SUSITNA Hydroelectric project

٤.,

£...

1...

1....

: .

2.5

•

t. .

1

FEDERAL ENERGY REGULATORY COMMISSION PROJECT No. 7114

PHASE II FINAL REPORT

SAMPLE SURVEY AND

PREDICTIVE MODEL REFINEMENT

FOR CULTURAL RESOURCES LOCATED ALONG THE SUSITNA HYDROELECTRIC PROJECT LINEAR FEATURES

VOLUME I

PREPARED BY

HISTORICAL RESEARCH ASSOCIATES

UNDER CONTRACT TO

HARZA-EBASCO SUSITNA JOINT VENTURE **FINAL REPORT**

JUNE 1986 DOCUMENT No. 3408

_ Alaska Power Authority _

SUSITNA HYDROELECTRIC PROJECT

PEASE II FINAL REPORT

SAMPLE SURVEY AND PREDICTIVE MODEL REFINEMENT FOR CULTURAL RESOURCES LOCATED ALONG THE SUSITNA HYDROELECTRIC PROJECT LINEAR FRATURES VOLUME I

Report by Historical Research Associates

With Contributions from Alaska Heritage Research Group, Inc.

T. Weber Greiser, Project Manager Sally T. Greiser, Co-Investigator Glenn H. Bacon, Co-Investigator Daniel F. Gallacher, Project Historian Thomas A. Foor, Predictive Modeling Consultant James A. Fall, Consulting Ethnographer

Under Contract to Harza-Ebasco Susitna Joint Venture

> Prepared for Alaska Power Authority

> > Final Report June 1986

NOTICE

ł

ANY QUESTIONS OR COMMENTS CONCERNING THIS REPORT SHOULD BE DIRECTED TO THE ALASKA POWER AUTHORITY SUSITNA PROJECT OFFICE

TABLE OF CONTENTS

ſ

ľ

l

L

L

L

Ĺ

i.

L

<u>i.</u>

L

1

Sect	ion												<u>Page</u>
	List of List of	of Conte of Tables of Figure rledgemen	8	• • •	• • •	•••	•••	•••	•••	•••	••	•	iv Vi
1.0		NCTION Ser Grein		stori	cal 1	Resea	arch	Ass	òcia	tes	(HRA)	, -	1-1
	1.4	Project Environs Cultural Model De Phase II	aental L Chron Evelops	Sett: ology	ing . 7 • •	•••	•••	•••	•••	•••	••	•	1-3 1-5 1-10
2.0	T. Web)S Xer Grein Herítag	ser, HR	kÂ, ar	nd Glo	enn 1	Baco	1,		••	• •	•	2-1
	2.1 2.2	Introduc Sample S Results 2.2.1 2.2.2	Selecti	on Me itial nal S 1 Sa	sthod Sample	s, Ma ple e Redu	odif:	icat:	ions	, an 	a 	•	2-2 2-2 2-3 2-4
	2.3	Phase II 2.3.1 2.3.2	I Field Field Naviga 2.3.2. 2.3.2.	Meth Surve tion 1 De Lo 2 De Po	ods y term: cationsterm: ositionst	ining ons ining on with	y Sar y and ithiu	aple 1 Mai	Uni Uni inta	t inin Uni	 g	• • •	2-14 2-14 2-17 2-18 2-19
		2.3.3 Curation Laborato 2.5.1 2.5.2 2.5.3 2.5.4	n Prehis Prehis Method	hods toric toric	Art: Data	ifaci a Ana el Re	t Ana alys: efin	lys s.	••••••••••••••••••••••••••••••••••••••	• • • • • •	• •	• • •	2-20 2-21 2-21 2-22 2-22

TABLE OF CONTENTS

7 2

1

P.L.E

6 1. **6**

E'

á.,

÷.

د ۱ ۱

۱ ۱ ۱

.

3.0 RESULTS OF FIELDWORK 3-1 3.1 Introduction 3-1 3.2 Sample Unit Discussion 3-2 3.2.1 Linear Feature 1, Anchorage to Willow Transmission Line 3-2 3.2.2 Linear Features 2, 3, and 4 3-2 3.2.3 Linear Features 2, 3, and 4 3-5 3.2.4 Linear Feature 2, Gold Creek-Devil Canyon Railroad 3-6 3.2.4 Linear Feature 3, Gold Creek-Watana Transmission Line 3-6 3.2.5 Linear Feature 4, Watana-Devil Canyon Access Road 3-6 3.2.6 Linear Feature 5, Healy to Fairbanks Transmission Line 3-10 3.2.7 Results of the Sample Survey 3-16 3.3.1 Introduction 3-16 3.3.2 Summary of Cultural Resources 3-28 4.0 REFINING THE PREDICTIVE MODEL 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.2 Evaluation of Survey Data 4-14 4.3.1 Site Type 1 - Isolated Stone Tool	Sect	ion		Page
 3.2 Sample Unit Discussion	3.0	resul	TS OF FIELDWORK	3-1
3.2.1 Linear Feature 1, Anchorage to Willow Transmission Line			Introduction	3-1
Transmission Line 3-2 3.2.2 Linear Features 2, 3, and 4 3-5 3.2.3 Linear Features 2, 3, and 4 3-5 3.2.4 Linear Features 2, Gold Creek-Devil 3-6 3.2.4 Linear Feature 3, Gold Creek-Watana 3-6 3.2.4 Linear Feature 4, Watana-Devil 3-6 3.2.5 Linear Feature 5, Healy to Fairbanks 3-6 Transmission Line		3.2	Sample Unit Discussion	3-2
 3.2.3 Linear Feature 2, Gold Creek-Devil Canyon Railroad			J.2.1 Dinear reature 1, Anchorage to Willow Transmission Line	3-2
 3.2.3 Linear Feature 2, Gold Creek-Devil Canyon Railroad			3.2.2 Linear Features 2. 3. and 4	3-5
Canyon Railroad			3.2.3 Linear Pesture 2. Gold Creek-Devil	
Transmission Line			Canyon Railroad	3-6
3.2.5 Linear Feature 4, Watana-Devil Canyon Access Road			3.2.4 Linear Feature 3, Gold Creek-Watana	
3.2.6 Linear Feature 5, Healy to Fairbanks Transmission Line			Transmission Line	3-6
3.2.6 Linear Feature 5, Healy to Fairbanks Transmission Line			3.2.5 Linear Feature 4, Watana-Devil	~ ~
Transmission Line3-103.2.7Results of the Sample Survey3-143.3Cultural Resources3-163.3.1Introduction3-163.3.2Summary of Cultural Resources3-223.4Ethnographic Interviews3-284.0REFINING THE PREDICTIVE MODEL4-14.1Evaluation of Sample Selection Modification4-14.2Evaluation of Survey Data4-14.3Site Type 1 - Chipping Station/ Lithic Scatter4-154.3.2Site Type 3 - Campsite/Temporary Habitation4-174.3.3Site Type 27 - Isolated Stone Tool or Flake4-184.3.4Site Type 27 - Historic Building/ Structure4-214.4Cultural Chronology and Environmental Unit Associations4-234.4.1Historic Period4-234.4.2Athapaskan Period4-265.0SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS5-15.1Archeology5-2			2 2 6 Linear Besture 5 Healy to Beirback	3-0
3.2.7 Results of the Sample Survey			Transmission Line	3-10
<pre>3.3 Cultural Resources</pre>			3.2.7 Results of the Sample Survey	3-14
3.3.1 Introduction 3-16 3.3.2 Summary of Cultural Resources 3-22 3.4 Ethnographic Interviews 3-28 4.0 REFINING THE PREDICTIVE MODEL 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.1 Evaluation of Survey Data 4-6 4.3 Model Refinement 4-1 4.3.1 Site Type 1 - Chipping Station/ Lithic Scatter 4-13 4.3.2 Site Type 3 - Campsite/Temporary Habitation 4-17 4.3.3 Site Type 7 - Isolated Stone Tool or Flake 4-18 4.3.4 Site Type 21 - Historic Building/ Structure 4-18 4.3.5 Site Type 27 - Historic Mining Camps and Operations 4-23 4.4 Cultural Chronology and Environmental Unit Associations 4-23 4.4.1 Historic Period 4-23 4.4.2 Athapaskan Period 4-26 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 5-1 5.1 Archeology 5-2		3.3	Cultural Resources	3-16
3.3.2 Summary of Cultural Resources 3-22 3.4 Ethnographic Interviews 3-28 4.0 REFINING THE PREDICTIVE MODEL 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.1 Evaluation of Survey Data 4-1 4.2 Evaluation of Survey Data 4-6 4.3 Model Refinement 4-6 4.3.1 Site Type 1 - Chipping Station/ 4-15 4.3.2 Site Type 3 - Campsite/Temporary 4-17 4.3.3 Site Type 7 - Isolated Stone Tool 4-18 4.3.4 Site Type 21 - Historic Building/ 5tructure Structure 5tructure 4-21 4.4 Cultural Chronology and Environmental 4-23 4.4.1 Historic Period 4-23 4.4.2 Athapaskan Period 4-25 4.4.3 Unknown Chronological Period 4-26 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 5-1 5.1 Archeology 5-2			3.3.1 Introduction	3-16
3.4 Ethnographic Interviews 3-28 4.0 REFINING THE PREDICTIVE MODEL 4-1 4.1 Evaluation of Sample Selection Modification 4-1 4.2 Evaluation of Survey Data 4-6 4.3 Model Refinement 4-1 4.3.1 Site Type 1 - Chipping Station/ 4-13 4.3.2 Site Type 3 - Campsite/Temporary 4-15 4.3.3 Site Type 7 - Isolated Stone Tool 4-18 4.3.4 Site Type 21 - Historic Building/ 4-18 4.3.5 Site Type 27 - Historic Mining Camps and Operations and Operations 4-23 4-23 4.4 Cultural Chronology and Environmental 4-23 Unit Associations 4-23 4.4.1 4.4.2 Athapaskan Period 4-25 4.4.3 Unknown Chronological Period 4-26 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 5-1 5.1 Archeology 5-2			3.3.2 Summary of Cultural Resources	3-22
4.1 Evaluation of Sample Selection Modification		3.4	Bthnographic Interviews	3-28
4.2 Evaluation of Survey Data	4.0	REFIN	ING THE PREDICTIVE MODEL	4-1
4.2 Evaluation of Survey Data		4.1	Evaluation of Sample Selection Modification	4-1
<pre>4.3 Model Refinement</pre>			Evaluation of Survey Data	4-6
 4.3.2 Site Type 3 - Campsite/Temporary Habitation		4.3	Model Refinement	4-13
 4.3.2 Site Type 3 - Campsite/Temporary Habitation			4.3.1 Site Type 1 - Chipping Station/	
 4.3.2 Site Type 3 - Campsite/Temporary Habitation			Lithic Scatter	4-15
 A.3.4 Site Type 21 - Historic Building/ Structure			4.3.2 SILE TYDE 3 - CAMDAILE/TEMDORARY	
 A.3.4 Site Type 21 - Historic Building/ Structure			Habitation	4-17
 A.3.4 Site Type 21 - Historic Building/ Structure			4.3.3 Site Type 7 - Isolated Stone Tool	
 4.3.5 Site Type 27 - Historic Mining Camps and Operations			or Flake	4-18
 4.3.5 Site Type 27 - Historic Mining Camps and Operations			4.3.4 Site Type 21 - Historic Building/	4 30
and Operations				4-18
 4.4 Cultural Chronology and Environmental Unit Associations			and Operations	4-21
4.4.1 Historic Period 4-23 4.4.2 Athapaskan Period 4-25 4.4.3 Unknown Chronological Period 4-26 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 5-1 5.1 Archeology 5-2			Cultural Chronology and Environmental	4-21
4.4.1 Historic Period 4-23 4.4.2 Athapaskan Period 4-25 4.4.3 Unknown Chronological Period 4-26 5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 5-1 5.1 Archeology 5-2			Unit Associations	4-23
 4.4.2 Athapaskan Period			4.4.1 Historic Period	4-23
5.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS			4.4.2 Athapaskan Period	4-25
5.1 Archeology			4.4.3 Unknown Chronological Period	4-26
5.1 Archeology	5.0	SUMMA	RY, CONCLUSIONS, AND RECOMMENDATIONS	5-1
$\begin{array}{c} \text{J.I.} \\ \text{F.2.} \\ \text{F.3.} \\ \text{The construct} \\ \text{T.3.} \\ $		5 1	Archeology	5-0
		5.2	Altilleology	5-2 5-3
5.2 Ethnography			Bunnoyidpny	5-5
5.4 Statistics $\dots \dots \dots$				

TABLE OF CONTENTS

Sect:	ion		Page
6.0	BIBLI	OGRAPHY AND REFERENCES CITED	6-1
		References Cited	

APPENDICES

Ľ

VOLUME II

A	Phase	II Sample Units
	A1.0	Sample Unit Legal Descriptions
		and Surface Ownership
	A2.0	Sample Unit Narratives and Maps

B	Cultural Resources	
	Bl.0 Site Narratives	
	B2.0 Site Forms	
	B3.0 Isolated Find Form	8

- C Ethnographic Interviews Cl.0 Narrative Summaries C2.0 Interview Transcripts
- D Field Manual/Research Design Introduction Research Design and Modification Standardization of Procedures HRA Archeological Field Manual HRA Historic Site Recording Manual Additional Project-Specific Forms Extracts from HRA's Phase I Linear Features Report Curation Agreements and Permits

LIST OF TABLES

a log and a

-

<u>د</u>

Ľ

ş ÷.,

ŧ 1

ź T.

6,

. ١.

ŧ i.

ł •

-

٠.

4

Section-	Number	Page
1-1	Site Types and Strong Positive or Negative	
	Environmental Unit Associations	1-12
1-2	Chronological Periods and Strong Positive or	
	Negative Environmental Unit Associations	1-13
	Terrain and Vegetative Unit Key	2-6
2-1	Sample Units	2-7
3-1	Sample Units Along the Anchorage-Willow	
	Transmission Line	3-4
3-2	Sample Units Along the Gold Creek-Devil	
	Canyon Railroad	3-7
3-3	Canyon Railroad	
	Transmission Line	3-8
3-4	Sample Units Along the Watana and	
	Devil Canyon Access Road	3-9
3-5	Sample Units Along the Healy-Fairbanks	
	Transmission Line	3-12
3-6	Summary Comparison of Anticipated Versus	
	Actual Surveyability of Sample Units by	
	Linear Feature	3-15
3-7	Cultural Resource Sites and Isolates	
	Located during the Phase II Sample Survey	3-17
3-8	Prehistoric, Ethnohistoric, and Historic Sites	
	Located During the Phase iI Sample Survey	3-23
3-9	Cultural Resource Sites on or near the	
	Linear Features Identified through Interviews	
	with Selected Athapaskans	3-29
	a and the same that the state	
4-1	Acrages of Vegetative Units in the	
4.5	Sample and Survey Areas	4-2
4-2	Acreages of Terrain Units in the	
4-3	Sample and Survey Areas	4-3
4-3	Rank Proportions of Vegetative Units	4-4
4-4	in Sample and Survey Areas	4-4
4-4	Rank Proportions of Terrain Units	
4-5	in Sample and Survey Areas	4-5
4-5	Recorded Cultural Resource Sites Within and	
	Adjacent to the Linear Features During the	4-7
4-6	1985 Linear Features Sample Survey	
4-0	Recorded Lithic Isolates Within and	0
4-/	Adjacent to the Linear Features During the	
	1985 Linear Features Sample Survey	4-9
	Tiel nucat tearnies sample suives	4-7

LIST OF TABL"S

Page

Chapter-Number

L

4-8 Cultural Rseource Components Located Within Linear Peatures 4-9 4-9 Summary Cultural Resource Component Data by Linear Peature Units 4-10 4-10 Percentages of Prehistoric and Historic Components by Linear Feature Units 4-10 4-11 Phase II Site Types in Relation to 4-11 4-12 Phase II Site Types in Relation to Terrain Units Site Types and Strong Positive or Negative 4-12 4-13 Environmental Unit Associations 4-14 4-14 Prehistoric Chipping Station/Lithic Scatters by Terrain Unit 4-16 4-15 4-18 Campsite/Temporary Habitation by Terrain Unit . . 4-16 Historic Building/Structures by Terrain Unit . . . 4-20 4-17 Historic Building/Sturctures by Vegetative Unit . 4-20 4-18 Historic Mining Camps and Operations by 4-21 4-19 Historic Mining Camps and Operations by Vegetative Unit 4-22 Chronological Periods and Strong Positive or 4-20 Negative Environmental Unit Associations 4-23 4-21 Historic Period Sites by Terrain Unit 4-25 4-22 Athapaskan Period Sites by Terrain Unit 4-26 4-23 4-27

LIST OF FIGURES

Page

Section-Number

1-1	Map of the general locations of the Susitna Hydroelectric Project Linear Features 1-2
1-2	Preliminary reconstruction of past climates 1-4
1-3	Map of the study area illustrating three subareas: northern, central, and southern 1-6
1-4	Cultural chronology, modified from Bacon et al. 1983:55
1-5	Approximate distribution of Tanaina, Ahtna, and Tanana groups over the project area 1-8
3-1	Physiographic divisions transected by or adjacent to the Susitna Hydroelectric Project Linear Features
3-2	Sample Units Surveyed for Cultural Resources Along Linear Peature 1
3-3	Sample Units Surveyed for Cultural Resources Along Linear Features 2, 3, and 4
3-4	Sample Units Surveyed for Cultural Resources Along Linear Feature 5

ACKNONLEDGEMENTS

Ĺ

ł.,

ř

Ł

ŧ

ì,

٤

Ŧ

È.

١.

Historical Research Associates acknowledges the support of the Alaska Power Authority through Harza-Ebasco. Susitna Joint Venture for funding this project, and recognizes that staffs of both organizations were crucial in its successful completion.

T. Weber Greiser was Project Manager, and Dr. Sally T. Greiser served as Co-Principal Investigator. Pedestrian field crews, each under the direct supervision of an experienced, professional archeologist and under overall supervision of Glenn Bacon, Co-Principal Investigator with Alaska Heritage Research Group (AHRG), conducted field reconnaissance between June 14 and August 8, 1985. The field crew consisted of crew supervisors Robert Betts, James Enloe, James Ketz (AHRG), Richard Taylor, and Joan Dale; crew members Heidi Adkisson, Andrew Bailey, Robert Betts, James Enloe, Noreen Fritz, Kristen Griffin, Robert Johnson, James Leavitt, Rebecca McLain, Rita Miraglia, Randy Peterson, Timothy Sczawinski, Douglas Stienbarger, Beth Turcy, and Steve Winker. Kristen Griffen also served as laboratory/administrative assistant after completion of fieldwork.

Several individuals contributed to this report. Appropriate credits are listed at the beginning of each chapter. Weber Greiser and Sally Greiser edited the entire report, and Gregory Tollefson was responsible for technical editing. William Hay and Mary Ann Burns prepared figure illustrations. Brent Eberhard prepared redrafts of Sample Unit maps from field data. Report production was supervised by Pam Cobb, assisted by Patty Murray and Suzie Grunenfelder.

1.0 INTRODUCTION

T. Weber Greiser, Historical Research Associates

1.1 PROJECT DESCRIPTION

f

4

۰.

Historical Research Associates (HRA), under contract to Harza-Ebasco Susitna Joint Venture, conducted a two-phase effort to develop, test, and refine a model for the purpose of predicting the occurrence and density of cultural resources that may occur within prescribed corridors for Linear Features associated with the proposed Susitna Hydroelectric Project. The Linear **Features** in this effort included: (1) the Anchorage-Willow Transmission Line; (2) the Gold Creek-Devil Canyon Railroad; (3) the Gold Creek-Watana Transmission Line; (4) the Watana and Devil Canyon Access Road; and (5) the Healy-Fairbanks Transmission Line (see Fig. 1-1). The results of the research effort are intended for use by the Alaska Power Authority (the Authority) as an aid in design and siting of the Linear Features, and as a planning tool for the identification of additional cultural resource survey requirements and the development of potential mitigation strategies.

Phase I consisted of background research and statistical analysis necessary for the successful development and field testing of the predictive model. Detailed results of Phase I work were provided in the Phase I Report (<u>Background Research and</u> <u>Predictive Model for Cultural Resources Located along the Susitna</u> <u>Hydroelectric Project's Linear Features</u>) (Greiser et al. 1985).

Phase II consisted of field testing the model, comparison of field results with the initial model, and the development of necessary adjustments and refinements in the model. This report briefly describes the methods used, details the results of fieldwork, and presents modifications of the model. A thorough review

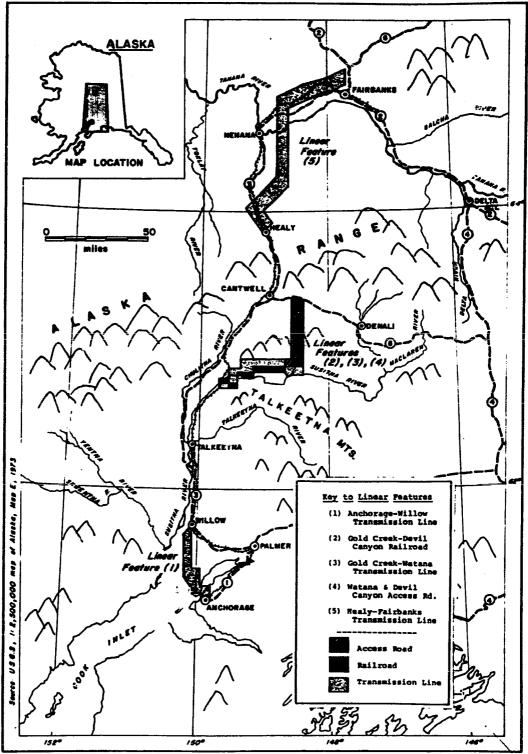


Figure 1-1. Map of the general locations of the Susitna Hydroelectric Project Linear Features.

of existing data and a detailed discussion of model development are presented in the Phase I Report and will be useful to the reader who requires more information. Summary information provided in this chapter is drawn primarily from the Phase I Report. .

and the second

1.2 ENVIRONMENTAL SETTING

t

P

•

•

r L

ĥ.,

-

×....

