SHP, Suppl. Info., Vol. IB of III

630

ATTACHMENT B

ANNOTATED BIBLIOGRAPHY OF SEDIMENTATION PROCESSES IN GLACIAL LAKES AND RIVERS

ARLIS

Alaska Resources Library & Information Services Anchorage, Alaska

2-32-115

TK 1425 . 58

INTRODUCTION

A literature search was conducted to obtain information on glacial lake trap efficiency of suspended sediments, with emphasis on materials smaller than 50 microns. Relevant information will provide a basis for predicting the fate of suspended sediments entering the reservoirs of the proposed Susitna Hydroelectric Project.

The bibliography contains annotations for 36 references with relevant information and a listing of 31 additional references with no specific information. There is information on depositional processes when proglacial rivers enter standing water bodies (Church and Gilbert 1975; Carmack, Gray, Pharo, and Daley 1979; Embleton and King 1975; Gilbert 1973, 1975; Gilbert and Shaw 1981; Hamlin and Carmack 1978; Pharo and Carmack 1979; Smith 1978; Sturm and Matter 1978), with details on particle size dis-tribution for two ancient lake environments (Ashley 1975; Shaw 1975). However, research reveals that reconstructing modern depositional environments from analyses of ancient environments may be misleading, as distance from source and shore and depth of lake are not as significant as density, wind induced currents, and stratification (Bryan 1974a, b). Furthermore, misinterpretation of depositional events can lead to overestimation of the time involved in deposition (Shaw, Gilbert, and Archer 1978). A method is presented for determining sedimentation rates by radioactive fallout (Ashley 1979). One study on a modern lake shows that suspended sediment concentrations affect density stratification (Gustavson 1975b). Two studies (Ostrem 1975; Theakstone 1976) address lake trap efficiency and distance of deposition from the source.

The literature search included a review of University of Alaska theses and publications of the University of Alaska's Institute of Water Resources and Geophysical Institute, the U.S. Geological Survey, and the U.S. Army Corps of Engineers' Cold Regions Research and Engineering Laboratory (CRREL). A computer search was conducted on the CRREL Bibliography and on Selected Water Resources Abstracts.

2-32-116

e1.3*K*2. 1999年1月1日年 日本 e la real poster obri à commi

AREA TRANSB-1

susi8/h

PART I - RELEVANT INFORMATION

1. Arnborg, L., H.J. Walker, and J. Peippo. 1967. Suspended load in the Colville River, Alaska, 1962. Geografiska Annaler. 49A (2-4):131-144.

Discussion of suspended sediment data collected during one year (1962) for hydrologic-morphologic study of the Colville River delta. Three aspects of suspended load considered were: quantity transported in water; size of particles in suspension; and total quantity transported in a given period of time. As unit volume increases, median grain size and total load carried increases. Grain size analyses for samples representative of selected locations, depths, and times are presented. The amount and size of suspended material increased with depth at one location.

 Ashley, G.M. 1975. Rhythmic sedimentation in glacial Lake Hitchcock, Massachusetts-Connecticut. Pages 304-320 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

Discussion of seasonal silt and clay deposition (varves) in an ancient environment. Suspended sediment concentration affects water density far more than temperature in glacial lakes. The settling velocity of a 60 silt grain in 4°C water undisturbed by currents is 0.05 cm/second. Therefore, such a grain would settle 50 m in 1.15 days. However, silt was found in all winter clay layers, and could indicate that lake currents were present, preventing settling, or sediment was introduced year-round. Mean grain size of silt layers depends on location in the lake whereas grain size distribution of clay layers is uniform. Grain size analyses are presented, but there is no specific information on the distance traveled across the lake prior to deposition.

 Ashley, G.M. 1979. Sedimentology of a tidal lake, Pitt Lake, British Columbia, Canada. Pages 327-345 in Ch. Schluchter, ed. Moraines and Varves. Proceedings of an INQUA Symposium of Genesis and Lithology of Quaternary Deposits, Zurich, September 10-20, 1978. A.A. Balkema, Rotterdam.

¹³⁷Cs Sedimentation rates were determined by dating techniques. Grain size analyses were determined for 190 samples and mean grain size distribution was, mapped. Annual sediment accumulation equalled $150\pm 20 \times 10^{-1}$ tons, of which 50% was coarser than 50.

2-32-117

 Ashley, G.M., and L.E. Moritz. 1979. Determination of lacustrine sedimentation rates by radioactive fallout (¹³⁷Cs), Pitt Lake, British Columbia. Canadian Journal of Earth Sciences. 16(4):965-970.

Discussion of techniques for determining modern lacustrine sedimentation rates.

5. Borland, W.M. 1961. Sediment transport of glacier-fed streams in Alaska. Journal of Geophysical Research. 66(10):3347-3350.

Developed empirical formula for sediment yield rates for glacial drainage basins based on glacier area, total drainage area, and length of watercourse. No differentiation by particle size. Used five years of U.S. Geological Survey suspended sediment data from Denali and Gold Creek stations to test formula.

 Bryan, M.L. 1974a. Sedimentation in Kluane Lake. Pages 151-154 in V.C. Bushnell and M.G. Marcus, eds. Ice Field Ranges Research Project Scientific Results, Vol 4. American Geographical Society, New York, NY, and Arctic Institute of North America, Montreal, Canada.

Study of bathymetry, thermal structure, and sediment distribution in Kluane Lake, 1968. A weak thermocline developed in July and August, which was occasionally destroyed by storm-induced mixing. The lake is ice-covered for eight months, and receives sediment from the Slims River for four months. Statistical parameters of grain size analyses are presented. Sedimentation is affected by density, by wind-induced lake currents, and by stratification as well as by bathymetry, distance from shore and input, point and sediment composition. Highly turbid, cold glacial waters may be sufficiently dense to flow across the lake bottom regardless of thermal stratification. When the Slims River warms, it flows over the lake.

 Bryan, M.L. 1974b. Sublacustrine morphology and deposition, Kluane Lake, Yukon Territory. Pages 171-187 in V.C. Bushnell and M.B. Marcus, eds. Icefield Ranges Research Project Scientific Results, Vol 4. American Geographical Society, New York, NY, and Arctic Institute of North American, Montreal, Canada.

Discussion of processes affecting sedimentation in lakes from glacial streams. Bathymetric mapping of Kluane Lake in 1968 and 1970 revealed growth of the Slims River delta. Cartographic and statistical analyses of bottom sediments are presented. Finest sediments farthest from the Slims River

2-37-118

were not in the deepest portion of the lake. Distance from source, depth of lake, and distance from shore are not significant in controlling deposition. Reconstructing depositional environments based on sediment size analysis may be misleading.

 Carmack, E.C., C.B.J. Gray, C.H. Pharo, and R.J. Daley. 1979. Importance of lakeriver interaction on the physical limnology of the Kamloops Lake/Thompson River system Limnology and Oceangraphy. 24(4):634-644.

Discussion of physical effects of large river entering a deep, intermontane lake. No information of particle size analysis.

 Church, M., and R. Gilbert. 1975. Proglacial fluvial and lacustrine environments. Pages 22-100 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists. Tulsa, OK. Special Publication 23.

Discussion of deposition when proglacial rivers enter standing water bodies. Significant events are: aggradation on the bed due to deposition of bed load extends upstream from the lake, along with reduced flow velocities; development of a high angle delta, with transport of sediment to the delta lip; movement of coarse material over the lip and down into the lake in turbidity flows (bottom flow); movement of river water down the delta front to lake water of equal density (interflow); movement of river water onto the surface of the lake if density is less than the lake (surface flow); deposition of fine-grained material and formation of varves, of which the silt (summer) portion is deposited by turbidity currents, and the clay (winter) portion by the turbidity current after stagnation, and then by slow, continuous settling from suspension. Turbidity underflow is not a continuous event in the melt season. Varve formation cannot be directly correlated to mean annual discharge, because a single large flood can create a turbidity flow. Turbidity flows resulting in more rapid deposition depend on discharge, river and lake water temperature, thermal structure of the lake, quantity of sediment suspended in the lake from previous events, and river and lake dissolved sediment concentrations. No specific information on particle size is presented.

10. Embleton, C., and C.A.M. King. 1975. Glacial geomorphology. John Wiley and Sons, New York, NY. pp. 532-558.

Review of general principles affecting sediment deposition in lacustrine environments with examples. Lake floor deposits become increasingly fine toward center or deepest parts of

8-4

신하지

lakes, requiring quiet water and long settling periods. Turbidity currents formed by coid, silt-laden stream water are important in distributing sediment across the lake floor. Rhythmites (laminated deposits) develop in cold freshwater lakes receiving intermittent streamflow, and in some cases form on an annual basis (varves). They can also form from sudden fluctuations in discharge (bursting of an ice-dammed lake upstream), unseasonal warm or cold spells, or periodic storms.

Everts, C.H. 1976. Sediment discharge by glacier-fed rivers 11. in Alaska. Pages 907-923 in Rivers '76. Vol. 2. Symposium on Inland Waterways for Navigation, Flood Control and Water Diversions. 3rd Annual Symposium, Colorado State Fort Collins, CO. Waterways, Harbors University, and Coastal Engineering Div., American Society of Civil Engineers, New York, NY.

Investigation of glacial sediments discharged into the coastal zone (Knik, Matanuska). Size distribution, composition, and settling characteristics of glacial sediment are important characteristics in determining where the sediment will be transported and deposited when it reaches the marine environment. Based on particle size distribution analyses, it appears that fine-grained particles pass completely through the river system. Ice margin lakes fringing glaciers are depositories for coarse sediments. Clay minerals were absent, which is significant because clay particles form aggregates with other fine-grained particles and settle more rapidly. This absence may be common in other glacial areas because of negligible chemical weathering in the source areas.

12. Fahnestock, R.K. 1963. Morphology and hydrology of a glacial stream: White River, Mount Rainier, Washington. U.S. Geological Survey. Professional Paper 422A. 70 pp.

Investigation of formation of a valley train by a proglacial stream. Particle size analyses of deposited material showed silts and clays were washed out of stream deposits. Analysis of suspended load indicated that silt and clay stay in suspension and are carried out of the study area into Puget Sound.

 Fahnestock, R.K. 1969. Morphology of the Slims River. Pages 161-172 in V.C. Bushnell and R.H. Ragle, eds. Ice Field Ranges Research Project Scientific Results, Vol. 1. American Geographical Society, New York, NY, and Arctic Institute of North America, Montreal, Canada.

Investigation of the Slims River, a proglacial stream flowing 14 miles from Kaslawulsh Glacier to Kluane Lake. The river is modifying a valley train deposited when the glacier was up against a terminal moraine. It is regrading, ie, adjusting to a decrease in load at the source by cutting in the upper reaches and depositing in the lower reaches. The Slims River is also affected by downstream changes in the base level, which is controlled by the extension of the delta into Kluane Lake and the variation in lake level. As the volume growth rate of the delta is not known, the sediment transport rate cannot be estimated. Suspended sediment is predominantly silt and clay. No data on particle size distribution.

14. Gaddis, B. 1974. Suspended-sediment transport relationships for four Alaskan glacier streams. M.S. Thesis. University of Alaska, Fairbanks, AK. 102 pp.

Investigation of suspended sediment transport relationships in glacial streams at Gulkana, Maclaren, Eklutna, and Wolverine glaciers. Data on mean particle size is presented for four glacial streams for one season at sites near the terminus. Sediment availability depends on amount of sediment, distance travelled downstream, and mechanical nature of sediment entrainment (no specific information on entrainment).

15. Gilbert, R. 1973. Processes of underflow and sediment transport in a British Columbia mountain lake. Pages 493-507 in Fluvial Processes and Sedimentation. Proceedings of the 9th Hydrology Sympasuim, University of Alberta, Edmanton. Canada, May 8-9. Subcommittee on Hydrology, Associate Committee on Geodesy and Geophysics, National Research Council of Canada.

Description of processes involved in formation of varved sediment deposits in proglacial lakes, primarily underflow and interflow. Underflow increases with increase of water and suspended sediment inflow. Cores obtained to determine thickness and comparision of varves. No information on particle size distribution.

 Gilbert, R. 1975. Sedimentation in Lillooet Lake, British Columbia. Canadian Journal of Earth Sciences. 12(10):1697-1711.

Lillooet Lake receives sediment from a 3,580 sq km drainage basin, of which 7% is glacier-covered. Interflow and underflow distribute sediment through the lake in summer when the lake is stratified. Factors affecting distribution are: density characteristics of the lake and inflowing water, as determined by temperature and suspended sediment concentrations; currents induced by wind and inflow; thermal structure of the lake water, which determines the nature of circulation patterns and allows interflow along the thermocline; diurnal and seasonal fluctuations in inflowing waters and sediment; and the large annual volume of inflow (4.5 times greater than the lake volume on the average). Interflow carries sediment at the base of the epilimnion to the distal end of the lake in one to two days. No specific information on particle size.

 Gilbert, R., and J. Shaw. 1981. Sedimentation in proglacial Sunwapta Lake, Alberta. Canadian Journal of Earth Sciences. 18(1):81-93.

Examination of hydrologic and limnologic conditions of Sunwapta Lake, a small, proglacial lake in the Canadian Rockies. Sediment input was measured and sedimentation rates were calculated. Sediments of small, shallow lakes with large and highly variable inflows are expected to demonstrate lateral and vertical variability, whereas those in large proglacial lakes are more predictable due to modification by large, stable water masses.

18. Gustavson, T.C. 1975a. Bathymetry and sediment distribution in proglacial Malaspina Lake, Alaska. Journal of Sedimentary Petrology. 45:450-461.

See next abstract

 Gustavson, T.C. 1975b. Sedimentation and physical limnology in proglacial Malaspina Lake, southeastern Alaska. Pages 249-263 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

Underflow, interflow, and overflow water entered Malaspina Lake, and the type of flow is dependent on the relative suspended sediment content of the lake water and the inflowing melt water. The 18-km long lake is density stratified (increasing suspended sediment concentration with depth) but not thermally stratified. No specific information on particle size or trap efficiency is presented.

20. Guymon, G.L. 1974. Regional sediment yield analysis of Alaska streams. Journal of the Hydraulics Div. of the American Society of Civil Engineers. 100(HY1):41-51.

Analyzed Borland's (1961) formula. Considered particle size, but used an average particle size in the formula. However, concluded that particle size affects application of the formula.

21. Hamblin, P.F., and E.C. Carmack. 1978. River-induced currents in a fjord lake. Journal of Geophysical Research. 83(C2):885-889.

Discussion of dynamics of strong flowing river entering a long, narrow lake (Kamloops Lake, B.C.). River-induced currents influence circulation patterns in a fjord lake. No specific information on sedimentation rates or particle size analysis.

22. Hobbie, J.E. 1973. Arctic limnology: a review. Pages 127-168 in M.E. Britton, ed. Alaskan arctic tundra. Arctic Institute of North America. Technical Paper 25.

Review of properties of lake in northern tundra regions. Thermal cycle of deep arctic lakes is highly variable, and stratification is uncommon, occurring only in warm, calm weather after lake waters rise to 4°C. Deep lakes maintain circulation even when ice covered. Deeper lakes are relatively turbid as a result of glacial flour from streams draining active glaciers. Lake Peters is fed by glacial streams and drains via a 1-km long, 15-m deep channel into Lake Schrader in the Brooks Range. Both are 50-60 m deep. Lake Peters acts as a settling basin. When dense glacial water enters Lake Peters in June, it sinks to the bottom, and the lake fills upward with turbid water.

23. Mathews, W.H. 1956. Physical limnology and sedimentation in a glacial lake. Bulletin of the Geological Society of America. 67:537-552.

Garibaldi Lake, British Columbia, receives sediment from two glacial streams with relatively low sediment content. Particle size and composition of bottom deposit analyses revealed slow transport to site of deposition and slow rate of deposition for clays. No information on amount of sediment passing through system.

24. Ostrem, G. 1975. Sediment transport in glacial meltwater streams. Pages 101-122 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

Recognized problems of utilizing glacial waters for hydroelectric projects, specifically in reservoirs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers (based on 20 micron grain size variation). X-ray diffraction analyses showed that summer deposits contained more quartz (rapid sedimentation), and winter deposits, more mica (slower sedimentation). For one 1,800-m long proglacial lake over 29 years, about 70 percent of the total suspended sediment input was deposited. Discussion of dynamics of strong flowing river entering a long, narrow lake (Kamloops Lake, B.C.). River-induced currents influence circulation patterns in a fjord lake. No specific information on sedimentation rates or particle size analysis.

22. Hobbie, J.E. 1973. Arctic limnology: a review. Pages 127-168 in M.E. Britton, ed. Alaskan arctic tundra. Arctic Institute of North America. Technical Paper 25.

Review of properties of lake in northern tundra regions. Thermal cycle of deep arctic lakes is highly variable, and stratification is uncommon, occurring only in warm, calm weather after lake waters rise to 4°C. Deep lakes maintain circulation even when ice covered. Deeper lakes are relatively turbid as a result of glacial flour from streams draining active glaciers. Lake Peters is fed by glacial streams and drains via a 1-km long, 15-m deep channel into Lake Schrader in the Brooks Range. Both are 50-60 m deep. Lake Peters acts as a settling basin. When dense glacial water enters Lake Peters in June, it sinks to the bottom, and the lake fills upward with turbid water.

23. Mathews, W.H. 1956. Physical limnology and sedimentation in a glacial lake. Bulletin of the Geological Society of America. 67:537-552.

Garibaldi Lake, British Columbia, receives sediment from two glacial streams with relatively low sediment content. Particle size and composition of bottom deposit analyses revealed slow transport to site of deposition and slow rate of deposition for clays. No information on amount of sediment passing through system.

24. Ostrem, G. 1975. Sediment transport in glacial meltwater streams. Pages 101-122 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

Recognized problems of utilizing glacial waters for hydroelectric projects, specifically in reservoirs and turbines. Grain size analyses of cores of varved sediments showed that summer layers consisted of coarser material than winter layers (based on 20 micron grain size variation). X-ray diffraction analyses showed that summer deposits contained more quartz (rapid sedimentation), and winter deposits, more mica (slower sedimentation). For one 1,800-m long proglacial lake over 29 years, about 70 percent of the total suspended sediment input was deposited. 25. Ostrem, G., T. Ziegler, and S.R. Ekman. 1970. A study of sediment transport in Norwegian glacial rivers, 1969. Institute of Water Resources, Dept. of Hydrology, Oslo, Norway. Report 6/70. Report for Norwegian Water Resources and Electricity Board. Translated from Norwegian by H. Carstens. 1973. Institute of Water Resources, University of Alaska, Fairbanks, AK. Report 35. 1 vol.

Investigations were conducted on water discharge and sediment volume measurements in glacial rivers above and at the outlet of glacial lakes to calculate the sedimentation of fine material on the bottom of the lakes. Volume of material available for transport is probably largest at the beginning of the season. No data on particle size.

26. Pharo, C.H., and E.D. Carmack. 1979. Sedimentation processes in a short residence-time intermontane lake, Kamloops Lake, British Columbia. Sedimentology. 26:523-541.

Sediment transport and deposition in the lake is controlled by three interdependent processes: delta progradation at the lake-river confluence; sediment density surges originating along the delta face, which result in turbidite sequences lakeward from the base of the delta; and dispersal by the interflowing river plume, which, due to Coriolis effects, results in a higher sedimentation rate and greater fraction of coarser material along the right-hand of the lake in the direction of flow. Suspended sediment concentrations are high above the thermocline where higher turbulence, maintained by wind mixing and river inter interflow, reduces settling velocities. Particles settle rapidly once they enter the hypolimnion.

 Ritchie, J.C., J.R. McHenry, and A.C. Gill. 1973. Dating recent reservoir sediments. Limnology and Oceanography. 18:254-283.

Discussion of radioactive ¹³⁷Cs dating. Method could be used to date sediment in reserviors that have not been surveyed.

 Shaw, J. 1975. Sedimentary successions in Pleistocene ice-marginal lakes. Pages 281-302 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

Discussion of sedimentation in proximal portion of a glacial lake based on interpretation on the ancient environment. Mean grain size values were determined for sections of each facies from o to 80. No information on transport of fine materials. 29. Shaw, J. 1977. Sedimentation in an alpine lake during deglaciation, Okanagan Valley, British Columbia, Canada. Geografiska Annaler. 59(A):221-240.

Ancient lake sediments were examined to develop a model of alpine lake sedimentation based on changing depositional processes with time and distance from the ice margin.

30. Shaw, J., R. Gilbert, and J.J.J. Archer. 1978. Proglacial lacustrine sedimentation during winter. Arctic and Alpine Research. 10(4):689-699.

Discussion of deposition of coarse-grained sediments during winter in Lillooet Lake. Misinterpretation can lead to overestimation of time sequences of deposition.

- 31. Slatt, R.M. 1970. Sedimentological and geochemical aspects of sediment and water from ten Alaskan valley glaciers. Ph.D. Thesis. University of Alaska, Fairbanks, AK. 125 pp. Studied five groups of glaciers with different bedrock lithologies; Worthington and Matanuska; Castner and Fels; Gulkana and College; Rendu and Reed; and Carroll and Norris. Particle size analyses and mineralogy of superglacial and suspended stream sediments are presented. The environment of transport has a much greater effect on grain size than the nature of the starting material.
- 32. Slatt, R.M. 1971. Texture of ice-cored deposits from ten Alaskan valley glaciers. Journal of Sedimentary Petrology. 41(3):828-834.

Revised and condensed portions of Ph.D. thesis (see above).

- 33. Smith, N.D. 1978. Sedimentation processes and patterns in a glacier-fed lake with low sediment input. Canadian Journal of Earth Sciences. 15(5):714-756. Snow melt and glacial melt waters carrying relatively low suspended sediment concentrations enter Hector Lake in the eastern Rocky Mountains, Alberta. When stratified, water and fine sediments enter the lake as interflow and overflow. Grain size analyses were conducted on 42 cores. Deposition varies left to right as well as distally due to katabatic winds generating downlake currents in the epilimnion that are deflected southward -(rightward) by the Coriolis force.
- 34. Sturm, M., and A. Matter. 1978. Turbidites and varves in Lake Brienz (Switzerland): deposition of clastic detritus by density currents. Pages 147-168 in A. Matter and M.E. Tucker, eds. Modern and ancient lake sediments. International Association of Sedimentologists. Special Publication 2.

susi8/h

2-32-126

Discussion of sediment transport and deposition by overflow, interflow, and underflow in a long, narrow, deep basin with rivers entering at each end. Fine-grained sediments supplied by overflows and interflows settle continuously during summer thermal stratification. Most of the fine-grained particles remain in suspension at the thermocline because the vertical density gradient is more dependent on temperature than on an increase in density due to suspended particles. During fall turnover, the remaining sediment trapped at the thermocline settles.

35. Theakstone, W.H. 1976. Glacial lake sedimentation, Austerdalsisen, Norway. Sedimentology. 23(5):671-688.

A lake completely filled with glacial sediments, over which braided stream deposits formed. A new proglacial lake then formed. Discussion of bedding and composition of ancient lake sediments. Initially, deposition was very slow in deep (80 m) water. In another lake 300 m from a glacier, about 75 percent of the sediment transported in suspension is retained in the basin, but the amount retained in one day is highly variable. The daily summer values exceeded the minimum by 200 times (data not presented).

36. Tice, A.R., L.W. Gatto, and D.M. Anderson. 1972. The mineralogy of suspended sediment in some Alaskan glacial streams and lakes. Cold Regions Research and Engineering Laboratory Corps of Engineers, U.S. Army, Hanover, NH. Research Report 305. 10 pp.

Investigation of the role of chemical weathering of bedrock in cold regions determined that no chemical changes occurred in fine suspended material. Suspended sediment samples were obtained for X-ray diffraction analyses, from galcial outwash streams and lakes in seven areas (Chackachamna, Palmer-Matanuska, Moose Pass-Portage, Valdez, Juneau, Mt. McKinley National Park, and Black Rapids).

PART 11- NO SPECIFIC INFORMATION

- 1. Agterberg. F.P., and I. Banerjee. 1969. Stochastic model for the deposition of varves in glacial Lake Barlow-Ojibway, Ontario, Canada. Canadian Journal of Earth Sciences. 6:625-652
- Banerjee, I., and B.C. McDonald. 1975. Nature of esker sedimentation. Pages 132-154 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- з. Boothroyd, J.C. and G.M Ashley. 1975. Processes, bar morphology, and sedimentary structures on braided outwash fans, northeastern Gulf of Alaska. Pages 193-222 in A.V. B.C. McDonald, eds. Glaciofluvial Joplina and and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- 4. Bradley, W.H. 1965. Vertical density currents. Science. 150(3702):1423-1428.
- Clague, J.J. 1975. Sedimentology and paleohydrology of late Wisconsinan outwash, Rocky Mountain trench, southeastern British Columbia. Pages 223-237 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- Everts, C.H. and H.E. Moore. 1976. Shoaling rates and related data from Knik Arm near Anchorage, Alaska. Coastal Engineering Research Center, Corps of Engineers, U.S. Army, Fort Belvoir, VA. Technical Paper 76-1. 84 pp.
- Gilbert, R. 1971. Observations on ice-dammed Summit Lake, British Columbia, Canada. Journal of Glaciology. 10(60):351-356.
- B. Gustavason, T.C., G.M. Ashley, and J.C. Boothroyd. 1975. Depositional sequences in glaciolacustrine deltas. Pages 264-280 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- 9. Guymon, G.L. 1974. Sediment relations of selected Alaskan glacier-fed streams. Institute of Water Resources, University of Alaska, Fairbanks, AK. Report 51. 17 pp.

B-12

- 10. Hobbie, J.E., ed. 1980. Limnology of tundra ponds: Barrow, Alaska. Dowden, Hutchinson and Ross, Inc., Stroudsburg, PA. US/IBP Synthesis Series 13. 514 pp.
- 11. Howarth, P.J., and R.J. Price. 1969. The proglacial lakes of Breidamerdurjokull and Fjallsjokull, Iceland. Geographical Journal. 135:573-581.
- Jopling, A.V. 1975. Early studies on stratified drift. Pages 4-21 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- 13. Kindle, E.M. 1930. Sedimentation in a glacial lake. Journal of Geology. 38(1):81-87.
- Lawson, D.E. 1977. Sedimentation in the terminus region of the Matanuska Glacier, Alaska. Ph.D. Thesis. University of Illinois, Urbana-Champaign, IL. 287 pp.
- Long, W.E. 1972. Glacial processes and their relationship to streamflow; Flute Glacier, Alaska. Institute of Water Resources, University of Alaska, Fairbanks, AK. Report 18. 1 vol.
- 16. Ludlam, S.D. 1967. Sedimentation in Cayuga Lake, New York. Limnology and Oceanography. 12(4):618-632.
- McDonald, B.C., and W.W. Shilts. 1975. Interpretation of faults in glaciofluvial sediments. Pages 123-131 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- Moores, E.A. 1962. Configuration of the surface velocity profile of Gulkana Glacier, central Alaska Range, Alaska. M.S. Thesis. University of Alaska, Fairbanks, AK. 47pp.
- 19. Moravek, J.R. 1973. Some further observations on the behavior of an ice-dammed self-draining lake, Glacier Bay, Alaska, USA. Journal of Glaciology. 12(66):505-507.
- 20. Reger, R.D. 1964. Recent glacial history of Gulkana and College Glaciers, central Alaska Range, Alaska. M.S. Thesis. University of Alaska, Fairbanks, AK. 75 pp.
- Rust, B.R. 1975. Fabric and structure in glaciofluvial gravels. Pages 238-248 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.

2 - 32 - 129

- 22. Rust, B.R., and R. Romanelli. 1975. Late quaternary subaqueous outwash deposits near Ottawa, Canada. Pages 177-192 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- 23. Ryder, J.M., and M. Church. 1972. Paraglacial sedimentation: consideration of fluvial processes conditioned by glaciation. Bulletion of the Geological Society of America. 83:3059-3072.
- 24. Saunderson, H.C. 1975. Sedimentology of the Brampton esker and its associated deposits: an empirical test of theory. Pages 155-176 in A.V. Jopling and B.C. McDonald, eds. Glaciofluvial and glaciolacustrine sedimentation. Society of Economic Paleontologists and Mineralogists, Tulsa, OK. Special Publication 23.
- 25. Sellmann, P.V. 1962. Flow and ablation of Gulkana Glacier, central Alaska Range, Alaska. M.S. Thesis University of Alaska, Fairbanks, AK. 36 pp.
- 26. Shira, D.L. 1978. Hydroelectric powerplant siting in glacial areas of Alaska. Pages 59-76 in Applied Techniques for Cold Environments, Vol. 1. Proceedings of the Cold Regions Specialty Conference, Anchorage, AK, May 17-19. American Society of Civil Engineers, New York, NY.
- Slatt, R.M., and C.M. Hoskin. 1968. Water and sediment in the Norris Glacier outwash area, upper Taku Inlet, southeastern Alaska. Journal of Sedimentary Petrology. 38(2):434-456.
- Stone, K.H. 1963. Alaskan ice-dammed lakes. Association of American Geographers: Annals. 52:332-349.
- 29. St. Onge, D.A. 1980. Glacial Lake Coppermine, north-central District of MacKenzie, Northwest Territories. Canadian Journal of Earth Sciences. 17(9):1310-1315.
- 30. Williams, P.F., and B.R. Rust. 1972. The sedimentology of a braided river. Pages 183-210 in V.C. Bushnell and R.H. Ragle, eds. Icefield Ranges Research Project Scientific Results, Vol. 3. American Geographic Society, New York, NY, and Arctic Institute of North America, Montreal, Canada.
- 31. Yould, E.P., and T. Osterkamp. 1978. Cold regions considerations relative to development of the Susitna hydroelectric project. Pages 887-895 in Applied Techniques for

B-14

Cold Environments, Vol 2. Proceedings of the Cold Regions Specialty Conference, Anchorage, AK, May 17-19. American Society of Civil Engineers, New York, NY.

gaes

(Carao)

8-15

2-32-131

EXHIBIT E

2. Water Use and Quality

Comment 33 (p. E-2-96, para. 2)

Provide quantitative estimates of nutrient adsorption on suspended sediments (e.g., glacial flour) that will be transported into Watana Reservoirs. Provide data on levels of exchangeable phosphorus in soils in the Watana and Devil Canyon impoundment zones.

Response

Quantitative estimates of nutrient adsorption on suspended sediments (e.g., glacial flour) that will be transported into Watana Reservoir are not available at the present time. Data on levels of exchangeable phosphorus in soils in the Watana and Devil Canyon impoundment zones do not presently exist.

Additionally, to our knowledge at the present time, approved and standardized methods do not exist for quantitatively estimating exchangeable phosphorus in soil samples. In fact, the definition of the term "exchangeable phosphorus" is not standardized in state-of-the-art limnological literature.

The present level of knowledge about the Susitna River drainage basin and the limnology of the two proposed reservoirs indicates that the project reservoirs will maintain a low productivity (oligotrophic) trophic status due to phosphorus limitation (Peratrovich, Nottingham and Drage, Inc. and Hutchison, 1982; Peterson and Nichols, 1982; Rast and Lee, 1978; Stuart, 1983; Vollenweider and Kerekes, 1980).

2-33-1

 \mathbb{R}^{2}

Data about nutrients attached to turbidity particles which are potentially exchangeable with juxtapositioned microbial biomass are difficult, time consuming, and expensive to acquire. We hope that the FERC staff will agree with our position and withdraw or temper this request.

References

- Peratrovich, Nottingham and Drage, Inc. and Ian P.G. Hutchinson, 1982. <u>Susitna Reservoir Sedimentation and Water Clarity Study</u>. Prepared for Acres American Inc., Anchorage, Alaska, 35 pp.
- Peterson, L.A. and G. Nichols, 1982. <u>Water Quality Effects Resulting from</u> <u>Impoundment of the Susitna River</u>. Prepared with R & M Consultants, Inc. for Acres American Inc., Buffalo, New York, 18 pp.
- Rast, W. and G.F. Lee, 1978. Summary analysis of the North American (U.S. portion) OECD entrophication project: nutrient loading lake response relationships and trophic state indices. EPA-600/3-78-008. 455 pp.
- Stuart, T.J., 1983. The effects of freshet turbidity on selected aspects of the biogeochemistry and the trophic status of Flathead Lake, Montana, U.S.A., Ph.D. dissertation, North Texas State University, Denton, Texas, 229 pp.
- Vollenweider, R.A. and J. Kerekes, 1980. The loading concept as a basis for controlling eutrophication philosophy and preliminary results of the OECD Programme on eutrophication. Prog. Wat. Tech., Vol. 12, Norway, pp. 5-18. IAWPR/Pergamon Press Ltd.

EXHIBIT E

2. Water Use and Quality

Comment 35 (p. E-2-100, para. 4)

Provide real and simulated salinity data which show the accuracy of the Corps of Engineers salinity model for predicting salinity in Cook Inlet at different locations (e.g., Node 27) under different flow conditions. Also, provide parameter values used in these simulations and document the source of the values used.

Response

. Marina

(SIM)

Real and simulated salinity data for Node 27 near the Susitna River mouth are provided in pp. 2-35-2 to 2-35-35.

Also provided is a user's guide (pp. 2-35-36 to 2-35-171) for the computer modeling effort conducted by the Corps of Engineers on the estuary hydrodynamics and water quality of Cook Inlet. The user's guide documents parameter values and their source for use in the Cook Inlet water quality modeling effort. An example problem data set and simulation results are presented on pp. 2-35-92 to 2-35-131.

Volume 3 WATER QUALITY, KNIK ARM - UPPER COOK INLET

METROPOLITAN ANCHORAGE URBAN STUD

The Alaska District, Corps of Engineers and The Municipality of Anchora

25

FIGURE 2.5 Surface Salinity Distribution in Cook Inlet

2-35-3

FIGURE 7.4 Computed and Observed Salinity between Anchor Point and Knik Arm

7-16

2-35-

RESOURCE MANAGEMENT ASSOCIATES Research • Development • Applications

11 October 1982

HARZA-EBASC > Susitna Joint Venture Document Number

525

Dear Mr. Dyok:

Suite 305 1577 C Street

Mr. Wayne M. Dyok

Acres American Inc.

Anchorage, Alaska 99501

Please Return To DOCUMENT CONTROL

7-25-5

As authorized by your letter to Dr. Robert Carlson, dated September 23a 1982, I have performed a numerical modeling study to determine the effects of altered Susitna River flows on the salinity of Cook Inlet. The following describes the results of this study.

Background

The construction and operation of the proposed Susitna River Hydroelectric Project will alter the amount of freshwater which enters Cook Inlet from the Big Susitna River. With this project, inflows during the high runoff summer months will be reduced and increased during the low runoff winter months. To assess the effects of this change in freshwater inflow on the salinity distribution within Cook Inlet, a numerical model previously applied to Cook Inlet during a Corps of Engineers sponsored study was used (1,2).

Model Application

The numerical model used in this application represents the estuary as a series on nodes (discrete volume elements) and interconnecting channels. In the aggregate this node-channel representation provides a 2-dimensional (i.e., 2-dimensional in the horizontal plane and uniform vertically) description of the estuary including flow rates and velocities and water quality parameter concentrations over time and space.

The model representation of Cook Inlet shown in Figure 1 was developed in the beforementioned study. This model representation is adequate for this study, therefore no modification or further calibration was performed. To provide a more detailed description of the model concepts and its application to Cook Inlet, excerpts from the report to the Corps of Engineers (1) have been included as Exhibit A.

Typical hydraulic conditions were used for the study. Monthly average inflows from the various streams tributary to Cook Inlet were provided by Dr. Robert Carlson. These tributary flows, including the pre and post. Susitna Hydroelectric Project flows along with the model inflow locations are shown in Table 1.

Study Results

To assess the effects of the proposed project on the salinity of Cook Inlet, the following hydrodynamic and dynamic water quality simulations were performed.

Cases 3 and 4 had very similar Susitna River flow and therefore the effects on Cook Inlet salinity were quite similar.

Define the kinetic of the second seco

I hope that this brief summary of our modeling approach and results meets the requirements of your project. It has been a pleasure providing this service to Acres American and I hope we are able to assist you in future studies.

Sincerely,

Canel House

Donald J. Smith

DJS/ch cc: Dr. Robert Carlson Enclosures

REFERENCES

1. Tetra Tech Inc., "Water Quality Study, Knik Arm and Upper Cook Inlet, Alaska," report to the Corps of Engineers, September, 1977. 4

 Smith, D. J., "User's Guide for the Estuary Hydrodynamic and Water Quality Models," Tetra Tech report to the Corps of Engineers, September, 1977.

TA	BL	Ε	1
----	----	---	---

.

۰.

				· · · ·								
•	•		· T	YPICAL RI	VER INFLO	WS (cfs)	TO COON 1	NLET		•		
RIVER LOCATION	DCI	NOY	DEC	JAN_	EEB	_MAR	_APR_	MAY_	JUN	UL	AUQ	<u>SEP</u>
NODE 27 . CABE 1	30055	12658	8215	7906	7037	6320	6979	60463	123698	131932	110841	459 63
++ NODE 27 CABE 3	32392	19191	17033	16108	14705	13500	13319	57611	107381	117004	10234B	A2629
++ NODE 27 CASE 4	32194	19772	17620	16973	· 15922	14415	13440	55930	105702	116333	101733	63254
NODE 11	6262	2760	1787	1616	1330	1200	1218	2862	7244	11955	13875	12010
NODE 10	4441	2266	1267	794	631	571	573	737	1519	4293	7434	. 7079
NODE 7	394	309	185	140	173	205	518	723	401	280	286	387
NODE 8	4590	2243	1521	1140	939	. 828	820	1938	10669	22353	22461	11279
NODE 24	9329	4459	3073	2317	1909	1482	1667	3939	12682	45428	45647	22922
NODE 50	7693	3457	2048	1646	1399	1225	1707	7483	28070	47454	38654	20783
NODE 125	761	288	193	145	119	121	155	561	2363	4048	3615	2060
NODE 33	1083	400	209	91	45	45	100	1028	3465	2721	2120	1556
NODE 116	3700	2082	1511	1130	904	849	860	3427	7354	6319	4200	2854

+ .. PRE PROJECT BUBITNA RIVER FLOWB

•

• •

2

++ ... POST PROJECT BUSITNA RIVER FLONG

1

.

.

FIGURE 2

TEMPORAL VARIATION IN SALINITY WITHIN COOK INLET NEAR EAST FORLAND UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS

K

200

FIGURE 3

TEMPORAL VARIATION IN SALINITY WITHIN CENTRAL COOK INLET SOUTH OF THE SUSITNA RIVER UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS

2:25

. .

β

Ν

FIGURE 5

TEMPORAL VARIATION IN SALINITY WITHIN KNIK ARM NEAR ANCHORAGE UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS

FIGURE 6

TEMPORAL VARIATION IN SALINITY NEAR THE UPPER END OF KNIK ARM UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS

t la 🕴

1

1. . . . **.**

FIGURE 7

TEMPORAL VARIATION IN SALINITY WITHIN TURNAGAIN ARM UNDER PRE AND POST SUSITNA HYDROELECTRIC PROJECT CONDITIONS

EXHIBIT A

7.2 Estuary Model Application to Water Quality in Knik Arm and - Upper Cook Inlet

7.2.1 Model Description

The numerical model used in this study was originally developed for the California State Water Resources Control Board (Evenson and Smith, 1974) and later modified for 208 planning studies on Long Island, New York (Johanson, et al., 1977). Further model modifications were made during this project and instruction on the model use can be found in the user's guide (Smith, 1977) prepared under this contract.

The model represents the estuarine system as a variable grid network of "nodes" and "channels." Nodes are discrete volume units of waterbody, characterized by surface area, depth, side slope and volume. The nodes are interconnected by channels, each having associated length, width, cross-sectional area, hydraulic radius, side scope and friction factor. Water is constrained to flow from one node to another through these

7-5
defined channels, advecting and diffusing water quality constituents between nodes.

The following are underlying assumptions of the estuary model:

o The estuarine system is well mixed vertically.

o The law of conservation of mass is obeyed for water quality constituents.

 Chemical reaction rates may be estimated using first order kinetics characterized by reaction-specific rate coefficients.

The overall estuary model is composed of two separate components: a hydrodynamic model (HYDRO) and a tidally averaged dynamic/steady-state quality-model (AQUAL). These numerical models are used in sequence so that the results of the hydrodynamic model become input to the quality models. The advantage of dividing the overall model into modular units is that the individual models can be calibrated separately. Considerable savings of computer time is realized by storing results of the hydrodynamic model on disk files to be used repeatedly in the calibration of the quality model and during water quality evaluations.

HYDRO calculates the hydrodynamics of the estuary using tidal timestage data at the estuary boundary, hydrologic conditions, and estuary geometry data such as depth, surface area, tidal flat slope and bottom roughness. HYDRO prepares a permanent file which portrays the twodimensional hydrodynamic characteristics of the estuary, including tidally averaged values of flow, velocity, volume, depth, surface area and parameters indicative of the dispersive characteristics of tidal mixing.

AQUAL is a tidally averaged quality model which can be operated in either a steady-state or dynamic (time dependent) mode to simulate advective-diffusive transport as well as physical, chemical, and biological reactions of the parameters being modeled. Net advective flows and dispersion coefficients to simulate the effects of tidal mixing provide the physical mass transport. The results are representative of the two-dimensional distribution of daily average quality conditions in the estuary.

The dynamic mode is used when the estuary quality does not approach steady-state within the period of time the boundary conditions remain constant. If significant changes in tributary inflow occur before steady-state is approached, the dynamic operation gives more representative results. In the dynamic mode, the model uses multiples of the tidal cycles as the basic time step and yields average daily results.

The AQUAL code provides the option to include up to four user-specified constituents in addition to the following parameters which may be selected for simulation.

- 1. Salinity
- 2. Total Nitrogen
- 3. Total Phosphorus
- 4. Total Coliform Bacteria
- 5. Fecal Coliform Bacteria
- 6. Carbonaceous BOD
- 7. Nitrogenous BOD
- 8. Dissolved Oxygen
- 9. Temperature

A more detailed description of the model and its use can be found in the model documentation.

7.2.2 Model Adaptation and Calibration

A node-channel network scheme has been designed to represent the entire Cook Inlet study area. This network, shown in Figure 7.1, extends from Anchor Point on the south to the upper reaches of Knik Arm and Turnagain -Arm. This network scheme employs a coarse representation in the southern portion of Cook Inlet where the impact of development in the Anchorage area is small. In Upper Cook Inlet and Knik Arm, where impact of waste discharge from the Anchorage area is greatest, a more detailed representation has been utilized. The node and channel data were generated from National Oceanic and Atmospheric Administration (NOAA) navigation charts numbers 16664, G&GS 8854, and 16660. The node and channel data are presented in Appendix III.

Calibration of a tidal hydrodynamic model entails a series of simulations during which boundary conditions are held constant and the frictional resistance is adjusted. When the tidal stage, current velocity, and the high and low water time lag are adequately represented throughout the estuary, the hydrodynamic model can be considered calibrated.

For model calibration, average 1972 tributary inflow rates were used. An average tide was selected from the daily predictions at Seldovia and adjusted to Port Graham, the NOAA tide station nearest the southerly boundary of the study area. This tide has approximately the same diurnal tide range as that reported in the 1973 NOAA Tide Tables. The results of the comparison are summarized in Table 7.3. Good agreement between the calculated values and tide table predictions of tidal stage and phase was observed at most locations.

TADIe /.3										
CALCULATED	AND	PRE	DICTED	HIGH	AND	LOW	WATER			
TIME	LAG	AND	DIURN	AL TH	DE RA	ANGE				

	• •		avie /				
CALCULATED	ANE	PRE	DICTED	HIGH	AND	LOW	WATER
. TIME	LAG	AND	DIURN	AL TII	DE RA	ANGE	

	· .		Time Lag		Diurnal Tidal Range(ft)		
	Network	High	Water	Low W	ater		
Location	Number	Predicted	Calculated	Predicted	Calculated [.]	Predicted	Calculated
Port Graham	1	0	• 0	0	0	16,5	16.6
Cape Ninilchik	5	.7	.8	.8	1.1	19.1	18.1
Kenai River Entrance	11	1.9	2.0	2.2	2.7	20.7	19.2
Nikiski	12	2.4	2.7	2.7	3,3	20.7	20.0
East Foreland	12	2.6	2.7	2.9	3.3	21.0	20.0
Fire Island	100	4.5	4.1	4.8	4.9	27.5	28.9
Sunrise, Turnagain Arm	58	5.4	5.6	6.7	6.8	33.3	30.4
Anchorage	124	4.9 *	4.4	5.5	5.5	29.0	31.8
North Foreland	21	3.8	3,3	4.0	4.1	21.0	24.3
Drift River Terminal	8	1.7	1.7	2.0	2.1	18.1	19.5
Tuxedni Channel	4	.7	.8	.8	1.1	16.6	18.3

ł

.

Comparisons between computed current velocities and those based on NOAA tidal current predictions were made. Figure 7.2 shows the calculated and predicted tidal stage and tidal current near Anchorage off Pt. Woronzof. The tidal current predictions were obtained by applying corrections to the daily predictions at the Wrangell Narrows. Both the computed tidal stage and current velocity compare well with predicted values.

Surface current velocity data (Britch, 1976) measured off Pt. Woronzof were compared with current velocities calculated for a similar period. Figure 7.3 shows the results of the current velocity comparison along with the corresponding tidal stage. The tidal stage comparison was used only to obtain the proper current phase. The model calculated current velocities slightly lower than those observed. However, it would be expected that vertical integrated currents would be less than those measured at the surface due to lower velocities near the bottom.

Based on the good agreement between calculated and reported tidal stage, tidal phase lag and current velocity, the hydrodynamic model can be considered calibrated.

Calibration of the water quality model is accomplished by first setting boundary conditions to observed values and then adjusting dispersion coefficients so that the measured concentrations of a conservative water quality parameter are matched adequately. Salinity is particularly suited to this procedure, since the concentrations in the tributary inflows are near zero with the sole source of salinity being the tidal boundary.

Changes in salinity take place rather slowly in such a large estuary; ^{consequently}, a dynamic water quality simulation is required for dispersion coefficient calibration. A steady-state approach would result in unrealistically high dispersion coefficients for high flow conditions, and low dispersion coefficients for low flow conditions.

FIGURE 7.3 Current Velocity Compared with Tidal Stage

1

 \mathbb{N}^{t}

42

25

х. Тт

2

S

3

Ĵ

د د المربق ميرومين و مربق ميرومين و المربق ميرومين و المربق و مورد و مورد و مربق ميرومين و مربق المربق و م

Flow data (U.S. Geological Survey, 1973) for water year 1972 (October, 1971, through September, 1972) were examined, and the average flows during four periods calculated for all major tributaries to Cook Inlet. Table 7.4 is a summary of the stream flows used for calibration. The November, 1971 through April, 1972, period is representative of low runoff conditions and the mid-June, 1972 through September, 1972, is representative of high runoff conditions. The other two periods serve as transitions between the major flow conditions.

Surface salinity data for Cook Inlet is available for the periods May 21-28, 1968, August 22-23, 1972, and September 25-29, 1972. To calibrate the dispersion coefficients, the model was run dynamically for the entire 1972 water year. A comparison between the calculated and observed salinity between Anchor Point and the end of Knik Arm are presented in Figure 7.4. The calculated salinity at the end of August and September, 1972, compares well with the observed salinities at those times. The salinities observed during the May 21-28, 1968, period were compared with the computed end of May, 1972, salinities. The observed and computed salinities for the end of May agree reasonably well, considering the dissimilar hydrology.

The above comparison indicates that the dispersion coefficients are adequately calibrated. The dispersion coefficients ranged from 2000 to 6000 sq ft/sec along the axis of the inlet and Knik Arm and 200 to 600 sq ft/sec perpendicular to that axis. These values are of the same magnitude as those reported by other investigators (Murphy et al., 1972).

•	Average Flow Rate (cfs)									
Stream	Oct 1971	Nov 1971- April 1972	May 1972- Mid-June 1972	Mid-June 1972- Sept 1972						
Knik and Matanuska Rivers	7,170	1,420	7,590	31,200						
Peters & Cottonwood Creeks	120	30	120	280						
Eagle River	191	51	210	1,445						
Ship Creek	126	· 25 [.]	114	270						
Little Susitna River	200	60	250	1,800						
Susitna River	18,600	5,800	58,300	77,500						
Kenai River	4,800	1,310	2,590	11,600						

7-15

j

S

.)

Table 7.4FLOW RATES OF MAJOR TRIBUTARIES TO COOK INLET

Value V

I

FIGURE 7.4 Computed and Observed Salinity between Anchor Point and Knik Arm

TABLE B-1

COMPUTED SALINITY CONCENTRATION (MO/L) AT SELECTED LOCATIONS WITHIN CODK INLET

NODE #		DER		MBER	DECE	MBER	JANU	ARY	FEB		MAR	H	1501h.
	CASE#1	CASE #3	CASE#1	CASE#3	CASE#1	CASE 13	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE	9973 (A
-	29276 30281	29278 30200	29624 29851	2958 9 29831	29826 29031	2976 3 29104	29971 28298	29900 2838 3	301 00 28135	30023 28211	30 209 28585	301 27 286 42	
2	28033	29062	28377	28371	28693	28652	28971	28906	29219	29137	29437	27339	
Э	27369	27503	27785	27337	28804	28802	27997	28041	27399	27477	27362	27448	
4	29299	29172	29128	29031	28483	28460	27491	27539	26673	26775	26577	26685	477 70-j
5	26976 29035	27027 28906	27315 29028	27335 28910	27727 28581	27705 28516	28116 27696	28058 27705	2846 8 26 746	28379 26826	26777 26321	28665 26430	1
•	25806 28500	25876 28332	26294 28508	26319 28350	26834 27907	26806 27823	27335 · 26625	27261 26664	27783 25348	27669 25477	28175 24918	280 30 25065	, and the second se
6	26706	26762	27050	27075	27486	27468	27903	27847	25281	28191	28612	284 98 2614 h	
7	24663	24751	25247	25286	25706	25882	26521	26437	27068	26934	27545	27372	#15% t
8	27943	27741	28025	27824	27328	27217	25721	25777	24154	24314 27894	23628	23804	
9	28665	28519	28702	28559	27960	27872	26557	26564	25464	25551	25284	25404	(TRONG)
10	25018 28128	25097 27934	25586 28158	25618 27971	26208 27251	26178 27161	· 25523	26700 25578	27300 24164	27169 24305	27750 23731	27583 24090	
10	23555 27444	23658 27201	24284 27525	24328 27284	25068 26587	25037 26473	25788 24570	25684 24663	264 24 22780	26262 22979	26979 22305 -	2677 0 22510	
11	22948	23058	23778	23817	24630	24584	25402	25277	26085	25897	26680	26442	
12	27179	26704	27193	25929	25983	25888	23668	23804	21847	22077	21532	26291	
13	270662	26767	26995	26723	25568	25504	23056	23234	21281	21539	21154	21387	
14	20786 26212	20722 2582 2	21915 26062	21939 25717	2301 <i>9</i> 24288	22919 24226	23995 21290	23792 21523	24849 19138	24565 19472	25391 18992	25245 19284	
	19717 25751	198 57 2 5290	21049 25324	21050 24939	22279 22944	22136 22974	23347 19448	2308 8 197 90	24276 17439	23730 17819	25082 17666	24668 17979	67 72
15 -	21082	21211	22183	22204	23253	23153	24177	23999	- 25026	24749	25746	25408	
16	19023	19177	20403	20413	24308	242/5	21300	22579	23838	23472	24696	24257	
17	25411	24721	25029	24632	22717	22705	19218	19535	16951	17340	16954	17285	
18	18667 25271	18815 24749	20149 24673	20141 24280	21501 21881	21328 21959	18037	16439	16000	23275 16419	16402	16740	# \$\$
	19740 23759	1987 9 25301	21063 25348	21066 24982	22291 22953	22150 22985	23356 17374	23101 19744	24285 17377	23741 17764	25090 17649	24679 17965	Å
14	15500 23773	15668 23051	17407 22545	17365	19114 18810	18846 18976	20558 14438	20122 14910	21807 12325	21244 12787	22890 12867	22229 13244	ABRANCE -
20	16238	16402	18043	18009	19668	19421	21046	20639	22239	21711	23273	22653	-
21	24119 17107	23440	18787	22981 18757	20314	20099	21617	21252	22745	22267	23723	23158	1 98333
22	24526	23905	23651	23224	20431	20546	16283	16712	14198	14634	. 14669	15027	- - -
23	22994	22149	21209	20738	16830	17076	12275	12777	10295	10760	11008	11374	
	14143 23167	14294 22313	16350 21090	16244 20658	18215 16446	17839 16774	19754 11904	17198 12443	21090 10163	20378 106 34	22245 11147	21449	7

TABLE 8-1 (continued)

	CI	SHPUTED S	ALINITY CO	NCENTRA	TION (HG/L)	AT SELE	ECTED LOCAT	IONS WIT	HIN COOK I	NLET		
NODE #	OC TO APR	DBER IL	NOVE	MBER		MBER	JANU JUL Y	ARY	FEBR	UARY	MARC	H EMBER
24	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE#3	CASEN1	CASE#3	CASE#1	CASE#3	CASE#1	CASE 3
2	14506	14644	16763	16642	18594	18203	20088	19523	21382	20686	22499	21703
25	17010	12000	15007	14040	10377		11037	110-0	7040	10262	11302	11007
	22419	21544	20785	20261	16384	16551	11749	12200	9598	10045	10073	10458
20	1/2572	12717	14742	14795	16966	16507	18630	17969	20083	19268	21341	20409
識素	22337	21343 	19607	17181	14,389	14819	IUISE	10748	67.68 2010	9058	4524	7723 2007
			MESSIE CPL		the second second		and a start of the	<u> </u>				a starting and the
28	11803	11971	14011	13969	16079	15765	17855	17326	19399	18702	20737	19909
31	21824	20914	20140	19608	15504	15639	10842	11252	8755	9171	9144	9516
	10976 21294	11191 20412	13116 20079	13129 19459	15236 15447	1 4995 1 5432	17103 10565	16639 10867	18729 . 8368	18085 8730	20138 8515	19352 8866
32	10927	11127	13178	13177	15331	1 5069	17199	16714	18818	18156	20215	19413
35	21349	20456	19875	19277	14711	14742	9723	10042	. 7852	8212	8302	8650
	10514 20814	10731 19 971	12433 20153	12497 19474	14512 16149	14347 15976	16425 11406	16033 11605	18113 8787	17531 9103	19585 8402	19851 87 35
36	10495	10710	12530	12580	14650	14464	16567	16153	18246	17645	19704	18954
37	20912	20056	20051	19387	15611	15482	10688	10913	8337	8659	8228	8562
	10489 21223	10684	12927 19427	12923 19841	15160 13146	148 76 13191	17066 7886	16579	18705 6642	18040	20107 7612	19304 7938
43	7466	7641	10275	10341	12830	12697	15000	14651	16844	16309	18421	17734
44	17584	18771	17328	16714	7231	7182	2535	2616	2487	2607	4103	4290
	6117 18696	6270 17950	9045 15769	9124 15186	11714 4760	11625 4721	- 13779 1237	13684 1276	15902	15422	17552 2786	16916 2918
45	5593	5734	8532	8412	11225	11149	13522	13247	15476	15018	17154	16539
46	18300	17573	15050	14489	4114	4081	1012	1044	1099	1153	2408	2524
	4076 17035	4182 16367	7100	7177	9883 1958	7836 1943	12245	12018	14260	138 57 426	16000	15442
47	2155	2208	4856	4899	7499	7457	9796	9615	11796	11464	13552	13080
49	14338	13766	7477	7202	432	430	44	45	64	67	339	358
	854	872	2961	2965	5297	5236	7373	72 09	9235	874 8	10906	1047B 54
49	213	217	1485	1448	7757	3375	5087	4973	6706	6456	8205	7855
50	8078	7702	924	899	3	3	0	0	0	0	4	4
50	19	17	554	529	1878	1789	3188	3035	4479	4250	5722	5412
52	10/220	4780			14775		14444	14330	10741	17772	19797	19021
	20966	20100	19776	19133	14/35	14421	9320	9558	7474	7788	7830	8157
24	10231	10450	12000	12072	14036	13916	15969	15623	17692	17153	19203	18506
54	20475	17060	20088	173/7	10301	18078	15070	15520	17404	17076	19127	18437
	20411	19601	20123	19403	16525	16235	11966	12076	9090	936 2	8322	8635
30	10069	10281	11637	11751	13579	13504	15505	15209	17253	16761 9444	18799	181 43 8701
56	20109	17325	11000	11470	10440	10004	14701	14370	14544	16130	18134	17549
	19521	18796	17848	19109	17437	16972	13779	13695	10574	10723	8789	9236

\$708**2**4

6767A

2 26-21

TABLE B-1 (continued)

COMPUTED SALINITY CONCENTRATION (MG/L) AT SELECTED LOCATIONS WITHIN CODK INLET

NODE .	DCT	DBER		ENBER		EMBER	JUL		FEBI	RUARY	MAR	CH TEMBER	
	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE#3	CASE#1	CASE 13	1
	10672 188 80	10834 18220	11132 19609	11269 18884	12441 18157	12472 17605	14104 13095	13960 14882	15812 11848	1547B 11897	17428 9794	1691B 9982	
.78	11275 18293	11362 17694	11143 19291	11269 18593	12047 18575	12128 17971	13531 16113	13445 15792	15171 12999	14906 12950	16792 10633	16351 10757	
59	12039 17643	12057 17112	11267 18874	11372 18216	11731 18875	11816 18232	12941 17103	12914 16672	14483 14250	14293 14091	16078 11626	15732	1999
60	13014 16965	12947 16506	11 574 18360	116 43 17756	11512 18751	1160 8 18294	12404 17917	12428 17391	13804 15488	13686 15213	15388 12740	150 79 12700	19 19
100	11751 21817	11 736 20873	13771 20036	13941	16072 15248	15744 15413	17850	17306	. 19395	18683	207 33 9050	17870	
101	12212	12376	14537	14430	16592	16186	18307	17691	19800	19023	21092	20192	
102	11854	12029	14177	14097	14789	15110	16025	17438	19551	18779	20869	19990	
103	21928 11672	20974 11859	19780	19272 13875	14754	14996	10207 1780 2	10673	6367 173 54	8825 18643	9036 20696	9415	
104	21784	20860	20024	19475	15200	15354	10500	10919	8508 19478	8925	8971	9344 19944	. 667)
105	21877	20937	19922	19394	15003	15203	10365	10808	8457	9684	9021	9398	
104	11487	11675 20797	13805	13758 19285	15928	15601 14891	9982	17187	19295	18579 8572	8752	9121	
107	11572 21750	11739 20825	13853 19946	138 07 19 399	15962 14964	15638 15114	17759 10194	17216 10603	19317 8299	18405 8708	20662 8837	17819 9207	
	11276 21625	11467 20704	13617 19771	13582 19213	15765 14541	15453 14660	17594 . 9710	17061 10087	19174 7961	18469 8354	20530 8564	19693 8926	Provide State
108	10999 21479	11193 20569	13366 19638	13344 1906 8	15542 14176	15249 14263	17401 9288	16885 9637	19003 7652	18313 8025	20374 8305	19549 8660	(girad
104	11348 21644	11538 20726	13662 19855	13626 19297	15797 14617	1 5486 1 4740	1761 7 9721	17086 10101	19192 7961	18490 8352	20549 8587	19714 8948	
110	109 59 21465	11153	13342 19591	13321 19022	- 15523 14051	15231 14135	17385 9172	16871 9515	18989 7578	18301 7949	20360 8257	19537 8611	1
111	10498	10671	12946	12939	15179	14912	17083	16593	18720	18053	20119 7598	19315	
115	11120	11311	13472	13445	13634	15335	17477	16957	19069	18376	20437	19610 8682	(明元
114	10825	. 11015	13244	13222	15440	15149	17312	16801	18924	18239	20296	19477	`.
117	21396	10676	19396 1294B	18834	13609	13674	17087	16595	18722	18055	20121	19316	.
125	2123 2 9584	20339 9774	19344 12168	18766 12185	12912 14503	12965 14276	7674 16488	7955 16040	6517 18187	6834 17559	19637	18867	
127	20767	19902	18842	18245	111 5 1 13961	11161	5777 - 16009	5983 15595	17757	5329	6452 19250	6733 18507	
128	20396	19554	18432	17823	9862	9843	4542	4698	4128	4328	5651	5900	
	8233 20034	8415 19214	10948	11019 173 52	13447 8630	13282 8593	15553 3521	3639	3310	3470	4914	5133	5 9 90

つつ

`

TABLE B-2

~ *

....

