ALASKA POWER AUTHORITY

SUSITNA HYDROELECTRIC PROJECT

ţ,

X

Ő.

TASK 6 - DESIGN DEVELOPMENT

SUBTASKS 6.09 & 6.10 - DESIGN CRITERIA FOR WATANA AND DEVIL CANYON DEVELOPMENTS

MAY 1981 .

ACRES AMERICAN INCORPORATED 1000 Liberty Bank Building Main at Court Buffalo, New York 14202 Telephone (716) 853-7525

# TABLE OF CONTENTS

| 1.0 - | GENERAL                                                                                                                                            |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.0 - | PROJECT PARAMETERS                                                                                                                                 |
| 3.0 - | PROJECT DESIGN DATA<br>3.1 - Topographical Data<br>3.2 - Hydrological Data<br>3.3 - Meteorlogical Data                                             |
| 4.0 - | DESIGN CRITERIA<br>4.1 - Civil Design<br>4.2 - Hydraulic Design<br>4.3 - Geotechnical Design<br>4.4 - Mechanical Design<br>4.5 - Electrical Design |
| 5.0 - | ENVIRONMENTAL RESTRICTIONS                                                                                                                         |

# Page

### Susitna Hydroelectric Project

#### Project Parameters and Design Criteria

### 1.0 - General

The following sets out the principal project parameters and the design criteria for the proposed Watana and Devil Canyon hydroelectric projects.

Much of this document is tentative at this stage as it will be subject to confirmation or revision throughout the feasibility study. It is intended that with further amendment as additional data becomes available it will form the basis for the final engineering design criteria and it is broken down into general project parameters and design criteria for the individual engineering disciplines in such a fashion as to be readily incorporated into this final criteria.

2.0 - Project Parameters

| Item                                             | Watana         | Devil Canyon                                       |
|--------------------------------------------------|----------------|----------------------------------------------------|
| <u>River Flows</u>                               |                |                                                    |
| Average flow (over 30 yrs of record)             | 7,860 c.f.s.   | 8,960 c.f.s.                                       |
| Probable Maximum flood                           | 235,000 c.f.s. | 270,000 c.f.s.                                     |
| Max. flood with return<br>period of 1:10,000 yrs | 155,000 c.f.s. | 135,000 c.f.s<br>(after routing<br>through Watana) |
| Max. flood with return period of 1:500 yrs.      | 116,000 c.f.s. |                                                    |
| Max. flood with return<br>period of 1:50 yrs.    | 87,000 c.f.s.  | 42,000 c.f.s.<br>(after routing<br>through Watana) |
| Normal max. operating level                      | 2,200' MSL     | 1,445' MSL                                         |
| Minimum operating level                          | 2,050' MSL     | 1,440' MSL                                         |
| Area of reservoir at max.<br>operating level     | 40,000 acres   | 21,000 acres                                       |

| Item                                | Watana                                                   | Devil Canyon                                             |
|-------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Reservoir live storage              | 4.6 x 10 <sup>6</sup><br>acre ft                         | $0.75 \times 10^6$ acre ft                               |
| Reservoir full storage              | 10.0 x 10 <sup>6</sup><br>acre ft                        | 1.1 x 10 <sup>6</sup><br>acre ft                         |
| Dam                                 |                                                          |                                                          |
| Туре                                | Rockfill                                                 | Concrete arch                                            |
| Crest elevation                     | 2,225' MSL                                               | 1455' MSL                                                |
| Crest length                        |                                                          |                                                          |
| Height                              | 890 ft above foundation                                  | 670 ft above<br>foundation                               |
| Cut-off and foundation treatment    | Core founded on<br>Grout curtain &<br>downstream drains. | Founded on rock.<br>Grout curtain &<br>downstream drains |
| Upstream slope                      | 1V:2.75H                                                 |                                                          |
| Downstream slope                    | 1V:2.0H                                                  |                                                          |
| Crest width                         | 80 ft                                                    | 20 ft                                                    |
| Diversion                           |                                                          |                                                          |
| Cofferdam types                     | Rockfill                                                 | Rockfill                                                 |
| Cut-off and foundation              |                                                          | Founded on alluviu<br>with slurry trench<br>to rock.     |
| Upstream cofferdam crest elevation  | 1560' MSL                                                | 960' MSL                                                 |
| elevation                           | 1500' MSL                                                | 900' MSL                                                 |
| Max. pool level during construction | 1555' MSL                                                | 955' MSL                                                 |
| Min. pool level during construction | Approx. 10 ft above crown of outlet                      | Approx. 10 ft about crown of outlet                      |
| Water passages                      | Concrete lined                                           | Concrete lined                                           |