.

The Susitna Hydroelectric Project is located along the Susitna River, approximately 140 miles northeast of Anchorage, Alaska. The general study area transects four physiographic provinces. These provinces, from south to north, are the Coastal Trough, including the Susitna Basin; the Alaska-Aleutian Province, including the Alaska Range; western Alaska, from the Alaska Range foothills to the Yukon River, including most of the lower Yukon-lower Tanana-Kuskokwim basins; and the periphery of the Northern Plateaus, extending east into Canada from the Yukon-Tanana confluence.

The areas described are affected by both the Transitional climatic zone, located south of the Alaska Range, and the Continental climatic zone to the north. In general, the Transitional zone has a wetter, more temperate climate, while the Continental zone is characterized by extremes in daily and seasonal temperatures and less precipitation.

A preliminary reconstruction of the past climates of interior Alaska and the associated floral and faunal characteristics were presented by Greiser and others (1985:2-1--2-6) and are summarized in Figure 1-2. Pollen studies indicate that the climate of the past 5,000 to 6,000 years generally has remained constant, although localized area of neoglaciation have occurred. Correlating with the relatively stable vegetative regime is the basically stable faunal composition and distribution. It is not until the last 200 years that major modifications to the faunal populations of interior Alaska occur.

	Climatic Characteristics	Flora		Fauna .
Modern 2,000 B.P	Essentially modern; Macroclimatic trend of Neoglaciation shows little or no effect on local vegetation	Essentially modern		Essentially modern
4,000 B.P				
6,000 B.P		Decline in spruce Tree line maximum		Diminution of
8,000 B.P		Dominance of spruce-	Wide- spread peat accumu-	large manual species most notably bison
10,000 B.P		Spruce in lowlands	lation	
12,000 B.P	I Drier, warmer summers; increased precipitation; increased winter snow cover	Abrupt change to mesic tundra	shrub	Less diversity in large mammals due to extinctions
14,000 B.P	Approximate Holocene/ Pleistocene boundary		+	
16,000 B.P	Colder, drier, & more continental than present; spring dominant storms	Steppe-tundra		Large mammals more varied than today; fauna generally diverse & abundant

Figure 1-2. Preliminary reconstruction of past climates.

.

÷

1.3 CULTURAL CHRONOLOGY

The study area consists of Northern, Central and Southern subareas (Fig. 1-3). Prehistory of these subareas is not well known, but there is better documentation about the Northern subarea than the others. The Central subarea has recently been the focus of a multi-year cultural resources study carried out as part of the Susitna project (Dixon et al. 1981, 1982, 1983, 1984, 1985). The prehistory of the Southern subarea is least well known.

Various chronologies have been suggested for the region that includes the study area. Despite investigative bias, some agreement has been reached among those offering chronologies. It is generally agreed that the earliest dated evidence of human occupation occurred some 11,000 years ago for interior Alaska north of the Alaska Range and 2,000 years later south of the Range.

The prehistoric archeology of Central Alaska can be viewed within the framework of the environmental characteristics of three post glacial subperiods: (1) Early Tundra; (2) Early Taiga; and (3) Late Taiga. Figure 1-4 provides a chronology based on this framework. A synthesis of the cultural chronology of the Susitna project area has recently been published (Dixon 1985).

The study area encompasses parts of the territories of three Athapaskan-speaking groups [the Tanaina (Dena'ina), the Ahtna, and the Tanana] as they existed at the time of European contact (Fig. 1-5). These three groups have been indentified on the basis of linguistic similarities and geographic distribution. Each of the three groups consisted of a continuum of bands distributed across a sometimes broad geographical area, who spoke

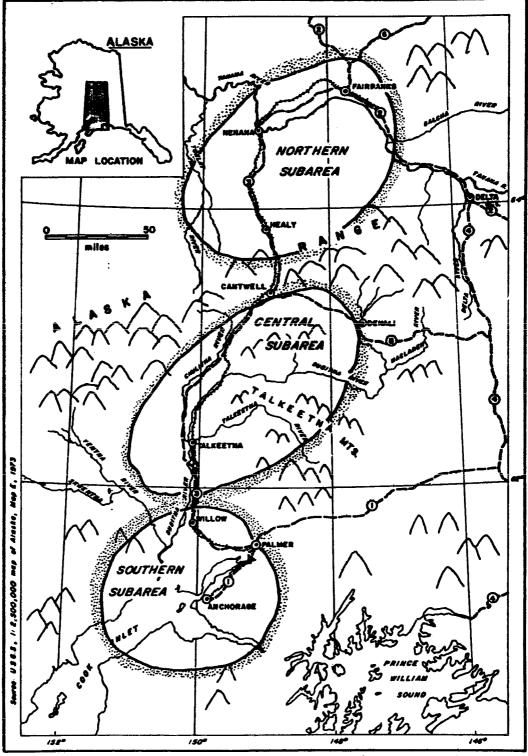


Figure 1-3. Map of the study area illustrating three subareas: northern, central and southern.

	Cultural Chronology	Period	Associated Technology
100 B.P.	Recent Historic	Recent Modern	Copper implements, stemmed E stone projectile points,
1000 B.P.	Athapaskan		x flaked end scrapers, bounder p chip tools a
2000 B.P.		Late Taiga	n s Large bifacially chipped i forms, microliths, large o lanceolates n Side-notched projectile
8000 B.P.		Barly Taiga (shrub tundra dominates)	 points, stone end scrapers, f elongated stone bifaces, boulder chip scrapers, uni- facially chipped forms, a notched pebbles, stone axes,
	American Paleo-Arctic	Barly Tundra (grassland tundra dominates)	<pre>i hammerstones, choppers g a F Stone cores and microblades, o burins, bifacial stone r knives, stone end scrapers e</pre>
14,000 B.P.	Early Sites?		e 8 t 8

4.

Ŧ

° 3

Figure 1-4. Cultural chronology, modified from Bacon et al. 1983:55.

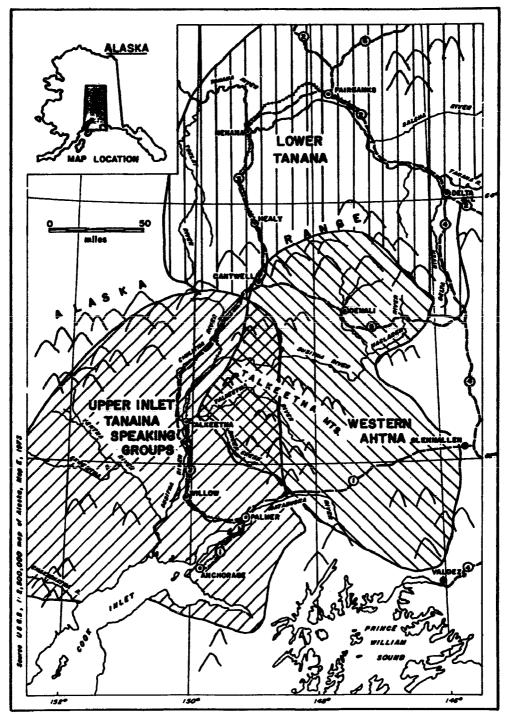


Figure 1-5 Approximate distribution of Tanaina, Ahtna, and Tanana groups over the project area.

similar languages and/or dialects. However, a local band at either end of the continuum may have had more in common with adjacent bands from a different language group than with spatially separate bands from their own group. The concept of a larger socio-political unit above the band, such as a tribe, was lacking at the time of white contact. é:

÷.

1

· TANKA AND AND A

Differences in resource availability and interactions among small contiguous bands resulted in the establishment of extensive prehistoric trade systems (Plaskett 1977). At the time of European contact, these trade systems provided a network for the adoption of non-native trade goods and the involvement of native Alaskans in the economy of the fur trade.

Generally, the three subgroups conform to the Athapaskan cultural pattern of small, local bands following a scheduled cycle of seasonal transhumance to exploit a wide variety of resources. Similarities in settlement patterns, resource use scheduling, technology and material culture of the Athapaskan groups in the study area are apparent. Individual band adaptations reflect the intimate relationship between huntergatherers and the environment. Earlier occupants presumably responded to similar environmental influences.

Russian activities in Alaska, beginning in 1741, and later European and American incursions, were primarily focused on the resources and native populations of the coastal areas. Prior to the discovery of gold at Turnagain Arm in 1895, economic activities were dominated by the fur trade. Mineral exploration following the first discovery brought increasing numbers of nonnatives to interior Alaska. This activity peaked in the study area between 1900 and 1920.

Since the original mining activity, the white population has maintained a permanent and slowly growing presence in the interior. The construction of the Alaska Railroad (1915-1923)

provided the first reliable transportation assuring continued viability of Fairbanks and other interior settlements.

٠.

1.4 MODEL DEVELOPMENT

Environmental and cultural overviews (Greiser et al. 1985) were prepared based on reviews of the literature, existing data and current research. These overviews provided a framework for model development and assessment.

A series of environmental units were defined for the study area, based upon physiographic and vegetative characteristics. A total of 38 Terrain Units, defined as land forms ranging from surface occurrences to those evident at depths up to 25 feet, were identified (ACRES/R&M 1981a, 1981b). Nine Vegetative Units, closely approximating habitat types, were also defined. Abbreviated definitions for each Terrain and Vegetative Unit were placed in a key like that for Table 2-1. These previously identified and mapped units were superimposed on maps for the Linear Features study area.

Data were accumulated and examined for 476 prehistoric, ethnohistoric and historic cases or components at 398 sites. Of these, 269 were recorded during the University of Alaska Museum's five-year survey of the Susitna basin. Information on 18 additional sites came from a survey of the Authority's Anchorage-Fairbanks Intertie (Bacon et al. 1983). Information on the remaining 111 sites was obtained from the Alaska Heritage Resources Survey (AHRS) files. Site type descriptions were developed based upon these data.

Seven variables were then noted for each of the recorded sites. These variables included formal topographic association (Terrain Unit, A-); informal/intuitive topographic setting; general vegetation (Vegetative Unit, C-); site size; distance to water; site type; and period of occupation.

Non-metric factor analysis applied to these data provided bivarite association of site type to Terrain Unit; site type to Vegetative Unit; chronological period to Vegetative Unit; and chronological period to Terrain Unit. The results of this statistical analysis provided the predictive models (Tables 1-1 and 1-2). Only those site types, Terrain Units, or Vegetative Units that were determined to have significant positive or negative associates appear in the model. The remainder are omitted due to insufficient data in the files.

The study area was then divided into 552 160-acre Research Units. The environmental (Terrain and Vegetative) unit totals were calculated for all of the Research Units. The 110 Research Units representing the best proportional distribution of the entire range of Terrain and Vegetative Units were then selected as a 20% sample for field testing the model. Various statistical analyses were subsequently employed to assure that the Sample Units were the most representative. In order to determine how well the sample represented kinds and quantities of environmental units in the project area, proportions of each environmental unit in the sample and the project area were tabulated. The Spearman rank correlation coefficient and Pearson's coefficient of correlation were the analytical tools selected to determine if the sample was representative. In all tests run, it was determined that the selected sample was representative of the research area.

Non-metric factor analysis applied to these data provided bivarite association of site type to Terrain Unit; site type to Vegetative Unit; chronological period to Vegetative Unit; and chronological period to Terrain Unit. The results of this statistical analysis provided the predictive models (Tables 1-1 and 1-2). Only those site types, Terrain Units, or Vegetative Units that were determined to have significant positive or negative associates appear in the model. The remainder are omitted due to insufficient data in the files.

The study area was then divided into 552 160-acre Research Unita. The environmental (Terrain and Vegetative) unit totals were calculated for all of the Research Units. The 110 Research Units representing the best proportional distribution of the entire range of Terrain and Vegetative Units were then selected as a 20% sample for field testing the model. Various statistical analyses were subsequently employed to assure that the Sample Units were the most representative.

In order to determine how well the sample represented kinds and quantities of environmental units in the project area, proportions of each environmental unit in the sample and the project area were tabulated. The Spearman rank correlation coefficient and Pearson's coefficient of correlation were the analytical tools selected to determine if the sample was representative. In all tests run, it was determined that the selected sample was representative of the research area.

Table 1-1

Site Types and Strong Positive or Negative Environmental Unit Associationsa

Site Type	Association	Terrain Unit	Vegetative Unit
1	Strong Positive Strong Negative	A3, 4, 5, 6, 7, 11, 19 A1, 2, 9, 10, 18, 20, 24, 25	
3	Strong Positive Strong Negative		C2, 3 C1, 5, 6, 7, 8
7	Strong Positive	λ3, 8	
21	Strong Positive Strong Negative		C5, 7, 8 C1, 3, 6
23	Strong Positive Strong Negative	λ9 	C5 C3, 6
24	Strong Positive Strong Negative	A9, 18, 24 	C5, 7 C3, 6
25	Strong Positive	A20	
27	Strong Positive Strong Negative		C4, 5 C6
40	Strong Positive Strong Negative		

í

^aStrong associations or relationships are statistically significant at the 0.05 level and indicate a non-random distribution.

Key to Site Types:

<pre>l = Chipping station/lithic scatter</pre>	24 = Railroad station
3 = Campsite/temporary habitation	25 = Railroad tunnel
7 = Isolated stone tool or flake	27 = Historic mining camp
21 = Historic building/structure	or operation
23 = Railroad bridge	40 = Disturbed/unknown
23 = Kaliroad bridge	ty = Disturbed/unknown

1-12

e in San an Allanda an

Table 1-2 Chronological Periods and Strong Positive or Negative Environmental Unit Associations

Chronological Period	Associations	Terrain Unit	Vegetative	Unit
Historic	Strong Positive	A9, 18, 20, 21,	C4, 5,	7,8
	Strong Negative	24, 25 A3, 4, 6, 8, 14, 19	c1, 3,	6
Athapaskan	Strong Positive	A2, 8	C3	
-	Strong Negative	A12, 16, 19, 20, 25	C1, 2,	8
Unknown	Strong Positive	A5, 12, 19, 29	Cl, 2,	6
	Strong Negative	A2, 9, 18, 25	C3, 4,	

1.5 PHASE II DATA COLLECTION

1

٤

4

1

à.

Fieldwork was conducted in 89 of the 110 selected Sample Units (for an actual sample of 16%) between June 14 and August 8, 1985. Methods employed during the field effort generally conformed to those described in the Phase I Report. Modifications to methods presented in the Phase I Report and HRA's field manual are briefly presented in Chapter 2 of this report.

Site types encountered during the field work included: (1) Site Type 1, chipping station/lithic scatter; (2) Site Type 5, cache pit; (3) Site Type 7, isolates; (4) Site Type 21, Historic building or structure; (5) Site Type 27, Historic mining camp and operation; (6) Site Type 31, recent military activity; and (7) Site Type 32, dump/Historic trash scatter. With the exception of Site Type 32, each of these site types is fully described in the Phase I Report. Site Type 32, dump/Historic trash scatter, refers to Historic Euro-American material concentrations or scatters, consisting of cans, bottles, stove parts, domestic items, utilitarian items, etc., which have been discarded or abandoned.

To aid in testing the predictive model, attempts were made to collect the following types of data for each archeological site found during the survey: (1) the presence and depth of subsurface cultural deposits; (2) the vertical and horizontal extent of the site; and (3) the temporal placement and cultural affiliation of site components to the extent possible using site location information and data obtained in the course of establishing site size and limits.

Chapter 3 of the present report summarizes the results of fieldwork within each Sample Unit, a discussion of the cultural resources located, and the results of ethnographic interviews conducted during the field season. Chapter 4 presents refinements to the predictive model, along with a discussion of the changes. Chapter 5 summarizes the results of fieldwork and model refinement and recommendations for further archeological, ethnographic, and historical research are presented.

.

÷

Ł

۰.

.

ł.

The report contains four appendices. Appendix A describes the 89 surveyed Sample Units. Appendix B presents detailed information on cultural resources recorded during fieldwork in the form of site narratives, site forms, and isolated finds forms. Appendix C summarizes information gathered from oral interviews and includes interview transcripts. Appendix D presents project background information, including the research design and modification, field manuals, project forms, extracts from the Phase I report, and copies of permits issued to conduct the sample survey.

2.0 METHODS

T. Weber Greiser Historical Research Associates

Glenn Bacon Alaska Heritage Resource Group, Inc.

2.1 INTRODUCTION

The objective of HRA's Phase II sample survey of the Linear Features study was to locate the maximum number of sites possible using a defined methodology. This chapter reviews methods used for selection and modification of sample units for the Phase II Survey; reviews modifications of field methods for Phase II; and describes the methods used to analyze field data. All cultural resource surveys, regardless of transect width, test depth, or test placement, at best only sample the environment for evidence of past activities. It is not possible to locate all activity sites, due to factors such as site size and current depth below surface. For this study, the field strategy for transect spacing and frequency of testing was based on an average site size (400 to 1,000 square meters) obtained during Phase I analysis.

In order to field test the predictive model, it was necessary to establish consistent transect intervals and a systematic pattern of testing within each Sample Unit. With a standard transect interval, site discovery was dependent upon site size, artifact density, and visibility. Survey methods were refined during the first 10 days of fieldwork and were standardized to provide a satisfactory level of survey coverage within the allotted time. Additional, subjective, testing outside of the systematic testing grid was conducted when investigators felt it was warranted. In many cases, subjective tests were placed into small knolls or portions of terraces between transects or between 50 m test points.

2.2 SAMPLE SELECTION METHODS, MODIFICATION, AND RESULTS

Sample units were selected from the 552 160-acre research units identified in Phase I. The Phase I Report provides details on the identification of these units, all of which were within 0.25 mile of the Linear Features' centerlines.

2.2.1 The Initial Sample

1-

₿' i

۰.

As part of Phase I, a sample of 110 160-acre units, or 20% of the total, was selected for the field survey. A review of data gathered during Phase I, particularly case density information, showed that there were insufficient data to allow weighted simple random sampling within each environmental unit. The sample selection process was modified to weight environmental units for selection by their proportionate representation within the population. Identified environmental units showing a large representation in the overall research area would be similarly represented in the sample. Those environmental units with very small proportions along the Linear Features would reflect that in the sample.

Chapter 6 in the Phase I Report presents environmental data for the Research Units and the Sample Units (Tables 6-1 and 6-2). That chapter also describes the statistical testing of the correlation between the proportions of acreages for each environmental unit in the sample and proportions of acreages in the entire research area. Using the Spearman rank correlation coefficient and Pearson's coefficient of correlation tests on proportions of Terrain Units and Vegetative Units within the sample against those within the research area, it was determined that there was strong agreement between project area proportions and the sample proportions.

2.2.2 The Final Sample

1

ŗ

ŧ.

į

Final selection of the areas included in the sample survey was based upon the ability to acquire the necessary permits and/ or permission to enter the land for survey purposes. Land ownership or jurisdiction for the project area included:

- (1) private;
- (2) State of Alaska;
- (3) University of Alaska at Fairbanks (UAF);
- (4) U.S. Army;
- (5) U.S. Air Force;
- (6) USDI BLM;
- (7) Native Corporations;
- (8) State leased;
- (9) municipal; and
- (10) borough.

Most of the land in the study area is under the jurisdiction of the State of Alaska or BLM. Necessary permits issued to HRA to conduct the Phase II field work included:

- State of Alaska Field Archeology Permit #85-1 for survey on State of Alaska lands;
- (2) U.S. Department of the Interior (USDI) Bureau of Land Management (BLM) Cultural Resource Use Permit #AA-55590 for survey on BLM managed or administered lands;
- (3) U.S. Department of the Air Force License No. DACA85-3-85-31 (acquired by the U.S. Army Corps of Engineers) for survey on Clear Air Force Station lands;
- (4) USDI National Park Service (NPS) Archeological Resources Protection Act (ARPA) Permit #ARPA85-AK-015, issued by the Departmental Consulting Archeologist (DCA), Washington, D.C. for survey in Clear Mews Air Force Base; and

(5) Cook Inlet Region, Inc. (CIRI) Land Use Permit #1326.1 for survey in Section 33, Township 15 North, Range 4 West, Seward Meridian. A Second

「北京の正教をいう法律

Permission could not be obtained for a number of Sample Units along the Healy-Fairbanks Transmission Line in the Cold Creek area, and along the Anchorage-Willow Transmission Line. When possible, the units were replaced; when not possible, they were eliminated as part of the sample reduction discussed below.

2.2.2.1 Sample Reduction

Of the 110 Sample Units originally selected, a total of 84 Sample Units were completely surveyed and another 5 Sample Units were partially surveyed. The 89 units sampled (Table 2-1) represented 13,760 acres, or 15.6% of the research area defined in Phase I. The ultimate survey area thus remained larger than the 15% minimum sample size specified in the research design.

