ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT PROGRESS REPORT FOR FEBRUARY AND MARCH, 1981 ACRES AMERICAN INCORPORATED 1000 Liberty Bank Building Main at Court Buffalo, New York 14202 Telephone (716) 853-7525 ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT MONTHLY PROGRESS REPORT Report No. 14 Period: February and March, 1981 Progress Report No. 14 covers the activities on the Susitna Hydroelectric Project for the months of February and March, 1981. Task 1, Power Studies, is complete. Task 2, Surveys and Site Facilities, are proceeding as scheduled. Bids were received for helicopter support for 1981. A land status map for the project area was prepared for use in APA's report to the legislature. Work continued on the access roads with R&M during the period. CIRI/H&N reached agreement with KNIK/ADC for O/M services at the Watana Camp through June 30, 1982. R&M surveyed a potential airstrip near the Watana Camp. Survey work, both in the field and aerial photography, is basically complete as scheduled. Task 3, Hydrology, continued with a quarterly progress and planning meeting held between R&M and Acres in mid-March. A user manual for the software program was prepared. The SSARR model runs were completed and a report is in the internal review phase. R&M completed the updating of the Field Data Index for retrieval of historical data. R&M field data collection is continuing as scheduled with the collected data being reduced and the applicable report being prepared. The Ice Cover Process Model is being set up with a calibration run scheduled for April. Task 4, Seismic Studies, proceeded with the 1980 report being reviewed by Acres. Final definition of the 1981 WCC program will be transmitted in March. Development of the 1981 work plan for earthquake engineering, geology, and seismology continued. Seismic Geology field studies work plan was finialized and the aerial photography has been ordered. Work is to begin in May. WCC 1980 Interim Report on Seismic Studies was finalized and is now being printed. WCC completed Subtasks 4.01, 4.02, 4.03, 4.05 and 4.07. WCC submitted a detailed scope for the transmission line rights of-way ground motion evaluation. Interpretation of the aerial photography of the 1981 field work was started. Task 5, Geotechnical Exploration, continued by Acres recommending a 1981 program for APA's consideration. This recommendation took into account the comments of the review panels held in January. This program will be presented in mid-May to appropriate boards and panels. Acres, internally, reviewed the results of the 1980 investigations and their impact on Task 6. The Geotechnical Exploration Report on 1980 studies continued with the incorporation of final comments for publication in early May. R&M resumed work on photo interpretaion Subtask 5.02 by completing maps and their exploratory report. R&M continued planning for the 1981 field program. R&M completed installing borehole instrumentation and permeability testing equipment was tested in preparation of summer work. Warm weather in March prevented drilling of the ice in the river channel. Task 6, Design Development, proceeded with refinement of the Development Selection process. The Development Selection Report continued with a revised table of contents and a design transmittal outlining the results of Subtask 6.03 being issued for comment. Conceptual layouts for the alternatives of the Watana and Devil Canyon dams were developed and estimated. Design criteria for Watana and Devil Canyon commenced by compiling preliminary data for use in comparing site layouts. Preliminary design of Watana and Devil Canyon commenced by selecting certain alternative designs for further study. Subtask 6.32, 6.33 and 6.35 were completed. Task 7. Environmental Studies, continued with Acres forwarding to APA the TES procedure manuals. The Instream Flow report was reviewed and comments were forwarded to Woody Trihey and Linda Dwight. Program modifications were reviewed in light of comments made by the Steering Committee, public and agency concerns. Acres and TES provided input to the D.S.R. Acres and TES formulated environmental imput to the transmission line corridor assessment. TES's work continued with the development of an agency contact/coordination plan. A review of the environmental program effects due to the new FERC regulations was commenced. Working drafts of two Annual Reports and three vegetation maps were forwarded to Acres for review. TES prepared and submitted a packet of Potential Program Modifications which address agency concerns raised to date. The Socioeconomic Analysis Report was reviewed by TES. TES provided information as to the location of cultural resources near the access road alternative corridors. TES is reviewing the Cultural Resources 1980 report. The U of A submitted the first draft of the Land Use Analysis 1980 report to TES for review. Work continued on analysis of recreation survey results. A report on the environmental aspects of the transmission line corridors was submitted to Acres. The fish ecology work continued with field work progressing as scheduled. The ADF&G Procedures Manual and study plan is being finalized. Investigators continued to field verify the birdlife and small mammal varieties and quantities in the project area. Work continued on the wildlife mitigation policy statement. Review and refinement of the 1980 Plant Ecology Annual Report continued during the period. Access Road Environmental Analysis continued by highlighting potential biological implications along the corridor route. ADF&G continued their Hydro Aquatic Studies and Big Game Activities as scheduled. Their work included preparation of their respective annual reports. Task 8, Transmission, continued the analysis of contingency events for the alternative transmission schemes. Transient stabilty studies were started for various transmittal alternatives. Acres and R. Mohn discussed the intertie alignment routing but resolution will be delayed until APA and CAI meet with other state agencies. Preliminary conductor sizes for the 345 KV line were chosen. Capital cost estimates for Susitna Basin development and thermal plant development at Beluga were developed. Task 10, Licensing, continued with the new FERC licensing requirements and their impact on Susitna's license application being studied. Task 11, Marketing and Finance, focused upon final preparation and publication of the Project Overview Report. A final draft of the summary POR was circulated for review by the APA and internal review. Financial alternatives were finalized for a meeting with the managing underwriters group to discuss the various pricing scenarios applicable when Susitna would be operational. Task 12, Public Participation, continued with preparation for and attendance at public meetings regarding the access roads held in mid-March. Task 13, Project Administration, continued with updating of the project schedule during the reporting period. The combined January/February cost report was issued. Task 14, ADF&G Support, focused on establishing procedures for purchasing equipment and Acres role in the purchasing program. #### TASK 1 - POWER STUDIES Task Complete. #### TASK 2 - SURVEY AND SITE FACILITIES #### ACRES ACTIVITIES Bids were received for helicopter support for 1981. The bids were analyzed and two firms were selected to provide services. These firms were Air Logistics of Alaska for Bell 206B helicopters and Kenai Helicopters of Kenai, Alaska for the Bell 205. Preparation of a land status map for the project area was completed for APA to include in their report to the legislature. Coordination work with R&M Consultants on access roads continued throughout the reporting period. #### CIRI/H&N ACTIVITIES CIRI/H&N continued its regular operation, maintenance, and related inspection of camp facilities. Approximately 9,200 gallons of diesel fuel were mobilized to Watana Camp on an interim bisis until additional project funding is obtained from Alaska Power Authority by Acres American, Inc. A decision by the State legislature and the governor to authorize additional monies for the Susitna project is expected by early April, 1981. On February 11, an agreement was reached with KNIK/ADC for the continuation of its existing O/M services at Watana Camp from April 1, 1981 through June 30, 1982. Efforts were also directed at the preparation of an updated project forecast through June 30, 1982. These projects and other related financial considerations were reviewed with Acres American during March, 1981. #### R&M ACTIVITIES #### Subtask 2.03 - Resupply and Emergency Service Selection of a potential airstrip near the Watana Camp has been made allowing for Twin Otter performance with expandability to 6000' strip. Survey of the proposed strip has been accomplished as has an access road between the strip and camp storage building. No computations or mapping has commenced to date. This subtask is temporarily suspended as per Acres directive. #### Subtask 2.07 - Site Specific Surveys Office Planning of River Cross Sections is being performed. No field activity commenced on this subtask to date. However, Field Surveying of River Cross Sections to begin in March. Approximately 20 river cross-sections between Devil Canyon and Watana Dam sites have been field surveyed. Office processing of field data is well underway with completion anticipated in early April. ### Subtask 2.08 - Aerial Photography and Photogrammetric Mapping Photography has been obtained on the following: - Controlled reservoir photography, color, scale: 1" = 2000'. - "Block" photography, color, scale: 1" = 2000'. - Lower River photography, black & white, scale: 1" = 4000'. - Two small spurs of alternative access corridors, color, scale: 1" = 2000'. - Four flight lines of transmission corridor photography, Palmer area, color, scale: 1" = 3000'. Photography planned for 1980 that is not yet obtained has been suspended by Acres. -
Transmission corridor photography not included in above; color, scale: 1" = 3000' (suspended). All photography obtained has been forwarded to Acres American, Anchorage. Analytical Bridging has been accomplished on reservoir photography and contour mapping of Watana Reservoir is currently being performed. Damsite contour mapping of the Devil Canyon site and contour mapping of Devil Canyon Reservoir is currently underway as is volume computation of Devil Canyon and Watana Reservoirs. Estimated completion date for all Reservoir contour mapping is Mid-April. #### Subtask 2.09 - Control Network Surveys All primary and secondary horizontal control has been completed as has all vertical control. This subtask is essentially completed and a draft close-out report has been forwarded to Acres. #### Subtask 2.10 - Access Corridors Aerial photographs were received and reviewed. Corridor alignments were placed on a 1" = 2000' map and adjusted to satisfy design criteria. Preliminary environmental Macro Scale Data was received for corridor comparison. Access corridors prelimed by construction cost, logistics cost, access maintenance cost estimates were eproad during the period. The preliminary Access Plan Report was completed and distributed to review agencies and the Project Steering Committee. The public workshop on access roads was held on March 16, 17 and 19. R&M has recommended that the access p^1 in approved by APA be made by May 1, 1981 to allow the necessary field activities to be undertaken during the 1981 season. #### Subtask 2.16 - Hydrographic Surveys Aerial photographs received, field activity 100% complete, including downriver flood plain cross-section near Willow Creek. Office reduction of field notes currently being completed. Draft close-out report is currently being prepared. #### TASK 3 - HYDROLOGY #### ACRES ACTIVITIES Quarterly progress meeting was held with the R&M Consultants in Acres' office in Buffalo on March 11, 12 and 13 to discuss 1980 work, planning for 1981-82 field data collection and further hydraulic analyses to be undertaken under Task 03. #### Subtask 3.03 - Field Data Collection and Processing Routine monitoring of R&M field work continued. Development of computer software for data processing is nearly complete. A user manual for the software program has been prepared and reviewed internally. Processing of all data cassettes should commence shortly. Preliminary review of data collected was carried out with a view to planning 1981 instrument installation. #### Subtask 3.05 - Flood Studies Detailed supervision and coordination was provided for the flood peak and volume frequency analyses being conducted by R&M. The study is nearly complete and Acres has requested Professor R. Carlson of the University of Alaska to act as consultant in reviewing the flood studies conducted by R&M. The SSARR model runs were completed as part of review of the COE estimates for the spring and summer PMF. Draft report on the study has been prepared and is being reviewed internally. APA has been informed of necessity to reevaluate the PMF estimates for feasibility design. #### Subtask 3.06 - Hydraulic and Ice Studies Preliminary analysis of freeze-up and river cross-section data continued. Preliminary planning of HEC-2 and ice model set up were finalized. #### Subtask 3.07 - Sediment Yield and River Morphology Preliminary planning of the hydraulic analyses has commenced. #### Subtask 3.10 - Lower Susitna Studies R&M calculations on mean monthly river stages and changes under pre and postproject conditions were reviewed. A preliminary draft report has been prepared jointly by R&M and Acres on pre and post-project flood stages in the lower Susitna and is being reviewed internally. #### R&M ACTIVITIES # Subtask 3.02 - Field Data Index and Distribution System An update of the Field Data Index was completed and mailed to team members and government agencies during mid-January. The bulletin was revised considerably to aid storage and retrieval of data in an effective and timely manner. A program to retrieve historical data for PMF studies was scoped out and submitted to Acres. ### Subtask 3.03 - Field Data Collection and Processing #### Stream Gaging by USGS All USGS stream gages are operating. The gage at Sunshine will be activated by mid-May. Winter measurements were made at all USGS stations. ### Stream Gaging by R&M The 1980 stage record has been reduced to gage heights and preliminary rating curve is developed. Discharge under ice was measured. ### Crest Stage Recorders Data has been reduced and tabulated. Ice thickness measurements and water elevations were made at each station. ### Snow Course Snow courses were surveyed in early January, February and March. This work is being carried out cooperatively with SCS and the Data is reported in the SCS monthly bulletin. # Water Quality Water Quality measurements under ice were made in mid-January. Continuous water quality monitor operating. Historical USGS data has been tabulated according to site, parameters, and season of year. Annual report on water quality data is being prepared. It will summarize the first years data and make recommendations for year two. #### Sediment Suspended sediment was sampled at Gold Creek and Vee Canyon in mid-January, under ice. This has been reduced and compiled in tabular form. #### Climatic Stations Software for data reduction is complete in draft form. Data currently is being processed on the computer. All stations are operating reasonably well with the exception of one month data loss at the Tyone station due to Cold weather and miscellaneous data loss due to faulty sensors. Heated precipitation bucket installed at Watana is operating. #### Glacial Studies A glacial plan of study has been finalized with Will Harrison of the Geophysical Institute and sent to Acres for scope and budget revisions. This plan was approved by Acres in March. #### Ice Studies An ice cover did form on the Susitna River during December and freeze-up data is being reduced. River ice thicknesses at Vee Canyon and Gold Creek were measured in mid-January. During late February and early March, ice thicknesses were measured at the Crest Stage recorders along with ice and water elevations. Historical records on Susitna River break-up have been researched and a scope of work for break-up observations has been developed in draft form. Personnel from Acres, R&M and TES will be participating. #### Snow Creep Snow creep stations were installed, in late February, near Devils Canyon on a slope with a north aspect and near Tsusena Butte with a south aspect. Due to low snowpack this year, no snow forces have been recorded. #### Icing Studies In-cloud icing detector was installed at Watana in early December and is operating reasonably well. Frequent loss of camp power is causing some data interpretation problems. Conductor cables and steel plates that were installed at Watana and Denali have been monitored during routine maintenance trips and no accumulation of freezing rain or in-cloud icing have been observed. #### Subtask 3.05 - Flood Studies Flood frequency and flood volume studies have been sent to Dr. Robert Carlson (University of Alaska) for final review. Preparation of the draft close out report is underway. #### Subtask 3.06 - Hydraulic and Ice Studies Hydrographic surveys from Subtask 2.16 and stage and flow measurements from Subtask 3.03 have generated sufficient field data for setting up the HEC-2 and Ice Cover Process Model. Presently, computer cards for the HEC-2 are being prepared and a calibration run is expected by late April. Tailwater rating curves are being generated for proposed sites. #### Subtask 3.07 - Sediment Yield & River Morphology Studies A first step procedure has been formulated for determining reservoir sedimentation. R&M Consultants is providing basic data and Acres will operate the model. At completion of this problem identification task, the detailed scope will be formulated. #### Subtask 3.10 - Lower Susitna Historical airphotos taken in 1951 have been received. Mean monthly flows and stages were computed and plotted for the Susitna River at Gold Creek, Sunshine and Susitna station for pre and post-project conditions. This information was presented in a multidiscipline meeting during late January. Environmental team members requested more detailed information on post project changes and will document their desires in letter form. Upon receipt of the letter, Lower River hydrological studies will proceed at satisfying their desires as best as is practical. An interim report describing pre and post-project open-water flood flows has been prepared jointly by R&M and Acres. This will be distributed to interested team members to assist in defining 1981 field activities. #### TASK 4 - SEISMIC STUDIES #### ACRES ACTIVITIES Results of Task 4 studies for the year 1980 were presented to the Acres Specialist Panel and to the Acres Internal Review Board. The need and scope of the 1981 activities, proposed by WCC, was reviewed. Acres has presented its responses to Woodward-Clyde's proposed 1981 program. The final program is being developed by WCC in conformity with the specified budg tary and scope-of-work requirements. #### Subtask 4.06 - Evaluation and Reporting Review comments were incorporated into the Interim Task 4 Report and the report has been sent to the printer. We expect the report to be ready for general distribution on 15 April 1981. Four copies of the report will be distributed to Acres and Drs. Merritt, Seed, and Sykes at the request of Acres. #### Subtask 4.09 - Long-Term Seismologic Monitoring Program Development of the 1981 work plan for earthquake engineering, geology, and seismology continued under this subtask. Preliminary plans for earthquake engineering and geology have been completed which include objectives, scope, schedule, personnel, time, and budgets. These plans cover Subtasks 4.08 through 4.15. A summary of the key