....

2-35-7

NODE .	0CT 429	D9ER IL	NOV	EMBER	DEC	EMBER F	JAN	JARY	FEBI		MAR	CH
	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE #4
1	29276	29282	29474	29584	29824	20740	70071	20004	30100	20012	30309	20117
	30281	30194	27851	29839	29031	29114	28298	28389	28135	28217	28585	28640
2	29033	28048	20 377	28373	70497	70451	20071	28002	20210	20127	70477	
	29609	29493	29411	29338	28804	28806	27997	28046	27399	27486	27362	27451
Э				2776/	201 70		00514					00000
	29299	29160	27/85	27/08	26483	28128	20514	2043/ 27546	28819	28713	24086	26689
4												
	26976	27035	27315	27339 28904	27727	27705	28116	28054	28468	28371	28777	28654
5							2:0/0				20001	
	25806	25886	26294	26324	26834	26807	27335	27256	27783	27658	28175	28015
6	2.0000	20313	20000	20337	2/70/	Z/GZJ	₹00 €J	×80/J	23340	£3471	24710	23074
	26706	26770	27050	27080	27486	27469	27903	27843	28281	28183	28612	28486
7	2.0972	20/44	¥074/	20/71	204/1	28341	2/303	2/312 ·	∠0 484	263/3	20028	20197
	24663	24763	25247	25293	25906	25883	26521	26432	27068	26922	27545	27354
8	2/943	2//23	28023	2/809	27328	2/21/	25721	25789	. 24154	24331	23628	23814
	26182	25253	26610	26646	27104	27089	27572	27509	27990	27884	28357	28220
9	28663	28004	28702	28349	2/950	279/1	26557	26570	25464	29562	25284	23413
	25018	25108	25586	25624	26208	26179	26785	26695	27300	27157	27750	27566
. to	28128	27915	28158	27958	27251	27163	25523	25589	24164	24320	23931	24101
	23555	23671	24284	24336	25068	25037	25788	25678	26424	26247	26979	26748
11	27444	27176	27325	27266	26587	26475	24570	24680	227 80	23000	22305	22523
	22948	23072	23778	23824	24630	24584	25402	25269	26085	25880	26680	26416
17	27179	2687 6	27193	26912	25983	25894	23668	23824	21847	22100	21532	21767
	22673	227 97	23555	23590	24442	24375	25239	25082	25942	25710	26553	26262
17	27066	267 36	26995	26708	25568	25515	23056	23257	21281	21562	21154	21402
19	20786	20738	21915	21945	23019	22916	23995	23778	24849	24536	25591	25204
1.4	26212	25781	26062	25699	24288	24243	21290	21553	19138	19503	18992	19300
14	19717	19874	21049	21055	22279	22129	23347	23069	24276	23873	25082	24621
• •	25751	25244	25324	24946	22944	23002	19448	198 26	17439	17854	17666	17993
13	21082	21227	22183	22210	23253	23150	24199	23985	25026	24721	23746	25370
	26347	25927	26151	25807	24308	24293	21300	21585	19333	19685	19310	19603
15	19023	19194	20403	20418	21711	21557	22848	22559	23838	23434	24696	24207
	25411	24871	25029	24616	22717	22730	19218	19571	16751	17379	16954	17302
17	19667	18832	20149	20144	21501	21319	22663	22340	23673	23232	24548	24021
	25271	24697	24673	24270	21881	21994	18037	18479	16000	16457	16402	16753
18	19740	19876	21063	21071	22291	22143	23356	23082	24285	23905	25090	24632
	25759	25255	25348	24970	22953	23013	19394	19781	17377	17799	17649	17979
19	15500	1 5697	17407	17366	19114	18871	20558	20086	21807	21181	22890	22152
	23773	22981	22545	22086	18810	19026	14438	14955	12325	12828	12867	13258
20	14778	16471	19047	18011	19449	19407	21044	20606	22239	21653	23273	22581
	24119	23374	23023	22580	19368	19599	15033	15561	13015	13519	13652	14038
21	17107	17297	18787	18770	20314	20088	21617	21224	22745	22215	23723	23073
	24526	23844	23651	23218	20431	20588	16283	16754	14178	14673	14669	15040
22	1-19641	14049	16021	15740	17911	17548	19489	18915	20856	20107	22039	21168
	22794	22070	21209	20751	16830	17135	12275	12823	10275	10801	11008	11406
23	14147	14715	14250	16279	18215	17818	19754	19151	21090	20317	22245	21356
	23167	22234	21090	20681	16446	16840 .	11904	12490	10163	10675	11147	11540

COMPLETED

. Estro

TABL	Ε	Β-	2
(cont	in	ue	d)

			1. 1. 1. A.	- Charles A			and a second and a second and a second	3 R . 31	and States and	A DETE			, s
NODE #		DBER IL CASE#4	NOVI MAY CASE#1			EMBER E				RUARY UST		H	(199)
24	14506	14665	16763	16636	18594	18160	20088	19475	21382	20604	22499	21611	14 - 5 15 - 5
25	23378	22454	21134	20761	16379	16770	11337	11887	9845	10319	11302	11674	and the second se
26	12819 22419	13021 21461	15003 20785	14948 20266	16990 16384	16648 16604	18672 11749	18104 12246	20131 9598	19374 10085	21394 10073	20501 10472	
	12572 22337	12740 21255	14942 19607	14787 19220	16966 14389	16480 14896	18630 10168	17912 10796	20083 8578	19171 9100	21341 9534	20301 9931	
	Rovers	Sec. Lines	contra the the	entry in the same	State & and the	and mediane				176.74		* 18684)
28	-17,14	1999 () () () () () () () () ()		and the second state		and a start of the start of the			58 .77		7294	7668	
20	11803 21824	12012 20827	14011 20140	13970 19609	16079 15504	15747 15688	· 17855 10842	17283 11294	19399 8755	18625 9209	20737 9144	1981 4 9530	1 574
31	10976	11202	13116	13135	15236	14982	17103	16602	18729	18017	20138	19262	1.2
32	21294	20325	20078	19440	15447	15465	10565	10906	8368	8765	8515	8884	
	10927 21349	11147 20369	13178 1987 5	13181	15331 14711	15055 14780	17199 9723	16676 10078	18818 7852	18085 8245	20215 8302	19322 8666	
35	10514	10752	12433	12507	14512	14340	16425	16004	18113	17474	19585	18770	
36	20814	19884	20153	19437	16149	15994	11406	11637	8787	9136	8402	8737	ANTRO
	10495 20912	10730 19969	12530 20051	12587 19355	14650	14455 15505	16567 10688	16123 10946	18246	17585	19704 8228	1887 0 8583	2 1 1
37	10489	10703	12927	12927	15160	14881	17066	16540	18705	17969	20107	19212	
43	21225	20245	19427	18829	13146	13227	7886	8202	6642	6992	7612	7953	, ;
• •	7466 19584	7655 18708	10275 17328	10350 16675	12830 7231	12691 7194	15000 2535	14626 2626	16844 2489	162 57 26 20	18421 4103	17658 4300	: :
44	6117	6281	9045	9135	11714	11621	13979	13664	15902	15378	17552	16847	49374
45	18696	17871	15769	15143	4760	4729	1237	1281	1332	1404	2786	2925	
	18300	3745 17496	8532 15050	8621 144 4 7	11225 4114	11146 4098	13522 1012	13229 1048	15476 1099	14977 1158	17154 2408	16473 2530	685 533
46	4076	4190	.7100	7185	9883	9835	12245	12004	14260	13823	16000	15383	- 1
47	17035	16295	12282	11780	1958	1947	.327	341	405	428	1262	1329	:
40	14338	13705	4856 7477	7189	432	7456 431	9796 44	9603 46	11796 64	11436	13552	358	1
45	854	874	2961	2766	5297	5232	7373	7197	9235	8722	10906	10456	÷
49	213	217	1485	1466	3352	3270	5087	4921	لي 470 4	6431	8205	7619	49
50	8098	7665	924	902	3	3	0	0	. 0	0	. 4	4	
	19 5098	19 4753	554 85	527 84	1878 0	1783	3188	3021	4479 0	4223	5722	5379 0	
52	10339	10568	i2550	12594	14735	14517	16666	16198	18341	17658	19787	18934	ANT?
53	20966	20012	19776	19106	14497	14447	9320	9590	7474	7818	7830	8176	, i t
54	10231	10471	12000	12105	14036	13713	15969	15600	17692	17102	19203 8333	18429	_
54	10148	10409		12012		12821	16077	15514	17404	17077	19177	18343	AND ST
	20411	19516	20123	19353	16525	16240	11966	12104	9090	9392	8322	8659	
72	10067	10302	11637	11766	13579	13504	15505	15191	17253	16717	18799	18072	
56	.20109	19243	19902	19123	16426	16080	12328	12378	- 9413	7671.	8411	8/23	· ·
	10241	10452	17848	19045	12963	16954	14/96	13709	10574	10746	8787	9260	

2<

TABLE B-2 (continued)

NODE #	OCTO APR	DBER IL	NOVE	EMBER	DECI	EMBER E	JAN	UARY Y	FEB	RUARY	MAR	CH TEMPER
	CASE#1	CASE #4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE#4	CASE#1	CASE 4
3/	10692	10859	11132	11290	12441	12482	14104	17045.	15017	15457	17470	14040
	18880	18151	19609	18816	19157	17573	15095	14884	11848	11914	9794	10003
58									110.0		///4	10000
	11275	11388	11143	11291	12067	12141	13531	13446	15171	14889	16792	16310
	18293	17632	19291	18525	18575	17929	16113	15782	12999	12960	10633	10776
59								· · .		_		
	12039	12083	11267	11395	11/31	11833	12941	12920	14483	14283	16078	15701
60	1/043	17034	100/4	19130	18875	191/7	1/103	15547	14230	14093	11626	11689
	13014	12972	11574	11667	11512	11628	12404	12438	13904	13683	15388	15077
	16965	16462	18360	17694	18951	18235	17917	17355	15488	15205	12740	12709
100						•		•				
	11751	11957	13991	13941	16072	15725	17850	17262	19395	18604	20733	19793
	21817	20805	20036	19497	15248	15465	10579	11068	8592	9051	905 0	9438
101	12212	12208	14577	14475	14500	14147	18307	17470	19900	10077	21092	76697
	14614 22124	21047	19787	19776	14789	19102	10395	1/639	19800	18733	21072	20087
102	EL 167	2100/	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,000	14/67	131//	10373	10780	3378	7078	/516	// 10
	11854	12050	14177	14094	16267	15873	18025	17389	19551	18713	20869	17889
	21928	20885	19780	19269	14754	15055	10207	10717	6389	8864	9036	9427
103				· .								
	11672	11880	13921	13876	16014	15671	17802	17216	19354	18564	20696	19757
104	21784	20772	20024	19478	15200	15405	10500	10961	8208	8963	84/1	935 8
104	11797	11994	14091	14016	16171	15901	17941	17779	19479	18662	20804	19949
	21877	20849	19922	19404	15003	15258	10365	10851	8457	8923	9021	9410
105												
	11489	11696	13805	13758	15928	15582	17733	17142	19295	18499	20640	19695
	21725	20708	19831	19289	14729	14931	9982	10430	8165	86 09	8752	9134
104												
	11572	11780	13853	13808	15962	. 15619	17759	17172	19317	18525	20662	19722
107	21/50	20736	19940	1740∠	14764	13164	10144	10044	8277	5/40	. 8837	12541
107	11276	11487	13617	13583	15765	15436	17594	17018	19174	18391	20530	19596
	21625	20615	19771	19212	14541	14706	9710	10128	7961	8390	8564	8741
108												
	10999	11212	13366	13346	15542	15232	17401	16844	19003	18238	20374	19454
	21479	20480	19638	19062	14176	14305	9288	9675	7652	B0 60	8305	8675
109											20548	
	11348	11558	13662	1302/	13/9/	13468	1/61/	17044	7941	18412	20347	17010
110	<1044	20030	17655	1/2/6	1401)	14/8/	// E L	101-1		0007		
	10757	11172	13342	13323	15523	15215	17385	16830	18789	18226	20360	19443
	21465	20467	19591	19016	14051	14177	9172	9552	7578	7981	8259	8626
111												
	10498	10710	12946	12943	15179	14897	17083	16554	18720	17982	20119	19223
	21234	20253	19392	18799	13042	13127	· 7787	8103	2284	6938	/378	7938
115				17444	15474	15310	17477	16016	19049	18300	20437	19515
	21537	20536	19774	19156	14196	14341	9212	9601	7605	8010	8330	8697
116	2104/	Loggo	.,,	11100	141/4							
	10825	11034	13244	13225	15440	15133	17312	16760	18924	18164	20296	19383
	21396	20403	19396	18829	13609	13735	8766	9131	7317	7707	8103	8462
117										. 7000		10004
	10484	10695	12748	12943	15183	14899	17087	16556	18722	1/783	20121	7901
1.71=	21232	20251	19344	18/33	12912	13001	/6/4	/783	031/			//01
140	9584	9791	12168	12191	14503	14264	16488	16005	19197	17493	19637	18780
	20767	17816	18942	18224	11151	11180	5777	6006	5082	5352	6452	6747
127												
·	8891	9093	11551	11594	13961	13757	16009	15563	17757	17099	19250	18424
	20396	19469	18432	17795	9862	9854	4542	4716	4128	4347	5651	3913

(k744

2-35-35

1.7 %

USER'S GUIDE FOR THE ESTUARY HYDRODYNAMIC AND WATER QUALITY MODELS

Prepared for the

Department of the Army Alaska District Corps of Engineers Anchorage, Alaska

Prepared by

Donald J. Smith

Tetra Tech Contract TC-827 DACW85-76-C-0044

September, 1977

Tetra Tech, Inc. 3700 Mt. Diablo Boulevard Lafayette, California 94549 (415) 283-3771

TABLE OF CONTENTS

		Page
I.	INTRODUCTION	- 1
	BACKGROUND	1
	PURPOSE AND SCOPE	3
	MODEL DESCRIPTION	3
	Conceptual Formulation	3
	Program Operational Sequence	4
	General Modeling Approach	7
	System Layout	7
II.	HYDRODYNAMIC MODULE	9
	INPUT REQUIREMENTS	9
	PROGRAM ROUTINES	20
	INTERPRETATION OF RESULTS	2 2
		29
	INPUT REQUIREMENTS	29
	PROGRAM ROUTINES	48
	INTERPRETATION OF RESULTS.	50
APPEND	IX A	

APPENDIX B

2504

pros

. Ianeer

(स्वयम्) (स्वयम्)

. Verael

рэзни ;

- APPENDIX C
- APPENDIX D
- APPENDIX E
- APPENDIX F

7-35.3

LIST OF FIGURES

έŇ

Page 2 Figure I-2 Tidally Averaged Estuary Model Flow Chart. 6 Estuary Hydrodynamic Model Subroutines Figure II-1 21 Figure III-L Tidally Ava 49 Subriduenes

ii

LIST OF TABLES

.

Page

2

2

Table II-1	HYDRO – Estuary Hydrodynamic Model Data Requirements	10
	AQUAL - Data Requirements Tidat Average Estuary Quality Model	30

 \mathbb{R}^{2}

I. INTRODUCTION

BACKGROUND

The Federal Water Pollution Control Act Amendments (PL 92-500) of 1972 establishes specific requirements directed to the control of point sources of pollution. The Department of the Army, Alaska District, Corps of Engineers was given the responsibility to determine the effects of various levels of treatment and levels of wastewater effluent discharges, as defined in PL 92-500, on the water quality of Upper Cook Inlet including Knik Arm.

Tetra Tech, Inc. was contracted to prepare the Knik Arm and Upper Cook Inlet water quality report. Included in the study was the selection and use of appropriate mathematical models to aid in the evaluation of the effects of wastewater effluent discharges. The models selected and documented herein are:

- A two-dimensional horizontal, complete mixed vertical, dynamic hydrodynamic model interfaced with
- A two-dimensional horizontal, complete mixed vertical tidally averaged dynamic/steady-state water quality model.

This manual provides basic instructions for the set-up and use of the general estuary hydrodynamics and quality models. An example problem data set and simulation results are presented in Appendix A through D. The example utilizes the node-channel representation (see Figure I-1) used for the water quality evaluation portion of this project. A listing of the computer program codes for the hydrodynamic and water quality models are presented in Appendix E and F.

1

35-4

Detailed descriptions of the theoretical background and mathematical formulations essential in the estuary model development are presented in the Documentation Report*.

PURPOSE AND SCOPE

This manual is intended to provide the user with information which is fundamental in the set up and use of the estuary hydrodynamic and quality models. It includes general instructions regarding:

Geometric representations of the prototype system;

- Data requirements and input format specifications;
- Program subroutines and computational sequence;
- General modeling procedure; and
- Interpretation of model results.

MODEL DESCRIPTION

Conceptual Formulation

The numerical model represents the estuarine system as a variable grid network of "nodes" and "channels". Nodes are discrete volume units of waterbody, characterized by surface area, depth, side slope and volume. The nodes are interconnected by channels, each having associated length, width, cross sectional area, hydraulic radius, side slope and friction factor. Water is constrained to flow from one node to another through these defined channels, advecting and diffusing water quality constituents between nodes.

3

7.75.47

^{*}Johanson, P.J., D.J. Smith, F.M. Haydock, and M.W. Lorenzen, "Documentation Report for the Estuary Water Quality Models." A Report to Nassau-Suffolk Regional Planning Board, Long Island, New York, May, 1977.

The following are underlying assumptions of the estuary model.

- The estuarine system is well mixed vertically.
- The law of conservation of mass is obeyed for water quality constituents.
- Chemical reaction rates may be estimated using first order kinetics characterized by reaction-specific rate coefficients.

Program Operational Sequence

The overall two-dimensional estuary model is composed of two separate components, a hydrodynamic model (HYDRO) and a tidally averaged quality model (AQUAL).

The numerical models are used in sequence so that the results of the hydrodynamic model become input for the water quality model. The chief advantage of dividing the overall model into segments is that HYDRO can be calibrated separately and then used repeatedly in the calibration and application of AQUAL.

HYDRO calculates the hydrodynamics of the estuary using detailed information about geometric configurations, hydrologic conditions and predicted tidal time-stage relationships. The equations of motion and continuity are applied to determine the physical transport mechanisms of water flows and velocities in channels, and volume changes in nodes. The resulting data are averaged over the complete tidal cycle and written on disk files to be used as input to AQUAL.

AQUAL combines formulations for biological and chemical reactions with advective and diffusive properties in a mass balance equation to calculate tidally averaged water quality at any location and time. Required inputs include system geometry and tidally averaged hydrodynamics from HYDRO, boundary conditions, dispersion coefficients, point and non-point source quality, reaction rate coefficients, and meteorological conditions. The dispersion coefficients are used to estimate net dispersion in the prototype since tidally induced advection is not directly modeled. AQUAL may be operated in either a steady-state or dynamic mode. The final results in the steady-state mode are representative of daily average conditions which would prevail if all inputs remained constant over time. The dynamic mode is useful for simulating long-term changes in water quality which result when system conditions or waste inputs change significantly over time. In this mode the model uses tidal cycles as the basic time step and yields average daily results. Figure I-2 summarizes the program operational sequence for the tidally averaged quality model.

The quality model can be used to simulate any combination of the following thirteen parameters and have the capability to include up to four additional user specified constituents. Optional constituents may include any dissolved or particulate constituent with first order decay, settling and transfer between constituents through decay.

C 3 *	., \
Salar	(אדנו

- 2. Total Nitrogen
- 3. Total Phosphorus
- 4. Total Coliform Bacteria
- 5. Fecal Coliform Bacteria
- 6. Carbonaceous BOD
- 7. Nitrogenous BOD
- 8. Dissolved Oxygen
- 9. Temperature
- 10.-13. Optional Constituents

(

-25-45 2

General Modeling Approach

The first phase of the modeling procedure is to "calibrate" the model using synoptic survey data from a suitable study period. Boundary conditions (tides, flows, waste discharges, etc.) which characterize the study period are input to the model and the results are compared to *in situ* data. Calibration involves adjusting system coefficients or modifying the network until reasonable agreement between model and prototype is achieved.

Once the model has been calibrated, a second study period may be selected for model "verification". Model inputs are changed in accordance with results of this study period while system coefficients and network geometry are maintained. If agreement between calculated and observed concentrations is good, the model can be considered verified. If agreement is poor, the reasons for the discrepancy must be determined and satisfactorily resolved. Any adjustments made to the model at this point must also be shown to improve the calibration results.

The third phase of the modeling procedure is to evaluate model sensitivity to modifications in system coefficients, and unit response to changes in individual loading sources. This is accomplished by examining the effect of varying one parameter while holding all others constant. The sensitivity analysis allows estimation of the range of results possible and the relative importance of each system coefficient. The unit response analysis shows the relative importance of various waste sources and boundary conditions on water quality.

System Layout

The nonuniform grid system used in the numerical models enables the user to specify greater detail in areas where the impact of pollutants is the greatest. Efficient utilization of computer

resources weighs heavily on judicious preparation of the node and channel system. Among the most important considerations are computational time step increment, system geometry and location of waste sources.

The computational (hydrodynamic) time step increment is governed by the stability criteria of the channel according to the following relationship:

 $\Delta t < \sqrt{qR}$

(1)

2-35-47

where:

(m

- ∆t = maximum hydrodynamic time step
- L = channel length
- g = gravitational constant
- R = hydraulic radius (approximately equal to the average channel depth)

Since the same time step is used for the entire system, a single short deep channel can necessitate the use of a much smaller time step than would otherwise be required. Channel lengths should be selected to minimize this constraint as much as possible without interfering with natural system geometry.

In order to obtain the greatest possible correspondence between model and prototype hydrodynamics it is important to attempt to align model channels with natural channels as much as possible. In addition, areas with widely varying characteristics (e.g. depth, roughness) should not be combined in one node. Smaller nodes and shorter channels are warranted in regions which are known to have water quality problems or where major gradients in water quality parameters exist.

II. HYDRODYNAMIC MODULE

INPUT REQUIREMENTS

The following inputs are required for the computation of estuary hydrodynamics:

- Physical and geometric characteristics of the nodechannel representation of the estuary;
- Tidal time-stage relationships at seaward boundaries;
- Meteorological and climatological data, including evaporation, wind speed and direction, and precipitation;
- Point inflows and outflows;
- Non-point inflows; and
- Control specifications for computational options and output formats.

Table II-1 outlines the card groups and format specifications required to set up the hydrodynamic model card deck. These card descriptions together with the illustrative example data presented in Appendix A and the simulation results presented in Appendix B should enable the user to set up, run, and interpret the results of the estuary hydrodynamics model.

9

Table II-1

HYDRO

Estuary Hydrodynamic Model Data Requirements

Card Number	Card Column	Format	Variable	Description		
Card (Card Group 1 - Title Cards					
summai	These headi Ty.	ngs will be	e printed or	n each page of the input data		
la	1-80	20A4	TITLE	Main heading		
16	1-80	20A4	TITL	Subheading		

Card Group 2 - Input/Output Control Card

Two or three tidal cycles are normally required to reach steadystate hydrodynamics. Results of the final tidal cycle for each hydrologic condition are averaged and stored through NSTEAD for later use as input to AQUAL. Examples of the plotting options are presented in Appendix B.

A renumbering routine is included in the HYDRO code which arranges the channel-node system to minimize storage and computational requirements. Internal renumbering should begin with a node located at some extreme of the network such as a tidal boundary or lengthwise end of the system.

2a	1-5	1115	NSESON	Sets of hydrologic conditions (48 maximum)
	6-10		NHPRT	Number of nodes specified for printout (1-30 allowed)
	11-15		NQPRT	Number of channels specified for printout (1-30 allowed)
	16-20		NTSL	Number of nodes specified for plots of mean tidal range and time of high water (max. 48)

2-35-40

Card Number	Card Column	Format	Variable	Description
<u>Card</u> Gr	oup 2 -	Input/Output	Control Card	- Cont.
2a	21-25		NSTAGE	Number of pages of tidal stage plots (3 plots per page)
	26-30		NTFLOW	Number of pages of channel velocity and flow plots (3 plots per page)
	31-35		NDYNAM	Not used
	36-40		NSTEAD	HYDRO/AQUAL interface unit number
	41-45		NN	Node number to begin internal renumbering
2Ъ	1-5	1615	MDAY(1)	
	6-10		MDAY(2)	Number of tidal cycles for each hydrologic condition
•	•		• MDAY(NSESON)	
	<u></u>			
Card Gr	oup <u>3</u>			
	1-5	1615	JPRT(1)	
	6-10	•	JPRT(2)	Nodes specified for stage
	•		•	printout (NHPRT nodes required)
	•		JPRT(NHPRT)	
Re	peat cai	d type 3 as a	necessary to	conform to limits set on card 2.

			Second Second	
Card Number	Card Column	Format	Variable	Description
Card G	roup 4.			
4	1-5	1615	CPRT(1)	
	6-10		CPRT(2)	Channels specified for velocity and flow printout (NQPRT channels required)
			CPRT(NQPRT)	
R	epeat card	type 4 as	necessary to confo.	rm to limits set on card 2.
Card G	roup 5		· · · · · · · · · · · · · · · · · · ·	· ·
5	1-5	315	NJPLOT(NSTAGE,1)	
	6-10		NJPLOT(NSTAGE,2)	Node specified for stage plots
	11-15		NJPLOT(NSTAGE,3)	
(card .	Nodes spe 3). NSTAGI	ecified he E (card 2)	ere must have been i cards are required	ncluded in JPRT array •
	Omit card	1 5 if NST	AGE = 0.	
Card G	roup 6			
6	1-5	315	NCPLOT(NTFLOW,1)	
	6-10		NCPLOT(NTFLOW,2)	Channel specified for velocity plots
	11-15		NCPLOT(NTFLOW,3)	
	<u> </u>		·	

Channels specified here must have been included in CPRT array (card 4). NTFLOW (card 2) cards are required.

Omit card 6 if NTFLOW = 0.

26-6

Ŷ

Card Number	Card Column	Format	Variable	Description
Card	Group 7			
7	1-5	1615	JTR(1)	
	6-10 • •		JTR(2) JTR(NTSL)	Nodes specified for profile plot of mean tidal range and time of high water (NTSL nodes required)

Repeat card 7 as required to conform to the limits set on card 2. Omit card 7 if NTSL = 0.

Card Group 8

Hydrodynamic time step increment which is based on channel stability criteria can be determined by using Equation 1 or by previewing invariant channel data output generated by the model in a preliminary run using a large hydrodynamic time step.

8	1-10	4F10.0	DELT	Hydrodynamic time step increment, sec.
	11-20		DELTQ	Printed output interval, sec.
	21-30		PERIOD	Length of tidal cycle, hours
•	31-40		DMIN	Anticipated maximum diurnal range in stage within the estuary (ft)

Card	Card			
Number	Column	Format	Variable	Description

Card Group 9 - Node Geometry

9

Node numbers greater than 200 are not allowed. Average nodal depth at mean sea level can be estimated from nautical charts keeping in mind that the charts show mean low water. Nodes with sizeable tide flat areas require an estimate of change in surface area per foot of change in depth. The X-Y coordinate location of nodes relative to some origin is measured in arbitrary units.

1-5	15	J	Node number
6-15	2F10.0	AREA	Water surface area at méan sea level, sq. ft.
16-25		SLOPE	Change in surface area with increase in water surface elevation, sq. ft/ft.
26-30	3F5.0	DEP	Water depth at mean sea level, ft.
31-35		X1	X-coordinate, any unit
36-40		Yl ·	Y-coordinate, any unit
41-45	815	NTEMP(1)	
46-50		NTEMP(2)	
•			Channels entering node
76-80		NTEMP(8)	

Repeat card 9 for each node in the system terminating with a blank card. A maximum of 200 cards (including the blank card) is allowed.
Card	Card				
Number	Column	Format	Variable	Description	

Card Group 10 - Channel Geometry

Channel numbers greater than 300 are not allowed. Channel length, average width, and the change in width per foct of change in depth in tide flat areas (side slope) can be estimated from nautical charts. The hydraulic radius is essentially equal to the channel depth except in tide flat areas where it is approximately equal to the average cross-sectional area at mean sea level divided by the surface width at mean sea level. Channel roughness, as represented by Mannings coefficient, is a function of channel configuration, bottom roughness and obstructions. Coefficients range from .02 for smooth straight channels to 0.08 for rough, irregular, obstructed channels.

0	1-5	15	N	Channel number
	6-15	4F10.0	ALEN	Channel length, ft.
	16-25		WIDTH	Channel width at mean sea level, ft.
	26-35		RAD	Hydraulic radius at mean sea level, ft.
	36-45		COEF	Mannings roughness coefficient
	46-50	215	NTEMP (1)	Nodes at each end of channel
	51-55	• .	NTEMP (2)	
	56-65	F10.0	SLOPE	Change in width with increase in water surface elevation, ft/ft.

Repeat card 10 for each channel in the system terminating with a blank card. A maximum of 300 cards (including the blank card) is allowed.

Card Group 11

This subheading replaces the title read from card lb and will be printed with the following set of hydrologic conditions.

- ---

· · ·

4

FLAND

, **50000**,

ganga

pî tiran

Card Number	Card Column	Format_	Variable	Description
Card (Gròup 12 -	Hydrologic	: Input Contro	Switch
read . other value:	Set NTEMP(if NTEMP() wise speci: s.) = 1 to s) = 0: Hyd fied. Inpu	skip the follow Prological cond Pts are retaine	wing inputs; new data will be ditions are assumed zero until ed until replaced with new
12	1-5	615	NTEMP(1)	Read new tide data
	6-10		NTEMP(2)	Read new evaporation data
	11-15		NTEMP(3)	Read new wind velocity and direction
	16-20		NTEMP(4)	Read new point inflows and outflows
	21-25		NTEMP(5)	Read new groundwater inflow data
	26-30		NTEMP(6)	Read new storm water inflow data
<u>Card</u> (Group 13 -	Tidally Ir	fluenced Node:	<u>5</u>
13	1-5	15	⁻ NJEX	Number of nodes with specified stage relationships
¢	Omit card .	13 if NTEMH	P(1) (card 12)	= 1.
Card	Group 14 -	Tide Data		
14a	1-5	4F5.0	JEX(NJEX)	Node number with specified stage relationships
	6-10	• ·	NI	Number of points defining stage relationship (must equal 6 or 25)
	11-15		MAXIT	Maximum number of iterations for tide fit (50)
	16-20		NCHTID	Print control, tidal curve fit results will be printed if equal to l

16

21

1

Card Number	Card Column	.Format	Variable	Description
Card G	roup 14 -	Tide Data	- Cont.	
14b	1-5	16F5.0	TT(1)	
	6-10		YY(1)	
	11-15		TT(2)	Time (TT=brs) and stage
	16-20		YY(2)	(YY=ft) defining tide wave (NI pairs of data are required)
	•		•	
	٠		ه	
			TT(NI)	
			YY(NI)	

Repeat card 14b as required to define NI time-stage relationships. NJEX sets of card group 14 are required to define tides at all boundary nodes.

Omit card group 14 if NTEMP(1) (card 12) = 1.

• <u>Card</u>	Group 15 -	Evaporatio	<u>on</u>	
15	7-5	215	JI	First node of an evaporation zone
	6-10		J2 ·	Last node of an evaporation zone
	11-20	F10.0	EVAPA	Evaporation rate, inches/

Repeat card 15 as necessary terminating with a blank card. A maximum of 20 evaporation zones are allowed which overrides the blank card requirement.

Omit card group 15 if NTEMP(2) (card 12) = 1.

Card Number	Card Column	Format	Variable	Description
<u>Card</u> G	roup 16 -	Wind Veloc	ity and Direct	tion
16a	1-5	215	JI	First channel of a wind zone
	6-10		J2	Last channel of a wind zone
16b	1-5 6-10	16F5.0	WIND(,1) WDIR(,1)	Wind speed (mph) and direction blowing from (degrees clock- wise from Y-axis) at hour one
	<u>6-</u> 10.(Fo	urth Card)	WIND(,25) WDIR(,25)	One set of values for each hour

Four 16b cards required for each wind zone. Repeat card group 16 as necessary terminating with a blank card. No blank card is required if 5 wind zones (the maximum allowed) are defined.

Omit card group 16 if NTEMP(3) (card 12) = 1.

(🔊

(HANDA

Card Gro	oup 17 - P	oint Inflo	ws/Outflows	
17	1-5	15	N	Node number
	6-15	2F10.0	QQIN	Inflow to node, cfs
	16-25	•	QQOU	Outflow from node, cfs
Re of NJ c	peat as ne ards are a	cessary te llowed whe	rminating with re NJ = number	a blank card. A maximum of nodes in the network.

Omit card group 17 if NTEMP(4) (card 12) = 1.

Card Number	Card Column	Format	Variable	Description
<u>Card</u> Gr	roup 18'- G	roundwater	Inflows	
18	1-5	215	JI	First node for which ground- water inflow rate applies
	6-10		J2	Last node for which ground- water inflow rate applies
	11-15	F5.0	GROUND	Groundwater inflow rate, cfs

Repeat as necessary terminating with a blank card. A maximum of 199 groundwater inflows are allowed.

Omit card group 18 if NTEMP(5) (card 12) = 1.

Card Gr	oup 19 - S	torm Water	Inflows				
19a	1-5	15	N	Node number			
	6-10	12F5.0	TN(1)				
	11-15		TN(2)	Average hourly storm inflows (cfs) for first 12 hours of tidal cycle			
	66-70	•	TN(12)				
19Ь	1-5	13F5.0	TN(13)				
	6-10		TN(14)	Average hourly storm inflows			
	• • •		•	tidal cycle			
	61-65		TN(25) .				
Re A maxim	Repeat card group 19 as necessary terminating with a blank card. A maximum of 39 pairs are allowed.						

Omit card group 19 if NTEMP(6) = 1.

Repeat card groups 11-19 for each hydrologic condition. There must be NSESON sets as specified on card 2.

PROGRAM ROUTINES

Figure II-l summarizes the general structure of the hydrodynamic model. Complete descriptions of model structure and solution techniques are included in the documentation report and will not be duplicated herein. The following brief synopsis is intended to serve only as a guide to aid in the interpretation of model outputs.

The main program HYDRO coordinates the hydrodynamic calculations, first reading title and control information for printing and plotting, and then calling GEOMET. This subroutine reads channel and junction configurations, including interconnectivity of nodes and channels, and computes invariant node and channel data before returning control to HYDRO.

HYDRO then calls NUMBER which renumbers the nodes internally so as to produce a more efficient matrix configuration for tidally averaged quality computations. The original numbering system is retained for output purposes. Control returns to HYDRO which prints the invariant geometric data and stores duplicates on disk files for later use in the quality model AQUAL.

The model then cycles through the following steps as often as required to compute steady-state hydrodynamics for each hydrologic condition. HYDRO calls TIDCF to fit the tide specifications with a polynomial which describes the time-stage relationship at a seaward boundary. Comparisons of observed and computed values are computed and printed. TIDCF is called repeatedly until the time-stage relationships are defined for each seaward boundary. Control is returned to HYDRO which then reads the remaining hydrodynamic inputs. At this point the major daily time step and quality time step loops are initiated and subroutine DYNFLO is called.

20

7-25-5

)

DYNFLO solves the equations of motion and continuity to determine fundamental hydrodynamic properties including velocities, discharges, water volumes, depths, surface areas and channel cross sectional areas. DYNFLO is called repeatedly to compute hydrodynamic properties for each simulation day of the hydrologic period.

Control then returns to HYDRO which averages the results of the final day of simulation over a complete tidal cycle and stored for later use in AQUAL. Finally, the subroutine OUTPUT is called which prints the results and controls the sequencing of the remaining subroutines which produce the user specified plots.

INTERPRETATION OF RESULTS

If errors occur in the node and channel inputs, one or more of the following messages will be printed:

- JUNCTION NUMBER _____ IS LARGER THAN PROGRAM DIMENSIONS. Junction numbers must not be greater than 200.
- CHANNEL NUMBER ____ IS LARGER THAN PROGRAM DIMENSIONS. Channel numbers must not be greater than 300.
- CHANNEL CARD COMPATIBILITY CHECK, CHANNEL _____ AND JUNCTION _____.
 Channel-junction interconnectivity is erroneous.
- JUNCTION CARD COMPATIBILITY CHECK, JUNCTION _____ AND CHANNEL _____.
 Junction-channel interconnectivity is erroneous.

Assuming a HYDRO/AQUAL interface unit number was assigned, the first printed output (see Appendix Table B-1) shows the node renumbering scheme which is used internally in the steady-state/dynamic tidally averaged quality model. The maximum diagonal matrix width and the half band widths are also shown. The dimension limits in AQUAL will be exceeded if either of the half band widths are greater than ten (10). In this case the following error message is printed:

> THE HALF BAND WIDTH OF _____ FOR EQUATION NUMBER ____, NODE ____, EXCEEDS THE DIMENSION LIMITS IN PROGRAM AQUAL. PROGRAM EXECUTION WILL TERMINATE LATER.

If this message is printed, one of the following modifications is required.

- Select a different node which is located at some extremity of the network to begin renumbering (i.e., a tidal boundary or lengthwise end of the system).
- Restructure the grid system eliminating excess nodes which extend laterally from the lengthwise axis of the system.

• Increase the DIMENSION limits in program AQUAL.

When any of these errors occur, the model run will continue until invariant junction and channel data have been printed at which time the simulation will terminate.

The next output (see Appendix Table B-2) summarizes the computational and output control options specified on Card Groups 1-8.

Invariant node and channel data follows the control summaries. An example of this output is presented in Appendix Table B-3 and B-4. In addition to printing input data, some computed data are included.

The column labeled "MAX TIME, SEC" on the channel data printout is useful for checking the maximum allowable computational time step. The hydrodynamic time step increment specified in columns 1-5 of Card 8 must not exceed the smallest value appearing in this column. The user may wish to modify the network layout slightly by lengthening channels or decrease the depth (along with an appropriate increase in width) which will increase the allowable time step.

The column labeled MIN ELEV, FT on the channel data printout is the water surface elevation at which the channel width becomes negative. The column labeled MIN ELEV, FT on the node data printout is the water surface elevation at which either the nodal volume or surface area will become negative.

The model checks to see if the anticipated low water level is exceeded by either of these minimum elevations. If potential problems exist, they will be noted by the following warnings incorporated in the list of junction and channel data.

- NOTE -- * INDICATES NEGATIVE WIDTH IS POSSIBLE WITH ANTICIPATED TIDAL STAGE.
- NOTE -- * INDICATES THAT DEPTH OF CHANNEL ENTERING JUNCTION IS LARGER THAN JUNCTION DEPTH.

The latter message is to aid the user in modifying channel geometry data in the event that a negative node volume or surface area is encountered later in the hydrodynamic simulation.

• ** INDICATES NEGATIVE VOLUME OR SURFACE AREA IS POSSIBLE WITH ANTICIPATED TIDAL STAGE.

It should be stressed that these are only warnings and may not cause further problems since the actual nodal stage often does not reach the anticipated low water level. If any of these anticipated problems materialize later in the simulation, error messages will be printed and the model run terminated at that time.

The remaining outputs will be repeated for each set of hydrodynamic conditions. Appendix Table B-5 shows an example of the output which is generated when the TIDCF subroutine successfully fits a polynomial with the input time-stage tide data*. The model will iterate until reasonable agreement is achieved between observed and computed values. The model computes and prints the individual and total differences between derived and observed time-stage relationships. These results should be checked for individual differences exceeding 5% of the maximum tide range which suggest possible errors in tide data inputs. One or more of the following variables may be the cause:

- Erroneous time-stage pairs defining the tide wave.
- Insufficient iterations for the tide fit. (50 is usually enough).
- Irregular spacing of tidal extremes.

The next page of output (see Appendix Table B-6) summarizes the evaporation, wind, inflows, and withdrawal data entered for the given hydrodynamic condition.

*The user may suppress this output (see Card 14a).

Model outputs to this point may be previewed most cost-effectively by setting the hydrodynamic time step increment to well in excess of a reasonable time step increment. The run will not go to completion, however, the output which is generated can be reviewed for input errors. The correct time step can be selected based on derived channel data output.

Selecting too large a time step will result in an unstable solution, terminates the runstream and cause the following error message to be printed:

HYDRODYNAMIC SOLUTION WAS UNSTABLE AT HOUR ______ IN CHANNEL _____, FLOW = _____CFS, DEPTH = _____FEET, VELOCITY = _____FT/SEC

As noted earlier, termination of the runstream will occur if negative nodal surface areas or volumes are encountered causing the following error messages to be printed:

• NEGATIVE SURFACE AREA ENCOUNTERED AT HOUR ________ AT NODE _____, HEAD = _____ FEET, AREA = ______ SQ FT.

NEGATIVE VOLUME ENCOUNTERED AT HOUR _____ AT NODE _____,
 HEAD = _____ FEET, VOLUME = _____ CU FT.

If this occurs one or both of the following adjustments in junction/ channel configurations are required:

Increase depth of node.

 $\sum_{i=1}^{n}$

6

• Decrease area slope (change in surface area with respect to depth) in the junction. This adjustment may not be applicable when tide flats are being modeled.

26

<u>7-35-l</u>

 Decrease depth in channels which drain the junction. The channels which are sufficiently deep to cause the difficulty will have to be noted in the invariant channel data printout.

Once all errors are corrected the computations will go to completion. Appendix Tables B-7, B-8, B-9, and Appendix Figures B-1 through B-4 show examples of the model outputs. The following is a check list for testing the hydrodynamic model results before proceeding to the quality codes:

- Check for steady-state hydrodynamics by comparing heads at hour 25 with those at hour 50 for a given node. A similar check of flows and velocities for a given channel should also be made. Differences of more than 1% indicate that the model should be run for a longer period of time.
- Predicted time-stage relationships should be reasonable within the system.
- Check channel flows in tide flat areas to see whether times of no (or very little) flow are actually predicted.
- The values of average head should be approximately the same everywhere except where there is a large net flow or in tide flat areas where average heads will be greater since the flow out of these areas is stopped when a minimum depth is reached.
- The average velocity should be near zero except where there are net inflows or rapid changes in velocity such as in a narrow channel draining a large area.

- Water balance at each junction should be zero except at tidal exchange nodes where it is equal to the net gain or loss at the boundaries.
- A flow diagram showing direction and magnitude of the average flows is useful in detecting circular flow patterns. While minor eddies are acceptable, unexplainable major circular flows should be corrected by adjusting the roughness coefficients in the channels.

Modifications in roughness coefficients or node-channel configurations may be required in order to produce acceptable model-prototype conformance. Once the above requirements are met to the satisfaction of the user, the model is considered calibrated and water quality computations can proceed.

III. TIDALLY AVERAGED QUALITY MODULE.

INPUT REQUIREMENTS

The following inputs are required for the computation of tidally averaged water quality:

- Steady-state hydrodynamics as computed by HYDRO;
- Tidal exchange ratio and water quality at seaward boundaries;

- Dispersion coefficients;
- Reaction rate coefficients (benthic oxygen demand, coliform decay, photosynthesis oxygenation, etc.);
- Meteorological data, including cloud cover, dry and wet bulb air temperature, wind speed, and atmospheric pressure; and
- Control specifications for computational options and output formats.

Table III-1 outlines the card groups and format specifications required to set up the card deck for the AQUAL quality model. These card descriptions together with the illustrative example data presented in Appendix C and the formulation results presented in Appendix-D should enable the user to set up, run, and interpret the results of the tidally averaged water quality model.

Table III-l

AQUAL

Data Requirements Tidal Average Estuary Quality Model

Card Number	Card Column	Format	Variable	Description
<u>Card</u> G	roup 1 - T	itle Cards	<u>5</u>	
T. summar	hese headi y.	lngs will l	be printed on	each page of the input data
la	1-80	20A4	TITLE	Main heading
16	1-80	20A4	TITL	Subheading
<u>Card</u> G	roup 2 - I	nput/Outpu	it Control Car	<u>d</u>
2	1-5	1015	NHYD	Sets of boundary conditions
	6-10		IDAY	First Julian day of simulation
	11-15		IDELT	Computational time step increment, hours
	16-20		IALT	Print format option switch, (IALT = 0 for standard, IALT = 1 for alternate)
	21-25		IPCYC	Printout interval, days
	26-30		NJP	Number of junctions for time history plots (6 max.)
	31-35		NPP	Number of concentration profile plots (2 max.)
•	36-40		IEE	Number of iterations for computing dispersion coefficients. (Default value = 10, five is usually sufficient)

G

N	Card lumber	Card Column	Format	Variable	e	Descrip	otion	
	Card	Group 2 -	Input/Output	Control	Card	- Cont.		
	2	41-45		NFILE		HYDRO/AQUAL unit number	interface	
		46-50		INQUAL		Not used		

Card Group 3 - Steady-State/Dynamic Mode Switch

The code allows the user to select either steady-state or dynamic solutions for each set of boundary conditions. Set IDYN (? = 1 for steady-state solution, IDYN () = 0 for steady-state •

3	1-5	1615	NQPERH(1)	Number of days for first boundary condition
	6-10		IDYN(1)	Solution type selector
	e		•	
	e		NQPERH(NHYD) IDYN(NHYD)	NHYD pairs required

Repeat as necessary to conform to limits set on card 2.

Card Group 4 - Parameter Selection

Set ISKIP() = 0 to simulate any of the following 13 constituents. If ISKIP() = 1 the constituent will be omitted.

1	1-5	1315	ISKIP(1)	
	6-10		ISKIP(2)	Total nitrogen, mg/l as N
	11-15		ISKIP(3)	Total phosphorus, mg/l as P
	16-20		ISKIP(4)	Total coliforms, MPN/100 ml
	21-25	·	ISKIP(5)	Fecal coliforms, MPN/100 ml

Card Number	Card Column	Format	Variable	Description
Card G	roup 4 -	Parameter S	<u>election</u> - Co	ont.
4	26-30		· ISKIP(6)	Ultimate carbonaceous BOD, mg/l
	31-35		ISKIP(7)	Nitrogenous BOD, mg/l
	36-40		ISKIP(8)	Dissolved oxygen, mg/l
	41-45		ISKIP(9)	Temperature, °C
	46-50		ISKIP(10)	Optional constituent #1
	51-55		ISKIP(11)	Optional constituent #2
	56-60		ISKIP(12)	Optional constituent #3
	61-65	-	ISKIP(13)	Optional constituent #4

Card Group 5 - Optional Constituent Name

G

The names will be printed on the first page of output for optional constituent identification.

5	1-16	16A4	CNAME(1)	Ş	Optional constituent #1
			CNAME(4)	ł	
	17-32		CNAME(5)	ş	Optional constituent #2
			CNAME(8)	l	· ·
	33-48		CNAME(9)	5	Optional constituent #3
			CNAME(12)	1	
	49-64		CNAME(13)	ş	Optional constituent #4
			CNAME(16)	l	

7-25

Table III-1 - C	ont.
-----------------	------

Card Number	Card Column	Format	Variable	Description
Card G	roup 6 -	Time Histor	v Plot Contro	1
Consti	one to fou. tuents are	r constitue e numbered	nts may be se. from 1 to 13 :	- lected for time history plots. in the order shown on card 4.
6	1-5	1015	IPLOT(1)	
	6-10		IPLOT(2)	Constituents for time
	11-15		IPLOT(3)	nistory plots (constituent number)
·	16-20		IPLOT(4)	
	21-25		JPLOT(1)	
	26-30		JPLOT(2)	Junctions for time history
	•		*	required)
	•		JPLOT(NJP)	
0	mit card e	5 if NJP (c	ard 2) = 0.	

Card Group 7 - Profile Plot Control

One to four constituents may be specified for concentration profiles. Constituents are numbered from 1 to 13 in the order shown on card 4.

7a	1-5	715	NCONP(1)	
	6-10		NCONP(2)	Constituents for concen-
	11-15		NCONP(3)	(constituent number)
	16-20		NCONP(4)	
	21-25		IPDAY(1)	
	26-30		IPDAY(2)	Julian day of profile plot
	31-35		IPDAY(3)	

Card Number	Card Column	Format	Variable	Description
Card (iroup 7 - P	rofile Plot	<u>t Control</u> - Cont.	
7Ъ	1-5	1615	NODEP(1,NPP)	
	6-10		NODEP(2,NPP)	
	•		•	Junction for concentra-
	•		•	tion profile (21 required
	•		•	
	21-25 (Second Card)		NODEP(21,NPP)	
N	PP (card 2) sets of a	ard group 7b are r	equired.
c	mit card g	roup 7 if N	IPP = 0.	