The reduction in total Sample Units surveyed resulted from various factors, including: (1) higher than anticipated site density in some units; (2) reduced surveyability due to adverse terrain and vegetation conditions; (3) presence of grizzly bears; and (4) the combined constraints of time limitations and adverse weather conditions at the end of the field study period. All reductions in total sample numbers were approved by Harza-Ebasco representatives.

The data in Table 2-1 present both Terrain and Vegetative Unit acreage projected from Phase I research (see Table 6-1, Phase I report) as well as vegetation acreage calculated during fieldwork. Investigators recorded gross vegetation in all Sample Units, while field checking of Terrain Unit observations was not possible. Observed vegetation appears to be more evenly distributed than anticipated, with some major discrepancies. It should be noted that field observations by non-biologists might include miscategorization of Vegetative Units, such as Deciduous forest

(C4) and Mixed forest (C5), or Coniferous forest (C3) and Dwarf tree shrub/Tall shrub (C7), due to the similarity of these vegetative types. Therefore, the observations from these two sets of Vegetative Units should be compared only in combination.

「「「「「「「「」」」」」

AND IN

P

2.2.2.2 Sample Stratification and Bias

7

۴

ŝ

f

ŧ

Ŧ

Insofar as possible, proportionate ratios of Terrain and Vegetative Units were maintained as the sampling fraction was reduced from 20% to 15.6%. However, three Terrain Units (A18, A21, and A30) which had limited representation in the research area are slightly (A18 and A21) to heavily (A30) under-represented due to lack of access. The overall effect is negligible, as demonstrated in the test of rank proportions (Chapter 4), and the sample is still adequate for statistical analysis.

Terrain and Vegetative Unit Key

7

٦

国家印刷の方法

「武学時ためた後の後の山」になって

c

Unit Unit Hame Terrain Units Al = 0 Organic materials Al = 0 Organic materials Al = 0 Organic materials Al = GTA Ablation till Ad = GTA Ablation till over unweathered bedrock Bas GTA Ablation till over unweathered bedrock expon- Bas Ablation till over unweathered bedrock expon- Af = Gtb-f Basal till (frozen) Af = C Haru Colluvium over bedrock and bedrock expon- Bas Itil (frozen) Af = C Lacustrise deposits over besal till GTB-T Terrace Al0 = Ffg Granular alluvial fan Al1 = GTA Solifloctice deposits (frozen) over Al2 = Bru Unweathered, consolidated bedrock Al3 = C Solifloctice deposits (frozen) over ffpt terrace sediments Al4 = Gtb-f Fan cover deposits and organics over fan river bedrock and bedrock expon Al5 = Ff-c+O Fan cover deposits and organics over fan river bedrock and bedrock expon Al5 = GT for Outwesh deposits Al4 = GTb Outwesh deposits Al5 = GT for Outwesh deposits Al5 = C Haru Colluvium over bedrock and bedrock expon Scw Soliflection deposits over outwash Al2 = GT fan Colluvium over bedrock and bedrock expon Al3 = C Soliflection deposits over outwash Al3 = C Soliflection deposits over weathered bedrock expon Al4 = Gtb fan Colluvium over bedrock and bedrock expon Scw Soliflection deposits over outwash Al2 = C Soliflection deposits over weathered bedrock expon Al1 = Gto Glaeial till Al2 = C Soliflection deposits over weathered bedrock exponents Al4 = C Soliflection deposits over weathered bedrock exponen	jure.
Al = 0. Organic materials A2 = Fp Flood plain deposits A3 = Gta Ablation till A4 = GFt Ease deposits A5 = Gta Ablation till over unweathered bedrock A5 = Gta Ablation till over unweathered bedrock A6 = Gtb-f Basal till (frozen) A7 = C Jama A8 = L Lecustrice deposits over besal till A8 = L Lecustrice deposits over besal till A9 = Fpt Terrace A10 = Ffg Granular alluvial fan A12 = Bru Unweathered, consolidated bedrock A13 = C2-f Solifluction deposits (frozen) over A14 = Gth-f Frozen basal till over bedrock A15 = Ff-c+O Fan cover deposits and organics over A15 = Ff-c+O Fan cover deposits and organics over A16 = C Colluvium over bedrock exposits A17 = Mt Marine tidal deposits A18 = GFo Colluvium over bedrock and bedrock exposita A19 = C2 Solifiction deposits over outwash A20 = C Hau Colluvium over bedrock and bedrock exposita	jur•
A3 = Pp Plood plais deposits A3 = Gta Nblation till A4 = Gta Ablation till over unweathered bedrock A5 = Gta Ablation till over unweathered bedrock exponents A6 = Gtb-f Basal till (frozen) A7 = C - Golluvium over bedrock and bedrock exponents A8 = L Laccustrine deposits over besal till A8 = L Laccustrine deposits over besal till A8 = L Laccustrine deposits over besal till A9 = Ppt Terrace A10 = Gte-f Boliluction deposits (frozen) over A12 = Bru Unweathered, coasolidated bedrock A13 = Ca-f Soliluction deposits (frozen) over FPt terrace sediments Everace sediments A14 = Gth-f Frosen basal till over bedrock A15 = <u>Ff-c+O</u> Fan river bed deposits A16 = C +Serv Scu +Serv Colluvium over bedrock and bedrock exporences A17 = Mt Marine tidal deposits A18 GFo Guluvium o	iur•
A4 GTk Eame deposits A5 Gta Ablation till over unweathered bedrock A6 Gtb-f Basal till (frozen) A7 C Basal till (frozen) A7 C Basal till (frozen) A8 L Colluvium over bedrock and bedrock enponent A8 L Lecustrine deposits over besal till Gtob-f Basal till (frozen) As A9 Ppt Terrace A10 Ffg Granular alluvial fan A11 GTe Esker deposits A12 Bru Unweathered, consolidated bedrock A13 Calf Solifluction deposits (frozen) over Fpt Trosen besal till over bedrock Bru Solifluction deposits and organics over Ff fan river bed deposits A16 C Solifluction deposits A17 Mt Marine tidal deposits over outwash A18 GTo Golluvium over bedrock and bedrock enposits A18 GTo Gliscial till A20 C Solifluction deposits over outwash A19 </td <td>sure</td>	sure
A4 GTk Eame deposits A5 Gta Ablation till over unweathered bedrock A6 Gtb-f Basal till (frozen) A7 C Basal till (frozen) A7 C Basal till (frozen) A8 L Colluvium over bedrock and bedrock enponent A8 L Lecustrine deposits over besal till Gtob-f Basal till (frozen) As A9 Ppt Terrace A10 Ffg Granular alluvial fan A11 GTe Esker deposits A12 Bru Unweathered, consolidated bedrock A13 Calf Solifluction deposits (frozen) over Fpt Trosen besal till over bedrock Bru Solifluction deposits and organics over Ff fan river bed deposits A16 C Solifluction deposits A17 Mt Marine tidal deposits over outwash A18 GTo Golluvium over bedrock and bedrock enposits A18 GTo Gliscial till A20 C Solifluction deposits over outwash A19 </td <td>sure</td>	sure
Bits A6 • GEb-f Basal till (fromen) A7 • C Bru Bru Bru Bru Bru Bru A8 • L Geb-f Bru Brose Brose	sure
A5 • Gtb-f Besal till (frozen) A7 = C +Bxu A8 = L Colluvius over bedrock and bedrock exponents A8 = L Lecustrine deposits over besal till A9 = Ppt Terrace A10 = Pfg Granular alluvial fan A11 Gre Esker deposits A12 = Bxu Unweathered, consolidated bedrock A13 = C_a-f Solifluction deposits (frozen) over Ppt terrace sediments A14 Gtb-f Prosen basal till over bedrock A15 = <u>Pf-C+O</u> Pan cover deposits and organics over A15 = <u>Pf-C+O</u> Fan river bed deposits A16 = C Colluvius over bedrock and bedrock exposits A16 = Gro Outwash deposits A17 = Mt Marine tidal deposits over outwash A20 = C Solifluction deposits over outwash A21 = Gto Glacial till A22 = Ca Solifluction deposits over weathered bedrock exposits	iure
A7 = C Collevium over bedrock and bedrock exponents A8 = L Lacastrine deposits over besal till A8 = L Lacastrine deposits over besal till A9 = Pft Terrace A10 = Pfg Granular alluvial fan A11 = Ore Esker deposits A12 = Bxu Unweathered, consolidated bedrock A13 = Ca-f Solification deposits (frozen) over FPt terrace sediments A14 = Ore Frosen besal till over bedrock A15 = Pf-c+O Fan cover deposits and organics over A16 = C Soliluvium over bedrock and bedrock exposits A17 Mt Marine tidal deposits A18 = GPo Colluvium over bedrock and bedrock exposits A17 Mt Narine tidal deposits A18 = GPo Colluvium over bedrock and bedrock exposits A20 = C fibru Colluvium over bedrock and bedrock exposits A11 = Gto Glacial till Grost sets over outwash	iur e
A8 - Lacustrime deposits over bessl till d6tb-f d6tb-f A8 - Fpt a6tb-f Terrace A10 - Ffg a11 - Gre Base deposits A12 Bru Unweathered, consolidated bedrock A13 Bru Bru Unweathered, consolidated bedrock A13 Bru Bru Unweathered, consolidated bedrock A13 Bru Bru Unweathered, consolidated bedrock A14 - Geb-f Fpt terrace sediments A14 - Geb-f Frosen besal till over bedrock A15 - Ff-c+O Fan cover deposits and organics over fan river bed cocks and bedrock exponing A16 - Gro Gro Colluvium over bedrock and bedrock exponing A17 Ht A20 - G GWo Colluvium over bedrock and bedrock exponing A21 - Gto Bay - Ga A21 - Gto	
Gtb-f As Fpt Terrace Al9 = Ffg Granular alluvial fan Al1 = Gre Esker deposits Al1 Al2 = Bxu Uowesthered, consolidated bedrock Al3 = Ca-f Solifluction deposits (frozen) over Fpt terrace sediments Al4 = Gtb-f Frosen basal till over bedrock Ff fan river bed deposits Al5 = C +Serve Colluvium over bedrock and bedrock exposits Al7 = Rt Harine tidal deposits Al9 = Cs Solifluction deposits over outwash Al1 = Gto Glacial till Al2 = Cs Solifluction deposits over weathered betweet Al1 = Gto Glacial till Al1 = Gto Solifluction deposits over weathered betweet	
Ale = Ffg Granular alluvial fan All = Gre Esker deposits Al2 = bru Unweathered, consolidated bedrock Al3 = Ca-f Solifluction deposits (frozen) over Fpt terrace sediments Al4 = Gtb-f Frozen besal till over bedrock Bis Bas Al5 = Ff-c+O Fan cover deposits and organics over fan river bed deposits Al6 = C -Sev Bis Colluvium over bedrock and bedrock exposits Al8 = GFo Outwash deposits Al8 = GFo Outwash deposits Al8 = GFo Colluvium over bedrock and bedrock exposits Al9 = C Colluvium over bedrock and bedrock exposits Al9 = C Guinush deposits Al9 = C Solifluction deposits over outwash Al1 = Gto Glacial till Al2 = C Solifluction deposits over weathered between the solifluction deposits	
All = Greating Ester deposits Al2 = Bxu Unweathered, consolidated bedrock Al3 = Ca-f Solifluction deposits (frozen) over Fpt terrace sediments Al4 = Gtb-f Frozen besal till over bedrock Ff fan river bed deposits over Ff fan river bed deposits Al5 = C +Serve Colluvium over bedrock and bedrock exposits Al7 = Mt Harine tidal deposits Al8 = GFo Outwash deposits Al9 = Cas Solifluction deposits over outwash Al2 = Cas Solifluction deposits over outwash Al1 = Gto Glacial till Al2 = Gto Glacial till Al2 = Cas Solifluction deposits over weathered between the solifluction deposites over wea	
Al2 = Bru Unweathered, consolidated bedrock Al3 = Co-f Solification deposits (frome) over terrace sediments Fpt From terrace sediments Al4 = Stb-f From terrace sediments Bru From terrace sediments Al5 = Sta From terrace sediments Al5 = Sta From terrace sediments Al6 = C Sour terrace Sour Ff Colluvium over bedrock and bedrock exponents Al7 = Mt Marine tidal deposits Al8 = GFo Outwash deposits over outwash Al7 = C Solifluction deposits over outwash Al8 = GFo Guluvium over bedrock and bedrock exponents Al8 = GFo Guluvium over bedrock and bedrock exponents Al9 = C Colluvium over bedrock and bedrock exponents Al1 = Gto Glacial till Bay Solifluction deposits over weathered between term	
Ppt terrace sediments Al4 = Gtb-f Frosen basal till over bedrock Al5 = Pf-c+O Fan cover deposits and organics over Ff fan river bed deposits Al6 = C +Serw Colluvium over bedrock and bedrock exposits Al7 = Rt Harine tidal deposits Al8 = GFo Outwash deposits Al9 = Cs Solification deposits over outwash Al2 = Cs Colluvium over bedrock and bedrock exposits Al1 = Gto Glecial till A20 = C Solification deposits over weathered bedrock exposits	
Al4 = Gib-f Bru Frosen basal till over bedrock Al5 = Pf-c+O Fl Fan cover deposits and organics over fan river bed deposits Al6 = C Bru +Bru Colluvium over bedrock and bedrock exposits Al7 = Ht Marine tidal deposits Al8 = Gro Outwash deposits Al9 = Ga Soliflaction deposits over outwash Al2 = C Hau +Hau Colluvium over bedrock and bedrock exposits Al2 = C Hau +Hau Colluvium over bedrock and bedrock exposits Al1 = Gto Glacial till Al2 = C Hau Solifluction deposits over weathered between the solifluction deposits	
But A15 = <u>Ff-c+0</u> Fan cover deposits and organics over Fi A16 = <u>C</u> Brow Fan cover deposits and organics over fan river bed deposits A17 = Mt Marine tidal deposits A18 = GPo Ottwash deposits A19 = Cs Solification deposits over outwash A20 = <u>C</u> Mau +Neu A11 = Gto Glacial till A22 = Cs Solification deposits over weathered bet	i
A16 = C SCW Colluvium over bedrock and bedrock exponents A17 = Rt Harine tidal deposits A18 = GPo Outwash deposits A19 = Cs Solifluction deposits over outwash A20 = C Hou - Hou A21 = Gto Glecial till A22 = Cs Solifluction deposits over weathered between the solifluctis over weathered between the sol	
A16 = C Scw Colluvium over bedrock and bedrock exponents A17 = Mt Harine tidal deposits A18 = GFo Outwash deposits A19 = Cs Solification deposits over outwash A20 = C Colluvium over bedrock and bedrock exposits A21 = Gto Glacial till A22 = Cs Solification deposits over weathered bedrock exposits	
Al7 = Mt Marine tidal deposits Al8 = GFo Cutwash deposits Al9 = Cs Solifluction deposits over outwash A28 = C Hso Colluvium over bedrock and bedrock exposits A21 = Gto Glacial till A22 = Cs Solifluction deposits over weathered betrock and bedrock exposits	eze
Al8 = GPo Outwash deposits Al9 = Cs Solifluction deposits over outwash Offo Colluvium over bedrock and bedrock exposits A20 = C Colluvium over bedrock and bedrock exposits A21 = Gto Glacial till A22 = Cs Solifluction deposits over wathered bedrock	i
A19 = Ca Solification deposits over outwash A20 = C Knu Hsu Colluvium over bedrock and bedrock exponing A21 = Gto Glacial till A22 = Ca Solification deposits over weathered between	
A20 = C Colluvium over bedrock and bedrock exponents A11 = Gto Glacial till A22 = Cs Solifluction deposits over weathered bedrock	
All = Gto Glacial till A22 = Gto Glacial till A22 = Cs Solifluction deposits over weathered be New	
A21 = 6to Giscial till A22 = Cs Solifluction deposits over weathered bet How	
	ITOCE
A23 = Cl Landslide deposits	
A24 = Fps-c Abandoned flood plain deposits A25 = Ht Tailings	
A26 = <u>C+Elu</u> Colluvium and losss over weathered bedro	ck
Xew	
A27 = Fss Silty retransported deposits A28 = Elu Solian loss	
A29 = Es Bolian sand	
A30 = C Colluvial deposits A31 = Ff-r Alluvial fan channel sediments	
A32 = 0 Organic deposits over outwash	
Gfd A33 = Q Organics over deltaic deposits	
A33 = O Organics over deltaic deposits Fd	
A34 = Fd Fluvial delta deposit	
A35 = Cs Solifluction deposits over bedrock	
A36 = <u>Cs-f</u> Solifluction deposits (frozen) over	
Gtb-f basal till (frozen)	
A37 = <u>Cs-f</u> Gta Solifluction deposits (frozen) over ablation till	
A38 = <u>Cs-f</u> Solifluction deposits (frozen) over bedi	ock
Bxu A39 = not used at this time	
A40 = not used at this time	
Vegetative Units	
Cl = Dt Dry tundra C2 = Wt/m Wet tundra/marshland	
C2 = Wt/m Net tundra/marshland C3 = Cf Coniferous forest	
C4 = Df Deciduous forest	
C5 = Mf Hixed forest	1
C6 = L8 Low shrub C7 = Dts/Ts Dwarf tree shrub/Tall shrub	
C8 = Dev; D Developed; Water/barren	
C9 = Rb/La Recently burned/logged area	

Table 2-1 Sample Units

Ropert Ropert Ropert Ropert Roman Roman

Sample Quadrant	A1	A2	A)	*	AS		A7	48	A9	ALG	#11	A12	A13		ALN N Als		A17	A16	A19	420	AZI	A22	A23	A24	A25	A26	A27	A26	A29	43
ANCHORAG	t-uti	LOW T	RANEN	15510	H L 24	E (Li	Bear	Featu	re: 1)	,														·····				-		
2						1			143		T					T		17						· · · · · · · · · · · · · · · · · · ·						
2									155	121	1					i		3									2			
12			152							141							••	<u>بر</u>								1	15			
52	80										1					1		-			ł									
560	-		160			1																								
57			160								1																			
60			151								1																			
62																		140												
74 75											1					ł		124												
- i i																		194											45	
		15				l										1													3	
102						ł																							•	
113						•																								
120	47	116				ł			77							1		36 42												
132		110									1							44												
GOLD CHE	11-DE	VIL C	ANYON	LALL	1045	Liss	ar Te	ature	2)													-							****	-
4461	40					159																								-
490		1 101				37				22						1														
499						160										1														
504		144				16																								
COLD CRE	EK-HA	TANA	TRANS	M1\$\$1	00 L	LINK (L	isear		ure 1	1)	·····			_								_								
4431	1	34	,					× 55																						
464			41									119																		
44695														80		1														
485						I I	4				ł			156		1														
+519						1								80		1														
522 5251			14			6	157			21	1	3		60																
536	l		.4			1	•				1			<u> </u>											1					
549	1					[160			1.														1					
Subcotal	1 16	7 413	765	:	1	475	163	ومعربة الغيرين	375	164	;	132	:	376	1	1	I	418	1	1	t	1	:	. 1	1	,	17	1	50	5
* - part = over 6 - over	rlapa	with	Geld	Greek	-Hati	LAS TE	8 847 89881	voyad 20 los	i in l Lini	inita P	486,	469,	519;	40 .	eree (14 174 7	et in	Unic	a 397	, 408	L									

Note: Figures presented in table represent acres.

	A-AILT	N TR	NSH I	STICH L	INK (LI	nesr l	eatur	1)										_										
12														72 19 78	125	144 72 57	16 16 16 25				91 56 16	20	20 40 80			34.a 20a 16a	10	
52 54											80 143			17		79					16	16	144					
57 60														160							16	34	ä			32.0	40 12	
62											160			160							3		152	5			~	
74		36									160							1			144 80	40	40	•				
91				115										160						10			112			- Ba		
92				111					11		31			129							80 152		56			244.		
102			160 160						11		140										152	- 1						
120									11		131			29							112	•	48					
126									11			109	49	2							80	32	48					
132			160						11	,	160								I		145	15						
OLD CHE	EK-DEV	LL CA	TYON	RAILICA	D (Line	ar Te	ture	2)						80						_		72						
490					1				н			19	1	140								12				64.a		
498									П			•••	- 36	86			40				11		12				n	
499									11					69		91								80		87a		
504													-	100			60						140			20		
OLD CRE	EK-HAT	ARA T	LANSE	155104	LINE (L	Logar	Peatu	re 3)												-								
4435									11	104					-159 56					12					44			
4445						-				5					155						48				32	64 a		
-4491																44										244		
445									11			115	3		-	42			1			190	12			404		
-519			•						11	31						41			1 4	ы					-	24		
522															140			E	1 1	18					32			
5251									11						- 84	74		- 1		16	16				48	80		
536					160				11	154					6			t		10					40			
549					<u> </u>		·····		<u> </u>						160				<u> </u>	4		16						
lubtotal			4.00	226	: 160	150				174	1185	74.7	67	1462			173	:			1922	34.1	1454	101	414		236	
	1	196	507	440	: Ten	134	•			367	1163	44.1		44.84	941		473	•				451	1434	141	410	348		1

۲

.

Table 2-1. Sample Units (continued)

2-8

r

Ŧ

r - r

÷. . .

.

