SUSITNA HYDROELECTRIC PROJECT

PHASE II PROGRESS REPORT
BIG GAME STUDIES

Vol. VI. Black Bear and Brown Bear

Sterling D. Miller

Alaska Dept. of Fish and Game
Submitted to the Alaska Power Authority October 1985

I. SUMMARY. Information presented in earlier reports is updated in this report using information collected during the 1984 field season. In most cases these data are presented without discussion additional to that already presented in earlier reports. All of these data will be reanalyzed for the final report due in 1986. New analyses of the following topics are presented in this report.

Brown bear use of impoundment proximity polygons including the area within the proposed impoundment, within the area from the shoreline of the proposed impoundment to 1 mile distant, and from l-5 miles distant from the impoundment shoreline were analyzed using the Chi Square statistic to determine whether the number of point locations in each of these 3 zones differed significantly from expected values based on the surface area of each zone. Data from 1980-1984 were lumped for this analysis. Brown bears used these 3 zones significantly differently than expected for all months lumped as well as just for the spring months considered separately. These differences were found for male brown bears as well as for females except that no differences from expected values were observed for brown bear females during the period from 1 July-March 31. Brown bear females accompanied by cubs-of-the-year
also showed no differences from expected values in their use of these 3 impoundment proximity zones. During years when they did not have cubs-of-the-year, these same individuals showed significant differences in their use of these 3 zones than they did when they did have cubs-of-the-year. This suggests that females during years when they are accompanied by cubs-of-theyear behave differently than they do when unaccompanied by newborn cubs. In all cases where significant differences between observed and expected values where found, the observed values for use of the area which would be inundated by the proposed Watana impoundment were greater than the expected values indicating positive selection by bears for the area which would be inundated. These analyses will be refined using vegetation-type categories in the final report using the vegetation map prepared in 1985.

Similar analyses for the black bear point-location data revealed that black bears are even more highly dependent on the impoundment zone than are brown bears. Overall 42% of all black bear point locations in the Watana dam impact area were in the area that would be inundated by by the proposed Watana Impoundment. This value was highest in May and June, as for brown bears.

Brown bear and black bear density estimates were obtained in spring 1985 using a newly-developed procedure. A description of the technique is presented. A black bear density of approximately 10.8 square kilometers/bear was obtained for that portion of the study area considered to be black bear habitat (95\% CI=7.0-16.2 sq.km./bear). The preliminary density estimate for brown bears was 34.4 sq. km./bear (95\%CI=22.8-50.0 sq. km./bear). These preliminary estimates will be refined for the final report.

Brown bear use of Prairie Creek during the salmon spawning period was evaluated using capture-recapture techniques. Brown bear move to Prairie Creek in late June from a documented area of almost 8,000 square kilometers. During 2 surveys estimates of 48 and 33 bears were obtained. Confidence intervals(95\%) for this estimate indicate of a maximum of 80 bears use Prairie Creek. This estimate is for bears 2.5 years or older, inclusion of younger age classes would result in a larger estimate. This area around Prairie Creek is the most clearly identifiable area of critical habitat for brown bears in the study area and its potential for use as mitigation for the brown bear losses that will result from construction of the impoundment is discussed.
Brown bear predation rates of 3 moose
calves/intensively-monitored radio-marked bear wereobserved in spring 1985. Black bear predation rates onwere lower than for brown bears. Black bears killed atleast 2.1 moose calves/l00 visual observations comparedto 5.5 for brown bears.
II. TABLE OF CONTENTS
Page No.
I. Summary 1
II. Table of Contents 4
III. List of Tables 5
IV. Introduction and Acknowledgements 8
V. Methodology 11
VI. Results and Discussion--Brown Bears 12
A. Sex and Age Composition of Study Animals 12
B. Population Biology and Productivity 12
C. Home Range and Density 13
D. Use of Impoundment Proximity Zones 14
E. Density Estimates and Procedures 18
F. Denning Ecology Characteristics 21
G. Harvest Data 22
H. Seasonal Use of Prairie Creek 22
I. Predation by Brown Bears 28
VII. Results and Discussion--Black Bears 31
A. Sex and Age Composition of Study Animals 31
B. Population Biology and Productivity 31
C. Density Estimations and Procedures 32
D. Berry Abundance 34
E. Food Habits 35
F. Home Range and Movements 35
G. Denning Ecology Characteristics 36
H. Use of Impoundment Proximity Zones 38
I. Predation by Black Bears 39
VIII. References Cited 41
IX. Tables 42
IV. IIST OF TABLESTable 1. Brown bear capture recordsTable 2. Predicted and observed spring 1984 reproductivestatus--brown bear
Table 3. Predicted and observed spring 1985 reproductive status--brown bear
Table 4. Summary of brown bear litter size data for cubs-of-the-year
Table 5. Summary of brown bear litter size data for yearlings
Table 6. Summary of brown bear litter size data for litters of 2-year old offspring
Table 7. Brown bear offspring survivorship and weaning
Table 8. Sumary of brown bear cub and yearling losses--19781984
Table 9. Morphometrics of brown bear cubs
Table 10. Morphometrics of brown bear yearlings
Table 11. Crossings of Susitna River by brown bears
Table 12. Watana impoundment proximity analysis-all brown bears

Table 13. Watana impoundment proximity analysis-all male brown bears

Table 14. Watana impoundment proximity analysis--female brown bears without coy

Table 15. Watana impoundment proximity analysis--female brown bears with coy

Table 16. Use of impoundment proximity zones by brown bear females during years when they do and do not have coy

Table 17. Devils Canyon impoundment proximity analysis for brown bear

Table 18. Brown bear den characteristics
Table 19. Brown bear den entrance and emergence, 83/84
Table 20. Brown bear den entrance and emergence, $84 / 85$
Table 21. Distances between brown bear den sites
Table 22. Status of brown bears marked in 1978
Table 23. Status of brown bears marked in 1979
Table 24A. Status of brown bears marked in 1980-1984
Table 24B. Summary of brown bear status, tables 22-24A.
Table 25. Annual use of Prairie Creek by radio-marked brown bears

Table 26A. Prairie Creek brown bear census in 1984
Table 26B. Prairie Creek brown bear census in 1985
Table 27. Brown bear predation rates, spring 1985
Table 28. Brown bear predation rates, summer 1985
Table 29. Black bear capture records
Table 30. Predicted and observed spring 1984 reproductive status of black bear females

Table 31. Predicted and observed spring 1985 reproductive status of black bear females

Table 32. Black bear litter sizes of newborn cubs
Table 33. Black bear litter sizes of yearlings

Table 34. Losses from newborn litters of black bear cubs
Table 35. Morphometrics of black bear cubs
Table 36. Morphometrics of black bear yearlings
Table 37. Natural mortalities of black and brown bears
Table 38. Status of black bears marked in Su-Hydro studies
Table 39. Annual comparisons of berry abundance
Table 40. Subjective characterizations of annual berry abundance

Table 41. Annual home range sizes of downstream black bears
Table 42. Annual home range sizes of upstrean black bears
Table 43. Annual numbers of Susitna River crossings by radiomarked black bears

Table 44. Composition of bear scats collected in 1984.
Table 45. Salmon abundance in downstream sloughs and streams-1981-1984

Table 46. Characteristics of black bear dens
Table 47. History of black bear den use by bear ID
Table 48. History of black bear den use by den ID
Table 49. Black bear entrance and emergence dates, 1983/84
Table 50. Black bear den entrance dates, 1984/85
Table 51. Watana Impoundment proximity analysis for black bear
Table 52. Devils Canyon impoundment proximity analysis for black bear

Table 53. Black bear predation rates, spring 1984
Table 54. Black bear predation rates, summer 1984
IV. INTRODUCTION AND ACKNOWLEDGEMENTS

This is the third annual progress report of Phase II black and brown bear studies that are being conducted as part of impact assessment work for the proposed

Susitna Hydro-electric project. These studies are being conducted by personnel within the Alaska Department of Fish and Game under contract to the Alaska Power Authority. A through discussion of impacts mechanisms was presented in the Phase I Final Report (Miller and McAllister 1982) and the reader is referred to that report for a discussion of these mechanisms. Some additional analyses of important features of these studies were presented in earlier Phase II progress reports as well (Miller 1983 and 1984) and these discussions are not repeated here. All results will be presented and discussed in the Phase II final report currently in preparation.

In this report an new analysis of data collected during the period 1980-1984 on bear use of the proposed impoundment areas is presented (see section VI-D for brown bears and section VII-H for black bears). New data and analyses on bear predation on ungulates in the study area are also presented in this report. Additional discussion on the importance of Prairie Creek salmon resources to brown bear populations in the study area and the potential to mitigate for
impoundment-related losses to brown bear habitat by protection of Prairie Creek is presented in Section VIH. With these exceptions, the information presented in
this report is primarily an update of the data and discussions presented in previous reports.
Many individuals contributed to the Su-Hydro bear project in 1984. Of primary importance was Dennis McAllister(ADF\&G) who was of invaluable assistance in all portions of the project, especially the fieldwork. My supervisor, Karl Schneider, also made many valuable contributions. Many ADF\&G employees made valuable contributions to many different aspects of the project including: Warren Ballard, Jack Whitman, Al Franzman, Charles Schwartz, Craig Gardiner, Bill Taylor, Herman Griese, Enid Goodwin, Mark Chihuly, SuzAnne Miller, Bob Tobey, Jim Lieb, Earl Becker, Danny Anctil, Tammy Otto, Polly Hessing, Bob Cassell, Larry Aumiller, Paul Smith, Carolyn Crouch, Susie Lawler, and Penny Miles. Granville Cooey (Harza Ebasco) was, as always, of great assistance in accomplishing what needed to be done. Craig Lofstedt(Kenai Air Alaska) flew the helicopter during the tagging portion of this work and several pilots for Air Logistics flew helicopters at other times. Larry Rogers(Kenai Air), Al and Jerry Lee(Lee's Air Taxi), Harley McMahan(McMahan Flying Service), and Don Deering flew fixed wing aircraft at various times. Bruce Barrett and his staff conducting su-Hydro fisheries studies were of great help in providing logistic support during the downstream scat collection
portions of this study. Special thanks are due to Rick Halford for permitting us to use his strip at Susitna Lodge to store our aviation fuel. Robin Sener(IGL and associates), Randy Fairbanks (Harza Ebasco) and Richard Fleming(APA) also assisted in various ways. No doubt many other assisted also that I've forgotten to mention and I offer these people my thanks and apologies for neglecting them.
V. METHODOLOGY

Methods used followed those described by Miller and McAllister (1982), Miller(1983 and 1984). Where new or different techniques were utilized in 1984, these are discussed in the text along with the results.

Monitoring schedules were disruped in 1984 because of intensive, daily or twice daily, monitoring that was conducted on 15 May through 25 June and again on 23 July through 1 August. Other flights were conducted on 3, 18, and 30 April, 10 May, 7 and 22 June(downstream only), 12-16 July, 13-14 and 27 August, 2 and 6 September, 1, 11, and 24 October and 7 November. Various obsevations on individual bears were collected at other times in addition as conditions permitted.

Techniques used in conducting a brown bear census at Prairie Creek during the king salmon spawning period are presented in Section VI-H.

No replication of the black bear census effort, using mark-recapture survey flights was conducted in 1984 (see discussion in Miller 1984) but a new technique for estimating density of both species was conducted in spring 1985. This procedure and the prelimninary results are discussed in Sections VI-E(for brown bears) and VII-C(for black bears).
predictions and the observed spring 1984 status is given in Table 2.

In similar fashion the spring 1985 reproductive status of 20 radio-marked brown bear females was predicted in January 1985. These predictions and the results observed in spring 1985 are given in Table 3.

Litter size information for brown bear litters of cub-of-the-year during the period 1978-1984 are given in Table 4, for litters of yearlings in Table 5 and for litters of 2-year-olds in Table 6. Reproductive histories of radio-marked females during this same period are given in Table 7.

A summary of known losses from brown bear litters of cubs and yearlings is given in Table 8. A total of 39\% of cubs accompanying radio-marked females have been lost compared to 29% for yearlings(Table 8).

Measurements of brown bear cubs and yearlings handled in the project area are given in Tables 9 and 10, respectively.

C. Brown bear home range and density estimates.

No additional analyses of brown bear home range sizes were conducted using the data from 1984. For annual home range sizes during the period 1980-1983 see Table 19 in Miller(1984:98).

No additional estimates of brown bear density were conducted in 1984. The best available density estimate for the Su-Hydro study area is $1 / 17$ square miles Miller and Ballard, 1982) as was discussed in Miller and McAllister(1982). Other methods of estimating population size and density were presented in Miller(1984), but these were concluded to be highly inaccurate. An intensive effort to estimate brown bear and black bear densities in the Su-Hydro study area was conducted in spring 1985, an analysis of these data are currently underway and will be presented in the final report of this project(Miller, in prep.).

Updated information on numbers of Susitna River crossings by radio-marked brown bears are presented in Table 11.
D. Use of Impoundment Impact Zones by Brown Bears.

Miller and McAllister(1982:58-60) provided a preliminary assessment of brown bear use of impoundment area proximity zones, this analysis was combined with
data collected subsequently for the analysis presented here. Three zones were identified for each impoundment area: Within the area that would be flooded by the proposed impoundments(zone l), within 1 mile of the high water mark of the proposed impoundments (zone 2), and from 1 to 5 miles from the high water mark of the proposed impoundments(zone 3). Data collected further than 5 miles from the proposed impoundments (zone 4) is also reported but not included in the analysis because, of course, the size of this zone is infinite. A vertical north-south line was drawn to separate the 5mile polygons of each impoundment which would, otherwise, have overlapped. An illustration of these impoundment impact zones was presented in Figure 3 of Miller and McAllister(1982:49). The purpose of this analysis was to determine whether bears were selecting for the impoundment area and at which periods of the year this occurred. Chi square analyses were used to make this determination under the null hypothesis that the number of point locations found in each of these 3 zones was in the same proportion as the area in each zone. Seasons considered included "spring"(April lJune 30) and the rest of the year.

Brown bears used the 3 impoundment significantly differently than expected for all months lumped and in the spring(Table 12). Use of the impoundment zone was
over twice expected values (Table 12). No significant variation from expected values was observed during the period July 1-March 31(Table 12).

Brown bear males, considered separately, also used the 3 impoundment zones significantly differently than expected under the null hypothesis(Table 13). In all months and in both periods use of the impoundment zone was higher than expected values (Table 13).

All brown bear females, considered separately, also used the 3 impoundment zones significantly differently than expected under the null hypothesis(Table 14). This difference was significant for all months lumped and in spring period, but did not differ from expected values during the July l-March 31 period(Table 12).

When a similar analysis was done for brown bears females with cubs-of-the-year(coy), no significant variation from expected values were observed for either all periods lumped or for either of the two time periods(Table 15). This is because these bears tend to stay at higher elevations, well away from the impoundment area during years when they have newborn cubs. I suspect that this behavioral trait is designed to reduce predation on their cubs from other brown bears, especially adult males, that are concentrated in

these lower elevation habitats early in the year. To test this hypothesis I compared the use of these 3 impoundment zones(both impoundments lumped) during years when the same set of females had cubs of the year with the years when they did not(Table 16). During years when they had cubs these bears utilized these 3 zones significantly differently than they did during years when they did not have newborn cubs and use of the impoundment zone was less than expected when these females had cubs(Table 16).
Similar analyses were conducted for observations within the 3 proximity zones of the Devils Canyon impoundment but because of the smaller sample of point-locations in this area and because of the much smaller area that is anticipated to be flooded by the Devils Canyon impoundment, breakdowns by season were not possible. Use of these 3 zones (all months lumped) was significantly different for females without coy and for all bears lumped, it was not significantly different for males(Table 17). The most significant deviations from expected values were observed in zone 3 which was used more than expected. Zone 1 , the impoundment area, was also used more than expected but had only slight use altogether(Table 17).

E. Brown bear density estimation procedures and

results

No additional work on brown bear density estimates was accomplished in 1984. Previous work was summarized in last year's progress report concluded that the best density estimate for the study area available was one bear per 17 square miles (Miller and Ballard, 1982) based on work conducted in 1979 in an area adjacent to the Su-Hydro study area(Miller 1984).

Work conducted in spring 1985 was designed to provide an improved density estimate for brown bears in the suHydro study area. These data have been incompletely analyzed at this point but it appears that the density estimate that will result will be approximately one bear per 14 square miles(Miller in prep.). These data will be completely reported in my final report but the techniques followed will be outlined here.

The basic technique followed was the Lincoln-Peterson Index using the ratio of marked to unmarked animals seen during census flights in fixed-wing aircraft(PA 18). This is a variation of the technique reported by Miller and Ballard(1982) and of the technique I reported in Miller(1983). "Marked" animals were those with functioning radio transmitters at the initiation
of the census period, all other bears seen during the census period were considered unmarked animals and were captured when they were spotted and were marked with radio-transmitters or visual markers. Newborn cubs and yearlings were classified the same as their mothers, either "marked" or "unmarked". Consecutive days of search effort were combined to provide a series of independent estimates over time. The number of marked animals present increased in the later periods relative to the earlier periods. This basically follows the procedure for developing a Schnabel estimate.

The unique feature of the estimation procedure followed in spring 1985 was that we tested the assumption that the population of bears was "closed" to immigration and emigration and made a correction for the demonstrated absence of closure. This testing was accomplished by flying the periphery of the search area each day and determining whether the radio-marked bears were present in the search area or were absent. The number of marks "present" during the search effort was, correspondingly, adjusted to be the fractional value represented by the proportion of times the individual bear was determined to be present in the search area; if a bear was present half of the time, for example, it was considered to be 0.50 of a marked bear present in the search area. Bears with just visual marks were
assigned fractional presence values based on the average values for the radio-marked bears of the same sex and age group. Calculation of population size followed using the standard Iincoln Index and associated formulae. This population value was divided by the size of the search area to derive a relatively unbiased estimate of density. Corrections for "periphery" effects, which result from lack of closure of the population, were not needed following this procedure because this factor was taken into account in determining the number of marks present. Following this procedure means that the most seriously violated assumption is no longer lack of closure but unequal catchability. Methods of correcting for violations of this assumption are currently under investigation.
Density estimates, following this procedure, were accomplished simultaneously for both black and brown bears during spring 1985.
Using these procedures a preliminary brown bear density estimate of $34.4 \mathrm{sq} . \mathrm{km} . /$ bear was obtained for the $\mathrm{Su}-$ Hydro study area. Confidence intervals(95\%) for this estimate were approximately $22.8-50.0$ sq.km./bear. A thorough analyses of these data will be presented in the final report These results are preliminary and tentative.

F. Characteristics of brown bear denning ecology

Updated data for the winter of $1984 / 85$ on of brown bear denning habits in the study area are presented in tables without additional discussion. These data were previously discussed in Miller(1983) and in previous reports and recent data support the conclusions drawn earlier. One brown bear(pregnant Female 396 with 2 newborn cubs in 1985) denned at an atypically low elevation(2,000 feet) site during the winter of 1984/85. This location would have been inundated had it occurred in the vicinity of the Watana Impoundment but it occurred in the vicinity of the Devils Canyon Impoundment so earlier conclusions that no known brown bear den sites would be inundated by the proposed impoundments remain valid. I expect that this low elevation den site is atypical for brown bears in study area.

Updated tables giving the characteristics of dens visited through the winter of 1983/84 are presented in Table 18. Entrance and emergence dates for the winter of 1983/84 are given in Table 19, equivalent data for previous years of study were presented in earlier reports. Entrance dates for the winter of 1984/85 are presented in Table 20. Data on the distances between

Abstract

den sites used by the same individual in successive years are given in Table 21. These data indicate a high level of fidelity to the same general denning area in successive years by the same individual (a mean difference of only approximately 4 miles, Table 2l).

G. Harvest of marked brown bears in Su-Hydro study area

Updated data on the harvest of marked brown bears in the Su-Hydro study area are presented in Tables 22-24B. Over the period of study, the proportion of the population harvested each year appears to be increasing(Table 24B) but these data should be cautiously interpreted. A minimum of 13% of the population of bears marked in the Su-Hydro study area were reported harvested by hunters in 1984 (Table 24A).

H. Brown bear use of the Prairie Creek area

Each year many brown bears in the Su-Hydro study area move in July and August to a tributary of the Talkeetna River running out of Stephan Lake, Prairie Creek. The purpose of these movements is the run of king(chinook) salmon in this creek. These salmon serve as a rich food source for bears. Sport fisheries biologists with the Department of Fish and Game report that this area

Abstract

supports the most concentrated king salmon spawning area in the upper Cook Inlet region(Larry Engle, personal communication). Radio-marked brown bears have been documented moving from an area of 7,894 square kilometers to utilize Prairie Creek salmon resources(Miller 1984:27). The actual area of attraction to brown bears is much larger than this because these data are biased as a result of tagging radio-marked bears only in the Su-hydro study area which is north and east of Prairie Creek, bears moving to Prairie Creek from south and west directions would have no chance of being radiomarked.

The proportion of radio-marked bears in the Su-Hydro study area that have been documented moving to Prairie Creek to fish for salmon has ranged from 13\% in 1981 (a year when little monitoring was done as a result of poor flying conditions) to 38\% in 1984 (Table 25). This proportion appears higher for radio-marked males(50\% in 1984, excluding dispersers) than for radio marked females(33\% in 1984)(Table 25). This is probably because of the larger home ranges of radio marked males(Miller and McAllister 1982).

In connection with intensive monitoring of radio-marked brown bears in spring and summer of 1984 to determine predation rates on ungulate calves(see the following
section of this report), efforts were made to census the number of bears using Prairie Creek during the salmon run. This number is difficult to determine from direct counts because of the exceptionally dense vegetation along the shores of Prairie Creek. This vegetation makes it very difficult to spot the bears from the air, they need only to move a few feet from the creek and they are well hidden from sight. Correspondingly we attempted to census the bears in this area using the ratio of radio-marked to unmarked bears spotted during intensive search efforts along the length of the creek between upper Murder Lake and the Talkeetna River. Marked bears spotted were identified by their radio-frequencies but radio-tracking gear was not utilized in finding the bears during the search effort. The search pattern flown was a circular one overlapping the Prairie Creek from both sides and following up the tributaries on both sides of Prairie Creek up to the limit of where salmon could reach. Subsequent to the search effort, radio-tracking gear was utilized to locate all radio-marked bears in the general area to determine how many were present in the area previously searched. Pilot Al Lee(Lee's Air Taxi) flew these surveys with myself present as spotter and radio-tracker.

Results of 2 surveys, flown on 29 July and 1 August, are presented in Table 26A. On July 29 an estimate of 48 bears (95\% confidence interval=12-80) was obtained, on August 1 an estimate of 33 bears (95\% confidence interval=10-62 bears) was obtained(Table 26A). This estimate includes only bears that were not accompanied by their mothers (or bears at least 2.0 years old), an estimate including these subadults would be 30-40\% higher. The large confidence intervals of this estimate result from a low number of marked bears present in the search area when the census was conducted (only 4-5, Table 26A). Obviously the lower limit of the confidence interval is nonsense as more bears than this value were actually seen on each flight(Table 26A) so a realistic lower limit would be truncated at the number of bears actually seen. Similar surveys are planned for July 1985.

Equivalent data were collected during summer 1985 during the period 23-27 July using replicated morning and evening flights each day in a Piper supercub (PA 18) flown by Harley McMahan with myself as observer. On 6 August another flight was conducted in a Cesna 180 flown by Larry Rogers with myself, Randy Fairbanks and Richard Fleming as observers, this flight was incomplete at the lower end of Prairie Creek because of fuel shortage. The August 6 flight was the poorest in

Abstract

terms of observability because of the larger airplane and increased number of observers however it may have provided the best estimate because of the larger number of marked bears that were present(Table 26B). The data from these 1985 flights are included in this report (Table 26B) although they are incompletely analyzed.

These surveys are designed estimate the number of bears using Prairie Creek and also to provide baseline data on this value which can be used to document the anticipated decline in bear use of Prairie Creek which will occur when the impoundment is built. This documentation will result from replicated surveys flown subsequent to construction when the impact of development has resulted in the anticipated exclusion of many brown bears from this resource. This exclusion will result, in part, from increased numbers of nonsport brown bear kills by the increased number of recreational users who will have access to the area subsequent to construction of access routes from the Denali Highway. More important, however, will be the effects of disturbance exclusion whereby brown bears will abandon the area because of the anticipated large increase in numbers of humans using the area.

