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ABSTRACT 

To provide capability to model aquatic ecosystems or 
their subsystems as needed for particular research goals, 
a ~deling strategy was developed. Submodels of several 
processes common to aquatic ecosystems were developed or 
adapted from previously existing ones. Included are sub­
models for photosynthesis as a function of light and depth, 
biological growth rates as a function of temperature, 
dynamic chemical equilibrium, feeding and growth, and 
various types of losses to biological populations. These 
submodels may be used as modules in the construction of 
models of subsystems or ecosystems. A preliminary model 
for the nitrogen cycle subsystem was developed using the 
modeling strategy and applicable submodels. 

This report was submitted in partial fulfillment of 
ROAP 03ACQ, Task 09 by the Southeast Environmental Research 
Laboratory in Athens, Georgia, under the sponsorship of the 
u.s. Environmental Protection Agency. Work was completed 
as of May 1974. 

ii 



CONTENTS 

Sections Page 

1 I 

II 

III 

IV 

v 

VI 

Conclusions and Recommendations 

Introduction 

The Modeling Process 

Problem Definition 

System Diagram 

Process Mechanisms 

Physical Constraints 

Use of Models 

Process Models 

3 

4 

4 

4 

5 

6 

7 

9 

Response of Biological Rates to Physical Factors 9 
Algal Growth as a Function of Light 9 
Biological Rates as a Function of Temperature 14 

Interactions of Organisms and Their Chemical 
Environment 24 

Dynamic Chemical Equilibrium 26 
Microbial Growth 29 
Energy Expense, Predation Rates and Growth 
of Small Biophagous Metazoa 33 

Respiration, Death, and Excretion 36 
Inhibition 37 

A Preliminary Model for the Nitrogen Cycle 39 

Problem Definition 39 

System Diagram 39 

Process Mechanisms 43 

Estimation of Parameters 47 

Analysis of Preliminary Results 48 

References so 

iii 



FIGURES 

!IQ. 

1 General shape of the graph of biological rate versus 17 
temperature as described by equation 13. 

2 Fit of equation 13 to data for growth rate of the 19 
planktonic green alga, Chlorella pyrenoidosa, over a 
temperature range. 

3 Fit of equation 13 to data for growth rate of the wood 20 
destroying fungus, Ganode~ aplapatvm, over a 
temperature range. 

4 Fit of equation 13 to data for growth rate of the 21 
aquatic snail, Lvmpaea stagnalis, over a temperature 
range. 

5 Fit of equation 11 to data of rate of luminescence in 22 
the luciferin-luciferase system over a temperature 
ranget o. 

6 Fit of equation 13' to data of rate of luminescence in 23 
the luciferin-luciferase system over a temperature 
ranget o. 

7 Components and transfers important in biogeochemical 25 
cycles. 

8 Pattern of pH fluctuations during course of algal bloom 28 
and termination of the bloom by phosphorus limitation. 

9 Diagram of system components and transfers for the 40 
nitrogen cycle as depicted by equations 28 through 32. 

10 Forrester diagram of the nitrogen cycle showing more 41 
explicitly the processes and points of influence of the 
components. 

11 Relative steady state concentrations of four chemical 49 
components of the nitrogen cycle model. 

iv 



ACKNOWLEDGMENTS 

Many persons at the Southeast Environmental Resear~h 
Laboratory and elsewhere generously spent a great deal of 
their time with me discussing topics relevant to this 
research. Without their help much of this and previous 
research would not have been possible. I am grateful to 
them, collectively and individually. 

The support of Dr. Walter M. Sanders, Chief of the 
Freshwater Ecosystems Branch, and of Mr. George L. Baughman, 
Deputy Chief, is gratefully acknowledged. Of particular 
value has been the atmosphere conducive to research, which 
they have actively encouraged. 

I thank Mr. James Hill for the initial construction of 
Figure 10. 

The untiring efforts of Mrs. Shirley Hercules in editing 
and of Mrs. Carlyn Haley in typing are sincerely 
appreciated. 

v 



SECTION I 

CONCLUSIONS AND RECOMMENDATIONS 

Models describing the dynamics of complex aquatic eco­
systems may be efficiently developed using a five-step 
systematic approach. 

1. Define the aquatic ecosystem in terms of the 
problem to be solved. 

2. Construct a diagram of the ecosystem representing 
the system variables and the relationship between 
t~m. 

3. Develop mathematical descriptions of individual 
physical, chemical, and biological processes 
involved. 

4. Assemble the system model using the submodels while 
observing the principles of conservation of mass 
and energy. 

5. Compare macroscopic properties of the model with 
observed properties of the real world to check for 
validity of the representation. 

Although the submodels developed in this report are 
detailed descriptions of individual ecosystem processes, 
they may be insufficient to represent some specific natural 
aquatic systems. Thus, to construct a representation of a 
given system, submodels for those required processes not 
covered herein will have to be obtained from other sources 
or through additional developmental research. 

The detailed submodel developed herein, describing 
biological rates as functions of temperature, provides a 
representation more useful for ecological models than other 
available submodels. The fidelity of this function is 
better over a wide range of temperature than other models 
examined, provided adequate parameter estimates are 
obtained. 

The nitrogen cycle is a mechanistically complex 
subsystem of aquatic ecosystems. Within the limitations of 
the simplifying assumptions used and the lack of good 
estimates for parameters, the behavior of the model for this 
cycle was considered to be reasonable. An inhibition 
function proved to be a key element in the functioning of 
this model. Properly divided into spatially distinct 
subsystems and used with reasonable parameter estimates, the 
nitrogen cycle model will provide a representation of the 
nitrogen cycle that is suitable for simulation of larger 
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aquatic ecosystems. Further development work should be done 
on the nitrogen cycle model to allow it to be included in 
larger ecosystem models to enhance the capability to predict 
phenomena related to nitrogen compounds in the environment. 
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SECTION II 

INTRODUCTION 

Research on ecological systems. ~.g •• the fate of 
pollutants in aquatic ecosystems. may be significantly aided 
by the use of mathematical models. Such models are 
frequently thought of as large. complex. relatively 
incomprehensible computer programs. In fact these programs 
are not models in the sense used here. A model is a 
mathematical structure used to represent some real-world 
process. Computers may be used to make the computations 
and. in fact. have made it possible to utilize large simul­
taneous equation models. Computer programs of models permit 
widespread use and testing of model concepts. 

No single model can be general enough to be adequate for 
every research need. Therefore. our goal is to develop a 
capability for constructing models to fulfill specific needs 
that arise in research on the fate of pollutants in aquatic 
ecosystems. 

In the course of working to develop this capability. a 
systematic approach to the construction of models emerged. 
To allow construction of models for fate of particular 
pollutants several terms or equations describing various 
ecosystem processes were developed or modified from others. 
These terms or equations. called submodels. may be used as 
modules in constructing equations that describe rates of 
change at the population or compartment level. A system of 
equations that describes the appropriate compartments then 
may be combined to form a model of some subsystem of a total 
ecosystem. 

-3-



SECTION III 

THE MODELING PROCESS 

The process of constructing mathematical models is more 
difficult for natural systems than for man-made systems. 
The former requires an understanding of the way in which 
nature functions and a knowledge of the functioning units, 
together with the ability to express the interrelation of 
these functions in mathematical terms. Although with man­
made systems the requirements are similar, the system 
components are known so that functions are usually under­
stood. For natural systems the essential information may 
not be available. The element of discovery through 
scientific inquiry therefore accompanies virtually all 
modeling of natural systems. 

Every mathematical model of ecological systems includes 
hypotheses that are subject to scientific investigation. In 
fact a model of ecosystem phenomena may be constructed as a 
complex hypothesis itself, the hypothesis being that the 
model is an adequate representation of some aspects of the 
system behavior as required for a stated purpose. If 
quantitative outputs are required, the model requires 
parameter estimates for calibration to a specific situation, 
and these are obtainable only from data. Only after such 
calibration can testing begin. The model may be tested 
relative to another model (is it better?) or against some 
performance criterion (is it adequate?). Models are neither 
"good" nor "bad" apart from the purpose they are intended to 
serve, and testing must be done with this in mind. 