•

r

AMD AMD D 331 331 344 344 335 356 355 356 357 344 335 344 335 356 359 344 335 344 337 342 344 343 403 346 404 3 346 403 404 3 406 429 461 410 429 461 134 143 143 143 143 143	3	140 144 80 28 5 25 26 30 160 149 107	92 75 160 10	4 <u>0 () (nora</u> 40 160 32 20		<u>ra 6)</u> 130 4		43	 15				8							
331 344 345 355 356 359 344 356 359 344 372 342 348 -397 404 348 -397 404 348 405 425 425 425 425 425 425 425 42	3	140 144 80 28 5 25 26 30 160 149 107	92 75 160 10	80 160 32	;			6 3	13				ł							
344 355 356 356 356 356 344 344 344 344 344 346 346 405 425 429 410 425 425 429 451 461 134 145 152	3	144 80 28 5 25 26 30 160 149 107	75 157 140 10	160 32		130		6 3	13				8							
335 356 359 344 372 342a 346 348 348 348 348 404 403 404 403 404 403 404 403 404 429 451 429 451 429 451 442 143 134 144 152	3	40 28 5 25 26 30 160 149 8 107	75 157 140 10	160 32		130		63	43		·	·								
356 359 344 322 342 342 342 342 342 344 346 346 346 405 405 405 405 405 405 410 425 425 425 425 425 425 446 143 144 143 144 145 145 145 145 145 145 145	3	28 3 25 26 30 160 149 107	75 157 140 10	160 32		4		63												
359 364 372 322 324 326 326 326 326 326 326 326 326	3	3 25 26 30 160 149 107	75 157 140 10	32		130		63												
344 372 382a 386 386 387 405 405 405 405 425 425 425 425 425 425 425 42	3	3 25 26 30 160 149 107	75 157 140 10	20		130		63				·								
342a 344 345 347 403 403 403 403 403 403 425 429 429 429 425 429 425 140 134 134 135 152	3	25 26 30 160 149	40 157 160 10	20		130		63			·	·								
384 388 389 397 404 405 405 405 405 425 425 425 425 425 425 425 42	- 21	30 160 149 107	40 157 160 10	20		٩		63				·								
388 397 404 3 405 405 405 410 425 429 451 461 186LY-VATEL 136 136 136 132	- 21	30 160 149 107	157 160 10		160 160	•						·								
•397 404 3 403 403 404 405 429 451 461 461 461 461 461 461 461 46	- 21	30 160 149 107	157 160 10		160 160							·								
404 3 403	- 21	160 149 107	157 160 10		160 160							·								
403 408 410 425 429 451 461 134 134 143 146 132	- 21	160 149 107	160 10		160 160															
-408 410 425 425 451 461 HEALY-VA (EMA 136 136 136 136 132	21	160 149 107	10 11		160 160															
410 425 429 461 461 HEALY-VA (EM 136 143 146 132	21	160 149 107			160 160															
429 451 461 136 136 143 146 152	21	149 8 107			160 160															
451 461 136 136 143 144 152	2	149 107			160											- 1				
461 136 143 146 152	2	149 0 107					1									- 1				
136 1 143 144 152		1 10/							•	1						- 1				
136 9 143 146 152		114.1.1.1	LE LOUI 1. LUI	Linear	Fasture	53			 				 	·		 				
143 146 152		a and a second 4 a					- <u> </u>		 	111	7	······	 1			 				
152	•					10	0					60				- 1				
												160	1							
163				ļ		12	4					160 36 75								
	44	6		1		39	1					75				- 1				
169				1		160	1													
174				1		120	1					40				- 1				
142						14					2	-	1	•		- 1				
	18			i		15					-		1 123			1				
188				1		-				14 44	6		1			1				
188a -				1						128 1	2	10	58			- 1				
189										128 1	3		1		19					
- 190				1						160			1			- ł				
19.9 2	20			l			<u></u>						 _			 í				
Subtotal 54	50 7	9 909	0 545	: 292	1.120	573 40	1 1		17 3	305: 39	0	1 421	 : 162		19		1			
• • pertial	•																,	•	-	

~

.

++

r

• •

*

1

r

ŗ

r

r

1

r - -

- r · r - r 1

1

r

ample medrant		TERRAIN UN		continu A36 A		A38	A39	A40		CI	6 2	C3	etat ol	C2	WITS C6	C7	08	69		Cì	661 C2	:C3	VIICI CL	TATIC C5	380 C6	C7	08	
ATANA A	IU DEVIL C	AITYON ACC	155 NO	AD (Lis	+81	Feet	4	7	.												•••••						<u> </u>	-
331				160					r	40					120					136	24							-
341								- 1							160			5		80								
346															160										369			
355									1	50					110. 160										140			
359															160										120		22	
364				140				- 1		141					19				1	144								
372				160 25						134	22				47					44					14 80		32	
342.									E	45	22 30				70		15								101		19	
386						131		i	1						136				1						140		47	
388						134		- 1	1	138 45 34 17					143										10) 140 140 20			
397								- 1	1						40				1						28	4		
404								- 1	ł						159		1		1		48				115			
405									t						160				I	26					112	34		
408															40										- 40			
410									{						160									115	40			
425									1					54 15	106						40				120			
429														12	142						40				120			
451										160					145					-					136	-	- 24	
461		A MEN 1 85 10					. 0		<u> </u>						192													
136	LABAMLD I	10 HBH 1 89 1 C	14				,		T		_			126	- 14				1						19	тп	32	-
143			-						1						<u>ж</u> 157						96	32					ñ	
146														- 35	125						44		44					
152									1					128	32				11		48	64	40					
163															77	63	20					40			- 80		40	
169																160					112		- 40					
174													40			120		-			- 96			54 54				
175	i												40			120					96			- 56				
182																160												
183									1				35	125		160					32		124					
186												35	30	95		30					16		128			32		
288a 289												33		n		147					10	40	144	24				
190	l .								1							196						-		-		120	24	
199	137							i						-		160					344		16				-	
					_																							-
ubtatal	137 :	: :	- 34	323	:	265	4	1		615	52	35	115	644	2618	1245	- 36	1		568	646	304	744	248	1930	379	331	
		veyed unit																										

e *

£ +

🖷 2000 - 🛒 -

-

2-10

r r r r r r

.

٠

1

Sample Quadrant	A1	AZ	A3	44	A 5	A 5	▲7	A8	A9	A10	A11	A12	A1 3	AL4	ALS	416	417	AI8	A19	A20	154	A22	A23	A2 4	A25	A26	A27	A24	A29	- 63
HEALY-PA	(IAA	14 T		SIGN	110	1110	ear l	eetur	• 5)																					_
201															74															
209															166															
213															160															
217															160											1				
225															140															
229															140															
245	36	124				1																								
254	•																										151	5		
255 270																											159 148 136 18			
174										1																	134	12		
278																											-11	24 142		
291						ì																						151		
296						i										Ì									1		- 63	97		
303						i i																			1		155	5		
304						1										ł					i i				1		155 156			
307						1					ł					ł									1	15		145		
308																6											26	134		
313						E I										ł											118	42		
314						ł										Į –											85	75		
315											t					ŀ					L						122			-
		124													656											15	1346			

e- +

- 40

(* 11 · 11

17 18

٠

7. S.

- 16.97

Table 2-1. Sample Units (continued)

r

Sample Quadrant	1	AJS		A1H 1						A39	A40	CI	c 2	(C) VI	DEETA'	CS FIVE (Cé	C7	CI	C 9	21	885 C2	LIWED C1	VIICI CL	TATIO (7)	N GÉ	C74	ca	09
10241.7-7A 201 209 21.3 21.7 225 229	20	<u>K3 1</u>	RAN SI	18816	<u>W 11</u>		(1.1)	Hear .	Featu	re 5)					15		160 160 32 87	145 128 73 160 93					44 12	72	4	*	32		
243 254 255 270 270 282 291 294														,	18	135 142 45 33 26	11 11	159 140 14 131 18 115 127	50			12 16 16 16 16 16 16 16 16 16 16 16 16 16	144 96 90 136 136	16 5 11	144	13		40 34 3	
303 304 307 308 313 314 315														760 19	102 97 43	35 150		134 125 58 63 117				80 26	4 14 4 5 14 5 14 5 14 5 14 5 14 5 14 5	16 104 21 5 24		-16	344 96	*	
Subtotal 410 this		;		ı :	: 	: che	:		1	1	1	 1	•	177	276	566	461	1820	60	1	 : 1	790	1619	314	192	125	240	- 840	1

Ś

r

ŗ

e

F

Æ

TERRAIN UNITS

œ٠.

7 7 7 7 F

S. . . .

	A1	٨2	A3	۸4	A5	A6	▲7	84	.49	A10	A11	A12	AL 3	A14	A15	A16	A17	81A	A19	A20
Subtotal	167	413	765				163	289	375	164		122		376				418		
Subtotal Subtotal			909	0	545	475	292	320	573	401		86		17	305 856	390		421		

TOTAL	258	010	1674	0	242	475	455	609	748	565		210		783	1161	390		839		
PERCENT			32. 17	0	8.96	3.45	3.31	4.43	6.89	4.11		1.53		2.87	8.44	2.83		6.10		
	•	•																		
											TERR/	rtn ni	(ITS ((cont	Laued	>				
	A 21	A22	A23	A24	A25	A26	A27	A28	A29	A30	A31	A32	A33	A34	A35	A36	A37	A38	A39	440
Subtotal							17		50	5		196	509	226		160	150			
Subtotal	182		19			- 15					137				- 14	353		265		

1

**

2-13

1

1

.

1

۳

Subtotal				1346	874		104								
TOTAL	182	19			874	50	5 24						150	265	
PERCENT	1.32	0.14	0.11	9.91	6.35	0.36 0.	.04 1.7	5 1.42	3.70	1.64	0.10	3.73	1.09	1.98	

			V	EGETA	TIVE U	0175					0840	INARD /	EGETA	101				
	CI	C2	C3	C4	C5	C6	C7	Cill	C9	¢l	C2:	C3	CÅ	C5	C6	C7	CB	C9
Subtotai Subtotai Subtotai	329 615	1185 52	243 35 177	87 115 276	644	2618		173 36 60		840 565	1322 840 790	351 304 1619	1452 744 314	101 243 192	1938	520 379 240	331	_
TOTAL.	944	1237	455	478	2672	3996	3709	269		1408	2960	2274	2510	541	2279	1139	649	-
PERCENT	6.86	8.99	3.31	3.47	19.42	29.04	26.95	1.95		10.23	21.51	16.53	18.24	8.93	16.56	8.28	4.72	
COMBINED	Cl	C2	ය	/ C7	C4/C5	C6	Câ			Cl	Cž	ය/	C7 C4,	/ଣ	œ	C8		
TOTALS	944	123		64	3150	3996	269			1408	2960	391:	3 30	51	2279	649		
PERCENT	6.86	8.9) 30	.26	22.89	26.95	1.95			10.23	21.5	L 24.1	80 22	.17	16.56	4.72		

2.3 PHASE II FIELD METHODS

Prior to field data collection, crews were issued field manuals for recording historic and prehistoric sites (Appendix D). As is normal for a study of this scope, survey methods required some modification to address actual conditions encountered in the field. All modifications were approved and documented prior to implementation. This resulted in slight variability in survey and documentation procedures over the course of the study. の現代であり、人民の構成的なな人になった

Once the list of Sample Units to be surveyed was established, units within the list were assigned to Crew Supervisors for survey. Assignments were made on the basis of logistical considerations, with units closest to the field crew base camps generally being surveyed first. Whenever possible, Sample Units were assigned to a single crew.

2.3.1 Field Survey

-

Detection of surface and subsurface cultural resources within each 160-acre Sample Unit was accomplished through pedestrian survey. Shovel tests were placed at regular intervals along parallel transects (systematic testing), while subjective shovel tests were excavated at locations, such as knolls or terraces located between transects, that were considered to have high site potential.

The interval transect survey strategy is an extension of the statistical orientation of the study research design. This technique is theoretically stronger than an inductive approach, because it can be used to indicate where sites do not occur, as well as where they do.

Transects were parallel to one another, generally spaced 30 m apart. They were 800 m long unless interrupted by impassable terrain, and shovel tests were placed every 50 m. Spacing varia-

tion between transects was determined by the density of vegetation and by the likelihood of encountering cultural resources. When either condition was judged to be high, spacing between transects could be decreased to 20 m. When both conditions were judged to be low, spacing between transects could be increased to no more than 50 m.

The most direct means to determine the potential for encountering one or more classes of cultural resources was to refer to the predictive model, which calculated high positive statistical correlations between certain site classes and terrain units. However, sample units were tested and surveyed at the highest level of intensity allowed by generally dense vegetation and budgeted field time. Maximum survey intensity for any single sample unit used 32 individual transects (25 m spacing), and minimum survey intensity used 18 transects (44.5 m spacing). The majority of sample units were surveyed using 30 to 35 m transect spacing between crew members or 24 transects per unit.

Recognizing the potential limitations of the interval transect survey, in which transects could fall on either side of a microtopographic feature containing a site, a subjective survey also was incorporated into the research design. This subjective survey method is an inductive approach, in which archeologists use comparisons with ethnographic accounts to focus their survey in paleogeographic settings comparable to those documented ethnographically. Field efforts focused on settings which recorded cultures are known to have utilized, even if they did not occur on transect lines. Shorelines, ancient tributary junctions, and mountain corridors are some examples.

The subjective survey was conducted at the same time as the interval transect survey. Additional shovel tests were placed along and/or off the transect line as crews encountered microenvironmental settings (i.e., knolls, terraces) that had relatively high potential for yielding archeological data.

Shovel tests were an integral part of both the interval transect and the subjective survey strategies. These 30x30-cm tests were to be 30 to 50 cm in depth, if possible located every 20 to 50 m, with approximately each 10 cm of recovered matrix run through 0.25-in. mesh screen.

The systematic testing strategy was revised during the first few days of fieldwork to better address the testing of the model. The systematic strategy of one shovel test every 50 m, if possible, was implemented to gather data relevant to all areas regardless of site probability potential. A practical consideration coincident to this increased testing effort was the difficulty of each crew member carrying a screen while transecting. Therefore, material from transect shovel tests was subjected to troweling and sufficient observation to obtain a recovery rate equivalent to using the screens.

A typical survey unit, up to 24 individual transects or 6 crew transects, would contain 408 potential test locations. Summary data presented for the 89 Sample Units (Chapter 3) surveyed indicate that over 25,000 shovel tests were excavated as part of the interval transect survey. Approximately one-third of the maximum number of tests were not dug due to natural factors, such as surface water or rocks. Less than 59% of these shovel tests were excavated to a depth of 30 cm or less due to natural factors (see Tables 3-1 through 3-5). Those excavated below 30 cm did not exceed 50 cm. For much of the area surveyed, 30 cm proved sufficient to reach underlying gravel, probably representing glacial till and assumed to be sterile of cultural materials.

A second type of test, the controlled shovel test, was conducted within identified prehistoric and certain historic cultural contexts or sites. Ten historic sites with obvious structures, features, or surface material, and one prehistoric site (TLM 275) located outside of a Sample Unit, were not tested.

The generally larger controlled shovel tests differ from shovel tests in that the matrices:

a. were screened through mesh finer than 0.25 in., when judged necessary;

- b. were excavated in 10-cm increments or natural/cultural levels;
- c. were often excavated by trowel; and
- d. were documented with scaled profiles showing observed strata characterized by sediment composition and color according to Munsell Color Charts.

Shovel testing conducted at prehistoric sites radiated in the cardinal compass directions and four points in between from the positive test, surface visible feature or concentration of artifacts. The first series of 30 x 30 cm tests were at 10 m from the positive test. Additional tests were placed at greater or lesser distances until it was determined that site boundaries had been adequately defined. Positive tests were expanded to 50 x 50 cm then excavated and screened or carefully troweled in 10-cm levels or natural/cultural levels if they were definable. All cultural or ecofactual (soil or tephra) samples were bagged by level, with finished tools bagged separately. Prior to backfilling, profiles were drawn for test pits which produced cultural material. They were plotted on site sketch maps, and foil or plastic was placed in the bottom for the reference of future investigators.

2.3.2 Navigation

To successfully test the predictive model, it was necessary to accurately determine the location of Sample Unit boundaries and crew positions within Sample Units. This was accomplished using a variety of techniques. Sample Units 3, 7, and 12, which were reached via surface vehicle, were less difficult to locate and delineate than those accessible only by air.

2.3.2.1 Determining Sample Unit Locations

Sample Unit locations were identified using a set of base maps, including U.S. Geological Survey (USGS) maps (scale 1: 63,360 or 1:25,000), aerial photographs, and Sample Unit legal descriptions. Air photos were cross-indexed to the list of Sample Units which contained their legal descriptions. Legal descriptions were used to finally determine the correct position of each Sample Unit.

The next step in the procedure of locating a Sample Unit was to fly to its general location using topographic maps and previously surveyed units as guides. Under most circumstances, unit boundaries were established within plus or minus 100 m of their Some units had section lines and sometimes true position. guarter-section lines blazed, often with associated survey monuments. Many other units contained identifiable natural or recent cultural (i.e. roads, transmission lines) features which allowed for accurate location. In a few instances, notably units located in the Yukon Flats area, precise unit boundaries could not be determined. The effect of possible mislocation in this area was negligible, since only recent cultural resource materials were recorded in any of the eight units. In addition, no more than 40% of these units was surveyable due to standing water in the form of marshes. Five of the eight units were less than 12% survevable.

One side of each Sample Unit (800 m) was used as a reference baseline for on-the-ground navigation. This reference baseline was marked with a visible survey string, using a hip-chain calibrated in meters. Placement of the reference baseline depended on whether the survey was to be parallel or perpendicular to the contour of the unit, and whether a previously existing, visible, survey line could be used. A parallel, secondary reference baseline was established at a distance of 800 m from the primary baseline when vegetation density required it. The lines were

2-18

sometimes flagged at measured intervals (30 or 50 m) to provide additional reference points.

2.3.2.2 Determining and Maintaining Position Within Sample Units

Once baselines were established, survey of the unit proceeded along transects oriented at right angles to this line. Position on each transect was maintained in four ways, including: (1) constantly monitoring compass headings; (2) using voice cues to measure distance between crew members on adjacent transects; (3) using visual cues to measure distance between crew members on adjacent transects; and (4) by monitoring topographic maps. Slight variation to the right and left of each transect centerline was considered beneficial, as it resulted in more of each transect corridor being examined.

2.3.3 Documentation

•

Individual observations on daily activities, weather, ground cover, natural features, and other pertinent information were entered into field notes maintained by all personnel. When cultural resources were encountered, these were recorded on Isolate, Prehistoric Site, or Historic Site forms, as appropriate. After completion of each Sample Unit, both Shovel Test Summary and Sample Quadrant Record forms also were completed. Photographic documentation augmented written observations. A record of all photographs taken was entered in a photographic log.

The Sample Quadrant Record form was augmented with a Quadrant Shovel Test summary form during fieldwork. The Shovel Test form recorded: (1) the total number of shovel tests placed in the Sample Unit; (2) how many of these were along transects and how many were part of the subjective survey; (3) the number of tests excavated to at least 30 cm; (4) the number of tests which could not be excavated to at least 30 cm and the reasons; and (5) a brief description of nontestable locations. The form used to record prehistoric and historic sites combined information from a short form used by Alaska Heritage Research Group and a larger form used by the University of Alaska Museum for the Susitna Hydroelectric project. The present form is six pages plus attachments. A site field number was assigned to each discovered site. Site numbers consisted of the Sample Unit number followed by a number representing the consecutive number of finds within the unit. For example, site number 110-3 represents the third recorded find (isolate or site) in Sample Unit 110. Unit numbers were assigned to sample units prior to the field survey.

Some of the archeological finds were located outside of Sample Units. These sites were discovered under a variety of circumstances. Most were located at or near helicopter landing places, and some were located by survey crew members who climbed to vantage points in order to gain terrain perspective during survey. All of these sites were recorded. All finds have been assigned Alaska Heritage Resource Survey (AHRS) file site or resource identification numbers.

2.4 CURATION

The survey resulted in the collection of archeological specimens including isolates, sediment and radiocarbon samples, and artifacts recovered from shovel testing within sites. Each specimen or group of specimens, such as lithic material clusters, was separately bagged. Each specimen bag was coded with information such as collector, date of collection, and provenience, and then cross-indexed to field notebooks and site or isolate recording forms. Specimen bags were grouped by site and placed in larger site bags, marked with a unique field site number, and cross-referenced to Sample Unit. Isolates were packaged either in bags or other suitable containers and marked with unique isolate numbers, cross-referenced to Sample Unit.

Specimens were transported to the laboratory for analysis upon completion of the survey. After analysis, specimens were turned over to the University of Alaska (Fairbanks) Museum for long term curation.

2.5 LABORATORY METHODS

Data were verified by checking all records and map locations completed in the field to assure proper recording. Curation of artifacts included washing, labeling, and cataloging of materials collected in the field. Artifact labels included individual accession numbers according to professional standards established by the University of Alaska (Fairbanks) Museum, the curatorial repository.

2.5.1 Prehistoric Artifact Analyses

Prehistoric artifact analyses included:

- (1) <u>Technological Analysis</u>. All lithic specimens were macroscopically inspected and characteristics pertinent to manufacturing techniques recorded.
- (2) <u>Use-Wear Analysis</u>. All intentionally modified lithic specimens and a representative sample of unmodified flakes were microscopically examined for edge modifications.
- (3) <u>Raw Material Identification</u>. Materials were visually inspected and physical properties described using material types defined by the University of Alaska (Fairbanks) Museum.
- (4) <u>Typological Studies</u>. Recovered bifacial implements were compared and contrasted with previously established tool types and styles.

