




# Environmental Assessment of the Alaskan Continental Shelf

July-September 1977 quarterly reports from Principal Investigators participating in a multi-year program of environmental assessment related to petroleum development of the Alaskan Continental Shelf. The program is directed by the National Oceanic and Atmospheric Administration under funding from and for use by the Bureau of Land Management.

# ENVIRONMENTAL RESEARCH LABORATORIES Boulder, Colorado

December 1977

Constant in

NOTICE

17. <del>3</del>. 78

The Environmental Research Laboratories do not approve, recommend, or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to the Environmental Research Laboratories or to this publication furnished by the Environmental Research Laboratories in any advertising or sales promotion which would indicate or imply that the Environmental Research Laboratories approve, recommend, or endorse any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this Environmental Research Laboratories publication.

# VOLUME 2

# CONTENTS

i.

Page

1

741

RECEPTORS (BIOTA) FISH

ر بنه در بېکر د .

MICROBIOLOGY

RECEPTORS (BIOTA) FISH .

ν,

# RECEPTORS (BIOTA) FISH

| Research<br><u>Unit</u> | Proposer                                               | Title                                                                                                                                                      | Page              |
|-------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 5                       | H. M. Feder<br>et al.<br>IMS/U. of Alaska              | The Distribution, Abundance, Diversity and<br>Productivity of Benthic Organisms in the<br>Gulf of Alaska, Two Kodiak Bays, Bering<br>Sea, and Norton Sound | 5                 |
| 6<br>*                  | A. G. Carey, Jr.<br>Oregon State U.<br>Dept. of Ocean. | The Distribution, Abundance, Diversity and<br>Productivity of the Western Beaufort Sea<br>Benthos                                                          | 13 NOT IN<br>BIPG |
| 19                      | L. H. Barton<br>ADF&G                                  | Finfish Resource Surveys in Norton Sound<br>and Kotzebue Sound                                                                                             | 24                |
| 19E                     | I. M. Warner<br>ADF&G                                  | Forage Fish Assessment, Southern Bering Sea                                                                                                                | 28                |
| 78                      | C. E. O'Clair<br>T. R. Merrell, Jr.<br>NWFC/Auke Bay   | Baseline/Reconnaissance Characterization<br>Littoral Biota, Gulf of Alaska and Bering Sea                                                                  | 31                |
|                         | H. S. Sears<br>S. T. Zimmerman<br>NMFS/Auke Bay        | Alaska Intertidal Survey Atlas                                                                                                                             | 43                |
|                         | Dames & Moore                                          | Ecological Assessment of Sublittoral Plant<br>Communities in the Northern Gulf of Alaska<br>(Supplement to RU#78 - Sub-contract Report)                    | 44                |
| 174                     | L. L. Ronholt<br>H. H. Shippen<br>NMFS/NWFC            | Baseline Studies of the Demersal Resources<br>of the Eastern and Western Gulf of Alaska<br>Shelf and Slope: A Historical Revies                            | 198               |
| 233                     | T. N. Bendock<br>ADF&G                                 | Beaufort Sea Estuarine Fishery Study                                                                                                                       | 199               |
| 284                     | R. L. Smith<br>et al.<br>IMS/U. of Alaska              | Food and Feeding Relationships in the Benthic<br>and Demersal Fishes of the Gulf of Alaska<br>and Bering Sea                                               | 202               |
| 356                     | A. C. Broad<br>Western Washington<br>State College     | Environmental Assessment of Selected Habits<br>in the Beaufort and Chukchi Sea Littoral<br>System                                                          | 229               |