PROBLEM DEFINITION 

A difficult but signally important step in designing and 
constructing mathematical models is defining the system to 
be represented. This definition must consist of at least 
the set of required outputs, a statement of acceptable error 
of estimate, and a description of the real-world system 
generating the analogous real-world outputs. For some 
purposes other items may be needed, such as identification 
of controllable variables. With this information modeling 
may proceed into construction stages. 

SYSTEM DIAGRAM 

To clarify the relationships among system components it 
is advantageous to construct diagrams of the systems. 
Simple block and arrow diagrams may be adequate. Forrester 
diagrams' allow more explicit representation of rates and 
influencing factors. odum•sz energy circuit language may 

-4-



also be useful. Whatever the scheme, graphical 
representations allow elaboration of the system from the 
initial definition to include a~l identifiable factors of 
potential significance to the problem. 

The system processes and components necessary to provide 
the required outputs must be represented. The number of 
these model components depends upon the compromise reached 
between resolution and economy of resources. It is 
frequently easier to include many possib~e components and to 
delete unnecessary ones later than to begin with a minimal 
set and add as model development proceeds. Several 
analytical techniques3 are available for preliminary 
analysis of the graphs. These techniques may aid in 
choosing the optimum set of components to represent the 
system. 

At each stage of model development approximations 
necessarily are made, each implying same assumption about 
the real world. All differences between the real world and 
the model are due entirely to the lack of correspondence 
between the assumptions and the rea~ world. Res~ts from 
mathematical analyses of the mode~ may therefore be equated 
with reality subject only to constraints imposed by the 
assumptions. Recognition and understanding of the assump­
tions are therefore necessary to eva~uate results from a 
model. 

PROCESS MECHANISMS 

For mathematical ana~ysis linear mode~ approximations 
may be convenient, but when both the pathway of materia~s 
and the effects of their concentration are of interest, more 
complex, nonlinear mode~s wil~ frequent~y be used. 
Application of such models requires that the modeler know 
enough about the processes to construct expressions for the 
model system variables to adequately describe the inter­
actions among the real-world system entities. Such 
expressions may merely portray observed behavior at some 
level of resolution or they may imply comp~ex, real-world 
interactions that are either hypothesized or known. 

In ecosystem models the expressions are used to form 
terms of the equations. Whereas the terms represent inter­
actions, the equations represent real-world components such 
as populations, aggregations of similar populations, or 
trophic levels. Especially where the functional groupings 
represent entities such as populations or groupings of 
similar populations, the form of the terms is determined by 
the way the modeler mathematically describes the 
physiological or kinetic properties of these interacting 
real-world entities. For any interaction the term must 
appear in at least two equations, often called donor and 
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recipient equations (~.g., predator and prey). The term in 
a particular equation takes an appropriate sign and is 
modified by coefficients for efficiency of transfer 
(utilization, etc.) and for stoichiometry. Letting D = 
donor and R = recipient, assuming a simple rectangular 
hyperbolic description of growth of R on D, and expressing 
them in like units, such an interaction can be illustrated 
as follows: 

dD 
"d't 

dR 
"d't 

A 

= -

= 

pR D 
-y- ( K+D ) + 

+ ... 

where p = growth rate constant 

K = constant for half-maximal growth rate of R on D, 
and 

Y = yield of R per unit of D consumed, 0 < Y ~ 1. 

The term ~D/(K + D) describes a simple "physiology• of R 
with respect to D. The interaction is described by the 
couple, i·~·· the appearance of the term in both equations. 

In summary, modeling ecosystems using a mechanistic 
approach involves writing equations, each of which consists 
of terms that appear in one or more equations. The couples 
(or n-tuples)of terms represent interactions, and they are 
constructed so as to describe the physiology or kinetics in 
the detail appropriate to the problem. No matter how 
complex, all models are approximative. They may therefore 
be judged only by their value after application to their 
intended purpose. 

PHYSICAL CONSTRAINTS - CONSERVATION OF MASS AND ENERGY 

Ecological systems are constrained in nature by the 
availability of matter and energy. Models of such systems 
must be constrained by analogous physical principles. Mass 
and energy budgets must be maintained if models are to be 
realistic with respect to principles of conservation of mass 
and energy. 

In the preceding example of an interaction, another 
equation is required for conservation of mass. The loss of 
donor is proportional to p/Y, but gain by recipient is pro­
portional to p alone. Hence an amount proportional to 
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(1/Y)-1 is unaccounted for. Another equation for a by­
product, B, will account for all the mass: 

dB 
dt = 

A 

l!R 
1 D 

(-y-- 1) ( K+D) + ••• 

The equation for the by-product may be ignored when it is of 
no interest to the model. 

The most important benefit of the principle of con­
servation of mass in modeling is the realistic constraint 
that it places upon model behavior. In the above example 
by-product accumulates as donor disappears and as recipient 
increases. Because total mass remains constant the changes 
in the three components are correctly phased in time. In 
general the mass balance constraint ensures correctly phased 
behavior of model components, an important characteristic of 
ecosystem models. 

USE OF MODELS 

Simulation, the calculation of system behavior as a 
function of time, and mathematical analysis may be used to 
examine or analyze models for their properties. Models are 
analyzed for two basic reasons. In their development, 
analysis is done to compare macroscopic properties of the 
model to known properties of the real-world system to check 
for misrepresentation. When the model has been judged to be 
an accurate representation of the real world for the 
purposes intended, it is analyzed to seek properties of the 
real system by observing properties of the model. For a 
complex nonlinear model mathematical analyses may be 
difficult or impossible, and therefore examination of 
simulation results is the more frequently used approach. 
Simulation is frequently used to obtain responses of the 
model to specific conditions, !·~·· answers to "what if" 
questions. 

The constituent submodels can also be used separately if 
information about a single subcompartment only is needed, 
~.g., chemical equilibrium or accumulation of toxic sub­
stances in an organism. such computations may also be done 
as a preliminary check on parameter values before doing a 
large simulation. 

A model may serve as a complex hypothesis about the real 
world. It can be used to plan experiments, the goal of 
which is to provide data to modify the model, if necessary, 
to better describe the real world. 

-7-



Models discussed are structured in detail to facilitate 
research, but future models may be made simpler by using 
generalizations obtained from research suggested by the 
detailed models. Simplifying assumptions are frequently 
made because of insufficient knowledge, but simplifications 
resulting from research insights can lead to more useful and 
reliable models. 
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SECTION IV 

PROCESS MODELS 

Many different strategies are used to construct 
ecosystem models. Process modeling is one such strategy. 
In it. mathematical expressions are constructed to describe 
mechanistically at some chosen level of resolution the 
various processes taking place in the real world. ~.g., 
transfer, transformation, birth, and death. These 
expressions, termed submodels, may then be used as modules 
in the construction of larger subsystem, ecosystem models. 

The processes are described mechanistically, to permit 
valid predictions beyond the range of the calibration data 
where mechanisms are understood, and to permit incorporation 
of testable hypotheses where they are not. 

RESPONSE OF BIOLOGICAL RATES TO PHYSICAL FACTORS 

The physical factors of light and temperature are 
important environmental variables in ecosystems. Because 
the process of photosynthesis is the basic biochemical 
reaction supporting life it is important to pay particular 
attention to its description in constructing a mechanistic 
model for an aquatic ecosystem. Accurate computation of the 
rate of primary production of organic material, especially 
for lakes or slowly flowing water bodies, is necessary for 
accuracy in other computations related to living organisms. 

Temperate zone temperatures vary widely through the 
seasons. Simulations of ecosystems over long time intervals 
therefore require accurate descriptions of responses of 
various rates to temperature changes. 

~1 Growth as a Function of Light 

Light is one of the principle factors affecting plant 
growth. Because many of the materials frequently dissolved 
or suspended in aquatic systems absorb or scatter light, 
light entering at the surface is attenuated as it penetrates 
the water. Light intensity therefore is a function of depth 
and of water content. Hence. in modeling the response of an 
aquatic ecosystem to light, absorption and turbidity must be 
included. Because plant pigments are sensitized by light of 
discrete wavelengths, it may be necessary to include 
expressions for the differential light absorption 
characteristics of the various materials present. 