No. - A and

 $\sum_{i=1}^{n} (i - i) = i$

2.5.2 Prehistoric Data Analysis

Analyses of prehistoric site data included defining site types and cultural affiliations through analysis of recorded cultural materials, and elucidating settlement and subsistence patterns through analysis of relationships among cultural and environmental variables. Data resulting from the analysis of cultural materials recovered from the survey and testing activities were incorporated.

2.5.3 Methods for Model Refinement

Due to the extremely low numbers of cultural resource sites recorded, the use of elaborate statistical methods was not appropriate. The new data were added to the existing data base, and the modified sample was subjected to the same correlation tests used on the Phase I data. The tests resulted in some modifications to positive and negative correlations presented in the original predictive model. The Phase II data also provide preliminary information regarding site density for certain site types in the Linear Features project area.

Survey data were added to the Phase I data base, which was then analyzed using the non-metric factor analysis program. This resulted in some refinement of the model for specific site types and certain time periods.

2.5.4 Historic Data Analysis

en Saada sin

Research on recorded historic sites identified the historic period of occupation and site function. This research included the sources examined during Phase I, and Federal, State, and local records such as land ownership, plat, and 'tax records. These were examined in an attempt to identify the individual(s) responsible for site development.

Land ownership records and plat maps maintained by the BLM were reviewed to obtain the original land disposition information

for each parcel surrounding a historic site. None of the land around the sites has ever been patented under either the Mineral Entry or Homestead laws. Additional research was conducted in the borough <u>Index to Mining Locations; Mineral Survey Field</u> <u>Notes</u>; USGS Annual Mining Reports, Bulletins and Professional Papers; and local histories and newspapers to gain information about names of locators or developers, existing structures, and general or specific history of the locality.

3.0 RESULTS OF FIELDWORK

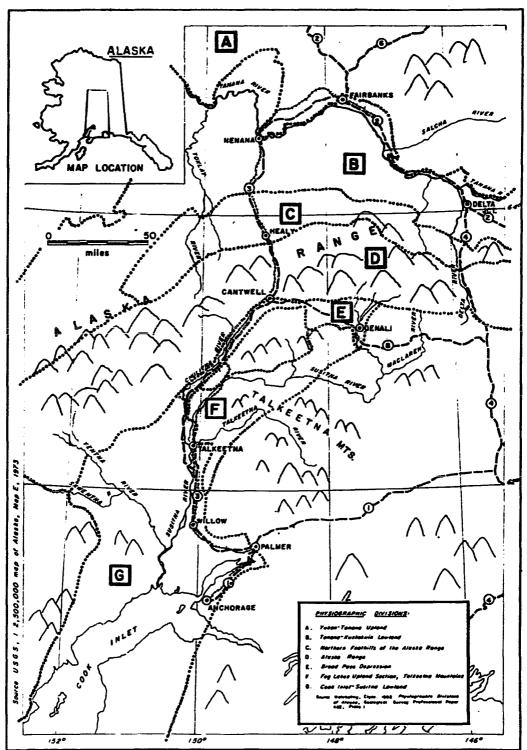
T. Weber Greiser Historical Research Associates

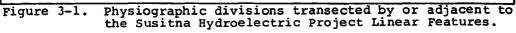
3.1 INTRODUCTION

This chapter summarizes the results of the Phase II field survey. Information is presented according to the particular Linear Peature associated with specific Sample Units. A brief description of the physical environment for each Linear Feature is followed by tables summarizing anticipated and actual ground conditions, and testability and test results. Descriptions and maps for each Sample Unit are presented in Appendix A.

The cultural resource discussion summarizes, through tables and text, the various sites and isolated cultural material occurrences located and recorded during the intensive survey. The type of cultural material and features identified, as well as an evaluation of the potential for each site to produce additional important information, are presented. More detailed site and isolate data are presented in Appendix B.

The final section of this chapter summarizes the goals and results of a series of ethnographic interviews conducted as part of Phase II field research. The ethnographic interviews with older Athapaskan Indians knowledgeable of portions of the study area yielded information on Indian as well as non-Indian sites on or near parts of the Linear Features. Detailed summaries of the interviews, as well as transcripts from three interviews, are presented in Appendix C.


3.2 SAMPLE UNIT DISCUSSION


The general study area which includes the Linear Features transects four physiographic provinces, as defined by Wahrhaftig These provinces, from south to north, are the Coastal (1965). Trough, which includes the Susitna Basin; the Alaska-Aleutian Province, which includes the Alaska Range; western Alaska, which runs north from the Alaska Range foothills to the Yukon River and includes most of the lower Yukon-lower Tanana-Kuskokwim basins; and the periphery of the Northern Plateaus, which extends east into Canada from near the confluence of the Yukon and Tanana Rivers. The four physiographic provinces are further broken into physiographic divisions by Wahrhaftig (1965). Seven of these divisions are located either within or adjacent to the study area (Fig. 3-1) and, from north to south, are described below in Section 3.2.1 through Section 3.2.6.

3.2.1 Linear Feature 1, Anchorage to Willow Transmission Line

The South Intertie or Anchorage to Willow Transmission Line originates in Anchorage, crosses Cook Inlet, and follows a westerly, then northerly, route across the formerly glaciated, Cook Inlet-Susitna Lowland division. The elevation is less than 500 ft. and features include ground moraines, stagnant ice topography, drumlin fields, eskers, and outwash plains. Near the Alaska Range and Talkeetna Mountains, rolling upland areas in this division rise to 3,000 feet. The Susitna River is the primary drainage in this structural basin. The area has only one glacier to the west and some permafrost in the north. Bedrock geology consists of Tertiary age, coal-bearing rocks covered by glacial moraine and outwash and marine and lake deposits.

A total of 18 sample units were included in the Phase II survey of Linear Feature 1 (Table 3-1). Of these sample units, six were over 80% surveyable; seven were between 50% and 76% surveyable; and five were less than 35% surveyable, with three of

•

.

.

.

a e e S

- - -

Sample Units Along the Anchorage-Willow Transmission Line

1	II ANTICI- PATED	III PERCENT OF	IV PERCENT OF UNIT	V TOTAL NO. OF	VI ADDITIONAL TESTS	VII PERCENT OF				XI TS NOT REACUL		XIII W	SLV
SAMPLE UNIT	SURVEY- ABILITY OF UNIT	WHIT SURVEYED AND TESTED SYSTEMATICALLY	NOT TESTED SYSTEMATICALLY AND BEASON	SHOWEL TESTS ATTEMPTED IN TRANSECT GRID	EICAVATED OUTSIDE TRAMSECT GRID	REACHING 30 cm Bilfth OR GREATER	SATURATED BOLL/WATER	FROZEN GROUND	BOCKS	DEVELOPHENT/ DISTURBANCE	HEAVY VEGETATION OR BOOTS	STEEP BLOPE	OTHER
ARCHORA	CI-VILLO	TEANSHIELICE LT	ME (Linear Featur	9 I.			L	L	_				
3	802	823	182 development (construction	334		491	41		362		112		
,	802	692	in progress) 312 development (construction	281		343	9 2		291	192	91		
12	902	861	in progress) 142 development (transmission	349		332	62		487		122		12
51	601	501	line) 202 marsh; 132 heavy vege- totion	238	6	652	252		21		n		11
52	601	992	12 morsh	405		781	81		33		92		21
56.0	401	571	43% marsh	234		571	361						n
57	701	821	182 Jake	336		572	391		12		32		
60	702	752	252 lake	370		762	62		71		102		12
62	981	723	28% private land	329		871			52		72		12
74	101	132	872 marsh	51		. 682	121				182		21
75	601	762	242 marsh	310		652	251				82		21
91	95X	1001		413		591	- 391				21		
92	702	742	263 march	300		68 Z	301				21		
102	01	01	100% mersh	0		20							
113	01	12	992 marah	5		1002							
150	302	341	662 march	139		862	31				n 11		21
126	301	502	50% mersh	204		701	281				21		
132	102	22	981 marsh	1		432	571						

,

٢

those unsurveyable or nearly unsurveyable (1%). A total of 4,496 tests were attempted in the surveyable portions of the sample units.

3.2.2 Linear Peatures 2, 3, and 4

è

s

1

The Gold Creek-Devil Canyon Railroad (Linear Feature 2), the Gold Creek-Watana Transmission Line (Linear Feature 3), and the lower three-fourths of the Watana-Devil Canyon Access Road (Linear Feature 4), as well as the middle Susitna River, are within the Fog Lakes Upland section of the Talkeetna Mountains division. The Upland section rises to elevations from 3,000 to 4,500 ft. and varies from extensive glacial sculpturing in the southwest to high, flat, unglaciated terraces in the northeast. Portions of the access road also transect foothills of the Chulitna Mountains, which consist of a compact group of glaciated mountain blocks interspersed with low passes.

Glaciers in the division are drained by large, braided tributaries to the Susitna and other rivers. The Susitna cuts through the mountains in a 1,000-ft., steep-walled gorge known as Devil Canyon. Lakes, primarily in the northern part of the division, are located in ice-carved, moraine-dammed basins, and are up to several miles in length. Geologic resources of the primary area of interest in the Talkeetna Mountains are northeasttrending belts of greenstones, graywacke, and argillite of Paleozoic and Mesozoic age.

The northern quarter of the access road from the Denali Highway is located in the eastern portion of the Broad Pass Depression division, which is a broad, glaciated lowland. The rolling morainal topography and central outwash flats at elevations of 1,000 to 2,500 ft. are underlain by permafrost. The area contains the upper Nenana and Susitna Rivers. Since drainages originate in nearby glaciers, the rivers are swift, turbid, and braided. Lakes are common and were formed either by water

filling moraine depressions, moraines damming basins, or buried glacial ice thawing into a concavity. The main part of the Broad Pass Depression is underlain by Tertiary coal-bearing rocks in fault contact with slightly metamorphosed Paleozoic and Mesozoic rocks. The lowlands, east of the Tertiary Age graben, are mantled with ground moraine.

3.2.3 Linear Feature 2, Gold Creek-Devil Canyon Railroad

Five sample units included in the Phase II survey are primarily associated with Linear Feature 2, two of which overlap slightly within Linear Feature 3 (Table 3-2). Three of the units were 68% to 79% surveyable, while two were between 38% and 50% surveyable. Sample Unit 486 was only half surveyed due to time constraints, but what was surveyed was 100% surveyable. A total of 1,452 tests were attempted in the surveyable portions of the sample units.

3.2.4 Linear Feature 3, Gold Creek-Watana Transmission Line

Ten sample units were included in the Phase II survey of Linear Feature 3, 6 of which overlap with the Watana Access Road (Table 3-3). Seven of the units were 85% to 100% and three were between 21% and 50% surveyable. However, two of the latter (Units 469 and 579) were only half surveyed due to time constraints. Therefore, surveyability of the portions surveyed would be in the 85% to 100% range. A total of 3,479 tests were attempted in the surveyable portions of the sample units.

3.2.5 Linear Feature 4, Watana-Devil Canyon Access Road

÷.

1

Twenty sample units were included in the Phase II survey of Linear Feature 4 (Table 3-4). Seventeen of the units were 85% to 100% surveyable; one was 77% surveyable; and two were 25% surveyable, one due to time constraints and the other due to the presence of sow and cub grizzlies. A total of 7,246 tests were attempted in the surveyable portions of the sample units.

Sample Units Along the Gold Creek-Devil Canyon Railroad

l	11 ANTICI- PATED	III PERCENT OF	IV PERCENT OF UNIT	V TOTAL NO. OF	VI ABBITIONAL TESTS	VII PERCENT OF	¥111 	1X ERCENTAG	X E OF PI	XI TS NOT MAA VII	ELI IG 30 en DEPT	XIII M	IIV
SAMPLE UNIT	ABILITY	UNIT SURVEYED AND TESTED SYSTEMATICALLY	NOT TESTED SYSTEMATICALLY AND REASON	SHOVEL TESTS ATTEMPTED IN TRAIISECT GRID	RECAVATED OUTSIDE TRANSECT CRID	MEACHING 30 cm DEPTH	SATURATED SOLL/WATER	FROZEN GROUND	ROCKS	DEVELOPMENT/ DISTURBANCE	SEAVY VEGETATION OR BOOTS	STEEP	OTHER
COLD C	HEARNIN	CANTON MAILBOAD	(Linear Feature	27									
*4861	952	502	502 end of project	277	10	712	52		152	23	42	12	21
4901	901	792	21% inscess- sible cliffs	324		621	112		152		122		
498	701	MI	252 Susitum R.; 252 private land 72 steep slope; 52 warsh	157		802	51		102		52		
499	801	793	15% steep slope 62 morsh 5	323		692	61		152		72	n	12
504	75E	752	dense vegetation 251 Susites 1.	361		581	212	12	82		102	12	12

* - partially surveyed units: 80 acres surveyed in Units 486, 469, and 519; 40 acres surveyed in Units 397 and 408

f - overlaps with Gold Creek-Matana Transmission Line

3-7

Sample Units Along the Gold Creek-Watana Transmission Line

ľ	11 ANTICI- PATED	ILI PERCENT OF	IV PERCENT OF WEIT	V TOTAL NO. OF	VI ADDITIONAL TESTS	VII PERCENT OF TESTS	A111	LX X ERCENTAGE OF P	XI ITE NOT BEACHIN	XII G 30 cs 3671	#111	£1V
SAMPLE UNIT	SURVEY- ABILITY OF UNIT	UNIT SURVEYED AND TESTED SYSTEMATICALLY	NOT TESTED SYSTEMATICALLY AND BEASON	SHOVEL TESTS ATTEMPTED IN TRANSECT GRID	EICAVATED OUTSIDE TRANSECT GRID	REACHING 30 on DEPTH OR GREATER	SATURATED SOLL/WATER	FROZEN GROVID ROCKS	DEVELOPMENT/ DISTURBANCE	NEAVY VEGETATION OR BOOTS	STEEP SLOPE	orate
COLD CI	LICE-WATAL	A TRANSMISSION 1	INE (Linear Fratu	ce 3)								
4431	1001	1001		405		182	302	602		21		
4445	1061 1061	992 1002	12 march	404		271 591	131 241	602 151		23		
*4695	952	471	31 morsh; 501 and of project	192		221	271	502		22 11		
4855	302	212	79% steep slope	87		391	21 271	522		n		
+519	1001	501	50% end of project	204		291		362		81		
522	1001	852	152 marak	464		372	82	521		31		
5258	902	751	252 marsh	355	•	371	102	523		12		
536 549	100X 100X	1001 1003		408 487		251 341	91 42	651 621				

• partially surveyed units: 80 acres surveyed in Units 486, 469, and 519; 40 acres surveyed in Units 397 and 408 § = overlaps with Matama Access Bood

•

Sample Units Along the Watana and Devil Canyon Access Road

ľ	II ANTICI- PATED	III PERCENT OF	IV PERCENT OF UNIT	TOTAL NO. OF	VI ADDITIONAL TESTS	VII PERCENT OF TESTS	VIII			XI TS NOT MEACULI			XIV
SAMPLE UNIT	ABILITY OF UNIT	UNIT SURVEYED AND TESTED SYSTEMATICALLY	NOT TESTED Systematically AND REASON	SHOVEL TESTS ATTEMPTED IN TRANSECT GRID	EECAVATED OUTSIDE TRANSECT GRID	NEACHING 30 cm DEPTH OR GREATER	SATURATED SOIL/WATER	7 NOZEM GROUND	ROCKS	DEVELOPHENT/ DISTUMBANCE	NEAVY VEGETATION OR NOOTS	STEEP SLOPE	OTHER
WATANA	AND DEVIL	CARYON ACCESS	CAD (Linear Vesta	re 47									
331	952	931	7% steep slope	379		502	22	71	382			22	12
341	1002	1002		408		192	311	32	462		12		
346	992	962	4% kettle lakes	295		152			852				
355	952	922	82 marsh	406		342	142		522				
356	952	972	32 seree alope	429		152	172		672		12		
359	202	872	132 march	355	89	652			352				
364	1002	1002		408	· 4	262	92		652				
372	99X	98X	22 merch	400	6	158	262		59Z				
382a	801	1002		408		122	122		721			42	
386	803	851	152 march	261		287	162		622				
388	802	861	92 steep slope 52 marsh	263		342	192		452		21		
+397	852	258	751 grinnly bears	**	34	302	462	52	142		22		
404	852	772	232 marsh	302	19	452	122		412		22		
405	952	932	72 march	381		262	102		632		22 1		
-408	902	252	752 and of project	68	12	401	62		342				
410	952	1001	• •	401	120	632	102		262				12
425	952	1002		408		212	272		491		42		
429	932	1001		472		418	162		428		11		
451	952	962	41 Lake; 21 bedrock canyon	386	65	411	32		552			12	
461	1002	1002		416		272	122		572		32	12	

• - partially surveyed units: 30 acres surveyed in Units 486, 469, and 519; 40 acres surveyed in Units 397 and 408

R.

- F - E

3.2.6 Linear Feature 5, Healy to Fairbanks Transmission Line

のため、「「「「「「「」」」」では、「「」」」」」

Section and

A small part of the central section of the Alaska Range division is included along the southern periphery of the Healy-Fairbanks Transmission Line. The Nenana Gorge, just south of Healy, is typical of the superposed drainages which cross-cut the 6,000-9,000-foot glacial ridges and enhance the 9,500 to 20,000-feet, snow-capped mountains. The Alaska Range contains numerous valley glaciers which produce swift, braided drainages. Major faults parallel the range and a complex of synclines has forced rocks of Paleozoic and perhaps Precambrian age to the flanks. Tertiary rocks have easily eroded to form lowlands. A minimum of four periods of glaciation are recognized in the Range, permafrost is extensive and well developed, and solifluction features are present.

ŀ

Ì.

Ł

į.

١.

۰.

Ł

L.,

٠.

àu.

t.

From Healy to a point between Browne and Rex, the southern third of the Healy-Fairbanks Transmission Line is in the division known as the Northern Foothills of the Alaska Range. The foothills are broad, east/west, flat-topped ridges 2,000 to 4,500 ft. high, interspersed with broad, rolling lowlands 700 to 1,500 ft. high. Although primarily unglaciated, some valley glaciers from the Alaska Range extended into the foothills. Drainages, flowing mainly north-northwest across the foothills from the mountains, have cut very deep canyons into the ridges and created terraced valleys in the lowlands. Extensive badlands have been incised into the soft substrate of Tertiary age. Lakes and ponds in the division are of thaw or morainal origin. There are extensive permafrost, frost polygons, and solifluction features. Bedrock geology of the ridges is schist and granite intrusives, while the lowlands contain poorly consolidated Tertiary rocks and thick beds of subbituminous coal capped with coarse conglomerate.

The majority of the remainder of the Healy-Fairbanks Transmission Line is located in the Tanana-Kuskokwim Lowland division, which is under 1,000 ft. in elevation. Surface topography in-

cludes outwash fans from the Alaska Range; bands of morainal deposits at the upper ends of some fans; broad, deep, terraced valleys associated with rivers originating in the Alaska Range; flood plains of the Tanana and Kuskokwim; and extensive, stabi~ lized dune fields between Nenana and McGrath. Drainages include the major east/west-flowing rivers plus braided glacial streams originating in the Alaska Range. Thaw lakes occur in fine alluvium, while thaw sinks are in loess. The area is unglaciated and contains permafrost and dry permafrost. Coarse to fine outwash fan deposits and alluvial fill several hundred feet thick are the primary geologic features below the transmission line corridor. £

The final physiographic division, along the north edge of the study area, is the Yukon-Tanana Upland. The area near Fairbanks consists of flat, alluvium-filled valleys, 1,000 to 1,500 ft. in elevation, generally less than 0.5 mile wide, located between broad, gentle, generally flat-topped divide ridges and spurs between 1,500 and 1,300 ft., which are in turn topped by tight clusters of rugged mountains rising from 4,000 to 5,000 ft. Although considered within the Yukon drainage basin, streams along the south half of the division flow into the Tanana River. There are few thaw lakes in valley floors and low passes. There are no glaciers, although active mass wasting occurs in the mountains, ice wedges are present in frozen valley mucks, and scattered permafrost is present. The portion closest to the study area has thick, windborn silts on slopes, with thick muck over deep gravels in the valleys.