مرد مربعہ آبادی رسم پر بچند القراب

| Item                       | Watana                                                                                     | Devil Canyo                                                           |
|----------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Outlet structures          | Low level struc-<br>ture with high head<br>slide gates to op-<br>erate under low<br>heads. | 955' MSL                                                              |
| Final closure              | Mass concrete plugs<br>in line with dam<br>grout curtain.                                  | Mass concrete pl<br>in line with dam<br>grout curtain.                |
| Releases during impounding | 2000 c.f.s. min.<br>via bypass to out-<br>let structure                                    | 2000 c.f.s. via<br>level Howell Bun<br>valves.                        |
| Emergency Releases         |                                                                                            |                                                                       |
| Draw down requirements     | To be determined.                                                                          |                                                                       |
| Discharges                 | To be determined.                                                                          |                                                                       |
| Water passages             | Concrete lined tun-<br>nels discharging<br>into downstream<br>diversion tunnels.           |                                                                       |
| Outlet structures          | Mid reservoir level                                                                        |                                                                       |
| Gate chambers              | Underground cham-<br>bers housing wheel<br>mounted control<br>gates.                       |                                                                       |
| Energy dissipation         | To be determined.                                                                          |                                                                       |
| <u>Spillway</u>            |                                                                                            |                                                                       |
| Design Floods              | Passes p.m.f., pre-<br>serving integrity<br>of dam with no loss<br>of life.                | Passes p.m.f., p<br>serving integrit<br>of dam with no lo<br>of life. |
|                            | Passes routed<br>1:10,000 yr. flood<br>with no damage to<br>structures.                    | Passes routed<br>1:10,000 yr. flo<br>with no damage to<br>structures. |

| Item                                                                         | Watana                                                         | Devil Canyon                                                |
|------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------|
| Main spillway - Capacity                                                     | Routed 1:10,000 yr<br>flood (115,000 cfs)<br>with 5' surcharge |                                                             |
| - Control structure<br>- Energy Dissipation                                  | Gated ogee crests.<br>To be determined.                        |                                                             |
| Secondary spillway - Capacity<br>- Control Structure<br>- Energy Dissipation | Not applicable.<br>-<br>-                                      | 45,000 c.f.s.                                               |
| Emergency spillway - Capacity                                                | P.m.f. minus<br>1:10,000 yr flood                              | P.m.f. minus rout<br>1:10,000 yr flood                      |
| - Туре                                                                       | Fuse plug                                                      | (135,000 cfs)<br>Fuse plug.                                 |
| <u>Power Intak</u> e                                                         |                                                                |                                                             |
| Туре                                                                         | Massive concrete<br>structure embedded<br>in rock.             | Massive concrete<br>structure embedde<br>in rock.           |
| Number of intakes                                                            | 4                                                              | 4                                                           |
| Draw-off requirements                                                        | Multi-level corres-                                            | Multi-level corre                                           |
| Gate chambers                                                                | ponding to tempera-<br>ture strata.                            | ponding to temper<br>ture strata.                           |
| Drawdown                                                                     | 150'                                                           | Not determined.                                             |
| Penstocks                                                                    |                                                                |                                                             |
| Т <i>у</i> ре                                                                |                                                                | Concrete lined ro<br>tunnels with down<br>stream steel line |
| Number of penstocks                                                          | 4                                                              | 4                                                           |
| Powerhouse                                                                   |                                                                |                                                             |
| Туре                                                                         | Underground                                                    | Underground                                                 |
| Transformer area                                                             | Separate gallery                                               | Not determined.                                             |
| Control room & administration                                                | Surface                                                        | Not determined.                                             |
| Access - Vehicle<br>- Personnel                                              | Rock tunnel.<br>Elevator from<br>surface.                      | Rock tunnel.<br>Not determined.                             |