The influence of light was represented in two ways. The 
simplest was to use a scaled and truncated sine wave as a 
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crude means of describing algal growth as it varies with 
light intensity throughout the daylight cycle•. 

Hutchinsons presented a more explicit representation of 
light pene~ration using an integrated form of Beer's Law. 
It includes direct light absorption by water and absorbing 
materials (color) • and attenuation by scattering 
particulates. Light intensity I at depth z may be expressed 
as 

= (1) 

where I
0 

= intensity at the surface, 

= extinction rates per unit depth, (products of an 
extinction coefficient and concentration of the 
light adsorbing substance, indicated by 
subscript i: 

w = water, 

c = color, 

P = particulate turbidity. 

The extinction rates for color and turbidity vary widely. 
The rate for particulate turbidity may be written as np = hP 
where P is a turbidity measure and h is an extinction 
coefficient. P may be subdivided into turbidity by non­
living and living particles. If the non-living particles 
can be assumed constant with time for a particular situation 
and the light-absorbing living particles are all algae, then 
the equation has only one variable, algal density. 
Separating the algal density from the density of non-living 
particles, the expression for the exponential extinction 
rate, nT, becomes 

= 

where Ci = the concentration of chlorophyll a in the ith 
group of algae (mg m-3), 

hnPn = the extinction rate for non-living particle 
turbidity, and 

he = the extinction coefficient for chlorophyll a. 

-10-
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A further modification of the equation for Iz incor­
porating the non-vertical light path results in 

Iz = 
-1.19TITZ 

I 0 e (3) 

in which 1.19z is the distance traveled by the average beam 
of light in reaching depth z. Poole and Atkinss found the 
factor 1.19 to apply throughout the day because of the 
varying contribution to the total incident light by direct 
sunlight and by skylight. 

To assess the integrated effect of light on the growth 
of a population of photosynthesizing cells dispersed 
throughout a water column of the eu~otic zone, a function 
relating growth rate to light intensity is needed. Steele• 
presented such a model for photosynthesis as a function of 
light intensity as follows: 

p = 
1-ai 

ap Ie 
m 

where a is a scaling constant, and 

Pm is maximum photosynthesis rate. 

(4) 

No rationale or development for the model was presented, but 
the equation fits several sets of photosynthesis-light 
curves. 

The equation can be derived from the following: 

1. The rate of change of p with a unit change in I 
depends both on the value of p and on the deviation 
of I from the optimum I (!m): 

2. The rate of change of p with a unit change in I is 
inversely proportional to I, i·~·• the 
photoinhibition effect. 

The following equation expresses these assumptions: 

dp 

di 
= kp (1-I/Im) 

I 

Integration yields the following: 

p = Pa(I/I }k k(1-I/I) m e m 

-11-
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Steele 1 s6 equation (4) is obtained by letting k = 1 and 
1/Im =a. Equation (5), because it contains the parameter 
k, which can be fit to data, provides a better fit than does 
steele's equation. However, the form of Steele's equation, 
because of its tractability, is more useful in developing 
expressions for the average growth in a water column. When 
equation (5} was fit by least squares to widely differing 
data sets, k varied from about 0.87 to about 1.67. For wide 
variation in light intensities, computations using equation 
(5) will give better results than will equation (4). 

Steele's equation may be integrated over the depth of 
the euphotic zone (or other chosen depth} in order to obtain 
the average photosynthesis rate. substituting equation (3} 
into equation (4), integrating over the depth, ze, of the 
euphotic zone, and averaging, the necessary expression is 
obtained 

p= 

- e 

Bannister7 discussed the variable nature of Pm and the 
relatively constant nature of another parameter mm, the 
maximum quantum yield. Using steele's equation Bannister? 
derived Pm in terms of mm and c (mg chlorophyll/m3) : 

12 ~ I h C/e m m c 

where 12 atomic weight of carbon, and 

he = the rate of absorption of light by chlorophyll 
a. 

substituting Bannister•s expression into equation (6) gives 
p in terms of I, C, and the parameters ?'IT, m , I , and I : 

m o m 

p= 

-12-
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This expression assumes that all algae are alike. The 
average rate of photosynthesis for the jth algal group is 
(p • Cj/C). Therefore the expression for the rate of photo­
synthesis by the jth group is 

Pj = 
12 -mimjhcCj 

(-I /I -
1

•
1

9n z \e 0 mje T e -Io/Imj) 
- e 

1.19nTze 

This expression can be used for simulations or other compu­
tations utilizing the average photosynthesis rate for a 
column of euphotic zone water under a meter square of 
surface. However, an expression for the rate of carbon 
fixation per unit biomass, w, is usually more convenient for 
simulation. To obtain an expression for w using equation 
(8) , a relationship between chlorophyll and biomass (B) is 
needed: 

cj = bjBj 

where bj = chlorophyll per unit biomass of population j. 

Substituting for c and dividing by B gives 

w. = 
J 

12-I (-I/ -1.19n • mjhcbj e o Imje Tze 

1.19nTze 

- e 
-Io/Imj) 

Finally the specific growth rate subject only to light limi­
tation, 0 ~ must be obtained in terms of w and the 
stoichiometric coefficient relating total biomass to carbon, 
na: 

"~ 
lJ = naw (9) 

The relationship of p~to the specific growth rate, l.l• in the 
context of nutrient and temperature limitations will be 
discussed separately and a tentative expression for 1.1 will 
be developed in a following section. 

-13-
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In the above discussion only phytoplankton dispersed 
uniformly throughout the water column are considered. Other 
kinds of plants are also important in aquatic ecosystems. 
In fact, in streams attached algae and rooted macrophytes 
may account for the entire productive capacity. A 
development similar to the one above would result in an 
expression similar to equation (9) for the growth of 
macrophytes. Whereas uniformly dispersed phytoplankton are 
easily represented in equations for light extinction, 
discrete leaves of macrophytes may cause some problems in 
representation. However, a term for total leaf area could 
be used as a light extinction variable as described by 
Bloomfield~ ~!·• in a model describing macrophyte growth 
in an ecological context. 

Biological Rate a~Egnction of Temperature 

Temperature is a principle abiotic factor in providing 
niche requirements for organisms. The existence of upper 
and lower limits outside which biological processes fail 
points to the likelihood of a temperature response with a 
optimum for these processes. 

Much of the work with biological rates as functions of 
temperature makes use of the concept of Q10 • Q10 is the 
ratio of rate constants of biological reactions at two 
temperatures, 10 degrees apart. Assuming that the rate is 
exponentially related to temperature over the interval of 
interest, the following expression• describes the 
relationship between rate constants and temperatures: 

= 

where T1 and T2 may differ by any amount. 

Given a Q 10 value and a rate constant (k 1) at some 
temperature (T,), one can determine the rate constant, k 2 , 
at some other temperature, T2• 

= 

However, the assumption that the rate increases expon­
entially with temperature is not valid over a large portion 
of the range of temperatures that an organism will tolerate. 
Instead the biological rate increases with increasing 
temperature to a maximum at an optimum temperature (T ) , 

m 
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then falls off to zero at some upper limiting temperature 
(TL). 

Three different sub-models or equations have been 
developed to describe the dependence of biological rates on 
temperature, all of which are characterized by a temperature 
optimum with an associated maximum rate. one was developed 
for use in ecosystem models for the Eastern Decidious Forest 
Biome of the International Biological Program (IB~•. Its 
form is rather complex: 

k = ( 
TL-T \X eX[1- (TL-T)/(TL-Tm) 

TL-Tm 7 

where X= W2(1 + ~«1 + 40/W) ]2 
400 

W = (ln Q10) (TL-T) 

and all other symbols are as previously defined. 

(10) 

Since it contains only two parameters and a Q10 , this 
model is not able to represent rates over a wide variety of 
temperatures. However, it is useful around the optimum 
temperature. 

