuel generated power
March 2008	Interim Susitna Report

Re-evaluation of cost, energy, schedule and economics of 5 of the 1980s project alternatives

Fall 2009 RIRP support

Development of alternative projects tailored to system loads and costs

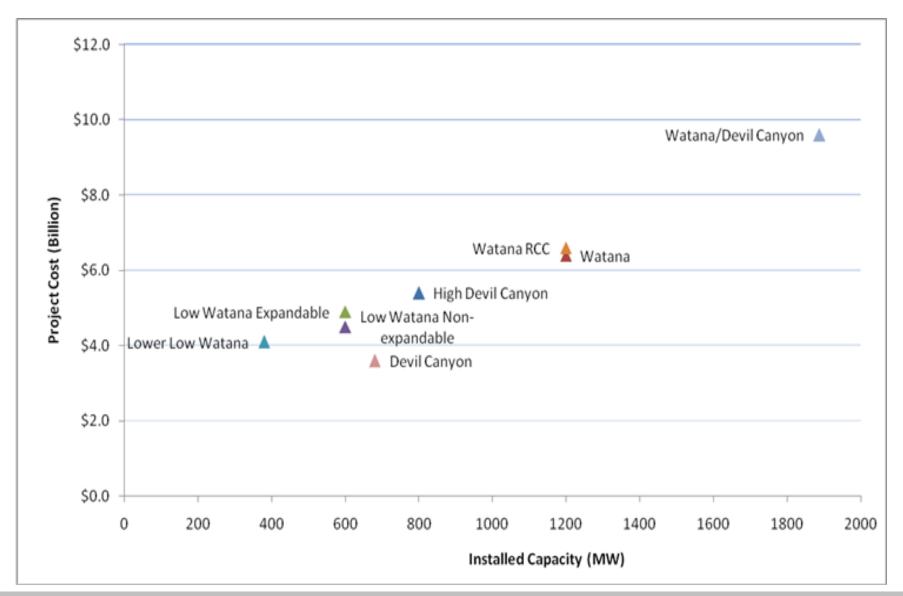
Nov. 2009 Final Susitna Report

Evaluation of cost, energy, and schedule of 9 project alternatives

Fall 2009 RIRP Work

- Identify lower cost alternatives
- Estimate energy and cost
- Determine firm capacity