Card Group 8 - Initial Conditions

1

6

A negative oxygen concentration signifies the fraction of saturation.

8	1-5	215	JI	First junction for which data applies
	6-10		J2	Last junction for which data applies
	11-15	13F5.0	ALL(1)	5.9 \$ 10 \$1 5 \$2 4 SHOP 11 5 \$ 3 \$
	16-20		ALL(2)	Total nitrogen, mg/l as N
	21-25		ALL(3)	Total phosphorus, mg/l as P
	26-30		ALL(4)	Total coliforms, MPN/100 ml
	31-35		ALL(5)	Fecal coliforms, MPN/100 ml
	36-40		ALL(6)	Ultimate carbonaceous BOD, mg/l
	41-45		ALL(7)	Nitrogenous BOD, mg/l

<-7

 Card Number	Card Column	Format	Variable	Description
 Card G	roup 8 - I	nitial Con	ditions - Cont.	
8	46-50		ALL(8)	Dissolved oxygen, mg/l
	51-55		ALL(9)	Temperature, °C
	56-60		ALL(10)	Optional constituent =1
	61-65		ALL(11)	Optional constituent =2
	66-70		ALL(12)	Optional constituent =3
	71-75		ALL(13)	Optional constituent #4

Repeat as necessary terminating with a blank card. NJ initial condition cards are allowed, where NJ - number of junctions in the network.

Card Group 9 - Dispersion Parameters

Dispersion coefficients provide a means for simulating estuarine mixing. Generally these coefficients are adjusted as required for calibration based on a conservative constituent and then do not change thereafter.

The tidally induced dispersion parameter (Cl) includes the effect of flow induced and tidal mixing. Open embayments and estuaries which are strongly influenced by tidal effects will generally require a larger Cl than more protected regions. The values for this coefficient generally range from 5 to 25.

	sari Mari Langgé 1995 - San Langgé Para Kanggén Ant	200 - Sana Banda ang ang a	en e sa contaño Refe	And the second
9	1-5	215	JI	First channel for which data applies
	6-10		J2	Last channel for which data applies
	11-15	2F5.0	C1	Dispersion parameter

Card	Group 9 - 1	Dispersion	<u>Coefficient</u> - Co	nt.
9	16-20			
with in t!	Repeat card a blank car he network.	d 9 as requ rd. NC ca:	nired to define a ods are allowed,	<pre>11 dispersion zones terminating where NC = number of channels</pre>
Card	Group 10 -	Tidal Bour	ndary Nodes	
10	1-5	1115	NBOUND	Number of tidal boundary nodes (10 max)
	6-10		JBOUND(1)	
	•		•	Tidal boundary node numbe
	•		JBOUND(NBOUND)	
Graden and an and a state of the second state of the second state of the second state of the second state of th		T:+1 0-	<u> </u>	

Card Group 12 - Read/Write Control Switches

Set NTEMP() = 0 to read new data; skip if NTEMP() = 1. Hydrodynamic conditions are normally read in order from the HYDRO/AQUAL interface tape; however the file may be repositioned if the user wishes a computation sequence different from that of the hydrodynamic simulation. Positive values of NTEMP(10) will advance the file and negative values will rewind it a specified number of records.

36

25-75

Card Number	Card Column	Format	Variable	Description
Card G	roup 12 -	Read/Write	Control Switches	- Cont.
12	1-5	1015	NTEMP(1)	Read new hydrodynamic conditions
	6-10		NTEMP(2)	Read new tidal exchange ratios and quality
	11-15		NTEMP(3)	Read new inflow quality
	16-20		NTEMP(4)	Print aggregated inflow quality if NTEMP(4) = 0.
	21-25		NTEMP(5)	Read new non-point source quality
	26-30		NTEMP(6)	Read new return water quality increments
	31-35		NTEMP(7)	Read new system coefficients
•	36-40		NTEMP(8)	Read new meteorological data
	41-45		NTEMP(9)	Print weather data if NTEMP(9) = O
	46-50		NTEMP(10)	Position of HYDRO/AQUAL hydrodynamic file

Card Group 13 - Tidal Exchange Ratios and Quality

The tidal exchange ratio refers to the fraction of ebbing estuary water which is lost from the system at the boundary node and does not return. Values can range from 0.-1.

13a 1-5 5X

Card identification

Card Number	Card Column	Format	Variable	Description
Card (Group 13 -	Tidal Exch	ange Ratios	and Quality - Cont.
13a	6-10	10F5.0	XR(1)	
	•		XR (NBOUND)	Tidal exchange ratio at each tidal input node

If salinity is not modeled as constituent 1 then it must be entered as CEX(1,14) for dispersion coefficient calculations. A negative value for dissolved oxygen signifies a fraction of saturation.

F

13b	1-5	5X		Card identification
	6-10	14F5.0	CEX(1,1)	
	11-15		CEX(1,2)	Total nitrogen, mg/l as N
	16-20		CEX(1,3)	Total phosphorus, mg/l as P
	21-25		CEX(1,4)	Total coliforms, MPN/100 ml
	26-30		CEX(1,5)	Fecal coliforms, MPN/100 ml
	31-35		CEX(1,6)	Ultimate carbonaceous BOD, mg/l
	36-40		CEX(1,7)	Nitrogenous BOD, mg/1
	41-45		CEX(1,8)	Dissolved oxygen, mg/l
	46-50		CEX(1,9)	Temperature, °C
	51-55		CEX(1,10)	Optional constituent #1
	56-60		CEX(1,11)	Optional constituent #2
	61-65		CEX(1,12)	Optional constituent #3
	66-70		CEX(1,13)	Optional constituent #4

 Card Number	Card Column	Format	Variable	Description	
 Card (Group 13 -	- Tidal Excha	inge Ratios a	and Quality - Cont.	
13ь	71-75		CEX(1,14)		

Repeat as necessary to define conditions at all boundary nodes. NBOUND cards are required.

Omit card group 13 if NTEMP(2) = 1 (card 12).

Card Group 14 - Inflow Quality

The model will aggregate the water quality into a given node when multiple point source inflows occur. A negative concentration signifies a mass emission rate in pounds per day or equivalent except for oxygen where it signifies a fraction of saturation. No more than 500 inflows are allowed which can be distributed into a maximum of 100 junctions.

]4	1-5	15	JJ	Junction number
	6-10	14F5.0	QQ	Inflow, cfs
	11-15		ALL(1)	and the second at an and
	16-20		ALL(2)	Total nitrogen, mg/l as N
	21-25		ALL(3)	Total phosphorus, mg/l as P
	26-30		ALL(4)	Total coliforms, MPN/100 ml
	31-35		ALL(5)	Fecal coliforms, MPN/100 ml
	36-40		ALL(6)	Ultimate carbonaceous BOD, mg/l
	41-45		ALL(7)	Nitrogenous BOD, mg/l
	46-50		ALL(8)	Dissolved oxygen, mg/l
	51-55		ALL(9)	Temperature, °C
	56-60		ALL(10)	Optional constituent #1

Card Number	Card Column	Format	Variable	Description
<u>Card</u> G	roup 14 -	Inflow Qua	<u>lity</u> - Cont.	
14	61-65		ALL(11)	Optional constituent =2
	66-70		ALL(12)	Optional constituent =3
	71-75		A11(13)	Optional constituent =4
	76-80		ALL(14)	

Repeat as necessary terminating with a blank card. The blank card is not allowed when 500 inflows are specified.

Omit card 14 if NTEMP(3) = 1 (card 12).

Card Group 15 - Non-Point Source

 \mathbf{O}

These constituent concentrations represent aggregated quality of all non-point sources entering a given node or successive group of nodes at the flow rate specified in HYDRO. A negative dissolved oxygen concentration signifies a fraction of saturation.

15	1-5	1615	JI	First junction for which quality applies
	6-10		J2	Last junction for which quality applies
	11-15		ALL(1)	
	16-20		ALL(2)	Total nitrogen, mg/l as N
	21-25		ALL(3)	Total phosphorus, mg/l as P
	26-30		ALL(4)	Total coliforms, MPN/100 ml
	31-35		ALL(5)	Fecal coliforms, MPN/100 ml
	36-40		ALL(6)	Ultimate carbonaceous BOD, mg/l

40

Card Number	Card Column	Format	Variable	Description
Card G	roup 15 -	Non-Point S	ource	
15	41-45		ALL(7)	Nitrogenous BOD, mg/l
	46-50		ALL(8)	Dissolved oxygen, mg/l
,	51-55	•	ALL(9)	Temperature, °C
	56-60		ALL(10)	Discharge influence #1
	61-65		ALL(11)	Discharge influence #2
	66-70		ALL(12).	Discharge influence #3
	71-75		ALL(13)	Discharge influence #4
	76-80		ALL(14)	

Repeat as necessary terminating with a blank card. A maximum of 29 non-point water types are allowed.

Omit card 15 if NTEMP(5) = 1 (card 12).

Card Group 16 - Return Water

Return water to any node may originate from as many as five other nodes. The model aggregates the initial concentration given the fraction from each node. Incremental changes specified on card 16b are then added to determine the return water concentration.

16a	1-5	15	JI	Discharge junction
	6-10	15	NTEMP(1)	
	11-16 46-50	F5.0	ALL(1) NTEMP(5)	Junctions from which dis- charge is withdrawn (NTEMP) and fraction of withdrawal which is discharged to junction J1(ALL)
	51-55	F5.0	ALL(5)	

	Card Number	Card Column	Format	Variable	Description
	Card G	roup_16 -	Return Wate	er - Cont.	
	16b	1-5	14F5.0	ALL(1)	and the second association in the
		6-10		ALL(2)	Incremental total nitrogen
		11-15		ALL(3)	Incremental total phosphorus
		16-20		ALL(4)	Incremental total coliforms
		21-25		ALL(5)	Incremental fecal coliforms
		26-30		ALL(6)	Incremental carbonaceous BOD
		31-35		ALL(7)	Incremental nitrogenous BOD
		36-40		ALL(8)	Incremental dissolved oxygen
		41-45		ALL(9)	Incremental temperature, °C
e		46-50		ALL(10)	Incremental optional constituent #1
		51-55		ALL(11)	Incremental optional constituent #2
		56-60		ALL(12)	Incremental optional constituent #3
		61-65		ALL(13)	Incremental optional constituent #4

Repeat card group 16 as necessary terminating with a blank card. The blank card is not required if 20 sets of card group 16 are entered. Omit card group 16 if NTEMP(6) (card 11) = 1.

2-35-81

Card . Card			
Number Column	Format	Variable	Description

Card Group 17 - Quality Coefficients

The following coefficients representing first order decay kinetics vary as a function of temperature, oxygen concentration, salinity, light intensity, wind speed and many other physical and chemical influences. Optional constituent may include any dissolved or particulate constituent with first order decay, settling and transfer between constituents (i.e., ammonia decay to nitrate). Rate coefficients of constituents which may be of interest have been included. Typical values (at 20°C) are as follows:

Chemical, Physical and Biological Coefficient	Range of Values
Stoichiometric equivalence between optional constituent decay	.0-1.0
Rate coefficient temperature adjustment constant	1.02-1.08
Carbonaceous BOD decay rate, day	.13
Nitrogenous BOD decay rate, day -1	.0515
Coliform die-off rate, day ⁻¹	.5-8.0
Total nitrogen benthic sink rate, mg/m²/day	0-500
Total phosphorus benthic sink rate, mg/m ² /day	0-200
Algal photosynthetic oxygen production, mg/m²/day	0-15,000
Algae oxygen consumption due to respiration, mg/m ² /day	0-7,500
Benthic oxygen demand rate, mg/m ² /day	0-5,000
Reaeration rate, days ⁻¹	.1-10.
Ammonia decay, day	.052

Number	Column	Format	Variable	Description
Card	Group 17 -	Quality Co	<u>pefficients</u> - Co	ont.
-	Chemical, Biologica	Physical a l Coefficie	and ant	Range of Values
Nitrite decay, day ⁻¹				.2-1.
Volat:	ile suspen	ded solids	decay, day ⁻¹	.00205
Suspei	nded solid.	s settling,	meters/day	0-2
17a	1-5	5F5.0	TYPEEQ(1)	Fraction of an optional
	6-10		TYPEEQ(2)	the decay at one unit of the
	11-15		TYPEEQ(3)	(stoichiometric equivalence
	16-20		QTEN(1)	Rate coefficient temperature adjustment constant for carbonaceous BOD decay (default = 1.05)
	21-25		QTEN(2)	Rate coefficient temperature adjustment constant for the remaining rate coefficients (default = 1.03)
17Ь	1-5	215	JI	Junction limits for which
	6-10		J2	coefficients apply
	11-15 4F5.0	ALL(2)	Carbonaceous BOD decay rate, day ⁻¹	
	16-20		ALL(3)	Nitrogenous BOD decay rate, day-1
	21-25		ALL(4)	Total coliform die-off rate, day ⁻¹
	26-30		ALL(5)	Fecal coliform die-off rate, dav-1

C

ļ.

Table III-1 - Cont.

Number	Column	Format	Variable	Description
<u>Card</u> (<u> Group 17 -</u>	Quality Co	<u>efficients</u> -	Cont.
17c	1-5	15F5.0	ALL(6)	Total nitrogen benthic sink rate, mg/m ² /day
	6-10		ALL(7)	Total phosphorus benthic sink rate, mg/m ² /day
	11-15		ALL(8)	Algal photosynthetic oxygen production, mg/m ² /day
	16-20		ALL(9)	Algae oxygen consumption due to respiration, mg/m ² /da
	21-25		ALL(10)	Benthic oxygen demand rate, mg/m²/day
	26-30		ALL(11)	Minimum reaeration rate, day-1
	31-35		ALL(12)	Maximum reaeration rate, day-1
	36-40		ALL(13)	1
	41-45		ALL(14)	Optional constituents #1
	46-50		ALL(15)	through #4 decay, day"
	51-55		ALL(16)	
	56-60		ALL(17)	1
·	61-65		ALL(18)	Optional constituents #1
	66-70		ALL(19)	through #4 settling rate, meters/day
	71-75		ALL(20)	

One card 17a is required. Repeat sets of cards 17b and 17c as required terminating with a blank card. No blank card is required if NJ sets of card 17b and 17c are entered.

Omit card group 17 if NTEMP(7) = 1 (card 12).

Card Number	Card Column	Format	Variable	Description
<u>Card G</u>	<u>roup 18 -</u>	- Meteorologi	cal Conditions	· · · · · · · · · · · · · · · · · · ·
18a	1-5	15	NWZONE	Number of weather zones (5 max.)
	6-10	5F5.0	DAY	Julian date
	11-15		EPS	East west longitude switch (-1 for U.S.A.)
	16-20		AA	Evaporation coefficient a
	21-25		BB	Evaporation coefficient b (Default = 1.5 x 10 ⁻⁹)
	26-30		DEW	Wet bulb/dew point switch, dew = 1 for wet bulb temperature

Hourly meteorological conditions for each weather zone are computed by interpolation of the information supplied on card 18c.

(

18Ь	1-5	215	JWZONE(1)	Junction limits of
	6-10		JWZONE(2)	weather zone
	11-15	3F5.0	XLAT	Latitude, degrees
,	16-20		XLON	Longitude, degrees
	21-25		TURB	Atmospheric turbidity (2 for clear up to 5 for smog)
18c	1-5	15	J2	Hour of observation
	6-10	5F 5.0	CLÓUD	Cloud cover, fraction
	11-15		DBT	Dry bulb temperature, °C

Card Number	Card Column	Format	Variable	Description
Card (Group 18 -	Meteorolog	ical Conditi	<u>ons</u> - Cont.
18c	16-20		WBT	Wet bulb or dew point temperature
	21-25		WIND	Wind speed, meters/sec
	26-30		APR	Atmospheric pressure, mb

A set of between 2 and 25 cards (type 18c) are required for each weather zone. Each set must begin with values for hour 1 and ending with values for hour 25. Repeat sets of cards 18b and 18c as required to define all weather zones (NWZONE sets).

Repeat card groups 11-18 as necessary to define all boundary conditions. There must be NHYD sets as specified on card 2.

PROGRAM ROUTINES

Figure III-l summarizes the general structure of the tidally averaged quality model. The following brief description is intended to serve only as a guide to aid in the interpretation of model outputs. The reader is again referred to the documentation report for a more thorough treatment of model development, theoretical considerations, and solution techniques.

The main program AQUAL calls INPUT to read system geometry, hydrodynamics, input/output controls, boundary conditions, dispersion and system coefficients and inflow quality. INPUT calls METDAT to read meteorological conditions, compute derived conditions, and write results. Control then returns to AQUAL which directs SETUP, FORM and SOLVIT to compute salinity for dispersion coefficient computations. AQUAL then computes oxygen saturation based on salinity and temperature. SETUP is then called to set up the final coefficient matrix which is used in SOLVIT to compute the concentration of the water quality constituents in all nodes. The constituent concentrations are determined in the following order:

Alternet minister view selfies

- Temperature
- Optional coefficients (user specified)
- Total nitrogen
- Total phosphorus
- Total coliform
- Fecal coliform
- Carbonaceous BOD
- Nitrogenous BOD
- Dissolved oxygen

49

2 26-44

AQUAL then calls OUTPUT which controls the remaining subroutines in printing and plotting the results. The process repeats for each set of boundary conditions.

INTERPRETATION OF RESULTS

Provided input formats are correct and program dimensions have not been exceeded the model will print out invariant data including computational control specifications, initial conditions, and dispersion parameters as shown in Appendix Table D-1 and D-2. The model will check the junction limits assigned to the initial conditions and print the following message if errors are found:

* ERROR * THE FOLLOWING NODE LIMITS ARE IN ERROR:

The remaining outputs will be repeated for each set of boundary conditions. Appendix Table D-3 shows an example of the output which summarizes exchange conditions, observed and aggregated^{\dagger} inflow quality, non-point inflow quality, return water quality, system coefficients, derived flow and wind induced reaeration coefficients, and coefficients used by nodes. If dimension limits have been exceeded the runstream will terminate and one of the following messages will be printed:

- WARNING ** THE MAXIMUM OF 100 INFLOW LOCATIONS HAS BEEN EXCEEDED.**
- * ERROR * A MAXIMUM OF 29 GROUNDWATER TYPES ARE ALLOWED.
- * ERROR * RETURN WATER IS ALLOWED AT 20 NODES MAXIMUM.

[†]The user may suppress this aggregated inflow quality printout.
Appendix Table D-4 shows an example of the printout of observed and derived meteorological data*. **Therefore table D-5 shows dispersion Characteristics of the escuence of the dispersion parameters: hydraulic Characteristics of the escuence of the solution** Since calculation of dispersion coefficients is an iterative process, the last two values of the coefficients are printed for comparison. If there is a significant difference between the values, dispersion parameter C4 may need to be reduced or the number of iterations for computing dispersion coefficients increased. **C4 may need to D5 matrix concentration D5 matrix concentration**

23

Appendix Table D-7 shows the alternate output format. Examples of the plotting options are shown in Appendix Figures D-1 and D-2.

Calibration of the tidally averaged quality model is accomplished in two phases. The first is to simulate a conservative substance such as salinity to establish the mixing characteristics of the estuary.

The dispersion coefficients can not generally be specified a priori. The procedure is to start with values which have proven effective before and proceed, on a trial and error basis, to adjust the coefficients until model results compare reasonably well with field data. The model is then considered calibrated for advective and dispersive transport. The second phase of the model calibration is to adjust reaction rate coefficients (benthic oxygen demand, photosynthesis oxygenation, coliform decay, etc.) until *in situ* data are reasonably reproduced.

*The user may suppress this output.

APPENDIX A

Table A-1

Ł.

 $(\widehat{})$

Hydrodynamic Model Input Card Specification

																وروار والنور و
C0	1.															
	4															
Card		• •				20	75	10	45	50	55	60	65	70	75	80
Group	5	10	15	20	25	30	33	40	40	50	e.e	00				
L										·				·		
							÷									
1.							• • • •	C 1 7 1								
14		COUY 1	ALLY	KAD		ANO	IURNA	FAIN	ARM							
23	348671	. PKUSL	.67 L	34	•		٨	12								
25	1	•		6.2		+	•	15	4							
3	, i	12	26	щQ	56	117										
- Ă	18	22	83	127	140	157										
5	1	117	49		• • •											
6	72	127	140													
7	1	3	5	7	10	11	12	14	17	20	53	56	101	104	106	109
-	115	118	121	125	127	128	43	46	67	48	49	50				
8	100	3600	25	40												
	C 01	999	++7	30	*+6	150	610	470	01	02						
	[<u>50</u>]	A50	+7	00	, + 5	130	600	527	n <u>1</u>	03	04					
	03	850	+7	00	+6	140	054	525	52	03	05					
	04	900		20	1440	150	54	204	04	05	07					
,	05	574	47	• • •	1 1 4	100	505 2014	514	07 47	00	10					
	07	300	• 7	10	3 4 5	100	543	630	07	1.0	10					
	0.4	170	. • 7	2,).+b	080	652	651	10	14	12					
	0.9	420	+7	2	1.+5	050	688	701	11	14	15					
	10	690	+7	1	+6	080	702	655	12	13	•••					
	1 11	460	+7	0	+0	100	714	693	13	14	10					
	12	240	+7	0 (3,+6	1.30	711	729	15	16	17	18	19			
	13	120	+7	0 1	1,+6	070	735	744	17	21	22					
	14	047	+7	Q (3.+5	100	724	754	18	20	21	23				
	16	140	+7	02	2.+6	053	759	756	22	25	27					
	15	500	.+7	25	5,+6	110	704	756	19	20	24					
	17	135	+7	· ()	, +6	085	745	770	53	25	25	28				
	16	197	++7	10	+0	70	730	781	24	26	29					
9 (19	140	+ * /	Q .	4 + 0	047	775	770	27	30	26	~ •				
		101		01	2170 11	073	712	700	20	20	51	دد				
	27	114	7	V :	1.70	005	506	768	72	31	3=					
	51	176	+7		1.46	080	796	809	36	15	36	7.8				
	20	165	+7	20	5.46	060	788	832	24	36	19	20				
i	25	088	+7	0	.+6	070	822	799	37	40	42					
	26	120	+7	00	. + 0	060	817	620	38	40	41	101	102	200		
1	27	095	+7	6	1,+6	022	815	841	39	41	44	• -				
	28	067	+7	00	3,+6	065	839	808	42	47	100	103				
	1 31	070	, + 7	0	5,+6	050	854	799	47	51	53	_				
	35	067	+ + 7		3,+0	43	861	814	<u> 18</u>	51	54	55				
	35	692	• • 7	21	0,+6	020	864	768	53	75	77					
	1	058	+7	90	J .+6	950	074	002	54	75	76	78				
	14	22		1	7 * 7	0.15	961	024 855	55	20	120	127				
	1 4	7CV 7CA	***	0.	1	025	891 AUT	878	63	- D D	07					
		250 100	. +7		1170 5.46	025	911	A70	50 17	57 64						
	44	151	+7	1	5. +6	015	915	864	01 ≰R	59	70					
	47	024	+7	16	3.+6	012	929	8d7	70	71						
	48	013	+7	22	.+6	0 6	938	896	71	72						
	49	005	+7	4	4+	2	950	899	72	73						
	50	002	+ +7	14	.+0	1	959	901	73							
	52	036	+7	28	3,46	8	682	810	54	76	79	_				
	L 53	102	+7	- 10) .+6	030	887	788	77	78	80	89				

Hydrodynamic Model Input Card Specification

	1 50	549.+7	23.+6	010	895	800	÷α	81	89				
	1 56		10 44	0.20	Det	7 8 7							
			50,70		700	101	8 V	P 1	٥¢				
	>0	002.11	20140	929	452	784	82	63					
	57	35.+7	20,+6	15	923	777	83	84					
	58	25.+7	10.+6	12	957	771	р.4	AC					
	50	13 . 7	15 44		0.9		22						
		32,01	12,40	75	4/4	471	85	00					
	00	18.*/	10,46	10	989	757	86						
	100	580.+6	0.+6	80	843	820	1 6 1	103	104	48	106		
	1 104	516.44	0.46	75	A 1 9	829		10.0	105	1.49			
							102	100	103	107			
	102	340,40	12.40	10	035	634	<u>a</u> 4	105	108				
	103	229,+5	1,+6	60	853	529	106	109	111				
	104	231.+5	0.+6	50	850	835	107	109	110	112	113		
	1 105	156.46	10 44	10	847	RAT		116	116				
		100100	101-0				100	110	114				
	100	144.00	0,+0	80	690	979	111	112	115				
	1 107	508 .+ 6	0,+6	- 30	ĉ57	842	113	116	117				
	108	90.+6	6.+6	8	855	847	1 + 4	116	118				
	1 100	140 44	0 44	7.6	6.7	877		110		1.54			
9	K	100,10	VITE	7.0	CDI	0.37	115	114	150	121			
	110	1751+0	5,+6	30	663	845	117	115	122				
	1 111	84.+6	0.+6	15	870	830	126	119	123	125			
	1 112	46.+6	2.5+-	15	871	8 3 1	1 1 7	1.25	124	1 3 8			
	1 115			4.2	0.00		121	46.3	167	120			
	1 112	24,70	0,10	#>	074	6 2 2	120	123	124	129			
	1 114	52,+6	1,+6	30	679	836	128	129	131				
	115	120.+6	0.+6	55	875	840	121	130	132	1 13			
	1 114	10 44	1	// 6	877	8.0.6		1 1 1	17.				
						0.00	125	1.30	1.54	132			
	1 114	41,40	0,+0	45	661	84Q	131	132	130	138	139		
	118	56,+8	0,+6	60	881	843	133	134	135	1 3 7	140	141	
	119	60.+6	1.+*	35	881	846	1 7 5	137	142			- •	
	1 120	20 44	6 44	3.5	864	8 4 6							
	1 100	30,70	0140	30	000	0.40	130	143	243			_	
	1 1 2 1	40,*5	0,+6	90	850	843	139	140	143	144	146	147	148
	122	32,+0	.+6	50	885	846	141	142	144	149	150		
	1 123	33.+6	1.+6	30	890	B#1	1/15	1.06	151				
	1 120	11 A	0 44	20	800	8.00		15.					
	1 1 1 1		V . + V	23	044		147	121	124	124			
	125	ه+, ذذ	G"+9	70	891	846	148	149	152	153	155		
	126	37,+6	1,+6	40	859	848	159	153	150				
	127	96.+6	0.46	95	895	851	1 = 1	155	15.0	157			
	1 151	4 7 4 4 4		=	507	924			100				
	L]20	130,40	1 . + 0	50	041	030	121	02					
1	r 01	090000	80000		130		s n 22	01	62		0000		
	60	90000	80000		\$ 20				0.1		0000		
	~~		00000		1 30		1025		0.3		0000		
		004000	000000		-200		,02C	V2	03		0000		
	04	100000	070000		120		*02Z	2 0	04		0000		
	05	080000	058v00		130		.022	03	05		0000		
	DA.	664000	085000		120		0.32	n a	05		0000		
	0.7	002000	070000		1 7.0			6.0			0000		
	07	072000	070000		120		• 0 Z C	04	0.0		0100		
	08	077090	092000		105		250 .	05	07		0000		
n /	09	056000	070000		050		.022	06	07		0000		
יי	10	n75000	640050		0.45		. 0 3 5	0.6	6.6		0300		
			046060		0.70						0.7.0.0		
		000000			010		1053	00	U T		0200		
	12	067000	110000		090		.022	07	10		0000		
	13	065000	095000		090		.022	10	11		0000		
	10	037000	055000		050		6 2 2	p q	11		0000		
	1 1 6	058000	045000		0.6.0		0.32				0100		
		0.00000					1025		12		0 3 0 0	•	
	16	000000	055000		100		1055	11	12		0000		
	17	044000	023000		070		.075	12	13		0000		
	18.	.045000	023000		100		.022	12	14		0000		
	19	043000	030000		1 30		0.22	12	15		0000		
	1 26	031000	018000		0.00		* * * * *	46			0000		
	L - V	0.0000	0.044000		0 4 V		. 024	34	15		0000		

10

Hydrodynamic Model Input Card Specification

	٢							
	21	025000	0#2000	0.8.0	493	11	1 a	0000
	1 35	0,0000	036000	000		1 3		0000
	56	044000	023000	000	.052	13	10	0000
		000000	022000	140	a.022	14	17	0000
	24	024000	020000	130	.025	15	18	0500
	25	n 3 3 0 0 0	049000	070	• 0 > 2	15	17	0000
	65	031000	053000	040	.025	17	18	0000
	27	n5000 0	033000	050	.025	16	19	0100
	28	048000	031000	100	. 0.22	17	20	0000
	29	058000	028000	100		1 g	21	0.050
	3.	013000	050000	070	1025	10	2.1	00000
		00000	017000	100	.022		20	4044
		020000	00000	100	*05C	20	21	0000
	35	644000	027000	040	1022	19	22	0200
	33	02200	033000	090	.055	20	23	0000
	I 3a	008000	030400	070	,025	21	24	0100
	35	037000	045000	060	.072	22	23	0000
	36	039000	052000	100	.072	23	24	0000
	37	032000	030000	060	. 0 3 5	25	25	0050
	36	038000	037000	085	0.52	21	3.	0000
	1 10	A#4000	025000	070		24	27	0780
	<i>"</i>	A75000	023000	690		24		0,00
		035000	030000	40 4	1055		20	0000
	41	022010	034000	979	* 055	26	21	2660
	42	031000	022000	065	.055	25	28	0000
	a 4	38000	. 18000	7	.025	27	102	1200
	47	056620	019000	040	.022	53	- 31	0000
•	48	32000	10000	50	.022	35	100	0
	S 1	025000	023000	045	.022	31	32	0000
	53	025000	025000	040	.025	3.1	35	0500
	54	027000	072000	040	032	12	3.6	0.000
	Se.	622000	022000	010	1075	10	27	0000
		02200V	012000	010		32	31	4000
	30	030000	022000	V08	+025	27	24	1000
	<u>دە</u>	12300	12000	50	• C S G	43	128	50
	66	050000	015000	D 2 5	.025	# 3	44	0100
i	67	022000	014000	620	.025	43	45	0100
	68	023000	012000	20	.025	45	46	0100
	69	025000	012000	20	.025	44	46	0100
	70	023000	016000	- <u>8</u>	025	46	47	0800
	71	021000	008000	3	. 625	47	48	1000
	75	020000	004030	ī	. 0 3 5	48	49	1000
	73	018000	0.02000	0 Š	005	4.0	50	1000
	76	\$20000	022000	070	1025	10	7.	2000
	1,3	024000	022000 A TAJAA	010	1025	23	20	0000
	12	018000	030000	010	.025	39	24	0000
		933000	031400	030	1052	35	55	0400
	78	031000	014000	035	,025	36	53	0600
j	79	029000	015000	68	,025	52	54	1009
	80	032000	015000	040	.025	53	55	0100
	81	028000	025000	910	. 025	54	55	0500
	82	031000	015000	35	.025	55	56	0200
	83	030000	012000	25	.022	56	57	300
	80	026000	010000	20	0.3.2	57	5 A	400
	Ac	A2700A	010000	16	100E		50	500
l	84	02.000	410000	13	.025	20	24	300
	60	20000	25060	13	1022	24	24	320
	04	24000	27030	13	,025	25	24	p
	100	40000	12000	15	,020	66	23	9
	101	41000	12000	75	.020	26	100	0
1	105	41000	18000	7 S ·	.020	26	101	0
	103	18000	19000	60	.020	28	100	0
	104 -	17300	27000	40	.020	100	101	Ŷ

10

2

C

Hydrodynamic Model Input Card Specification

·.	r .							
	105	17600	30000	13	.020	101	102	0
	106	23000	14000	50	.020	100	103	0
	107	20200	15900	60	.050	101	104	0
	100	21000	15000	1	.025	102	105	700
	104	10000	15000	50	.020	103	104	0
	110	1 1800	17000	14	-025	104	105	0
	111	1//100	7000	50	.070	103	106	0
	1 1 1 1	15200	7000	73	.020	104	100	0
	114	14000	7000	23	.022	104	107	500
	115	11530	12000	75	.023	104	100	200
	115	9400	11000	14	025	107	108	50
	117	11400	6500	30	0.02	107	110	ŏ
	118	13500	6000	B	.025	105	110	300
	119	11300	5500	15	. 025	109	111	0
	120	11500	4800	65	.020	109	113	ů.
	121	15200	8700	50	.020	109	115	ŏ
	521	15200	\$2700	35	.022	110	115	150
	123	8500	5500	15	550 ·	111	-13	0
	150	6000	5600	15	.025	112	113	D
	125	7700	7000	10	025	111	512	0
	126	11000	7000	15	.025	37	111	0
	127	15000	4000	5	.025	37	112	250
	128	11000	3700	15	£550.	112	114	70
10	(129	9700	4200	40	.055	113	114	0
	1 1 50	19500	11500	- 35	.020	115	116	0
		8200	3800	35	.020	114	117	25
	1 1 2 2	10800	4500	55	*050	115	117	0
		12000	4800	60	.020	115	118	0
	130	14300	4000	40	.020	110	118	Ū Fo
	1 1 3 3	14200	10000	33	.024	110	114	20
	1.20	8000	10000	60 4 A	.070	11/	110	v
		7000	4000	- 10	• DZV	110	117	Ň
	1 10	8000	3000	75	.022	117	121	
	140	7300	4000	75	020	114	121	0
	141	6200	3000	85	- 020	118	122	ů.
	142	7300	3800	35	. 0.22	119	122	60
	143	10000	8000	60	. 0 2 0	120	121	. 0
	144	10060	8000	60	.020	121	122	ō
	145	6800	4300	30	.022	120	123	20
	146	7000	3300	40	.072	121	123	0
	147	12000	2300	75	.020	121	124	Q
	148	10100	2700	80	.050	121	125 -	¢
	149	9000	2500	75	°050	155	125	0
	150	6500	3000	40	.025	122	120	40
	1 121	6000	4600	35	+055	123	129	20
	132	8000	10000	60	.020	124	125	0
	123	13000	10000	60	.020	125	120	0
	154	12000	3500	80	.020	124	127	0
	1.55	10100	3300	5V 50	1050	121	127	
	1 157	11800	8000	3 V 7 E	1050	127	128	20
	7	11000		13	• • • 2 •	121	120	24
17	WATER	YEAR 1972	AVERAGE TRIB	UTARY INFL	3 K S			
12	1 0	0 0	0 0	0 0				
13	1 1		- •	- •				

t

2-35-96

Æ

Hydrodynamic Model Input Card Specification

14a 145 15	{	=2,9 ¹ 1	6 -6,5 130	50 3,4 3,	1 7,4	9,6	•9.	16.	7.6 2	2.1 -	·6,5 Z	8 e 4	7,4				
16a	(1	160													_	
	ſ	0	0	0	0	0	0	, o	0	0	0	0	0	0	0	0	0
165		. 0	Ô	P.	0	0	0	Q A	0	0	0	0	0	0	9	9	0
		0 9	0	Ŭ	ų	v	Ű	v	U	U	U	V	v	v	A	A	¢.
•	e	11	4640	•													
	1	27	3300	ġ.													
		45	470.														
17	S	48	120.	•													
		50	1085	ο,													
		108	1000	•													
		117	75														
	ſ	124	110.														
18	{	1	130	Q													
19	•																

APPENDIX B

Node Renumbering Scheme

CROSS REFERENCE + + INTERNAL NODE NUMBER VS, EXTERNAL NODE NUMBER (USED IN QUALITY PROGRAM AQUAL)

0

3

w Vi

5

24,

1	1	5	2	3	3	4	4	- 5	5	6	6	1	7	. 8	8	9	10	10	9
11	11	12	12	13	13	14	14	15	15	16	16	17	17	18	18	19	19	20	20
21	21	55	22	23	53	24	24	25	25	26	26	27	27	26	28	29	100	30	101
31	102	32	31	33	32	34	103	35	104	36	105	37	35	38	36	39	37	40	106
41	107	4 2 V	108	43	53	44	52	45	111	46	112	47	109	48	110	49	55	50	54
51	113	52	114	53	115	54	116	55	56	56	117	57	118	58	119	59	57	60	120
61	121	65	122	63	58	64	123	65	124	66	125	67	126	68	59	69	127	• 70	60
71	128	72	43	73	44	74	45	75	46	76	47	11	48	78	49	79	50		

THE WIDEST TOTAL BAND WIDTH IS 14 , THE HIGH SIDE MAXIMUM WIDTH IS 7 , AND THE LOW SIDE MAXIMUM WIDTH 15 7

- - - - -

Computational and Output Control Options

UPPER CODK INLET, KNIK ARM AND TURNAGAIN ARM Sample problem

NUMBER OF HYDRAULIC CC.DITIONS	1
NUMBER OF TIDAL CYCLES PER CONDITION	3
NUMBER OF MYDRAULIC TIME STEPS PER CYCLE	900
NUMBER OF QUALITY TIME STEPS PER CYCLE	25
NUMBER OF TIDAL STAGE PLDTS	1
NUMBER OF TIDAL VELOCITY PLOTS	2
OTNAMIC MYDRAULIE DUIPUT UNIT	0
STEADY STATE HYDRAULICS DUTPUT UNIT	12.
TIDAL PERIOD, HOURS	25,
RESULTS PRINTED AT THE FOLLOWING 6 JUNCTIONS	

1 12 26 49 56 117

AND FOR THE FOLLOWING 6 CHANNELS

18 72 83 127 140 157

.

FOLLOWING PLOTS ARE HADE

TIDAL STAGE FOR JUNCTIONS 1 117 49 TIDAL FLOW FOR CHANNELS 72 527 140

2

through the

1

Invariant Channel Data

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM SAMPLE PROBLEM

INVARIANT CHANNEL DATA

CHANNEL	LENGTH, FT	HIDTH, FT	HYD RAD, FT	MIN ELEY, FT	MANNINGS N	END J	UNCTIONS	SIDE SLOPE	HAX TIME, SEC
1	90000	80000.	130.0	130.0	.022	1	Z	۹.	1295.
2	90000.	80000.	130.0	130.0	.022	1	3	Q.	1295.
3	89000	80000.	200.0	200,0	520	2	3	0.	1057.
4	100000	70000.	120.0	120.0	520	5	4	υ.	1484
5 -	80000.	84020	130,0	130.0	550	Ĵ	5	0.	1151.
6	64000.	85000	120.0	120.0	.022	4	5	Ó.	953
. 7	92000	70000.	130,0	145.1	.022	4	6	100.	1324
8	77000	92000	105.0	105.0	550	5	•7	0	1214.
9	66000.	70000	50.0	50.0	.022	6	7	Ű.	1390
10	75000.	40000	65.0	153.3	.025	6	8	300.	. 0951
11	69000.	41000	70.0	133,3	.025	8	9	300.	1203.
12	67000	110000	90.0	90.0	.022	7	10	0.	1126
13	65000.	95000.	40.0	90.0	022	10	11	0.	1092.
14	37000.	55000	50.0	50.0	.022	9	11	0.	779.
15	58000	40000.	60.0	5.19	.022	9	12.	300.	1143
15	69000.	55000.	100.0	100.0	.022	1 I	12	0.	965
17	44600	21000.	70.0	70.0	.025	12	13	0.	817.
18	45000.	23000.	100.0	100.0	- 022	12	14	0.	124.
19	43000.	30000	130.0	130.0	. 022	12	15		619.
20	31000	38000.	40.0	40.0	.022	14	15		105
21	25000	42000.	80.0	80.0	.022	13	14	0.	#41.
22	44400	25000	80.0	80.0	.025	13	16	0.	775.
23	44000	22000.	140.0	140.0	.022	14	17	0	613.
24	58000	36000.	1 30 0	72.0	. 0.25	15	18	500	835.
25	13000	46000.	70.0	70.0	.022	16	17	0.	611.
26	11000	51600	. 40 0	40 0	025	17	1.8	• •	705.
27	50000	33000	50.0	54.6	- 029	16	19	100	1051
28	48000	3,000.	100 0	100.0	022	17	20	1. U.	712
20	58000	20000-	100 0		022	1.4	21	so.	011
30	13000	50000		70.0	. 022	19	20	0.	611
Ň	28000	55000.	100.0	100.0	. 0.2.2	20	21	0.	450.
12	18000	27000.	40.0	46.9	. 025	19	52	200.	1001.
11	55000	33000.	90.0	90.0	. 0 2 2	20	23	0.	924.
34	60000	30000.	70 0	A1.0	. 0.25	21	24	100	1263.
35	37000	45000.	60.0	60.0	. 0.2.2	22	21	0.	729.
36	19000	52000	100.0	100.0	.022	23	24	0	627.
17	32000	30000.	60.0	63.4	025	22	25	50.	630
18	38000	37000.	65.0	85.0	. 0.2.2	23	26	0.	554.
17	46000	25000.	30 0	35 7	. 025	24	27	700	1145
úo	15000	30000-	- H0.0	80.0	. 022	25	20	. 0	617
41	15000	30000.	70.0	70.0	. 0.22	26	27	0.	A50.
u 2	11000	22000.	45 0	65.0	.022	25.	28	V .	591.
u U	14000	18000.	7 0	11 2	.025	27	102	1200	1249
17	27000	12000.	40.0	40.0	.022	28	Ĩ		550 · .
4 A	12000	16000.	50 0	50.0	.0.2	12	100	0	674.
- ¥	20000	104445	2010	2414	1 V G G	~ •	144	ч <u>в</u>	4174

NOTE - - + INDICATED NEGATIVE HIDTH IS PUBSIBLE HITH ANTICIPATED TIDAL STAGE

(s, ۲, 1

õ

 \sim

Table B-3 - (Cont.)

(2) whether the standard to one down and defined and the second state of the second state.

Anvariant Channel Data

UPPER COOK INLET, KNIK ARH AND TURNAGAIN ARH Bample Problem

INVARIANT CHANNEL DATA

CHANNEL	LENGTH, FT	HINTH, FT	HYD RAD, FT	HIN ELEV, FT	MANNINGS N	END .	JUNCTIONS	SIDE SLOPE	MAX TIME, BEC
51	25000	24000.	45.0	45.0	.022	31	32	0.	546,
53	26000.	24000.	40.0	56.0	,025	31	35	500.	592.
54	27000	22000.	40,0	40.0	.022	35	36	0	014.
55	\$5000	22000	10.0	10.0	025	32	37	9	708,
56	30000.	22000	6.0	7,2	025	37	52	1000.	1037
65	12500.	13000.	50.0	53,3	020	43	128	30.	263.
66	20000	15000.	25.0	27.6	025	43	44	100.	525
67	22000.	14000.	20.0	21.7	025	43	45	100.	613.
68	23000.	12000.	20.0	22.1	025	45	46	100.	641.
69	25000.	12000.	20.0	22.1	025	44	46	100.	697.
70	23000.	16000.	8.0	11.1	025	46	47	600	760
71	21000	8000.	3.0	4.1	.0.25	47	48	1000.	772.
72	20000	4000.	1.0	1,2	.025	48	49	1000.	769.
73	18000	2000.	5	. 6	.025	49	50	1000.	701.
75	24000	22000.	30.0	30.0	025	35	36	0	598
76	18000	30000.	10.0	10.0	025	36	52	υ.	579.
77	33000	30000.	30.0	41,5	025	35	53	400.	822.
78	31000	19000.	35.0	35,0	.025	36	53	0	737.
79#	28000.	15000.	68.0	15.0	,025	52	54	1000	256
80	32000.	15000.	40,0	47.6	.025	53	55	100.	728.
81	28000.	25000.	10.0	11,3	.025	54	55	500,	901.
58	31070.	15000.	35,0	55.7	.025	55	56	200.	737.
83	30000.	12000.	25.0	40.0	.022	56	57	30 <i>u</i> .	788
84	26000.	10040.	20,0	25.0	,022	57	58	400.	724.
85	27000	10000.	15,0	50.0	.055	58	59	500.	804.
86*	31000	6000.	15,0	17.1	•055	59	60	320 *	923.
89	24000	25000.	15,0	15.0	025	55	54	0.	715.
100	40000	12000.	75.0	75,0	.020	5.6	59	V.	723.
101	41000.	12000,	75.0	75,0	,020	26	100	٥.	741.
102	41000.	1A000.	75,0	75,0	.050	59	101	Ο.	741.
103	18000.	19000.	60.0	60.0	.020	28	100	V.	355,
104	17300,	27000.	40.0	40.0	.020	100	101	Ο.	394.
105	17690.	30000.	13.0	13.0	•050	101	102	Ο.	540.
106	23000,	14000.	60.0	60.0	•020	100	103	0.	453,
107	20500	15000.	60.0	60.0	•050	101	104	0.	404.
108	21000	10000.	7.0	15*3	,025	105	105	700.	712.
109	11300.	15000.	60.0	60.0	.020	103	104	θ.	553.
110	14000.	17000.	14.0	14.0	• 0 2 5	104	105	0.	423.
111	13800	9000.	85.0	85.0	.050	103	106	0.	237.
112	14100	7000.	75.0	75.0	.020	104	106	Q.	455.
113	15200	A000.	25.0	25.0	055	104	107	0.	199
114	140.00.	7000.	7.0	14.0	,025	105	108	500,	475.
115	11500.	15000	75.0	63.8	.050	106	109	30.	208
116	9400	11000,	14,0	14.0	.025	107	108	0,	284
117	11400.	A200.	30,0	30,0	.022	107	110	Ο.	284.

NOTE - - * INDICATES NEGATIVE WIDTH IS POSSIBLE WITH ANTICIPATED TIDAL STAGE

5-102

2 - 3

Table B-3 - (Cont.)

1000

Invariant Channel Data

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM SAMPLE PROBLEM

INVARIANT CHANNEL DATA

CHANNEL	LENGTH, FT	HIDTH, FT	HYD RAD, FT	MIN ELEV, FT	MANNINGS N	END	JUNCTIONS	SIDE SLOPE	MAX TIME, SEC
118	13500	6000.	8,0	11.1	.025	108	110	300.	460.
119	11300.	5500.	15,0	15.0	.025	109	111	0,	337
120	11500.	4800.	65.0	65,0	.020	109	113	0.	220
151	15200.	8709.	50,0	50.0	.020	109	115	٥.	320
155	15200.	12700.	35,0	49.5	\$20.	.110	116	150.	361,
123	8500	5500,	15,0	15.0	.022	111	113	0.	253.
124	6000.	5800,	15.0	15.0	.025	115	113	Ο.	179.
125	7700	7090.	10,0	10,0	,025	111	112	ν.	5n8"
159	11000.	7000.	15,0	15.0	.025	37	111	9.	324,
127	15000.	4090.	5.0	6,3	,025	37	112	250.	529.
128	11000,	3700.	15.0	18.1	.025	112	114	70.	328,
129	9700.	u200.	40,0	40,0	* 055	113	114	v.	221+
130	10300.	11500.	35,0	35.0	020	11.5	110	Ο,	245.
131	\$200.	3800.	35.0	40.4	.050	114	117	25,	195,
135	10500,	4500.	55,0	55,0	020	115	117	Ο.	550*
- 133	15000*	4890.	60.0	60,0	.020	115	118	Ο.	520*
134	14500.	4009.	40.0	40.0	.020	116	118	. 0,	330,
135	14200.	6500.	35,0	41.7	055	116	119	΄ 5v.	337.
136	8000.	10000,	60,0	60.0	,020	117	118	Q.	154.
1 37	8000	10000.	60,0	60.0	.020	118	119	Ο.	158.
138	` 7900,	4000.	30.0	30,0	.022	117	120	0.	174.
139	8000.	3000.	75.0	75,0	.020	117	151	θ.	145.
140	7300.	4000.	75.0	75,0	,020	118	121	0.	132.
141	0.058	` 3000.	85,0	85.0	.020	118	155	Q.	141.
102	7 300	3800.	35,0	63.3	.022	119	155	60.	173,
143	10000.	8000.	60,0	60.0	020	120	151	0.	197,
144	10000.	,000A	60.0	60.0	.020	121	155	0.	197.
145	6800.	4300.	30,0	32,5	,022	150	123	20.	169.
146	7000.	3300,	40.0	40.0	.055	121	123	0.	159.
147	15000	2300,	75.0	75.0	.020	151	124	Ο.	217,
148	10100.	2700.	80.0	80,0	.020	151	125	0.	178.
149	9000	2500.	75.0	75.0	.020	155	152	υ.	163.
150	6400.	3800.	40,0	57,3	,022	155	126	40.	155.
151	6000.	4800.	35.0	38,1	.022	153	124	20.	165.
152	6000.	10000.	60,0	60.0	,020	124	125	Q .	158,
153	8000,	10000.	60.0	60,0	. 020	152	126	0.	158,
154	12000.	3500.	80.0	80,0	.020	124	127	Ο.	211.
155	10100.	3500,	90.0	80,0	020	125	127	۷.	178,
156	9900.	3000.	50,0	63,4	.020	159	151	20,	209.
157	11800.	8000.	75.0	90,3	,020	127	128	30.	213,

NOTE - - + INDICATES NEGATIVE HIDTH IS POSSIBLE WITH ANTICIPATED TIDAL STAGE

35-103

Invariant Node Data

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM Sample problem

2-35-104

			1	NVARIANT JUNCTION	I DATA	· .								
JUNCTION	AREA, MSF	SLOPE, MSF/FT	DEPTH, FT	HIN ELEV, FT	X-CURD	Y-CORD		СНА	пыега	ENTE	RING	JUNCT	101	
1	9990.	:0	150.0	150,0	610.0	470.0	1	2	0	0	v	0	0	0
2	8500.	20	130.0	130,0	600,0	527,0	1	3+	4	0	0	0	0	0
3	8500	20	140.0	140.0	654.0	525,0	2	3.4	5	0	0	0	. 0	0
4	9000.	20,0	150.0	190.2	624.0	584.0	4	6	7	0	0	0	0	0
5	6900	0	130.0	130,0	665.0	574.0	5	6	8	0	0	0	0	0
6	5000.	18.0	100,0	130,8	645,0	636,0	7+	. 9	104	0	Q	0	0	0
7	7600.	0	100,0	100.0	662.0	619.0	· 8*	9	12	0	0	0	0	0
8	3700.	30 0	80,0	123,3	652.0	681.0	10+	11#	U	0	0	0	0	0
9	4200.	21]0	50,0	58,6	658,0	701.0	11+	14	15+	0	0	0	0	0
10	6900.	12,0	80,0	86,6	702.0	655.0	15+	13+	0	0	U	0	0	0
11	4600.	5,0	100,0	105,3	714.0	693.0	13	14	16	0	0	· 0	0	0
12	2400	20	130.0	150.0	711.0	729.0	15	16	17	18	19	0	0	0
13	1200.	1 0	70,0	12,2	735.0	744.0	17	21+	- 22+	Q	Ŷ	0	0	0
14	970.	0	100.0	100.0	724,0	754.0	18	20	51	23*	0	0	0	0
15	2000.	25.0	110.0	80.0	704.0	756.0	19*	20	24	0	Ų	0	0	0
16	1400.	2 0	53,0	55,2	759.0	756.0	22+	25+	27	0	0	0	0	0
17	1350	20	85.0	85.0	746.0	770.0	52+	-25	56	28+	· 0	0	0	0
15	1970.	18.0	70.0	109.4	730.0	781.0	24	50	29•	0	0	0	. 0	0
19	1400.	7.0	47.0	54,4	786.0	770.0	27+	30 +	32	0	0	0	U	0
20	1610.	0	95.0	45.0	772.0	785,0	59+	30	31 #	33	0	0	0	0
21	1680.	1 0	85.0	87.3	762.0	799.0	56*	31+	34	0	0	0	0	0
- 22	1160.	4 0 .	55.0	61.6	806.0	788.0	35	35	37*	0	0	0	0	0
23	1760.	.0	80.0	80.0	796.0	807,0	33+	35	30*	38*	Q	0	0	0
24	1650.	25.0	60.0	66.0	788.0	0.568	34+	36+	39	0	0	0	0	0
25	880.	1.0	70.0	73.1	855.0	749.0	37	40.	42	0	Q	0	0	0
26	1200.	. 0	80.0	60.0	· 817.0	820,0	30•	40	41	101	102	100	0	0
27	950	40 0	22.0	23.7	815.0	141.0	39+	41#	44	0	0	0	0	0
28	670.	0	65.0	65.0	639.0	809.0	42	47	100+	103	0	0	0	0
31	700	3 0	50.0	57.0	854.0	749.0	47	51	53	0	Û	0	0	0
32	670.	3 0	43.0	48.3	861.0	814.0	48*	51	54	55	0	0	0	0
35	920	20.0	20.0	29,11	864.0	788.0	53+	75+	77+	0	0	0	0	0
36	580.	- 0	.36.0	36.0	874.0	6u2,0	54*	75	76	78	0	0	0	0
37++	250	15.0	9.0	16.7	869.0	824.0	55	56	150	127	0	0	0	0
43	190	4.0	35.0	45,8	901.0	865.0	65*	66	67	0	0	0	0	0
44	230	30	25.0	31,5	401.0	878.0	60	67	U	0	0	0	0	0
45	250	3.0	25.0	30.7	913.0	870.0	67	68	0	0	0	0	0	0
46	510.	15.0	15.0	22.4	915.0	884.0	68	69	70	0	0	0	0	0
47	260	18.0	12.0	14.4	929.0	887.0	70	71	0	Q	0	0	0	0
45++	1 10.	22 0	6.0	5.9	938.0	896.0	71	72	0	0	0	0	0	0
49.4	50	45.0	2.0	1.1	450.0	899.0	72*	73	0	0	U	0	0	0
50	20.	10.0	1.0	2.0	959.0	901.0	73	0	0	0	0	0	0	0
52.4.4	360.	28 0	8.0	15.9	882.0	610.0	50	76	79*	0	0	0	0	0
51	1020.	10 0	50.0	36.6	887.0	708.0	77 +	78	80+	89	Ó	Ó	0	Q
54	490.	23.0	10.0	16.1	895.0	800.0	79	61	89	0	Ó	0	0	Ó
55.4.4	590	30.0	20.0	19,7	906.0	767.0	80*	81	82#	0	Ó	0	0	0
				- 8 -	. = •	-								

in the second second second second second second

NOTE - - + INDICATES THAT DEPTH OF CHANNEL ENTERING JUNCTION IS LARGER THAN JUNCTION DEPTH ++ INDICATES NEGATIVE VOLUME OR AREA IS POSSIBLE WITH ANTICIPATED TIDAL STAGE

Table B-4 - (Cont.)

