# ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT

TASK 3 - HYDROLOGY

SUBTASK 3.01 - CLOSEOUT REPORT REVIEW OF AVAILABLE MATERIAL

FEBRUARY 1981



Acres American Incorporated 1000 Liberty Bank Building Main at Court Buffalo, New York 14202 Telephone (716) 853-7525

# ALASKA POWER AUTHORITY SUSITNA HYDROELECTRIC PROJECT

SUBTASK 3.01 - CLOSEOUT REPORT

FEBRUARY 1981

Acres American Incorporated
1000 Liberty Bank Building
Main at Court
Buffalo, New York 14202
Telephone (716) 853-7525

| ALASKA  | POWER | <b>AUTHORIT</b> | Y       |
|---------|-------|-----------------|---------|
| SUSITNA | HYDRO | DELECTRIC       | PROJECT |

TASK 3 - HYDROLOGY

SUBTASK 3.01 - CLOSEOUT REPORT REVIEW OF AVAILABLE MATERIAL

## TABLE OF CONTENTS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| LIST OF TRIBLES THE PROPERTY OF THE PROPERTY O | iii<br>iv                              |
| 1.1 - Background                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1-1<br>1-1<br>1-1                      |
| 2.1 - Available Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2-1<br>2-1<br>2-1<br>2-2               |
| 3 - SCOPE OF WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3-1                                    |
| 4.1 - Streamflow 4.2 - Sediment Discharge 4.3 - Water Quality 4.4 - Ice Cover Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-1<br>4-1<br>4-2<br>4-3<br>4-4<br>4-4 |
| 5.1 - Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5-1<br>5-1<br>5-1                      |
| 6.1 - Climatic Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6-1<br>6-1<br>6-1<br>6-1               |

## **BIBLIOGRAPHY**

APPENDIX A - STREAMFLOW GAGING STATIONS IN THE SUSITNA BASIN
B - MEMO ON PROBABLE MAXIMUM PRECIPITATION ESTIMATES
FROM NATIONAL WEATHER SERVICE TO CORPS OF ENGINEERS -

UNDATED

ALASKA POWER AUTHORITY
SUSITNA HYDROELECTRIC PROJECT
TASK 3 - HYDROLOGY

SUBTASK 3.01 - CLOSEOUT REPORT REVIEW OF AVAILABLE MATERIAL

## TABLE OF CONTENTS (Cont'd)

- APPENDIX C SUSPENDED SEDIMENT GAGING STATIONS
  - D WATER QUALITY STATIONS AND PARAMETERS
  - E MISCELLANEOUS CORRESPONDENCE AND MINUTES OF MEETINGS WITH VARIOUS AGENCIES
  - F MONTHLY STREAMFLOW DATA FOR ALTERNATIVE HYDRO SITES
  - G CLIMATE DATA STATIONS
  - H SNOW SURVEY STATIONS AND PERIOD OF RECORDS
  - I DATA COLLECTED BY ALASKA DEPARTMENT OF FISH AND GAME

# LIST OF TABLES

| Number | <u>Title</u>                                             | Page |
|--------|----------------------------------------------------------|------|
| 4.1    | Typical USGS Streamflow Records                          | 4-5  |
| 4.2    | Estimated Monthly Flows at Devil Canyon Dam Site $\dots$ | 4-6  |
| 4.3    | Estimated Monthly Flows at Watana Dam Site               | 4-7  |
| 4.4    | Estimated Monthly Flows at Vee Canyon Dam Site           | 4-8  |
| 4.5    | Estimated Monthly Flows at Denali Dam Site               | 4-9  |
| 4.6    | Yearly Peak Flows of Record                              | 4-10 |
| 4.7    | Upper Susitna River Basin Peak Discharges                | 4-10 |
| 4.8    | Summer Probable Maximum Flood                            | 4-11 |
| 4.9    | Spring Probable Maximum Flood                            | 4-11 |
| 4.10   | Typical USGS Suspended Sediment Records                  | 4-12 |
| 4.11   | Suspended Sediment Transport at Gaging Stations          | 4-13 |
| 4.12   | Reservoir Sediment Inflow                                | 4-13 |
| 4.13   | Typical USGS Water Quality Records                       | 4-14 |
| 4.14   | Ice Observation Data for Susitna River                   | 4-16 |
| 4.15   | PMF Estimates at Dam Sites                               | 4-18 |
| 4.16   | Reservoir Sediment Deposit at Dam Sites                  | 4-18 |
| 5.1    | Streamflow Data Base                                     | 5-3  |
| 5.2    | Transposition of Streamflow Data Base                    | 5-4  |
| 6.1    | Typical NOAA Climate Data Records                        | 6-2  |
| 6.2    | Basin Climatological Data                                | 6-3  |
| 6.3    | Pan Evaporation Data                                     | 6-4  |

# LIST OF FIGURES

| Number | <u>Title</u>                                                                 | Page   |
|--------|------------------------------------------------------------------------------|--------|
| 2.1    | Map Showing Locations of USGS Gaging Stations in Alaska                      | . 2-3  |
| 2.2    | Map Showing Gaging Stations and Dam Sites on the Susitna River               | . 2-4  |
| 2.3    | Selected Alternative Hydroelectric Sites                                     | . 2-5  |
| 4.1    | Annual Low Flow Frequency - Susitna River at Gold Creek                      | . 4-19 |
| 4.2    | Synthetic 32-month Low Flow Frequency - Susitna River at Gold Creek          | . 4-20 |
| 4.3    | Peak Discharge Frequency - Susitna River at Gold Creek                       | . 4-21 |
| 4.4    | Assumed Snow Pack in Water Equivalents for PMF Derivation                    | . 4-22 |
| 4.5    | Summer Probable Maximum Flood Hydrographs - Devil Canyon and Watana Projects | . 4-23 |
| 4.6    | Spring Probable Maximum Flood Hydrographs - Devil Canyon and Watana Projects | . 4-24 |
| 4.7    | Suspended Sediment Size Analysis                                             | . 4-25 |
| 4.8    | Suspended Sediment Rating Curves for Susitna River                           | . 4-26 |
| 4.9    | Bed Load Rating Curve for Susitna River at Cantwell                          | . 4-27 |
| 4.10   | Total Sediment Rating Curve for Susitna River Basin Above Gold Creek         | .4-28  |

#### 1 - INTRODUCTION

## 1.1 - Background

The development of hydroelectric power in the Susitna River Basin has been under study for the last three decades. Streamflow observations in the basin extend over 30 years at the oldest established gaging stations. Some climatic records at Talkeetna and Summit stations date back from 1938. Most of the data has been collected by agencies such as the United States Geological Survey (USGS), U.S. Soil Conservation Service (SCS), National Oceanic and Atmospheric Administration (NOAA) and the Arctic Environmental Information and Data Center (AEIDC).

The Acres American Incorporated Plan of Study (POS) (1) for the reassessment of the feasibility of the Susitna Hydroelectric Project includes Hydrologic Studies under Task 3 which is composed of several subtasks. The objective of the Subtask 3.01 is to assemble and review all available reports, maps and studies relating to the hydrologic aspects of the Susitna and neighboring basins and abstract hydrologic design parameters required for the planning studies concerned with alternative hydro sites including small hydro development in the Railbelt.

Studies of potential hydroelectric development in the Susitna and the neighboring basins have chiefly been conducted by the U.S. Corps of Engineers (COE), U.S. Bureau of Reclamation (USBR), Kaiser Engineers, Alaska Power Administration and the Federal Energy Regulatory Commission (FERC - formerly Federal Power Commission). While identifying suitable sites for development, these studies have collected and interpreted hydrological and climate data to derive various design parameters.

## 1.2 - Report Contents

The report is briefly summarized in Section 2. The scope of work associated with Subtask 3.01 is described in Section 3. A review of previous hydrologic data collection and processing work undertaken within the Susitna Basin is outlined in Section 4 while Section 5 discusses hydrologic data pertinent to other potential hydroelectric development schemes in the vicinity of the railbelt. Section 6 deals with the available climatic data. Short extracts from several publications are appended for ready reference of useful data.

#### 2 - SUMMARY

#### 2.1 - Available Data

USGS (13,14,15,16) collects streamflow data at over a hundred stations within the State of Alaska (see Figure 2.1). Temperature, sediment discharge and water quality observations are made at a smaller number of gaging stations. The main objective of the USGS is to obtain sufficient data to evaluate, on a regional basis, the water resource potential of the State. Thus, data at specific locations of interest to a hydroelectric or other development are not usually available directly from USGS records.

Continuous streamflow records exist for the station at Gold Creek on the Susitna River for over 30 years. Most of the river basins have some flow records extending over similar periods. On the Yukon River at Eagle, streamflow records date back to 1911. Water quality and sediment discharge records are usually available for much shorter periods.

Climate data is collected mainly by NOAA (formerly by the National Weather Service) at various airports. The data includes daily temperatures, relative humidity, precipitation, wind speed and direction, sunshine hours, weather type and sky cover. NOAA operates some 24 local climatological data stations in the State where 3 or 6 hourly observations are made for most of the above parameters. Additional information is available from AEIDC in the form of processed climatic data.

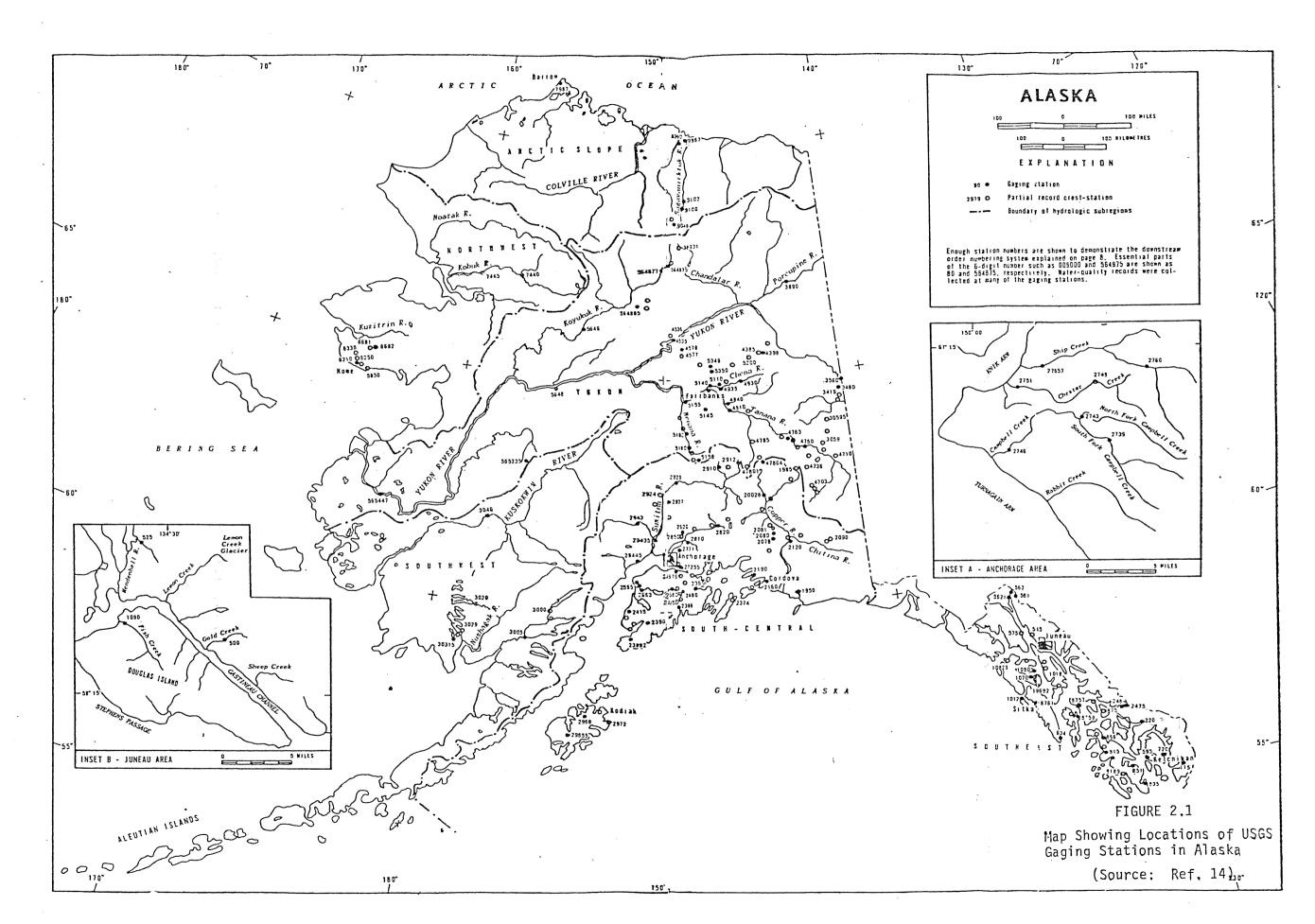
The SCS runs regular snow course surveys in the area and snow depths and water equivalent data are available at a number of stations in and around the Susitna basin. At several stations, the surveys date back to the winter of 1964.

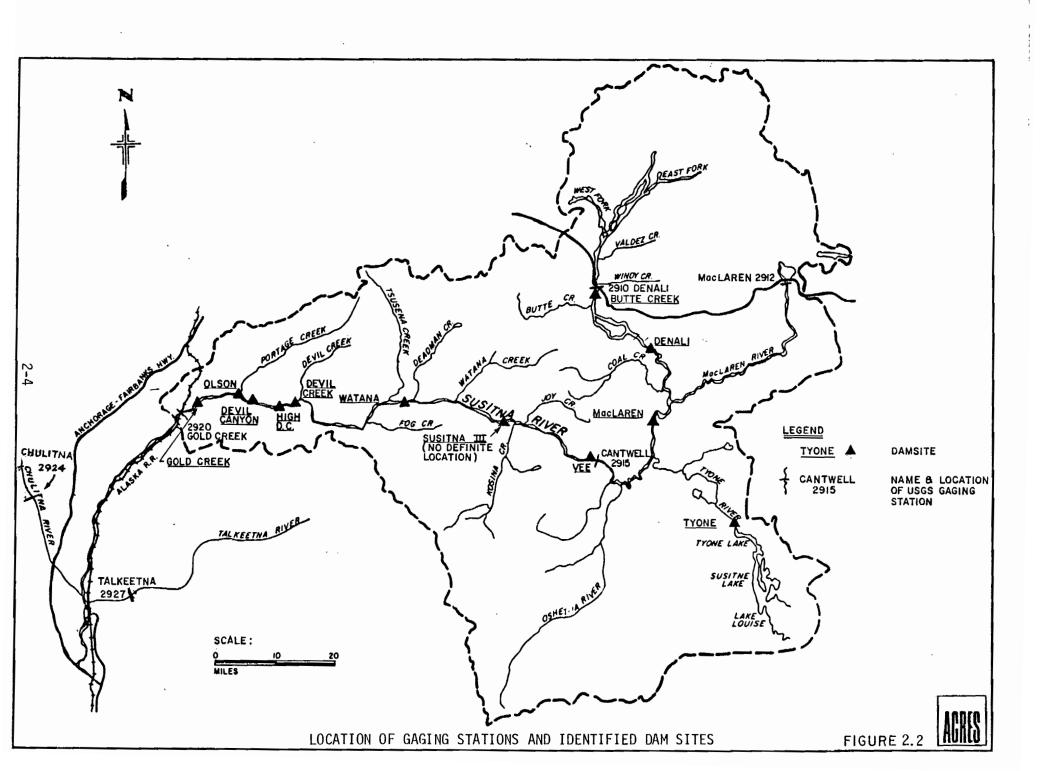
In addition, water resources data have been collected and/or analyzed by the Alaska Department of Fish and Game (ADF&G) and Alaska Department of Natural Resources (DNR) in conjunction with special studies.

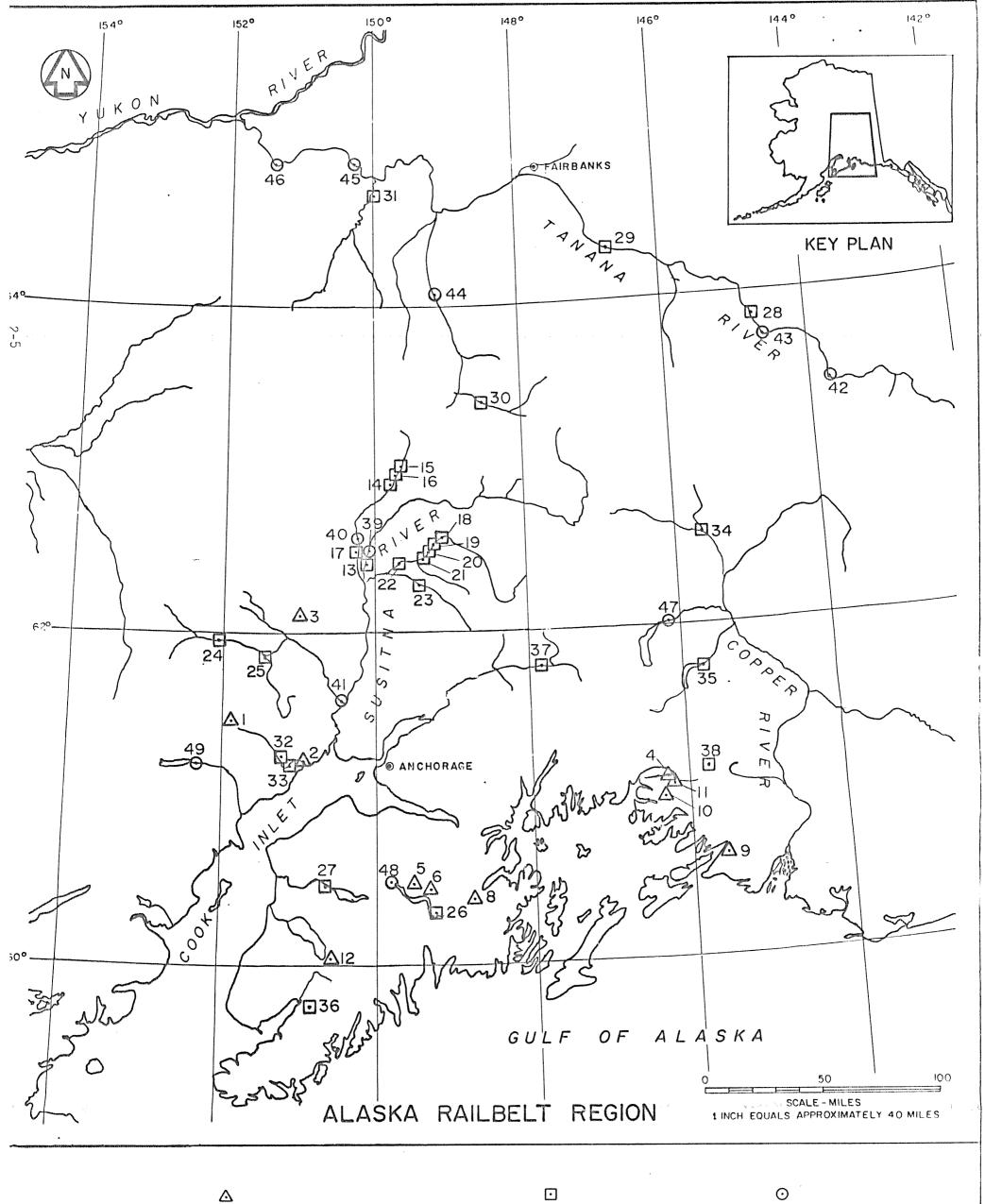
## 2.2 - Previous Studies

The most comprehensive analysis of hydrological information for the Susitna River to date is to be found in the COE Feasibility reports (5,6) (1975 and 1979) dealing with hydroelectric development of the Susitna basin. Preliminary hydrologic analyses for Cook Inlet and tributaries, Copper River and Gulf Coast and Yukon and Kuskokwim River Basins were undertaken in 1950/51 by the COE and described in their Harbors and Rivers in Alaska - Survey Reports (4).

In 1952 the USBR reported (8) on the potential development of water resources in the Susitna River Basin. This report provides hydrologic information at several identified dam sites (see Figure 2.2). Later results in 1960 by the USBR (9) and the Alaska Power Administration (1974) (10) for the Devil Canyon project on the Susitna River provide updated information at that site. The 1974 report by Kaiser Engineers (2) include hydrologic analyses for the High Devil Canyon and other dam sites on the Susitna.


<sup>(1)</sup> Numbers in brackets refer to the reference number.


The 1976 Federal Power Commission report (12), the 1979 COE National Hydroelectric Power Resources Study (7) and the 1980 Alaska Power Administration Hydroelectric Alternatives for the Alaska Railbelt report (11) include inventory-level hydrologic calculations for large and small potential hydroelectric developments covering the entire state. Figure 2.3 shows some of the more promising of these developments which are included in current Task 6 engineering studies.


#### 2.3 - Conclusions

An Index (3) of available hydrologic and climatic data has been prepared and should be consulted if more detailed outline of available data is required. Extracts from the Index are included in Appendix A, C, D, G, and H. A detailed review of the information has generally confirmed the proposed supplementary data collection program and the hydrologic analyses outlined in the February 1980 Acres POS. On the basis of this review it became apparent that some minor modifications to the proposed supplementary data collection program should be made. These are as follows:

- Because of the potential for extremely deep snow cover in the mountainous regions, the use of snow pillows is not advised as the snow tends to bridge across these relatively large pressure plates. A more appropriate measure ment procedure is the use of snow markers supported by conventional measure ment using snow tubes;
- The proposed water quality (both water chemistry and suspended sediment load measurements) should be scheduled to obtain a maximum amount of information during specific hydrologic events such as floods and low flow periods rather than on a regular basis as originally proposed;
- A few basic water quality parameters should be collected using a continuous monitoring device at Watana to study the short-term variations of certain key parameters such as water temperature, dissolved oxygen concentration, specific conductance, pH and oxidation-reduction potential. This would facilitate a better understanding of the processes involved and assist with interpretation of historical data.







SELECTED ALTERNATIVE HYDROELECTRIC SITES

## 0-25 MW

- Strandline L.
- Lower Lake Cr.
- Allison Cr.
- Crescent Lake 2
- Grant Lake
- McClure Bay 7.
- 8. Upper Nellie Juan
- 9. Power Creek Silver Lake 10.
- 11. Solomon Gulch 12. Tustumena

- 13. Whiskers
- Lower Beluga 14.
- Coal 15. Chulitna

24.

25.

- Ohio 16.
  - Lower Chulitna
    - 17. Cache 18.
    - 19. Greens tone
    - 20. Talkeetna 2
    - Granite Gorge 21. Keetna 22.
    - 23. Sheep Creek

Skwentna

Talachulitna

# 25-100 MW

- 26. Snow
- Kenai Lower 27.
- 28. Gerstle
- Tanana R. 29.
- Bruskasna 30.
- Kantishna R. 31.
- Upper Beluga 32.
- 33. Coffee
- Gulkana R. 34.
- 35. Klutina
- Bradley Lake 36. Hick's Site 37.
- 38. Lowe

## >100 MW

- 39. Lane
- 40. Tokichitna
- 41. Yentna
- 42. Cathedral Bluffs
- 43. Johnson
- 44. Browne
- 45. Junction Is.
- 46. Vachon Is.
- 47. Tazilna
- 48. Kenai Lake
- 49. Chakachamna



FIGURE 2.3

## 3 - SCOPE OF WORK

The reports contained in the Bibliography were reviewed and all useful summary data abstracted and incorporated in this report. Detailed discussions were held with the staff of the USGS, Alaska regional office, AEIDC, DNR, ADF&G and the SCS. The objective of these discussions was to determine what data was available and to firm up the proposed supplementary data collection program proposed for 1980-82. Selected minutes of meetings held with these agencies are presented in Appendix E.

#### 4 - HYDROLOGIC DATA FOR THE SUSITNA BASIN

#### 4.1 - Streamflow

#### (a) USGS Records

The USGS monitors river stages at over a hundred gaging stations in the State. There are six stations currently being operated in the Susitna Basin, three on the main stem and three on the tributaries. The gaging station on the Susitna at Gold Creek (see Figure 2.2) has a continuous streamflow record for 31 years from 1949 with some minor gaps. The Susitna station near the river mouth has only six years of record. Record lengths at other stations vary between these two extremes. Over ten years of record are available at two stations, Susitna River at Cantwell and Chulitna River near Talkeetna, but observations were discontinued after 1972. Partial and short discharge records are also available for several small tributaries of the Susitna. A list of the gaging stations and record lengths is shown in Appendix A.

The USGS field measurements involve continuous river stage monitoring. Using established stage-discharge relationships, mean daily and instantaneous peak and low flows are calculated. The data is usually presented in the form shown in Table 4.1.

In the periods between October and May, ice cover on the river makes accurate stage observations impossible. The daily mean flows published by the USGS are, therefore, estimated by interpolating daily flows from a few manually observed values. However, as the average flow of Susitna in these months accounts only for some 20 percent of the mean annual flow, the effect of any inaccuracy on the total measured supply is small.

## (b) <u>Previous Analyses of Data</u>

The USBR study of 1952 was based on only 2 years (1949-51) of streamflow records on the Susitna at Gold Creek. All the estimates of runoff were derived from this record which was extended back to 1922 by correlation with precipitation records at Talkeetna. Due to the shortness of records, the USBR estimates of mean annual flows are not as reliable as the more recent estimates. At the Watana dam site, for example, the USBR estimate of mean annual runoff was 7550 ft<sup>3</sup>/s compared to the 1975 COE estimate of 8150 ft<sup>3</sup>/s which was based on some 25 years of record at Gold Creek. The flood studies in the USBR report were based on recorded peak discharges of all interior Alaska streams. The periods of record on all the streams, except one, were 5 years or less. The COE analyses were based on 10 or more years of record at gaging stations in the Susitna Basin.

Water resource analyses for the Devil Canyon Project by the USBR were based on a ten year (1950-59) streamflow record at Gold Creek. Records of Susitna runoff near Denali were extended to cover this period by correlation with Gold Creek runoff. Runoff at the dam sites was estimated by proportioning based on intervening drainage areas. Estimates of peak flood inflows at Devil Canyon and Denali dam sites were made. However, the rationale used in the derivation is not described in the reports.

The COE report on the Upper Susitna Basin presents the most comprehensive analysis to date on the hydrology of the river. These studies are based on a 25 year record (up to 1974) of streamflow at Gold Creek and shorter lengths of record at Denli (16 years) and Cantwell (12 years) stations on the Susitna, and on the Maclaren River near Paxson (15 years). Monthly streamflows at the latter stations were extended by linear correlations with the Gold Creek station records. Interpolation of observed and estimated monthly streamflow for the dam sites was accomplished by adopting linear drainage area relationships between stations and dam sites. Tables 4.2 to 4.5 show estimated monthly flows for the period 1950-74 for the dam sites at Devil Canyon, Watana, Vee and Denali, respectively.

Power studies were carried out utilizing 25 years of recorded streamflow (observed or extended). The driest and the second driest years of records occurred consecutively in 1969 and 1970. To assess the severity of the driest sequence, i.e. a 32-month period from October 1968 to May 1971, the COE generated monthly streamflows for 400 years based on 25 years of record at Gold Creek using stochastic techniques. The results showed that the observed driest sequence has a return period well in excess of 400 years (see Figures 4.1 and 4.2).

The COE carried out frequency analyses of observed peak flows and flood volumes at Gold Creek, Denali, Cantwell and Paxson gaging stations. To derive the Probable Maximum Flood (PMF) the COE used the Streamflow Synthesis and Reservoir Regulation (SSARR) computer model developed by the North Pacific Division of the COE, Portland, Oregon. The model was calibrated using observed precipitation, temperatures and discharges in the basin for four flood events in the period May through August. It was verified by comparing computed and observed hydrographs for the gaging stations at Gold Creek, Cantwell, Denali and Paxson. Spring and summer probable maximum floods were estimated for the Watana and Devil Canyon dam sites using this model in conjunction with Probable Maximum Precipitation (PMP) estimates obtained from National Weather Service (see Appendix B).

Results of the frequency analyses and PMF estimates along with relevant data are shown in Tables 4.6 to 4.9 and Figures 4.3 to 4.6.

#### 4.2 - Sediment Discharge

#### (a) USGS Records

Periodic suspended sediment samples have been collected by the USGS at the four gaging stations above Gold Creek for varying periods between 1952 and 1979. A list of stations and the periods of record available are shown in Appendix C. Results are published in their water year books and other water supply papers. Typical data collected is shown in Table 4.10.

The data coverage during high-flow high-sediment events is poor and consequently any estimate of total annual sediment yield has a high degree of uncertainty. The majority of the samples collected are analyzed for size distribution. Curves showing typical size distribution of suspended sediment are shown in Figure 4.7. Except for three bed material samples collected by USGS at Denali in September 1958, no bed samples have been taken at any station.

## (b) <u>Previous Analyses of Data</u>

Analyses in the USBR reports were based on the periodic USGS sampling at Gold Creek, Denali and other interior Alaska streams. The mean annual sediment inflow at Devil Canyon was estimated at 6440 acre ft. without any upstream development as compared to the 1975 COE estimate of 5040 acre ft. which was based on longer USGS records (1952-74). Corresponding figures for Denali reservoir are 11,400 and 5800 acre ft., respectively. These figures are based on an assumed deposited weight of 80 lb/ft $^3$  and include an allowance for bed load.

As in the case of streamflow, the most comprehensive analysis of sedimentation in reservoirs is that undertaken by the COE in 1975. Suspended sediment rating curves were developed by regression analyses and sediment transport was calculated using the flow-duration and sediment rating curves (see Figure 4.8). Table 4.11 shows estimated suspended load at the gaging stations. For the sediment samples collected at Denali gage, USGS have computed total sediment load for ten of these observations by use of modified Einstein procedure. The bed load analysis was based on the three bed load measurements taken at Denali. The COE developed a bed load rating curve (Figure 4.9) based on these USGS estimates. flow-duration curve, the COE estimated bed load transport at Denali at about 30 percent of the suspended sediment load at the station. Lack of data at other stations precluded estimates of bed load at these stations. Based on field reconnaissance of bed material it was assumed (by COE) that at Maclaren the bed load would also approximate 30 percent of suspended load as at Denali while at Vee, Watana and Devil Canyon it would be of the order of 10 percent of the suspended load. A basin-wide sediment rating curve (Figure 4.10) was developed using glacial area to basin area ratio and average catchment elevation as independent variables and was used to estimate sediment inflows at the dam sites (see Table 4.12).

## 4.3 - Water Quality

#### (a) USGS Records

The locations at which water quality data have been collected within the Susitna Basin and the information available are listed in Appendix D. Since measurements are taken periodically, the number of measurements, timing and specific parameters measured vary from year to year at any given station. A list of the water quality parameters that have been measured in the basin is also presented in Appendix D. Typical information available from the USGS records are shown in Table 4.13.

## (b) Previous Analyses of Data

The USBR reports contain little information on the water quality studies for the reservoirs. A somewhat detailed description of the problems of water quality peculiar to the Susitna basin and effects of reservoir developments on the water quality in the downstream reaches are presented in the COE report of 1975. The report concludes that additional information is necessary for evaluating project effects on water quality and suggests a data collection and analysis program.

#### 4.4 - Ice Cover Data

Information on river ice observation is collected by various agencies at several locations in the basin. A summary of the available information are presented in Table 4.14.

#### 4.5 - Discussion

The USBR studies are based on shorter, less extensive data on streamflow and sediment transport. The 1975 COE report contains the most comprehensive analyses of all hydrological data for the basin. Therefore, much of the information available in the COE report was used as input to Acres preliminary project definition studies carried out during 1980. The COE estimates for the Probable Maximum Floods of Watana and Devil Canyon have been interpolated for use at other dam sites (see Table 4.15). Estimates for sediment transports and reservoir deposition have similarly been processed and the results are presented in Table 4.16.

# TABLE 4.1 Typical USGS Streamflow Records (Reproduced from Reference 14)

#### SOUTH-CENTRAL ALASKA

#### 15292000 SUSITNA RIVER AT GOLD CREEK

LOCATION.--Lat 62°46'04", long 149°41'28", in NWk sec.20, T.31 N., R.2 W., Matanuska-Susitna Borough, Hydrologic Unit 19050002, near left bank under Alaska Railroad bridge, 0.1 mi (0.2 km) downstream from Gold Creek, 0.9 mi (1.4 km) north of Gold Creek railroad station, and 2.0 mi (3.2 km) downstream from Indian River.

DRAINAGE AREA. -- 6,160 mi<sup>2</sup> (15,950 km<sup>2</sup>), approximately.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1949 to current year.

GAGE.--Water-stage recorder. Datum of gage is 676.50 ft (206.197 m) above mean sea level. Prior to June 6, 1957, nonrecording gage at same site and datum. June 7, 1957 to June 2, 1964, water-stage recorder at site 0.3 mi (0.5 km) upstream at same datum.

REMARKS. -- Water-discharge records good except those for Oct. 26 to May 16, which are poor.

AVERAGE DISCHARGE.--28 years, 9,667 ft3/s (273.8 m3/s), 21.32 in/yr (542 mm/yr), 7,004,000 acre-ft/yr (8.64 km3/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 90,700 ft<sup>3</sup>/s (2,570 m<sup>3</sup>/s) June 7, 1964, gage height, 16.58 ft (5.054 m); maximum gage height observed, 24.48 ft (7.462 m) May 10, 1954, ice jam; minimum daily discharge, about 600 ft<sup>3</sup>/s (17.0 m<sup>2</sup>/s) Feb. 16-20, 1950.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 54,300 ft<sup>2</sup>/s (1,540 m<sup>3</sup>/s) June 15, gage height, 13.94 ft (4.249 m), minimum daily discharge, about 1,500 ft<sup>3</sup>/s (42 m<sup>3</sup>/s) Mar. 1-31.