# RECEPTORS (BIOTA) FISH

**.** 

anta districture

| Research<br>Unit | Proposer                                             | Title                                                                                                                                     | Page |
|------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| 359              | R. A. Horner<br>U. of Washington                     | Beaufort Sea Plankton Studies                                                                                                             | 238  |
| 380              | K. D. Waldron<br>F. Favorite<br>NMFS/NWFC            | Ichthyoplankton of the Eastern Bering Sea                                                                                                 | 256  |
| 417              | D. C. Lees<br>Dames & Moore                          | Ecological Studies of Intertidal and Shallow<br>Subtidal Habitats in Lower Cook Inlet                                                     | •262 |
| 424              | T. S. English<br>U. of Washington<br>Dept. of Ocean. | Lower Cook Inlet Meroplankton                                                                                                             | 273  |
| 426              | R. T. Cooney<br>IMS/U. of Alaska                     | Zooplankton and Micronekton Studies of the<br>Bering/Chukchi Seas - Inshore Studies                                                       | 646  |
| 485              | C. K. Harris<br>A. C. Hartt<br>U. of Washington      | Assessment of Pelagic and Nearshore Fish in<br>Three Bays on the East and South Coasts of<br>Kodiak Island, Alaska                        | 648  |
| 486              | J. E. Blackburn<br>ADF&G                             | Demersal Fish and Shellfish Assessment in<br>Selected Estuary Systems of Kodiak Island                                                    | 649  |
| 502              | H. M. Feder<br>IMS/U. of Alaska                      | Trawl Survey of the Benthic Epifauna of the<br>Chukchi Sea and Norton Sound                                                               | 652  |
| 512              | J. E. Blackburn<br>ADF&G                             | Pelagic and Demersal Fish Assessment in the<br>Lower Cook Inlet Estuary System                                                            | 653  |
| 517              | H. M. Feder<br>S. C. Jewett<br>IMS/U. of Alaska      | The Distribution, Abundance and Diversity of<br>the Epifaunal Benthic Organisms in Two Bays<br>(Alitak and Ugak) of Kodiak Island Alaska) | 655  |

Ą

 $QUA \prec \exists ERLY \neg REPORT$ 

the strategy

Contract 03-5-022-56 Research Unit #5 Reporting Period 7/1/77-9/30/77 Task Order Nos. 15, 20, 29, 30 Number of Pages: 7

THE DISTRIBUTION, ABUNDANCE, DIVERSITY AND PRODUCTIVITY OF BUNTHIC ORGANISMS IN THE CULF OF ALASKA, TWO KODIAK BAYS, BERING SEA, CHUKCHI SEA, AND NORTON SOUND

> Principal Trivestigator Dr. Howard M. Feder

Assisted by: Associate Investigators M. Hoberg, S. Jewett, G. Matheke, G. Mueller

> Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

> > September 1977

#### TABLE OF CONTENTS

s ya washiri

| BERING S | SEA AND GULF OF ALASKA                                                                                                         |
|----------|--------------------------------------------------------------------------------------------------------------------------------|
| I.       | Task Objectives                                                                                                                |
| II.      | Field and Laboratory Activities                                                                                                |
|          | A. Grab program                                                                                                                |
|          | B. Trawl and pipe dredge program                                                                                               |
| III.     | Results                                                                                                                        |
|          | <ul><li>A. Crab programs.</li><li>B. Trawl and pipe dredge program.</li><li>A. A. A</li></ul> |
| IV.      | Preliminary Interpretation of Results                                                                                          |
| V.       | Problems Encountered                                                                                                           |
| × .      |                                                                                                                                |
| ALITAK A | ND UGAK BAYS, KODIAK ISLAND                                                                                                    |
| I.       | Task Objectives                                                                                                                |
| II.      | Field and Laboratory Activities                                                                                                |
|          | Λ. Field program                                                                                                               |
|          | B. Laboratory program                                                                                                          |
| 171.     | Results                                                                                                                        |
| IV.      | Problems Encountered                                                                                                           |
| СНИКСИТ  | SEA AND NORTON SOUND                                                                                                           |
| I.       |                                                                                                                                |
| -        | Task Objectives                                                                                                                |
| Ι⊥.      | Ship or Laboratory Activities                                                                                                  |
| 111.     | Results                                                                                                                        |
| IV.      | Problems Encountered                                                                                                           |
| MILESTON | IES                                                                                                                            |

#### BERING SEA AND GULF OF ALASKA

#### I. TASK OBJECTIVES

- A. Inventory and census of dominant species.
- B. Description of spatial and seasonal distribution patterns of selected species.
- C. Provide comparison of dominant species distribution with physical, chemical and geological factors.
- D. Provide preliminary observations of biological interrelationships between selected segments of benthic marine communities.