-

and a

Invariant Node Data

UPPER CODK INLET, KNIK ARM AND TURNAGAIN ARM SAMPLE PROBLEM

(internet)

INVARIANT JUNCTION DATA

JUNCTION	AREA, MSF	SLOPE, HSF/Ft	DEPTH, FT	MIN ELEV, FT	X-CORD	Y+CORD	CHANNELS	I ENTERING	JUNCTIC	N	
56	6 50.	30,0	20.0	20,7	925,0	784.0	82* 83* 0	0 0	0	0	Q
57**	380.	20,0	15,0	19,0	943.0	777.0	83+ 84+ 0	0 0	0	0	Û
58	230	10 0	12,0	20.1	957,0	771.0	84# 65 O	0 0	0	0	0
59	350.	15 0	15.0	5)'2	974.0	771.0	85 86 0	00	0	0	0
69##	160.	10,0	10,0	18.0	989.0	759.0	86 0 0	0 0	0	0	0
100	550.	· _ 0	80,0	80.0	843.0	620.0	101 103 104	48 106	0	0	0
101	516.	10	75.0	75.0	839,0	829,0	102 104 105	107 0	0	0	0
102	340,	15,0	10.0	14.9	835.0	839,0	44 105 108	0 0	0	0	0
103	553	1,0	60.0	71,1	853,0	854.0	106 109 1114	0 0	0	0	0
104	231.	、 0	50.0	50,0	850.0	835.0	107 109 110	115+ 113	0	0	0
105**	156.	10,0	10,0	15.6	847.0	843.0	108 110 114	0 0	0	9	0
106	149.	~ 0	80.0	80.0	860.0	836.0	111+ 112 115+	0 0	0	0	. 0
107	108.	ر ن	30,0	30,0	857,Q	842,0	113 116 117	0 0	0	0	0
08	90.	6,0	8.0	15,0	855.0	647,0	114 116 118	0 0	0	0	0
109	160.	0	70,0	70,0	867.0	837,0	115+ 119 120	121 0	0	0	0
110	178.	5,0	30,0	35.6	863.0	845,0	117 118 1224	0 0	0	Ŷ	0
111	84,	.0	15.0	15.0	870.0	830,0	159 118 153	125 0	0	0	0
112**	45.	2,5	15.0	18,4	873.0	831.0	127 125 124	128 0	0	0	0
113	54,	0	45.0	45.0	874.0	835.0	120 * 123 124	129 0	0	0	0
114	52,	1 0	30.0	52.0	879,0	8 36 0	158 159 131	0 0	0	0	0
115	150	.0	- 55,0	55.0	875,0	840.0	121 130 132	133* 0	0	9	Ó
116	149.	4 0	40,0	37,2	873,0	846.0	1224 130 1544	1354 0	Ó	0	0
117	41.	. 0	45.0	45.0	881.0	840.0	131 132+ 136+	130 139	• 0	0	0
118	56.	0	60.0	60.0	881.0	843.0	133 134 136	1 37 140	* 141*	0	0
119	60.	1 0	\$5.0	60.0	881.0	845.0	135 137 1424	0 0	Ō	0	0
120	30.		30.0	.30.0	806.0	840.0	138 143+ 145+	0 0	0	Ō	Ó
121	40.	0	90.0	90.0	886.0	843.0	139 140 143	144 146	147 1	48	Ó
122	32.	10	50.0	50.0	886.0	846.0	1410 1420 1440	1494 150	• 0	Ō	ō
123	33.	1 0	30.0	33.0	890.0	841.0	145 1464 1514	0 0	Ô.	ō	0
124	44		55.0	55.0	894.0	844.0	147 4 151 1524	1545 0	ŏ	ò	ē
125	33		70.0	70.0	891.0	846.0	140.4 149. 152	151 155	• 0	ŏ	Ċ
126	v.	1 0	40.0	37.0	889.0	646.0	1504 1534 1564	0 0	ō	ō	ō
127	96.		95.0	95.0	895.0	851.0	154 155 156	157 0	ō	ā	ē
128	136.	1 0	50.0	66.1	897.0	8.8.0	157# 65 0	0 0	ŏ	ŏ	ō

NOTE - - * INDICATES THAT DEPTH OF CHANNEL ENTERING JUNCTION IS LARGER THAN JUNCTION DEPTH ** INDICATES NEGATIVE VOLUME OR AREA IS POSSIBLE WITH ANTICIPATED TIDAL STAGE

ESTUARY STATISTICS (AT MSL)	
TOTAL VOLUME, CU PT	1117+14
TOTAL SURFACE AREA, SO FT	21+52+15
HEAN DEPTH, FT	9954+02

Tidal Time-Stage Data

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM NATER YEAR 1972 AVERAGE TRIBUTARY INFLOWS

	-,1307	8067	7,5438	-,1	313	,7974		-1,0495	0606	·	
	TIME	DBSERVED	COMPUTED	DIFF							
	-2,9000	-6.5000	-6.4705	.0295							
	3,4000	7,4000	7.3798	-,0202							
	9.6000	-9.0000	-9,0190	-,0190							
	16.0000	7.6000	7.5996	- 0004							
	22,1000	+6.5000	-6.4705	0295							
	28,4000	7.4000	7.3798	- 0202							
	-1,3250	-4.4637	-4,5220	-,0584				,			
	2500	.4500	4346	-,0154							
	1.8250	5,3636	5.4592	,0745							
	4,9500	4,9974	4,9040	-,0934							
	6 5000	- 8000	- 7725	,0275							
	8,0500	-6.5974	-6,5193	.0781							
	11,2000	+6,5681	+6.6396	-,0715							
	12,8000	-,7000	6810	0190							
	14,4000	5,1681	5,2223	,0542							
	17,5250	5,5343	5,4829	-,0514							
	19,0500	.5500	,5239	-,0261							
	20,5750	~ 4 , 4344	-4.3719	,0625							
	23,6750	-4.4037	-4,5221	⇒ .0584							
	25,2500	.4500	.4345	-,0155							
	26,8250	5.3636	5.4381	0745							
101	TAL 1			.8993							
		SUHMARY	BY HOUR								
1	3.02 2	5.85 3	7.30 4	6.93 5	4,76 6	1.24	7	-2.80 8	=6,37 9	-8,59 10	-8.89
11	-7.19 12	-3.91 13	14 14	3.97 15	6.65 16	7.60	17	6.65 18	4,12 19	70 20	-2,73
21	-5.32 22	-6.45 23	-5.85 24	-3.67 25	- 44 26	3.02	-			·	• •

2-35-106

and the last of the last of the last of the last of the

Summary of Boundary Conditions

UPPER COOX INLET, KNIK ARM AND TURNAGAIN ARM Mater year 1972 Average tributary inflows

JUNCTION TO JUNCTION EVAPORATION HATE, INCHES/MONTH

1 130 3,00

HOURLY WIND VELOCITY (MPH) AND DIRECTION (DEGREES CLOCKWISE FROM NORTH) CHANNEL TO CHANNEL

160	1	.0	٥.	2	.0	0	3	. 0	٥.	4	. 0	0.	c	0	•
	.6	۰,	٥.	7	.0	0.	6	.0	ō.	ġ	.0	0.	10	• •	Ň,
	11	• 0	Ο,	12	.0	0,	13	.0	0	14	Ĩ	0.	19	. 0	ו
	16	.0	٥.	17	.0	Ο,	18	.0	ο.	19	Ĵ	0.	20		0.
	21	.0	۰.	22	.0	0.	23	0	0	24	.0	ō.	25		

20

in the second

۰.

INFLOW AND OUTFLOW DATA

1

JUNCTION	INFLOH, CFS	WITHDRAHL, CFS
11	4600.00	. 00
27	33000,00	.00
45	470.00	.00
48	120.00	.00
50	10580.00	.00
60	1000.00	.00
108	b00,00	.00
117	75.00	00
124	110.00	.00
JUNCTION	TO JUNCTION	GROUND WATER INFLUW, CPS
1	130	.00

JUNCTION

STORM WATER INFLOW, HOUR AND FLOW, CFS

て ω σ_ι õ J

Computed Time-Stage at Selected Nodes

UPPER CODK INLET, KNIK ARM AND TURNAGAIN ARM Mater year 1972 Average tributary infloms

-7,28	-10.12	10 78		
•3,23			-2,82	-9.40
-	-11,20	9,86	-7.14	-12.47
) 1,33	-6,79	9.06	-11,12	=11,99
5.31	14	8,35	-11,01	=4,01
6 07	5.83	7,71	-2,52	3.81
i 8,98	10,35	7,15	5.16	10.41
) 7,74	12,68	7,27	11,25	14.13
4,40	11.96	9.46	15.05	14,79
,79	8.45	12,16	15.01	12.20
7 =2,65	3,51	13.64	11.09	7,09
р <u>- 5,14</u>	-1.09	12.85	7,12	1.11
-9,12	-6.62	11,74	2,46	-4,52
-10,33	-10.86	10,72	-2,22	- 4, 38
7 -7,61	-13,63	9,61	-6,72	=13,30
5 =1.91	-12,17	9,02	=11,19	-15,03
2,86	-4 , 39	8.31	-14,76	-10,74
5 . 6,93	2,42	7.,68	+7,16	- .99
2 9,23	8,48	7,12	. 21	7.01
9,54	15,35	6.63	8,13	15 63
5 7,58	13,65	7.88	13,84	15,50
2 4,17	11,65	10,80	16,48	15,15
5 ,81	7.76	13,50	14,58	11.49
5 - = 2,35	2.76	14,55	10.63	5,95
7 -5.44	-2.19	13,09	6.42	.12
4 -7,53	-0.00	11,92	1,70	-5,06
2 =7,26	-10,09	. 10,87	►2,8S	-9.38
5 5,2 2	-11,18	9,94	-7.16	-15.44
) 1,34	-6.78	9,13	-11,13	=11,96
5,31	-,14	8,41 *	⇒ I0,98	-4.00
6 8,07	5,83	7,77	+2,52	3,81
4 8.98	10.35	7.20	5,16	10.42
) 7 ,73	12.68	7,31	11,25	14.13
7 4,40	11.95	9,50	15,05	14.79
,79	6.45	12.19	15.00	12,19
+2,66	3.50	13,00	11.09	7,09
-5,14	=1.69	12,67	7,11	1.11
	-0.02	11,75	2.46	-4.55
4 =10,33	=10,87	10.73	-5,55	-9,58
7 = 7,61	-13,63	6 85	-0,73	~13,37
⇒	-12+17	9,02	+11,19	=15,63
2,87		8.31	-14,76	-10,74
5 6,93	2.42	7.68	-7,16	-,99
15.6	8.49	7,12	. 21	7.01
) 9,54	12,32	6,63	8,13	15*63
3 7,58	13.65	7,89	13,64	15,56
2 4,17	11.85	10.80	10,48	15,15
5	7.76	13,50	14,58	11,49
5 -2,35	2,76	14,22	10.63	5,95
7 -5.44	-2,19	13.09	6.42	.12
-7,53	-6.66	11,92	1,70	-5,05
	9,54 7,58 4,17 ,61 -2,35 -5,44 -7,53	9,54 12,32 7,58 13,65 4,17 11,85 ,61 7,76 -2,35 2,76 -5,44 -2,19 -7,53 -6,66	9,54 12,32 6,63 7,56 13,65 7,89 4,17 11,85 10,80 ,61 7,76 13,50 -2,35 2,76 14,22 -5,44 -2,19 13,09 -7,53 -6,66 11,92	9,54 $12,32$ $6,63$ $8,13$ $7,58$ $13,65$ $7,89$ $13,64$ $4,17$ $11,85$ $10,80$ $10,48$ $,61$ $7,76$ $13,50$ $14,58$ $-2,35$ $2,76$ $14,22$ $10,63$ $-5,44$ $-2,19$ $13,09$ $6,42$ $-7,53$ $-6,66$ $11,92$ $1,70$

1351

3

80

7)

paula

FUELO

Computed Flow and Velocity in Selected Channels

UPPER COUK INLET, KNIK ARM AND TURNAGAIN ARM Mater year 1972 Average tributary inflows

(Jacob

(District)

	CHANNE	L· 18	CHANNEL	12	CHÂNNEI	63	CHANNE	L 127	CHANNE	L 140	CHANNE	L 137
HOUR	FLOW	VEL.	FLOW	VEL.	FLOW	VEL.	FLOW	YEL.	FLOW	YEL,	FLOM	VEL.
	(CF5)	(FP3)	(CFS)	(FPS)	(CFS)	(FP3)	(CFS)	(FPS)	(CFS)	(FPS)	(CF3)	(FPS)
1.00	-5516137	-2,58	-191106.	-5.15	-1416006	-5,00	٥.	.00	•741360.	-2.82	-1843617.	-3.49
2,00	4032225	1,87	-157056.	=2,01	+1131625,	-4,80	0,	.00	+508879	-2.03	-1230665	-2,46
3.00	13055712.	5,67	-130323	-1,91	+881862.	-4,49	0	.00	-67976.	- 25	-245198	+ 47
4.00	16710525	6,94	-109507	-1,83	-499315.	-2,71	-672,	-,49	967181.	3,41	2053444	4,05
5.00	16120833.	6,49	-92521	-1,74	1043164.	4,02	-69893	-1.87	1628563.	5,18	4605526,	7,30
6.00	11782740.	4,67	-79968.	-1.69	1924263,	5,55	-178443.	-2,52	1517019.	4.45	4151891,	0,05
7,00	4283398,	1,69	150219.	2,10	2509075.	5,76	=212347,	+2,16	1123642.	3,14	2975000.	4,12
8.00	-5566803	-2,33	427300,	3,54	2522007;	5,00	-91991,	• . 87	479272.	1,32	913813.	1,23
9,00	13021632	⊲5,58	498215.	3,24	1339124.	2,55	63170.	.75	⇒393080 .	-1,14	-1754202.	-5.20
10.00	15589311.	#6 . 9b	75090,	.49	-1302350,	-2,95	71553,	1,37	=1163165.	-3,54	•3790787,	•5,57
11.00.	15123041	≈6 , 96	₽2545 3 0.	-2,04	-2102501.	-5.11	38906	1,58	#1576370 .	-4,18	-3010544	-5,87
12.00	12677975	-6.04	-224709,	-2,14	-1806398	-5,19	5753.	,99	-1058064.	-3,74	-2780918	-4,90
13.00	-8622689	≈ 4,18	-188397 -	-5.10	-1469392.	-5,00	٥.	.00	-816265.	-3,10	-5035456	-}.84
14,00	-884126	= <u>3</u> 8	-155304,	-2,00	-1183491.	•4 91	ι.	.00	-605990	+2,45	-1452206,	+5,45
15.00	11050740	4,97	-158979	-1,90	-938852.	+4,75	۹.	,00	-349943,	=1,46	-845584.	+1,17
16,00	17210028.	7,34	-108448,	-1.83	#697645 ·	-4,26	0.	.00	504433,	5,01	1135466	2, 11
17.00	18438397	7,52	-92100.	-1,76	416818.	2,11	+29117.	≈ 2,04	1477122.	5,02	3894546	6,70
18.00	15812787	6,28	-78192	~1.68	1391206	4.84	=124044	-2,43	1786918	5.45	4949007	7,56
19.00	9620368	3,79	-5452A.	+1,03	2357499.	6,10	#2299J1,	-2,59	1489251.	4.23	4027935.	5,69
20,00	1127001.	.43	295429	3,12	2804474.	5,88	-197888	•1,78	468407.	2,66	2454119.	1.11
21.00	-B669117	-3,61	574295.	3,93	2424605.	4,55	-24002	₩ ,26	232280.	,63	82531,	,09
25.00	-14245407	-0.11	477885	2.84	501749		78115	. 48	-704050.	•2,05	+2664244	-3,81
53.00	-15517683	-6,00	-212701,	-1,43	-1434647	• 4, 21	70330	1,21	w12/1035	- 3, 42	-3402505,	•2, 93
24,00	1346/4/8	-0.40	W2/3139.	-2.14	-2095100.	*2,EC	33209.	1,3/	*1263/4/1	-1 49	= 7 740 4 7V *	+ 3 L D L
25,00	-10/0553/.	45,00 5 E 3	-235744,	-2,20	-1737853,	+ 7,14	3001.	,03	-4//244	•),4 0	-2240324	44,32
26.00	+5504153	• C • 51	=194784	*4,13	-1404544*	-4.40	U .	,00	-142121.	-2.02	-184/510	43,50
27.00	4012533	1,00	4134462	= 2,02	-1160444		¥.	,00	-204102	#C, U3	-1530004	*2,45
28.00	12002244	5,00	-1320004	-1.90	-811024.	-4,40	(0 1	100	+0757V.		+244570	• •40
29.00	16094876	0.43	=111277.	-1.04	-443480 ,	-6,07	-043	-,50	403401	3,40	2544023	4,03
50.00	16113445	0,09	=43450	-1,73	1043423	4,02		-1.01	1060394	2.1/	4600830	1,31
31.00	11110454	4,07	401100	-1.10	1454404	5,33		-2 14	1214224	1 1/1	2024871	0,V4 // / /
32,00	4270401.	- 2 11	13/0/24	2,10	2500070	5,10	-91870	- 87	11221301	3,14	CY/0021.	4,11
33,00		-5 58	421037	1 21	11112/2	2,00	- 1 U / V -	75	-101005	-1 15	-1755021	-2 -2 -
34,00	15688536	- 4 96	4776204	2, C 4	-13502468	- 2 95	71515	1 17	-1161150	-1.54	- 1106870	-5 57
33,04	1515100225	-6 96		-2 04	-2102349	-5 11	18370	1.54	-1276354		- 141011A	
37.00	.12676314	-6 00	-336158	-2 14	-1806106	-5 19	5763	00	-1058093	-1 74	-2781032	
34.00	-1621019	_4 18		-2 10	-1469151	-5 06	J/45.	00	-816328.		-2012656	-1 80
39 00	-881941	- 38	-155562	-2 00	-1183290.	-8.91	ñ.	. 00		-2.45	1052080	-2.92
40 00	11026126	A. 97	-129162	=1.91	-938695	4.75	Ď.	.00	-149961.	1.46	-AU2857.	
41.00	17216832	7.34	+108609.	+1 83	-697483.	4.26	0.	. 00	504540.	2.01	1132692.	2.11
42.00	18434511	7.52	95556	-1.76	417400	2.11	-29131	-2.04	1477091	5.02	3490532	6.70
43.00	15810437	6.28	-78294	-1.68	1391336.	4 84	-124065.	-2.43	1706834.	5.45	4440606	1.56
44.00	9650115	3, 79	-54579	-1.03	2358132.	6,10	-229961.	-2.59	1459093.	4,23	4021442.	5.08
45.00	1125756	45	295789	3.12	2804571.	5 88	-197873	#1.78	455809	2.00	2453508.	1.11
44,00	-676219	-3.61	574350	3.93	2424557	4.55	-29632.	. 26	232162.	. 6 .	82109	09
47.00	14245451	-6.11	477750	2.84	501454	93	70124	, va	-704154,	-2.05	-2667950	-1,01
46.00	-15517799	An	-213919,	-1,45	-193AH51.	-4.21	7433H	1,51	-1271670.	-3.92	- 3402656.	-5.95
49.00	-13707494	-0.40	-215201,	-2.14	-2098115,	-5,22	33207,	1.57	-1225750,	-4,05	-220002	+>,01
50.60	-:0755354	-5,06	-235747.	-5.50	-1737643,	~5.1 4	3006.	3 د ه	.97755b. ·	-3,48	-2540508.	a4,52

Summary of Miscellaneous Computed Hydrodynamic Data

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM Mater year 1972 Average tributary inflows

AVERAGE HEADS FOR A TIDAL CYCLE

		1	2	3	4	5	6	7	8	9	10
1 TO	10	•,131	-, 966	. v65	.001	002	.034	,115	,187	.403	, 252
11 10	20	391	567	.672	670	624	708	708	. 602	,192	789
21 TO .	30	784	906	935	926	1.030	1 027	1,024	1.104	.000	.000
31 10	40	1.467	1,054	.000	.000	1.5A5	1,593	1,757	.000	.000	.000
41 TO	50	000	. n00	1,480	1,765	5.145	2,433	6.864	9.545	10,051	10,077
51 10	60	.000	2.327	1.844	2,338	2,196	2,495	3,063	3.537	3,778	3,725
61 TO	70	.000	.000	000	.000	,000	.000	.000	,000	.000	.000
71 10	80	.000	.000	.000	,000	.000	000	.000	.000	.000	.000
81 10	90	.000	.000	000	000	000	.000	.000	.000	.000	.000
91 10 1	100	.000	.000	000	.000	.000	000	.000	.000	.000	1,130
101 10 1	110	1,111	1.449	1,170	1,167	1,324	1,186	1,263	1,413	1,204	1,302
111 TO 1	120	1.740	1.228	1,212	1.274	1,311	1,327	1,348	1,353	1,352	1,363
151 10 1	130	1,364	1,366	1,374	1,386	1,385	1,386	1,408	1,434	•000	.000
AVERAGE	YEL	OCITIES FOR	A TIDAL C	YCLE							
		,	,	ı	u	Ę	6	7	8	q	10
1 10	10	- 100	- 100	- 018	- 046	- 140	- 027	- 043	a. 726	.084	- 213
11 10	20	- 244	- 220	- 220	- 060		- 307	- 139	- 215	.160	013
21 10	10	- 000	P1220	- 087	- 175	010	- 122	.045	-,116	•.281	019
11 10	10	- UUT	- 310	- 201	- 128	0 A Q	006	- 103	- 207	•.125	055
JJ 10	50		+ C J +		- 240		000	- 561	. 473	.000	.000
S1 10	50	# <u>.</u> V21	•.103	- 1/17		• 302	- 000	000	.000	.000	.000
51 10	30	• 070	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			- 302	- 179	- 545	- 365	. 533	=1.455
01 IU 71 IO	10	.000	4090	. 185	.000	1230	- 180	- 150	- 258	• . 00 <i>1</i>	- 520
71 10	00	•1,1º4	•, 7/2	- 103	- 605	- 434	- 100	000	000	- 185	.000
01 10	90	-,103	=,434	•,000	000	434	- 000		000		-116
41 10 1	100	,000	.000	.000	,000	.000	056	- 165	- 178	. 691	. 022
101 10 1	110	-,223	# 4110		1 J C 1 J C	050	0.01	- 177	- 144	10	
111 10 1	120	.027	.024	=, 301	- 34n	- 2074	- 150	- 100	- 100	- 160	145
121 10 1	170	- 203	= 147	~ 005	•, 249 0.00	- 475	- 011	- 634	- 162	- 127	- 012
131 10 1	140	• <u>.</u> 377	-,245	-,298	• 0 3 A	=.035	- 033	- 400	- 171	- 117	- 263
141 10 1	150	*.139	= ,100	⇒ <u>,</u> 042	- 013	• 0 54	- 116	- 183			0,00
151 10 1	160	022	•042	• 0 3 3	-,1<1	- 200	-,130	-,102			*000
AVERAGE	FLO	WS FOR A TI	DAL CYCLE			,					
		1	2	3	4	5	6	7	. 8	9	10
1 10	10	-251400.	· 210478,	459389.	207164.	-244737,	-221684.	427980,	#472084 .	422605.	4694.
11 10	20	4538	-50213.	* \$0869.	-291221,	295362.	*33 7926 .	8235.	=41611.	=4413*	#315422
21 TO	30	-193885,	505008	19837.	-325024	130294.	26365.	71584.	183040.	-5488944	273652,
31 10	40	393498	#202198.	63646	94499	-270363.	-176065,	66058.	-3081c.	-81719,	109341*
41 TO	50	-58386.	- 3A415	ο,	-107199	Ο.	Ο.	-150875.	3157.	Ο,	Ο.
51 TO	60	-19601.	υ.	140339	125404,	=13922 <i>n</i> ,	14549.	0,	Ο.	Ο,	Ο,
61 10	70	0	0	0.	U	11187	-2781.	-8443	-7997.	-2803.	·10855.
71 10	60	+10896.	-10812	-10867	0	-90085	- 9331.	-50343.	44597.	5165.	-06405
81 TO	90	68170.	-799	-A70.	= 914	-942	÷978.	Ο.	Q.	63060.	۷.
91 10 1	100	0.	Q.	0	0	· 0 •	· U.	· 0,	Q.	0,	54700
101 10 1	110	-24452.	103602.	167098.	- 19017	52671.	184767.	11867.	-54564.	47464,	15617.
111 10 1	120	137281	94958	-51205	-30965	232225.	10676.	-61951.	-27701.	- 6533,	156813,
121 10 1	130	81930.	=89669.	-74635.	-54226	-53737.	-121832	+31972.	-31468,	27947.	131940.

3

3

-35-110

易

Table B-9 - (Cont.)

]

CT NAME

1

N

Summary of Missellaneous Computed Hydrodynamic Data

131 141 151	TO 1 TO 1 TO 1	40 50 60	-3547. -119. 3031.	-14781. -20830. 4190.	-35241. -26045. 33097.	30859, -7325, 12151,	11397. -7245. -13273.	11770. 10279. -10043.	-32221. 13205. -11174.	•33287. 777. 9.	3261, 14560, 0,	39723. =43137. - 0.
HATE	CR BA	LANCE	AT EACH JU	NCTION (CFS	5							
1 11 21 31	TO TO TO TO	10 20 30 40	1 39974. -1. -4. +2.	2 -3. -3. -2.	3 -2. -4, 0.	4 -2. -3. 0.	5 13, -3, -2, -2,	6 -3, -3, -2,	7 -2 0 5	8 -3, -2, 0,	9 -1 -3 0 -0	10 • 1. • -5. • 0.
51 61 71 81 91 101	10 10 10 10 10 10 10	50 60 70 50 90 100 110	0 0 0 0	0. 12. 0. 0. 0.	-1. -3. 0. 0. -0.			3, 4, 0, 0, 0, 0, 0,	4 3 0 0 0 0 0	4 . 1 . 0 . 0 . 0 . 0 .	7 1 0 0 0	2 1 0 0 0 2 0
111 121	TŬ TO	120	+0 -0	1 . - 0 .	40 0	~0.	+0. +0.	= Q _	-0	-0, -0,	₩0 ••0	• • 0 •
AVER	AGE	NODAL	VOLUME (CU	FT)		••	•	- •			v	• ••
			1	z	3	4	5	6	7	8	Q	10
1 11 21	10 10 10	10 20 30	.1097+13 .4618*12 .1441+12	1104+13 3134+12 6507+11	1189+13 8483+11 1424+12	.1350+13 .9765+11 .1014+12	.8970+12 .2218+12 .6255+11	.5005+1 .7525+1 .9723+1	2 ,7609+ 1 ,1157+ 1 ,2340+	12 ,2973+12 12 ,1397+12 11 ,4429+11	,2121+ ,6713+	125540+12 11 .1542+12 .0000
31	10 10	40 50	3616+11	.2992+11 .0000	.0000 1447+11	0000	20A1+11 6962+10	.2180+1 .9752+1	1 .3362+ 0 .5649+	10 0000 10 3151+10	000U 2994+	0000 10 7560+09
51 61 71	10 10 10	60 70	,0000 ,0000	.4931+10 .0000	,3296+11 ,0000	,7056+10 ,0000	1455+11 0000	.1541+1 .0000	1 .7806+	10 ,4338+10 ,0000	.5716+ .0000	10 .2944+10
81 91	10 10	90 100	.0000 .0000	.0000 .0000	0000 0000	0000	.0000 .0000 .0000	.0000	.0000 .0000	. UOOO . UOOO	,0000 ,0000	.0000 .0000 .4706+11
101	10 10 10	110	3727+11	4514+10	1405+11 2495+10	1182+11 1679+10	2225+10 01+225 01-410	+1210+1 +6309+1 +587+1	1,3376+ 0,1400+:	10 .1159+10 10 .3456+10	+1139+	11 .5831+10 10 .9409+09
		130				16401410	• < 320+14		9 <u>1</u> 72734	10 1/055410		.0000
P031	IIVE	. AND N 1 146	JEGATIVE FL 194752. 14	043 FAR LACI 946151.	H CHANNEL 2 1628	8461. 160	77982	1 22	19259. 24	578648.	6 111	85579. 10978415.
		5 169	11 15221	554005	6 89	4570, 11	16254	7 95	61386 9	133405.	8 156	59051, 16131139,
		9 20	44515 2	421911.	10 599	6323, 59	53429	11 50	10987 50	000449.	12 109	05114. 16955329.
	1	נכן ב קר ד	117000 15	225040.	14 4	13923. 56	24323. 15534	15 47	78468 40	583107 . 583107.	10 10	97142, 13735060, 27360 1202766
	ź	i z	82405	476290.	22 320	12413. 30	00405	23 59	07253. 50	387416	24 70	58861. 7383884.
	2	5 a	46587.	110293.	56 105	6082. 10	29717	27 24	57094 2	185515	28 66	33549, 6444910.
	2	9 53	05874, 5	605714.	30 37	7529 1	03877	31 15	25529, 1	132031.	25 19,	50182, 2052379,
	ز	יים ני מר ד	182381, 6	918736.	34 352	3119, 34	54051	35 15	60998, 11	31361,	36 18	08507, 2044509,
	د ن	1 20	1552115. C	757147.	0 J 2 0 J 6 J 6	10023. 63	97439	39 8	01505, 1	583325.	40 2	26594, 120203,
	u a	s '	0.	0,	46	رچ پرونو. ۷۰	0.	47 20	47454. 21	198338.	48 22	
	ų	9	0	Λ,	50	0,	Ő.	51 2	37065,	50205	52	U. 0.
	5	5 17	33957 1	874305.	54 165	8781. 15	33377	55	79314	218539,	56 17	12232, 157003.
	5	7	0.	0,	58	0.	0	59	Ú,	0,	60	0, 0,
	6 5	1 .5 10	0. 168622 1	Λ, ικοιι	42	0.	0,	6)	0. 	A.	64	V. O.
	6	9	344142.	350945	70 29	12584 3	0 3 4 3 9 1	71 10	د ۲۰۰۶ ۵ ۵ ا ۲۰۰۶ ۵ ۵ ۱	74493	68 26 12 10	507810 2607780 111358.

-35-111

Table B-9 - (Cont.)

Summary of Miscellaneous Computed Hydrodynamic Data

71	178/11	34704	7/1	a	٥	-	76 1	11480	121770	7.6	144235	177553
	11041	EUTVe.	14	v.				33007	162114	10	200552	311330
11	1150133.	1200476.	78 9	72499.	927902	7	79 30	5546,	300381,	80	1196218.	1265120.
81	118197	250027	82 11	41910.	1192709	E E	31 TA	54702.	765571	84	528055.	528969
	1/0195	160164	A A 1	40776	101750					6 u		
03	201262	204500	66 I	401/0.	141124			ν.	V •	00	V •	¥ •
89	324529	261469.	90	Q.	۰.	ç	71	υ.	ο,	95	Ο,	0.
91	0	Δ.	04	0.	6	c	Q G	0	0.	96	0	0
	24			ו	* •			<u>.</u> .	•••			
¥7	Ο,	ο.	98	0 .	0 .	, i	49	0,	°.	100	1482441.	1431292.
101	1802330	1826781.	102 25	99198.	2495596	10)1 154	52659.	1385561.	104	480146.	519162.
								70464	1.14701		10 174	
102	1424204	143204.	108 13	41034	1120616,	10	107	20020	1010141	100	22514	04070
109	154402.	10693A.	110 1	22797.	107180	11	11 130	64939.	1167658,	112	899854	804896.
111	101100	00305E	Ni n	08000	A7165	· .	15 211	18526	1446301	116	11122	27046
112	341140	4464330	11.7		01303			10320	10003011	110		
117	285948.	348899.	118	2 724.	51425	11	19 10	04113.	110646.	150	633992.	477179
121	1200250	1212125	122 1	02635	282304	12	2 X 4	56002	141077	124	71971.	126199
	1674634	12123231			334.000							
142	· 8749,	62527.	120 1	14030.	230400	14	27 1	leavi .	46054.	128	11000*	40054,
129	315196.	310249.	130 3	44919.	212979.	1 2	31 30	u9007.	312554.	132	409453.	424233.
. 17		E 1 1 7 1 4	11/1 1	42024	151168	1	1c 21		207/127	1 7 4	DOARCS	107015
133	4/04/24	213/10.	124 1	02024	131104		15 CI	10034	201431.	130	200003	
137	30970.	63191.	138 1	24385.	157672.	12	39 37	73729	370468.	140	464395	444672
141	148508	148727	142 1	48654	169081	- 14	11	A215.	34260.	144	\$7797.	65122.
	307010	110101	1 4 4 1						24400			
145	103143.	11038A.	146 1	23064	112/05	14	17 ZT	75035.	501010	148	3//465,	3/0000,
149	348665	131805.	150 2	25121.	268864	15	51 21	.2964 .	199933.	152	76705.	72515.
	14,00,00	3334431			102500						258424	31 6 6 1 8
122	12004	40512.	154 5	04/41.	445240	13	>> >/	(13)(+	240204	120	230054	500000¢
157	1273506.	1284680.									• .	
•••												
MININUM HEA	ADP HAXIMU	H HEAU AND I	IIDAL RANGE									
1 -	-9.02 7	.60 16 62	2 +9.2	4 8.08	17.32	3	=9.27	8.14	17.41	4 = 9 6	8.59	18.27
				1 0 07	10 20			0 0 0	4.6 6.4	a _10 ¹ 1		10 50
5	+7,57 8	.54 10.11	6 -1V*1	3 4.01	14,50	1	44°D3	0.ª4V	10,34	a •10.1	4 3.40	17,24
9.	10.14 9	49 19.62	10 -9.6	9 9.03	18.72	- 11	-9.96	9.27	19.23	12 -10.3	5 9,67	20,02
		11 31 CC	1/1		21 118	15	_10 9A	10 18	21 16	16 -11 7	7 11 16	22 94
13	+11°00 to	41 61,37	14 - 14	4 10,44				10.00	21,50			
17 4	•11.75 11	17 22,92	18 =11,6	7 11,06	22,13	14	+16,22	11,46	24.50	20 -12,5	1 11.44	24,43
21 .	-12 aa - 11	90 24 14	22 -11.5	0 11.08	26.58	23	-13.35	12.97	26.31	24 -13.2	5 12.87	26.12
									27 60		1 1 1 1 1 1	28 64
<>	-13.93 13	.05 21.58	50 -13°c	0 12*01	£1,00	21	#13°04	12,00	21,30	so 414*3.	/ 14.20	CO 8 20
29	. 0.1	00 00	30 .0	0 .00	.00	31	-14.28	15.22	29.51	32 = 14.3	0 15.27	29.57
			1	0 00		76	11 - 2	16 70	70 13	14 _14 4	7 10 74	10 11
ود	•00	*no *no	24 10	v .vv	• • • •	25	+14.0Z	12,10	30,36	20 -14 0	12110	20,42
37 .	-11.62 15	.57 27.19	38 .0	U .00	00	39	.00	.00	. UO	40 .0	00, 0	.00
6.1		00	43 0	0 00	0.0	11		16 86	11 15	44 -16.0	1 17 0A-	11/12
~1	* a v	••• ••	42 ,0	• •••		4.3	410.41	10.00				
45 .	•13.86 17	.13 30.99	46 =13,6	2 17,34	30,95	47	• 76	11.22	17,97	48 4.5	1 10,24	11,55
. 49	6 60 14	15 7 74	50 67	2 14 57	7.85	51	. 0.0	. 00	.00	52 +11 1	1 15.99	27.16
	0.00 14		<u> </u>		77 75							74 77
	-14.// 16	04 70.86	54 +11,1	3 10,40	21.34	22	m14,/4	10124	21.10	20 414 0	10,25	21421
57 .	-13.95 16	. 42 30.37	58 -13.0	4 16.69	29.73	59	-11.46	17.75	29.21	60 =12.6	3 15.08	31,36
				0 00	0.0	11		0.0		60 0	ú <u>00</u>	0.0
01	• • • •	••• ••0	0¢ ,V		• • •	60						• • • •
65	.00	.00 .00	66 .0	0 00	.00	67	.00	.00	.00	68 0	.00	.00
60	0.0	00 00	70 0	0 .00	0.0	71	. 0 0	. 00	. 00	72 0	00, 0	.00
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
/3	•00	.00 <u> </u>	74 .0	0 .00	.00	()	• • • •	• • • •	.00	10 .0	•••	,00
17	.00	.00 .00	78.0	0 .00	.00	79	. 00	.00	.00	80 .01	.00	00
				0 00				0 0	· 00	84 0	ງ ້ຳກ	່ານ
01	.00	• • • • • • • •	σζ ο	100								1
85	.00	.00 .00	86 ,0	U .UO	,00	87	.00	.00	.00	-88 .0	,00	,00
P A	00	ັດດ ີບດ	90 .0	0 .00	. 0.0	91	.00	.00	.00	92 .0	J _ U O	.00
										0. 0		0.0
42	,00	, UU (UO	An P.6	v •00	• • •	4.2	.00			YO .U		
97	.00	.00 .00	9A .0	0 .00	.00	99	.00	.00	.00	100 =14 4	14.50	20,98
		111 20 01	103 -11 0	0 14 51	25 60	101	-14 80	14 41	20 64	104 -14 7	1 10 81	29.61
101 -	-14,49 14	143 CO.71	144 -11-0	2 12121	63,00	103				1		
105 -	-12,78 14	,91 27.6A	106 -14,9	8 15,05	30.03	107	-12,21	12.18	20.44	109 -15 8	A 12*19	20,01
109 -	15.17 15	29 30 44	110 -15 5	2 15.40	30.92	111	+11.82	15.52	27.34	112 -15 5	3 15.55	31.14
		En 16 44	114		21.00	110	-15 40	15 67	31 02	115 -15 5	15 60	31 10
113 -	15,34 15	10 20 01	114 +12 4	0 12105	51.00	112	-12,42	12121	21.00	110 415'5	12,20	
117 •	15.64 15	.76 31.40	118 -15.6	8 15.77	31,45	119	-15.69	15.77	31.46	120 -15.7	\$ 15,87	31,65
121	15 7A IE	AR 31 64	122 -14 7	0 15 00	31 69	121	-15.85	15.95	31.80	124 -15 9	1 16.04	31.99
			126 -131			407		14 30	15 40	1.30		33 04
125 -	•12.93 16	V5 31.98	126 -15,9	90,05 כ	31.48	721	#10,11	10.54	32.40	150 -10"7	10,00	75 41
	-		_		, · · ·							
		3) (J. 190					3		

3

35-112

Table B-9 - (Cont.)

1

1

THE O

Summary of Miscellaneous Computed Hydrodynamic Data

TIME OF MINIMUM AND MAXIMUM HEAD, HOUR

B

1

Contraction of the local division of the loc

1	9.64	16.00	2	10,19	16,39	3	10,19	16.44	4	10,75	16.81
5	10,75	16.81	6	11.03	17,11	7	11.33	17.25	8	11.75	17.67
9	12,42	10.00	10	11,92	17.64	11	12.39	18.00	12	12,92	18.69
13	13,20	18,94	14	13,28	18,94	15	13.17	18,92	16	13,47	19,14
17	13.47	19,14	18	13,39	19,17	19	13.75	19.42	20	13.75	19.36
21	13.72	19.31	22	14,17	19,75	53	14.11	19.01	24	14.11	19.80
25	14.33	19.89	26	14.35	19, 89	27	14.31	19.86	2.6	14.47	20.03
29	.00	.00	30	.00	00	31	15.00	20.36	32	15.93	20.30
33	.00	.00	34	.00	. 00	35	15.28	20.47	36	15.31	20.50
37	16.00	20,44	30	.00	.00	39	.00	.00	40	.00	.90
4 j	00	.00	42	.00	.00	. 43	15.31	20.53	44	15.69	20.56
45	16.08	20.58	46	16.33	20.61	47	17.67	20.92	48	18.44	21.39
49	19 14	22.15	50	19.53	22.76	51	.00	.00	52	16.39	20.56
53	15.64	20.56	54	16.42	20.58	55	15.89	20.75	56	16.11	21.14
57	16 47	21.56	58	16.90	22,08	59	17.44	22.39	60	17.81	22.50
61	.00	.00	62	.00	.00	63	.00	.00	64	.00	.00
65	.00	.00	66	.00	.00	67	.00	.00	. 68	.00	.00
69	.00	. 00	70	.00	. 00	71	.00	00	72	.00	.00
73	.00	.00	74	.00	.00	75	.00	.00	7.6	00	.00
77	.00	.00	78	.00	.00	79	.00	. 0 0	80	.00	.00
81	.00	.00	62	.00	.00	83	.00	.00	84	. 0 0	.00
85	.00	.00	85	.00	.00	87	.00	.00	88	.00	.00
09	. 00	.00	90	.00	.00	91	.00	.00	92	.00	.00
93	.00	00	94	.00	.00	95	00	.00	96	.00	.00
97	00	.00	98	.00	.00	99	.00	.00	100	14.50	20.11
101	14.53	20.14	102	2.67	20.17	103	14.64	20.19	104	14.64	20.19
105	15.42	20.17	105	14.69	25 05	107	14.92	20.33	108	15.75	20.35
109	14.75	20.28	110	15.00	20.39	111	15.72	20.33	112	15.14	20.36
113	14 81	20.33	114	14.92	20.36	115	15.00	20.39	116	15.03	20.42
117	15.06	20.42	118	15.00	20.42	119	15 08	20.42	120	15.11	20.42
121	15.11	20.42	122	15.11	20.42	123	15.11	20 42	124	15.14	20.44
125	15.14	20.40	126	15.14	20.44	127	15.19	20.44	120	15.25	20.50
a #			4								*****

TOTAL EVAPOPATION RATE, CFS	.1080+05
AVERAGE SURFACE APEA, SO FT	,1131+12
AVERAGE VOLUME, CU FT	.1124+14
AVERAGE DEPTH, FT	9938+02

2-35-113

APPENDIX C

la	UPPER	COOK	INLE	T _e Kn	IK AR	H AND	TURN	AG4IN	1RM							
15 2	SAMPLE	135	24	0	1	0	1	3	12							
3 4 5	1 NH3-N,	1 0 4671	0 Prim	0 403-4	1 1, MG/) L PRI	0 M	٥	0	0	0	1	1			
7a 7b {	1 5 44	0 7 46	0 10 48	0 11 49	135 12 50	14	17	20	23	26	101	107	115	117	151	127
8 { 9 {	1 17	130 16 160	10 5 (3000							10					
10 11 12 13a	AVERAG 0 1	1 E RUN 0 •1	OFF C 0	UNDIT 0	IONS 1	- STE 1	ADY S O	TATE D	0	0						
135		4600		. 25 . 25 . 25	.01 .01	000		0 0 0	-1 0 0	10 =1 =1 =1	10 10 10					
14	48 501 60	120 0880 1000		,25 ,25 ,25	01 01 01	0 0		000	0 0	= 1 = 1 = 1	10					
	108 124 117 45	600 110 155 15.5		,25 ,25 30 25	,01 ,01 31 51	0 35000 10000		0 120 30	0 90 75	=1 =1 2 6	10 10 15	20 17	, 5 , 5			
17a 17b 17c	1 1 0	130 0	0 2 0	1,08	1.04	0	10	, 1								
17 18a 18b	1	135 130 75	-: 61 8	0 150 2	0 2 1	0					•					
18c {	25	.75	ŝ	້	3	1000										

C

Table C-1

Tidally Averaged Quality Model Input Card Specifications

APPENDIX D

Computation and Output Control Options

6

SIMULATION BEGINS ON DAY	135
TIME STEPS OF	24 HOUR(S)
PRINTOUT EVERY	1 TIME STEP(S)
HYDRAULIC INTERFACE UNIT	12
DUALITY INTERFACE UNIT	0
NUMBER OF BOUNDARY CONDITIONS	1
1 TIME STEPS FOR CONDITION	1 STEADY STATE

THE FOLLOWING CONSTITUENTS ARE BEING MODELED

+ p + L			
TOTAL N			
TOTAL P			
TOTAL COLIF			
CARRON BOD			
NITPU BOD			
DXYGEN			
TEMPERATURE			
OPP CONST 1	NH3ON,	HG7L	PRIM
OPP CONST 2	ND3-N.	HG/L	PRIH

Initial Conditions and Dispersion Parameters

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM SAMPLE PROBLEM

ามหา	NUL O	TOT N MG/L	INITIAL C TOT P MG/L	DUALITY C T CUL NO/100ML	UNDITIONS F COL NU/100mL	C 80n MG/L	'N 800 MG/L	0 0 MG/L	ТЕМР С	CONST 1 Units	CDNST 2	CUNST 3 UNITS	CONST UNIT
1	130	.00	.00	.00	200	,00	.00	.00	10,0	.00	.00	.00	. O ŭ

i Artala 🖥 青

	DISPERSION	COEFFICIENTS	
CHAN	TO CHAN	C1 .	C 4
1	16	10	3000.
17	160	5.	1500

and the second cards at the state of the

2-35-122

1

Summary of Boundary Conditions and System Coefficients

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM Average Runoff Conditions - Steady state

100

JUH	EXCH Ratio	E B B MC F S	F M	L000 CF 9	е хона При При	1 37 1 1	CONDITION DT N TU 1G/L M	S DUPING HI I P T COL G/L N/100HL	YDRULOGIC - F COL N/100HL	C 800 H&/L	1 N BUD MG/L	OXY Mg/L	TEMP C	CUN 1 C Units L	UN 2 INITS	CON 3 UNITS	CON 4 Units
1	e 1 0	31,024	30	,983	51040		.00 ,	00 .00	• 0.0	.00	.00	9.3	10.0	.00	.00	,00	.00
					* NEL 0		OTTIONS		PANE TO OV								
JUN	INFL CF	0H 9	TDS MG/L	T (1	ткрс0 јт м 4G/L	TNT 6 MG71	Р Т СО NO/100н	L F COL L NO/100ML	C AOD Mg/L	N BOD Hg/L	DXY MG/L	ТЕНР С	CONST	I CONST 5 UNII	2 CUNS	T 3 115	CONST 4 UNITS
	4600.	00	0.		,25	. 0 1	.00	.00	200	.00	11.3	10.0	. 0		0	.00	.00
<u> </u>		00	694		-25	.01	.00	.00	00	.00	11,3	10,0	.0	ο, ο	0	.00	.00
4 D 1 D	470	00	0,		425 2F	.01	.00	.00	100	,00	11,3	10.0		,0	0	.00	.00
50	10660	0 U 11 A	v.		. ()	101	.00	100	100	.00	11.3	10.0			0	400	.00
50	10000,	60	×.		• ² 5	101	,00	.00	100	.00	1113	10.0	• 0	• • •	V A	.00	,00
108	600	00	۰. ۱		25	.01	1 <u>1</u> 00	.00	100	.00	L	10.0	.0		0	.00	.00
124	110.	00	v .		22		,00	.00	100	.00	11.3	10,0	• •		0	.00	.00
117	155.	00	Å.	30	100		i ∎vv) 15+0	5 .00	120,00	90.00	2 0	15.0	20.0	, ju	0	.00	
45	15,	50	Ő,	2s	5,00	5.00	10+0	5 .00	30,00	75,00	6,0	15.0	17.0	v 14	.	.00	.00
		GGREGAT	FD QU		,					-			-			•	·
11	4600.	00	0.	~~	25	. 0 1	.00	.00	•00	. 0 U	11.3	10.0	. 0	D . C	a	. 0.0	. 0 0
21	33000	00	ō.		25	.0	00	.00	00	.00	11.3	10.0			0	.00	.00
45	470.	00	0.	1	07	17	35+0	3 .00	. 99	2.47	11,5	10.5		5 .0	Ż	.00	.00
4 B	150"	00	٥,		25	. 01	.00	.00	200	.00	11.3	10.0	.0		0	.00	.00
50	10880.	DO	Ο,		.25	,01	,00	.00	40	00	11,3	10,0	.01	0 . 0	0	.00	.00
60	1000.	00	Ο.		,25	.01	,00	.00	200	.00	11.3	10.0	. 04	0 .0	0	.00	.00
108	600.	00	٥.		.25	• 61	,00	.00	,00	.00	11.3	10.0	.0	0 0	0	.00	.00
117	75,	00	Ο,	62	2.00	9.50	,72+0	5 ,00	248,00	186.00	4.1	31.0	41.3	3 1,0	3	.00	.00
324	110,	00	Ο,		,25	.01	.00	.00	00	.00	11,3	10.0	. 0	D .0	0	.00	• 0 9
					evs TF;			a									
JUN	TO JUN	BOD	DECAY	Cr	H IF DEC	·	BENTHIC	SINK HATES	ALGAL (IXYGEN J	REAFRATION	OPP	CONST DI		PP CUNS	T SET	TI TNG
•••		CARB	NITR	τι	TAL FEC	ί,	N MEZ	P Ü	PHOTO	RESP 1	HIN HAX	1	2 3	4	1 4	H/DAY	4
1	1 30	.20	10	, 1	00 -1) n	0	0 0.		0	n 10 0	10	00 00	0.0			
-	•		•••	•		,	••	•••	v •	••	1				••• ••	v •v	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
310	ICHIONE	IRIC EQ	UIVAL	ENCE	ALTWEEN	nP11	ONAL CON	STITUENTS									
CON CON CON	1 ON TE 5 ON TE 5 ON TS	DECAY DECAY DECAY	10 CO 10 CO 10 CO	NST N NST N NST N	10 2. 10 3.	1.00	1)								a		
HAT	E COEFF	ICLENT	16 H P F	HATU	IE AOJUS	Fiel N 1	CONSTAN	T.FUR									

600 · UG0

2-35-12

 $\boldsymbol{\omega}$

and a second

Table D-3 - (Cont.)