Prairie Creek is the only clear example of critical habitat for brown bears that has been found in the
vicinity of the proposed hydroelectric project. As such, protection of this area from the competitive exclusion impacts, mentioned above, would appear to offer an excellent opportunity to mitigate for the losses to brown bear habitat that will occur as a result of the project. This mitigation could be achieved if the area surrounding• Prairie Creek were obtained by the state and put into an appropriately protective land-use designation such as a state Game Refuge. This protection would not result in any absolute increase in numbers of brown bears that could be used to offset the losses that will be caused by the project, no mechanism that would accomplish such an increase is known. However, protection of Prairie Creek from human competitive exclusion impacts would help maintain larger populations of bears than would be able to exist in this area without such protection of Prairie Creek. As this is the only kind of mitigation which is possible for the losses that the project would cause to brown bear populations in the study area, protection of Prairie Creek as a food source for salmon-fishing brown bears should receive the attention of mitigation planners. That that factors necessary to adequately protect Prairie Creek from exclusion impacts include:

1. Restrictions on human use of the area between 1 July and 15 August, at least; and
2. Minimal human development and impacts in the larger area surrounding Prairie Creek, such as the Fog Lakes area, through which bears must pass to get to Prairie Creek.

It is noteworthy that the recreational plan currently under consideration as part of the FERC license application is incompatible with either of these requirements. Among other things it is highly questionable, for example, whether there would be any point in protecting Prairie Creek as a State Game Refuge if road access to the south side of the Susitna River is provided as a result of the project. Such access would almost certainly eliminate the Prairie Creek area as a critical habitat area that would be utilized by brown bears.

I. Brown bear predation rates on ungulates

During spring 1984 selected radio-marked brown bears were monitored twice per day from 29 May through 7 June and once per day from 8 June through 1 July, weather conditions permitting. These data were collected simultaneously with moose calf mortality studies being
conducted as part of the upstream moose project(Ballard and others in prep.). Similar data were collected during once/day monitoring of the same bears during 23 July through 1 August to compare spring and summer predation rates.

During the spring period twenty-six moose calf kills were positively identified, for 16 radio marked bears, an additional 8 kills of non-calf moose and 3 age or species unknown kills were also observed(Table 27). This represents a total of 48 known or suspected kills of ungulates by these bears during the spring, approximately 3/bear(Table 27). Females with newborn cubs had the lowest predation rates $(1.5$ kills of moose calves/100 visuals) and females with yearlings had the highest rates(8.7/100 visuals) (Table 27). The low rates for females with newborn cubs doubtless reflects the elevational separation which typically separates these bears from other bears during the spring (Miller and McAllister 1982). This separation puts most females with cubs away from the area where most other bears are concentrated and also away from the areas where moose calves are being born.

Only one ungulate kill was observed during the summer observation period(Table 28). If the same ratio of visual observations of bears to kills of ungulates that
had been observed in the spring occurred in the fall, then 3.5 kills would have been expected(excludes observations made at Prairie Creek). It appears that ungulate kills by brown bears are more prevalent in the spring than during the summer as would be expected. A more complete analysis of these data will be conducted for the final report.

VII. RESULTS AND DISCUSSION--BLACK BEARS

A. Sex and Age Composition of Study Animals

Following the May 1984 tagging effort 30 black bears (including 13 in the downstream study area) were radiomarked. Capture data from 1980-1984 are given in Table 29. losses of marks and bears left 27 radio-marked bears by spring 1985, ll of these in the downstream study area.

B. Population Biology and Productivity--Black Bears

Based on reproductive status in 1984, Miller(1984: Table 31) predicted the spring 1984 reproductive status of 19 radio-marked black bear females. These predictions and the observed status of these bears in the spring 1984 are given in Table 30. Similar predictions, during January 1985, were made for the spring 1985 reproductive status of 21 radio-marked black bears. These predictions and the observed results are presented in Table 31. These data are useful in calculating reproductive interval and will be thoroughly evaluated in the final report.

Updated litter size information for black bear cubs is given in Table 32 and for litters of yearlings in Table
33. Updated information on the losses of newborn cubs of radio-marked females is given in Table 34. Updated information on sex ratio and morphometrics of black bear cubs and yearlings is provided in Tables 35 and 36 respectively. Updated information on apparent causes of natural mortalities to black and brown bears is given in Table 37.

C. Black Bear Density Estimates

No additional work on black bear density estimates was accomplished in 1984. For a review of the work accomplished to date on this topic see Miller(1984), Miller(1983) and Miller and McAllister(1982). None of these reports provide an acceptable estimate of black bear density. An extensive effort to provide an accurate and objective estimate of black bear density was made in spring 1985 following the same procedures previously discussed for brown bears(see section VII C of this report). This effort was successful. These data are currently being analyzed and will be reported in the final report.

A preliminary analysis of these results indicate that the area of 520 square miles searched for black and brown bears contained approximately 39 brown bears and

49 black bears(Miller in prep.). All of this area was brown bear habitat but not all of it was black bear habitat. The portion of the search area that was black bear habitat was determined by plotting the point locations of all radio-marked black bears during the period 1980-1984. These points were used to delineate "black bear habitat" by manually drawing a convex polygon such that all but a few of these points were included. Excluded points represented locations felt to be erratic or point locations outside of typical black bear habitats. The same process was followed to delineate the portion of the whole upstream area that was black bear habitat so that the density estimate obtained in the census area could be applied to this larger area in order to obtain a population estimate for the whole study area.

The census area of 520 square miles contained about 206 square miles (532 square kilometers) that was considered black bear habitat determined in this way. Correspondingly, an estimate of about 49 black bears for this area would represent a density of about 1 black bear/4.2 square miles or $1 / 10.9$ square kilometers. The total area of the upstream study area considered to be black bear habitat was 465 square miles(1203 square kilometers), calculated as outlined above. Applying the above density figure to this area
yields a population estimate of about 111 bears(all sexes and ages). These data are highly preliminary and should be cited with care until final analysis is accomplished. Without doubt some modifications to the figures presented here will occur when the final analysis is completed. It is also noteworthy that this population estimate reflects the number of bears present in spring 1985, not the capability of the habitat to support this many bears. As mentioned in previous reports(Miller 1984 and 1983, Miller and McAllister 1982) it is felt that the current population has declined sharply from the number of bears present in the study area in 1980 and 1981, probably as a result of the poor berry crop in 1981.

D. Berry Abundance

Four transects designed to document changes in berry abundance between years were established in 1982 (Miller 1983). These same plots were read in 1983 and in 1984 and these results are presented in Table 39 along with the results from previous years. Fewer blueberries were counted in transects 2 and 3 in 1984 than in the previous year. These data suffer from an inadequate sample size. A subjective appraisal of berry abundance in each of the years of study is presented in Table 40. This appraisal suggests decreased berry abundance in

Abstract

1984 relative to 1983. Information on the relative abundance of berries in different habitat types is being collected in summer 1985 in association with moose browse inventory studies. E. Home Range and Movements

Home range data for radio-marked black bears (19801983) are presented in Tables 41 and 42 for downstream and upstream bears respectively. Analyses in addition to those reported in Miller(1983) will be conducted for the final report. Annual numbers of river crossings by radio-marked black bears are reported in Table 43.

F. Bear Food Habits

The contents of scats collected in 1984 are presented in Table 44. As discussed in Miller(1984) experimental attempts to develop a technique to differentiate between the scats of black and brown bears were unsuccessful, so in most cases these results are for bears of unknown species.

Most of the scats analyzed were collected in mid-August along the streams and sloughs between Curry and Portage Creek, downstream of the proposed impoundments. These collections were made in this area in order to evaluate
the impacts of expected reductions of spawning salmon in these areas subsequent to construction of the impoundments. This reduction was thought likely to impact bears feeding on these salmon. Of 39 samples collected along these sloughs and. streams in 1984 however, none contained identifiable remnants of salmon. These results are equivalent to those reported previously (Miller 1984 and 1983). Also as reported before, berries of devils club (oplopanax horridus) were the most commonly found item in these scats(Table 44). Salmon were more abundant in these sloughs than they were in 1983(Table 45). This was because 1984 was an even-numbered year when pink salmon are more abundant.

G. Black Bear Denning Ecology

Raw data on the dimensions and other characteristics of black bear den sites found in the study area are given in Table 46. The history of den use by each individual radio-marked bears is provided in Table 47. Some radio-marked bears use the same den sites in successive years and some use dens previously occupied by another radio-marked bear. Correspondingly, a history of known use of individual den sites is provided in Table 48. A total of 82 individual black bear den sites have been identified to date throughout the entire study area, 23
in the Devils Canyon area, 23 downstream of this, and 36 in the Watana impoundment area(Table 48). Dens that were excavated by bears represented 50% of the dens found, 34\% of the dens were in natural cavities (caves, rock piles, etc.), and 4\% were in trees(Table 48). In the Watana Impoundment area, $20(56 \%$) of the dens discovered would be flooded by the impoundment. In the Devils Canyon impoundment area, only $1(4 \%)$ of the dens found would be flooded by the Devils Canyon impoundment(Table 48).

During winter of 1984/85, 13 dens that had been occupied by radio-marked black bears in previous years were revisited and inspected for occupants. None were occupied(Table 48).

Entrance and emergence dates of radio-marked black bears from their 1983/84 dens are provided in Table 49. Entrance dates into 1984/85 dens by radio-marked black bears are provided in Table 50. Emergence in spring 1985 was delayed by late snows, but these data have not yet been compiled.

Conclusions of my earlier reports that the Watana impoundment would impact a significant amount of black bear denning habitat upstream of the site of the Watana dam are supported by these data. The Devils Canyon dam

Abstract

on the other hand is likely to have only a small impact on black bear denning habitats.

H. Black Bear Use of Impoundment: Proximity Zones

Black bear use of nested zones of proximity to the Devils Canyon and Watana impoundments was analyzed using the same methods and procedures previously discussed for brown bears(see section VII-D of this report and Miller and McAllister 1982). Black bear use of the areas that would be inundated by the Watana impoundment was highly significant when compared to the adjacent zone or to the adjacent 2 zones (Table 5l). Overall 42\% of the observations of radio-marked black bears made in the vicinity of the Watana impoundment were in the area that would be inundated by that dam(Table 51). This percentage value was highest in May and June, the same time period when brown bear use of the impoundment area was highest. No doubt at this time the black bears and brown bears are using the same spring food resources that are available earliest on the south-facing slopes along the Susitna River and its tributaries: carrion, newly-emerged plants, overwintered berries, and moose calves.

This same pattern is not evident for the Devils Canyon impoundment. This is probably because of the very
small area that would be inundated by this impoundment (only 3.3% of the area within 5 miles of the Susitna River along the reach of the River that would be inundated by the Devils Canyon impoundment) (Table 52). In the spring period when the Devils Canyon impoundment zone is most used (May 1-June 30), observed use was lower than expected values for zone 1 for the comparison between zones I and 2 (Table 52). In the area around the Devils Canyon impoundment the distribution of acceptable black bear habitat is much wider than farther upstream and as a result dependence of the immediate vicinity of the river is less in the lower portion of the study area.

I. Black Bear Predation Rates

As discussed earlier in this report for brown bears (Section VII-I), radio-marked black bears were intensively monitored in spring 1.984 and again in midsummer. Predation rates by black bears on ungulates(Tables 53 and 54) was lower than for brown bears(Tables 27 and 28). Black bears killed at least 2.1 calves/100 visual observations in the spring while brown bears killed at least 5.5/100 visual observations. These are minimum values because not all kills could be observed or identified. These data will be more completely analyzed for the final report, but it is clear that black bear bear predation on moose
calves is significant in the study area and that a complete elimination of brown bears from the study area would not eliminate predation losses to bears. The degree to which black bear predation is additive or compensatory to brown bear predation is not clear from the preliminary data analysis. I suspect that moose calf losses to black bear predation is largely additive to losses to brown bear predation but that if brown bears were greatly reduced in numbers that some compensatory increase in black bear predation would occur. This would be because black bears would probably range more widely and would likely frequent habitats they currently tend to avoid because of the dangers of encountering brown bears in these habitats.
VIII. REFERENCES CITED

Abstract

Miller, Sterling D. and Dennis C. McAllister. 1982. Susitna Hydroelectric Project. Phase I Final Report, Big Game Studies, Volume VI Black Bear and Brown Bear. 233 pp.

Milier, Sterling D. 1983. Susitna Hydroelectric Project. Phase II Progress Report, Big Game Studies, Volume VI Black Bear and Brown Bear. 99 pp.

Miller, Sterling D. 1983. Susitna Hydroelectric Project. Phase II Progress Report, Big Game Studies, Volume VI Black Bear and Brown Bear. 174 pp.

Miller, Sterling D. and Warren B. Ballard. 1982. Density and Biomass estimates for an Interior Alaskan Brown Bear, Ursus arctos, Population. Canadian Field-Naturalist 96(4):448-454.

IX. TABLES

Table 1. Brown bears captured in Susitna Dam Studies as of July, 1985

Tattoo	Sex	$\frac{\text { Captur }}{\text { Age }}$	Wt.	Date	Serial \#	Ear Tags	Comments
(277)	F	10.5	225*	4/10/80		1065/1066	w/2 ylgs, not marked, collar shed 80/81 den
(278)	M	9.5	375*	4/19/80			capture mortality
(279)	M	9.5	400**	4/20/80		1100/1099	collar shed by 6/12/80, recaptured 5/18/83, shot 9/84
280	M	5.5	300*	4/20/80		1097/1098	recollar next spring
214	M	4.5	300*	4/22/80		1072/1071	collar shed 9/9/80, recaptured 6/85
281	F	3.5	250*	4/22/80		16175/15950	not turgid, see 5/81 recapture
282	M	4.5	325*	4/22/80		1079/1080	see 6/82 recapture
283	F	12.5	280*	4/22/80		690/689	w2 @2.5: 284 and 285
(284)	M	2.5	180*,	4/22/80		1074/1073	w/283 see 5/5/81 recapture
285	M	2.5	180*	4/22/80		687/688	w/283
286	M	3.5	264	5/1/80		1081/1082	
292	F	3.5	174	5/2/80		1322/1321	Turgid
293	M	3.5	277	5/2/80		1116/1115	
(294)	M	10.5	607	5/2/80		--	died on 8/6/81 recapture
(295)	M	12.5	589	5/3/80		1303/1304	collar shed by 5/4/80
299	F	13.5	285	5/4/80		1109/1110	w/2 ylgs, turgid, recaptured 5/7/81
(297)	M	1.5	65	5/4/80		(1301/1302)	w/299, shot by hunter on 9/18/81
298	M	1.5	65	5/4/80		1318/1317	w/299
306	F	3.5	163	5/4/80		1319/1320	turgid
(308A)	M	6.5	480	5/6/80		(1126/1125)	shot 9/83
(308B)	F	5.5	240	5/6/80		109671095	turgid(?) - died on 8/6/81 recapture
309	M	12.5	600	5/6/80		1117/1118	collar shed by 5/14/80, recaptured 6/85
(312)	F	10.5	319	5/7/80		1312/1311	w/311
(311)	M	2.5	227	5/7/80		--	shot on 9/16/80
313	F	9. 5	286	5/7/80		1119/1120	w/314@2.5
314	F	2.5	154	5/7/80		1049/1050	w/313, recaptured 6/1/85
315	F	2.5	90*	5/7/80		1127/1128	alone, recaptured 5/18/83
(284\#2)	M	3.5	125	5/5/81		1074/1073	near $283 \mathrm{w} / 2 \mathrm{c}$, shot by hunter on 5/18/81
(331)	F	6.5	172	5/5/61		(1296/1295)	w/332 and 333; died August 1982
(332)	M	2.5	79	5/5/81	:	(1215/1216)	W/331 and 333 , shot by hunter on 9/5/82
(333)	M	2.5	67	5/5/81		(1240/1239)	w/331 and 332, shot by hunter on 9/3/81
334	F	10.5	325	5/5/81		1292/1291	estrus, missing in 1982
335	F	3.5	194	5/5/81		1220/1219	recaptured 5/14/83, age changed + 1 ' 83 tooth
281\#2	F	4.5	--	5/6/81		1201/1202	estrus? recaptured 5/15/83
283\#2	F	13.5	261	5/6/81		1089/1090	W/338 and 339, recaptured 5/14/83
338	F	0.5	12	5/6/81		1224/1223	w/283, sex switched to female
339	M	0.5	13	5/6/81		1222/1221	w/283, recaptured 6/85, sex switched to male
312\#2	F	11.5	280	5/6/81		1300/1299	w/2c (00.5 (not captured), recaptured 5/14/83
313\#2	F	10.5	284	5/6/81		1120/1119	w/336, recaptured 5/14/83
336	F	0.5	--	5/6/81		1237/1238	w/313, not drugged (abandoned)
337	F	13.5	321	5/6/81		1294/1293	w/3c reunited on 5/9/81, recaptured 5/14/83
340	F	3.5	190	5/6/81		1225/1218	not estrus, recaptured 5/15/83
280\#2	M	6.5	394	5/7/81		1097/1267	w/F 341, recaptured 5/16/83
341	F	6.5	224	5/7/81		(1208/1207)	W/M 280, collar failed, recaptured 6/81
299\#2	F	14.5	291	5/7/81		110971110	w/2 @2.5 (297 and 298 - not recaptured), not estrus, recaptured $8 / 6 / 81$
(342A)	M	2.5	220	5/7/81		1228/1227	alone, see 5/25/82 recapture, died 7/84
344	F	5.5	--	5/8/81		1204/1203	w/2 cubs subsequently, recaptured 5/14/83
(345)	M	7.5	495	5/8/81		-- --	capture mortality
(308B) \#2	F	6.8	--	8/6/81		-- --	recapture mortality
299\#3	F	14.8	--	8/6/81		1109/1110	collar replaced, recaptured 5/18/81

rable 1. (continued)

	Tattoo	Capture				Serial \#	Ear Tags	Comments
		Sex	Age	Wt.	Date			
	299\#5	F	17.5	308	5/15/84	same	same	W/3@1, 417-419
	417\#2	M	1.5	94	5/15/84	12080	same	w/G299 \& siblings, small implant
	418\#2	M	1.5	86	5/15/84	12081	same	w/G299 \& siblings, large implant
	419\#2	M	1.5	84	5/15/84	12076	same	w/G299 \& siblings, amall implant
	399\#2	M	10.5	662	5/15/84	6405	same	alone
	388\#2	F	15.5	400*	5/16/84	same	same	w/2c
	(\#16)	M	0.5	--	5/16/84	(1389)	(1389/1390)	w/G388, capture-induced seperation, died/shed 6/84
	(\#17)	F	0.5	00	5/16/84	(1623)	(40750)	w/G388, capture induced seperation, died 5/84
	312\#3	F	14.5	300*	5/16/83	(6332)	same,	w/3c, old and new radio fatlures, capture mortality on 5/17/84
	(279\#3)	M	13.5	800*	5/16/84	(6339718884)	same,	large implant, shot 9/84
	281\#4	F	7.5	350*	5/17/84	6407	same	w/2c
	(21)	M	0.5	14	5/17/84	(1703)	1386/1383	w/G281, drowned?
	(22)	M	0.5	14	5/17/84	(1710)	(1385/1384)	w/G281, killed by BrB
	337\#3	F	16.5	325	5/17/84	same	same	w/2c, recaptured 6/85
	08	F	0.5	12	5/17/84	1708	1338/1337	w/337
	09	F	0.5	12	5/17/84	1711	1340/1339	w/337
	340\#3	F	6.5	375*	5/17/84	same	same	w/2c, recaptured 6/85
	23	?	0.5	17	5/17/84	1713	45/28	w/340,
	24	?	0.5	14	5/17/84	1706	44/27	w/340
	420	F	19.5	350*	5/17/84	6335	2447/2057	$w / 2 @ 1$, one is 421
	421	M	1.5	78	5/17/84	3984/1886	1644/2086	w/420 \& uncaptured sibling. large implant, female sibling, 437, captured 6/85
灾	422	M	4.5	205	5/18/84	18716	2136/2137	alone near camp
	381\#2	F	5.5	263	5/18/84	6341	same	alone . .
	$400 \% 2$	M	21.5	600*	5/18/84	6325	same	alone
	382\#2	M.	2.5	148	5/18/84	15289	same	w/G313, old implant $=8.110$, breakaway
	423	F	A	300*	5/18/84	6306	none	w/4c, drug problem
	25	M	0.5	7	5/18/84	1712	39/32	smallest cub w/G423
	--	F	0.5	--	5/18/84	-	49/48	other sibling w/G413 not marked or sexed
	425	F	A	--	6/01/84			w/282 M
	282\#3	M	8.5	--	6/01/84			w/425, recapture of shed collar
	342\#3	M	5.6	--	7/28/84	--.	--	capture mortality
	427	M	A	195	6/01/85	6322	1697/2113	rot-away canvas spacer used
	398\#2	F	4.5	200*	6/01/85	6315	same	$396{ }^{\prime \prime}$ s offspring @2 in 1983
	$314 \# 2$	F	7.5	285*	6/01/85	6352	same	w/1@1 2 yr old w/G313 on 5/80; had litter at age 6
	429	F	1.5**	104	6/01/85	--	1514/1518	w/G314 break-away marker collar w/black flag
	341\#2	F	10.5	--	6/03/85	6287	2174/1372	old collar failed permaturely added new tags to old
	214\#2	M	9.5	600*	6/03/85	xx46	1071/1649	previously shed collar
	437	F	2.5*	175*	6/03/85	1036	2082/2083	w/G421, probably sibling, rot-away collar
	309/440	M	17.5	700*	6/04/85	6298	2163/1523	old collar shed, tattoo 440 in upper left, break-away
	442	M	A	750*	6/04/85	--	1677/2117	"Harley" yellow flag in rt. ear
	443	M	A	400*	6/04/85	--	2172/--	red flag in right, blond
	397\#2	F	4.5	300*	6/04/85	6449	1534/1597	estus w/443, was w/G396 in 1983@2
	447	F	A	400*	6/05/85	10337	2430/2429	--, break-away
	347\#2	M	18.5	650*	6/09/85	--	2184/2181	orange flags in ears, old eartags gone
	339/450	M	4.5	150*	6.09/85	--	1221/2130	originally captured in 1981 @OW/G283, sexed as F, switched w/sex of sibling? Tattoos=450
	385\#2	F	4.5	130*	6/09/85	--	1507/1592	green flag on visual drop-off, old ear tags replaced
	407\#2	F	6.5	200*	6/09/85	same	same	alone drop-off feature added to collar
	337\#4	F	17.5	200*	6/09/85	6440	same	w/2@1 - these have no collars
	273	F	9.5	200*	6/09/85	6342	same	age $=3$ in 1979, transported, returned, old collar replaced
	340	F	17.5	250*	6/10/85	6333	same	replaced collar, w/2@1
	280\#4	M	10.5	400*	6/10/85		same	collar removed

[^0]Table 2. Predicted and observed spring 1984 reproductive status of radio-collared female brown bears.

\cdots	ID	1984 age	Predicted* 1984 status	Comments	Observed 1984 status
!	281	7	cubs	lost '83 litter (2) in May	2 cubs
an	283	16	cubs	lost ' 83 litter (1) in Maý, bred	alone
	394	7	cubs	lost '83 litter (1) in May, bred	alone
	312	14	cuibs	weaned 102 in ' 83 , bred	3 cubs
\cdots	337	16	cubs	weaned la2 in ' 83 , bred	2 cubs
	384	13	cubs	weaned 3@2 in '83, bred	2 cubs
	388	15	cubs	weaned 2 @ 2 in ' 83 , bred	2 cubs
	396	14	cubs	weaned 2 @2 in ' 83 , bred	1 cub
m	315	6	cubs	first litter?	alone
	335	6	cubs	first litter	2 cubs
m	340	6	cubs	first litter, bred in ' 83	2 cubs
	381	5	cubs	first litter	alone
	407**	5	cubs	alone in '83, first litter?	alone
	299	17	3 ylgs	had cubs in ' 83	3 ylgs
	344	8	1 ylg	had cubs in ' 83	1 ylg
	403**	7	1 ylg	had cubs in '83	1 ylg
	313	13	w/1@2	with 1@1 in 183	w/1@2
+	379**	7	w/1@2	with ylgs tn '83	2/1@2
	385	3	barren	weaned from G337 in '83	barren
Notan	393 (missing?)	3	barren	weaned from G384 in ' 83	NA

* See Table 6 tn Miller (1984:78)
** bear occurs in the downstream study area

Table 3. Predicted spring 1985 reproductive status of radio-collared female brown bears.

ID	1985 age	Predicted* 1985 status	Comments	Observed 1985 status
281	8	cubs	lost ' 83 \&' 84 litters in May, bred in ${ }^{184}$	2 cubs
283	17	cubs	litter was expected in ' 84 , bred	2 cubs
388	16	cubs	lost '84 litter in May, bred	2 cubs
396	15	cubs	lost litter (1) in May	2 cubs
315	7	cubs	first litter was expected in '84	NA (missing)
381	6	cubs	first litter was expected in '84	2 cubs
407**	6	cubs	first iltter was expected in '84	alone
379**	8	cubs	weaned lị2 tn '84	alone
313	14	cubs	weaned la2 in '84, bred	NA (missing)
344	9	cubs?	lost 1@1 Ln May, bred	NA (missing)
425	A	cubs	bred in ${ }^{184}$	2 cubs
337	16	w/2@1	2 cubs in '84	2 glgs
384 (missing)	14	w/2@I	2 cubs in '84	NA
335	7	w/2@1	2 cubs in '84	2 ylgs
340	7	w/2el	2 cubs in ' 84	2 ylgs
423	A	w/3@1	3 cubs in '84	3 ylgs
299	18	w/3@2	$3 @ 1$ in 1/34	NA (missing)
403	8	w/192	101 in '134	alone?
420	A	w/2@2	w/Ylgs in '84	w/2@2
385	4	barren	barren in '84	alone

[^1]Table 4. Summary of Nelchina Basin brown bear litter size data for cubs of the year (based on spring observations of radio-collared bears).

