Gravel-Bed Rivers

Fluvial Processes, Engineering and Management

Edited by

UNIVERSITY OF ALASICA

RECTIC ENVIRONMENTAL INFORMATION
AND DATA CENTER
707 A STREET
ANCYGEAGE ALASKA 99501

R. D. Hey

School of Environmental Sciences, University of East Anglia, Norwich

J. C. Bathurst

Institute of Hydrology, Wallingford

C. R. Thorne

School of Environmental Sciences, University of East Anglia, Norwich

A Wiley-Interscience Publication

JOHN WILEY & SONS

Chichester · New York · Brisbane · Toronto · Singapore

This document is copyrighted material.

Alaska Resources Library and Information Services (ARLIS) is providing this excerpt in an attempt to identify and post all documents from the Susitna Hydroelectric Project.

This document is unable to be posted online in its entirety. Selected pages are displayed here to identify the published work.

The item is available in print at ARLIS.

Copyright © 1982 by John Wiley & Sons Ltd.

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

Library of Congress Cataloging in Publication Data:

Main entry under title:

Gravel-bed rivers.

'A Wiley-Interscience publication.'

Includes index.

- 1. River channels Addresses, essays, lectures.
- 2. Rivers Regulation Addresses, essays, lectures.
- I. Hey, R. D. (Richard David) II. Bathurst, J. C. (James C.)

III. Thorne, C. R. (Colin R.)

TC175.G76 627'.125 81-16390

ISBN 0 471 10139 7 AACR2

British Library Cataloguing in Publication Data:

Gravel-bed rivers.

- 1. Rivers Regulation Congresses
- 2. Hydraulic engineering Congresses
- I. Hey, R. D. II. Bathurst, J. C.

III. Thorne, C. R.

627'.12 TC401

ISBN 0 471 10139 7

Printed in the United States of America

Contents

List o	of contributors	ix
Prefa	ice	xiii
Ackn	owledgements	XV
GRA	AVEL-BED RIVERS	1
I.	Introduction 1. Gravel-bed rivers: form and processes	3 5
FLU	JVIAL PROCESSES	27
II.	Flow hydraulics 3. Shear stress distribution and secondary currents in straight open channels	29 31 63 81 83
IV.	6. Flow resistance in gravel-bed rivers D. I. Bray Sediment transport 7. Gravel bedload transport processes. P. C. Klingeman and W. W. Emmett 8. Transport of graded gravel bed material W. R. White and T. J. Day	109 139 141 181
v.	Bank erosion 9. Processes and mechanisms of river bank erosion	225227273

Contents

VI.	Bar sedimentation 11. Channel bars in gravel-bed rivers	289 291
	M. Church and D. Jones12. Texture of gravel bars in braided streams	339
VII.	Meander processes	357
	13. Water surface topography in river channels and implications for meander development	359
	14. Meandering channels and the influence of bed material P. Ackers	389
VIII.	Hydraulics of mountain streams	423
	15. Geomorphological and hydraulic analysis of mountain streams Ruh-Ming Li and D. B. Simons	425
	16. Flow resistance in boulder-bed streams	443
IX.	Dynamic modelling	467
١	17. Dynamic modelling of channel responses	469
	18. Mathematical modelling of sediment movement W. A. Thomas	487
ENC	GINEERING AND MANAGEMENT	513
X.	Regime equations	515
	19. Regime equations for gravel-bed rivers	517
	20. Design equations for mobile gravel-bed rivers	553
XI.	Flow routing and river regulation	581
	21. Applications of flow routing techniques to river regulation. D. B. Simons and Ruh-Ming Li	583
	22. Flow routing for river regulation	603
XII.	River stabilization and training	633
	23. River stabilization and training in gravel-bed rivers F. G. Charlton	635
	24. Response of the Lower Mississippi to river training and realignment	659

	Contents	vii
XIII.	River regulation and channel stability	683
_	25. Effect of river regulation on channel stability R. Kellerhals	685
	26. Bank erosion on regulated rivers	717
XIV.	Channel response to changes in land use	755
	27. Land use change, flood frequency and channel adjustments. K. J. Gregory and J. R. Madew	7 57
	28. Methods for studying accelerated fluvial change D. M. Patrick, L. M. Smith and C. B. Whitten	783
XV.	Ecological implications of river regulation and training	817
	29. Effect of sediment transport and flow regulation on the ecology of gravel-bed rivers	819
	30. Ecological implications of river regulation in the United	
	Kingdom	843
Index		867