A second equation was presented by Johnson ~t al.&o. 
Based upon transition state theory, this model assumes that 
the rate of an enzyme reaction is a function of the 
activation energy and the equilibrium between the native and 
denatured forms of the enzyme. It has the form 

k = c T 

1 + 

-~Ht/RT 
e 
~S/R - ~H/RT 

e 

where c is a scaling constant, 

~H* is the heat of activation for transition state 
intermediates, 

(11) 

~H is the heat of activation for the reaction for which 
k is the rate coefficient, 

~s is the entropy of activation of the same reaction, 
~d 

R is the gas law constant. 
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This model may be fit to biological rates over wide 
temperature ranges; however, its parameters are thermo­
dynamic quantities, which are difficult to interpret at the 
ecological level. 

Another model, presented by Lassiter and Kearns•, was 
developed in response to a need for a simple model, 
applicable over a wide temperature range. The model takes 
into consideration the following factors: 

• Rate coefficients are always positive, approaching 
zero asymptotically with respect to values of an 
external stimulus; thus a change in the rate in 
response to an external stimulus must be proportional 
to the magnitude of the rate itself. 

• A biological rate constant reaches maximum at an 
optimum temperature; therefore, the rate of change of 
the constant is hypothesized to be proportional to 
the deviation of temperature from optimum. 

• The rate, which diminishes when the optimum tempera­
ture is exceeded (its rate of change becomes 
negative), decreases more rapidly as the upper limit 
is approached. An inverse relationship between the 
rate of change and deviation from the maximum 
temperature (TL) is hypothesized. 

The following equation incorporates the above con­
siderations: 

dk 

dT = (12) 

Integration of equation (12) with k = km when T = Tm results 
in the following expression•: 

Although the equation contains four parameters, it fits 
only data that conform generally to the assumptions used to 
derive the equation. The graph of the equation is always 
skewed to the right (Figure 1), the amount of skew depending 
upon the difference between Tm and TL. No other type of 
data can be represented by the model. 
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The model has been fit to several sets of published 
data, ~.g., growth rates of Chlorella sp.''• egg production 
by several species of wood fungitz, growth of four species 
of aquatic snailst3, and luminescence from certain 
luciferin/luciferase reactionsto. Figures 2 through 4 give 
examples of fits to published data. The equation is a good 
representation for all data thus far examined on biological 
rates versus temperature. 

The shape of the graph for the equation is similar to 
that for equation (11). Figures 5 and 6 show least squares 
fits of equations (11) and (13) to the same data set (Figure 
8.25, Johnson ~S ~.to). The fits are not markedly 
different. Equation (11) may be more meaningful in an 
analytical sense in that parameters are thermodynamic 
quantities, which permit biological rates to be compared on 
fundamental grounds. However, for ecological modeling it 
may be more meaningful to use the parameters of equation 
(13) for the function relating growth or other biological 
rate to temperature. 

Because Q10 data have been so frequently reported, they 
represent a source of information that may be used in 
deriving the parameters for equation (13). For example, 
given a Q10 computed from rates obtained over the 
temperature range Tt to T2 and reasonable estimates for Tm 
and TL, values for Km and a may be computed. 

Using the two rates k 1 at T1 and k2 at T2 or any two 
rates in the range over which Q10 is valid, and the 
estimates of Tm and TL, the constant, a, may be computed by 
the following equation: 

a = (14) 

The optimum rate, km• may then be computed by substituting a 
into equation (13) with k = k 1 at T1 or k = k2 at T2• Using 
k 1 and T1 , the following expression may be used to determine 
~= 

-a(T 1 -Tm) -a(TL-Tm) 
= k 1e [ (TL-T 1 )/(TL-Tm)1 (15) 
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To solve equation (13) for all four parameters. rates at 
four temperatures are needed. 

If a larger set of data for rate versus temperature is 
available. the parameters may be better estimated by least 
squares. This technique'• was used to fit the equation to 
the growth. egg production. and luminescence data cited 
previously. 

For modeling aquatic ecosystem processes. equation (13) 
is easily used and has been found to describe adequately the 
response of rate processes to temperature fluctuations. 

INTERACTIONS OF ORGANISMS AND THEIR CHEMICAL ENVIRONMENT 

The biota are controlled by the availability of chemi­
cals and the chemicals in turn are transformed by the 
organismszt. A description of the ecosystem therefore 
requires a set of simultaneous differential equations for 
both biota and chemicals. all highly coupled. 

The biota influence their physical environment in simple 
ways such as reducing light intensity by shading. 
Biological and chemical processes. however. seem to be 
linked in much more complex and subtle ways. Many chemical 
reactions occur so rapidly that they may be considered to be 
always at equilibrium with respect to the much slower 
biological processes. Yet these biological processes over a 
period of time may exert a great influence on the chemical 
system. The molar ratio (16:1) of nitrogen to phosphorus in 
the sea is presumably an example of such influence resulting 
from biological processes operating over geological timets. 

Descriptions of several processes involving interactions 
between the biota and their chemical environment were 
included as components for the ecosystem models: 

• inorganic chemical equilibrium 

• production and decomposition of organic compounds. 

• exchange of gaseous materials at the air-water 
interface. and 

• food-web transfers of the aquatic biological 
community. 

Figure 7 shows schematically components and transfers that 
are important in biogeochemical cycles. Although pollutants 
are generally thought of in terms of their effects on the 
environment. a model for the fate of pollutants must in 
addition consider them as materials subject to transfer and 
transformation by the above processes. 
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The dissolved materials in aquatic systems comprise a 
complex medium wherein photochemical. biochemical, and other 
chemical processes occur. It is beyond the scope of most 
dynamic models to represent this complexity in more than a 
simple way. 

To develop a capability to model chemical equilibria 
dynamically, a simple representation of the complex real 
world was chosen that would include materials of rather 
certain importance to ecosystem processes. Various 
techniques have been presented for ccm~uting concentrations 
of materials in complex solution equilibria16,,7,ta, but for 
this submodel a simpler computational scheme was needed that 
would allow the chemical equilibria to be maintained 
dynamically throughout a simulated time period. The 
technique chosen was an iterative search for [H+] that 
results in achievement of charge balance. 

Ionization fractions or distribution coefficients as 
functions of the equilibrium constants and hydrogen ion 
concentration were computed for each ligand. For exam~le 
the carbonate series is characterized by three distribution 
coefficients, a 0 • a 1 , and a 2 : 

-1 
[H 2C0 3*J 

( K1 K1K2 ) 
a = 1 + [H+J + 

[H+]2 0 CT 

[HCo3-J ( [H+] [K2 J) _, 
a, = = --+1+--

CT K1 [H+J 

co = ( [H+] [H+] r 3 a = = --+ + 1 
2 CT K1K2 K2 

where C = (H CO*]+ [HCO -]+(CO =] 
T 2 3 3 3 

(H 2co3*] = (00 2 ] + (H200 3 ]. 

The ai are found simply by substituting a value for [H+]. 

Given a distribution coefficient, ai, and the total con­
centration, CT, the concentration of any form. Ci, can be 
computed: 

= 
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Distribution coefficients are used in this manner to compute 
the concentrations of all the ligands considered. 
concentrations of the free metal ions are computed using 
concentrations of the ligands and solubility products. 
subject to the constraint that the total metal present 
remain constant. If computation indicates precipitation. 
the solids are assumed to remain in microdispersed form. 
readily available for solution when conditions permit. The 
key to all computations is [H+]. [H+] is varied by the 
iterative search routine until the objective function. a net 
charge equation. is found to be arbitrarily close to zero. 
at which point the computations are complete. 

For the chemical equilibrium system to be maintained 
dynamically. the totals of materials used and regenerated 
may be changed each computational interval. Differential 
equations for co2 • available phosphate. and NH 3 (discussed 
later) are used to compute these additions and subtractions. 

The largest set of metals and ligands utilized included 
sodium. calcium. magnesium. carbonates. phosphates. 
sulphates. sulfide. acetate. ammonia. and nitrate. 
Equilibrium constants were obtained from various sources 
including Kernt• and Stumm and Morgants. 