Summary of Boundary Conditions and System Coefficients

ALL OTHERS 1.040

	. 0 4 2	.067	\$ 90.	.057	.017	000	[[2]	000	961.	1,747	245.	566	000 °	000	.000	000	000	000	000	.067	, 354	• 1 4 9	. 097	.175	.077	
	.5 # 0 *	.067	5 n 0 •	.057	.017	000	, 2 3 5	000	961.	1.747	۲۳5,	, 566	000	000	000	000.	000	, 000	000	,067	.271	1 4 9	1001	.175	.077	
	.014	.028	021	020	. 028	000'	.087	000	196.	105	150	.244	000.	000	000	000	000	000	.000	.051	, 554	190.	, 069	032	.022	
	ŝ	10	15	02.	55	30	دا	01	د 5	50	55	60	65	70	15	80	85	90	۲ <u>۹</u>	100	201	110	115	120	125	
	.036	.105	• 0.5 d	.110	180.	000	.000	.000	.194	1.899	008	. 476	000	.000	000.	004.	000	000.	000	000	.107	.077	.156	.138	.097	
	,03h	501.	054	.110	100.	000	000	000	194	1,897	000	410	.000	000	000	000	000	000	000	,000	107	.077	156	.138	100	
	• 01Z	• 0 7 4	٥٢٥,	200	.031	000	000	000	.177	.430	. 11 .	285.	000	000	000	.000	000	000	.000	.000	.063	.067	124	.043	110	
	4	•	14	6	54	29	34	39	44	49	54	59	64	69	14	79	Bu	66	74	99	104	109	114	119	124	
1/017	.039	. 0.65	. 077	.072	.068	. 683	000	000.	.143	996	.169	. 440	000	.000	000.	000	000	000.	000	000.	.087	.343	.118	089	.147	103
DE.S.	.039	.065	.077	.072	.068	6 Å J	000	.000	.143	466	.169	440	000.	.000	.000	000.	000	000.	000.	000	• U 8 7	152.	.118	089	147	.103
N AG	010.	0.15	.027	023	. 0.75.	.054	000	000.	101.	549	120	.273	.000	000	000	000	.000	000	.000	000.	• 0 14	.343	.107	011	.081	• 054
. U3EC		9	1	18	25	28	5.5	38	ŝ	P 7	53	58	63	68	7.5	7.8	85	88	5	9.6	103	108	113	118	125	128
AND COEFP	500.	.055	500.	.064	.096	.169	121	. 4 5 B	000	,526	436	. 368	.000	.000	000	.000	000	.000	.000	.000	.363	.175	• 349	.118	107	051
TIENT	0 4 2	055	2042	.064	960.	.169	121.	.360	000	6449	, u 36	368	000	000	000.	000	000	000.	000	000	332	.175	.219	.118	107	.057
DEFF10	010	.028	0.32	.022	.050	240.	010	458	000	326	145	206	000	000	000	600	000	000	000	000	282	153	349	019	034	0 11 0
RATION C	~	-	12	17	22	27	32	11	25	47	52	57	62	67	12	77	29	87	50	16	102	107	112	117	122	127
D RFAE	.037	.054	.054	101.	. 064	.068	.105	146	000	. 292	000	. 265	000	000	000	000.	.000	000	000	000	.072	100.	. 327	.115	.060	.115
INDUCE	037	.054	054	101.	.064	.068	.105	146	000	. 2 ° 2	000	. 265	.000	000	000	000	000	000	.000	000	.072	. 0 6 7	. 327	.115	090	.115
0 N I 4	015	.022	0.29	.031	.024	024	.070	.110	.000	.245	000	.140	.000	000	000	.000	.000	000	000	.000	.057	.015	. 303	. 066	.023	.033
LOH AND		-0	=	16	21	26	31	36	۹ ا	97	15	56	61	66	11	76	91	90	10	9 6	101	106	111	116	121	126

Ţ

Meteorological Conditions

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM Average Runoff Conditions - Steady State

1

1

2000

TABLE OF METEOROLOGIC DATA FOR WEATHER ZONE 1, JUNCTION 1 TO 130

LATITUDE = 61.0 Lungitude = 150.0

HOUR	NIND SPEED	CLOUD	DRY BULB	TEMPERATURE	ATMOSPHERIC PRESSURE	SHORT WAVE Solar	LONG WAVE SOLAH	VAPOR PRESSURE	
	(H/SEC)	FRACTIU	4 (C)	(C)	(MB)	(KCAL/M2/SEC)	(KCAL/HZ/SEC)	(44)	
1	3,5	.75	7.0	1.0	1000.	.0000	0649	7.	
2	3.5	75	7.0	1.0	1.000	.0000	0649	1	
3	3,5	75	7 0	1,0	1000.	0000	0649	7.	
Ű	3,5	75	7.0	1.0	1000.	0000	0644	j.	
5	3,5	75	7.0	1.0	1900.	.0007	0049	7.	
6	3,5	75	7.0	1.0	1000.	0100	0644	1	
1	3.5	75	7.0	1.0	1000.	0263	.0649	1.	
6	3,5	75	7.0	1.0	1000.	0455	.0649	<i>i</i> .	
9	3,5	75	7,0	1.0	1000.	0648	0649	1.	
10	3,5	75	7.0	1.0	1000.	0820	.0649	1.	
\$ 1	3.5	75	7.0	1.0	1000.	0756	0649	<i>i</i> .	
12	3.5	75	7.0	1.0	1000	1043	0644	1	
13	3.5	75	7.0	1.0	1000	1072	6090	7.	
14	3.5	15	7.0	1.0	1000.	1043	0644	1.	
15	3.5	75	7.0	1.0	1000.	9956	0049	7.	
16	3.5	75	7.0	1.0	1000.	0580	0649	1	
17	3.5	275	7.0	1.0	1000.	0648	0649	<i>i</i> .	
18	3.5	75	7.0	1.0	1000.	0455	0649	1	
19	3.5	75	7.0	1.0	1000.	0263	0644	1	
20	3.5	15	7.0	1.0	1000.		.0044	7.	
51	3.5	75	7.0	1.0	1000.	0007	0649	7	
22	3,5	75	7.0	1.0	1000.	0000	.0649	1.	
2S	1.5	. 15	7.0	1.0	1000	0000	.0644	7.	
24	3,5	75	7.0	1.0	1000	.0000	0649	7	

**** DEH POINT

21

Ś

5-125
Table D-5

Dispersion Coefficients and Steady-State Salinity

	CHANNEL	015PER910N	COEFFI	CIENTS,	80 F1/SEC	(LAST 140	ITERAT	10NS)		3						
1	6180.	8184.	2	8934.	8939.	3	1338.	1340.		4	7015.	7018.	5	8589.	8593.	
6	348	554	7	5900.	5903.	8	7721,	1727.		9	1830	1839	10	6752	6762.	
11	5752	5767.	12	6955	6965.	13	7378.	7300.		14	445.	951	15	5500.	5000.	
16	11002.	11010	17	3223.	3229	18	5446	5455.		19	6576.	6565	. 20	702	703.	
15	215	219	22	2826.	2830.	23	5928	5933.		24	4429	4436	25	104.	109.	
59	509.	514	27	1892.	1818.	28	4767.	4776.		29	4390	4345	30	127.	133.	
31	549	550	32	1922.	1832.	33	4827	4839.		34	2726.	2738	35	894	894.	
36	8.2.	867.	37	2249.	2255.	38	1980.	1999.		39	991	1027.	40	154	159.	
41	200	326	42	2705.	2712.	43	0.	0.		44	217.	305.	45	0	0	
46	100	0	47	2851	2857	46	1429.	3434.		44	Q .	0.	50		0	
Si	245	248	52	0.	0.	51	1636.	1638.		5.0	1857.	1857	55	211.	236.	
56	221	235	\$7	, v.	°	5.4	10201	10201		<u>κ</u> υ		10.31	50		· · · ·	
	<i></i>	<i>ccj</i> ,				61				54		×.		2015	24.0	
64		1204	5		1200	68	A 1 1	857		64	1121	1172	70	A 1 3	£444.	
7.	1107.	500	77	11761	12001	71				74	1121,	11/6	70	vic.		
	220,	204.	11	JI0.	530	7 8	1144	1100		70		468	, j A 0	2001	2001	
7 D	122	3.50	83	1003	1004	70 A 1	1 7	1707		8 H	407	1467		1121	1142	
01	266.	524.	20	1453	1740.	ر ب ۱۹	107/4	1/07.		04	14364	1407	00	1141.	1142.	
00	e03.	736.	07	v.	U .	00	¥,	v.		0.4	4.3 0 .	430.	40	ý.		
	0,	¥•	44	ų.	9 •	27	¥•	0,		44	0.	.	42			
¥8	<u> </u>	U.		ų,		98				44	0,	0.	100	2831.	2032	
101	3235.	3534	102	3306.	330A,	103	1871.	1873.		104	484.	468.	105	300	313.	
100	2163.	2100.	107	2635	2642	108	191.	501		109	247.	254.	110	312.	335.	
111	3211.	3217,	115	2878.	2878.	113	1564.	1565.		114	314.	356	115	1950.	3905.	
116	183.	198.	117	1055*	1029.	118	177.	176.		119	654.	660.	1 1 5 0	2774.	2111	
151	3721,	3741.	155	470.	472.	153	683,	686.		124	577.	509.	152	164.	190.	
150	767	767	127	505.	204.	159	565	305.	-	129	2131.	2154.	130	669.	695,	
131	2375	2410	135	2303.	2409.	133	2631.	2661.		134	1137.	1157.	-135	932.	955.	
136	531.	539	137	125	128.	138	1053.	1079.		139	3030.	3055.	140	2808.	2826.	
141	3123.	3152	142	1192.	1550	145	69	71.		104	227.	238	145	741.	761.	
146	984	1005	147	2850.	2075	148	3361,	3409		149	3302.	3321	150	1782.	1013.	
151	1199.	1225.	152	191	192	153	152.	156.		154	3427	3449	155	4025.	4052.	
156	2212	2296	157	3477.	3903.			• •			-	•			-	
•					•											
14		* 7 8 7 8 7 18 7 18 7	1.1.1													
	1 30.	60		30.16	1	24.89		4	29.74		5	29.23				
	6 29	35	1	28.63	5	28.41		9	27.08		10	27 11				
	11 26.	17	12	24.16	11	25.35		14	25,12		15	25.02				
	16 24.	95	17	20,08	18	24.02		19	22,78		50	53,29				
	21 23.	2Ś	22	21.58	23	51.65		24	21.04		25	21.03				
	20 20.	58	W Chinger	15111	28	20,40		54	.01		30	.01				
	31 19.	99	32	17.46	3 :	.01	•	34	01		35	19.86				
	36 19.1	84	37	19.58	38	.01		39	.01		40	.01				
	41	01	42	. 01	4 3	13.49		44	11.43		45	10,47				
	46 7.	36	47	3.20	48	.75		49	- 'ng		50	.00				
	51	01	52	14.72	53	19.73		54	19.74		55	19.01				
	56 19.	18	51	18.36	50	17.24		59	15,55		60	12.02				
	61	00	62	0.0	6 1	.00		64	.00		65	. 01				
	66	01	67	. 0 1	68	.01		69	.01		70	.01				
	71	00	72	. 00	7 1			74	.00		75	.01				
	76	01	77	.01	7 8			79	.01		80	.01				
	61	01	82	01	81	. 01		84	.01		85	. 01				
	66	01	87	.00	87	. 00		89	.01		90	.00				
	91	0 a	92	.00	Q 1	.00		94	.00		95	. 00				
	9.4	60	97	.00	0	.00		99	.00		100	20.30				
1	01 20	14	102	19.72	103	20.16		104	19 94		105	19.12				
:	CA 10	9 9.L	107	19 05	104	18.67		109	19.77		110	18 84				
	10 14	TO	112	19 44	117	19.67		114	19.06		115	16.94				
	+1 - 1¥+	3 ·	117	18 14	114	17.95		119	17.87		120	17.04				
1	14 14															
	16 18.	14	122	17 24	121	17.27		124	16.78		125	10.01				
1	16 18.	/* 50 70	122	17,20	121	17.27		124	16.78		125	10.01				
1	16 18. 21 17. 26 10.	74 61 70	155	17,20	121	17.27	a i	124	16.78		125	10.01	a ·	3	2	

3

2-35-126

l

ì

Table D-6

Lestandard Printout Format for Computed Water Quality 7

.

UPPER COOM INLET, KNIK ARM AND TURNAGAIN ARM Average Rumoff Comottions - Steady State

			• • •		AKITUR.									
r r		107 N 46/L	101 P HG/L	אט/1001 ער 1 נחר	F CUL	1/94 46/L	N BUD NG/L	UXY HG/L	0 3AT HG/L	164P C	CUN3T 1 UN113	CONST 2	CUNST 3 UN115	CONST # UNETS
	30596.	10,	00.	10-10	.00	.00	00	9,3	₽ . ₽	10.0	00	00	00'	.00
~	30159	10	, e	11-09	00.	00.	00.	و ً و	¢,3	10,0	00	n a •	00	00
-	29089	20.	00	11-08	00.	00.	00	~ ~	~ • •	10.1	00	n 0 °	00.	00.
31	27736.	202	00,	62-03	00		00	~ .	-n : - (01		0.0	0,0	
'n.	24235.	~	00,	20-02 22	00			a .	3 - > 0					
0 -	24242	č		80-10				3 7 7 0						
- «	26000 26005					00	00	1 7 9 0						
• •	27646			17-05		00		- 0- - 0-	5.°0	10.1	00	10	0.0	
10	21715	70	00	49-00	00	00	00.		9 ° C	101	0.7		•••	.00
=	26771.	.05		20-15	00.	.00	07	6°2	5°6	10.1	00	10.	00.	00.
2	26195.	.06	00.	13-04	00.	00.	0.3	9 ° 6	5°0	10,1	00*	10.	00,"	00.
2	25356.	. 07	5	23-04		0.0	00		4.	101	00.		00,	000
7 H	25121. 25524				•		•	0 4 7 0	0 4 7 0	•				
2 -	2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							• •						
	2042			22-03										
-	24021.			10-01	00	00	00	0,7	0.7	10.1	0.0	0.2	00.	
61	22740.	=		12-02	00.	00	00.	9,8	8°6	10,1	00.	.02	0 7 7	.0.
20	23202.	10		12-02	00.	.00	00.	1 6	9.7	10.1	• •	2°.	000	
12	23252.	.10	0	11.02		00.	0.0	- ⁻	4,7		00	20.	00.	00
22	21542	21		a 3 - 0 2	00	00 .	2	* •		0.0				
3			5			•								
,	101010		j		•		10					.01		
ŝ	29540.			10-26	00	10	10	6 6	¢.6	10.1	00	10	00	.0
		.17	5,	21+00	00	, 02	50.	10.2	10,2	101	00.	.0.	.00	.0.
2.8	20174.	. 1 4	10.	10-15	.00	10.	10.	6°6	°°°	101	00	F0.	0,7	.0.
1	19491	15	101	10.00	00	0.	20	6 6 6	ð .		00.	1 0 1	0.7	
23	19550.	• 1 •	5	10.11	00	20,	5 C C	~ °	0.01					
2:	14557.	•	Ę	16+00	0.0	20,		- -						•
22	19534	•		35.00				0.01					0.7	
5	14015	2	0	10+01	00	.05	90	101	10.3	101	0	10	00	
4 4	11477	23		100005	.00	50.	÷0	10.5	10.5	10.1	10.	.04	00.	00.
а, С,	10536.	24	20,	10+07	00.	₹.	\$0 .	5.01	10.6	1.01		1 0 1	0.0	00
* ~	11.0		5,0	01112										
H D			Ċ	21-02	00	00			2.11	101	0.0	00	00	
61	101.		5	20-50	00	00	00		2	1 . 1	00	00		
50		. 25	10	20-05	0.0	00.	00.			10.0	00	00	00.	00
52	19719.	10	10	84+00	00	(0.	.03	10.0	10.0	10.1	10.	.04	00.	00.
5 1	19711.	.16		11+00	• 0 0	.01	- 0 S	10.0	10.0	10.1	.00	7 0 7	000	00.
5 1 1	197 364	•	10,	14+00	00.	2.5	2	0.01	10.0		00.	4 O 4	00.	0 0 0 9 0 9
2	1 4 6 0 8 4	4 . 	Ę	0000										
	14175										•			
	17247	91,	,	6 4 - 0 3	00		• • • •	1 0 1	10.1					- 7 O
	15569	. 18		10-03	00	00	00	10.2	10.2	10,1	0 0 0	0,	00	00.
60	12080.	. 20	101	12-04	.00	0.0	, u	10.5	10.5	10.1	00	. u2	00	.00

•

Table D-6 - (Cont.)

Standard Printout Format for Computed Water Quality

UPPER COOK INLET, KNIK ARM AND TURNAGAIN ARM Average Runoff Cunditions - Steady State

..... Ì

2-35-

821

10 I 🗿

TETRA TECH, INC. Lafayette, calif,

. . . . **.**

					00/	LITY RESU	LTS, DAY	136						
JUN	105	TOT N	TOT P	T COL	F COL	C 800	N BUD	UXY	0 3AT	TEMP	CUNST 1	CON31 5	CUNBT 3	CONST 4
	MG/L	H\$76	MG/L	NU/100PL	NOVIDONL	HG/L	MG/L·	MG/L	HG/L	C	UN113	UNITS	UNITS	UNITB
100	20303.	.14	201	216+00	,00	.01	.01	9.9	9,9	10.1	.00	.03	.00	.00
101	20337.	.14	01	17+00	.00	.01	.01	9,9	9.9	10,1	.00	.03	.00	.00
102	19717.	.15	201	71+00	.00	.03	.03	10.0	10.0	10.1	.01	,03	.00	.00
103	20154	.15	01	44+00	.00	50.	.05	9,9	V, Y	10.1	.00	.03	. 40	.00
104	19937	.15	01	61+00	.00	- 02	50.	9,9	9,9	10,1	,01	.03	.00	.00
105	19125	.17	201	10+01	.00	,05	.04	10,0	10.0	10.1	.01	.04	.00	.00
106	19958	.15	201	211+01	.00	- 05	.02	9,9	9,9	10,1	.01	.01	.00	.00
107	19051	.19	01	27+01	.00	.06	.05	10.0	10.0	10,1	.01	.04	.00	.00
108	16672.	18	<u>]</u> 01	31+91	.00	.06	.06	10.0	10.0	10.1	.01	.04	. 00	.00
109	19773.	.16	<u>.</u> 01	22+01	.00	.03	.03	9,9	10.0	10,1	.01	.03	.00	.00
110	19839.	.10	201		.00	.07	.04	10.0	10.0	10,1	. V 1	.04	.00	,00
111	17500.	.16	.01	41+01	.00	05	.04	9.4	10.0	10.1	.01	.01	,00	.00
112	19462.	.17	201	261+01	.00	.00	.05	10.0	10.0	10.1	.01	.03	.00	.00
113	19065.	.10	201	35+01	.00	.04	.04	9.4	10.0	10.1	. v t	.01	.00	.00
114	19963.	.18	101	13+02	.00	.07	08	10,0	10.0	10,1	.02	.04	.00	.00
115	18902.	.18	201	207+01	.00	.08	.07	10.0	10.0	10,1	. 02	04	. 00	.00
116	10749	.18	201	67+01	.00	.08	.07	10.0	10.0	10.1	50	.04	.00	.00
117	14146.	151	202	30102	.00	.17	14	10.0	19.1	10.1	.03	,04	.00	.00
110	17957	.20	01	11+02	.00	.10	.07	10.0	10.1	10.1	50.	.04	.00 .	.00
119	17870.	.20	201	65+01	.00	08	. 0.5	10.0	10.1	10.1	50	.04	. 00	.00
120	17650	151	01	15+02	.00	12	. 11	10.0	10.1	10.1	50	.04	.00	.00
121	17606.	20	201	13.02	.00	.11	.10	10.0	19.1	10.1	50	.04	.00	.00
122	17292	.20	01	80.01	.00	.07	. 08	10.1	10.1	10.1	50.	.04		.00
123	17201	.21	.01	10+02	.00	.10	.09	10.1	10.1	10.1	.02	.04	.00	.00
124	16794	21	01	74+01	.00	.09	08	10.1	10.1	10.1	. 02	.04	.00	.00
125	15820		01	12+01	.00	.09	. 0.8	10.1	10.1	10.1	50.	.04	.00	.00
126	16707	121	01	\$9.01	.00	0.0	. 0 5	10.1	10.2	10,1	50.	.04	.00	.00
127	16057.		01	43+01	.00	.07	.07	10.1	10.2	10.1	50.	.04	.00	.00
128	15215		- Sai	17.01	0.0	0.6	07	10.2	10.3	10.1		.04	. 0 0	.00

Table D-7

1

Ŋ

prone.

Alternative Printout Format for Computed Water Quality (This printout was not generated by the sample problem)

I YEAR DYNAMIC SIMULATION OF SALINITY AND STP INFLUENCE

UPPER COOK INLET, KNIK APM AND TURNAGAIN ARM June - Sept Runoff Conditions - Dynamic

							74.0 0		P851	21 T	and the start								
1	30558.	z	30108.	3	29731.	4	29662.	5	28925	6	29203.	7	20116	8	27071.	,	25948.	10	20000.
11	25404	18	24503.	13	23368.	14	22960	15	00855	16	22741	17 .	21937	10	51534	19	19101.	20	19937.
21	19946	22	17130	23	17052	24	16370	25	16357	56	15317,	63 7.	9593	26	15416.	29	0,	30	0.
31	14964	32	14399	33	0.	34	Ο.	35	14763	36	14495,	- 37-	13713.	30	0,	78	٥,	4 Q	. 0,
41	0.	42	0	43	5531	44	3297.	45	2758	46	1190.	47	214,	48	18.	49	۱.	30	0.
51	0,	52	14372.	53	14711.	54	14684.	55	14643	96	14214,	57	13005.	58	11227.	59	8772.	80	4700.
61	0	62	٥.	63	Ο.	64	Ο.	65	0	66	Ο.	67	0.	68	۰.	69	0.	70	0.
71	0	72	٥.	73	٥.	74	٥,	75	0	76	Ο.	11	Ο.	78	0.	79	0.	80	0 .
01	0	02	0.	83	0.	84	0.	85	0	86	D.	87	0.	88	0.	89	9.	99	0.
91	0	92	0.	93	ů.	94	Q.	95	0	96	0.	97	0.	98		99	0.	100	15167.
101	12011	102	13423	103	14854	104	14344	105	15996	106	14442*	107.	12/43.	100	12030.	104	14085.	110	14334+
111	13731	118	13477.	113	13073.	114	12711	115	12493	110	12242.	117	11163.	110	10030.	114	10911	150	10342+
121	10522	125	9778.	123	4755.	124	4002"	125	4037	140	00//.	127	1448.	150	00/4.				
							0P P	CONS	T 1 , UN	119	FOR DA	Y 360							
1	.04	z	.08	1	10	4	. 12	S	.15	6	.15	7	.20	5	. 22	9	.31	10	. 27
-11	.33	12	. 38	11	43	14	. 45	15	.45	16	46	17	. 49	18	51	19	. 60	20	.56
21	.55	22	. 66	23	63	24	58	25	.76	26	71	27	57	28	05	29	00	30	.00
31	.97	32	1.02	33	00	34	,00	35	1.01	36	1,02	37	1.11	38	.00	39	.00	<i>u</i> 0	,00
41	.00	02	.00	43	70	44	.45	45	, 35	46	.15	47	.03	48	.00	49	,00	50	.00
51	.00	52	1,06	53	1 02	54	1.03	55	1.01	56	,96	57	.86	58	,73	59	.56	60	.30
61	.00	65	.00	63	00	64	.00	65	.00	66	.00	61	.00	68	.00	69	.00	70	.00
71	.00	72	.00	73	200	74	.00	75	•01	76	,00	77	.00	78	.00	79	.00	90	.00
81	.00	62	.00	83	00	84	.00	85	.00	86	.00	87	.00	88	.00	89	.00	90	.00
91	•00	92	.00	93	200	94	.00	95	.00	96	•00	91	.00	98	.00	99	.00	100	.86
101	. 81	102	.94	193	<u></u> 741	104	.95	105	1.09	106	.96	107	1.18	108	1.17	109	1.05	110	1,24
111	1.10	112	1,16	113	1 07	114	1,33	115	1.25	116	1,25	117	1.69	110	1.32	114	1,24	150	1,42
151	1,34	155	1,21	153	1,29	124	1,17	125	1.15	159	1*15	151	1,02	158	.00				

2-35-12

-0

2-35-130

35-131 2

Ž.

APPENDIX E

2-35-132

HYDRO

- <u>5</u>	in the second second second	· · · · · · · · · · · · · · · · · · ·	
c	HYDRO IS A MATHEMATICAL	HODEL DEVELOPED	IO SIMULATE
С	THE HYDRODYNAMICS OF AN	ESTUARY.	
C			
c	DEVELOPMENT OF THE MODEL	HAS DONE UNDER 1	THE SPONSORSHIP
Ċ	OF THE CALIFORNIA DEPART	MENT OF WATER BES	SUURCES, CALIFORNIA
	STATE WATER RESOURCED CO	STRIR BUARN AND	NE NASSAU-SUFFILL
ž	BEGIONAL PLANNING BOADD.	NEW AUTR	
2	scolowic Severate boxees	HEA TOAK.	
5			
C	YODI (TOANE HODINICALIONS	HERE HADE UNDER	CUNTRACT NU.
ç	DACH45-16-C-0044, DEPART	MENT OF THE ARMY	, ALASKA DISTRICT,
c	ANCHOHAGE, ALASKA,		
C			
c	OUESTINUS REGARDING THE	COMPUTER CODE OR	THE HUDEL APPLICATION
C	SHOULD BE DIRECTED TO DU	NALU J. SHITH, TE	TRA TECH, INC.,
č	1700 MT. DIAMED BLVD L	AFAYETTE, CALIES	94549 (415-283-3771)
	give out of the set of the set	and a second care of	
~	COMMON ATTOX WILL SERVICE		CAL WALKAN . DEUTION . TOUT DAAN
	TOWNOW ALLON MORATURATION		201111(2011)541001204/5801
	1, MANGE(200/2)/10490	2411121	
	COMMON/0204/ JUN(2001, NC	HAN(200, N), NJUNC	300,21,NGIN(200)
	1, ASIN(41,26),9614(2	00) 1000 (500) 1010	(200), A (300), ACA (300)
	2, AP(340),EArh(540),	AK(100), A3(200), A	\SK(200),AT(300),H(300)
	3, PMP(300),0EhtH(500)'H(500)'FÉH(309))'&(3n0)'A(3nn)'X(5n0)
	4. VUL(200),V(200),O(3JD) . ACAVE (SOU) . 1	SAVE(200), ASU(200)
	5. AAVE13003.DEPAVE12	00),01P[HB2200],1	** 1 ND (300) . HAVE (200)
		VE (100) - CU (100) - (P/ 1001 . PAVI (1001) . RUH/2001
			263 MARTAIOUS ORIIOUSCUSCUSCUS
	7, R5(300),850(300),3	FLUATZHUJ, VANSIJ	101 AVAFE 2001 HUHE 2001
	8, YULAVE(200),VULB(2	00) / 5 (3001 / 850)	200) AL(200) AR(200)
	COMMON/MISC/ HJ/HC/USET/	DELIDINASTERINOSI	TEP, T, T2, DEL T2, IDAY
	1. 0HIN, 10, NHPERG	1,115,5768078),961	18(10),6ft000(10)
	- COMMON/IN/ OPHT, KHAI, DOM	AT, SHPRT, TROUGIO	1, JPHI(30), LPHI(30)
	1. PRTH(53, 34), PRTV(5	a, 10), PHT0/50, 30	, HOUH (50), NJPLUT (5,3)
	2. MCP+01(5, 0)-TITIE/	201.111 (201.111)	46.1187883.0151
	ATMENSION 0419315.21. NIN	015.351.601015.21	51.6901/2001.181251
		0.11.11.01.01.01.01.01.01.01.01.01.01.01	///////////////////////////////////////
	OTHERSTON ADDITED		
-	01-51310- 3144141	· · · · · · · · · · · · · · · · · · ·	
Ç	01"1"510" EATHO(52)'AVIN	0(25), EVAPP(20,25	2)'YEANH(50'5)'20WEA(500)
	DIMENSION EVAPA(20,25),N	EVAP(20,2), 3U4EV	[200]
	THTEGER CPAT		
	ALAL LEN		
	FOULVALENCE (HN(1), DVOT(1))	
	DATA STAPOZIH ZA STARIZI	HAZ	
r	Carls of a coltra of constru		•
č	ALTIE ANENDRATION		
	PLAU IS/1041 HILE/ILL		
100	FORMAT (2044)		
110	FORMAT (1H1,2044,104,11	TRA TECH INC. 1//	X, ZDA4, LOX, 'LAFAYETTE, CA
	111FURNIA7,//1H 90X/7110A	L HYDRODANINGS P	'ROGRAH'/}
c			
Canna	GENERAL CONTRUL FOR STHU	LATION AND PRINT	
-	0146 (C.1201 641 904.00PR	T.NUPHT.NTSL.NST	CF.NTELOW-NOVNAH.NSTEAD.N
	17		
	NUTHER CV		
		1111252003	
	420=40+414		
	93939570AD		
120	FUHMAT (1613)		

HYDRD

READ (5.120) (JPRT(1), I=1, NMPRT) READ (5,120) (CPRT(1),1=1,NUP91) TF (NSTAGE, GT.O) READ (5,130) ((NJPLOT(1.N), NH1, STATHI, HATAGE) IF (NIFLUM. GT. 0) READ (5,130) ((NCPLDI(1,N), No1, 3), [=1, NIFLUM) 130 FORMAT (315) JTR(2)=0 TF (NTSL.GT.U) HEAD (5,120) (JTH(11,1=1.NTBL) READ (5,140) DELT, DELTO, PEALOD, DHIN DHINSDHIN/2. 140 FURHAL (16F5.0) NUBIEPESSOD, *PERIUD/DELTO+0.1 NHSTEP= SOOD . + PERTUD/DELT+0.1 NHPLAUSHHSTEP/NUSIEP NPRISNHPERO C READ AND PROCESS SYSTEH GEDHETRY DATA NEXIT=0 CALL GEDMET (NEXIT) IF (NEX17, 37,0) GQ TO 150 CALL HENDERING ROUTINE IF STEADY STATE QUALITY TAPE IS SPECIFIED IF (HSTEAD.GT.O) CALL NUMBER (NN) 150 CONTINUE 1F (NN LD, 997) NEXITAL WAITE 10, 100 TITLE, TITL WHITE (6,160) NSESON, (HUAY(1), 1+1, NSESON) WHITE (0,170) HHSTEP, NOSTEP, NUTAGE, NTFLOW, NZO, NJO, PERIOD 160 FURMAT (TONUMBER OF HYDRAULIC CONDITIONST, TSO, 157, TONUMBER OF TIDA 11 CYCLES PER CHINDLTION', TS0, 1615/, (150, 1615)) 170 FOUNAT (, IONUMAER OF HIDUANLIC TIME STEPS PER CYCLEI, TSU, 15/, TONUM TRER OF QUALITY TIME STEPS PER CYCLF', TSU, 15/, 'ONUMPER OF TIDAL BTA 1,150,157,10NUHNER OF TIDAL VELOCITY PLOTS 2GE PLUIS 3 1,150,157, ODYNAHIC HYDHAULIC DUTPUT UNIT 1,150,157,108 ATEADY STATE HYDRAULICS UNIPUT UNIT 4, TSU, 157, TOTIUAL PEHIUD, HOU 5851,150,15.0/) WRITE (6, 1AU) NHPHT (JPHT(T), 1=1, NHPRT) 180 FURMAT (' RESULTS PRINTED AT THE FOLLOWING', 13, 1 JUNCTIONS'//, (10% 1,161615 WHITE (6,190) NUPHT, (CPHT(1), 1=1, HOPAT) 190 FURMAT (//15x, AND FOR THE FOLLOWING 13, CHANNELS //(10K, 1616)) PHILE 10.5001 200 FOPPAT (TUFOLLOWING PLOTS ARE HADEI//) D0 220 1=1,N\$14GE WHITE (6.210) INJPLUT(I,N), NDI, 3) 210 FOHMAT (15x, 1 TIDAL STAGE FUR JUNCTID: 31, 315) 300 CONTINUE DO 240 I=1,NTELON WHITE (6,230) (NCPLOT(1,0), H=1,3) 230 FURHAT (154, 1 TIDAL FLOW FOR CHANNELS 1,315) 240 CHALLINE C.... WRITE INVARIENT GEOMETRY DATA 250 FURNAT (50x, "INVALITANT CHANNEL DATA 1//, I CHANNEL LENGTH, PT I WINTH, FT MYD HAD, FT HIN ELEV, FT HANNINGS N END JUNCTIU 205 STOP SERVE NAX TINE, SECTOR 1100

۰.

ĉ

HYDRU

00 300 J=1, NC 1F (NJUNC(J,1),E0.0) GO TO 300 1F ("0)(11,451,NE,0) 60 TO 260 WAITE (0,110) TITLE, TITL WRITE (0,250) 260 11#11+1 STARIJSESTANO TC=H(J{ IF (AC+(J), LE.0,0) GD TU 290 TU=V.V 00 270 121,10000 18=19+0.1 0.51(((L)NJA+8T-(L)8)+(L)8)+8T-(L)H+{L)6cAT 1F (TA LE. 0.0) GU TU 280 270 CONTINUE 260 TC=9(J1/ACH(J) TC=441+11TC,T8) IF (ABS(TH-IC),GT.0.01,AND.TC.LT.DHIN) STAR(1)+STAR1 290 CONTINUE AS(J)=1C WHITE (0, 310) J.STAR(1), LEN(J), B(J), R(J), TC, CHN(J), (NJUNC(J,K), K=1 1,5), ACK(J), VT(J) TF (MUD(11,45),E9,0) HRITE (6,320) 300 CONTINUE 310 FUHMAT (17,A1,F13.0,F14.0,F14.1,F14.1,F12.3,19,10,F13.0,F14.0) 1F (HUn(11,45),4E,0) WRITE (6,320) 320 FURMAT (FORUTE - - + INVICATES NEGATIVE WIDTH IS POSSIBLE WITH ANT ITCIPATED TIDAL STAGE!) 330 FORMAT (50%, INVARIANT JUNCTION DATA 1//1 JUNCTION AREA, HSF SL. IDPE, HSF/FT DEPTH, FT HIN LLEV, FT X-CURD Y-CORD 2 CHANNELS ENTERING JUNCTION //) 1100 T0=9. TERV. CU 190 JEL,NJ JF ("CHAN(J,1),EQ.0) GO TO 390 1F (4Jn(11,45).NE.0) GO 10 340 WHITE (6,110) TITLE, TITL H411E (6,330) 340 11=11+1 TD=10+VUL(J) 16=16++9(J) TCEDEPTH(J) 3144 (9\$=514HO IF (ASK(J),LE.0.0) 60 TO 370 18=2.0 ni) 350 1=1,10000 TUETH+0.1 TAIYUL(J)-TH+(A3(J)+(A3(J)-TB+ASK(J)))/2.0 IF (TALLE.0.0) GO TO 360 350 CONFINIE 360 TC=45(J)/454(J) TC#44141(TC,T0) IF (ABA(TB-IC).GT.0.01.AND.TC.LT.DHIN) STAR(9)=STAR1 370 CONTINUE D() 340 K=1,8 NENCHAN(J,K)

 \sim

εJ

-

HYDRO

TF (TC_LT_RS(N)) STAR(K)=STAR1 300 CUNTINHE HAITE (0,400) J.STAR(9).STAR(9).A8(J).A8K(J).DEPTH(J).TC.X(J).Y(J) 1, (HCHAN (J, K), STAP (K), KE1, 8) IF (MUn(11,45),E0.0) white (6,410) 190 CONTINUE 400 FURMAT (17,241,-6PF10,0,F13,1,0PF13,1,F16,1,F13,1,F11,1,17,41,F(14 1, 41)) 1F (40n(11,45),NE,0) #RITE (6,410) 410 FURNAT L'ONDIE - - + INDICATES THAT DEPTH DE CHANNEL ENTERING JUNC ITIN' IS LARGER THAN JUNCTION DEPTHIZ, 9X, *** INDICATES NEGATIVE VOL 2014E ON AREA 15 POSSIULE WITH ANTICIPATED TIDAL STAGET) TAX10/16 WRITE (6,420) TD, 18,14 420 FURMAT (///20H ESTUARY STATISTICS (AT HSL),/SX, 20H TUTAL YOLUME, C 10 11 . LIS. 4./SX. 26H TOTAL SURFACE AREA, SU FI, EIS. 4./SX. 26H H ZEAN DEDTH, FT .E13.43 C

JF (420.LE.0) GU TO 450

STAR (KI#STARD

PENIND N20

HQITE (N20) NJ,NC,((NCHAN(J,1),1#1,85,J#1,NJ),((NJUNC(N,1),1=1,2), ILEMIN),NC1,NC) 430 CONTINUE

IF (N30,LE,0) GD TO 440 R[WIND N30 WHITE (H30) NJ,NC,IIQ WRITE (H30) (JUN(J),(NCHAN(J,I),I=Ĩ,B),J=1,HJ),(NJUNC(N,1),NJUNC(N 1,2),LEH(N),N=1,HC) 440 (LIMINIL

c

Ĉ

and the second state of th

C.,,. HYDRAULIC CONVITIONS LOUP OUT 1170 IS=1, NSESUN READ (5,100) IIIL READ (5,120) NIEMP WHITE (6,110) IIILE, IIIL IF (NIEMP(1), E0,1) GO IO 460

C INPUT TIDAL COMPITIONS

```
RÉAD (5,120) NJEX

w=2,*3,14159/PERTOD

DD 450 NEL,NJEX

READ (5,120) JEX(N),N1,MAXIT,NCHTID

READ (5,140) (TT(1),YY(1),141,N1)

CALE FIDEF (H],MAXIT,NCHTID,N)

450 CUNTINUE
```

WHITE (0,110) TITLE,TITL 460 IF (41644(2), 60,1) GD TO 530

400 1F (41FMP(2),E0,1) 00 10 530

CANAA EVAPUKATION F=1,/(12,430,5400400,) write (0,470)

> . .

470 FURMAT('0JUNCTION TO JUNCTION EVAPORATION RATE, INCHES/HONTH') C 470 FURMAT ('0HOUVLY EVAPORATION AND RAINFALL RATE'/,' JUNCTION TO JUN C ICTION / EVAPORATION, INCHES/HONTH / RAINFALL,INCHES/HOUR')

er er a

.___1

DQ 480 Jel'N1

. <u>.</u> . .

HYDRO

ABO EYAPEJSHO no 510 1=1,21 READ (5.700) J1. JZ. EVAPA 1F (JI,LE.0) CO TO 520 READ (5.550) (EVAPO(J), RAINU(J), Jai, 23) C WHIIE (5,490) J1, J2, EVAPA 45.054,511,91)14+P(I + 09P WRITE (S,440) JI, J2, EVAPO, RAINO C 490 FURMAT (19,112,/(5x,25F5,1)) NEVal NEVAP(1/1)+J1 ST+(2'L) dYA5 TADEVADANE 00 500 J=1,25 500 FV1P4(1, J)>14 C 500 EVAF4(1, J)=EVAPU(J)AF-RAINO(J)/43200. 510 CONTINUE S20 CUNTINUE 530 1F (N1FMP(3),E0,1) GO TO 600 с. C.... HIND VELOCITY AND DIRECTION WHITE (6,540) 540 FUPHAL (TOHOURLY HIND VELOCITY (MPH) AND DIRECTION (DEGREES CLOCKW 115E FROM NORTH) 1/, CHANNEL TO CHANNEL 1/) NO 574 1=1,NJ SL, 1L (05,130) J1, J2 1F (J1 E0,0) GD TU 500 NA100(1,1)=J1 + SL=(S+1)0/1+N READ (5,550) (WIND(1,J), WDTH(1,J), J=1,25) 550 FORMAT (16F5.0) 1204=1 (25,1#L,(L,])RIGH,(L,1)ONIN,(),SL,1L (062,6) 31164 560 FU944T (18,111,5(19,F6,1,F6,0)/,(19X,5(19,F6.1,F6.0))) STO CONTINUE 555 CONTINUE TF (HIFHF(U)+HTEHP(S)+MTEHP(6), LT. 3) HRITE (6,590) 590 FORMAT (//, INFLUM AND OUTFLUM DATA") 600 1F (NIFHP(4), LO, 1) GD TO 670 C THELDA AND DUTELON c.... 00 610 J=1.NJ 114(J)=0.0 n-)u(J)=0.0 610 CUNTINNE WHITE 16.620) 620 FURMAT (TOJUNCTION HITHDRANL, CF31/) INFLUM, CFS 01 650 J=1.4J READ (5,639) N.001N,000U 630 FUHMAI (15,7F10,0) 1F ("+1 t.0) GI TO 660 WHILL (C. 640) N. DUIN, OAUU 640 FUMMAT (19,F14,2,F18,2) 214(4)+0014 009(9):0000 650 CONTINUE 650 CONFLICT

H Y D R D

670 IF (NTEMP(3),E0,1) GO TO 740 Ċ. GROUND MATER INFLOW Ç.... DO 640 J+1,NJ 680 DGIN(J)=0 WRITE (6,690) 690 FORMAT ("OJUNCTION TO JUNCTION GROUND WATER INFLOW, CF8+) DO 720 IF1,NJ READ (5,700) J1, J2, GROUND 700 FUHHAT (215, F5, 0) TF (J1, LE, 0) GO TO 730 ONDOHO'ST'AT (01140) JI'LAM 710 FURNAT (19,112,F19,2) 20 150 17=11'15 720 001N(J_1)=6400ND 730 CUNTINHE 740 1F (MTEMP(6), ED. 1) GO TO 840 C C.... STORM WATER INFLOR 00 750 J=1,24 750 DSIN(41, J)=0, DO 760 J=1,NJ 760 NO14(Jj=4) WHILE (6,770) TTO FURMAT (OJUNCTION', TET, "STURM HATER INFLOW, HOUR AND FLOW, CENT) 00.120 Jc1,40 READ (5,780) N, (TN(1),1-1,12) 700 FURHAT (15,12F5,0) 1F (N.F.0.0) 60 10 836 READ (5,790) (IN(1),1=13,25) 790 FORMAT (13+5.0) T# = 0 10 000 1=1,25 091N(J,1)=1N(1) 800 TARTA+THELL 091N(J,26)=TA/25, WRITE (0,810) N. (1,031N(J.1),141,26) 810 FURHAT (19,/(13(14,/6,1))) NQIN(Njaj 30411403 058 030 CONTINUE BAD CUNTINUE (F INEVIT, LE. 0) GO TO 860 WRITE (6,850) 850 FORMAT (7/7,10(10H - 810P J. //. JOX, PROGRAM TERMINATION DUE TO IPREVIOUS ERNOR , //, 10(10H BORRY)) 9108 660 CUNTINUE £ T=0,0 DELIZENELIZZ.U W=5,2332/(3600,*PERIUD) してしゃしゃん ni) n70 1=1,50

00 Blu Je1, 10

PHTH(1, 1)=0.0

PHIJ(1, J}*0.0

35-13

нүрко

۰.

HYDRD

876 PRTV(1,J)=9.0 NO 850 J#1,NJ SUMEV(J)#0. JCH(J)=0 ASAVE (1)=0.0 R()+(J)=0.0 DVDI(J)=0.9 VI) LAYE (J) = 0.0 DEPAVE(J)=0.0 HAVL(J)=0. QANGF (.1, 1)=-1000 0001=(5+1.) 30 IAN DU 4AU 1=1,2 880 TLAG(J,1)=0.0 DO 490 HEL.NC vs(")=n,0 #5(H)=0.0 VANSCHS=0, ACAVE (N) = 0.0 ASD(")=V.V V50(N)a0,0 AAVE (113=0.0 DAVE (11)=0. BAVE (N)=0 0P(11)=0 Q1(N)=0 840 VAVLENJO DO 900 NEI,NJEX J#JE#(4) JGH(J)=H DFLUDD(N)=0.0 DEB0(11]=0,0 400 CUNTINUE C.... NAJLY TIME STEP LOOP 10AY=HDAY(15) 01 1060 JI#1,10AY 10=11 С C PUALITY TIME STEP LOOP DU 1050 THEI, NOSTEP 110:19 TF (10 LT. 104Y) GO TO 940 RPHICHDAT DD 910 JE1,NJ DEPTHH(J)=0. VULB(Ji=0, ASP(J)=0.0 910 CONTINUE 00 920 1=1,NEV JIBNEVAP(1,1) 12=4EvaP(1,2) SLIFFUL OS6 UG 920 SUMEV (J) = SUMEY (J) + EVAPR (I, 10) + AS(J) DO 930 N#1, NC DB(N)=n, AB(N)=0.

where the construction of the state of the s

930 V8(N)=0.0 . , , C.... WIND FARCE 940 DI 950 NEL.NC 950 FHIND(N)=0.0 NO 970 1=1.170N TE (#IND(1,10).LE.0.0) GO TO 970 J1=N=1+0(1,11 12=NH1HD(1,2) DD 960 N= J1, J2 TF (HJUNC (H, 1), EQ. 0) GO TO 960 AL=NJUNC(N.1) NH=NJUHC(N,2) XD=X(NH)=X(NL) YD=Y(Nu)-Y(NL) IF (ABALKO)+AUS(YD).LE.U.D) GO TO 460 FHIND(N)=-HIND(1,10)AA2ACUS(HDIR(1,10)/57.-ATAN2(X0,Y0))A1.52.6 30PTTPUE 910 CONTINUE C C EVAPORATION DU 980 IFLINEV JI=HEVAP(1,1) J2=4EVAP(1,2) SLILEL UPL IN 900 FVAP(Ji=EVAPR(I,IU) C CALL DYNFLO TF (10 LT, 104Y) GO TO 1050 F=FLUAT(NHPEHU) UN 470 J=1,NJ DEPAVE(J)=DEPAVE(J)+DEPIHB(J) DEPIHU(J)=DEPIHU(J)/F VOLU(J)=VOLU(J)/F ASB(J)=ASB(J)/F 990 CONTINUE DO 1000 Natio 0B(H) = 0B(H)ZFACAVE (I) = ACAVE (N) + AB(N) AH(N)=AH(N)/F 1000 Va(N)=VH(N)/F 0() 1030 J=1,HJ TF (HCHAN(J,1).LO.D) GO TO 1030 TAEV.U DU 1010 *=1,0 -TF (NCHAN(J,K), E0.0) 60 TO 1020 N=NEHAN(J,K) 1010 TA=1A+AUS(D(N)) 1020 SFLUH(J)=0.5+TAADELTO/VOL(J) 1030 CUNTINUE C 1F (N20.LE.0) GU 10 1050 DO 1040 1=1.NJ K=99(0(1) 1040 D(I)=0310(K)IU) white (N20) 10, (DEPTHU(J), VUL(J), A38(J), 01N(J), 0(J), 0(J), 00U(J) 1, JEL, NJJ, (OB(N), AB(N), VB(N), N=1, NC1

- ~ 3

30

	, VOLAVE (J), 9 (J)		
	D R D DU((J)=3UMEY(J) Eave(J),454ve(J) (M),64ve(J),48(• • •	
	M Y ((J)+031M(K,26)- ((J)+031M(K,26)-) 60 TU 1150 Ave(N) Ave(N) ((Cout(J),0) (1001(J),0)		
	(1) = E (A P (1) + 3 UM 14. X = 1, N(1) + 06 IM 14. X = 1, N(1) + 06 IM H C H A N(1, X) H C H A N(1, X) H A N(1, X)	• • • • •	•.
	C C ONT C C		
, 			
- T.	D 10 1070 HAVE(J) D 10 1080 2/1 0))	0 1160 Cuefficients ()/2.+(Mave(ji)	AC 40 0 to 1150 1 (Mg3TEP)
·	IE IC JALAJ JAFEP JAFED J	<pre>N=1,4JEx N=2FLUD(N)/F ==0644(N)/F +=0544(N)/F +=0544(N) ==1,0 =1,0</pre>	1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1050 COVITM 1050 COVITM 1100 COVITM 1110 1070 1110 1000 1110 1000 1110 1000 1110 1000 1110 1000	600 1007 600 01 1007 600 01 1007 600 11 27 800 40 40 40 800 40 40 40 11 007 800 40 40 40 11 007 800 40 40 11 007 11 007 10 0007 10 007 10 0007 10 000	1100 CONTINU 1100 CONTINU 1120 CONTINU 11

S

рлиа 4

1999

F

6,275

- -

2-35-137

CURVE

BUBROUTINE CURVE (X,Y, HPT, NCY, NPLOT)

と

-35-138

CURVE

C			2	•	INITIALIZE PLOT OUTLINE
ċ	DIMENSION X(NPT, NCV), Y(NPT, NCV)	WHERE	C	·	
Ċ	NPTHNUMBER OF INPUT POINTS UN EAC	H CURVE		NCD#100	
č	NEVANOWHER OF CURVES ON FACH GRAP	· · · · · · · · · · · · · · · · · · ·		CALL PPLOT (0,0,NCD,NPLOT)	
č	NPLUICARINTED KEY.			K = L	
ž	$\mathbf{x} = \mathbf{x} + \mathbf{y} + $	TITLE TH DETNIES	c		
2	The surface of the state of the	TITER IN ENTRYPERT	C		NRAM IN FARM RUDVE
C	ACORAET DOER WOL HAAF ANTINGER OF	AFRITUNS, CHARLE NEXT CAND	č		DUAR TH EACH CONVE
	D1"E"SIUN X(103,1), Y(103,1), NPT	(1), DUHX(4), DUHY(4)			
	- CUMHON /LAB/ XLAB(11),YLAB(6),TIT	LE(12),HURIZ(13),VERT(6),IUNITO		DU 130 CE1,4CA	
С	-	• •	_	1F (NPT(L),E0.0) GO TO 125	
č		AFT UP X AND Y SCALES	Ç		
č			С		JUINING XO YO AND XT YT
•	*#####################################	s.	Ç		•••••••••••••••••••••••••••••••••••••••
				XU=X9C4L+(X(1/L)+XHIN]	
	AND AND A COMPANY			YORYSCALFEYELLDEYMINE	
	AH474-1.0F 30			NPRINTANPTCLA	
	AWIN=1 06 70	,		NO 120 N=2. NODINT	
	DO 100 KKI'NCA			VI ICU NACINFULNI MTAISCILAININ LAINNIN	
	N='PT(K)				
	00 100 J=1'N			TITTILAL (T(N)L) TTIL	
	TF (X(L,K),GT,XHAX) XHAX#X(J,K)			CALL_PINE (XO,YO,XT,YT,K,NPLOT)	
	TE EXCLUSION THIN THINKELLER			XJ≈XT	
	TE CVCT.H1 GT. VHAV1 YHAX4YC.L.K1			YO≃YÏ	
	The second		120	CUNTINIE	
	the Colling Provide the second college of the second secon		125	K=K+1	
100	CONTINUE	•	1 10	CONTINUE	
	NUHX(I)=XHIN			C	
	DUMX(2)=XHAX		ž		
	CALL STALE (DUNX+10.0,2+1)		5		OUTPUT FINAL PLOT
	0047(1)=7410		Ç	_	
	DUNYEDINYHAE			NC=99	
				CALL PPLOT (0,0,NC,NPLOT)	
				RETURN	
	DO 192 VEIVEA			ENO	1
	HEALI (K)				
	x (+ i + x) * ()1) + X (3)				
	¥(1+2,x]=DUHX(4)				
	Y(N+1,y)xDUMY(3)				
	VINA2 VIEDUNY (A)				
1	ann thus				
103	CUMITNUE				
C		they want a the freedom			
C		FORM & LABELS AND FACTORS			
C					
	XHINCUMAX(3)				· •
	DELTX=DUM¥(W)				-
	YI ANGLISTYNIN				
					•
	110 110 1-1110 01 111/1.1.1				
110				•	
	\$3CVF#100"\CXFV0(11)#YW141				
Ç					
C		FORM Y LABELS AND FACTORS			
Ç					
	YMTNXDIHY(3)				
	OFT TYAOUMY(4)				
	N. 487654VNTN				
	10 113 141/3 				
172	YLANIO-IJATLADI/-IJAULLIY	· · · · ·			
	¥\$CAL=50./(YLAB(I)=YMIN}				•
C					

AUBROUTINE DYNELO COMMON /TID/ HJEX, JEX(10). AXLT, 101, W, TT (50), YY (50), PERIOD, JGH (200) RANGE (200,2), TLA0(200,2) COHHON/GE04/ JUN(2003, NCHAN(200, A) , NJUNC (300, 2), NOIN(200) U314141,261,0614(200),000(200),018(200),4(300),4CK(300) ##(300),EVAP(200),AH(300),AS(200),ASH(200),AT(300).B(300) ... CHA(300), DEPIH(200), H(200), LEN(300), R(300), V(300), X(200) . . VUL (200), Y(2001, 9(300), ACAVE (300), ASAVE (200), ASH(200) . / AAVE(SOU), DEPAVE(200), DEPIHB(200), FAIND(300), HAVE(200) . / HALSOUT HI (500), UTAE (100), USU 100, UDA 100), HAAR (200) HUA (500) . PS(100), PSO(100), SFLOH(200), VANS(100), VAVE(100), ON(100) 47 VULAVE(200), VULB(200), VS(300), VS3(300), VI(300), VH(300) . . COMMON/413C/ NJ,NC,DELT, DELTO, NHSTEP, NOSTEP, 1, 12, DELT2, LOAY D-14,19,944249,119,NTEMP(8),0E88(10),0FL000(10) ... CUMHON/10/ NPHT, KPAT, NOPAT, NHPAT, ICOL(10), JPAT(30), CPH1(30) ##1H(50,30),PRTV(50,30),PHT0(50,30),HUUH(50),NJPLUT(5,3) ... NCPLOT(5, 3), TITLE(20), TITL(20), LT1ME, JTH(48), NTSL ... C INTEGER CPAT DEAL LEN DATA ISTOP /0/ DATA 1148/0.0/ 01=0ELT/3600. TH=1/3600. ĉ DO 270 IHAL,NHPERO 15=1+0115 1+1+0ELT CANAN VELUCITIES AT THDELT/2 CAAAA FLO-S AL TOELT/4 C NO 105 N#1,NC 1F (HJHNC(N, 1), LE.0) GU TO 105 CANNANANA CHECK FUR DRY (R.LT.0.5 FT) CHANNEL qu1=A(v)/B(N) TE (PHT. CT. 0.5) GO TO 100 V1(N)=2.0 0 (N) = U 0 60 10 105 100 CONTINUE 111=4304C(N,1) NH=NJUNE(N,2) DELV2#V(4)+(1, #AT(4)/A(4))+DELT2+((V(4)+A2/R4T)=32.1739)+(H(44)+H(1NL))/LEN(N) V2=V(Nj+GELV2 TEMP=DELT2+AK(N)/HNT++1,3333333 nELV1=0.5+((1,/1EHP+2,+ABS(V2))=SQRT((1,/TEMP+ABS(2,+V2))+#2+4,+V2 1++5)} DELVI=_3164(DELVI,V2) VI(N)=V(N)+DELVI+DELV2+DELT2+FHIND(N)/ANT 0(N) = VT (N) = A (N) 105 CONTINUE CARAA HEADS AT TOELT/2 00 135 J=1.HJ

0 Y H F L O 1F (NCHAN(J,1), LE. 0) GO TO 135 TF (JGH(J), LO. 0) GO TO 115 N=JG#(J) TARMATO HT(J)=AX(1,4) 00 110 I=2,4 18=1+1 110 HI(J)=HI(J)+AX(1,N)ASIN(TAATB)+AX(1+3,N)ACOS(TAATB) 60 10 135 115 CONTINUE [=N0[N(J) 3U49=00U(J)-01N(J)-001N(J)-031N(L,110)+EVAP(J)+A3(J) 00 125 K#1-8 IF ("CHAN(J,K),LE.0) GD TO 130 N=NCHAH(J,K) TF (J.NE, NJUNC(N.1)) GD TO 120 \$UM0=\$1140+0(N) 60 10 125 SUMO=SUMD+O(N) 120 125 CONTINUE 130 HT(J)=H(J)-DELT2+SUM0/AS(J) 135 CUNTINNE CAARA CHANNEL AREAS AT TODELT/2 CANAN VELOCITIES AT T FOELT CARAA FLOKS AT THORLT/2 C 00 145 NET.NC 1F (NJUNC(N, 1), LE, 0) GD TO 145 NL=NJUNC(N,1) NH=NJUHC(N,2) DELH=0[5+(H1(NH)-H(NH)+H1(NL)+H(NL)) TASHENS+ACKENJ+DELH AT(N)=A(H)+U.5+(B(N)+TA)+DELH RHT=AI(N)/TA CANANANAN CHECK FUR DRY (R.LT.9.5 FT) CHANNEL IF (HHT.GT.0.50) 60 TU 140 v(4)=0_0 D(N)=0 60 10 145 140 CONTINUE DEL V2=>,+VT(N)+(1,+A(N)/AT(N))+DEL ++((VT(N)+A/RN+1)-32,1734)+(NT(N 1H)-HT(NL))/LEN(N) V2=VIN1+DELV2 TEMP=DFLT+AK(N)/RNT++1,3333333 DELV1=0.5+((1,/TEHP+2,*AR3(V2))*30RT((1,/TEHP+2,*AB3(V2))*42+4,*V2 14+2)) DELVI=_SIGN(DELV1,V2) V(N) = V(N) + DELV1 + DELV2 + DELT + FHIND(N)/RNT 9(4)=0(5+(0(N)+V(N)+AT(N)) 145 CUNTINUE CAAAA HEADS AT THDELT (TENPOPARILY STURED IN HN) 00 175 J=1,4J TF (HCHAN(J,1), LE,0) GO TO 175

IF (JG#(J),EQ,0) GO TU 155

OYNFLO

لما

ഹ

N=JGH(J) TARHOT HY(J)=AX([+N) ng 150 1=2,4 T##1-1 HN(J)=HN(J)+AX(I,N)+SIN(TA+TB)+AX(1+3,N)+COS(TA+TB) 150 60 10 175 155 CONTINUE ASAJ=AS(J)+ASK(J)+(HT(J)-H(J)) (LINGINGJ) SUMU=UNU(J)-OIN(J)-OGIN(J)=OSIN(L, (IO)+EVAP(J)+AS(J) 01 165 K#1/8 IF (NCHAN(J,K),LE.0) GO TO 170 NENCHARLE,K) 1F (J.HE.NJUNC(N,1)) GO TU 160 804C=SU40+0(N) GU TO 155 160 3UH0=50H0-0(N) 155 CUNTINOE 179 HH(J)=H(J)=DELT+SUMQ/ASAJ 175 CONTINUE C C.... HYDRAULIC RADIUS AT TODELT CARAA CHANNEL AHEAS AT THUELT С DD 180 N=1,NC TF ("JUNC(N.1), LE.0) GD TO 180 NL=#JUHC(#;1) NH=HJUNC(N,2) DELH=0 5. (HN (NH) +H (NH) +HN (NL) +H(NL)) R(4)=K(N)+DELH TANB(NÍTACK(N)ADELH A(4)=A(4)+0.5A(8(8)+TA)+DELH $B(t_1) = T_A$ 180 CONTINUE CANAN COMPUTE NEW SURFACE AREAS, YOLUHE, DEPTH CAARA SHIFT HEADS AT THE TO H ARRAY C TE(10,E0.10AY) TIMESTIMESOT 10 540 1×1*41 1F (NCHAN(J.1), 20.0) GU TO 200 DELH#MN(J)=H(J) DEPIM(1)=DEPIM(J)+DELH 15AJ=A3(J)+A5K(J)+OELH VOL(J)=VOL(J)+0,5+(A5AJ+A5(J))+DELN AS(J)=ASAJ 14 (VUL(J) GT U.0) GO TO 181 15TOP=:5TOP+1 wellE(6,132) 14,J,H(J),YOU(J) 102 FURMATE SAEGATIVE VOLUME ENCOUNTERED AT HOUR', FT. 2. F AT NODE! 14,1, HEAD #1,87.1, FEET, VOLUME #1,29.2, CU FT1) 101 CUNTIME TE(45(1),GT.0.0) 60 10 145 LHIIE(6,190) 1H, J, H(J), A3(J) 190 FURMATTIGHTGATIVE SUPLACE ANEA ENCOUNTERED AT HOURIFF.2 +, 1 AT AUNE 1, TU, 1, HEAD #1, FT. 1, 1 FEET, AREA #1, E9, 2, 1 SO FT1)

V

1510441310441

.

er trat

3

ເມ

S

50

DYNFLO 1F(13TOP.01,50) 00.TO 202 193 CONTINUE H(J)#HH(J) TF(10. VE. 10AY) GO TO 200 TE (H(J).LT.HANGE(J,1)) GO TO 202 #ANGE(,1,1)#H(J) TLAG(J,1)=TIHE GU 10 200 202 JF(H(J),GT,RANGE(J,21) GD TO 200 RANGE(,1,2)=H(J) TLAG(J.2) #TIME 200 CUNTINOE C Ċ CHECH FOR ABNORMAL VELOCITIES ¢ D0 210 N=1,NC TE (NJUNC (N+1)+LE+0) GO TO 210 1F (AUS(V(N)), LE. 20.0) GO TU 210 1910P=1510P+1 WHITE (6,205) THINIG(N), R(N), V(N) 205 FURHALLIOHYDHIDYNAMIC SULUTION WAS UNSTABLE AT HOURISTY, 2 .. IN CHANNEL ", 14. ", FLOW #1, E9, 2, " CFS, DEPTH #1, PT. 1 ... ! FEET, VELOCITY #1.FT. 0.1 FI/SECI) 1F(19ThP,GT,SO) GO TH 282 \$10 CUNTINUE IF ((In,E0.IDAY-1),AND, (IH,E0,NHPERD)) GO TO 253 TF (ID_LT.IDAY) GU 10 270 C C SUH FOR LATER AVERAGING Ć 14,1#L 215 00 DEPTHU/J1=DLPTHB(J)+DEPTH(J) V0L0(J)=V0L8(J)+V0L(J) ASU(J)=ASU(J)+AS(J) VOLAVE(J)=VULAVE(J)+VOL(J) HAVE(J)=HAVE(J)+H(J) 215 CONTINUE DU 230 NEL,NC ¢ C SUM FIUNS IN EACH CHANNEL C TF ((U(N)),GT,0,0) GO TO 220 DH(N)=ON(H)-D(N) 60 10 225 250 QP(N) = QP(N) + Q(N)225 CONTINUE C DAVE (")=DAVE (N)+D(N) VAVE FUSEVAVE CHIEV(N) RSU[N]=+54(4)+R(N)+A2 A20(1)=A20(71+A(N)+*5 RAVE (N)=HAVE (11)+H(N) 01(4) ×04(4)+4(4) AB(4): EU(4) EA(4) HAVE ("1= PAVE (N)+H(H) VANSCHIJSVANSCHIJABBCVENJS

DYNFLO

025 V8(N)#V8(N)+V(N) C č SUM TIDAL EBB AND FLOUD C DU 250 J=1,NJEX 1=JEX(1) . 00 240 No1,8 N=NCHAN(J,K) 1F (N.FU.0) GO TO 245 Fel. IF (NJUNC(N,2),E0,1) F==1. 1F (F+0(N),LE.0,) CO TO 235 AFLUDU(J)=AFLUDD(J)+AHS(A(N)) 60 TO 240 DEND(J)=DEBB(J)+ABS(D(N)) 235 CUNTINUE 240 245 CONTINUE 250 CUNTINUE Ċ C STORE OUPUT DATA FOR SUBSEQUENT PRINTOUT C IF (INC. KPRT) GO TO 270 KPR[=NPHT+NPR] 255 LYIME=LYIME+1 C CAAAA STORE HEADS TO BE PRINTED DU 260 1=1,NHPAT (1) TANL=THACH PRIM(LTIME, 1)=H(HJPRT) 260 CUNTINHE C CAARA STURE FLOWS AND VELOCITIES TO BE PRINTED PO 265 151, NOPRT MCPHI=(PRI()) PRIG(LTIME, 1)=0(MCPRT) PHIV(LTIME, I)=V(HCPRT) 265 C011140E 270 CUNTINNE JECISTOP, EQ. 0) RETURN 285 HEILE(V'58?) 263 FURMAT(OCHINNEL DEPTH AND VELOCITY 1/) WRIIE(A, 284) (I, H(I), V(I), I=1, NG) 284 FURMAT(5(16,2F10,11) WHITE(6,285) 285 FURMAT(FONODAL DEPTHI/) WHITE(A,206) (I,H(T),1+1,NJ) 206 FUHMAI(10(16,F7,1)) 3 TOP END

DYNFLO

ω M ۱. I

GENHET SUBROUTINE GEOMET(NEXIT) CUHMON/GEOM/ JUN(200), NCHAN(200, 8) "NJUNC(300,2), NOIN(200) n314(41,26),0G14(200),000(200),018(200),4(300),4CK(300) ... AB(304),EVAP(200),AK(304),AS(200),ASK(200),AT(300),8(300) ... CWN(300), DE0[H(200), H(200), LEN(300), H(300), V(300), X(200) ... VOL (200), Y(200), O(300), ACAVE (300), ASAVE (200), ASH(200) ... RAVE(SOO), DEPAVE(2001, UEP)H8/2001, FW1ND(300), HAVE(200) ... WH(200), HI(200), DAVE(300), OB(300), OP(300), HAVE(300), HUR(200) ... #5(300), #50(300), 3FLO#(200), VAH5(300), VAVE(300), UN(300) ... VULAVE(200), VULB(200), VS(306), VS0(300), VT(300), VH(300) ... CUMHUN/MISC/ NJ,NC.DELT, DELTO, NHSTEP, NUSTEP, T, TZ, DELTZ, IDAY OHIN, 10, NHPERU, 110, NTEMP(8), DEBB(10), OFLOUD(10) ALAL LEN DIMENSION AIG(1) EQUIVALENCE (JUNII), BIG(1)) C HCHAND 300 #1UY#260 N# 32+H JUN+29+MCHAN+41+26 D0 10 J#1,N 10 BIG(J)=0.0 CRAAN JUNCTION DATA NJ=0 DU 100 1*1,HJUN H(1)=0 00 100 J=1.8 HCHAN(I,J)=0 100 CONTINUE NULP, 1=1 051 UN READ (5,105) J.AREA, SLOPE, DEP, X1, Y1, (NTEMP(K), K=1,8) 105 FO4441 (15,2F10,0,3F5,0,815) IF (J,(E,0) GD 10 125 TE (J.LE.HJUN) 60 TO 115 WRITE (6,110) J 110 FUPHAT (TO ANA ERROA ANA JUNCTION NUMBER !, 16, ! IS LARGER THAN PR 10GRAM DIMENSIONS!) STOP ÷., 115 CUNTINNE TF (J.G(.HJ) HJWJ 15(J)=1HEA 454(J)59U0PE ntb1+())*D€b ¥(J)××į 1/2/2/1 00 120 K#1,8 NCHAN (JAR) =NTEMP (K) 120 CONTINUE 125 CUNTINHE C. CANNA CHANNEL DATA NC=0 04 130 1=1, HCMAN DU 130 JA1.2 NJUNC([, J)=0

こ

١

ω

S

٩.