Table 4. (cont'd)

BEAR ID (year-age)	LITTER SIZE (year)	COMments	Summary
283(1983, 15)	1(1983)	killed by brown bear by 5/17/83, cub was collared	1 of 1 lost
337 (1981, 13)	3(1981)	cubs and female reunited, 1 cub lost in 81/82 den, other 2 survived to exit (1 weaned in 1983, other lost as ylg.)	1 of 3 lost
$337(1984,16)$	2(1984)	both survived to den, collared cubs	0 of 2 lost
344(1981, 5)	2(1981)	both lost in ' 82 as yearlings	0 of 2 lost
344(1983, 7)	2(1983)	lost 1 in early July - other survived to den exit	1 of 2 1ost
379(1982, 5)	2(1982)	both survived	0 of 2 lost
341(1981, 6)	2(1982)	$\text { survived until } 7 / 15 / 82 \text { when bear }$ was lost	none
299(1980, 13)	1(1982)	bear weaned 2 @ 2 in 1981, cub lost by 6/9/82	1 of 1 lost
299(1983, 16)	3(1983)	all cubs collared, alive to den exit	0 of 3 lost
281(1983, 6)	2(1983)	both killed by brown bear by 6/1/83, cubs collared	2 of 2 lost
281(1984, 7)	2(1984)	lost both in May, one suspected killed by brown bear, other unknown (accidental drowning?), collared cubs	2 of 2 lost
394(1983, 6)	1(1983)	lost (capture related?) by 5/16, bred	1 of 1 lost (capture related?)

Table 4. (cont'd) BEAR ID(year-age)	LITTER SIZE (year)	COMMENTS

Summary
No. of cubs No. of litters mean litter size (range) 19 of 47 cubs lost in first year of $11 f(2$ of these possibly capture-related) 40%
59

Table 5. Summary of Nelchina Basin brown bear litter size data for litters of yearlings (based on spring observation of radio-collared beaxs).

BEAR ID (year-age)	LITTER SIZE (year)	COMMENTS	Summary
$220(1978,5)$	1 (1978)	ylg entered den and was weaned in 1979, bred	0 of 1 lost
$221(1978,8)$	2(1978)	survived, weaned in 1979	0 of 2 lost
234(1978, 5)	2(1978)	Paxson dump bear, lost apparent ylgs between $6 / 23 / 78$ and $8 / 4 / 78$, reported1y had cubs in August 1979, radio failed	none
240(1979, 5)	2(1979)	bear transplanted with ylgs, not known if ylgs, survived to return to expt. area, bear was alone on $7 / 18 / 80$	none
$244(1979,6)$	1(1979)	thin female transplanted with $y 1 g$, ylg. survived at least 21 days, female bred, but alone in July and August 1980	```none-transplant bias```
251(1979, 10)	2 (1979)	```very large yearlings lost 10-17 days after transplant, bear had no cubs in 1980 (August)```	none, transplant bias
254(1979, 9)	2 (1979)	female died after transplant (ylgs??)	none
261(1979, 7)	2(1979)	lost 1 ylg between 1 and 7 days after transplant, other survived at least until Sept., didn't return to study area	none-transplant bias
269(1979, 16)	2(1979)	transplanted, returned to study area with female, no cubs on $9 / 29 / 80$, shot in fall 1981 reportedly without cubs	none, transplant bias
274(1979, 11)	1 (1979)	transplanted, no radio	none
207(1978, 11)	1 (1979)	survived until 9/12/79	0 of l lost
231(1978,12)	1 (1979)	survived until 8/79	none
$213(1978,10)$	$1(1978)$	apparent ylg was not captured, had cubs following year	1 of 1 lost (capture related?)

Table 5. (cont'd)

| BEAR ID (year-age) | LITTER SIZE (year) | COMMENTS |
| :--- | :--- | :--- | Summary

Summary
No. of yearlings No. litters mean litter size (range)

Table 6. Summary of Nelchina Basin brown bear litter size data for litters of 2-year olds (based on observation of radio-collared bears).

Table 6. (cont'd)
BEAR ID(year-age) LITTTER SIZE (year) COMMENTS

$331(1981,6)$	$2(1981)$	weaned by $6 / 15$, bred, no cubs in 1982 died in 1982 (reason?)
$379(1984,1)$	$1(1984)$	apparently weaned cub (time?), bred

Summary

No. of 2-year olds 26	No. of litters	Mean litter size(range)

Table 7. Brown bear offspring survivorship and weaning, GMU 13 studies. (Excludes bears transplanted in 1979).

year	MOTHER'S ID (age in year when first captured)				
	G207(11 in 1978)	G220(5 in 1978)	G221 (8 in 1978)	G204(7 in 1978)	G321(12 in 1978)
1978	3 cubs, April-Oct.	1 ylg., May-Oct.	2 ylgs., May-Oct.	2 a 2 in May, weaned in June and bred	bred
1979	$\begin{aligned} & 1 \text { ylg., May-Sept. } \\ & 2 \text { ylgs, lost in } \\ & 78 / 79 \text { den?) } \end{aligned}$	$\underset{\text { June }}{1} @ 2 \text {, weaned in }$	2 @ 2 weaned in May, radio failure	no data	```2 of 3 cubs lost in June, 1 survived April-Sept.```
1980	no data				

year	MOTHER'S ID (age in year when first captured)					G281(3 in 1980)
	G277(10 in 1980)	G312(10 in 1980)	G299(13 in 1980)	G313 (9 in 1980)	G283(13 in 1980)	
1980	2 @ 1 survived April thru August, collar shed in den	weaned $1 @ 2$ in May breeding not observed	$\begin{aligned} & 2 \text { of } 2 \text { ylgs. } \\ & \text { survived } \\ & \text { May-Oct. } \end{aligned}$	$\begin{aligned} & \text { weaned } 1 \text { @ } 2 \text { in } \\ & \text { May, bred } \end{aligned}$	weaned 2 @ 2 in June, bred	not estrus
1981	no data	1 of 2 cubs lost in June, other survived MayOct.	weaned 2 @ 2 in May and bred	1 @ 0 lost in May (?capture related?)	1 of 2 cubs lost in Aug., other survived	estrus, bred
1982	no data	yearling survived	lost 1 of 1 @ 0 in June	200 survived	lost 1 @ 1 in Hay, bred	alone, bred
1983	no data	weaned 1 @ 2 in June, bred, off- spring=G385, transmitted	3 @ 0 survived (w/collars)	1 d 1 lost in June (transmitted internally), sibling survived	lost 1 @ 0 in May, bred. lost cub had transmitter	2 @ 0 lost in May, bear predation, not seen breeding
$\begin{aligned} & 1984 \\ & \text { (to Oct.) } \end{aligned}$	no data	w/2 @ 0-bear killed in May	3 @ 1 survived (w/internals)	1 @ 2 weaned in May, bred	alone, bred	$\begin{aligned} & 2 \text { @ } 0 \text { lost in May, } \\ & \text { bred } \end{aligned}$

Table 7. (continuation page 1)
MOTHER'S ID lage in year when first captured)

year	G331(6 in 1981)	G334(10 \ln 1981)	G341(6 in 1981)	G337(13 in 1981)	G344(5 \ln 1981)	G335(2 in 1981)	G340(3 in 1981)
1981	2 @ 2 weaned in May, bred	weaned 1 @ 2 in May, bred, bear missing since Sept.	alone, bred in May	lost 1 @ 0 in whter den, 2 survived	2 @ 0 survived	weaned from mother	alone
1982	no cubs, bred, died in July (reason?)	no data	had 2 @ 0 thru July, bear missing subsequently	lost 1 @ 1 in June other survived	lost 1 @ 1 In May, lost other in early July	alone, bred	alone
1983	--	no data	no data	weaned 1 @ 2 in May, bred	2 @ 0 , lost 1 by late June, other survived	alone, bred	alone, bred
$\begin{aligned} & 1984 \\ & \text { (to Oct) } \end{aligned}$	--	no data	no data	w/2 @ 0, collared, both survived	1 @1 lost in May, bred	w/2 @ 0 thru Oct.	w/2@0, survived to Oct.

MOTHER'S ID (age in year when first captured)

year	G380(5 in 1982)	G394(6 in 1983)	G384(12 in 1983)	6379(5 In 1982)	G388(14 in 1983)	G381(3 in 1982)
1982	2 a 1 survived until denning, one may have died in den	no data	no data	2 @ 0 survived	no data	alone
1983	at least 1 @ 2 weaned in May, possibly both. shot in Sept.	lost 1 @ 0 in May (?capture related posstble?), bred	weaned 2 or 3 a 2 in June, bred	```1 of 2 survived, lost 2 (June- Sept.)```	$\begin{aligned} & \text { weaned } 2 @ 2, \\ & \text { bred } \end{aligned}$	a lone
$\begin{aligned} & 1984 \\ & \text { (to Oct.) } \end{aligned}$	--	alone, shot --	w/2@ 0 thru Sept., missing	Probably weaned $1 @ 2$ after May 23	w/2 @ 0-cap-ture-related cub loss, bred	alone, bred

MOTHER'S ID (age in year when first captured)

year	G396(13 in 1983	G403(6 in 1983)	G315 (5 in 1983)	G385(2 in 1983)	G407(4 in 1983)	G420(A in 1984)	G423(A in 1984)	G425(A in 1984)
1983	weaned $2 @ 2 \mathrm{n}$ May, bred	2 @ 0 thru Aug. lost 1 in Sept.	alone, bred	weaned from mother	alone	no data	no data	no data
$\begin{aligned} & 1984 \\ & \text { to Oct. } \end{aligned}$	lost litter of 1 @ 0 in May, breeding?	w/1 @l in April, bear not seen subsequently	alone, breeding not seen	alone	alone	w/2@1 thru Oct.	4 @ 0 , one lost in July, others survived to Oct.	alone, bred

	Year of emergence	losses of cubs	losses of yearlings
	1978	2 of 3 lost (G207)	0 of 3 lost (G221, G220)
	1979	2 of 3 lost (231\#)	0 of 1 lost (G207\#\#)
	1980	no data	0 of 4 lost (G299, G277*)
-	1981	```4** of 10 lost (G312, G313, G283, G337, G344)```	no data
)	1982	1*** of 5 lost (G299, G313, G379)	```4 of 8 lost (G312, G283, G337, G344,G380****)```
	1983	```6' of 11 lost (G283, G344, G299, G281, G394, G403)```	2 of 4 lost (G379, G313")
mim	1984 (thru Oct.)	$\begin{aligned} & 4 \text { of } 15 \text { lost }(281,337,335,340 \text {, } \\ & 384 \# \#, 396,423) \end{aligned}$	1 of 6 lost (299, 344, and 420; 403 not included because of no visuals after April)
mom	TOMALS: $\quad 19$ of 47 lost $=40 \%$		7 of 26 lost $=27 \%$
\cdots	Excluding possible capture-related deaths and incomplete data: 15 of 38 lost $=39 \%$ 6 of 21 lost $=29 \%$		
	\# last obseryation on 8/3/79		
men	\#\# last observation on 9/12/79		
m	last observation on 9/6/84 G277 shed collar in den so family status in spring 1981 was not determined, assumed 2 offspring were alive at emergence in 1981.		
	** One lost cub may have been capture-related (from litter of 1 with G313).		
m	*** From litter of one with G299 (bears not handled).		
;	**** G380 had 2 yearlings thru den entrance in 1982, only one was verified with her in spring 1983 but both were counted as surviving.		
m	, One lost cub may have been capture-related (from litter of 1 with G394).		
;	1' One of G313 survived\},	ngs died within 1 month of surgery his death was not surgery-related.	all internal transmitter lother

Table 9. Morphometrics of brown bear cubs-of-the-year handled in GMU 13, 1978-1984

CUB ID	$\begin{gathered} \text { MOTHER. } \mathrm{S} \\ \text { ID } \end{gathered}$	DATE HANDLED	SEX	WTI (lbs)	COMMENTS
001	G213	22. May 1979	M	10.0	transplanted, see Ballard
002	G213	22 May 1979	M	10.0	et al. (1980)
--	G207	27 May 1978	M	12.0	see Spraker, et al. (1981)
--	G207	27 May 1978	F	12.0	
G338	G283	6 May 1981	M	12.0	ear tagged
G339	G283	6 May 1981	F	13.0	ear tagged
G336	G313	6 May 1981	F	∞	cub abandoned?, ear tagged
003	G283*	14 May 1983	F	\cdots	collared
004	G394	15 May 1983	F	10.0	neck $=230 \mathrm{~mm}$, ear tagged
005	G281	15 May 1983	M	8.5	collared
006	G281	15 May 1983	F	8.3	collared
418	G299	18 May 1983 (den)	M	over 10.0	neck $=225 \mathrm{~mm}$, collared
419	G299	18 May 1983 (den)	M	over 10.0	nec $\mathrm{k}=245 \mathrm{~mm}$, collared
417	G299	18 May 1983 (den)	M	over 10.0	neck $=225 \mathrm{~mm}$, collared
016	G388	16 May 1984	M	13.5	collared, 13.5 lbs (5/29/84)
017	G388	16 May 1984	F	-	collared
021	G281	17 May 1984	M	14.0	collared, neck $=250 \mathrm{~mm}$
022	G281	17 May 1984	M	13.5	collared
008	G337	17 May 1984	F	12.3	collared, neck $=220$
009	G337	17 May 1984	F	11.5	collared, neck $=230$
023	G340	17 May 1984	?	16.5	collared
024	G340	17 May 1984	?	14.0	collared
025	G423	18 May 1984	M	7.0	collared, smallest of 4 in litter
--	G423	18 May 1984	F	-	not collared
018	G312	16 May 1984	F	17.0	collared
019	G312	16 May 1984	M	16.0	collared
020	G312	16 May 1984	M	17.0	collared

Totals: 14 males and 11 females

SMILO9
SM-1
page 5

$\begin{aligned} & \text { YLG } \\ & \text { ID. } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MOTHER'S } \\ \text { ID. } \\ \hline \end{gathered}$		DATE HANDLED	SEX	WT(1bs)	COMMENTS
G232	G234	23	June 1978	F	100(est.)	Spraker, et al. (1981)
G235	G234	23	June 1978	F	100(est.)	.
G238	G240	23	May 1979	M	95	transplanted, see
G239	G240	23	May 1979	F	65	Ballard et al. 1980
G245	G244	24	May 1979	F	46	transplanted, op cit.
G252	G251	27	May 1979	M	134	transplanted, op cit.
G253	G251	27	May 1979	M	139	
G256	G254	27	May 1979	M	47	transplanted, op cit.
G257	G254	27	May 1979	M	47	
G262	G261		June 1979	M	90	transplanted, op cit.
G263	G261		June 1979	M	87	
G270	G269		June 1979	F	100	transplanted, op cit.
G271	G269		June 1979	F	95	
G275	G274		June 1979	M	68	transplanted, op cit.
G297	G399		May 1980	M	65	tagged
G298	G399	4	May 1980	M	65	tagged
G382	G313	14	May 1983	M	66	implant transmitter
G383	G313	14	May 1983	F	53	implant transmitter
G417	G299		May 1984	M	94	implant transmitter (small)
G418	G299	15	May 1984	M	86	implant transmitter (large)
G419	G299	15	May 1984	M	84	implant transmitter (small)
G421	G420	17	May 1984	M	78	sibling not captured, large implant and breakaway.

Totals: 15 males and 7 females

Table 11. Number of Susitna river crossings by radio-marked brown bears, 1980-1984.

Table 11. (continued)
Yable 11. (continued Initial

Bear ID capture (age) | | No. of River Crossings |
| :---: | :---: |
| 1980 | 1981 |

$1983-1984$

Comments
Females

315	1980(2)	-	-	-	4	2	radio-collared in 1983, active
385	1983(2)	-	-	-	0	0	337's cub, missing 10/84
386	1983(2)	-	-	-	0	-	shot (hunter) 5/84
281	1980(3).	1	6	5	$6_{*}{ }_{2}$	$6_{* 2}$	cubs killed by other bears (83 \& 84)
335	1981(3)	-	0	0	0	$0_{* 2}$	334's cub, active
340	1981 (3)	0	6	8	4	$2_{* 2}$	active
381	1982(3)	-	-	4	1	8	active
395	1983 (3)	-	-	-	1	-	shot (hunter) '83
308B	1980(5)	5	7	-	-	-	recapture mortality
344	1981(5)	-	$0_{* 2}$	${ }^{0}{ }^{2} 2$	$0_{*}{ }_{2}$	$\mathbf{0}_{\mathbf{y 1}}$.	active, missing 9/B4
331	1981(6)	-	$:^{4}+2$	3	-	-	died July 1982
341	1981 (6)	-	9	$0_{* 2}$	-	-	missing 1982 **
394	1983 (6)	-	-	-	10	3	lost cub as capture mortality?, shot (hunter) 9/84
313	1980(9)	0	0	$0_{* 2}$	${ }^{2} 1$	0	active, missing 10/84
277	1980 (10)	${ }^{0}{ }^{2}$	-	-	$-$	-	collar shed in 1980
312	1980(10)	0	$0_{* 2}$	$0_{Y 1}$	${ }^{0}+1$	-	capture mortality
334	1981 (10)	-	${ }_{0}+1$	-	-	-	missing 1982 **
283	1980(12)	${ }_{+}+2$	$0_{* 2}$	4	2	2	1983 cub killed by another bear
384	1983(12)	-	-	-	$0_{* 2-3}$	$0_{*}{ }_{2}$	active, missing 9/84
299	1980 (13)	${ }^{2} \mathbf{y} 2$	2	2	$0{ }_{*}$	${ }^{6} 3$	active
337	1981(13)	-	$0{ }_{* 3}$	$\mathrm{O}_{\mathrm{y} 2}$	0	$0_{* 2}$	active
396	1983(13)	-	-	-	$\mathbf{0}_{\text {* }_{1}}$	0	

(continued)

Table 11. (continued)

Bear ID	Yr. Initial	No. of River Crossings						
	capture (age)	1980	1981	1982	1983	1984		Comments
388	1983(14)	-	-	-	${ }_{+}+2$	$0_{\text {*2 }}$		active
380	1982(15)	-	-	$\mathrm{O}_{\mathrm{y} 2}$	0	-		shot
407 @	1983 (4)	-	-	-	0	0		active
379 @	1982 (5)	-	-	$\mathbf{1}_{* 2}$	${ }^{5} \mathrm{y} 1$	${ }_{4}{ }_{1}$		active
	1983 (6)	-	-	-	$1_{* 2}$	${ }_{6}^{6} 1$		active
420	1984 (19)	-	-	-		${ }_{6}{ }^{2}$		active
423	1984 (A)	-	-	-		${ }^{*}{ }_{4}$		active
425	1984 (A)					0		active
Total females		8	34	27	36	47		
Total both sexes			14	45	40	66	86	

$$
\begin{aligned}
& \text { @ = Downstream bears } \\
& \text { Reprod. status } \\
& \text { as of } 31 \text { May: } \\
& \qquad \begin{array}{l}
y=\text { yrlg } \\
t=2 \text { yr old }
\end{array}
\end{aligned}
$$

** possible unreported hunter kill, collar failure, or emigration.

Table 12. Number of observations of radio-marked brown bears (older than 2.0 years) within nestled proximity zones of the Watana impoundment (den-related activies are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4
TIME PERIOD (impoundment) (shore-1 mile) ($1-5$ miles) (over 5 miles) TOTAL

	April 1-30	6	1	8	9	24
	May 1-1.5	12	8	19	69	108
	May 16-31	31	27	65	108	231
4.	June 1-15	70	67	154	89	380
5.	June 16-30	45	35	104	69	253
6.	July 1-15	6	8	39.	37	90
7.	July 16-31	4	14	61	42	121
8.	August 1-15	4	11	41	44	100
9.	$\begin{gathered} \text { August } \begin{array}{c} 16- \\ \text { March } 31 \end{array}, ~ \end{gathered}$	26	22	97	168	313
	totals	204	193	588	635	1620
Area within zone $\begin{array}{lllll}\left(\mathrm{km}^{2}\right) & 159.32 & 327.07 & 1233.51 & \end{array}$						
	\%	9.26	19.02	71.72	--	100.0

Value of Chi Square test of the null hypothesis that use of each zone is equivalent to expected values based on the area of each zone for:

Period	ZONE 1		ZONE 2		ZONE 3		X^{2}	d.f.
	obs.	E(x)	obs.	E(x)	obs.	E(x)		
All months	204	91.2	193	187.4	588	706.4	160**	2
April 1-June 30	164	60.4	138	124.0		467.6	209**	2
July 1-March 31	40	30.8	55	63.3	238	238.8	3.9	2

* reject null hypothesis, p less than 0.10
** reject null hypothesis, p less than 0.05

Table 13. Number of observations of radio-marked male brown bears (older than 2.0 years) within nestled proximity zones of the Watana impoundment (den-related activies are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4
TIME PERIOD (impoundment) (shore-l mile) ($1-5$ miles) (over 5 miles) TOTAL

* reject null hypothesis, p less than 0.10
** reject null hypothesis, p less than 0.05

* reject null hypothesis, p less than 0.10
** reject null hypothesis, p less than 0.05

Table 15. Number of observations of radio-marked female brown bears with coy (on 15 June) within nestled proximity zones of the Watana impoundment (den-related activies are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4
TIME PERIOD (impoundment) (shore-1 mile) ($1-5$ miles) (over 5 miles) TOTAL

* reject null hypothesis, p less than 0.10
** reject null hypothesis, p less than 0.05

Table 16. Chi square test of null hypothesis that the proportion of observations in impoundment proximity zones is the same, for a group of radio-marked female brown bears, during years when they have cubs-of-the-year ("coy") as during years when they do not. (Includes both impoundments, lumps years $1980-1984$, cub status is of 15 June, and observation associated with den-related activities are not included).