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977 MEAN VALUES

| DAY   | ОСТ    | NOV    | DEC    | MAL                                     | FEB   | MAR          | APR          | HAY    | JUN           | JUL     | AUG     | SEP     |
|-------|--------|--------|--------|-----------------------------------------|-------|--------------|--------------|--------|---------------|---------|---------|---------|
| 1     | 5400   | 3000   | 3000   | 2000                                    | 1700  | 1500         | 1600         | 1900   | 30900         | 30000   | 24200   | 10600   |
|       | 4980   | 3000   | 2900   | 2000                                    | 1700  | 1500         | 1600         | 1900   | 36700         | 26000   | 26200   | 10700   |
| 3     | 4750   | 2800   | 2800   | 2000                                    | 1700  | 1500         | 1600         | 2000   | 39000         | 22000   | 23400   | 10700   |
| 4     | 4520   | 2800   | 2800   | 1900                                    | 1700  | 1500         | 1600         | 2000   | 39700         | 20000   | 21500   | 10500   |
| 5     | 4750   | 2800   | 2800   | 1900                                    | 1700  | 1500         | 1600         | 2200   | 38100         | 18000   | 21700   | 9840    |
| •     | *****  |        |        | • > • •                                 | •     |              |              |        | 30.00         | 10000   | 22.00   | 7040    |
| 6     | 4700   | 2800   | 2800   | 1900                                    | 1600  | 1500         | 1600         | 2200   | 33200         | 18000   | 23400   | 9520    |
| 7     | 4720   | 2800   | 2600   | 1900                                    | 1600  | 1500         | 1600         | 2500   | 31300         | 18000   | 23400   | 9880    |
| 8     | 4520   | 2800   | 2600   | 1900                                    | 1600  | 1500         | 1600         | 3000   | 31500         | 19000   | 21200   | 11400   |
| 9     | 4100   | 2600   | 2600   | 1900                                    | 1600  | 1500         | 1600         | 3500   | 31900         | 20000   | 19300   | 12500   |
| 10    | 3860   | 2600   | 2600   | 1900                                    | 1600  | 1500         | 1600         | 4000   | 34400         | 22000   | 19900   | 10800   |
| ••    |        |        |        | • • • • • • • • • • • • • • • • • • • • |       |              |              | *****  | 51100         | 22000   |         | 10000   |
| 11    | 3840   | 2600   | 2600   | 1900                                    | 1600  | 1500         | 1600         | 4000   | 38500         | 24000   | 20460   | 14000   |
| 12    | 3809   | 2600   | 2400   | 1900                                    | 1600  | 1500         | 1600         | 5000   | 44200         | 26000   | 21200   | - 16700 |
| 13    | 3740   | 2600   | 2400   | 1900                                    | 1600  | 1500         | 1600         | 6000   | .51400        | 28000   | 18900   | 16980   |
| 14    | 3720   | 2600   | 2400   | 1800                                    | 1600  | 1500         | 1600         | 8000   | 5260 <b>0</b> | 30000   | 18000   | 16800   |
| 15    | 3610   | 2600   | 2400   | 1800                                    | 1600  | 1500         | 1600         | 10000  | 5260 <b>0</b> | 30000   | 20100   | 15000   |
|       |        |        |        |                                         |       |              |              |        |               |         |         |         |
| 16    | 3760   | 2600   | 2400   | 1800                                    | 1600  | 1500         | 1700         | 12000  | 50400         | 29000   | 20600   | 15600   |
| 17    | 3720   | 2400   | 2400   | 1800                                    | 1600  | 1500         | 1700         | 13600  | 44800         | 27000   | 19200   | 14500   |
| 18    | 3880   | 2400   | 2400   | 1800                                    | 1600  | 1500         | 1700         | 15300  | . 42400       | 25000.  | 18600   | 14400   |
| 19    | 3870   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 1700         | 22700  | 41000         | 23000   | 18500   | 13000   |
| 20    | 3720   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 1700         | 26400  | 37000         | 22400   | 18500   | 12200   |
|       |        |        |        |                                         |       |              |              |        |               |         |         |         |
| 21    | 3760   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 1700         | 21600  | 34400         | 22200   | 19100   | 14200   |
| 22    | 3760   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 1700         | 17900  | 33000         | 21800   | 20100   | 14600   |
| 23    | 3560   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 1700         | 16600  | 33000         | 23000   | 21600   | 14800   |
| 24    | 3390   | 2400   | 2200   | 1800                                    | 1600  | 1500         | 180 <b>0</b> | 16900  | 33000         | 22800   | 21500   | 13000   |
| 25    | 3250   | 2400   | 2200   | 1700                                    | 1600  | 1500         | 1800         | 16800  | 34000         | 21300   | 18800   | 11400   |
|       |        |        |        |                                         |       |              |              |        |               |         |         |         |
| 26    | 3200   | 2600   | 2200   | 1700                                    | 1600  | <b>150</b> 0 | 1800         | 18200  | 34000         | 20500   | 16000   | 10400   |
| 27    | 3200   | 2800   | 2000   | 1700                                    | 1600  | 1500         | 1800         | 21800  | 35000         | 19500   | 14400   | 9840    |
| 28    | 3000   | 2900   | 2000   | 1700                                    | 1600  | 1500         | 1800         | 23800  | 35000         | 19700   | 13400   | 11000   |
| 29    | 3000   | 3000   | 2000   | 1700                                    |       | 1500         | 1900         | 28400  | 34000         | 19900   | 12200   | 11800   |
| 30    | 3000   | 3000   | 2000   | 1700                                    |       | 1500         | 1900         | 33100  | 32000         | 19600   | 11000   | 12500   |
| 31    | 3000   |        | 2000   | 1700                                    |       | 1500         |              | 29700  |               | 21200   | 10000   |         |
|       |        |        |        |                                         |       |              |              |        |               |         |         |         |
| TOTAL | 120100 | 79500  | 74500  | <b>56700</b>                            | 45300 | 46500        | 50400        | 393000 | 1139000       | 708900  | 596300  | 379080  |
| MEAN  | 3874   | 2650   | 2403   | 1829                                    | 1618  | 1500         | 1680         | 12680  | 37970         | 22870   | 19240   | 12640   |
| MAX   | 5400   | 3000   | 3000   | 2000                                    | 1700  | 1500         | 1900         | 33100  | 52600         | 30000   | 26200   | 16900   |
| HIN   | 3000   | 2400   | 2000   | 1700                                    | 1600  | 150a         | 1600         | 1900   | 30900         | 18000   | 10000   | 9520    |
| CFSH  | •63    | .43    | •39    | .30                                     | .26   | .24          | .27          | 2.06   | 6.16          | 3.71    | 3.12    | 2.05    |
| IN.   | •73    | .48    | .45    | .34                                     | .27   | .28          | .30          | 2.37   | 6.88          | 4.28    | 3.60    | 2.29    |
| AC-FT | 238200 | 157700 | 147800 | 112500                                  | 89850 | 92230        | 99970        | 779500 | 2259000       | 1406000 | 1183000 | 751900  |
|       |        |        |        |                                         |       |              |              |        |               |         |         |         |

CAL YR 1976 TOTAL 2930760 MEAN 8008 MAX 33300 MIN 900 CFSM 1.30 IN 17.70 AC-FT 5813000 MTR YR 1977 TOTAL 3689280 MEAN 10110 MAX 52600 MIN 1500 CFSM 1.64 IN 22.28 AC-FT 7318000

Note .-- No gage-height record Feb. 13 to May 16.

## TABLE 4.2: ESTIMATE OF MONTHLY FLOWS AT DEVIL CANYON DAM SITE (ft 3/s)

## (Source: Ref. 5, 6)

## Drainage Area - 5810 Square Miles

| Year | Oct.          | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.         | May               | June              | July              | Aug.  | Sept.         | Annual<br>Average |
|------|---------------|------|------|------|------|------|--------------|-------------------|-------------------|-------------------|-------|---------------|-------------------|
| 1950 | 5998          | 2444 | 1360 | 970  | 744  | 685  | 822          | 10903             | 18837             | 21839             | 19151 | 7878          | 7636              |
| 1951 | 3642          | 1229 | 1039 | 906  | 774  | 699  | 15 <b>29</b> | 13349             | 19961             | 21754             | 18950 | 20170         | 8667              |
| 1952 | 5 <b>27</b> 0 | 2596 | 1796 | 1512 | 945  | 831  | 869          | 5131              | 30886             | 25399             | 20144 | 13747         | 9094              |
| 1953 | 7761          | 3309 | 1607 | 1039 | 774  | 774  | 1527         | 1825 <del>9</del> | 26123             | 19583             | 19848 | 14498         | 9592              |
| 1954 | 5336          | 1987 | 1418 | 1229 | 945  | 737  | 1167         | 16372             | 24170             | 19733             | 25088 | 12266         | 9204              |
| 1955 | 5080          | 2612 | 1934 | 1698 | 1323 | 1039 | 1134         | 8827              | 2851 <del>9</del> | 26498             | 24754 | 13567         | 9749              |
| 1956 | 4683          | 1798 | 1229 | 926  | 916  | 888  | 897          | 16732             | 31800             | 29813             | 23590 | 17405         | 10890             |
| 1957 | 5493          | 2886 | 2026 | 1607 | 1418 | 1134 | 1134         | 13026             | 29117             | 22644             | 19955 | 18804         | 9937              |
| 1958 | 7743          | 3728 | 3062 | 1846 | 1227 | 1077 | 1442         | 12121             | 24678             | 22099             | 21595 | 7195          | 8984              |
| 1959 | 4549          | 2027 | 1421 | 1357 | 1223 | 915  | 1167         | 15049             | 22492             | 24022             | 29764 | 16003         | 9999              |
| 1960 | 6220          | 2709 | 2089 | 1749 | 1374 | 1133 | 1228         | 14965             | 14949             | 22184             | 22674 | 19525         | 9233              |
| 1961 | 7386          | 2842 | 2543 | 2307 | 1652 | 1705 | 2498         | 16425             | 28004             | 23638             | 21280 | 12695         | 10248             |
| 1962 | 5602          | 2563 | 1986 | 1789 | 1413 | 1319 | 1603         | 11896             | 41050             | 24972             | 22757 | 15101         | 11004             |
| 1963 | 6341          | 2646 | 1884 | 1507 | 1413 | 944  | 786          | 18061             | 24855             | 33033             | 22937 | 11812         | 10518             |
| 1964 | 6075          | 2117 | 1404 | 985  | 908  | 670  | 702          | 4093              | 48120             | 22054             | 15896 | 9140          | 9347              |
| 1965 | 5964          | 2657 | 1146 | 908  | 814  | 851  | 1288         | 12313             | 24385             | 26572             | 20201 | 18619         | 9643              |
| 1966 | 6780          | 1976 | 1536 | 1318 | 1224 | 1224 | 1673         | 9095              | 3130 <del>9</del> | 19216             | 20885 | 11211         | 8962              |
| 1967 | 3938          | 1514 | 1418 | 1418 | 1323 | 1134 | 1103         | 14672             | 28217             | 25801             | 30336 | 16013         | 10574             |
| 1968 | 4635          | 2226 | 1943 | 1873 | 1797 | 1797 | 1806         | 15275             | 30103             | 25628             | 16800 | 8394          | 9356              |
| 1969 | 3609          | 1544 | 832  | 683  | 682  | 769  | 1422         | 10451             | 15163             | 1581 <del>9</del> | 8596  | 4922          | 5374              |
| 1970 | 2978          | 1166 | 829  | 784  | 729  | 735  | 1027         | 10782             | 17788             | 21825             | 19171 | 8666          | 7207              |
| 1971 | 4965          | 3204 | 2153 | 1355 | 973  | 892  | 1016         | 3550              | 3140 <del>9</del> | 23239             | 30643 | 13731         | 9761              |
| 1972 | 5521          | 2916 | 2365 | 2109 | 1910 | 1717 | 1611         | 20979             | 33158             | 22449             | 18997 | 11990         | 10477             |
| 1973 | 4544          | 2122 | 1379 | 1129 | 1128 | 941  | 966          | 7882              | 26834             | 18008             | 19814 | 8 <b>79</b> 0 | 7795              |
| 1974 | 3552          | 1456 | 992  | 839  | 745  | 693  | 944          | 15258             | 17143             | 18327             | 15899 | 13231         | 7423              |
| AVG. | 5347          | 2331 | 1656 | 1354 | 1135 | 1012 | 1254         | 12619             | 26763             | 23046             | 21189 | 13015         | 9227              |

TABLE 4.3: ESTIMATE OF MONTHLY FLOWS AT WATANA DAM SITE (ft 3/s)

(Souce: Ref. 5, 6)

Drainage Area - 5180 Square Miles

| Year | Oct. | Nov.        | Dec.          | Jan.  | Feb.         | Mar.        | Apr. | May            | June  | July  | Aug.  | Sept. | Annual<br>Average |
|------|------|-------------|---------------|-------|--------------|-------------|------|----------------|-------|-------|-------|-------|-------------------|
| 1950 | 5067 | 2083        | 1174          | 847   | 657          | 607         | 722  | 9600           | 16527 | 19133 | 16791 | 6929  | 6678              |
| 1951 | 3089 | 1064        | 904           | 793   | 682          | 619         | 1315 | 11757          | 17519 | 19057 | 16614 | 17759 | 7598              |
| 1952 | 4457 | 2211        | 1540          | 1301  | 825          | 730         | 761  | 4511           | 27164 | 22280 | 17664 | 12100 | 7962              |
| 1953 | 6548 | 2810        | 1381          | · 904 | 682          | 682         | 1314 | 16085          | 22959 | 17138 | 17403 | 12762 | 8389              |
| 1954 | 4512 | <b>1700</b> | 1223          | 1064  | 825          | 651         | 1012 | 14422          | 21234 | 17271 | 22015 | 10795 | 8060              |
| 1955 | 4297 | 2225        | 1656          | 1457  | 1205         | 904         | 984  | 7770           | 25074 | 23251 | 21721 | 11941 | 8540              |
| 1956 | 3964 | 1541        | 1064          | 809   | 801          | 777         | 785  | 15947          | 30237 | 28301 | 22370 | 16576 | 10264             |
| 1957 | 4644 | 2455        | 1733          | 1381  | 1223         | 984         | 984  | 11472          | 25520 | 19808 | 17453 | 16555 | 8684              |
| 1958 | 6538 | 3164        | <b>26</b> 08  | 1585  | 1064         | 938         | 1244 | 10 <b>70</b> 0 | 21662 | 19363 | 18966 | 6319  | 7846              |
| 1959 | 3851 | 1735        | 1227          | 1174  | 1062         | 803         | 1015 | 13282          | 19716 | 21081 | 26174 | 14104 | 8769              |
| 1960 | 5251 | 2303        | 1784          | 1499  | 1185         | 983         | 1063 | 13178          | 13107 | 19441 | 19896 | 17179 | 8072              |
| 1961 | 6230 | 2417        | 2168          | 1972  | 1420         | 1465        | 2131 | 14475          | 24653 | 20736 | 18662 | 11173 | 8959              |
| 1962 | 4726 | 2275        | 1765          | 1605  | 1257         | 1176        | 1451 | 11181          | 36248 | 23432 | 20208 | 12954 | 9856              |
| 1963 | 5581 | 2478        | 1 <b>7</b> 01 | 1316  | 1201         | 875         | 761  | 15526          | 21137 | 29169 | 21146 | 10822 | 9309              |
| 1964 | 5235 | 1809        | 1205          | 856   | 787          | 5 <b>79</b> | 613  | 3607           | 43031 | 20162 | 14241 | 7711  | 8320              |
| 1965 | 4896 | 2376        | 1061          | 852   | 801          | 797         | 1216 | 10995          | 21384 | 23470 | 17650 | 16465 | 8497              |
| 1966 | 5398 | 1608        | 1239          | 1085  | <b>10</b> 07 | 1007        | 1372 | 7319           | 26477 | 16569 | 17790 | 9442  | 7526              |
| 1967 | 3328 | 1237        | 1155          | 1140  | 1065         | 917         | 880  | 12703          | 24974 | 22436 | 26101 | 13850 | 9149              |
| 1968 | 4050 | 1948        | 1713          | 1631  | 1572         | 1572        | 1586 | 13009          | 26103 | 22554 | 24589 | 7268  | 8966              |
| 1969 | 3155 | 1363        | 751           | 617   | 608          | 686         | 1262 | 9327           | 14094 | 14948 | 7842  | 4339  | 4916              |
| 1970 | 2472 | 1034        | 721           | 653   | 615          | 632         | 974  | 9574           | 14816 | 18835 | 16586 | 7363  | 6190              |
| 1971 | 1750 | 2572        | 1736          | 1120  | 796          | 733         | 832  | 2933           | 27848 | 21312 | 27650 | 12248 | 8461              |
| 1972 | 4969 | 2589        | 1990          | 1716  | 1537         | 1402        | 1334 | 16722          | 28194 | 20276 | 17723 | 11022 | 9123              |
| 1973 | 3852 | 1815        | 1191          | 981   | 980          | 823         | 844  | 6915           | 23520 | 15679 | 17304 | 7687  | 6799              |
| 1974 | 3010 | 1251        | 861           | 733   | 655          | 612         | 823  | 13459          | 15046 | 16012 | 13867 | 11590 | 6493              |
| AVG. | 4435 | 2003        | 1422          | 1164  | 980          | 878         | 1091 | 11059          | 23530 | 20469 | 19137 | 11478 | 8137              |

# TABLE 4.4: ESTIMATE OF MONTHLY FLOWS AT VEE CANYON DAM SITE (ft 3/s)

(Souce: Ref. 5, 6)

## Drainage Area - 4140 Square Miles

| Year        | Oct.     | Nov. | Dec. | Jan.        | Feb. | Mar.         | Apr. | May   | June  | July          | Aug.          | Sept.         | Annual<br>Average |
|-------------|----------|------|------|-------------|------|--------------|------|-------|-------|---------------|---------------|---------------|-------------------|
| 1950        | <br>3529 | 1489 | 867  | 643         | 513  | 479          | 557  | 7449  | 12713 | 14665         | 12895         | 5362          | 5097              |
| 1951        | 2177     | 791  | 682  | 606         | 530  | 487          | 963  | 9128  | 13487 | 14606         | 12758         | 13780         | 5833              |
| 1952        | 3114     | 1576 | 1117 | 954         | 628  | 563          | 584  | 3487  | 21021 | 17130         | 13572         | 9382          | 6094              |
| 1953        | 4545     | 1986 | 1009 | 682         | 530  | 530          | 962  | 12498 | 17736 | 13103         | 13369         | 9896          | 6404              |
| 1954        | 3151     | 1226 | 900  | 791         | 628  | 508          | 756  | 11203 | 16388 | 13207         | 16941         | 8367          | 6172              |
| 1955        | 3004     | 1585 | 1196 | 1060        | 1009 | 682          | 737  | 6024  | 19388 | 17892         | 16714         | 9258          | 6546              |
| 1956        | 2777     | 1117 | 791  | 617         | 612  | 595          | 601  | 11451 | 21652 | 20188         | 15920         | 11887         | 7351              |
| 1957        | 3242     | 1743 | 1249 | 1009        | 900  | 737          | 737  | 8907  | 19583 | 15127         | 13324         | 12843         | 6617              |
| 1958        | 4550     | 2234 | 1859 | 1153        | 795  | . 708        | 918  | 8354  | 16682 | 14847         | 14626         | 4873          | 5967              |
| 1959        | 2700     | 1253 | 907  | 871         | 795  | 617          | 764  | 10364 | 15133 | 16226         | 20247         | 10969         | 6737              |
| 1960        | 3651     | 1634 | 1281 | 1087        | 874  | 735          | 791  | 10227 | 10065 | 14912         | 15309         | 13305         | 6166              |
| 1961        | 4323     | 1716 | 1549 | 1418        | 1038 | 1068         | 1525 | 11256 | 19121 | 15946         | 14339         | 8660          | 6830              |
| p 1962      | 3281     | 1800 | 1400 | 1300        | 1000 | 940          | 1200 | 10000 | 28320 | 20890         | 16000         | 9410          | 7962              |
| 1963        | 4326     | 2200 | 1400 | 1000        | 850  | 760          | 720  | 11340 | 15000 | <b>2279</b> 0 | 18190         | 9187          | 7314              |
| 1964        | 3848     | 1300 | 877  | 644         | 586  | 429          | 465  | 2806  | 34630 | 17040         | 11510         | 5352          | 6624              |
| 1965        | 3134     | 1911 | 921  | 760         | 780  | 709          | 1097 | 8818  | 16430 | 18350         | 13440         | <b>1291</b> 0 | 6605              |
| 1966        | 3116     | 1000 | 750  | <b>70</b> 0 | 650  | 650          | 875  | 4387  | 18500 | 12200         | 12680         | 6523          | 5169              |
| 1967        | 2322     | 780  | 720  | 680         | 640  | 560          | 513  | 9452  | 19620 | 16880         | 19190         | 10280         | 6803              |
| 1968        | 3084     | 1490 | 1332 | 1232        | 1200 | <b>120</b> 0 | 1223 | 9268  | 19500 | 17480         | 10940         | 5410          | 6113              |
| 1969        | 2406     | 1063 | 618  | 508         | 485  | 548          | 998  | 7471  | 12330 | 13510         | 6597          | 3376          | 4159              |
| 1970        | 1638     | 815  | 543  | 437         | 426  | 463          | 887  | 7580  | 9909  | 13900         | 12320         | 5211          | 4511              |
| 1971        | 2155     | 1530 | 1048 | 731         | 503  | 470          | 529  | 1915  | 21970 | 18130         | 22710         | 9800          | 6791              |
| 1972        | 4058     | 2050 | 1371 | 1068        | 922  | 881          | 876  | 9694  | 20000 | 16690         | <b>1562</b> 0 | 9423          | 6888              |
| 1973        | 2709     | 1309 | 881  | 737         | 737  | 628          | 643  | 5319  | 18048 | 11834         | 13161         | 5865          | 5158              |
| <u>1974</u> | 2114     | 912  | 646  | 559         | 507  | 478          | 624  | 10488 | 11585 | 12190         | 10513         | 8880          | 4958              |
| AVG.        | 3158     | 1460 | 1037 | 850         | 726  | 657          | 822  | 8355  | 17952 | 15989         | 14515         | 8088          | 6194              |
|             |          |      |      |             |      |              |      |       |       |               |               |               |                   |

TABLE 4.5: ESTIMATE OF MONTHLY FLOWS AT DENALI DAM SITE (ft /s)

(Souce: Ref. 5, 6)

Drainage Area - 1260 Square Miles

| Year | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr.             | May  | June             | July  | Aug.  | Sept. | Annual<br>Average |
|------|------|------|------|------|------|------|------------------|------|------------------|-------|-------|-------|-------------------|
| 1950 | 1651 | 635  | 333  | 226  | 165  | 149  | 186              | 2903 | 7470             | 10406 | 8217  | 2029  | 2864              |
| 1951 | 976  | 296  | 245  | 209  | 173  | 153  | 380              | 3573 | 7686             | 10396 | 8145  | 5442  | 3140              |
| 1952 | 1443 | 679  | 454  | 375  | 219  | 188  | 198              | 1331 | 9798             | 10880 | 8570  | 3675  | 3151              |
| 1953 | 2163 | 881  | 401  | 245  | 173  | 173  | 379              | 4926 | 8877             | 10106 | 8467  | 3881  | 3389              |
| 1954 | 1462 | 507  | 348  | 296  | 219  | 163  | 279              | 4406 | 8500             | 10127 | 10294 | 3269  | 3323              |
| 1955 | 1388 | 683  | 492  | 426  | 401  | 245  | 271              | 2335 | 9340             | 11027 | 10180 | 3625  | 3368              |
| 1956 | 1274 | 454  | 296  | 214  | 212  | 204  | 206              | 4505 | <del>9</del> 975 | 11469 | 9778  | 4680  | 3606              |
| 1957 | 1508 | 760  | 518  | 401  | 348  | 271  | 271              | 3485 | 13844            | 12442 | 10891 | 5098  | 4153              |
| 1958 | 1846 | 877  | 506  | 345  | 230  | 188  | 306              | 1870 | 9769             | 10399 | 7766  | 2295  | 3033              |
| 1959 | 1267 | 529  | 264  | 209  | 161  | 98   | 119              | 2657 | 10164            | 9697  | 9581  | 3423  | 3181              |
| 1960 | 2029 | 949  | 718  | 562  | 411  | 347  | 344              | 4212 | 6087             | 10293 | 9197  | 5937  | 3424              |
| 1961 | 2321 | 860  | 661  | 492  | 382  | 396  | 5 <del>9</del> 0 | 3908 | 8018             | 9419  | 8459  | 5233  | 3395              |
| 1962 | 1700 | 820  | 549  | 373  | 318  | 292  | 358              | 2600 | 11411            | 10991 | 10628 | 4656  | 3725              |
| 1963 | 1452 | 603  | 403  | 343  | 331  | 237  | 227              | 4448 | 8473             | 12305 | 11062 | 4436  | 3693              |
| 1964 | 1329 | 438  | 281  | 203  | 199  | 154  | 174              | 1143 | 14109            | 8496  | 7318  | 3289  | 3094              |
| 1965 | 1959 | 840  | 324  | 251  | 212  | 238  | 361              | 3113 | 6091             | 8231  | 6958  | 7956  | 3044              |
| 1966 | 1556 | 471  | 377  | 319  | 301  | 301  | 420              | 2447 | 9096             | 9481  | 7852  | 4013  | 3053              |
| 1967 | 1064 | 402  | 376  | 382  | 354  | 298  | 294              | 4026 | 9204             | 11012 | 12695 | 4400  | 3709              |
| 1968 | 1208 | 1261 | 474  | 464  | 441  | 441  | 441              | 4308 | 9802             | 13230 | 10793 | 2721  | 3799              |
| 1969 | 765  | 452  | 213  | 179  | 177  | 187  | 309              | 2324 | 8639             | 9848  | 4274  | 2480  | 2487              |
| 1970 | 1233 | 563  | 389  | 325  | 274  | 242  | 349              | 2801 | 6369             | 9816  | 7407  | 2554  | 2693              |
| 1971 | 1015 | 687  | 469  | 281  | 208  | 195  | 221              | 913  | 9803             | 11315 | 11830 | 4009  | 3412              |
| 1972 | 1317 | 640  | 557  | 521  | 479  | 432  | 400              | 5364 | 8805             | 11395 | 9234  | 3241  | 3532              |
| 1973 | 996  | 470  | 302  | 250  | 236  | 211  | 213              | 1495 | 7257             | 9343  | 8376  | 2944  | 2674              |
| 1974 | 1128 | 557  | 426  | 359  | 313  | 273  | 319              | 3426 | 6620             | 10570 | 10179 | 6202  | 3364              |
| AVG. | 1442 | 653  | 415  | 330  | 277  | 243  | 305              | 3141 | 9008             | 10508 | 9126  | 4060  | 3292              |

TABLE 4.6: YEARLY PEAK FLOWS OF RECORD

(Source: Ref. 5, 6)

| Gold Creek  |        | Canti   | well        | Dena        | ali    | Maclaren    |       |  |
|-------------|--------|---------|-------------|-------------|--------|-------------|-------|--|
|             | Peak   |         | Peak        |             | Peak   |             | Peak  |  |
| <b>.</b> .  | , ن    |         | . ,         |             |        |             | 3     |  |
| <u>Date</u> | ft /s  | Date    | <u>ft/s</u> | <u>Date</u> | ft /s  | <u>Date</u> | ft /s |  |
| 8/25/59     | 62,300 | 6/23/61 | 30,500      | B/18/63     | 17,000 | 9/13/60     | B,900 |  |
| 6/15/62     | 80,600 | 6/15/62 | 47,000      | 6/07/64     | 16,000 | 6/14/62     | 6,650 |  |
| 6/07/64     | 90,700 | 6/07/64 | 50,500      | 9/09/65     | 15,800 | 7/18/65     | 7,350 |  |
| 6/06/66     | 63,600 | 8/11/70 | 20,500      | 8/14/67     | 28,200 | 8/14/67     | 7,600 |  |
| 8/15/67     | 80,200 | 8/10/71 | 60,000      | 7/27/68     | 19,000 | B/10/71     | 9,300 |  |
| B/10/71     | 87,400 | 6/22/72 | 45,000      | 8/08/71     | 38,200 | 6/17/72     | 7,100 |  |

TABLE 4.7: UPPER SUSITNA RIVER BASIN PEAK DISCHARGES, (ft 3/s)

(Source: Ref. 5, 6)

| Susitna at<br>Gold Creek | Susitna near<br>Cantwell                            | Susitna near<br>Denali                                                                                                                                       | Maclaren near<br>Paxson                                                                                                                                                                                                                 |
|--------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 67,000                   | 42,000                                              | 19,500                                                                                                                                                       | 7,300                                                                                                                                                                                                                                   |
| 78,000                   | 48,500                                              | 23,200                                                                                                                                                       | 8,200                                                                                                                                                                                                                                   |
| 90,000                   | 56,000                                              | 27,500                                                                                                                                                       | 9,200                                                                                                                                                                                                                                   |
| 101,000                  | 63,000                                              | 32,000                                                                                                                                                       | 10,100                                                                                                                                                                                                                                  |
| 111,000                  | 69,000                                              | 37 <b>,</b> 000                                                                                                                                              | 11,000                                                                                                                                                                                                                                  |
|                          | Gold Creek<br>67,000<br>78,000<br>90,000<br>101,000 | Gold Creek         Cantwell           67,000         42,000           78,000         48,500           90,000         56,000           101,000         63,000 | Gold Creek         Cantwell         Denali           67,000         42,000         19,500           78,000         48,500         23,200           90,000         56,000         27,500           101,000         63,000         32,000 |

## TABLE 4.8: SUMMER PROBABLE MAXIMUM FLOOD

## (Source: Ref. 5, 6)

| Project                     | Maximum Inflow<br>ft <sup>3</sup> /s | Maximum Outflow<br>ft <sup>3</sup> /s |
|-----------------------------|--------------------------------------|---------------------------------------|
| Watana                      | 213,000                              | 186,000                               |
| Devil Canyon with<br>Watana | 223,000                              | 218,000                               |

## TABLE 4.9: SPRING PROBABLE MAXIMUM FLOOD

## (Source: Ref. 5, 6)

| Project                     | Maximum Inflow<br><u>ft<sup>3</sup>/s</u> | Maximum Outflow<br>ft <sup>3</sup> /s |
|-----------------------------|-------------------------------------------|---------------------------------------|
| Watana                      | 223,000                                   | 192,000                               |
| Devil Canyon with<br>Watana | 226,000                                   | 222,000                               |

## TABLE 4.10

## Typical USGS Suspended Sediment Records

(Source: Ref. 14)

#### SOUTH-CENTRAL ALASKA

#### 15291000 SUSITNA RIVER NEAR DENALI--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1957-66, 1968-69, 1974 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: August 1974 to current year (seasonal).

INSTRUMENTATION. -- Temperature recorder since Aug. 29, 1974.

REMARKS. -- No record Dec. 3 to May 31 when temperature sensor froze in ice.

EXTREMES FOR PERIOD OF DAILY RECORD. -- WATER TEMPERATURES: Maximum, 11.0°C June 11, 1977; minimum, 0.0°C on most days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum, 11.0°C June 11; minimum, 0.0°C on most days during winter period.

#### WATER QUALITY DATA: WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

| DATE             | TI         | IME    | INST<br>TANE<br>OI<br>CHA<br>(CF:              | OUS<br>S- TEMP<br>RGE ATU                                   | PER-                                              | COLOR<br>(PLAT-<br>INUM-<br>COBALT<br>UNITS) | SUS-<br>PENDE<br>SEDI-<br>MENT<br>(MG/L | PEND<br>SEC<br>D ME<br>D1<br>CHA                          | DED S<br>DI- F<br>ENT DI<br>IS- % F<br>ARGE T                | SUS.<br>SED.<br>TALL<br>TAM.<br>TINER<br>THAN<br>12 HM | SUS.<br>SED.<br>FALL<br>DIAM.<br>% FINES<br>THAN<br>.004 MM | 56<br>F/<br>DI/<br>R % F]<br>Th               | NER |
|------------------|------------|--------|------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|----------------------------------------------|-----------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----|
| JUN<br>01        | ,,         | 30     | 3970                                           |                                                             |                                                   |                                              | 4.7                                     |                                                           |                                                              | •                                                      |                                                             |                                               |     |
| JUL              | • • •      | 30     | 3910                                           |                                                             |                                                   |                                              | 63                                      | 0 6750                                                    | ,                                                            | 2                                                      | •                                                           | •                                             | 10  |
| 08               | 24         | •00    | 8590                                           |                                                             | 8.0                                               |                                              | 151                                     | 35000                                                     | •                                                            | 7                                                      | 11                                                          | l                                             | 18  |
| 11               | 16         | 600    | 13700                                          |                                                             | 5.0                                               |                                              | 142                                     | 0 52500                                                   | )                                                            | 9                                                      | 16                                                          | •                                             | 23  |
| 26               | 18         | 30     | 1890                                           |                                                             | 3.5                                               | 5                                            | 12                                      | 4 633                                                     | 1                                                            |                                                        |                                                             | •                                             |     |
| -                | <b>NTE</b> | %<br>% | SUS.<br>SED.<br>FALL<br>PIAM.<br>FINER<br>THAN | SUS-<br>SED-<br>FALL<br>DIAM-<br>% FINER<br>THAN<br>•031 MM | SUS.<br>SED.<br>SIEVE<br>DIAM.<br>% FINE<br>THAM. | SE SIE<br>DIA<br>ER & FI                     | M.<br>NER %                             | SUS.<br>SED.<br>SIEVE<br>DIAM.<br>FINER<br>THAN<br>250 HM | SUS.<br>SED.<br>SIEVE<br>Olam.<br>% Finer<br>Than<br>.500 mm | SE<br>SIE<br>DIA<br>% FI<br>TH                         | M. C<br>NER %<br>AN                                         | SUS.<br>SED.<br>IEVE<br>IAM.<br>FINER<br>THAN |     |
|                  |            |        | 16                                             | 27                                                          | 4                                                 | 4                                            | 61                                      | 78                                                        | 90                                                           |                                                        | 97                                                          | 100                                           |     |
| JUL<br>08<br>AUG |            |        | 33                                             | 49                                                          | 5                                                 | 57                                           | 63                                      | 72                                                        | 86                                                           | 1                                                      | 97                                                          | 100                                           |     |
|                  |            |        | 33                                             | 47                                                          | •                                                 | 55                                           | 80                                      | 93                                                        | 99                                                           |                                                        | 100                                                         |                                               |     |
| 26               |            |        |                                                |                                                             | 3                                                 | 12                                           | 47                                      | 73                                                        | 9.0                                                          |                                                        | 160                                                         |                                               |     |

#### TABLE 4.11: SUSPENDED SEDIMENT TRANSPORT

## (Source: Ref. 5, 6)

| Station               | Sediment<br>Transport<br>(Tons/year) | Initial Unit<br>Weight<br>(lb/ft <sup>3</sup> ) |
|-----------------------|--------------------------------------|-------------------------------------------------|
| Susitna at Gold Creek | 8,734,000                            | 65.3                                            |
| Susitna near Cantwell | 5,129,000                            | 70.6                                            |
| Susitna near Denali   | 5,243,000                            | 70.4                                            |
| Maclaren near Paxson  | 614,000                              | 68.6                                            |

## TABLE 4.12: RESERVOIR SEDIMENT INFLOW

## (Source: Ref. 5, 6)

|                                | Upstream<br>Development | Sediment Inflow<br>50-year Volume<br>(acre-feet) | Sediment Inflow<br>100-year Volume<br>(acre-feet) |
|--------------------------------|-------------------------|--------------------------------------------------|---------------------------------------------------|
| Devil Canyon                   | None                    | 252,000                                          | 497,000                                           |
|                                | Denali                  | 138,000                                          | 272,000                                           |
|                                | Vee                     | 94,000                                           | 186,000                                           |
|                                | Watana                  | 35,000                                           | 70,000                                            |
| Watana                         | None                    | 204,000                                          | 403,000                                           |
|                                | Denali                  | 102,000                                          | 202,000                                           |
|                                | Vee                     | 59,000                                           | 116,000                                           |
| Vee (2300 feet                 | None                    | 162,000                                          | 320,000                                           |
| W.S. El.)                      | Denali                  | 44,000                                           | 87,000                                            |
| Denali (2535 feet<br>W.S. El.) | None                    | 290,000                                          | 572,000                                           |

#### Note:

50-year unit weight of sediment is 80 lbs/ft $^3$ . 100-year unit weight of sediment is 81 lbs/ft $^3$ .