List of Contributors

P. Ackers	Binnie and Partners, Consulting Engineers, Artillery House, Artillery Row, Westminster, London SWIP IRX, UK
P. ASHMORE	Department of Geography, University of Alberta, Edmonton, Alberta, Canada T6G 2H4
J. C. BATHURST	Institute of Hydrology, MacLean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK
N. G. Вноwмік	Illinois Institute of Natural Resources, State Water Survey Division, P. O. Box 5050, Station A, Champaign, Illinois 61820, USA
B. J. BLUCK	Department of Geology, University of Glasgow, Glasgow G12 8QQ, UK
D. I. Bray	Department of Civil Engineering, University of New Brunswick, P. O. Box 4400, Fredericton, New Brunswick, Canada E3B 5A3
P. A. CARLING	Freshwater Biological Association, Teesdale Unit, Lartington Treatment Plant, Lartington, Barnard Castle, County Durham DL12 9DW, UK
Chao-Lin Chiu	Department of Civil Engineering, University of Pittsburgh, 949 Benedum Hall, Pittsburgh, Pennsylvania 15261, USA
F. G. CHARLTON	Hydraulics Research Station, Wallingford, Oxfordshire OX10 8BA, UK
M. Church	Department of Geography, University of British Columbia, 2075 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1W5
D. T. CRISP	Freshwater Biological Association, Teesdale Unit, Lartington Treatment Plant, Lartington, Barnard Castle, County Durham DL12 9DW, UK
T. J. DAY	Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, Canada K1A 0E8
R. W. Edwards	Department of Applied Biology, University of Wales Institute of Science and Technology, King Edward VII Avenue, Cardiff CF1 3NU, UK
W. W. EMMETT	United States Department of the Interior, Geological Survey, Box 25046, MS 413, Denver Federal Center, Denver, Colorado 80225, USA

A	Bist of continuators		
K. J. Gregory	Department of Geography, The University, Southampton S09 5NH, UK		
E. H. Grissinger	United States Department of Agriculture, Sedimentation Laboratory, P. O. Box 1157, Oxford, Mississippi 38655, USA		
R. D. HEY	School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK		
M. Jaeggi	Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH-Zentrum, 8092 Zürich, Switzerland		
D. Jones	Department of Geography, University of British Columbia, 2075 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1W5		
R. KELLERHALS	Kellerhals Engineering Services Limited, Box 250, Heriot Bay, British Columbia, Canada V0P 1H0		
G. J. Klaassen	Delft Hydraulics Laboratory, De Voorst Laboratory, P. O. Box 152, 8300 AD Emmeloord, The Netherlands		
P. KLINGEMAN	Water Resource Research Institute, Oregon State University, Corvallis, Oregon 97331, USA		
G. Leeks	Institute of Hydrology, Staylittle, Llanbrynmair, Powys, UK		
L. B. LEOPOLD	Department of Geology and Geophysics, University of California, Berkeley, California 94720, USA		
Ruh-Ming Li	Department of Civil Engineering, Colorado State University, Engineering Research Center, Fort Collins, Colorado 80523, USA		
W. C. LITTLE	United States Department of Agriculture, Sedimentation Laboratory, P. O. Box 1157, Oxford, Mississippi 38655, USA		
J. R. MADEW	North West Water Authority, New Town House, Warrington WA1 2QG, UK		
M. J. MILES	Department of Geography, University of British Columbia, 2075 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 1W5		
R. T. MILHOUS	United States Department of the Interior, Fish and Wildlife Service, Instream Flow Group, 2625 Redwing Road, Fort Collins, Colorado 80526, USA		
C. R. NEILL	Northwest Hydraulic Consultants, 4823 99th St, Edmonton, Alberta, Canada T6E 4Y1		
M. Newson	Institute of Hydrology, Staylittle, Llanbrynmair, Powys, UK		

	_			
G. Parker	St Anthony Falls Hydraulics Laboratory, Minneapolis, Minnesota, USA			
D. M. Patrick	United States Army Corps of Engineers, Waterways Experimental Station, P. O. Box 631, Vicksburg, Mississippi 39180, USA			
R. K. PRICE	Hydraulics Research Station, Wallingford, Oxfordshire OX10 8BA, UK			
J. J. C. DE RUITER	Delft Hydraulics Laboratory, P. O. Box 152, 8300 AD Emmeloord, The Netherlands			
D. B. SIMONS	Department of Civil Engineering, Colorado State University, Engineering Research Center, Fort Collins, Colorado 80523, USA			
G. Smart	Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH-Zentrum, CH-8092 Zürich, Switzerland			
L. M. Smith	United States Army Corps of Engineers, Waterways Experimental Station, P. O. Box 631, Vicksburg, Mississippi 39180, USA			
W. A. THOMAS	United States Army Corps of Engineers, Waterways Experimental Station, P. O. Box 631, Vicksburg, Mississippi 39180, USA			
C. R. THORNE	Engineering Research Center, Foothills Campus, Colorado State University, Fort Collins, Colorado 80523, USA			
H. J. DE VRIEND	Delft University of Technology, Department of Civil Engineering, Stevinweg 1, Delft, The Netherlands			
W. H. Walters, Jr	Battelle Pacific Northwest Laboratories, P. O. Box 999, Richland, Washington 99352, USA			
W. R. WHITE	Hydraulics Research Station, Wallingford, Oxfordshire OX10 8BA, UK			
C. B. WHITTEN	United States Army Corps of Engineers, Waterways Experimental Station, P. O. Box 631, Vicksburg, Mississippi 39180, USA			
B. R. WINKLEY	United States Army Corps of Engineers, Vicksburg District, P. O. Box 543, Vicksburg, Mississippi 39180, USA			