Females without coy
No. of
observations \%

Females with coy
No. of Expected observations number of observations*

Proximity Zone 1 (inundation area)

59
18.7

8
30.1

Proximity Zone 2
(impoundment shoreline - 1 mile)

Proximity Aone 3
($1-5$ miles from
impoundment shoreline)

Totals: 315
58
18.4

32
29.4
62.9

120
100.6
100%
160
160.1

Chi Square, 2 d. $f=20.2 *$

* significant, P less than 0.01

BEARS INCLUDED:

283
299
312
313
335
337
340
341
344
384
$80,82,83,84$
81
$80,81,82,84$
83
80, 82, 83
81, 84
80, 81, 83, 84 82

81, 82, 83
84
82, 83
81, 84
81, 82, 83 84

81
82
82
81, 83
83
84

Table 17. Number of observed and expected observations of radio-marked brown bears (excluding females with coy and bears less than 2.0 years old) within nestled impoundment proximity zones of the Devils Canyon impoundment (den-related activities are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4

Value of Chi Square test of the null hypothesis that the use of each zone is equivalent to expected values based on the area of each zone for:

Sex group	ZONE 1		ZONE 2		ZONE 3		X^{2}	d. f .
	obs.	$E(x)$	obs.	$\mathrm{E}(\mathrm{x})$	obs.	$\mathrm{E}(\mathrm{x})$		
```Males and females w/o cubs (whole year)```	14	10.0	93	57.1	199	238.9	30.8**	2
Males (whole year)	4	1.9	17	11.0	38	46.1	3.0	2
Females w/o cubs	10	8.1	76	46.1	161	192.8	25.1**	2

* reject null hypothesis, $p$ less than 0.10
** reject null hypothesis, $p$ less than 0.05


Table 18. Characteristics of brown bear dens in the Susitna study area during winters of 1980/81, 1981/1982, 1982/1983, and 1983/1984


Table 18. (continued)


Table 18. (continued)


Table 18. (continued)

	Den No.	$\begin{aligned} & \text { Bear } \\ & \text { ID No. } \end{aligned}$	Age at Exit	$\begin{gathered} \text { Elevation } \\ \text { (Feet) } \\ \hline \end{gathered}$	Slope (Degrees)	Aspect   (True N.)	Vegetation	ENTRANCE		CHAMBER			Total   Length (cm.)	$\begin{aligned} & \text { Prevtously } \\ & \text { Ūseä? } \\ & \text { (Yes/No) } \\ & \hline \end{aligned}$		Comments
								$\begin{gathered} \frac{\mathrm{ENTH}}{\mathrm{Hit}} \\ (\mathrm{~cm} .) \end{gathered}$	Width (cm.)	Ln.   (cm.)	Width (cm.)	$\begin{aligned} & \mathrm{Ht} . \\ & \text { (cm.) } \end{aligned}$				
MALES																
	136	6399	10	--	--	--	--	-	-	-	-	-	-	-	Not	located
	151	G342	7	--	--	--	--	-	-	-	-	-	-	-	Not	located

* Entered den with 2 yearlings, shed collar in den so exit not observed.
** Approximate value
*** Downstream

Dens No. 14, 16, 22, 24, 30, 31, 25, 28, 23, 5, 1, 15, 29, 17, 26 27 are 1980/1981

Dens No. 42, $44,47,52,54,59,37,46,56,36,60,53,41,48$, 45 are 1981/1982

Dens No. 76, 78, 87, 89, 101, 102, 102, 103, 105, 107, 108, 109, 79, 106, 111, 94, 86, 110, 77 are 1982/1983

Dens No. 112, 117, 118, 119, 120, 121, 124, 125, 133, 134, 135, 153, 122, 131, 123, 132, 149, 155, 137, 139, 148, 150, 136, 151 are 1983/84

Table 19. Brown bear den entrance and emergence dates, winter of 1983/84.



SMLL12
SM-3/page 9

Table 20. Brown bear den entrance and emergence dates, winter of 1984/85.

Bear ID	Sex	1984 Entrance			1985 Emergence			Days in Den		
		earliest	latest	Mid.	earliest	latest	M1d.	Min.	Max.	M1d.
G280	M	11 Oct								
G281	F	11 Oct	24 Oct	18 Oct						
G282	M	7 Nov	?	---						
G283	F	11 Oct	24 Oct	18 Oct						
G299	F	1 Oct	11 Oct	6 Oct						
G313	F	1 Oct								
G315	F	11 Oct	24 Oct	18 Oct						
G335	F	11 Oct	24 Oct	18 Oct						
G337	F	11 Oct	24 Oct	18 Oct						
G340	F	11 Oct	24 Oct	18 Oct						
G344	F	--								
G379	F	1 Oct	11 Oct	6 Oct						
G381	F	11 Oct	24 Oct	18 Oct						
G384	F	--								
G385	F	11 Oct								
G388	F	11 Oct	24 Oct	18 Oct						
G396	F	21 Sep	11 Oct	1 Oct						
G399	M	11 Oct	24 Oct	18 Oct						
G400	M	11 Oct	24 Oct	18 Oct						
G403	F	7 Nov	13 Nov	10 Nov						
G382	M	11 Oct	24 Oct	18 Oct						
G407	F	11 Oct	24 Oct	18 Oct						
G420	$F$	11 Oct	24 Oct	18 Oct						
G422	M	11 Oct	24 Oct	18 Oct						
G423	F	11 Oct	24 Oct	18 Oct						
G425	F	11 Oct	24 Oct	18 Oct						
	Mean	11 Oct	23 Oct	17 Oct						
	"S"	9.7	6.8	7.6						
	n	24	20	20						

Table 21. Distances between den sites (miles) used in different years by radio-collared brown bears. Based on principle winter den, early spring dens not considered.

$\begin{aligned} & \text { Bear } \\ & \text { ID } \\ & \hline \end{aligned}$	Age	$\begin{array}{r} 80 / 81 \\ 861 \\ 81 / 82 \\ \hline \end{array}$	$\begin{aligned} & 80 / 81 \\ & \text { to } \\ & 82 / 83 \end{aligned}$	$\begin{array}{r} 80 / 81 \\ 801 \\ 83 / 84 \\ \hline \end{array}$	$\begin{aligned} & 81 / 82 \\ & 820 \\ & 82 / 83 \\ & \hline \end{aligned}$	$\begin{array}{r} 81 / 82 \\ \text { to } \\ 83 / 84 \\ \hline \end{array}$	$\begin{array}{r} 82 / 83 \\ \text { too } \\ 83 / 84 \\ \hline \end{array}$	$\begin{array}{r} 80 / 81 \\ 601 \\ 84 / 85 \\ \hline \end{array}$	$\begin{gathered} 81 / 82 \\ \text { to } \\ 84 / 85 \\ \hline \end{gathered}$	$\begin{array}{r} 82 / 83 \\ 840 \\ 84 / 85 \\ \hline \end{array}$	$\begin{array}{r} 83 / 84 \\ 8 / 04 \\ 84 / 85 \\ \hline \end{array}$	$\bar{x}$	$s$
FEMALES													
G283	13 in' 81	3.2	2.4	1.6	5.3	4.9	1.7	3.4	3.5	5.8	4.4	3.6	1.5
G313	10 in' 81	4.1	4.4	3.4	6.7	1.0	5.7	-	-	-	-	4.2	2.0
G337	13 in' 81	3.3	2.4	1.9	3.7	3.1	0.6	4.2	1.0	4.7	4.1	2.9	1.4
6344	5 In' 81	3.1	1.5	3.8	1.6	1.2	2.5	-	-	-	-	2.3	1.0
G299	14 in' 81	8.9	6.7	7.1	3.5	3.5	0.5	11.3	2.7	6.2	6.1	5.7	3.2
G281	4 in' 81	1.9	1.7	1.7	0.2	0.2	0.1	2.7	1.5	1.6	1.5	1.3	0.9
G335	4 in' 82	-	-	-	2.4	2.0	0.9	-	1.4	1.5	1.9	1.7	0.5
G340	4 in' 82	-	-	-	0.3	17.7	17.6	-	18.1	18.0	0.6	12.0	9.0
G312	11 in' 81	2.1	0.6	-	1.6	-	-	-	-	-	-	1.4	0.8
6379	6 in' 83	-	-	-	-	-	5.3	-	-	5.3	0.5	3.7	2.8
6315	2 in' 80							-	-	-	0.8	-	-
G381	3 in' 82							-	-	2.8	2.5	2.7	-
G 388	14 in' 83							-	-	-	0.8	-	-
6396	9 in' 83							-	-	-	9.0	-	-
6403	4 in' 83							-	-	-	2.2	-	-
6407	4 in' 83							-	-	-	5.1	-	-
( FEMA	LES) $\begin{aligned} & \overline{\mathrm{x}}= \\ & \mathrm{s}=\end{aligned}$	3.9 2.3	2.8	3.3	2.73	4.2	3.9 5.5	5.4 4.0	4.7 6.6	5.7	$3.0$		$\begin{array}{r} 3.8 \\ 4.8 \\ 18.1 \end{array}$

Table 21 (cont'd)

Bear   ID	$\begin{aligned} & 80 / 81 \\ & \text { to } \\ & 81 / 82 \end{aligned}$	$\begin{aligned} & 80 / 81 \\ & \text { to } \\ & 82 / 83 \end{aligned}$	$\begin{aligned} & 80 / 81 \\ & \text { to } \\ & 83 / 84 \end{aligned}$	$\begin{aligned} & 81 / 82 \\ & \text { to } \\ & 82 / 83 \end{aligned}$	$\begin{gathered} 81 / 82 \\ \text { to } \\ 83 / 84 \end{gathered}$	$\begin{aligned} & 82 / 83 \\ & \text { to } \\ & 83 / 84 \end{aligned}$	$\begin{aligned} & 80 / 81 \\ & \text { to } \\ & 84 / 85 \end{aligned}$	$\begin{gathered} 81 / 82 \\ 10 \\ 84 / 85 \\ \hline \end{gathered}$	$\begin{aligned} & 82 / 83 \\ & \text { to } \\ & 84 / 85 \end{aligned}$	$\begin{aligned} & 83 / 84 \\ & \text { to } \\ & 84 / 85 \end{aligned}$	$\overline{\mathbf{x}}$	$s$
MALES												
G280 6 in'81	8.1	6.3	6.0	2.0	2.5	0.5	-	-	-	-	-	-
G342 3 in'82	-	-	-	1.3	7.1	7.4	-	-	-	-	-	-
G282 7 in'83	-	-	-	-	-	4.5	-	-	4.6	1.2	4.6	-
G399 20 in'83	-	-	-						-	1.5	-	-
G400 6 in' 83	-	-	-						-	1.2	-	-
(MALES) $\begin{gathered}\overline{\mathrm{x}} \\ \\ \\ \mathrm{s}\end{gathered}$	4.3	3.3	3.6	2.6	4.3	3.9	-	-	4.6	1.3	$\overline{\mathrm{x}} \quad(\mathrm{n}=14)=3.9$	
	2.7	2.3	2.2	2.0	5.1	5.1	-	-	-	0.8		$s=2.7$
											Range $=0.5-8.1$	
Both Sexes $\overline{\mathbf{x}}=$	4.3	3.3	3.6	2.6	4.3	3.9	5.4	4.7	5.6	2.7	$\overline{\mathrm{X}}(\mathrm{N}=91)=3.8$	
$s=$	2.7	2.3	2.2	2.0	5.1	5.1	4.0	6.6	5.0	2,4		$s=3.8$
											Range	$\mathrm{e}=0.1-18.1$

Table 2\%. Status of brown bears first marked in 1978. (A=alive, $\mathrm{T}=\mathrm{transplanted}$ in 1979, NR=no return,


| Bear\# | Sex/age | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Upper Susitna Expt. Area

209	M/5 in '78	A	T, NR	A	Shot-F	-	-	-	
212	$F / 10$ in ${ }^{\prime} 78$	A	A	A	A	Shot-F	-	-	
217	M/3 in '78	A	A	Shot-F	-	-	-	-	
219	F/4 in '78	A	A	A	A	Shot-F	-	-	
218	M/4 tn ${ }^{\text {\% }} 78$	A	T,R	Shot-F	-	-	-	-	
214	M/4 in '78	A	A	A	A	A	A	A	A
230	M/9 in '78	A	T, Shot-Sp	$\cdots$	-	-	-	-	
211	M/4 in '78	A	T,NR	ND	ND	ND	ND	ND	ND
216	M/11 in '78	A	T,NR	ND	ND	ND	ND	ND	ND
210/242	M/2 in '78	A	T,ND	ND	ND	ND	ND	ND	ND
215	$F / 2$ in '78	A	T, NR	ND	ND	ND	ND	ND	ND
213	F/10 1n. 78	A	T*	-	-	-	-	-	

Not Upper Susitna Expt. Area

205 M/4 in ' 78	A	A	A	A	A	Shot-Sp	-	-
206 F/13 in '78	A	A	A	Shot-F	-	-	-	-
201 M/10 in '78	A	A	A	A	A	Shot-Sp	-	
$202 \mathrm{~F} / 8$ in ${ }^{\text {'78 }}$	Shot-F	-	-	-	-	-	-	
221 F/8 tn 78	A	A	A	A	Shot-Sp	-	-	
228 M/7 in '78	A	A	A	A	A	Shot-Sp	-	
227 M/9 in '78	A	A	A	A	A	A	Shot-F	-
224 M/2 in '78	A	A	A	A	A	A	Shot-Sp	-
207 F/11 in '78	A	A	ND	ND	ND	ND	ND	ND
208 F/12 in '78	A	A	ND	ND	ND	ND	ND	ND
220 F/5 in '78	A	A	ND	ND	ND	ND	ND	ND
222 M/11 in '78	A	ND						
$234 \quad \mathrm{~F} / 5 \mathrm{in}^{178}$	A	ND	ND	ND	ND	ND	ND	MD
200 M/7 in '78	A	ND						
$204 \quad F / 7$ in '78	A	A	ND	ND	ND	ND	ND	ND
225 M/4 in '78	A	A	ND	ND	ND	ND	ND	ND
231 F/12 in '78	A	A	ND	ND	ND	ND	ND	ND
Max. No. Bears potenttally alive in year includes ND (M,F)	29(16:13)	27*(16:11)	26(15:11)	24(13:11)	22(12:10)	19(11:8)	16(8:8)	14(6:8)
No. marked bears known shot in year (M:F)	$1(0: 1)$	1(1:0)	2(2:0)	2(1:1)	$3(2: 2)$	3(3:0)	2(2:0)	ND
\% of potentially alive bears known shot in year	3\%	48	8\%	8\%	14\%	16\%	13\%	ND
Cumulative \% (min.) of marked bears shot ( $\mathrm{N}=28$ )	3\%	7\%	14\%	21\%	32\%	43\%	50\%	ND

Not Included:
Subadults ©2 in 1978, $=203$, 223 (all ND)
Subadults @1 in $1978=232$ (ND)

* suspected mortality of 213 in 1979, not included as alive in 1979 or subsequently

SMILIO
SM-2/page 2

Table 23. Status of brown bears first captured in 1979 (all were transplanted from upper Susitna drainage).
 season). Does not include transplanted bears first captured in 1978 (see Table 13). ND in year of capture indicated bear was not collared or soon shed its collar and no subsequent data were collected.

Bear ID	Sex/age	1979	1980	1981	1982	1983	1984	1985
246	M/3 in '79	Shot-F	-	-	-	-	-	-
247	M/8 in '79	A	A	A	A	Shot-F	-	-
243	M/2 in /79	A	A	Shot-F	-	-	-	-
265	M/4 tn '79	A	Shot-Sp	-	-	-	-	-
268	M/4 in ${ }^{179}$	A	Shot-Sp	-	-	-	-	-
269	F/18 in ${ }^{\text {' } 79}$	A	A.	Shot-F	-	-	-	-
270	F/1 in '79	A	Shot-F	-	-	-	-	-
272	M/9 in '79	A	A	A	Shot-F	-	-	-
260	M/4 in 179	A	A	A	A	Shot-F	-	-
240	F/5 in 179	A,R	A	A	A	A	Shot-Sp	-
241	M/3 in '79	A, ND	ND	ND	ND	ND	ND	
249	M/5 in ${ }^{1} 79$	$\mathrm{A}, \mathrm{ND}$	ND	ND	ND	ND	ND	
258	M/21 in ${ }^{1} 79$.	A, ND	ND	ND	ND	ND	ND	
264	F/4 in '79	A,ND	ND	ND	ND	ND	ND	
267	F/4 in '79	A,ND	ND	ND	ND	ND	ND	
274	F/11 in ${ }^{\prime} 79$	A, ND	ND	ND	ND	ND	ND	
276	M/4 in '79	$A, N D$	ND	ND	ND	ND	ND	
236	F/5 in '79	A, R	ND.	ND	ND	ND	ND	
237	M/10 in ${ }^{\text {'79 }}$	A, $R$	ND	ND	ND	ND	ND	
244	F/6 in ' 79	A, R	A	ND	ND	ND	ND	
251	F/10 in ${ }^{\text {P } 79}$	A, R	A	ND	ND	ND	ND	
273	F/3 in ${ }^{\prime} 79$	A,R	A	A	A	A	A	A
248	F/4 in '79	A,NR	ND	ND	ND	ND	ND	
261	F/7 in '79	$\mathrm{A}_{\text {, }}$ NR	ND	ND	ND	ND	ND	



[^2]Table 2tiA. Status of Brown Bears first marked during Su-Hydro Studies, 1980-1983. ( $A=a 1$ ive, ND=no data
 bear was not collared or soon shed its collar and no subsequent data were collected.

Bear ID Sex/age	1980	1981	1982	1983	1984	1985

1980 captures

277	F/10 in ' 80	A	ND	ND	ND	ND
279	M/9 in ' 80	A.	A	A	A	Shot-F
280	M/5 in ' 80	A	A	A	A	A
281	F/3 in ' 80	A	A	A	A	A
282	M/4 in ${ }^{\text {' } 80}$	A	A	A	A	A
283	F/12 in '80	A	A	A	A	A
284	M/2 in ' 80	A	Shot- ${ }^{\text {F }}$	-	-	-
286	M/3 in ${ }^{\text {' } 80}$	A	A	A	A	Shot-F
292	F/3 in ' 80	ND	ND	ND	ND	ND
293	M/3 in ' 80	A	A	A	A	ND
294	M/10 in '80	A.	Died in Aug.	-	-	-
295	M/12 in 180	ND	ND	ND	ND	ND
299	F/13 in ' 80	A	A	A	A	A
297	M/1 in '80	A	Shot-F	-	-	-
306	$F / 3$ in 180	ND	ND	ND	ND	ND
308a	M/6 in '80	A	A	A	Shot-F	-
$308 b$	F/5 in '80	A	Died in Aug.	-	-	-
309	M/12 in ${ }^{\text {c }} 80$	A	A	A	A	A
311	M/2 in ' 80	Shot-F	-	-	-	-
312	F/10 in '80	A	A	A	A	Died-NS
313	F/9 in '80	A	A	A	A	A
314	F/2 in ${ }^{1} 80$	A	A	A	A	A
315	F/2 in ' 80	A	A	A	A	A

1981 captures

331	F/6 in ' 81	-	A	Died in Aug.	-	-
332	M/2 in ${ }^{1} 81$	-	A	Shot-F	-	-
333	M/2 in ' 81	-	Shot-F	-	-	-
334	F/10 in '81	-	lost in Sept. -shot?	-	-	-
335	F/2 in '81	-	A	A	A	A
337	F/13 in '81	-	A	A	A	A
339	M/O in ${ }^{1} 81$	cub	ylg	A	A	A
340	F/3 in ' 81	-	A	A	A	A
341	F/6 in '81	-	A	A	A	A
342a	M/2 in ' 81	-	A	A	A	Died-NS
344	F/5 in '81	-	A	A	A	Lost in Sept., shot?
347	M/14 in ' 81	-	A	A	A	A

Table 24A. (cont.)
1982 captures

373	$M / 9$ in ' 82	-	-	$A$	$--*$	A
$379 * *$	$F / 5$ in' 82	-	-	$A$	A	A
380	$F / 15$ in ' 82	-	-	$A$	Shot-F	-
381	$F / 3$ in ' 82	-	-	$A$	$A$	$A$

1983 captures

385	F/2 in ' 83	-	-	-	A	A	A
386	M/2 in ' 83	-	-	-	A	Shot-Sp	-
388	F/14 in ' 83	-	-	-	A	A	-
389	M/2 in 183	-	-	-	A, Died Oct.	-	-
390	M/2 tn '83	-	-	-	A	ND	
384	F/12 in ' 83	-	-	-	A	Lost in Sept. , shot?	-
391	M/2 in '83	-	-	-	A	Shot-F	=
392	M/2 in ${ }^{\text {i }} 83$	-	-	-	A	Shot-Sp	-
393	F/2 in ' 83	-	-	-	A	ND	
394	F/6 in ' 83	-	-	-	A	Shot-F	-
395	F/3 in ' 83	-	-	-	Shot-F	-	-
396	F/13 in ${ }^{1} 83$	-	-	-	A	A	A
397	F/2 in ' 83	-	-	-	A	A	A
398	F/2 in ' 83	-	-	-	A	A	A
399	M/9 in '83	-	-	-	A	A	A
400	M/20 in ' 83	-	-	-	A	A	
403**	F/6 in '83	-	-	-	A	A	
407**	F/4 in '83	-	-	-	A	A	A

1984 Captures

420	F/A in ${ }^{\text {' }} 84$	-	-	-		A
422	M/A in '84	-	-	-	-	A
423	$F / \mathrm{A}$ in ' 84	-	-			A
425	F/A in ${ }^{1} 84$		-	-		A
382	F/2 in ' 84	-	-	-	-	A


Bear ID Sex/age	1980	1981	1982	1983	1984	1985
A. Max. No. marked bears potenttally alive in year, includes $\mathbb{N D}$. Excludes tagging and natural mortalities ( $\mathrm{M}: \mathrm{F}$ )	23 (13:11)	31(14:17)	30(12:18)	44(18:26)	45(16:29)	37(12:25)
B. No. KNOWN shot in zear (M:F)	1(1:0)	$3(3: 0)$	1(1:0)	3(1:2)	6(5:1)	ND
Min. \% known shot ( $B / \mathrm{A}$ )	48	10\%	3\%	78	13	ND
C. No. known shot plus suspected (unreported) shot in year ( $M=F$ )	1(1:0)	4 (3:1)	1(1:0)	3(1:2)	8(5:3)	ND
Probable min. \% shat (C/A)	4\%	13\%	3\%	7\%	18	ND
D. No. bears known alive (excludes ND, died, Iost, cubs or ylgs)	20	26	27	40	36	ND
Probable \% shot (C/D)	5\%	15\%	4\%	8\%	22\%.	ND
Cumulative of shot (based on bear-years available, from row A).	4\%	7\%	6\%	6\%	8\%	ND

Not Included:

Subadults @2=1980: 285, 1983: 397 \& 398 both recaptured in 1985
Subadults @1=1980: 298;
1983: 382; 1984: 421, 417, 418, 419

* Shed collar, had no eartags or tattoo so was not recognizable as a marked bear subsequently
** Downstream study area

	1978	1979.	1980	1981	1982	1983	1984	1985
Maximum No. of marked bears potentially alive in year (include N. D.) (M\&F)	$28(15: 13)$	51(28:33)	$72(39: 34)$	75:36:39)	70(32:38)	80(36:44)	75(28:47)	$64(22: 42)$
No. marked bears   shot in year* (M:F)	$1(0: 1)$	$2(2: 0)$	$6(5: 1)$	$7(5: 2)$	$5(3: 2)$	$8(6: 2)$	11(7:4)	ND
Min. \% of marked bears shot in year	4\%	4\%	8\%	9\%	78	10\%	15\%	ND
8 males in population of marked bears	548	55\%	54\%	48\%	46\%	45\%	37\%	ND
o males in harvest of marked bears	0	100\%	83\%	71\%	60\%	75\%	$64 \%$ 1978	$\frac{-1984}{70 \%}$

[^3]

Subtotals for MALES:

No. using Pratrie Ck.

(males) 2	2	3	3	4	3
Total No. of collared males $4$	4	5	12	8	4
No. collared males excluding subadult dispersers	3	4	7	8	4
Subadult dispersers out of study area (Bear ID)	342a	342a	$\begin{aligned} & 342 a, 386,389, \\ & 391,392 \\ & \hline \end{aligned}$	-	-
\% males using Prairie Ck . (excludes dispersers)	67	75	43	50	75

Table 25. (cont.)

Females (age in first captured)	1980	1981**	1982	1983	1984***	1985****
273 @ 9885)	-	-	-	-	-	no, alone
277 @ 10(80)	no?	ND- (shed)	ND	ND	ND	ND
281 @ 3 (80)	no, alone	no w/2c				
283 @ 12(80)	yes, alone	no, w/2c	yes, alone	yes, alone	yes, alon	yes, w/2c
299 @ 13 (80)	no, w/2@1	no, alone	no, alone	no, w/3c	no, w/3@l	missing
308b @ 5(80)	yes, alone	no?, alone	-dead	-	-	-
312 @ 10(80)	no, alone	no, w/lc	no, w/1@1	no, alone	dead	-
313 @ 9(80)	no, alone	no, alone	no, w/2c	no, w/1@1	no, alone	missing
314 @ 7(85)	-	-	-	-	-	no, alone
315 a 2 (80)	-	-	-	7es, alone	yes, alone	missing
331 @ 6 (81)	-	no, alone	-dead	-	-	-
334 @ 10 (81)	-	no, alone	-misstag	-	-	-
335 @ 2 (81)	-	no, alone	no, alone	no, alone	no, w/2c	no, w/2@1
337 @ 13 (81)	-	no, w/3c	no. w/1@1	no, alone	no, w/2c	no, w/2@1
340 @ 3(81)	-	nop alone	no, alone	no, alone	no, w/2c	no, w/2@1
341 @ 6(81)	-	nor, alone	no.w/2c	-missing	-	no, alone
344 @ 5(81)	-	no. w/2c	no. wlal	no, alone	no, alone	missing
379* @ 5(82)	-	-	no, w/2c*	no, w/2@1*	no, alone?*	no, alone*
380@15(82)	-	$=$	yes, w/2al	yes, alone	dead	-
381 @ 3 (82)	-	-	no, alone	no, alone	no, alone	no, w/2c
384 @ 12 (83)	-	-	-	-	no, w/2c	missing
385 @ 2(83)	-	-	-	no, alone	no, alone	no collar
388 @ 14 (83)	-	-	-	no, alone	no, alone	no, w/2c
393 @ 2 (83)	-	-	-	no, alone	dead	-
394 @ 6(83)	-	-	-	yes, alone	yes - dead	-
395 @ 3 (83)	-	-	-	no, alone	dead	-
396 @ 13 (83)	-	-	-	yes, alone	yes, alone	yes, alone
397 @ 4	-	-	-	-	-	yes, alone
398 @ 4	-	-	-	-	-	yes, alone
403* @ 6 (83)	-	-	-	no, w/2c*	no, w/I@l?*	no, alone
407* @ 4(83)	-	-	-	yes, alone*	yes, alone*	yes, alone
420 @ 19 (84)	-	-	-	-	yes, w/2@1	yes, alone
423 @ A (84)	-	-	- .	-	yes, w/3c	yes, w/3/@1
425 @ A (84)	-	-	-	-	no, alone	no, w/2c
437 @ 2 (85)	-	-	-	-	-	no, alone
447 @ A (85)	-	-	-	-	-	no, alone

Table 25. (cont.)

| Females (age in year |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| first captured) | 1980 | $1981 * *$ | 1983 | 1984*** |



# Table 26A. Results of brown bear census on Prairie Creek in 1984. Flights started at 0800 hrs. and pilot Al Lee flew the plane. Bear IDs are given in parenthesis. Includes only bears older than 2.0. 



M (\# of marks present)	$=$	5		4
$C$ (非 of bears seen)	$=$	15		19
R (\# of marks seen)	$\underline{ }$	1		2
$(\mathrm{M}+1)(\mathrm{C}+1)(\mathrm{R}+1)=\mathrm{N}$	=	48	(12-180)	33
MC/R	=	. 75		38

(10-62)

Table 26B. Brown bear census on Prairie Creek, July-August 1985.

Parameter	$\begin{gathered} 7 / 23 / 85 \\ \text { PM } \end{gathered}$	$\underset{\text { AM }}{7 / 24 / 85}$	$\underset{\mathrm{PM}}{\substack{7 / 24 / 85}}$	$\underset{A M}{7 / 25 / 85}$	$\begin{gathered} 7 / 25 / 85 \\ \mathrm{PM} \end{gathered}$	$\begin{gathered} 7 / 26 / 85 \\ \text { AM } \end{gathered}$	$\begin{gathered} 7 / 26 / 85 \\ \text { PM } \end{gathered}$	$\underset{\text { AM }}{7 / 27 / 85}$	$\begin{gathered} 8 / 6 / 85^{\star} \\ \text { PM } \end{gathered}$
Time Start	1945	0752	1945	0755	2010	0753	2014	0755	1948
Time End	2108	0933	2145	1000	2148	0926	2155	0923	2144
Total minutes searching (additional minutes spent radio tracking)	$\begin{gathered} 83 \\ \text { (27) } \end{gathered}$	$\begin{array}{r} 101 \\ (37) \end{array}$	$\begin{aligned} & 120 \\ & (5) \end{aligned}$	$\begin{aligned} & 125 \\ & (21) \end{aligned}$	98   (17)	$\begin{aligned} & 93 \\ & (24) \end{aligned}$	$101$	$\begin{aligned} & 88 \\ & \text { (33) } \end{aligned}$	$116$
number of black bears taken	1	0	1	1	0	1	1	1	0
A) Unmarked brown bears ( $\geq 2.0$ ) spotted during search	4	5	16	16	12	8	17	9	11
B) Additional unmarked brown bears $(\geqq 2.0)$ spotted in search area during tracking	3	0	0	0	. 2	2	3	0	0
C) Total unmarked brown bears (2.0) verified as present ( $A+B$ )	7	5	16	16	14	10	20	9	11
D) No. of cubs w/bears in C (\# litters)	0	2 (1)	7(4)	6 (3)	4 (3)	2 (2)	2 (1)	0	3 (2)
E) No. of ylgs w/bears in C (\# litters)	2	2(2)	3(1)	$4(3)$	2(1)	0	4(2)	$3(2)$	$1(1)$
F) Total unmarked bears verified as percent ( $\mathrm{C}+\mathrm{D}+\mathrm{E}$ )	9	9	26	26	20	12	26	12	15
G) IDs of marked bears spotted (No. = "R")	$\begin{array}{r} 282 \\ =1 \end{array}$	0	$\begin{gathered} 420,398 \\ =2 \end{gathered}$	$\begin{aligned} & 398,420, \\ & 396=3 \end{aligned}$	$\begin{array}{r} 420 \\ =1 \end{array}$	$\begin{array}{r} 420 \\ =1 \end{array}$	0	$\begin{array}{r} 398 \\ =1 \end{array}$	$\begin{aligned} & 407,423 \\ & (\mathrm{w} / 3 @ 1)=5 \end{aligned}$
H) Total no. of bears spotted ( $F+G=$ " $C$ ")	) 10	9	28	29	21	13	26	13	20
I) IDs of marked bears that were present in the search area that were not spotted during the search	$\begin{gathered} 420,398, ~ \\ 396=3 \end{gathered}$	$\begin{aligned} & 420,398, \\ & 396,282=4 \end{aligned}$	$\begin{gathered} 396,282 \\ =2 \end{gathered}$	$\begin{array}{r} 282 \\ =1 \end{array}$	$\begin{aligned} & 398,396, \\ & 282=3 \end{aligned}$	$\begin{aligned} & 398,396, \\ & 282=3 \end{aligned}$	$\begin{aligned} & 398,420 \\ & 282=3 \end{aligned}$	$\begin{aligned} & 420,396, \\ & 282=3 \end{aligned}$	$\begin{gathered} 382,398,397, \\ 427,282,420, \\ 396, \text { and } 283 \\ (w / 2 c)=10 \end{gathered}$
J) Total no. of marked bears present in search area (none of these had cubs or ylgs) ( $\mathrm{G}+\mathrm{I}=\mathrm{M}$ ")	4	4	4	4	4	4	3	4	15(5@c)
K) IDs of marked bears present in general area but not in search area$N=(M+1)(C+1) /(R+1)$	397	383,397	382,397	397	397	397,382?	$\begin{aligned} & 396,397, \\ & 382 \end{aligned}$	382	
	28	-	48	38	55	35	-	35	56

[^4]Table 27. Results of intensive monitoring of brown bear predation rates during spring 1984. Bears were monitored twice/day from $5 / 29-6 / 7$ and once/day from $6 / 8-7 / 1$, conditions permitting. When two bears were on a kill each was credited with balf of the kill unless the bear that made the kill was known.

1

Table 27. (cont'd)

Bear ID	Sex	Age	Repro. status	$\begin{aligned} & \text { Obsv. } \\ & \text { period } \end{aligned}$	No. of locations	No. of visuals	$\stackrel{\text { \% }}{\text { visuals }}$	$\begin{aligned} & \text { No. calf } \\ & \text { moose kills } \end{aligned}$	No. non-calf moose kllls	No. spectes age unknown kills	No. of suspected kills	$\underset{\substack{\text { Total } \\ \text { known } \\ \text { kills } \\ \text { kuspected }}}{ }$
(337, 423,					36	31	86	0	1	0	0	1
299	F	17	w/3@1	5/28-7/1	38	36	95	2	0	0	0	2
420	F	A	w/2@1	6/1-7/1	37	33	89	4	0	0	0	1
	Subtotal (FF with offspring)				152	137	90	7	3	0	1	11
	all females				374	311	83	16.5	6.5	1	3	27
ALL BROWN	BEARS	(BOTH	SEXES)		577	475	82	26	8	3	11	48

SUMMARY

	Number of known	Number of known or	Number of known
Category	kills 1100 visuals	suspected kills/100 visuals	moose calf kills 1100 visuals
All males	7.9	12.8	5.8
All females	7.4	8.7	5.3
Females w/cubs	5.9	5.9	1.5
Females w/ylgs	8.7	8.7	8.7
Females w/offspring	7.3	8.0	5.1
All bears	7.8	10.1	5.5

[^5]** These individuals were not monitored intensively but were monitored occassionally during this study period.

Table 28. Results of intensive monitoring of brown bear predation rates during sumer 1984. Bears were located once/day from 23 July through 1 August, conditions permitting.