# TABLE 4.13 Typical USGS Water Quality Records

(Source: Ref. 14)

#### SOUTH-CENTRAL ALASKA

15292000 SUSITNA RIVER AT GOLD CREEK--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1949-58, 1962, 1967-68, 1974 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: June to September 1957, July 1974 to current year (seasonal).
SUSPENDED-SEDIMENT DISCHARGE: May to September 1952, June to September 1957.

INSTRUMENTATION. -- Temperature recorder since July 30, 1974.

REMARKS. -- No record Oct. 1 to May 23 and July 9 to Sept. 30 due to recorder malfunction.

#### WATER QUALITY DATA: WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

|                  |                       |                                               | HATER GO                                                   | ACTIT DAT                     | AT WAICK                       | TEAR OCTO                   | DCK 1910                                     | IU SEPIEM                          | DEK 1911                           |                                                   |                                                  |                                                         |
|------------------|-----------------------|-----------------------------------------------|------------------------------------------------------------|-------------------------------|--------------------------------|-----------------------------|----------------------------------------------|------------------------------------|------------------------------------|---------------------------------------------------|--------------------------------------------------|---------------------------------------------------------|
| DATE             | TIME                  | INSTAN-<br>TANEOUS<br>OIS-<br>CHARGE<br>(CFS) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(MICRO-<br>MHOS) | PH<br>(UNITS)                 | AIR TEMPER- ATURE (DEG C)      | TEMPER-<br>ATURE<br>(DEG C) | COLOR<br>(PLAT-<br>INUM-<br>COBALT<br>UNITS) | DIS-<br>SOLVED<br>OXYGEN<br>(MG/L) | HARD-<br>NESS<br>(CA+MG)<br>(MG/L) | NON-<br>CAR-<br>BONATE<br>HARD-<br>NESS<br>(MG/L) | DIS-<br>SOLVED<br>CAL-<br>CIUM<br>(CA)<br>(MG/L) | DIS-<br>SOLVED<br>MAG-<br>NE-<br>SIUM<br>(MG)<br>(MG/L) |
| ост              |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 01<br>MAY        | 1400                  | 5340                                          |                                                            |                               |                                | 3.5                         |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 10               | 1830                  | 3760                                          |                                                            |                               |                                | 1.0                         |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 18               | 1000                  | 14200                                         |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| JUN<br>14<br>JUL | 1630                  | 52000                                         | 102                                                        | 6.8                           | 17.0                           | 8.0                         | 45                                           | 12.2                               | 36                                 | 13                                                | 12                                               | 1.4                                                     |
| 28               | 1730                  | 21000                                         |                                                            |                               |                                | 14.0                        |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| AUG<br>10        | 1430                  | 20000                                         | 163                                                        | 7.9                           |                                | 12.0                        | 25                                           | 11.1                               | 75                                 | 30                                                | 23                                               | 4.3                                                     |
|                  |                       | 015-<br>SOLVED                                |                                                            |                               |                                | 015-                        | ois-                                         |                                    | DIS-<br>SDLVED                     | DIS-<br>SOLVED                                    | OIS-<br>SOLVED                                   | DIS-<br>SOLVED                                          |
|                  | 01S <del>-</del>      | PO-                                           |                                                            |                               | DIS-                           | SOLVED                      | SOLVED                                       | DIS-                               | SOLIDS                             | SOLIDS                                            | NITRITE                                          | DRTHO.                                                  |
|                  | SOLVED                | TAS-                                          | BICAR-                                                     | CAR-                          | SOLVED                         | CHLO-                       | FLUO-                                        | SOLVED                             | (RESI-                             | (SUM OF                                           | PLUS                                             | PHOS-                                                   |
|                  | SODIUM                | SIUM                                          | BONATE                                                     | BONATE                        | SULFATE                        | RIDE                        | RIDE                                         | SILICA                             | DUE AT                             | CDNSTI-                                           | NITRATE                                          | PHORUS                                                  |
|                  | (NA)                  | (K)                                           | (HC03)                                                     | (CO3)                         | (504)                          | (CL)                        | (F)                                          | (\$102)                            | 180 C)                             | TUENTS)                                           | (N)                                              | (P)                                                     |
| DATE             | (MG/L)                | (MG/L)                                        | (MG/L)                                                     | (MG/L)                        | (MG/L)                         | (MG/L)                      | (MG/L)                                       | (MG/L)                             | (MG/L)                             | (MG/L)                                            | (MG/L)                                           | (MG/L)                                                  |
| oct              |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 01               |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 10               |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 18<br>Jun        |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 14               | 2.4                   | 1.1                                           | 28                                                         | 0                             | 4.7                            | 15                          | .1                                           | 5.2                                | 63                                 | 56                                                | •06                                              | .02                                                     |
| 28               |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| AUG<br>10        | 3.6                   | 4.4                                           | 55                                                         | ō                             | 14                             | 5.4                         | •1                                           | 4.9                                | 76                                 | 130                                               |                                                  | .02                                                     |
|                  |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
|                  | ALUM-<br>INUM<br>(AL) | TOTAL<br>ARSENIC<br>(AS)                      | TOTAL<br>BARIUM<br>(BA)                                    | TOTAL<br>CAD-<br>MIUM<br>(CD) | TOTAL<br>CHRO-<br>MIUM<br>(CR) | TOTAL<br>COPPER<br>(CU)     | TOTAL<br>IRON<br>(FE)                        | DIS+<br>SOLVEO<br>IRON<br>(FE)     | TOTAL<br>LEAD<br>(PB)              | TOTAL<br>MAN-<br>GANESE<br>(MN)                   | DIS-<br>SDLVED<br>MAN-<br>GANESE<br>(MN)         | TOTAL<br>MERCURY<br>(HG)                                |
| DATE             | (UG/L)                | (UG/L)                                        | (UG/L)                                                     | (UG/L)                        | (UG/L)                         | (UG/L)                      | (UG/L)                                       | (UG/L)                             | (UG/L)                             | (UG/L)                                            | (UG/L)                                           | (UG/L)                                                  |
| OCT              |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 01<br>MAY        |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 10               |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 18               |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  |                                                         |
| 14<br>JUL        | 14000                 | 5                                             | 0                                                          | <10                           | 30                             | 50                          | 20000                                        | 100                                | 100                                | 370                                               | 40                                               | •2                                                      |
| 28<br>AUG        |                       |                                               |                                                            |                               |                                |                             |                                              |                                    |                                    |                                                   |                                                  | ·                                                       |
| 10               | 13000                 | 12                                            | 500                                                        | <10                           | 40                             | 50                          | 18000                                        |                                    | <100                               | 320                                               | 180                                              | .3                                                      |

## TABLE 4.13 (cont'd)

## Typical USGS Water Quality Records

(Source: Ref. 14)

#### SOUTH-CENTRAL ALASKA

#### 15292000 SUSITNA RIVER AT GOLD CREEK --Continued

#### WATER QUALITY DATA. WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

|           | TOTAL<br>MOLY8-<br>DENUM<br>(MO)<br>(UG/L) | TOTAL<br>NICKEL<br>(NI)<br>(UG/L)                  | NIUM S                          | ILVER<br>(AG) | ZINC S                                                      | SUS-<br>PENDED<br>SEDI-<br>MENT<br>(MG/L) | SUS-<br>PENDED<br>SEDI-<br>MENT<br>DIS-<br>CHARGE<br>(T/DAY) | SUS.<br>SED.<br>FALL<br>DIAM.<br>% FINER<br>THAN<br>.002 MM | THAN                                       | SUS.<br>SED.<br>FALL<br>DIAM.<br>% FINER<br>THAN<br>.008 MM | SUS.<br>SED.<br>FALL<br>DIAM.<br>% FINER<br>THAN<br>.016 MM | THAN                                            |
|-----------|--------------------------------------------|----------------------------------------------------|---------------------------------|---------------|-------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------|
| OCT<br>Ol |                                            |                                                    |                                 |               |                                                             | 10                                        | 144                                                          |                                                             | 4-                                         |                                                             |                                                             |                                                 |
| 10        |                                            |                                                    |                                 |               |                                                             | . 120                                     | 1220                                                         |                                                             |                                            |                                                             |                                                             |                                                 |
| 18<br>JUN |                                            |                                                    |                                 |               |                                                             | 1110                                      | 42600                                                        | 7                                                           |                                            | 17                                                          | 27                                                          |                                                 |
| 14<br>JUL | 1                                          | 50                                                 | 0 .                             | <10           | 80                                                          | 915                                       | 128000                                                       | 2                                                           | 4                                          | 6                                                           | 11                                                          | 22                                              |
| 28<br>AUG |                                            |                                                    |                                 |               |                                                             | 394                                       | 22300                                                        | 14                                                          | 19                                         | 29                                                          | 44                                                          | 54                                              |
| 10        | 0                                          | <50                                                | 1                               | <10           | 80                                                          | 656                                       | 35400                                                        | 13                                                          | 19                                         | 27                                                          | 39                                                          | 52                                              |
| DATE      | SUS<br>SED<br>FAL<br>DIAM<br>FIN<br>THA    | . SÉD.<br>L FALL<br>. DIAM.<br>ER % FINE<br>N THAM | SED. FALL DIAM. ER % FINER THAN | THAN          | SUS.<br>SED.<br>FALL<br>DIAM.<br>% FINEF<br>THAN<br>1.00 MA | THA                                       | SE SIE DIA ER % FI                                           | D. S<br>VE SI<br>M. DI<br>NER % F                           | ED. SE<br>EVE` SIE<br>AM. DIA<br>INER % FI | D. SI<br>EVE SIG<br>IM. DI<br>INER & F                      | ED. S<br>EVE SI<br>AM. DI<br>INER & F<br>HAN T              | US.<br>EO.<br>EVE<br>AM.<br>INER<br>HAN<br>O MM |
| OCT<br>01 |                                            |                                                    |                                 |               |                                                             |                                           |                                                              |                                                             |                                            |                                                             |                                                             |                                                 |
| 10        |                                            |                                                    |                                 |               |                                                             | _                                         | 44                                                           | 64                                                          | 87                                         | 99                                                          | 100                                                         |                                                 |
| 18        |                                            |                                                    |                                 |               |                                                             |                                           | 63                                                           | 76                                                          | 90                                         | 99                                                          | 100                                                         | •-                                              |
| JUN<br>14 |                                            | 40                                                 | 52 84                           | 97            | 100                                                         | ,                                         |                                                              |                                                             |                                            |                                                             |                                                             |                                                 |
| 28        |                                            | <b></b> .                                          |                                 |               |                                                             | -                                         | 70                                                           | 80                                                          | 92                                         | 99                                                          | 100                                                         |                                                 |
| AUG<br>10 |                                            |                                                    | ,                               |               |                                                             | -                                         | 65                                                           | 74                                                          | 86                                         | 95                                                          | 98                                                          | 99                                              |

#### TEMPERATURE (DEG. C) OF WATER. WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

| DAY              | MAX | MIN | MAX   | MIN | MAX  | MIN | MAX  | MIN | MAX | MIN  | XAM  | MIN   |
|------------------|-----|-----|-------|-----|------|-----|------|-----|-----|------|------|-------|
|                  | AF  | RIL | ×     | AY  | JL   | JNE | Ju   | LY  | AUG | SUST | SEPT | EMBER |
| 1                |     |     |       |     | 6.5  | 3.5 | 9.5  | 7.5 |     |      |      |       |
|                  |     |     |       |     | 6.5  | 3.5 | 10.0 | 7.5 |     |      |      |       |
| 2<br>3<br>4      |     |     |       |     | 7.0  | 4.0 | 9.0  | 7.0 |     |      |      |       |
| 3                |     |     |       |     | 5.0  | 3.5 | 9.0  | 7.0 |     |      |      |       |
| 5                |     |     |       |     | 5.0  | 3.0 | 9.0  | 7.0 |     |      |      |       |
| •                |     |     |       |     | 3.0  | 3.0 | 7.0  |     |     |      |      |       |
| 6                |     |     |       |     | 5.5  | 3.5 | 10.5 | 7.5 |     |      |      |       |
| 7                |     |     |       |     | 6.0  | 4.0 | 11.5 | 8.5 |     |      |      |       |
| 6<br>7<br>8<br>9 |     |     |       |     | 6.0  | 3.5 | 12.0 | 9.0 |     |      |      |       |
| 9                |     |     |       |     | 5.5  | 4.0 |      |     |     |      |      |       |
| 10               |     |     |       |     | 6.0  | 4.0 |      |     |     |      |      |       |
| 11               |     |     |       |     | 5.0  | 3.5 |      |     |     |      |      |       |
| iż               |     |     |       |     | 4.0  | 3.0 |      |     |     |      |      |       |
| 13               |     |     |       |     | 5.5  | 3.0 |      |     |     |      |      |       |
| 14               |     |     |       |     | 5.5  | 3.5 |      |     |     |      |      |       |
| 15               |     |     |       |     | 5.0  | 4.0 |      |     |     |      |      |       |
| 16               |     |     |       |     | 6.0  | 4.5 |      |     |     |      |      |       |
| 17               |     |     |       |     | 6.5  | 4.5 |      |     |     |      |      |       |
| iė               |     |     |       |     | 5.0  | 4.0 |      |     |     |      |      |       |
| 19               |     |     |       |     | 6.5  | 4.0 |      |     |     |      |      |       |
| 20               |     |     |       |     | 7.5  | 4.5 |      |     |     |      |      |       |
| 21               |     |     |       |     | 7.5  | 5.0 | •••  |     |     |      |      |       |
| 22               |     |     |       |     | 6.5  | 5.0 |      |     |     |      |      |       |
| 22<br>23         |     |     |       |     | 7.0  | 5.5 |      |     |     |      |      |       |
| 24               |     |     | 5.0   | 3.5 | 8.5  | 6.0 |      |     |     |      | •    |       |
| 25               |     |     | 6.0   | 2.5 | 9.0  | 7.0 |      |     |     |      |      |       |
| 26               |     |     | 7.0   | 3.0 | 9.0  | 7.0 |      |     |     |      |      |       |
| 27               |     |     | 7.0   | 4.0 | 9.0  | 5.0 |      |     |     |      |      |       |
| 28               |     |     | 7.0   | 4.0 | 10.0 | 7.5 |      |     |     |      |      |       |
| 29               |     |     | 5.5   | 4.0 | 9.5  | 3.3 |      |     |     |      |      |       |
| 30               |     |     | 5.5   | 3.5 | 9.5  | 7.5 |      | •   |     |      |      | -     |
| 31               |     |     | 6.5   | 4.0 |      |     |      |     |     |      |      |       |
| MONTH            |     |     | 7.0   | 2.5 | 10.0 | 3.3 | .2.7 | 7.0 |     |      |      |       |
| -011,-1          |     |     | , • 4 | 2.3 | 10.0 | 1.1 |      | • • |     |      |      |       |
|                  |     |     |       |     |      | //  | 1 16 |     |     |      |      |       |

## TABLE 4.14: ICE OBSERVATION DATA FOR SUSITNA RIVER

PAXSON

#### Measurements made on Maclaren River

| Date                                                                                         | River<br>Width<br>(ft)                                           |                                                   | ce<br>cness (ft)<br>Greatest                  | Date                                                                             | River<br>Width<br>(ft)                 |                                               | Ice<br>kness (ft)<br>Greatest                 |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|-----------------------------------------------|
| 11/17/60<br>01/03/61<br>05/01/61<br>11/26/61<br>01/20/62<br>01/07/63<br>02/19/63<br>04/04/63 | 50<br>48<br>17<br>Missing<br>Missing<br>Missing<br>Missing<br>50 | slush<br>slush<br>0.8<br>2.0<br>2.0<br>2.8<br>3.3 | 1.1<br>2.7<br>2.0<br>1.4<br>2.5<br>2.3<br>3.3 | 12/06/63<br>03/12/64<br>12/04/64<br>02/08/65<br>01/21/67<br>03/27/68<br>04/16/68 | Missing<br>45<br>48<br>46<br>50<br>108 | 2.2<br>4.7<br>1.7<br>3.0<br>1.5<br>2.4<br>4.7 | 2.8<br>5.2<br>4.0<br>3.6<br>2.4<br>3.4<br>5.2 |

#### CANTWELL

#### Measurements made on Susitna River

| Date                                                                 | River<br>Width<br>(ft)                         |                                 | Ice<br>kness (ft)<br>Greatest          | Date                                                     | River<br>Width<br>(ft)         |                                 | Ice<br>kness (ft)<br>Greatest   |
|----------------------------------------------------------------------|------------------------------------------------|---------------------------------|----------------------------------------|----------------------------------------------------------|--------------------------------|---------------------------------|---------------------------------|
| 04/10/62<br>01/07/63<br>02/19/63<br>04/04/63<br>05/02/63<br>12/23/63 | 320<br>Missing<br>Missing<br>220<br>290<br>100 | 0.6<br>1.3<br>1.5<br>1.8<br>2.1 | 4.7<br>3.8<br>4.0<br>3.2<br>2.7<br>3.2 | 03/12/64<br>02/08/65<br>01/21/67<br>03/28/67<br>03/23/70 | 220<br>250<br>280<br>80<br>212 | 2.6<br>2.7<br>3.0<br>2.3<br>3.1 | 4.3<br>4.2<br>5.3<br>5.2<br>4.2 |

#### GOLD CREEK

## Measurements made on Susitna River

| Date     | River<br>Width<br>(ft) |     | ce<br>ness (ft)<br>Greatest | Date     | River<br>Width<br>(ft) |     | Ice<br>kness (ft)<br>Greatest |
|----------|------------------------|-----|-----------------------------|----------|------------------------|-----|-------------------------------|
| 03/18/50 | 210                    | 2.1 | 3.9                         | 03/15/61 | 310                    | 1.5 | 4.0                           |
| 12/28/50 | 80                     | 1.3 | 3.2                         | 01/04/63 | Missing                | 2.3 | 3.1                           |
| 02/21/51 | 95                     | 2.1 | 4.2                         | 02/20/63 | Missing                | 3.0 | 4.6                           |
| 04/01/52 | 360                    | 1.9 | 4.2                         | 04/05/63 | 220                    | 3.4 | 5.7                           |
| 03/18/53 | 332                    | 1.1 | 3.9                         | 12/23/63 | Missing                | 1.5 | 3.4                           |
| 12/19/53 | 299                    | 0.4 | 3.4                         | 02/19/64 | 270                    | 1.8 | 3.7                           |
| 02/11/54 | 472                    | 2.0 | 4.6                         | 01/12/65 | 170                    | 1.6 | 3.8                           |
| 03/30/54 | 424                    | 3.4 | 4.8                         | 01/19/67 | 130                    | 2.3 | 2.8                           |
| 04/24/55 | 360                    | 1.6 | 4.3                         | 04/08/67 | 155                    | 2.7 | 3.9                           |
| 01/05/56 | 155                    | 1.9 | 4.6                         | 04/15/69 | 582                    | 1.6 | 4.2                           |
| 04/17/56 | 130                    | 1.5 | 4.1                         | 04/01/70 | 290                    | 2.5 | 3.8                           |

## TABLE 4.14 (Continued)

SKWENTA

Measurements made on Skwenta River

| Date     | River<br>Width<br>(ft) |       | Ice<br>mess (ft)<br>Greatest | Date     | River<br>Width<br>(ft) |       | ce<br>ness (ft)<br>Greatest |
|----------|------------------------|-------|------------------------------|----------|------------------------|-------|-----------------------------|
| 03/14/61 | 270                    | slush | 2.9                          | 03/16/64 | 200                    | slush | 2.9                         |
| 05/03/61 | 320                    | 1.9   | 3.8                          | 01/13/65 | 95                     | 0.8   | 1.9                         |
| 01/18/62 | Missing                | 2.4   | 3.1                          | 03/19/65 | 85                     | 2.9   | 4.4                         |
| 03/09/62 | Missing                | 2.3   | 2.9                          | 02/01/66 | 250                    | slush | 2.6                         |
| 01/02/63 | Missing                | 1.5   | 2.5                          | 02/14/67 | 220                    | slush | 2.7                         |
| 02/18/63 | Missing                | 3.2   | 3.7                          | 03/29/67 | 120                    | 2.3   | 3.1                         |
| 04/05/63 | 235                    | 2.9   | 4.1                          | 03/26/68 | 230                    | 2.2   | 4.0                         |
| 11/27/63 | Missing                | 1.0   | 1.6                          | 04/01/69 | 118                    | 1.9   | 3.0                         |
| 01/23/64 | Missing                | 1.9   | 2.7                          | 01/19/72 | 165                    | slush | 4.5                         |

TALKEETNA

Measurements made on Chulitna River

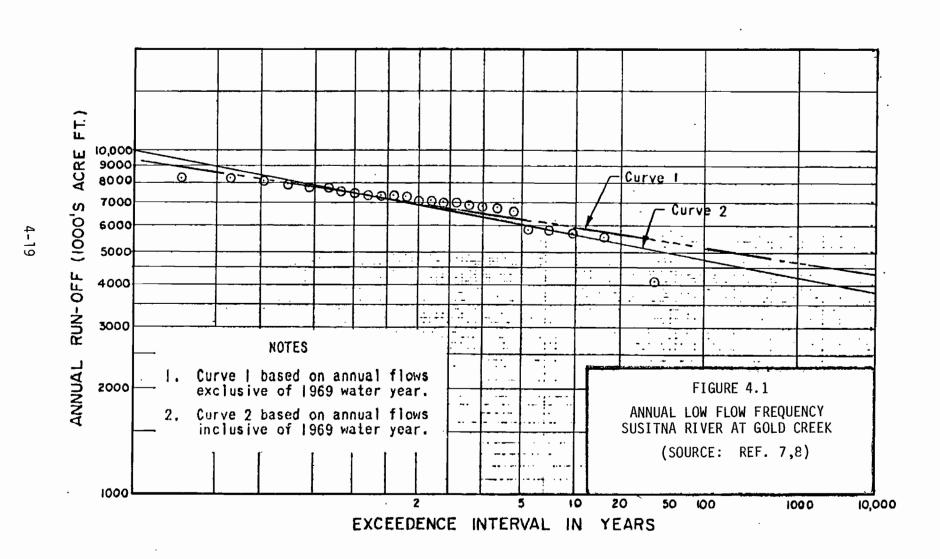
| Date     | River<br>Width |       | Ice<br>kness (ft)<br>Greatest | Date     | River<br>Width | _     | ce<br>ness (ft)<br>Greatest |
|----------|----------------|-------|-------------------------------|----------|----------------|-------|-----------------------------|
| Date     | <u>(ft)</u>    | Least | Greatest                      | Date     | (ft)           | Least | Greatest                    |
| 03/15/61 | 125            | slush | 5.0                           | 01/18/67 | 170            | 1.2   | 4.9                         |
| 11/27/61 | Missing        | 0.7   | 1.8                           | 04/09/67 | 190            | 2.4   | 4.4                         |
| 02/02/62 | Missing        | 2.0   | 3.0                           | 03/26/68 | 260            | slush | 3.1                         |
| 03/29/62 | Missing        | 2.8   | 3.0                           | 12/23/68 | 278            | open  | 2.2                         |
| / /      |                |       |                               |          |                | water |                             |
| 01/03/63 | Missing        | 2.4   | 3.5                           | 04/04/69 | 165            | 0.2   | <b>3.</b> 0                 |
| 02/18/63 | Missing        | 2.8   | 4.2                           | 03/31/70 | 190            | 0.9   | 3.5                         |
| 11/27/63 | Missing        | 0.2   | 1.8                           | 04/01/71 | 200            | 2.2   | 5.3                         |
| 01/23/64 | Missing        | 1.8   | 3.1                           | 01/18/72 | 195            | 0.5   | 2.4                         |
| 01/12/65 | 180            | 1.3   | 4.2                           | 04/17/72 | 145            | 2.3   | 5.0                         |

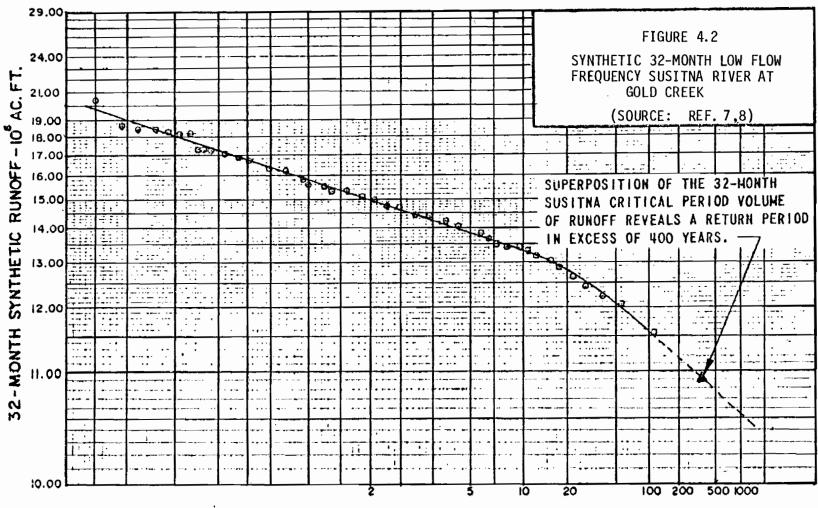
TALKEETNA
Measurements made on Talkeetna River

| Date                             | River<br>Width<br>(ft) |                   | ce<br>ness (ft)<br>Greatest | Date                          | River<br>Width<br>(ft) |                      | ce<br>cness (ft)<br>Greatest |
|----------------------------------|------------------------|-------------------|-----------------------------|-------------------------------|------------------------|----------------------|------------------------------|
| 01/04/66<br>01/29/66             | 182<br>155             | slush<br>1∙0      | 3.2<br>3.2                  | 12/21/68<br>04/0 <i>3</i> /69 | 207<br>210             | 1.4<br>open<br>water | 2.1<br>3.3                   |
| 03/16/66<br>04/07/67<br>01/10/68 | 135<br>170<br>245      | 0.7<br>1.7<br>0.7 | 3.0<br>2.9<br>2.3           | 04/01/70<br>03/31/71          | 218<br>285             | 1.3                  | 2.3<br>2.8                   |

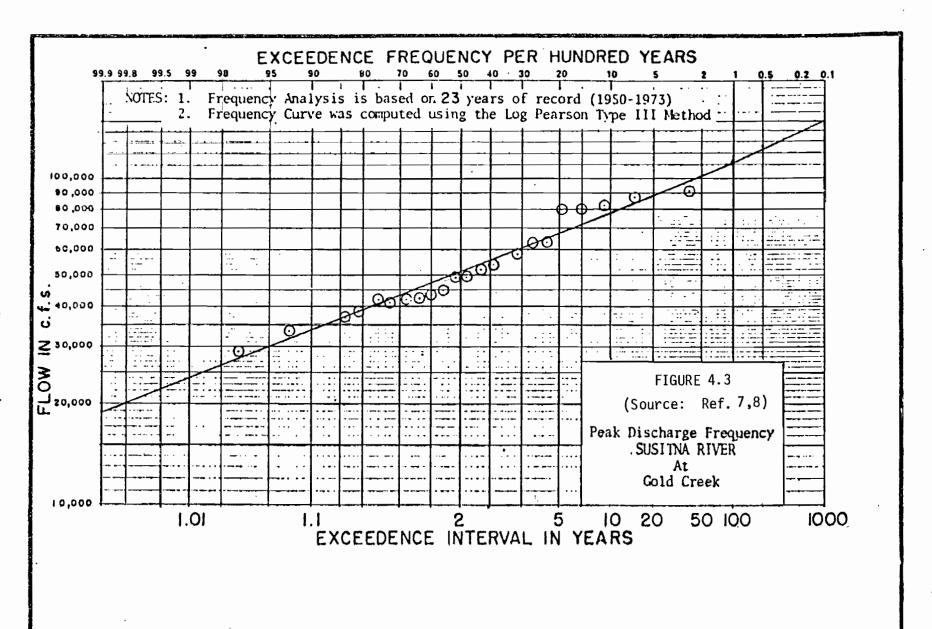
## TABLE 4.15: PMF ESTIMATES AT OTHER DAM SITES

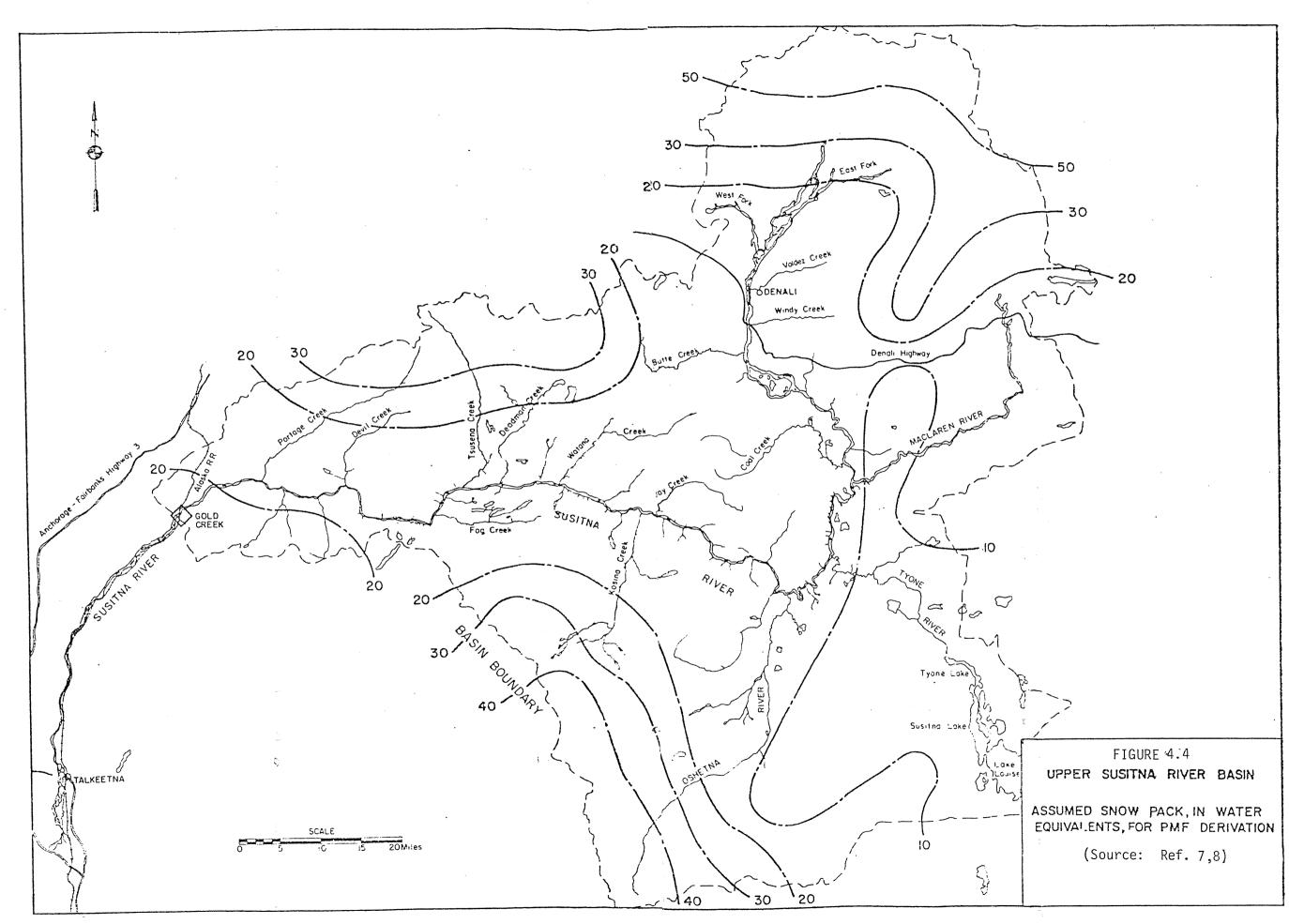
## (Source: Ref. 5, 6)