Aquatic ecosystems were simulated using the model of 
Lassiter and Kearns• with and without chemical equilibrium. 
The pattern of biomass production. especially for primary 
producers. was different for the two cases. Without 
chemical equilibrium only one form of a chemical nutrient 
could be assumed, and therefore as might be expected. growth 
of producers and corresponding depletion of the nutrient 
proceeded faster. When the model included chemical 
equilibrium. the chemical nutrients were apportioned among 
several chemical species with a corresponding lowering of 
the concentration of the available form. As the chemicals 
were used they were reapportioned by equilibration and 
therefore made available in a buffered fashion to the 
organisms. 

variation in pH was induced by the algal growth compon­
ents in the model similar to the manner in which it occurs 
in nature. One curve presented• showed an abrupt halt in pH 
fluctuations with the development of phosphorus limitation. 
Another simulation with higher decomposition rates (higher 
rate of mineral recycling) also resulted in low phosphorus 
concentrations terminating a bloom. However. with the 
higher recycling rates the pH fluctuations did not abruptly 
cease. but instead decreased rapidly in magnitude. These 
results are shown in Figure 8. 

Both studies illustrate the importance of a dynamically 
varying chemical equilibrium subsystem as part of models 
directed toward study of nutrient-algal relationships. The 
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fluctuations in pH are as much a part of these relationships 
as are the fluctuations in either nutrient concentration or 
algal density, and perhaps carry greater implications for 
other, less directly related, reactions such as those of 
specific pollutants. 

The chemical equilibrium submodel has two major 
disadvantages. First, equilibrium constants have not been 
corrected for temperature. Falls and Vargazo list some of 
their equilibrium constants as functions of temperature, and 
data such as these will be useful. second, the method is 
not general enough to allow relative ease of specification 
of the system. The system described above will probably be 
abandoned and replaced by a streamlined subset of another 
model such as that presented by Morel and Morganl7, which 
overcomes at least the latter problem. The use of the 
present system has, however, provided experience with a 
dynamic equilibrium model, and its use has shown that it is 
feasible to represent dynamic chemical equilibria con­
currently with biological processes in ecosystem models. 

Microbial Growtb 

One important microbial activity in ecosystems is 
decomposition, the recycling of nutrients from organic back 
to inorganic forms. A representation of this feature of the 
ecosystem is necessary in models that are intended to 
accurately represent the cycling of materialsZI. 
Decomposition is a function of growth rate, and therefore an 
expression for microbial growth is needed. 

Microbes in general (algae and bacteria for present 
purposes) require for growth an energy source, inorganic 
nutrients, and a suitable chemical and physical environment. 

For algae, which are autotrophic, the energy source is 
light, a physical factor (discussed previously). An 
equation was derived for algal growth as limited by light 
(energy) alone (equation 9). Bacteria, because they feed on 
non-living organic material, are considered to be not only 
heterotrophic, but more specifically, saprophagouszz. They 
derive their energy from the transformation and utilization 
of organic materials. Before an equation can be derived 
that describes microbial growth in general as a function of 
inorganic nutrient concentrations, an expression for 
bacterial growth as limited by energy sources, analogous to 
equation (9) for algae, must be developed. 

One approach to the development of an equation for 
bacteria is to consider free energy changes in net equations 
for the transformation of particulate organic matter into 
bacterial biomass. Assume that the organic material in the 
system may assume four different forms -- particulate 
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organic matter (OHn)r dissolved or broken down organic 
matter (OMd), oxidized organics (CO~ and other inorganic 
ions), and bacterial biomass. The free energy changes 
associated with the transformation of materials from OMp to 
biomass (6Gpd' /!Gdc' and !!Gel) are as follows: 

- 6Gpd Breakdown or 
OMP OMd Dissolution 

- f.Gdc Oxidation 

biomass Assimilation 

The bacteria may take part in either or both of the first 
two processes and, by definition, take part in the 
assimilation process. The associated free energies of the 
reactions may then be utilized by the bacteria for metabolic 
processes (growth, activity, etc.). The above equations, 
however, provide no information concerning the efficiency 
with which the bacteria can make use of the available 
energy. For use in computations of growth rates estimates 
of these efficiencies are needed as well as information on 
the standard free energies of formation, 6G0 , of the OM , 
OMd, bacterial biomass, and inorganic nutrients. Rate P 
expressions for each of the processes are also required. 

However, since the details of this approach have not 
been worked out, an empirical approach, which makes use of a 
rectangular hyperbolic function, has been used to describe 
bacterial growth as it is limited by energy availability 
alone. The concentration of total organic material (OM ) is 
used as a measure of energy availability. T 

= (16) 

in which ~~ = growth rate limited by energy alone, 

K8 = the conc~tration of OMT that gives rise to a 
growth rate, ~/2, 

i = maximum growth rate assuming no nutrient or 
energy limitations. 

Given equation (9) for autotrophs and equation (16) for 
saprophages, equations may be formulated to describe growth 
rates for microbes in general as limited by inorganic 
nutrient concentration. To do so, equations must be 
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developed that take into consideration the various forms of 
the nutrient elements, carbon, nitrogen, and phosphorus. 
Organisms can utilize nutrients only in specific forms. A 
knowledge of these preferences is essential since environ­
mental conditions and microbial populations exert a large 
effect on the distribution of nutrients among the various 
possible forms. 

Some such information is currently available. From 
their observations that green algae grow more rapidly in 
acidic media, Emerson and Green23 and osterlindz• concluded 
that these algae prefer dissolved co2 and/or carbonic acid 
to other forms of inorganic carbon. Keenanzs reported that 
blue-green algae grew better at high pH's. Although he 
interpreted this as a direct pH dependence only, it may 
possibly be interpreted as a dependence on carbonate ion 
concentration. Little is said in the literature about the 
relative availability of ammonia and ammonium ion. However, 
judging from the pH values at which microbial growth optima 
occur, NH4+ is the more easily assimilated form. Based on 
similar information concerning the nutrient, phosphorus, the 
mono- and diprotonated forms of orthophosphate may be 
assumed to be preferred by microorganisms. 

organisms are known to utilize both nitrate and ammonia 
for growth. Some show a preference for nitrate and some for 
ammonia, although the reasons for these preferences are not 
always clear. Ammonia is believed to be, in general, more 
easily assimilated than nitrate because less energy is 
required for its conversion to amines. 

When the specific chemical forms of the nutrients 
required for growth are known, their concentrations may be 
used in algebraic expressions relating growth to nutrient 
concentration. Many workers•,z•,z7,ze,z• have used an 
expression for the chemical nutrients that is comparable to 
the single factor of the Monod growth equation but is a 
product of several factors, one for each nutrient 

1l = n .. n 
n 

i•1 (K 
s 

Si -) 
i 

in which n = total number of nutrients 

si = concentration of nutrient, i 

Ki = the concentration, si, that gives rise to 
that is one half of its maximum value (p). 
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Another expressionzt 27 uses the minimum of n quantities, 
Si/(Ki + Si), i = 1, 2, ••• , n, in place of the product of 
then quantities in equation (17). 

Droop3·o discussed another model incorporating 
Caperon 1 s3t suggestion that growth occurs by utilization of 
nutrients from internal pools. Droop argued for a linear 
relation between uptake rate and nutrient concentration in 
the cell, or cell quota (Q), in units of grams of nutrient 
per gram of biomass. Plots of uptake rate versus cell quota 
were linear, intersecting the Q-axis at a point,~ (> 0), 
termed the "subsistence quota.• At large values of cell 
quota (Q), he found that the asymptotic value of p equals 
the slope of the plot of uptake versus cell quota. Based on 
this observation he derived the relation 

= ~ Ill 

1 -
kq 
Q 

in which p ~ is the maximum growth rate resulting from 
internal nutrient concentration. 

Three properties of the equation are important: 

lJ/lJ~ 1 as Q becomes large, 

lJ 0 as Q kq, 

lJ = Is lJ~ when Q = 2kq• 

The first two properties are reasonable biologically, but 
the third is not. It seems unreasonable to expect that, in 
general, for a nutrient concentration of one half the half­
saturation constant(~), growth will cease. Nevertheless, 
Droop has addressed the problem of describing algal growth 
with more care than previous workers, and his model or some 
variation may be found to be an improvement over previous 
ones for many uses. His formulation for algal growth in 
response to multiple nutrients is 

(18) 

As Droop pointed out, this model predicts luxury uptake 
when nutrient concentration is high, but does not set an 
upper limit to the extent of this luxury uptake. 