```
l
```

1
Table 28, (cont'd)

Bear ID	Sex	Age	Repro. status	No. of   locations (\%)	No of visuals (\%)	No. of locations at salmon streams	No. of locations at salmon streams (\%)	Total known or suspected kills of ungulates
407	F	6	alone	6	5	6	5	0
344 \& 385	F	--	alque	2	2	0	0	0
340	$F$	6	w/2@0	6	6	0	0	0
423	$F$	A	2/3@0	9	7	7	5	0
335	F	6	w/2@o	5	3	0	0	0
337	F	10.	w/2@0	2	2	0	0	0
299	F	18	w/3@1	6	6	0	0	0
420	F	A	w/2@1	9	5	9	5 .	0
Subtotals for females				101	51 (50.5\%)	44	23 (52.38)	0
TOTALS FOR	ALL. B			161	71 (44.1\%)	73	36 (49.3\%)	1

* Note that if the same ratio of kills to visuals observed in the spring (48:475) were present in the sumer, then 7 . 2 kills would have been observed during the 71 visual observations made. Excluding the observations at salmon streams leaves only 35 visual observations and 3.5 kills would have been expected with this number of observations using the ratio of kills:visual observations observed in the spring.

Table 29. Black bears captured in Susitna Dam Studies as of July, 1985

Capture					Serial \#	Ear Tags	Comments
Tattoo	Sex	Age	Wt-	Date			
(287)	M	10.5	225*	5/1/80		1083/1084	Shot on 9/8/82
(288)	F	10.5	125*	5/1/80		1095/1083	w/2 ylgs, turgtd, collar shed by 8/27/80
289	F	9.5	130*	5/2/80		1103/1104	W/2 ylgs, turgid, had 3 cubs in 1981, see 4/82 recapture
(290)	F	8.5	103	5/2/80		1306/1305	w/2 ylgs, turgid, see 8/6/81 recapture
(291)	M	(3.5)	73	5/2/80			Post-capture mortality
(296)	M	(10.5)	227	5/3/80		-- --	Capture mortality
(300)	M	(7.5)	274	5/4/80		-- --	Post-capture mortality
(301)	F	(7.5)	115	5/4/80		1043/1044	W/1 ylg, turgid, had 2 cubs in 1981, see 3/83 recapture, shot 9/84
(302)	M	8.5	287	5/4/80		1106/1105	collar shed by 8/4/80, recaptured 5/9/81
(303)	M	(8.5)	217	5/4/80		(1055/1056)	shot 9/8/83
(304)	M	10.5	235	5/4/80		1315/1316	collar shed in 1982
(305)	M	(9.5)	217	5/5/80			Shot by hunter 8/30/80
(307)	M	2.5	105	5/5/80		1123/1124	Shot by hunter on 5/17/81
310	M	2.5	85	5/6/80		(1122/1121)	recaptured 6/85
(316)	F	(12.5)	150*	5/7/80		-- --	w/1 newborn \& 1 ylg shot by hunter 8/28/80
317	F	7.8	133	8/18/80		1195/1196	w/2 cubs, see 3/83 recapture
(318)	F	5.8	126	8/18/80		1046/1045	w/l cub, immobilized in den 3/81, 3/83 and 5/85 recaptures, shed 7/83
(319)	M	3.8	174	8/18/80		1194/1193	died summer 1981
(320)	M	(4.8)	200*	8/18/80		-- --	shot by hunter 9/9/80
321	F	10.8	175*	8/18/80		1243/1244	had 2 cubs in 1981, recaptured 5/15/83
(322)	M	4.8	154	8/19/80		1087/1088	w/324, collar shed in 80/81 den, see 5/26/82 recapture, died 1982
323	M	2.8	122	8/18/80		1200/1199	see 3/83 recapture
(324)	M	(5.8)	190	8/19/80		(1252/1251)	w/322, see 3/83 recapture, shot 9/84
(325)	F	11.8	164	8/18/80		1191/1192	collar shed in 80/81 den, see 8/6/81 recapture
(326)	F	(5.8)	125	8/19/80		-- --	w/2 cubs, shot by hunter 8/28/80
(327)	F	(5.8)	118	8/19/80		1247/1248	w/2 cubs, immobilized in den 3/81, 3/83
328	F	6.8	150	8/19/80		1246/1245	collar shed 81/82 den, recaptured 5/16/84
(303\#2)	M	(8.8)	260	8/19/80		-	recapture, shot 9/8/83
329	$F$	1.3	15*	3/23/81		1266/1265	w/327 and sibling, w/heavy collar, see 4/82 \& 3/83 recaptures
318\#2	F	6.3	--	3/25/85		same	in den
(330)	M	1.3	31	3/25/81		1276/1275	w/318, died summer 1981
(342B)	M	(5.5)	165	5/7/81		1206/1205	cinnamon color, shot on 9/15/81
343	M	5.5	184	5/7/81		1214/1213	alone, Devil Mountain, recaptured 5/16/83
(346)	M	(9.5)	175*	5/9/81		1226/1184	alone, see 3/83 recapture, died 6/84
302\#2	M	9.5	300*	5/9/81		1257/1105	alone, old collar previously shed
(290\#2)	F	9.8	160+*	8/6/81		1306/1279	neck infected, collar not replaced
(304\#2)	M	11.8	--	8/6/81		1286/1316	collar replaced, shed 6/82
(325\#2)	F	12.8	150*	8/6/81		1191/1192	second collar shed in $81 / 82$ den
(303\#2)	M	(9.8)	250*	8/7/81		(1055/1056)	collar replaced, shot 9/8/83
(287\#2)	M	11.8	200*	8/7/81		(1083/1084)	collar replaced, shot on 9/8/82
(348)	M	9.8	300*	8/6/81		1131/1132	alone, shot on 9/82
349	F	4.8	170*	8/6/81		1326/1325	alone, see $3 / 83$ recapture, shed 7/83, recaptured 5/16/84
329\#2	F	2.3	29	4/1/82		same	recapture in den, see 3/83 recapture
289\#2	F	11.3	112	4/1/82		same	recapture in den $w / 350$ and 351
350	M	1.3	14	4/1/82		514/513	capture in den
351	M	1.3	16	4/1/82		516/515	capture in den, recaptured 6/4/85
(352)	M	2.5	100*	5/26/82		--	capture mortality
(353)	M	1.5	29	5/26/82		--	capture mortality of B301's yearling
354	F	5.5	150*	5/26/82		517/1600	w/2 cubs, recaptured 5/18/84
355	F	0.5	4*	5/26/82		518/519	w/354, no tattoo
356	M	0.5	4*	5/26/82		520/521	w/354, no tattoo
(357)	M	4.5	113	5/26/82		501/1651	died winter 82/83
(322\#2)	M	(6.5)	${ }^{90}{ }^{*}$	5/27/82		1662/525	recapture, previous shed collar, died summer '82
(358)	F	(2.5)	60*	5/27/82		502/1656	recaptured 5/15/84, died 8/84

    3
    )
                                1
                                , 買
                                真
                                1
    Table 29．（continued）

Tattoo	Sex	$\frac{\text { Capture }}{\text { Age }}$	Wt．	Date	Serial \＃	Ear Tags	Comments
359	M	4.5	118	5／27／82		512／1655	recaptured 5／15／84
（360）	M	7.5	250＊	5／27／82		511／1657	－－－－，collar shed 6／84
361	F	7.5	175＊	5／27／82		522／1596	see 3／83 recapture
362	F	2．5＊	40＊	5／27／82		503／504	no tattoo
363	F	4.5	120＊	5／27／82		505／1593	
364	F	9.5	170＊	5／27／82		521／1591	missing since Sept．＇82，recaptured 5／18／84
（365）	M	5.5	100＊	5／28／82		523／1626	downstream study，see 3／83 recapture－collar loosened，died 9／83
（366）	M	6.5	200＊	5／28／82		538／1627	downstream study，shot on 8／5／82
（367）	F	4.5	100＊	5／28／82		524／1579	downstream study，shot，see below－4／16／83 recapture
（368）	F	3.5	110＊	5／28／82		－-1.	capture mortality，downstream study
369	F	4.5	90＊	5／28／82		527／1578	downstream study－age based on＇ 83 tooth，recaptured 4／83，4／84 tag shed 7／84
370	F	7.5	220＊	5／28／82		528／1577	downstream study
（371）	M	2.5	150＊	5／28／82		－－	capture mortality，downstream study
372	F	9.5	135＊	5／28／82		537／1576	downstream study
（374）	F	7.5	125＊	6／11／82		（530／1584）	w／1＠l，downstream study，recaptured 5／19／83，shot 9／83，aged +1 （＇83）
375	F	9.5	160＊	6／11／82		50771630	w／3＠1，downstream study，recaptured 5／19／83，age changed（ + （ 4）
376	F	6.5	125＊	6／11／82		531／1587	w／1＠，downstream study，see 9／2／82 recapture
377	F	4.5	126	6／11／82		509／1659	downstream study，recaptured 5／19／83，age changed（－1）
378	F	6.5	175＊	6／11／82		510／1628	downstream study
376\＃2	F	6.7	160＊	9／2／82		530／1584	recapture，slough 8B，snare
（301\＃2）	F	（10．3）	135	3／20／83	6298	same	w／2＠0，recapture in den，collar shed 7／83，shot 9／84
317\＃2	F	10.3	－－	3／23／83	6338	1547／1196	w／2＠0，recapture in den
（318\＃2）	F	8.3	－－	3／23／83	（6351）	same	w／2＠0，recapture in den，shed 7／83
323\＃2	M	5.3	－－	3／21／83	6264	1696／1650	recapture in den ．
（324\＃2）	M	8.3	－－	3／22／83	（6443）	（1661／1251）	recapture in den，shot 9／84
329\＃3	F	3.3	56	3／22／83	same	same	recapture in den，old collar loosened
（327\＃2）	F	8.3	－－	3／23／83	（6416）	same	w／2＠0，recapture in den，died summer 1983
（346\＃2）	M	11.3	－－	3／21／83	12449	same	recapture in den，died 6／84
（349\＃2）	F	6.3	－－	3／22／83	（6446）	same	w／2＠0，recapture in den，shed 7／83
361\＃2	F	8.3	－－	3／21／83	（6305）	same	w／4＠0，recapture in den，recaptured 4／84，2／85
（365\＃2）	M	6.3	－＂	3／23／83	（same）	same	recapture in den，collar loosened，died 9／83
（379）	F	9.3		3／24／83	（6449）	none	w／3＠0，captured in den \＃19，died 7／83
369\＃2	F	5.3	－－	4／14／83	same	same	collar loosened in den，no cubs，recaptured 4／84
$372 \# 2$	F	10.3	－－	4／15／83	same	same	w／3＠0，collar loosened in den
376\＃3	F	6.3	－－	4／16／83	same	same	w／3＠0，collar okay in den
370\＃2	F	8.3	－－	4／16／83	same	same	w／2＠0，collar loosened in den
（367\＃2）	F	5.3	－－	4／16／83	（same）	same	collar loosened in den，no cubs，shot July 1983
$378 \# 2$	F	7.3	－－	4／16／83	same	same	w／2＠0（not sexed or weighed），collar okay in den
387	M	4.5	175＊	5／14／83	6288	2126／2127	－
321 \＃2	F	13.5	115	5／15／83	15286	same	had cubs（ $\mathrm{n}=$ ？），not captured
343\＃2	M	7.5	225＊	5／16／83	15287	same	－－
401	M	3.5	96	5／18／83	15280	2103／2102	－－
402	F	10.5	130	5／18／83	3616	2373／2372	w／3＠1，not captured，Downstream study
375\＃2	F	10.5	－－	5／19／83	same	same	w／1＠0，not captured，old collar loosened，age changed＋ 4 （＇83 tooth）
（37．4\＃2）	F＇	8.5	120＊	5／19／83	（same）	（same）	w／3＠0，all captured，old collar loosened，shot 9／83，aged＋ 1
010	F	0.5	－－	5／19／83	－－	1351／1352	w／374，no tattoo
011	F	0.5	－－	5／19／83	－－	1354／1353	w／374，no tattoo
012	F	0.5	－－	5／19／83	－－	1356／1355	w／374，no tattoo
377\＃2	F	5.5	135＊	5／19／83	15282	same	alone，collar replaced，neck infected，age changed－ 1 （＇83 tooth）
404	F	11.5	135＊	5／19／83	15272	2449／2450	w／1＠0，captured，Downstream study，recaptured 3／85
013	F	0.5	10	5／19／83	－－	2449／2450	no tattoo，w／404，Downstream study
405	F	17.5	180＊	5／19／83	6314	2418／2417	W／2＠0，both captured，Downstream study
014	F	0.5	6.5	5／19／83	－－	1364／1366	w／405，Downstream study，no tattoo
015	F	0.5	6.0	5／19／83	－－	1365／1366	w／405，Downstream study，no tattoo

Table 29. (continued)

	Tattoo	Sex	$\frac{\text { Capture }}{\text { Age }}$	Wt.	Date	Sertal \#	Ear Tags	Comments
	406	F	11.5	125*	5/19/83	15273	2444/2445	w/2@0, not captured, Downstream study
	408	M	3.5	160*	5/19/83	15274	2119/2120	alone, Downstream study
	409	F	5.5	90*	5/19/83	6310	1527/1526	alone, Downstream study
	(410)	F	7.5	120*	5/19/83	(6262)	(1536/1537)	w/2@0, not captured, Downstream study, shot 7/19/83
	411	F	8.5	130*	5/19/83	6402	1548/1549	w/2@1, not captured, Downstream study
	363\#2	F	6.3	--	4/6/84	6280	same	w/2@0, recaptured in den, replaced collar
	--	M	0.3	6.0	4/6/84	--	12/20	w/363 in den, neck $=190 \mathrm{~mm}$
	--	M	0.3	6.8	4/6/84	--	11/24	w/363 in den, neck $=192 \mathrm{~mm}$
	361\#3	F	9.3	--	4/6/84		same	W/3@1, recaptured in den, collar good fit, replaced 2/85
	412\#2	M	1.3	30*	4/6/84	--	1678/2122	w/361 in den, neck $=285 \mathrm{~mm}, 25+\mathrm{lbs}$
	413\#2	F	1.3	30*	4/6/84	--	2476/2428	w/361 in den, neck $=286 \mathrm{~mm}$, 25+ lbs
	414\#2	F	1.3	19.5	4/6/84	--	2439/2432	$\mathrm{w} / 361$ in den, neck $=263 \mathrm{~mm}$
	(360\#2)	M	9.3	--	4/7/84	6307	same	recaptured in den, replaced collar, shed 6/84
	329\#4	F	4.3	75*	4/7/84	17919	same	recaptured in den \#73, alone
	289\#3	F	13.3	--	4/7/84	6291	same	w/l@1, recaptured in den, collar replaced, recaptured 3/85
	415	F	1.3	23.5	4/7/84	--	1582/1590	w/289 in den
	369\#3	F	6.3	--	4/8/84	6282	same	w/2@0, recaptured in den, replaced collar, ear tag 1578 found 7/84
	--	M	0.3	4.0	4/8/84	--	3/4	w/369 in den
	--	F	0.3	3.8	4/8/84	--	22/6	w/369 in den
	(358\#2)	F	(4.5)	70	5/15/84	(6319)	same	sex changed, died 8/84
	359\#2	M	6.5	131	5/15/84	6406	same	alone, collar replaced
	302\#3	M	12.5	350*	5/15/84	17920	same	old collar not working
$\stackrel{\otimes}{*}$	416	M	9.5	230*	5/15/84	6312	2064/2054	(poor tooth age)
	349\#2	F	7.5	72	5/16/84	6316	1326/1325	old collar previously shed, recaptured 2/85
	328\#2	F	10.5	110	5/16/84	6451	1246/1245	old collar previously shed
	364\#2	F	11.5	108	5/18/84	6355	1591/526	old collar not working
	354\#2	F	7.5	108	5/18/84	6354	1600/517	with cubs
	361\#4	F	10.3	140*	2/25/85	6400	same	w/3@2 in den, collar applied loosely
	412\#3	M	2.3	80*	2/25/85	--	same	w/361 in den, applied green visual dropoff
	413\#3	F	2.3	65*	2/25/85	--	same	w/361 in den, applted red visual dropoff
	414\#3	F	2.3	55*	2/25/85	--	same	w/361 in den, applied white visual dropoff
	349\#3	F	8.3	--	2/28/85	same	same	in den w/at least 2@0, collar loosened 12
	001	M	0.3	1.8	2/28/85	--	--	w/349, at least one sibling not handled
	289\#4	F	14.3	--	3/1/85	same	same	w/at least $2 @ 0$ in den, cubs not handled
	328\#3	F	11.3	--	3/29/85	same	same	w/3@0 in den, loosened collar $1 \frac{1}{2}$ notches, rubbed
	002	M	0.3	5.0	3/29/85	--	--	w/B328 and siblings
	003	M	0.3	4.1	3/29/85	--	--	w/B328 and stblings
	004	F	0.3	4.1	3/29/85	--	--	w/B328 and stblings
	404\#2	F	13.3		3/30/85	same	same	w/3@0 in den, collar fine
	005	M	0.3	4.1*	3/30/85	--	--	w/B404 and siblings
	006	M	0.3	4.1*	3/30/85	--	--	w/B404 and siblings
	007	F	0.3	3.5*	3/30/85	--	--	w/B404 and siblings
	(426)	M	(3.5)	75*	6/1/85	--	--	capture mortality
	428	M	6.5*	175*	6/1/85	6336	2109/2167	rot-away canvas spacer
	430	M	A	285*	6/2/85	3603	2093/2088	rot-away canvas spacer
	431	F	A	116	6/2/85	3617	1519/1520	----
	$310 \# 2$	M	7.5	225*	6/2/85	6347	2185/2183	rot-away canvas spacer
	432	F	A	124	6/2/85	6353	1558/1557	w/ylg. 434
	434	F	1.5	33	6/2/85	--	1552/1572	W/B432
	433	M	3.5*	68*	6/2/85	--	1647/2081	----
	435	M	A	200*	6/2/85	6351	2182/2186	----
	436	M	2.5*	40*	6/3/85		--/2121	w/B364-mother?
	438	F	A	130*	6/3/85	6262	1516/1521	w/B439 \& sibling (\#444?)
	439	M	2.5*	40*	6/3/85	6307		W/B438-injured in left rear leg during darting
	441	F	A	195	6/4/85	6307	2361/2362	



Table 29. (continued)

Tattoo	Sex	$\frac{\text { Capture }}{\text { Age }}$	Wt.	Date	Serial \#	Ear Tags	Comments
351\#2	M	4.5	140	6/4/85	-	2169/2175	Old tags left in too (516/515)
444	M	3.5*	78	6/4/85	--	2154/2153	drop-off visual collar
445	M	A	250*	6/4/85	6984	2068/2164	drop-off collar
(446)	F	A	99	6/5/885	--	--/--	capture mortality
448	F	A	100	6/5/85	15211	1544/1533	--
318\#4	F	10.5	--	6/5/85	--	same	w/2@l (not captured), recapture
449	$\stackrel{M}{\text { M }}$	A	165*	6/9/85	--	1640/2188	alone
451	F	?	54	6/10/85	--	2408/2484	a lone

* Weight or age estimated, ( ) shed or replaced collar or dead bear, \# recapture, _subsequently changed, Last Tattoo used $=425$, last $\mathrm{cub}=25$.

Table 30. Predicted and observed spring 1984 reproductive status of radio-collared female black bears.

ID	1984 age	Predicted* 1984 status	Comments	Observed 1984 status
321	14	cubs	lost '83 litter in May	2 cubs
349	7	cubs	apparently lost ' 83 litter, shed collar recaptured $5 / 84$	alone
354	7	cubs	weaned ' 83 yearlings	2 cubs
363	6	cubs	alone in '83	2 cubs
369**	6	cubs?	first litter expected in '84	2 cubs (Aug.)
377**	6	cubs	apparently lost '83 litter, shed collar	alone***
402**	11	cubs	weaned ' 83 yearlings	alone
409**	6	cubs	apparently alone in ' 83	NA
411**	9.	cubs	weaned ' 83 yearlings	2 cubs
289	13	1 Yig	cubs in '83	w/1@1
317	11	1 ylg	cubs in ' 83	w/1@1
361	9	3 ylgs	cubs in '83	w/3@1
375**	11	1-2 ylgs	cubs in '83	w/2@1
376**	8	3 ylgs	cubs in ' 83	w/3@1
378**	8	2 ylgs	cubs in '83	W/2@1
404**	12	1-2 ylgs	cubs in '83, last seen in July '83	NA
405**	18	2 ylgs	cubs in '83	w/2@1
406**	12	2 ylgs	cubs in ' 83	w/2@1
329	4	barren?	first litter expected in 1985	barren

* See Muller (1984:117)
** bear occurs in the downstream study area
**ds heard at least one cub in den on $4 / 8 / 84$, none seen post-exit

Table 31. Predicted and observed spring 1985 reproductive status of radio-collared female black bears.

ID	1985 age	$\begin{gathered} \text { Predicted* } \\ 1985 \text { status } \\ \hline \end{gathered}$	Cormments	Observed 1985 status
349	8	cabs	cubs expected last year	2 cubs
402**	12	cubs	cubs expected Iast year	2 cubs
289	14	cubs	ylgs last year, bred	2 cubs
317	12.	cubs.	ylgs last year, bred	2 cubs
361	10	cubs	3 ylgs last. year	w/3 @2 in den
364	9	cubs	Ylgs in last year	alone (? w/l@2?)
375**	12	cubs	ylgs last year	NA (shot)
376**	9	cubs	y1gs last year	alone?
378**	9	cubs	ylgs last year	1 cub
404**	13	cuibs	status in '84. unknown should have had ylgs	3 coy
405**	19	cubs	ylgs last year	w/2@2
406**	13	cubs	ylgs last year	missing
377**	7	cubs	```last year's litter possibly lost in den```	2 cubs
329	5	cubs ?	first litter expected	alone
328	11	cubs	bred in ' 84	3 cubs
32.	15	1 ylg	cubs in ' 84	1 ylg
354.	8	1-2 ylgs	2-1 cubs in '84	alone
363	7	2 ylgs	cabs in ${ }^{\prime} 84$	2 ylgs
369**	7	2 glgs	cubs in '84	$1 \mathrm{ylg}+$
409**	7	ylgs ?	' 84 status unknown, should have had cubs	alone
411**	10	2 ylgs	cubs in '84	2 ylgs

** bear occurs in the downstream study area
*** heard at least one cub in den on $4 / 8 / 84$, none seen past exit

Table 32. Summary of black bear litter size data based on observations of bears with litters of newborn cubs.

MOTHER'S ID (age-year)	LITTER SIZE	COMMENTS
B289 (10 in spring '81)	3	lost 1 in August, 2 survived
B289 (12 in spring '83)	2	lost 1 cub in Sept., other survived to den exit
B301 (8 in spring '81)	2	both survived to yearling age
B301 (10 in spring '83)	$\begin{aligned} & 2(\text { in den }) \\ & {[2 \text { at exit }]} \end{aligned}$	survivorship undetermined, female shed collar
B317 (7 in summer ${ }^{\text {1 }} 80$ )	2 (summer)	initial capture in summer, both survived to fall, cubs not seen with bear at initial capture
B317 (10 in '83)	$\begin{gathered} 2 \text { (in den) } \\ \text { [2 at exit] } \end{gathered}$	lost 1 in June, other survived to den exit
B318 (5 in summer '80)	1 (summer)	survived
B318 (8 in '83)	$\begin{aligned} & 2 \text { (den) } \\ & {[2 \text { at exit }]} \end{aligned}$	both lost by 6/6/83 apparently, shed collar
B328 (7 in summer '81)	2 (summer)	```bred in 1980. Lost l by 7/29/81, shed collar in den (not sure if survived until exit)```
B326 (5 in summer '80)	2 (summer)	bear shot in 1980 , cubs may have been adopted by B317
B321 (11 in spring '81)	2	no cubs in summer 1980, both cubs lost by $8 / 24 / 81$, no litter in ' 82 , no litter verified in 1983 but may have lost a litter early in 1983, bred in 1983
B321 (14 in '84)	2	lost 1 of 2 by 6/29, other survived to den entrance
B327 (5 in summer ' 80 )	2 (summer)	both survived to yearling age
B327 (8 in '83)	$\begin{aligned} & 2(\text { den }) \\ & {[2 \text { at exit }]} \end{aligned}$	cubs survived into June, female died in July