| Item                                              | Watana                          | Devíl Canyon                                      |
|---------------------------------------------------|---------------------------------|---------------------------------------------------|
| Power Plant                                       |                                 |                                                   |
| Type of turbines                                  | Francis                         | Francis                                           |
| Number and rating                                 | 4 x 270 MW                      | 4 x 150 MW                                        |
| Rated net head                                    | 680 ft                          | 550 ft                                            |
| Design Flow                                       | 5,300 cfs per unit              | 3630 cfs                                          |
| Maximum gross head                                | 745 ft                          | 565 ft approx.                                    |
| Maximum flow                                      |                                 |                                                   |
| Type of generator                                 | Vertical<br>synchronous         | Vertical<br>synchronous                           |
| Rated output                                      | 310 MVA                         | 172 MVA                                           |
| Power factor                                      | 0.9                             | 0.9                                               |
| Frequency                                         | 60 HZ                           | 60 HZ                                             |
| Transformers                                      | 310 MVA<br>13.8-345 kv, 3-phase | To be determined<br>13.8-345 kv, 3-phase          |
| <u>Tailrace</u> °                                 |                                 |                                                   |
| Water passages                                    | 2 concrete lined tunnels.       | 2 concrete lined tunnels.                         |
| Elevation of water passages                       | Below min. tail-<br>water       | Below min. tailwater                              |
| Surge<br>Number of penstocks                      | Separate surge<br>chambers.     | Draft tube gate<br>shafts act as surge<br>shafts. |
| Tailwater elevations                              |                                 |                                                   |
| - Full generation load at minimum head            | 1460'                           |                                                   |
| - Single generating unit, 60%,<br>load, full head | 1455'                           | MSL at this stage.                                |
| - Spillway passing 1:10,000 yr<br>flood           | 1475'                           | 910' MSL assumed                                  |

S.

## 3.0 - PROJECT DESIGN DATA

#### 3.1 - Topographical Data

- -

The topography of the site is based on aerial survey mapping reduced to a scale of 1 inch:200 feet. Contours are at 5 feet intervals.

## 3.2 - Hydrological Data

The hydrological data is based on records taken over a period of 30 years. Streamflows and respective drainage areas are extrapolated and adjusted to give a representative pattern of flows at the damsite. Flows are shown on Tables and

3.3 - Meteorlogical Data

•

## 4.0 - DESIGN CRITERIA

#### 4.1 - Civil Design

#### 4.1.1 - Governing Codes and Standards

Where specific standards and design criteria are not covered in this criteria than the following codes and standards shall apply:

 American Concrete Institute "Building Code Requirements for Reinforced Concrete" (ACS 318-77).

#### 4.1.2 - Design Loads

(1) Dead Loads:

| Mass concrete       | 145 lbs/ft <sup>3</sup>   | (143 lbs/ft <sup>3</sup> when checking stability) |
|---------------------|---------------------------|---------------------------------------------------|
| Reinforced concrete | 150 lbs/ft <sup>3</sup>   |                                                   |
| Stee1               | 490 1bs/ft <sup>3</sup>   | 김 옷 동안 것은 것 같아요. 응                                |
| Water               | 62.5 lbs/ft <sup>3</sup>  | 전에 흔 전망에서 분이 들었다.                                 |
| Silt - vertical     | 120 lbs/ft <sup>3</sup>   | 방법 이상에 있는 것 같아? 것                                 |
| - horizontal        | 85 ]bs/ft <sup>3</sup>    |                                                   |
| Backfill (all dams) |                           |                                                   |
| - dry               | 115 lbs/ft <sup>3</sup> ) |                                                   |
| - saturated         | 130 lbs/ft <sup>3</sup> ) | - Provisional                                     |
| - submerged         | 70 lbs/ft <sup>3</sup> )  |                                                   |

#### (2) Backfill Loads

The lateral earth pressure against vertical faces of structures with horizontal backfill will be computed using the equivalent fluid pressures calculated from:

p = Kwh

where p = unit pressure, k = pressure coefficient, w = unit weight of fill, h = height of fill.

For structures free to deflect the pressure coefficient will be computed from Rankine's theory, which is:

 $k_{A} = ton^{2} (45 - \emptyset/2)$ 

where  $\emptyset$  = angle of internal friction.

For structures restrained from using the pressure coefficient will be  $K_0$  = 1 -  $\sin \emptyset$ .

Coulomb's theory will be used for computing lateral earth pressures on wall surfaces with slopes flatter than 10 vertical: 1 horizontal or with sloping backfill steeper than 1 vertical: 4 horizontal.

Where verhicular traffic can run adjacent to the face a surcharge loading of  $500 \ lbs/ft^3$  should be applied.