5

130 CONTINUE DU 150 IEL,MCHAN READ(5,1351 N. ALEN, HIDTH, RAD, COEF, (NTEMP(K), K=1,2), BLOPE 115 FUPHAT(15,4F10.0,219,F10.0) 1F (H, (E, 0) GO TO 155 IF (NALEAHCHAN) GO TO 145 WAISE (6,140) N 140 FUGHAT ('U AAA ERHOR ANA CHANNEL NUMBER', IS, ' IS LARGER THAN PROG IPAH DIMENSIONSI) STOP 145 CONTINUE TF (N,RT.NC) NCHN CH4(N) SCOEF LEN(H)=ALEN 8(N) 74101H P(N)=HAD AR (H)=CUEF V(N)=0_0 ACH(N)=SLOPE NJUHC(N, 1) = MIND(NTEHP(1), NTEHP(2)) 150 NJUNU (N, 2) = HAXO (NTEMP(1), NTEMP(2)) 155 CONTINUE Ĉ. CARAN COMPATIBILITY CHECK Ĉ DD 170 N=1,NC 00 170 1=1.2 IF (NJUNC(N, I), LE. 0) GO TO 170 JaHJUNC(1,1) 00 160 K=1.8 TE LN.ED. NCHAN(J.K)) GO TO 170 CONTINUE 160 NEXITENEXITES WRITE (6,165) N.J FORMAT (FOCHANNEL CARD COMPATIBILITY CHECK, CHANNEL 1,13,1 AND JUN 165 10110N ++131 CONTINUE 170 00 140 J=1,NJ NU 145 N#1.8 1F (HCHAN(J,K), LE. 0) GO TU 190 NENCHAN(J,K) 00 175 1=1,2 TF (J.EU.NJUNC(N,1)) GO TO 185 175 CONTINUE NEX1TanEXIT+1 WHITE (6,180) J,N 180 FORMAT L'UJUNCTION CARD COMPATIBILITY CHECK, JUNCTION 1,13,1 AND C 1HANNEL 1,131 185 CONTINUE 190 CONTINUE C CANAN DERIVED CHANNEL DATA C DO 195 .H=1,HC IF (NJUNC(N.1), LE.0) GO TO 195

AK(N)=12,1739+AK(N)++2/2,208196

A(N)=B(N)=Q(N)

2

and the second

GEDHET

-0 C 0 H C T

1

1

ALC: NO

1

Sec.

200

100

AT(N)=A(N) 195 CONTINUE C CARAN DERIVED JUNCTION DATA C DD 205 J#1.NJ IF (NCHAN(J.1).E0.0) GD TD 205 VUL(J)=AS(J)+DEPTH(J) TF TOEPTH(J).GT.0.) GO TO 203 VOL(J)=0, TF (AS(J), LE. 0.01 GU TO 205 AREARU VULUME = U. DI) 200 KE1,8 NENCHAN(J,K) 1F (N.IE.0) GU TO 200 ANEA=APEA+B(H)+LEN(N) VOLUME = VOLUME + B(N) + LEN(N) + R(N) 200 CIDNTINIL DEPTH(J)=VOLUME/AREA VOL (J)=DEPTH(J)+AS(J) 205 CONTRACT G=SUAT(32,2) 10=0 NU 225 N=1,NC 1F (NJUNC(N, 1), ER, 0) GO TO 225 DU=SURT(R(N)+OMIN)+G TT=LENIN1/DG v[[4]=1] 225 CONTINUE 1F(NFX[T.GT.0] NAITE(6,227) 227 FURMATITOPRUGHAN EXECUTION WILL TERMINATE LATER DUE TO CHANNEL ... N .ODF INCOMPATIBILITY'S RETURN C

1

.

1)

ENO

35-14

w

NUMBER

SUBROUTINE NUMBER (NN)

. . .

1

NVHDER

NO 155 KKa1.8

COMMON/GEOM/ JUN(200), NCHAN(200,0), NJUNC(300,2), SPACE(11156) THOUX (200, 0), JHOLD (100, 2), JIN (200), NSTART (10), FILL (600) COMMON/MISC/ NJ, NC, DELT, DELTO, NHSTEP, NOSTEP, T, TZ, DELTZ, IDAY DMIN, 10, NHPERO, 110, NIEMP(8), GEOU(10), SFLOUD(10) 1370P*0 ISUHH=0 1SUML=0 NATARANN JUN(1) ANSTAR 1=1 nn 130 L=1,8 NENCHAN(NSTAR,L) TF (N.(E.0) CO TO 135 JOPPENIUNC (N. 1) IF ("STAR, ED, JOPP) GO TO 145 CO TO 110 (SIN) JUNT NE 4401 105 1HUL0(1,1)=JOPP 110 1=1+1 DU 120 KK=1,6 NH=NCHAN(JOPP,KK) TF (NH LE. 0) GO TO 125 JJUBBELARS(NJUNC(NN+1)) IF (JJAPP, E2, JOPP) GO TU 115 NJUNC (NN, 2) =- [ABS (NJUNC (NN, 2)) 051 01 00 NJUNC(NN,1)==1A85(NJUNC(NN,1)) 115 CONTINUE 120 CONTINUE 125 NJUNC (N, 1)=-IABS(NJUNC(N, 1)) NJUNC (1,2)=+[ARS(NJUNC(N,2)) CONTINUE 130 135 CONTINUE 8.81 С C HAIN LOOP C DO 190 MAINNI, NJ HRT DO 175 1=1,200 J#JHOLD(1,1) 1F (J, LE, 0) GU TO 180 X##+1 JUNCKDEJ 50 170 L=1.8 NENCHAN(J,L) 1F (H.1 E. 0) GU TO 170 JDPP=1AUS(NJUNC(N,1)) [F (J.FU, JNPP) GD TO 140 1000=4104C (N,1) 1F (JDPP,LE,0) 60 TO 165 60 10 145 JUPP PRIJUAC (N, 2) 140 1F (JUPP, LE. 0) 60 TU 165 JHULD(H,2)= JUDD 145 M 4 4 4 1

NN=NCHAN(JOPP, KK) 1F (NN LE.0) GO TO 160 JJOPPHTABS(NJUNC(NN,1)) IF (JJnPP.E0.JOPP) GO TO 150 NJUNC(NN, 2)= JABS(NJUNC(NN, 2)) 60 10 155 150 NJUNC(NN,1)== [ABS(NJUNC(NN,1)) 155 CONTINUE 150 CONTINUE CONTINUE 165 NJUNC(N,1)==1495(NJUNC(N,1)) NJUNC(N,2)=-TABS(NJUNC(N,2)) 170 CUNTINUE CONTINUE 175 140 CONTINUE 00 185 1=1.200 JHOLD([,1]=JHULD([,2) 185 JHOLD(1,2)=0 1F (JHOL2(1,1),E0.0) GU TO 195 Ĉ C END OF HAIN LOOP Ç 190 CONTINUE CUNTIME 195 NP=K WRITE(6,204) 204 FURHAT (ICRUSS REFERENCE. . . INTERNAL NODE NUMBER VS. EXTERNAL HODE "E NUMBER (USED IN QUALITY PROGRAM AQUAL) // DU 200 N=1.NC 511=4× 005 00 NJUNC (N, FK)= [ABS(NJUNC(N, KK)) 200 WRITE (6,205) (J,JUN(J),J=1,NP) 205 FORMAT(10(17,15)) DU 210 K=1,NP J=JUY(x) 210 JIH(J) KK DU SIN K=1,NP 1=10×(x) 0.1=H 055 00 N=NCHAN(J,H) 1F (N.LE.0) GD TO 225 106644106C(H*1) TF (J, HE, JOPP) GD TO 215 JUPPANIUNC (N, 2) 215 CUNTINDE THOOK(K, M) #JIN(JOPP) CONTINUE 220 225 CONTINUE 230 CONTINUE NU 250 J=1.NP 1410=1 THAKOJ DU 240 K=1,8 TF (INDUK(J,K), LE,0) GO TO 240 THINEMINO(IBNOK(J,K), IMIN) THAX=HAXO(IBOUK(J,K), IMAX)

35-14

+

 \sim

CONTINUE 200 IDIF=IHAX+IHIN 101FIATMAX=J IDIF2=J-IHIN IF (ISUMH, LT, IDIFI) TSUMH=IDIFI IF (ISUML, LT, IDIF2) ISUML=IDIF2 x="AX0(ID1F1,101F2) IF (K.LF. 10) GU TO 250 NN=499 WHITE (6,245) K.J.JUN(J) 245 FURHATCINTHE HALF BAND HIDTH OF + 14, FOR EQUATION NUMBER +, 14 250 CONTINUE ISINI = ISUNH+ISUNL ~ WHITE (0,255) ISUNT, ISUNH, ISUNL 255 FOAMAICTOTHE AIDEST TOTAL BAND HIDTH 1813,1 , THE HIGH SIDE MAXIM +UH AIDTH 13'15, 1 , AND THE LON SIDE HAXIMUM WIDTH IS'15,///) C 200 CONTINUE JIG=MAX0(1SUHH, ISUHL) RETURN END

ເນ ທ າ

S

NUMBER

OUTPUT

SUBROUTINE OUTPUT (NPUINT, NSTAGE, NTELUN) CDMMUN /110/ NJEX,JEX(10),AX*7,10),N,TT(50),YY(50),PEHIDD,JGH(200) RANGE(200,2),TLAG(200,2) CUMHON/GE(14/ JUN(200), NCHAN(200,8), NJUNC(300,2), NOIN(200) U21N(41,26),001N(200),000(200),01N(200),4(300),4CK(300) . . AU(100), EVAP(200), AK(190), AS(200), ASK(200), AT(300), H(300) . . LW#(200) * DLb1H(500) * H(500) * Fin(700) * K(300) * K(300) * K(500) . . VUL (200), Y (200), O (300), ACAVE (300), ASAVE (200), ASB(200) . . PAVE(300), DEPAVE(200), DEPENH(200), FAIND(300), HAVE(200) HHIZAO), HI (200), DAVE (300), DAY SOUT, DP(300), HAVE (300), HUR (200) . #3(300), #30(300), 3FL (H(200), VAN5(300), VAVE(300), DN(300) . . VULAVE(200), VULN(200), SPALE(579), XC(103, 3), YC(103, 3), NPT(3) COMMON/HISC/ 4J, HC, DELI, OLL 10, NUSTEP, NUSTEP, T, T2, DELIZ, LOAY DH14,10,9HPLP9,110,0119P(0),00000(10),001000(10) CUMMON/10/ NPH1, KPHT, NOPRT, ANNH1, ICAL (10), JPH1(30), CPH1(30) PHTH(50, 30), PHTV(50, 10), PHTO(50, 30), HOUH(50), HJPLUT(5, 1) .. NCPLOT(5,3) ,TITL(00), LTINE, JIH(48) ,NTSL CUMMON /L44/ XLAB(11),YLAB(6),TITLE(12),HURIZ(13),VER1(6),IUNITO INTEGER CPAT REAL LEN DIMENSION VERTI(6,2), VERT2(6,2), Mag121(13,2) DATA HOR121/6+4H , UNTINE, UN IN , UNDUR, UND , 3+411 6+84 ,4HX - ,4HCUUR,4HUIHA,4HTES ,3+4H DATA VERTI/UNVELU, UNCITY, OH 1, 4HD , 4H FT/, 4HSEC 411 STAJANGE , 411 1, 4HH , 4H FE, 4HET , WH RAN, HIGE , WHIN F, HHEET DATA VER12/48 110,484L 1,4HN ,4H HU,4HURS / 44 11,4046 ,40 • • Ć 00 105 1+1,NHPAT,6 4411E(5,10) TITL 10 FUAMAT (141,2044,104,1TETHA TECH INC. 1,/1X,2044,10X, 1LAFAYETTE, ICALIFORNIA", /, IN 90X, FTIDAL HYDRODYNAHICS PROGRAM!) while (6,100) JPHI(1), JPHI(1+1), JPHI(1+2), JPHI(1+3), JPHI(1+4), JPHI 1(1+5) #ORHAT (101234, JUNCTION115, JUNCTION'IS, JUNCTION'IS, 1 100 JUNCTION'IS, JUNCTIUN 15,1 JUNCTION 15//1 HUDH HEAD(FEET) HEAD(FELT) HEAD(FEET) 2 3 HEAD(FEET) HEAV(FELT) HEAU(FEET) //) 1#0.0 DU IOS L=1.LTIHE TITOEL TOFLUAT (NPRT) HOUH(L\$#T/3600, HAITE (0,110) HUVE(L), PRTH(L,1), PATH(L,1+1), PATH(L,1+2), PATH(L,1+3 105 13, FHTH(L, 1+4), PHTH(L, 1+5) 110 FORMAT (11x, F0, 2, F14, 2, 5F18, 2) CANAD PRINT FLOWS AND VELUCITIES NO 120 1=1,NOPATIO H411E(A,10) TITL WRITE (6,115) CPAT(1), CPAT(1+1), CPAT(1+2), CPAT(1+3), CPAT(1+4), CPAT 1(1+5) CHANNEL 15. 115 FORMAT (101234,1CHANNEL115,1 CHANNEL 15+ HOV CHANNEL 115,1 CHANNEL 115, 1 CHANNEL 15,/1 FLOH VEL. FLOH VE 29 FLUH VEL. FLOH YEL (CFS) FLOH VEL, 1/25X, 1(CFS) (FPS) 31. . FLUM VEL. 4(FP3) (CFS) (PPS) (CF3) (PP3) (CF3 (CF5) (FP5) Si (Pesit)

満川

1=1+9 WRITE (6,170) I.L. (UAVE(J), J#1, L) FORMAL (14, 1 TO 113, 10F11.0) 170 175 CONTINUE C WHITE (6,190) (ICOL(I), I=1,10) 190 FURMAT (TOWATER BALANCE AT EACH JUNCTION (CFS) //11X,14,4111) 00 200 1=1,NJ,10 L=1+4 WRITE (6,195) 1,1, (HN(J), J=1,1) 195 FORMAT (14, 1 TO 1,13,10/11,0) 200 CONTINUE C WHITE (6,205) (ICOL(T).1×1,10) 205 FURHAT (TOAVERAGE NUDAL VULUHE (CU FT) ///11X, 19, 4111) 01, LA, 1=1, NJ, 10 1=1+9 WRITE (6,210) I.L. (VOLAVE(J), J=1, L 210 FORMAT (14, 1 TO 1, 14, 10E11, 4) 215 CONTINUE Е C TARDELY/(3600.+PERIUD) DU 220 N#1+NC $\Omega P(N) = \Omega P(N) + TA$ 220 ON(N)=ON(H)+TA WHITE (6,225) ((NA, OP (NA), ON (NA)), NA=1, NC)

FORMAT L'OPUSITIVE AND NEGATIVE FLOWS FOR EACH CHANNEL' // (4(110

DO 120 L#1.LT1ME

2,1+4), PRTO(L,1+5), PHTV(L,1+5)

WHILL (0.135) (ICUL(1),1=1,10)

WRITE (0,140) I.L. (HAVE(J), J#1, L)

WRITE (0,155) I.L. (VAVE(J), JaI.L)

FORMAT (14,1 TO 113, 10F11,3)

E04MAT (14, 1 TO 113, 10F11, 3)

WHITE (6,165) (ICUL(1),1=1,10)

WRITE (0,150) (ICUL(I),I=1,10)

1, F7, 2, F10, 0, F1, 2)

WRITELNITOD TITL

DU 145 I=1,NJ,10

DI) 160 I=1,NC,10

DU 175 1=1,NC,10

DO 130 1=1,10

TENULISET

[#1+9]

10119

CUNTINUE

CONTINUE

120

125

130

135

140

145

150

155

140

165

225

C

Ĉ

С

OVTPUT

FURMAL (FURVERAGE HEADS FOR A TIDAL CYCLE ///11x/14/4111)

FORMAT ('OAVERAGE VELOCITIES FOR A TIDAL CYCLE'//IIX/19/9111)

FURHAT ('DAVENAGE FLOWS FUR A TIDAL CYCLE'//31X,19,9131)

WRITE (6,125) HUUR(L), PRTQ(L,1), PRTV(L,1), PRTQ(L,1+1), PRTV(L,1+1),

1PRTO(L, 1+2), PRTV(L, 1+2), PRTU(L, 1+3), PRTV(L, 1+3), PRTQ(L, 1+4), PRTV(L

FORMAT (11x,F8,2,F10,0,F7,2,F10,0,F7,2,F10,0,F7,2,F10,0,F7,2,F10,0

OUTPUT

PHEN

*NEH

ONEN

*NEH

ANEH

*NEN

ANEN

ANEA

+NEW

**-5

.

		1.12	Ø 1	1		11																													
~			• •	•	e v	•••																													
•		-																																	
		00	•	. 4 ;	2	1.	1	, N	Į.																										
		-1F	(•	(Ç)	٩.	м (1	11),	,0	۲,	03		20	1	10	2	9	5																
		RA	٩G	E	(1	11)	x ()																											
		R A	10	5	(i	. 2	÷.	x ()	Č.																										
					;:	11			ċ.			• •							••																
<u>د</u>	43	35	25	5	1	1	H.	4 N	6	51	11	11		1 4	140	1	11	1	C 3																
		мĤ	11	E	(Ļ	12	9	0)	1	(1	, P	٨.	IGI	5 (Ι,	2),	A,	AN	GΕ	(1	71)	, SP	14	CE ((1),	, J =	11,	NJ)			
2	90	Fΰ	9~	1 8 1	1 (10	14	14	11	40	м	HĘ),	1	18	XI	нI	UМ	н	Ë A	n	A	ND	1	t D I	İι.	A	LAN	IGE					
						14	1	Í1	ò.	٦.	57	. 2	• • •	1 3			-					•								• •					
		1.1		E.	<i>.</i> .	` 1		•••					6							<i>,</i> ,		:	•	÷.		• •									
· .					10		2	11	. '			53					11	5	- 0		• 1	11		- 1 /			_								- • •
3.	37	FΟ	4 1	•	' (. 0		[~	t	ŋ,	۲.	M 1	N	IN	UF	١.	AN	0	M.	A X	IH	ιıM	. 1	HEA	0	, ,	10	UR	υ,	10	4 (11	0,,,	270	"Z)))
C																																			
C	. :	10	74	L	F	V A	P	ŊК	A 1	E1(ūΝ	E A	i A 1	88																					
	••		- 6		•						-																								
		10		1.																															
		A I	υi		-	ų,																													
		DΟ	- 1	114	9	J٤		, N	1																										
		T A	= I	4	ŧν	UL	4	٧Ŀ	١.	D																									
310		A T	<u>'</u> 11			A T	1	T Å	i i		34	٧ŀ	1.	11																					
		* 11		•	77	10	ž				• • •																								
		10	22	22	. *	10		:-																											
		HH	11	¢ (6	, 1	1	2)	t	. V	A P	()) (, A	τu	11	۸Ļ	•	r A ,	11	8														
31	12	Fυ	P H		11	11	S	9 H	1	0	T A	L	E١	/#	PÜ	9	A 7	10	IN (R.	A T	F,	- 0	C 7 3		7 E	11	Z.	4						
	÷.,					1	2	ЗH	1	1 1	FR	A G	F	3	UA	F	1 r	٢.	AF	٩£.	Α.	Å.	۵	#1		. F		2	4						
						۰,	5.	.					č	ũ	n.	.		-	-	<u>، ا</u>			Ξ.			12		51							
							4	- 11				2.2	E.	1	20	.0	n C	۰.								15		<u>s</u> .							
		0				/	S	9H	1	14	F 4	A Ç		D	EP	'T	н,		1							⇒ E	1	ε,	4	•					
C																																			
C	•	11	D A	L	Þ	<u>دا د</u>	6	F	Pi	0	1																								
	••		1	110		25			7	ί.	٠,	n	τ.	•		~																			
		15	10		1	51		54	٠,	,,	U	U		,		v																			
		0()	4	110	٢.	1 3	1	, 0																											
4 (12	٧Ł	RĨ	()	t j	≈ v	E	4T	21	(1	, 1)																							
		00	4	20	ົ	1 2	1	. 1	٦																										
	• •					• -																		•											
	6 V	PU	- 1	41	1			14	11		(1	,																							
		<u>n</u> ()	4	10	1	M =	1	ı٩	15	5																									
		.1 *	JI	H I	[10)																													
		ΥC	(11		ı ŝ	= 5	ρ	۸C	F I	L.	1																								
		50	2.4		11		,	Ň	•		•																								
			Υ.	1.1		7																													
4 1	4	ЧP	10	11	Ξ	M																													
		1=	1																																
		Ċ.	I. L	0	٠.	Rν	F	(X I	с.	11	٢,	нP	1	1	.1	1																			
		ň				1 -					•••		•••	-																					
-	• -	11.0				1	1		•																										
۰.	25	٧L		1	1	= ¥	٤.	ч. н	< (, <	,																							
		Di	ц	34	1	H۶	1.	, 11	15	IL.																									
		1 =	J I	41	L H	Ł																													
a '	۱n	vг	1.0	, i	15	a t	i .	46	0	i	11																								
			1.		• •				14		. /																								
		1=	L			-					_		_																						
		۲.	LL	ຸ ເ	Ξų	RV	E	(1	C,	11	Ç,	NP	٦,	1	, I)																			
- A)	10	C ()	48	14	01	ε																													
r '	•			•		-																													
•																																			
		P. L		3					_																										
		nu	2	1.)	1=	۱	• N	C١	1																									
		ъΡ	1 (1)) z	٧P	0	14	I.																								•		
		50	ź	1	3	<u>ء</u> ل	T	. N	Ø1	11	NT																								
					i t		å.		1		•••																								
		74	• 1		1	- "		11	"	• •																									
230		۲Ĉ	()	•	I١	* 0		0																											
C																																			
C		11	í) A	ι	•	1 4	6	f	ė١	0	t																								
	-			5	, °	1-	Ň		۰,		*																								
		00	4		5	• •	1	• 1																											

ہم.

w VI ſ 2 4 OVTPUT

422 HORIZ(1)=HORIZI(1.1) 00 250 1*1,6 256 VERT(1)#VERT1(1,2) 44 DU 255 KEL, NSTAGE C. 1 KN 245 00 00 235 L=1,30 IF (NJPLOT(K,N),EQ,JPRT(L)) GO TO 240 235 CUNTINUE DU 245 MEL.NPUINT 240 YC (MANS=PHTH(MAL) 245 CONTINUE CALL CHRVE (XC.YC.NPT, NCV, K) HATTE (6,250) (NJPLOT(4,N), Na1,35 FOUNAT (1H0, 30%, 21HPLUT LEGENO JUNCTION, 14, 4H = 0,10H JUNCTION, 1 220 .4.41 # 1.10H JUNCTION, 14.4H # 2) 255 CONTINUE CARAA TIDAL FLOW PLUT 0.1=1.15 DO 261 VERT(LI=VEHTL(1,1) NU 240 K=1,NTFLOW DO 270 Nº1.5 NO 200 L=1, 10 IF (HCPLOT(K,N),EQ.CPRT(L)) GO TO 265 200 CONTINUE 265 00 210 MEL, NPUINT YC(H,H)=PHIV(H,L) 270 CONTINUE CALL GURVE (XC, YC, NPT, NCV, K) WHITE (6,275) (NCPLUT(K,N),N=1,3) FORMAT (1HO, 30%, 21HPLOT LEGEND CHANNEL, 14, 4M . 0, 10H CHANNEL, 1 275 .4,44 # 1,10H CHANNEL,14,44 # 2) 280 CONTINUE RETURN F 110

ы х ц

9098001 [WE PINE (XI,YI,XZ,YZ,M3YM,NCT) CUMM3V,GKUH/ 3PACE(10315),A(51,101),F1LL(700) bIMEN3TUM 3YM(3) DATA _ 3YM /1H0,1H1,1HZ/ 4=1 1F (485(AXR-AXA),LT,485(AY8-AYA)) 60 TO 115 SET PAPAMETERS FOR X DIRECTION 4 X M = X Z 4 Y = Z Z 4 Y H = Y Z AXASXI.

IF (1x4.LT.0.UR.fX4.6T.100) GO TO 110 IF (1x4.LT.0.UR.TY4.6T.50) GO TO 110 4(51-174.12441)=\$Y4(N3Y4) ALL PARAMETERS FOR Y DINECTION 74=(:+ {AYU-AYA))/(AXB-AXA) 174=474+74+0,5 JF (AXA,G1.AXA) GO TO 100 1F (1x4.1.E.1x8) GD TD 105 GU TU 140 CONTINHE 15 (AYA.GT.AYA) CU TO 120 Ayneyi 7H=4Ya+ 5 X4=4X4+.5 x1=4×A+,5 YAZAYA. 5 I A A Z I X A 4 1 JUNI INUE 311111100 C001 1406 AXAKXZ 411272 A X I) = X I 1 2 11 X X N=111

110

105

100

000

υυ

115

4 Y A = Y Z

XAAAXA+,5 AXA=X2 CU4TI4HE A X B + X I 120

THEFT STATES

restrat.5 72=471+55

CUNTINUE 125

If (1x1,LT,0,UR,1X4,GT,100) GO TO 130
If (1Y1,LT,0,UR,1Y4,GT,50) GO TU 130
If(1-1Y4,1x441)=5Y4(NSYM)
CU411:UE
CU411:UE

Ya⊐{N~{AYB-AYA})/(AYB-AYA) |xacta+axa+0,5 N=H+B I + V | V V I 130

(APRIL)

IF (IYa-IYU) 125,135,140 |xaalkr GO TO 125 neturn

END 135 140

P P L O 1

SUBROUTIME PPLOT (IX,IY,K,NCT) CUMMOUTEUM SPACE(10315),A(*1,1011,FILL(700) DIMENSION 3YM(*) CUMMON (IAA) KLAB(11),YLAB(0),TITLE(12),HURIZ(13),YERT(0),IUNITO nata SYM17A1H ,HII,H/ nata SYM17A1H ,HII,H/ f(K,GT,99) G0 T0 170 T=1+1 T=(1, ve.2a) G(1 TU 115 witte(6,105) Ver((5), Vert(0), (A(1, J), J*1, 101) c) TO 130 Tf (1, ve.2a) G(1 TU 120 Tf (1, ve.2a) G(1 TU 120 witte(6,165) Vert(1), Vert(2), (A(1, J), J*1, 101) GU 10 1.10 1f (1,04,26) GO 10 125 4A1fE(6,165) VEHT(1),VERT(4).(A(1,J),J*1,101) 60 10 130 4A11E(6,145) (A(1,J),J*1,101) ₩ЯТТЕ(4,150) YLAB([[])**.(A([,J),J*1,[0])** [f 111,En,6) GO TU 140 DU 150 JJ±1,9 WITE(6,155) XLAB WITE(6,160) HOFT2 FURMAT (183,10141) FURMAT (F17,3)1X,10[A1) FURMAT (F20,1,10[A1) FURMAT (7504,1344) 165 FUH4ATCSY, 244.5%,101A1) 170 DU 140 Le1.50 DU 175 Je1.101 175 ACL,JJ=374(C) ACL,JJ=374(C)
 b)
 10:
 1:
 1:
 10:

 i
 i
 i
 1:
 1:

 i
 i
 i
 1:
 1:

 i
 i
 i
 1:
 1:

 i
 i
 i
 i
 1:

 i
 i
 i
 i
 1:

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 i
 i

 i
 i
 i
 <t ₩НТЕ(6,200) FO9MAL(141) fu] 135 [1=1,6 T=1+1 CUNTINE CONTINE CUNTING CONTINUE 0 = 1

115

120

130

200

2-35-149

160

105

190

195

155

3 C A L E

SUBROUTINE SCALE (ARRAY, AXLEN, NPTS; INC) DIMENSION ARRAY(NPTS), INI(5) DATA INT /2.4.5,8,10/ INCT#IA8S(INC) c SCAN FOR MAX'AND MIN C C C AMAXHADRAY(1) ۲ AMINHARRAY(1) 140 DO 100 NEL,NPIS, INCT TF (AMAX, LT, ANRAY(N)) AMAX=ARRAY(N) IF (AHIN, GT, ARRAY(N)) AHIN=ARRAY(N) 100 CONTINUE 17 (AMAK-AMIN) 120,105,120 ¢ C Ĉ C C 105 TF (AMIN) 119,150,110 145 110 44[N=0]0 XAHARD SERAPLE 05j 01 Ca 0_0=XAHA 115 AHIN=2.0+AHIN 120 CONTINUE ¢ COMPUTE UNITS/INCH Ç C RATE= (AMAX-AHIN) /AXLEN ¢ SCALE INTERVAL TO ¢ LESS THAN 10 C A#ALUGIO(RATE) N = A JF (A.LT.D) N=4-0.9999 PATE=HATE/(10.A+N) L=RATE.1.00 C FIND NEXT HIGHER INTERVAL C Ĉ 125 no 130 I=1.5 1F (L=1NT(1)) 135,135,130 130 CUNTINUE С € IS NEXT HIGHER INTERVAL C RANGE IS SCALED BACK TO FULL SET C С L=14T(7) 135 RANGE=FLOAT(L)+10.++N 1F (INC.LT.0) GD TO 143 С SET UP POSITIVE STEPS ¢ C KEAHIN/RANGE IF (AHIN, 1, 7, 0,) K=K-1 C CHECK FOR MAX VALUE IN RANGE ¢ C IF (AMAX.GT. (MAAXLEN) ARANGE) GD TO 140

1

1111

 \sim

(

S

Ч

(

20

8 C A L E.

INNPTSAINCT+1 ARRAY(I)=K+RANGE I#I+INCT ARRAY (]) = RANGE RETURN IF OUTSIDE RANGE REBET L AND N 1=1+1 TF (L.LT.11) GO TO 125 1=5 NEN+ ۰, 60 10 125 SET UP NEGATIVE STEPS KEAHAX JHANGE TF (AMAX.GT.0.) KRK+1 IF (AHIN.LT, (K+AXLEN)+RANGE) GD TO 140 TELVETANPTS+1 ARPAY(1)=KARANGE

3

思い

TEINCTANDTS+1 ARPAY(1)EKARANGE JEL+INCT ARPAY(1)===RANGE DETURN ISO WRITE (0,155) ISS FOOMAT (7/10X, THANGE AND SCALE ARE ZERO ON PLOT ATTEMPTT)

RETUAN

END.

TIDCF

SUGROUTINE TIDEF INI, MAXIE, NEHTID, NN) COMHON /TIO/ NJEX, JEX(10), AK17, 10); N, TT(50), YY(50), PERIOD, JGH(200) WANGE(200,2), TLAG(200,2) ... DIHE43104 MA(10), XX(10), SXX(10,10), SXY(10), HN(26) DATA DELTA, NTT, N6 /0.005,7,6/ C 1F (HI NE, 6) GO TO 105 00 100 1=1,5 J=[+] NISVIAL TT(N1)=(3,+TT(1)+TT(J))/4, YY(~1)=0.6535477(1)+0.1465477(J) N]=N[+j TT(#1)=(TT(1)+TT(J))/2. **(#1)=(**(1)+**(J))/2* N1×41+1 TI(N1)=(TT(])+3,+TT(J))/4. YY(H1)=0,1463+YY(1)+0.8535+YY(3) 100 CONTINUE CONTINUE 105 DU 115 J=1,HTT 00 110 *=1,NTT 110 3xx(X,))=0. AA(J)=n. 115 SIY(J)e0 1+51770=568 00 135 1=1,41 110,125 J#1,NTT FJ1=FLOAT(J+1) FJ3=FLNAT(J=HJ2) 1# (J.IE.NJ2) GU TO 120 xx(J)*CUS(FJ3+MAT1(1)) 60 TU 125 120 16 (J,73,1) XX(J)#1. 5xY(J)=5xY(J)+XX(J)=YY(I) 125 TTN, 1=L ULL UN DO 130 K#1,4TT SX*(*,])=SXX(K, J)+XX(K)+XX(J) 130 CONTINUE 135 11=0 11=11+1 140 DELHAX . 00 150 K=1,NTT 30419. NU 145 JaliNTT 1F (J.FU.K) GO TO 145 AUMESUN-AA(J) +SXX(K,J) 145 CONTINUE SUHE (SUH+SEY (A))/SEE (H,K) DEL = + US(SUM+AA(K)) TF (DEL.GT. DELMAX) DELMAX=DEL AA(K)=SUM 150 TF (11, GE, HAX1T) GO TO 155 IF (DEL HAR, GT, DELTA) GO TO 140 155 CUNTINUE Ċ

TIDCF

00 170 Ja1,7 170 L) AA=(NN, L)XA TF (NCHTID, NE.1) GO TO 210 WRITE (6,175) JEX(NN), (AX(I,NN), 1=1,7) 175 FORMAT (10 TIDAL CHEFFICIENTS FUR JUNCTIONS, 10, /7713.4) WRITE (NA, 180) 180 FURMAT(46H0 TIME OBSERVED COMPUTED 0177) RESEO. DU 195 IRLANI SUM=0. 00 190 J=2,NTT FJ1=+LnAT(J=1) FJ3=FLnAT(J=NJ2) 1F (J.LE.HJ2) GU TO 185 SUH=30++++(J)+CD3(FJ3+H+TT(1)) 60 10 190 185 SUH=SUH+AA(J)+SIN(FJ1AMATT(I)) 190 CONTINUE SUN=SUH+FA[1] DIFF=SUM=YY(1) RE-#RES+ABS(DIFF) 195 WHITE (No,200) TT(IJ,YY(I),SUH,DIFF. FURMAT (4112.4) 200 WRITE (N6,205) RES FURNAT (68010146,308,F12.4) 205 DU 702 J=1,26 TA=FLUAT(J)+H HN(J)=11(],NN) ny 702 1=2,4 Td=1+1 702 HH(J) FHN(J) + AX(1, NH) ASIH(TAATB) + AX(1+3, HN) + COS(TA+TB) WHITE(6,69) 69 FURHAT(/,20X, SUMMARY BY HOURS) WRITE(6,707) (1, HN(1),1=1,26) 707 FURMAT(10(13,F8,2)) 510 CONTINUE RETURN

END

J S

S

APPENDIX F

2-35-152

AQUAL

ĉ ADUAL IS A MATHEMATICAL MUDEL DEVELOPED TO SIMULATE THE WATER QUALITY OF AN ESTUARY. DEVELOPMENT OF THE MODEL HAS DONE UNDER THE SPONSORSHIP OF THE CALIFORNIA STATE WATER RESOURCES CONTROL BOARD AND THE NDYN=1 NASSAU-SUFFULK REGIONAL PLANNING BOARD, NEW YORK. ADDITIONAL HUDIFICATIONS WERE HADE UNDER CONTRACT NU. DAC-85-TA-C-0904, DEPARTMENT OF THE ARMY, ALASKA DISTRICT, ANCHORAGE, ALASKA, QUESTIONS REGARDING THE COMPUTER CODE ON THE MODEL APPLICATION SHOULD BE DIRECTED TO DUNALD J. SHITH, TETRA TECH, INC., Ç 3700 HT. DIAALO ULVD., LAFAYETTE, CALIF., 90549 (415-283-3771) C COMMON IF (200, 3), CTUC(200) (001) XLEN(200, 0), VJUNC(200, 2), JUN(200), XLEN(200) AT64(500) 'AF641(500)' 'A*(500)' B4(500)' B4(500) 1, ASAVE(200,21), A(200,21), ALPHA(200,21), AC(500), AS(200) 2, n1F(300),0(300),V5(300),COU(200),72(300) ,VUL(200),2(300) 3, 4. C1(100).CC4(100),DtP(200),RAVE(300),HS(300),VAUS(300) CONNUMPATION (2001) 100010 (2001) 100010 (2001) 010 (2001) 010 (2001) 1051H(159), #11H1H(159), #0[P[4(150), CULTIN(150), CULFIN(150) ۱. 300CIN(150), 300NIN(150), UXY1N(150), TEMPIN(150) Z, TYPEIN(150,4), SALTIN(150) 3, 103(200), INTH(200), INTH(200), COLT(200), CHLF(200), BOOC(200) AODU(200), (XY(200), (E (P(200),)YPE(200, 4), TYPEDK(200, 4) 5, NALG(200), 03En(200), 0404(200), 80000K(200), 90000K(200) ٥. COFINK(500) COFED* (500) "NOVI (500) "HENN(500) "UFN6(500) 1. COMMUN/ACD/IYPEED(4), FYSEIL(200,4), UTEN(2) COMMON/BACK/ INTAKE(20,5), FACTOH(20,5) COMMONYNISCINJ, NC, NP, NDYN, NNYND, MLIN, DELI, IPAGE, NMYD, IDAY, IVELT NJP, TEE, KPLUT, ISHIP(16), ALL (20), TUYN(52), TITLE (20), TITL(20) 1. NGPERHISED, IPCYC, LOAY, NCYCH, INDUAL 2. COMMON/57C/ 080900, JB00000(10), DEM0(10), OFLOGD(10), XH(10), TOSEX(10) TUTHEX(10), HOTPLY(10), COLTEX(10), COLFEX(10), BUDGEX(10) 1. QUENEX(10), UXTEX(10), TEMPEX(10), TYPEEX(10,4), SALTEX(10) 2, COHMUN/PLOT/ 1PL01(4), CP(101, 6, 4), 0AY(101), NPUINT, JPL01(6) 1PP, 4PP, 1P0AY(3), NUDEP(21, 21, PHOFA(21, 3, 4), NCONP(4) ۱. PR0FB(21,3,4) 2. COMHON/4F1/NACONE, JAZUNE(6,2), FUNE(200), FTHO(200) FY(200),009(24.0),01004(200) 1. DIMENSION CESAVE (1), EE(1), TEMPT(1), SALT(1), CUN(200,1) 170 CONTINUE EQUIVALENCE (CESAVE(1), VA03(1)), (EE(1), VS(1)) C.... ESTIMATE CHUNHICITY (1EMPT(1), HAVE(1)), (SALT(1), RS(1)), (CUH(1,1), TOS(1)) NO 100 JJ=1,NP 1. C J=JUN(JJ) 3+TOXY(X,Y)=14,5532-0,38217+X+3,4250E+3+X+X-0,555+Y+(1,665E+4=5,86 1=TEHP(J)+14,5 16E-0+X+9.796E-0+X+K) 1++(JJ,j)=u1EH(2)++L CALL INPUT (0) TF(JJ,>)=01EN(1)++1 1PER0=24/10EL1 180 MSAT(J)=SATUXY(TEMP(J), SALT(J)) IF (IPEND, LT.1) IPEND#1 190 CONTINUE 1066410661/24 NDAMEJULN (NCACH) TF (IDFL.LT.I) IDEL#1 С SET UP FINAL ALPHA HATRIX C DO 760 NCYCIAL, NHYO NEYCHENCYCT CALL SETUP

 \sim

```
AOUAL
```

CALL INPUT (1) DISPENSION COEFF JF (TEE,LT,U) GO TO 190 00 100 N=1,NC TE (NJUNC(N, 1).LE.0) GO TO 100 2(N)=C(1(N)+(VAUS(N)+VS(H))+(RAVE(N)+RS(N)) EE(#)=7(N) DIF(N)=LE(N)+AC(N)/XLEN(N) 100 CUNTINNE NO 110 J=1,NP K=JUN(1) SALT(* 1=105(K) AA(J)=n.0 110 AH(J)=0.0 DU 170 ANSI, ILE CALL SETUP CALL FORM (SALT, SALTIN, SALTEX) CALL SOLVII (SALT) UU 150 N=1*NC JI=HJUNC(N,I) 1F (J1 E0 0) 00 TO 120 15=HINC(H'S) 31=JUN(J1) 15=10H(15) 9X=ANS(SALT(J1)-SALT(J2)) 72(N)=>(N)+CC4(N)+SX/XLEN(N) EESAVE(4)=EE(4) EE(4)#/EE(0)+ZZ(0))+0.5 D[F(1)=EE(1) +AC(N)/XLEN(N) 120 CONTINUE TF ("N NE, TEE) GD TU 170 WAITE 16,1303 MM 130 FORMAT (INI. 10%, ' CHANNEL DISPERSION COEFFICIENTS, SO FT/SEC (LAST 1 THO ITERATIONS)*) WHITE (6,140) (0, EESAVE(N), ZZ(N), No1, NC) 140 FURMAT (S(110,2+8,0)) WRITE (0,150) 150 FORMAT (//,LOX, STEADY STATE SALINITY, PPT) WHITE (0,160) (J,SALT(J), J=1,NJ) 160 FURHAI (5(113,-3PF8,2))

ABVAL

C. ... BUALITY LOOP, CONSTANT HYDRAWLICS NOM=NOPEPH(NCTCH) OU 750 NEYCO=1,NOH KPLOT=KPLOT+1 LOAY=LOAY+IDEL C DO 670 NCYCD=1, 1PERD C C. ... 103 1F (ISKIP(1), E0.1) GD TO 210 00 200 JEJ, NP A# (J) #0.0 98(J1+0.0 200 CONTINUE CALL FOHM (TOS, TOSIN, TOSEX) CALL SALVIT (TOS) \$10 CUNITHOR e. C.... TEMPEHATURE IF (1541P(9),E0,1) GO TO 290 1F (NOVN, E0, 1) GO TO 230 CALL HETDAT (STEHP) NU 220 J=1,NP (LYVULELL (L):H4JA+(LL)OHT4+(LL)CA+185600, n=(L)AA DH(J)=0.0032814AS(JJ)=(FOHE(JJ)=FTWO(JJ)=TEHP(JJ)=ALPH(J)) 220 CONTINUE CALL FORM FIEMP, TEMPIN, TEMPEX) CALL SOLVIT (IENP) -01 10 270 300 CONTINUE LL=0/IPEPD 1F (LL_LT,2) LL=2 00 240 L#[/LL CALL MEIDAT (1,TEMP) NU 240 JEL, NP 11=104(1) ٠. AA(J)=0.003281+45(JJ)+FTW0(JJ) AB(J)=0.003201+A3(JJ)=FUNE(JJ) 240 CUNTINIE CALL FORM (JEHP, TEMPIN, TEMPEX) CALL SALVIT (TEMPT) TF (L.FO.LL) GO TO 260 D1 250 J*[.NJ 250 TL "P(J)=(1+ HP(J)+2,0+TEHPT(J))/3.0 260 CUNTINUE 270 CONTINUE DI) 280 JJ#1,NP 1:309(33) T+TEMP/J)-19,5 1++50,1=(,,LL) #T 1++(3),1)+01(4(2)++1 TF(JJ,2)+0TEH(1)++1 CIUC(11)+0.0 280 03+1(J)+54TOXY(TEMP(J), TO3(J))

1

AQVAL

290 CONTINUE C.... OPTIONAL CONSTITUENTS 00 370 le1,4 1F (ISKIP(1+9),E0,1) CO TO 370 TF (NUYN.E0.1) GO TO 310 DU 300 J=1.11P JJ=JUN(J) AA(J) = (TYPEDK(JJ,1) + TYSETL(JJ,I)) + VOL(JJ) + ALPH1(J) + TF(J,1) 300 RA(J)=+(TYPEDK(JJ,1)+TYSETL(JJ,1)+VOL(JJ)+ALPH(J)+TYPE(JJ,1)+TF(J 1.1)+0100(3) 611 413 130 310 NO 320 J=1,NP (LYNUERLE AA(J)=(IYPEUK(JJ,1)+TYSETL(JJ,1))AVOL(JJ)ATF(J,1) 250 BR(1)=0100(1) 330 CONTINUE CALL FORM (TYPE(1,1), TYPEIN(1,1), TYPEEX(1,1)) CALL SOLVIT (TYPE(1,1)) IF (TYPEED(1), LE. 0. 0) 00 TO 350 DO 340 J=1.NP 33=394731 340 CTUC(J)=TYPEOK(JJ,I)+TF(J,)+TYPE(JJ,I)+TYPEEQ(I)AVOL(JJ) 60 (0 370 350 TF (1,FU,4) GU TO 370 00 360 Jal, NP 360 1100(11=0. 370 CONTINUE C . . G.... TUTAL NITHOGEN IF (ISKIP(2).E0.1) GO TO 390 ni SAU J=1. HP JJSJUN(J) AA(J]=n. 380 BH(J)=_VOL(JJ)+8ENN(JJ) CALL FORM (IDIN, TOTNIN, TOTNEX) CALL SOLVIT (TOIN) 390 CONTINUE C C.... TOTAL PHOSPHORUS. 1F (ISKIP(3)_E0.1) GO TO 410 NU 400 J=1,NP 31=304(1) AA(J)=n. 400 HH(J)=+YOL(JJ)+HENP(JJ) - 1 CALL FORM (THIP, TUTPIN, FOTPEX) CALL SOLVIT (TOIP) 410 CONTINUE £. C.... TUTAL CULLFURH BACTERIA TF (15x1P(4), E0.1) GO TO 460 IF (NUYH, E0. 1) 60 10 430 Nº 450 7=1'Nb JJEJINGJY #A(J)=CULTOK(JJ)=VOL(JJ)=ALPH1(J)=TF(J,1) nn(J)=_COLTUX(JJ)+VOL(JJ)+ALPH(J)+COLT(JJ)+TP(J,1) 420 CUNTINUE

3

 \sim

S

V

られ

AOUAL

C

r.