Equation (18) differs from equation (17) in several 
ways. It describes growth as occurring from internally 
stored nutrients. More significantly, it includes the 
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concept of a subsistence quota and, because it differs 
algebraically, some of the constants must be interpreted 
differently. However, in spite of these differences, 
results from the two equations do not differ greatly; 
equation ( 11) , which requires fewer computations, is usually 
preferable. 

For some green algae and for bacteria, both inorganic 
nutrients and small soluble organic molecules are used as 
substrates for growth. Thus some of the factors of equation 
(17) may include dissolved organic material. Algae, for 
example, are known to assimilate several sugars (including 
phosphorylated forms), fatty acids, and some amino acids3Z, 
and to grow well using urea (apparently directly) , amino 
acids, and amides (for some forms by extracellularly 
liberating ammonia)33. 

Energy Expens~, Predation Rates, and growth Rates Of Small 
Biophagous Metazo! 

Small metazoa (~.q., rotifers and crustacea) found in 
the plankton and periphyton are heterotrophic, and many feed 
upon living material. Because of these habits· they are 
potentially important in the aquatic ecosystem, affecting 

·nutrient cycles via their roles in the food web. Wiegert 
and OWenzz termed such organisms "biophagesn to distinguish 
them from saprophages, organisms that feed upon non-living 
organic material. 

Submodels describing processes related to feeding and 
growth of biophages assume no age or size structures in the 
populations. Energy expense has usually been assumed to be 
constant, but the effects of the environment and of food 
availability on energy intake and expense may be important 
variables in the growth of motile forms. 

Three types of models have been developed that may be 
used to describe the feeding and growth of small biophages. 
Lassiter and Hayne3• presented a finite difference model, 
which considered that energy expense sets satiation level 
(maximum intake rate per unit time). The model predicted 
that when food was plentiful, the biophages were satiated 
and more energy was taken in than was expended. The 
difference was applied to growth of the population. The 
model is pedagogically useful, but it is difficult to use in 
differential equation models. 

other types of models relate growth directly to food in­
take without considering energy expense. Many of these 
models employ a single compartment to represent each trophic 
levelZ7,ze,z•. These models are based on the assumption 
that a rectangular hyperbola adequately describes the 
feeding and growth rates of biophages. Lassiterzt extended 
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these formulations to include multiple populations of 
biophages. The equation for growth rate, Gi, of the ith 
biophage population is given by 

Gl.· = llA B i i 

A 

m 
K· + r P· ·B· l. • 1 l.J J J• 

in which lli is maximal growth rate, 

(19) 

Pij is a weighting constant defining the predation 
rate by the ith biophage on the jth prey type 
relative to the rate on any other prey type, 

Bi is biomass of biophage, 

Bj is biomass of prey, 

Ki is the biomass of prey as modified by the 
weight, p, that result in half maximal biophage 
growth, and 

m is the number of prey populations. 

Feeding of small biophages results in losses to 
microbial populations. To compute the rate of death caused 
by predation on a microbial population, first the fraction 
of growth of a biophage population resulting from predation 
on a specific prey is needed. For biophage i feeding upon 
microbial organism k, the fraction is 

= m 
r P·jB· j=1 l. J 

(20) 

Therefore the death rate to population k due to predation by 
r predators is 

r 

D =L 
i=1 

in which nki is a stoichiometric coefficient relating a unit 
of prey biomass to a unit of predator. The stoichiometric 
coefficient is useful when two or more nutrient cycles are 
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simultaneously of interest. It is a number relating the 
difference in empirical formulae of ~redator and prey, and 
it has the effect of setting the maximum yield. Using this 
approach the yield coefficient, Yi, which usually represents 
the yield of predator per unit prey ingested, becomes an 
assimilation efficiency, a unitless number in the interval 
(0,1). For a discussion of predator-prey and other 
stoichiometry in ecosystem models (including yield), see 
Lassiterzt. 

The third type of modele makes use of a submodel in 
which the constant, K, of the rectangular hyperbola is 
replaced by a term that is linearly related to biophage 
density. This expression has the effect of representing 
direct interference among predators competing for prey, 
whereas equation (19) incorporates only competition for the 
same prey population. 

Neither equation (19) nor Bloomfield's submodel 
considers energy expense as a variable. However, either of 
the submodels could be rearranged to include energy budget 
equations if such could be developed. TO do so, the yield 
coefficient in the submodels would have to be made a 
function of energy expense and intake. 

Instead of modifying either equation, however, yet 
another equation was developed and used because of its 
mnemonic value. Redefining Pij as the rate constant for 
predation of biophage i on prey j, the growth rate of 
biophage population i is given by 

Gi 
Y. B. I: p .. B. 

l. l. j_ l.J J = 
n~ k (K. + I: B. ) 

l. l. j J 

in which all other terms are as previously defined. In this 
submodel growth rate is a function of ~redation rate, 
assimilation efficiency (yield), and the stoichiometry 
relating the two. Maximal growth rate does not appear in 
the formulation. Feeding is represented in this function as 
the essential interaction, and growth as a result of the 
interaction. Since growth is a function of yield and yield 
is a function of an energy budget, growth is also a function 
of an energy budget. 

Assuming equation (22) for growth of predators, rate of 
death caused by predation on population k is given by 

r 

Dk = L FikBi 
i=1 

I: p .. B. 
j l.J J 

K. + I: B. 
l. j J 
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in which all symbols are as previously defined. 

In using these submodels in an ecosystem model, other 
couplings in the system must be considered. For example, at 
higher energy expense rates correspondingly greater input 
rates of co2 to the water from biophage metabolism must be 
accounted for. Patten3s reasoned that a high degree of 
control exerted by higher trophic groups over lower is a 
significant and general feature of ecosystems. It was 
hypothesized from computer experimentationzt that 
zooplankton activity in aquatic systems may markedly affect 
the behavior of every component. Thus effort spent in 
accurately computing rates of growth for consumer organisms 
may be rewarded by a large increase in the accuracy of 
resulting predictions of such quantities as producer 
standing crops and various aspects of material cycling. 

Respiration, Death, and Excretion 

Respiration is a general term for the metabolic 
functions required to maintain the physiological integrity 
of organisms. Its uses in ecosystem modeling are manifold: 
mass balances for o2 and co1, terms in net growth equations, 
and energy balance terms. A functional module for 
respiration, then, will be a very much used term. It may be 
a very simple function such as might be used for microbial 
respiration, or it may be rather complex such as the several 
terms relating to respiration in the energy budget3•. If 
respiration is assumed to be a function of temperature 
alone, equation (13) may be used. For respiration the 
optimum temperature, Tnt, and the upper limiting temperature, 
TL, usually are fairly close together, resulting in a rapid 
decline in rate as the temperature increases for Tm to TL. 

Two classes of anabolic processes appear to be operative 
in organisms, viz., those processes involved in creating new 
structure, which have their temperature optima well below 
the limiting temperature, and those processes that function 
in repair, which operate more effectively with increasing 
physiological stress. The latter type are respiratory 
processes and reach a maximum only when heat denatures the 
proteins involved, the process occurring at TL. 

Death to organisms may result from several causes. 
Predation has already been discussed and equations have been 
presented to describe it (equations 21 and 23). Temperature 
may also exert lethal affects. Death rate due to 
temperature may be described by the following expression: 

= 
T > T m 

-36-

(24) 



in which D is the specific death rate due to excessive 
temperature, a is a scaling constant, and k is from equation 
(13). 

Death to natural populations also results from several 
unspecifiable causes, tbe probability of which is assumed to 
remain constant for each of the organisms. Therefore, the 
specific death rate from causes other than excessive 
temperature or predation is simply a constant in the 
differential equation. 

Excretion represents yet another mechanism by which bio­
logical populations may lose biomass. Algae are known to 
excrete small organic compounds36 the physiological 
mechanism of which, however, is unclear. The specific rate 
of excretion is therefore assumed to be constant. 

For consumers, excretion may result from several causes. 
Metabolic products resulting from catabolic processes may be 
excreted, which argues for an excretion rate proportional to 
metabolic rate. The excretion of metabolic products, then, 
may be represented as proportional to the temperature 
dependent respiration rate. 