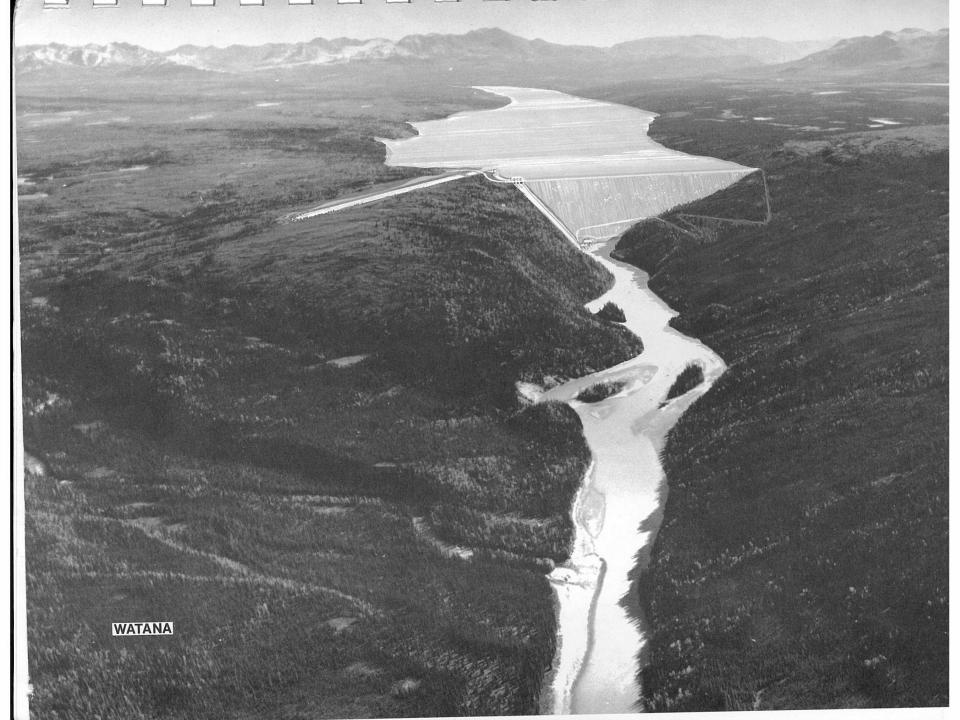
Firm Capacity


"the amount of power the project can generate on a continuous basis from Nov. 1 through April 30 with 98% reliability"

RIRP Project Configurations Studied All Single Dam Configurations

- Lower Low Watana
 - 620' high dam, 380 MW
- Low Watana (1985 Phase 1 development)
 - 685' high dam, 600 MW
- Low Watana (non-expandable)
- Watana
 - 880' high rockfill dam, 1,200 MW
- RCC Watana
 - 880' high roller compacted concrete (RCC) dam, 1,200 MW
- High Devils Canyon
 - 855' high RCC dam, 775 MW

Project Comparison



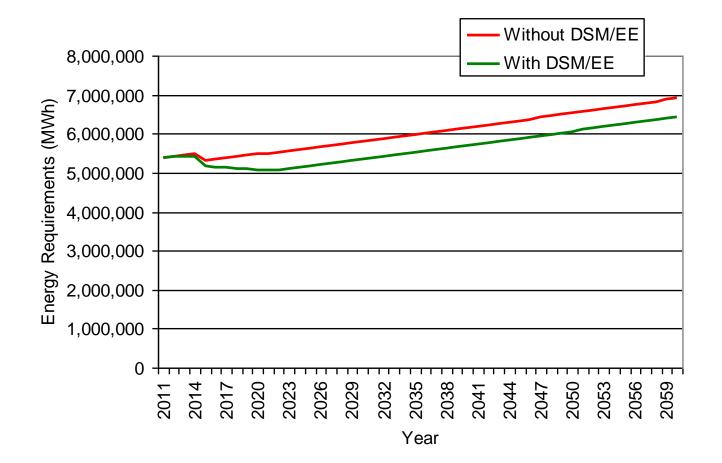
Study Results

Alternative	Dam Type	Ultimate Capacity (MW)	Firm Capacity, 98% (MW)	Construction Cost (\$ Billion)	Energy GWh/yr)	Schedule (years from start of Licensing)
Lower Low Watana	Rockfill	380	170	\$4.1	2,100	13-14
Low Watana Non- expandable	Rockfill	600	245	\$4.5	2,600	14-15
Low Watana Expandable	Rockfill	600	245	\$4.9	2,600	14-15
Watana	Rockfill	1,200	380	\$6.4	3,600	15-16
Watana RCC	Roller Compacted Concrete	1,200	380	\$6.6	3,600	14-15
Devil Canyon	Concrete Arch	680	75	\$3.6	2,700	14-15
High Devil Canyon	Roller Compacted Concrete	800	345	\$5.4	3,900	13-14
Watana/Devil Canyon	Rockfill/Concrete Arch	1,880	710	\$9.6	7,200	15 - 20
Staged Watana/Devil Canyon	Rockfill/Concrete Arch	1,880	710	\$10.0	7,200	15 - 24