С

GO TO 450 430 CONTINUE 10 440 Jas.NP (L) NUL «LL AA(J)=rULTOK(JJ)+YOL(JJ)+TF(J,1) #40 B3(J)=0.0 450 CONTINUE CALL FORM (COLT, COLTIN, COLTEX) CALL SOLVIT (COLT) 460 CUNTINUE С C FECAL CULIFURM BACTERIA 1F (15#1P(5),E0,1) CO TO 510 IF (NDYN, ER. 1) GO TO 480 00 470 J=1.NP 1J=JUN/J1 AA(J)=rULFDH(JJ)AVOL(JJ)AALPH1(J)ATF(J+1) BS(J)=_COLFDK(JJ)+VOL(JJ)+ALPH(J)+COLF(JJ)+TF(J,1) 470 CUNTINHE 60 19 500 480 COVIENDE D() 49) J=1.NP JJ*J''(J) A+(J)=rULFOK(JJ)+VOL(JJ)+TF(J,1) 490 AH(J)=0.0 500 CONTINUE CALL FORM (CULF, COLFIN, COLFEX) CALL SHEVIT (COLF) 510 CONTINUE С C.... CARODINCEOUS BOD 1F (19x1+(5),E0,1) 60 TO 560 1F (40+4.EA.1) 60 TO 530 00 520 JEL, NP 1 JOJUNIJI AA(J)==UOCUK(JJ)+YOL(JJ)+ALPH1(J)+TF(J,2) R4(J)==000CDK(JJ)+VOL(JJ)+ALPH(J)+ADDC(JJ)+TF(J,2) 320 CONTINUE 60 10 550 530 CONTINUE 10 540 J=1,NP 11=144733 AA(J)==UDCOK(JJ)=VOL(JJ)=TF(J,Z) 540 AH(J)=0.0 550 CHAILINE CALL FORM (BODC, BODCIN, BOUCEX) CALL SOLVIT (BODC) 560 CUNTINUE С NITHIGENOUS AUD c.,.. 1F (15/10(7), E0, 1) 60 TO 610 18 (NUVH, EO, 1) GO TO 500 00 570 J=1,NP 1 Ja Juny Ja AA(J)+#0000K(JJ)+VDL(JJ)+ALPH1(J)+TF(J+1) AU(J)=_UDUNUK(JJ)+VOL(JJ)+ALPH(J)+NDON(JJ)+TF(J,1) \$70 CONTINUE

AOVAL

00 TO 600 380 CONTINUE 00 590 J-1,NP (LINUL=LL AA(J)=nUDNDK(JJ)+VOL(JJ)+TF(J,1) 590 BB(J)=0.0 600 CONTINUE CALL FORM (BOON, BUDNIN, BOONEX) CALL SOLVIT (BODH) 610 CUNTINHE C.... DISSOLVED OXYGEN 1F (ISKJP(A), E0, 1) GO TO 660 1F (NOYN, E0, 1) GO TO 630 01) 620 J=1. NP (LINULELL #A(J)=v8t(JJ)+OROR(JJ)+ALPH1(J) BU(J)=VOL(JJ)+(-BOOC(JJ)+BOOCVK(JJ)+TF(J,2)+(-BOON(JJ)+BOONDK(JJ)+ 100EN(JJ)+04LG(JJ))+1F(J,1)+0ROR(JJ)+(03AT(JJ)-4LPH(J)+0XV(JJ))) 620 CUNITINE 60 10 650 630 CUNITANE 00 640 J=1.NP JJ=JU4(J) AA(J)=v(iL(JJ)+DROR(JJ) BB(J)=VUL(JJ)+(-RODC(JJ)+BODCOK(JJ)+TF(J,2)+(-BOON(JJ)+BODNOK(JJ)= 10054(J)+OALG(JJ))+TF(J,1)+DRDR(JJ)+OBAT(JJ)) 640 CONTINUE 650 CONTINUE CALL FRIPH (DXY, DXYIN, OXYEX) CALL SOLVIT (DXY) 660 CONTINUE 670 CUNTINHE TE (MUDICHPLOT, IPCYC), EQ. 0) CALL OUTPUT (LDAY) TE (HDYN, LO, O. AND, 1PDAY (1PP), NE, LOAY) GU TO 720 12044(100)=LOAY C.... STORE PROFILE PLOT DATA 1# (1PP,L0,4) GU TO 720 ni) /10 11=1,4 TF CHEMPERIS, E0.03 GO TO 710 [3N()4P(]]] DI) 700 K=1,HPP n() 690 LL=1,71 L=000EP(EC.K) TE (L.EU.O) GU TO 710 11 (4.10.5) 00 10 990 PRIMA((L, 100, 11)=CUN(L, 1) 60 10 696 680 PHOFNCIL, [PP, 11)=CDN(L,1) 690 CONTINUE 700 CUNTINGE 710 CONTINUE 166=[56+] 720 CONTINUE

AQUAL

C.... STORE TIME HISTORY PLOT DATA 1F (KPLUT,GT.100) 60 TO 750 DAY(KPLUT)=LOAY CO 740 K=1.4 1F (1PIUT(K),EQ.0) GO TU 740 T=IPLUT(K) DU 730 11×1+NJP J=JPLOT(11) CP(KPLOT, 11, K)=CON(J, I) 736 CONTINUE 740 CONTINUE 750 CONTINUE IF (INNUAL, GT. 0) HAITE (INDUAL) ((CON(J,K), KH1,13), J#1, NJ) 760 CONTINUE TPP=1Pp=1 IF (NPP,GT,O,AND, IPP,GT,O) CALL OUTPUT (-1) NPUINTARPLOT IF (NPOINT.GT.100) NPOINT=100 IF (NJP.GT.0) CALL DUTPUT (0) C

END

.

3

35-156

CURYE

SUBROUTINE CURVE(X,Y,NPT,NCY,NPLOT) CURVE FINDS THE MAX AND HIN X AND Y VALUES, AS WELL AS X AND Y LABELS C IT CALLS SCALE, PPLOT, AND PINE C DIMENSIUN X(NPT, NCV), Y(NPT, NCV) HHERE NPIENU-BER OF INPUT POINTS ON EACH CURVE NEVENUEHER OF CUPVES UN EACH GRAPH. Ċ. NPLOT=PRINTED KEY. DIMENSION X(103,1), Y(103,1), NPT(1) ,0UMX(4),DUHY(4) COMMUNJLA9/XLA9(11),YLA8(6),TITLE(12),HORIZ(13),VERT(6),IUNITO COMMON/XAXE/HAPTS ĉ C SET UP X AND Y SCALES C XMAX = -1.0E30 XHIN . 1.0E30 YHAA = -1,0E30 Y~IN # 1.0EJ0 DO 150 K # 1. HCV N B NPT(K) ŋ0 150 J = 1, N JF(Y(J,K),GT, XHAX) XHAX = X(J,K)IF (X (3,K) ,LT, XHIN) XHIN # X (J,K) 1F(Y(J,K) ,GT, YHAX) YMAX = Y(J,K) 1F(Y(J,K) ,LT, YHIN) YHIN = Y(J,K) 150 CONTINUE TE(NEPTS,E0,21) KHIN#1.0 1F(N#PIS.E0,21) XMAX=21.0 DUMX(1) = XHIN DUMX(2) = XMAX CALL SCALE(DUMX, 10, 0, 2, 1) DUMY (15 = YHIN DUMY(2) # YMAX CALL SCALE (UUMY, 5, 0, 2, 1) 00 160 K H 1, HCV N = NPT(K) $x(n+1+\kappa) = Dunx(3)$ X(N+2'K) # DINK(#) Y(4+1+x) = DUMY(3) Y(4+2+K) a DUHY(4) 160 CUNTINUE C. C FORH X LABELS AND FACTORS С X41H= DA+x(3) DEL1X= DUMX(4) *144(13=*+1* 01 240 1=1,10 260 xLA3(1+1)=+LAU(1)+DELTX C - XSCAL IS THE HUMBER OF SPACES PER UNIT ALONG THE K-AXIS (5 FOR PROFILES) xSCAL=100,/(xLAU(11)+XMIN) JF (41915, 10, 21) X3CAL#5.0 С č

SURVE

C+1 YHINH DUMY(3) DELTY= DUHY(4) YLAB(65#YHIN 00 270 1-1,5 270 YLAB(0-1)=YLAB(7+1)+DELTY YSCAL=50./(YLAB(1)-YHIN) C C INITIALIZE PLOT OUTLINE C CALL PPLOT(0,0,100,NPLOT) K B \$ C C DRAW IN EACH CURVE C 00 450 L=1,NCV 1F(NPT(L),E0,0) GO TO 440 C JOINING XO YO AND XT YT C FOR PROFILES THE ORIGIN IS THE FIRST DATA POINT Ċ IF(NXPTS,E0,21) XMIN=1.0 XORXSCAL4(X(1,L)+XMIN) YU=YSCALA(Y(1,L)-YHIN) NPOINT = NPT(L) DU 400 N = 2, NPOINT XT = XSCAL+(X{NJL) + XHIN) Y1 = YACAL+(Y(N+L) - YHIN) CALL PINE (XU, YB, XT, YT, K, NPLOT) ¥0 • KT Y0 = Y1 400 CONTINUE 440 K K K + 1 450 CONTINUE NUTPUT FINAL PLOT CALL PPLOT(0,0,99,NPLOT) RETURN END

 \sim 1 Ś Ы ч S

 \mathcal{H}

FORM Y LABELS AND FACTORS

BETA(JS=BETA(JS+(CON(K)+CIN(100+KKS)+QOU(K)+FACTOR(KK,I) SUBROUTINE FORM(CON, CIN, CEX) 220 CONTINUE COMMON/MISC/NJ, NC, NP, NDYN, NBND, ML IM, DELT, IPAGE, NHYD, IDAY, IDELT 200 CUNTINUE NJP, ILE, KPLOT, ISKIP(16), ALL (20), IDYN(52), TITLE(20), TITL(20) ٠. HOPERH(S2), IPCYC, LDAY, NCYCH, INQUAL ... C.... BOUNDARY EXCHANGE COMMON/BACK/ INTAKE(20,5), FACTUP(20,5) 1F(NOYN.E0.1) OU TO 408 COMMON/EXC/ NBOUND, JOOUND(10), GEMA(10), UFLOOD(10), XR(10), FILL(140) DO 400 LE1, NBOUND COMMUN/916/ NCHAN(200,8), NJUNC(300,2), JUN(200), XLEN(300) J=JNDUND(L) 4LPH(200), ALPH1(200), AA(200), BETA(200) 11 JJ=JUN(J) T31A6(500'51)*(500'51)*T6HV(500'51)*(C(200)*2(500))*2(500) ... TA="FLOUD(L)+(1,D=XR(L))+0EBB(L) n1F(100), U(300), VS(300), UUU(200), 72(300) , VUL(200), 2(300) .. ALPHA (J, H) = ALPHA (J, H) - TAAALPHI (J) CC1(300), CC4(300), DEP(200), RAVE(300), HS(300), VAUS(300) ... (2005)N120.(005)NID.(2005)ANUL,(2005)NID.UL,(2005)N120.(2005) 400 CUNTINUE 3PACE(7500) . . 60 10 418 DIMENSION CON(I), CIN(I), CEX(I) 408 CONTINUE DO 420 L=1, NOUUND C FORM FINAL COEFFICIENT MATRIX AND CONSTANT VECTOR RED=JRUAND(F) M=N5//0+1 CUNE=xa(L)+(AE08(L)+AFLOOD(L))/(2, xa(L)) С 40,1=1, SP CO CTWD=2_UACEX(L)A(OFLOUD(L)-(1.0-XR(L))AGE88(L))/(2.-KR(L)) Ĉ RETA(Jj=0.0 Ć ALPHA(REC, ")=ALPHA(REU, H)+CUNE M114,1=+ 59 00 C HETA(KFQ)=HETA(KEQ)+CTMQ 92 ALPHA(,I,K)=ASAVE(J,K) J=J800M0(L) TF (HOYN.EU.1) GO TO 150 TA=0FLnU0(L)+(1,0+XR(L))+0E88(L) 11=H ALPHA (J) M) = ALPHA (J) H) = TA 00 100 JEL.NP RETA(JS=BETA(J)+CEX(L)+OFLOOD(L)+xR(L) 11211-1 420 CUNTINHE KK=J=%AND 418 CONTINUE LLOJIANNO RETURN IF(KK+LE+0) KK=1 £ND 1f(11,11,0) 11=0 IF(LL.nT.NP) LL=NP 1=11 DU 110 K=KK,LL 1=1+1 1]=]0h(K) 110 RETA(JISBETA(J)+CON(JJ)+A(J,1) BETA(J)=BETA(J)+BU(J) ALPH4(3, M) #ALPHA(J, H)+AA(J) 100 CUNTINUE 60 10 120 150 CONTINUE 00 160 J=1,NP *LPHA(1, M) #ALPHA(J, M) +AA(J) RETA(J)=RETA(J)+BB(J) 160 CONTINUE 120 CONTINUE C C.... INFLORS 00 200 JEL,NP 11#104611 J1=JUNTN(JJ) J2=J04618(JJ) ALTA(J)=PETA(J)+CIN(J1)ADIN(JJ)+CIN(J2)AOGIN(JJ) 1F(JH+s(JJ),ER,0) GU TO 200 RK=JUHA(JJ) · D() 224 1#1.5 HEISTAVE(NH.I) IF (4.Eg.0) GO TU 220

FnRH

J

Л

t

ſ

Ŕ

FDRH

BETA(JS=BETA(J)+TAAALPH(J)+CON(JJS+CEX(L)+OFLOOD(L)+XR(L)

Э.

00 140 1412 110 PROFF[12:4710.0 120 150 1412 120 PROFF[12:4710.0 10 NODE [12:4010.0 10 NODE [12:4010.0 10 NODE [12:4010.0 10 NODE [12:4010.0 10 NODE [12:4010.0 11 PROFF[12:4010.0 11 PROFF[12:400.0 12 PROFF[12:400.0 13 PROFF[12:400.0 14 PROFF[12:400.0 14 PROFF[12:400.0 15 PROFF[12:40
VURNOUFING TWENT THE THE THE THE THE THE THE THE THE TH

2-35-159

•

INPUT

250 CONTINUE 1F (NPP EQ.0) GD TO 270 AEAD (5,180) (NCONP(K), K+1,4), (1PDAY(1),1=1,3) 00 260 1=1.NPP 260 464D (5,180) (NODEP(J,1),J=1.21) 270 CONTINUE W411E (6.250) TITLE/TITL TETRA TECH, INC. 1/,118,2044,1 LAFAY 260 FOPHAT (1H1,10×,2044,1 15176, CAU15,1/) HATTE (5.290) IDAY, IDELT, IPCYC, NFILE, INQUAL, NHYD 1,14.//.20X.1 290 FURHAT (///, 20%, SIMULATION BEGINS ON DAY ITIME STEPS UP 1.14.1 HOUR (3)1.//.20X. PRINTO 1. TO . TIME STEP (S) 1. //. 20%, HYURAUL 201 EVERY 31C INTERFACE UNITI. 157, 14, //, 20X, IQUALITY INTERFACE UNITI, 157, 14, / 47,20X, INUMBER OF BOUNDARY CUNDITIONS 1,14/) 01 530 1=1,NHYD IF (IOFLT,GT.24) NOPERH(I)=NOPERH(1)+24/IDELT IF (NUPERH(I), LE. 0) NOPERH(I) #1 TE (10YN(1).50.0) GO 10 310 WRITE (6,300) NOPERH(1),1 300 FURMAT (231,13,1 TIME STEPS FUR CONDITION 1,15,1 STEADY STATE 111 60 10 130 319 WAITE (6,320) NCPERH(1),1 DYNAHIC!3 320 FURHAT (238,13, TIME STEPS FUR CONDITION 1,15, 330 CUNTINUE WRITE (0, 340) 340 FORMAT (///, 20X, THE FOLLOWING CONSTITUENTS ARE BEING MODELED!/) 00 350 K=1.9 TF (ISHIP(K), ED, 0) HRITE (6,360) (NAME(J,K), J=1,3) 350 CONTINUE 360 FUGHAT (25%, 344) 1=0 DU 370 HE10,13 1=1+1 IF (ISKIP(K),EQ.03 WRITE (6,380) (NAME(J,K),J#1,3),(CNAME(J,I),J#1 1.4) 370 CONTINUE 360 FURH11 (25X, 349, 2X, 444) ... THITIAL GUALITY CONDITIONS С., WHILE (0,280) TITLE, TITL WAITE (0,390) 390 FORMAT (//, JOX, INITIAL QUALITY CONDITIONS' , I JUN TO JUN TDS TUT IN TOT P T COL F COL C BUD N BUD 0 0 1 2 ILVP CONST 1 CONST 2 CONST 3 CONST 41/,11X,3(5X, MG/L),2() 340/1004L1), 3(5x, 1HG/L1), 7x, 10 1,4(1 UN1751)/) DO 440 JUELINJ ALAU (5,400) J1, J2, (ALL(1), 1=1,13) 400 109441 (215,1475.0) TF (J) LG 0) 60 TO 450 1F (J1, GT, J2, 9R, J2, GT, HJMAX) H41TE (6,410) ALD EDAMAT (THE ENDOR . THE FULLOWING HODE LIMITS ARE IN ERHONI) TF (AL; (P),L1,U,D) ALL(B)=-ALL(B)+CATUXY(ALL(9),ALL(1)) 11111 (0,424) J1, J2, (ALL (J), J=1,13 420 FORMAT (14,17,F4,0,2F4,2,2E4,2,3F4,2,F9,1,4F4,2) 5L,1L=L 0EP (0

· · · · .

٠.

and and

3

2

Citize .

INPUT

b0-430 1+1+13 COVEJ, T) FALLETT 430 CONTINUE 440 CONTINUE 450 CONTINUE • C.... DISPENSION COEFFICIENTS WRILE (6,460) 460 FORMAT (///, 10X, 10ISPERSION CUEFFICIENTS //, 5X, 1CHAN TO CHAN 1 01 6411 470 FURMAT (17,18,2F12.0) DU 484 N=1,NC . READ (5,000) J1, J2, C1, C4 1F (J1 E0.0) 60 TU 490 WRITE (0,470) J1, J2, C1, C0 00 480 J=J1,J2 (C) (J) (C) 480 CC4(J) 2C4 490 CONTINUE C.... SEA-ARD BOUNDARY . PEAD (5,180) NBUUND, (JBOUND(J), J#1.10) DO STO LET. MOUND DO 500 K=1,HP TF (JHAUND(L),NE,JUN(K)) DO TO 300 J800ND(L)±K 0 10 510 500 CUNTIME 510 CUNTINUE RETURN Ĉ C S20 CONTINUE NOYNELDYN(NCYCH) TPCYCAREEPP IF (NUYN, LO.1) IPCYC=1 PEAD (5,170) TITL READ (5,180) (NTEMP(1),1+1,10) 1×0 00 530 J=2,9 530 1=1+41FMP(J) 1F (1., 1.8) WHITE (6,280) TITLE, TITL 122=+1495(122) IF (NTEMP(1), 40.1) GD TO 390 C.... HYDRODYNAHICS 1F (NIF4P(10)) 540,580,560 540 1 = HILHPILO) 00 550 4=1.1 550 BACKSPACE HAILE 60 10 500 560 I=NIEMP(10) 00 570 K=1,1 STO READ (NEILE) 580 CUNTINUE PLAD (AFTLE) REBA, RELOOD, (AVOT(J), AS(J), VOL(J), RIN(J), ROTHE 1.1, , 111 (J), RUPH (J), J= (, NJ), (AC (N), O(N), R5(N), RAVE(N), V8(N), VABS(N),

INPUT

```
2NE1-NCS
     TEEN-IFE
 590 CONTINUE
C
C.... TIDAL CONDITIONS
      1F (HTEMP(2), E0.1) GO TO 650
      READ (5,610) (XR(J), J=1, NBOUND)
      1PAGE=1PAGE+1
      WHITE (0,690) NEYCH
 600 FORMAL (//, 30X, "EXCHANGE CONDITIONS DURING HYDROLOGIC CYCLE", 14, / F
                             FLOUD TOS TOT N TOT P T COL F CO
DXY TEMP CUN 1 CON 2 CON 3 CON 41
     1 JUN FACH 188
                             FLOUD
     21 C NUD N AUD
                             HCF5 1,3(4x, 1HU/L1),2(1 N/100HL1),3(1
     37.5X. RATIO HEFS
     4/61)/5x/101/24/4(1
                            UN[131]/)
     013 630 K=1, NHUUND
      READ (5,610) (CEX(K,1),1=1,14)
 610 FORMAT (5x,1415.0)
      Ja Jahung (A)
      1=.104(1)
      1F (SALTEX(K), LE. 0. 0) SALTEX(K)=TOSEX(K)
      TF (UXYEX(x), LT, 0, 0) UXYFX(K)=-OXYEX(K)+SATOXY(TEHPEX(K), TOSEX(K))
      KHITE (6,620) J, XR(K), REBB(K), UFLOND(K), (CEX(K,1),1=1,13)
 620 FO4MAT (14,F5,2,-6P2F9,3,UPF8,0,F6,2,FT,2,2E9,2,FT,2,F8,2,2F8,1,4F
     14.2)
 630 CONTINUE
 640 FORMAT (777, 30X, INFLOW CUNDITIONS DURING HYDRAULIC CYCLEF, 14,71 J
     104 INFEDM TOS TOTIN TOTIP TOUL FOUL COOD
     2 N 800 0KY TEMP CUNST | CUNST 2 CUNST 3 CUNST 41/9X
3, 1CF3 1, 3(5x, 14G/L), 2(1 NO/100HL), 3(5x, 14G/L), 7x, 1C 1, 4(1 UN
     41131)/5
C .... INFLOW HATER WUALITY
 650 IF ("TEMP(3), E0,1) GO TU 810
      WRILE 10,640) NEYCH
      00 050 J=1,NJ
 060 JUNIN(J)=150
     ng 670 Jal, 100
      00 674 K=1.14
 670 CIH(J,K)=0.0
     1 9 1
      NO 730 LIE1,500
     PEAD (5,699) JJ,00, (ALL(K), K=1,14)
 600 FUMAT (TO + ERRUR + RETURN WATER IS ALLUNED AT 20 NODES MAXIMUMI)
 690 FORMAT (15,1515.0)
      TF (JJ LO. 0) U) TO 700
      TF (ALI(14).LE.0.0) ALL(14)#ALL(1)
      IF (ALL(A), LT, 0, 0) ALL(8) = ALL(8) = 9ATUXY(ALL(9), ALL(1))
      WHITE (0,800) JJ,00,(ALL(K),8=1,13)
      1F (LL_EC_1) JUNIN(JJ)#3
     DU 100 MELIL
      Ja¥.
      IF (JU-1+(JJ),EU,K) GO IN 710
 700 CONTINUE
      1+1+1
      J#L
      10-19(JJ)#J
```

```
710 CONTINUE
```

INPUT

TAR-450000.+35.314/(.864E+A+00) DO 720 K#1,14 FB1. 1# (ALL(#).LT.0.0) F=TA TEO CIN(J,K)=CIN(J,K)+ALL(K)AUG+F 730 CUNTINUE 740 CUNITINE IF (J.GT, 100) WHITE (6,750) TSO FORMAT CTONARNING & . THE NAMIHUM OF 100 INFLOW LOCATIONS HAS BEEN 1 EXCÉENED + +1) TF (MIFMP(4), EA.1) GO TO 810 WALLE (6,760) 760 FUHHAL (7, 10X, TAGGREGATED QUALITYS) DO 140 J=1.NJ J)=JUH+4(J) 1F (JJ E0.150) GO TO 780 IF (910(J), LE. 0) QIN(J)=1.0 DO 779 K=1,14 770 CIN(JJ.K)=CIN(JJ.K)/010(J) IF (3ALTIN(JJ), LE, 0.) SALTIN(JJ) ATDBIN(JJ) 780 TF (UIN(J), LE, 0, 0) GO TU 790 WHILE (0,000) J,014(J), (CIN(JJ,K), K=1,13) 790 CUNTINUE 000 FURMAI (14,F9,2,F9,0,2F9,2,2E9,2,2F9,2,2F9,1,4F9,2) C C.... GHOUND HATEH INFLUH 810 TE (NTERP(5),E0,1) GO TU 900 WRITE (6,820) 820 FURNAT (7, LUX, "GHOUND HATER INFLOW QUALITY", / JUN TO JUNF) NO 430 J=1,01 630 JUNG (473)=150 DU 840 JJ=1,30 ALAD (5,400) J1, J2, (ALL(1), 1+1,14) 1F (11 E0.9) GO TU 890 1F (ALE(14), LE, 0, 0) ALL(14) #ALL(1) IF (ALI (H), LT, 0, 0) ALL(B) =-ALL(B) + JATUXY(ALL(+), ALL(1)) WHITE TO, 840) JI, J2, TALL(1), 1=1,13 840 FUPHAT (16,17,89,0,269,2,269,2,269,2,269,1,489,2) 11 (JJ LO. 30) WHITE (6,850) 650 FURMAT (TUM ERROR & AMAXIMUM OF 29 GROUND WATER TYPES ARE ALLOWEDF 1) 00 000 1=1,14 660.CIN(12n+JJ,1)=ALL(1) PO 110 1=11-15 878 JUNGINCIDAJJ+128 Sen CONTINUE 690 CONTINUE C.... RETURN WATER 900 IF (47/ 10(6), E0, 1) 60 TO 1010 AHIIE (0.710) 910 FUHHAT (///, 10%, "HETURN WATER "/," WITHDRAWAL JUNCTION AND PRACTION 1 RETURNED!, / DISCHARGE JUNCTION AND CONCENTRATION INCREMENT!/) 111 920 J=1.NJ HEYLDANNIL ASP 011 934 J=1,20 NI) 410 K=1.5
INPUT

INTAKE (J.K) NO . . 930 FACTOV(J,K)=0.0 15,1=L 099 Cd READ (5,940) J1, (NTEMP(1), ALL(1), 1=1,5) 940 FORMAT (15.5(15.F5.0)) IF (J1_LR.0) GO TU 1000 [F (J.FU.21) HRITE (6,660) JU%A(J1)=J 00 950 1*1,5 INTAKE (J, 1) ANTEMP(1) 950 FACTU4(J.1)=ALL(1) PEAD (5,960) (ALL(T),1+1,14) JF (ALI(14), LE, 0, 0) ALL(14)=ALL(1) 960 FORMAT (1645,0) DU 970 1=1.14 970 C17(100+J.1)=ALL(1) ##ITE (6,9AU) (INTAKE(J,1), FACTOR(J,1), 1#1,5), J1, (ALL(1), 1#1,13) 900 FU4441 (5(15.F5.2)/14.F18.0,2F9.2,2E9.2,2F9.2,2F9.1,4F9.2) 990 CUNITNUE 1000 CONTINUE IPAGE=1PAGE+1 C SYSTEN CHEFFICIENTS 1010 TF (NTEMP(7), E0,1) 60 TO 1110 W411E (6,1020) 1020 FURMAT (///, 30X, "SYSTEM CUEFFICIENTS", /" JUN TO JUN BOD DECAY ICULIF NEULAY BENTHIC SINK RATES ALGAL DAYGEN REARATION n 200 CUNST DECAY OPP CUNST SETTLING 1,/13X, CARB NITH TOTAL FEG O PHOTO RESP MIN JAL. P MAX 1 2 23 41,/16X, 11/DAY HF 43 4 1 1/0AY 5/42/044 1/UAY HG/H2/DAY 170AY H2044121 >PLAD (5,960) (TYPEEQ(1),T=1,3),(OTEN(1),I=1,2) IF (UTEN(1), LE, 0, 0) OTEN(1)=1.05 TF (016N(2), LE. 0. 0) QIEN(2)=1.03 119263(4)=9.0 DO 1050 JITI'NT PEAD (5,409) J1,J2,(ALL(1),1=2,9) TF (J1, L9,0) 00 10 1090 PEAD (5,1030) (ALL(1),1=0,20) 1030 FOHMAT (16F5.0) 1F (J1, GT, J2, UR, J2, GT, NJMAX) HRITE (6,410) WRITE 15,1040) JI.J2.(ALL(1),1=2,73,ALL(10),ALL(0),ALL(4),(ALL(1), 11=11,20) 1040 FURMAT (14,17,2F6,2,F8,2,F6,2,3F7,0,F8,0,F7,0,F6,1,F7,1,F6,2,3F5,2 1. 17. 21315.2) TARL. 79=L. ALL(2)=RATE(THAALL(2)) ALL(3)=HA1L(TA+ALL(3)) ALL(4)=HATE(TA+ALL(4)) ALL(5)=##IE(TA+#LL(5)) NU 1050 1=13,16 1050 ALL(1)=HAIF(TA+ALL(1)) 51,1L=1 0001 (0 18 ("CHA"(J,1),E0,0) GU TO 1080 #OPCDAyJieALL(2)

1

 \sim

1

vi

5

Ν

۰,

ADDNOK(J) #ALL(3) COLIDK(J)=ALL(4) CULFOR(J)=ALL(3) DO 1000 Im1.4 x=12+1 1060 TYPEDK(J, T) #4LL(K) .0000000((L)201+45(J)/VOL(J)/06000. BENN(J)=TA+TC+ALL(6) BENP(J)=TAATC+ALL(7) nALG(J)=1A+IC+(ALL(8)+ALL(9)) **①∂F™(J}=TA+TC+ALL(10)** TC=1C+1000. ۰. DO 1070 1=1,4 K516+1 1070 TY3E(L(J,1)=ALL(K)+TC AATJ)=ALL(11) 88(J)=ALL(12) 1060 CUMPTNEE 1090 CONTINUE WHILE (6,1100) (TYPEEQ(1),1=1,3), (nTEN(1),1=1,2) 1100 FURMAT (POSTOICHIOMETRIC EQUIVALENCE BETWEEN OFTIGMAL CONSTITUENTS 11/1/ CUNST HU 1 DECAY TO CUNST NO 2.1/FO.2// CONST NO 2 DECAY TO 2 CUVIST HU 3. 1. FB. 2. / I CUNST NU 3 DECAY TO CUNST NO 4. 1. FB. 2. // RA STE CHEFFICIENT TEMPERATURE ADJUSTMENT CUNSTANT FURI, //I HUD 41, F10, 3, /1 ALL DTHERS1, F10, 3) 1110 CONTINUE C.... HETEROLOGICAL CONDITIONS IF (NTEMP(A), NE, 1) CALL METDAT (+1, TEMP) 1F INTEMP(7), LO, 1, AND, NTEMP(8), E0, 1) GO TO 1170 1F (416HP(7),HE,1) 60 TO 1130 DU 1120 J=1,NJ 0, n=(L) AA 1120 BB(J)=10000. 1130 COMPTINIE ni) 114n J=1,NJ R044(Ji=0. APUP(Ji=0, 1F (HCHAN(J,1),E9,0) GO TO 1140 BUR-(J1=0,40+0,0974HINDA(J)++2 RUP4(J)=POP+(J)+45(J)+3,281/VOL(J) ORDA(J)=AHAXI(RUR+(J),ROAH(J)) 5R0H(J\$=AHAX)(ORDH(J),AA(J)) **ΠΡΗΗ(JÌ=**AMIN((**DRUR(J),08(J)**) 1140 CONTINUE WRITE (6,1150) (J.RORH(J), HURH(J), ORDR(J), J-1, HJ) 1150 FORMAT (TO FLUM AND WIND INDUCED REAERATION CUEFFICIENT AND COEFF. 1 USED AY NODES, 1/DAY1/(5(18,346.3)) TAEL. DH Llon J=1,4J 1F (HEHAN(J,1),19,03 60 TO 1160 DRUH (J)=HATE (FAADHDA(J)) 1160 CUPITINGE IF (NIIMP(9), NE. 1) CALL HETDAT (0, TEMP) 1170 CUNITINE RETURN END

INPUT

HETDAT

SUBROUTINE HETDAT (JSKIP, TH) THIS ROUTINE USES ARE SIN AND ARE COS LIBRARY FUNCTIONS. ¢ THESE FUNCTIONS ARE SPELLED ASIN AND ACUS IN THIS CODE. c CARAAA COMMON/HISC/NJ.NO,NP, NDYN, NHNU, HLIM, DELT, IPAGE, NHYD, IDAY, IDELT VJP, IEE, KPLOT, 19KIP(16), ALL (20), IDYN(52), TITLE(20), TITL(20) 1, NOPERH(SZ), IPCYC, LDAY, NCYCH, INDUAL 2. COMMON/AT/XLAT(6),XLON(6),TU48(6),CLOUD(25,6),DBT(25,6),MBT(25,6) 1, Abo(52'9)'HIND(52'9)'NNY(52'9)'EV(52'9) COMMON/MET/N+20NE, JAZUNE (6,2), FUNE (200), FINU(200) 1. £A(500)*0/3(5n*e)*#1/0Y(500) DIMENSIUN ALPH(8), BETA(8), 4(4), 8(4) , TH(200) C DATA ALPH/6,05,5,10,2,05,-2,04,-9,94,-22,29,-40,63,-00,90/ DATA BELA/0, 522, 0, 710, 0, 954, 1, 265, 1, 659, 2, 151, 2, 761, 3, 511/ DATA A/1.14,2,20,0.95,0,35/ DATA BI-0.77,-0.97,-0.75,-0.45/ DATA P1/3,14159/, HUG/0,33133333/, DIOR/0,01745/ C RD(X)=1000,-(((X=3,98)**2*(X+283,))/(503,57*(X+67,26))) C [F (JSKIP) 100,210,290 100 CONTINUE READ (5,110) NEZONE, DAY, EPS, AA, BB, DEN 110 FURMAT (15,10F5.0) 1F (98, LE.0.0) 89#1.5E-9 DU 200 LAT'NHIUNE C C READ NUMBERS OF JUNCTIONS DELIMITING THE MEATHER ZONE, THE LATITUDE C AND LONGITIDE, AND ATHOSPHERIC TURBIDITY (2 FOR CLEAR, UP TO S FOR SHO _₽£40 (\$,120) (J₩ZUNE(L,J),J±[,2),XLAT(L),XLON(L),TURB(L) 120 FURMAT (215,10F5.0) C Jial 00 140 J=1,25 C C READ CLUUU COVEN FRACTION(PCT), DRY BULB(C),NET BULB(C),ATHUSPHERIC PR C (HB), AND WIND SPEED(M/SEC) C #EAD (5,110) J2. (ALL(1),1#1,5) cLOUD(j2,j)=ALL(); DBT(J2,L)=4LL(2) HST(J2,L)==(L(3) APP(J2,L)=ALL(9) 4146(J2,L)=4LL(4) 1F (J2.'L0,1) GD TO 140 41=J2=J1-1 TF (NY LF. 0) GO TU 140 DI) 130 N±1, HH 11=11+4 TAPFLULT(N)/FLUAT(NH+1) TU=1,U_IA CLUND(JJ,L)=CLOUD(J2,L)+TA+CLUD(J1,L)+TB DHT(JJ,L)=04T(J2,L)+TA+DHT(J1,L)+TA HB1(JJ,L)=~01(J2,L)+T4+H01(J1,L)+TA APR(JJ,L)=APR(J2,L)ATA+APR(J1,L)ATA

۰.

H Z T D A T

130	WIND(JJ,LJAWIND(J2,L)+TA+WIND(J1,L)+TB
140	11m.12
150	CUNTINUE
C	•
	3HERD=15+1F1X(XLON(L)/15,0)
	DELISHEPBA(SHERD-XLUN(L))/13,0
C	COMPUTE DECLINATION, SUNUP, BUNSET, AND
Ç	CONSTANTS USED IN RADIATION COMPUTATION
Ç	• · · · · · · · · · · · · · · · · · · ·
	DECLPU_4092+CU3(0,01721+(172,0-DAY))
	TA=TAN(XLAT(L)+DTUR)+TAN(DECL)
CAPAA	
	MARIE, URACOB(=(A)/PI
64784	, BINIPELD A-MARANELTS
	TI=STN(DECI)+SIN(XIAT(L)+DTUR)
	T2=COS(DECL)+COS(XLAT(L)+DTUR)
C	
C	RADIATION AT GIVEN INTERVALS THROUGHOUT A O
Ç.,	
C	COMPUTE LONGWAVE ATMOSPHER, RADIATION
L	AD 180 NU-1 34
	DU IOV MAEIZAA
c	114-LINE, LJ=TX=LD=LUNI, LINE, FZ=JAUJ==0
č	SHURTWAVE SOLAR RADIATION
Ċ	
	0N3(NN,L)=0.0
	TIMEENN-1
	IF (TIME,LE,SUNUP,OR,TIME,GE,SUNSET) GO TO 170
	CLD=CLDUD(NN,L)
	HA=PIA;TIME=12,0-DELT3)/12.0
	SINA=1(+12+COS(HA)
	RADINGASINA
	A1=0,128-0,0544ALOGIO(1,0/AB3(31NA))
	TA=TUP9(L)+A1/SINA
	$\frac{1}{1} \frac{1}{1} \frac{1}$
	RAN134AD4(],0+,65+CLU++<)
	1, (CCU,CI,4,0, VN0, CC0, CI,6,42) CU 10 100
	40-1 15 (Cho, CT, 4, 95) NETA
P	
160	AT HE DIRALNE SA (57 LAASIN (STNA)) AAB (40)
C	**************************************
	ONS (MULL) = RADA () AL BED()
	IF (DAS(NAL), IT. 0.) UNS(NAL)40.
170	CUNTINUE
180	CONTINUE
C	
	YAEU.
	ni) 190 JJ=1,24
	EA(JJ,1)#2,1714E6+EXP(+4157,0/(HBT(JJ,L)+234,04))
	TF (DEW.GT.O.UL) EACJJILI=EACJJILI_APR(JJIL)=(DUT(JJIL)=HUT(JJIL)]
	· · · · · · · · · · · · · · · · · · ·

3

5

5

HETDAT

HETDAT

۰.

1.(6.6E_4+7.59E-7+HBT(JJ/L)). TATTA+WIND(JJ+L) 300 CONTINUE 190. CONTINUE. TATTA/24 J1=J+ZONE(L,1) J2=J4ZnVE(L,2) St'If=r noz nu AT=(L)AGRIH 005 RETURN 210 CONTINUE C NO 240 LELANNZONE TPAGE=TPAGE+1 WRITE (6,220) TITLE, TITL 220 FU944T (1H1,10X,2044,1 TETRA TECH, INC. 1/, 11X, 20A4, 1 LAFAY LETTER CALIF. 17) WHITE (6.230) L. (JHZONE(L.J), J#1.2), XLAT(L), XLON(L) 230 FURMAT 1///, 20X, 444 TABLE OF METEOROLOGIC DATA FUR MEATHER ZUNE , 12 1,104, UNCTION,14,34 TO,14/,T99,124LATITUDE - ,FS.1/,T99,124LONG1 2TUDE = 115.1771204 HOUR WIND CLUND DRY BULB ATHUSPHERIC SHURT HAVE LONG WAVE VAPOR 3 1150H SPEED COVER TEMPENATURE TEMPE SAATUHE PPESSURE SOLAR SOLAH PRESSURE P021/9 (M/SEC) FRACTION (C) (C) (PB) (RCAL/M2/SEC) (RCAL/M2/SEC) (HB) 1) ۰. 1 00 240 1=1.24 WAITE (0.270) I. HIND(I.L), CLOUD(1,L), DHT(1,L), HUT(1,L), APR(1,L), QN 15(1,L),UNA(1,L),EA(1,L) 240 CONTINUE TP (DEW,LE.,01) HRITE (6,250) 250 FURHAT ("DAAAA DEN POINT") TF (DEW.GT..01) WHITE (0,260) 260 FUNAL (OAAAA NET BULAT) 270 FURNAT (TIO,FI3,1,F10,2,F10,1,F33,1,F16,0,F12,4,F16,4,F32,0) 200 CUNTINUE AFINAN COMPUTE HEAT TRANSFER PARAMETERS 30011003 005 NO JIO LELINWZONE JI=J=IONE(L+1) J2×J+InHE(L,2) St'lf=f nit iu EV(J)=0.0 10-16(1)=0.0 FIH0(J)=0.0 TF (14(J), LE. 0.0) 00 TO 310 ng 300 [e],24 PF=0,1r=0+APH(I,L) NH=1+(+1/5,0+1,0 TE (UN GT A) NNEA 1F (UN_LT_1) NUE1 C++ LONGHAVE HACK RADIATION R(1L=40(T+(J))+(597.0-0.57+T+(J))+(+4+80+41ND(1+L)) F=0,00693+401 + (ALPH(NN)-EA(1,L)-PF+081(1,L)) FUNE (J)= 903(1,1)+044(1,1)-F+FUNE(J) # THU(J) = P(0) + (UF TA (VI) + PF) + 0.001471 + FTHO(J) #SEALPHING)+BETA(NN)+TH(J)

満刻

.

C

ง

2

310 CONTINUE 00 320 J=1,NJ FONE(J)=FUNE(J)/24. FTH0(J1=FTH0(J)/24. 1F (EV(J).LT.0.0) EV(J)+0.0 320 EV(J)=FV(J)/24. RETURN

2V(J)=(HIND(I+L)+CB+AA)+(E5-EA(I+L)+EV(J)

END

.

DUTPUT

SUBROUTINE OUTPUT (JSKIP)

10

OVTPVT

C. COMMON/LAB/XLAD(11), YLAB(6), TITLE(12), HORIZ(13), VERT(6), 1041T0 COMMON/PLOT/ IPLOT(4), CP(101,6,4), DAY(101), NPOINT, JPLOT(6) IPP.NPP.1PDAY(3), NODEP(21, 2), PHUFA(21, 3, 4), NCUNP(4) 1. 2. PROF8(21,3,4) COMMONINTSCINJ, NC, NP, NDYN, NBND, HLIN, DELT, IPAGE, NMYD, IDAY, IDELT NJP, 11F, KPLOT, 13K1P(16), ALL(20), IDYN(52), TITL1(20), TITL(20) 11 NGPERH(52), IPCYC, LOAY, NCYCH, INDUAL 2. COMMON/816/10/144(200,8),F11L(18600) COMMON/UNELY JUNIEN(200), JUNEIN(200), JUNA(200), DIN(200), UGIN(200) TOSTACTON, 101×14(150), 101PIN(150), COLTIN(150), COLFIN(150) ۱. 50001.(150), 600.1.0(150), UTY10(150), TEMPIN(150) 2. **PETHE150.41.5ALTINE1501 ١. 100(200), 1010(200), 1010(200), COLT(200), COLF(200), DOUC(200) 4, AUGH(200), DXY(200), TEMP(200), TYPE(200, 4), TYPEDK(200, 4) 5, DALG(200), DUE4(200), DEDE(200), HUDCO4(200), HUDHOA(200) ۵. CULIDA(200), CULFDA(200), USAT(200), NENN(200), NENP(200) 1. CONMONIXAAE/NAPIS DIMENSIUM x(103,3), Y(103,3), NPT(3), CON(200,1) DOUBLE PRECIDINA UNITS OTMENSIUS UNITS(13) n1"ENSION TITLE1(9,2), HURIZICI3,21, VEHIL(0) EQUIVALENCE (CON(1,1), TOS(1)) AEAL HAME(3,13) DATA NAME/UNIDS . 2444 ,4HTUTA,4HL N ,4H ,4HTOTA,4HL P , 441014, 4HL CO, 4HLIF , 4HFECA, 4HL CO, 4HLIF , 4HCARB 11 H 1. AHON B. 4HUD , ANNITH, AHO BO, AHO , AHOXYG, ANEN , AH 2. HITE P, HERAT, HURE , HUPP , HICHNS, HIT 1 , HOPP , HICONS 3, ۹, UHI 2 JUHUPH JUHCUNS, 4HI 3 JUHOPP JUHCONS, 4HI 4 / DATA UHINS , 2 . 8HN0/100HL, 3.8HH5/L . 8HDEG C .4+6HUNITS 1 /3+0HHS/L DATA TITLES/2+4H , UHTINE, UN HID, UHTORY, 444H . AHCONC UNENTA, UNATIO, UNH PH, UNUFIL, UNE , 3-44 1. HU4171/7+44 ,4H DAY,12+4H . 4HNODE, 5+4H 2, VEPTI/HHMG/L, 4H, MPN, 4HUN C, 1+4H 3. 1F (J3KIP) 470,360,100 100 CONTINUE LAFAY 110 FORMAT (1H1, 10x, 2044, * TETHA TECH: INC. 1/2118,2044,1 LETTE, PAULE, 1/) 120 FORMAT (SOX, HUALITY RESULTS, DAY+, 14, / 1 JUN 105 TOT N 1 10T P ΤΟΟΙ ΕΟΟΙ C 80o N BÙD OXY 0 941 21EMP CONST 1 CONST 2 CONST 3 CONST 41/16x13(5x1 HG/L1).2(1 NO/ 31004L13,4(5x,1407L1),7x,10 1,4(4x,1041181)/) 1F (ISKIP(16)-1) 130,170,260 130 11=0 D11 160 J=1.NJ TF (NCHAN(J,1), E0.0) GO TO 160 1F (HUN(11,59),HE.0) 60 TO 140 WHITE (6,110) TITU1,TITU WAILE 10,120) JSKIP 140 TI=11+1 WHILE (0,150) J.(CON(J,1),1=1,8),03AT(J),(CON(J,1),1=9,13) 120 FUHMAT (16, 19, 0, 219, 2, 269, 2, 219, 2, 449, 2) 160 CONTINUE 9ETUMN

C... ALTERNATIVE PRINTOUT 170 CONTINUE WRITE (0,110) TITLI,TITL DO 250 1=1,13 1F (ISKIP(1), E0, 1) GO TO 250 HRITE (6,180) (NAHE(J,1), J=1, J), UNTTO(1), JSKIP 180 FORMAT (1, 50%, 340, ", ", 46, " FOR DAY ", 13/) 190 WHITE (0.200) (J.CUH(J.1), J.1.NJ) 200 BURMAT (10(15,FJ.0)) 60 10 -250 (LN.1*L.(1.L)NOJ.() (055.0) JITRW 015 220 FUHHA1 (10(15,F8,2)) 60 10 250 230 WRITE (6,240) (J.COH(J.1), JH1,NJ) 240 FD4MA1 (10(15;68,2)) 250 CONTINUE RETURN 260 C0011000E 16 = 0 on 350 [#1,13 IF (15x1P(1),E0,1) 00 TO 350 10=10+1 1F (MUD(10,2).E0.1) WHITE (6,270) 270 FURMAE (181) WHITE (0,240) (NAME(J,1), J=1,3), UNITS(1), JSKIP 280 FURMAT (90x, 344, 1, 1, 48, 1 FUR DAY 1,13) 290 WRITE (6, 500) (J,CUN(J,1), J=1, NJ) 300 FURMAL (5(17, F9, 0)) GU 10 150 310 WRITE (0.520) (J.CON(J.1), JAL, NJ) 320 FORMAT (5(17, F9.3)) 60 10 150 330 WHILE (6,340) (J.CON(J.1), J.L. NJ) 340 FDAMAI (5(17,89,2)) 350 CONTINUE RETURN . 360 CUNTINUE Ċ C.... TINE HISTORY PLOTS nr 370 J=1,3 DG 370 1×1,103 x(1,J)=0.0 370 Y(1, J)=0,0 11=4P0141/100+1 41=0 01 390 1=1.13 380 HUM17(1)=HUM121(1,1) DH 390 1=1,6 390 TITLE(T)=TITLE((1,1) UI #00 [=['P _____VE91(13=VE911(1) 011 460 1=1.4

```
1F (IPLOT(I).E0.0) 50 TO 460
      iP=1PLnT(1)
      TITLE(10)=NAME(1,1P)
      TITLE(11)=NAME(2,1P)
      TITLE(12) =NAME(3, IP)
      ]=0
      DU 410 JJ#1, NPOINT, II
      JzJ+1
      00 410 K=1,3
      x(J,K) xDAY(JJ)
  410 CUNTINUE
C
      N4=(NJP+1)/3+1
      11=1
      OD 450 HELINN
      NT=11+1
      L=LL+2
      TF (NJP.GT.L) LANJP
      x x 0
      00 430 HM=LL.L
      K = K + 1
      J=1
      DD 420 KK#L,NPDINT,11
      J=J+1
      Y(J,K)=CP(KK,HH,1)
  420 00911095
      NPT(K)=J
  430 CONTINUE
C SET HAPTS TO & SO X-AXIS INCREMENTS WILL BE PRINTED IN PPLUT
      HXP19=0
      CALL CUAVE (X.Y.NPT.K.NT)
      WRITE (6,440) (JPLOT(L1), L1=LL,L)
  440 FURMAT (1H0, 30%, INDOE NUMBENSI, 15, 6H # 0, 15, 4H # 1, 15, 4H # 2)
      ll¤L+I
  050 CONTINUE
  460 CONTINUE
      RETURN
Ĉ
C .... CONCENTRATION PROFILES
C
  470 CUNTINUE
      114=0
      15.1*1 084 00
      NU #90 J=1,1PP
  460 X(1, J)=1
      00 490 1=1,13
  490 HOP12(1)=HOR12((1,2)
      00 500 1=1,9
  500 TITLE(1)=TITLEJ(1,2)
      nu 510 1=1/6
  510 VENT(1)=VENT(1)
      00 590 11=1,4
      IF ("CONF()1),EU,0) 50 TO 590
      1090320(11)
      311LE(10)=%A4E(1+1)
      T11LE(11)="APE(2,1)
      11161121#444613+11
```

DO 560 1=1,NPP NN#NN+ n0 550 J#1,1PP NPT(J)±21 1F (1.E0.2) GO TO 530 DO 250 K=1.51 520 Y(K,J)=PROFA(K,J,11) 60 10 950 530 DO 540 K=1,21 540 Y(K, J)=PPOF0(K, J, 11) 550 CUNTINUE C SET HAPTS TO 21 SO PRINTING OF X-AKIS INCREMENTS IN PPLOT WILL SE SUP NXP13=21 TALL CUNVE (X,Y,NPT, 1PP,NN) HAILE (0,540) (NUDEP(J,1), J#1,81) 560 FU9MAI (115,2115,/,75x, 1400E') HRITE (6,570) (IPDAY(J), J=1, IPP) 570 F(18441 (30x, DAY OF THE YEAR', 15,44 # 0,15,44 # 1,15,44 # 2) 580 CUNTINHE 590 CUNITNHE RETURN

C

1

1

END

OUTPUT

OVTPVT

PÌNE

SUBROUTINE PINE(X1,Y1,X2,Y2,N3YM,NCT) CUMMUN/BIG/ 3PACE(15249), A(51,101) OIMENSION SYM(3) NATA SVH/1H0,1H1,1H2/ AXAEX1 **7=*5 AYANYI AY9=Y2 N=1 IF(ASS/AXB-AXA), LT, ABS(AYB-AYA)) GO TO 290 С С С SET PARAMETERS FOR & DIRECTION TE (AXU GT, AXA) GO TO 245 5×= 4 × A A X 4 = X 1 AVAXY2 ATHETI 245 CONTINUE TXA=AXA+.5 IXH=AXA+.5 174=474+.5 1YB=4Y4+.5 230 CONTINUE IF(1XA LT. 0. OR. 1XA, GT. 100) GO TO 260 1F(1YA_LI,0,0R,1YA,GT.50) GO TO 260 A(51-1YA, 1XA+1)=3YM(N9YM) 200 CONTINUE TX4=1×4+1 YA=('+(AYH-AYA))/(AKB+AXA) 11A=41A+YA+0.5 N="++ TECINA LE. [X8) 00 TO 250 60 TO 400 C C SET PARAMETERS FOR Y DIRECTION С 290 CONTINUE IF CAYS GT, AYA) 60 10 275 AYB=Y1 ATAST2 AXHEXI ***z*5 295 CONTINUE IXA=AXA+.5 1×9=4×0+.5 1 44=4 14+.5 1144=4101.5 300 CONTINUE TF(1XA, LT.0.08.1XA.GT.100) GD TO 310 TH (144, LT. 0. DR. 144, GT. 50) GU TO 310 1(51-144, 1XA+1)=344(NSYH) 310 CONTINUE 1 TA = | TA + 1 ¥4={~+{A×B=A×A}}/[AYB=AYA} 122244, A24+0.5 NETIT

 \sim

١

S

S

.

53

1F(1YA-1YB) 300,320,400 320 1XA = 1XA GG 10 300 400 RETURN END PENE

1000

202

SUBROUTINE PPLOT(IX, 1Y, K, NCT) DIMENSION STA(9) CUMHON/BIG/ SPACE(15249),A(\$1,101) COMMCNIXAXE/NXPTS CUMMON/LAS/XLAB(11), YLAB(6), TITLE(12), HORIZ(13), YERT(6), IUNITO DATA SYH/7+1H ,1H1,1H-/ C IF (K. En. 100) GD TU 230 TUNITOSO 1 = 0 1F (NCT .E2. -1) 60 TO 700 WHITE([UNITU, 103) (TITLE(IN), [N=1,6), (TITLE(IN), IN=10,12), NCT 700 CUNTINNE C THE FOLLOWING SECTION (THROUGH CARD 225) PRINTS ALL BUT THE X AXIS AND LABELS 0, 1=11 CSS 00 1=1+1 WHITE (IUNITO, 101) YLAB(11), (A(1, J), J=1,101) 1F(11,FU.6) GU 10 224 PUISE US UG 1+1=1 IF(1.NF.2A) GU 10 221 walletjunitu, 106) VERT(5), VERT(6), (A(1, J), J=1, 101) 60 10 224 221 TF(1. HF, 24) GO TO 222 C PRINT T-AYIS UNITS WRITE(TUNITU, 106) VERT(1), VERT(2), (A(1, J), J#1, 101) 60 10 224 222 1+(1,NF,26) GU 10 223 WAITE(10) ITU, 106) VERT(3), VERT(4), (A(1, J), Je1, 101) 63 10 224 223 HHITELTUNITO, 100) (A(1,J), J=1,101) 224 C0411miE 300 TTV03 255 C 30011003 ESS C NYPTS 13 & FLAG FOR CONCENTRATION PROFILE PLUTS, SET TO 21 IN OUTPUT C IF NAPIS 15 21, DO NUT PRINT X-AXIS INCREMENTS OR UNITS 14 (4KP13.29,21) 60 10 229 C PRINT THE X+AXIS UNITS FOR TIME HISTORY PLOTS #41 FELTUNITU, 102) XLAB WHITE (LUNITE, 105) HOHIZ 100 FURNAT(18x,101A1) 101 FURMAT(1PE17.2.1X, TUTAL) 102 FORMAT(F20.1.10F10.1) 103 - FURHAT(1H1,424,944, PLDT N0, 1,13,/3 105 FORMAT(404,1344) 106 FUHHAT/78.2A4,3x,101A1) 556 COntrait RETURN C THIS SECTION PHEPARES PLUT OUTLINE 234 04 250 1=1,50 nti 200 Jal. 101 240 A(1, J)=3Y4(7) A(1,1)=5YH(8) 250 CONTINUE 075 NU 200 Je1.101 260 4(51/1)+514(7)

1

 \sim

く

5

(~ 5 ∞

3

DO 270 1=1,101,10 270 A(51,11=3YH(8) DU 270 1=11,41,10 A([,])#8YH(9) 290 CONTINUE RETURN END

۰.

PPLOT

1

٠.