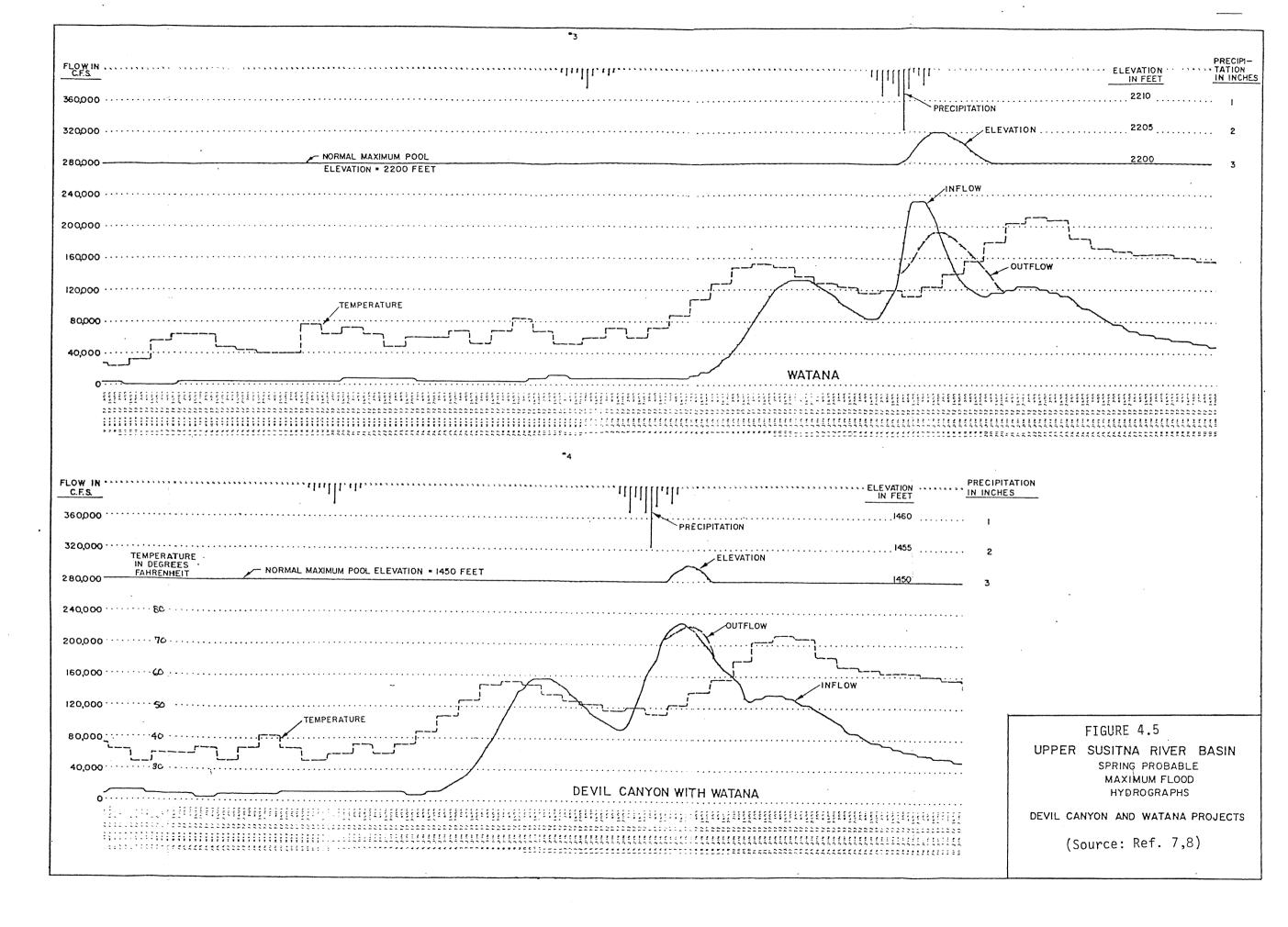

| Dam Site          | PMF Estimate (ft <sup>3</sup> /s)* |
|-------------------|------------------------------------|
| Denali            | 120,000                            |
| Maclaren          | 141,000                            |
| Vee               | 177,000                            |
| Susitna III       | 183,000                            |
| Watana            | 233,000                            |
| High Devil Canyon | 264,000                            |
| Devil Canyon      | 267,000                            |

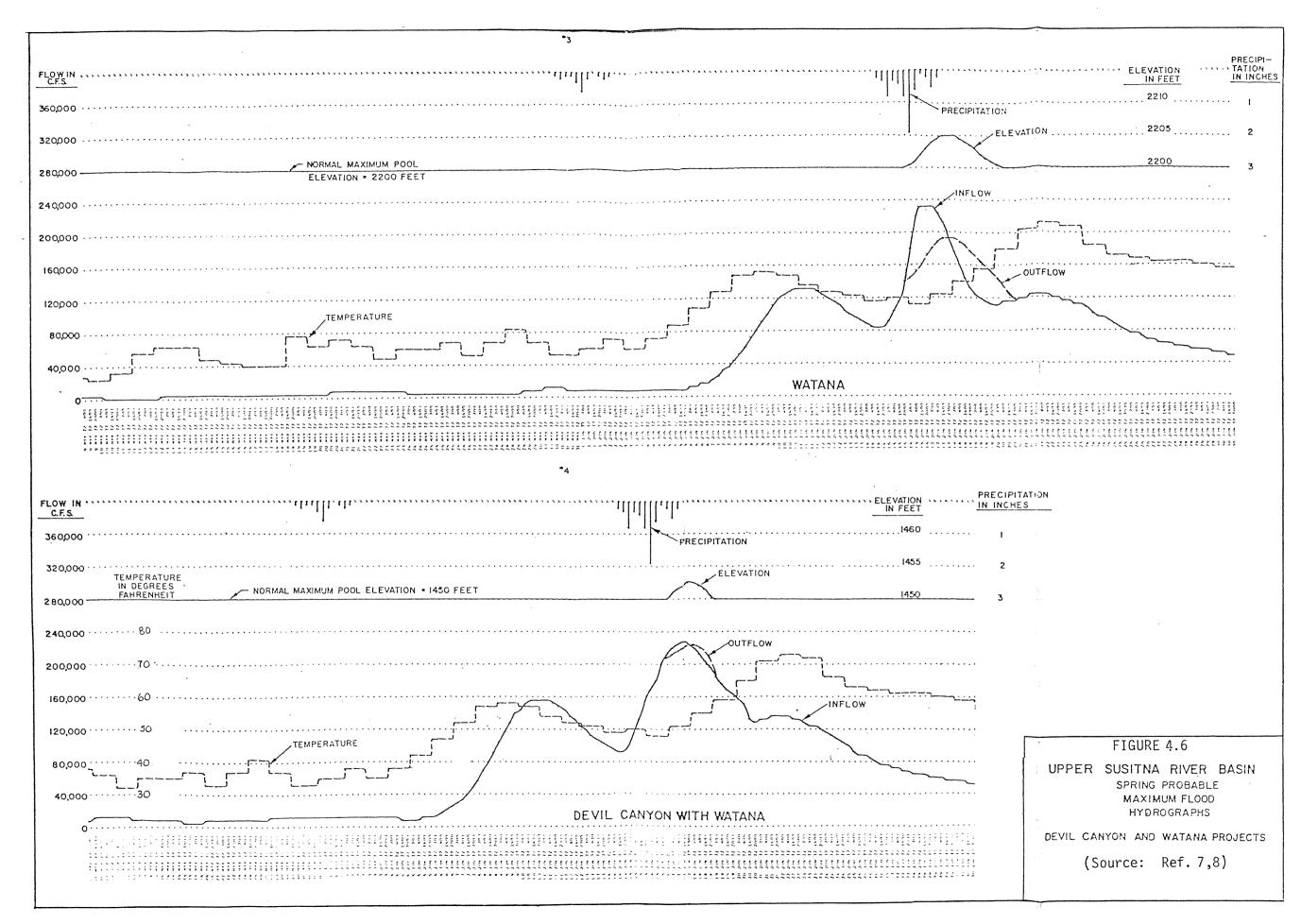

## TABLE 4.16: RESERVOIR SEDIMENT DEPOSIT AT DAM SITES

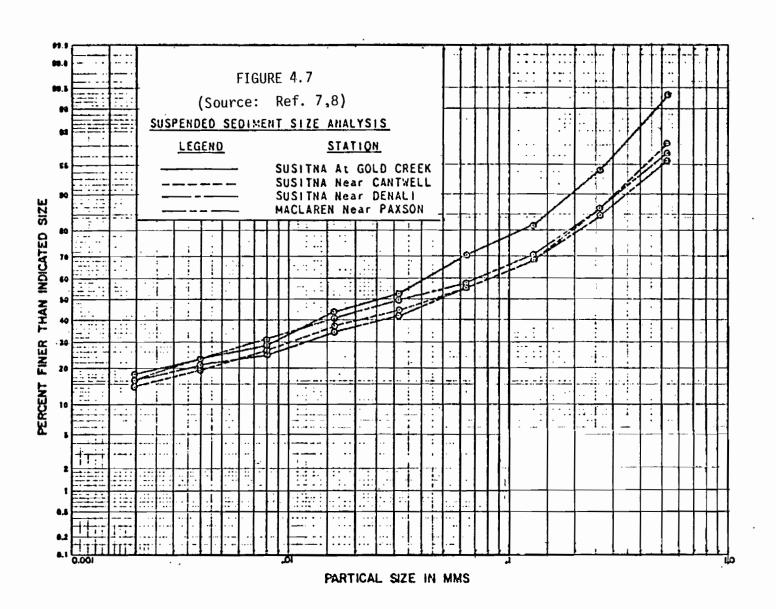
## (Source: Ref. 5, 6)


| Dam Site          | 50-Year Sediment<br>Accumulation (Acre-feet)* |
|-------------------|-----------------------------------------------|
| Denali            | 290,000                                       |
| Maclaren          | 243,000                                       |
| Vee               | 162,000                                       |
| Susitna III       | 165,000                                       |
| Watana            | 204,000                                       |
| High Devil Canyon | 248,000                                       |
| Devil Canyon      | 252,000                                       |

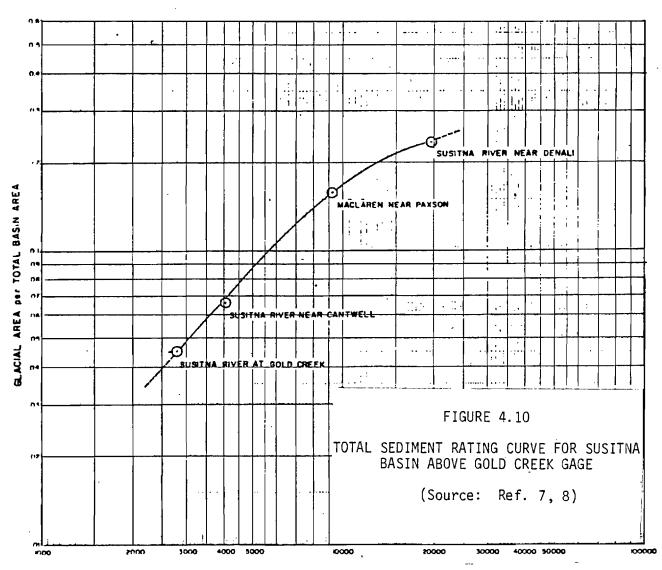

<sup>\*</sup>Withoiut upstream dam.





EXCEEDENCE INTERVAL IN YEARS












SEDIMENT DISCHARGE IN TONS/DAY



TOTAL SEDIMENT DISCHARGE TOHS per CUBIC MILE

#### 5 - HYDROLOGIC DATA FOR ALTERNATIVE HYDRO SITES

#### 5.1 - Introduction

As part of the engineering studies conducted during 1980, preliminary information on capital cost and energy potential were developed for ten alternative hydroelectric development sites (see Figure 2.3) within the Railbelt but outside the upper Susitna basin. This section briefly outlines the studies undertaken to generate sufficient hydrological information at these sites and summarizes the results.

#### 5.2 - Streamflow Data

#### (a) USGS Records for All Sites

The USGS currently operates 39 stream gages in the Railbelt Region. In addition, there are at least 35 stream gages which monitored streamflow within the Railbelt but have been discontinued or converted to partial record stations. Among the base stations used to provide streamflow data for the ten sites in the Railbelt area, the station on the Nenana River (No. 5160) (see Figure 2.1) has continuous streamflow records for 23 years, from October 1950 to September 1973, and was subsequently converted into a partial records station. The station on Snow River has only four months of record and is not currently operated. Records at other stations vary in length between these two extremes. Over 13 years of records are available on Klutina River and for Chakachamna and Strandline Lakes, but observations were discontinued after 1972. USGS field activities have included discharge and/or stage measurements at the stream gages.

#### (b) Streamflow Analyses

The inflows used as input into the Acres reservoir operation studies were determined based on a streamflow analysis at eight gaging stations within the Railbelt. Fortunately, most of the stream gaging activity has taken place nearest to areas of human activity which until recently has been predominantly in the South-Central province, including the Railbelt. The existing data base used to estimate the input into the reservoir operation studies is presented in Table 5.1.

The first six gaging stations shown on Table 5.1 represent the best data for estimating the inflows to the reservoirs. Some periods of records were considered too short to be used in reservoir operation studies. For these cases, annual and monthly streamflows were transposed from stations located on the same river or hydrologically similar stations loated on adjacent rivers, using monthly and seasonal correlations of streamflows and/or ratios of intervening drainage areas. The hydrologic criteria for selecting similar stations included the proximity of the watersheds, the orientation of the drainage basin and the direction of the main water course, special features of the runoff such as glaciers and/or lakes and, whenever possible, the size of the drainage area. Homer on Bradley River and Lawing on Trail River were selected to extend the information at the Lawing Station on Wolverine Creek and the Seward Station on Snow River, respectively. The procedures used in extending the information at the base

stations are presented on Table 5.2. After expansion and/or transposition of data, the length of the streamflow data used as input into the reservoir operations varied between 13 and 27 years. Monthly streamflow data is shown in Appendix F for the ten selected sites.

TABLE 5.1: STREAMFLOW DATA BASE

|          |                |                    | Drainage<br>Area   | <u>Period o</u><br>From | To                      | Mean Annyal               |
|----------|----------------|--------------------|--------------------|-------------------------|-------------------------|---------------------------|
| USGS No. | Gaging Station | <u>River</u>       | (mi <sup>2</sup> ) | mo/yr                   | mo/yr                   | Flow (ft <sup>7</sup> /s) |
| 2927     | Talkeetna      | Talkeetna          | 2,006              | 06/64                   | 09/78                   | 4,000                     |
| 5160     | Windy          | Nenana             | 710                | 10/51                   | 09/73                   | 1,204                     |
| 2060     | Copper Center  | Klutina            | 880                | 08/49                   | 06/67                   | 1,686                     |
| 2945     | Tyonek         | Chakachatna        | 1,120              | 06/59                   | 09/72                   | 3,506                     |
| 2369     | Lawing         | Wolverine<br>Creek | 10                 | 10/66                   | 09/78                   | 87                        |
| 2439     | Seward         | Snow               | 1 28               | 09/70<br>08/74<br>08/77 | 09/70<br>09/74<br>08/77 | 1,360                     |
| 2390     | Homer          | Bradley            | 54                 | 10/57                   | 09/78                   | 418                       |
| 2480     | Lawing         | Trail              | 181                | 05/47                   | 09/74                   | 780                       |

TABLE 5.2: GENERATION OF STREAMFLOW DATA BASE FOR PROJECT SITES

| Project Sit                  | e                      | Streamflow Data |                      |                        |                                                              |                                        |  |  |  |  |
|------------------------------|------------------------|-----------------|----------------------|------------------------|--------------------------------------------------------------|----------------------------------------|--|--|--|--|
| Dam Site/River               | Drainage<br>Basin Area | USGS<br>No.     | Station/River        | Drainage<br>Basin Area | General<br>Procedure                                         | Total Period<br>of Generated<br>Record |  |  |  |  |
|                              | (mi <sup>2</sup> )     |                 |                      | (mi <sup>2</sup> )     |                                                              | (years)                                |  |  |  |  |
| Snow/Snow                    | 85                     | 2439            | Seward/Snow          | 128                    | Correlation of gage<br>2439 on 2480 (1)<br>D.A. Ratio = 0.66 | 27                                     |  |  |  |  |
| Bruskasna/Nenana             | 653                    | 5160            | Windy/Nenana         | 710                    | D.A. Ratio = 0.92                                            | 23                                     |  |  |  |  |
| Ketna/Talkeetna              | 1,250                  | 2927            | Talkeetna/Talkeetna  | 2,006                  | D.A. Ratio = 0.63                                            | 14                                     |  |  |  |  |
| Cache/Talkeetna              | 750                    | 2927            | Talkeetna/Talkeetna  | 2,006                  | D.A. Ratio = 0.37                                            | 14                                     |  |  |  |  |
| Browne/Nenana                | 2,450                  | 5160            | Windy/Nenana         | 710                    | D.A. Ratio = 3.45                                            | 23                                     |  |  |  |  |
| Talkeetna/Talkeetna          | 850                    | 2927            | Talkeetna/Talkeetna  | 2,006                  | D.A. Ratio = 0.42                                            | 14                                     |  |  |  |  |
| Hicks/Matanuska (3)          | 950                    | 2060            | Copper Creek/Klutina | 880                    | D.A. Ratio = 1.08                                            | 17                                     |  |  |  |  |
| Chakachamna/<br>Chakachatna  | 1,120                  | 2945            | Tyonek/Chakachatna   | 1,120                  | D.A. Ratio = 1.00                                            | 13                                     |  |  |  |  |
| Allison/Allison<br>Creek (3) | 6                      | 2369            | Lawing/Wolverine     | 10                     | Correlation of gage<br>2369 on 2390 (2)<br>D.A. Ratio = 0.60 | 15                                     |  |  |  |  |
| Strandline/Beluga (3)        | 54                     | 2945            | lyonek/Chakachatna   | 1,120                  | D.A. Ratio = 0.05                                            | 13                                     |  |  |  |  |

Notes: D.A. = Drainage Area

(1) Correlation Coefficient = 0.55
(2) Correlation Coefficient = 0.90
(3) Streamflow generation based on Adjacent River Gaging Station

#### 6 - CLIMATIC DATA

#### 6.1 - Climatic Data

Climatic data, including temperature, precipitation, wind, cloud cover, humidity, etc. has been collected by NOAA and others at a number of stations within and adjacent to the Susitna River Basin. The location of the stations and length of records available are presented in Appendix G.

Typically, NOAA records are presented as annual summaries with comparative data for each station (see Table 6.1). Monthly summaries of the same are also available for most of the parameters presented in the annual summary on a daily basis with selected parameters presented on a 3-hour or hourly interval. A summary of the available climatological data for the basin is presented in Table 6.2.

#### 6.2 - Evaporation Data

The closest stations to the Upper Susitna Basin where Pan evaporation data is collected are at the Matanuska Valley Agricultural Experiment Station near Palmer and at the University Experiment Station near Fairbanks. The period of record for each station is for the summer months in 1944 to the present with several gaps in records. A summary of the monthly averages is presented in Table 6.3.

#### 6.3 - Snow Survey

The SCS performs regular snow course surveys and collect snow depth and water equivalent data at a number of locations within and surrounding the basin. Usually one measurement a month is taken at each site during the winter months, February through May. Appendix H lists the stations and period of records available.

## TABLE 6.1: TYPICAL NOAA CLIMATE DATA RECORD

REFERENCE 14) (SOURCE:

## Meteorological Data For The Current Year

| Station                                |                                            | 4MIT, /          | ALASKA                       |                      |               |                               |                          | SUM                                        | HET A   | RPDAT                                        |                              |             | Standa                             | d time                | used:   |    | AL                         | ASKA           | M        |           | Latr            | lude:                   | 63. 5                      | 0' N                             |                      | Long                       | itude:                                 | 149 *                   | 08 ' 1           | t                               | Elev                            | ration (g                        | round)      | : 23                                | 97 fe | et                       | ,                          | Year: ]                  | 1976                            |
|----------------------------------------|--------------------------------------------|------------------|------------------------------|----------------------|---------------|-------------------------------|--------------------------|--------------------------------------------|---------|----------------------------------------------|------------------------------|-------------|------------------------------------|-----------------------|---------|----|----------------------------|----------------|----------|-----------|-----------------|-------------------------|----------------------------|----------------------------------|----------------------|----------------------------|----------------------------------------|-------------------------|------------------|---------------------------------|---------------------------------|----------------------------------|-------------|-------------------------------------|-------|--------------------------|----------------------------|--------------------------|---------------------------------|
|                                        |                                            |                  | Tamper                       | ature °              | F             |                               |                          | Degree                                     | davs    |                                              | Preci                        | ipitation i | in inches                          |                       |         |    | Relati<br>Yumidity         |                | t,       | -         |                 |                         | Wind                       |                                  |                      |                            | ug),                                   |                         |                  |                                 |                                 | Nun                              | nber of     | days                                |       |                          |                            |                          | Average<br>station              |
|                                        |                                            | Averages         |                              |                      | Extr          | emes                          |                          | Base 6                                     |         | Wate                                         | r equival                    | ent         | Snow                               | , ice pe              | illeta  | 5  | <u> </u>                   | <u>.</u>       | 3        | Aess      | ultant          |                         | Far                        | itest mi                         | le                   | a dia                      | COVEY, TE                              | Sunr                    | lee to s         | unset                           |                                 | 2 2                              | _           | bility.                             |       | Tempera<br>imum          | eture °F<br>Min            | :<br>Jmum                | pressure                        |
| Month .                                | Deily<br>maximum                           | Daily<br>minimum | Monthly                      | Highest              | Date          | Lowest                        | Derte                    | Hesting                                    | Cooling | Total                                        | Greatest in<br>24 hrs.       | Dete        | Total                              | Greetest in<br>24 hr. | Derz    | 02 | OS<br>(Local t             |                | £<br>20  | Direction | Speed<br>m.p.h. | Average speed<br>m.p.h. | Speed<br>m.p.h.            | Direction                        | Date                 | Percent of por<br>sunshine | Average sky oc<br>sunrise to sum       | à                       | Partly<br>cloudy | Cloudy                          | Precupitation<br>.01 inch or mo | Snow, toe pell<br>1,0 inch or mo | Тъиловеттот | Heavy fog, vitil<br>% mile or less. | (b)   | 32° and<br>betow         | 37° and<br>Defore          | o and the form           | Elev.<br>2405<br>feet<br>m.s.l. |
| JAN<br>FEB<br>MAR<br>APR<br>May<br>Jun | 9.0<br>4.2<br>18.2<br>36.3<br>43.6<br>60.6 | -10.4<br>2.2     | -3.1<br>10.2<br>25.4<br>36.5 | 33<br>30<br>51<br>54 | 30<br>2       | -26<br>-28<br>-14<br>-3<br>17 | 9<br>11<br>15<br>15<br>7 | 1931<br>1975<br>1696<br>1180<br>878<br>420 | 0       | 2.17<br>1.11<br>1.65<br>0.14<br>2.98<br>0.51 | 0.50<br>0.45<br>0.08<br>1.90 | 3-4<br>26   | 49.7<br>19.6<br>41.1<br>5.8<br>8.7 | 8.7                   | 26<br>8 | 67 | 70<br>65<br>75<br>68<br>69 | 73<br>65<br>67 | 71<br>68 |           |                 |                         | 28<br>31<br>35<br>20<br>17 | 23<br>07<br>07<br>08<br>24<br>22 | 23<br>17<br>14<br>10 |                            | 6.0<br>3.9<br>8.0<br>6.2<br>7.5<br>6.9 | 11<br>17<br>4<br>8<br>5 | 4                | 16<br>8<br>23<br>14<br>20<br>16 | 12<br>7<br>.11<br>3<br>7        | 7<br>6<br>8<br>2<br>4<br>0       | 0000        | 2<br>0<br>0<br>0                    | 0000  | 29<br>27<br>31<br>8<br>0 | 31<br>29<br>31<br>30<br>27 | 20<br>24<br>15<br>2<br>0 |                                 |
| JUL<br>AUG<br>SEP<br>DCT<br>YEAR       | 62.1<br>62.R<br>49.R                       | 41.8             |                              | 78                   | 23<br>2<br>14 | 33<br>31<br>16                | 29<br>30                 | 368<br>383<br>718                          | 000     | 1.05<br>0.96<br>1.59                         | 0.33<br>0.20<br>0.46         | 7           | 0.0<br>0.0<br>0.4                  | 0.0                   | 20      |    | 81<br>80<br>76             |                |          |           |                 |                         | 29<br>20<br>25<br>20       | 23<br>26<br>25<br>08             | 27<br>7<br>19<br>12  |                            | 8.1<br>7.6                             | 3                       | 7                | 10                              | 14<br>13<br>13                  | 0 0                              | 0           | 2                                   | 1,0   | 0                        | 0<br>1<br>17               | 0                        |                                 |

## Normals, Means, And Extremes - THROUGH 19756

| _          |                                             |                                             | Temper                                     | atures               | <b>•</b> F                   |                       |                              |                                            | rmati            |                                              |                    |                              |                    | Precip                       | Itation i                    | inches                       |                              |                      |                            |                                              |                              | elative<br>idity p           | ct.                  |                            |                         | Wind                             |                                              |                    | Ē ž                            |                  |                            |                          | _                                 | Mean i                                 | numbe        | r of da                         | iya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                 |       | Average<br>station                                 |
|------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------|------------------------------|-----------------------|------------------------------|--------------------------------------------|------------------|----------------------------------------------|--------------------|------------------------------|--------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------|----------------------------|----------------------------------------------|------------------------------|------------------------------|----------------------|----------------------------|-------------------------|----------------------------------|----------------------------------------------|--------------------|--------------------------------|------------------|----------------------------|--------------------------|-----------------------------------|----------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------|-------|----------------------------------------------------|
|            |                                             | Normai                                      |                                            |                      | Ext                          | remes                 |                              |                                            | e days<br>65 °F  |                                              |                    | Water                        | r equival          | ent                          |                              |                              | 5                            | now, k               | e pelle                    | 14                                           | 5                            | F F                          | à                    |                            |                         | Fes                              | test mi                                      | le                 | de gang                        | Su.              | nrise te                   | inut                     | et †                              | E 2 5                                  | ,            | riblity.                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mperat<br>ax. {               | ures "F<br>Min                  | -     | mb.                                                |
| Month      | Daily<br>maximum                            | Deily<br>minsmum                            | Monthly                                    | Record               | Year                         | Record                | Yan.                         | Heating                                    | Cooling          | Normei                                       | Maximum<br>monthly | Year                         | Minimum<br>monthly | Year                         | Maximum 40<br>in 24 hrs.     | 100                          | Maximum<br>monthly           | Year                 | Maximum<br>in 24 hr.       | Year                                         | 02                           | E I 4                        | 20                   | Men speed<br>m.p.h.        | Prevailing<br>direction | Speed<br>m.p.h.                  | Direction                                    | Yes                | Pct. of possit<br>Mean sky cov |                  | À À                        | cloudy                   | Precipitation                     | Show, los pe                           | Thunderstorn | Heavy fog vis<br>X mile or less | (b)<br>Pura popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popular<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>popula<br>po | 32° and<br>balow              | 37° and<br>balow                | Delow | Elev.<br>2405<br>feet<br>m.c.l.                    |
| (4)        |                                             |                                             |                                            | 33                   |                              | 35                    |                              |                                            |                  |                                              | 35                 |                              | 35                 |                              | 35                           |                              | 34                           |                      | 35                         |                                              | 3                            | 7 7                          | 6                    |                            | 3                       | 7                                | 7                                            |                    |                                | 7                | 7                          | 7                        | 7 2                               |                                        |              |                                 | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34                            | 34                              | 34    | 2                                                  |
| A          | 7.9<br>13.5<br>19.4<br>32.9<br>45.7<br>58.0 | -4.8<br>4<br>3.0<br>14.1<br>29.1<br>39.9    | 1.6<br>6.6<br>11.2<br>23.5<br>37.4<br>49.0 | 45<br>49<br>57<br>76 | 1960                         | -45<br>-35<br>-30     | 1947<br>1971<br>1944<br>1945 | 1965<br>1635<br>1668<br>1245<br>856<br>480 | 0<br>0<br>0<br>0 | 0.91<br>1.23<br>1.04<br>0.67<br>0.77<br>2.19 | 4.45               | 1951<br>1946<br>1966         |                    | 1950<br>1961<br>1944<br>1949 | 2.79<br>1.67<br>0.97<br>0.96 | 1951<br>1946<br>1963<br>1946 | 44.5<br>59.1<br>28.7<br>17.4 | 1951<br>1946<br>1970 | 20.0<br>10.1<br>0.7<br>7.5 | 1973<br>1964<br>1946<br>1963<br>1946<br>1974 | 76 7<br>76 7<br>80 1<br>83 1 | 5 75<br>6 70<br>5 65<br>0 58 | 76<br>73<br>75<br>67 | 11.9<br>11.1<br>7.6<br>7.7 | NE<br>NE<br>NE          | 44<br>46<br>48<br>33<br>28<br>29 | 05 1<br>07 1<br>10 1<br>08 1<br>07 1<br>22 1 | 974<br>971<br>1971 | 5.<br>7.<br>6.<br>7.           | 2 2              | 3<br>6<br>9<br>5<br>3<br>2 | 6 1                      | 3<br>7<br>6<br>1<br>8<br>9<br>2   | 9 4<br>0 5<br>0 5<br>7 4<br>7 2<br>2 1 | 000          | 1 1 1 1                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>26<br>27<br>13<br>1     | 31<br>28<br>31<br>30<br>22<br>2 | 15    | 921.4<br>918.8<br>917.2<br>922.9<br>923.1<br>924.7 |
| 7 4 50 Z D | 60.2<br>56.0<br>47.1<br>30.4<br>15.7<br>9.2 | 43.8<br>41.1<br>32.6<br>17.5<br>3.7<br>-3.4 | 48.6<br>39.9<br>24.0<br>9.7                | 81<br>75<br>59<br>44 | 1966<br>1957<br>1969<br>1962 | 20<br>6<br>-15<br>-29 | 1955<br>1956<br>1975<br>1948 | 403<br>508<br>753<br>1271<br>1659<br>1925  | 0<br>0<br>0<br>0 | 3.09<br>3.30<br>2.81<br>1.62<br>1.23<br>1.20 | 6.13               | 1955<br>1965<br>1952<br>1952 | 0.29               | 1941<br>1969<br>1967         | 2.10<br>2.07<br>1.24         | 1944<br>1944<br>1963<br>1964 | 21,5<br>54.8<br>75.1         | 1958<br>1970<br>1967 | 14.0<br>12.6<br>21.9       | 1970<br>1955<br>1955<br>1970<br>1970<br>1970 | 85 6<br>83 6<br>79 7         | 1 59<br>5 76<br>9 78         | 75<br>81<br>79       | 7.5<br>8.0<br>11.3         | NE<br>NE                | 30<br>31<br>32<br>35<br>39       | 23 1<br>22 1<br>23 1<br>23 1<br>25 1<br>11 1 | 975<br>972<br>970  | 8.<br>7.<br>7.<br>7.           | 3<br>4<br>6<br>1 | 2<br>2<br>5<br>7<br>9      | 6 2<br>5 2<br>5 2<br>4 1 | 2 1<br>3 1<br>0 1<br>1 1<br>9 7 1 | 6 2<br>6 2<br>3 7<br>9 5               | 0000         | 1<br>1<br>2<br>1                | 5<br>1<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0<br>0<br>1<br>18<br>27<br>30 | 2<br>14<br>30<br>30<br>31       |       | 929.1<br>930.3<br>924.1<br>916.7<br>921.3<br>914.7 |
| YR         | 33.0                                        | 18-0                                        | 25.5                                       | 89                   | 1941<br>1941                 | 45                    | JAN<br>1971                  | 14368                                      |                  | 20.06                                        | 6.74               | AUG<br>1944                  | T                  | F#8<br>1950                  | 2.79                         | FE8<br>1951                  | 75.1                         | NOV<br>1967          | 20.0                       | FEB<br>1964                                  | 81 7                         | 6 67                         | 74                   | 9.7                        | NE                      | 48                               | 10                                           | 1AR<br>1971        | 7.                             | 2 6              | , ,                        | . 22                     | 7 13                              |                                        | ١,           | 12                              | ١,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 173                           | 251                             | 86    | 922.0                                              |

NOTE: Due to less than full time operation on a variable schedule, manually recorded elements are from broken acquences in incomplate records. Daily temperature extremes and precipitation totals for portions of the record may be for other than a calendar day. The period of record for some elements is for other than consecutive years.

- (a) Length of record, years, through the current year unless otherwise noted, based on January data.

  (b) 70° and above at Alaskan stations.
- Less than one half.
- NORMALS Based on record for the 1941-1970 period.