objectives and preliminary budgets for 1981 were provided to Virendra Singh of Acres on 12 and 16 February 1981. Recommendations by Dr. Lynn Sykes of Acres External Review Panel were received on 12 February 1981. A response to the recommendations is being prepared as requested by Acres. #### Subtask 4.11 - Seismic Geology Field Studies The preliminary work plan was completed as part of the planning subtask described above in Subtask 4.09. Aerial photography for the 1981 field season has been ordered from North Pacific Aerial Surveys and the EROS Data Center. Literature review pertaining to Quaternary geology was initiated during this month and is expected to be completed by early March 1981. The prescribed work plan is being finalized. Aerial photography has been ordered, and field activities will begin in late May. The office studies and Quaternary geology search is underway. #### WCC ACTIVITIES #### General The 1980 Interim Report on Seismic Studies has been finalized during February and March and is now in printing and will be delivered to Acres in mid-April. Publication was delayed by difficulties in printing. Based on a telex received from Acres on 6 March 1981, work on Task 4 has been curtailed except for essential services. Subtask 4.01 - Review Available Data Subtask 4.02 - Short Term Monitoring Program Subtask 4.03 - Preliminary Reservoir Induced Seismically Subtask 4.05 - Seismic Geologic Reconnaissance Subtask 4.07 - Preliminary Ground Motion Studies Work on these subtasks is complete. #### Subtask 4.06 - Evaluation and Reporting Four copies of the Interim Task 4 Report were distributed to Drs. Copen, Merritt, Seed, and Sykes at the request of Acres. Additional copies of the report were scheduled for distribution on 11 March 1981. However, initial printing quality was not acceptable and the reports were rejected. The printer is reprinting the report for distribution by mid-April, 1981. #### Subtask 4.09 - Long-Term Seismologic Monitoring Program Limited work on the 1981 work plan continued under this subtask. Comments by Acres, Acres' Specialist Consultants Panel, and APA's External Review Board have been received and discussed with Acres. A response to the recommendations will be completed by 10 April 1981 and sent to Acres for evaluation. At the request of Acres, a detailed scope of work was submitted for the transmission line rights-of-way ground-motion evaluation. In addition, a revised cash flow projection for 1981 was sent to Acres on 25 March 1981. ### Subtask 4.11 - Seismic Geology Field Studies Aerial photography ordered for the 1981 field season has been received from North Pacific Aerial Surveys and the EROS Data Center. Intrepretation of these photographs is scheduled to commence in April 1981. Review of literature pertinent to Quaternary geology is underway. #### TASK 5 - GEOTECHNICAL EXPLORATION #### ACRES ACTIVITIES #### Subtask 5.05 - Exploratory Program Design, 1981 The recommendations by APA's External Review Board, as a result of the Board meeting during January 1981, were reviewed with the Acres Internal Review Board and with the Acres Specialist Consultants Panel on February 17 and 18. A recommendation was prepared and forwarded for APA's considerations on February 23, 1981. The program, as outlined in the POS, was conceptually finalized after the reviews and final detailed planning, scheduling and coordination of geologic and survey requirements is being performed. The final locations are being determined from survey coordinate data. The proposed program will be presented in mid-May to appropriate boards and panels. #### Subtask 5.06 - Exploratory Program (1981) Logging of drill cores was continued and geological mapping began in the field using two geologists from Acres. Planning of 1981 activities continued, including the development of a plan for test pitting and trenching involving the use of a JD 350 wide-track backhoe, which is helicopter transportable by a Boeing 107 Vertol. #### Subtask 5.08 - Data Reduction The results of 1980 activities were presented to the Acres Internal Review Board and to Acres Specialist Consultants Panel. The impact and value of these findings on Task 6 activities was reviewed and areas of concern requiring further investigation were discussed. The results of 1980 investigations are being finalized in the final 1980 Interim Report. (Task 5 - Geotechnical Exploration Report on 1980 Studies.) The comments on the final draft are being incorporated, and final publication is scheduled for the early part of May. #### R&M ACTIVITIES #### Subtask 5.02 - Photo Interpretation Work resumed on this subtask in the last week of February. The scope was changed to incorporate the use of airphoto mosaics for base maps. These photo mosaic base maps, which will be available mid to late March, can also be utilized for other project activities. Completed maps and explanatory report, in draft form, are expected to be ready for submittal to Acres and L.A. Rivard for review during the first week of April. All photo interpretation is complete and the final drafting of terrain unit maps and report preparation is underway. Scheduled completion is April 10, 1981. # Subtask 5.03 - Exploratory Program Design, 1980 Subtask complete and closed out. ### Subtask 5.04 - Exploratory Program, 1980 Subtask complete and closed out. # Subtask 5.05 - Exploratory Program Design, 1981 Planning activities for the upcoming field programs were begun late in February and are ongoing. ### Subtask 5.06 - Exploratory Program, 1981 Field activities consisted of the completion of installation of down hole instrumentation and monitoring of all instruments installed in boreholes. Permeability testing equipment was tested and new parts were ordered in preparation for the summer program. Drilling off the ice in the river channel, scheduled for March, was not undertaken because of unseasonably warm weather. Geologic mapping support was provided for a limited mapping effort to check specific locations not easily accesible during the summer program. ### TASK 6 - DESIGN DEVELOPMENT #### ACRES ACTIVITIES # Subtask 6.02 - Investigate Tunnel Alternatives Work continued on the closeout report for this subtask. # Subtask 6.03 - Evaluate Susitna Alternatives Work continued on the refinement of the Development Selection process. Four basic aspects, i.e. economics, environmental impact and social and energy contribution, are being studied to evaluate the various Susitna Basin development alternatives. The monthly energy simulation runs for the various development alternatives were finalized. # Subtask 6.05 - Development Selection Report Work continued on the Development Selection Report. Following additional sensitivity studies requested by APA and, further refinement of the selection methodology, a revised table of contents was developed and issued for comment. A design transmittal outlining the preliminary tabulated results of the Development Selection process, summary tables of the OGP5 output, the Watana dam construction schedule, and the results of the economic analyses of the 1981 "upper limit" cost estimate was issued during March. ### Subtask 6.06 - Watana/Devil Canyon Staged Development Alternatives Work undertaken under Subtask 6.06 is reported under Subtask 6.03. #### Subtask 6.07 - Preliminary Watana Dam Alternatives Conceptual layouts delineating all practical alternatives arrangements for the dam, spillway, diversion and power facilities were continued. A more detailed layout with an underground powerhouse and a single spillway with an intermediate and a low level stilling basin was developed and estimated. This was a conservative layout which served for development of more accurate unit rates and as a basis against which alternative layouts could be compared. #### Subtask 6.08 - Preliminary Devil Canyon Alternatives Conceptual layouts for the Devil Canyon Site were continued. Stress analyses were completed on the modified arch dam configuration for gravity, hydrostatic and temperature loadings. Tension stresses were substantially reduced or eliminated to the extent that the feasibility of a thin arch dam under these loadings could be confirmed. Quantity take-offs and development of more accurate unit rates for a basic conservative Devil Canyon layout were completed. #### Subtask 6.09 - Design Criteria for the Watana Development Work on this subtask commenced with compilation of preliminary overall design criteria as a basis for comparing site layouts. Development of the Watana design criteria was continued. #### Subtask 6.10 - Design Criteria for the Devil Canyon Development Work on this subtask commenced with compilation of preliminary overall design criteria as a basis for comparing site layouts. Development of the Devil Canyon design criteria was continued. #### Subtask 6.11 - Preliminary Design of Watana Dam This subtask was initiated by selection of certain of the conceptual layouts mentioned under Subtask 6.07 for further study. These are presently being developed in detail prior to estimating. #### Subtask 6.12 - Preliminary Design of Devil Canyon Dam Work on this subtask commenced with selection of certain of the conceptual layouts mentioned under Subtask 6.08 for further study. These are presently being developed in more detail for estimating purposes. #### Subtask 6.32 - Thermal Generating Sources Subtask complete. ### Subtask 6.33 - Hydro Generating Resources Subtask complete. # Subtask 6.35 - Load Mannagement and Conservation Subtask complete. # Subtask 6.36 - Generation Planning Final sensitivity analyses were performed on the system model comparing alternative Susitna basin developments and non-Susitna plans. The Development Selection Report draft was revised to include all results of the generation planning studies. All calculation materials and computer printouts were organized for inclusion in the project file. Work under this subtask was essentially completed. ### Subtask 6.34
- Environmental A Status report was prepared for inclusion in the Development Selection Report. # TASK 7 - ENVIRONMENTAL STUDIES ### ACRES ACTIVITIES # Subtask 7.01 - Coordination of Environmental Studies Work continued during the reporting period in coordinating Acres, TES and ADF&G's efforts in this task. Acres received responses to the Susitna Steering Committee comments on the TES procedure manuals were finalized and forwarded to APA. A program was initiated with TES to improve agency contact and coordination. This program shall ensure that concerns are identified, reviewed and dealt with in an efficient manner. The Instream Flow report prepared by Woody Trihey and Linda Dwight was reviewed and comments were made. This report is expected to be finalized by mid-March for submission to the agencies and concerned groups that were interviewed. Drafts of the 1980 annual environmental reports for submission to Dr. S. Leopold and APA were received and reviewed. Potential program modifications were reviewed in view of the Steering Committee, general public and agency concerns. Acres and TES provided environmental input into the Development Selection Report. Acres met with TES to discuss environmental input with the transmission line corridor assessment. Acres attended a meeting on February 4 to discuss the ADF&G fisheries program. The wildlife mitigation policy statement outline as prepared by TES was reviewed by Acres. Upon finalization, the policy statement will be forwarded to APA for review and comment. #### TES ACTIVITIES #### Subtask 7.01 - Administration In response to an Acres request, TES initiated work on the development of a TES agency contact/coordination plan. This plan will be initiated by TES following review and acceptance by Acres and the APA. It will address contacts to be made by TES to identify the concerns of agencies that have responsibility to review the environmental program. TES conducted a preliminary review of the draft report (dated January 31, 1981) prepared by Linda Dwight and Woody Trihey on the results of their agency interviews concerning instream flow issues. A preliminary review of the potential impact of the proposed revision to FERC regulations and their likely effect on the Susitna Environmental Program was conducted and discussions initiated with Acres. Working drafts of two Annual Reports and three vegetation maps were forwarded to Acres for transmittal to Dr. Leopold of the External Review Board. In addition, TES reviewed and commented on the draft environmental chapter of the Project Overview Report prepared by Acres. TES completed a preliminary review of 1980 Subtask Annual Reports; further detailed and technical review of these reports continued throughout March. TES commented on Acres' response to Steering Committee comments on Task 7 Procedures Manuals, and conducted further review of the draft Dwight/Trihey report on agency concerns regarding instream flow. TES comments on the Dwight/Trihey report will be forwarded to Acres in early April. At Acres request, TES prepared and submitted (March 19, 1981) a packet of 14 Notices of Potential Program Modifications to address the major agency concerns raised to date. March was a rather active month with numerous cost and invoicing activities occurring. TES sent a revised request for change in fringe rate to Acres. TES personnel attended a meeting in Buffalo to discuss various invoicing and cost problems, and to discuss the requested invoice format change with Acres. In addition, quarterly cost projections for the duration of the contract were provided to Acres by TES. #### Subtask 7.05 - Socioeconomic Analysis FO&A completed Work Items e and f of Work Package 2 (Profile Development). FO&A and the Group Leader provided additional refinement of the analysis of access corridor scheme alternatives (Work Package 3); these results permit more discrete descriptions, by geographic area and socioeconomic variables, of potential impacts associated with each scheme. The Group Leader provided additional clarification to Acres concerning products associated with Work Packages 3 and 4 and the proposal for Work Packages 5 - 9. TES is still pressing for an accelerated work effort for 1981; program acceleration is seen to be especially important in light of the newly issued proposed FERC-Exhibit E regulations. TES assisted in finalizing arrangements for the forthcoming workshops and public meetings on access schemes. As a part of this Subtask, TES has suggested that the originally scheduled meeting (dropped by APA) for Glennallen be held. The Socioeconomic consultant, Frank Orth & Associates, concentrated its efforts on refinement of forecasting methodology associated with Work Package #4, Forecast of Socioeconomic Conditions in the Absence of Susitna. A member of FO&A participated in the series of three workshops held in Alaska in mid-March concerning the access route for the project. It was necessary to expend additional effort on analysis of access in response to last-minute changes in access schemes under consideration. The TES Group Leader for Socioeconomic Analysis met and conferred with staff of APA regarding socioeconomic and community impacts associated with access. While in Anchorage, he spent considerable time on revisions to analysis of access as a result of changes and additions to access schemes. In addition, during March the Group Leader reviewed the 1980 Annual Report on Socioeconomic Analysis. #### Subtask 7.06 - Cultural Resources The first Annual Report was not received by TES by the contractual deadline of March 1, 1981. However, TES has been assured by Dr. E. James Dixon, University of Alaska Principal Investigator, that a draft copy of the Cultural Resources Annual Report will be express shipped to TES as soon as possible. TES provided information as to the location of cultural resources near the access road alternative corridors. In addition, similar information was provided for the transmission line routing subtask. Field logistics for the upcoming field season were being finalized. A temporary delay has been encountered in obtaining a BLM permit through CIRI/H&N for the Cultural Resource tent camp. The Principal Investigator submitted the 1980 Annual Report for TES review. It was reviewed by TES for technical content and editorial format. Chapter 3 (Results and Discussion) of this working draft was sent to Dr. Sterling Miller of ADF&G for his use in studying the shifts through time of large mammal populations in the Upper Susitna River basin. The selection by the Principal Investigator of additional survey locales for 1981 is underway, and the selection of sites for intensive testing to determine significance under National Register criteria is underway, with emphasis on the impoundment area. The Alaska Heritage Resources Site Survey forms have been completed by the Subcontractor for all the sites found in 1980. These will be submitted to the State Archeologist as required by their state permit. The TES Group Leader for Cultural Resources evaluated the proposed transmission line corridors with respect to their impacts upon known and potential cultural resources sites. Areas where more information is needed to further evaluate the corridors were also identified. #### Subtask 7.07 - Land Use Analysis The TES Group Leader completed an extensive analysis of potential land use impacts associated with alternative access schemes. It was also incorporated in the TES report on access. The University of Alaska submitted to TES the first draft of the Land Use Annual Report. The Quality Assurance Coordinator and Group Leader completed extensive reviews; comments and revisions will be incorporated in the final draft. TES initiated a follow-up effort to concerns raised by Alaska DNR and others relative to project impacts on navigational use of the Susitna River. The situation was documented and a letter sent to Acres concerning additional reconnaissance to be performed. During the month, the Group Leader traveled to Alaska and met with the Principal Investigator to go over the TES review of the Land Use Annual Report. Agreement was reached concerning supplemental material and revisions to be incorporated in the next draft report. While in Alaska, the Group Leader and TES Alaska Resident Manager initiated a follow-up to concerns raised by various state agencies relative to navigation and other instream uses of the Susitna. Various agency personnel were contacted by phone; in addition, DNR and BLM were visited. Due to the amount of effort expended on access routes during this trip, a complete follow-up to agency concerns was not possible. #### Subtask 7.08 - Recreation Planning Work continued on analysis of recreation survey results. The Principal Investigator and TES Alaska Resident Manager met with APA and R&M concerning the Recreation Planning process; in particular as it relates to access. While in Alaska, the Group Leader conferred with the Principal Investigator concerning status and scheduling of the Recreation Planning effort. Due to external factors (i.e. changes in APA's workshop schedule and changes in access plans) revisions in the schedule for recreation planning are mandated in an effort to ensure continuity and timely completion of the recreation plan. The Principal Investigator attended the public meetings conducted by APA and made presentations concerning the status of the recreation planning effort. #### Subtask 7.09 - Transmission Line Corridor Assessment The primary TES activity for February centered around the preparation of a critique of the Corps of Engineers' (COE) transmission line feasibility report and a transmission line report prepared by International Engineering Company. The critique was completed and mailed to Acres for inclusion in an Acres subtask close-out report. Subsequent to this effort, TES initiated a review and comparison of proposed alternative corridors. This review and the critique of the