#### II. FIELD AND LABORATORY ACTIVITIES

- A. Grab Program
  - 1. No cruises were scheduled for this quarter.
  - 2. Analysis of all samples collected in the last two years is still in progress at the Marine Sorting Center and the Data Processing Section of the Institute of Marine Science.
  - 3. Organization of data for reports and publications are in progress.
- B. Trawl and Pipe Dredge Program
  - 1. No cruises scheduled for this quarter.
  - All trawl and pipe dredge material from Cook Inlet and the Bering Sea were examined and data submitted for key punching.
  - 3. Dominant clam species from Cook Inlet and the Bering Sea were examined for age and growth determinations. Data has been submitted for key punching. Age-growth history tables were organized.

#### III. RESULTS

- A. Crab Programs
  - 1. Data collected during R/V Discoverer Cruise DS001 in March

1976 has been key punched, and is in the initial stages of data analysis.

- 2. A chapter entitled, Numerical Analysis of the Benthic Infauna in the Northeastern Gulf of Alaska, is to be submitted shortly for publication in Volume II of the Proceedings of the 27th Alaska Science Conference. This chapter includes methodology and preliminary results of activities of the past two years on the analysis of benthic infauna in NEGOA.
- 3. Additional programs to further the analysis of NEGOA are being developed.
- 4. The Final Report is in progress.
- B. Trawl and Pipe Dredge Program
  - 1. Trawl and pipe dredge data from Cook Inlet and the Bering Sea has been key punched and printed out. Checking and analysis of this data is in progress.
  - Clam species from Cook Inlet and the Bering Sea have been aged, measured, data recorded on computer forms, and subjected to analysis. Species examined were: (1) Cook Inlet - Spisula polynyma, Nuculana fossa, Tellina nuculoides, Glycymeris subobsoleta, Macoma calcarea, Nucula tenuis, and (2) Bering Sea - Spisula polynyma, Macoma calcarea, Tellina lutea, Nuculana fossa, Yoldia amygdalea.
  - 3. A manuscript on the feeding biology of the snow crab *Chionoecetes bairdi* in Cook Inlet is completed and will be available to the Final Report.
  - 4. The Final Report is in progress.

#### IV. PRELIMINARY INTERPRETATION OF RESULTS

General interpretations of grab and trawl data are included in the 1976 and 1977 Annual Reports and in Institute of Marine Science Technical Report R76-8. Additional comments on this, pipe-dredge data, and food relationships will be included in the Final Report.

#### V. PROBLEMS ENCOUNTERED

No direct problems. However, the initial decisions by OCSEAP that, (1) our surveys in the Gulf, Cook Inlet, and the Bering Sea be primarily ones of assessment of distribution and abundance of invertebrates, (2) our survey should not examine crab stomachs, and (3) the fish stomach survey by Dr. Ron Smith should have minimal and limited funding (also that we should not examine any fish stomachs in our project), are now proving to be seriously in error. If it had not been <u>directly suggested</u> that we <u>not look</u> at stomachs as we progressed in our assessment program (and frequently time was available as was our desire to collect this type of data), we would now have a good and sound basis for benthic food webs. Now the program is moving into the shelf area less than 40 m, and we have a serious lack of understanding of food interactions of benthic organisms on the rest of the shelf. We have essentially no food data from the northeast Gulf of Alaska with only slightly better data from Cook Inlet. Bering Sea food data is spotty, and now this program is terminated. I would strongly suggest that data on food habits of fishes in these regions be collected in the near future.

