This document is copyrighted material.

Alaska Resources Library and Information Services (ARLIS) is providing this excerpt in an attempt to identify and post all documents from the Susitna Hydroelectric Project.

This article is identified as number **APA 2151** in the *Susitna Hydroelectric Project Document Index* (1988) compiled by the Alaska Power Authority (APA).

We are unable to post it online in its entirety. The first page is displayed here to identify the published work.

The article is available in the ARLIS Susitna collection at call number TK1425.S8A23 no. 2151

Migratory Behavior of Sockeye Salmon Fry and Smolts¹

BY W. L. HARTMAN, W. R. HEARD, AND B. DRUCKER

Bureau of Commercial Fisheries Biological Laboratory, Auke Bay, Alaska

ABSTRACT

Considerable new data on the characteristics of sockeye fry and smolt migrations, direct underwater observations of migrating smolts, and a review of the literature are presented here with a synthesis, evaluation, and interpretation of possible survival advantages of these phenomena. Most fry migrations from spawning areas to nursery lakes take place in the spring, when harsh winter conditions in lakes are moderating and the growing season is beginning. Smolt migrations to salt water closely follow spring breakup of the ice and warming of the lake water. The time of smolt migration is correlated closely with latitude: migration is earlier in southern streams than in northern streams. The duration of seasonal migration appears to be strongly related to travel distance to the trunk river outlet. The smolt exodus is rapid and regular in single-lake systems but irregular and extended in multilake or multibasin systems. The frequency distribution of smolts migrating from two-lake or two-basin systems is usually bimodal. Most migrations commence as water temperatures near 40 F and are over when temperatures approach 50 F. Migrations of smolts and especially fry are mainly confined to the darkest hours of the night. In general, in any one season, the oldest and the largest smolts in each age-group migrate first. Other factors, such as the thickness of the ice, effectiveness of solar radiation in melting ice and warming water, and daily weather (including sunlight and wind), also influence seasonal and diel migration patterns. Underwater observations of smolts at night during migration show that they are schooled, travel in the upper water levels in shallow rivers and deeper (but not near the bottom) in deeper rivers, and usually face downstream and swim as they migrate. During migrations, fry and smolts are both often subjected to a depensatory mortality from intense predation by birds and fish. A factor disporportionately affecting different smolt populations is the length and number of restricted passages along the route to the ocean. Smolts migrating in multilake systems must encounter heavier predation than smolts migrating from single-lake systems. Predation is probably minimized en route because of innate migratory behavior patterns. Exceptions to the general migratory behavior of fry and smolts are described to show the wide range in behavioral response to variable environmental situations.

¹Received for publication June 15, 1967.

2069

J. FISH. RES. BD. CANADA, 24(10), 1967. Printed in Canada.

JOURNAL OF THE FISHERIES RESEARCH BOARD OF CANADA

Volume 24, No. 10

CONTENTS

PAGES

s D. Homing and orientation of cutthroat trout (Salmo clarki)	
e Lake, with special reference to olfaction and vision	2011-2044
W. Primary productivity in the Babine Lake system, British	
	2045-2052
D. G. I. STEWART Micro. zoonlankton in the suphotic zone at	
b C. D. Sillwart. Micro-zoopianaton in the cupilote zone at	2052-2068
W D Harres and D Department, Minister Islands of selling	2033-2008
W. R. HEARD, AND B. DRUCKER. Migratory behavior of sockeye	
d smolts	2069-2099
Unusual fishes taken by midwater trawl off the Queen Charlotte	
isianus, British Columbia	2101-2115
COBLE, DANIEL W. The white sucker population of South Bay, Lake Huron, and	
effects of the sea lamprey on it	2117-2136
WERNER, A. E., AND W. F. HYSLOP. Distributions of kraft mill effluent in a British	
Columbia harbour	2137-2153
AHMED, MUZAMMU, AND ALBERT K. SPARKS. A preliminary study of chromosomes	
of two spacies of overtars (Octras Jurida and Crassosires signs)	2155_2150
An at Use o D Ecological aposition of paragitar of some embiotogic fishes	2161 2169
Akal, HISAO F. Ecological specificity of parasites of some emblotocid lisines	2101-2100
I HURSTON, KOBERT V. Electrophoretic patterns of blood serum proteins from rainbow	
trout (Salmo gairdneri)	2169-2188

NOTES

Primary production in two small lakes of the northern interior plateau of British	
Columbia. By DAVID W. NARVER	2189-2193
Pigments from a sockeye salmon (Oncorhynchus nerka) with unusual skin colouration.	
BY T. P. T. EVELYN	2195-2199
Line fishing at Ocean Station P, 50°00'N, 145°00'W. By R. J. LEBRASSEUR	2201-2203

OTTAWA OCTOBER 1967