Corps report were requested by Acres during a meeting held in Buffalo on February 13 for the purposes of coordinating the transmission engineering and environmental efforts. TES organized and preliminarily reviewed information accumulated for transmission studies during the January field trip. Materials obtained included aerial photography and ADF&G-supplied habitat maps. New materials (maps) received from Acres were also reviewed. TES prepared and submitted to Acres a report entitled "Preliminary Environmental Screening of Alternative Transmission Line Corridors". This report included graphics of the transmission corridors on topographic maps, an inventory of environmental parameters and constraints compiled from numerous sources including TES Group Leaders. #### Subtask 7.10 - Fish Ecology A draft of the Fish Ecology Annual Report has been prepared. Due to the absence of data from the ADF&G program, the report basically discusses potential impacts of the Susitna Project, possible mitigation procedures, agency contacts and a literature search on the fish species of the region. On February 4, 1981, a meeting was held in Anchorage with representatives of APA, Acres, ADF&G and TES present for the purpose of developing ADF&G's field study program for 1981. Progress was made in the development of ADF&G's field program with several program revisions being agreed upon. Deadlines for the completion of program and budget revisions were set for the middle of February. The problem of nitrogen gas supersaturation was discussed during the month and it has been decided that a minor sampling effort for existing levels of dissolved nitrogen gas immediately below Devil Canyon will be conducted by TES with transportation support from other team members. Although such a sampling program is not included in the Scope of Work, a limited sampling effort will be performed later this year. M. Bell is supplying materia? on supersaturation in river water to ADF&G. This material had been previously supplied to Acres. M. Bell is also in the process of documenting any studies in Washington State where regulation does not apply equally to major production areas owing to the different levels of fisheries production in the systems or in parts of a river system. Work was initiated on obtaining Oceanographic data on the Upper Cook Inlet estuary in order to be prepared to address several concerns pertaining to the estuary that were mentioned in the Dwight-Trihey survey. This survey has been reviewed for any comments or questions that can be answered at present. To complete this review, further information on hydrology (flow, stage) and the fish of the area will be required from Acres, R&M, and ADF&G. The proposed new FERC regulations and their effect upon the existing study plans for fish ecology and water quality were discussed. Under the revised regulations, there appear to be no new problems with the fish ecology study plan, but changes in the water quality program requiring the addition of several water quality tests may be necessary. During the month of March, the major effort for the TES fish ecology team dealt with the completion of the Fish Ecology Annual Report. Some revisions and editorial work remain to be done. A review of the adequacy of the ADF&G study plan for meeting data requirements for the preparation of the impact assessment and mitigation report, has been delayed due to late submission of the ADF&G Procedures Manual. To augment ADF&G efforts and to insure that vital baseline information on the life history and ecology of important fish species of the Susitna River region be gathered and made readily available, TES has increased its literature review effort in this facet of the fisheries program. The emphasis is being placed on compiling information on resident species to complement C. Atkinson's literature review on the various salmon species of the area. Impact assessment and mitigation literature is also being obtained at present, as an originally planned component of the TES program. As discussed under Subtask 7.01, Notices of Potential Program Modification were prepared to address the major agency concerns identified to date. Five issues and concerns related to Subtask 7.10 were included: water quality parameters, estuary impact analysis, dissolved gas supersaturation, resident fish studies and access road impact upon fishes. ### Subtask 7.11 - Wildlife Ecology Studies During the month of February, the major activity concerning Subtask 7.11 dealt with the completion of the first Annual Reports. The report concerning birds and non-game mammals was received during the latter part of the month. Furbearers and big game impact reports are scheduled for receipt during the first week in March. A considerable amount of effort was devoted to the wildlife mitigation effort during the first half of February. The notes of the mitigation meeting held in January were prepared and submitted to Ac. as for review. A preliminary outline of a mitigation policy statement was also prepared and submitted for review. Both the furbearer and bird investigators visited the study area during the month. Furbearer study efforts included continued survey of the study area to document seasonal shifts in habitat utilization by key furbearer species and also to trap and attach radio transmitters to both fox and marten. Surveys of birds and non-game mammals were conducted during early February. Observations of both birds and small mammals in the study area were few. Thirteen bird species were recorded. The white spruce forest at Kosina Creek was unexpectedly barren. There was some snowshoe hare signs and eight or nine localities showed signs of red squirrels and porcupine. The majority of effort by TES and its subcontractors during the month of March concerned the review and revision of the 1980 Annual Reports. Reports were received from all Principal Investigators and the Group Leader spent a considerable amount of time reviewing the reports and preparing comments for revisions as needed. March activities involving birds and non-game mammals centered around preparing revisions to the Annual Report and discussion of modifications to the upcoming field program. No field work was conducted during March. As in the case of other disciplines the furbearer investigators were occupied with responding to comments on the 1980 Annual Report. In addition, this group collected a considerable amount of field data during March. TES work with regard to big game studies concerned the ongoing review and evaluation of ADF&G's Annual Report. Dr. Taber submitted to TES a condensed version of the ADF&G report that included a summary impact analysis. Progress was made concerning the development of the wildlife mitigation policy statement. During early March the wildlife Group Leader traveled to Anchorage and visited with the members of the review group and discussed their concerns, attitudes, and the positions of their respective agencies. Following discussions with Acres, a copy of the preliminary outline for the mitigation policy statement was forwarded to the APA for their review and comment. ### Subtask 7.12 - Plant Ecology Studies Considerable effort was expended in the review of the draft first Annual Report submitted to TES by the AES on January 30. The draft was returned to the AES for revisions. Cover maps of the study area were finalized by the AES. TES resolved, through discussion with Acres, the need for a boat for use by the AES in their 1981 investigations of downstream areas. Permission to purchase a boat, motor and trailer was received from Acres. Other activities during the month included: the review of a list of contacts with agencies; review with suggested revisions of the Project Overview Report prepared by Acres; and, review of and input into various alternative transmission line routes. Much of the effort during March revolved around review and revisions to the draft 1980 Plant Ecology Annual Report. A revised draft was submitted to TES by the Agricultural Experiment Station. TES and AES sent copies of the preliminary vegetation cover maps to the environmental study participants. Discussions were held between TES, AES, R&M, and Acres regarding downstream hydrological needs. TES sent a request to Acres detailing the need for specified hydrological information. AES continued efforts toward development of methods for the downstream studies to be performed in 1981. ### <u>Subtask 7.14 - Access Road Environmental Analysis</u> During February, TES prepared a report summarizing potential environmental effects associated with access plans then under consideration by Acres and R&M Consultants. The report identified "red flags" concerning biological implications along each corridor and potential cultural significance. Land use and socioeconomic concerns were also assessed in terms of impacts on communities, social and economic variables, and uses of the resource base. TES also participated in the planning of and preparation for the access road public meetings to be held in March. During March, C. Baumgartner participated in three workshops in Alaska sponsored by APA and concerning access corridor alternatives, and alternative recreation concept plans. Preparation for and attendance at these workshops required considerable interaction and coordination with Acres, R&M, TES subcontractors, and the Public Participation Program staff at APA. At the request of Acres and APA, TES wrote and produced a report entitled "Environmental Analysis of Access Road Alternatives" for distribution at a meeting held in Anchorage for representatives of various agencies. This meeting was attended by C. Baumgartner and other TES staff. Ms. Baumgartner presented an overview of environmental concerns pertinent to the access corridor issue and fielded questions from various people in attendance. Ms. Baumgartner also attended a meeting of the Susitna Hydroelectric Steering Committee in
late March and again presented an overview of environmental concerns and answered questions regarding access. ### ADF&G - HYDRO AQUATIC STUDIES ### Administration & Support A meeting was held with the Alaska Power Authority (APA), Acres American and Terrestrial Environmental Specialists representatives on February 4 to discuss the ADF&G aquatic studies program and possible study re-emphasis and area reprioritization. As a result of this meeting, ADF&G has conducted, through the remainder of the month, a budget, personnel and program redirection review. Primary program changes or redirection were in the Anadromous Adult Project and the revised program involves a rescoping of the stock separation work, a shift in the areas where sonars and fishwheels will be installed, implementation of a mainstem ground survey program, implementation of a radio-telemetry program and augmentation of lower basin chinook salmon aerial escapement counts. The program and budget revisons will be submitted to APA so amendment of the FY 81 RSA can be made and the FY 82 RSA finalized. March's activities of the Administrative Support personnel were for the most part, conducted in double-time. The project coordinator, Thomas Trent, was primarily involved with development and review of a proposed revised program and budget document for submission to the Alaska Power Authority. Subsequent to submission of the document to APA, Trent met several times with APA staff to discuss the content and make revisions into Phase I and II breakdowns. The Su Hydro Steering Committee held a meeting at the University of Alaska, on March 20. Topics of discussion revolved around alternative road access plans developed by APA and Acres American, and the status of APA's response to the steering committee's recommendations of last November. Several meetings between Bartlett, Acres American and the owner of the shop/ warehouse facility were held to discuss completion of the facility before advent of the summer field season. Topics were primarily centered on attention to detail necessary to put the facility into operational status. Much effort was put into purchasing supplies and equipment to initiate the coming field season. Concern was expressed by Acres American regarding "sole source" purchasing procedures of used motor vehicles and some discussion resulted before acceptable procedures were drafted. Equipment on hand was inventoried by the office manager. Each equipment item was assigned a number and the list submitted to Acres American. Considerable time was spent editing draft sections of the project Procedures Manual. The manual is now in review status. Discussion of the data processing program was held with Mike Mills, Sport Fish Divison Biometrician. Mike will review the Procedures Manual to determine data processing program requirements, start recruitment for the Su Hydro biometrician vacancy, do preliminary work on ordering of a micro-computer and lay the ground work for contracting with Boeing Computer Systems or other groups to support the data processing program. #### FIELD STUDIES #### Resident and Juvenile Anadromous Project Field activities in the Susitna River study area were continued during the month of February, 1981. The study area was divided into two reaches with Talkeetna as a balance point to facilitate the sampling scheme. Aerial survey revealed hazardous ice conditions downstream of Willow Creek on the lower reach so field activities were shifted closer to the Talkeetna area where numerous mainstream sites as well as sites at the mouths of creeks, sloughs and rivers were sampled. Utilization of sloughs immediately adjacent to the mainstream by juvenile anadromous salmon was observed to be more common place than in the mainstem current. Personnel from the Aquatic Habitat Project gave occasional assistance to the Resident and Juvenile Anadromous Project personnel (during this period of field activity). #### Aquatic Habitat and Instream Flow Project Field activities of Aquatic Habitat and Instream Flow Project personnel during February was primarily that assistance given the Resident and Juvenile Anadromous Project personnel in collection of their field data. In addition to that assistance given Resident and Juvenile project personnel, temperature, depth, velocity and conductivity data were recorded at those sites where it was feasible. Additional data will be collected when new equipment orders are processed and additional equipment is procured. Three surveys were fielded by AH personnel in March. Areas inaccessible by snow machine or fixed-wing aircraft were accessed via helicopter. AH personnel also assisted RJ data collection where practicable. #### ADF&G - BIG GAME ACTIVITIES The main activity during February was editing and rewriting of annual reports. All parts of the reports were completed by the end of the month and the report was due to be distributed during the first week of March. Drafts of approximately half the sections of the report had been sent to TES and Dr. Taber earlier to facilitate preparation of the big game impact assessment report. Field work continued to be hampered by weather and snow conditions. However, a slight increase in snow depths and cooler temperatures late in the month seems to have caused more moose in the downstream area to move near the Susitna River. Anticipating an improvement in tracking conditions, we geared up for a wolf, wolverine, moose, and caribou tagging operation to begin in early March. We will follow this with moose census and distribution surveys in both the upstream and downstream study area. An attempt at ground tagging of wolverine was not successful. Dr. Ronald Modafferi was selected to replace Paul Arneson as principal investigator of the downstream moose study. The big game investigators held another coordination meeting to review the available vegetation maps and our aerial habitat classification criteria. We concluded that a substantial re-design of studies for Phase II will be necessary to conduct a meaningful analysis of habitat selectivity of big game animals. #### Anadromous Adult Project No field activities were planned or accomplished during the February period. Planning and budget considerations were of primary concern. Project projections call for the employ of 29 seasonal employees to staff three sonar sites, three fishwheel sites, adult survey crews and a radio tagging crew. No field work was done by AA personnel this month. AA personnel were primarily involved with fishwheel construction. All necessary materials have been purchased and approximately one-half of the required number of floats have been constructed. #### TASK 8 - TRANSMISSION #### General Acres kept abreast of developments on the intertie by communicating with Common-wealth Associates on a periodic basis. CAI was informed that the transmission line voltage would be 345 KV with two separate conductor sizes for each of the line sections north and south of Gold Creek. ### Subtask 8.01 - Transmission Line Corridor Screening Work continued on the closeout report for this subtask. #### Subtask 8.02 - Electric System Studies Analyses of contingency events for the alternative transmission schemes continued. Cost estimates for various transmission alternatives were updated. A meeting was held with General Electric representatives to discuss the latest developments in transmission line series compensation equipment. The following report as received and reviewed: - Anchorage - Fairbanks Interconnection Feasibility Studies, Commonwealth Associates, Inc., January 1981. Transient stability studies were started for various transmission alternatives. This included several computer runs. A comprehensive progress report on Subtask 8.02 was completed and forwarded to APA. #### Subtask 8.03 - Route Selection Work continued on this subtask. Preliminary center lines for alternative routes were defined and marked on USGS maps. Consideration of 345 KV termination points in the Anchorage area at Point Mackenzie and Palmer was initiated with a view towards seeking input from local utility planners. #### Subtask 8.04 - Tower, Hardware and Conductor Studies Work continued on this subtask. Preliminary conductor sizes were chosen for the 345 KV line, based on analyses of economic and electrical requirements. #### Subtask 8.07 - Transmission Line Cost Estimate Two capital cost estimates were developed to accommodate the following scenarios: - Susitna Basin development. - Thermal plant development at Beluga. The transmission system diagrams were produced and cost estimates prepared according to the switchyards and transmission line lengths. Documentation of the results of the two conceptual transmission systems and cost estimates was initiated. ### TASK 10 - LÍCENSING #### ACRES ACTIVITIES Internal review of responsibilities for Exhibit V was made with a resultant suggested table of contents and specifically assigned areas. On January 23, the FERC approved proposed regulations which would supersede the existing rules for license application for major, unconstructed projects were reviewed. The comment period for the proposal closes on March 27, and the final rules may follow from two to six months later, depending on the nature of comments. These rules will be obtained and reviewed over ensuing weeks to consider impacts on the project study. Work continued on updating of the Subtask 6.02 Design Transmittal which will be completed in May. A meeting was scheduled for April 21 at the FERC office to brief staff on study progress and discuss several licensing issues. #### TASK 11 - MARKETING AND FINANCE #### General Primary attention in March was focused upon final preparation and publication of the Project Overview Report (POR) in summary form. Other Task 11 activities were held to a minimum since legislation, now under consideration in Alaska is expected to have significant impact on future finance and marketing studies. ### Subtask
11.01 - Project Overview Preparation and Update An assembly of the first draft chapters of the Project Overview Report were prepared and distributed within the project team for review. The volume of copy presented by individual chapter authors now requires substantial editing down to any appropriately concise and pertinent level. The advanced drafts of Chapter 13 - Power and Energy Marketing, Chapter 16 - Financial Analysis, and Chapter 17 - Security of The Project Capital Costs and Revenue Structure were explained to the managing underwriters and financial advisors against the general background of the plan of study, during Washington, D.C. meetings on February 5th. A final draft of the summary POR was circulated for review by the Power Authority and for final in-house review. This document was published and transmitted to the Power Authority on March 26, in accordance with the schedule which had been approved earlier by the Power Athority. Work continued on the review and update of the comprehensive chapters which will support each of the summary sections in the POR. This latter volume will be published as an appendix to the POR shortly after final publication of the Development Selection Report. Draft copies of this appendix were furnished to the Power Authority during the reporting period. #### Subtask 11.02 - Internal Reports Financial analysis of various alternatives proceeded in preparation for meeting with the managing underwriters group and later in the month to test the sensitivity of the project to various energy pricing scenarios at the time the Susitna project would come into operation. This involved also economic analysis runs using the Fezbl model as back up to the OGP-5 system planning runs. Attention was concentrated on the significance of energy/power pricing in the early years of operation to obtain reliable data for formulating financing options. Analysis of the railbelt utility market prospects proceeded through review of fillings with Apuc and other data with a view of assessing the significance of purchasers/consumers in financing arrangements. Typical financing/marketing scenarios offered by other utility systems were reviewed in a study of precedent situations. Financial runs were made on the OGP-5 program using most recently estimated "not-to-exceed" project costs. Inflation and interest rates were run at 7% and produced by the Fezbl financial modelling efforts. # Subtask 11.06 - Financing Risk Analysis Financing risks were further reviewed and progress made to a comprehensive treatment of overall risk. # Subtask 11.07 - Resolution of Tax Exempt Board Issue Attendance was provided at a Washington conference arranged by First Boston Corporation to review the current position on efforts to secure necessary relaxation of IRS Section 103 rulings to permit tax exempt bond issue for Susitna and other hydroelectric power projects. # TASK 12 - PUBLIC PARTICIPATION # ACRES ACTIVITIES Acres coordinated with N. Blunk of APA and TES in the preparation of materials and designation of personnel for the March access road agency meeting and public workshops. These meetings on the access roads and recreation were held in Fairbanks, Talkeetna, and Anchorage on March 16, 17 and 19 respectively. # TASK 13 - PROJECT ADMINISTRATION # Subtask 13.04 - Schedule Monitoring The project schedule was updated to March 2, 1981 and again to April 6, 1981 with appropriate changes being made in logic and durations. Copies of the April 6, 1981 version of the Master Schedule, computer generated bar chart and revised schedule are appended to this report. Schedule monitoring is continuing. # Subtask 13.05 - Cost Control The January report indicated that the publishing dates of the cost report were change to bimonthly. The combined January/February report was published in March. A Frank Moolin Associates representative continued to work in the Acres Anchorage office on cost control throughout the reporting period. #### TASK 14 - ADF&G SUPPORT Routine office administration continued in addition to a significant build-up of activities related to ADF&G support needs. Procedures were established for purchasing of ADF&G equipment. Acres acts as purchasing agent, processing all purchase orders, expediting and making payment on items purchased. To date, approximately \$327,000 has been expended for 22 purchase orders. The warehouse and maintenance building to be utilized by ADF&G, and for the storage of the drill cores, was completed and occupied. The annual inventory of all project equipment was initiated. DESCRIPTION ``` FIELD CAMP OPERATIONS RESUPPLY & EMERGENCY SERVICE EXHIBIT F MATERIAL COMPLETE 203 204XX FIN XXXXX FIN XXXXXXXXXXXXXXXXXXXXXXXX CT-1XXXX L LAND AQUISITION ANALYSIS RIGHT OF ENTRY SITE SPECIFIC SURVEYS 205 206 207 SITE SPECIFIC SURVEY AIR PHOTOS & MAPPING-1980 AIR PHOTOS & MAPPING-1981 ACCESS ROAD FIN . XXXXXXX L 207 FIN XXX L FIN XXXXXXXX CT-1X 210 ACCESS ROAD CT-2. XX ACCESS ROAD ACCESS ROAD FIELD RECON FOR RSRVR CLEAR FIN XXXXX MARKETABLTY & DISPOSAL STDY ST XX MARKETABLTY & DISPOSAL STDY FIN . XXX CST ESTMTS RSVR CLEARING ST XX CST ESTMTS RSVR CLEARING FIN . SLOPE EROSION & STBLTY STUDY FIN . HYDROGRAPHIC SURVEYS FIN XXXX FIELD DATA INDEX OPERATION XXXXX FIELD DATA COLLECTION 80-B1 FIN CL FIELD DATA COLLECTION 81-82 ST . CCC XXXXXXXXXX 210 212 213 213 214 215 215 216 202 FIN XXXXXX FIN . XXX XXXX 3032 FIELD DATA COLLECTION 81-82 ST FIELD DATA COLLECTION 81-82 FIN WATER RSRCS-FLOW EXTENSION FIN WATER RSRCS-FREQ ANALYSIS WATER RSRCS-RESERVOIR STUDY CT-1 WATER RSRCS-RESERVOIR STUDY CT-2 WATER RSRCS-RESERVOIR STUDY FIN WATER RSRCS-PRESERVOIR STUDY FIN WATER RSRCS-PRESERVOIR STUDY FIN WATER RSRCS-PRESERVOIR STUDY FIN EVAPORATION STUDIES WATER RSRCS-GLACIAL STUDIES EXHIBIT I MATERIAL COMPLETE EXHIBIT I MATERIAL COMPLETE FLOODS-FREQUENCY ANALYSIS FLOODS-RESERVOIR ROUTING CT-1 3033 FIELD DATA COLLECTION 81-82 FIN XX 3033 3041 XXXX 3042 CT-1CCCCCCCCL 3043 3043 3043 3043 XXXXXXL FIN . CCCL 3044 CCCL 3044 3045 3046 304XX 304XX 3051 3052 XX FLOUDS PMF REVIEW FLOODS-RESERVOIR ROUTING FLOODS-RESERVOIR ROUTING HYDRLICS & ICE WTR LVLS HYDRLICS & ICE WTR LVLS HYDR&ICE-RESER SLIDE SURGE HYDR&ICE-RSVR TEMP REGIME SEDIMENT YIELD & DEPOSITION SEDIMENT YIELD & DEPOSITION RIVER MORPHOLOGY 3053 3053 CT-1XXXXXXXXXX XXXXX FIN . CT-1XXXXXXXXXXXXXXXXXXXX 3061 FIN . XXXXXXXXXXXXXXXXX 3061 3063 3064 3071 FIN . XXXXXX 3071 XXXXXXXXXXXX RIVER MORPHOLOGY CT-1. 