B349 (6 in spring '83)	$\begin{aligned} & 2 \text { (den) } \\ & {[0 \text { at exit?] }} \end{aligned}$	first litter, no cubs in summer ' 81 or spring ' 82 , cubs apparently lost in May ' 83 , collar shed in July - No ylgs on 5/84
B354 (5 in '82)	2	both survived to den entrance, at least 1 ylg. at exit in ' 83


MOTHER'S ID (age-year)	LITTER SIZE	COMMENTS
B354 (7 in '84)	2	May have lost 1 by den enterence date.
B361 (8 in '83)	$\begin{gathered} 4 \text { (in den) } \\ \text { [3 at exit] } \end{gathered}$	lost 1 in den prior to exit, others survived to den exit in ' 84
B370 (8 in '83)	$\begin{gathered} 2 \text { (in den) } \\ {[2 \text { at exit }]} \end{gathered}$	bear missing after 5/23/83, cubs alive at that time
B363 (6 in '84)	$\begin{array}{r} 2 \text { (in den) } \\ {[2 \text { at exit }} \end{array}$	None lost to den entrance
B369* (6 in ' 84 )	$\begin{array}{r} 2 \text { (in den) } \\ {[2 \text { at exit] }} \end{array}$	None lost to den entrance
B372* (10 in '83)	$\begin{gathered} 3 \text { (in den) } \\ {[3 \text { at exit] }]} \end{gathered}$	lost 1 in early July, others survived to $7 / 20$, female lost in Sept., ' 83.
B374* (7 in '83)	3	think lost 2 in July, bear shot in Sept., ' 83.
B375* (6 in '83)	2	both survived to exit in '84.
B376* (5 in '83)	$\begin{gathered} 3 \text { (in den) } \\ {[3 \text { at exit] }} \end{gathered}$	all survived to exit in '84.
B377* (5 in ' 83 )	[1-2??]   NOT COUNTED	cubs may have been lost prior to or during capture, cubs not seen during capture but saw at least 1 cub 9 days earlier on 5/10/83
B377 (6 in '84)	some (in den) [0 at exit]	heard at least 1 cub in den, none seen at exit.
B378* (7 in '83)	$\begin{aligned} & 2(\mathrm{den}) \\ & {[2 \text { at exit] }} \end{aligned}$	both survived to ' 84 den exit.
B379 (9 in '83)	$\begin{aligned} & 3(\mathrm{den}) \\ & {[2 \mathrm{at} \text { exit] }} \end{aligned}$	lost all cubs by $5 / 23 / 83$, bred again, died in July
B404* (11 in ${ }^{\text {8 }} 83$ )	1.	survived thru 7/20/83 at least, not seen in ' 84 .
B405* (17 in' 83 )	2	both survived to den exit in ' 84
B406* (11 in '83)	2	both survived to den exit in ' 84.
B409* (7 in '84)	?	not observed in '84.
B410* (7 in '83)	2	both survived thru June, bear shot in July
B411* (9 in '84)	2	status at entrance into ' 84 den. unk.

Table 32 (cont'd)

Total number of cubs	number of litters	mean litter size (range)	comments (includes)
69	32	2.2(1-4)	all cub litters counted at earliest observation
54	25	2. $2(1-3)$	spring observations only (w/o den data or summer litters)
60	26	2.3(1-4)	earliest observation excluding summer litters
31	13	2.4(2-4)	observations in dens only

* Downstream study area

MOTHER'S ID (age-year)	LITTER SIZE	COMMENTS
B288 (10 in 1980)	3	Bred in 1980, ylgs. with female into August, shed collar in 1980
B290 (8 in 1980)	2	weaned by $6 / 23 / 80$, bred in 1981 , collar removed on $8 / 5 / 81$ (neck scarred)
B289 (9 in 1980)	2	weaned by 5/22/80, bred, 3 cubs in ' 81
B289 (13 in 1984)	1	with mom to Sept., bred in June.
B289 (11 in 1982)	2 (in den)	weaned by $6 / 9 / 82$, bred, had 2 cubs in 1983
B301 (7 in 1980)	1	weaned by $6 / 12 / 80$, bred, had 2 cubs in 1981
B301 (9 in 1982)	2	weaned by $6 / 17 / 82$, bred, had 3 cubs in 1983
B317 (8 in 1981)	2	weaned by $6 / 18 / 81$, bred, 1 ylg returned and was with female until 9/9/81, no cubs in 1982
B317 (11 in 1984)	1	weaned in June, bred
B318 (6 in 1981)	1 (den)	ylg (B330) weaned by $5 / 29 / 81$, bred, ylg died by $8 / 24 / 81$, no (reason?) cubs in 1982, bred again, 2 cubs in 1983
B327 (5 in 1981)	2 (den)	y1g B329 and sibling, sibling weaned by $6 / 5 / 81$, B329 by $6 / 21$, bred, no cubs in 1982, bred again, cubs in 1983
B354 (6 in 1983)	1(?)	at least 1 ylg exited den (perhaps both?), weaned by 6/2/83
B364 (8 in 1984)	3	2 weaned early, bred, still with one in September.
B402* (10 in 1983)	3	weaned in early July
B411* (8 in 1983)	2	weaned after 6/13

Table 33. (cont'd)
MOTHER'S ID (age-year) LITTER SIZE COMMENTS


[^6]Table 34. Summary of known losses of black bear cubs-of-the-year. Losses calculated during first season out of den (in dens or at emergence from dens as cubs to entrance into dens as cubs)

Year	Upstream study area	downstream study area	Both areas
1980	no data	no data	--
1981	4 of 9 lost (289, 301, 321, 328)	no data	4 of 9 lost
1982	0 of 2 lost (354)	no data	0 of 2 lost
1983 complete data	8 of 13 lost (289, 317, 361, 349)	$\begin{aligned} & 1 \text { of } 12 \text { lost ( } 375,376,377 * *, \\ & 378,405,406) \end{aligned}$	9 of 25 lost
1983 incomplete data*	[2 of 2 lost (318]	[3 of 6 lost (372, 374)]	[5 of 8 lost]
1984 complete data	1 of 4 lost ( 321,363 )	0 of 2 lost (369)	1 of 6 lost
1984 incomplete data*	[1 of 2 lost (354)]	[1 of ? lost (377)]	[1 of 2 lost]
TOTALS (all years)	13 of $28=46 \%$ lost	1 of $14=7 \%$ lost	14 of $42=33 \%$ lost

[^7]Table 35. Sex ratio and morphometrics of black bear cubs-of-year handled in the Susitna Hydro Project.

$\begin{aligned} & \text { CUB } \\ & \text { ID } \\ & \hline \end{aligned}$	$\begin{gathered} \text { MOTHER'S } \\ \text { ID } \\ \hline \end{gathered}$		$\begin{gathered} \text { DATE } \\ \text { HANDLED } \end{gathered}$		SEX	WT(lbs)	COMMENTS
355	B354	26	May 1982		F	-	ear tags
356	B354	26	May 1982		M	--	ear tags
--	B301		March 1983	(den)	F	2.6	
--	B301	20	March 1983	(den)	F	2.5	
--	B361	21	March 1983	(den)	M	3.5	
-	B361	21	March 1983	(den)	F	3.8	
--	B361	21	March 1983	(den)	F	3.5	
-	B361	21	March 1983	(den)	F	2.8	
--	B349	22	March 1983	(den)	F	3.5	
-	B349	22	March 1983	(den)	F	3.4	
--	B317	23	March 1983	(den)	M	4.3	neck $=175 \mathrm{~mm}$
-	B317	23	March 1983	(den)	M	4.3	neck $=180$ mm
--	B318	23	March 1983	(den)	M	2.8	
-	B318	23	March 1983	(den)	F	2.7	
--	B327	. 23	March 1983	(den)	M	5.3	neck $=190 \mathrm{~mm}$
--	B327	23	March 1983	(den)	F	4.5	neck=180 mm
--	B379	24	March 1983	(den)	M	2.8	
-	B379	24	March 1983	(den)	M	3.3	
--	B379	24	March 1983	(den)	M	3.3	
--	B372	15	April 1983	(den)	$F$	3.7	
--	B372	15	April 1983	(den)	F	4.1	
-	B372	15	April 1983	(den)	M	4.5	
--	B376	16	April 1983	(den)	M	6.0	neck $=190 \mathrm{~mm}$
--	B376	16	April 1983	(den)	F	5.5	neck $=190$ mm
--	B376	16	April 1983	(den)	F	5.8	neck $=190$ mm
--	B370	16	April 1983	(den)	F	7.5	neck $=200$ mm
--	B370	16	April 1983	(den)	F	7.0	neck $=190 \mathrm{~mm}$
010	B374	19	May 1983		F	--	neck $=175 \mathrm{~mm}$, ear tags
011	B374	19	May 1983		F	--	neck $=200 \mathrm{~mm}$, ear tags
012	B374	19	May 1983		F	--	neck $=195 \mathrm{~mm}$, ear tags

Table 35 (cont'd)

$\begin{aligned} & \text { CUB } \\ & \text { ID } \end{aligned}$	$\begin{gathered} \text { MOTHER'S } \\ \text { ID } \end{gathered}$		$\begin{gathered} \text { DATE } \\ \text { HANDLED } \end{gathered}$		SEX	WT(lbs)	COMMENTS
013	B404	19	May 1983		F	10.0	neck $=215 \mathrm{~mm}$, ear tags
014	B405	19	May 1983		F	6.5	neck $=180 \mathrm{~mm}$, ear tags
015	B405	19	May 1983		F	6.0	neck $=175 \mathrm{~mm}$, ear tags
-	B363	6	April 1984	(den)	M	6.0	neck=190mm
--	B363	6	April 1984	(den)	M	6.8	neck $=192 \mathrm{~mm}$
--	B369	8	April 1984	(den)	M	4.0	
--	B369	8	April 1984	(den)	F	3.8	
-	B349	28	Feb. 1985	(den)	M	1.8	very small, eyes closed, sibling not handled
--	B328	29	March 1985	(den)	M	5.0	
	B328	29.	March 1985	(den)	M	4.1	
	B328	29	March 1985	(den)	F	4.1	
	B404	30	March 1985	(den)	M	4.1*	
-	B404	30	March 1985	(den)	M	4.1*	
-	B404	30	March 1985	(den)	F	3.5*	

Totals: 19 males and 25 females, In dens=18 males and 18 females.

* Estimated

m	SMILO9SM-1Table 36. Morphometrics of black bear yearlings handled in the Susistna HydroProject.						
\%om	$\begin{aligned} & \text { YLG } \\ & \text { ID } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { MOTHER'S } \\ & \text { ID } \\ & \hline \end{aligned}$		$\begin{gathered} \text { DATE } \\ \text { HANDLED } \\ \hline \end{gathered}$	SEX	WT (1bs)	COMMENTS
-	B329	B327	23	March 1981 (den)	F	15 (est.)	tagged and collared
	B330	B318		March 1981 (den)	M	31	tagged and collared
\%	B350	B289		April 1982 (den)	M	14	ear tagged
0	B351	B289		April 1982 (den)	M	16	ear tagged
	B353	B301	26	May 1982	M	29	with mother, capture mortality
	B412	B361.	6.	April 1984 (den)	M	30*	
$\cdots$	B413	B361	6	April 1984 (den)	F	30*	
	B414	B361	6	April 1984 (den)	F	19.5	
	B415	B289		April 1984 (den)	$F$	23.5	Neck $=299 \mathrm{~mm}$

Totals: 5 males and 4 female

Table 37. Sumary of apparent natural mortalities of radio-collared adult bears. Susitna Hydro project. Includes black bears $\geq 1$ year of age and brown bears $\geq 2$ year of age.


Table 38. Status of black bears marked during Su-Hydro studies, 1980-1983. (A=alive, ND=no data, $F=s h o t$ in fall season, $S p=s h o t$ in spring season, $S=$ Summer capture or mortality).

Bear ID	Sex/Age	1980	1981	1982	1983	1984	1985

## Upstream Study Area

287	M/10 in '80	A	A	Shat-F	-	-	-
288	F/10 in ' 80	A (shed)	ND	ND	ND	ND	
289	F/9 in ' 80	A	A	A	A	A	
290	F/8 in 80	A	$A$ (remvd)	ND	ND	ND	
301	F/7 in ${ }^{\text {P }} 80$	A	A	A	A (shed)	Shot-F	
302	M/8 in '80	A	A	A	A	A	
303	M/8 in ' 80	A	A	A	Shot-F	-	-
304	M/10 in ${ }^{180}$	A	A	A (shed)	ND	ND	
305	M/9 in ' 80	Shot-F	-	-	-	-	-
307	M/2 in ${ }^{1} 80$	A	Shot-S	-	-	-	-
310	M/2 in ' 80	ND	ND	ND	ND	ND	
316	$F / 12$ in 180	Shot-F	-	-	-	-	-
317	F/7 in '80	A-S	A	A	A	A	
318	F/5 in ' 80	A-S	A	A	ND-shed	ND	
319	M/3 in ' 80	A-S	died	-	-	-	-
320	M/4 in ' 80	Shot-F	-	-	-	-	-
321	F/10 in * 80	$\mathrm{A}-\mathrm{S}$	A cubs	A	A	A	
322	M/4 in ${ }^{1} 80$	A-S	A	died	-	-	-
323	M/2 in ' 80	A-S	A	A	Shot-F	-	-
324.	M/5 in ' 80	A-S	A	A	A	Shot-F	-
325	F/11 in ${ }^{180}$	A-S	A	Shed	ND	ND	
326	F/5 in '80	Shot-F	-	-	-	-	-
327	F/5 in ' 80	A-S	A	A	Died-S	-	-
328	F/6 in ' 80	A-S	A	A	A	A	
329	F/1 in ' 81	-	A	A	A	A	
330	M/1 in ${ }^{1} 80$	-	died-S	-	-	-	
342b	M/5 in ' 81	$\cdots$	Shot-F	-	-	-	
346	M/9 in '81	-	A	A	A	aied	-
348	M/9 in ' 81	-	A-S	Shot-F	-	-	
349	F/4 in '81	-	A-S	A	A	A	
354	F/5 in '82	-	-	A	A	A	
357	M/4 in ' 82.	-	-	died-W	-	-	
358	M/2 in ' 82	-	-	A	A	died-F	-
359	M/4 in ${ }^{1} 82$	-	-	A	A	A	
360	M/7 in ' 82	-	-	A	A	A	
361	F/7 in ' 82	-	-	A	A	A	
362	F/2 in ' 82	-	-	ND	ND	ND	
363	$F / 4$ in ' 82	-	-	A	A	A	
364	F/9 in ' 82	-	-	A	A	A	
379	F/9 in '83	-	-	-	died-S	-	
387	F/4 in ' 83	-	-	-	A	A	
401	M/3 in 183	-	-	-	A	A	
416	M/A in ' 84	-	-	-	-	A	

(continued on next page)

Upstream subtotals

Naxtmum No. bears protentially alive (includes ND) in year (excludes natural mortalities (M:F)	24(12:12)	24(12:12)	30(13:17)	28(11:17)	25(8:17)	ND
No. known shot (M,F)	4(2:2)	2(2:0)	2(2:0)	2(2:0)	2(1:1)	ND
No. adaitional bears suspected shot (M.F)	0	0	0	0	0	ND
fi known or suspected shot	178	8\%	7\%	7\%	8\%	ND

## Eownstream Study Area

343	M/5 in '81	-	A	A	A	A
365	M/5 in ${ }^{\text {c }} 82$	-	-	A	Died-F	-
366	M/6 in ' 82	-	-	Shot-F	-	-
367	F/4 in ${ }^{\text {' } 82}$	-	-	A	Shot-s	-
369	$F / 4$ in '82	-	-	A	A	A
370	F/7 in ' 82	-	-	A	(Shot?)-S	-
372	F/9 in '82	-	-	A	(Shot?)-S	-
374	F/7 in '82	-	-	A	Shot-F	-
375	F/5 in ' 82	-	-	A	A	A
376	F/6 in '82	-	-	A	A	A
377	F/5 in '82	-	-	A	A	A
378	F/6 in ' 82	-	-	A	A	A
402	F/10 in ' 83	-	-	-	A	A
404	F/11 in '83	-	-	-	A	A
405	F/17 in ' 83	-	-	-	A	A
406	F/11 in '83	-	-	-	A	A
408	M/3 in ' 83	-	-	-	A	A
409	F/5 in '83	-	-	-	A	A
410	F/7 in '83	-	-	-	Shot-S	-
411	F/8 in ' 83	-	-	-	A	A

Downstrean. subtotals
Max. No. bears potentially
alive (includes ND) in year

| (excludes natural mortalities) <br> $(M: F)$ | $1(1: 0)$ | $12(3: 9)$ | $18(2: 16)$ | $13(2: 11) \quad N D$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

No. known shot $(\mathrm{M}: \mathrm{F}) \quad 1 \quad 0 \quad 1(1: 0) \quad 3(0: 3) \quad 0 \quad$ ND

No. additional bears   suspected shot $(M ; F)$	0	0	0	$2(0: 2)$	0	ND
\& known or suspected shot	-	-	$8 \%$	$28 \%$	0	ND

(continued on next page)

Opstream \& Downstream Areas Combined

includes ND ) (M:F)	24(12:12)	25(13:12)	42(16:26)	46(13:33)	38(10:28)	ND
Mio. known shot (M:F)	4(2:2)	2(2:0)	$3(3: 0)$	5(2:3)	2(1:1)	ND
No. additional bears suspected shot (M:F).	0	0	0	$2(0: 2)$	0	ND
9; known or suspected shot	17\%	8\%	7\%	15\%	5\%	ND

 impoundment study area.

	Transect 1				Transect 4				Transect 2			
Location	Between Vee Canyoand Oshetna(upstream)				Confluence of Susitna R. and Deadman (downstream)				Vee CanyonOshetna Ck. (upstream)			
Elevation	2325 feet				2100 feet				3050 feet			
Aspect	$218^{\circ}$				$239^{\circ}$					$216^{\circ}$		
Slope												
Vegetation type												
Date	8/21782	8/18/83	8/23/84	8/30/85	8/21/82	8718783	8722784	$8730 / 85$	8/21/82	8/18/83	8723/84	8/30785
Blueberries (Vaccintum uliginosum)												
No. berrles	303	238	110	160	32	41	45	34	489	1104	287	333
range (no/plot)	1-191	0-120	0-38	6-26	0-8	0-19	1-11	0-11	0-164	59-202	4-66	0-119
S.D.	57	39	11	8	3.2	6.2	3.0	3.7	54.9	53.6	23.3	36.2
\% canopy cover:												
range	5-60	10-40	10-40	40-90	15-70	10-60	15-40	20-50	5-80	15-70	5-55	15-70
S.D.	15.9	11.3	10.2	19.3	17.9	15.9	8.6	12.5	24.6	19.3	16.9	18.1
Lowbush cranberry (V. vitis-idaea)												
No. berries	28	94	109	199	0	127	302	19	45	604	688	908
range	0-15	0-23	0-100	0-58	-	0-114	0-283	0-19	0-16	4-109	3-140	6-206
S.D.	5.1	9.1	31.3	19.6	-	35.6	88.9	-	-	36:7	51.3	67.5
\% canopy cover:												
range	0-10	1-50	$0-55$	10-60	0-15	0-25	0-30	0-30	2-10	15-80	15-85	5-70
S.D.	3.5	14.8	16.7	17.6	5.1	11.7	12.2	8.6	3.0	19.6	24.4	23.2
No. berries	17	65	0	8	112	614	145	178				672
range/plot	0-10	0-39	-	-	0-58	0-261	0-68	0-56	0-50	0-169	0-14	0-251
S.D.	3.1	13.0	-	-	17.9	80.8	21.3	21.8	19.7	52.8	4.5	78.5
\% Canopy cover:												
mean	2.9	8.0	8.0	3.0	10.2	18. 5	38	51	10.9	18.0	25.0	22.5
range	0-10	0-30	0-30	0-20	0-30	5-35	5-80	20-70	0-50	0-50	0-60	0-60
S.D.	3.4	8.9	9.8 .	6.3	10.2	11.1	25.5	14.5	14.5	17.5	21.3	21.4
Bearberry (Arctostaphylos uva-ursi) - 0 - 0												
No. of berrtes	22	22	9	0	0	0	0	0	0	0	1	0
range/plot	0-20	0-19	0-6	-	-	-	-	-	-	-	-	-

Tabìe 39 (continued)


* Transect \#2 was clearly in a birch shrub type although according to the vegetation map it was in woodland black spruce (WSB). ** Not in same place as previous years probably - couldn't find flagging

Berryweights on $8 / 18 / 83=$		
for V. vitis-tdaea	130 gms $/ 1000$	on $8 / 23 / 84=$
for $V$. Uliginosum	304 gms $/ 1000$	128 gms $/ 1000$
for E. nigrum	260 gms $/ 1000$	346 gms $/ 1000$

# Table 40. Subjective characterization of berry abundance in the upstream study 

 area since 1980.Characterization of
Year Berry Abundance Comments
1980 normal No special effort was made to evaluate berry abundance, black bears were very common in the shrublands adjacent to forested habitats and in forested habitats.

1981 very poor Extensive unanticipated movements of radio-marked black bears in late summer provided first clue that something was amiss. On the ground inspection supported hypothesis that blueberries were very scarce. Bears were in very poor condition the following spring in both upstream and downstream area. Three marked black bears died (Table 34) in 1981 following the summer berry failure. Bears were common in semi-open shrublands.

1982 slightly subaverage Berry transects supported hypothesis that berries were more abundant in shrublands than in adjacent forests. Low reproductive success evident in spring 1982 and bears tended to be very skinny. In summer bears foraged in shrublands but there appeared to be many fewer bears in the study area than in 1980. Would have concluded a massive emmigration in 1981 except that the marked bears that moved away had all returned. Possibly there was an increased mortality rate resulting from the 1981 berry failure. One marked bear died in 1982 compared to 3 in the previous and following years. Mortality could have been most marked on subadults, only 2 of these were radio-marked.
(cont'd on next page)
Characterization of
Year Berry Abundance

Comments


Berry transects suggest more berries than in l982, especially crowberries and lowbush cranberries. Although not evident in the transect data it appeared that blueberries were locally very abundant in forested habitats and bears did not have to, and didn't, move into the shrubland habitat types to forage for berries in late summer. Some black bears expected to produce their first litters in 1983 failed to do so suggesting delayed age of first reproduction may have resulted from 1981 berry failure. Appeared to be many fewer bears present than in 1980. Craig Gardner noted that along the Denali highway "Berries were very abundant along the Denali Hwy from Paxton to the McClaren River."

Berry transects support substantially fewer blueberries and crowberries in upstream areas, about average in downstream areas. Berries appeared to be very abundant in highly localized pockets, more patchy than is typically the case. Black bear movements appeared normal but some brown bears made atypically large movements in fall 1984. Between Paxton and the McClaren River, Craig Gardner (pers. comm.) reported "Berries were less abundant than in 1983 but more abundant than in 1981."

In the vicinity of Watana Camp berries appeared to be slightly below average in abundance. In more upstream habitat they appeared to be slightly above average. Saw nowhere where blueberries were really thick, pretty well dispersed. Along the Denali Hwy both Craig Gardner and Jack Whitman noted independently that berry crops "appeared to be a bust" - very few were seen.