9

## ALITAK AND UGAK BAYS, KODIAK ISLAND

#### I. TASK OBJECTIVES

- A. A quantitative inventory census of dominant benchic invertebrate epifaunal species.
- B. A description of spatial distribution patterns of selected benthic invertebrate epifaunal species.
- C. Observations of biological interrelationships between segments of the benthic biota.

#### II. FIELD AND LABORATORY ACTIVITIES

A. Field Program

No cruises were scheduled in this quarter.

- B. Laboratory Program
  - 1. Data was recorded on coding forms for key punching and computer analysis.
  - 2. Computer printouts were checked.
  - 3. Report preparation begun.

#### III. RESULTS

All data has been analyzed, and will be included in the Final Report now in the final stages of completion.

#### IV. PROBLEMS ENCOUNTERED

No immediate problems. Additional feeding data and data on infauna on the Kodiak shelf are essential.

#### CHUKCHI SEA AND NORTON SOUND

#### I. TASK OBJECTIVES

To conduct a survey of the benthic epifaunal invertebrates of the Chukchi Sea/Norton Sound areas.

### II. SHIP OR LABORATORY ACTIVITIES

A. No ship activity this quarter.

B. All data has been key punched and submitted for data processing.

C. The Final Report is in progress.

#### III. RESULTS

A. Data on distribution and abundance, predator-prey relationships and reproductive notes have been examined and have been keypunched. An extensive report on the food of the starry flounder is in preparation. The report is based on 133 stomachs examined in the field using the frequency of occurrence method of analysis and 177 stomachs examined using volumetric and numerical methods of analysis.

B. Distribution and abundance data is now in computer printout format, and are presently being analyzed.

C. The final report is in preparation. Most figures for the report have been completed.

#### IV. PROBLEMS ENCOUNTERED

No immediate problems. However, lack of infaunal data from the study area will hamper interpretation of feeding data, and will limit

11

distributional information on an important component of the benthos, the infauna. Infaunal samples should be collected when activities in this lease area intensify.

#### <u>Milestones</u>

It is intended to maintain a consistent schedule for report preparation in the next few months. Some of the reports will be subdivided into sections, each section to be submitted as it is completed. The latter procedure should increase the data flow and data interpretation available to OCSEAP. The schedule for report submissions are as follows:

- 1. Kodiak (Alitak and Ugak Bays) early October
- 2. Norton Sound-Chukchi Sea late November
- 3. Cook Inlet mid January
- 4. Bering Sea Trawl Report late January
- 5. Bering Sea crab and pipe dredge report late February
- 6. NEGOA crab and trawl report late March

QUARTERLY REPORT

Contract No. 03-5-022-68, Task Order 5 Research Unit #6 Reporting Period: 1 July - 30 September 1977

The distribution, abundance, diversity and productivity of the western Beaufort Sea benthos.

Andrew G. Carey, Jr., Principal Investigator School of Oceanography Oregon State University Corvallis, Oregon 97331

September 26, 1977

Andrew G. Carey, Jr. Principal Investigator

#### 1. Task Objectives

A. General nature and scope of the problem

The distribution, abundance and natural variability of benthic macrofauna will be described on the southwestern Beaufort Sea continental shelf. Patterns of faunal distributions will be described and characterized using suitable bio-indices and multivariate techniques. Seasonal changes in the structure of benthic populations will be studied by sampling four times within a single year. Feeding interactions between organisms will be characterized by describing the benthic food web.

B. We propose to describe the benthic infauna of the western Beaufort Sea continental shelf including studies of both geographic and seasonal variability. Data are to be obtained on the faunal composition and abundance to form baselines to which potential future changes can be compared. The structure of the benthic food web will provide information on links in the food web that are important for the existence of the communities and by which pollutants may enter man's food web.