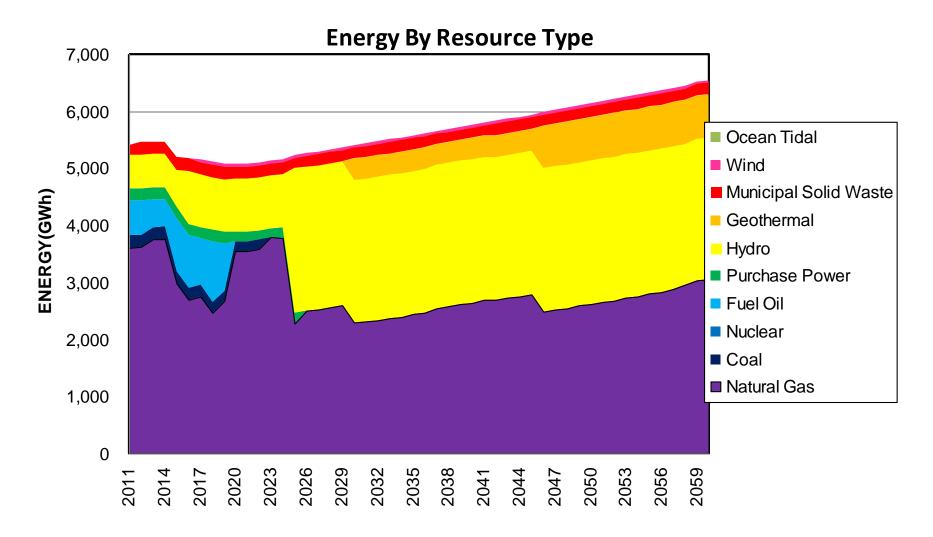
Conclusions

- Of all the renewable resources in the Railbelt region, the Susitna projects are the most advanced and best understood
- Project is considered to be technically feasible
- Environmental and seismic risk is considered manageable

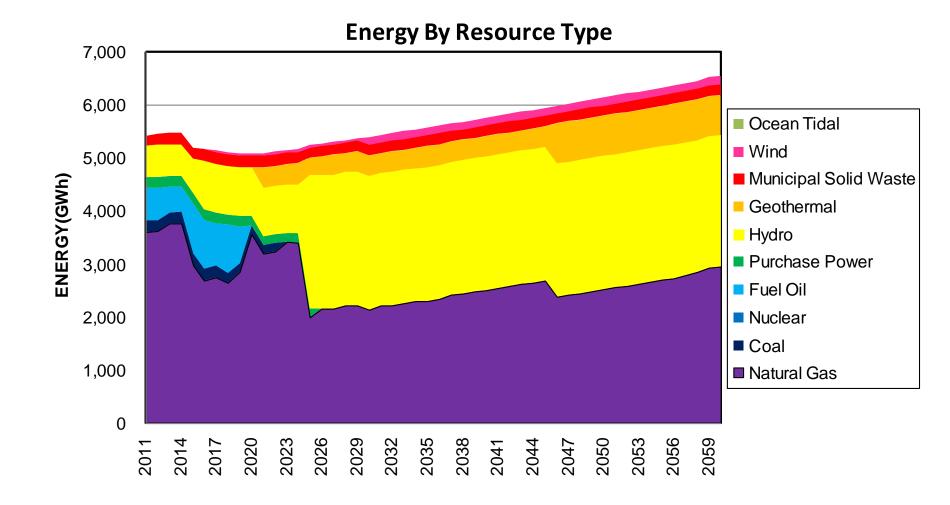
Summary of Results


Limitations of RIRP

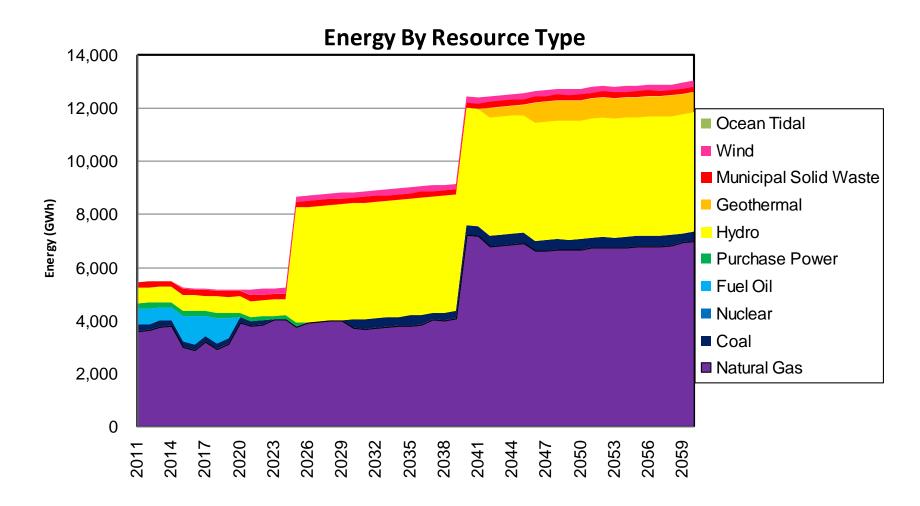
- Does not set State energy policy
- Directional
- Identified/generic/actual projects
- Agnostic to owner/developer of projects