```
1-7
```

101
$1 \quad 1$
11

Table 41. Home range sizes for the Su Hydro downstream black bears.


Table 42. Home range sizes for Su-hydro upstream study area black bears. (Includes individuals with 5 or more relocations).

Bear ID   (age @ capture)	1980		1981		1982		1983	
	obs. Period (No. locations)	$\begin{gathered} \text { Home Range } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$	$\begin{aligned} & \text { Obs. Period } \\ & \text { (No. locations) } \end{aligned}$	$\begin{gathered} \text { Home Range } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$	Obs. Period (No. locations)	$\begin{gathered} \text { Home Range } \\ \left(\mathrm{km}^{2}\right) \\ \hline \end{gathered}$	Obs. Period (No. location)	$\begin{gathered} \text { Home Range } \\ \left(\mathrm{km}^{2}\right) \end{gathered}$
$\frac{\text { Males }}{330(1)}$	---	-	May-Oct (14)	10	dead 7/81	---	---	---
323 (2)	Aug-Oct (6)	20	May-Oct (19)	383	May-Oct (20)	1126	May-Sep (17)	1089 (shot 9/83)
358 (2)	---	---	---	---	May-Oct (17)	11	May-Oct (17)	53
319 (3)	May-Jul (6)	67	May-Jul (10)	43	dead 7/81	---	---	---
401 (3)	--	--	--	---	--	--	May-Oct (18)	91
291 (4)	May-Jul (7)	20	Dead 7/80	---	---	---	---	---
322 (4)	Aug-Oct (5)	10	Shed 12/80	---	May-Jul (7)	21	dead 7/82	
359 (4)	---	---	---	---	May-Oct (18)	83	May-Oct (19)	154
357 (4)	---	---	--- .	---	May-Oct (18)	11	dead 10/82	---
387 (4)	---	--	--	--	--	. ---	May-Oct (16)	164
324 (5)	Aug-Oct (6)	29	May-Oct (20)	248	May-Oct (21)	140	May-Oct (17)	170
342B(5)	---	---	May-Sep (40)	611	shot 9/81	---	---	---
343 (5)	---	---	May-Oct (16)	289	May-Oct (19)	370	May-Oct (20)	501
302 (8)	May-Jul (6)	4	May-Oct (36)	326 (shed)	May-Jul (11)	51	missing	--
303 (8)	May-Oct (15)	95	May-Oct (18)	93	May-Oct (20)	74	May-Aug (11)	43 (shot 9/83)
305 (9)	May-Aug (9)	48	shot 8/80	--	---	---	---	---
346 (9)	---	---	May-Oct (16)	62	May-Oct (22)	91	May-Oct (16)	119
348 (9)	---	---	Aug-Oct (7)	389	May-Jun (9)	136	shot 9/82	---
287 (10)	May-Oct (17)	- 136*	May-Oct (15)	268*	May-Sep (18)	250	shot 9/82	---
304 (10)	May-Sep (15)	35*	May-Oct (18)	41*	shed 7/82	---	---	---
$\begin{array}{r} \overline{\mathrm{x}}(\text { all males })= \\ \mathrm{S} . \mathrm{D} . \\ \text { range }= \\ \hline \end{array}$	$\begin{aligned} & (9.2) \\ & -- \\ & (5-17) \end{aligned}$	$\begin{aligned} & 46.0 \\ & 42.0 \\ & 4-136 \\ & \hline \end{aligned}$	$\begin{gathered} (18.3) \\ -- \\ (7-40) \\ \hline \end{gathered}$	$\begin{gathered} 230.3 \\ 184.5 \\ 10-611 \\ \hline \end{gathered}$	$\begin{gathered} (16.7) \\ -- \\ (9-22) \\ \hline \end{gathered}$	$\begin{aligned} & 197.0 \\ & \quad 311.0 \\ & \therefore \quad 11-1126 \\ & \hline \end{aligned}$	$\begin{aligned} & (16.8) \\ & (-2 \\ & (11-20) \\ & \hline \end{aligned}$	$\begin{gathered} 253.8 \\ 343.4 \\ \quad \quad 43-1089 \\ \hline \end{gathered}$

Table 42. (continued)


[^8]Table 43. Number of Susitna River crossings by radio-marked black bears, 1980-1983.

Bear ID	Yr. initial	Ho. Iiver crossings by upstream bears					Comments
Males (upstream)							
416	1984 (A)	-	-	-	-	1	active
330	1981(1)	-	0	-	-	-	318's cub, died fall '81
323	1980(2)	2	4	2	3	-	-dead (in hunter's cabin)
358	1982 (2)	-	-	0	2	0	natural mortality 7/84
319	1980(3)	4	3	-	-	-	dead, 9/81
401	1983 (3)	-	-	-	2	8	active
291	1980(4)	0	-	-	-	-	dead 8/80
322	1980 (4)	0	-	1	-	-	dead 6/82, (shed collar '81, recap '82)
320	1980(4)	1	$\cdots$	-	-	-	shot (hunter) 9/80
357	1982 (4)	-	-	4	$\sim$	-	dead 3/83
359	1982 (4)	-	-	0	0	8	active
387	1983 (4)	-	-	-	0	0	active
324	1980(5)	0	4	4	4	0	shot (hunter) 9/84
342B	1981 (5)	-	0	-	-	-	shot (hunter) 9/81
343	1981(5)	-	3	3	2	4	active
300	1980(7)	-	-	-	-	-	dead 5/80
360	1982 (7)	-	-	2	4	0	shed collar 4/84
302	1980 (8)	0	12	2	-	2	collar shed '80; recaptured but radio fatlure in 1982
303	1980 (8)	2	0	0	0	-	shot (hunter) 9/83
305	1980(9)	2	-	-	-	-	shot (hunter) 8/80
346	1981 (9)	-	2	4	8	0	natural mortality 5/84
348	1981(9)	-	2	1	-	-	shot (hunter) 9/82
287	1980(10)	0	2	2	-	-	shot (hunter) 9/82
304	1980(10)	0	0	1	-	-	shed collar 5/82
Total males (upstream)		11	32	26	25	23	


Bear ID	Yr. Initial capture (age)	No. River Crossings by upstream bears					Comments
		1980	1981	1982	1983	1984	
Females (upstream)							
329	1981(1)	-	2	2	5	10	327's cub
349	1981 (4)	-	0	0	0	0	shed collar 7/83
363	1982 (4)	-	-	0	0	$0_{*}{ }_{2}$	active
379	1983 (4)	-	-	-	0	-	dead; possibly killed by other bears
318	1980(5)	$0_{* 1}{ }^{\text {. }}$	0	0	0	-	shed collar
326	1980(5)	0	-	-	-	-	shot
327	1980(5)	$1_{* 2}$	${ }^{8} 1$	7	$\mathbf{1}_{* 2}$	-	dead 7/83
354	1982 (5)	-	-	$0_{* 2}$	0	$0_{\text {* }}$	active
328	1980 (6)	-	$0_{* 2}$	0	-	0	shed collax 1982, active
364	1982 (6)	-	-	7	-	$6_{Y l}$	missing ** 9/82
301	1980(7)	2	$0_{\text {* } 2}$	0	-	-	shed collar 8 /83
317	1980(7)	$0_{*}$	${ }^{0} 1$	0	$0_{* 1}$	${ }^{0} 1$	active
361	1982 (7)	-	-	2	$0_{* 3}$	$\mathrm{O}_{\mathrm{y}}$	active
290	1980 (8)	$4_{*}{ }_{1}$	0	-	-	-	not recollared (infected neck)
289	1980 (9)	4	$0_{* 3}$	$0_{y l}$	$\mathbf{1}_{* 2}$	${ }^{5} \mathbf{y 1}$	active
288	1980(10)	$0_{* 3}$	-	-	-	-	shed collar 9/80
321	1980(10)	0	$2_{* 2}$	0	0	$0_{* 1}$	active
325	1980(11)	0	2	-	-	-	shed collar 1981, 1982
316	1980(11)	0	2	-	-	-	shed collar 1981, 1982
Total fe (upstrea		11	14	18	7	21	
Total both sexes (upstream)		22	46	44	32	44	.
(continued)							

Bear ID
$\frac{\text { Males }}{\text { (downstream) }}$

408	1983(3)	-	0	2	active
365	1982(5)	0	0	-	dead 9/83
366	1982 (6)	1	-	-	shot 8/82
Total Males		1	0	2	

Females
(downstream)

369	1982 (3)	0	0	$0_{* 2}$	active
367	1982 (4)	0	0	-	shot ("DLP")
377	1982 (4)	2	3	3	active
409	1983 (5)	-	0	0	active
376	1982 (6)	${ }^{2} y 1$	${ }^{4}$ * ${ }^{\text {a }}$	${ }^{2} y^{3}$	active
378	1982 (6)	0	$0_{* 1}$	$\mathrm{O}_{\mathrm{Y} 2}$	active
410	1983 (7)	-	0	-	shot ("DLP" 7/83)
374	1982(7)	0	$0_{* 3}$	$\cdots$	shot 9/83
370	1982 (7)	0	$0_{* 2}$	-	missing**
411	1983 (8)	-	${ }^{2} y^{2}$	$2{ }_{\text {* }}$	active
375	1982(9)	5	${ }^{4 * 1}$	${ }^{3} \mathbf{y} 2$	active
372	1982 (9)	0	$0_{* 2}$	-	missing**
402	1983 (10)	-	${ }^{2} 3$	2	active
404	1983 (11)	$\bullet$	$\mathbf{2 k 1}_{1}$	2	active
406	1983 (11)	-	$0_{*}{ }_{2}$	$\mathrm{O}_{\mathrm{y} 2}$	missing 10/84
405	1983 (17)	-	-	$\mathrm{O}_{\mathrm{y}}$	active
Total females (downstream)		9	17	14	
Total both sexes (downstream)		10	17	16	

** possible unreported hunter klly, collar fallure, or emigration.