3072 CCCL RIVER MORPHOLOGY FIN . 3072 ``` DESCRIPTION ``` TRANSMSN LINE-DET PARAMTR TRANSMSN LINE-DET PARAMTR 3082 FIN . XXXX LUR SUSITNA STUDIES-FOLLOWUP ST . XXXXXXXXXXXX L LUR SUSITNA STUDIES-FOLLOWUP ST . XXXXXXXXXXXXXXXXX L LUR SUSITNA STUDIES-FOLLOWUP FIN . XXX DAM STABILITY 309 3101 3102 3102 408 DAM STABILITY DAM STABILITY LONG TERM MONITORING PROGRAM RESERVOIR INDUCED SEISMICITY 408 409 410 SEISMIC GEOLOGY-FIELD STUDY EVALUATION & REPORT DRAFT EVALUATION & REPORT DRAFT 412 412 EVALUATION & REPORT DRAFT FIN . 413 GROUND MOTION STUDIES ST XXXXXXXXXX GROUND MOTION STUDIES DAM STABILITY CONSULTING 413 FIN . CCCCCCCCCCCCCCL 414 415 SOIL SUSCEPTITY-SEISHIC FAIL XXXXXXXXXXXXXXXXXXXXX 502 AIR PHOTO INTERPRETATION FIN CCL 505 506 1981 PROGRAM DESIGN 1981 EXPLORATION PROGRAM FIN XXL 506 1981 EXPLORATION PROGRAM FIN . XXXXXXXXXXXXXXXXXXXXXXXXX 507 1982-4 PROGRAM DESIGN XXXXXXXX DATA ASSEMBLY-1980 DATA ASSEMBLY-1981 DRAFT DATA ASSEMBLY FINAL-DRAFT 5081 5082 5083 602 6052 6052 XXXXXXX INVESTIGATE TUNNEL ALTERNATIVES XXL SELECT REPORT FINAL DRAFT SELECT REPORT FINAL DRAFT SELECT REPORT FINAL EDITION CT-1X L FIN . XXL 6053 607 PRELIM WATANA DAM ALTERNATES CT-2. PRELIM WATANA DAM ALTERNATES CT-3. XXXXXXXX L 607 607 PRELIM WATANA DAM ALTERNATES FIN . PRELIM DEVIL CANYON DAM ALT CT-2. PRELIM DEVIL CANYON DAM ALT FIN. ESTAB WATANA DESIGN CRITERIA CT-1. ESTAB WATANA DESIGN CRITERIA CT-2. ESTAB WATANA DESIGN CRITERIA FIN. ESTAB DEVIL CANYN DESGN CRIT CT-1. ESTAB DEVIL CANYN DESGN CRIT CT-2. ESTAB DEVIL CANYN DESGN CRIT CT-2. ESTAB DEVIL CANYN DESGN CRIT FIN. PRELIM DESIGN WATANA DAM ST. PRELIM DESIGN WATANA DAM FIN. PREL DESIGN DEVIL CANYON DAM ST. PREL DESIGN DEVIL CANYON DAM FIN. PREL DESIGN DEVIL CANYON DAM FIN. DAM SELECTION REPORT-DRAFT ST. 808 PRELIM DEVIL CANYON DAM ALT CT-2. CCCCCL 609 609 609 609 610 XXXXXXX 610 611 611 XXXXXXXXXXXL 611 CCCCCCCCL XXXXXXXXXX ``` 67 PAGE 3 TIME NOW 6APR81 DESCRIPTION ``` CCCCL DAM SELECTION REPORT-DRAFT SPILLWAY DESIGN CRITERIA ST X SPILLWAY DESIGN CRITERIA FIN . XX WATANA SPILLWAY ALTERNATIVES FIN . WATANA SPILLWAY ALTERNATIVES ST . DEVL CAN SPILLWAY ALTERNATVE ST . ST X L FIN XXXXXXXX 614 614 XXXXXXXXXX XXXXXX XXX 616 DEVL CAN SPILLWAY ALTERNATVE SI DEVL CAN SPILLWAY ALTERNATVE FIN . PRELIM DESGN WATANA SPILLWAY ST XXXX PRELIM DESGN WATANA SPILLWAY CT-1. PRELIM DESGN WATANA SPILLWAY FIN . PRELIM DES DEVIL CAN SPILWAY ST . PRELIM DES DEVIL CAN SPILWAY FIN . SPILLWAY SELECTN REPRT-DRAFT ST . SPILLWAY SELECTN REPRT-DRAFT FIN . XXXXXXXXL 616 617 XXXXXXXXX 617 XXXXXXL XXXXXXXXXXXXXX XXXXXX XXXXXL XXXXXXXX XXXXXXX XXXXXXXXXX 625 625 626 627 627 628 628 629 629 629 630 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX XXXXXL XXXXX XXXXL XXXXXX XXXXXL XXXXXX 630 630XX 630XX X 631 631 PROJECT FEASIBL REPORT-DRAFT CT-2. 631 PROJECT FEASIBL REPORT-DRAFT CT-3. PROJECT FEASIBL REPORT-DRAFT CT-4. 631 ``` 30 DESCRIPTION APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP DCT NOV DEC
012201120012201220122011200123012201120012201120012201120012201120012201120012201120012201220112001220 ``` PROJECT FEASIBL REPORT-DRAFT FIN . 631XX EXHIBIT L MATERIAL COMPLETE UPDATE GENERATION PLAN 637 7012 7013 702 702 7061 7061 7061 7062 7062 7062 7063 7063 XXXXXXXXXXXXXXXXXXXXXX 7063 706XX 7071 7071 7072 7072 7072 7073 7073 7073 708 708 7092 7101 7101 7101 7102 7102 7102 7103 7103 7103 7111 7111 7112 ``` DESCRIPTION ``` 7113 XXXXXXXXXXXXXXXXXXXX 7113 7121 7122 7122 7122 XXXXXXXXXX 7123 7123 XXXXXXXXXXXXXXXXXXX 7123 714 714 714 715 715 CCCCCL PREF FOR FERC EXHIBIT-DRAFT FIN . EXHIBIT W MATERIAL COMPLETE EXHIBIT S MATERIAL COMPLETE SELECT INITIAL CORRIDORS FIN X LOAD FLOW ANALYSIS FIN . PRELIMINARY ELEC SYSTEM ST CC FRELIMINARY ELEC SYSTEM FIN . RECOMMEND ELEC SYSTEM FIN . RECOMMEND ELEC SYSTEM FIN . RECOMMEND ELEC SYSTEM FIN . FINAL ROUTE SELECTION 1981 CT-1. FINAL ROUTE SELECTION 1981 CT-1. FINAL ROUTE SELECTION 1981 CT-2. FINAL ROUTE SELECTION 1981 FIN . TOWER HARDWRE&CONDUCTR STUDY ST . TOWER HARDWRE&CONDUCTR STUDY FIN . SUBSTATIONS SI XX 715 715XX 715XX FIN X ST XX FIN . XXXXXX ST CCCCCCCL CT-1. CC 801 8021 8021 B0221 80221 80221 80222 803 803 803 803 FIN . 804 804 804 TOWER HARDWRE&CONDUCTR STUDY FIN . SUBSTATIONS ST XXXXXXXX SUBSTATIONS FIN . DISPATCH CTR & COMMUNICATNS ST XXXXXXXX DISPATCH CTR & COMMUNICATNS FIN . TRANS LINE COST ESTIMATES ST X TRANS LINE COST ESTIMATES FIN . ASSEMBLE COST-SCHEDULE DATA ST . XX ASSEMBLE COST-SCHEDULE DATA FIN . XXXX PREF PRELIM CST ESTIMATES . XXXX COST ESTIMATE UPDATES EXHIBIT N MATERIAL COMPLETE ENGR COST & SCHEDULE FINAL ENGR COST & SCHEDULE FINAL EXHIBIT O MATERIAL COMPLETE CCCCCCCCL 805 805 XXXXXXXX 808 806 XXXXXXX 807 807 CCCCCL 901 902 903 9042 EXHIBIT O MATERIAL COMPLETE ``` C DESCRIPTION ``` 905 CONTINGENCY ANALYSIS XXXXXXXXXXX 1001 IMPACT OF NEW FERC REGULATIONS XXXXXXXX 1ST UPDATE-REGULATORY REQ 2ND UPDATE-REGULATORY REQ DATA FROM OTHERS 10022 XXXX 10023 XXXX 1003 XXXXX 1003XX EXHIBIT A B & C MATERIAL COMPLETE. COORD EXHIBIT PREPARATION 1004 ST . XXXXXXXXX XXXL XXXL XXXL XXL XXL XXL XXXL COORD EXHIBIT PREFARATION COORD EXHIBIT PREFARATION COORD EXHIBIT PREFARATION COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION 1004 CT-1. 1004 CT-2. 1004 CT-3. 1004 CT-4. 1004 CT-5. 1004 FIN . PREPARE EXHIBIT E PREPARE EXHIBIT D PREPARE EXHIBIT R PREPARE EXHIBIT T 10051 XXXXXXXXX 10052 XXXXXXXXX 1006 XXXXXXXXX 1007 XXXXXXL FREPARE EXHIBIT T 1007 FIN . XXXXL PREP APPLICATN FORM-DRAFT 1008 ST. XXXXXX FREF AFFLICATN FORM-DRAFT REVIEW AND CORRECT 1008 FIN . 1009 1010 EXTERNAL REVIEW 10XXX PRINT LICENSE APPLICATION 1101 PROJECT OVERVIEW INTERNAL REPORTS EXHIBIT U MATERIAL COMPLETE 1102 1102XX SUSITNA BASE PLAN RISK ANALY ST 1103 SUSITNA BASE PLAN RISK ANALY FIN SUSITNA BASE PLAN EXTEN/REVIS SUSITNA FINANCE RISK ANALYSIS 1103 1104 XXXXXXXXXXXXXXXXXXXXXXXXXXXXX 1105 RESOLUTION TAX ISSUE IDENTIFY PARTIES INTEREST REVENUE ASSURANCE 1106 1107 1108 1109 LIAISON APA BOND UNDERWRITER 1109XX EXHIBIT G MATERIAL COMPLETE 12022 CONDUCT PUBLIC MEETING #2 12023 CONDUCT PUBLIC MEETING #3 12031 CONDUCT WORKSHOPS 1,2,3 12032 CONDUCT WORKSHOPS 4,5,6 XXXX XXXX XXX XXXXXXXXXX 1204 PREP PUBLISH DISTRIB MATERIAL 1205 PREF MAINTAIN ACTION LIST 13013 PROJECT PROCED MANUAL-UPDATE 13042 SCHEDULE CONTROL SYS UPDATE COST CONTROL SYSTEM-OF MANFOWER LOADING SCHED-UPDATE 13052 13062 1310 SUB CONTRACT ADMINISTRATION XXX PROJECT COMPLETE XXX ``` \mathcal{U} PAGE TIME NEW: 6APR81 # CPM ANALYSIS LISTING | 32700 32700 2 R UFB 1 C4 3051 FLUODS-FREQUENCY ANALYSIS 6AFR81 17AFR81 4MAY81 15MAY81 4 32800 32400 2 R UFB 1 C4 3052 FLUODS-FREQUENCY ANALYSIS 6AFR81 17AFR81 4MAY81 15MAY81 4 31800 32000 10 R UFB 1 C4 3053 FLUODS-RESERVOIR ROUTING CT-1 6AFR81 12JUN81 190CT81 25DEC81 28 32000 32200 75 UFB 1 C4 3053 FLUODS-RESERVOIR ROUTING FIN 190CT81 20NOV81 28DEC81 29JAN82 10 30200 30400 17 UFB 1 C4 3061 HYDRLICS & ICE WTR LVLS CT-1 6AFR81 31JUL81 4MAY81 28AUG81 4 30400 30600 17 UFB 1 C4 3061 HYDRLICS & ICE WTR LVLS FIN 3AUG81 27NOV81 50CT81 29JAN82 9 | | | | | | | | | | | | | | | | |--
--|--|---|--|---|--|--|--|--
---|---|---|--|----------------------------|---| | 27700 27200 3 UPA C3 214 CST ESTHTS RSVR CLEARING ST 6APR81 174PR81 11 JANR2 22JAN82 37 27200 27400 3 OPA C3 214 CST ESTHTS RSVR CLEARING FIN 18HAY81 5JUN81 25JAN82 12FER82 36 25800 26000 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 5JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 25JAN82 12FER82 36 26000 26200 4 OPA C4 215 SLOPE EROSION 8 STBLTY STUDY FIN 18HAY81 12JUN81 340U881 17 25MAY81 17JUL81 5 25MAY81 17JUL81 17 25MAY81 17JUL81 5 25MAY81 17JUL81 17 25 | I-NODE | J-NODE | DUR | SELECT CODES | | DESCRI | P T I O N | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | | 39200 39300 8 OPB 1 C4 3064 HYDR&ICE-RSVR TEMP REGIME 6APR81 29MAY81 1JUN81 24JUL81 8 35600 35800 3 R OPB 1 C4 3071 SEDIMENT YIELD & DEPOSITION ST 6APR81 24APR81 22JUN81 10JUL81 11 35800 36000 6 OPB 1 C4 3071 SEDIMENT YIELD & DEPOSITION FIN 1JUN81 10JUL81 21SEP81 300CT81 16 33600 33800 14 OPB 1 C4 3072 RIVER MORPHOLOGY CT-1 13JUL81 16OCT81 2NOV81 5FEB82 16 33800
34000 4 OPB 1 C4 3072 RIVER MORPHOLOGY FIN 8FEB82 5MAR82 8FEB82 5MAR82 0 38200 38400 4 R OFB 1 C4 3082 TRANSMSN LINE-DET PARAMTR ST 6APR81 1MAY81 20JUL81 14AUG81 15 | 22170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
21170000
2117000
2117000
2117000
2117000
2117000
2117000
2117000
2117000
2117000
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211700
211 | 22222222222222222233333333333333333333 | 60514738121623234449262240606448000220577883644
22240606448000220577883644 | C2232223333333333333333333333333333333 | 2034X
2034X
2034X
2034X
2034X
2034X
2034X
2034X
2034X
2034X
2035
2034X
2035
2036
2037
2037
2037
2037
2037
2037
2037
2037 | FIELD CAMP RESUPPLY & RESUPPLY & RESUPPLY FESUPPLY FESUPPLY FESUPPLY FESUPPLY FIELD AGUIS RIGHT SPECTION RICH RI | OPERATIONS EMERGENCY SERVICE MATERIAL COMPLETE ITION ANALYSIS NTRY FIC SURVEYS FIC SURVEY & MAPPING-1980 & MAPPING-1981 OFOR RSRVR CLEAR Y & DISPOSAL STDY RSVR CLEARING RSVR CLEARING RSVR CLEARING RSVR CLEARING RSVR CLEARING COLLECTION 80-81 COLLECTION 81-82 COLLECTION 81-82 COLLECTION 81-82 COLLECTION 81-82 COLLECTION 81-82 COLLECTION 81-82 FRESERVOIR STUDY S-RESERVOIR S-RESERV | FFICEFFECTION N N N N 123
FFICEFFECTION N N N N 123
FFI TINN N 123
FFI TINN N N N N 123
FFI TINN N N N N 123
FFI TINN N N N N N N N N N N N N N N N N N | 6APR81 | 18JUN82
18JUN82
18JUN82
18JUN82
18JUN82
18JUN82
19JUN881
19JUNR81
19JUNR81
19JUNR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17APR81
17 | 13APR81
13APR81
24HAY82
27APR81
27APR81
25HAY81
17SEP81
25HAY81
14SEP81
14SEP81
21DEC81
21DEC81
21JAN82
25JAN82
25JAN82
25JAN82
25JAN82
25JAN82
25JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN82
21JAN8 |
25JUNB2
25JUNB2
27NUNB2
25JUNB2
25JUNB2
25JUNB2
25JUNB2
25JUNB2
25JUNB2
25JUNB2
10JUNB1
11SEPB1
11JEPB1
11JEPB1
11JUNB2
22JENB1
12JUNB2
17JUNB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB1
11DECB | 1149
3543332620657700000000000000000000000000000000 | ELEPEROOOCIAOOOLA 92145100 | 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | # CFM ANALYSIS LISTING | | ·
· · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | |----------------|--|-----------------|----------------------|--------------|--|-------------------------|-------------------|--------------------|-------------------|--------------------|---------------|------------------|--------------------------| | I-NODE | J-NODE | DUR | SELECT CODES | | -DESCRIPTION | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | | | 31200 | | OPB 1 C4 | 3101 | LWR SUSITNA STUDIES-PRE | LIM FIN | 6AFR81 | 17AFR81 | 20APR81 | 1MAY81 | 2 | C | 1 | | 31200
31500 | 31500 | 17
22 | OPB C4
OPB C4 | 3102
3102 | LWR SUSITNA STUDIES-FOLL | LOWUE ST. | 20AFR81 | 14AUG81 | 4MAY81 | 28AU681 | 2 | () | 1 | | 45800 | 31400
46000 | 11 R | OPR C4
OPB 1 C1 | 408 | DAM STABILITY | LUMUP FIN
LT_1 | 6APR81 | 15JAN82 | 1190081 | 29JAN82
17JUL81 | 5 | Ī | 1 | | 46000 | 46200 | Ä | OPR 1 C1 | 408 | ηδη σταρτί ττν | FIN | 77 IIIX10 f | 71 88 01 | 4 7MAVOO | OF HIMOS | 47 | 47 | 1 | | 42800
40200 | 43000 | 2 <u>7</u> R | OPA C4
OPB 1 C1 | 409
410 | LONG TERM MONITORING PRO | OGRAM | 27JUL81 | 29JAN82 | 21DEC81 | 25JUN82 | 21 | 24 | 1 | | 40200 | 41800 | 5 R | OPB 1 CI | 410 | LONG TERM MONITORING PRI
RESERVOIR INDUCED SEISM
SEISMIC GEOLOGY-FIELD ST | ICITY | 6APR81 | 8MAY81 | 50CT81 | TAVOVA | 26 | 21
28
0 | i | | 42400
41400 | 42600
41600 | 30 D | OPA C4
OPB 1 C1 | 411
412 | 5115M1C 0EUCUG1-F1ECU 5 | IUDY
FT CT | 6AFR81 | 24JUL81 | 6APR81 | 24JUL81 | 21
26
0 | 0 | 1 CRITICAL | | 41600 | 41800 | - 27 K | TOPR 1 C1 | 412 | EVALUATION & REPORT DRAF | FT ST | OHEROI | 230CT81 | | 230CT81 | 0 | Q) | 1 CRITICAL | | 41800 | 42000 | ~ | OPB 1 C1
OFB 1 C1 | 412 | EVALUATION & REPORT DRAI
EVALUATION & REPORT DRAI | FT FIN | 9000101 | 4DEC81 | 260CT81
9NOV81 | 6NOVB1
4DEC81 | V | 00 | 1 CRITICAL | | 44400 | 44600 | 11 R | OFB 1 C1 | 413 | GROUND MOTION STUDIES GROUND MOTION STUDIES DAM STABILITY CONSULTING SOIL SUSCEPTITY-SEISMIC | ST | 6APRB1 | 19JUNB1 | 11MAYR1 | 24.111.81 | 5 | 5 | 1 CRITICAL | | 44600 | 41800 | 15 | OPB 1 C1 | 413 | GROUND MOTION STUDIES | FIN | 27JUL81 | 6N0V81 | 27JUL81 | 6N0V81 | ŏ | 50 | i CRITICAL | | 45600 | 41800 | 28 R | OFR 1 C1 | 414 | DAM STABILITY CONSULTING | 3 | 6APR81 | 160CT81 | 27AFR81 | 6N0V81 | <u>ئ</u> | 3 | 1 | | 45200
51200 | 45400
51600 | 22 | OPB 1 C1
OPB 1 C1 | 415 | SUIL SUSCEPTITY-SETSMIC | FAIL | 6AFR81 | 4SEF81 | 6JUL81 | 4DEC81 | 13 | \mathbb{Z}^{n} | 1 | | 52200 | 52600 | | OPB 1 C1 | 502
505 | AIR PHOTO INTERPRETATION | Y FIN | 44PPO1 | 24APRB1 | 6AFK81 | 24AFRB1 | 0 | Q | 1 CRITICAL | | 52400 | 52600 | | OPA C4 | 506 | AIR PHOTO INTERPRETATION
1981 PROGRAM DESIGN
1981 EXPLORATION PROGRAM
1981 EXPLORATION PROGRAM
1982-4 PROGRAM DESIGN
DATA ASSEMBLY-1980 | M EL
Lin | TVDDD1 | 1745601 | 1241461 | 24HLK81 | 1 | | 1 | | 52600 | 52700 | 20 | OFA C4 | 506 | 1981 EXPLORATION PROGRA | M FIN | 20APR81 | 4SEP81 | 27AFR81 | 11SFPRI | 1 | ŏ | 7 | | 53800 | 54000 | 9 | OPB 1 C1 | 507 | 1982-4 PROGRAM DESIGN | | 6JUL81 | 45EP81 | 18JAN82 | 19MAR82 | 28 | 28 | 1 | | 51600 | 51800 | 7 | OPB 1 C1 | 5081 | | | | | | | 0 | - Q | 1 CRITICAL | | 53000
53400 | 53200
53600 | 2 <u>2</u>
7 | OPB 1 C1
OPB 1 C1 | 5082 | DATA ASSEMBLY-1981 DRAF
DATA ASSEMBLY FINAL-DRAF | <u>I</u> FIN | 6AFR81 | 48EF81 | 13AFR81 | 115EP81 | 2 | _0 | 1 | | 64300 | 67100 | 2 R | OPB 1 C1
OPB 1 C4 | 5083
602 | INVESTIGATE TUNNEL ALTE | T I
DNATTHER | /5EF81 | 17/00/01 | 1MAKB2 | 16AFK82 | 25
1 | 25 | | | 67000 | 67100 | 1 | OPB 1 C4 | 6052 | SELECT REPORT FINAL DRAF | FT CT-1 | AAPRR1 | 1000001 | 2000001 | 7440001 | 3 | | 1 | | 67100 | 67200 | Ž | OPB 1 C4
OPB 1 C4 | 6052
6053 | SELECT REPORT FINAL DRAI
SELECT REPORT FINAL EDI | FIN FIN | 20APR81 | 1HAY81 | 27AFR81 | BMAYBI | 1 | 0 | 1 | | 67200 | 672A0 | 3 | OPB 1 C4 | | SELECT REPORT FINAL EDI | TION | 4MAY81 | 22MAY81 | 11MAY81 | 29HAY81 | ī | 72 | i | | 631A0
63200 | 63200
63300 | 8 K
1 | OPB 1 C5
OPB 1 C5 | 607 | FRELIA WATERA DAN ALIEK | NAILS LI-2 | 2/AFK81 | 1470081 | 18WAY81 | 10.III.R1 | 3310044 | Q | 1 | | 63300 | 633A0 | Ô | | 607
607 | PRELIM WATANA DAM ALTER
PRELIM WATANA DAM ALTER | NAIES CI-S
NATER EIN | 22JUNB1 | 26JUN81 | 1370181 | 1/JUL81 | ु उ | 7 | 1 | | 64600 | 64700 | | OPB 1 C6 | 809 | PRELIM DEVIL CANYON DAM | THE CT-1 | 15,0061 | 10JUL81 | 20JUL 81 | 1/JUL81 | · I | Ö | 1 COTTECN | | 64700 | 64800 | 0 | OPB 1 C6 | 608 | PRELIM DEVIL CANYON DAM | ALT FIN | 27.111.81 | 24.1111 81 | 27.111 81 | 24.III R1 | ň | ă | 1 CRITICAL
1 CRITICAL | | 69200 | 69300 | | OFB 1 C4 | 609 | ESTAB WATANA DESTON CRI | IEKIA CI-1 | 15JUN81 | 26JUN81 | 13JUL81 | 24.1111.81 | 4 | Õ | 1 CHITTONE | | 69300 | 69400 | 7 | OPB 1 C4 | 609 | ESTAB WATANA DESIGN CRI | TERIA CT-2 | 29JUNB1 | 14AUG81 | 27JULB1 | 115EP81 | 4 | ž | Ī | | 69400 | 69500 | 1 7 7 | OPB 1 C4 | 609 | ESTAB WATANA DESIGN CRI | TERIA FIN | 75EF81 | 115EF81 | 145EF81 | 18SEF81 | 1 | 0 | 1 | | 63500
63600 | 63600
63700 | 7 | OPB 1 C4
OPB 1 C4 | 610
610 | ESTAB DEVIL CANYN DESGN | CRIT CT-2 | 1970481 | 26JUN81 | 1370781 | 24JUL81 | 4 | 9 | 1 | | 63700 | 63800 | Ý | OPB 1 C4 | 610 | ESTAB DEVIL CANYN DESGN
ESTAB DEVIL CANYN DESGN | CRII CITZ | 27JUN01 | 1460001 | 1/00001 | 1125581 | 4 | 3 | 1 | | 66200 | 66300 | 9 R | ÖPÐ Í Č5 | 611 | PRELIM DESIGN WATANA DAI | Y ST | 13.111.81 | 11SEP81
11SEP81 | 20.1111 81 | 185FF81 | † | 0 | 1 | | 66300 | 66400 | 11 | OPB 1 C5 | 611 | PRELIM DESIGN WATANA DA | M CT-1 | 14SEP81 | 27NOV81 | 215EP81 | 4DEC81 | i | ĭ | 1 | | 66400 | 66500 | 4 | OFB 1 C5 | 611 | FRELIM DESIGN WATANA DAI | 4 FIN | 7NFCR1 | 1JAN82 | 7DEC81 | 1JAN82 | 0 | ō | 1 CRITICAL | | 65200
65300 | 65300
65400 | 10 | OPB 1 C6 | 612 | PREL DESIGN DEVIL CANYON PREL DESIGN DEVIL CANYON PREL DESIGN DEVIL CANYON | N DAM ST | 27JUL81 | | 27JUL81 | 20CT81 | 0 | 0 | 1 CRITICAL | | 65400 | 65500 | 4 | OPB 1 C6
OPB 1 C6 | 612
612 | LVET RESIGN BEATT CANADA | N DAM CI-1 | 50CTB1 | 4DECB1 | 50CT81 | 4DEC81 | Ŏ | Ŏ | 1 CRITICAL | | 69800 | 69900 | 11 | OPB 1 C4 | 613 | DAM SELECTION REPORT-DRI | AFT ST | 7DEC81
27JUL81 | 1JAN82 | 7DEC81
190CT81 | 1JAN82
1JAN82 | 12 | 0
12 | 1 CRITICAL | | 69900 | 68500 | 5 | OPB 1 C4 | 613 | DAM SELECTION REPORT-DR | AFT FIN | 4JAN82 | 5FEB82 | 4JAN82 | 5FEBB2 | 0 | 0 | 1 CRITICAL | | 61100 | 61200 | į R | | 614 | SPILLWAY DESIGN CRITERIA | a st | 6APR81 | 10APR81 | 11MAY81 | 15MAY81 | รั | ĭ | 1 ONLINGT | | 61200 | 61300 | 8 | OPB 1 C4 | 614 | SPILLWAY DESIGN CRITERIA | A FIN | 20APR81 | 12JUN81 | 18MAY81 | 10JUL81 | 4 | Ō | 1 | | 60600
61300 | 60700
60600 | 10 | OPB 1 C5
OPB 1 C5 | 615
615 | WATANA SPILLWAY ALTERNA | IIVES FIN
| 27JUL81 | 20CT81 | 24AUG81 | 300CTB1 | 4 | Q | 1 | | 61300 | 61400 | 3 | OFB 1 C6 | 616 | WATANA SPILLWAY ALTERNA
DEVL CAN SPILLWAY ALTERI | NATUE CT | 15JUN81 | 24JUL81 | 13JULU1 | 21 AUG81 | 4 | 0 | 1 | | | | | UU | 440 | TEAL DIE OF TELMEN METERS | miar of | エックのはひて | PUNCOT | 13JUL81 | STANFAT | 4 | 3 | | FAGE TIME NUM: 6APR81 | | I-NODE | J-NODE | DUR | SELECT CODES | | -DESC | RIPT | ION | | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | * des | |---|-------------------------|-------------------------|--------------|--|---------------------|--------------------|----------------------------------|-------------------|----------------------------------|-------------------|-----------------------------|------------------------------|-----------------------------|---|-----------------|-------------|----------|----------------------| | | 61400
621A0
62200 | 61500
62200
62300 | 8 | OFB 1 C6
OFB 1 C5
OFB 1 C5 | 616
617
617 | DEVL CA
PRELIM | N SPILLU
DESGN W | WAY AL | TERNATVE
SPILLWAY | FIN
ST
CT-1 | 27JUL81
6APR81
50CT81 | 18SEP81
1MAY81
300CT81 | 3AUG81
50CT81
2NOV81 | 25SEP81
300CT81
27NOV81 | 1
26 | 220 | 1 | | | | 62300
61500 | 62400
61600 | 10 | OPB 1 C5
OPB 1 C4 | 617
618 | PRELIM | DESON WA | ALANA : | SPILLWAY | F IN | 2NUV81 | SUMPLE TAULT | SOMOART | 71111111111111111111111111111111111111 | 4 | 3 | 1 | | | | 61600
64900 | 61700
65000 | 13 | OPB 1 C6
OPB 1 C4
OPB 1 C4 | 618
619 | PRELIM
SPILLWA | DES DEVI
Y SELEC | IL CAN
IN REP | SPILWAY
RT-DRAFT | FIN
ST | 2NOV81
50CT81 | 29JAN82
13NOV81 | 9NOV81
28DEC81 | 5FEB82
5FEB82 | 1 <u>1</u> | | ī
1 | | | | 65000
6A000 | 65100
6A100 | 3 | UPB 1 C5 | 619