Another process that necessarily results in excretion by 
consumers is the imperfect matching of the composition of 
food biomass and consumer biomass. This is a problem in 
predator-prey stoichiometry, and was discussed in detail by 
Lassiterz•. A stoichiometric coefficient is formed for the 
units of food consumed per comparable unit of consumer 
formed. This coefficient varies depending upon the com­
position of the food. It is used to compute another 
coefficient, n, for excretion of an element by the consumer. 
The excretion rate, Eir for population i is then simply 

Ei = nG1 • 

Inhibition 

One other submodel has proved beneficial, viz., an 
expression for the inhibition of biological processes by the 
presence of some specific chemical species. This may be 
actual inhibition, for example, inhibition of 
denitrification by the presence of oxygen, or it could 
reflect a preference, such as inhibition of uptake of No3-
by presence of "preferred" NH3 by microorganisms. 

The change in the rate coefficient, k, of the inhibited 
process with respect to the inhibiting substance is assumed 
to be proportional both to the value of the coefficient and 
to the concentration, x, of the inhibiting substance. 
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These assumptions may be rationalized on the following 
bases: first the rate coefficient must remain in the 
interval (0, k ) and therefore a change in response to an 
external stimufus must be a function of the rate itself; and 
second, the change in k with x for a particular process is 
dependent upon the particular value of x, subject to change 
by physiological adaptation. These assumptions may be 
stated as 

3k 
ax = -akx 

which, upon integration gives 

-ax 2 

k = kme 

in which a is a scaling coefficient and the other symbols 
are as previously defined. 

(25) 

(26) 

When two or more substances independently inhibit a pro­
cess, equation (2) can be extended to 

k = 

in which there are n inhibiting substances. 

By suitable choice of constants, ai, the inhibition 
function may be made to blend processes smoothly or to 
switch a process on or off within a very small range of 
concentration of the inhibitor. 
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SECTION V 

A PRELIMINARY MODEL FOR THE NITROGEN CYCLE 

In constructing a model for a system or for one of its 
subsystems, some logical sequence of steps should be 
followed so that errors, repetition, and the time required 
for the task may be minimized. A model for the nitrogen 
cycle, as a subsystem of an aquatic ecosystem, was developed 
following the procedure discussed in Section III, The 
Modeling Process. Because this model is viewed as a 
preliminary model to be revised when incorporated into a 
more comprehensive ecosystem model, the modeling process 
will be used again when the revision occurs and other 
submodels are included. some of the submodels developed in 
the previous section were used as modules in building the 
larger, nitrogen cycle model. 

PROBLEM DEFINITION 

Many ecosystem models have been constructed using first­
order or other approximations to only portions of the 
nitrogen cycle•,zt,z6,z?,za,z•. None have attempted a 
mechanistic description of the complete cycle. Textbook and 
other general descriptions37,3a,39,40 indicate that 
compensatory aspects of the nitrogen cycle may be important 
in producing a realistic model. That is, depletion and 
replenishment should be represented to accurately model 
nitrogen dynamics. A nitrogen model was developed to take 
into consideration the compensatory aspects of the cycle 
more completely and to examine the benefits derived from the 
more complete representation. The model was to be 
constructed to permit examination of the influence of 
pollutants on nitrogen transformations, ~.g., the influence 
of mercury on nitrification rates. 

The minimal set of system variables chosen included 
ammonia, nitrite, nitrate, and organic nitrogen. 

SYSTEM DIAGRAM 

System diagrams representing the four variables helped 
to define the couplings, influences, and other processes 
that must be included in the model. Figures 9 and 10 
represent a final version of the diagrams used in the model 
development. 

Ammonia is a product of the decomposition of organic 
nitrogen. The rate of the decomposition process is a 
function of oxygen concentration, as are most other 
processes of the nitrogen cycle. Therefore oxygen is 
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required either as a system input or as a system variable. 
For this model, it proved more useful to use it as an input 
(forcing) function. 

organic nitrogen is produced by four processes: 
microbial assimilation of ammonia, nitrite, and nitrate, and 
fixation of elemental nitrogen. Because nitrite occurs at 
very low concentrations, its assimilation could be ignored 
for the present purposes. Both nitrate and ammonia suppress 
N-fixation, although ammonia is the more effective 
suppressant3•. To keep the diagram (and later the 
mathematical model) as simple as possible, only one type of 
organism was represented by a dynamic variable. (For other 
microorganisms, fixed population sizes were assumed.) This 
organism was assumed to fix elemental nitrogen if neither 
nitrate nor ammonia was plentiful and thus to replenish the 
nitrogen in the system when it became depleted. Deaths from 
this population and from the fixed size populations 
contributed to the organic nitrogen pool. 

Ammonia disappears by two processes: assimilation (pro­
ducing organic nitrogen as noted previous!~, and 
nitrification. Nitrification was assumed to proceed in two 
steps: (1) NH3 ~ No2-, and (2) No2- ~ No3-. Both use 
oxygen as the oxidizing agent. 

Decomposition of organic nitrogen can occur both aero­
bically and anaerobically. Anaerobic decomposition may 
proceed by several mechanisms. For initial simplicity, 
decomposition was assumed to be carried out by two fixed­
size populations of microorganisms. Both were assumed to be 
facultative anaerobes, switching their metabolism from 
aerobic to anaerobic according to prevailing conditions .• 
One was assumed capable of using nitrite and the other 
capable of using nitrate as oxidizing agents. Other 
possible competing anaerobic processes were ignored. 

Nitrite is produced when facultative anaerobes utilize 
N03- as the oxidizing agent in the decomposition of organic 
matter (denitrification), and when they oxidize NH3 
(nitrification). Denitrification is said to be inversely 
related to redox potential•'· However, according to 
Hardy•z, the denitrifying enzymes are sensitive to oxygen 
concentration; above 0.2 mg o2/l, the enzymes are repressed. 
At low oxygen concentrations, which usually occur at low 
redox potentials, the denitrifying enzymes are de-repressed 
and denitrification can proceed. 

Nitrate arises by nitrification of N02- and disappears 
by assimilation into microbial biomass and by denitri­
fication. 

Finally, nitrogen is gained by fixation of N2, as 
discussed previously, and is lost as~, the end-product of 
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denitrification. Thus the cycle is closed in the causal 
sense. It is open, however, inasmuch as N2 is for all 
practical purposes an infinite source-sink reservoir. 

PROCESS M:EX:HANISMS 

For this model simple constructs were used to express 
the essential aspects of the system. For example, the 
customary hyperbolic function (equation 17) was not used in 
the description of growth rates, but the inhibition function 
(equation 27) was used extensively. The equations were 
coupled such that exchange of gaseous nitrogen was the only 
mechanism for loss or gain for the system. 

The nitrogen cycle in nature requires both oxygen­
replete and oxygen-depleted environments for all processes 
to occur. All processes described in this single model were 
assumed to proceed concurrently, except when inhibition or 
resources limited rates to near zero. For example, oxygen 
was used to switch the nitrification and denitrification 
processes on and off, simulating aerobic and anaerobic 
environments. 

Five dynamic variables were used in the model: 

x1 = organisms capable of assimilating NH3 and N02-, and 
of fixing N2 ; expressed as concentration, 

x2 = concentration of organic material (containing N in 
the same fixed proportion as x1), 

x3 = NH3 as (N], 

x4 = N02- as (N], and 

x5 = No3- as (N). 

Oxygen was made time varying and was labeled X£• Four 
fixed-size populations were included (P1, P2 , P3 , and P4). 
Nitrification steps (NH3 ---+ N021 and (N02- ~ No3-) were 
mediated by P1 and P2 , respectively. Denitrification steps 
(No3- ~ No2-) and (N02- ~ N2)were mediated by P3 and 
P4 , respectively. Elemental nitrogen was denoted by x0, and 
was assumed to be present at saturation concentrations. 

Inhibition functions of the form of equations (26) and 
(27) are denoted generically (each may differ in 
coefficients) by I(Xi) or I(xi, Xj) in the following 
description of the interactions and construction of 
equations. Also stoichiometric coefficients are generically 
represented as s. The rate coefficients for the various 
processes are symbolized by k's with subscripts. The 
subscripts have no value for identifying the process to 

-43-



which they belong other than to allow one to distinguish 
whether terms of different equations refer to the same 
process. 