(3) Wind Loads

(4) Snow Loads

(5) Powerhouse Floor Loads

| Generator Hall -      | 500  | lbs/ft <sup>2</sup> |
|-----------------------|------|---------------------|
| Machine Shop          | 500  | lbs/ft <sup>2</sup> |
| Switchgear Room -     | 300  | lbs/ft <sup>2</sup> |
| Service Bay -         | 1000 | lbs/ft <sup>2</sup> |
| Control Room -        | 200  | lbs/ft <sup>2</sup> |
| Transformer Gallery - | 300  | lbs/ft <sup>2</sup> |
| Offices and Stairs -  | 100  | lbs/ft <sup>2</sup> |

(6) Crane Loads

The following percentages shall apply to the powerhouse crane and the power intake gallery. The minimum deflection to span ratio of crane support beams shall be 1:1000.

Vertical impact - 25% of static wheel load Lateral load - 10% of crane capacity, trolley, hook, and lifting beam distributed equally between rails.

Longitudinal load - 10% of static wheel loads.

(7) Spillway Deck Loads

### (8) Hydraulic Loads

All structures shall be designed for full lateral water pressures, where applicable, plus full hydrodynamic and uplift forces.

#### Uplift

T

(a) For water retaining concrete structures provided with drainage galleries and drail holes deep into the foundations, uplift shall be considered across the complete rock/concrete interface varying linearly from H1 to the upstream heel to (H1-H2)/2 + H2

 *f* at the drains to H2 at the toe.

 $H_1$  = static head upstream  $H_2$  = static head downstream

If uplift exceeds the bearing pressure (resulting from all forces except uplift) at the heel the uplift is to be redistributed inaccordance with USBR No. 19.

(b) Apron and chute slabs and slab walls against rock shall be designed against uplift resulting from sudden changes in water level.

Extreme uplit Chrains blocked

Uplift from centrifugal forces shall be considered where contraction joints occur on concave floor of chutes.

Toe curve pressures on interior face of training walls at concave chute surfaces shall be calculated in accordance with Plate 21 of Hydraulic Design of Spillways EM 1110-2-1603 by U.S. Army Corps of Engineers.

Hydraulic loads due to earthquakes are given in the following section on seismic loads.

### (9) Seismic Loads

Ground acceleration corresponding to maximum credible earthquake - 0.4 g.

Design earthquake return period - 100 yrs.

Ground acceleration corresponding to design earthquake - 0.2 g.

#### Arch Dam at Devil Canyon

The arch dam is to be checked under seismic loading by dynamic analysis based on trial load method and the ADSAS program developed by the Department of the Interior.

Arch dam system damping ratio - 0.10 of critical.

Acceleration response spectrum - See Figure 1. at Devil Canyon

Concrete Gravity Structures

For concrete gravity structures the horizontal force (V) due to earthquake ratio shall be:

 $V = 0.1 \times \text{ground}$  acceleration x mass of structure.

#### Hydrodynamic Pressure

The hydrodynamic pressure due to horizontal earthquake on water retaining surfaces shall be computed using the theory of Westergard for the dynamic change in pressure:

P = a. 51.25 hy lbs/ft<sup>2</sup>
where h = total height of structure (ft)
 y = depth below reservoir surface
 a = ground acceleration

The distribution of pressure is parabolic and hence the total force and movement at a section y ft below water level are given by:

$$F = 2/3. P.y$$
  
M = 0.4. F.y

For hydrodynamic forces on earth structures see Section

(10) Temperature

## (11) Ice Loads

F.

F

## 4.1.3 - Load Combinations

## 4.1.4 - Stability

### Shear Friction Factor

The shear friction factor is given by shear friction factor =  $\frac{CA + (V-U) \tan \emptyset}{H}$ 

- C = cohesion A = base area V = total weight of structure U = total vertical uplift force
- $\emptyset$  = angle of internal friction

4.1.5 - Stability Requirements

Concrete Gravity Structures

| Load Conditions                                 | Shear Friction<br>Factor                       | <u>Overturning</u>                          | Flotation<br>Factor | Compression<br>Safety Factor                   |
|-------------------------------------------------|------------------------------------------------|---------------------------------------------|---------------------|------------------------------------------------|
| Normal                                          | 4 based on<br>concrete<br>5 based on<br>rock   | Resultant<br>within the<br>Kern             | 1.5                 | 3 based on<br>concrete<br>4 based on rock      |
| Unusual<br>(Including<br>1:100 yr<br>earthquake |                                                | Resultant<br>within the<br>Ker <del>n</del> | <b>1.3</b>          | 2.5 based on<br>concrete, 3.5<br>based on rock |
| Extreme                                         | 3.5 based on<br>concrete, 4.5<br>based on rock | Max. allow-<br>able tension<br>30 psi       | 1.3                 | 2.5 based on<br>concrete, 3.5<br>based on rock |