Specific objectives include the continuation of studies and analyses to:

- 1. Describe the distribution, species composition, numerical density, and biomass of the benthos in the area of interest.
- 2. Describe the spatial and seasonal variability of faunal distributions and abundances.
- 3. Describe the benthic communities present and delineate their geographical and environmental extent.
- 4. Describe the effect of seasons on population size and reproductivity activity of dominant species.
- 5. Determine the degree of correlation of species distributions and of various bio-indices with features of the benthic environment.
- Determine the basic structure of the <u>in situ</u> benthic invertebrate food web from a literature review and gut content analyses of selected, abundant species.

#### II. Research Activities

- A. Field Activities OCS 7
  - 1. Ship Schedule

During the period August - September 1977 Research Unit #6 participated in a food web cruise to the Chukchi and Beaufort Sea on the USCGC GLACIER to sample the biota of the water column in selected areas and to define trophic interrelationships.

#### 2. Scientific Party (OSU Benthos)

| R. Eugene Ruff | OSU | Head of the Benthos Group and Chief |
|----------------|-----|-------------------------------------|
|                |     | Scientist for the cruise            |
|                |     |                                     |
| David Wilborn  | OSU | Research Assistant (Temporary)      |

3. Methods

Benthic infauna were sampled by a  $0.1 \text{ m}^2$  Smith-McIntyre bottom grab at selected stations. Five quantitative samples at each station were planned to provide adequate estimates of variability and enough species for description of the community composition. The samples were washed on shipboard with 0.42 mm screens to retain the macrofauna (0.50 mm and above). The samples were temporarily preserved in 10% neutralized formalin and shipped back to Oregon for laboratory analysis.

#### 4. Sample Localities

As planned, a series of stations were sampled in the Chukchi Sea previous to undertaking the main operations in the Beaufort Sea. When in the Beaufort, the summer sea ice conditions were found to be open with the ice edge approximately 180 n mi offshore. The station positions, therefore, cover a large amount of territory. Benthic infaunal stations number 5 (approximate) in the Chukchi and 31 (approximate) in the Beaufort Sea (Table 1). A total of 158 biological and geological grab samples were collected for the benthic invertebrate research.

#### B. Laboratory Activities

1. Personnel

No changes in personnel during this quarterly reporting period. Andrew G. Carey, Jr., Principal Investigator, arrived 03 September 1977 from sabbatical leave from Oregon State University.

#### 2. Methods

The techniques for sample processing have not been altered this quarter. However, due to international convention, the macrofauna are now defined as organisms in the size range 0.5 mm and above; this comprises the fauna that OSU Benthos has categorized as large meiofauna >0.42-1.00 mm. A major effort now must be made to process this size category and include these data in our analyses of the macro-infauna.

#### 3. Data Analyzed

Smith-McIntyre grab samples from OCS-5 collected on the R/V ALUMIAC during the 1976 OCS coastal cruise have been picked, sorted to major taxonomic categories, and quantified. Organisms have been counted and wet-weighed. Gammarid amphipods have been identified and counted from OCS-5. Larger macro-infauna (>1.0 mm) have been picked, sorted and counted from the Hessler-Sandia 0.25 m<sup>2</sup> box cores collected during OCS-4 on the USCGC GLACIER.

Harpacticoid copepods (small macrofauna) from selected Smith-McIntyre grab samples collected at two stations during WEBSEC-71 have been identified and counted.