Results – DSM/EE Resources

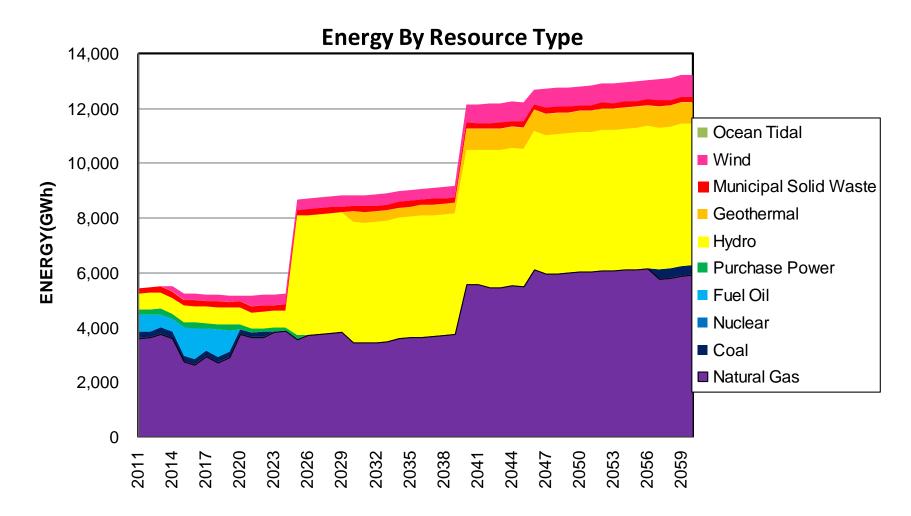
Energy Requirements (MWh)



Results – Scenario 1A



Results – Scenario 1B



Results – Scenario 2A

Results – Scenario 2B

Sensitivity Cases

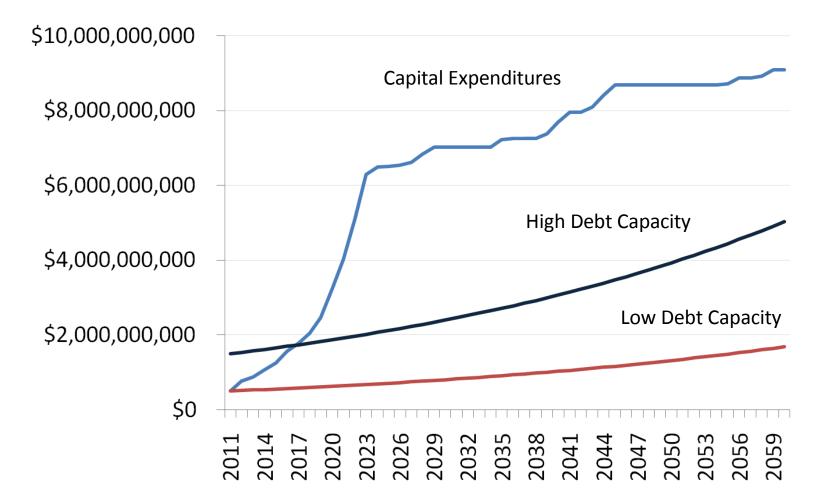
- Scenario 1A Without DSM/EE Measures
- Scenario 1A With Committed Units Included
- Scenario 1A Without CO2 Costs
- Scenario 1A With Higher Gas Prices
- Scenario 1A With Fire Island
- Scenario 1A Without Chakachamna
- Scenario 1A With Chakachamna Capital Costs Increased by 75%
- Scenario 1A With Susitna (Lower Low Watana Non-Expandable Option) Forced
- Scenario 1A With Susitna (Low Watana Non-Expandable Option) Forced
- Scenario 1A With Susitna (Low Watana Expandable Option) Forced
- Scenario 1A With Susitna (Watana Expansion Option) Forced
- Scenario 1A With Susitna (Watana Option) Forced
- Scenario 1A With Susitna (High Devil Canyon Option) Forced
- Scenario 1A With Modular Nuclear
- Scenario 1A With Tidal