620 | 50000 | 7 | IN MERI | * I - II * O P I | P-1N | 100000 | 30467 | MPPHHY | I / MUNK/ | 32 | | 1 | | | | 6A100
60000 | 6A200
60100 | 6 | OPB 1 C5
OPB 1 C5 | 620
621 | ACCESS
WATANA | & CAMP F
DIVERSI | FACILI
ON SCH | TIES
EMES
EMES | FIN | 26UCT81
6APR81 | 180EC81
15MAY81 | 7UECB1
21SEP81 | 4DEC81
29JAN82
300CT81
25DEC81
25DEC81 | 24
4 | 20 | 1 | | | | 60100
67300
67400 | 60200
67400
67500 | 11 | OPB 1 C5
OPB 1 C6
OPB 1 C6 | 621
622
622 | DEVIL C | ANYON DI
ANYON DI
ANYON TI | IVERSN
IVERSN | SCHEMES
SCHEMES | ST | 6APR81 | 19JUN81 | 120CT81 | 25DEC81
25DEC81 | 27
14 | | 1 | | | | 61800
51900 | 61900 | 10 | OFB 1 C4 | 623
623 | OPT WAT | ANA POWI | ER DEVI
ER DEV | SCHEMES
ELOPMENT
ELOPMENT | ST
CT-1 | 27JUL81
75EP81 | 4SEP81
13NOV81 | 3AUG81
14SEF81 | 11SEP81
20NOV81 | • | 0 | i | | | | 62000
65600 | 62100
65700 | 5 | OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4 | 623
624 | OPT WAT | ANA FOW
L CANYN | ER DEVI
POWER | DEVELOP | FIN | 16NOV81
7SEP81 | 18DEC81
160CT81 | 23NOV61
120CT81 | 25DEC81
20NOV81 | 1 1 5 5 5 7 7 | 0 | 1 | | | | 65700
63900 | 65800
64000 | 5 6 | OPB 1 C4
OPB 1 C4 | 624
625 | OPTIMIZ | E DAM H | PUWER
EIGHTS | DEVELUP | ST | 6APR81 | 20NUV81
15MAY81 | 23NUV81
16NUV81 | 25DEC81
25DEC81 | 32
1 | 31 | î | | | ಸ | 64000
64100
69500 | 64100
64200
69600 | 0
15 | OFB 1 C4
OFB 1 C5 | 625
625
626 | OPTIMIZ
PRFL DE | E DAM H | EIGHTS
AN FOW | FR NEVEL | FIN | 1FER82
14SFP81 | 29JAN82
25DEC81 | 1FEB82
21SEP81 | 20NOV81
25DEC81
25DEC81
25DEC81
25DEC81
29JAN82
29JAN82
1JAN82 | 0 | Ô | 1 (| CRITICAL | | , | 69600
66600 | 69700
66700 | 5 | OPB 1 C5 | 626
627 | PRFI NE | S DEUL | CAN PO | UR DEVEL | ST | 14SEP81 | 250FC81 | 219FPR1 | 1.1482 | . Î | Õ
Q | 1 | | | | 66700
67600 | 11000 | 15
5
5 | OPB 1 C6
OPB 1 C4 | 627
628 | PREL DE
POWER I | S DEVL (| CAN PO
NT REP | WR DEVEL
RT-DRAFT | FIN | 28DEC81
14SEP81 | 29JAN82
160CT81 | 4JAN82
28DEC81 | 5FEB82
29JAN82
5FEB82 | 15 | 14 | 1 | | | | 67700
67800 | 67800
67900 | 1 | OFB 1 C4
OFB 1 C4 | 628
628 | POWER I | EVELOPM | NT REP | RI-DRAFT
RT-DRAFT | CI-1
CT-2 | 1FEB82 | 5FEB82 | 1FEB82
8FEB82 | 12FEB82 | 1 | 0 | 1 | | | | 67900
60300
60400 | 68000
60400
60500 | 4,55 | OFB 1 C5
OFB 1 C5 | 629
629 | WATANA
WATANA | GENERAL
GENERAL | ARRAN
ARRAN | RI-URAFI
GEHENT
GEMENT | ST
FIN | 30NDV81
1FFR82 | 8JAN82
5MAR82 | 28DEC81
8FEB82 | 12FEB82
12MAR82
5FEB82
12MAR82
16APR82 | 4 | 0
3
0 | 1 | | | | 60500
60800 | 605A0
60900 | Ŏ
6 | OFB 1 C4
OFB 1 C4
OFB 1 C4
OFB 1 C4
OFB 1 C5
OFB 1 C5
OFB 1 C5
OFB 1 C6
OFB 1 C6 | 629XX
630 | EXHIBIT
DEVL CA | J MATE | RIAL C
AL ARR | OMPLETE
ANGEMENT | ST | 8MAR82
21SEP81 | 5MAR82
300CT81 | 19AFRB2
28DEC81 | 16APR82
5FEB82 | 6
14 | 13 | i | | | • | 60900
61000 | OTAMA | 5 | OLD I CO | 630XX | EXHIBIT | K MATE | RIAL C | OMPLETE | | 8MAR82 | 5MAR82 | 15MAR82 | 12MAR82 | 1 | 0 | 1 | | | • | 68000
68400
68500 | 680A0
68500
68600 | Q
1
A | OPB 1 C4
OPB 1 C4
OPB 1 C4 | 630XX
631
631 | PROJECT | M MAILI
FEASIB | KIAL C
L REPO | OMPLETE
RT-DRAFT
RT-DRAFT | ST-1 | BMARB2
21DECB1 | 25DEC81 | 19AFK82
1FEB82
8FEB82 | | 6 | 6
6
0 | 1 | CRITICAL | | | 68600
68700 | 68700
68800 | 1 | OFB 1 C4
OFB 1 C4 | 631
631 | PROJECT | FEASIB | L REPO | RT-DRAFT
RT-DRAFT | CT-2 | 8MAR82 | 12MAR82 | 8MAR82 | 12MAR82 | Ŏ | Ŏ | 1 (| CRITICAL
CRITICAL | | | 68800
68900 | 68700
67000 | 4 | OPB 1 C4
OPB 1 C4 | 631
631 | PROJECT
PROJECT | FEASIB | L REPO
L REPO | RT-DRAFT
RT-DRAFT | CT-4 | 22MAR82
19AFR82 | 16APR82
16APR82 | 22MAR82
19APR82 | 16AFR82
16AFR82 | 0 | 0 | 1 (| CRITICAL
CRITICAL | | | 69000
6C100 | 690A0
6C200 | | OPB 1 C4
R OPB 1 C2 | 631XX
637 | EXHIBIT
UPDATE | L MATEI
GENERAT | RIAL C
ION PL | OMPLETE
AN | | 19APRB2
6APRB1 | 16AFR82
BMAY81 | 19AFR82
29MAR82 | 16APR82
30APR82 | 0
5 <u>1</u> | 0
59 | 1 (| CRITICAL | | | 69800
71400
71600 | 6B900
71600
71800 | 0 | R OPB 1 C2
OPB 1 CB
R OPB 1 CB | 638
7011
7012 | STUDY (| COORD-AL | .TERNAT | ONSULTAN
IVE SITE
LTERNATV | FIN | 6APR81 | 3AFR81
10JUL81 | 6aprei | 25JUN82
3AFR81
17.III.81 | 0 | 0 | 1 (| CRITICAL | | | 71800
72000 | 72000
72200 | 0
28 | OPB 1 CB
OPB 1 CB | 7012
7013 | STUDY (| COORD-PR
COORD-OF | ELIM A | LTERNATV
D DESIGN | FIN | 13JUL81
20JUL81 | 10JUL81
29JAN82 | 20JUL81
20JUL81 | 17JUL81
29JAN82 | 1 0 | 1 0 | i
i (| CRITICAL | | | 79300 | 79400 | 59 | R OFB 1 CB | 702 | HONITO | R FIELD | ACTIVI | TIES | CT-1 | 6APR81 | 21MAY82 | 11MAY81 | 25JUN82 | 5 | 0 | 1 | | PAGE 6APR81 TIHE NOW: | | I-NODE | J-NODE | DUR | SELECT | CODES | | DESC | RIP | TION | to be to the six on an | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | |----------|---|---|--------------------|---|----------------------|--------------------------------------|--|--------------------------------------|--|--|--------------------------|---|--|--|---|--------------------------|-------------------|--| | | 79400
71600
72000
73200 | 70600 | 15 R
28
0 | OPB 1 | C8
C8
C8 | 702
7042
7043
705 | MONITOR
WTR RES
WTR RES
SOCIOEC | FIELD
-FRE W
-OPT W
ONOMIC | ACTIVI
JAT&DEVL
JAT&DEVL
ANALYS | TIES
CAN ALT
CAN DES | FIN | 24MAY82
6APR81
20JUL81
8MAR82 | 21MAY82
17JUL81
29JAN82
5MAR82 | 28JUN82
6APR81
20JUL81
8MAR82 | 25JUNB2
17JUL81
29JAN82
5MAR82 | 5 0 0 | 5000 | i CRITICAL i CRITICAL i CRITICAL i CRITICAL i CRITICAL i I i i i i i i i i i i i i i i i i i i | | | 73300
78600
78700
78800 | 73200
78800
79000 | 48
2 R | OPB 1 | C8
C8
C9 | 705
7061
7061
7061 | SOCIOEC
CULTURA
CULTURA
CULTURA | ONOMIC
L ALTE
L-ALTE
L ALTE | ANALYS
RNATIVE
RNATIVE
RNATIVE | IS
SITES
SITES
SITES | CT-2
ST
FIN
FIN | 6APR81
6APR81
14SEP81
20APR81 | 5MAR82
17APR81
11SEP81
11SEP81 | 6AFR81
13AFR81
21SEF81
27AFR81 | 5MAR82
24APR81
18SEP81
18SEP81 | 0 1 1 | 9000 | 1 CRITICAL | | | 78900
79000
79100
79400 | /9/00 | 15 | OFB 1
OFB 1
OFB 1
OFB 1
OFB 1 | C8
C8
C8
C8 | 7062
7062
7062
7063 | CULTURA
CULTURA
CULTURA
CULTURA | L PREL
L PREL
L PREL
L-OPTI | IM ALTE
IM ALTE
IM ALTE
MIZED D | RNATIVES
RNATIVES
RNATIVES
ESIGN | ST
CT-1
FIN
ST | 6APR81
14SEP81
23NOV81
6APR81 | 29NAY81
20NOV81
20NOV81
17JUL81 | 27JUL81
21SEP81
30NOV81
17AUG81 | 185EP81
27NOV81
27NOV81
27NOV81 | 16
1
1
19 | noon | 4 | | | 79700
79800
79900
75200 | 79900
799A0
75300 | 0
0
70 P | OFB 1
OFB 1
OFB 1 | C8
C8
C8 | 7063
7063
706XX
7071 | CULTURA
CULTURA
EXHIBIT
LAND US | L-OFT]
L-OFTI
V MA]
E ALTE | MIZED D
MIZED D
ERIAL C
RNATIVE | ESIGN
ESIGN
OMPLETE
SITES | CT-1
FIN
ST | 23NOV81
12APR82
12APR82
6APR81 |
9APR82
9APR82
9APR82
300CT81 | 30NOV81
19APR82
19APR82
4MAY81 | 16AFR82
16AFR82
16AFR82
27NDV81 | 1
1
1
4 | OMO | | | | 75300
75900
76000
76100 | 76000
76000
76100
76800 | 0
8
10
0 | OFB 1
OFB 1
OFB 1
OFB 1
OFB 1
OFB 1
OFB 1 | C8
C8
C8 | 7071
7072
7072
7072 | LAND US
LAND US
LAND US | E ALTE
E PREL
E PREL
E PREL | RNATIVE
IM ALTE
IM ALTE | SITES
RNATIVES
RNATIVES
RNATIVES | FIN
ST
CT-1
FIN | 2NOV81
6APR81
2NOV81
11JAN82 | 300CT81
29MAY81
8JAN82
8JAN82 | 30NOV81
50CT81
30NOV81
8FEB82 | 27NOV81
27NOV81
5FEB82
5FEB82 | 26
4
4 | 2200 | 1 | | | 76700
76800
76900
72500 | 76800
76900
77000
72700 | 15
20
0
6 | OFB 1
OFB 1
OFB 1 | C8
C8
C8 | 7073
7073
7073
708 | LAND US | E OPTI | MIZED D | ESIGN
ESIGN | CT-1 | 11JANB2
31MAYB2 | 17JUL81
28MAY82
28MAY82
15MAY81
5MAR82 | 8FEB82
28.IUNR2 | 25JUNB2
25JUNB2 | 29
4
A | 9 | 1 | | | 72600
73500
73700
73800 | 73800 | 11 R | ก็หั้ง | řă | 708
7092
7101
7101 | RECREAT
TRANS L
FISH EC
FISH EC | ION PL
INE AS
OLOGY
OLOGY | ANNING
SESS RT
ALTERNA
ALTERNA | E SELECT
TV SITES
TV SITES | FIN
N
CT-2
FIN | 1FEB82
6APR81
3AUG81
190CT81 | 5MAR82
26JUN81
160CT81
160CT81 | 1FEB82
13JUL81
50CT81
21DEC81 | 5MAR82
20CT81
18DEC81
18DEC81 | 78
0
14
9 | 14
0
0 | 1 CRITICAL
1
1
1 | | | 73900
74100
74200
74300
74500 | 73700
74200
74300
74600 | 10 | OFB 1
OFB 1
OFB 1
OFB 1 | C8
C8
C8 | 7101
7102
7102
7102 | FISH EC
FISH EC
FISH EC | OLOGY
OLOGY
OLOGY | PRELIM
PRELIM
PRELIM | ALTERNAT
ALTS
ALTERNAT | CT-1
FIN | 4MAY81
6AFR81
190CT81
28DEC81 | 24JUL81
29MAY81
25DEC81
25DEC81 | 13JUL81
260CT81
21DEC81
1MAR82 | 20CTB1
18DEC81
18DEC81
20CTB1
18DEC81
26FER82
26FER82 | 10
29
9 | 200 | 1 1 1 1 | | ŧ | 74500
74600
74700
74900
75000 | 74600
74700
74800
75000
75100 | 17
0
30 R | OFB 1
OFB 1
OFB 1
OFB 1 | CB | 7103
7103
7111 | FISH EC
FISH EC
WILDLIF | OLOGY
OLOGY
E ECOL | OPTIMIZ
OPTIMIZ
OGY ALT | ED DESGN
ED DESGN
ER SITES | CT-1
FIN
ST | 8FEB82
7JUN82
6APR81 | 4JUNB2
4JUNB2
4JUNB2
300CTB1 | 1MAR82
28 JUN82
4MAY81 | 25JUN82
25JUN82
25JUN82
27NOV81 | 29
9
32
33
4 | 20000 | | | * | 75500
75400
75700
76300 | 75600
75700
76400
76400 | 8
10
0
15 | OFB 1
OFB 1
OFB 1
OFB 1 | C8 | 7111
7112
7112
7112
7113 | WILDLIF
WILDLIF
WILDLIF | E ECOL
E ECOL
E ECOL | .OGY PRE
.OGY PRE
.OGY PRE | ER SITES
LM ALTER
LM ALTER
LM ALTER | ST
CT-1
FIN | 6AFR81
2NOV81
11JAN82 | BJAN82 | 50CT81
30NOV81
8FEB82 | 27NOV81
5FEB82
5FEB82 | 26
4
4 | 2200 | | | | 76400
76500
77100
77200 | 76500
76600
77300
77500 | 20
0
10 | | C8
C8
C8 | 7113
7113 | WILDLIF | E ECOL | OGY OPT | IM DESGN IM DESGN IM DESGN ATV SITE | CT-1 | 11JAN82
31MAY82 | 17JUL81
28MAY82
28MAY82
12JUN81 | 8FEB82
28JUNB2 | 5FER92
25JUN92
25JUN92
3JUL81 | 29
4
4
3
3 | 25
0
4
0 | 1 | | | 77300
77400
77500
77600 | 77200
77500
77600
77900 | 21
8
10
0 | OPB 1
OPB 1
OPB 1 | C8 | 7121
7122
7122
7122
7122 | PLANT E
PLANT E
PLANT E
PLANT F | COLOGY
COLOGY
COLOGY | ALTERN
PRELM
PRELM
PRELM | ATV SITE
ALTERNAT
ALTERNAT
ALTERNAT | SCT-1
ST
CT-1 | 15JUN81
6APRB1
9NOV81 | 6NOV81
6NOV81
29MAY81
15JAN82
15JAN82
17JUL81
4JUN82 | 6JUL81
50CT81
30NOV81 | 27NOV81
27NOV81
27NOV81
5FEB82
5FEB82 | 26
3
3
3 | 0
23
0
0 | | | | 77800
77900 | 77900
78000 | 15
20 | | C8 | 7123
7123 | PLANT E | COLOGY
COLOGY | OPTINI
OPTINI | ZD DESGN
ZD DESGN | ST
CT-1 | 6APR81
18JAN82 | 17JUL81
4JUN82 | 250CT81
8FEB82 | 5FER82
25JUN82 | 29
3 | 26
0 | i | PAGE TIME NCW: 6APR81 PAGE TIME NOW: 6APR81 | | | | | | | | | | | | | | | • • • • • • • • • • • • • • • • • • • | | | | |----------------|----------------|----------------|----------------|--------------------------------------|----------------|---------|--------------------|------------------|-----------------------|------------|--------------------|--------------|-----------|--|----------|----------|---| | I-NODE | J-NODE | DUR | SELECT | CODES | | ESC | RIF | TIO | N | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | | | A0900 | 10 | FLC | C110 | 10052 | PREPAR | E EXHIB | II D | | 0 # | 30NDV81 | 5FEB82 | 8MAR82 | 14MAY82 | 14 | 14 | 1
1
1
1
1 CRITICAL
1 CRITICAL
1 CRITICAL
1 CRITICAL
1
1
1 | | 0080A
0000A | | 10
6 | FLC
FLC | C110
C110 | 1006
1007 | PREPAR | E EXHIB
F FXHIR | II K | | ST | 30NUV81
14SFPR1 | 230CT81 | 21SFP81 | 16AFN82
300CT81 | 10 | 10 | 1 | | A0200 | A1100 | Λ | EIC | C110 | 1007 | PREPAR | E EXHIB | îi i | | FIN | 260CT81 | 20NOV81 | 2NDV81 | 27NOV81 | i | Ŏ | i | | A2200 | A2400 | 6 | FLC | C110 | 1008 | PREP A | PPLICAT | N FORM | -DRAFT | ST | 30NOV81 | 8JAN82 | 8MAR82 | 16APR82 | 14 | 14 | 1 | | A2400
A2600 | A2600 | g | FLC | C110
C110 | 1008 | PREP A | FFLICAT | N FUKM
DDERT | -DRAFT | FIN | 19AFR82 | 16APR82 | 19AFR82 | 16APR82 | Ŏ | Q. | 1 CRITICAL | | A2800 | A3000 | 2 | FLC | Ciio | 1010 | EXTERN | AL REVI | EN | | | 3MAY82 | 14MAY82 | 3MAY82 | 14MAY82 | Ô | (D) | 1 CRITTCAL | | A3000 | | 6 | FLC | C110 | 10XXX | FRINT | LICENSE | APPLI | CATION | | 17MAY82 | 25JUN82 | 17MAY82 | 25JUN82 | Ŏ | Q | 1 CRITICAL | | B0000 | B0200 | 63 R
53 R | FLC | C210
C210 | 1101 | PROJEC | T OVERY | IEM | | | 6APR81 | 18JUN82 | 13APR81 | 25JUN82 | 1 | 1 | 1 | | B0400
B0600 | B0600
B0680 | 23 K | FLU | C210 | 1102
1102XX | THIFKH | AL KEPU | KIS
Edtai | COMPLETE | | 6AFKB1 | 9APK82 | 1345881 | 16AFK82 | 1 | Q. | 1 | | B1200 | B1400 | 0
42 R | FLC | C210 | 1103 | SUSITN | A BASE | ERIAL R | ISK ANAL | YST | KAPR81 | 22.JAN82 | 13AFR81 | 29.JANR2 | 1 | Ĝ | 1 | | B1400 | B1600 | _0 | FLC | C210
C210
C210
C210
C210 | 1103
1104 | SUSITN | A BASE | FLAN R | ISK ANAL | YFIN | 25JAN82 | 22JAN82 | 1FEB82 | 29JAN82 | ī | Q. | i | | B1600 | B1800 | 70
21
30 | FLC | C210 | 1104 | SUSITN | A BASE | FLAN E | XTEN/REV | IS
TC | 25JAN82 | 18JUN82 | 1FEB82 | 25JUN82 | 1 | 1 | į | | B2000
B2400 | | 24 | FLC | C210
C210 | 1105 | 2021 IN | H FINAN
TINN TA | A LCC!! | r ANALID | 19 | 189997
1870F9 | 29JAN82 | TRANKI FF | 25JUN82 | 21 | 21
40 | 1 | | B2800 | B3000 | 30 | FLC
FLC | C210 | 1107 | IDENTI | FY PART | IES IN | TEREST | | 6JUL81 | 29JAN82 | 30NOV81 | 25JUN82 | 21 | 21 | 1 | | B3200 | B3400 | 30 | FLC | C210 | 1108 | REVENU | E ASSUR | ANCE | | | 6JUL81 | 29JAN82 | 215EP81 | 16APR82 | īī | 2102 | î | | B3600 | B3800 | 52 R | FLC | C210 | 1109 | LIAISO | n apa e | OND UN | DERWRITE | R | 6AFR81 | 2AFR82 | 20APR81 | 16APR82 | | .2 | 1 | | B3400
C0600 | #34AQ | Q | TLU
DDD 1 | C210 | 1107XX | FXHIRI | I G MAI | C MECT | CUMPLEIE | | 11 FRAS | SANUA SANUAS | 178FK82 | 16AFK82 | 11 | 110 | 1 | | C1200 | C1400 | 4 | OPB 1 | C810 | 12023 | CONDUC | T PUBLI | C MEET | ING #3 | | 24AUG81 | 18SEP81 | 22MAR82 | 16AFR82 | 30 | 30 | i | | C0200 | CC400 | 3 R | OFB 1 | C810 | 12031 | CONDUC | T WORKS | HOPS 1 | ,2,3 | | 6APR81 | 24APR81 | 9N0V81 | 27NOV81 | 31 | 1 | i | | C0800 | C1000 | 12 | · UPB 1 | C810 | 12032 | CONDUC | T WORKS | HOPS 4 | 25,6 | | 1JUN81 | 21AUG81 | 28DEC81 | 19MAR82 | 30 | Ò | 1 | | C1600
C1800 | D1200
D1200 | 63 K | OPB 1 | C810 | 1204 | PREP P | UHLISH | DISIRI | R WAIFKI | AL | 445534
445534 | 1830082 | 1300001 | 25JUNB2 | - 1
1 | 1 | | | D1000 | D1200 | 27 R | P5B 2 | C310 | 13013 | PROJEC | T PROCE | D MANU | AL-UPDAT | E | 6AFR81 | 90CT81 | 210EC81 | 25JUN82 | 37 | 37 | 1 | | D2200 | D2400 | 63 R | PSB 2 | C310 | 13042 | SCHEDU | LE CONT | ROL SY | S UPDATE | | 6APR81 | 18JUN82 | 13APR81 | 25JUN82 | 1 | 1 | Ĩ | | D2800 | D3000 | 63 R | PSB 2 | C310 | 13052 | COST C | ONTROL. | SYSTEM | -OP | j | 6APR81 | 18JUN82 | 13APR81 | 25JUNB2 | 1 | 1 | 1 | | D3400
D3800 | D3600
D4000 | 65 K | PSB 2
PSB 2 | 1310
1710 | 13002 | CHE CO | NTPACT | NU SUN
INTANA | EU-UPUA I
GTRATTAN | E | 400001 | 1810085 | 1305001 | 25JUN52 | 1 | 1 | I. | | D1200 | D1300 | 00 10 | FOD Z | 10 | XXX | PROJEC | T COMPL | ETE | XXX | | 28JUN82 | 25JUN82 | 28JUN82 | 25JUN82
25JUN82
25JUN82
16APR82
16APR82
25DEC81
16AFR82
27NOV81
19MAR82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82
25JUN82 | Ô | 20 | 1 CRITICAL | ### ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT PAGE TIME NEW: 6APR81 ### CPM ANALYSIS LISTING | | | | | | tion and and total and the same time time total time time time time time time time time | | | | • | | | |--------|---|---|--|----------------------------------
--|-------------------|------|-----|--|----|--| | | I-NODE | J-NODE | DUR SELECT CODES | 3 | -DESCRIPTION | |
 | | | | ب من عبد النظام والمن عبد النظام المن المناه | | 1 | 10000
10400
12100
11800
20200 | 10600
10500
11800
11900
20300 | 0 C OFB 1 C2
0 C OFB 1 C2
0 C OFB 1 C2
0 C OFB 1 C2
0 C OFA C2 | 101
102
103
108
2021 | REVIEW OF METHODOLOGIES FCST FEAK LOAD DEMAND TRANS INDENT OF POWER ALTERNAT TERMINATION REFORT | ST | | | there is the state of | | COMPLETE
COMPLETE
COMPLETE
COMPLETE | | | 20300
21200
21600 | 20400
21500 | 0 C 0FA C2
0 C 0FA C2 | 2021
204 | FIELD CAMP SET-UP
FIELD CAMP SET-UP
LAND STATUS RESEARCH | FIN | | | | | COMPLETE | | ę | 20800 | 21700
21000 | O C OPA C2
O C OPA C2 | 205
206 | RIGHT OF ENTRY | ST | | | | | COMPLETE
COMPLETE
COMPLETE | | i
V | 25000
23000
24000
23600 | 25200
23200
24100
23800 | 0 C OPA C3
0 C OPA C3
0 C OPA C3
0 C OPA C3 | 207
2081
2082
209 | SITE SPECIFIC SURVEYS
AIR PHOTOS & MAPPING-1980
AIR PHOTOS & MAPPING-1981
CONTROL NETWORK SURVEYS | ST
ST
ST | | | | | COMPLETE
COMPLETE
COMPLETE | | | 22200
25600 | 22300
26600 | O C OPA C3
O C OPA C3 | 210
211 | ACCESS ROAD
MAP & PHOTO SEARCH
FIELD RECON FOR RSRVR CLEAR | ST | | | | | COMPLETE
COMPLETE | | | 26400
24400 | 26600
24600 | 0 C OPA C3 | 212
216 | HYDROGRAPHIC GURUFYG | ST
ST | | | | | COMPLETE | | | 32600
32800
36200 | 32800
33000
36400 | 0 C OPB 1 C4
0 C OPB 1 C4
0 C OPB 1 C4 | 301
301
3021 | REVIEW AVAILABLE MATERIAL REVIEW AVAILABLE MATERIAL FIELD DATA INDEX-SETUP FIELD DATA INDEX-SETUP | ST
FIN
ST | | i . | | • | COMPLETE | | 40 | 36400
37000
37400 | 36600
37200
37500 | O C OPB 1 C4
O C OPB 1 C4
O C OPB 1 C4 | 3021
3031
3032 | rielu uaia kuritkiitun-setis | FIN | | | | €. | COMPLETE
COMPLETE
COMPLETE | | | 32800
33200 | 33200
33300 | 0 C OFB 1 C4
0 C OFB 1 C4 | 3041
3041 | FIELD DATA COLLECTION 80-81 WATER RSRCS-FLOW EXTENSION WATER RSRCS-FLOW EXTENSION | ST
CT-1 | | • | | | COMPLETE
COMPLETE
COMPLETE | | | 34200
31600
30000 | 34400
31800
30200 | O C OPB 1 C4
O C OPB 1 C4
O C OPB 1 C4 | 3043
3053
3061 | WATER RSRCS-FLOW EXTENSION WATER RSRCS-RESERVOIR STUDY FLOODS-RESERVOIR ROUTING | ST
ST
ST | | | | | COMPLETE | | | 38800
33400 | 39000
33600 | 0 C OFB 1 C4
0 C OFB 1 C4 | 3063
3072 | HYDRLS&ICE-CHANNEL WTR LVLS HYDR&ICE-RESER SLIDE SURGE RIVER MORPHOLOGY | ST
ST | • v | | | | COMPLETE
COMPLETE
COMPLETE | | 1 | 38000
30800
43100 | 38200
31000
43200 | 0 C OFB 1 C4
0 C OFB 1 C4 | 3081
3101 | RIVER MORPHOLOGY
TRANSMSN LINE-FRLM PARAMTR
LWR SUSITNA STUDIES-PRELIM
REVIEW AVAILABLE DATA | ST | | | | à | COMPLETE | | 1, | 43200
43400 | 43400
41200 | 0 C OFB 1 C1
0 C OFB 1 C1
0 C OFB 1 C1 | 401
401
401 | REVIEW AVAILABLE DATA | ST
CT-1
FIN | | | | | COMPLETE | | | 44200 | 44200
41200 | 0 C OPA C4
0 C OPA C4 | 402
402 | REVIEW AVAILABLE DATA
SHORT TERM MONITORNG PROGRAM
SHORT TERM MONITORNG PROGRAM | ST
FIN | | | | | COMPLETE
COMPLETE | | | 40000
40300
40600 | 40200
40600
40800 | 0 C OPB 1 C1
0 C OPB 1 C1
0 C OPB 1 C1 | 403
404
404 | PRELIM RESERVE INDUCTO SEISMO
REMOTE SENSING IMAG ANALYSIS | ST | | | | | COMPLETE | | | 40800
42200 | 42000
42400 | 0 C OPB 1 C1
0 C OPA C4 | 404
405 | REMUTE SENSING IMAG ANALYSIS
SEISMIC GEOLOGIC RECONASANCE | FIN | | | | | COMPLETE | | | 41000
41200
41300 | 41200
41400
41600 | 0 C OFB 1 C1
0 C OFB 1 C1
0 C OFB 1 C1 | 406
406
406 | REVIEW AVAILABLE DATA SHORT TERM MONITORNG PROGRAM SHORT TERM MONITORNG PROGRAM PRELIM RESERVE INDUCTO SEISMO REMOTE SENSING IMAG ANALYSIS REMOTE SENSING IMAG ANALYSIS REMOTE SENSING IMAG ANALYSIS SEISMIC GEOLOGIC RECONASANCE PRELIM EVALUATION & REPORT PRELIM EVALUATION & REPORT PRELIM EVALUATION & REPORT PRELIM EVAL & REPORT DRAFT PRELIM EVAL & REPORT DRAFT PRELIM GROUND MOTION STUDIES DAM STABILITY DATA COLLECTION DATA COLLECTION AIR PHOTO INTERPRETATION | ST
CT-1 | | | | | COMPLETE
COMPLETE
COMPLETE
COMPLETE
COMPLETE
COMPLETE
COMPLETE | | | 44200
45600 | 45000
45800 | 0 C OFB 1 C1
0 C OFB 1 C1 | 407
408 | PRELIM GROUND MOTION STUDIES DAM SYABILITY | ST | | | | | COMPLETE
COMPLETE
COMPLETE | | | 50000
50200
50400 | 50200
50400
50600 | 0 C OPB 1 C1
0 C OPB 1 C1 | 501
501 | DATA COLLECTION . DATA COLLECTION | ST
CT-1 | | | | | COMPLETE | | | 50200 | 51200 | 0 C OFB 1 C1
0 C OFB 1 C1 | 501
502 | AIR PHOTO INTERPRETATION | ST | | | | | COMPLETE | PAGE 6APR81 TIME NOW! | <u> </u> | | | | | | | <u></u> | | | | | |
 | | | · | | | |----------|----------------|----------------|-----|--------|--------------|--------------|---------|-----------------------------------|---|--------------------
---|--|------|---|---|---|---|----------------------| | I- | NODE | J-NODE | DUR | SELE | CT CODES | | DES | CRIP | KOIT | | | | | | | | | | | | 0800 | 51600 | 0 (| OPB : | 1 C1 | 503 | 1980 | PROGRAM | DESIGN | | | | • | | | | | COMPLETE | | | 1000 | 51600 | | OPA | C4 | 504 | 1980 | EXPLORAT | ION FROG | RAM | | | | | | | | COMPLETE | | ا
ا | 2000 | 52200 | | OFB | | 505 | 1981 | PRUURAM | TEPTON | | 51 | | | | | | | COMPLETE | | - | 1400 | 51600 | | | i Ci | 5081 | | ASSEMBLY | | | ST | | | | | | | COMPLETE | | | 2800 | 53000 | 0 [| | 1 Ci | 5082 | | ASSEMBLY
EN PREVIO | | | ST
ST | | | | | | | COMPLETE | | 7 | 2500
2540 | 625A0
62600 | 0 0 | | 1 C4
1 C4 | 601
601 | | EW PREVIO | | | FIN | | | | | | | COMPLETE
COMPLETE | | Ž | 2600 | 626A0 | ŏč | | î Ĉi | 603 | EVAL | ÄLT SÚSI | TNA DEVE | LOPMENT | | | | | | | | COMPLETE | | E | 26A0 | 62700 | 0 0 | | 1 C4 | 603 | | ALT SUST | | | | | | | | | | COMPLETE | | Ć | 2700 | 627A0 | 0 (| | 1 C4 | 603 | EVAL | ALT SUST | TNA DEVE | LOPMENT | CI-2 | | | • | • | | | COMPLETE | | Ć | 27A0 | 62800 | Ŏ [| | 1 54 | 603 | EVAL | ALT SUST | INA DEVE | LUPMENT | U1-3 | | | | | | | COMPLETE | | Ś | 2800
8100 | 62900
68200 | 0 0 | OPI | 1 C4
1 C6 | 603
604 | EVAL | ALT SUSI | INA DEVE | LUPMENI | FIN
CT | | | | | | | COMPLETE | | 2 | 8200 | 68300 | | | 1 C6 | 604 | DEVL | CAN ARCH | I DAM FUL | ILUMITUN | FIN | | | | | | | COMPLETE | | 7 | 6900 | 669A0 | ŏŏ | | 1 C4 | 6051 | SĒLĒ(| CT REPORT | DRAFT | L.On L. LON | 1 411 | | | | | | | COMPLETE | | | 69A0 | 67000 | 0 0 | | 1 C4 | 3052 | SELEC | CT REPORT | FINAL I | RAFT | ST | | | | | | | COMPLETE | | | 5900 | 659A0 | 0 (| | 1 C4 | 606 | STAGE | ED DEVELO | PHENT AL | TS | ST | | | | | | | COMPLETE | | | 59A0 | 659B0 | 0 (| | 1 C4 | 60 6 | | ED DEVELO | | | CT-1 | | | | | | | COMPLETE | | | 59B0 | 66000 | Ŏ | | 1 C4 | 606 | SIAGE | ED DEVELO | JEMENI AL | . 15
Tedalated | FIN | | | | | | | COMPLETE | | | 3000
3100 | 63100
631A0 | 0 (| | 1 C5
1 C5 | 607
607 | PREL. | IM WATANA
IH WATANA | H DHN HL | CUNVICO | ST
CT-1 | | | | | | | COMPLETE
COMPLETE | | | 54400 | 64500 | 0 (| | 1 C6 | 808 | PRFL | IN DEVIL | LVUANUM I | INVATES | ST | | | | | | | COMPLETE | | | 4500 | 64600 | ŏč | | i C6 | 808 | FREL | IN DEVIL | CANYON I | AM ALT | ČŤ-1 | | | | | | | COMPLETE | | Č | 9100 | 69200 | Õ | | 1 C4 | 609 | ESTA | B WATANA | DESIGN (| CRITERIA | ST | | | | | | | COMPLETE | | | 3400 | 63500 | 0 (| | 1 C4 | 610 | ESTAI | B DEVIL (| CANYN DES | GN CRIT | | | | | | | | COMPLETE | | 6 | A500 | 6A600 | Ŏ | COPB | 1 62 | 632