| ocs-7   |                | Grab Stations<br>al and/or Geol | logical |          |  |  |  |
|---------|----------------|---------------------------------|---------|----------|--|--|--|
| Station | ation Position |                                 |         |          |  |  |  |
| 2       | 71°22'N        | 160°04'W                        |         | 2        |  |  |  |
| 3       | 71°24'N        | 162°00'W                        |         | 2        |  |  |  |
| 4       | 71°32'N        | 163°58'W                        |         | 2        |  |  |  |
| 6       | 71°12'N        | 158°22'W                        |         | 2        |  |  |  |
| 7       | 71°25'N        | 156°56'W                        |         | 1        |  |  |  |
| 8       | 71°46'N        | 155°51'W                        |         | 6        |  |  |  |
| 9       | 71°57'N        | 154°33'W                        |         | 6        |  |  |  |
| 10      | 70°24'N        | 154°37'W                        |         | 2        |  |  |  |
| 11      | 71°35'N        |                                 |         | 7        |  |  |  |
| 12      | 72°31'N        | 153°39'W                        |         | 2        |  |  |  |
| 13      | 71°18'N        | 152°43'W                        | PPB-55  | 6        |  |  |  |
| 14      | 71°14'N        | 152°51'W                        | PPB-40  | 11       |  |  |  |
| 15      | 71°07'N        | 153°03'W                        | PPB-25  | 11       |  |  |  |
| 16      | 71°15'N        | 152°42'W                        | PPB-70  | 6        |  |  |  |
| 17      | 71°23'N        | 152°42'W                        | PPB-100 | 6        |  |  |  |
| 21      | 71°07'N        | 149°58'W                        |         | 6        |  |  |  |
| 22      | 70°38'N        | 148°28'W                        |         | 6        |  |  |  |
| 25      | 70°33'N        | 147°24'W                        |         | 3        |  |  |  |
| 26      | 70°25'N        | 146°41'W                        |         | 3        |  |  |  |
| 28      | 72°53'N        | 146°30'W                        |         | 2        |  |  |  |
| 29      | 72°56'N        | 146°37'W                        |         | 4        |  |  |  |
| 31      | 72°47'N        | 146°34'W                        |         | 3        |  |  |  |
| 32      | 72°57'N        | 143°30'W                        |         | 1        |  |  |  |
| 33      | 72°54'N        | 142°08'W                        |         | 1        |  |  |  |
| 34      | 70°52'N        | 141°35'W                        |         | 4        |  |  |  |
| 35      | 70°42'N        | 141°28'W                        |         | 9        |  |  |  |
| 36      | 70°32'N        | 141°32'W                        |         | 5        |  |  |  |
| 37      | 69°49'N        | 141°31'W                        |         | 6        |  |  |  |
| 38      | 70°04'N        | 142°14'W                        |         | 3        |  |  |  |
| 39      | 70°11'N        | 141°28'W                        |         | 6        |  |  |  |
| 40      | 70°28'N        | 141°37'W                        |         | 6        |  |  |  |
| 42      | 70°32'N        | 142°30'W                        |         | 5        |  |  |  |
| 53      | 71°02'N        | 145°25'W                        |         | 6        |  |  |  |
| 54      | 71°12'N        | 145°35'W                        |         | 1        |  |  |  |
| 58      | 71°05'N        | 146°33'W                        |         | 2        |  |  |  |
| 69      | 71°58'N        | 155°43'W                        |         | 2        |  |  |  |
| 71      | 71°32'N        | 156°30'W                        |         | l        |  |  |  |
| 72      | 71°33'N        | 155°37'W                        |         | <u> </u> |  |  |  |
|         |                |                                 | TOTAL   | 158      |  |  |  |

# Table 1. Benthic Stations.\* 1977 OCS USCGC GLACIER Summer Cruise. Tentative List.

\_\_\_\_\_

\*A revised and more detailed station listing will be submitted at the next report period after receipt of the necessary field information.

4. Milestone Chart and Data Submission Schedules

| Category                           | Expected Completion |
|------------------------------------|---------------------|
| OCS-7 Station Data                 | 1 January 1977      |
| Detailed Milestone Chart for FY-78 | l January 1977      |
| Sorting of OCS-7 Samples           | To be arranged      |
| Quantifying of OCS-7 Samples       | To be arranged      |
| Additional Taxonomic Data          | To be arranged      |

Data transmission will be scheduled on the regular quarterly basis during FY-78. Additional taxonomic data from OCS 1-7 will be submitted. The extent and type of further data will be detailed at the time of the next quarterly report.

#### III. Results

- A. Laboratory Results
  - 1. Biomass

Wet weights for OCS-5 samples and stations are listed in Table 2.