  DATE OF AN EXTREME The most recent in cases of multiple occurrence.
- PREVAILING WIND DIRECTION Record through 1963.
  WIND DIRECTION Numerals indicate tens of degrees clockwise north cates / lue when the direction is in tens of degrees. E WIND

- For calendar day prior to 1968.
   For the period 1950-1954 and January 1968 to date when available for full year.
   For the period 1942-1953 and January 1968 to date when available for full year.
- # Data for this station not available for archiving nor

#### MEAN MONTHLY PRECIPITATION (IN)

| Station                                   | Jan. | Feb. | Mar. | Apr. | May   | June | July  | Aug.  | Sept. | Oct. | Nov.  | Dec. | Avg.  |
|-------------------------------------------|------|------|------|------|-------|------|-------|-------|-------|------|-------|------|-------|
| Matanuska Valley<br>Agriculture Exp. Stn. | .90  | .73  | .43  | . 39 | .74   | 1.30 | 2.24  | 2.90  | 2.39  | 1.59 | 1.01  | .92  | 15.54 |
| Talkeetna                                 | 1.76 | 1.72 | 1.46 | .75  | 1. 34 | 1.77 | 3.19  | 5,33  | 4.46  | 2.85 | 1. 79 | 1.62 | 23.02 |
| Summit                                    | .88  | 1.31 | 1.21 | .73  | .81   | 2.24 | 3. 15 | 3. 27 | 2.90  | 1.72 | 1.37  | 1.34 | 20.93 |
| Sheep Mountain                            | .55  | .68  | .62  | .72  | .56   | 1.97 | 2.43  | 1.24  | 1.41  | 1.13 | .71   | •56  | 12.58 |
| McKinley Park                             | . 83 | .69  | .37  | .47  | .68   | 1.93 | 2.59  | 2.81  | 1.54  | .98  | .75   | .65  | 14.29 |
| Gulkana                                   | .68  | •47  | .36  | .22  | .60   | 1.40 | 1.92  | 1.58  | 1.85  | .79  | .60   | .72  | 11.19 |

#### MEAN MONTHLY TEMPERATURE - "F

| Station                                   | Jan. | Feb. | Mar. | Apr. | May          | June | July | Aug. | Sept. | Oct. | Nov. | Dec. | Avg. |
|-------------------------------------------|------|------|------|------|--------------|------|------|------|-------|------|------|------|------|
| Matanuska Valley<br>Agriculture Exp. Stn. | 12.1 | 18.8 | 24.6 | 37.1 | 47.2         | 55.4 | 57.7 | 55.4 | 47.7  | 35.6 | 21.9 | 13.2 | 35.6 |
| Talkeetna                                 | 9.4  | 15.5 | 20.3 | 33.8 | 44.8         | 55.1 | 57.9 | 54.7 | 46.0  | 33.1 | 18.8 | 9.6  | 33.3 |
| Summit                                    | 2.1  | 7.5  | 11.3 | 23.3 | 36.9         | 48.6 | 52.2 | 48.5 | 40.3  | 24.4 | 9.4  | 2.9  | 25.6 |
| Sheep Mountain                            | 5.1  | 9.5  | 15.7 | 27.8 | <b>41.</b> 0 | 53.3 | 52.9 | 51.0 | 42.4  | 28.0 | 12.7 | 5.1  | 28.8 |
| McKinley Park                             | 1.4  | 7.1  | 13.2 | 28.4 | 41.5         | 52.2 | 54.6 | 50.4 | 41.3  | 25.9 | 10.4 | 2.1  | 27.4 |
| Gulkana                                   | -1.3 | 2.8  | 14.5 | 29.5 | 43.1         | 53.3 | 56.6 | 52.5 | 43.4  | 27.7 | 6.8  | -3.1 | 26.6 |

TABLE 6.3: PAN EVAPORATION DATA

(Source: Ref. 5, 6)

### Average Monthly Pan Evaporation, Inches

| Month     |       | ska Valley<br>kp. Station<br>Yrs. Rcd. | Universi<br>Evap. | ty Exp. Stn.<br>Yrs. Rcd. |
|-----------|-------|----------------------------------------|-------------------|---------------------------|
| May       | 4.63  | 15                                     | 4.46              | 19                        |
| June      | 4.58  | 24                                     | 5.09              | 26                        |
| July      | 4.09  | 29                                     | 4.50              | 30                        |
| August    | 2.99  | 29                                     | 2.96              | 30                        |
| September | 1.83  | 26                                     | 1.42              | 24                        |
| SUBTOTAL  | 18.12 |                                        | 18.43             |                           |

#### Average Consumptive Use

| Month                                      | Consumptive Use (in)                 |
|--------------------------------------------|--------------------------------------|
| May<br>June<br>July<br>August<br>September | 2.30<br>3.50<br>3.86<br>3.08<br>0.16 |
| TOTAL                                      | 12,90                                |

#### BIBLIOGRAPHY

- 1. Acres American Incorporated, <u>Susitna Hydroelectric Project Plan of Study</u>, February, 1980.
- 2. H.J. Kaiser & Company, <u>Reassessment Report on Upper Susitna River</u> Hydroelectric Development for the State of Alaska, September, 1974.
- 3. R&M Consultants/Acres, <u>Field Data Index</u>, updated every six months, January, 1981.
- 4. U.S. Department of the Army, Corps of Engineers, Harbors and Rivers in Alaska Survey Report, Cook Inlet and Tributaries (Report No. 2), Copper River and Gulf Coast (Report No. 3), Tanana River Basin (Report No. 4), and Yukon and Kuskoknim River Basins (Report No. 7), 1950-51.
- 5. U.S. Department of the Army, Corps of Engineers (Alaska District), Hydroelectric Power and Related Purposes: Southcentral Railbelt Area, Alaska, Upper Susitna River Basin Interim Feasibility Report, Anchorage, Alaska, 1975.
- 6. U.S. Department of the Army, Corps of Engineers (Alaska District),
  Hydroelectric Power and Related Purposes: Southcentral Railbelt Area,
  Alaska, Upper Susitna River Basin Supplementary Feasibility Report,
  Anchorage, Alaska, 1979.
- 7. U.S. Department of the Army, Corps of Engineers, National Hydroelectric Power Resources Study: Preliminary Inventory of Hydropower Resources, Pacific Northwest, July 1979.
- 8. U.S. Department of the Interior, Bureau of Reclamation (Alaska District), District Manager's Reconnaissance Report of August, 1952 on Susitna River Basin: A Report on the Potential Development of Water Resources in the Susitna River Basin of Alaska, 1952.
- 9. U.S. Department of the Interior, Bureau of Reclamation (Alaska District), Devil Canyon Project, Alaska: Report of the Commissioner of Reclamation and Supporting Reports, 1960.
- 10. U.S. Department of the Interior, Alaska Power Administration, <u>Devil's</u> Canyon Status Report, Juneau, Alaska, May, 1974.
- 11. U.S. Department of the Interior, Alaska Power Administration, <u>Inventory Type Calculations for Some Potential Hydroelectric Projects in Alaska</u>, 1979.
- 12. U.S. Federal Power Commission, <u>The 1976 Alaska Power Survey</u>, Vol. 1 and <u>Vol. 2</u>, 1976.
- 13. U.S. Geological Survey, Scully, D.R., <u>Surface Water Records for Cook Inlet Basin</u>, Alaska, (through September 1976).

### BIBLIOGRAPHY (Continued)

- 14. U.S. Geological Survey, <u>Water Resources Data for Alaska Water Year 1977</u>, 1977.
- 15. U.S. Geological Survey, Lamke, R.D., <u>Flood Characteristics of Alaskan Streams</u>, 1979.
- 16. U.S. Geological Survey, <u>Water Resources (Surface and Subsurface) of Cook</u>
  <u>Inlet Basin Rough Final Draft</u>, February, 1980.

## APPENDIX A

STREAMFLOW GAGING STATIONS IN THE SUSITNA BASIN (3)

# WATER RESOURCES DATA COLLECTED IN THE SUSITNA RIVER BASIN

#### 0100 STREAMFLOW CONTINUOUS GAGING

Index

Mean daily discharge and/or annual maximum flood peak discharge data have been collected by the U.S. Geological Survey & R&M Consultants at several locations within the Susitna River Basin. The stations for which this information is available and the period of record at each location are listed below. Unless indicated by agency name in parentheses following the period of record, all data has been collected by the USGS. All data listed in this section are on file at R&M Consultants according to index number and name.

| No.  | Description                                                                     |
|------|---------------------------------------------------------------------------------|
| 0110 | Susitna River near Denali - USGS Station 15291000                               |
|      | Mean Daily Discharge Records: May 1957 - September<br>1966; July 1968 - Present |
|      | Annual Maximum Discharge Records: 1957-1966,<br>1968-1980                       |
|      | Annual Instantaneous Peak Flow:1957-1963, 1965,<br>1967, 1967-1979              |
| 0115 | Maclaren River near Paxson - USGS Station 15291200                              |
|      | Mean Daily Discharge Records: June 1958 - Present                               |
|      | Annual Maximum Discharge Records: 1958-1980                                     |
|      | Annual Instantaneous Peak Flow:1958 - 1980                                      |

| Index<br>No. | Description                                                                                                                       |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 0120         | Susitna River near Cantwell - USGS Station 15291500                                                                               |
|              | Mean Daily Discharge Record: May 1961 - September<br>1972; May 1980 - Present                                                     |
|              | Annual Maximum Discharge Records: 1961-1972                                                                                       |
|              | Annual Instantaneous Peak Flow: 1960-1972                                                                                         |
| 0130         | Susitna River near Watana Damsite - R&M SG-1                                                                                      |
|              | Mean Daily Discharge Records: July 1980 - Present                                                                                 |
|              | Miscellaneous Discharge Measurements: 1980: August 20 (R&M) August 21 (R&M) September 3 (R&M) September 18 (R&M) October 20 (R&M) |
| 0140         | Susitna River near Gold Creek - USGS Station 15292000                                                                             |
|              | Mean Daily Discharge Record: August 1949 - Present                                                                                |
|              | Annual Maximum Discharge Record: 1950-1980                                                                                        |
|              | Annual Instantaneous Peak Flow:1950- 1980                                                                                         |
| 0145         | Chulitna River near Talkeetna - USGS Station 15292400                                                                             |
|              | Mean Daily Discharge Record: February 1958 -<br>September 1972                                                                    |
|              | Continuous Stage Gage Reactivated: May 1980                                                                                       |
|              | Annual Maximum Discharge Record: 1958-1972                                                                                        |
|              | Crest Stage Record: 1973-1977                                                                                                     |
|              | Annual Instantaneous Peak Flow: 1958-1977                                                                                         |

| Index<br>No. | Description                                                   |
|--------------|---------------------------------------------------------------|
| 0155         | Talkeetna River near Talkeetna - USGS Station 15292700        |
| -            | Mean Daily Discharge Record: June 1964 - Present              |
|              | Annual Maximum Discharge Record: 1964-1980                    |
|              | Annual Instantaneous Peak Flow: 1964-1980                     |
| 0160         | Susitna River near Sunshine - Proposed 1981                   |
| 0162         | Willow Creek near Willow - USGS Station 15294005              |
|              | Mean Daily Discharge Record: June 1978 - Present              |
|              | Annual Maximum Discharge Record: 1978-1980                    |
| 0163         | Deception Creek near Willow - USGS Station 15294010           |
|              | Mean Daily Discharge Record: May 1978 - Present               |
|              | Annual Maximum Discharge Record: 1978-1980                    |
| 0165         | Skwentna River near Skwentna - USGS Station 15294300          |
|              | Mean Daily Discharge Record: August 1959 - Present            |
|              | Annual Maximum Discharge Record: 1959-1980                    |
|              | Annual Instantaneous Peak Flow: 1959-1980                     |
| 0175         | Yentna River near Susitna Station                             |
|              | Mean Daily Discharge Record: October 1980 - Present           |
| 0190         | Susitna River near Susitna Station -<br>USGS Station 15294350 |
|              | Mean Daily Discharge Record: October 1974 - Present           |
|              | Annual Maximum Discharge Record: 1974-1980                    |

#### 0200 STREAMFLOW PARTIAL RECORDS

All data collected relating to river stage or water discharge for the Susitna River Basin not previously listed under Section 0100: Streamflow Continuous Gaging are included below. This section includes all records from crest stage gages, staff gages or fragmentary data. Agencies collecting the data include: U.S. Geological Survey (USGS), R&M Consultants (R&M) and National Weather Service (NWS). The agency responsible for data collection at each site is indicated by the agency name in parentheses following the period of record.

It should be noted that National Weather Service stations provide real-time river stage data which can be obtained from the NWS Alaska River Forecast Center at any time.

Alaska Department of Fish and Game has additional data on stage and water discharge of selected tributaries and fresh-water sloughs in the Susitna River Basin. Appendix I includes location and period of record for the data available.

All data given below are on file at R&M Consultants according to index number and location, unless marked by an asterisk following the period of record.

| Index<br>No. | Description                                                      |
|--------------|------------------------------------------------------------------|
| 0201         | Raft Creek near Denali - USGS Station 15291000                   |
|              | Annual Maximum Discharge from Crest-Stage Gage: 1963-1977 (USGS) |
| 0205         | Susitna River at Deadman Creek - R&M CSR-9                       |
|              | Crest-Stage Gage: 1980 (R&M)                                     |

| Index<br>No | Description                                                 |
|-------------|-------------------------------------------------------------|
| 0210        | Susitna River at Watana Dam Site - R&M CSR-8                |
|             | Crest Stage Gage: 1980 (R&M)                                |
| 0215        | Susitna River above Devil Canyon - R&M CSR-7                |
|             | Crest-Stage Gage: 1980 (R&M)                                |
|             | Staff Gage: Proposed                                        |
| 0220        | Portage Creek above Gold Creek - R&M CSR-6                  |
|             | Crest-Stage Gage: 1980 (R&M)                                |
| 0225        | Susitna River at Sherman - R&M CSR-5                        |
|             | Crest-Stage Gage: 1980 (R&M)                                |
| 0230        | Susitna River at Section 25 - R&M CSR-4                     |
|             | Crest-Stage Gage: 1980 (R&M)                                |
| 0235        | Susitna River at Curry - R&M CSR-3                          |
|             | Crest-Stage Gage: 1980 (R&M)                                |
|             | Partial Discharge Record: 1948 - 2 dates (USGS)             |
| 0240        | Susitna River near Chase - R&M CSR-2                        |
|             | Crest-Stage Gage: 1980 (R&M)                                |
| 0245        | Susitna River above Susitna-Chulitna Confluence - R&M CSR-1 |
|             | Crest-Stage Gage: 1980 (R&M)                                |
| 0246        | Talkeetna River near Talkeetna                              |
|             | Partial Discharge Record: 1949 - 2 dates (USGS)             |

| Index<br>No. | Description                                                             |
|--------------|-------------------------------------------------------------------------|
| 0247         | Talkeetna River at Talkeetna Railroad Bridge                            |
|              | Partial Stage Record: 1976-1980 (NWS)                                   |
| 0250         | Susitna River at Sunshine - USGS Station 15292780                       |
|              | Partial Discharge Record: 1969-1971, 1976-80 (NWS)                      |
| 0251         | Montana Creek near Montana - USGS Station 15292800                      |
|              | Crest-Stage Gage: 1963-1972 (USGS)                                      |
| 0252         | Montana Creek at Parks Highway                                          |
|              | Partial Stage Record: 1973-1980 (NWS)                                   |
| 0253         | Goose Creek near Montana - USGS Station 15292900                        |
|              | Crest-Stage Gage: 1963-1971 (USGS)                                      |
| 0254         | Caswell Creek near Caswell - USGS Station 15293000                      |
|              | Crest-Stage Gage: 1963-1980 (USGS)                                      |
| 0255         | Little Willow Creek near Kashwitna -<br>USGS Station 15293700           |
|              | Low-Flow Discharge Record: 1978 (USGS)                                  |
| 0256         | Willow Creek at Hatcher Pass Road near Willow - USGS Station 15294002   |
|              | Low-Flow Discharge Record: 1978-1980 (USGS)                             |
| 0257         | Deception Creek above Tributary near Houston -<br>USGS Station 15294007 |
|              | Low-Flow Discharge Record: 1978-1980 (USGS)                             |

| No.  | Description                                                    |  |  |  |  |
|------|----------------------------------------------------------------|--|--|--|--|
| 0258 | Deception Creek Tributary near Houston - USGS Station 15294008 |  |  |  |  |
|      | Low-Flow Discharge Record: 1978-1980 (USGS)                    |  |  |  |  |
| 0259 | Willow Creek at Parks Highway near Willow                      |  |  |  |  |
|      | Low-Flow Discharge Record: 1978-1980 (USGS)                    |  |  |  |  |
|      | Partial Stage Record: 1973-1980 (NWS)                          |  |  |  |  |

### APPENDIX B

MEMO ON PROBABLE MAXIMUM PRECIPITATION ESTIMATES FROM NATIONAL WEATHER SERVICE TO CORPS OF ENGINEERS - UNDATED

#### DRAFT

Mr. Vernon K. Hagen Office of Chief of Engineers Corps of Engineers Forrestal Bldg., Rm. 5-F-039 Washington, D.C. 20314

ROM: John T. Riedel

Chief, Hydrometeorological Branch

"UBJ: Tentative Estimates of Probable Maximum Precipitation (PMP) and Snowmelt Criteria for Four Susitna River Drainages

#### Introduction

The Office of Chief of Engineers, Corps of Engineers requested PMP and snowmelt criteria for the subject drainages in a memorandum to the Hydrometeorological Branch, dated December 12, 1974. The Alaska District requested the study be completed by February 1, 1975; however, a more realistic date for completing a study in which we have confidence is June 1, 1975. Because of the need to soon begin hydrologic studies based on meteorological criteria, the Branch has concentrated on the problem and has determined the general level of criteria. A range of PMP values are given in this memorandum within which we believe values from a more comprehensive study will fall. The sequences of snowmelt winds, temperatures, and dew points should be checked with additional studies. In addition, if we knew in detail how snowmelt will be computed, we could give emphasis to the more important elements.

#### PMP estimates for four drainages

A range of estimates of PMP for 6, 24, and 72 hours for four drainages outlined on the map accompanying the December 12, 1974 memorandum are listed in table 1. These are numbered from 1 to 4 (smallest to largest).

The estimates are for the months of August and September - the season of greatest rainfall potential. For the snowmelt season, multiply the estimates by 70 percent.

The estimates take into account numerous considerations including several methods of modifying PMP estimates made previously for other Alaska drainages, and PMP estimates from the Western United States for areas with similar terrain.

#### Temperatures and Dew Points for Snowmelt

#### A. During PMP Storm

- Dew point for PMP centered on June 15 = 56°F (assume maximum 1-day PMP in middle of 3-day storm).
- 2. For PMP placement prior to June 15 sebtract 0.8°F for each 3-day period prior to June 15 (e.g. the PMP dew point for June 12 will be 55.2°F). This -0.8°F per 3-days may be applied to obtain the maximum 1-day dew point during the PMP back to as early as May 15.
- For first day of PMP storm, subtract 1°F from criteria of 2 for 3rd day of PMP storm subtract 2°F.
- .4. Add 2°F to each of the three daily dew points to get daily temperatures for the 3-day PMP period.
- 8. Temperatures and Dew Points Prior to 3-Day PMP Storm (High dew point case)

## Adjustment to temperature and dew point on . day of maximum PMP

| Day prior<br>to PMP | Temperature (°F) | Dew point (°F) |  |  |
|---------------------|------------------|----------------|--|--|
| lst                 | -2               | -2             |  |  |
| <b>2</b> d          | -1               | -4             |  |  |
| 3rd                 | 0                | -4             |  |  |
| 4th                 | +1               | -5             |  |  |

#### C. Temperatures, Dew Points Prior to 3-day PMP (High temperature case)

## Adjustment of temperature and dew point on day of maximum PMP

| Day prior<br>to PMP | Temperature (°F) | Dew point (°F) |  |  |
|---------------------|------------------|----------------|--|--|
| lst                 | +1               | -12            |  |  |
| 2d                  | +2               | - 9            |  |  |
| 3rd                 | +4               | - 7            |  |  |
| 4th                 | +7               | - 6            |  |  |

#### Elevation Adjustment

For the 3 days of PMP and for the high dew point, apply a -3°F per 1000 ft to the temperatures and dew points. The basic criteria are considered applicable to 1000 mb or zero elevation.

For the high temperature criteria apply a -4°F per 1000 ft increase in elevation.

#### Half-day Values

If half-day values are desired for temperatures and dew points, the following rules should be followed:

- 1. For the high-temperature sequence, apply an 18°F spread for temperatures and a 6°F spread for dew point. For example, for a mean daily dew point of 50°F, the half-day values would be 47°F and 53°F.
- 2. For the high dew point case, apply a 12°F spread for temperature and a 4°F spread for dew point.

3. In no case, however, should a 12-br dew point be used that exceeds the 1-day value for that date. For example, the value not to be exceeded for June 15 is 56°F, for June 3 (four 3-day periods before June 15) is 52.8°F.

#### Wind Criteria for Snowmelt

Since two sets of criteria (one emphasizing high temperature and the other high dew point sequences) are given for snowmelt prior to PMP, two sets of wind criteria are also necessary since the pre-PMP synoptic situation favoring high temperatures differs from the criteria favoring high dew points. The recommended winds, tables 2 and 3, are given by elevation bands. In the high dew-point case, table 2. (where synoptic exist conditions favoring maritime influences prior to PMP), the same wind for 4-days prior to PMP is appropriate.

All of the winds presented in tables 2 and 3 have been adjusted for applicability over a snow surface. Although a seasonal variation in the high dew point wind criteria is realistic for the present tentative criteria, they are considered applicable to May and June.

#### Snowmelt Winds During the PMP

Wind criteria for the 3-day PMP are the same for both the high temperature and high dew point sequences. They are shown in table 4.

#### Snow Pack Available for Melt

Some work was done in determining the mean and maximum October-April precipitation of record for the available precipitation stations.

These stations and other data are tabulated in table 5. The drainages and available stations are shown in figure 1.

Table 5 also shows the years of record available for October-April precipitation, as well as a column labeled "synthetic October-April precipitation." This gives the sum of the greatest October, greatest November, etc., to the greatest April precipitation total from the available record. These synthetic October-April precipitation values and the means are plotted on figure 1.

Approximately 9 years of snow course data are available for 14 locations in and surrounding the Susitna drainage. From these records, the greatest water equivalents were plotted on a map. These varied from a low of 6 inches at Oshetka Lake (elevation 2950 ft) to an extreme of 94.5 inches at Gulkana Glacier, station C (elevation 6360 ft). A smooth plot of all maxima against elevation gave a method of determining depths at other elevations. Figure 2 shows resulting smooth water equivalents based on smoothed elevation contours and this relation.

Some additional guidance could be obtained from mean annual precipitation maps. One such map available to us is in NOAA Technical Memorandum NWS AR-10, "Mean Monthly and Annual Precipitation, Alaska." The mean annual of this report covering the Susitna drainage is shown in figure 3.

Also on this figure is shown the mean runoff for three portions of the Susitna River drainage based on the years of record shown. No adjustment has been made for evapotranspiration or any other losses. This indicates that the actual mean annual precipitation is probably greater than that given by NWS AR-10.

Conclusion. Time hasn't allowed checks, evaluation, and comparison of the several types of data summarized here. It appears the "synthetic October-April precipitation" generally is less than the maximum depths over the drainages based on snow course measurements. There depths, or figure 2, would be considered the least that could be available for melt in the spring.

#### Further Studies

The variation of precipitation with terrain features in Alaska is important but yet mostly unknown and unstudied. More effort should be placed on attempts to develop mean annual or mean seasonal precipitation maps, at least for the region of the Susitna River. Some 10 years of data at about a dozen or so snow courses could be used in this attempt, as well as stream runoff values.

Some work has been done toward estimating maximum depth-area-duration values in the August 1967 storm; an important input to the present estimates. Attempts should be made to carry out a complete Part I and Part II for this storm, although data are sparse and emphasizing the use of streamflow as a data source.

The objective of these two studies with regard to the Susitna drainages is to attempt a better evaluation of topographic effects, and to make a better evaluation of snow pack available for melt.

Study of additional storms could give some important conclusions and guidance on how moisture is brought up the Cook Inlet to the Talkeetna Mountains and how these mountains effect the moisture.

Snowmelt criteria in this quick study is limited to 7 days. Considerably more work needs to be done to extend this to a longer period. Then we would need to emphasize compatability of a large snow cover and high temperatures. More known periods of high snowmelt runoff need to be studied to determine the synoptic values of the meteorological parameters.

Table 1

General level of PMP estimates for 4

Susitna River drainages

| Drainage<br>Number | Area<br>(sq mi) | 72-hr PMP (in.)  |  |  |
|--------------------|-----------------|------------------|--|--|
| 1                  | 1260            | 9-12             |  |  |
| 2                  | 4140            | 7.5-10.5         |  |  |
| 3                  | 5180            | 7 <del>-</del> 9 |  |  |
| 4                  | 5810            | 7-9              |  |  |

For 24-hr PMP, multiply 72-hr value by 0.60.

For 6-hr PMP, multiply 72-hr value by 0.30.

PMP for intermediate durations may be obtained from a plotted smooth curve through the origin and the 3 values specified.

Table 2
Snowmelt Winds preceding PMP for Susitna Basins for high dew point sequence

| Elevation (ft) | Daily Wind speed (maph) |  |  |  |
|----------------|-------------------------|--|--|--|
| sfc            | 8                       |  |  |  |
| 1000           | 9                       |  |  |  |
| 2000           | 12                      |  |  |  |
| 3000           | 18                      |  |  |  |
| 4000           | 25                      |  |  |  |
| 5000           | 34                      |  |  |  |
| 6000           | 35                      |  |  |  |
| 7000           | 37                      |  |  |  |
| 8000           | 39                      |  |  |  |
| 9000<br>10-000 | 40<br>42                |  |  |  |
| 8000           | 39                      |  |  |  |

<sup>\*</sup>For each of the 4 days preceding the 3-day PMP.

Table 3

Snowmelt winds preceding PMP for Susitna Basins for high temperature sequence

| Elevation (ft) |            | Daily wind speed (mph) Day prior to 3-day PMP |            |     |  |
|----------------|------------|-----------------------------------------------|------------|-----|--|
|                | <u>lst</u> | 2nd                                           | <u>3rd</u> | 4th |  |
| sfc            | 10         | 13                                            | 4          | 4   |  |
| 1000           | 10         | 13                                            | 4          | 4   |  |
| 2000           | 11         | 14                                            | 5          | 5   |  |
| 3000           | 12         | 16                                            | 5          | 5   |  |
| 4000           | 13         | 16                                            | 6          | 6   |  |
| 5000           | 13         | 17                                            | 6          | 6   |  |
| 6000           | 14         | 18                                            | 6          | 6   |  |
| 7000           | 15         | 20                                            | 6          | 6   |  |
| 8000           | 16         | 20                                            | 7          | 7   |  |
| 9000           | 16         | 20                                            | 7          | 7   |  |
| 10,000         | 17         | 21                                            | 7          | 7   |  |

Table 4
Winds during 3-day PMP

| Elevation (ft) | Day of maximum PMP | nd speed (mph) Day of 2nd highest PMP | Day of 3rd<br>highest PMP |
|----------------|--------------------|---------------------------------------|---------------------------|
| sfc            | 12                 | 9                                     | 8                         |
| 1000           | 14                 | 10                                    | 9                         |
| 2000           | 19                 | 14                                    | 12                        |
| 3000           | 29                 | 21                                    | 18                        |
| 4000           | 42                 | 31                                    | 27                        |
| 5000           | 56                 | 42                                    | 36                        |
| 6000           | 58                 | 44                                    | <b>3</b> 8                |
| 7000           | 62                 | 46                                    | 40                        |
| 8000           | 64                 | 48                                    | 41                        |
| 9000           | 68                 | 51                                    | 44                        |
| 10,000         | 70                 | 52                                    | 45                        |

Table 5
Stations with Precipitation Records in and surrounding the Susitna Drainage

| Station         | Elevation (ft.) | Yrs of record for complete OctApr. precipitation | Maximum obs. Oct-Apr. prec. | Yr of<br><u>Maximum</u> | Mean Number of months for synthetic OctApr. season | Synthetic<br>OctApr.<br>precip.<br>(in.) | Mean OctApr. Precip. (in.) |
|-----------------|-----------------|--------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------------|------------------------------------------|----------------------------|
| Susitna Meadows | 750             | 4                                                | 17.18                       | 70-71                   | 4                                                  | 23.18                                    | 13.77                      |
| Gulkana         | 1572            | 18                                               | 6.77                        | 56-57                   | 18                                                 | 12.68                                    | 4.19                       |
| Paxson          | 2697            | 2                                                | 8.42                        | 43-44                   | 6                                                  | 14.25                                    | 7.64                       |
| Trims Camp      | 2408            | 3                                                | 23.26                       | 59-60                   | 5                                                  | 35.82                                    | 15.3                       |
| Summit          | 2401            | 19                                               | 14.09                       | 51-52                   | 20                                                 | 26.59                                    | 7.93                       |
| Talkeetna       | 345             | 35                                               | 21.17                       | 29-30                   | 37                                                 | 40.59                                    | 12.26                      |
| Sheep Mountain  | 2316            | 13                                               | 11.91                       | 59-60                   | 12                                                 | 18.42                                    | 4.78                       |

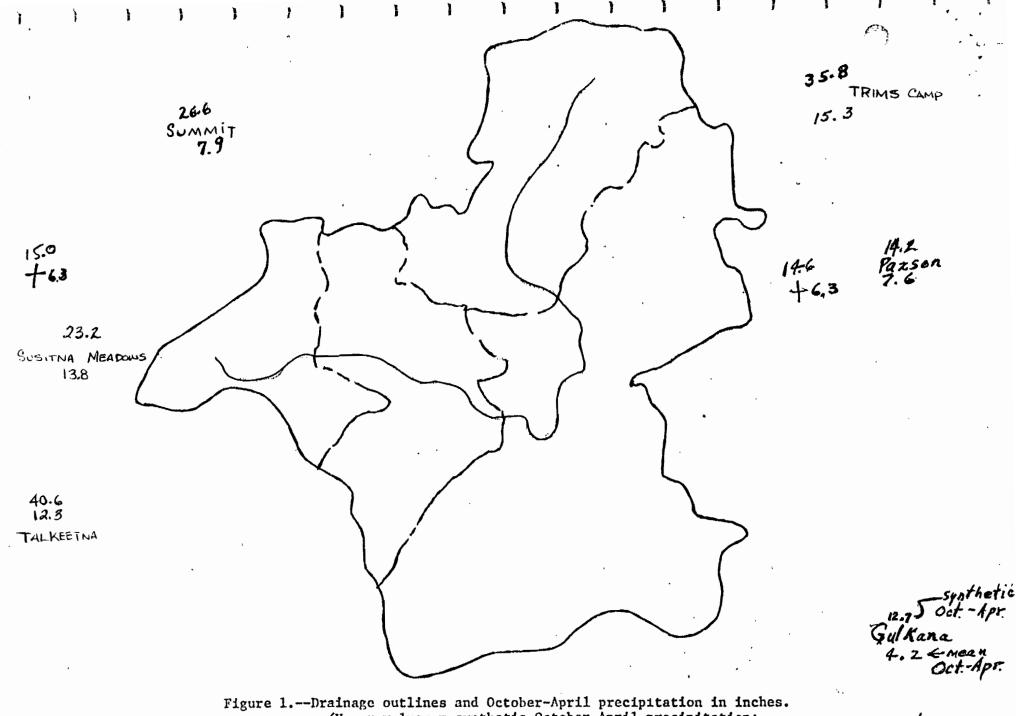
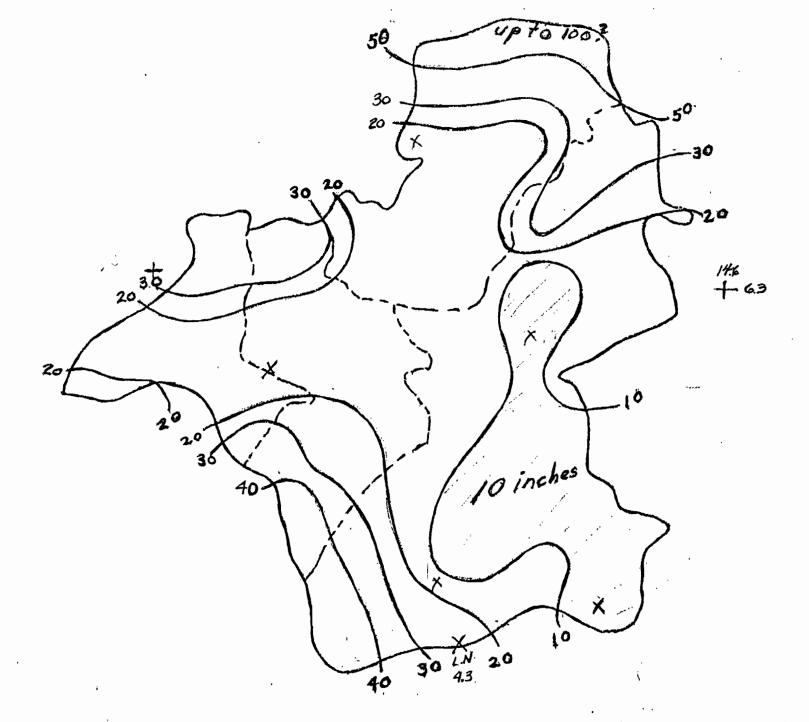




Figure 1.--Drainage outlines and October-April precipitation in inches.

(Upper values = synthetic October-April precipitation; Lower = mean October-April precipitation.) 18.4

SHEEP MIN.

4.8



15.0 + 6.3

Figure 2.--Minimum water equivalents of snow pack in inches (based on gross smoothing of maximum snow course measurements.)