Preface

The natural physical character of many alluvial channels has been significantly affected by river and catchment development projects. In the utilization of river systems for water resources, navigation, flood control and power generation, channels have been straightened, flows regulated and banks stabilized and raised. Similarly, catchment development related to such activities as agriculture, forestry, recreation, highway and pipeline construction and urban growth has considerably altered the quantity and quality of the sediment and water carried into rivers. Many of these changes have had serious effects on rivers, either by promoting instability at, for example, meander cut-offs, downstream from dams and in the vicinity of river intakes and outfalls, or by adversely affecting ecological habitats and recreational potential through unsympathetic management practices. Such repercussions are economically expensive and aesthetically unpleasant. Future developments should therefore ensure that the natural character of river channels is preserved, but for this to be possible improved design and modelling techniques need to be developed to predict and minimize the consequences of any proposed engineering works. This aim can be achieved only through a basic understanding of channel processes.

To date there is a lack of knowledge regarding these processes and new design and modelling methods are continually being developed. In the past the emphasis of research and development has been on rivers with fine alluvial beds and it is only recently that attention has been focused on flow in gravel-bed channels.

Clearly there is an urgent need for the development of sound engineering principles which can be applied to the management of gravel-bed rivers. This book, which is a record of the proceedings of the International Workshop on 'Engineering Problems in the Management of Gravel-bed Rivers' held at Gregynog, Newtown, UK, between 23 and 27 June 1980, clarifies understanding of the physical processes operating in gravel-bed rivers, promotes improved design and modelling methods, establishes better guidelines for river management and identifies future research requirements.

We take this opportunity gratefully to acknowledge the generous financial support provided for the workshop by the US Army Research and Standardization Group (Europe) and the assistance given by the School of Environmental Sciences, University of East Anglia, the Institute of Hydrology and the US Department of Agriculture Sedimentation Laboratory during the organization

of the workshop and the preparation of the papers for publication. Finally we would like to record our appreciation to all the participants at the workshop for making the meeting such a success. Without their help this volume would not have materialized.

14 July 1981

RICHARD D. HEY University of East Anglia, UK

James C. Bathurst Institute of Hydrology, UK

COLIN R. THORNE University of East Anglia, UK

Acknowledgements

The editors and contributors would like to thank the following for permission to reproduce figures and tables:

Gower Publishing Co. Ltd for Figs 1.3 and 1.4; Illinois State Water Survey for Figs 3.2, 3.3 and 3.4; American Society of Civil Engineers for Figs 4.3(a), (b) and 4.4: American Society of Civil Engineers for Tables 6.1, 6.3, 6.4 and 6.5 and for Fig. 6.5; Canadian Journal of Civil Engineering, National Research Council of Canada, for Table 6.2 and Fig 6.3; United States Geological Survey for Figs 7.3(a), (b), 7.4, 7.10 and 7.13; National Academy of Sciences of the USA for Fig. 7.11: United States Department of the Interior for Figs 7.6, 7.7 and 7.12: American Society of Civil Engineers for Fig 7.14; Controller, HMSO, courtesy of the Hydraulics Research Station, Wallingford, for Figs 8.1–8.24 and Tables 8.1– 8.8: Kendall/Hunt Publishing Co. for Figs 9.5 and 9.7; Nature for Figs 11.21 and 11.22: The Institution of Civil Engineers for Figs 14.1–14.9: Journal of Hydrology for Figs 14.10 and 14.11; Journal of Hydraulic Research for Figs 14.12-14.14; Journal of Hydraulic Research for Figs 18.1(a), (b) and 18.2; H. W. Shen for Fig. 18.5; Gower Publishing Co. Ltd for Figs 20.1-20.11; Controller, HMSO, courtesy of the Hydraulics Research Station, Wallingford, for Figs 22.1-22.9 and for Table 22.1; Controller, HMSO, courtesy of the Hydraulics Research Station. Wallingford, for Tables 23.1 and 23.2; British Columbia Hydro and Power Authority for Figs 25.2(a), and (b); International Water Resources Association for Figs 25.14-25.16; Water Resources Publications for Fig. 26.6.