2. Faunal Numerical Denisty

Animal densities for OCS 5 and OCS 4, are listed in Tables 3-6.

3. Gammarid Amphipods

The gammarid amphipods from OCS-5 stations have been identified and are listed in Tables 7-9.

#### 4. WEBSEC-71 Small Macrofauna

Last year the small macro-infaunal fractions (1.00 <0.42 mm) of six Smith-McIntyre grab samples were picked and sorted to major taxonomic groups. These samples were chosen from the sample set collected during the WEBSEC-71 cruise aboard the USCGC GLACIER. The results of the analysis of the harpacticoid copepods are presented in Table 10.

As a point of comparison the data from the larger macro-infauna fraction (>1.00 mm) are also included in Table 10. It has been long recognized that the size of the mesh in the sieve used for washing benthic samples can bias results of the population estimates for smaller organisms. Harpacticoid copepods are a good test of this bias owning to their size. They range from 0.5 to 2.0 mm in length, but also possess long (0.25 to 0.5 mm) setae emanating from their caudal rami so that the total length of a harpacticoid averages over 1.00 mm, large enough to be retained on the larger screen. However, since harpacticoids are only about 0.5 mm wide any that "nosedives" will pass through the large sieve and be retained on the smaller 0.42 mm screen. Table 10 shows that most will do this, though a large portion of the population will remain in the 1.00 mm fraction.

| Station | Grab  | Anthozoa | Polychaeta | Crustacea | Mollusca | Misc.Phyla        | Total |
|---------|-------|----------|------------|-----------|----------|-------------------|-------|
| NIB-5   | 1437  |          | 1.33       | 0.19      | 0.13     | 0.75              | 2.40  |
|         | 1439  |          | 0.02       | 0.75      |          | -++ <del></del> - | 0.78  |
|         | 1440  |          | 0.69       | 0.26      | 0.08     | 0.20              | 1.23  |
|         | 1441  |          | 2.45       | 0.13      | 0.06     | 0.41              | 3.05  |
|         | 1442  |          | 1.70       | 0.20      | 0.11     | 0.59              | 2.60  |
|         | Total |          | 6.19       | 1.54      | 0.38     | 1.95              | 10.06 |
| NIB-10  | 1450  |          | 0.92       | 0.28      | 0.04     | 0.46              | 1.70  |
|         | 1451  | 0.27     | 2.07       | 0.64      | 0.06     | 0.03              | 3.07  |
|         | 1452  | · •••    | 1.86       | 0.52      | 0.29     | 0.15              | 2.82  |
|         | 1453  |          | 1.32       | 0.07      | 0.47     | 0.30              | 2.16  |
|         | 1454  |          | 1.83       | 0.23      | 0.70     | 0.10              | 2.86  |
|         | Total | 0.27     | 8.00       | 1.74      | 1.56     | 1.04              | 12.61 |
| NIB-15  | 1443  | 0.60     | 1.09       | 0.73      | 0.23     | 0.02              | 2.67  |
|         | 1445  |          | 1.10       | 0.48      | 0.58     | 0.49              | 2.65  |
|         | 1446  | 0.01     | 0.42       | 0.87      | 0.04     | 0.05              | 1.39  |
|         | 1447  | 0.16     | 0.40       | 0.49      | 0.14     | 0.02              | 1.21  |
|         | 1448  |          | 0.76       | 0.49      | 0.62     | 0.91              | 2.78  |
|         | Total | 0.77     | 3.77       | 3.06      | 1.61     | 1.49              | 10.70 |

| Table 2: | Biomass data per grab $(0.1 \text{ m}^2)$ | from OCS-5, | Narwhal | Island Transect. | Wet |
|----------|-------------------------------------------|-------------|---------|------------------|-----|
|          | weight in grams per 0.1 m <sup>2</sup> .  |             |         |                  |     |

Table 3: Animal Densities per core for BSB-7 (71°43.6'N, 151°46.5'N) collected on 29 August 1976 during OCS-4. Samples taken with the Hessler-Sandia 0.25 m<sup>2</sup> Box Corer.