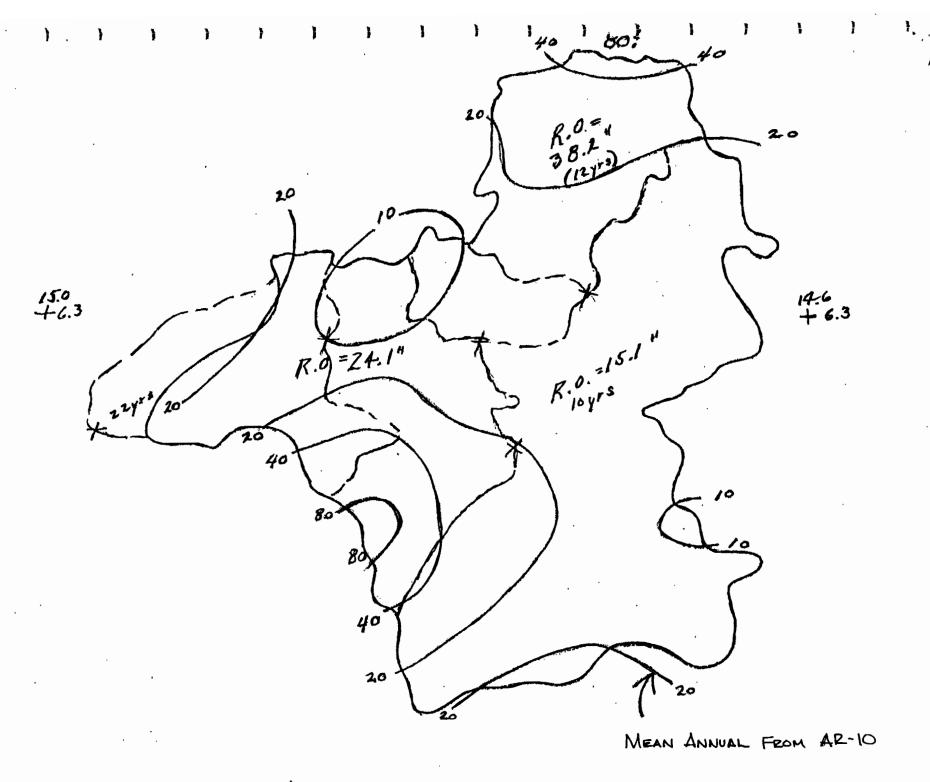



Figure 3.--Mean annual precipitation and stream runoff (in inches).

### APPENDIX C

SUSPENDED SEDIMENT GAGING STATIONS (3)

### 0500 SEDIMENT DISCHARGE

Suspended sediment concentration (mg/l) suspended sediment discharge (tons/day) and suspended sediment particle size analysis data have been collected by the U.S. Geological Survey (USGS) and R&M Consultants (R&M) at several sites within the Susitna River Basin. The locations where this information has been collected are listed below. All of the data, except 1980 data collected by the USGS, are on file at R&M Consultants.

Unless indicated by agency name in parentheses following the period of record, all data have been collected by the USGS.

Index No.

Description

0510

Susitna River near Denali - USGS Station 15291000

Sediment Concentration and Sediment Discharge: 1958-1979

1980: May 22 June 24 July 22 August 2 October 1

Particle Size Analysis: 1958-1980

0515 Maclaren River near Paxson - USGS Station 15291200

Sediment Concentration and Sediment Discharge: 1958-1968, 1974-1975

Particle Size Analysis: 1958-1967, 1974-1975

Index No.

**Description** 

0520

Susitna River near Cantwell - USGS Station 15291500

Sediment Concentration and Sediment

Discharge: 1962-1972

1980: September 5 (R&M)

September 17 (R&M) October 17 (R&M)

Particle Size Analysis: 1962-1972, 1980

0525

Susitna River above Portage Creek near Gold Creek - USGS Station 624941149221500

Sediment Concentration and Sediment

Discharge: 1977

Particle Size Analysis: 1977

0540

Susitna River at Gold Creek - USGS Station 15292000

Sediment Concentration and Sediment

Discharge: 1952-1957, 1962, 1967, 1974-1979

1980: May 14

August 19 October 7

October 16 (R&M)

Particle Size Analysis: 1953, 1955-1957, 1962, 1974-1980

0545

Chulitna River near Talkeetna - USGS Station 15292400

Sediment Concentration and Sediment

Discharge: 1967 - 1972

1980: May 21

June 3

June 23

July 17

September 1 September 30

October 22

Particle Size Analysis: 1967-1972, 1980

| Index<br>No. | Description                                                          |
|--------------|----------------------------------------------------------------------|
| 0555         | Talkeetna River near Talkeetna - USGS Station 15292700               |
|              | Sediment Concentration and Sediment Discharge: 1966-1979             |
|              | 1980: February 15 April 11 May 15 July 3 July 14 August 14 October 8 |
|              | Particle Size Analysis: 1966-1980                                    |
| 0560         | Susitna River at Sunshine - USGS Station 15292780                    |
|              | Sediment Concentration and Sediment Discharge: 1971, 1977-           |
|              | Particle Size Analysis: 1971, 1977                                   |
| 0561         | Montana Creek near Montana - USGS Station 15292800                   |
|              | Sediment Concentration and Sediment Discharge: 1970-1971, 1973       |
|              | Particle Size Analysis: 1970-1971, 1973                              |
| 0563         | Deception Creek near Willow - USGS Station 15294010                  |
|              | Sediment Concentration and Sediment Discharge: 1978-1980             |
| 0565         | Skwentna River near Skwentna - USGS Station 15294300                 |
|              | Sediment Concentration and Sediment Discharge: 1967-1968, 1974-1975  |
|              | 1980: June 12<br>August 21                                           |

Particle Size Analysis: 1967-1968, 1974-1975, 1980

| Index<br>No. | Description                                                       |  |  |  |  |  |  |  |  |  |
|--------------|-------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| 0575         | Yentna River near Susitna Station                                 |  |  |  |  |  |  |  |  |  |
|              | Sediment Concentration and Sediment<br>Discharge: to begin 1981   |  |  |  |  |  |  |  |  |  |
| 0590         | Susitna River near Susitna Station -<br>USGS Station 15294350     |  |  |  |  |  |  |  |  |  |
|              | Sediment Concentration and Sediment<br>Discharge: 1975 - 1979     |  |  |  |  |  |  |  |  |  |
|              | 1980: February 12<br>March 12<br>June 16<br>July 30<br>October 10 |  |  |  |  |  |  |  |  |  |
|              | Particle Size Analysis: 1975 - 1980                               |  |  |  |  |  |  |  |  |  |

### APPENDIX D

WATER QUALITY - STATIONS AND PARAMETERS (3)

### 0300 WATER QUALITY

Water quality data have been collected by the U.S. Geological Survey and R&M Consultants at several sites within the Susitna River Basin. The locations for which this information is available and the period of record at each site are given below. Since the measurements are only taken periodically the number of measurements, timing and specific parameters measured vary from year to year at any given station. A list of water quality parameters that have been measured by the USGS and R&M are included at the end of this appendix.

Unless indicated by the agency name in parentheses following the period of record, data have been collected by the USGS.

Data collected by the Alaska Department of Fish & Game are all included in Appendix I. Therefore, they have not been listed again in this section.

The data listed in this section are all on file at R&M Consultants according to index number and name, except where dates are marked by an asterisk. Most of the data are also available through the U.S. Geological Survey.

| Index<br>No.                                           | Description                                    |  |  |  |  |  |  |
|--------------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|
| 0310 Susitna River near Denali - USGS Station 15291000 |                                                |  |  |  |  |  |  |
|                                                        | Period of Record: 1957-1961, 1968, 1976        |  |  |  |  |  |  |
| 0311                                                   | Raft Creek near Denali - USGS Station 15291100 |  |  |  |  |  |  |
|                                                        | Period of Pecord: 1972                         |  |  |  |  |  |  |

| Index<br>No. | Description                                                                              |
|--------------|------------------------------------------------------------------------------------------|
| 0313         | Clearwater Creek near Paxson -<br>USGS Station 630230146530000                           |
|              | Period of Record: 1958*                                                                  |
| 0315         | Maclaren River near Paxson - USGS Station 15291200                                       |
|              | Period of Record: 1958-1961, 1967-1968, 1975                                             |
| 0318         | Little Oshetna River near Eureka -<br>USGS Station 621130147391500                       |
|              | Period of Record: 1953*                                                                  |
| 0320         | Susitna River near Cantwell - USGS Station 15291500                                      |
|              | Period of Record: 1967-1970                                                              |
|              | 1980: June 19 (R&M) August 8 (R&M) September 5 (R&M) September 17 (R&M) October 17 (R&M) |
| 0330         | Susitna River near Watana Damsite - R&M WQ-1 .                                           |
|              | Period of Record: October 1980 - Present (R&M)                                           |
| 0335         | Susitna River above Portage Creek near Gold Creek -<br>USGS Station 624941149221500      |
|              | Period of Record: 1977                                                                   |
| 0339         | Gold Creek at Gold Creek - USGS Station 624606149412500                                  |
|              | Period of Record: 1977*                                                                  |

ľ

| Index<br>No. | Description                                                          |
|--------------|----------------------------------------------------------------------|
| 0340         | Susitna River at Gold Creek - USGS Station 15292000                  |
|              | Period of Record: 1949-1958, 1967-1968, 1975, 1977                   |
|              | 1980: May 2 August 8 (R&M) August 19 October 7 October 14 (R&M)      |
| 0345         | Chulitna River near Talkeetna - USGS Station 15292400                |
|              | Period of Record: 1958-1959, 1967-1968, 1970                         |
| 0355         | Talkeetna River near Talkeetna - USGS Station 15292700               |
|              | Period of Record: 1954, 1967-1980                                    |
| 0360         | Susitna River at Sunshine - USGS Station 15292780                    |
|              | Period of Record: 1975, 1977                                         |
| 0361.1       | Montana Creek near Montana - USGS Station 15292800                   |
|              | Period of Record: 1971-1972 .                                        |
| 0361.2       | Sheep Creek at Highway near Willow -<br>USGS Station 615945150024300 |
|              | Period of Record: 1972                                               |
| 0361.3       | Caswell Creek near Caswell - USGS Station 15293000                   |
|              | Period of Record: 1972                                               |
| 0361.4       | Kashwitna River near Willow -<br>USGS Station 615535150041500        |
|              | Period of Record: 1972                                               |

| Index<br>No. | Description                                                                |
|--------------|----------------------------------------------------------------------------|
| 0362.3       | Willow Creek at Upper Bridge near Willow -<br>USGS Station 614522149401700 |
|              | Period of Record: 1972                                                     |
| 0362.4       | Willow Creek at Hatcher Pass Road near Willow - USGS Station 15294002      |
|              | Period of Record: 1978-1980                                                |
| 0362         | Willow Creek near Willow - USGS Station 15294005                           |
|              | Period of Record: 1972                                                     |
| 0362.1       | Willow Creek below Canyon near Willow -<br>USGS Station 614607149552000    |
|              | Period of Record: 1972                                                     |
| 0362.2       | Willow Creek at Parks Highway near Willow                                  |
|              | Period of Record: 1972                                                     |
| 0363         | Deception Creek near Willow - USGS Station 15294010                        |
|              | Period of Record: 1978-1980                                                |
| 0363.1       | Deception Creek at Mouth near Willow - USGS Station 614552150021000        |
|              | Period of Record: 1972                                                     |
| 0363.2       | Deception Creek above Tributary near Houston - USGS Station 15294009       |
|              | Period of Record: 1978-1980                                                |
| 0363.3       | Deception Creek Tributary near Houston - USGS Station 15294008             |
|              | Period of Record: 1978-1980                                                |

| Index<br>No. | Description                                                       |
|--------------|-------------------------------------------------------------------|
| 0365         | Skwentna River near Skwentna - USGS Station 15294300              |
|              | Period of Record: 1959, 1961, 1967-1968                           |
| 0366         | Yentna River near Skwentna -<br>USGS Station 615815151070000      |
|              | Period of Record: 1955*                                           |
| 0390         | Susitna River at Susitna Station - USGS Station 15294350          |
|              | Period of Record: 1955, 1970, 1975-1979                           |
|              | 1980: February 12<br>March 12<br>June 16<br>July 30<br>October 10 |

### 0400 WATER TEMPERATURE

Water temperature data have been collected by the U.S. Geological Survey, R&M Consultants and Alaska Department of Fish and Game (ADF&G) at many locations within the Susitna River Basin. The locations for which this information is available and the period of record at each site are given below. Continuous water temperature records are generally available for open-water months only, but the length of record will vary for each site from year to year. Data collected by ADF&G have all been included in Appendix C. Therefore, they have not been listed again in this section. It should also be noted that instantaneous temperature measurements have been taken and may be found in the water quality records published by the USGS.

Unless indicated by agency name in parentheses following the period of record, all data have been collected by the USGS.

The data listed in this section are on file at R&M Consultants according to index number and name, except 1980 data collected by the USGS and Talkeetna River data from 1954.

| Index<br>No. | Description                                                                  |
|--------------|------------------------------------------------------------------------------|
| 0410         | Susitna River near Denali - USGS Station 15291000                            |
|              | Water Temperature Record: 1974 - 1980                                        |
|              | Temperature Cross Sections: 1980: May 22 June 24 July 22 August 26 October 1 |

| Index<br>No. | Description                                                             |
|--------------|-------------------------------------------------------------------------|
| 0415         | Maclaren River near Paxson - USGS Station 15291200                      |
|              | Miscellaneous Water Temperatures: 1980                                  |
| 0420         | Susitna River near Cantwell - USGS Station 15291500                     |
|              | Water Temperature Record: May 1980 - Present                            |
| 0430         | Susitna River near Watana Damsite                                       |
|              | Water Temperature Record: October 1980 - Present (R&M)                  |
|              |                                                                         |
| 0440         | Susitna River at Gold Creek - USGS Station 15292000                     |
|              | Water Temperature Record: 1957, 1974-1980                               |
|              | Temperature Cross Sections: 1980: May 14 July 2 August 19 October 7     |
|              | Miscellaneous Water Temperatures: 1980 (R&M)                            |
| 0445         | Chulitna River near Talkeetna - USGS Station 15292400                   |
|              | Water Temperature Record: to begin 1981                                 |
|              | Temperature Cross Sections: 1980: June 3 July 17 September 1 October 22 |
|              | Miscellaneous Water Temperatures: 1980                                  |

| Index<br>No. | Description                                                                                                     |  |  |  |  |  |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| 0455         | Talkeetna River near Talkeetna - USGS Station 15292700                                                          |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: 1954                                                                                  |  |  |  |  |  |  |  |  |  |  |
|              | Temperature Cross Section: 1980: April 1 April 22 May 23 June 30 July 10 July 28 July 29 September 9 October 15 |  |  |  |  |  |  |  |  |  |  |
| 0460         | Susitna River near Sunshine - USGS Station 15292780                                                             |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: proposed 1981                                                                         |  |  |  |  |  |  |  |  |  |  |
| 0462         | Willow Creek near Willow - USGS Station 15294005                                                                |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: 1978-1979                                                                             |  |  |  |  |  |  |  |  |  |  |
| 0463         | Deception Creek near Willow - USGS Station 15294010                                                             |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: 1978 - Present                                                                        |  |  |  |  |  |  |  |  |  |  |
| 0465         | Skwentna River near Skwentna - USGS Station 15294300                                                            |  |  |  |  |  |  |  |  |  |  |
|              | Miscellaneous Water Temperatures: 1967-68, 1974-75                                                              |  |  |  |  |  |  |  |  |  |  |
|              | Temperature Cross Sections: 1980: April 14 June 12 August 21 October 17                                         |  |  |  |  |  |  |  |  |  |  |
| 0475         | Yentna River near Susitna Station                                                                               |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: to begin 1981                                                                         |  |  |  |  |  |  |  |  |  |  |
| 0490         | Susitna River at Susitna Station - USGS Station 15294350                                                        |  |  |  |  |  |  |  |  |  |  |
|              | Water Temperature Record: 1975 - Present                                                                        |  |  |  |  |  |  |  |  |  |  |

# WATER QUALITY PARAMETERS THAT HAVE BEEN SAMPLED BY THE USGS WITHIN THE SUSITNA RIVER BASIN

### Site Parameters

Available for each sample

Date

Time

Instantaneous Stream Flow (cfs)

Occasionally available for sample

Sampling Depth (ft)

Stream Width (ft)

Percent of Total Depth

Sample Location in Cross Section (ft from left bank)

### Physical Parameters

Color (Platinum - Cobalt Units)

 $Hardness (mg/I as CaCO_3)$ 

Hardness, Noncarbonate (mg/l as CaCO<sub>3</sub>)

Methylene Blue Active Substance

рΗ

Solids, Dissolved (tons/day, tons/ac-ft)

Solids, Dissolved Residue at 105°C (mg/l)
Solids, Dissolved Residue at 180°C (mg/l)
Solids, Suspended Residue at 180°C (mg/l)
Specific Conductance (Micromhos/centimeter)
Temperature, Instantaneous (°C)
Turbidity (Jackson Turbidity Units)

### Inorganic Parameters

Alkalinity (mg/l as CaCO<sub>2</sub>) Aluminum, Total Recoverable (ug/l as Al) Arsenic, Dissolved (ug/l as As) Arsenic, Total (ug/l as As) Arsenic, Total Suspended (ug/l as As) Barium, Dissolved (ug/l as Ba) Barium, Total Recoverable (ug/l as Ba) Beryllium, Dissolved (ug/l as Be) Bicarbonate (mg/l as HCO<sub>3</sub>) Boron, Dissolved (ug/l as B) Cadmium, Dissolved (ug/l as Cd) Cadmium, Total Recoverable (ug/l as Cd) Calcium, Dissolved (mg/l as Ca) Carbon Dioxide, Dissolved (mg/l as CO<sub>2</sub>) Carbonate (mg/l as CO<sub>2</sub>) Chloride, Dissolved (mg/l as Cl) Chromium, Dissolved (ug/l as Cr) Chromium, Dissolved Hexavalent (ug/l as Cr) Chromium, Suspended Recoverable (ug/l as Cr) Chromium, Total Recoverable (ug/l as Cr) Cobalt, Dissolved (ug/l as Co) Copper, Dissolved (ug/l as Cu) Copper, Total Recoverable (ug/l as Cu) Cyanide, Total (mg/l as Cn)

```
Fluoride, Dissolved (mg/l as F)
Iron (ug/I as Fe)
Iron, Dissolved (ug/l as Fe)
Iron, Total Recoverable (ug/l as Fe)
Lead, Dissolved (ug/l as Pb)
Lead, Total Recoverable (ug/l as Pb)
Lithium, Dissolved (ug/l as Li)
Magnesium, Dissolved (mg/l as Mg)
Manganese (ug/l as Mn)
Manganese, Dissolved (ug/l as Mn)
Manganese, Total Recoverable (ug/l as Mn)
Mercury, Dissolved (ug/l as Hg)
Mercury, Total Recoverable (ug/l as Hg)
Molybdenum, Dissolved (ug/l as Mo)
Molybdenum, Total Recoverable (ug/l as Mo)
Nickel, Dissolved (ug/l as Ni)
Nickel, Total Recoverable (ug/l as Ni)
Nitrogen, Dissolved Ammonia (mg/l as N, mg/l as NH_{\Delta})
Nitrogen, Dissolved Nitrate (mg/l as N, mg/l as NO<sub>3</sub>)
Nitrogen, Dissolved Nitrate + Nitrite (mg/l as N)
Nitrogen, Total (mg/l as NO<sub>3</sub>)
Nitrogen, Total Ammonia (mg/l as N)
Nitrogen, Total Ammonia + Organic (mg/l as N)
Nitrogen, Total Nitrate (mg/l as N, mg/l as NO<sub>3</sub>)
Nitrogen, Total Nitrate + Nitrite (mg/l as N)
Nitrogen, Total Nitrite (mg/l as N)
Nitrogen, Total Organic (mg/l as N)
Oxygen, Dissolved (mg/l, percent saturation)
Phosphate, Dissolved Ortho (mg/l as PO,)
Phosphate, Total (mg/l as PO<sub>4</sub>)
Phosphorus, Total (mg/l as P)
Phosphorus, Dissolved (mg/l as P)
Phosphorus, Dissolved Ortho (mg/l as P)
Potassium, Dissolved (mg/l as K)
```

```
Selenium, Dissolved (ug/l as Se)
Selenium, Total (ug/l as Se)
Silica, Dissolved (mg/l as SiO<sub>2</sub>)
Silver, Dissolved (ug/l as Ag)
Silver, suspended recoverable (ug/l as Ag)
Silver, total recoverable (ug/l as Ag)
Sodium Adsorption Ratio
Sodium, Dissolved (mg/l as Na)
Sodium, Percent
Sodium + Potassium, Dissolved (mg/l as Na)
Strontium, Dissolved (ug/l as Sr)
Suifate, Dissolved (mg/l as SO<sub>4</sub>)
Uranium, Dissolved - Extraction (ug/l)
Uranium, Dissolved - Direct Flourometric (pci/I)
Zinc, Dissolved (ug/l as Zn)
Zinc, Total Recoverable (ug/l as Zn)
```

#### Organic Parameters

```
Aldrin, Total (ug/l)
Aldrin, Total in Bottom Material (ug/kg)
Biochemical Oxygen Demand, Five Day (mg/l)
Chlordane, Total (ug/l)
Chlordane, Total in Bottom Material (ug/kg)
2,4-D, Total (ug/l)
2,4-D, Total in Bottom Material (ug/kg)
DDD, Total (ug/l)
DDD, Total in Bottom Material (ug/kg)
DDE, Total (ug/l)
DDE, Total in Bottom Material (ug/kg)
DDT, Total (ug/l)
DDT, Total in Bottom Material (ug/kg)
DDT, Total in Bottom Material (ug/kg)
DDT, Total in Bottom Material (ug/kg)
Diazinon, Total (ug/l)
```

```
Dieldrin, Total (ug/l)
Dieldrin, Total in Bottom Material (ug/kg)
Endosulfan, Total (ug/l)
Endosulfan, Total in Bottom Material (ug/kg)
Endrin, Total (ug/l)
Endrin, Total in Bottom Material (ug/kg)
Ethion, Total (ug/l)
Ethion, Total in Bottom Material (ug/kg)
Heptachlor., Total (ug/l)
Heptachlor., Total in Bottom Material (ug/kg)
Heptachlor., Total Epoxide (ug/l)
Heptachlor., Total Epoxide in Bottom Material (ug/kg)
Lindane, Total (ug/l)
Lindane, Total in Bottom Material (ug/kg)
Malathion, Total (ug/l)
Malathion, Total in Bottom Material (ug/kg)
Mirex, Total (ug/l)
Napthalenes, Total Polychlor (ug/l)
Parathion, Total (ug/l)
Parathion, Total in Bottom Material (ug/kg)
Parathion, Total Methyl (ug/l)
Parathion, Total Methyl in Bottom Material (ug/kg)
PCB, Total (ug/l)
PCB, Total in Bottom Material (ug/kg)
PCN, Total in Bottom Material (ug/kg)
Perthane, Total (ug/l)
Phenols (ug/l)
Silvex, Total (ug/l)
Silvex, Total in Bottom Material (ug/kg)
2, 4, 5 - T, Total (ug/l)
2, 4, 5 - T, Total in Bottom Material (ug/kg)
Toxaphene, Total (ug/l)
Toxaphene, Total in Bottom Material (ug/kg)
Trithion, Total (ug/l)
```

```
Trithion, Total in Bottom Material (ug/kg)
Trithion, Total Methyl (ug/l)
Trithion, Total Methyl in Bottom Material (ug/kg)
Vanadium, Dissolved (ug/l as V)
```

### Radioactive Parameters

```
Alpha, Dissolved Gross (pci/I as U-NAT, ug/I as U-NAT)
Alpha, Total Suspended Gross (pci/I as U-NAT, pci/g as
U-NAT, ug/I as U-NAT)
Beta, Dissolved Gross (pci/I as Cs-137, pci/I as Sr/Yt - 90)
Beta, Total Suspended Gross (pci/I as Cs-137, pci/g as
Sr/Yt - 90, pci/g as Cs-137)
Radium 226, Dissolved - Random Method (pci/I)
```

### Coliform Bacteria

```
Coliform, Fecal - 0.45 UM-MF (Cols./100 ml.)

Coliform, Fecal - 0.7 UM-MF (Cols./100 ml.)

Coliform, Streptococci Fecal (Cols./100 ml.)

Coliform, Streptococci Fecal - KF Agar (Cols./100 ml.)

Coliform, Total - Delayed (Cols./100 ml.)

Coliform, Total - Immediate (Cols./100 ml.)
```

### CLIMATE AND WATER QUALITY PARAMETERS MEASURED BY R&M

### Climate Parameters Measured

Wind Direction
Wind Speed
Temperature
Relative Humidity
Solar Radiation
Precipitation
Peak Wind Gust

### Water Quality Parameters Measured

### Field: (1) ICAP Scan includes:

Dissolved Oxygen pH Conductivity Temperature Carbon Dioxide Alkalinity

Settleable Solids

Laboratory: Turbidity

Total Dissolved Solids Total Suspended Solids

Total Phosphate Kjeldahl Nitrogen Total Nitrogen Nitrate Nitrogen Ammonia Nitrogen

Chemical Oxygen Demand

Hardness Chloride Color Sulfate ICAP Scan (1) Uranium

Radioactivity, Gross Alpha

Organic Chemicals
Total Organic Carbon
Total Inorganic Carbon

Aluminum Arsenic Gold Boron Barium Bismuth Calcium Cadmium Cobalt Chromium Copper Iron Mercury Potassium Magnesium Molybdenum Sodium Nickel Manganese Phosphorus

Silver

Antimony
Selenium
Tin
Strontium
Titanium
Vanadium
Tungsten
Zinc
Zirconium

Lead

Platinum

### APPENDIX E

MISCELLANEOUS CORRESPONDENCE AND MINUTES OF MEETINGS WITH VARIOUS AGENCIES

RSM CONSULTANTS, INC. 5024 CORDOVA # 80X 6087 # ANCHORAGE, ALASKA 99502 # PH. 907-279-0483 # TLX. 090-25360

ENGINEERS GEOLOGISTS PLANNERS SURVEYORS

April 2, 1980

R&M No. 052303

Zecd 4/7/80

Acres American, Inc. The Liberty Bank Building Main @ Court Buffalo, N.Y. 14202

Attention: G. Krishnan

Re: Water Quality Program - Meeting with Alaska Department of Con-

servation

Dear Mr. Krishnan:

On March 28, 1980, a meeting was held with Dave Sturdevant (ADEC) concerning the Susitna Project water quality program. Present were Jim Landman, Larry Pederson and Brent Drage. The meeting addressed the present status of the Susitna Project water quality program and a request by ADEC, that they be kept informed on the Susitna project progress.

Attached is an informal response by ADEC to the Water Quality Program as outlined in the P.O.S. We explained that the Water Quality Program is currently under revision and once it is finalized we would send ADEC a copy. After describing our program and quality control procedures, he appeared to be satisfied. We are entering him on our Data Index Distribution mailing list so that ADEC will be kept abreast of our progress.

Very truly yours,

R&M CONSULTANTS, INC.

Brent T. Drage, P.E.

Susitna Project Coordinator

BTD/dj/L3-N

VALDEZ

WASILLA

JUNEAU

STATE of ALASKA

### MEMORANDUM

10: L

DATE:

March 14, 1980

Dave Sturdevant Management & Technical Assistance

FILE NO:

Jeff Hock EOM&LO

TELEPHONE NO:

SUBJECT:

Comments - Acres POS Susitna Hydro Development

FROM:

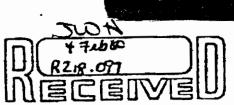
The following comprise a summation of comments regarding the water quality section of Acres American plan of study (POS) for Phase I Feasibility Studies of the Susitna Hydroelectric Project.

- 1. The POS recognizes the inter-relationship between water quantity and water quality.
- 2. Definitions of summer and winter should be more clearly defined, utilizing break-up and freeze-up as transition boundaries.
- 3. USGS will monitor temperature on a continuous basis. This will be essential for permit and certification purposes. An understanding of natural temperature variation will be valuable.
- 4. Due to the glacial origin of the Susitna River, turbidity should be monitored on more frequent intervals through the summer months, including data at peak flow periods.
- 5. Field instrumentation should be clearly established, including models and degree of precision expected for each parameter. Methodology for each parameter should be established and clearly referenced. It should be EPA approved or meet specification guidelines.
- 6. In order to assure accurate and reliable data, Acres should include an outline of their quality control program for each parameter to be monitored. How often will the instrument be calibrated? What approach will be taken with regard to standard and reference materials? Each parameter should institute some plan for quality control over the results.
- 7. Methodology utilized in the collection and transport of samples from the sampling point to the location for analysis should be clearly defined, including sample container preparation.
- 8. It is unclear as to what is meant by total nitrogen on pg. 5-56. Nitrate (NO3) and nitrite (NO2) nitrogen would be more valuable for monitoring productivity. It is the soluble, inorganic nitrate (NO3) nitrogen that is utilized by the aquatic primary producers. Total kjeldahl nitrogen will monitor the degree of organic decomposition present.
- 9. It would be valuable to acquire background data regarding nitrogen gas. Nitrogen supersaturation is a problem associated with large scale dams. The potential has been addressed in the POS, through engineering design considerations.

10. Methodology for total dissolved and suspended solids should be defined, referred to in Standard Methods (14th ed.) as total filterable and non-filterable residues. Exceedingly high residue levels can produce interference in filtration, and drying.

- 11. The type of trace metals to be analyzed should be specified, including methodology, equipment and degree of precision.
- 12. A biological inventory should be established through coordination with respective resource agencies, so ADEC can determine what species and life stages are most biologically important and sensitive.

### DEPARTMENT OF FISH AND GAME


FILE: 15700.11.70

333 RASPBERRY ROAD ANCHORAGE, ALASKA 98902

CC. Brent Brage (RAM)

January 31, 1980

Mr. Edward Reed Terrestrial Environmental Specialists Inc. R.D. 1, Box 388 Phoenix, New York 13135



Dear Ed:

We reviewed the hydrology section of the original Acres P.O.S. to determine if the planned climatological monitoring efforts would be adequate for big game studies. We concluded that additional stations will be necessary. The enclosed map indicates approximate locations we recommend. We suggest use of the standard Soil Conservation Service snow course and recommend that snow courses be run at all climatological stations.

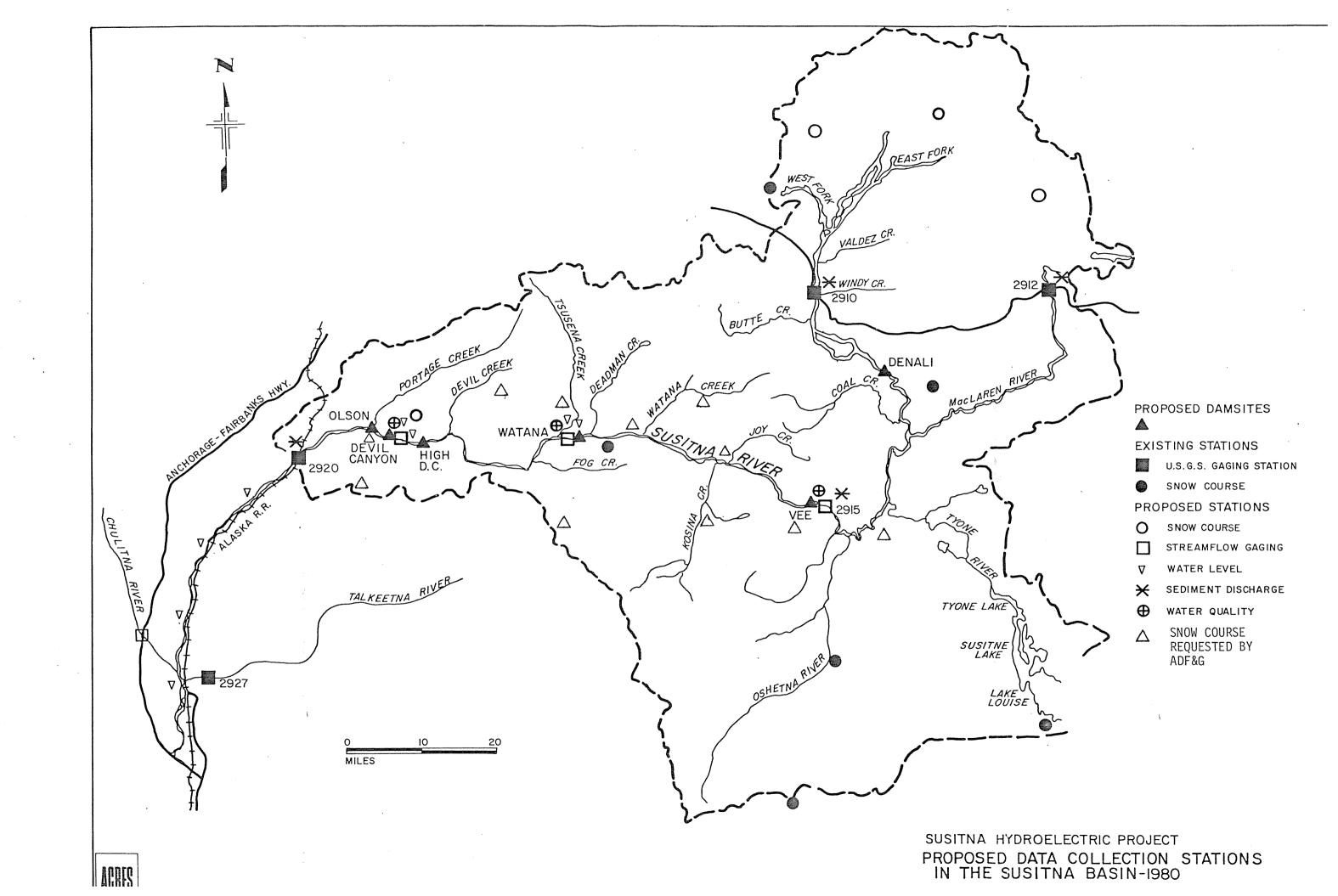
I suggest that other projects, particularly furbearers, may have additional needs. A coordinated approach would be most efficient. We would appreciate it if you would have the hydrologists review our proposal along with others. We are willing to modify our request somewhat if necessary and will participate in some of the field activities such as setting up stations and at least some data gathering.

We will also need more snow data downstream, but want to wait until we have identified potential sites for detailed vegetation studies. These sites will probably be more accessible than those upstream and less expensive to operate.

We had a good meeting with Jay after we left Fairbanks. It will take a while to work everything out and we still aren't sure if it will be possible to do all that we would like. However, I think we agreed on how to approach things and established a good air of cooperation. Next time we put the squeeze on you we will probably be a joint Alaska Department of Fish and Game - University of Alaska effort.

The enclosed schedule is preliminary and just deals with major field activities. We will refine it as we go along and supplement it in our monthly reports.

Sincerely.