### Arch Dam

Compression Safety Factor, normal loads - 4 extreme - 1

Tension, normal loads - no tension extreme - full tensile strength of concrete

#### 4.1.6 - Material Properties

## 4.2 - Hydraulic Design

### 4.2.1 - Reservoir Levels

Reservoir levels are tentative at this stage and will change with optimization of the maximum pool level, and with the determination of the live storage.

| Operating Levels                 | Wata           | <u>na</u>       | Devil          | Canyon     |
|----------------------------------|----------------|-----------------|----------------|------------|
| Normal maximum<br>Normal minimum | 2200'<br>2050' | MSL<br>MSL      | 1445'          | MSL        |
| Flood Levels                     |                |                 |                |            |
| 1:10,00 yr<br>p.m.f.             | 2205'<br>2225' | MSL<br>MSL max. | 1450'<br>1455' | MSL<br>MSL |

4.2.2 - Freeboard

Allowance for wave height and run up ÷ 6 feet Allowance for flood discharge above normal maximum operating level - 5 feet

#### Area and Storage

| Watana                                           | Devil Canyon                  |
|--------------------------------------------------|-------------------------------|
| Area at normal maximum operating 40.000 acres    | 21.000 acres                  |
| level                                            |                               |
| Live storage <u>4.6 x 10<sup>6</sup> acre/ft</u> | 0.7 x 10 <sup>6</sup> acre/ft |

Full storage

10 x 10<sup>6</sup> acre/ft 1.1 x 10<sup>6</sup> acre/ft

4.2.3 - Tailwater

| Water Levels            | <u>Watana</u> | Devil Canyon |
|-------------------------|---------------|--------------|
|                         |               |              |
| 1:10,00 yr flood        | 1475' MSL     | 910' MSL     |
| 1 unit operating        | 1455' MSL )   | 880' MSL     |
| Average tailwater level | 1460' MSL )   | (assumed)    |

4.2.4 - Flows

(See Figure 4, flood volume/frequency curves)

|                                                 | Watana        | Devil Canyon |
|-------------------------------------------------|---------------|--------------|
| Mean annual inflow<br>1:50 yr flood peak inflow | 7,860 cfs     | 8,960 cfs    |
| 1:500 yr flood peak inflow                      | 116,000 cfs   |              |
| 1:1000 yr flood peak inflow                     | 155,000 cfs 🗾 | 135,000 cfs* |
| Probable maximum flood                          | 235,000 cfs   | 270,000 cfs* |
| Routed 1:10,00 flood peak                       | 115,000 cfs   | 135,000 cfs  |
| Minimum downstream releases                     |               |              |

\* After routing through Watana

4.2.5 - Criteria

4.2.5.1 - Spillways

#### Capacity

- Pass p.m.f. while maintaining the integrity of the main water retaining structures. Local damage to these structures is allowable.
- Pass routed 1:10,000 yr flood with no damage. A main service spillway for general operation with a secondary spillway operated only for short duration is acceptable.

#### Chute

- Maximum velocity 150 fps without aeration.

### Energy Dissipation

- Minimum radius of flip bucket  $> 7 \times depth$  of design flow.
- Max energy dissipated by stilling basin 45,000 hp/ft width.

## 4.2.5.2 - Power Facilities

## 4.3 - Geotechnical Criteria

- 4.3.1 Main Dam
- (1) <u>Dimensions</u>

| Crest elevation                      | - 2225' MSL       |
|--------------------------------------|-------------------|
| Maximum height above lowest foundat: | in - 900' approx. |
| Crest width                          | - 80'             |
| Upstream slope                       | - 1:2.75*         |
| Downstream slope                     | - 1:2*            |

## (2) Design Criteria

The dam will be checked for normal static loading conditions such as end of construction, normal operating cofferdam and drawdown condition.

The dam will be designed to withstand the maximum credible earthquake.