Results – Economics

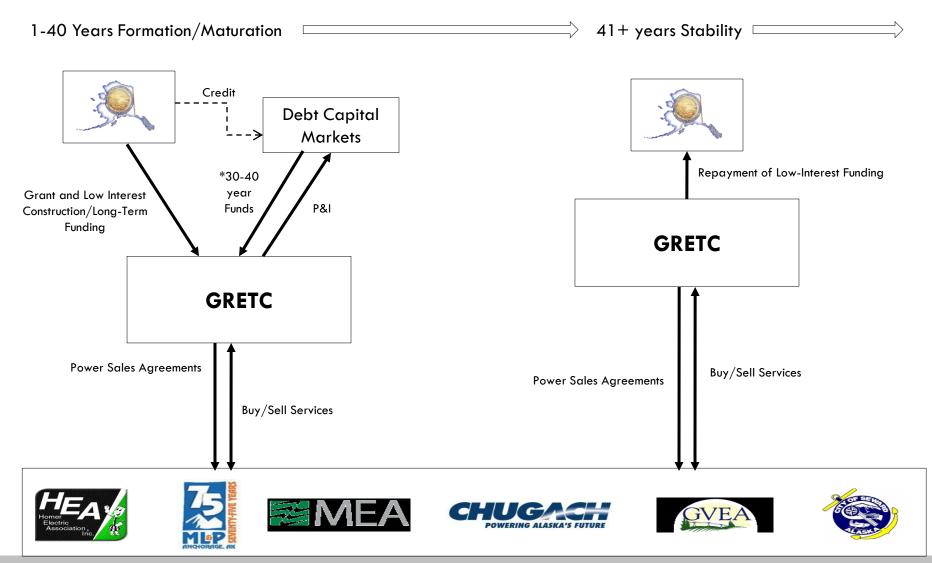
Case	Cumulative Present Value Cost (\$000,000)	Average Cost (¢ per kWh)	Renewable Energy in 2025 (%)	Total Capital Investment (\$000,000)
	Scenar	ios	·	
Plan 1A	\$12,925	4.60	49.17%	\$10,035
Plan 1B	\$12,916	4.59	54.78%	\$10,014
Plan 2A	\$20,978	4.29	53.57%	\$18,226
Plan 2B	\$21,507	4.40	55.55%	\$22,175
	Sensitivi	ties	·	
1A Without DSM/EE Measures	\$13,262	4.40	51.10%	\$9,791
1A With Committed Units Included	\$13,863	4.93	32.03%	\$9,592
1A Without CO ₂ Costs	\$10,402	3.70	14.36%	\$8,685
1A With Higher Gas Prices	\$14,945	5.31	61.94%	\$9,798
1A With Fire Island	\$12,965	4.61	54.78%	\$10,502
1A Without Chakachamna	\$13,273	4.72	22.80%	\$9,179
1A With Chakachamna Capital Costs Increased by 75%	\$13,273	4.72	22.80%	\$9,179
1A With Susitna (Lower Low Watana Non- Expandable Option) Forced	\$15,209	5.41	54.70%	\$13,166
1A With Susitna (Low Watana Non-Expandable Option) Forced	\$14,898	5.30	60.18%	\$14,742
1A With Susitna (Low Watana Expandable Option) Forced	\$15,437	5.49	60.18%	\$15,274
1A With Susitna (Low Watana Expansion Option) Forced	\$15,943	5.67	61.58%	\$15,902
1A With Susitna (Watana Option) Forced	\$16,281	5.79	61.82%	\$16,049
1A With Susitna (High Devil Canyon Option) Forced	\$16,238	5.77	61.82%	\$16,016
1A With Modular Nuclear	\$12,591	4.48	49.05%	\$9,864
1A With Tidal	\$12,198	4.34	59.10%	\$10,052