Karl Schneider

Research Coordinator

Division of Gene

Accided acur anchorage

₹7LH



MINUTES OF MEETING held at the offices of USGS, Anchorage, Alaska on Friday, February 7, 1980. February 11, 1980 P5700.14.07 P5700.14.03

#### PRESENT:

Mr. Don Baxter APA (Project Engineer Mr. Brent Drage R&M Consultants AAI Consultants

Mr. Tom Trent ADF&G

Mr. Richmond Brown USGS (Associate District Chief)

Mr. Bob Madison USGS
Mr. Bob Lamke USGS
Mr. Bill Long AK. DGGS

Mr. George Clagett Soil Conservation Service

Mr. Larry Leveen USGS

Mr. Harry Hulsing USGS (AK. District Chief)

Mr. Brent Petree AK. DNR

### 1. Presentation of Meeting Agenda (Don Baxter, APA)

1.1 Attachment 1 lists Agenda

- 2. Rules of USGS Participation in Hydrologic Data Collection Programs (Harry Hulsing, USGS)
  - 2.1 USGS can only cooperate with State or other government agencies (i.e., not private consultants)
  - 2.2 Constraints: USGS basic responsibility is regional assessment if water resources (i.e. not site specific work.) They must satisfy this responsibility in any cooperative program.
  - 2.3 The State G and GS (Geologic and Geophysical Survey) is the designated agency for cooperative long term programs.
  - 2.4 Currently USGS only has sole Federal funding to operate approximately 30 gaging stations in Alaska. The rest of the stations are run as cooperative programs.
  - 2.5 In presenting new cooperative programs for funding the need for the information must be emphasized.
- 3. Current USGS Program in The Susitna Basin
  - 3.1 Summary sheet was tabled by USGS. See attachment 3
- 4. Outline Of The Hydrologic Data Collection Program Contained in the Acres POS (Brent Drage, R&M see attachment 2.) General comments by the USGS was as follows:
  - 4.1 Vee Site Gage (Cantwell) could be of interest to USGS only if we ensured it was not drowned out by reservoir at Watana.

- 4.2 Watana/Devil Canyon Sites site specific, of no interest to USGS. They did not feel discharge would be required at Devil Canyon.
- 4.3 Maclaren at Paxson USGS interested but would perhaps consider relocating further downstream at some future date.
- 4.4 Susitna at Denali Bad gaging site. Not of major interest.
- 4.5 USGS are interested in gaging other tributaries such as the Tyone river.
- 4.6 USGS amenable to go along with temporary locations for first part of program and to relocate to permanent sites at a later stage.
- 4.7 Sediment gaging -

No need to collect sediment data the way it has been done in the past, i.e. more or less random sampling. This has led to most data points being on the recession limb of the hydrographs and therefore not ideal for defining the sediment: discharge curve. Event type data collection is required to improve the current sediment: discharge curve, (i.e. intense monitoring during a range of storm or major runoff events.)

4.8 Water quality -

In general same comments as above. There is no need for extensive in-organic water quality data collection. They believe it would require a large expenditure to achieve more comprehensive information on nutrients and suggest programs be geared to study particular problems; e.g. DO - Critically low in late winter, may be problem downstream from reservoirs. Fe - Reducing environment created under ice cover due to Fe in solution; once ice disappears Fe goes back into bottom sediments.

### 5. USGS Participation in Proposed Hydrologic Data Collection Program

- 5.1 USGS sees problems in obtaining additional funding for cooperative programs.
- 5.2 Attachment 4 was produced jointly at the meeting and lists all potential gaging sites and indicates which of these the USGS has no interest in.
- 5.3 USGS indicated they would review this table and respond in writing to APA outlining which of the remaining stations they could service as part of a cooperative program and what funds would be required.

- 5.4 Note: Attachment 4 also includes the three "Southern Tributaries"; i.e., the Deception and Willow Creeks and the Deshka River. It was agreed that these would be treated seperately under the auspices of the environmental task. (Task 7 in the POS)
- 5.5 Any cooperative program should be finalized as soon as possible so that it can be submitted for funding.

### 6. SCS Participation in Hydrologic Data Collection Program

- George Clagett informed the meeting that U.S. Corps funding of the existing course stations in the basin had been withdrawn. No February 1, 1980 survey was undertaken.
- 6.2 To reinstate and complete this winter's program SCS would require approximately \$3000 and the support would have to be finalized before the end of next week (i.e. Friday, February 15, 1980.)
- 6.3 George Clagett agreed to send a letter to APA indicating what the requirements of the SCS are to: 1) complete this winter's program, expand this winter's program to include the proposed additional stations mentioned in the Acres POS. (confirmed in subsequent telephone conversation between R&M and SCS, 2/8/1980.

### 7. DNR Participation in Hydrologic Data Collection Program

This matter was not pursued because of lack of time.

Reported by

Hutchison

IH/ja

cc: B. Drage

D. Baxter

File

### SUSITNA HYDROLOGIC

### DATA COLLECTION

### AGENDA

1. Introduction

Don Baxter - Alaska Power Authority Brent Drage - R&M Consultants

- Hydrologic Data Collection Program as envisaged December, 1979.
  - . Streamflow
  - . Sediment
  - . Chemical Water Quality
  - . Snow Surveys
- 3. Summary of U.S.G.S., S.C.S. and D.N.R. comments.
- 4. Participation by U.S.G.S., S.C.S. and D.N.R.
  - . Installation
  - . Monitoring
  - . Equipment and Supplys
  - . Schedule

## SUSITNA HYDROELECTRIC PROJECT HYDROLOGIC DATA COLLECTION STATIONS

### Stream Gaging Stations

Susitna Near Denalis 15291000 Maclaren Near Paxon 15291200 Susitna at Vee Susitna at Watana Susitna at Devil Canyon Susitna at Gold Creek 15292000 Chulitna near Talkeetna Talkeetna at Talkeetna 15292700 Susitna near Parks Highway Bridge Yentna near Susitna Station Susitna at Susitna Station 15294350

### Sediment Gaging Stations

\* Susitna near Denali
 Maclaren near Paxon
 Susitna at Vee

- Susitna at Gold Creek
   Chulitna near Talkeetna
- \* Talkeetna at Talkeetna
- \* Susitna near Susitna Station

### Chemical Water Quality Stations

Susitna at Vee Susitna at Watana Susitna at Devil Canyon

- \* Susitna at Gold Creek
- \* Talkeetna near Talkeetna
- \* Susitna near Susitna Station

<sup>\*</sup>Data Currently Being Collected by U.S.G.S.

| Congralized Index of Data Collected at Gaging Stations and Cr                                            | est-stage Stations |
|----------------------------------------------------------------------------------------------------------|--------------------|
| Generalized Index of Data Collected at Gaging Stations and Criby U.S. Geological Survey in insitua Basin |                    |

| STATION        |                   | 100                                    | ATION        | ADEA     |                                               |          | DAILY TEN |              | CREST-<br>STAGE | CHET       |                                         |          | AVERAGE<br>DISCHARG |
|----------------|-------------------|----------------------------------------|--------------|----------|-----------------------------------------------|----------|-----------|--------------|-----------------|------------|-----------------------------------------|----------|---------------------|
| IDENTIFICATION | NAME              | Latitude                               | Longitude    | (m, 2)   | Period                                        | Years.   | Period    | Years        |                 |            | SEPIMENT                                |          |                     |
| 15291000       | Susitna Rinr      |                                        | 147°30'57"   |          | 1957-66                                       |          | 1974-     | 5            |                 | 1957-61.   | 1955-66.                                | Active   | 2,707               |
|                | Denali            |                                        |              |          | 68-                                           |          |           |              |                 | 68,76      | 68:74-                                  |          |                     |
|                | A                 |                                        |              |          |                                               |          |           | •            | •               |            |                                         |          |                     |
| 1529//00       | Raft Chr Denal,   | 63°03'04"                              | 147 16 22    | 4.33     |                                               |          |           |              | 1963-           | 1972       |                                         | Active   |                     |
|                | ~                 |                                        |              |          |                                               |          |           |              |                 | ~          |                                         | <u> </u> |                     |
| 15291200       | MacLaren R nr     | 630 07 10"                             | 146° 21'45"  | 280      | 1958-                                         | 20       |           |              |                 | 1958-61;   | 1958-68:                                | Active   | 980                 |
|                | Paxson            |                                        |              |          |                                               |          |           |              |                 | 67-68.75   | 74-75                                   |          | -                   |
|                |                   |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
| 15291500       | Susitna R nr      | 6204157                                | 147 32 40"   | 4,140    | 1961-72                                       |          |           |              |                 | 1967-70    | 1962-72                                 | VISC.    | 6,295               |
|                | Cantwell *        |                                        |              |          |                                               |          |           |              |                 | · ·        |                                         |          |                     |
|                |                   |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
| 15292000       | Susitna Rat Gold  | 62°46 04"                              | 149°41' 28"  | 6,160    | 1949-                                         | 29       | 1957,74-  | 6            |                 | 1949.50-53 | 1952.                                   | Active   | 9,616               |
|                | Creek             |                                        |              |          |                                               |          | , ,       |              |                 |            | 53-56. 57*                              |          |                     |
|                | ·                 |                                        |              |          |                                               |          |           |              |                 | 87.67-68.  | 62.67,77-                               |          |                     |
|                | 2                 |                                        |              |          |                                               |          |           |              |                 | 75.77      |                                         |          |                     |
|                |                   |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
| 15292400       | Chulitya R nr     | 62° 33' 31"                            | 150° 14' 02" | 2,570    | 1958-72.                                      | 14       |           |              | 1973-77         |            | 1967-72                                 | Disci    | 8,748               |
|                | Talkeetna         |                                        |              |          |                                               |          |           |              |                 | 67-68.70   |                                         |          |                     |
|                | -                 |                                        |              |          |                                               |          |           |              |                 |            |                                         | <u> </u> |                     |
| 15292700       | Talkeetna R nr    | 62°20'49"                              | 150°01 01"   | 3,006    | 1964-                                         |          | 1954      | 1            |                 | 1954*;     | 1966                                    | Active   | 4,000               |
|                | Talkeetna         |                                        |              |          |                                               |          |           |              |                 | 1967-      |                                         |          |                     |
|                | _                 |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
| 15292800       | Montana Cnr       | 62006 32"                              | 150°03' 12"  | 164      |                                               |          |           |              | 1963-72         | 1971-72    | 1970-71:                                | DISC.    |                     |
|                | Montana           |                                        |              |          |                                               |          |           |              |                 |            | 73                                      |          |                     |
|                |                   |                                        |              |          |                                               |          |           |              |                 | ·          |                                         |          |                     |
| 15292900       | Goose C nr        | 62003 42"                              | 150003 20    | 14.5     | <u>:</u>                                      | !        |           |              | 1963-71         |            |                                         | DISC.    |                     |
|                | Montana           |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
|                | 2                 |                                        |              |          |                                               |          |           |              |                 |            | <u> </u>                                | 1        |                     |
| 15293000       | caswell & nr      | 61°56 55"                              | 150° 03' 14" | 19,6     |                                               |          | i         |              | 1963 -          | 1971-72    |                                         | Active   |                     |
| 1              | Caswell           |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
|                |                   |                                        |              |          |                                               |          |           |              |                 | 8          |                                         | 1        |                     |
| 15294005       | Willow Car Willow | 61°46'49"                              | 149°52' +4"  | 166      | 1978-                                         | <u> </u> |           |              |                 | 1978       |                                         | Active   |                     |
|                |                   | <u> </u>                               |              |          | <u>,                                     </u> |          |           | <u> </u>     | _               |            | ļ · · · · · · · · · · · · · · · · · · · | 1        |                     |
| 15294010       | Deception C nr    | 61094'52"                              | 149°55'59"   | 48       | 1978-                                         |          |           |              |                 | a.         |                                         | Active   |                     |
|                | Willow :          |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
|                |                   | ļ.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |          |                                               |          | 1         |              |                 |            |                                         | 1, 7     | <del> </del>        |
| 15294100       | Deska RAP         | 61046'05"                              | 150°20'16"   | 592      | 1978-                                         |          |           |              |                 |            |                                         | Active   |                     |
|                | willow            |                                        |              |          |                                               |          |           |              |                 |            |                                         |          |                     |
|                |                   | <del> </del>                           |              |          |                                               |          |           | <b></b>      |                 |            | <u> </u>                                | 1        | 1 270               |
| 15294300       | Skwentna R nr     | 61° 52 23"                             | 15/ 22 01"   | 2,250    | 1959-                                         | 19       |           | <del> </del> |                 | 1959.61.   | 1961-68.                                | ACTIVE   | 6,373               |
|                | Skwentno          |                                        |              | <u> </u> |                                               |          |           | 1            |                 | 67-68      | 74-75                                   |          |                     |
|                |                   | ·                                      |              |          |                                               |          |           |              |                 | 1          | 10 ==                                   | 1 /1     | - + n -             |
| 15294350       | Susitna A at      | 161 3241                               | 1/50 30 451  | 19,400   | 11974-                                        | 4        | 1975-     |              |                 | 1955.70    | 1975-                                   | Active   | est 47,000          |

NOTE: Years of record are through 1918

C: QIS,WQ

c: usos.

F: USGS.

TALKERINA (TALKETNA)

SHORT: as achove

p1 -11
uno: monitoring festure flowers

merel: S = harlot be quent oriented

| P WEITT                                 | STATION   | DRAINAGE<br>AMEA<br>MILE | 17HF<br>CFS | Oß     | JECTIVES    |            | PADI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIETERS   |             |     |     | FRICIPATI  |         |          |
|-----------------------------------------|-----------|--------------------------|-------------|--------|-------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-----|-----|------------|---------|----------|
|                                         | DECEPTION |                          |             | SHORT! | Instream +1 | bw/baselin | e conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CU        | MENT : None |     | Fu  | NORE: USG: | support | 2+ leac  |
|                                         | <u> </u>  |                          | -           | Jung.  | project mo  | bw/baselin | £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRO       | NENT: None  |     |     | one<br>-u  | gage in | :onjunch |
|                                         | WILLOW    |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     | WIT        | : : :   |          |
|                                         | D.CO.LULA |                          | n-          |        |             |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |     |     |            |         |          |
|                                         | DESHKA    |                          | ~           |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |     |     |            |         |          |
|                                         |           |                          | -           |        |             |            | ACTIM -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | क क्ष     | NITIATED    | 0 : |     |            |         |          |
|                                         |           |                          | 14 P        |        |             |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ENVINONME | WIAL GROU   | Ρ   | ~   |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         | -         |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         | -        |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |             |     |     |            |         |          |
| and |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     | v.  |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         | -        |
|                                         |           |                          |             |        |             |            | The second secon |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •         |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     | 14  |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     | *** |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | `           |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         |             |     |     |            |         | _        |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     | 4   |            |         |          |
|                                         | •         |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     | v.b |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |
|                                         |           |                          |             |        |             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |             |     |     |            |         |          |

## APPENDIX F

MONTHLY STREAMFLOW DATA FOR ALTERNATIVE HYDRO SITES

SNOW DAMSITE

# STREAMFLOW (CFS)

|        | OCT   | иav  | DEC  | NAL  | FEB        | MAR  | AFR  | MAY   | אטע   | JUL   | AUG   | SEP   |
|--------|-------|------|------|------|------------|------|------|-------|-------|-------|-------|-------|
| YEAR   | (31)  | (30) | (31) | (31) | (28)       | (31) | (30) | (31)  | (30)  | (31)  | (31)  | (30)  |
| 1      | 664.  | 343. | 241. | 74.  | 58.        | 42.  | 78.  | 349.  | 2702. | 343.  | 0.    | 0.    |
| 2      | 323.  | 138. | 51.  | 31.  | 25.        | 31.  | 46.  | 257.  | 1665. | 2904. | 2009. | 2200. |
| 2<br>3 | 243.  | 308. | 162. | 58.  | 39.        | 37.  | 40.  | 182.  | 2709. | 3101. | 3258. | 1762. |
| 4      | 189.  | 63.  | 38.  | 31.  | 26.        | 25.  | 49.  | 241.  | 1447. | 3385. | 2047. | 3030. |
| 5      | 160.  | 98.  | 59.  | 36.  | 32.        | 30.  | 27.  | 94.   | 1463. | 3512. | 2146. | 801.  |
| 6      | 1125. | 544. | 176. | 93.  | 66.        | 47.  | 119. | 1192. | 5016. | 4329. | 3269. | 1370. |
| 7      | 1009. | 129. | 70.  | 52.  | 40.        | 34.  | 51.  | 505.  | 2275. | 2503. | 2472. | 716.  |
| 8      | 299.  | 257. | 106. | 65.  | 40.        | 32.  | 36.  | 193.  | 1324. | 4350. | 2436. | 1310. |
| 8<br>9 | 148.  | 70.  | 43.  | 40.  | 34.        | 31.  | 52.  | 264.  | 1044. | 2901. | 3194. | 776.  |
| 10     | 115.  | 99.  | 93.  | 46.  | 41.        | 44.  | 67.  | 318.  | 2850. | 2337. | 2449. | 3451. |
| 11     | 828.  | 323. | 107. | 83.  | 51.        | 40.  | 136. | 368.  | 3285. | 2990. | 2814. | 299.  |
| 12     | 186.  | 117. | 73.  | 48.  | 37.        | 33.  | 77.  | 708.  | 3397. | 2443. | 2028. | 275.  |
| 13     | 229.  | 162. | 98.  | 63.  | <b>57.</b> | 42.  | 56.  | 1843. | 2692. | 3317. | 2289. | 822.  |
| 14     | 237.  | 164. | 199. | 256. | 108.       | 52.  | 66.  | 930.  | 2901. | 3710. | 2792. | 1575. |
| 15     | 221.  | 128. | 60.  | 49.  | 38.        | 29.  | 91.  | 224.  | 2316. | 2987. | 1847. | 372.  |
| 16     | 314.  | 269. | 93.  | 55.  | 53.        | 60.  | 49.  | 285.  | 1480. | 3443. | 2215. | 1447. |
| 17     | 272.  | 103. | 116. | 78.  | 56.        | 39.  | 134. | 216.  | 3628. | 2939. | 2962. | 1575. |
| 18     | 269.  | 177. | 120. | 94.  | 52.        | 71.  | 135. | 220.  | 1578. | 3018. | 2283. | 1575. |
| 19     | 247.  | 87.  | 68.  | 55.  | 39.        | 39.  | 66.  | 207.  | 2692. | 2978. | 3373. | 3097. |
| 20     | 444.  | 164. | 74.  | 47.  | 43.        | 39.  | 48.  | 289.  | 2285. | 2572. | 3020. | 4829+ |
| 21     | 314.  | 147. | 112. | 84.  | 78.        | 100. | 59.  | 689.  | 2057. | 2727. | 2132. | 422.  |
| 22     | 136.  | 106. | 52.  | 31.  | 38.        | 39.  | 83.  | 486.  | 3545. | 2829. | 893.  | 399•  |
| 23     | 3734. | 277. | 267. | 121. | 119.       | 105. | 94.  | 314.  | 1891. | 2787. | 2498. | 532.  |
| 24     | 145.  | 698. | 102. | 49.  | 41.        | 40.  | 43.  | 189.  | 2451. | 4265. | 3833. | 1360. |
| 25     | 265.  | 94.  | 59.  | 35.  | 27.        | 31.  | 29.  | 163.  | 982.  | 2794. | 2582. | 1382. |
| 26     | 231.  | 103. | 63.  | 430. | 35.        | 35.  | 53.  | 291.  | 1449. | 2565. | 1756. | 677.  |
| 27     | 148.  | 73.  | 57.  | 43.  | 35.        | 33.  | 67.  | 67.   | 2125. | 2518. | 1521. | 4180. |

#### STREAMFLOW (CFS)

|      |       |      |      |      |       | ;     |      |       |       | •      | •     |       |
|------|-------|------|------|------|-------|-------|------|-------|-------|--------|-------|-------|
|      | OCT   | VON  | DEC  | MAL  | FEB   | MAR   | APR  | MAY   | JUN   | JUL    | AUG   | SEP   |
| YEAR | (31)  | (30) | (31) | (31) | (28)  | (31)  | (30) | (31,) | (30)  | (31)   | (31)  | (30)  |
| 1    | 503.  | 211. | 188. | 179. | 151.  | 142.  | 213. | 2016. | 2286. | .1782. | 1712. | 2539. |
| 2    | 697.  | 466. | 338. | 229. | 174.  | 146.  | 160. | 719.  | 3400. | 2674.  | 1781. | 1468. |
| 3    | 1049. | 439. | 465. | 119. | 101.  | 128.  | 201. | 1318. | 3134. | 1771.  | 1915. | 2096. |
| 4    | 636.  | 256. | 211. | 183. | 152.  | 119.  | 137. | 1197. | 2203. | 1928.  | 2413. | 1498. |
| 5    | 688.  | 417. | 191. | 183. | 183.  | 174.  | 146. | 1540. | 3874. | 2963.  | 2624. | 1991. |
| చ    | 717.  | 334. | 289. | 192. | 174.  | 146.  | 151. | 1992. | 4116. | 2677.  | 2618. | 1776. |
| 7    | 854.  | 413. | 283. | 206. | 187.  | 179.  | 209. | 1872. | 3969. | 2835.  | 2464. | 1829. |
| 8    | 804.  | 389. | 266. | 193. | 176.  | 168.  | 197. | 1762. | 3736. | 2669.  | 2319. | 1721. |
| 9    | 615.  | 330. | 202. | 178. | 151.  | 114.  | 146. | 1946. | 2733. | 2645.  | 2048. | 1417. |
| 10   | 831.  | 480. | 314. | 286. | 234.  | 210.  | 196. | 2476. | 1329. | 1945.  | 2306. | 2245. |
| 1.1  | 766.  | 288. | 266. | 244. | 177.  | 181.  | 268. | 2395. | 3082. | 2480.  | 2636. | 1566. |
| 1.2  | 881.  | 468. | 308. | 260. | 200.  | 179.  | 206. | 1866. | 4451. | 2787.  | 2081. | 2211. |
| 13   | 853.  | 442. | 256. | 210. | 192.  | 174.  | 192. | 1647. | 3651. | 3507.  | 2827. | 1332. |
| 1.4  | 946.  | 371. | 165. | 174. | 137.  | 119.  | 174. | 285.  | 3802. | 2820.  | 1711. | 1147. |
| 15   | 935.  | 411. | 248. | 176. | 1.46. | 146.  | 230. | 2009. | 3751. | 3180.  | 1583. | 2106. |
| 16   | 1016. | 412. | 247. | 197. | 174.  | 165.  | 183. | 1199. | 4799. | 1881.  | 2210. | 1660. |
| 17   | 712.  | 239. | 204. | 179. | 164.  | 1,51. | 151. | 1603. | 3291. | 1896.  | 3064. | 1403. |
| 18   | 738.  | 436. | 307. | 256. | 220.  | 199.  | 192. | 1906. | 4649. | 2282.  | 1190. | 746.  |
| 19   | 416.  | 130. | 85.  | 75.  | 73.   | 76.   | 164. | 1807. | 2063. | 1160.  | 824.  | 600.  |
| 20   | 417.  | 241. | 188. | 167. | 160.  | 156.  | 168. | 1521. | 2447. | 3130.  | 2293. | 1261. |
| 21   | 611.  | 246. | 181. | 158. | 153.  | 146.  | 139. | 751.  | 5969. | 2567.  | 2917. | 1618. |
| 22   | 807.  | 451. | 282. | 158. | 146.  | 146.  | 149. | 1780. | 3281. | 2013.  | 1515. | 1140. |
| 23   | 729.  | 365. | 246. | 210. | 197.  | 187.  | 188. | 1698. | 3048. | 1891.  | 2035. | 1061. |

#### KEETNA DAMSITE

# STREAMFLOW (CFS)

| YEAR | OCT<br>(31) | NOV<br>(30) | DEC (31) | JAN<br>(31) | FEB<br>(28) | MAR<br>(31) | APR<br>(30) | MAY<br>(31) | (0E)   | JUL<br>(31) | . AUG<br>(31) | SEP<br>(30) |
|------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|--------|-------------|---------------|-------------|
| 1    | 1115.       | 1568.       | 1110.    | 720.        | 620.        | 540.        | 580.        | 3474.       | 11090. | 12180.      | 11150.        | 10610.      |
| 2    | 4438.       | 1460.       | 876.     | 711.        | 526.        | 395.        | 422.        | 2410.       | 12970. | 10100.      | 10730.        | 5370.       |
| 3    | 2388.       | 897.        | 750.     | 637.        | 546.        | 471.        | 427.        | 4112.       | 9286.  | 12600.      | 14160.        | 6971.       |
| 4    | 2029.       | 1253.       | 987.     | 851.        | 777.        | 743.        | 983.        | 8840.       | 14100. | 11230.      | 7546.         | 4120.       |
| 5    | 1637.       | 827.        | 556.     | 459.        | 401.        | 380.        | 519.        | 3869.       | 5207.  | 7080.       | 3787.         | 2070.       |
| 6    | 1450.       | 765.        | 587.     | 504.        | 458.        | 440.        | 545.        | 3950.       | 7979.  | 10320.      | 8752.         | 5993.       |
| 7    | 2817.       | 1647.       | 1103.    | 679.        | 459.        | 402.        | 503.        | 2145.       | 19040. | 11760.      | 16770.        | 5990.       |
| មិ   | 2632.       | 1310.       | 545.     | 727.        | 628.        | 481.        | 518.        | 3516.       | 12700. | 12030.      | 9570.         | 8709.       |
| 9    | 3630.       | 1370.       | 889.     | 748.        | 654.        | 574.        | 571.        | 3860.       | 12210. | 7676.       | 9927.         | 3861.       |
| T O  | 1807.       | 960.        | 745.     | 645.        | 559.        | 482.        | 535.        | 5678.       | 8030.  | 7755.       | 7704.         | 4763.       |
| 1.1  | 1976.       | 1002.       | 774.     | 694.        | 586.        | 508.        | 522.        | 4084.       | 13180. | 12070.      | 8487.         | 7960.       |
| 12   | 2884.       | 773.        | 558.     | 524.        | 480.        | 470.        | 613.        | 3439.       | 10580. | 9126.       | 8088.         | 3205.       |
| 13   | 1857.       | 1105.       | 1069.    | 700.        | 549.        | 506.        | 548.        | 4244.       | 18280. | 9344.       | 8055.         | 5963.       |
| 14   | 3268.       | 1121.       | 860.     | 746.        | 576.        | 485.        | 534.        | 2950.       | 7429.  | 10790.      | 7001.         | 5367.       |

.

## STREAMFLOW (CFS)

|      | OCT   | VOV   | DEC   | JAN         | FEB  | MAR  | APR   | MAY   | JUN    | JUL    | AUG    | SEP   |
|------|-------|-------|-------|-------------|------|------|-------|-------|--------|--------|--------|-------|
| YEAR | (31)  | (30)  | (31)  | (31)        | (28) | (31) | (30)  | (31)  | (30)   | (31)   | (31)   | (30)  |
| 1.   | 1894. | 794.  | 707.  | 673.        | 569. | 535. | 804.  | 7598. | 8616.  | 6715.  | 6453.  | 9569. |
| 2    | 2626. | 1756. | 1273. | 863.        | 656. | 552. | 604.  | 2709. | 12816. | 10080. | 6712.  | 5535. |
| 3    | 3955. | 1656. | 1001. | 449.        | 380. | 483. | 759.  | 4969. | 11812. | 6674.  | 7219.  | 7906. |
| 4    | 2398. | 966.  | 794.  | 690.        | 573. | 449. | 518.  | 4510. | 8302.  | 2767.  | 9096.  | 5645. |
| 5    | 2591. | 1570. | 721.  | 690.        | 690. | 656. | 552.  | 5804. | 14603. | 11166. | 9890.  | 7505. |
| 6    | 2702. | 1260. | 863.  | 725.        | 656. | 552. | 569.  | 7509. | 15514. | 10090. | 9869.  | 6694. |
| 7    | 3218. | 1556. | 1064. | 773.        | 703. | 673. | 787.  | 7047. | 14943. | 10674. | 9276.  | 6885. |
| 8    | 3084. | 1491. | 1020. | 742.        | 674. | 645. | 754.  | 6754. | 14320. | 10229. | 8890.  | 6598. |
| 9    | 2319. | 1242. | 763.  | 669.        | 569. | 431. | 552.  | 7336. | 10300. | 9969.  | 7719.  | 5342. |
| 10   | 3133. | 1808. | 1184. | 1077.       | 883. | 790. | 738.  | 9334. | 5007.  | 7329.  | 8692.  | 8416. |
| 1.1  | 2888. | 1052. | 1004. | 918.        | 666. | 683. | 1011. | 9027. | 11619. | 9348.  | 9935.  | 5904. |
| 12   | 3320. | 1763. | 1159. | 980.        | 756. | 673. | 814.  | 7033. | 16777. | 10504. | 7843.  | 8333. |
| 13   | 3216. | 1667. | 966.  | 794.        | 725. | 656. | 725.  | 9659. | 13761. | 13220. | 10656. | 5021. |
| 1.4  | 3565. | 1398. | 621.  | <b>656.</b> | 518. | 449. | 656·  | 1073. | 14331. | 10628. | 6449.  | 4324. |
| 15   | 3523. | 1549. | 935.  | 663.        | 552. | 552. | 282.  | 7571. | 14138. | 11988. | 5966.  | 7937. |
| 16   | 3830. | 1553. | 932.  | 725.        | 656. | 621. | 690.  | 4520. | 18088. | 7091.  | 8330.  | 6329. |
| 17   | 2685. | 901.  | 770.  | 676.        | 618. | 569. | 569.  | 6042. | 12409. | 10915. | 11550. | 5290. |
| 18   | 2781. | 1643. | 1156. | 956.        | 828. | 749. | 725.  | 7184. | 19523. | 8603.  | 4486.  | 2812. |
| 19   | 1567. | 490.  | 321.  | 284.        | 276. | 285. | 618.  | 6812. | 7774.  | 4372.  | 3106.  | 2260. |
| 20   | 1570. | 908.  | 707.  | 631.        | 604. | 587. | 635.  | 5732. | 7224.  | 11798. | 8644.  | 4752. |
| 24   | 2302. | 928.  | 683.  | 597.        | 576. | 552. | 525.  | 2830. | 22499. | 9676.  | 10994. | 6097. |
| 22   | 3040. | 1701. | 1063. | 597.        | 552. | 552. | 562.  | 6708. | 12367. | 7588.  | 5711.  | 4296. |
| 23   | 2747. | 1377. | 928.  | 790.        | 742. | 704. | 707.  | 6401. | 11563. | 7129.  | 7671.  | 3999. |

TALKEETNA 2 DAMSITE 

## STREAMFLOW (CFS)

| YEAR | OCT<br>(31) | уау<br>(30) | DEC (31) | JAN<br>(31) | FEB<br>(28) | MAR<br>(31) | AFR<br>(30) | MAY<br>(31) | NUL<br>(0E) | JUL<br>(31) | AUG<br>(31) | SEF<br>(30) |
|------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|      | A ""2 "D    | / / ^       | A 77 ()  | 705         | 27.47       | 229.        | 246.        | 1472.       | 4699.       | 5161.       | 4725.       | 4496.       |
| .1   | 472.        | 664.        | 470.     | 305.        | 263.        |             |             |             |             |             |             |             |
| 2    | 1881.       | 619.        | 371.     | 301.        | 223.        | 167.        | 179.        | 1021.       | 5496.       | 2480.       | 4547.       | 2275.       |
| 3    | 1021.       | 380.        | 218.     | 270.        | 231.        | 200.        | 181.        | 1742.       | 3935.       | 5339.       | 6000.       | 2454.       |
| 4    | 860.        | 533.        | 418.     | 361.        | 329.        | 315.        | 417.        | 3746.       | 5975.       | 4758.       | 3197.       | 1746.       |
| 5    | 694.        | 350.        | 236.     | 194.        | 170.        | 161.        | 220.        | 1639.       | 2206.       | 3000.       | 1605.       | 877.        |
| ద    | 614.        | 324.        | 249.     | 214.        | 194.        | 186.        | 231.        | 1674.       | 3381.       | 2725.       | 3708.       | 2539.       |
| フ    | 1194.       | 698.        | 467.     | 288.        | 194.        | 170.        | 213.        | 909.        | 8068        | 4983.       | 7106.       | 2538.       |
| 8    | 1115.       | 555.        | 231.     | 308.        | 266.        | 204.        | 219.        | 1490.       | 5381.       | 5097.       | 4055.       | 3690.       |
| 9    | 1538.       | 581.        | 377.     | 317.        | 277.        | 243.        | 242.        | 1636.       | 5174.       | 3253.       | 4206.       | 1636.       |
| 10   | 766.        | 407.        | 316.     | 273.        | 237.        | 204.        | 227.        | 2406.       | 3403.       | 3286.       | 3264.       | 2018.       |
| 11   | 837.        | 425.        | 328.     | 294.        | 248.        | 215.        | 221.        | 1731.       | 5585.       | 5114.       | 3596.       | 3373.       |
| 12   | 1222.       | 328.        | 236.     | 222.        | 203.        | 199.        | 260.        | 1457.       | 4483.       | 3925.       | 3427.       | 1358.       |
| 13   | 787.        | 468.        | 453.     | 297.        | 233.        | 214.        | 232.        | 1798.       | 7746.       | 3959.       | 3392.       | 2527.       |
| 1.4  | 1385.       | 475.        | 364.     | 316.        | 244.        | 206.        | 226,        | 1250.       | 3148.       | 4572.       | 2967.       | 2274.       |