## 4.3.2 - Excavation

an ere synthetic and a superior at the star of

Rock cuts at structures- slope 10V:1H (overall)Permanent rock cuts- slope 4V:1H (overall)Permanent cuts in overburden- slope 1V:2H (overall)

## 4.4 - Mechanical Criteria

## 4.4.1 - Power Intake

## (1) Trashracks

|     |                                     | Watana                             | Devil Canyon                       |
|-----|-------------------------------------|------------------------------------|------------------------------------|
|     | Type<br>Maximum gnoce volocity      | fīat                               | flat                               |
|     | through racks<br>Handling<br>Number | 4 f.p.s.<br>Gantry crane<br>4 sets | 4 f.p.s.<br>Gantry crane<br>4 sets |
| (2) | Gates                               | Watana                             | Devil Canvon                       |

| Туре     | Fixed wheel            | Fixed wheel                 |
|----------|------------------------|-----------------------------|
| Handling | vertical<br>Indiviudal | vertical<br>Individual hois |
| Number   | hoist<br>4             | 4                           |

Watana

Devil Canyon

(3) Bulkhead Gate

| Туре     | Bulkhead Bulkhead         |
|----------|---------------------------|
| Handling | Gantry crane Gantry crane |
| Number   | one set one set           |

## 4.4.2 - Powerhouse

(1) <u>Turbines</u>

|                          | Watana                | Devil Canyon          |  |
|--------------------------|-----------------------|-----------------------|--|
| Type<br>Number           | Vertical francis<br>4 | Vertical francis<br>4 |  |
| Head - maximum           | 715 ft*               | 554 ft*               |  |
| - rated                  | 680 ft*               | 550 ft*               |  |
| - minimum                | 565 ft*               | 550 ft*               |  |
| Rated discharge          | 5300 cfs              | 3630 cfs              |  |
| Rated output (full gate) | 370,000 hp**          | 205,000 hp            |  |
| Best gate output         | 85% full gate         | 85% full gate         |  |
| Efficiencies - full gate | 90%                   | 90%                   |  |
| - best gate              | 93.5%                 | 93.5%                 |  |

\* To be revised after determination of reservoir level and live storage.

\*\* Likely to change to smaller units.

### (2) Powerhouse Crane

Type - overhead traveling Number - 2 Capacity - sufficient to lift generator rotor and follower.

(3) Draft Tube Gates

Bulkhead gates handled by fixed overhead hoist.

(4) Tailrace Outlet

Stoplogs handled by mobile crane.

#### 4.4.3 - Spillway

(1) Gates

| - Number        |                                                | to suit design flood<br>maximum size = 45 ft wide                             |
|-----------------|------------------------------------------------|-------------------------------------------------------------------------------|
| - T <i>y</i> pe |                                                | <pre>x 65 ft high fixed wheel vertical lift, heated or winter operation</pre> |
| - Hoisting      | <b>6 • • • • • • • • • • • • • • • • • • •</b> | wire rope hoist on tower and bridge structure                                 |

## (2) <u>Stoplogs</u>

One set handled by mobile crane and follower.

## 4.4.4 - Outlet Works and Low Level Outlets (Watana only)

- (1) Gates
  - Either fixed wheel vertical lift, radial or slide gates; operated by hydraulic hoist.
  - Gate head and width to be within current precedent.
  - Emergency gate to be provided upstream of control gate.
- (2) <u>Valves</u>

- Fixed cone full discharge valves with ring follower gate upstream for emergency closure.

(3) Stoplogs

- One set stoplog guides at upstream entrance of tunnel.

(4) Trashracks

18

- Located at upstream entrance of tunnel.

- 4.4.5 Diversion
- (1) <u>Closure Gate</u>

· ·

Ĵ

- Fixed wheel vertical lift gates handled by gantry crane or fixed wheel.
- (2) <u>Control Gate</u>
  - As per gates by low level outlet and outlet works.
- (3) Stoplogs
  - Where required, handled by mobile crane.

## 4.5 - Electrical Criteria

4.5.1 - Generators

|              |        | latana         | Devil (  | Canyon      |
|--------------|--------|----------------|----------|-------------|
| Number       |        | 4              | 4        |             |
| Туре         | Vertic | al synchronous | Vertical | synchronous |
| Rating       | 3      | LO MVA**       | 165      | MVA         |
| Power factor | 0      | .9             | 0.9      |             |
| Efficiency   | 9      | 8%             | 98%      |             |

### Transformers

|         | Watana                                      | Devil Canyon     |
|---------|---------------------------------------------|------------------|
|         |                                             |                  |
| Number  | tere <b>4</b> 4 and 100 and 100 and 100 and | <u>.</u>         |
| Rating  | 300 MVA**                                   | 165 300 MVA      |
| Voltage | 13.8 kV - 345 KV                            | 13.8 kV - 345 kV |
| Phases  | <b>3</b>                                    | 3                |

## Switchyard

Type - Conventional outdoor switchyard.

\*\* Likely to change to smaller units.