SCALE

SUBROUTINE SCALE PARRAY, AXLEY, NPTS, INC) COMPON/XAXE/NXPTS DIMENSION ARRAY(4), INT(5) DATA INT /2,4,5,8,10/ INCT=148S(INC) SCAN FOR MAX AND MIN AMAXIARHAY(1) AMIN=ADRAY()) DO 250 NEL, KPTS, INCT IF (AMAY, LT, ARRAY (N)) AHAX#ARRAY (N) IF (AMIN.GT. ARRAY(N)) AMINDARRAY(N) 250 CUNTINUE 1F(AHAX - AHIN) 275,255,275 RESET NAX AND MIN FOR ZERO RANGE Ċ 255 IF(AHTH) 265, 400, 260 260 AHIN # 0.0 AMAX & 2.0 . AMAX GU TO 275 265 AMAA # 0.0 AHIN = 2.0 + AHIN 275 CUNTINUE COMPUTE UNITS/INCM C RATE=(AMAX-AMIN)/AXLEN SCALE INTERVAL TO LESS THAN 10 A>ALOGIO(HATE) N=A IF(A.LT.0) N=A=0.9999 RATERHATE/(10, AAN) L#RATE+1,00 C FIND NEXT HIGHER INTERVAL C C 280 00 300 1-1.5 IF(L-1+T(1)) 320,320,300 300 CUNTINUE L IS NEXT HIGHER INTERVAL С RANGE IS SCALED BACK TO FULL SET C 320 L#INT(1) BANGE FLOAT (L)+10, ++N IF(14C_LT.0) GD TO 350 С BET UP POSITIVE STEPS ۵ C KNAMIN/HANGE IF(AMIN.LT.O.) KEK-1 CHECK FOR MAX VALUE IN RANGE ¢

۰,

£ TF (AMAX. GT, (K+AXLEN) ARANGES OD TO 330 TENPTS+INCT+1 ARRAY([)=KARANGE T#I+INCT ARPAY([)=RANGE RETURN С C IF OUTSIDE HANGE RESET & AND N C. 330 L=L+1 IF(L.LT.11) GO TO 280 ٠. £≖2 N=N+1 340 60 10 280 C. C **RET UP NEGATIVE BTEPS** Ĉ 350 HEAMAX PRANGE TF (AMAX, GT. 0.) K#K+1 1' (Amin, LT. (K+AXLEN)+RANGE) 80 10 330 1=1NC1+NP13+1 ARRAY([)=KARANGE 1=1+1+01 AWRAY(1)=-PANGE RETURN 400 WRITE(6,100) 100 FORMATE // 10%, "RANGE AND SCALE ARE ZERO ON PLOT ATTEMPTS 3 RETURN END

SCALE

 \sim ω V 3

4

C C

C

¢

С

¢

Ć

C

Ć

C

C

C

C

SETUP

A C T U P

A(J,H)=A(J,H)+VOU(JJ)/DELT

1000 CONTINUE

END

RETURN

ASAVE (J,H) RASAVE (J.H) + VUL (JJ) YDELT

SUBROUTINE SETUP COPHON/QUAL/ 13PACE(600),01N(200),FILL(7700) COMMON/MISC/NJ, HC, NP, NDYN, NBND, HLIW, DELT, IPAGE, NHYD, IDAY, IDELT NJP, IEE, KPLUT, ISKIP(16), ALL(20), IDYN(52), TITLE(20), TITL(20) NUPERH(S2), IPCYC, LDAY, NCYCH, INDUAL COMHON/HIG/ "CHAN(200,8), NJUNC(100,2), JUN(200), XLEN(300) ALPH(200), ALPH1(200), AA(200), 60(200), 86TA(200) ... 154VE(200,21), A(200,21), ALPHA(200,21), AC(300), AS(200) 62 n1*(300), n(300), v5(300) , n000200), 22(300) , v0L(200), 2(300) . . CC1(300), CC4(300), DEP(200), HAVE(300), HB(300), VAB3(300) ... C.... INITIALIZE COLFFICIENT MATRIX TO ZERO MENBHD+1 NO 160 JA1,NP DU 150 K=1, MLIM 160 ASAVE (.1, K)=0.0 C 00 1900 Ja1, NP 11=10.1(1) 1F(NOYN, E0.1) GO 10 108 ALPH(J)=0.5 C.... COMPENSATE FOR HIGH TRIBUTARY INFLOWS TARVOLIJJ)/DELTHOIN(JJ) [F(14,17,0,0) ALPH(J)=YOL(JJ)/(2,0+DELT+01N(JJ)) ALPH1(J)=1,0+ALPH(J) 108 CONTINUE LLJUOCE (M, L) SVARA C AND ADVECTION AND DIFFUSION TO COEFFICIENT MATRIX NO 250 4=1,8 NDIH=0 N="("AN(JJ.K) TE(N,E0.0) 63 TO 250 1F(J.LO.NJUNC(N,1)) GO TO 200 JUPP= 1, JUNC (11,1) 1F (0(4).LE.0.0) ND19#1 055 01 00 300 CUMITINGE JUPPEN UNC (N. 2) IF (0(+),GT.0.0) NDIR=1 30411403 055 JUIFEJ_JOPP ннан-Jn1F 1F("010,(0,1) 60 10 230 ADAVE(J,H)=ABAVE(J,H)+OIF(N) ABAVE (F, MA) = ASAVE (J, HH) + ABS(D(N)) = DIF(N) 63 10 250 230 ASAVE(J.H) + ASAVE(J.H) + AUS(Q(N)) + DIF(N) 4344E(J, MM)=A34VE(J, MM)=01F(N) 250 CUNTINGL ADD VOLUPE EFFECTS AND APPLY ALPH AND ALPHI FACTORS FUR DYNAMIC C 1F (NOYH, 10,1) GO TO 1000 DO 269 1×1,4014 A(J,1)=-A5AVE(J,1)+ALPH(J) 260 454VE(J, 1)=A54VE(J, 1)+ALPH1(J)

 \sim

w

S

L

5

. .

301 711

100011

SUBROUTINE SOLVIT(CON) CUMHON/HISC/NJ.NC.NED, NDYN, NBND, MLIN, DELT. IPAGE, NHYD, IDAY, IDELT NJP, ILE, KPLOT, 13KIP(16), ALL(20), IDYN(52), TITLE(20), TITL(20) ... NUPERH(52), IPCYC, LDAY, NCYCH, INDUAL ... COMMON/816/ NCHAN(200.6), NJUNC(300,2), JUN(200), XLEN(300) ALPH(200), ALPH1(200), AA(200), UH(200), BETA(200) ... 1005124, (U02124, (15, 005) 4HPH4, (15, 005) 4, (15, 005) 34424 .. 01((300),0(300),V\$(300),000/200),12(300), VUL(200),2(300) .. CCI(JUN), CC4(JNO), DEP(200), RAVE(J00), HS(J00), VAUS(J00) ... DIMENSION CON(1) С CANAR FORWARD LLIMINATION JH1N # 444.0 + 1 JHAK = JMIN + NUND NED=NEn-1 DO 280 1+1, NEU C NORMALTLE CUFFFICIENTS C + + TA=ALPHA([, JH]H) KANU, ULAUAL 005 00 ALPHA(1,J)=ALPHA(1,J)/TA 200 CONTINUE RETACIS=PLTA(1)/TA C SET-UP ROAS FUR ELIMINATION Cat. KH10 = 1 + 1 KHAX * 1 + N840 IF (HMAR, GT. NED) KMAXENED JK=4840+1 DD 250 KERMIN, KHAX]K=]K=) TFIALPHA(R, JK)) 210,260,210 210 CONTINUE C C.+ ELIMINATE VARIABLE I FROM EQUATION K J=\840+1 JJ414#JK+1 JJMAI E JK + NHNO XAMEL, NIMELEEL 245 NO 3=3+1 ALPHA(K,JJ)=ALPHA(K,JJ)-ALPHA(1,J).ALPHA(K,JK) 240 CONTINUE RETACKS=BETACK)+BETACL)+ALPHACK, JKS 260 CUNTINUE 30711705 085 С CARAR BACK SUBSTITUTION NN=0 ' RETAINEULEBETAINEDJZALPHAINEQ, JHTNS D-3 480 11=2,HER 1= 410 + 1 - 11 NN=53+1 FENNAT, NEND) NNENBND # = 1 1.0-0-1 NN, LELL BON (1) 313+1

O

 \sim

S

K=K+1 BETA(I)=BETA(I)=ALPHA(I,J)+BETA(K) 460 CDNTINUE C C.... ASSIGN CONCENTRATIONS BY EXTERNAL NODE NUMBERS DO 510 J+1,NE0 JJ=JUN(J) CON(JJ)=BETA(J) 510 CUNIINUE ETURN ENO

۰,

EXHIBIT E

2. Water Use and Quality

Comment 36 (p. E-2-112, para. 2)

Estimate the probability and magnitude of supersaturated water passing through Watana and Devil Canyon reservoirs. Include specific estimates for water entering Watana reservoir, the likelihood of supersaturated conditions persisting through the reservoirs to the intake structures, any differences between saturation values of water entering outlet facilities and the turbine intakes, potential for air entrainment at both outlet facilities and the turbine intakes, and a description of the processes affecting supersaturation at the turbine outlet facilities.

Response

At present, no information is available on the level of gas saturation levels in waters entering the upstream end of the proposed Watana Reservoir. Therefore, no definitive statement about the probability and magnitude of such an occurrence can be made. It is assumed, however, that no supersaturation problem will exist in Watana Reservoir because of 1) the low potential for any sources of saturation above the proposed Watana Reservoir due to the low gradient of the river and lack of major turbulent areas, 2) the long residence time of water passing through the reservoir, 3) wind- induced mixing, and; 4) contributions of additional water from tributaries. Intake facilities at both dams will be designed to prevent entrainment of air because such entrainment can lower the efficiency of the turbine and cause structural problems. The outlet facilities will have a subsurface discharge that will not entrain air and therefore will not increase saturation.

Cone valves will be provided in both dams to pass any discharges up to the 1 in 50 year flood. These structures are specifically designed to prevent supersaturation. Any discharges above the 1 in 50 flood will be passed over the spillway at each dam. These spillways will be designed to avoid or minimize any supersaturation problems. The final design of the spillways will follow the testing of a physical model before final design of the project is completed.

Water leaving Devil Canyon could be supersaturated even if no supersaturation were added by either dam. This is because supersaturation naturally occurs due to turbulent mixing at the rapids in Devil Canyon below the Devil Canyon damsite. This naturally occurring supersaturation would be generally lessened under the operation of either dam. The reason for this is that, under natural conditions, there is a positive correlation between increases in flows and increases in supersaturation values (see attached Figure 4I-3-45 from ADF&G 1983). This is probably related to the increase in turbulence and entrainment of air associated with increased flows. Under operation, the incidence of these higher flows will be diminished as would the corresponding supersaturation levels.

References

Alaska Dept. of Fish and Game. 1983. Susitna hydro aquatic studies phase II basic data report. Vol. 4. Aquatic Habitat and instream flow studies, 1982.

2-36-2

53

2-36-3

EXHIBIT E

2. Water Use and Quality

Comment 38 (p. E-2-117, para. 2)

Describe the uncertainties associated with data collected during this period.

Response

6

Differences in the measured and simulated temperatures in the Eklutna Lake study (Acres American 1983, R&M 1982) may have resulted from uncertainties associated with the data collection and lake temperature measurements. Breakdowns of the instruments at the Eklutna Lake station resulted in data gaps in July and August. The missing data which occurred in periods of July 5-14, 16-21, 24-31, and August 1-11, 13-27, 1982, had to be estimated from the nearby stations (Figure 1) located at Palmer (Matanuska Valley Agricultural Experiment Station), Anchorage International Airport, and Chugach State Park Eagle River Visitor Center (Paradise Haven Lodge). Estimation of these missing data are the major sources of the data uncertainties.

The uncertainties associated with the estimation of the missing data are described below:

1. Air Temperature:

The missing air temperatures at the Eklutna Lake station were estimated from the nearby stations, Chugach State Park Eagle River Visitor Center (11.4 miles southwest of lake, 630 ft. above mean sea level) and Eklutna River Hydro Power Station (10.8 miles north-northwest of lake, 38 ft. above mean sea level).

2-38-1

and the second

2. Wind Speed and Direction:

The missing wind speed and direction at Eklutna Lake were estimated from the station at Palmer.

3. Vapor Pressure:

The vapor pressures were converted from the relative humidity data. This was done by utilizing an empirical function of temperature to compute saturation vapor pressure at the average daily air temperature, which in turn was multiplied by average daily relative humidity. The missing relative humidity data for the periods were estimated from wind direction at the Eklutna Lake station.

4. Solar Radiation:

The missing data at the Eklutna Lake station for these periods were estimated from the Palmer and the Anchorage stations.

5. Cloud Cover and Long-Wave Radiation:

Due to various problems with power and connections to the instruments at the Eklutna Lake station, the cloud cover data obtained from the Anchorage station were used to estimate the long wave radiations.

6. Precipitation:

During the aforementioned periods, the precipitation at the Eklutna Lake station were estimated from the Chugach State Park Eagle River Visitor Center Station. From October through December the rain gauge experienced icing problems, therefore, the data from the Eagle River Visitor Center station were used. 7. Measured Temperature Profiles:

Error in measuring temperature profiles could occur from instrument's calibration being disturbed during relocation or operator error in reading the analog readout or instability in the temperature digital readout. In some cases during active convection, the instability in temperature would occur longer duration.

References

- Acres American Incorporated, "Susitna Hydroelectric Project, Feasibility Study - Supplement, Chapter 8: Reservoir and River Temperature Studies," prepared for Alaska Power Authority, 1983.
- R&M Consultants Incorporated, "Susitna Hydroelectric Project, Glacial Lake Studies," prepared for Acres and Alaska Power Authority, 1982.

EXHIBIT E

2. Water Use and Quality

Comment 45 (p. E-2-133, para. 3)

Provide data for each fraction of nitrogen and phosphorus used in the calculation of the N:P ratio in Susitna River water.

Response

(

The mass ratio for N:P of 28:1 listed in the FERC License Application on page E-2-133 was derived from data on concentrations of inorganic nitrogen fractions and inorganic soluble ortho-phosphorus found June 1980 and 1981 in Susitna River water samples (see attached excerpts from R & M 1981 Water Quality Report, Tables 3.1 and 4.1).

TABLE 3.1 R&M CONSULTANTS, INC. 1980 WATER QUALITY DATA - SUSITNA RIVER AT VEE CANYON

۱

NOTE: Dash indicates data not available.

				Date Samp	led	
san,		6/19/80	8/8/80	9/5/80	9/17/80	<u>10/17/80</u>
Ē	ield Parameters (1)					
	Dissolved Oxygen	12.4			9.7	13.8
	Percent Saturation	98			84	104
	pH, pH Units	7.8	7.9	7.8	7.6	7.6
anii ⊘.	Conductivity, umhos/cm @ 25°C		144	171	124	142
	Temperature, °C	5.7	9.3	5.3	5.9	-0.1
5560	Free Carbon Dioxide ⁽²⁾	2.0	1.7	3.6	4.5	5.5
	Alkalinity, as CaCO ₃	47	54	81	63	88
273	Settleable Solids, ml/l	0.1	<0.1	<0.1	<0.1	≪0.1
	Discharge c.f.s.	24,800	17,300	5,040	14,200	<5,000
Ľ	aboratory Parameters (1)(3)					
97 0 1	Ammonia Nitrogen	0.26	****	0.10	<0.05	0.26
	Organic Nitrogen	<0.1	a) -a -11 -a	0.22	0.62	0.28
(ana)	Kjeldahl Nitrogen	0.26		0.32	0.62	0.54
	Nitrate Nitrogen	0.19	0.15	0.15	0.09	<0.10
(CAR)	Nitrite Nitrogen	<0.01		<0.01	<0.01	<0.01
	Total Nitrogen	0.45		0.47	0.71	0.54
NAREA	Ortho-Phosphate	<0.0T	0.03	0.05	<0.05	<0.01
-	Total Phosphorus	0.05	0.03	0.09	0.10	<0.01
(Careta)	Alkalinity, as CaCO ₃					66
	Chemical Oxygen Demand	28	13			6
și an	susi4/u	3-3			2	-45-3

TABLE 3.1 - CONTINUED

	Date Sampled						
	6/19/80	8/8/80	9/5/80	<u>9/17/80</u> -	10/17/80	<u>)</u>	
Laboratory Parameters (1)(3)							
(continued)						1999 1997	
Chloride	3	9	11	8	18	1	
Conductivity, umhos/cm @ 25°C	150				190	8 88.	
True Color, Color Units		40	10	45	10	, i.	
Hardness, as CaCO3 ⁽⁴⁾	51	76	69	55	90	199930	
Sulfate	4	9	9	7	13		
Total Dissolved Solids	70	90	114	38	115		
Total Suspended Solids	242	310	25	1 32	8.3		
Turbidity, NTU	94	97	10	33	1.8		
Uranium		<0.05	_ = = = =			1999	
Radioactivity, Gross Alpha, pCi/l		11.6±0.	6				
Total Organic Carbon							
Total Inorganic Carbon					21		
Organic Chemicals						85 000	
Endrin		<0.0001				;	
Lindane		<0.001				রা নন্থ	
Methoxychlor		<0.05				i. J	
Toxaphene		<0.001				9 1113	
2, 4-D		<0.05					
2, 4, 5-TP Silvex		<0.005					
ICAP Scan							
Ag, Sil∨er	<0.05	<0.05	<0.05	<0.05	<0.05		
Al, Aluminum	1.6	<0.1	0.28	2.2	0.18	8 560	
As, Arsenic	<0.05	<0.1	<0.1	<0.1	<0.1		
Au, Gold	<0.05	<0.05	<0.05	<0.05	<0.05	M	
B, Boron	<0.05	<0.05	<0.05	<0.05	<0.05		

2-45-4

100

100

Ser in

susi4/u

3-4

TABLE 3.1 - CONTINUED

kezy.				Date Samp	led	
دین		6/19/80	8/8/80	9/5/80	<u>9/17/80</u>	10/17/80
t sł	Constany Barameters (1)(3)					
	notioned)					
R .	Ba, Barium	<0.1	0.11	<0.05	0.07	<0.05
	Bi, Bismuth	<0.05	<0.05	<0.05	<0.05	<0.05
A	Ca, Calcium	13	16	22	18	28
	Cd, Cadmium	<0.01	<0.01	<0.01	<0.01	<0.01
54	Co, Cobalt	<0.05	<0.05	<0.05	<0.05	<0.05
	Cr, Chromium	<0.05	<0.05	<0.05	<0.05	<0.05
•••••	Cu, Copper	<0.05	<0.05	<0.05	<0.05	<0.05
	Fe, Iron	2.1	4.0	0.46	2.7	0.37
	Hg, Mercury	<0.05	<0.1	<0.1	<0.1	<0.1
183) 1	K, Potassium	<1.0	2.3	2.1	5.0	<1.0
	Mg, Magnesium	1.4	3.4	3.1	1.2	4.5
	Mn, Manganese	<0.05	0.10	<0.05	0.07	<0.05
	Mo, Molybdenum	<0.05	<0.05	<0.05	<0.05	<0.05
R	Na, Sodium	2.6	2.4	5.1	3.5	7.2
	Ni, Nickel	<0.05	<0.05	<0.05	<0.05	<0.05
204	Pb, Lead	<0.05	<0.05	<0.05	<0.05	<0.05
	Pt, Platinum	. <0.05	<0.05	<0.05	<0.05	<0.05
_	Sb, Antimony	<0.1	<0.1	<0.05	<0.1	<0.1
-	Se, Selenium	<0.05	<0.1	<0.1	<0.1	<0.1
	Si, Silicon	4.8	5.3	3.6	6.9	4.1
	Sn, Tin	<0.1	<0.1	<0.1	<0.1	<0.1
	Sr, Strontium	0.05	0.06	0.07	0.07	0.10
5% ₁	Ti, Titanium	0.13	0.24	<0.05	0.17	<0.05

susi4/u

(FIRE)

6

(

2-45-5

3-5

TABLE 3.1 - CONTINUED

				Date Samp	led	
		<u>6/19/80</u>	8/8/80	9/5/80	9/17/80	10/17/80
_ab (co	oratory Parameters (1)(3) ntinued)					
	W, Tungsten	<1.0	<1.0	<1.0		<1.0
	V, Vanadium	<0.05	<0.05	<0.05	<0.05	<0.05
	Zn, Zinc	<0.05	<0.05	<0.05	<0.05	<0.05
	Zr, Zirconium	<0.05	<0.05	<0.05	<0.05	<0.05

(1) Table values are mg/l unless noted otherwise.

(2) All values for free CO₂ determined from nomograph on p. 297 of Standard Method, 14th édition.

(3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered.

(4) Hardness calculated by R&M personnel.

2-45-6

susi4/u

TABLE 4.1 R&M CONSULTANTS, INC. 1981 WATER QUALITY DATA - SUSITNA RIVER AT VEE CANYON

NOTE: Dash indicates data not available

Luit

-1

	Date						
	1/13/81	5/20/81	6/18/81	6/30/81			
Field Parameters (1)			м. -				
Dissolved Oxygen	10.7	10.4		11.6			
Percent Saturation `	84	83		99			
pH, pH Units	7.2	6.6	7.8	7.7			
Conductivity, umhos/cm @ 25°C	242	100	120	124			
Temperature, °C	0.1	6.5	11.9	7.9			
Free Carbon Dioxide ⁽²⁾	20.0		3.2	2.2			
Alkalinity, as CaCO ₃	99		79	41			
Settleable Solids, mi/l	≪0.1	≪0.1	≪0.1	<0.1			
Discharge c.f.s.	1,800	9,810	11,600	13,700			
Laboratory Parameters (1)(3)							
Ammonia Nitrogen	<0.05	0.13	0.12	<0.05			
Organic Nitrogen	0.85	0.34	0.63	0.39			
Kjeldahl Nitrogen	0.85	0.47	0.75	0.39			
Nitrate Nitrogen	<0.1	<0.1	<0_10	<0.10			
Nitrite Nitrogen	<0.01	< 0.01	<0.01	<0.01			
Total Nitrogen	0.85	0.47	0.75	0.39			
Ortho-Phosphate	<0.01	< 0.01	<0.01	0.49			
Total Phosphorus	0.07	<0.05	<0.05	0.49			
Alkalinity, as CaCO ₃		900 MB 1900 400	4				
Chemical Oxygen Demand	12	8	8	16			

susi9/j

4 - 5

2-45-7

TABLE 4.1 - CONTINUED

	Date					
	1/13/81	5/20/81	6/18/81	6/30/81		
aboratory Parameters (1)(3) (Conti	d)					
Chloride	18	4.5	5.0	5.0		
Conductivity, umhos/cm @ 25°C	~					
True Color, Color Units	10	15	5	20		
Hardness, as CaCO ₃ ⁽⁴⁾	121	40	49	59		
Sulfate	16	4	8	7		
Total Dissolved Solids	149	100	170	91		
Total Suspended Solids	0.6	93	340	130		
Turbidity, NTU	0.35	25	66	29		
Uranium	<0.05			*		
Radioactivity, Gross Alpha, pCi/l	10.3±0.6					
Total Organic Carbon	23	40	11	23		
Total Inorganic Carbon	106	46	46	59		
Organic Chemicals						
Endrin	<0.0002			< 0.0002		
Lindane	<0.004			<0.004		
Methoxychlor	<0.1			<0.1		
Toxaphene	<0.005	*		<0.005		
2, 4-D	<0.1			<0.1		
2, 4, 5-TP Silvex	< 0.01			< 0.01		
ICAP Scan						
Ag, Silve r	<0.05	<0.05	<0.05	<0.05		
Al, Aluminum	<0.05	<0.05	<0.05	<0.05		
As, Arsenic	<0.10	<0.10	<0.10	<0.10		
Au, Gold	<0.05	<0.05	<0.05	<0.05		
B, Boron	< 0.05	<0.05	<0.05	<0.05		

susi9/j

4 - 6

2-45-8

TABLE 4.1 - CONTINUED

		D	ate	
	1/13/81	5/20/81	6/18/81	6/30/81
Laboratory Parameters (1)(3) (Cont	d)			
Ba, Barium	<0.05	<0.05	0.07	0.11
Bi, Bismuth	<0.05	<0.05	<0.05	0.19
Ca, Calcium	36	13	16	19
Cd, Cadmium	<0.01	<0.01	<0.01	<0.01
Co, Cobalt	<0.05	<0.05	<0.05	<0.05
Cr, Chromium	<0.05	<0.05	<0.05	<0.05
Cu, Copper	<0.05	<0.05	<0.05	<0.05
Fe, Iron	<0.05	0.08	0.05	0.07
Hg, Mercury	<0.10	<0.10	<0.10	<0.10
K, Potassium	2	1.6	2.0	2.1
Mg, Magnesium	7.6	1.7	2.0	2.8
Mn, Manganese	<0.05	< 0.05	<0.05	<0.05
Mo, Molybdenum	<0.05	<0.05	<0.05	<0.05
Na, Sodium	6.6	2.0	3.3	4.6
Ni, Nickel	<0.05	<0.05	<0.05	<0.05
Pb, Lead	<0.05	<0.05	<0.05	<0.05
Pt, Platinum	<0.05	<0.05	<0.05	<0.05
Sb, Antimony	<0.10	<0.10	<0.10	<0.10
Se, Selenium	<0.10	<0.10	<0.10	<0.10
Si, Silicon	5.0	1.7	2.0	2.6
Sn, Tin	<0.10	<0.10	<0.10	<0.10
Sr, Strontium	0.13	<0.05	0.06	0.07
Ti, Titanium	<0.05	<0.05	<0.05	<0.05

1

]

المسلم المرابع
-

4 - 7

TABLE 4.1 - CONTINUED

		Date <u>1/13/81 5/20/81 6/18/81 6/30/81</u>						
	1/13/81	5/20/81	6/18/81	6/30/81				
Laboratory Parameters (1)(3) (Cor	t'd)			<u>/81</u> <u>6/30/81</u> 0 <1.0 05 <0.05 07 <0.05 05 <0.05				
W, Tungsten	0.4	<1.0	<1.0	<1.0				
V, Vanadium	<0.05	<0.05	<0.05	<0.05				
Zn, Zinc	<0.05	<0.05	0.07	<0.05				
Zr, Zirconium	<0.05	<0.05	<0.05	<0.05				

(1) Table values are mg/l unless noted otherwise.

(2) All values for free CO₂ determined from nomograph on p. 297 of Standard Method, 14th édition.

(3) Samples for all parameters except chemical oxygen demand, dissolved and suspended solids, and turbidity were filtered.

4 - 8

(4) Hardness calculated by R&M personnel.

2-45-10

susi9/j

EXHIBIT E

2. Water Use and Quality

Comment 46 (p. E-2-136, para. 4)

Provide data on water quality, including nutrients, dissolved oxygen, and trace metal concentrations in Alaskan reservoirs of similar depths and in similar climatological regimes during and after filling.

Response

6

To our knowledge there are no Alaskan reservoirs of similar depths and similar climatological regimes from which to derive the data requested.

EXHIBIT E

REVIEW STAGE 3

2. Water Use and Quality

Comment 47 (p. E-2-165, para. 4)

Provide a list of differences and similarities among Lake Eklutna, Watana, and Devil Canyon, including physiographic characteristics (e.g., depth, area, aspect, shoreline development) known to affect responses of reservoirs to meteorological changes and thermal characteristics.

Response

Table 1 provides a list of differences and similarities among Lake Eklutna, Watana, and Devil Canyon. Watana will have a much larger drainage area and a substantially greater inflow than Eklutna. However, the most notable difference between Lake Eklutna and Watana will be the size difference. Watana will be longer, deeper, wider, and have a much greater surface area and storage capacity. The shoreline length and shoreline development will also be greater. Maximum drawdown at Watana will be two times the drawdown at Eklutna. The length to width ratio at Watana will be approximately four times that at Eklutna. Eklutna is approximately 5 miles from the glacier, whereas Watana reservoir will be approximately 85 miles from its glacial source. This has a significant impact on the inflow water temperature during summer.

The similarities between the two reservoirs are also noteworthy. The percent of the drainage areas covered by glaciers are 5.9 and 5.2 percent for Watana and Eklutna respectively. Both reservoirs are glacially fed and have high a sediment input. Suspended sediment size distributions for both reservoirs indicate that a large fraction of the inflowing suspended sediment is finer than 2 microns. The ratios of live storage to total storage and the mean residence times will also be similar.

2-47-1

A comparison of Eklutna and Devil Canyon reservoir yields similar findings. Devil Canyon will be four times longer. It will also be much deeper and have more than twice the surface area and storage capacity. Discharge and distance downstream from the glaciers are greater significantly for Devil Canyon. Mean residence time for Devil Canyon will be much less than for Eklutna.

The percent of the drainage basins occupied by glaciers is virtually the same for both Eklutna and Devil Canyon. Although sediment input will be reduced because of the presence of Watana reservoir, Devil Canyon is expected to be turbid because of the fine suspended sediment particles passing through Watana. Maximum drawdown at both Eklutna and Devil Canyon will be similar.

TABLE 1 COMPARISON OF BASIN CHARACTERISTICS

*ه*عتم ا

8555

6

(Sin team

			DEVIL
BASIN CHARACTERISTICS	EKLUTNA	WATANA	CANYON
Drainage Area (mi ²)	119	5,180	5,810
Glacier Areas (mi ²)	6.2	290	290
% of Drainage Area	5.2	5.9	5.0
Glacially Fed	Yes	Yes	Yes
Annual Inflow (ac. ft.)	234,300	5,750,000	6,610,000
RESERVOIR/LAKE CHARACTERISTICS			
Length (miles)	7	46.3	28.4
Maximum Depth (feet)	200	735	565
Mean Depth (feet)	121	250	140
Maximum Breadth (miles)	1.0	5	1.5
Mean Breadth (miles)	0.76	1.28	0.4
Surface Area (acres)	3,420	37,800	7,800
Capacity, Total (ac. ft.)	414,000	9,470,000	1,090,000
Live	213,271	3,920,000	351,000
Shoreline Length (miles)	16	183	76
Shoreline Development	1.95	6.7	6.1
Normal Maximum Elevation of			
Water Surface (feet)	868	2,185	1,455
Maximum Drawdown (feet)	60	120	50
Live Storage/Total Storage	0.52	0.41	0.32
Total Storage/Surface Area (feet)	121	250	140
Length/Average Depth	305	978	1,071
Drawdown/Average Depth	0.50	0.48	0.36
Length/Average Width	9.2	36	71
Mean Water Residence Time (days)	646	603	60
Water Quality	Turbid	Turbid	Turbid

EXHIBIT E

2. Water Use and Quality

Comment 49 (Fig. E.2.63 and E.2.64)

Provide clarification of the term "water depth" used in these figures (i.e., maximum depth, mean depth, or hydraulic radius).

Response

ража, .

2016

4073588) .

(cardo

The term "water depth" used in these figures (attached in pp. 2-49-2 to 2-49-3) refers to maximum water depth in the cross-sections. That is, the distance from the water surface to the thalweg.

											WA M11	TER DEP	THS AT	RIVER
										a		24.13 22.88 21.95	FEET FEET	
									0	•	Δ	20.68	FEET	
							;			Δ				- <u> </u>
							· ·		Δ	2				
-18								0		0				
								•	-	A		<u></u>		· · · · · · · · · · · · · · · · · · ·
					Δ			Δ		Δ				
	·	A							1	C	1			
		Δ	▲ [△]	٥										
	A		Δ	A	_						•			
<u>م</u>	Δ.			Δ						A				
Δ	•								<u></u>	Δ				
		·						×				. ,		
						•			*					
HO HO RIVER	MILE	[4	1 1 2	14	44	14	6	14	AGE CREEK 8	1	IL CANYON S	-	152	
WATER D	EPTH	IS	-				·		PORT		DEV		2-	19-7

. . . .

VATER DEPTHS

2-49-3
EXHIBIT E

2. Water Use and Quality

Comment 50 (Figure E.2.65)

Provide a description of the modeling procedures used to generate the water surface elevations in this figure. Provide the appropriate reference to Trihey's work (Trihey 1982 is ambiguous) and other ADF&G or R&M reports containing data used in this analysis.

Response

As stated in the response to Comment 4, (Exhibit E, Chapter 2) the water surface elevations (shown as solid lines in Figure E.2.65 p. 2-50-3) for mainstem flows of 12,500 cfs and 22,500 cfs are based on water surface measurements taken on August 2, 1982 and August 24, 1982. The water surface elevations at ADF&G gages #129.2 WIA and WIB (station -4 + 50) for the intermediate mainstem flows of 16,000 cfs and 10,000 cfs (shown as dashed lines in Figure E.2.65) were obtained from the water surface elevation mainstem discharge relationship shown on Figure E.2.66 in the Exhibit, which was based on observed data. The water surface elevation was assumed to be the same at ADF&G gage #129.2 WI as it was at the upstream riffle, since pools existed at flows of 12,500 and 22,500 cfs. Also, since Slough 9 is not overtopped at mainstem discharges up to 18,000 cfs, outflow from the slough is quite small and it has no appreciable effect on the water surface profile downstream of the riffle at passage reach B. Slough flow was set at 3 cfs to represent a plausible worst case entrance condition during the inmigration period for spawning chum salmon. The depth of flow through the riffle at passage reach B for a flow of 3 cfs was estimated from water depths recorded by ADF&G while surveying the bed profile of Slough 9 on August 24, 1982. Slough flow was measured as 3.4 cfs on August 25, 1982.

The reference to Trihey's work is given below:

Trihey, E. Woody. 1982. Preliminary Assessment of Access by Spawning Salmon to Side Slough Habitat Above Talkeetna. Prepared for Acres American Inc. Buffalo, New York. 26 pp.

Additional information is contained in the following references:

Alaska Department of Fish and Game (ADF&G), 1983. Susitna Hydro-Aquatic Studies Phase II Basic Data Report Volume 4. Aquatic Habitat and Instream Flow Studies, 1982.

R&M Consultants Inc. 1982. Susitna Hydroelectric Project 1982 Hydrographic Surveys Report, Prepared for Acres American Inc.

EXHIBIT E

2. Water Use and Quality

Comment 51 (Table_E.2.2, Table_E.2.4)

Provide tables of monthly average flow data at Gold Creek, Chulitna River, Talkeetna River, and Susitna Station for water years 1950 through 1981. Provide corresponding monthly average temperature data at these four stations for every month during water years 1950 through 1981 for which this is possible.

Response

Tables 1 through 4 of this response provide monthly average flow data at Gold Creek, Chulitna River, Talkeetna River, and Susitna Station for water years 1950 through 1981. The flow data is supplemented with filled in data obtained from a correlation analysis where flow records do not exist. The periods of estimated or filled-in data are noted in each table.

Available monthly average temperature data for water years 1950 through 1981 are presented in Tables 5 and 6 for Gold Creek and Susitna Station, respectively. For the Chulitna River, there are no continuous records from which monthly average temperature can be computed. For the Talkeetna River, the only monthly average temperature data available is for water year 1954 and is as follows: May 7.2°C, June 11.1°C, July 11.7°C, August 10.6°C, and September 7.2°C.

TABLE 1

GOLD CREEK MONTHLY FLOW (CFS)

US65 GAGE 15292000

YEAR	UCT	'NOV	1/EC	NAL	FEB	HAR	APR	НАҮ	ИЛС	JUL	AUG	SEP
•		• •										
1950	6335.	2583.	1439,	1027.	788. *	726.	870.	11510.	19600.	22600.	19880.	8301.
145-1	3848.	1300,	1100.	960.	820.	740.	1617.	14090.	20790.	22570.	19670.	21240.
1952	5571.	2744.	1900.	1600.	· 1000.	880.	920.	5417.	32370.	26390.	20920.	14480.
1450	8202.	3497.	1700.	1100.	820.	820.	1615.	19270.	27320,	20200.	20610.	15270.
1954	5604.	2100.	1500.	1300.	1000.	780.	1235.	17280.	25250.	20360.	26100.	12920.
1455	5370,	2760.	2045.	1794.	1400.	1100.	1200.	9319.	29860.	27560,	25750,	14290.
1956	4951.	1900.	1300.	980.	970.	940.	950.	17660.	33340.	31090.	24530.	18330.
1757	5806.	3050.	2142.	1700.	1500.	1200.	1200.	13750,	30160.	23310.	20540.	19800.
1750	8212.	3954.	3264.	1965.	1307.	1148,	1533.	12900.	25700.	22880.	22540.	7550,
1454	4811,	2150,	1513.	1448.	1307.	980.	1250.	15990.	23320.	25000.	31180.	16920.
1960	6558.	2850.	2200.	1845.	1452.	1197.	1300.	15780.	15530.	22980.	23590.	20510.
1961	7794.	3000.	2694.	2452.	1754.	1810.	2650.	17360.	29450.	24570.	22100.	13370.
1962	5916.	2700.	2100.	1900.	1500.	1400.	1700.	12590.	43270.	25850.	23550.	15890,
1962	6723.	2800.	2000.	1600,	1500.	1000.	830.	19030.	26000.	34400.	23670.	12320.
1964	6449	2250.	1494.	1048.	966.	713.	745.	4307.	50580.	22950.	16440.	9571.
1965	6291.	2799.	1211.	960,	860,	900.	1360.	12990.	25720,	27840.	21120.	19350.
1466	7205.	2098.	1631.	1400.	1300.	1300.	1775.	9645.	32950.	19860.	21830.	11750.
1961	4163.	1600.	1500.	1500.	1400.	1200.	1167,	15480.	29510.	26800.	32620.	16870.
1966	4900.	2353	2055	1981.	1200.	1200.	1210.	16180.	31550	26420	17170.	8816.
1969	4272	Land.	1.116.	1465.	101.		318	(校盟)	20503	1	13211.	
1970	3124.	1215.	866,	924 .	768.	776.	1080.	11380.	18630.	22660.	19980.	9121+
1971	5288.	3407.	2290.	1442.	1036.	950.	1082.	3745.	32930.	23950.	31910.	14440.
1972	5847.	3093.	2510.	2239.	2028.	1823.	1710.	21890.	34430.	22770.	19290.	12400.
1975	4826.	2253.	1465.	1200.	1200.	1000.	1027.	8235.	27800.	18250.	20290.	9074.
1974	3733.	1523.	1034.	874.	777.	724.	992.	16180.	17870.	18800.	16220,	12250.
1975	3739.	1700.	1603.	1516.	. 1471.	1400.	1593.	15350.	32310.	27720.	18090.	16310.
1976	7739.	1993.	1081.	974.	950.	900.	1373.	12620.	24380.	18940.	19800.	6881.
197 7	3874.	2650.	2403.	1829.	1618.	1500.	1680.	12680.	37970.	22870.	19240,	12640,
1978	7571.	3525.	2589.	2029.	1668.	1605.	1702.	11950.	19050.	21020.	16390.	8607.
1979	4907.	2535.	1681.	1397.	1286.	1200.	1450.	13870.	24690.	28880.	20460.	10770.
1700	7311.	4192.	2415.	1748.	1466.	1400.	1670.	12060.	29080.	32660.	20960.	13280.
190/ **	7725.	3985. 3569	1773.	1 -151 - 20/3	1 23 6. 1475	1114 , 1585	1-368. 2040	1 3317 . 16550	18 143 . 19300	32000. 33496	38538. 37870	13171,

LUSSES HAS KEVISED THE GUES CREEK SPECHARUES TO TRAVER THAT WERE

2-51-2

LATER

Con W

1

TABLE 2

CHULITNA RIVER MONTHLY FLOW (CFS)

	WATER YEAR	007	NOV	DEC	AAL	FFR	HAR	AFG	нач	.008	611	AUR	SEP '
			i										1
	1450	9314.9	3274.9	2143.9	1508.2	1172.1	1070	1111.7	15880.9	27252.4	33667.4	25265.9	6424.7
	1952	1526	2407.1	1774.0	1385.4	1146.1	1075	1404	11444.8	11/00.	74507	10104	11001
	1957	6142	2044	14515	1597.	114/	956	1261	9575	19571.0	22840.	17478.	10258
	1454 1	4384.4	1680.2	1287.0	1224.1	1043.4	834.1	1054.4	16618.4	22528.	25827.1	27064 .	11887.6
	1455	4668.2	2304	1437.	1140.	B 9-1-4	821.	1047.	7928.1	26568.	34256.	31861.	12604.1
	7456	4087.2	2005.	1476.	1323.	1296.1	1104.3	1030.4	20025.	33271.1	31196.1	23329.	23260.1
	1957	6516.1	3014.7	1741.0		1298.1	1238.1	1306.	8447.4	24914-1	28654.1	26519.4	14017.7
	1450 1		-1001.7	- 1242	1300.7	1044.4	918.(A	1220.0	10180.0	23170.0	25010.4	20760	8000.1
	1466 M	4723.	2283.0	1700.4	1448.0	1103.1	933.4	1000.4	13890.0	17390.0	23650.4	19320.0	12420
	1461	5135.9	1950.1	1745.4	1452.0	1100.4	1079.0	1600.	10100.4	20190.1	27420.0	24580.4	14030
	7462	5777.4	2400.1	1500.0	1300.0	1000.0	930.4	1170.4	7743.4	20620.6	27220.0	21980.1	13470
	1463	3506.0	1500.4	1552.	1600.0	1300.0	846.9	700.4	11060.4	17750.	28550.0	18390.	11330.
	1964 1	8062,	2300.	1000.0	1007.0	820.0	770.0	1133.4	2355.4	40330.	21130.	20250.	7235.
	7165-11	5642.	2900.0	2100.0	1800.0	1400.0	1300.0	1400.4	7452.	20070.0	23230.1	22550.	22260.1
	1966	6071.9	1,620.0	1350.0	1200.0	1100.5	1100.9	1300.4	3871.9	21740.0	23750.1	27720.	12200.0
	-707 mi	1602.0	$\frac{1600}{160}$	<u>1500.0</u>	1458.0		$-\frac{1015}{1110}$	<u> </u>	$\frac{12400.6}{10000}$	-25520-1	35570	33670.9	12510
	1469 WF	2828.0	1480.0	1170.6	974.0	200.1	1148.9	1347.0	10940.0	19540.0	20020.0	20/10.0	13/5-1
	1470	4578.4	1087.	1316.0	1200.0	1154.4	1100.0	1437.	7643.0	19670.0	26100.0	24660.0	11330
	7471	3826.9	2210.	1403.0	1113.1	950.5	934.6	982.4	4468.0	22180.4	27280.4	23010.0	11080.
	1972 1	5439.9	2157	1432.4	1174.4	1041.9	939.4	873.1	9765.4	17900.	25770	20970.1	12120
	1972 M	6461.3	2176.7	1500.	1160	1031	<u>884. </u>	1106.	4096.	20005.1	22769.	18676.2	7112.0
•	1474	4470.1	1891.1	1397.4	1330.4	950-6	504.1	1210.4	15330.4	20741.3	26819.0	24749.9	12527.11
	WELL T	5555	1505	1001	1120	1055.4	1009.4	1343.1	1020	202441	33774	22309.	10776
	7921	- 62010.6-	-2532.1	2096.1	-149B.		<u> </u>	1447	TRIGIT	33678.6	25801	-2018	12388.0
	1476 1	5429.4	2113.0	1649.2	1458.4	1123	907.A	1052.1	4702.1	15587	24633.	15323.1	10357.5
	1479 10	4800 0	2184.4	1651.4	1406.5	1117.1	436.1	1276.4	11396.4	15616.5	27740.0	22877.1	11234.5
	14 60	6420	3180	1740	1520	1371	1301	1767	4142	22440	34.150	20780 1	6:40
	JARI	571	32/3	20/6	.1623	1414	11 テ1	1440	9972	22420	29860	33170	11960
	/10/	5911	0	-		•		-41	,	1053		1	
_	. . /		-1 1.	. 1 10	the use	dia	1450	The	ruch	145 +	distantion in	for	!
(1)	piscoa	nge ad	un p					्रात	wath	year 1	، ۲۵٬۵	Ju.	!
	O stolet	noum	Leg D.	leanen	the a	nd fo	- I		t-h-	there	L Chil	trate	.
	with ye	un 1	973 J	hou	₅ L 197	49 gm#	- to - fr	ere-Oter		,	t k	OT	il.e.
•	work of	tim	ted h	im-	conchi	tion	analy	oro. P	rachan	of an	a fr	, U.M.	4 4 1 1
	through	Opri	11 um	to yes	~ 196	o este	maled	pom	Jour C	d. L. l. C.	not la	IT 0	I art

discharge so the Sustin Rein discharge.

2-51-3

TABLE 3

TALKEETNA RIVER MONTHLY FLOW (CFS)

US65 GAGE 15292700

WATER			050	14.1		M Y C	A D D		LUM		AU(1 PED
						-11.				500		<u> </u>
1950 {	389 6. 1	1577.9	.1026.4	616.1	468.3	396.8	384.3	4318.5	8918.1	11736.8	\$ 10605.7	1 5214.0
1951	2319.5	770	515.	536.	103.1	379.4	607.6	3156.4	7543.1	10123.	9355.	846 6.1
1452	2388.	1090.0	78.0.	583.1	468.5	413.1	482.	2630.3	11369.1	9176.1	8770.	7048.1
1953	3100.4	1556.	931.0	635.4	470.4	453.	652.1	4946.2	7868.9	9499.	8029.1	5616.4
1954	2024.	1134.0	673.2	647.	472.	386.:	429.3	3564.	9556.1	10049.	18033.	6726.1
1455 0	2426.	926.	632.	594	522.4	414.1	430.1	2530	10207.4	12349.4	14206.	6302.3
145%	2294.1	1033.	787.	- 4JO.1	628.	502.	497.1	6415.9	14817.5	11724.	12932.	8179,
1957	3017.	1786.	1034	707.3	606.	502.	524.4	4355.	12779.0	10848	11373	9327.0
145.9	3662.	1687.9	1012.	922.1	609.	515.8	705.	1163.7	16039.4	13654.	12100.1	4514.0
1937 10	2424	829	61 9.1	574.	52%.	436.	567.4	4174.4	7199.	10509.	13065.	7053.
7100 11	2946.9	<u> </u>	803.	623.9	<u></u>	<u></u>	496.1	<u></u>	- 53181.1	9181.	12319	7640.9
1961 10	3264.	1485.0	1237.1	1001	900	621.0	742.9	1107.8	10161.4	12516.0	14030	7879.1
191-7	307511	1770 0	1107	777	739.0	517 1	15 6 1	32661	1077243	17000.0	9210.	2003.
7777.4 31	-20461				440.			1694.1	17080.0	9820	8104.0	
1465 115	3115	1568.0	1100.0	726.0	620.0	540.	580.0	3474.4	11090.1	12180.	11150.0	10410.0
1966	4430.0	1460.0	676	711	526.4	395.0	422.0	2410.0	12970.0	10100.0	10730.4	5370.
1467 10-	2300.0		750.0	637.4	546.4	471.0	427.0	4112.6	9286.6	12600.	14160.0	6971.0
1468	2029.4	1253.4	987.0	851.	777.0	743,0	983.4	8840.4	14100.	11230.	7516.	4120.
1469 1	1637.	027.0	556.d	459.0	401.0	380.4	519.0	3069.4	5207.0	7090	3787.	2070.
1470	1450.	765.	587.0	504.0	458.0	110.4	545.0	3950.4	7979.0	10320.	8752.	5993.
1971	2817,4	1647.	1103.4	679.	459.4	402.0	503.4	2145.4	19040.0	11760.	16770.	5990.
1472 :	2632.4	1310.0	045.¢	727.	628.	4R1.0	519.0		12700.4	12030.0	9576	8709.0
1473 1	3630.4	1373.4	867.0	748.	651.1	574.9	577.0	3860.0	12210.4	7676.9	9927.4	3861.4
1974	1807.0	960.9	745.€	645.0	559.4	482.1	535.0	5678.4	8030,0	7755.0	7704.4	4763.4
1975	1967.4	1002.0	774.4	674	586.1	508.4	<u> </u>	4084.9	<u>13100.9</u>	12070.4	<u>8487.</u>	7960.
1976 :	2884.0	773.0	559.0	524.9	480.0	470.4	613.9	3439.	10580.4	· 5026.	608816	3205.
1971	1857.0	1105.0	1069.4	700.9	549.0	506.4	548.9	1244.8	18280.7	5344.	8005.9	5826.9
1478	3268.9	1121.0	860.1	746.9		485.0	531.4	2950.0	/429.0	10790.0	7001.1	3567.1
1474 49	1660.0	1138.0	9325Q	162	652+0 747	5//.0	/10.0	1/90.0	12010.0	14440.	8274.0	4039.0
(180	3379	(10	000 714	160	441 Mar	700 621 m	121	11.29	1.589		141 00	AAAA
140/	2600	(144	+17	632	<u>رر ز</u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>	7721	107	13410	14600	4364
• •			-	4		×/	1 .			,	1	1

(1) Discharge dota for water years 1950 to 1964 estimated from correlation analysti. Continuous streamflow records are available from June 1964.

a problem and the second se

2-51-4

					TAE	3LE()				11		
			51	USITNA	A STAT	ION MO	NTHLY	FLOW	(CFS)	~		97 10
WATER			_		U565	GAGE	15294	350				
YEAR	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1450	74040	11747	L107	4072.	5756	5777	5457.	6670A	101616.	124890	106432.	70771.
1451	10007	11307.	5001//1	7074.	7705	4382	7354.	59273.	82255.	123174	1009321	77471.
1957	31053	16764.	4989.	8274.	7036.	585%	5085.	45294.	132547.	137322	116186.	82076.
1950	44952	16289.	9746.	8069	6775.	6350.	7993	88840.	130561.	125949	97610	44168.
1454	20169	11829.	5272.	7202	4993.	4980.	6306.	58516.	108881.	116732.	128587.	66275.
(4)7	23896	9168	6183.	7255.	5845	5316.	6412.	58164.	169045.	148877.	120120.	53504.
1956	19923.	10522.	7295.	6179.	6831.	6324.	7182.	82486.	161346.	168815,	131620,	104218.
1957	41822.	21548	14146.	10600.	8356.	7353.	7705.	63204.	176219.	140318.	124813.	87825.
1958	52636.	19887.	10635.	7553.	6387.	6679	8099.	70321	112897.	122280.	99609	53053.
1459	30543.	9528	4763.	7795.	6564	5666.	6468.	56601.	110602.	146217.	138334.	67904.
1960	25754.	10145.	7005.	6716.	6310.	5651	5830.	50062.	84134	129403	113972.	81565.
146.1	20704.	17014.	13748	12669.	10034.	9193.	9803	85457.	151715.	138969.	116697.	62504.
1467	29029.	13043.	8977.	9050	6183.	5951	6635.	54554.	163049.	143441.	121221.	74806.
1963	27716.	10755.	8865.	8671.	7854.	6058	5565.	53903.	85648.	146420.	106707.	70782
1914	37846.	11702.	5676.	6351.	5762	4910.	5531	35536.	153126.	124806.	92280.	46110.
1965	28747.	10458.	6127	6952.	6196	6170	7120	49485.	110075.	138407.	111846.	87944.
1966	36553.	12313.	9159	8031.	7489.	7091	8048.	52311.	125183.	117607.	118729.	63887.
1967	26396.	12963	6322	8029.	7726	6683.	7281	58107.	134881.	136306.	137318.	89527.
1968	37725.	15073.	15081.	11604.	11532.	8772.	8763.	94143.	137867.	130514.	86875.	42385
1969	15540	1-0-0	4279	5033	2125	21135	6416	美国 台下。	Labine .	16-48.		<u>3490</u>
1970	22683.	6799.	5016.	6074.	5581.	5732.	5769.	53036.	94612.	132985.	117728.	80585.
1471	32817.	16607.	8633.	6509.	6254.	5883.	5788,	29809.	122258.	139183.	133310,	69021.
1972	32763.	14922.	8791	9380.	B458.	6646.	6895.	74062.	176024.	142787.	107597.	60220.
1973	26782.	14853.	8147;	7609,	7477.	6313.	7688.	64534.	122797.	123362.	107261.	45227.
1474	20976.	10113.	6081	7402.	6747.	6294.	6963,	61458.	67838.	102184.	80252.	56124.
1975	19520.	10400.	9419.	8597.	7804.	7048.	6867.	47540.	128800,	135700.	91360.	77740.
1476	31550.	9933.	6000,	6529.	5614.	5368.	7253.	70460.	107000.	115200.	99650.	48910.
1977	30140,	18270,	13100.	10100,	8911.	6774.	6233.	56180.	165900.	143900.	125500,	83810.
1978	38230.	12630,	7529.	6974.	6771.	6590.	7033.	48670.	90930.	117600.	102100.	55500.
1479	36810	15000.	9306.	8823.	7946.	7032.	8683.	81260.	119900.	142500.	128200.	24340
1980	58640.	31590.	14690.	10120.	9017.	8906.	12030.	66580.	142900.	181400.	126400.	4460.
1981 ·	34970.	16200.	8516.	7774.	7589.	6177.	10350,	83580.	108700.	152800.	159600.	67170.

(1) Buicharge data for water years 1950 % 1974 estimated from correlation Continous records are available from Ostober 1974. Strengtern (2) Form 1983 Kevision by USGN analys:

 \mathcal{N}

S

GOLD CREEK MONTHLY AVERAGE WATER TEMPERATURES (4 (°C) FOR WATER YEARS FOR WHICH DATA IS AVAILABLE	
WATER YEAR. OCT NOU DEC JAN FEB MPR APR MAY JUN JUL AUG JEP	
1974 7.5 8	
1975 3.624 65(2)	
1776 2.5 6.5 10.5 11.0° 9.7 ⁽⁶⁾	1
1977 5.7 8.8 ⁵⁾	Ц
1778 · 9.5 10.9 J.5 8.2	τí
1979 1.9 0.2 0.2	
1980 2.9 1.5 5.1° 6.0 9.3 7.6 4.8	Y
1781	
(2) MEAN OF MONTHLY INAXIMUM AND MINIMUM	
(A) GOLD CREEK DATA MAT BE INFLUENCED BY INFLOW FROM. GOLD CREEK.	
(3) mrill-31 (4) Jul 1-5, 7+7, 22-24 (5) Dus 5, 5-9, 19 (6) sep 4-12 (7) may 29-31 (8) Jul 1-6 (9) JUN 15-30 (0) JUL 1-9 (1) AUS 14-37 (12) Syp1-24 (3) Dec 1-15 (4) may 22-31 (5) 5+11-9	14
HATE: NO DATA AVAILABLE FOR WATER YEARS 1950-1973	

ł

Ą

j

TABLEG . SUSITINA STATION 2 MONTHLY AVERAGE WATER TEMPERATURES '(°C FOR WATER YEARS FOR WHICH DATA ARE AVAILABLE WATER YEAR OUT. NOU DEC JAN FEB MAR APR MAY JUN JUL AUG SEP NOTE No lata available for WY 1950-1973 1774 1975 10,3 2 Ľ 2.9 11.4 12.1 10.0 6.8 10.5 12.5 11.5 2.3 0.5 9.80) 0.5 6.8 105 125 11.5 7,5 11 11 7977 7.5 11.0 12.0 12.0 9.0 9.5 105 125 1778 105 12,5 11,5 8.0 1979 [B] 6) 0**,**4 1780 7.4 11.5 10.5 7.0 /0.0 1981 (1) Volves are mean of nonthly maximum and (2) APR 12-30 (2) OUT 1-6 A) may 20-31 151 May 1-2, 16, 24-31 161 Sep1-25 171 May 15-31 (8) Oct 1-23. 31 191 NOVI-2, 9-24 (10) MAD19-31 (H Oct 1-23.