#### HICKS DAMSITE

#### STREAMFLOW (CFS)

|       |             |             |                             |             | *** *** *** |             |             |             |                     |              |             |             |
|-------|-------------|-------------|-----------------------------|-------------|-------------|-------------|-------------|-------------|---------------------|--------------|-------------|-------------|
| YEAR  | OCT<br>(31) | VОV<br>(30) | DEC (31)                    | ИАL<br>(1E) | FEB<br>(28) | MAR<br>(31) | APR<br>(30) | MAY<br>(31) | ИUL<br>(0 <b>Е)</b> | JUL.<br>(31) | AUG<br>(31) | SEP<br>(30) |
|       | , a         | , w v ,     | \ \( \alpha \) \( \alpha \) |             |             |             | 1.2.7       |             |                     |              |             | ,           |
| 1.    | 1791.       | 774.        | 399.                        | 237.        | 146.        | 146.        | 180.        | 939.        | 3824.               | 5193.        | 5124.       | 2597.       |
| 2     | 1016.       | 410.        | 312.                        | 270.        | 248.        | 259.        | 259.        | 919.        | 2583.               | 6016.        | 4392.       | 5788.       |
| 3     | 1617.       | <b>655.</b> | 291.                        | 205.        | 173.        | 162.        | 151.        | 535.        | 2545.               | 5296.        | 4991.       | 2073.       |
| 4     | 1917.       | 983.        | 766.                        | 540.        | 432.        | 281.        | 270.        | 1098.       | 6138.               | 7633.        | 5969.       | 2797.       |
| 5     | 964.        | 448.        | 281.                        | 216.        | 173.        | 140.        | 137.        | 1193.       | 3433.               | 4477.        | 6225.       | 2949.       |
| 6     | 964.        | 601.        | 218.                        | 312.        | 237.        | 205.        | 119.        | 286.        | 2166.               | 5824.        | 4194.       | 2533.       |
| 7     | 783.        | 245.        | 211.                        | 173.        | 162.        | 173.        | 259.        | 1033.       | 3447.               | 5851.        | 5540.       | 2381.       |
| 8     | 1128.       | 446.        | 413.                        | 271.        | 189.        | 275.        | 281.        | 1351.       | 6414.               | 5579.        | 4904.       | 5684.       |
| 9     | 2255.       | 1165.       | 530.                        | 393.        | 282.        | 248.        | 241.        | 949.        | 5344.               | 5442.        | 4860.       | 2032.       |
| 1 O   | 893.        | 565.        | 232.                        | 173.        | 178.        | 182.        | 151.        | 1114.       | 5524.               | 5841.        | 4450.       | 1885.       |
| 1.1.  | 1287.       | ۵96 •       | 490.                        | 328.        | 259         | 254.        | 259.        | 1675.       | 4056.               | 5038.        | 5105.       | 3971.       |
| 12    | 1629.       | 578.        | 386.                        | 349.        | 293.        | 243.        | 232.        | 1135.       | 3404.               | 4728.        | 5050.       | 3436.       |
| 13    | 1245.       | 626.        | 356.                        | 270.        | 248.        | 237.        | 281.        | 717.        | 4601.               | 6103.        | 5047.       | 2652.       |
| .1. 4 | 1144.       | 501.        | 378.                        | 356.        | 345.        | 323.        | 313.        | 1024.       | 2485.               | 6148.        | 5549.       | 3160.       |
| 1.5   | 1319.       | 446.        | 399.                        | 389.        | 345.        | 248+        | 238.        | 372.        | 5140.               | 5480.        | 4752.       | 2467.       |
| 16    | 990.        | 491.        | 399.                        | 324.        | 291.        | 248.        | 216.        | 569.        | 2245.               | 4652.        | 3766.       | 3103.       |
| 17    | 1417.       | 518.        | 335.                        | 227.        | 184.        | 205.        | 259.        | 553.        | 4094.               | 5172.        | 4108.       | 2403.       |

#### CHAKACHAMNA DAMSITE

#### STREAMFLOW (CFS)

|  | <br>• | • | - | <br> | ••• | •••• | <br>•- | - | ••• | - | • | - |
|--|-------|---|---|------|-----|------|--------|---|-----|---|---|---|

|      | OCT   | NOV   | DEC   | JAN  | FEB    | MAR  | APR  | MAY   | JUN    | JUL    | AUG    | SEP    |
|------|-------|-------|-------|------|--------|------|------|-------|--------|--------|--------|--------|
| YEAR | (31)  | (30)  | (31)  | (31) | (28)   | (31) | (30) | (31)  | (30)   | (31)   | (31)   | (30)   |
| 1    | 2022. | 992.  | 658.  | 504. | 381.   | 325. | 250. | 1483. | 6368.  | 10500. | 10300. | 4364.  |
| 2    | 1800. | 1116. | 882.  | 817. | 780.   | 544. | 394. | 876.  | 5673.  | 12090. | 12330. | 6989.  |
| 3    | 2638. | 1200. | 730.  | 690. | 4 630. | 540. | 470. | 620.  | 5222.  | 13000. | 12285. | 5317.  |
| 4    | 1827. | 1144. | 744.  | 553. | 387.   | 361. | 332. | 748.  | 3441.  | 12640. | 12240. | 7739.  |
| 5    | 2768. | 1384. | 1007. | 618. | 436.   | 434. | 370. | 471.  | 6278.  | 10590. | 12030. | 5654.  |
| 6    | 2026. | 1090. | 852.  | 620. | 449.   | 360. | 350. | 525.  | 2114.  | 10020. | 13180. | 10260. |
| 7    | 4027. | 1180. | 650.  | 480. | 400.   | 350. | 350. | 615.  | 5995.  | 10040. | 10310. | 7142.  |
| 8    | 3790. | 1100. | 820.  | 600. | 500.   | 430. | 380. | 935.  | 6616.  | 14380. | 16610. | 7333.  |
| 9    | 2939. | 1565. | 947.  | 626. | 535.   | 490. | 511. | 1695. | 6190.  | 12580. | 12170. | 4369.  |
| 1.0  | 1552. | 939.  | 823.  | 639. | 550.   | 500. | 533. | 1003. | 6548.  | 13100. | 8416.  | 3347.  |
| 1.1  | 3098. | 1822. | 1006. | 705. | 568.   | 550. | 625. | 1285. | 4893.  | 9960.  | 8884.  | 3687.  |
| 12   | 2201. | 1247. | 829.  | 532. | 467.   | 467. | 692. | 2381. | 10930. | 14470. | 13710. | 4513.  |
| 1.3  | 1351. | 902.  | 726.  | 585. | 484.   | 446. | 481. | 906.  | 4294.  | 12830. | 12750. | 6995.  |

#### STRANDLINE LAKE DAMSITE

#### STREAMFLOW (CFS)

|      |      |      |      |      |      |      |      |      | •    |      |      |             |
|------|------|------|------|------|------|------|------|------|------|------|------|-------------|
|      | OCT  | NOV  | DEC  | ИAL  | FEB  | MAR  | AFR  | MAY  | אטע  | JUL  | AUG  | SEP         |
| YEAR | (31) | (30) | (31) | (31) | (28) | (31) | (30) | (31) | (30) | (31) | (31) | (30)        |
| 1    | 97.  | 48.  | 32.  | 24.  | 18.  | 16.  | 12.  | 72.  | 307. | 506. | 497. | 210.        |
| 2    | 87.  | 54.  | 43.  | 39.  | 38.  | 26.  | 19.  | 42.  | 274. | 583. | 594. | 337.        |
| 3    | 127. | 58.  | 35.  | 33.  | 30.  | 26.  | 23.  | 30.  | 252. | 627. | 592. | 256.        |
| 4    | 88.  | 55.  | 36.  | 27.  | 19.  | 17.  | 16.  | 36.  | 166. | 609. | 590. | 373.        |
| 5    | 133. | 67.  | 49.  | 30.  | 21.  | 20.  | 18.  | 23.  | 303. | 511. | 580. | 273.        |
| చ    | 98.  | 53.  | 41.  | 30.  | 22.  | 17.  | 17.  | 25.  | 102. | 48.  | ٥.   | () <b>.</b> |
| 7    | 194. | 57.  | 31.  | 23.  | 1.9. | 17.  | 17.  | 30.  | 289. | 484. | 497. | 344.        |
| 8    | 183. | 53.  | 40.  | 29.  | 24.  | 21.  | 18.  | 45.  | 319. | 693. | 801. | 354.        |
| 9    | 142. | 75.  | 46.  | 30.  | 26.  | 24.  | 25.  | 82.  | 298. | 607. | 58XL | 211.        |
| T O  | 75.  | 45.  | 35.  | 31.  | 27.  | 24.  | 26.  | 48.  | 316. | 632. | 406. | 161.        |
| 11   | 149. | 88.  | 49.  | 34.  | 27.  | 27.  | 30.  | 62.  | 236. | 480. | 428. | 178.        |
| 1.2  | 106. | 60.  | 40.  | 26.  | 23.  | 23.  | 33.  | 115. | 527. | 698. | 806. | 218.        |
| 13   | 65.  | 43.  | 35.  | 28.  | 23.  | 22.  | 23.  | 44.  | 207. | 620. | 615. | 337.        |

### ALLISON CREEK DAMSITE

#### STREAMFLOW (CFS)

----

|      | OCT  | VOV  | DEC  | JAN   | FEB  | MAR  | APR  | MAY  | NUL         | JUL  | AUG  | SEP  |
|------|------|------|------|-------|------|------|------|------|-------------|------|------|------|
| YEAR | (31) | (30) | (31) | (31)  | (28) | (31) | (30) | (31) | (30)        | (31) | (31) | (30) |
| 1    | 17.  | 16.  | 1.   | ٥.    | 0.   | ٥.   | ٥.   | 0.   | 19.         | 131. | 210. | 92.  |
| 2    | 16.  | 4.   | 3.   | 2.    | 1.   | 0.   | 0.   | 2.   | 48.         | 222. | 258. | 90.  |
| з.   | 19.  | 3.   | 1.   | 1.    | 1.   | 0.   | 0.   | 6 •  | 62.         | 184. | 123. | 95.  |
| 4    | 9.   | 3.   | 2.   | 1. •  | 1.   | 1.   | 1.   | 4.   | 104.        | 201. | 229. | 210. |
| 5    | 8.   | 2.   | 2.   | 1.    | 1.   | 1.   | 1.   | 8.   | 66.         | 163. | 196. | 102. |
| 6    | 31.  | 2.   | 2.   | 1.    | 1.   | 1.   | 1.   | 2.   | 58.         | 215. | 222. | 134. |
| 7    | 24.  | 5.   | 2.   | 1.    | 1.   | 1.   | 1.   | 5.   | 91.         | 218. | 257. | 94.  |
| 8    | 34.  | 4.   | 2.   | 1. •  | 1.   | 1.   | 1. • | 4.   | 56.         | 147. | 200. | 162. |
| 9    | 57.  | 1.   | 2.   | 1     | 1.   | 1.   | 1.   | 1.   | 82.         | 130. | 178. | 124. |
| 10   | 46.  | 4.   | 1. • | 1.    | 1.   | 1.   | 1.   | 3.   | <b>63.</b>  | 120. | 130. | 189. |
| 11   | 61.  | 8.   | 1.   | il. • | 0.   | 0.   | 1.   | ۵.   | 99.         | 118. | 241. | 221. |
| 12   | 52.  | 1.   | 1.   | 1.    | 0.   | 0.   | 1.   | 21.  | 91.         | 128. | 170. | 220. |
| 13   | 13.  | 17.  | 3.   | 1. •  | 1.   | 2.   | 1.   | 30.  | <b>ፊ</b> 9• | 116. | 133. | 45.  |
| 14   | 19.  | 1.   | 1. • | 1.    | 1    | 1.   | 1.   | 30.  | 190.        | 170. | 110. | 82.  |
| 15   | 252. | 15.  | 19.  | 2.    | 2.   | 2.   | 2.   | 33.  | 90.         | 143. | 154. | 86.  |

## STREAMFLOW (CFS)

|           |       |      |      |      | ***** |      |       |       |       |       | •     |       |
|-----------|-------|------|------|------|-------|------|-------|-------|-------|-------|-------|-------|
| V.F. A.F. | 0CT   | NOV  | DEC  | MAL  | FEB   | MAR  | - APR | MAY   | JUN   | JUL   | AUG   | SEP   |
| YEAR      | (31)  | (30) | (31) | (31) | (28)  | (31) | (30)  | (31)  | (30)  | (31)  | (31)  | (30)  |
| 1.        | 321.  | 452. | 320. | 207. | 179.  | 156. | 167.  | 1001. | 3195. | 3509. | 3213. | 3057. |
| 2         | 1279. | 421. | 252. | 205. | 152.  | 114. | 122.  | 694.  | 3737. | 2910. | 3092. | 1547. |
| 3         | 688.  | 258. | 216. | 184. | 157.  | 136. | 123.  | 1185. | 2676. | 3631. | 4080. | 2009. |
| 4         | 585.  | 362. | 284. | 245. | 224.  | 214. | 283.  | 2547. | 4036. | 3236. | 2174. | 1187. |
| 5         | 612.  | 309. | 208. | 172. | 150.  | 142. | 194.  | 1447. | 1947. | 2647. | 1416. | 774.  |
| 6         | 542.  | 286. | 219. | 188. | 171.  | 165. | 204.  | 1477. | 2983. | 1019. | 3272. | 2241. |
| 7         | 1053. | 616. | 412. | 254. | 173.  | 150. | 188.  | 802.  | 7119. | 4397. | 6270. | 2240. |
| 8         | 984.  | 490. | 204. | 272. | 235.  | 180. | 194.  | 1315. | 4748. | 4498. | 3578. | 3256. |
| 9         | 1357. | 512. | 332. | 280. | 245.  | 215. | 213.  | 1443. | 4565. | 2870. | 3711. | 1444. |
| 10        | 676.  | 359. | 279. | 241. | 209.  | 180. | 200.  | 2123. | 3002. | 2899. | 2280. | 1781. |
| 1.1       | 739.  | 375. | 289. | 259. | 219.  | 190. | 195.  | 1527. | 4928. | 4513. | 3173. | 2976. |
| 1.2       | 1078. | 289. | 209. | 196. | 179.  | 176. | 229.  | 1256. | 3956. | 3375. | 3024. | 1198. |
| 13        | 694.  | 413. | 400. | 262. | 205.  | 189. | 205.  | 1587. | 6834. | 3494. | 2993. | 2229. |
| 1 Δ       | 1999. | 419. | 300. | 279. | 215.  | 181. | 200.  | 1103. | 2777. | 4034. | 2618. | 2007. |

# APPENDIX G

CLIMATE DATA STATIONS (3)

# CLIMATIC STATIONS IN THE SUSITNA BASIN

| ^-         |                 |                      |                | 4                                |                                                                |
|------------|-----------------|----------------------|----------------|----------------------------------|----------------------------------------------------------------|
|            | Index<br>Number | Station Name         | Measured<br>By | Report <sup>1</sup><br>Available | Period of Record                                               |
| _          | 0610            | Susitna Glacier      | R&M            | -                                | 7/20 - 8/7/80<br>8/7 - 8/14/80<br>8/28 - Present               |
|            | 0618            | Gracious House       | NOAA           | В                                | 1959 - 1978                                                    |
| <b>~</b> . | 0620            | Denali               | R&M            | -                                | 7/18 - 8/28/80<br>8/28 - ?<br>10/17 - Present                  |
| ***        | 0630            | Tyone R.             | R&M            | -                                | 8/27 - 8/30/80<br>10/17 - Present                              |
|            | 0640            | Kosina Cr.           | R&M            | -                                | 8/25 - Present                                                 |
| <b>_</b>   | 0650            | Watana               | R&M            |                                  | 4/8 - 6/10/80<br>6/19 - 7/30<br>8/14 - 10/2<br>10/17 - Present |
|            | 0660            | Devils Canyon        | R&M            | -                                | 7/17 - 8/28/80<br>10/16 - Present                              |
| _          | 0670            | McKinley Park        | NOAA           | В                                | 1949 - Present                                                 |
|            | 0671            | Healy 2              | NOAA           | В                                | 1972 - Present*                                                |
|            | 0672            | Healy Power Plant I  | NOAA           | -                                | Miscellaneous Wind Data*                                       |
| _          | 0673            | Healy Power Plant II | NOAA           | -                                | Miscellaneous Wind Data*                                       |
|            | 0674            | Rapids               | NOAA           | -                                | Miscellaneous Wind Data*                                       |
|            | 0675            | Big Delta            | NOAA           | A                                | 1949 - Present*                                                |
| _          | 0676            | Paxson               | NOAA           | Α                                | 1922 - Present                                                 |

NOAA Reports Available:

A Annual Summary with Comparative Data (see Ref. 11)

B - Annual Climatologic Summary (see Ref. 11)

<sup>\*</sup> Miscellaneous Wind Data

| Index<br><u>Number</u> | Station Name       | Measured<br>By | Report <sup>1</sup><br>Available | Period of Reco  | rd    |
|------------------------|--------------------|----------------|----------------------------------|-----------------|-------|
| 0677                   | Gulkana            | NOAA           | Α                                | 1949 - Present* | ents. |
| 0678                   | Summit             | NOAA           | Α                                | 1946 - Present* |       |
| 0679                   | Chulitna R. Lodge  | NOAA           | В                                | 1971 - Present  | ***   |
| 0680                   | Edgemire Lakes     | NOAA           | В                                | 1971 - Present  | -     |
| 0681                   | Chulitna Hwy. Camp | NOAA           | В                                | 1972 - Present  |       |
| 0682                   | Talkeetna          | NOAA           | Α                                | 1949 - Present* | -     |
| 0683                   | Willow Hwy. Camp   | NOAA           | В                                | 1977 - Present  |       |
| 0684                   | Whites Crossing    | NOAA           | В                                | 1971 - Present  | -     |
| .0685                  | Puntilla           | NOAA           | В                                | 1949 - Present  | -     |
| · 0686                 | Skwentna           | NOAA           | В                                | 1949 - Present  |       |
| 0687                   | Anchorage          | NOAA           | Α                                | 1946 - Present  |       |

NOAA Reports Available:

A Annual Summary with Comparative Data

B - Annual Climatologic Summary

<sup>\*</sup> Miscellaneous Wind Data

#### MISCELLANEOUS WIND DATA

Stations: Healy 2, Healy Power Plant I, Healy Power Plant II

Table containing wind speed percent frequency and cumulative frequency at one meter per second increments. Table containing wind direction frequency in percent. Table containing wind speed and joint frequency.

Station: Rapids

Period summary by combined velocity groups (1 to 12 observations daily) covering 1935 - 1941.

Station: Big Delta

Period summary by combined velocity groups ( 1 to 3 observations daily) covering 1935 - 1941.

Station: Gulkana

Percentage frequency of occurrence, direction by speed groups - a summary of the data between January 1945 and November 1958.

Station: Summit

Period summary by combined velocity groups (16 observations daily) covering 1940 - 1941.

Station: Talkeetna

Period summary by combined velocity groups (16 observations daily) covering 1940 - 1941.

# APPENDIX H

SNOW SURVEY - STATIONS AND PERIOD OF RECORDS (3)

#### 0800 SNOW SURVEY

Snow depth and water equivalent data have been collected by the U.S. Soil Conservation Service, the Alaska Department of Fish and Game and R&M Consultants. The locations for which this information is available are listed below generally in order from the upstream end to the downstream end of the Susitna Basin.

The ADF&G markers have been established for the purpose of studying the effect of snow depth on game movements. There are 8 locations each along a tributary stream to the Susitna River with 4 - 6 aerial snow markers at each location. These markers are placed at different elevations moving up the stream valley.

The cross reference numbers for SCS sites listed on the following page correspond to map numbers as published in the Snow Survey Bulletin issued by the Soil Conservation Service. Cross reference numbers for R&M and ADF&G snow courses are arbitrary. These will be changed to map numbers when they are included in the Snow Survey bulletin.

All of the data listed can be obtained from the agency responsible for the snow course or from R&M Consultants.

| Index<br>Number | Course Name        | Measured<br>By | Cross<br>Reference<br>Number | Years of<br>Previous<br>Record | Drainage Basin     |
|-----------------|--------------------|----------------|------------------------------|--------------------------------|--------------------|
| 0802            | Cirque             | R&M            | W-1                          | -                              | West Fork GI.      |
| 0803            | Ice Cave           | R&M            | W-2                          | -                              | West Fork GI.      |
| 0804            | West Fork GI.*     | R&M            | W-3                          | -                              | West Fork G.       |
| 0805            | Crevasse           | R&M            | S-1                          | -                              | Susitna Gl.        |
| 0806            | Mt. Hayes*         | R&M            | s <b>-</b> 2                 | -                              | Susitna Gl.        |
| 0807            | Caribou            | R&M            | s-3                          | -                              | Susitna Gl.        |
| 8080            | Malamute           | R&M            | S-4                          | -                              | Susitna Gl. 💂      |
| 0809            | Mt. Deborah        | R&M            | S-5                          | -                              | Susitna GI.        |
| 0810            | Aurora Peak        | R&M            | S <b>-</b> 6                 | -                              | Susitna Gl. 🛥      |
| 0811            | East Fork*         | R&M            | E-2                          | -                              | East Fork GI.      |
| 0812            | Pyramid            | R&M            | E-1                          | -                              | East Fork Gl. 🔔    |
| 0813            | Jatu Pass*         | R&M            | E-3                          | -                              | East Fork GI.      |
| 0814            | Monahan Flats*     | scs            | 25                           | 15                             | West Fork GI.      |
| 0815            | Denali*            | R&M            | -                            | -                              | Susitna River      |
| 0816            | Butte Creek        | R&M            | B-3                          | -                              | Butte Creek        |
| 0817            | Moose              | R&M            | B-2                          | -                              | Butte Creek        |
| 0818            | Red Fox            | R&M            | B-1                          | -                              | Butte Creek        |
| 0819            | Clearwater Lake*   | SCS            | 26                           | 14                             | Maclaren River 🔽   |
| 0820            | Tyone R.*          | R&M            | -                            | -                              | Tyone River        |
| 0821            | Lake Louise*       | scs            | 29                           | 15                             | Tyone River 🕳      |
| 0822            | Little Nelchina    | scs            | 31                           | 12                             | Oshetna R.         |
| 0823            | Kosina Cr.*        | R&M            | -                            | -                              | Kosina Cr.         |
| 0824            | Oshetna Lake*      | scs            | 30                           | 15                             | Oshetna R.         |
| 0825            | Goose Creek        | ADF&G          | 8                            |                                | Goose Creek        |
| 0826            | Coal Creek         | ADF&G          | 7                            | -                              | Coal Creek         |
| 0827            | Gaging Station Cr. | ADF&G          | 6                            | -                              | Gaging Station Cr. |
| 0828            | Jay Creek          | ADF&G          | 5                            | -                              | Jay Creek          |
| 0829            | Kosina Cr.         | ADF&G          | 4                            | -                              | Kosina Cr.         |
| 0830            | Watana Cr.         | ADF&G          | 3                            | -                              | Watana Cr.         |
| 0831            | Fog Cr.            | ADF&G          | 2                            | -                              | Fog Cr.            |
|                 |                    |                |                              |                                |                    |

<sup>\*</sup> Indicates site with snow course and aerial stadia marker, all other aerial stadia \_\_ markers only.

| <b>*</b>   | Index<br>Number | Course Name          | Measured<br>By | Cross<br>Reference<br>Number | Years of<br>Previous<br>Record | Drainage Basin |
|------------|-----------------|----------------------|----------------|------------------------------|--------------------------------|----------------|
|            | 0832            | Devil Mountain       | ADF&G          | 1                            | _                              | Susitna River  |
|            | 0833            | Fog Lakes*           | scs            | 24                           | 10                             | Fog Cr.        |
|            | 0834            | Watana Camp*         | R&M            | -                            | -                              | Susitna River  |
|            | 0835            | Devils Canyon*       | R&M            | -                            | -                              | Susitna River  |
| _          | 0836            | Devils Canyon        | scs            | 124                          | 3                              | Susitna River  |
|            | 0837            | Talkeetna R.         | scs            | 135                          | 13                             | Talkeetna R.   |
| -          | 0838            | Chulitna R.          | scs            | 137                          | 1                              | Talkeetna R.   |
|            | 0839            | Talkeetna            | scs            | 22                           | 13                             | Susitna River  |
| <b>-</b>   | 0840            | Middle Fork Iron Cr. | scs            | 134                          | 1                              | Talkeetna R.   |
|            | 0841            | Rainbow Lake         | scs            | 136                          | 2                              | Talkeetna R.   |
| <b>,</b>   | 0842            | Bald Mt. Lake*       | scs            | 23                           | 15                             | Talkeetna R.   |
|            | 0843            | Talkeetna R. Pass    | scs            | 133                          | 1 .                            | Talkeetna R.   |
| _          | 0844            | Sheep River          | scs            | 132                          | 1                              | Sheep River    |
|            | 0845            | Sheep Creek Cirque   | scs            | 131                          | 1                              | Sheep Creek    |
| _          | 0846            | Upper Kashwitna R.   | scs            | 130                          | 1                              | Kashwitna R.   |
| <b>-</b> , | 0847            | Kashwitna R. Cirque  | scs            | 129                          | 1                              | Kashwitna R.   |
|            | 0848            | Little Willow Cr.    | scs            | 128                          | 1                              | Kashwitna R.   |
| -          | 0849            | Independence Mine    | scs            | 33                           | 13                             | Willow Creek   |
|            | 0850            | Deception Cr.*       | scs            | 142                          | 1                              | Willow Creek   |
|            | 0851            | Mt. Bullion*         | scs            | 141                          | 2                              | Willow Creek   |
|            | 0852            | Capitol Site*        | scs            | 140                          | .2                             | Willow Creek   |
| _          | 0853            | Willow Airstrip      | scs            | 32                           | 16                             | Willow Creek   |
|            | 0854            | Tokositna Valley     | scs            | -                            | -                              | Kahiltna R.    |
| _          | 0855            | Ramsdyke Cr.*        | scs            | -                            | <b>-</b>                       | Kahiltna R.    |
|            | 0856            | Dutch Hills          | scs            | -                            | -                              | Kahiltna R.    |
|            | 0857            | Peters Hills         | scs            | 21                           | 12                             | Kahiltna R.    |
| partie.    | 0858            | Chelatna Lake        | scs            | 20                           | 16                             | Kahiltna R.    |
|            | 0859            | Skwentna*            | scs            | 19                           | 12                             | Yentna R.      |
|            | 0860            | Alexander Lake*      | SCS            | 18                           | 16                             | Yentna R.      |
|            | 0861            | Haggard Cr.*         | SCS            | `48                          | 14                             | Copper R.      |
| <b>/</b>   | 0862            | St. Anne Lake*       | SCS            | 28                           | 15                             | Copper R.      |
|            |                 |                      |                |                              |                                |                |

<sup>\*</sup> Indicates site with snow course and aerial stadia marker, all other aerial stadia markers only.

#### 0900 SNOW CREEP

R&M is currently planning to install devices for measuring the effect of snow creep forces on transmission line towers. Two locations are planned along the proposed transmission line route. As this data is collected, it will be filed at R&M according to site number and name.

Some previous research on snow creep was done by the U.S. Army Corp of Engineers in 1974, reported in the following paper:

Snow Creep Investigations in Southeast Alaska; Meyer, Robert. Alaska District, Army Corps of Engineers.

# APPENDIX I

DATA COLLECTED BY
ALASKA DEPARTMENT OF FISH & GAME (3)

# DATA COLLECTED BY ALASKA DEPARTMENT OF FISH AND GAME (ADF&G) FROM THE SUSITNA RIVER BASIN BETWEEN 1974 and 1978

Streamflow, water quality and water temperature data have been collected by the Alaska Department of Fish and Game at a number of locations within the Susitna River Basin. Since the measurements have been taken periodically, the number of measurements, timing and specific parameters measured vary from year to year at any given station. Information available from the Alaska Department of Fish and Game has been included below. These reports are all on file at R&M Consultants.

Barrett, Bruce M. 1974. An assessment study of the anadromous fish populations in the Upper Susitna River watershed between Devil's Canyon and the Chulitna River. Cook Inlet Data Report No. 74-2. Alaska Department of Fish and Game. Division of Commerical Fisheries. 56 pp.

Figure 10: Profile of Susitna River water temperatures for September 4 - 11 at Gold Creek and Devil's Canyon Fishwheel Camp.

Figure 11: Profile of water and air temperatures recorded daily at east bank fishwheel.

- Friese, Nancy V. 1975. Preauthorization assessment of anadromous fish populations of the Upper Susitna River watershed in the vicinity of the proposed Devil's Canyon Hydroelectric project. Cook Inlet Data Report No. 75-2. Alaska Department of Fish and Game Division of Commercial Fisheries. 121 pp.
  - Table 10: Survey of winter conditions in Indian River,
    Lane Creek and Gold Creek.
  - Table 11: Analysis of Water Conditions in Indian River, at Chase Creek, 1974 1975.
  - Table 12: Analysis of Water Conditions at Gold Creek, 1974 1975.
  - Table 13: Analysis of water conditions at Parks Highway Bridge, 1974 1975.
- Riis, James C. 1975. Pre-authorization assessment of the Susitna River Hydroelectric Projects: preliminary investigations of water quality and aquatic species composition. Alaska Department of Fish and Game. Division of Sport Fish. 61pp.
  - Figure 1: Daily water temperature in the Susitna River at Parks Highway Bridge, June 20 September 23, 1975.
  - Figure 2: Maximum daily water temperatures of Birch Creek, April 11 August 30, 1975.
  - Figure 3: Maximum daily water temperatures for Willow Creek, April 10 September 23, 1975.

Table 9: Maximum and minimum daily water temperatures for the Susitna River at Parks Highway Bridge,
June 20 - September 23, 1975.

Table 10: Maximum and Minimum daily water temperatures from Willow Creek, April 11 - August 30, 1975.

Table 12: Maximum, minimum and mean values of water quality data collected from the Susitna River and seven tributaries of the Susitna River.

Table 14: Water quality analysis on sample taken March 25, 1975 from the Susitna River at Sunshine.

Table 16: Water quality data collected from four tributaries of the Susitna River, August 1975.

Table 17: Water quality data collected from the Susitna River above Gold Creek, August 1975.

Table 18: Water quality data collected from the Susitna River above Portage Creek, August 1975.

Table 19: Water quality data collected from 15 sloughs between Talkeetna and Portage Creek, August 1975.

Table 20: Water quality data collected from Susitna River near Jay, Watana and Deadman Creeks.

Riis, James C., 1977. Pre-authorization assessment of the proposed Susitna River Hydroelectric Projects: preliminary investigations of water quality and aquatic species composition. Alaska Department of Fish and Game. Division of Sport Fish. 91 pp.

#### Appendix A

- Table 1: Water quality data collected from the Susitna River at the Parks Highway Bridge between July 21 and October 1, 1976.
- Table 2: Water quality data collected from the Susitna River at the Gold Creek Railroad Bridge between July 13 and October 1, 1976.
- Table 3: Water quality data collected from the Susitna River upstream of Portage Creek between July 15 and October 29, 1976.
- Table 4: Water quality data collected from sloughs 8 and 10, between June 25 and September 30, 1976.
- Table 5: Water quality data collected from sloughs 11 and 13 between June 23 and September 30, 1976.
- Table 6: Water quality data collected from Sloughs 14 & 15 between June 25 and September 30, 1976.
- Table 7: Water quality data collected from Sloughs 16 & 17 between June 24 and September 29, 1976.
- Table 8: Water quality data collected from Sloughs 18 & 19 between June 15 and September 29, 1976.

Table 9: Water quality data collected from slough 20 between June 24 - September 29, 1976.

Table 10: Water quality data collected from Willow Creek,
Little Willow Creek, Kashwitna River and Caswell
Creek between July 21 and October 12, 1976.

Table 11: Water quality data collected from Sheep Creek,
Goose Creek and Montana Creek between July 21
and October 12, 1976.

Table 12: Water quality data collected from Slough 3c and Chase Creek between June 26 and October 1, 1976.

Table 13: Water quality data collected from Fourth of July Creek, Gold Creek, Indian River and Portage Creek between July 17 and September 28, 1976.

Table 14: Daily maximum and minimum water temperatures in the Susitna River at Parks Highway Bridge, June 26 - October 26, 1976.

Table 15: Daily maximum and minimum water temperatures in the Susitna River above Chase Creek,

June 21 - September 29, 1976.

Table 16: Daily maximum and minimum water temperatures in the Susitan River between Devil's Canyon and Portage Creek, June 22 - October 30, 1976.

Table 17: Daily maximum and minimum water temperatures in Birch Creek, June 26 - December 2, 1976.

| Table 19: | Slough | 8 | cross | sections | and | stage | gage | inform- |
|-----------|--------|---|-------|----------|-----|-------|------|---------|
|           | ation. |   |       |          |     |       |      |         |

- Table 20: Slough 10 cross sections and stage gage information.
- Table 21: Slough 11 cross sections and stage gage information.
- Table 22: Slough 13 cross sections and stage gage information.
- Table 23: Slough 14 cross sections and stage gage information.
- Table 24: Slough 15 cross sections and stage gage information.
- Table 25: Slough 16 cross sections and stage gage information.
- Table 26: Slough 17 cross sections and stage gage information.
- Table 27: Slough 18 cross sections and stage gage information.
- Table 28: Slough 19 cross sections and stage gage information.
- Table 29: Slough 20 cross sections and stage gage information.

Table 30: Slough 3C cross sections and stage gage information.

Table 31: Chase Creek cross sections and stage gage information.

Table 32: Tributary flow data, 1976.

Riis, James C. and Friese, Nancy V., 1978. Fisheries and Habitat Investigations of the Susitna River - A preliminary study of potential impacts of the Devil's Canyon and Watana Hydroelectric Projects. Alaska Department of Fish and Game, Division of Sport & Commercial Fish. 116 pp.

Table 8: Water quality data from selected tributaries to the Susitna River, 1977.

Table 10: Water flows of Montana, Rabideux and Willow Creeks from May through November, 1977.

Table 11: Daily maximum and minimum water temperatures from the Susitna River at the Parks Highway Bridge, June 27 - October 12, 1977.

#### Appendix II

Table 2: Water quality data from sloughs and clearwater tributaries of the Susitna River, June 14 - October 5, 1977.

Table 3: Daily maximum and minimum water temperatures in Rabideux Creek, May 25 - October 23, 1977.

Table 4: Daily maximum and minimum water temperatures in Montana Creek, May 25 - November 6, 1977.

Table 5: Water quality data from Rabideux Creek,
May 25 - October 27, 1977.

Table 6: Water quality data from Montana Creek, June 7 - October 26, 1977.