Thirty-six sample units were included in the Phase II survey of Linear Feature 5 (Table 3-5). Fifteen of the units were between 80% and 100% surveyable; seven were between 55% and 78% surveyable; and the fourteen which were less than 48% surveyable included one unsurveyable and four nearly unsurveyable (12%, 10%, 3%, and 1%) units. Changes in recording practices after completion of the survey of the first eight units resulted in a total of 7,317 recorded tests and an estimated additional 1,604 tests

Sample Units Along the Healy-Fairbanks Transmission Line

1	11 ANTICI-	III PENCENT OF	IV PERCENT OF UNIT	Y TOTAL NO. OF	VI ADDITIQUAL TESTS	VII PESCENT OF TESTS	¥111	LX PERCENTAG		XI TS NOT BEACHIN	-	#111 #	XIV
SAMPLE UNIT	SURVEY- ABILITY OF UNIT	UNET SURVEYED AND TESTED SYETEMATICALLY	NOT TESTED SYSTEMATICALLY AND REASON	SHOVEL TESTS ATTEMPTED IN TRANSIECT GRID	ELGAVATED OUTSIDE TRANSEGT GRID	MEACHING 30 cm BEPTH OR GREATER	BATUBATED SOIL/WATER	PROZEH GROUND	BOCKE	DEVELOPHENT/ DISTUBBANCE	HEAVY VEGETATION OR BOOTS	STEEP SLOPE	OTHER
11/14/2	MUMBE	TRANSMISSION LIN	E (Linear Feeture	57								·	
136	401	291	102 Hennan R. 612 steep slope	117		852			92		42		21
143 146	981 981	981 551	21 morsh 453 bison pastur plowed field, gr road			261 963	602 12	142	12		22		
152	902	751	152 moreh; 52 ereek; 52 Porks Bighway	306	2	502	2.52	13.52	252	61	21	12	
163	70I	681	322 Henana R.	277		232	332	352	81				12
169	501	262	742 marsh	105		951		38					21
174	358	412	15% steep slope 39% mersk 5% railroad bed	168		132	602	262					12
175	601	482	15% steep slope 32% mersh, pond 5% railroad bed	194		271	372	362	22				
182	941	1001		416	13	37.58	n	33.58	201		0.51	0.58	12
183	801	902	101 merch	369	31	592	82	112	212		12		
168	952	1001		406		622	4.51	92	201		12	12	0.52
1884	208	721	281 steep slope	293		313	101	152	381		22	32	12
189	1001	100X		544	40	171	132	291	381		22	12	
190	1001	95X	SI streme	388		63	232	718					
199	402	122	882 march	-49		291	782						
201	752	381	623 marsh	155		573	362	32	42				
209	252	01	902 mersh; 102 dense mized fore			01							
213	101	31	972 march	12		50		1002					
217	25X	341	62I mersh	154		232	223	558					

3-12

7

. .

.

Table 3-5. Sample Units Along the Healy-Pairbanks Transmission Line (cont.)

1	11 ANTICI- PATED	III PERCENT OF	IV PERCENT OF UNIT	V TOTAL NO. OF	VI ADDITIONAL TESTS	VII PERCENT OF TESTS	¥111	1X ERCENTAG	X COF PI	HI ITS HOT REACHIN	XII 12 30 cm DEPT	<u>x111</u> #	XIV
SAMPLE URIT	SURVEY- ABILITY OF UNIT	UNET SURVEYED AND TESTED SYSTEMATICALLY	NOT TESTED SYSTEMATICALLY AND BEASON	SHOVEL TESTS ATTEMPTED IN TRANSIECT GRID	EXCAVATED OUTSIDE TRANSECT GRID	BEACHING 30 cm SEPTH OR GREATER	SATURATED SOLL/WATER	TROZEN GROUND	NOCKS	DEVELOPHENT/ DISTURBANCE	NEAVY VEGETATION OR NOOTS	STEEP BLOPE	OTHER
TIMAD	ALLIA SE	1./A	E (Linear Yesture	J. cantinued)									
225 229	25X 25X	102 363	901 mersh 642 mersh	42 1148		01 231	621 171	301 571	•		31		
24 5 254 255	251 991 951	12 972 892	992 marsh 32 marsh 123 lake,	0 396 476	2 23	02 132 151	322 162	552 692					
270	701 751	802 942	otream, warsh 202 marsh 62 marsh, creek	332 384	29	591 231	92 132	23.52			81		0.51
282	95X	782	172 heavy veg. 52 highway	327	•	812		42		92	42		
291 296++	901 401	1001 631	 172 marsh, 203 storp slopes	409 (156)		6.52 (702)	4.52 (102)	892 (102)	(102)				
303++ 304++ 307++	951 901 251	802 802 252	203 mersh 203 mersh 203 mersh 753 steep slope	(330) (330) (117)		(221) (201) (711)	(11) (121)	(772) (682) (292)					
308**	291	341	551 steep slope 52 gravel pit 62 Parks May.	95		421		521	22	28	21		
313++	852	801	201 marsh, thick vegetation	(257)		(402)		(602)					
314-0	902	752	25% marsh, thick vegetation		14	(14.52)	(41)	(772)			(2.52)		
315**	801	601	402 marsh, pend, thick vegetation			(372)	(42)	(592)					

++ - not as systematically tested as later units () - estimates; actual figures not tabulated

۳.

2

(in seven of the first eight units) in surveyable portions of the sample units.

ş

3.2.7 Results of the Sample Survey

The data presented in the summary tables (see Tables 3-1 through 3-5) are very useful in evaluating the utility of using, predetermined Terrain and Vegetative Units to test projected or anticipated against actual survey coverage of the Sample Units. Table 3-6 further summarizes the data on the basis of percentage The actual survey coverage of 46% of the point differences. Sample Units was within 5% of what had been predicted using Terrain and Vegetative Unit information. Surveyability, the predicted survey coverage of a unit, was obtained by calculating how much acreage of Terrain Units, such as landslide deposits or steep bedrock deposits (cliffs), and Vegetative Units, such as marshland or developed/water, existed within each Sample Unit. By combining the first three columns of the table, it can be determined that actual coverage of 83% of the units was within 20% of the predicted coverage. Reasons for reduced surveyability of the 33 units varying from expected surveyability by 6% to 20% include: more water or marshland than projected (13 units); less water or marshland (13); more cliffs or steep slopes (4); fewer cliffs or less steep slope (1); more dense vegetation (1); and more construction (1). For the 15 units with greater than 20% difference, the reasons include: more water or marshland (6); end of project (4); presence of posted private land (3); presence of bears (1); and more cliffs than projected (1).

The breakdown by Linear Feature in Table 3-6 also indicates where the use of Terrain and Vegetative Unit data best predicted actual conditions. Again, using the 0-5% column, the predictions were accurate in at least half the cases in Linear Features 1, 3, and 4, and least accurate in Linear Feature 5.

Summary Comparison of Anticipated Versus Actual Surveyability of Sample Units by Linear Feature

Linear	Variati	on from Anti	cipated Surv	veyability	Total # of
Peature	0-54	6-10%	11-20%	>20%	Sample Units
1	10 (56%)	1 (5.5%)	5 (27.5%)	2 (11%)	18 (20%)
2	2 (40%)	0	1 (20%)	2 (40%)	5 (6%)
2 3 4	5 (50%)	1 (10%)	2 (20%)	2 (20%)	10 (11%)
4	15 (75%)	2 (10%)	1 (5%)	2 (10%)	20 (22.5%)
5	9 (25%)	8 (22%)	12 (33.5%)	7 (19.5%)	36 (40.5%)
Total # of Sampl	e				
Units	41 (46%)	12 (13.5%)	21 (23.5%)	15 (17%)	89 (100%)

The predictability percentages would actually increase for all Linear Features if units not totally surveyed due to time and other constraints were deleted. Under those circumstances, the 41 units in the 0-5% category would represent 50% of the total and predictions in four of the five Linear Features would be accurate to within 5% in over 58% of the units.

It appears that, by using the Terrain and Vegetative Units, accurate prediction of surveyability within 5% is possible for about half the cases. If the degree of accuracy required is adjusted to 10%, the predictability increases to 60%, and for 20% accuracy, 83% of the cases are predictable. This would be a useful tool for estimating how much of any unit is surveyable and planning survey and testing accordingly. In such a case the 5% to 10% accuracy would probably be preferred.

3.3 CULTURAL RESOURCES

3.3.1 Introduction

È

í

ì.

k

È.

L

1

A total of 51 cultural resource occurrences were documented during the Phase II fieldwork (Table 3-7). Of these resources, 40 are generally labelled cultural resource sites, defined as locations containing diverse materials and/or features resulting from past human activity. The size of sites varies depending upon the number of occupants, length of occupation, and activities conducted. Sites are considered single component when the evidence indicates occupation and use by a single prehistoric, ethnohistoric, or historic culture. Multi-component sites are those which indicate occupation by more than one previous culture.

In addition to prehistoric and historic sites, a category designed as "recent" was recorded. Recent sites consist of features or activity areas, such as hunting camps or trap lines, that are generally just a few years old. Information recorded for recent cultural resource sites was generally less detailed than that for sites considered prehistoric, ethnohistoric, or historic. No Alaska Heritage Resource Site (AHRS) numbers have been assigned to these sites.

The primary reason for inventorying recent sites was to provide general contemporary land use information which may eventually be usable in comparison with earlier periods of use of the study area. Information on recent sites also can provide insight into the time it takes for site integrity to be lost.

The final category of cultural resource occurrence is the isolated find (isolate), of which ll were recorded. Isolates are single occurrences of cultural material that are limited in content and have no contextual information through which to evaluate their place in the prehistory or history of the area, other than intrinsically. Recent isolates are included in this category.

1

i.

٤

ال

....

μ.

i.

È.

۰.

÷....

-

Cultural Resource Sites and Isolates Located During the Phase II Sample Survey

Sample		
Unit	Sites (including Recent)	Isolates (including Recent)
		recent,
3	ANC 536	
	ANC 537	
	3-1	
7	ANC 538	
75	TYO 67	
	TYO 68	
504	TLM 276	504-1
		504-2
444	TLM 108a	
549	549-1	
364		364-1
		364-2
		364-3
382a	HBA 250	
	HEA 251	
404	TLM 274	
451	TLM 110a	
461 163	TLM 275b	
103	FAI 252 163-1	
182	PAI 253b	
102	182-1	
245	245-1	
254	254-1	
255	255-1	
278	278-2	278-1
282		282-1
		282-2
303	303-1	
307	307-1	
308		308-1
313	FAI 254	
	313-1	
	313-2	
314	FAI 255	314-1
	FAI 256	
	FAI 257	
	FAI 258	
	314-2	
	314-3	

(continued)

Table 3-7. Cultural Resource Sites and Isolates Located During the Phase II Sample Survey (continued)

÷.

Sample Unit Sites (including Recent) Isolates (including Recent) 315 FAI 259 315-2 FAI 260 FAI 261 FAI 262 FAI 263 315-1 315-3 aPreviously recorded site bLocated adjacent to Sample Unit

Locations where isolates were located were sufficiently tested to determine that indeed they were isolates and not sites. No AHRS numbers have been assigned to any isolates.

The general distribution of cultural resources in relation to the Linear Features and the specific Sample Unit with which they are associated is presented in Figures 3-2 through 3-4. Appendix B provides narratizes, maps, and site forms for sites and isolates located during Phase II.

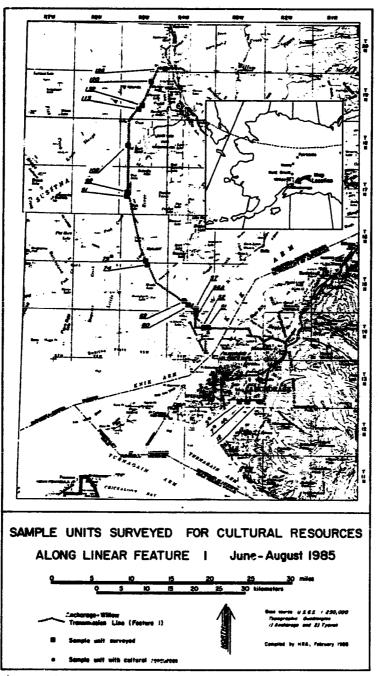


Figure 3-2

la serie de la companya de la company

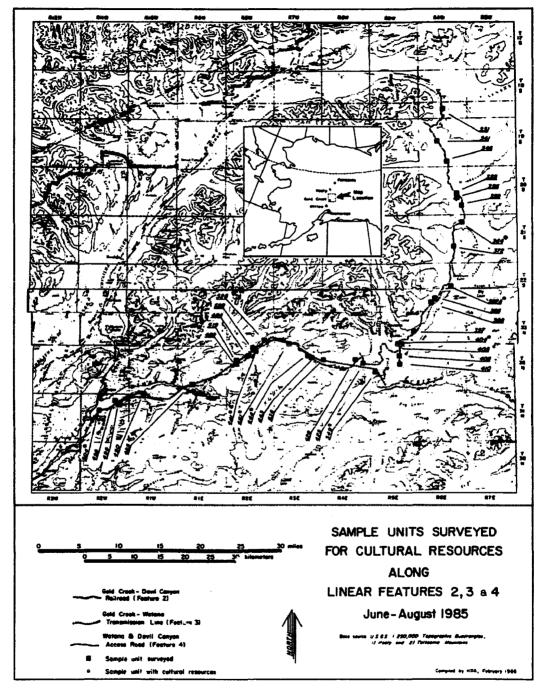
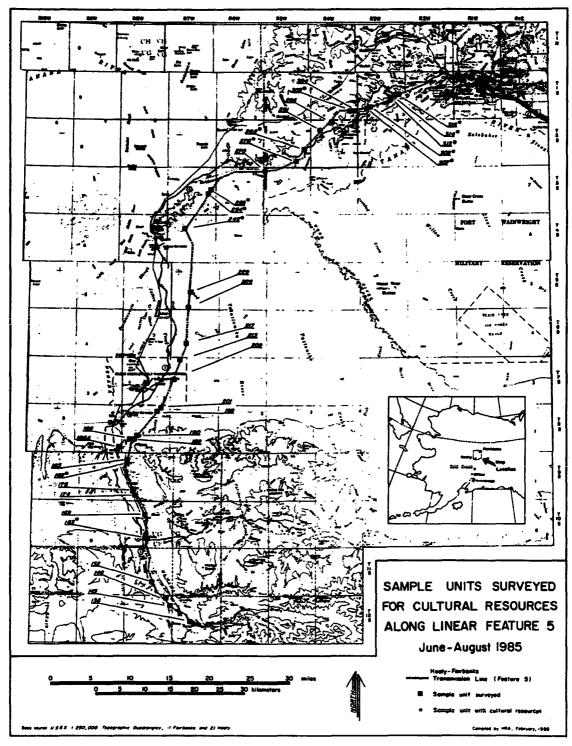



Figure 3-3

PURCHASED INCH

Figure 3-4

The prehistoric, ethnohistoric, and historic sites were assigned to site types developed and defined during Phase I research (Greiser et al. 1985:4-19--4-30) in order to conduct the statistical analyses necessary for model refinement. These site types are chipping station/lithic scatter (Site Type 1), cache pit (Site Type 5), historic building/structure (Site Type 21), mining camp or operation (Site Type 27), and recent military activity (Site Type 31). One additional site type was added as a result of Thase II work. This type is the historic dump or trash scatter (Site Type 32), which includes historic material concentrations or scatters containing cans, bottles, stove parts, domestic items, utilitarian items, etc., which have been discarded or abandoned.

Recorded isolates range from prehistoric flakes and a biface fragment, to part of a historic small gauge rail, to recent material including cans; a bottle; a large, wooden-handled knife; a steel trap; a coffee pot; and a razor-tipped arrow. The recent bottle was one of the few items recovered from systematic testing.

3.3.2 <u>Summary of Cultural Resources</u>

ŧ

۰.

۴.

۰.

۰.,

•

۰.

The 40 cultural resource sites (Table 3-8) can be divided into the following categories: previously unrecorded prehistoric (5); previously recorded prehistoric (2); ethnohistoric (2); historic (15); and recent (16). The two previously recorded sites have been discussed in detail (Dixon et al. 1985) and will not be addressed here.

Recent sites in the Fairbanks and Healy areas appear to illustrate continued, though varying, land use patterns. Those in other areas may reflect a new pattern of expansion into areas which demonstrate no previous documentation of extended use.

Prehistoric, Ethnohistoric, and Historic Sites Located During the Phase II Sample Survey

AHRS Site Number	Cultural Materials and/or Features	Results of Testing	Period of Occupation	Functional Category
ANC 536	3 pits	No testing: features obvious	Rost-1900 A.D.*	Nilitary related?
ANC 537	Approx. 109 pits	No testing: features obvious	Post-1900 A.D.*	Military related?
ANC 538	29 pite	No testing, features obvious	1925-1950 A.D.	Military related?
TYO 067	1 pit	17 tests: nothing definitive	Unknown	Cache pit?
TYO 068	1 pit	16 tests; nothing definitive	Unknown	Cashe pit?
TLN 274	Lithic material	50 tests; 2 cultural levels	Component 2, 450-550 A.D. Component 1, over 3,000 B.C.	Camp? Samp?
TLH 275	Lithic material	No testing; outside Sample Unit	Unknown	Camp?
TLN 276	Historical material, possible burned structure	10 tests; subsurface historic miterials	Post-1912	Cabin or tent camp?
HEA 250	Lithic material	12 tests; no subsurface material	Unknown	Onknown
HEA 251	Lithic mterial	16 tests: no subsurface material	Unknown	Unitnown
PAI 252	Historic material	Limited probing; material extends slightly subsurface	Probably 1925-1950	Cabin?
PAI 253	Lithic material	10 tests; at least 1 subsurface component	Unknown	Camp?
PAI 254	Collapsed cabin, 2 prospect pits, historic material	No testing; features obvious	1900-1932	Miner's cabin
PAI 255	Tent(?) hase, 2 prospect pits, historic material	Limited probing; material extends slightly subsurface	1900-1932	Miner's camp
PAI 256	Collapsed cabin, 2 prospect pits, 1 tree cache, historic anterial	No testing; features obvious	Possibly 2 components: 1890-1915, 1919-1940 or 1950	Miner's cabin
PAI 257	Collapsed cabin, 2 prospect pits, limited material	No testing, features obvious	Post-1900*	Miner's cabin
PAI 258	Cribbed log prospect pit	No testing; features obvious	Post-1900*	Hining
FAI 259	Partially collapsed cabin, outhouse, three dumps, material scatter	No testing; features obvious	1930-1960	Niner's(?) or trapper's cabin
FAI 260	Cribbed log prospect pit	No testing; features obvious	Post-1900*	Mining
FAI 261	Two cribbed log prospect shafts, 3 pits	Limited testing; no subsurface	Post-1900*	Mining
FAI 262	Historic scatter	Limited probing	1930-1950 or 1960	Temporary camp?
PAI 263	Historic scatter	No testing: material on surface	Post-1900*	Duno

*Probable date

3-23

- T.

Summary details of the remaining cultural resource sites are presented in Table 3-8. The table briefly describes cultural materials or features recorded at each site; number and results of subsurface tests; chronological placement of the site based on cultural materials observed; and tentative categorization, if possible, of each site based on the features and materials observed.

The five prehistoric chipping station/lithic scatters ranged from surface visible with no subsurface (HEA 250 and HEA 251), to surface visible with subsurface (FAI 253), to subsurface multicomponent with no surface visibility (TLM 274). A single site (TLM 275) located outside the sample area was recorded on the basis of surface materials but not subjected to testing.

Ł

k

Ł

1

-

Ť.

۰.

Deposition occurring at prehistoric sites appears to be somewhat variable based on the limited sample obtained. Even sites located on fairly exposed surfaces within several miles of each other (HEA 250, HEA 251, and TLM 274) appear to have been subjected to variable deposition rates. In the case of TLM 274, development of soils is at least partially explained through the deposition of volcanic ash layers which were not subsequently eroded.

The pattern of location of prehistoric sites generally fits two of the intuitive patterns suggested by previous investigators. All of the sites are located where the view is good to excellent, and in four cases (HEA 250, HEA 251, TLM 274, TLM 275), outlet drainages or confluences are within the nearby viewshed. Thus, the current data support the intuitive site location models hypothesizing overlooks and outlets/confluences as prime site locations.

Two sites are tentatively identified as cache pits associated with former Athapaskan occupants of the area (TYO 067 and TYO 068). Although no conclusive data were obtained during

testing and recording of the sites, a number of factors seem to indicate their use as cache pits. The general size and shape of the pits fit the range for previously recorded cache pits. The sites are located on a well-drained terrace not too far from the Little Susitna River, and in close proximity to a trail and ford of the river used by the Tanaina. A recent fishing camp and tree cache are located nearby.

The 15 historic sites include historic building/structures (Site Type 21 - FAI 254, FAI 255, FAI 256, FAI 257, FAI 258); historic mining camps or operations (Site Type 27 - FAI 258, FAI 260, FAI 261); recent military (Site Type 31 - ANC 536, ANC 537, ANC 538); and historic dump or trash scatter (Site Type 32 - TLM 276, FAI 252, FAI 262, and FAI 263).

The primary distribution pattern is large in numbers of historic sites in sample units adjacent to the major population centers of Anchorage and Fairbanks. Three sites are tentatively identified as related to movements of United States ground troops stationed in Anchorage during World War II. Members of the Council on America's Military Past (formerly the Council of Abandoned Millitary Past) who were contacted indicated that, although the descriptions of pits sounded unusual for fox holes, it was possible that some other related activity might have occurred. It is possible that the site features could be tests or prospecting pits, which would then resemble the even stronger pattern of mining-related sites in the Fairbanks area. Further investigation in the Anchorage area of adjacent sites, such as the cabin foundation near Sample Unit 7, as well as the recorded sites, should include additional archival research to better address guestions of site function.

A summary of the historical events prominent in Alaska in the late 1800s and early 1900s provides insight into sites recorded in the Fairbanks area. The discovery of gold at Turn-

ί.

again Arm in 1895 radically altered the course of Alaskan his-This strike, and a subsequent discovery on the Klondike tory. River two years later, resulted in an influx of miners. In 1898 and for several decades thereafter, the U.S. Government, under the auspices of the U.S. Geological Survey, funded major expeditions into the Alaskan interior. The information obtained during these surveys increased interest in Alaska as a potentially mineral-rich area. In addition to prompting increased government funding for exploration, the gold strikes in the mid-1890s resulted in widespread prospecting ventures throughout the interior. Miners worked in virtually every major drainage, hoping to locate rich mineral deposits.