```
Reprod. status: * = cub of year
 y=yrlg.
```

Table 44. Scat analyses of brown bear and black bear scats coliected in the Su-Hydro study area, 1984. (Analyses done by Paul Smith, ADFGG, Soldotna). Values are volume ( $\mathrm{T}=\mathrm{trace}, 2=6-25 \%$, $3=26-50 \%$, $4=51-75 \%$, $5=76-100 \%$ ).

Date Collected	Species of bear	Place	Sample No.	Comments	1	2	3	4	5	6	9	11	12	13	14	15	16	17	18	19
Summer -	1-Sloughs			,																
8/3/84	?	upstm	6	1700' elev.		2		2									T			
8/5/84	?	upstm	19	Hatana Camp	2	2					3					T				3
8/5/84	$?$	upstm	4	Watana Camp		T										2	T			5
8/15/84	?	dstm	55	Lane Ck.					4									2	2	
8/15/84	?	dstm	60	Slough 8B					3		3								2	
8/15/84	?	dstm	64	Portage Ck. S.					5										T	
8/15/84	$?$	dstm	65	McKensie Ck.					5											
5/15/84	?	dstm	66	Lane Ck.					5										T	
8/16/84	?	dstm	28	Slough 28					5								T	T		
8/16/84	$?$	dstm	29	Slough 8A					4					T				2		
8/16/84	$?$	dstm	30	Slough A					4									2	2	
8/16/84	BKB	dstm	31	Slough 9					3							T		3	2	
8/16/84	?	dstm	32	Slough A					3					T				3	T	
8/16/84	$?$	dstm	33	Slough A					3								;	3	2	
8/16/84	$?$	dstm	34	Slough 11					3		T					T	T	3	T	
8/16/84	8	dstm	35	Slough 8A					3									3		
B/16/84	$?$	dstm	36	Slough 9A					5				T						T	
8/16/84	?	dstm	37	Slough 11					4		T							2	2	
8/16/84	$?$	dstm	38	Slough 11					4									2	2	
8/16/84	?	dstm	39	Slough 9A	T				5									T		
8/16/84	?	dstm	40	Slough 21	2				2		2						T	2	2	
B/16/84	$?$	dstm	41	Slough 21					2		2		T					2	2	
8/16/84	?	dstm	42	Slough 21					3										2	
8/16/84	?	dstm	43	Slough 21	2				3		2								T	
8/16/84	$?$	dstm	44	Slough 21					5										T	
8/16/84	3	dstm	45	4th July Ck.					4									3	T	
8/16/84	?	dstm	46	Slough 8A					4		T							2		
8/16/84	?	dstm	47	Slough 11					2										5	
8/16/84	?	dstm	48	Slough 8A					T								T	3	T	
8/16/84	?	dstm	49	Slough 9A					3										3	
8/16/84	$?$	dstm	50	Riverbank					3									3		
8/16/84	?	dst.m	51	Slough 8A					T									3		
8/16/84	?	dstm	52	Slough 8A					5		T							2		
B/16/84	?	dstm	53	Slough 8A	T				4									T	2	
8/16/84	?	dstm	54	5th July Ck.					5											
8/16/84	?	dstm	56	5th July Ck.		T			2	3									3	
8/16/84	$?$	dstm	57	5th July Ck.					3									2	2	
8/16/84	?	dstm	58	5th July Ck.														2	4	
8/16/84	?	dstm	62	Slough 9					2									3	2	
8/16/84	BKB	dstm	61	Slough 8A					2					2				3	T	
8/16/84	?	dstm	59	Slough A					5									T	T	
8/16/84	?	dstm	63	Slough 9					5											
8/23/84	$?$	upstm	15	E. Fk. Hatana	2	T					3									3
8/23/84	?	upstm	16	E. Fk. Watana	3	T					3						T			3

Table 44 (cont'd)


1. Equisetum spp. (horsetall)
2. Lichens
3. Grasses or sedges
4. Clover (Trifolium spp.)

Berries
2. Vaccinium vitis-idea (lowbush cranberry)
4. Empetrum nigrum (crowberry)
5. Oplopanax horridus (Devil's Club).
6. Arctosptaphylos alpina (bearberry
18. Strepotpus amplexifolius (watermelon berry)
17. Other berries

Sambucus racemosa (red elderberry)
Oxycoccus mícrocarpus (bog cranberry)
Soxcoccus microcarpus (bog cranberry) Sorbus scouplina IGreene Mt. ashberry) Sheperdta canadensts (soapberry)
Cornus canadensis (Cornus berry)
Vaccintum ovalifolium (early bluebe
Ribes triste (red currant)

Animal Matter
16. Other Misc.
11. Moose
12. Hare or ground squirrel, misc.
13. Feathers
14. Fish
15. Insects

Table 45. Salmon abundance in downstream sloughs and streams, 1981-1984.

AREA	No. Adult Salmon Enumerated*				
	RIVER MILE	1981(N**)	1982 ( ${ }^{* * * \text { ) }}$	1983 ( ${ }^{* *}$ )	1984(N**)
Slough 21	141.0	747 (5)	2424 (9)	1904 (13)	7197 (9)
Slougt 11	135.3	5483 (9)	4806 (11)	5067 (23)	9749 (8)
Slough 8A	125.1	1283 (5)	1804 (10)	843 (20)	3054 (8)
Slough 20	140.0	27 (2)	220 (7)	201 (20)	695 (4)
Slough 9A	133.3	484 (6)	146 (3)	217 (3)	574 (5)
Moose Slough	123.5	555 (5)	115 (7)	392 (15)	405 (5)
Slough 8B	122.2	1 (1)	190 (6)	240 (6)	1749 (8)
Slough 8C	121.9	(0)	1.05 (3)	(0)	416 (5)
Slough 17	138.9	169 (7)	29 (4)	182 (8)	240 (4)
Slough 15	137.2	1 (1)	178 (3)	20 (5)	611 (1)
Slough B	126.3	NA	225 (6)	9 (1)	196 (5)
Slough 9	128.3	380 (5)	911 (6)	1081 (9)	499 (3)
Slough 6A	112.3	27 (3)	101 (4)	2 (1)	3 (1)
Sloughs A \& A'	124.7	437 (10)	(0)	528 (16)	338 (5)
SIough 8	113.7	858 (5)	(0)	(0)	193 (6)
Slough 9B	129.2	678 (7)	(0)	(0)	181 (3)
Slough 19	139.7	84 (6)	(0)	18 (6)	147 (7)
Slough 22	144.5	NA	NA	274 (4)	199 (3)
$\begin{gathered} \text { Mainstream } \\ \text { Zone } 3 \end{gathered}$	135.2	NA	NÅ	252 (2)	No data
Slough 2	100.2	44 (5)	0	103 (4)	287 (9)
Indian River***	138.6	232 (7)	6703 (12)	7958 (16)	14898 (9)
Lane Ck	113.6	569 (7)	2508 (11)	118 (9)	2837 (9)
4th of July Ck.	131.0	247 (6)	2832 (11)	636 (9)	6160 (7)
Little Portage Ck.	117.7	NA	407 (9)	10 (2)	384 (7)
Lower McKenzie Ck.	116.2	97 (6)	492 (6)	46 (6)	1067 (7)
5th of Juiy Ck.	123.7	2 (1)	224 (4)	24 (4)	834 (5)
Skull Ck.	124.7	24 (3)	36 (4)	1 (1)	216 (3)
Portage Ck.	148.9	22 (1)	2238 (7)	4651 (13)	15319 (19)

Table 45. (cont'd)

$\cdots$		No. Adult Salmon Enumerated*				
	AREA	RIVER MILE	1981 (N**)	$1982\left(N^{* *}\right)$	1983 ( ${ }^{* *}$ )	1984 (N**)
	Gash Ck.	111.6	258 (2)	163 (3)	35 (2)	711 (7)
$\pm$	Slash Ck.	111.2	NA	6 (1)	2 (1)	8 (2)
	Whiskers Ck.	101.4	212 (7)	626 (5)	273 (9)	899 (11)
5	Jack Long Ck.	144.5	1 (1)	54 (7)	19 (5)	27 (3)
	Deadhorse Ck	$120.9{ }^{\text {a }}$	0	NA	NA	378 (2)
\%	Upper McKenzie CK.	116.7	0	24 (2)	(0)	23 (3)
	Chase CK.	106.9	328 (8)	332 (8)	26 (5)	1523 (9)
3	Gold Ck.	136.7	0	37 (3)	51 (3)	83 (1)
	Sherman Ck.	130.8	32 (4)	40 (4)	(0)	126 (3)

* These data sum all live and dead fish (Chinook, Sockeye, Pink, Chum, and Coho Salmon) recorded by Su-Hydro AA personnel (ADF\&G) during stream surveys. Different areas were surveyed from 1 to 11 times during the year which contributes to variation observed between areas and between years in this data, survey conditions also varied. Note that the same fish would likely be recorded numerous times in replicate surveys.
** $N$ is the number of surveys conducted where salmon were enumerated, surveys where no salmon were seen are not counted.
*** The portion of the Indian River evaluated by Fisheries personnel varied in 1981 and 1982. Nost fish were found in 1982 in a tributary about $\frac{1}{2}$ mille up from the mouth (Crowe, per. commun.) during our investigation of the Indian River we did not observe this location.

Table 46. Characteristics of black bear dens in the Susitna study area during winters of 1980/1981, 1981/1982, 1982/1983, 1983/84, 1984/85.

	$\begin{aligned} & \text { Den } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Bear } \\ & \text { ID No. } \end{aligned}$	Age at Exit	$\begin{gathered} \text { Eleva- } \\ \text { tion } \\ \text { (feet) } \\ \hline \end{gathered}$	Slope (Degrees)	$\begin{aligned} & \text { Aspect }{ }^{\star} \\ & \text { (True N) } \\ & \hline \end{aligned}$	Vegetation	Canopy   Tree   Coverage	ENTRANCE		CHAMBER			Total   Length (cm)	Previously Used? (Yes/No)	A	B	C
									$\begin{gathered} \mathrm{Ht} . \\ \text { (cm.) } \end{gathered}$	$\begin{aligned} & \text { Width } \\ & (\mathrm{cm} .) \end{aligned}$	$\begin{aligned} & \operatorname{Ln}_{\bullet} \\ & \left(\mathrm{cm} \mathrm{~m}_{0}\right) \end{aligned}$	$\begin{aligned} & \text { Width } \\ & \text { (cm.) } \end{aligned}$	$\begin{gathered} \mathrm{Ht}_{\mathrm{o}} \\ \text { (cm.) } \end{gathered}$					
NATURAL CAVITIES																		
FEMALES w/offspring (at exit) 2825																		
w/2 cubs	8	B321	11	2825	42	96	Alder	0	79	26	127	68	71	610	Yes	2	No	-
w/2 cubs	19	B328	7	1950	40	106	Alder	0	41	93	-	-	-	-	Yes	4	No	-
w/1@1	32	B328	8	2075	64	214**	Alder/Birch/Moss	50	49	39	84	54	44	180	Yes	3	No	-
w/2@0	73\#\#\#	B327	8	2070	58	158	Alder	90	43	41	249	91	58	328	Yes	4	-	Yes
w/1@0	88\#\#\#	B375	6	875	26	158	Alder/Birch/Spruce	85	-	=	-	-	-	-	Yes	2	-	-
W/3@0	92\#\#\#	B374	7	1825	22	241	Alder/Willow	30	41	48	1220	-	-	1220	Yes	1	-	-
w/3@0	93sp.	B374	7	1775	42	92	Alder/Grass	60	33	81	-	-	36	117	Yes	-	-	-
w/2@0	113	B354	5	2650	40	307	Spruce/D. Birch/Grass	s 10	64	34	179	99	66	480	Yes	2	No	-
U w/l@l	129	B289	13	1875	49	137	Aspen/Willow/Alder	55	55	32	327	40	64	327	Yes	2	-	Yes
W/2@1	168	B363	7	3000	-	-	-	-	-	-	-	-	-	-	-	-	-	No
w/2@1	169	B354	8	3140	27	295	Shrub/Tundra	0	38	50	172	111	69	-	Yes?	3	-	No
W/1@1	172*	B321	15	2845	47	276	Shrub/Tundra	0	-	-	-	-	-	-	$=$	-	No	-
2/3@0	180	B328	11	2095	57	177	Alder/Birch	0	57	54	137	54	76	229	Yes?	4	No	-
W/2@1	184	B411	10	1490	38	345	Alder/Birch	10	40	32	132	82	58	212	Yes	2	-	-
W/2@0\#\#\#	158***	B289	9	1960	47	135	Alder/Birch	15	22	42	219	73	74	390	Yes	3	-	Yes
FEMALES w/o? collar	offspr 85*	ring (a B377	${ }_{6} \operatorname{exit}_{6}$	2270	47	15	Alder/Grass	10	-	-	-	-	-	-	-	-	-	-
	33	B318	7	1890	41	249	Birch	0	51	43	69	76	62	654	Yes	3	No	-
shed in den	6	B325	12	1490	30	66	Birch/Alder/Spruce	50	49	27	100	74	55	113	Yes	2	No	-
	115	B348	4	3125	38	77	Shrub	20	106	33	146	73	80	475	Yes	2	-	-
	144	B376	7	2075	23	73	Alder/Grass	30	53	43	189	96	75**	433	Yes	3	-	No
	185	B405	19	1985	18	353	Alder	0	38	58	232	103	61	336	Yes	3	-	-
	191*	B375	12	1700	45	6	Alder	0	-	-	-	-	-	-	-	-	-	-



Table 46. (continued)				Elevation (feet)	Slope (Degrees)	Aspect**   (True N)	* Vegetation $\quad$ Tr		Entrance		CHAMBER			Total   Length   (cm)	$\begin{aligned} & \text { Previously } \\ & \text { Used? } \\ & \text { (Yes/No) } \\ & \hline \end{aligned}$	A	B	C
	$\begin{aligned} & \text { Den } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { Bear } \\ \text { ID No. } \end{gathered}$	Age at Exit						$\begin{aligned} & \text { HE. } \\ & \text { (cm.) } \end{aligned}$	$\begin{aligned} & \text { Width } \\ & (\mathrm{cm} .) \end{aligned}$	$\begin{aligned} & \operatorname{Ln}_{0} \\ & (\mathrm{~cm},) \end{aligned}$	$\begin{aligned} & \text { WIdth } \\ & \text { (cm.) } \end{aligned}$	$\begin{gathered} \mathrm{Ht} . \\ (\mathrm{cm} .) \end{gathered}$					
DUG DENS																		
FEMALES w/offspring (at exit)																		
w/2 cubs	2	B301	8	2065	34	79	Alder/Birch	90	49	43	97	92	51	151	Yes	3	-	Yes
w/3 cubs	4\#	B289	10	2000	18	99	Alder/W1llow/Spruce	70	39	72	142	127	55	290	No	1	-	Yes
w/2 ylgs	11	B317	8	2050	36	334	Alder	0	27	41	93	93	78	128	No	3	No	-
w/1 yl l	12	B318	6	2725	24	10	Dwarf Birch/Moss/ Tundra	0	24	42	95	84	40	145	No	5	No	-
w/2 ylgs	21\#\#	B327	6	2000	35	267	Alder/Birch	80	22	59	163	203	116	198	$?$	4	-	Yes
w/2 y 1 gs	50	B301	9	2275	43	115	Cottonwood/Spruce	20	28	56	76	136	98	193	Yes	2	-	No
w/2@0	68*	B318	8	1975	32	248	Alder/Spruce	20	-	-	-	-	-	366	-	3	No	-
w/2@0	69	B317	10	1820	35	276	Birch	40	46	43	-	122	58	51	No	4	No	-
W $\mathrm{w} / 2 @ 0$	70	B301	10	2400	26	18	Alder/Birch	90	43	66	-	160	41	188	-	4	-	No
w/2@0	74*	B349	6	3250	38	133	Alder	0	-	74	-	119	43	188	No	3	-	No
w/4@0	75	B361	-	2300	21	161	Alder/Spruce	70	27	69	114	114	72	173	Yes	2	-	No
w/2@0	81	B289	12	1960	24	238	Alder	70	38	58	142	107	72	173	Yes	2	-	Yes
w/2@0	83	B370	8	1750	31	100	A1der/Birch	90	30	38	119	130	71	124	No	3	-	-
w/3@0	84	B372	10	1825	17	298	Alder/Birch/Spruce	90	36	43	76	206	60	119	No	3	-	-
w/2@0	90	B378	4	1225	34	186	Alder/Fern	90	30	79	117	147	76	185	No	2	-	-
w/3@0	91	B376	-	1425	24	39	Alder/Birch	-	38	69	84	91	74	170	Yes	3	-	-
FEMALES w/offespring (at exit)																		-
w/2@0	114	B363	6	2375	13	124	Willow/Spruce/Alder	25	39	45	123	110	60	206	No	3	-	No
w/3@1	127	B361	9	1950	9	87	Spruce/Birch/Aspen	90	41	51	150	125	80	208	Yes	2	-	Yes
w/?@0	138*	B321	14	2225	5	78	D. Birch/Willow/Spruce	e 25	-	-	-	-	50**	232**	Unk.	5	No	-
w/2@0	141	B369	6	1300	-	-	Alder/Birch	40	-	-	-	-	-	-	Unk.	4	-	-
w/2@l	143	B405	18	1550	24	10	Alder/Birch/Spruce	95	36	59	190	127	66	190	No	4	-	-





Table 46. (continued)

* Actual den site not found or too difficult to enter or collapsed
** Approximate value
A Subjective characterization of quality, $1=$ highest and $5=1$ owest.
B Will be flooded by Devil's Canyon impoundment?
C Will be flooded by Watana impoundment?
*** Den not located first year known but thought to be the same location as subsequently found den. $158=171$.
**** Mag. $\mathrm{N}+28^{\circ}=$ True N. of hillside
\# Used by the same bear two consecutive winters
\#\# Used by the offspring during natal winter and subsequent winter \#\#\# Used by different radio-collared bear during subsequent winter

Dens No. $8,19,6,7,910,13,18,2,4,11,12,21,20,62,63,64$ used during winter of 1980/1981.

Dens No. $32,33,50,34,43,55,58,35,38,39,57,40,49,51,61$, $65,7,9,10,4,21$, used during winter of $1981 / 1982$.

Dens No. $73,88,92,93,85,51,66,95,96,98,100,72,68,69,70$, $74,75,81,83,84,90,91,97,67,80,82,99,71,10,7,9$, 19 used during winter 1982/1983.

Dens No. 113, $129,20,115,144,49,146,154,145,114,127,138,141$, $143,142,116,126,128,140,152,156,147,9,51,88,92$, and 73 used during winter 1983/84.

Dens No. 168, 169, 172, 180, 184, (158), 185, 191, 167, 173, 160, 174, $181,186,187,188,198,203,(159), 202,190,(85),(49),(74)$, used during winter 1984/85

Table 47. History of den use by individual radio-marked black bears, 1980/81-1983/84.

			1980/81			1981/82			1982/83			1983/84*			$\begin{aligned} & \text { 1984/85* } \\ & \text { Status } \end{aligned}$
	Bear No	Sex	$\overline{\text { Cavity }}$ Type	Den\#	$\text { Assoc }^{* *}$	Cavity   Type	Den\#	$\text { Assoc }^{* *}$	Cavity   Type	Den\#	$\operatorname{Assoc}^{* *}$	Cavity Type	Den\#	$\text { Assocc }^{* *}$	
	287	M	Natural	7	w/o	Natural	7	w/o	Dead---	---	-----		-		Ster
	289	F	Dug	4	w/3@0	Dug	4	w/2@1	Dug	81	w/2@0	Natural	129	w/1@1	
	290	F	-	63,64	w/o	Released	-------								
	301	F	Dug	2	w/2@0	Dug	50	w/2@1	Dug	70	w/2@0	Shed---	-	-------	Dead
	302	M	Dug	57	w/o	Shed--						-------	----	--------	
	303	M	Natural	10	w/o	Natural	10	w/o	Natural	10	w/o	Dead-->	----	-------	------------------
	304	M	Natural	13	w/o	Dug	35	w/o	Shed----						-----------
	317	F	Dug	11	w/2@1	Dug	43	w/o	Dug	69	w/2@o	Natural	20	w/1@1	-
	318	F	Dug	12.	w/1@1	Natural	33	w/o	Dug	68	w/2@0	Shed----			
	319	M	-	62	w/o	Dead----									
	321	$F$	Natural	8	w/200	Dug	34	w/o	Natural	7	w/o	Dug	138	w/?@o	
	322	M	Natural	18	w/o	Shed \& D	-								------------
	323	M	Natural	20	w/o	Natural	49	w/o	Natural	51	w/o	Dead-~-	-		------
$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\sim}$	324	M	Natural	9	w/o	Dug	40	w/o	Natural	9	w/o	Natural	9	w/o	Missing------------
	325	F	Natural	6	w/o	Natural	9	w/o	Shed----	---					
	327	F	Dug	21	w/2@1	Dug	58	w/o	Natural	73	w/2@0	Dead---	-	--------	Den \#32?
	328	F	Natural	19	w/2@0	Natural	32	w/1@1	Shed----						
	329	F	Dug	21	w/mom \& stbling	Dug	65,21	w/o	Dug	80	w/o	Natural	73	W/1@1	Den \#158***
	330	M	Dug	12	w/o	Dead-									---------------.----
	343	$M$				Dug	38	w/o	Natural	66	w/o	unk		w/o	
	346	M				Natural	51	w/o	Natural	96	w/o	Natural	51	w/o	Dead---------------
	348	M				Dug	39	w/o	Dead----						-------------------
	349	F				Dug	55	w/o	Dug	74	w/2@0	Shed---	-	--------	Recapture Den \#74?
	354	$F$							Dug	97	w/1@1	Natural	113	w/2@0	
	358	M							Natural	100	w/o	Natural	115	w/o	Dead---------------
	359	M							Natural	98	w/o	Dug	. 126	w/o	
	360	M							Natural	95	w/o	Dug	128	w/o	Shed----------------
	361	F			.				Dug	75	w/4@0	Dug	127	w/3@1	
	363	$F$							Dug	99	w/o	Dug	114	w/2@0	
	365	M							Dug	71	w/o	Dead----	-		--
	367	F							Dug	82	w/o	Dead----	---	----	
	369	$F$							Dug	67	w/o	Dug	141	w/2@0	
	370	$F$							Dug	83	H/2@0	Missing-			--
	372	F							Dug	84	w/3@0	Missing-	---	-	
	374	F							Natural	92	w/3@0	Dead----	-	-	
	375	$F$							Natural	88	w/2@0	Natural	88	w/2@1	Natural 88 w/2@1

Table 47. (Continued)

Bear No.		1982/83			1983/84*			$1984 / 85^{*}$
	Sex	Cavity   Type	Den\#	$\text { Assoc }{ }^{* *}$	Cavity   Type	Den\#	$\text { Assoc }^{* *}$	Status
376	F	Dug	91	w/300	Natural	144	w/o	Den \#85
377	F	Natural	85	w/o	Tree	146	w/2@0	
378	$F$	Dug	90	w/2@o	Tree	154	w/2@1	
379	F	Natural	19	w/3@0	Dead---	---	-	--------
387	M				Dug	116	w/o	
401	M				Natural	157	w/o	Den \#49
402	F				Tree	145	w/o	
404	F				Natural	92	w/o	
405	F				Dug	143	w/2@1	
406	F				Unk	140	w/2@l	
408	M		.		Natural	157	w/o	
409	F				Unk	152	w/o	
410	F				Dead---	----		
411	F				Dug	142	w/o	
416	M							
364	$F$							

* most 84/85 Data are unavailable
** Associations are at time of emergence
*** Den 158 was capture site of B289 (mother of B329) in spring 1980. Den not flagged until winter 84/85, assumed was 79/80 den of B289
10101
$1-1$
$1 \quad 1$
$1+1$
11
mCaLLI
MC-9

Table 48. History of use of individual black bear dens by radio-marked black bears, 1980/81-1984/85 (blanks indicate no data avallable, den not revisitea and no Faüio-inaried zeai thera).

Den No.	Den Type	Flooded	Location ${ }^{* * *}$	80/81	81/82	82/83	83/84	84/85
158	Dug	Yes	W	[B289 in 79/80 spring w/2@1]	Unk. 80/81, 81/82	--	--	B329 female
2	Dug	Yes	W	B301 female w/200	Vacant	Vacant	Vacant	
4	Dug	Yes	W	B289 female w/3@0	B289 female w/2@1	Vacant	Vacant	Vacant
6	Nat	No	D	B325 female w/o				
7	Nat	No	D	B287 male	B287 male	B321 female w/o		
8	Nat	No	D	B321 female w/2@o				
9**	Nat	No	D	B324 male	B325 female w/o	B324 male	B324 male	Vacant
10	Nat	No	D	B303 male	B303 male	B303 male	Vacant	
11	Dug	No	D	B317 female w/2@l				
12	Dug	No	D	B318 female w/1@1 (B330 male)	Collapsed---------	--------		
13	Nat	No	D	B304 male				
18	Nat	Yes	$\omega$	B322 male				
19	Nat	No	D	B328 female w/2@0		B379 female w/3@0		
20	Nat	Yes	W	B323 male			B317 female w/l@	Vacant
21	Dug	Yes	W	B327 female w/B329@l	B329 female w/o	Collapsed---------		
32	Nat	No	D		B328 female w/l@	Vacant		Vacant
33.	Nat	No	D		B318 female w/o			
34	Dug	No	D		B321 female w/o			
35	Dug	No	D		8304 male	Vacant------------		
38	Dug	No	DS		B343 male	Collapsed---------	- ----------	
39	Dug	No	DS		B348 male	Vacant		
43	Dug	Yes No	D		B324 male B317 female w/o			
49	Nat	Yes	W		B323 male( ${ }^{\text {a }}$			B401 male
51*	Nat	No	W		B346 male	B323 male	B346 male	
50	Dug	No	W		B301 female w/2@1	Vacant	Vacant	
55	Dug	No	W		B349 female w/o			
57	Dug	Yes	W		8302 male	Vacant	Vacant	Vacant
58	Dug	Yes	W		B327 female w/o	Vacant		
61	Dug	No	W	P319 male	Unmarked BKB			
62	-	No	D	B319 male f (emale w/o				
64	-	No	D	B390 female w/o				
65	-	Yes	W		B329 female w/o			
66	Nat	No	D			B343 male		
67	Dug	No	DS			8369 female w/o	-------	
68	Dug	No	D		-	B318 female w/200	Collapsed--	
69	Dug	No	D			B317 female w/2@0		
70	Dug	No	W			B301 female w/2@0	Vacant	Vacant
71	Dug	No	DS			B365 male		


Den No.	Den Type	Flooded	$L_{\text {Location }}{ }^{* * *}$	80/81-81/82	82/83	83/84	84/85
72	Nat	No	W		Unmarked BKB		
73	Nat	Yes	W		B327 female w/2@0	B329 Female w/1@l	Vacant
74	Dug	No	W		B349 female w/2@0		8349?
75	Dug	No	W		B361 female w/4@0		
80	Dug	Yes	W		B329 female w/o		
81	Dug	Yes	W		B389 female w/2@0	Vacant	
82	Dug	No	DS		B367 female w/o		
83	Dug	No	DS		B370 female w/2@0		
84	Dug	No	DS		B372 female w/3@0		
85	Nat	No	DS		B377 female w/o		B376?
88	Nat	No	DS		B375 female w/2@0	B375 female w/2@l	
90	Dug	No	DS		B378 female w/200		
91	Dug	No	DS		B376 female w/3@0		
92	Nat	No	DS		B374 female w/3@0	B404 female w/o	
93 spring	Nat	No	DS		B374 female w/3@0		
95	Nat	Yes	W		B360 male	Vacant	
96	Nat	Yes	W		B346 male		
97	Dug	No	W		B354 female w/1@1	Collapsed-------	---n-----------mon----
98	Nat	Yes	W		B359 male	Vacant	Vacant
99	Dug	No	H		B363 female w/o	Collapsed----m---	---x-----m--------
100	Nat	No	W		B358 male	Collapsed---------	-
113	Nat	No	W			B354 female w/2@0	
114	Dug	No	W			B363 female w/200	Vacant
115	Nat	No	H			B358 female w/o	
116	Dug	No	W			B387 male	Collapsed-----n-------
126	Dug	No	W			B359 male	Collapsed-------------
127	Dug	Yes	W			B361 female w/3@l	Vacant
128	Dug	Yes	W			B360 male	
129	Nat	Yes	W			B289 female w/1@l	Vacant
157	Nat	Yes	W			B401 male	
138	Dug	No	D			B321 female w/7@0	Collapsed-------------
140	-	No	DS			B406 female w/2@l	
141	Dug	No	DS			B369 female w/2@0	
142	Dug	No	DS			B411 female w/o	
143	Dug	No	DS			B405 female w/2@l	
144	Nat	No	DS			B376 female w/o	
145	Tree	No	DS			B402 female w/o	Vacant

Table 48. (Continued)

Den No.	Den Type	Flooded	Location ${ }^{* * *}$	80/81-82/83	83/84	84/85
146	Tree	No	DS		B377 female w/?@o	Vacant
147	-	-	D		B343 male	
152	-	No	DS		B409 female w/o	
154	Tree	No	DS		B378 female w/2@1	
156	Nat	No	DS		B408 male	

* Attempted initial denning location for B323, B346, \& B360 in 1982/1983. B346 \& B360 subsequently moved.
** Attempted denning location for B324 \& B325 in 1981/1982. B324 subsequently moved.
*** $W=$ Watana, D= Devils Canyon,

DS = Downstream of impoundment zone.
SUMMARY OF TABLE:
103 dens identified to date throughout entire study area (reused dens counted only once). 51 (49.5\%) dug dens, $40(38.8 \%)$ natural cavity dens, $9(8.7 \%)$ unknown cavity type. 3(2.9\%) tree dens.

Dug	$24(54.5 \%)$	Dug	$10(33.3 \%)$	Tree	Dug

Table 49. Black bear den entrance and emergence dates, winter of 1963/o4.


Table 50. Black bear den entrance and emergence daces, winter of 1904/85.


Table 51. Number of observations and percent (in parenthesis) of radio-marked black bears within nestled impoundment proximity zones of the Watana impoundment (den-related activities are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4
TIME PERIOD (impoundment) (shore-1 mile) ( $1-5$ miles) (over 5 miles) TOTAL

1.	April 1-30	6	(100)	0		0		0		6
2.	May 1-15	31	(44)	31	(44)	8	(11)	0		70
3.	May 16-31	84	(55)	55	(36)	13	(9)	0		152
4.	June 1-15	142	(55)	69	(27)	43	(17)	6	(2)	260
5.	June 16-30	74	(36)	79	(39)	49	(24)	3	(1)	205
6.	July 1-15	25	(32)	30	(38)	23	(29)	1	(1)	79
7.	July 16-31	50	(40)	46	(37)	28	(23)	0		124
8.	August 1-15	40	(39)	41	(40)	22	(21)	0		103
9.	August 16-31	37	(30)	44	(36)	40	(33)	2	(2)	123
10.	Sept. 1-15	24	(29)	34	(41)	23	(28)	2	(2)	83
11.	Sept. 16March 31 tOTALS	$\frac{38}{551}$	$\frac{(38)}{(42)}$	$\frac{40}{469}$	$\frac{(40)}{(36)}$		$\frac{(22)}{(21)}$	$\frac{0}{14}$	$\overline{(1)}$	$\frac{100}{1305}$
	$\begin{aligned} & \text { within zone } \\ & \left(\mathrm{km}^{2}\right) \end{aligned}$	159.		327		123	3.51	--		1719.00
	\%	9.29		19.		71.		-		100.0

Value of Chi Square test of the null hypothesis that the use of each zone is equivalent to expected values based on the area of each zone for:

$\frac{\text { ZONE 1 }}{\text { obs. } E(x)}$	$\frac{\text { ZONE 2 }}{\text { obs. } E(x)}$			
			ZONE 3	
obs. $E(x)$	X 2	d.f.		
551119.6	469245.6	271926.0	$2,222 \star *$	2

All months,
zones $1 \& 2$ only $551334.1 \quad 469685.9$-- $\quad$-- 210** 1

* reject null hypothesis, $p$ less than 0.10
** reject null hypothesis, $p$ less than 0.05

Table 52. Number of observations and percent (in parenthesis) of radio-marked black bears within nestled impoundment proximity zones of the Devil's Canyon impoundment (den-related activities are not included).

ZONE 1 ZONE 2 ZONE 3 ZONE 4
TIME PERIOD (impoundment) (shore-1 mile) ( $1-5$ miles) (over 5 miles) TOTAL
$\left.\begin{array}{lllllr}\text { 1. April 1-30 } & 0 & 1 & 0 & 0 & 1 \\ \text { 2. May 1-15 } & 2 & 33 & 16 & \ldots & 2\end{array}\right)$

Value of Chi Square test of the null hypothesis that the use of each zone is equivalent to expected values based on the area of each zone for:

| ZONE 1 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| obs. $E(x)$ | ZONE 2 | ZONE 3 |
| obs. $E(x)$ | obs. $E(x)$ | $X^{2} \quad$ d.f. |

All months,
3 zones $18 \quad 21.8$
292124.0

354 518.3 275**
2
May 1-June 30
3 zones
129.
$146 \quad 56.6$
145236.5 177**

2
May 1-June 30
2 zones
$12 \quad 23.6$
146134.4
6.7** 1

* _ reject null hypothesis, p less than 0.10
** reject null hypothesis, $p$ less than 0.05


Table 54. Results of intensive monitoring of black bear predation rates during sumaer ig84. Beacs weif munttoied once/day from 23 suly through 1 August, conditions permitting.

Bear ID	Sex	Age	Repro.   status	Obsv. period	No, of locations	No. of visuals	\% visuals	Total known/suspected kills of ungulates *
MALES								
302	M	12	--	7/23-7/30	6	5	83.3	0
358	M	4	--	7/23-7/30	6	3	50.0	0
359	M	6	--	7/23-7/30	6	4	66.7	0
387	M	5	--	7/23-7/30	4	1	25.0	0
401	M	4	-	7/23-7/30	6	4	66.7	0
416	M	A	-	7/23-7/30	6	5	84.3	0
Subtotal for males					34	22	64.7	0



* Note that if the same ratio of kills to visuals observed in the spring (8:425) were present in the sumer, then only 1.1 kils would have been expected to be found during the 59 summer visuals.


[^0]:    * Weight estimated, ( ) indicates shed collar or dead bear, \# recapture, - collar or mark replaced subsequently,

[^1]:    * January, 1985

[^2]:    Not Included:
    Subadults @2 in $1979=259$
    Subadults @1 in $1979=275,262$ or $263,256,257,252,253,245,271,239,238$.

[^3]:    * includes row C in Table 1

[^4]:    * Flight on $8 / 6 / 85$ was in a $180 w / 3$ observers and area was incompletely covered

[^5]:    * Wolves were also seen at this kill along with the brown bear which had possession of the kill.

[^6]:    * Downstream study area

[^7]:    * incomplete data resulted from not observing the family status of the bear before it entered its winter den, shed collars, collar failures, or early hunter kills. Tabulated losses occurred prior to loss of the female to these causes. These are not included in totals.
    ** B377 may have lost 2 of 2 rather than the 1 of 1 tabulated in 1983, the infial litter size was not known with certainty.

[^8]:    * Excludes atypical location of 80/81 den

    Cubs lost in Aug.