632 | THER | MAL GENER
MAL GENER | KATION RE | SOURCE | ST. | | •. | | | | | COMPLETE | | Ć | 64600
64700 | 6A700
6A800 | 0 0 | | 1 C2
1 C2 | 632
632 | TUED | MAL GENEI | (A) JUN KE | COUNTE | CT1
FIN | | | | | | | COMPLETE | | | 64700 | 6B100 | ŏi | | i C2 | 633 | HYDRO | D GENERAT | TION RESI | HRCES | ST | | • | | | | | COMPLETE | | | B100 | 6B200 | ŏi | | i čž | 633 | HYDRO | D GENERAT | TION RESI | URCES | ČŤ-1 | | | | | | | COMPLETE | | | B200 | 6B300 | ŏi | | i čž | 633 | HYDR | o genera | TION RESI | JURCES | FIN | | | | | | | COMPLETE | | • | SB500 | 6B600 | 0 (| | 1 CB | 6341 | ENVI | RONMENT A | assessmen | IT | ST | | | | | | | COMPLETE | | | B600 | 6B700 | Q (| | 1 CB | 6341 | ENVI | RONMENT | ASSESSMEN | ĮŢ | CT1 | | | | | | | COMPLETE | | | 68700
60600 | 6C300
6C700 | 0 (| | 1 C8
1 C8 | 6341
6342 | ENUT | RONMENT A | ASSESSMEN
ACCECCHE | (
JT-FTNAI | FIN | | | | | | | COMPLETE
COMPLETE | | | C800 | 6C700 | ŏ | ÖPB | | 635 | i nan | MANAGE | CONSER |); | North Control of the | | | | | | | COMPLETE | | | D100 | 6D200 | Ŏ | | 1 Č2 | 6361 | GENE | RATION FI | AN FARA | IATERS | | | | | | | | COMPLETE | | (| SD300 | 6D3A0 | 0 (| C OPB | 1 C2 | 6362 | GENE | RATION PI
RAT PLAN
RAT FLAN | ANALY & | REPORT | ST | | | | | | | COMPLETE
COMPLETE | | , (| OAEGE | 6D400 | | COPB | | 6362 | GENE | RAT FLAN | ANALY & | REPORT | CT-1 | | | | | | | COMPLETE | | | SI1400 | 6D500 | | | 1 C2 | 6362 | GENE | RAT PLAN | ANALY & | REPURI | UI-2 | | | | | | | COMPLETE | | | 5D500 | 6D600 | Ŏ (| | | 6362 | GENE | RAT FLAN
Y COORD-
Y COORD- | ANALY & | KEPUKI
DUC GITE | LT-0 | | | | | | | COMPLETE | | • | 71200
70800 | 71400
71000 | | COPB | 1 CB | 701
7011 | STIID | A COOKD- | VI LEVNYL. | INE SILE | CT -2 | | | | | | • | COMPLETE
COMPLETE | | | 71000 | 71200 | | | i CB | 7011 | STUD | Y COORD- | AL TERNAT | IVE SITE | CT-1 | | | | | | | COMPLETE | | | 79200 | 79300 | ō i | | | 702 | MONI | Y COORD-
TOR FIEL | D ACTIVI | TIES | ST | | | | | | | COMPLETE | | | 71000 | 71100 | | | 1 C8 | 7041 | WATE | R RESOUR | CE ALT S | ITES | | | | | | | | COMPLETE | | | 73000 | 73100 | | | 1 CB | 705 | SOCI | OECONOMI
OECONOMI | C ANALYS | [5 | ST | | | | | | | COMPLETE | | | 73100
72400 | 73300 | 0 | | 1 C8 | 705 | 5061 | ULLUNUM! | L ANALIS | 15 | 61-1
61 | | | | | | | COMPLETE | | | 71200 | 72500
73500 | | C OPB | 1 C8
1 C8 | 70B
7091 | TPAN | EATION PI
S LINE A | CCLCC CL | REFNING | ST
CT-1
CT-2
FIN
CT-2
ST
CT-1
ST
ST
ST
ST | | | | | | | COMPLETE | | | 736ÃŎ | 73900 | | C OF B | | 7101 | FISH | ECOLOGY | ALTERNA | V SITES | ST | | | | | | | COMPLETE | | | | | • | | | | | | · · · · · · · · · · · · · · · · · · · | | t T ', 'S. | | | | | | | | # ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT PAGE 6APR91 TIME MEN! | I-NODE | J-NODE | DUR SELECT CODES | 3 | DESCRIPTION | me entre afte til en myr eine ente sine tabl den sam enn den vog dies sine sam som bler bes bes bes and
John voll sink sine pan | n destruited with spire twin two was sent and also deep some and page some | The state of s | | |---|--|--|--|--|--|--
--|--| | 80000
80200
A2000
D0200
D0400
D0600
D0600
D1400
D2000
D2600
D3200
D1600
D1800 | 80200
80400
A1600
C0200
D0400
D0600
D1000
D1500
D2200
D2800
D3400
D1900 | O C OFR 1 C3
O C OFR 1 C3
O C FLC C110
O C OFR 1 C810
O C PSR 2 C310
O C310 | 801
801
10021
12021
13011
13011
13012
1302
130 | SELECT INITIAL CORRIDORS SELECT INITIAL CORRIDORS ESTABLISH REGULATORY REQUIRE CONDUCT PUBLIC MEETING #1 PROJECT PROCED MANUAL-DRAFT PROJECT PROCED MANUAL-DRAFT PROJECT PROCED MANUAL-FINAL FINANCIAL CONTROL PROCEDURES PROJECT MASTER SCHEDULE SCHEDULE CONTROL SYSTEM-DEV COST CONTROL SYSTEM-DEV MANPOWER LOADING SCHEULE-DEV DEVELOP ACCOUNTING POLICIES DOCUMENTATION CONTROL | ST
CT-1
FIN | | | COMPLETE | TIME NOW: PAGE 6APR81 ### CPM ANALYSIS LISTING | | I-NODE | J-NODE | DUR SELECT CODES | | D E S C R I F T I O N | | ************************************** | · · · · · · · · · · · · · · · · · · · | men game and game, bank finish | er, sail side delle man rind tivit delle man magi man que quan. | |----------|---|---|--|----------------------------------|---|---------------|--|---------------------------------------|--|---| | | 10000
10400
12100
11800
20200 | 10400
10500
11800
11900
20300 | 0 C OPB 1 C2
0 C OPB 1 C2
0 C OPB 1 C2
0 C OPB 1 C2
0 C OPA C2 | 101
102
103
108
2021 | REVIEW OF METHODOLOGIES FCST FEAK LOAD DEMAND TRANS INDENT OF FOWER ALTERNAT TERMINATION REPORT | | | | 24 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | COMPLETE
COMPLETE
COMPLETE
COMPLETE | | | 20300
21200 | 20400
21500 | 0 C OPA C2
0 C OPA C2 | 2021
204 | FIELD CAMP SET-UP
FIELD CAMP SET-UP
LAND STATUS RESEARCH | ST
FIN | | | , | COMPLETE
COMPLETE | | | 21600 | 21700 | O C OPA C2 | 205 | LAND AQUISITION ANALYSIS | ST | | | i di | COMPLETE
COMPLETE | | | 20800
25000 | 21000
25200 | 0 C OPA C2
0 C OPA C3 | 206
207 | RIGHT OF ENTRY
SITE SPECIFIC SURVEYS
AIR PHOTOS & MAPPING-1980 | ST
ST | | | | COMPLETE
COMPLETE | | | 23000
24000 | 23200
24100 | 0 C OPA C3
0 C OPA C3 | 2081
2082 | AIR PHOTOS & MAPPING-1980
AIR PHOTOS & MAPPING-1981 | ST | | | | COMPLETE | | | 23600
22200 | 23800
22300 | 0 C DPA C3
0 C DPA C3 | 209
210 | CONTROL NETWORK SURVEYS | | • | | | COMPLETE COMPLETE | | | 25600 | 26600 | O C OPA C3 | 211 | ACCESS ROAD
MAP & PHOTO SEARCH
FIELD RECON FOR RSRVR CLEAR | ST | | | 4 | COMPLETE
COMPLETE | | | 26400
24400 | 26600
24600 | O C OPA C4
O C OPA C3 | 212
216 | HYDROGRAPHIC SURVEYS | ST
ST | | | | COMPLETE
COMPLETE | | | 32600
32800 | 32800
33000 | 0 C OPB 1 C4
0 C OPB 1 C4 | 301
301 | REVIEW AVAILABLE MATERIAL REVIEW AVAILABLE MATERIAL | ST
FIN | | | e de la companya l | COMPLETE
COMPLETE | | | 36200
36400 | 36400
36600 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3021
3021 | FIELD DATA INDEX-SETUP | ST | | | | COMPLETE | | Ž | 37000
37400 | 37200
37500 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3031
3032 | FIELD DATA INDEX-SETUP
FIELD DATA COLLECTION-SPECS
FIELD DATA COLLECTION 80-81 | ST | | | | COMPLETE | | | 32800
33200 | 33200
33300 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3041 | WATER RSRCS-FLOW EXTENSION | ST | | | | COMPLETE
COMPLETE | | | 34200 | 34400 | 0 C OFB 1 C4 | 3041
3043 | WATER RSRCS-FLOW EXTENSION WATER RSRCS-RESERVOIR STUDY | CT-1
ST | | | | COMPLETE
COMPLETE | | | 31600
30000 | 31800
30200 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3053
3061 | FLOODS-RESERVOIR ROUTING
HYDRLS&ICE-CHANNEL WTR LVLS | ST
ST | | • | | COMPLETE
COMPLETE | | | 38800
33400 | 39000
33600 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3063
3072 | HYDR&ICE-RESER SLIDE SURGE
RIVER MORPHOLOGY | ST | | | | COMPLETE
COMPLETE | | , | 38000
30800 | 38200
31000 | 0 C OPB 1 C4
0 C OPB 1 C4 | 3081
3101 | TRANSMSN LINE-PRLM FARAMTR
LWR SUSITNA STUDIES-PRELIM | ST | | | | COMPLETE | | | 43100
43200 | 43200 | 0 C OFB 1 C1 | 401 | REVIEW AVAILABLE DATA | ST | | | | COMPLETE | | • | 43400 | 43400
41200 | 0 C OPB 1 C1
0 C OPB 1 C1 | 401
401 | REVIEW AVAILABLE DATA | CT-1
FIN | | | | COMPLETE
COMPLETE | | | 44000
44200 | 44200
41200 | 0 C OPA C4
0 C OPA C4 | 402
402 | SHORT TERM MONITORNG PROGRA
SHORT TERM MONITORNG PROGRA | M ST
M FIN | | | | COMPLETE | | | 40000
40300 | 40200
40600 | 0 C OPB 1 C1
0 C OPB 1 C1 | 403
404 | PRELIM RESERVE INDUCT SEISM REMOTE SENSING IMAG ANALYST | C
S ST | | | | COMPLETE | | | 40600
40800 | 40800
42000 | 0 C OPB 1 C1
0 C OPB 1 C1 | 404 | REMOTE SENSING IMAG ANALYSI | Š ČŤ-1 | | | | COMPLETE | | | 42200
41000 | 42400
41200 | 0 C OPA C4
0 C OPB 1 C1 | 405
406 | SEISMIC GEOLOGIC RECONASANC | E | | | | COMPLETE | | | 41200
41300 | 41400
41600 | 0 C OFB 1 C1 | 406 | PRELIM EVALUATION & REPORT | CT-1 | | | | COMPLETE | | | 44200 | 45000 | 0 C OPB 1 C1
0 C OPB 1 C1 | 406
407 | PRELIM GROUND MOTION STUDIE | S TIN | | | |
COMPLETE
COMPLETE | | | 45400
50000 | 45800
50200 | 0 C OPB 1 C1
0 C OPB 1 C1 | 408
501 | DATA COLLECTION | ST
ST | | | | COMPLETE
COMPLETE | | | 50200
50400 | 50400
50600 | 0 C OPB 1 C1
0 C OPB 1 C1 | 501
501 | SHORT TERM MONITORNG PROGRA PRELIM RESERVR INDUCD SEISM REMOTE SENSING IMAG ANALYSI REMOTE SENSING IMAG ANALYSI REMOTE SENSING IMAG ANALYSI SEISMIC GEOLOGIC RECONASANC PRELIM EVALUATION & REPORT PRELIM EVALUATION & REPORT PRELIM EVAL & REPORT DRAFT PRELIM GROUND MOTION STUDIE DAM STABILITY DATA COLLECTION DATA COLLECTION DATA COLLECTION AIR FHOTO INTERPRETATION | CT-1 | | | | COMPLETE | | | 50200 | 51200 | Ö C ÖPB î Cî | 502 | AIR PHOTO INTERPRETATION | ST | | | | COMPLETE | PAGE TIME NOW: 6APR81 | | I-NODE | J-NODE | DUR SELECT CODES | 3D | ESCRIPTION | | |-----|----------------|----------------|------------------------------|----------------|--|---| | | 50800
51000 | 51600
51600 | O C OPB 1 C1
O C OPA C4 | 503 1 | 1980 PROGRAM DESTON CO | OMPLETE
OMPLETE | | | 52000
51400 | 52200
51600 | 0 C OPB 1 C1
0 C OPB 1 C1 | 505 1 | 1981 PROGRAM DESIGN ST CO | OMPLETE
OMPLETE | | | 52800 | 53000 | 0 C OPB 1 C1 | 5082 I | TIATA ASSEMBLY-1981-TRAFT ST CO | OMPLETE | | | 62500
625A0 | 625A0
62600 | 0 C OPB 1 C4
0 C OPB 1 C4 | 601 F | REVIEW PREVIOUS STUDIES FIN CO | OMPLETE
OMPLETE | | | 62600
626A0 | 626A0
62700 | 0 C OPB 1 C4
0 C OPB 1 C4 | 603 E | | DMPLETE
DMPLETE | | • | 62700
627A0 | 627A0
62800 | 0 C OPB 1 C4
0 C OPB 1 C4 | 603 E | EVAL ALT SUSITNA DEVELOPMENT CT-2 FUAL ALT SUSITNA DEVELOPMENT CT-3 | OMPLETE
OMPLETE | | • | 62800 | 62900 | 0 C OPB 1 C4 | 603 | EVAL ALT SUSITNA DEVELOPMENT FIN | OMPLETE | | • | 68100
68200 | 68200
68300 | O C OPB 1 C6 | 604 I | DEVL CAN ARCH DAM EVALUATION FIN | OMPLETE
OMPLETE | | | 66900
669A0 | 669A0
67000 | 0 C OPB 1 C4
0 C OPB 1 C4 | 6052 | SELECT REPORT FINAL UNAFT ST | OMPLETE
OMPLETE | | | 65900
65940 | 659A0
659B0 | 0 C OPB 1 C4
0 C OPB 1 C4 | 606 S | | OMPLETE
OMPLETE | | | 459B0
43000 | 66000 | 0 C OPB 1 C4
0 C OPB 1 C5 | 606 | STAGED DEVELOPMENT ALTS FIN CO | DMPLETE
DMPLETE | | 4 | 63100 | 631A0 | 0 C OPB 1 C5 | 607 F | PRELIM WATANA DAM ALTERNATES CT-1 CO | OMPLETE | | 17 | 64400
64500 | 64500
64600 | 0 C OPB 1 C6 | 608 I | PRELIM DEVIL CANYON DAM ALT CT-1 | DMPLETE
DK?LETE | | | 69100
63400 | 69200
63500 | O C OPB 1 C4
O C OPB 1 C4 | 610 I | ESTAB DEVIL CANYN DESGN CRIT ST | OMPLETE
OMPLETE | | | 6A500
6A600 | 6A600
6A700 | 0 C OPB 1 C2
0 C OPB 1 C2 | 632 | THERMAL GENERATION RESOURCE ST CO | DMPLETE
DMPLETE | | | 6A700
6A900 | 6A800
6B100 | 0 C OPB 1 C2
0 C OPB 1 C2 | 632 | THERMAL GENERATION RESOURCE FIN CONTROL OF THE PROPERTY | OMPLETE
OMPLETE | | | 6B100
6B200 | 6B200
6B300 | 0 C OPB 1 C2
0 C OPB 1 C2 | 633
633 | HYDRO GENERATION RESOURCES CT-1 CI | OMPLETE
OMPLETE | | * | 6B500 | 6B600 | 0 C OPB 1 C8 | 6341 | ENVIRONMENT ASSESSMENT ST CO | DMPLETE | | | 6B600
6B700 | 6B700
6C300 | 0 C OPB 1 CB
0 C OPB 1 CB | 6341
6341 | ENVIRONMENT ASSESSMENT CT1 ENVIRONMENT ASSESSMENT FIN | OMPLETE
DMPLETE | | • | 00839
00839 | 6C700
6C900 | 0 C OPB 1 C8
0 C OPB 1 C2 | 030 1 | LUHU MHNHUC & CUNDERVE CI | OMPLETE
OMPLETE | | | 4D100
4D300 | 6D200
6D3A0 | 0 C OPB 1 C2
0 C OPB 1 C2 | 6361
6362 | GENERATION PLAN PARAMATERS GENERAT PLAN ANALY & REPORT ST | OMPLETE
OMPLETE | | | 6D3A0
6D400 | 6D400
6D500 | 0 C OPB 1 C2
0 C OPB 1 C2 | 6362
6362 | GENERAT PLAN ANALY & REPORT ST GENERAT PLAN ANALY & REPORT CT-1 GENERAT PLAN ANALY & REPORT CT-2 C | OMPLETE
OMPLETE
OMPLETE | | | 6D500 | 60600 | 0 C OFB 1 C2 | 6362 | GENERAT FLAN ANALY & REPORT FIN COSTUDY COORD-ALTERNATIVE SITE CT-2 COSTUDY COORD-ALTERNATIVE SITE ST | JAPLETE ONEL ETE | | | 71200
70800 | 71000 | 0 C OPB 1 CB | 701
7011 | STUDY COORD-ALTERNATIVE SITE ST | DMPLETE | | | 71000
79200 | 79300 | 0 C OPB 1 CB
0 C OPB 1 CB | 7011
702 | STUDY COORD-ALTERNATIVE SITE CT-1 MONITOR FIELD ACTIVITIES ST | DMPLETE | | | 71000
73000 | 73100 | 0 C OPB 1 C8
0 C OPB 1 C8 | 7041
705 | MONITOR FIELD ACTIVITIES ST WATER RESOURCE ALT SITES SOCIOECONOMIC ANALYSIS ST | DMPLETE | | | 73100
72400 | | 0 C OPB 1 C8
0 C OPB 1 C8 | /05 | SOCIOECONOMIC ANALYSIS CT-1 C
RECREATION PLANNING ST C | UMPLETE
OMPLETE | | • • | 71200
736A0 | 73500 | 0 C OFR 1 C8
0 C OFR 1 C8 | 7091
7101 | GENERAT PLAN ANALY & REPORT ST GENERAT PLAN ANALY & REPORT CT-1 GENERAT PLAN ANALY & REPORT CT-2 GENERAT PLAN ANALY & REPORT FIN STUDY COORD-ALTERNATIVE SITE CT-2 STUDY COORD-ALTERNATIVE SITE ST STUDY COORD-ALTERNATIVE SITE CT-1 MONITOR FIELD ACTIVITIES WATER RESOURCE ALT SITES SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS ST CORRESOURCE SOCIOECONOMIC ANALYSIS ST SOCIOECONOMIC ANALYSIS ST CORRESOURCE SOCIOECONOMIC ANALYSIS ST CORRESOURCE SOCIOECONOMIC ANALYSIS ST CORRESOURCE SOCIOECONOMIC ANALYSIS ST CORRESOURCE ST SOCIOECONOMIC ANALYSIS ST CORRESOURCE ST SOCIOECONOMIC ANALYSIS ST CORRESOURCE SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS SOCIOECONOMI | OMPLETE | | | | | | | | | ACRES AMERICAN SUSITNA HYDRO-ELECTRIC PROJECT TIME NOW! PAGE : 6APR81 | I-NOD! | J-אode | DUR SELECT CODES | | DESCRIPT | I O N | * ***** | of the state th | · · · · · · · · · · · · · · · · · · · | r dalla dilini muzi- quisi pinci inima arqu-dover zone, musi, musi, una, |
 | |--|--|--|--|---|--|---------------------------------
--|---------------------------------------|--|--| | 8000
8020
A2000
C0000
D0400
D0400
D0800
D0800
D1400
D2600
D3200
D1600 | 0 80200
80400
A1500
C0200
D0400
D0500
D1000
D1500
D1500
D2200
D2800
D3400 | O C OPB 1 C3
O C OPB 1 C3
O C FLC C110
O C OPB 1 C810
O C PSB 2 C310
O C310 | 801
801
10021
12021
13011
13011
13012
1302
130 | SELECT INITIAL SELECT INITIAL ESTABLISH REGUI CONDUCT PUBLIC PROJECT PROCED PROJECT PROCED PROJECT PROCED PROJECT PROCED FINANCIAL CONTI PROJECT MASTER SCHEDULE CONTRI COST CONTROL SY MANPOWER LOADNO | CORRIDORS CORRIDORS LATORY REQUIRE MEETING #1 MANUAL-DRAFT MANUAL-DRAFT MANUAL-FINAL ROL PROCEDURES SCHEDULE COL SYSTEM-DEV MYSTEM-DEV | ST
CT-1
ST
CT-1
FIN | | | | COMPLETE | | D180 | | 0 C PSB 2 C410
0 C PSB 2 C310 | 1307
1308 | DEVELOP ACCOUNT
DOCUMENTATION (| | | | | | COMPLETE
COMPLETE | TIME NOW: FAGE 1 | | | | | | ينس بيشه شتن ديب بيش بيش جيل جيل چين پيش پيش آيت شايع سند سند شين شين شين شين تاسي | | | | | | | | | |----|--|--|---|--------------------------------------|---|---------------------------|---|---|--|---|--------------------------|-----------------------|--| | | I-NODE | J-NODE | DUR SELECT CODES | | DESCRIPTION | | | | | | | F.F. | Q. | | | 20400
20400
215A0
21700
21000 | 20000
20600
215B0
22000
21100 | 63 R OPA C2
63 R OPA C2
0 OPA 1 C3
5 R OPA C2
21 R OPA C2 | 2022
203
204XX
205
206 | FIELD CAMP OPERATIONS RESUPPLY & EMERGENCY SERVICE EXHIBIT F MATERIAL COMPLETE LAND AQUISITION ANALYSIS RIGHT OF ENTRY SITE SPECIFIC SURVEYS SITE SPECIFIC SURVEY AIR PHOTOS & MAPPING-1980 AIR PHOTOS & MAPPING-1981 | FIN
FIN | 6APR81
6APR81
6APR81
6APR81
6APR81 | 18JUN82
18JUN82
3APR81
8MAY81
28AUG81 | 13APR81
13APR81
30NOV81
24MAY82
1FEB82 | 25JUN82
25JUN82
27NOV81
25JUN82
25JUN82 | 1
1
34
59
43 | 33
59 | cok just jest just jest just jest | | • | 25200
25400
23200
24100
22300 | 25400
25500
23400
24200 | 4 R OPA C3
7 OPA C3
3 R OPA C3
8 R OPA C3
1 R OPA C3 | 207
207
2081
2082
210 | SITE SPECIFIC SURVEYS
SITE SPECIFIC SURVEY
AIR PHOTOS & MAPPING-1980
AIR PHOTOS & MAPPING-1981 | CT-1
FIN
FIN
FIN | 6APR81
4MAY81
6APR81
6APR81 | 1MAY81
19JUN81
24APR81
29MAY81 | 27APR81
25MAY81
20APR81
18MAY81 | 22MAY81
10JUL81
8MAY81
10JUL81 | 0 | 43
0
0
0 | d wind shad shad shad | | | 22300
22400
22600
26600
27600
27700 | 22400
22600
22800
26800
27700
27200 | 2 OPA C3
10 OPA C3 | 210
210
212
213
213 | ACCESS ROAD ACCESS ROAD ACCESS ROAD ACCESS ROAD FIELD RECON FOR RSRVR CLEAR MARKETABLTY & DISPOSAL STDY MARKETABLTY & DISPOSAL STDY | CT-2
FIN
FIN
ST | 27APR81
17AUG81
6APR81
6APR81 | 8MAY81
230CT81
15MAY81
17APR81 | 14SEP81
28SEP81
11MAY81
21DEC81 | 255EP81
4DEC81
19JUN81 | 22
20
6
5
37 | 0 | profe broke broke the profe broke | | | 27700
27000
27200
25800
26000 | 27200
27200
27400
26000
26200 | 2 OPA C3
3 OPA C3
2 OPA C3
3 OPA C3
4 OPA C4
4 OPA C4 | 214
214
215 | MARKETABLTY & DISPOSAL STDY CST ESTMTS RSVR CLEARING CST ESTMTS RSVR CLEARING SLOPE EROSION & STBLTY STUDY SLOPE EROSION & STBLTY STUDY HYDROGRAPHIC CURREYS | FIN
ST
FIN
ST | 20APR81
6APR81
18MAY81
6APR81 | 17APR81
8MAY81
17APR81
5JUN81
1MAY81 | 4JAN82
11JAN82
25JAN82
25MAY81 | 22JAN82
22JAN82
12FEB82
19JUN81 | 37
40
36
7 | 1
20
2 | the species of sp | | | 24600
36600
37500
37600 | 24800
36800
37600
37700 | 4 R OPA C3
49 R OPB 1 C4
2 R OPB 1 C4
26 OPB 1 C4 | 215
216
3022
3032
3033 | | | | | | | 5
17
1
0
0 | 13 1 0 | 1
1
1 CRITICAL
1 CRITICAL | | 60 | 37700
33500
33300
34400 | 34600
344A0 | 22 OPB 1 C4
2 OPB 1 C4
4 OPB 1 C4
10 R OPB 1 C4 | 3033
3041
3042
3043 | FIELD DATA COLLECTION 81-82 WATER RSRCS-FLOW EXTENSION WATER RSRCS-FRED ANALYSIS WATER RSRCS-RESERVOIR STUDY | FIN
FIN
CI-1 | 190CT81
6APR81
6APR81
6APR81 | 19MAR82
17APR81
1MAY81
12JUN81 | 190CTB1
30NOVB1
16NOVB1
6AFR81 | 19MAR82
11DEC81
11DEC81
12JUN81 | 0
34
32
0 | 0
34
32
0 | CRITICAL | | | 344A0
34500
34600
35000
35200 | 34500
34600
34800
35200
35400 | 6 OFB 1 C4
20 OFB 1 C4
6 OFB 1 C4
4 OFB 1 C4
4 OFB 1 C4
8 OFB 1 C4 | 3043
3043
3043
3044
3044 | WATER RSRCS-RESERVOIR STUDY WATER RSRCS-RESERVOIR STUDY WATER RSRCS-RESERVOIR STUDY WATER RSRCS-PRE%POST PROJECT WATER RSRCS-PRE%POST PROJECT | CT-3
FIN
ST
FIN | 15JUN81
27JUL81
14DEC81
14DEC81
11JAN82 | 24JUL81
11DEC81
22JAN82
8JAN82
5FFR82 | 15JUN81
27JUL81
21DEC81
14DEC81 | 24JUL81
11DEC81
29JAN82
8JAN82
5FFB82 | 0
0
1
0 | 0000 | 1 CRITICAL
1
CRITICAL
1 CRITICAL | | | 33700
39600
35400
35400 | 39800
35480
35480 | 50 R OPB 1 C4
0 OPB 1 C4
0 OPB 1 C4 | | WATER RSRCS-PRE&POST PROJECT WATER RSRCS-PRE&POST PROJECT EVAPORATION STUDIES WATER RSRCS-GLACIAL STUDIES EXHIBIT H MATERIAL COMPLETE EXHIBIT I MATERIAL COMPLETE | | 6APR81
6APR81
8FEB82
8FEB82 | 29MAY81
19MAR82
5FEB82
5FEB82 | 1JUN81
6APR81
19APR82
19APR82 | 24JUL81
19MAR82
16APR82
16APR82 | 8
0
10
10 | 8
0
10
10 | CRITICAL
CRITICAL | | , | 32700
32800
31800
32000
30200 | 32900
32400
32000
32200
30400 | 2 R OPB 1 C4
2 R OPB 1 C4
10 R OPB 1 C4
5 OPB 1 C4
17 R OPB 1 C4 | 3051
3052
3053
3053
3061 | FLOODS-FREQUENCY ANALYSIS FLOODS PMF REVIEW FLOODS-RESERVOIR ROUTING FLOODS-RESERVOIR ROUTING HYDRLICS & ICE WTR LVLS | CT-1 | 6APR81
6APR81
190CT81 | 17APR81
12JUN81
20NOV81 | 4MAY81
190CT81
28DEC81 | 15MAY81
15MAY81
25DEC81
29JAN82 | 28
10 | 0
0
18
9 | | | | 30400
39000
39200
35600 | 30400
39100
39300
35800 | 17 OPB 1 C4
8 OPB 1 C4
8 OPB 1 C4
3 R OPB 1 C4 | 3061
3063
3064
3071 | HYDRLICS & ICE WIR LYLS HYDR&ICE-RESER SLIDE SURGE HYDR&ICE-RSVR TEMP REGIME SEDIMENT YIELD & DEPOSITION | FIN
FIN
ST | 3AUG81
6APR81
6APR81 | 31JUL81
27NOV81
29MAY81
29MAY81
24AFR81 | 50CT81
1JUN81
1JUN81 | 28AUG81
29JAN82
24JUL81
24JUL81
10JUL81 | 4
9
8
8
11 | 0
8
4
4
5 | 1 | | | 35800
33600
33800
38200 | 36000
33800
34000
38400 | 6 OPB 1 C4
14 OPB 1 C4
4 OPB 1 C4
4 R OPB 1 C4 | 3071
3072
3072
3082 | SEDIMENT YIELD & DEFOSITION
RIVER MORPHOLOGY
RIVER MORPHOLOGY
TRANSMSN LINE-DET PARAMTR | FIN
CT-1
FIN
ST | 1JUN81
13JUL81
8FEB82
6APR81 | 10JUL81
16OCT81
5MAR82
1MAY81 | 21SEP81
2NDV81
8FER82
20JUL81 | 300CT81
5FER82
5MAR82
14AUG81 | 16
16
0
15 | 0
16
0
0 | i
CRITICAL | | | 38400
31100 | 38400
31300 | 4 OFB 1 C4
10 R OFB 1 C4 | 3082
309 | TRANSMEN LINE-DET PARAMTR
ACCESS ROADS HYDROLOGY | FIN | 4MAY81
27APR81 | 29MAY81
3JUL81 | 17AUG81
7DEC81 | 11SEP81
12FEB82 | 15
32 | 31 | 1 | TIME NOW: PAGE : | | I-NODE | J-NODE | DUR | SELECT CO | DES | -D E S C R I P T I O N | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | |-----|----------------------------------|----------------------------------|--------------------|--|-----------------------------|--|------------------------------|--|-------------------------------|--|--------------------|--------------------------|--| | | 31200
31500 | 31200
31500
31400 | 17
22 | OFB 1 C4
OFB C4
OFB C4 | 3102
3102 | LWR SUSITNA STUDIES-PRELIM FIN LWR SUSITNA STUDIES-FOLLOWUP ST LWR SUSITNA STUDIES-FOLLOWUP FIN | 20AFR81 | 14AUG81 | _4MAY81 | 28AUG81 | 222 | 0 | A beat hask | | | 45800
46000
42800
40200 | 46000
46200
43000
41800 | . A | OPB 1 C1
OPB 1 C1
OPA C4
OPB 1 C1 | 408
408
409
410 | DAM STABILITY CT-1 DAM STABILITY FIN LONG TERM MONITORING PROGRAM RESERVOIR INDUCED SEISMICITY SEISMIC GEOLOGY-FIELD STUDY EVALUATION & REPORT DRAFT ST EVALUATION & REPORT DRAFT CT-1 | 6APR81
22JUN81
27JUL81 | 19JUN81
31JUL81
29JAN82 | 4MAY81
17MAY82
21DEC81 | 17JUL81
25JUN82
25JUN82 | 222447
471600 | 0
47
21
26
0 | · + + + + + + + + + + + + + + + + + + + | | • | 42400
41400
41600 | 42600
41600
41800 | 16 K | OPA C4
OPB 1 C1
OPB 1 C1 | 411
412
412 | SEISMIC GEOLOGY-FIELD STUDY EVALUATION & REPORT DRAFT ST | 6APR81
6APR81 | 24JUL81
230CT81 | 6APR81
6APR81 | 24JUL81
230CT81 | 26
0
0 | 26
0
0 | 1
1 CRITICAL
1 CRITICAL | | | 41800
44400
44600 | 42000
44600
41800 | 4
11 R
15 | OPB 1 C1
OPB 1 C1
OPB 1 C1 | 412
413
413 | | | | | 4DEC81
24JUL81
4NOU81 | 0050 | 0050 | 1 CRITICAL
1 CRITICAL
1 CRITICAL | | . • | 45600
45200
51200 | 41800
45400
51600 | 22
3 R | OFB 1 C1
OFB 1 C1
OFB 1 C1 | Δ1Λ | GROUND MOTION STUDIES ST
GROUND MOTION STUDIES FIN
DAM STABILITY CONSULTING
SOIL SUSCEPTITY-SEISMIC FAIL