Although prospectors first discovered gold within the study area near Fairbanks in the 1870s, they were ill-equipped to develop the deposits. It was not until the early 1900s that the gold deposits in the Fairbanks region were mined productively. Strikes on Pedro, Cleary, and Fairbanks Creeks during the summer of 1902 led to a rapid influx of miners and settlers, and the growth of both Fairbanks and Chena. The Fairbanks mining boom was short-lived, however, and by 1920, the population of Fairbanks had dropped from a high of over 5,000 in 1904 to less than 1,200.

Other mining districts in the study area flourished briefly shortly after and as a direct result of the Fairbanks strikes. Most of the areas that included the Yentna and Willow Creek Districts were discovered by miners who were either en route to Fairbanks or who had been unsuccessful in prospecting the Fairbanks placers.

The evolution of Alaska's economy during the early 1900s prompted the U.S. Government to develop dependable transportation facilities. The extensive network of overland trails that miners and settlers used to travel from the coast to interior settle-

١.

ments were often unreliable due to weather. Thus, in 1915, the U.S. Government began construction of the Alaska Railroad. Although the project was not completed until 1923 and proved far more expensive than initially expected, it provided reliable and relatively easy access to previously isolated areas.

The mining boom and the construction of the Alaska Railroad characterized the economic development of Alaska during the first two decades of the 1900s. These two developments were directly responsible for the establishment of support industries, including agriculture and service-related businesses. As stated above, the mining boom was brief and relatively few miners were However, many prospectors remained in the various successful. mining districts, working the known deposits during the spring and summer months and trapping fur-bearing animals in the winter.

Out of the 10 historic sites recorded along Alder Creek, 8 have been identified as related to mineral prospecting. The remaining two may be material scatters related to mining or possibly trapping. In any case, the oldest occupation may predate 1900. At least broad bracketing dates have been established for most of the sites on the basis of diagnostic features, or even dates on bottles and cans (Fontana et al. 1962; Tolouse 1971; Ward et al. 1977). A review of documents (see Section 6.2. References Reviewed) on file at the Fairbanks District Recorder's Office indicate that 377 mining claims were filed along Alder and Emma Creeks between 1930 and 1940, although no map was prepared. As a result of this archival inventory, records of mining location notices were reviewed which may contain sufficient detail to recreate a map of mine claims. Preparation of such a map should be undertaken as part of additional research on selected sites in Sites FAI 254, FAI 256, and FAI 259 have well-defined the area. features including at least partial cabins and subsistencerelated materials.

Ł

i,

ŝ

3.4 ETHNOGRAPHIC INTERVIEWS

During the course of the Phase II fieldwork, four interviews were conducted with Athapaskan people who were known to have knowledge, or who were thought might have knowledge, of various parts of the Linear Peatures area. The interviews were conducted to gather as much additional information as possible about sites located during the field survey; to gather initial information about additional sites on or near the Linear Features outside the Sample Units; and to identify other knowledgeable individuals for further contact.

Interviews were conducted with Shem and Billy Pete (Upper Cook Inlet Tanaina), who formerly lived, trapped, and hunted in a large area south of Willow to the Little Susitna River; with Henry Peters and Jake Tansy (Western Ahtna), who trapped and hunted in the Deadman Creek area and were knowledgeable through oral history of people, places, and events in the general area; and Thomas Albert (Lower Tanana), who was generally knowledgeable about Athapaskan use of and movements through the study area, but who was more familiar with areas further east.

Attempts were made to visit recorded sites with each interviewee, but both Shem Pete and Thomas Albert were not able to walk to the sites recorded in their areas due to their health and difficult access to the sites. Henry Peters and Jake Tansy were both taken to accessible prehistoric sites in their areas, but they had no knowledge of them.

In all cases, the interviewees knew of a range of sites in their specific areas. Sites on or reasonably near the Linear Features are listed in Table 3-9. More information on these sites, as well as sites further from the study area, is presented in Appendix C. The age range of sites varied from early contact or possibly even precontact sites known through oral history, to abandoned cabins or campsites known first hand to sites still occupied as part of their annual subsistence cycle.

Table 3-9

Cultural Resource Sites On or Near the Linear Features Identified through Interviews with Jelected Athapaskans

Linear Feature 1

- Cabin site at the mouth of Shem Pete Slough built in 1925 and used until 1940s by Shem Pete and Wilson Nicolie families; apparently washed away.
- (2) Head of Shem Pete Slough terminus of one of the trails from Red Shirt Lake used historically and probably earlier; canoe storage area.
- (3) Red Shirt Lake Village previously recorded (see Fall 1981:382-384); also contains a nearby abandoned trapper's cabin used over the past 30 to 40 years.
- (4) No identifiable locations, but cache pits should be fairly numerous throughout the area.

Linear Feature 4

L

- Trapper's cabin (or possibly two cabins) southeast of Deadman Creek near where it enters the timber (not located).
- (2) Tent camp located at the confluence of Deadman Creek and the outlet stream from Pass Lake; used by Jake Tansy as a trapping base camp from 1926-1940; cultural material still visible.
- (3) Salt or mineral lick area south of the summit between Deadman and Brushkana Creeks; no known or visible sites.
- (4) Laughing Ole's (prospector) cabin, located near a tributary to Lilly Creek; built around 1924; cabin collapsed but still visible.

(continued)

Table 3-9. Cultural Resource Sites on or near the Linear Features Identified through Interviews with Selected Athapaskans (continued)

Linear Feature 5

and the second stands

- (1) Old Indian village at Suntrana.
- (2) Old Indian village at Healy.
- (3) Old Indian trail in the vicinity of the current route of the Alaska Railroad, at least from Healy to Rex.
- (4) Old Indian trail paralleling the Alaska Range and running at least from Toklat to Ferry, then east to Japan Hill.
- (5) Clarence Bundy's cabin, located next to the railroad south of Browne; cabin still standing.
- (6) Happy Jack's cabin, located near the railroad just north of Browne; current status unknown; one of the buildings possibly is at Browne.
- (7) Barlow cabin, located near the railroad somewhere between the previous two cabins (#5 and #6 above); current status unknown.
- (8) Stite's (?) Roadhouse, located either between Browne and Rex or possibly at the river crossing near Rex; current status unknown.
- (9) Nenana River ford near Rex [formerly Colby(?)]; used by Indians prior to any bridges across the river.
- (10) A series of fishing/hunting cabins of uncertain age are located along the Tanana River in the general vicinity of Linear Feature 5. These include cabins identified as belonging to Teddy Elkins, Gene Lake, the Wrights, Mrs. Albert (Thomas Albert's mother) at Six Mile, the Targhee's, and Frank Jones.

3-30

As indicated by ethnographic data reviewed and summarized during Phase I research, the Tanaina area, which is most closely associated with Linear Feature 1, produced the only known village sites. The village sites visited or learned about are located near inlets or outlets of larger lakes where salmon could be exploited and other food and fuel resources would be available during the winter. It should be noted that even at Red Shirt Lake Village, which was occupied into the early 1900s, the primary visible evidence at the site is a series of pits which are heavily revegetated. This kind of evidence suggests that at least Athapaskan sites used on a short term basis will have an even more subtle expression archeologically and that finding knowledgeable elders may be a key to initial site location.

E.

F

L

4.0 REFINING THE PREDICTIVE MODEL

Thomas A. Foor Predictive Modeling Consultant

4.1 EVALUATION OF SAMPLE SELECTION MODIFICATION

L

L

1

4.

Several factors necessitated changes in the proportional distribution of acres in Vegetative and Terrain Units. These factors have been detailed in Chapter 2. The results, which varied from unit to unit, are summarized from Table 2-1 (Tables 4-1 and 4-2), but the final effect was negligible. For example, in the research design for testing the predictive model (Greiser et al. 1985a:6-36), it was proposed to survey 346 acres classified as the "Organic Materials" Terrain Unit (A1). Due to changes in the sample, discussed in Chapter 2, only 258 acres were in the surveyed sample. Since the proportion of acres proposed for survey in each unit was judged to be similar to the proportion of acres in the corresponding population unit (Greiser et al. 1985:6-37 to 6-39), the appropriate question to ask of the surveyed sample is whether the rank order of topographic and vegetative units in the survey sample can be predicted from knowing the rank order of numbers of acres in the population's units.

Again, the Spearman rank order correlation coefficient was selected to measure association between each pair of series. In the original sample, the calculated rank order coefficient between the proposed Vegetative Unit sample and the study area Vegetative Unit ranks was $\underline{r}_s = 0.99$ (Greiser et al. 1985:6-37). The correlation coefficient between the surveyed sample and the project area ranks (Table 4-3) is $\underline{r}_s = 0.95$. This observed value also exceeds the table value of 0.783 for the nine Vegetative Units at the 0.01 significance level. Thus, it is concluded that

	Tabl	e 4-1	
Acreages of		in the Sample and a	
	Projected	Projected	Observed
	Acres in	Acres in	Acres in
Vegetative Unit	Sample	Population	Sample
Cl	944	7,527	1,408
Ç2	1,237	6,521	2,960
Ċ3	455	3,792	2,274
C4	478	7,474	2,510
C5	2,672	16,035	541
C6	3,996	26,611	2,279
C7	3,709	18,831	1,139
C8	269	1,462	649
Ċ9		67	

there is very little lost in predictability and one order can be predicted by knowing the other.

As field crews surveyed Sample Units, they recorded dominant vegetation percentages that they observed. As mentioned in Section 2, the data recorded by the archeological crews are likely to differ somewhat from that which would be recorded by trained biologists. The data, presented in Table 2-1 and summarized in Table 4-1 and Table 4-3a, indicate some gross discrepancies, probably due to lack of training in vegetation categorization. The correlation of coefficient between the projected or anticipated vegetation in the sample and the observed vegetation was $\underline{r}_s = 0.33$, below the critical value of 0.60 at the 0.05 significance level. When comparing the rankings of the projected versus the observed vegetation combining Vegetative Units 3/7 and 4/5, a closer correlation is observed. The value of the Spearman's Rank Order Coefficient is 0.893, which is significant at the 0.01 level. This indicates that the rank order of the anticipated vegetation can be used to predict the observed vegetation.

L

Ł

Table 4-2Arreages of Terrain Units in the Sample and Survey Areas							
Terrain Unit	Acres in Sample	Acres in Population					
AL	258	2,547					
A2	616	4,632					
A3	1,674	9,314					
A4	0	701					
A5	545	2,671					
A6	475	3,256					
A7	455	4,975					
A8	609	4,342					
A9	948	6,205					
A10	565	3,285					
A11	0	316					
A12 A13	210	896					
A13 A14	393	3,579					
A14 A15							
A15 A16	1,161 390	5,986 1,515					
A17	0	80					
A18	839	6,871					
A19	0	91					
A20	ŏ	î					
A21	182	1,465					
A22							
A23	19	51					
A24	0	210					
A25	0	594					
A26	15	15					
A27	1,363	7,559					
A28	. 874	4,809					
A29	50	243					
A30	5	306					
A31	241	1,512					
A32	196	798					
A33	509	3,180					
A34	226	1,222					
A35	14	14					
A36 A37	513 150	2,965 840					
A37 A38	265	1,274					
	603	1,2/3					

Ľ

ľ

Ē

ľ.

ľ

ľ

L

1

ľ

-

I L

L

L

L

ſ

! .

Rank Propo	_	able 4-3a ve Units in Samp	le and Survey Areas
Vegetative Unit	Rank Proportion of Projected Acres in Sample	Rank Proportion of Acres in Projected Project Area	Observed Acres in
C1 C2 C3 C4 C5 C6 C7 C8 C9	5 6 3 4 7 9 8 2 1	6 4 3 5 7 9 8 2 1	5 9 6 8 2 7 4 3 1
Rank Propo	rtions of Vegetati	ble 4-3b ve Units in Samp e combined)	le and Survey Areas
C1 C2 C3/7 C4/5 C6 C8 C9	3 4 7 5 6 2 1	4 3 5 6 7 2 1	3 5 7 6 4 4 1

Munning.

4

à

ł

Ł

l

1

é.

Ĺ

Ł

ŧ

Å.

L

L

1

1

1

Ŀ.

Similarly, the data were reviewed to determine whether the survey sample still suggests agreement between the ranks of acres for each Terrain Unit in the sample and the ranks of acres for each Terrain Unit in the study area (Table 4-4). The calculated coefficient $\underline{r}_S = 0.99$ exceeds the critical value of 0.47 for 0.01 significance level and 31 ranks. This result is almost identical to the value obtained for the proposed sample and the study area (Greiser et al. 1985:6-39). This again suggests a great deal of predictability between the study area ranks and the sample ranks.

	Table 4-	
ank Propor	tions of Terrain Units	in Sample and Survey Areas
errain	Rank Proportion of	Rank Proportion of
Unit	Acres in Sample	Acres in Project Area
Al	13.5	16
A2	24	24
A3	28	31
A4	1.5	
A5	21	17
AG	18	20
A7	17	26
A8	23 .	23
A9	25	28
· A10	22	21
A12	10	10
Al4	16	22
A15	26	27
A16	15	14.5
A17	1.5	3
A18	23	29
A21	8	13
A23	6	6
A26	5	1.5
A27	27	30
.428	24	25
1/29	0	4
A30	3	5
A31	12	14.5
A32	9	8
A33	19.5	19
A34	11	11
A35	4	1.5
A36 A37	19.5	18
	7	9
A38	13.5	12

Table 4-4

ľ

Ī

l

r L

1

*

3-6

.

Ĺ

1 i

L

L

L

L

4.2 EVALUATION OF SURVEY DATA

Ĺ

ί

l

L

L

L

L

l

L

k

The survey results were collected in a fashion intended to allow comparison to the two hypothesized models generated by the background research (Greiser et al. 1985:5-7). The hypothesized models are outlined in the Phase I Report as:

- (1) The first predictive settlement model is derived from previous archeological work, the factor analysis, and the ethnographic and historic records. This model hypothesizes that there are preferred geographic settings for particular activities.
- (2) The second is a model which is analogous to the null hypothesis used in inferential statistics. The model specifies a hypothesized settlement pattern with environmental uniformity -- a random site distribution when considered across the relevant geographic variables.

HRA's survey crews recorded or observed 24 cultural resource sites containing 25 components (Table 4-5) in the survey of 13,760 acres ($\underline{X} = 1.8 \times 10^{-3}$ sites per acre or 1 site per 550.4 acres for the overall area). Eight of the 25 components (32%) are classified as chipping station/lithic scatter (Site Type 1). Five of the 25 components (20%) are classed as Historic building/ structure (Site Type 21). None of the other components occurred in frequencies this high (Table 4-6). These two types of components also were among the most frequently reported classes in the sample used for the background research and predictive model. Table 4-3 in the Phase I report (Greiser et al. 1985:4-32) shows that chipping station/lithic scatter is the single most frequent

Table 4-5

ľ

ľ

L

L

Recorded Cultural Resource Sites Within and Adjacent to the Linear Features During the 1985 Linear Features Sample Survey

ľ	AHRS			Expected	Site	Distance		
٩.	Site	Terrain	Terrain	Vegetativa	Size	to Water	Site	Period of
	Numbera	Unit Ab	Unit Bb	Unit Cb	(m ²)	(m)	Typeb	Occupationb
L				• •		(-150-	oceaharrau-
L	ANC5360	A09	B19	C07	800	400	31	1
	ANC5370	A09	B16	C03	12,000	300	31	ī
l	ANC5380	A09	B17		25,000	450	31	ī
i.	FA12520	A09	B17	C05	30	400	32	1
	FA12530	A10	B 03	C04	77	200	1	ō
l	FA12540	A27	B03	C07	150	300	21	ĩ
٩.	FAI2550	A27	B17	C03	560	33	21	î
	FAI2560	A27	B27	C03	600	100	21	î
L	FAI2570	A27	B17	C03	768	19		1 1 1
Ł	FAI2580	A27	B03	C03	100	76	21 27	ī
	PAI2590	A27	B16	C04	1,500	100	21	1
	FAI2600	A27	B18	C03	20	100	27	1
Ĩ.	FAI2610	A27	B16	C04	4,500	150	27	1
	PA12620	A27	B18	C07	100	2	32	1
*	PAI2630	A27	B18	C07	10	50	32	1
L							-	_
<u> </u>	HEA2500	A03	B13	C06	780	200	1	0
	HEA2510	A03	B19	C06	112	200	1	0
	TLM1080C						-	_
8.		A08	B16	C01	270	100	1	0
-	TLM1100C		B01	C01	52	20	ļ	0 3 7
	TLM274A	A05	B08	C06	200	122	1	3
L.	TLM274B TLM2750	A05	B08	C06	200	122	1	
		A12	B08	C06	50	700		0 1
l	TLM2760	A02	B18	C05	112	10	32	L.
L	TY00670*	A18	B16	C04	25	480	5	3
	TY00680*		B16	C04	25	380	5	3 3
1							-	-
L								

^aAlaska Heritage Resources Survey (AHRS) site numbers are based on the three-letter abbreviation of the 1:250,000 USGS maps on which they are located, and the specific number assigned to that site. ^bDefinitions of these variables are presented in the Phase I Report. ^CPreviously recorded site within a surveyed sample unit.

Table -	4-	6
---------	----	---

Site Type Frequency in the Sample Area	
Site (Component) Type	Frequency
1 - Chipping station/lithic scatter	8
5 - Cache pit	2
21 - Historic building/structure	5
27 - Mining camp and operation '	3
31 - Recent military activity	3
32 - Dump/historic trash scatter	4
	<u>n</u> = 25

CALIFICATION OF COMPANY

Constant of

۲ ۲

Barring Street

Baundana

for the second

]

]

1

1

1

Prehistoric component type as well as the most frequent overall component type. Historic building/structure is the most frequent of the Historic component types.

In addition, three pieces of isolated lithic material were recorded during the sample survey (Table 4-7). Isolated stone tool or flake (Site Type 7) was one of the cultural resource variables included in the Phase I data.

The survey results do not include enough sites or isolates to use inferential statistics to test the relationships between the survey results and the two hypothesized models. However, the survey reported information on site density, which does provide some indication of low site densities throughout the study area. Table 4-7 Recorded Lithic Isolates Within and Adjacent to the

Linear Features During the 1985 Linear Features Samplé Survey							
				D	istance	ł	
				Site	to		
Isolate	Terrain	Terrain	Vegetative	Size	Water	Site	Period of
Number	Unit A	Unit B	Ūnit C	(m2)	(m)	Туре	Occupation
364-1	A38	B19	Cl	1	450	7	0
364-2	A5	B19	C6	1	120	7	0
364-3	A38	Bl	C6	1	75	7	0

Contract

(Berind)

The state

1

÷.

]

1

]

 For density analysis, the survey area was first divided into three units (Table 4-8), each of which has been divided further into 160-acre subunits. Table 4-9 presents the relevant information by Linear Feature unit. Inspection of Table 4-10 indicates that overall site density does not vary much, with a project area-wide figure of 0.29 sites per 160-acre unit. Linear Feature values vary between a low of 0.28 sites per 160-acre unit for Linear Feature 1, to a high of 0.33 sites per 160-acre unit for Linear Feature 5. While overall cultural resource occurrence does not seem to vary much, the proportional contribution of historic versus prehistoric properties does seem to vary greatly.

Table 4-8

		Linear Features	
Number of Components	Linear Feature l (18 subunits)	2, 3, and 4 (32 subunits)	Linear Feature 5 (36 subunits)
0	17/16*	27/31	35/32
1	0/1	3/1	1/2
2	1/1	2/0	0/0
3	0/0	0/0	0/0
3 4	0/0	0/0	0/1
5	0/0	0/0	0/1

*Prehistoric/historic components per 160-acre subunit

Summary Cul	tural Reso	Table 4-9 urce Component Da	ta by Linear Fe	ature Units
Ünit	No. of 160-acre Units	No. Prehistoric Components & Percentages per 160-acre Unit	Components & Percentages per	
LFl	18	2/0.11	3/0.17	5/0.28
LF2, 3, 4	32	7/0.22		8/0.25
LF3	36	1/0.3	11/0.36	2/0.33
Totals	86	9/0.11	14/0.16	25.0.29
Percen	tages of P	Table 4-10 Tehistoric and Hi Linear Feature U		ts by
		Prehistori	c % His	toric
Unit	•	in Unit	in U	nit
LF1		40	6	0
LF2, 3,	4	88	1	2
LFS		8	9	2
Total P	roject Are	a 60	6	0

(according)

(and a second

.

The five components in the Linear Feature 1 160-acre parcels are relatively evenly split, with two prehistoric and three historic components reported by the survey crews. This proportion is identical to that calculated for the study area as a whole. A different pattern is suggested, however, for both of the remaining units. Eight components were found in the group comprised of Linear Features 2, 3, and 4. Seven of those eight sites (88%) are coded as prehistoric. The opposite pattern is indicated when considering the 12 sites found in the group of 160-acre units coded within the Linear Feature 5 unit. Eleven of the 12 components (92%) are coded as historic.