Results – Emissions

Case	CO ₂ (million tons)	NO _x (million tons)	SO ₂ (million tons)
	Scenarios		
Plan 1A	176,205	222	36
Plan 1B	169,440	216	33
Plan 2A	287,321	281	240
Plan 2B	250,460	245	75
	Sensitivities	•	
1A Without DSM/EE Measures	181,208	242	242
1A With Committed Units Included	219,645	351	273
1A Without CO ₂ Costs	222,614	295	383
1A With Higher Gas Prices	166,406	248	268
1A With Fire Island	166,934	223	39
1A Without Chakachamna	219,110	223	35
1A With Chakachamna Capital Costs Increased by 75%	219,110	223	35
1A With Susitna (Lower Low Watana Non- Expandable Option) Forced	158,703	210	35
1A With Susitna (Low Watana Non- Expandable Option) Forced	127,589	207	38
1A With Susitna (Low Watana Expandable Option) Forced	127,589	207	38
1A With Susitna (Low Watana Expansion Option) Forced	140,912	208	38
1A With Susitna (Watana Option) Forced	138,140	209	39
1A With Susitna (High Devil Canyon Option) Forced	134,780	208	39
1A With Modular Nuclear	162,858	224	37
1A With Tidal	153,908	213	33

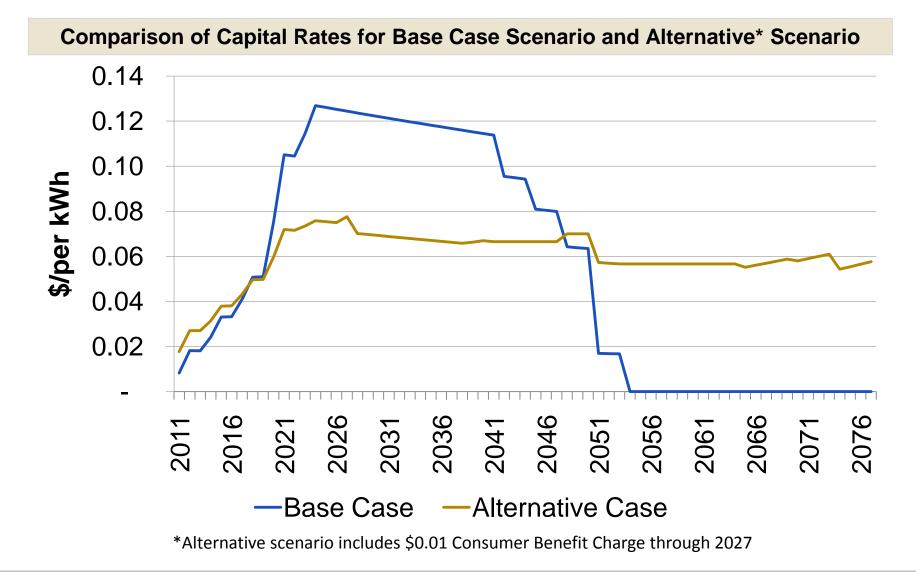


Financial Analysis


Debt Capacity vs. Capital Requirements

RIRP Plan 1A Capital Expenditures and Debt Capacity of the Railbelt Utilities

Greater Railbelt Energy & Transmission Company Funding Concept for Large/Long Useful Life Assets



Strategies to Lower Capital Cost of RIRP to Ratepayers

- Ratepayer benefits charge
- "Pay-go" vs. borrowing for capital
- Construction Work in Progress
- State financial assistance
 - Repayment flexibility
 - Credit support/risk mitigation
 - Potential interest cost benefit

Fixed Rate Charge for Capital

Setting Stage for Funding GRETC

- State Funds
- Debt Capital Markets
- Rate Payer Benefits Charge
- Asset Transfers

GRETC

Utility Managed Corporation

Steps Toward Funding

- Define GRETC Organizational Structure
- Identify State's Role in Funding

- Develop Phased Transition Plan
- Initiate Dialogue with RCA

Risks and Uncertainties

General Risks

- Organizational
- Fuel supply
- Inadequacy of transmission network
- Market development
- Financing and rate impacts
- Legislative and regulatory