AIR PHOTO INTERPRETATION FIN | 6APR81
6APR81
6APR81 | 160CT81
4SEP81
24APR81 | 27AFR81
6JUL81
6AFR81 | 6NOV81
4DEC81
24APR81 | 0000503301 | 70 | 3 | | | 52200
52400
52600
53800 | 52600
52600
52700
54000 | 2 R
20 | OPA C4 | 505
506
506
507 | 1981 PROGRAM DESIGN FIN
1981 EXPLORATION PROGRAM ST
1981 EXPLORATION PROGRAM FIN | 6APR81
6APR81
20APR81 | 17APR81
17APR81
4SEP81 | 13APR81
13APR81
27APR81 | 24APR81
24APR81
11SEP81 | 1
1
1 | 0 | And 4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4- | | ຫຼາ | 51600
53000
53400 | 51800
53200
53600 | 7
22
7 | OPB 1 C1
OPB 1 C1
OPB 1 C1 | 5081
5082
5083 | SOIL SUSCEPTITY-SEIGHIC FAIL AIR PHOTO INTERPRETATION FIN 1981 PROGRAM DESIGN FIN 1981 EXPLORATION PROGRAM ST 1981 EXPLORATION PROGRAM FIN 1982-4 PROGRAM DESIGN DATA ASSEMBLY-1980 FIN DATA ASSEMBLY-1981 DRAFT FIN DATA ASSEMBLY FINAL-DRAFT INVESTIGATE TUNNEL ALTERNATIVES | 27APR81
6APR81
7SEP81 | 12JUN81
4SEP81
230CT81 | 27APR81
13APR81
1MAR82 | 19MARB2
12JUN81
11SEP81
16APR82 | 28
0
1
25 | 28
0
0
25 | 1 CRITICAL | | 0 | 64300
67000
67100
67200 | 67100
67100
67200
672A0 | 2 R
1
2
3 | OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4 | 602
6052
6052
6053 | SELECT REPORT EIGHT DEVEL CT"1 | 7.70004 | 4040004 | 7885564 | A A A E P. C. C. A | 1 2 1 | 0
1
0
77 | 4 mm m | | | 631A0
63200
63300 | 63200
63300
633A0 | 8 R
1
0 | OPB 1 C5
OPB 1 C5 | 607
607
607 | SELECT REPORT FINAL DRAFT FIN
SELECT REPORT FINAL EDITION
PRELIM WATANA DAM ALTERNATES CT-2
PRELIM WATANA DAM ALTERNATES CT-3
PRELIM WATANA DAM ALTERNATES FIN
PRELIM DEVIL CANYON DAM ALT CT-2 | 27APR81
22JUN81 | 19JUN81
26JUN81 | 18MAY81
13JUL81 | 1 / HH U1 | 3 | 0 | | | | 64600
64700
69200 | 64700
64800
69300 | 0
2 R | OPB 1 C6
OPB 1 C6
OPB 1 C4 | 608
608
609 | ESTAB WATANA DESIGN CRITERIA CT-1 | 15.IIN81 | 24 HINST | 12 III 81 | 24JUL81 | 0 0 4 | 0000 | 1 CRITICAL
1 CRITICAL | | | | 69400
69500
63600 | 7
1
2 R | UFB 1 C4 | 609
609
610 | ESTAB WATANA DESIGN CRITERIA CT-2
ESTAB WATANA DESIGN CRITERIA FIN
ESTAB DEVIL CANYN DESGN CRIT CT-1 | 29JUN81
7SEP81
15JUN81 | 14AUG81
11SEP81
26JUN81 | 27JUL81
14SEP81
13JUL81 | 1185EP81
185EP81
24.III.81 | 1 4 | 300 | *** | | • | 63600
63700
66200
66300 | 63700
63800
66300
66400 | 1
9 R
11 | OPB 1 C4
OPB 1 C4
OPB 1 C5
OPB 1 C5 | 610
610
611
611 | ESTAB DEVIL CANYN DESGN CRIT CT-2
ESTAB DEVIL CANYN DESGN CRIT FIN
PRELIM DESIGN WATANA DAM ST
PRELIM DESIGN WATANA DAM CT-1 | 7SEP81
13JUL81 | 14AUG81
11SEP81
11SEP81
27NOV81 | 14SEP81
20.111 81 | 18SEP81 | 4 1 1 | 300 | ************************************** | | | 66400
65200
65300 | 66500
65300
65400 | 10 | OPB 1 C5
OPB 1 C6
OPB 1 C6 | 611
612
612 | PRELIM DESIGN WATANA DAM FIN PREL DESIGN DEVIL CANYON DAM CT-1 PREL DESIGN DEVIL CANYON DAM FIN | /!!!!!!!! | 1 JANB2
20CT81
4DEC81 | 7DEC81
27JUL81
50CT81 | 1JAN82
20CT81
4DEC81 | 0 | 000 | 1 CRITICAL
1 CRITICAL
1 CRITICAL | | | 65400
69800
69900
61100 | 65500
69900
68500
61200 | 11
5
1 R | OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4 | 612
613
613
614 | PREL DESIGN DEVIL CANYON DAM FIN DAM SELECTION REPORT-DRAFT ST DAM SELECTION REPORT-DRAFT FIN SPILLWAY DESIGN CRITERIA ST SPILLWAY DESIGN CRITERIA FIN | 27.00 RT | 1JAN82
90CT81
5FEB82
10APR81 | 1 OULT BI | 1JAN82
1JAN82
5FEB82 | 0
12
0 | 0
12
0 | i CRITICAL
i CRITICAL | | | 61200
60600
61300
61300 | 61300
60700
60600
61400 | 8
10
6 | OFB 1 C4
OFB 1 C5
OFB 1 C5
OFB 1 C6 | 614
615
615
616 | WATANA SPILLWAY ALTERNATIVES FIN WATANA SPILLWAY ALTERNATIVES ST | 27JUL81
15JUN81 | TOMOUNT | 24AUG81
13JUL81 | 300CT81
21AUG81 | 4 4 | 0003 | 4 and and | TIME NOW: PAGE SAPR81 | | | | | | | - | | | | | | | | | | | |-----|----------------------------------|----------------------------------|--------------|--|------------------------------|----------------------------------|--|-----------------------------|-----------------------------|-------------------------------|-------------------------------|---|-------------------|-------------------|-------------|----------------------------------| | | I-NODE | J-NODE | DUR | | | | RIPTION | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | CL | | | * | 621A0
62200 | 62300 | 8
4
4 | OFB 1 C6
OFB 1 C5
OFB 1 C5
OFB 1 C5 | 616
617
617 | PRELIM I | Y SPILLWAY ALTERNAT
DESGN WATANA SPILLW
DESGN WATANA SPILLW | AY ST
AY CT-1 | 6APR81
50CT81 | 1MAY81
300CT81 | 50CT81
2NOV81 | 25SEP81
300CT81
27NOV81 | 26
4 | 2 <u>7</u> | 1 1 1 | | | | 62300
61500
61600
64900 | 62400
61600
61700
65000 | - K | OPB 1 C5
OPB 1
C6
OPB 1 C6
OPB 1 C4 | 617
618
618
619 | PRELIM I | DESGN WATANA SPILLW
DES DEVIL CAN SPILW
DES DEVIL CAN SPILW
Y SELECIN REPRI-DRA | AY ST | 21SEP81 | 300CT81 | 28SEF81 | 6NOV81 | 4
1
1
12 | 3
0
0
11 | 1111 | | | | 65000
6A000 | 65100
6A100 | 5 | NPR 1 C4 | 619
620 | SPILLWAY | / SELECTN REPRI-DRA | FT FIN | 1FER82 | 5MAR82 | 8FER82 | 12MAR82 | 1
32 | 1
26 | i
1 | | | | 60000
60000
60100 | 60100 | 8 | OPB 1 C5
OPB 1 C5
OPB 1 C5
OPB 1 C5 | 620
621
621 | ACCESS S
WATANA I
WATANA I | R CAMP FACILITIES
CAMP FACILITIES
DIVERSION SCHEMES
DIVERSION SCHEMES | FIN
ST
FIN | 260CT81
6APR81
50CT81 | 18DEC81
15MAY81
27NOV81 | 7DEC81
21SEP81
2NOV81 | 29JAN82
300CT81
25DEC81 | 24
4 | 0
20
0 | 1 | | | | 67300
67400
61800 | 67400
67500 | 11
0
6 | OFB 1 C6
OFB 1 C4 | 622
622
623 | DEVIL CA | ANYUN UIVEKSN SCHEM
ANYON DIVERSN SCHEM
ANA POWER DEVELDEME | ES FIN | 21SEP81
27.111.81 | 19JUN81
18SEP81
4SEP81 | 120C161
28DEC81
3AUG81 | 25DEC81
25DEC81
11SFP81 | 27
14
1 | | 11111 | | | | 61900
62000
65600 | 62000
62100
65700 | 10
5
6 | OPB 1 C4
OPB 1 C4
OPB 1 C4 | 623
623
624 | OPT WATA | ANA POWER DEVELOPME
ANA POWER DEVELOPME
CANYN POWER DEVEL | NT CT-1
NT FIN
OB ST | 7SEP81
16NOV81 | 141111111 | 1.3111.174 | 70000021 | 1 1 5 5 | 000 | 1111 | | | | 65700
63900
64000 | 64100 | 5
5 | OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4
OPB 1 C4 | 624
625
625 | OPTIMIZE
OPTIMIZE | CANYN POWER DEVEL
E DAM HEIGHTS
E DAM HEIGHTS
E DAM HEIGHTS | DF FIN
ST
CT-1 | 6APR81
21DEC81 | 20NUVB1
15MAY81
22JAN82 | 23NUV81
16NOV81
28DEC81 | 25DEC81
25DEC81
29JAN82 | 32 | 31
1 | 111 | DOTTTON | | 5 | 64100
69500
59600 | 69600
69700 | 10
5 | OPB 1 C5 | 625
626
626 | PREL DES | SGN WATAN POWER DEV
SGN WATAN POWER DEV | EL SI
EL FIN | 145EP81
28DEC81 | 291EC81 | 4JAN82 | 1JAN82
5FEB82 | 1 0 1 1 | 000 | 1 | CRITICAL | | | 66600
66700
67600
67700 | 66800
67700 | 15551 | OPB 1 C6
OPB 1 C6
OPB 1 C4 | 627
627
628
628 | PREL DES | S DEVL CAN POWR DEV
S DEVL CAN POWR DEV
EVELOPMNT REPRT-DRA
EVELOPMNT REPRT-DRA | EL FIN
FT ST | 28DEC81
14SEP81 | 29JAN82
160CT81 | 4JAN82
28DEC81 | 5FEB82
29JAN82 | 15 | 14 | ~ 7 m 7 m 8 | | | | 67800
67900
60300 | 67900
68000 | 1 4 | OFB 1 C6
OFB 1 C4
OFB 1 C4
OFB 1 C4
OFB 1 C5
OFB 1 C5
OFB 1 C5
OFB 1 C5
OFB 1 C6
OFB 1 C6 | 628
628
629 | POWER DE | EVELOPMNT REPRT-DRA
EVELOPMNT REPRT-DRA | FT CT-2
FT FIN | 1FEB82
8FEB82 | 5FEB82 | 8FEB82 | 12FEB82
12MAR82
5FEB82
12MAR82 | 1 1 4 | 0 0 3 | 4 74 74 74 | | | | 60400
60500
60800 | 60500
60500 | 506 | OPB 1 C5
OPB 1 C5
OPB 1 C6 | 629
629XX
630 | DEVL CA | GENERAL ARRANGEMENT
GENERAL ARRANGEMENT
J MATERIAL COMPLET
N GENERAL ARRANGEME | E
NT ST | 8MAR82
21SEP81 | 5MAR82
300CT81 | 19APR82
28DEC81 | 16APR82
5FEB82 | 6 | 0
6
13 | but but put | | | - * | 60900
61000
68000 | 61000
610A0
680A0 | 5
0
0 | OPB 1 C4 | 630XX
630XX | EXHIBIT DEVL CAP | N GENERAL ARRANGEME
K MATERIAL COMPLET
M MATERIAL COMPLET | NT FIN
E
E | 1FEB82
8MAR82
8MAR82 | 5MAR82
5MAR82
5MAR82 | 8FEB82
15MAR82
19APR82 | 12MAR82
12MAR82
16APR82 | 1
1
6 | 0 | Fe fut put | | | | 68400
68500
68600 | 68700 | 1
4
1 | OFB 1 C4
OFB 1 C4
OFB 1 C4 | 631
631
631 | PROJECT
PROJECT
PROJECT | FEASIBL REPORT-DRA
FEASIBL REPORT-DRA
FEASIBL REPORT-DRA | FT ST
FT CT-1
FT CT-2 | 21DEC81
8FEB82
8MAR82 | 25DEC81
5MAR82
12MAR82 | 1FEB82
8FEB82
8MAR82 | 5FEB82
5MAR82
12MAR82 | 0 | 5
0
0 | 3 | CRITICAL
CRITICAL | | | 69800
69800
68900 | 68900
69000 | 0 | OPB 1 C4
OPR 1 C4
OPB 1 C4 | 631
631
631 | PROJECT | FEASIBL REPORT-DRA | FT FIN | 19APR82 | 16APR82
16APR82 | 19APR82 | 16APR82 | 000 | 000 | 1 | CRITICAL
CRITICAL
CRITICAL | | | 69000
60100
68800
71400 | 6C200
6B900 | | OPB 1 C4
R OPB 1 C2
R OPB 1 C2
OPB 1 C8 | .631XX
637
638
7011 | UPDATE | L MATERIAL COMPLET
GENERATION PLAN
POWER ALTS CONSULT
CORD-ALTERNATIVE S | | 6APR81 | 8MAY81 | 29MAR82
13AFR81 | 16APR82
30APR82
25JUN82
3APR81 | 0
51
1
0 | 59
1
0 | 1 | CRITICAL | | | 71400
71800
71800
72000 | 71800
72000 | | R OFR 1 C8
OFR 1 C8
OFR 1 C8 | 7012
7012
7013 | STUDY C | OORD-FRELIM ALTERNA
OORD-FRELIM ALTERNA
OORD-OFTIMIZED DESI | TV ST
TV FIN | 6APR81
13JUL81 | 10JUL81
10JUL81 | 13APR81
20JUL81 | 17JUL81
17JUL81
29JAN82 | 1
1
0 | ŏ
1
0 | 1 | CRITICAL | | | 79300 | 79400 | 59 | | 702 | | FIELD ACTIVITIES | CT- | 6APR81 | 21MAY82 | 11MAY8 | 25JUN82 | Š | ŏ | 1 | WILL FOUR | FAGE TIME NOW: 6APR81 | T-NODE | |--| | 79800 79900 0 0PB 1 CB 7063X CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 OPB 1 CB 706XX EXHIBIT V MATERIAL COMPLETE 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 OPB 1 CB 706XX EXHIBIT V MATERIAL COMPLETE 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 1 1 1 75900 79900 0 0PB 1 CB 706XX EXHIBIT V MATERIAL COMPLETE 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN: ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 1 1 1 75200 75300 30 R 0PB 1 CB 706XX EXHIBIT V MATERIAL COMPLETE 12APR82 9APR82 19APR82 16APR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79800 79900 0 0PB 1 CB 7063 CULTURAL-OPTIN ZED DESIGN FIN 12APR82 9APR82 19APR82 16APR82 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 79900 79900 0 0FB 1 CB 706XX EXHBIT V MATERIAL COMPLETE 12AFR82 9AFR82 19AFR82 16AFR82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 76700 76800 0 0PB 1 CB 7072 LAND USE PRELIM ALTERNATIVES CT-1 2NOV81 8JAN82 30NOV81 5FER82 4 0 1 76100 76800 0 0PB 1 CB 7072 LAND USE PRELIM ALTERNATIVES CT-1 2NOV81 8JAN82 30NOV81 5FER82 4 0 1 76700 76800 15 0PB 1 CB 7073 LAND USE OPTIMIZED DESIGN ST 6APR81 17JUL81 260CT81 5FER82 29 25 1 76800 76900 70900 20 0PB 1 CB 7073 LAND USE OPTIMIZED DESIGN CT-1 11JAN82 28MAY82 8FEB82 25JUN82 4 0 1 76700 76900 7000 0 0PB 1 CB 7073 LAND USE OPTIMIZED DESIGN CT-1 11JAN82 28MAY82 8FEB82 25JUN82 4 0 1 76700 76900 77000 0 0 0PB 1 CB 7073 LAND USE OPTIMIZED DESIGN FIN 31MAY82 28MAY82 28JUN82 25JUN82 4 0 1 76700 76900 77000 0 0 0PB 1 CB 7073 LAND USE OPTIMIZED DESIGN FIN 31MAY82 28MAY82 28JUN82 25JUN82 4 0 1 76700 76900 76900 76900 76900 76900 76900 76900 76900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 76000 76100 10 | | 76000 76100 10 | | 76700 76800 15 | | 73700 73800 11 R OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DEC81 9 0 1 73800 74200 0 0FB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DEC81 9 0 1 73800 74200 12 0FB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES FIN 190CTB1 160CTB1 21DEC81 18DEC81 9 0 1 74100 74200 B 0FB 1 C8 7102 FISH ECOLOGY ALTERNATV SITES CT-1 4MAYB1 24JULB1 13JULB1 20CTB1 10 1 1 74200 74300 10 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APR81 29MAYB1 260CTB1 18DECB1 29 20 1 74300
74600 0 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTS CT-1 190CTB1 25DECB1 21DECB1 26FEBB2 9 0 1 74300 74600 15 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT FIN 28DECB1 25DECB1 1MARB2 26FEBB2 9 6 1 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 26 27 27 28 28 29 29 20 1 27 20 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 27 27 28 28 29 29 20 1 27 20 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 27 27 28 28 29 29 20 1 27 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | | 73700 73800 11 R OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUG81 160CT81 50CT81 18DEC81 9 0 1 73800 74200 0 OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES FIN 190CT81 160CT81 21DEC81 18DEC81 9 0 1 73900 73700 12 OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES FIN 190CT81 160CT81 21DEC81 18DEC81 9 0 1 74100 74200 8 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APR81 29MAY81 260CT81 18DEC81 29 20 1 74200 74300 10 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APR81 29MAY81 260CT81 18DEC81 29 20 1 74300 74600 0 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTS CT-1 190CT81 25DEC81 21DEC81 26FER82 9 0 1 74300 74600 15 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT FIN 28DEC81 25DEC81 1MAR82 26FER82 9 0 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 MUR1 14 NOUR1 24 FER82 7 20 1 74500 74600 7 | | 73700 73800 11 R OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DEC81 9 0 1 73800 74200 0 0FB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DEC81 9 0 1 73800 74200 12 0FB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES FIN 190CTB1 160CTB1 21DEC81 18DEC81 9 0 1 74100 74200 B 0FB 1 C8 7102 FISH ECOLOGY ALTERNATV SITES CT-1 4MAYB1 24JULB1 13JULB1 20CTB1 10 1 1 74200 74300 10 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APR81 29MAYB1 260CTB1 18DECB1 29 20 1 74300 74600 0 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTS CT-1 190CTB1 25DECB1 21DECB1 26FEBB2 9 0 1 74300 74600 15 0FB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT FIN 28DECB1 25DECB1 1MARB2 26FEBB2 9 6 1 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 26 27 27 28 28 29 29 20 1 27 20 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 27 27 28 28 29 29 20 1 27 20 74500 74600 15 0FB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APR81 17 HU 81 14NOURL 24FEBB2 7 25 26 27 27 28 28 29 29 20 1 27 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29 | | 73700 73800 11 R OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DECB1 9 0 1 73800 74200 0 OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES CT-2 3AUGB1 160CTB1 50CTB1 18DECB1 9 0 1 73900 73700 12 OPB 1 C8 7101 FISH ECOLOGY ALTERNATV SITES FIN 19OCTB1 160CTB1 21DECB1 18DECB1 9 0 1 74100 74200 B OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APRB1 29MAYB1 260CTB1 18DECB1 29 20 1 74200 74300 10 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT ST 6APRB1 29MAYB1 260CTB1 18DECB1 29 20 1 74300 74600 0 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTS CT-1 19OCTB1 25DECB1 21DECB1 26FEBB2 9 0 1 74300 74600 15 OPB 1 C8 7102 FISH ECOLOGY PRELIM ALTERNAT FIN 28DECB1 25DECB1 1MARB2 26FEBB2 9 6 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 15 OPB 1 C8 7103 FISH ECOLOGY OPTIMIZED DESGN ST 6APRB1 17 HU 81 14NOURL 24FEBB2 7 20 1 74500 74600 7 | | | | | | | | | | | | 74000 74700 17 OFB 1 CB 7103 FISH ELULUGI UPTIMIZED DESGN CT-1 BFEBB2 4JUNB2 1MARB2 25JUNB2 3 0 1 | | | | 77/00 75/00 30 K DED 1 CO VIII WILDLIFE ECULUDI ALIEK STIES ST 6APKBL 300C181 4MAY81 27NDV81 4 0 1 | | 75000 75100 0 OPB 1 CB 7111 WILDLIFE ECOLOGY ALTER SITES FIN 2NOVB1 300CTB1 30NOVB1 27NOVB1 4 0 1 75500 75600 B OPB 1 CB 7112 WILDLIFE ECOLOGY PRELM ALTER ST 6APRB1 29MAYB1 50CTB1 27NOVB1 26 22 1 | | 75600 75700 10 OPB 1 CB 7112 WILDLIFE ECOLOGY FRELM ALTER CT-1 2NOV81 8JAN82 30NOV81 5FEB82 4 5 | | 75700 76400 0 OPB 1 CB 7112 WILDLIFE ECOLOGY PRELM ALTER FIN 11JANB2 BJANB2 BFEBB2 5FEBB2 4 0 1 76300 76400 15 OPB 1 CB 7113 WILDLIFE ECOLOGY OPTIM DESGN ST 6APR81 17JUL81 260CT81 5FEBB2 29 25 7 | | | | 76500 76600 0 OPB 1 C8 7113 WILDLIFE ECOLOGY OPTIM DESGN FIN 31MAY82 28MAY82 28JUN82 25JUN82 4 4 1 | | 77100 77300 10 OPB 1 CB 7121 PLANT ECOLOGY ALTERNATY SITESST 6APR81 12JUN81 27AFR81 3JUL81 3 0 1 77200 77500 0 OPB 1 CB 7121 PLANT ECOLOGY ALTERNATY SITES FIN 9NOV81 6NOV81 30NOV81 27NOV81 3 0 1 | | 77300 77200 21 OPB 1 CB 7121 PLANT ECOLOGY ALTERNATY SITESCT-1 15JUNB1 6NOVB1 6JULB1 27NOVB1 3 0 1 | | 77400 77500 8 OPB 1 CB 7122 PLANT ECOLOGY PRELM ALTERNAT ST 6APRB1 29MAYB1 50CTB1 27MOVB1 26 23 1 77500 77500 10 OPB 1 CB 7122 PLANT ECOLOGY PRELM ALTERNAT CT-1 9MOVB1 15JANB2 30MOVB1 5FEBB2 3 0 1 | | 77600 77900 0 OFB 1 CB 7122 FLANT ECOLOGY PRELM ALTERNAT FIN 18JAN82 15JAN82 8FER82 5FER82 3 0 1 | | 77800 77900 15 OFB 1 CB 7123 PLANT ECOLOGY OPTIMIZD DESGN ST 6APR81 17JUL81 260CT81 5FEB82 29 26 1 77900 78000 20 OFB 1 CB 7123 PLANT ECOLOGY OPTIMIZD DESGN CT-1 18JAN82 4JUN82 BFEB82 25JUNB2 3 0 1 | PAGE 6APR81 TIME NOW: | | 8 | | | | | and and made that the cost of | | | | | | | | | |----|---|---|------------------------------|--|--|--|---|---|---|---|---|-----------------------------------|------------------------------------|---| | | I-NODE | J-NODE | DUR | | | DESCRIPTION | | E.S. | E.F. | L.S. | L.F. | | | CL | | | 71000
73900
74400
78200
78300 | 74000
78300
78400 | 0
4
5
10
9
60 | OFB 1 CB
OFB 1 CB | 715
715
715 | PLANT ECOLOGY OPTIMIZD DESGN
ACCESS RD ENVIRONMENT ANALY
ACCESS RD ENVIRONMENT ANALY
ACCESS RD ENVIRONMENT ANALY
PREP FOR FERC EXHIBIT-DRAFT
PREP FOR FERC EXHIBIT-DRAFT
PREP FOR FERC EXHIBIT-DRAFT
PREP FOR FERC EXHIBIT-DRAFT | ST
CT-1 | 6APR81
8MAR82 | 5JUN81
16APR82 | 4JAN82
8MAR82 | 5MAR82
16APR82 | 3
6
6
6
39
0 | 38 | 1 CRITICAL | | • | 78400
78500
78500
80400
81600
81800 | 78500
78540
78580
80500
81800
82800 | 0
0
1 R
2 R | OFB 1 C8
OFB 1 C8
OFB 1 C8
OFB 1 C3
OFB 1 C3
OFB 1 C3 | 715
715XX
715XX
801
8021
8021 | PREP FOR FERC EXHIBIT-DRAFT EXHIBIT W MATERIAL COMPLETE EXHIBIT S MATERIAL COMPLETE SELECT INITIAL CORRIDORS LOAD FLOW ANALYSIS LOAD FLOW ANALYSIS | FIN
FIN
ST
FIN | 19APR82
19APR82
19APR82
6APR81
6APR81
20APR81 | 16APR82
16APR82
16APR82
10APR81
17APR81
29MAY81 |
19AFR82
19AFR82
17MAY82
17AUG81
1JUN81
15JUN81 | 16APR82
16APR82
14MAY82
21AUG81
12JUN81
24JUL81 | 39
0
0
0
4
19
8 | 0
4
19
8 | 1 CRITICAL
1 CRITICAL
1 | | | 82400
82600
82800
85700
80600
80800
81000 | 82400
82800
83000
85800
80800
81000
81200 | 8
0
32
20 R
6 | OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C3 | 80221
80221
80221
80222
803
803 | PREP FOR FERC EXHIBIT-DRAFT EXHIBIT W MATERIAL COMPLETE EXHIBIT S MATERIAL COMPLETE SELECT INITIAL CORRIDORS LOAD FLOW ANALYSIS LOAD FLOW ANALYSIS PRELIMINARY ELEC SYSTEM PRELIMINARY ELEC SYSTEM PRELIMINARY ELEC SYSTEM RECOMMEND ELEC SYS FINAL ROUTE SELECTION 1981 FOWER HARDWRE&CONDUCTR STUDY TOWER HARDWRE&CONDUCTR STUDY | ST
CT-1
FIN
ST
CT-1
CT-2 | 6AFR81
1JUN81
27JUL81
27JUL81
6AFR81
24AUG81
50CT81 | 29MAY81
24JUL81
24JUL81
5MAR82
21AUG81
20CT81
13NOV81 | 6APR81
1JUN81
27JUL81
27JUL81
6APR81
24AU681
50CT81 | 29MAY81
24JUL81
24JUL81
5MAR82
21AUG81
20CT81
13NOV81 | 0 0 0 0 0 | 0000000 | 1 CRITICAL | | ဌာ | 83200
83400
83600
84600
84800 | 81400
83400
83600
85400
84800
85400 | 7 R | OPB 1 C3 | 805 | FINAL ROUTE SELECTION 1981 TOWER HARDWRE&CONDUCTR STUDY TOWER HARDWRE&CONDUCTR STUDY TOWER HARDWRE&CONDUCTR STUDY SUBSTATIONS SUBSTATIONS DISPATCH CTR & COMMUNICATINS | FIN
ST
CT-1
FIN
ST
FIN | 16NOV81
1JUN81
27JUL81
16NOV81
6APR81
27JUL81 | 13NOV81
17JUL81
7AUG81
22JAN82
29MAY81
18SEP81 | 16NOV81
14SEP81
2NOV81
16NOV81
50CT81
30NOV81 | 13NOV81
300CT81
13NOV81
22JAN82
27NOV81
22JAN82 | 0
15
14
0
26
18 | 0
1
14
0
8
18 | I CRITICAL
1
1 CRITICAL
1 | | | 84000
84200
85200
85400
90200
90400
90800 | 85400
85600
90400
90600
91000 | 1 R
6
2
4
6 | OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C3
OPB 1 C7
OPB 1 C7
OPB 1 C7 | 806
807
807
901
901
902 | DISTRICT CIR & COMMUNICAINS | FIN | 5\70F81 | 185EF81 | 30MAN.91 | 557WW85 | 26
18 | 8
16
41
0
0
22
0 | I
I CRITICAL | | * | 92200
92400 | 92200
92200
92600 | 17
0
12 | OPB 1 C7 | 905 | CONTINGENCY ANALYSIS | | 29JUN81 | 183EP81 | 9NOV81 | 29JAN82 | 19 | 0
25
0
0
25
18 | buck buse black buse price p | | | A1200
A3200
A3300
A3600
A3800
A1400
A1600 | A1400
A2400
A2400
A3800
A4000
A1400
A1400 | . 1 | | | IMPACT OF NEW FERC REGULATION 1ST UPDATE-REGULATORY REQ 2ND UPDATE-REGULATORY REQ DATA FROM OTHERS EXHIBIT A B & C MATERIAL COMP COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION | LETE | 6APR81
6APR81
30NDV81
6APR81
11MAY81
23NOV81
25JAN82 | 1MAY81
25DEC81
8MAY81
8MAY81
22JAN82 | 17MAY82 | 16APR82
16APR82
14MAY82
14MAY82 | 34
50
16
53
53 | 33
50
16
0
53
0 | **** **** **** **** **** **** **** **** **** | | | A14A0
A1700
A17A0
A17B0
A1800
A0400 | A1700
A17A0
A17B0
A1800
A2400
A0600 | 2
3
2
3
0
10 | FLC C110
FLC C110
FLC C110
FLC C110
FLC C110
FLC C110 | 1004
1004
1004
1004
1004
10051 | COORD EXHIBIT PREPARATION PREPARE EXHIBIT E | UT-5 | 25JAN82
1FEB82
15FEB82
8MAR82
22MAR82
19APR82
30NOV81 | 9APR82 | 15MAR82
29MAR82
19APR82 | 26MAR82
16APR82 | 1 1 1 0 5 | 0 0 1 0 4 | i
i
i
critical | PAGE TIME NOW: 6APR81 | | | · | | | | | | | | | | | | | | | | | | |----|----------------|----------------|--------------|----------------|--------------|----------------|-------|----------------|------------------|-----------------|----------------------|-----------|------------------|-----------------|---------|---|----------|------|-----------------| | | I-NODE | J-NODE | DUR | SELECT | r codes | ~ | DES | CR | IPT | IOI | <u> </u> | | E.S. | E.F. | L.S. | L.F. | T.F. | F.F. | <u>EL</u> | | | A0700
A0800 | A0900
A1000 | 10
10 | FLC
FLC | C110
C110 | 10052 | PREPA | ARE E | XHIBI | T D | | СT | 30NOV81 | 5FEB82 | 8MAR82 | 14MAPR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR82
16APR | 14 | 14 | 1 | | | A0000 | A0200 | 6 | FLC | C110 | 1007 | PREPA | ARE E | XHIBI | i r | | ST | 14SEP81 |
230CT81 | 21SEP81 | 300CT81 | 10 | 10 | 1 | | | A0200 | A1100 | 4 | FLC | C110 | 1007 | PREPA | ARE E | XHIBI | TT | DBAFT | FIN | 260CT81 | 20N0V81 | 2NOV81 | 27NOV81 | Ī | Ö | 1 | | | A2200
A2400 | A2400
A2600 | 0 | FLC | C110
C110 | 1008 | PREP | APPL | MIAJI.