Site density information is important to archeologists for many reasons. These range from the theoretical issues of intensity of human occupation in a specified area, to the practical management considerations of sample size and predictive effi-The latter reasons are of particular interest here. ciency. Às. mentioned earlier, 5 of the 25 components recorded during the survey were classified as historic building/structure. Three of the five were recorded in Coniferous forest (C3), in which 455 acres were surveyed (Table 4-11), This provides a population estimate of 1 site per 151.67 acres of Coniferous forest. This leads, then, to a question regarding the accuracy of this estimate. Because a relatively rare occurrence is being dealt with $(\overline{x} = 6.6 \times 10^{-3} \text{ components per acre})$, the Poisson series is assumed and a 95% confidence interval for the sample mean is calculated (Burstein 1971). Calculations indicate that the odds are about 19 out of 20 chances that the true population mean (u) lies between 0 and 14.0 9.24 x 10^{-2} components per acre, or 0 and 14.01 components per 1,000 acres.

and a second

Phase II Site Types		Table		onatod.	Veget		Unite
Fase II Sice Types	III RE.	Lacion	CO GA	yecteu	veyeta	acive	UNICS
		Site	(Compo	nent)	Туре		
Vegetative							
Unit	1	5	21	27	31	32	Total
1 - Dry Tundra	2	0	0	0	ť	0	2
3 - Coniferous Forest	0	0	3	2	1	0	6
4 - Deciduous Forest	1	2	1	1	0	0	5
5 - Mixed Forest	0	0	0	0	1	2	3
<pre>6 - Low Shrub 7 - Dwarf tree shrub/</pre>	5	0	0	0	0	0	5
Tall shrub	0	0	1	0	1	2	4
Total	8	2	5	3	3	4	25

REFERENCES

-11 11 . Lud ---بستة

l

[]

6.0 BIBLIOGRAPHY AND REFERENCES CITED

6.1 REFERENCES CITED

ACRES American Incorporated and R&M Consultants

1981a Subtask 5.02, Photo Interpretation Terrain Unit Maps. Prepared for the Alaska Power Authority's Susitna Hydroelectric Project.

1981b Transmission Corridor Terrain Unit Maps: South Intertie/North Intertie. Prepared for the Alaska Power Authority's Susitna Hydroelectric Project.

Bacon, Glenn H. and Charles E. Holmes

1980 Archeological Survey and Inventory of Cultural Resources at Fort Greely, Alaska, 1979. Report submitted to the Alaska District, U.S. Army Corps of Engineers.

Bacon, Glenn, Charles M. Mobley, Terrence Cole, and Charles Holmes

1983 The Final Report of the 1981 and 1982 Cultural Resources Survey of the Anchorage-Fairbanks Transmission Intertie. Report from Alaska Heritage Research Group, Inc., through Commonwealth Associates, Inc., to the Alaska Power Authority, Anchorage.

1971 Attribute Sampling. McGraw-Hill, New York.

Coombs, C.H. and R.C. Kao

1955 <u>Non-metric Factor Analysis</u>. Engineering Research Bulletin No. 38. University of Michigan Press, Ann Arbor.

1964 On a Connection between Factor Analysis and Multidimensional Unfolding. Psychometrika (25):219-231.

Dixon, E. James

1985 Cultural Chronology of Central Interior Alaska. <u>Arctic</u> <u>Anthropology</u> 22(1):47-66.

Dixon, E. James, George Smith, and David Plaskett

1980 Archeological Survey and Inventory of Cultural Resources. Report to the Alaska District, Corps of Engineers, from the University of Alaska Museum, Contract No. DACA85-78-C-0047.

Dixon, E.J., Jr., G.S. Smith, R.M. Thorson, and R.C. Betts 1981 Annual Report-1980, Subtask 7.06. Cultural Resources Investigation for the Susitna Hydroelectric Project.

Burstein, H.

- Dixon, E.J., Jr., G.S. Smith, R.C. Betts, and R.M. Thorson 1982 Final Report, Subtask 7.06. Cultural Resources Investigation for the Susitna Hydroelectric Project: A Preliminary Cultural Resource Survey in the Upper Susitna River Valley.
- Dixon, E.J., Jr., G.S. Smith, M.L. King, and J.D. Romick 1983 Final Report, Subtask 7.06. 1982 Field Season, Cultural Resources Investigation for the Susitna Hydroelectric Project: Cultural Resources Survey in the Middle Susitna River Valley.

Dixon, B.J., G.S. Smith, W. Andrefsky, B.M. Saleeby, C.J. Utermohle, and M.L. King

1984 Susitna Hydroelectric Project, 1983 Field Season, Cultural Resources Investigations. 3 vols.

Dixon, E.J., G.S. Smith, W. Andrefsky, B.M. Saleeby, and C.J. Utermohle

1985 Susitna Hydroelectric Project, Cultural Resources Investigations, 1979-1985. Draft Report prepared for Alaska Power Authority.

Fall, James A.

1981 Patterns of Upper Inlet Tanaina Leaderships, 1741-1918. Unpublished Ph.D. dissertation, University of Wisconsin, Madison. University Microfilms, Ann Arbor.

Fontana, Bernard L., Cameron Greenleaf, Charles W. Ferguson, Robert A. Wright, and Doris Frederick

1962 Johnny Ward's Ranch: A Study in Historic Archeology. <u>Kiva</u> 28:1-115.

Greiser, T. Weber, S.T. Greiser, G. Bacon, T. Foor, P. Kari, J. Kari, D. Gallacher, and J. Caywood

1985 Phase I Final Report: Background Research and Predictive Model for Cultural Resources Located Along the Susitna Hydroelectric Linear Features Project. Report to Harza-Ebasco Susitna Joint Venture from Historical Research Associates under contract number 076L04-00.

Guthrie, R. Dale

1983 Paleoecology of the Site and Its Implications for Early Hunters. In <u>Dry Creek: Archeology and Paleoecology of a</u> <u>Late Pleistocene Alaskan Hunting Camp</u>, pp. 209-287. National Park Service report on file with the Alaska Regional Office.

Kari, James

1977 Nay'nadeligha I'Ghaan Dghat'aen'den. The War at Nay'nadeli Told by Henry Peters with Jennie Peters. Transcribed and edited by Jim Kari. Alaska Native Language Center, University of Alaska, Fairbanks. 1982 Dena'ina Place Names in the Talkeetna Study Area. In <u>Cultural Resource Assessment, Part One: Talkeetna-Lower</u> <u>Susitna River Basin</u>, edited by Glenn Bacon, pp. 16-65. Report to the U.S. Department of Agriculture Soil Conservation Service. Alaskarctic, Fairbanks.

Kari, James and Priscilla Russell Kari

1982 <u>Dena'ina Elnena, Tanaina Country</u>. Alaska Native Language Center, Fairbanks.

McKennan, Robert A.

1981 Tanana. In <u>Handbook of North American Indians</u>, vol. 6, <u>The Subarctic</u>, edited by June Helm, pp. 562-577. The <u>Smithsonian Institution</u>, Washington, D.C.

Orth, Donald J.

1967 <u>Dictionary of Alaska Place Names</u>. Geological Survey Professional Paper 567. Government Printing Office, Washington, D.C.

Pewe, Troy L.

1975 Quaternary Stratigraphic Nomenclature in Central Alaska. U.S. Geological Survey Professional Paper No. 862. Government Printing Office, Washington, D.C.

Plaskett, David C.

1977 The Nenana River Gorge Site: A Late Prehistoric Athapaskan Campsite in Central Alaska. Unpublished M.A. thesis, University of Alaska, Fairbanks.

Reger, Douglas Roland

1978 Willow-Wasilla-Lower Susitna River Basin. In <u>Cultural</u> <u>Resource Assessment, Part One: Talkeetna-Lower Susitna</u> <u>River Basin, edited by Glenn Bacon, pp. 1-22. Report to</u> the U.S. Department of Agriculture Soil Conservation Service. Alaskarctic, Fairbanks.

1981 A Model for Cultural History in Upper Cook Inlet, Alaska. Unpublished Ph.D. dissertation, Washington State University, Pullman. University Microfilms, Ann Arbor.

1983 Report of Archeological Field Survey in the Willow-Wasilla Area, 1978. In <u>Susitna River Basin Study:</u> <u>Cultural Resource Assessment of Willow-Talkeetna-Beluga</u> <u>Areas, River Basin Studies--Alaska Rivers:</u> Susitna River Basin. USDA Soil Conservation Service, Forest Service, Economic Research Service and State of Alaska, and Alaska Department of Natural Resources, Anchorage.

Toulouse, Julian Harrison

1971 Bottle Makers and Their Marks. Thomas Nelson, New York.

Townsend, Joan

r

÷

١.,

1981 Tanaina. In <u>Handbook of American Indians</u>, vol. 6, <u>The</u> <u>Subarctic</u>, edited by June Helm, pp. 623-641. The Smithsonian Institution, Washington, D.C.

- Van Stone, J.K. 1974 Athapaskan Adaptations. Aldine Publishing Company, Chicago.
- Wahrhaftig, Clyde Adolph

1965 Physiographic Divisions of Alaska. U.S. Geological Survey Professional Paper No. 482. Government Printing Office, Washington, D.C.

Ward, Albert E., Bmily K. Abbink, and John R. Stein

1977 Bthnohistorical and Chronological Basis of the Navajo Material Culture. In <u>Settlement and Subsistence Along the</u> <u>Lower Chaco River: The CGP Survey</u>, edited by C.A. Reher, Chapter 9. University of New Mexico Press, Albuguergue.

6.2 REFERENCES CONSULTED

Archives, Elmer E. Rasmuson Library

n.a. Rare Maps Index and Map Collection, Elmer E. Rasmuson Library, University of Alaska, Fairbanks. The following maps were consulted:

Pairbanks Area, Alaska:

"Fairbanks special map" [Washington] U.S. Geological Survey, 1908. col. map 42x89 cm. (Alaska sheet no. 642A) Scale: 1:62,500 RARE MAP/G 4372/F34/1908/U51.

"Reconnaissance map of the Fairbanks Quadrangle, Alaska" [Washington] U.S. Geological Survey, 1913. col. map 93x80 cm [Bulletin 525, Plate 1] Scale: 1:250,000 RARE MAP/G 4372/F34/1913/U51.

"Geologic map and sections of the Fairbanks District, Alaska," by L.M. Prindle and F.J. Katz [Washington], U.S. Geological Survey, 1913. col. map 44x91 cm [Bulletin 525, Plate 11] Scale: 1:52,500 RARE MAP/G 4372/F34/C5/1913/U51.

"Map showing lode mines and prospects, sample locations, outlines of mined placer gold deposits, and granitic rock bodies in the Fairbanks District, Alaska." USGS 1969 Professional Paper 625-D, Plate 1. MAP COLLECTION/ G 4372/F34/1/1969/U51.

n.a., Irving McKenney Reed Collection, Alaska and Polar Regions Department, Elmer E. Rasmuson Library, University of Alaska, Fairbanks. The following materials were reviewed:

Box 7, Field Notes--Patent Surveys, 1925-1942

[Book] No. 28. "Book V. Fairbanks Land District, Miscellaneous Patent Surveys, Irving McK. Reed. Dome-Independence-Engineer-Ester-Cripple."

[Book] No. 30. "Book VIII. Miscellaneous Patent Surveys, Irving McK. Reed. Chatham-Pedro-Cripple-Cleary-Fairbanks-Fish-Ester."

[Book] No. 31. "Book VII. Miscellaneous Patent Surveys, Fairbanks Land District. Irving McK. Reed. Coal Creek-Pedro-St. Patrick-Fairbanks-Fish-Ace-Cripple-Engineer."

[Book] No. 41. "Miscellaneous Patent Surveys. Fairbanks-Fish (Upper)- Livengood-Fish (Lower)-Slippery-ElGJrado-Pearl-Cleary-Goldstream (Upper and Lower)-Ester -Cripple."

Brooks, Alfred H.

I

l

I

I

I

1

l

l

Į

- 1905 Placer Mining in Alaska in 1904. In A.H. Brooks et al., <u>Report on Progress of Investigations of Mineral Resources</u> of Alaska in 1904. U.S. Geological Survey Bulletin No. 284, pp. 109-127. Government Printing Office, Washington, D.C.
- 1907 The Mining Industry in 1906. In A.H. Brooks et al., <u>Report on Progress of Investigations of Mineral Resources</u> <u>of Alaska in 1906.</u> U.S. Geological Survey Bulletin No. <u>314, pp. 19-39.</u> Government Printing Office, Washington, D.C.
- 1908 The Mining Industry in 1907. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on Progress of</u> <u>Investigations in 1907.</u> U.S. Geological Survey Bulletin No. 345, pp. 30-53. Government Printing Office, Washington, D.C.
- 1916 The Alaskan Mining Industry in 1915. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on Progress of Investigations in 1915</u>. U.S. Geological Survey Bulletin No. 642, pp. 16-71. Government Printing Office, Washington, D.C.
- 1918 The Alaskan Mining Industry in 1916. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on Progress of Investigations in 1916</u>. U.S. Geological Survey Bulletin No. 662, pp. 11-62. Government Printing Office, Washington, D.C.

Brooks, Alfred H. et al.

1921 <u>Mineral Resources of Alaska: Report on Progress of</u> <u>Investigations in 1919</u>. U.S. Geological Survey Bulletin No. 714. Government Printing Office, Washington, D.C.

Chapin, Theodore

I

ŝ

11

- 1914 Placer Mining in the Yukon-Tanana Region. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on</u> <u>Progress of Investigations in 1913.</u> U.S. Geological Survey Bulletin No. 592, pp. 357-362. Government Printing Office, Washington, D.C.
 - 1919 Mining in the Fairbanks District. In G.C. Martin et al., <u>Mineral Resources of Alaska: Report on Progress of Investigations in 1917</u>. U.S. Geological Survey Bulletin No. 692, pp. 321-327. Government Printing Office, Washington, D.C.

Chapman, R.M. and R.L. Foster

1969 Lode Mines and Prospects in the Fairbanks District, Alaska. U.S. Geological Survey Professional Paper No. 625-D. Government Printing Office, Washington, D.C.

Cobb, Edward H.

1973 <u>Placer Deposits of Alaska:</u> An Inventory of the Placer Mines and Prospects of Alaska, Their History and Geologic Setting. Geological Survey Bulletin 1374. Government Printing Office, Washington, D.C.

Cole, Terrence

1981 E.T. Barnett: The Strange Story of the Man Who Founded Fairbanks. Alaska Northwest Publishing Company, Anchorage.

Eakin, H.M.

1915 Mining in the Fairbanks District. In A.H. Brooks et 1., Mineral Resources of Alaska: Report on Progress of <u>Investigations in 1914</u>. U.S. Geological Survey Bulletin No. 622, pp. 229-238. Government Printing Office, Washington, D.C.

Ellsworth, C.E.

- 1910 Placer Mining in the Yukon-Tanana Region. In <u>Mineral</u> <u>Resources of Alaska: Report on Progress of Investigations</u> <u>in 1909</u>. U.S. Geological Survey Bulletin No. 442, pp. 230-250. Government Printing Office, Washington, D.C.
- 1912 Placer Mining in the Fairbanks District. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on Progress of</u> <u>Investigations in 1911</u>. U.S. Geological Survey Bulletin No. 520, pp. 240-245. Government Printing Office, Washington, D.C.

Ellsworth, C.E. and G.L. Parker

A CONTRACTOR

1

Part Townson

HAR

Ę

Ë

Ł

Ĺ

1911 Placer Mining in the Yukon-Tanana Region. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on</u> Progress of Investigations in 1910. U.S. Geological Survey Bulletin No. 480, pp. 153-172. Government Printing Office, Washington, D.C.

Ellsworth, C.E. and R.W. Davenport

- 1913 Placer Mining in the Yukon-Tanana Region. In A.H. Brooks et al., Mineral Resources of Alaska: Report on Progress of Investigations in 1912. U.S. Geological Survey Bulletin No. 542, pp. 203-222. Government Printing Office, Washington, D.C.
- Hales, David A. (compiler and editor)
 - 1980 An Index to the Early History of Alaska as Reported in the 1903-1907 Fairbanks Newspapers. Elmer E. Rasmuson Library, University of Alaska, Fairbanks.
- Heiner, Virginia Doyle 1977 <u>Alaska Mining History: A Source Document</u>. Miscella-neous Publications, History and Archeology Series No. 17. Office of History and Archeology, Alaska Division of Parks, Anchorage.

Martin, C.G. et al.

- 1920 Mineral Resources of Alaska: Report on Progress of Investigations in 1918. U.S. Geological Survey Bulletin No. 712. Government Printing Office, Washington, D.C.
- Prindle, Louis M.
 - 1905 The Gold Placers of the Fortymile, Birch Creek, and Fairbanks Regions, Alaska. U.S. Geological Survey Bulletin No. 251. Government Printing Office, Washington, D.C.
 - 1906 Yukon Placer Fields. In A.H. Brooks et al., Report on Progress of Investigations of Mineral Resources of Alaska in 1905. U.S. Geological Survey Bulletin No. 284, pp. 109-127. Government Printing Office, Washington, D.C.
 - 1908 The Fairbanks and Rampart Quadrangles, Yukon-Tanana Region, Alaska [with The Rampart Placers by F.L. Hess and The Water Supply of the Fairbanks Region by C.C. Conert.] U.S. Geological Survey Bulletin No. 337. Government Printing Office, Washington, D.C.
 - 1913 A Geologic Reconnaissance of the Fairbanks Quadrangle, Alaska (with Geology of the Fairbanks District, by L.M. Prindle and F.J. Katz; and Lode Mining Near Fairbanks, by P.S. Smith]. U.S. Geological Survey Bulletin No. 525. Government Printing Office, Washington, D.C.

Prindle, Louis M. and P.J. Katz

ないない

Sector 1

100

j.

1909 The Fairbanks Gold Placer Region. In A.H. Brooks et al., <u>Mineral Resources of Alaska: Report on Progress of Investigations in 1908</u>. U.S. Geological Survey Bulletin No. 379, pp. 195, 197, 199-200. Government Printing Office, Washington, D.C.

State of Alaska, Fairbanks District Recorder's Office

- n.d. <u>Index to Mining Locations</u>, Fairbanks, U.S. Commissioner, Fourth Division, Alaska. Vol. 1[2], 1902 to 1938 to 1943 ["1" has been crossed off and "2" written beside it, but this is "Volume 1"]
 - n.d., <u>Index to Mining Locations</u>, Fairbanks, U.S. Commissioner, Third Division, Alaska. Vol. 2.
 - n.d. Index to Placer Mining Locations, Pairbanks, U.S. Commissioner, Fourth Division, Alaska. Vol. 3, 1909-1944.
 - n.d. <u>Record of Mining Locations</u>. 35 vols., including: <u>Transcribed Locations</u>, Fairbanks, Vol. T-1, October 23, 1902, to April 1, 1903. <u>Locations</u>, Vol. 1. Commencing April 10th 1903, Ending Nov. 21st 1903. <u>Locations</u>, Vol. 2. Nov. 21, 1903, to June 22, 1904 <u>Locations</u>, Vol. 3. June 23, 1904, to October 31, 1904. <u>Mining Locations</u>, Vol. 4. Fairbanks Precinct, Third Division, Nov. 1, 1904 to March 1st 1905. <u>Mining Locations</u>, Vol. 5. Fairbanks Precinct, Third Divi-

sion, March 1, 1905, to May 23, 1905. <u>Mining Locations</u>, Vol. 6. Fairbanks Precinct, Third Division, May 23, 1905 to Nov. 29, 1905. Mining Locations, Vol. 7. Spirbanks Precinct, Third Divi-

Mining Locations, Vol. 7. Pairbanks Precinct, Third Division, Dec. 1905 to Nov. 5, 1906. Record of Mining Locations, Vol. 8, District Court of

Alaska, Third Division, Oct. 25, 1906 to July 5, 1907. etc.

- U.S. Department of the Interior, Bureau of Land Management 1966 Township 1 South, Range 3 West, of the Fairbanks Meridian, Alaska {Rectangular Survey}. Microfilm copy on file at the Public Records Room, Pairbanks District Office, Bureau of Land Management, Fairbanks, Alaska.
 - 1972 Township 1 South, Range 2 West, of the Fairbanks Meridian, Alaska: Supplemental Plat of Section 18. [Rectangular Survey] Microfilm copy on file at the Public Records Room, Fairbanks District Office, Bureau of Land Management, Fairbanks, Alaska.
 - n.d. Mineral Survey No. 1699, Fairbanks Land District: Original Field Notes of the Survey of the Mining Claim of

United States Smelting, Refining, and Mining Company Known as the Discovery Left Limit Bench Association, One above Discovery, Star Association Claim, Seattle Association Claim, Venus Bench, Sunny Bench Claim, Ben Claim, Jupiter Bench Placers, Fairbanks Mining District, Territory of Alaska, Sections 17 and 18, Township 1 South, Range 2 West, Fairbanks Meridian. Microfilm copy on file at the Public Records Room, Fairbanks District Office, Bureau of Land Management. Microfilm Volume M-80, pp. 420-457. Fairbanks, Alaska.

U.S. Department of the Interior, General Land Office

- 1939 Township No. 1 South, Range No. 3 West, of the Fairbanks Meridian, Alaska [Rectangular Survey]. Microfilm copy on file at the Public Records Room, Fairbanks District Office, Bureau of Land Management, Fairbanks, Alaska.
- U.S. General Surveyor's Office

C. September

1. Martine

NAMES OF CONTRACTOR

10122-00120-001

A PROPERTY.

Constant of the

P.S. STREET

100

į

1913 Township No. 1 South, Range No. 2 West, of the Fairbanks Meridian, Alaska [Rectangular Survey]. Microfilm copy with various supplements on file at the Public Records Room, Fairbanks District Office, Bureau of Land Management, Fairbanks, Alaska.