Resource-Specific Risks - Summary

	Relative Magnitude of Risk/Issue						
Resource	Resource Potential Risks	Project Development and Operational Risks	Fuel Supply Risks	Environmental Risks	Transmission Constraint Risks	Financing Risks	Regulatory/ Legislative Risks
DSM/EE	Moderate	Limited	N/A	N/A	N/A	Limited - Moderate	Moderate
Generation Resource	es						
Natural Gas	Limited	Limited	Significant	Moderate	Limited	Moderate	Moderate
Coal	Limited	Moderate- Significant	Limited	Moderate - Significant	Limited - Significant	Moderate – Significant	Moderate
Modular Nuclear	Limited	Significant	Moderate	Significant	Limited	Significant	Significant
Large Hydro	Limited	Significant	N/A	Significant	Significant	Significant	Significant
Small Hydro	Moderate	Moderate	N/A	Moderate	Moderate	Limited - Moderate	Limited
Wind	Moderate	Moderate	N/A	Limited	Moderate	Limited - Moderate	Limited
Geothermal	Moderate	Moderate	N/A	Moderate	Moderate – Significant	Limited – Moderate	Limited
Solid Waste	Limited	Moderate- Significant	N/A	Significant	Moderate	Limited – Moderate	Limited- Moderate
Tidal	Limited	Significant	N/A	Significant	Moderate - Significant	Moderate – Significant	Moderate - Significant
Transmission	Limited	Significant	N/A	Moderate	N/A	Significant	Moderate - Significant

Resource-Specific Risks – Wind (Sample)

Resource: Generation – Wind				
Risk/Issue Category	Description	Primary Actions to Address Risk/Issue		
Resource Potential	 Total economic resource potential is unknown Resource potential may be constrained by Railbelt regional system regulation requirements 	 Complete regional economic potential assessment, including the identification of the most attractive sites Develop regional regulation strategy for non-dispatchable resources 		
Project Development	 Ineffectiveness and inefficiencies associated with six individual utilities developing wind projects Lack of standard power purchase agreements for projects developed by IPPs 	 Establish a regional entity (e.g., GRETC) or rely on IPPs to identify and develop wind projects Develop regional standard power purchase agreements Develop regional competitive power procurement process to encourage IPP development of projects 		
Fuel Supply	Not applicable	Not applicable		
Environmental	Site specific environmental issues	• Comprehensive evaluation of site specific environmental impacts at attractive sites		
Transmission Constraints	 Location of new facilities can add to transmission constraints Integration of non-dispatchable resources into Railbelt transmission grid poses challenges 	 Expand Railbelt transmission network Require that all proposed plant locations also include transmission infrastructure analyses and costs as part of any approval process Develop regional strategy for the integration of non-dispatchable resources 		
Financing	• Cost per kW can be significant	 Aggressively pursue available Federal funding for renewable projects 		
Regulatory/Legislative	Regional commitment to renewable resources is uncertain	 Establish State RPS targets Develop State policies regarding RECs and Green Pricing 		

Implementation Action Plan (2010-2012)

Implementation Action Plan

- Form GRETC
- Establish State energy policies
 - Large hydro
 - DSM/EE
 - RPS and pursuit of other renewables
 - System benefit charge
- Select preferred resource plan
- Public outreach program

Implementation Action Plan (continued)

- Address level/form of State assistance
- Address short-term and long-term gas supply issues
- Develop regional portfolio of DSM/EE programs and provide start-up funding
- Begin detailed engineering/permitting activities associated with selected generation and transmission projects
- Pursue Chakachamna, Susitna and Glacier Fork to determine if any of these projects can be built

Implementation Action Plan (continued)

- Form regional entity (if GRETC is not formed) to develop DSM/EE programs and renewable projects
- Pursue Federal funding for DSM/EE programs and renewable projects
- Streamline siting/permitting process for transmission projects
- Develop regional frequency regulation strategy
- Develop competitive power procurement process and standard power purchase agreement

Questions and Answers

Concluding Comments