The equation for x1 consists of terms for assimilation 
and death: 

dx1 
dt = lk00x 0 I(x3,x5) + k 01 x5 I(x3) + k02x3 - k 1Jx 1 (28) 

Note that N-fixation (first term) is inhibited by both NH3 
(x3) and No3- (x5 ), while N03- assimilation (second term) is 
inhibited by NH3 only. 

Organic nitrogen was represented as a fixed portion of 
organic material (10 moles of N atoms per mole of organic 
material). The chemical compositions of P1, P2• P3 , P4 • and 
x1 were assumed to be identical. The equation for the 
appearance and disappearance of x2 was constructed: 

= k1x 1 + k2P1 + k3P2 + k 4P3 + k 5P4 
- (k6P3 + k7P4)x2x6 

- k13 I(x6) P3x2x5 

- k15 I(x6) P4x2x4 

in which the positive terms are inputs from deaths of the 
indicated populations. the first negative term represents 
aerobic organic decomposition, and the last two negative 
terms, anaerobic decomposition. 

Both nitrate and ammonia are readily assimilated by most 
microorganisms, but ammonia is the more frequently preferred 
form. Aerobic decomposition. denitrification, and nitri­
fication are all microbially mediated processes from which 
the organisms obtain energy to assimilate biomass. Thus 
with each of these processes there is accompanying 
assimilation of ammonia or nitrate. Assimilation terms for 
both ammonia and nitrate are represented as proportional to 
the product of the energy yielding process and the con­
centration of NH3 (or No 3-). The equations for ammonia (x 3) 
and nitrate (xs) are given below (together because of 
similarity), followed by the equation for nitrite. 
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For ammonia: 

dx3 
~ = S [k13 I(~6} P3x2x5 

+ k 15 I(x6 } P4x 2x4 
+ (k6P3 + k7P4}x2x6] 

- ko2x1x3 

- [k8k12P1x3x6 

+ k9k14P2x4x6 

+ k10k13 I(x6)~3X2XS 

+ k 11 k 15 I(x6 )P4x 2x4 Jx3 

- k12P1x3x6 

The terms in the NB3 equation are 

(30.1) 

(30.2) 

(30.3} 

(30.4) 

(30.5) 

(30.6) 

(30.7) 

(30.8) 

(30.9) 

30.1 anaerobic decomposition using N03- as the oxidizing 
agent, 

30.2 anaerobic decomposition using N02- as the oxidizing 
agent, 

30.3 aerobic decomposition, 

30.4 assimilation by x1, 

30.5 assimilation by P
1 

accompanying the net reaction, 
NB3 ~ N02-, 

30.6 assimilation by P2 accompanying the net reaction, 
No2- ~ N0

3
-, 

30.1 assimilation by P3 accompanying decomposition of 
organic material using N03-, 

30.8 assimilation by P4 accompanying decomposition of 
organic material using No2-, and 

30.9 direct nitrification, NH3 ~ N02-. 
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For nitrate: 

dx5 
dt = k14P2x4x6 

- [S k 13 I(x6 )P3x 2 
+ x

1
k

01
r(x

3
) 

+ k81 I(x3>k,2P1x3x6 

+ k91 I{x3)k,4P2x4x6 

+ k101 I(x3)k13P3x2x5 

The terms in the N03- equation are 

31.1 nitrification, No 2- ~ N0 3-, 

31.2 denitrification, N0 3- ~ N0 2-, 

31.3 assimilation by x1, 

{31.1) 

(31.2) 

(31.3) 

(31.4) 

{31.5) 

(31.6) 

(31.7) 

31.4 assimilation by P1 accompanying the net reaction, 
NH3 ~ N0 2-, 

31.5 assimilation by P2 accompanying the net reaction, 
N02- ---+ N0 3-, 

31.6 assimilation by P3 accompanying decomposition of 
organic material using N0 3-, 

31.7 assimilation by P4 accompanying decomposition of 
organic material using N02• 

The NH3 and the N03- equations are similar in some 
respects and different in others. Three modes of decom­
position are direct sources for NH3 (in the real world there 
are more than three), and only one process, nitrification, 
results in N03-. All the loss terms are similar, except for 
the inhibition of NOl- loss by the presence of ammonia (in 
the real world the d fference is not so distinct). 
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The equation for nitrite is given by 

dx4 
dt = k12P1x3x6 

+ S k 13 I(x6)P3x 2x 5 

- S k14P2x4x6 

- s k 15 I{x6)P4x 2x 4 

(32) 

The nitrite equation includes no assimilation term. The 
first term is input by nitrification, NH3 ~ N02-, and the 
second is input by denitrification, No3- ~ N02-. The 
third term represents loss via nitrification, N02- ~ No3-, 
and the fourth, for denitrification, N02- ~ N2• 

These equations, even without hyperbolic or other des­
criptive factors, are uncomfortably complex. The 
complexity, however, is necessary if the model is to include 
the couplings and influences depicted in Figures 9 and 10. 
The numerous influences upon most of the rates give rise to 
long terms in the equation; the highly coupled nature of the 
cycle gives rise to many terms in each equation. 

ESTIMATION OF PARAMETERS 

Ideally values for parameters for such a model would be 
determined from data from applicable experiments. All of 
the parameters however, were merely estimated. Using a 
model such as this in which each term contains several 
factors, each of which is constrained to non-negative 
values, it becomes very clear that parameter estimates are 
strong functions of the form of the model. Initial 
parameter estimates ranged from 0.0012 for the rate 
constants for assimilation of ammonia and nitrate by 
denitrifying organisms to 1.1 x 1012 for the rate constant 
for decomposition of organic material by those same 
organisms. To one used to thinking in terms of first-order 
rate constants, these values (especially the latter) may 
seem absurd. Had the factors appeared as rectangular 
hyperbolae, so that each factor was unitless and constrained 
to the interval (0, 1), the parameter estimates would have 
approximated first-order rate constants. 
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ANALYSIS OF PRELIMINARY RESULTS 

The results indicate that this model or a similar one 
should be a part of a larger ecosystem model if part of the 
purpose of the larger model is to describe the transient 
behavior of dissolved chemicals. Steady state results for 
the four chemical components for both aerobic and anaerobic 
conditions are shown in Figure 11. output from the model 
indicated that the net rates of change for some processes 
were of the right order of magnitude to be included in a 
larger model. A1 so, the behavior of the components was 
shown to be interdependent so that each component is 
affected by every other component either directly or 
indirectly. 

The parameter estimates may have been badly in error. 
such a possibility is suggested by the relatively high 
steady state N0 2- values under aerobic conditions and the 
relative stability of NH 3 under a change from aerobic to 
anaerobic conditions. The high aerobic No 2- values are 
partially explainable by the failure of the model to contain 
assimilation terms. The high turnover rate of NH 3 resulting 
from inputs and outputs under both aerobic and anaerobic 
conditions may help explain its stability. 

The whole cycle may be considered to be comprised of the 
anaerobic (denitrification) subsystem, and the aerobic 
(nitrification) subsystem with N-fixation occurring in both. 
For denitrification to occur, nitrification must already 
have occurred. Tusneem and Patrick•3 showed that for 
continuously flooded soils denitrification rate was depen­
dent upon the size of the aerobic layer in which nitrifi­
cation occurred. This model operates in the same manner, 
i·~·, a switch to anaerobic conditions obviously results in 
little denitrification if little N03 - has been formed by 
nitrification. 

Further work is needed to improve the model. Nitrite 
assimilation should be added, and the whole model should be 
divided into aerobic and anaerobic coupled subsystems. 
Improved parameter estimates should be made. Subsequently, 
it will be incorporated into an ecosystem model coupled to 
chemical equilibria and tested with dynamically varying 
organism and dissolved o2 concentrations. coupled with 
models for pollutants shown to affect the metabolism of one 
or more of the types of organisms active in the cycle, 
perhaps it may yield estimates of system impact of the 
pollutant and shorten the investigative process. 
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