MTANT | FORM- | -DRAFI
-DRAFT | 51
FTN | 100bb83 | 2808CB | 287AM8 | 16AFK82 | 14 | 14 | 1
1 CRITICAL | | | A2600 | A2800 | 2 | FLC | CIIO | 1009 | REVIE | W AN | D COR | RECT | Sivor 1 | 1 414 | 19APR82 | 30APR82 | 19APR82 | 30APR82 | ŏ | ŏ | i critical | | | A2800
A3000 | A3000
A3400 | 2
6 | FLC | C110
C110 | 1010 | EXTE | RNAL | REVIE | W
Additi | וגחזדאי | | 3MAY82 | 14MAY82 | 3MAY82 | 14MAY82 | Ō | 0 | 1 CRITICAL | | | B0000 | B0200 | 63 R | FLC | C210 | 1101 | PROJE | ECT | VERVI | ALLTI
EM | TH I TOIA | | 6APR81 | 18JUN82 | 13APR81 | 25JUN82 | . 1 | 1 | 1 CRITICAL | | | B0400 | B0600 | 53 R | FLC | C210 | 1102 | INTER | NAL | REPOR | ĪŜ | novolete | | 6APR81 | 9APR82 | 13APR81 | 16APR82 | Ĩ | ō | 1 | | • | B0600
B1200 | B06A0
B1400 | 0
42 R | FLC
FLC | C210
C210 | 1102XX
1103 | SUSTI | LNA B
Rii f | J MAIL
BASE P | KTAL (| CUMPLETE | Y ST | 12APR82 | 29 JANR2 | 17AFR82 | 16APR82 | 1 | 1 | Ţ | | | B1400 | B1600 | 0 | FLC. | C210 | 1103 | SUSI | TNA E | ASE P | LAN R | ISK ANAL | YFIN | 25JAN82 | 22JAN82 | 1FEB82 | 29JAN82 | 1 | ŏ | 1 | | | B1600
B2000 | B1800
B2200 | 21
30 | FLC | C210
C210 | 1104 | 50511 | INA B
TNA F | ASE P | LAN E | KIEN/REV
K ANALYG | 15
19 | 25JAN82 | 18JUN82 | 1FEB82 | 25JUN82 | 1 | 21 | 1 | | | B2400 | B2600 | 24
30 | FLC | C210 | 1106 | RESOL | UTIO | N TAX | ISSU | :
: Wurin | 10 | 6APR81 | 18SEP81 | 11JAN82 | 25JUN82 | 40 | 40 | 1 | | | B2800 | B3000 | 30 | FLC | C210 | 1107 | IDEN | TIFY | PARTI | ES IN | TEREST | | 6JUL81 | 29JAN82 | 3000081 | 25JUN82 | 21 | 21 | | | | B3200
B3600 | B3400
B3800 | 30
52 R | FLC | C210
C210 | 1108 | LIAIS | NUE A
SON A | APA RO | NLE
NTI LINI | NERWRITE | 'R' | AAPR81 | 2APRR2 | 215EP81 | 168FR82 | 11 | 9 | 1 | | | B3400 | B34A0 | 0 | FLC | C210 | 1109XX | EXHII | BIT G | MATE | RIAL (| COMPLETE | | 1FEB82 | 29JAN82 | 19APR82 | 16APR82 | 11 | 11 | İ | | | C0600
C1200 | C0800
C1400 | 4 | OPB 1
OPB 1 | CB10 | 12022 | CONDL | JCT F | ANBLIC | MEET | ING #2 | | 4MAY81 | 29MAY81 | 30N0V81 | 25DEC81 | 30 | 70 | 7 | | 1. | C0200 | C0400 | | OPB 1 | C810 | 12031 | CONDU | JCT W | JORKSH | OFS 1 | ,2,3 | | 6APR81 | 24APR81 | 9N0V81 | 27NOV81 | 30
31 | 1 | <u>.</u> | | | C0800 | C1000 | | OPR 1 | C810 | 12032 | CONDU | UCT L | IORKSH | OPS 4 | ,5,6 | 4.1 | 1JUN91 | 21AUG81 | 28DEC81 | 19MAR82 | 30 | Ō | | | | C1600
C1800 | D1200
D1200 | 63 K
63 R | OPB 1 | C810 | 1204
1205 | PREP | HUBL | TATN
TATN | TRIKT! | B MAIEKI
N 1 197 | AL | 6AFKB1
6APR81 | 18JUN82 | 13AFR81 | 25JUN82
25JUN82 | 1 | 1 | 4 | | | D1000 | D1200 | 27 R | PSB 2 | C310 | 13013 | PKÖJI | ECT F | ROCED | MANU | AL-UPDAT | Έ | 6AFRBI | 90CT81 | 21DEC81 | 25JUN82 | 37 | 37 | 4 | | | D2200
D2800 | D2400
D3000 | | PSB 2
PSB 2 | C310 | 13042 | SCHE | DULE | CONTR | OL SY | S UPDATE | | 6APR81 | 18JUN82 | 13APR81 | 25JUN82 | 1 | 1 | | | | D3400 | 113600 | 63 R | PSB 2 | C310 | 13062 | MANP | OWER | LOADN | G SCH | ED-UPDAT | Έ | 6APR81 | 18JUN82 | 13APR81 | 25JUN82 | 1 | 1 | i | | | D3800 | D4000 | 63 R | PSB 2 | C310 | 1310 | SUB (| CONTR | CACT A | DMINI | STRATION | <u>.</u> | 6AFRB1 | 18JUN82 | 13AFR81 | 25JUN82 | į | 1 | | | | D1200 | D1300 | V | | TO | XXX | rkuJi | EUI L | JUNITE | IL. | XXX | | 78J0N87 | 5970NR 5 | SANNAS. | S970NRS | 0 | 20 | 1 CRITICAL | Remaining Work: From April 6, 1981 PAGE 1 TIME NOW 6APR81 DESCRIPTION ``` FIELD CAMP OPERATIONS 2022 RESUPPLY & EMERGENCY SERVICE 203 204XX EXHIBIT F MATERIAL COMPLETE 205 206 LAND AQUISITION ANALYSIS RIGHT OF ENTRY SITE SPECIFIC SURVEYS FIN XXXXXXXXXXXXXXXXXXXXXX 207 CT-1XXXX L FIN . XXXXXXX L FIN XXX L FIN XXXXXXXX L CT-1X 207 SITE SPECIFIC SURVEY 2081 2082 AIR PHOTOS & MAPPING-1980 AIR PHOTOS & MAPPING-1981 ACCESS ROAD ACCESS ROAD ACCESS ROAD 210 CT-2. XX 210 210 212 213 213 214 214 215 ACCESS ROAD FIELD RECON FOR RSRVR CLEAR FIN XXXXX MARKETABLTY & DISPOSAL STDY ST XX MARKETABLTY & DISPOSAL STDY FIN . XXX CST ESTMTS RSVR CLEARING ST XX CST ESTMTS RSVR CLEARING FIN . SLOPE EROSION & STBLTY STUDY ST XXXX SLOPE EROSION & STBLTY STUDY FIN . HYDROGRAPHIC SURVEYS FIN XXXX FIELD DATA INDEX OPERATION XXXXX FIELD DATA COLLECTION 80-81 FIN CL FIELD DATA COLLECTION 81-82 ST . CCC FIN . XXXXXXXXXX FIN XXXXXX FIN . XXX 215 XXXX 218 3022 3032 FIELD DATA COLLECTION 81-82 3033 FIELD DATA COLLECTION 81-82 WATER RSRCS-FLOW EXTENSION WATER RSRCS-FREQ ANALYSIS WATER RSRCS-RESERVOIR STUDY FIN XX FIN XX 3033 3041 3042 3043 CT-1CCCCCCCCCL CT-2, CT-3, CCCCCL 3043 3043 3043 FIN . XXXXXXL WATER RSRCS-RESERVOIR STODY FIN UATER RSRCS-PRE&POST PROJECT ST WATER RSRCS-PRE&POST PROJECT FIN EVAPORATION STUDIES WATER RSRCS-GLACIAL STUDIES EXHIBIT H MATERIAL COMPLETE EXHIBIT I MATERIAL COMPLETE FLOODS-FREQUENCY ANALYSIS FLOODS PMF REVIEW FI DODS-PRESERVOIR ROUTING CT-1 3044 CCCL 3044 3045 CCCL 3046 304XX 304XX 3051 3052 FLOORS-RESERVOIR ROUTING 3053 CT-1XXXXXXXXXX FLOODS-RESERVOIR ROUTING FLOODS-RESERVOIR ROUTING HYDRLICS & ICE WTR LVLS HYDRLICS & ICE WTR LVLS HYDR&ICE-RESER SLIDE SURGE HYDR&ICE-RSVR TEMP REGIME SEDIMENT YIELD & DEPOSITION SEDIMENT YIELD & DEPOSITION 3053 FIN . XXXXX CT-1XXXXXXXXXXXXXXXXXXX 3061 FIN . FIN XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXX 3061 3063 3064 3071 ST XXX 3071 FIN . XXXXXX RIVER MORPHOLOGY CT-1. XXXXXXXXXXXX 3072 RIVER MORPHOLOGY CCCL 3072 FIN . ``` Ç ``` TRANSMSN LINE-DET PARAMTR TRANSMSN LINE-DET PARAMTR ACCESS ROAIS HYDROLOGY LWR SUSITNA STUDIES-PRELIM LWR SUSITNA STUDIES-FOLLOWUP LWR SUSITNA STUDIES-FOLLOWUP DAM STABILITY THAN STABILI 3082 309 3101 3102 3102 408 DAM STABILITY LONG TERM MONITORING PROGRAM RESERVOIR INDUCED SEISMICITY SEISMIC GEOLOGY-FIELD STUDY EVALUATION & REPORT DRAFT EVALUATION & REPORT DRAFT EVALUATION & REPORT DRAFT EVALUATION & REPORT DRAFT 408 409 410 411 412 412 CT-1. FIN . 412 GROUND MOTION STUDIES GROUND MOTION STUDIES DAM STABILITY CONSULTING SOIL SUSCEPTITY-SEISMIC FAIL AIR PHOTO INTERPRETATION 413 413 414 415 502 1981 PROGRAM DESIGN 1981 EXPLORATION PROGRAM 1981 EXPLORATION PROGRAM 506 506 1981 EXPLURATION PROGRAM 1982-4 PROGRAM DESIGN DATA ASSEMBLY-1980 FIN . CCC DATA ASSEMBLY-1981 DRAFT FIN XXXXXX DATA ASSEMBLY FINAL-DRAFT INVESTIGATE TUNNEL ALTERNATIVES XXL SELECT REPORT FINAL DRAFT CT-1X L SELECT REPORT FINAL DRAFT FIN . XXL SELECT REPORT FINAL DRAFT FIN . XXL SELECT REPORT FINAL EDITION . XXL SELECT REPORT FINAL EDITION . XXL 507 5081 5082 5083 602 6052 6052 XXXL 6053 PRELIM WATANA DAM ALTERNATES CT-2. XXXXXXXX L PRELIM WATANA DAM ALTERNATES CT-3. X PRELIM WATANA DAM ALTERNATES FIN. 607 607 607 PRELIM WATANA DAM ALTERNATES FIN . PRELIM DEVIL CANYON DAM ALT CT-2. PRELIM DEVIL CANYON DAM ALT FIN . ESTAB WATANA DESIGN CRITERIA CT-1. ESTAB WATANA DESIGN CRITERIA FIN . ESTAB DEVIL CANYN DESGN CRIT CT-1. ESTAB DEVIL CANYN DESGN CRIT CT-2. ESTAB DEVIL CANYN DESGN CRIT CT-2. ESTAB DEVIL CANYN DESGN CRIT FIN . PRELIM DESIGN WATANA DAM ST . PRELIM DESIGN WATANA DAM FIN . PREL DESIGN DEVIL CANYON DAM ST . PREL DESIGN DEVIL CANYON DAM ST . PREL DESIGN DEVIL CANYON DAM FIN . PREL DESIGN DEVIL CANYON DAM FIN . DAM SELECTION REPORT-DRAFT ST . CCCCCL 808 808 609 609 609 510 XXXXXXX 610 610 611 XXXXXXXXXXXL 611 XXXXXXXXXX ``` ``` DAM SELECTION REPORT-DRAFT FIN . SPILLWAY DESIGN CRITERIA ST X 614 SPILLWAY DESIGN CRITERIA ST X L SPILLWAY DESIGN CRITERIA FIN . XXXXXXXX L WATANA SPILLWAY ALTERNATIVES FIN . WATANA SPILLWAY ALTERNATIVES ST . XXXXX DEVL CAN SPILLWAY ALTERNATVE ST . XXX DEVL CAN SPILLWAY ALTERNATVE FIN . PRELIM DESGN WATANA SPILLWAY ST XXXX PRELIM DESGN WATANA SPILLWAY CT-1. PRELIM DESGN WATANA SPILLWAY FIN . PRELIM DES DEVIL CAN SPILWAY FIN . PRELIM DES DEVIL CAN SPILWAY FIN . SPILLWAY SELECTN REPRT-DRAFT ST . SPILLWAY SELECTN REPRT-DRAFT FIN . ACCESS & CAMP FACILITIES ST XXX 614 XXXXXX 616 XXX L 616 XXXXXXXXL 617 617 XXXXXXXXX XXXXXXXXXXXXXL SPILLWAY SELECTN REPRI-DRAFT ST SPILLWAY SELECTN REPRI-DRAFT FIN ACCESS & CAMP FACILITIES ST XXX ACCESS & CAMP FACILITIES ST XXXXXXX WATANA DIVERSION SCHEMES ST XXXXXXX WATANA DIVERSION SCHEMES ST XXXXXXXXXXXX DEVIL CANYON DIVERSN SCHEMES ST XXXXXXXXXX DEVIL CANYON DIVERSN SCHEMES ST XXXXXXXXXXX DOPT WATANA POWER DEVELOPMENT ST OPT WATANA POWER DEVELOPMENT CT-1. OPT WATANA POWER DEVELOPMENT FIN OPT DEVL CANYN POWER DEVELOP ST OPTIMIZE DAM HEIGHTS ST XXXXXXX OPTIMIZE DAM HEIGHTS ST XXXXXXX OPTIMIZE DAM HEIGHTS ST XXXXXX OPTIMIZE DAM HEIGHTS ST ST SPREL DESGN WATAN POWER DEVEL FIN PREL DESGN WATAN POWER DEVEL FIN PREL DES DEVL CAN POWR DEVEL FIN PREL DES DEVL CAN POWR DEVEL FIN POWER DEVELOPMNT REPRI-DRAFT ST OPWER RE XXXXXX XXXXXL 620 621 622 622 622 623 623 XXXXXXXX XXXXXXXX XXXXXXXXX 623 624 624 XXXXXL XXXXX 625 626 626 627 627 628 XXXXXXXXXXXXXXL XXXXXXXXXXXXXXX XXXXX XXXXL XXXXXX XXXXXL XXXXXX 630 XXXXXL 430XX 630XX 631 631 631 631 CCCL ``` 0/ ``` 631 631XX 637 7012 7013 MONITOR FIELD ACTIVITIES MONITOR FIELD ACTIVITIES MONITOR FIELD ACTIVITIES WITR RES-PRE WAT&DEVL CAN ALT WITR RES-OPT WAT&DEVL CAN DES SOCIOECONOMIC ANALYSIS SOCIOECONOMIC ANALYSIS 702 702 7042 7043 705 705 CULTURAL ALTERNATIVE SITES 7061 ST XXL 7061 7061 7062 7062 CULTURAL PRELIM ALTERNATIVES FIN . CULTURAL-OPTIMIZED DESIGN ST XX CULTURAL-OPTIMIZED DESIGN CT-1. CULTURAL-OPTIMIZED DESIGN FIN . EXHIBIT V MATERIAL COMPLETE 7062 7063 XXXXXXXXXXXXXXXXXXXXX CT-1. 7063 7063 706XX 7072 LAND USE PRELIM ALTERNATIVES CT-1. 7072 XXXXXXXXX 7072 7073 XXXXXXXXXXXXXXXXXXXX 7073 708 708 CCCCL 7092 7101 7101 7101 7102 FISH ECOLOGY PRELIM ALTS CT-1. 7102 7102 7103 FISH ECOLOGY OPTIMIZED DESGN CT-1. XXXXXXXXXXXXXXXX 7103 FISH ECOLOGY OPTIMIZED DESGN FIN . 7103 7111 WILDLIFE ECOLOGY ALTER SITES FIN . WILDLIFE ECOLOGY PRELM ALTER ST XXXXXXXX 7111 7112 WILDLIFE ECOLOGY PRELM ALTER
CT-1. WILDLIFE ECOLOGY PRELM ALTER FIN . XXXXXXXXX 7112 ``` ``` XXXXXXXXXXXXXXXXX 7113 7113 7121 7121 XXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXX 7123 PREP FOR FERC EXHIBIT-DRAFT FIN . EXHIBIT W MATERIAL COMPLETE EXHIBIT S MATERIAL COMPLETE SELECT INITIAL CORRIDORS FIN X LOAD FLOW ANALYSIS ST XX LOAD FLOW ANALYSIS FIN . PRELIMINARY ELEC SYSTEM CT-1. PRELIMINARY ELEC SYSTEM FIN . RECOMMEND ELEC SYSTEM FIN . RECOMMEND ELEC SYSTEM FIN . FINAL ROUTE SELECTION 1981 CT-1. FINAL ROUTE SELECTION 1981 CT-1. FINAL ROUTE SELECTION 1981 CT-2. FINAL ROUTE SELECTION 1981 FIN . TOWER HARDWRE&CONDUCTR STUDY ST . TOWER HARDWRE&CONDUCTR STUDY CT-1. TOWER HARDWRE&CONDUCTR STUDY FIN . SUBSTATIONS ST XX 715 715XX 715XX FIN X ST XX FIN . XXXXXXX ST CCCCCCCL CT-1. CC 801 8021 CCCCCCCL 80221 80222 ST CCCCCCCCCCCCCCCCCC 803 CCCCCL 803 803 803 804 804 TOWER HARDWRE&CONDUCTR STUDY FIN . SUBSTATIONS ST XX SUBSTATIONS FIN . DISPATCH CTR & COMMUNICATINS FIN . TRANS LINE COST ESTIMATES ST X TRANS LINE COST ESTIMATES FIN . ASSEMBLE COST-SCHEDULE DATA ST . ASSEMBLE COST-SCHEDULE DATA FIN . PREP PRELIM CST ESTIMATES . COST ESTIMATE UPDATES EXHIBIT N MATERIAL COMPLETE ENGR COST & SCHEDULE PRELIM . ENGR COST & SCHEDULE FINAL . EXHIBIT O MATERIAL COMPLETE . CCCCCCCCL 804 805 805 806 ST XXXXXXXX FIN . ST XXXXXXXX XXXXXXX XXXXXXXX 806 807 807 CCCCCL 901 901 XXXX XXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXX ``` APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP CCT NOV DEC 0122011200122012201123012201120012301220112001230122011200123012201120012301220112001230122011200123012201120012301220132 6307418518529630730741741852962963074184185185218529529630741741852963074185185296307 ``` XXXXXXXXXX 905 CONTINGENCY ANALYSIS IMPACT OF NEW FERC REGULATIONS XXXXXXXX 1001 10022 10023 1ST UPDATE-REGULATORY REQ XXXX 2ND UPDATE-REGULATORY REQ DATA FROM OTHERS X) EXHIBIT A B & C MATERIAL COMPLETE. COORD EXHIBIT PREPARATION ST XXXX XXXXX 1003 1003XX XXXXXXXXXL XXL XXL XXL XXL XXL XXL 1004 CT-1. CT-2. CT-3. COORD EXHIBIT PREPARATION 1004 COORD EXHIBIT PREPARATION 1004 COORD EXHIBIT PREPARATION 1004 CT-4. 1004 COORD EXHIBIT PREPARATION CT-5. 1004 COORD EXHIBIT PREPARATION COORD EXHIBIT PREPARATION PREPARE EXHIBIT E PREPARE EXHIBIT D PREPARE EXHIBIT R PREPARE EXHIBIT T PREPARE EXHIBIT T PREPARE EXHIBIT T 1004 FIN . XXXXXXXXX 10051 XXXXXXXXX 10052 1006 1007 XXXXXXL XXXXXXXXX 1007 FIN . PREP APPLICATAL FORM-DRAFT PREP APPLICATA FORM-DRAFT REVIEW AND CORRECT ST XXXXXX 1008 FIN 1008 1009 EXTERNAL REVIEW 1010 PRINT LICENSE APPLICATION PROJECT OVERVIEW INTERNAL REPORTS EXHIBIT U MATERIAL COMPLETE CCCCCL 10XXX 1101 1102 1102XX 1103 SUSITNA BASE FLAN RISK ANALY ST SUSITNA BASE PLAN RISK ANALY FIN . SUSITNA BASE PLAN EXTEN/REVIS . SUSITNA FINANCE RISK ANALYSIS . 1103 XXXXXXXXXXXXXXXXXXXXXXXXXXXX 1104 1105 RESOLUTION TAX ISSUE IDENTIFY PARTIES INTEREST REVENUE ASSURANCE LIAISON APA BOND UNDERWRITER EXHIBIT G MATERIAL COMPLETE CONDUCT PUBLIC MEETING $2 CONDUCT PUBLIC MEETING $3 1106 1107 1108 1109 1109XX 12022 XXXX 12023 12031 CONDUCT WORKSHOPS 1,2,3 XXX CONDUCT WORKSHOPS 4,5,6 PREP PUBLISH DISTRIB MATERIAL 12032 XXXXXXXXXXX 1204 PREP MAINTAIN ACTION LIST 1205 13013 PROJECT PROCED MANUAL-UPDATE SCHEDULE CONTROL SYS UPDATE COST CONTROL SYSTEM-OP MANPOWER LOADING SCHED-UPDATE 13042 13052 13062 SUB CONTRACT ADMINISTRATION 1310 XXX PROJECT COMPLETE ```