| Box Core Numbe<br>Depth m | r           |               | BxC 48*<br>1738 | BxC 49*<br>1643 | BxC 50<br>1659 |       |
|---------------------------|-------------|---------------|-----------------|-----------------|----------------|-------|
| Phylum:                   | Class:      | Order         |                 | 1645            | 1023           | Total |
| Cnidaria:                 | Anthozoa    |               | 1               |                 | 3              | 4     |
| Annelida:                 | Polychaeta  |               | 75              | 56              | 172            | 303   |
| Echiura                   |             |               |                 | 2               | 1              | 3     |
| Arthropoda:               | Crustacea:  | Amphipoda     | 1               | 1               | 1              | 3     |
|                           |             | Harpacticoida | 1               |                 | 1              | 2     |
|                           |             | Isopoda       | 1               |                 |                | 1     |
|                           |             | Tanaidacea    | 8               | 1               | 2              | 11    |
|                           |             | Cumacea       | 2               | 1               | 3              | 6     |
| Mollusca:                 | Pelecypoda  |               | 86              | 41              | 51             | 178   |
| Echinodermata:            | Ophiuroidea |               |                 |                 | 1              | 1     |
| Total                     |             |               | 175             | 102             | 235            | 512   |

\* Box cores 48 and 49 are non-quantitative.

|                |               | Grab Number  |      |      |      |      |      |       |
|----------------|---------------|--------------|------|------|------|------|------|-------|
| Phylum:        | Class:        | Order        | 1437 | 1439 | 1440 | 1441 | 1442 | Total |
| Cnidaria:      | Anthozoa      |              |      |      |      | 1    |      | 1     |
| Nematoda       |               |              | 1    |      |      | 3    |      | 4     |
| Nemertinea     |               |              | 6    |      | 2    | 3    | 2    | 13    |
| Annelida:      | Polychaeta    |              | 120  | 13   | 81   | 222  | 107  | 543   |
| Priapulida     |               |              |      |      | 1    | 1    |      | 2     |
| Arthropoda:    | Crustacea     | Amphipoda    | 6    | 8    | 1    | 1    | 2    | 18    |
|                |               | Harpacticoda |      |      | 1    |      |      | 1     |
|                |               | Cumacea      |      | 1    |      | 4    |      | 5     |
| Mollusca:      | Pelecypoda    |              | 2    |      |      |      |      | 2     |
|                | Gastropoda    |              | 1    |      | 3    | 7    | 7    | 18    |
| Echinodermata: | Holothuroidea |              | 1    |      | 1    |      |      | 2     |
| Chordata:      | Urochordata:  | Ascidacea    | 6    |      | 5    | 9    | 7    | _27   |
| Total          |               |              | 143  | 22   | 95   | 251  | 125  | 636   |

Table 4: Animal Densities per grab (0.1  $m^2$ ) for NIB-5 (OCS-5) collected on 27 August 1976.

Table 5: Animal Densities per grab (0.1  $\rm m^2)$  for NIB-10 (OCS-5) collected on 28 August 1976.

| Phylum:        | Class:        | Order        | 1450 | 1451 | 1452     | 1453 | 1454     | Total |
|----------------|---------------|--------------|------|------|----------|------|----------|-------|
| Cnidaria:      | Anthozoa      |              |      | 1    |          |      |          | 1     |
| Nematoda       |               |              | 9    | 2    | 5        | 2    | 28       | 46    |
| Nemertinea     |               |              | 2    | 3    | 4        | 9    | 3        | 21    |
| Annelida:      | Polychaeta    |              | 212  | 228  | 159      | 183  | 556      | 1,338 |
| Priapulida     |               |              |      | 1    |          |      | 3        | 4     |
| Arthropoda:    | Crustacea:    | Amphipoda    | 1    | 3    | 13       | 5    | 3        | 25    |
|                |               | Harpacticoda |      |      |          |      | 1        | 1     |
|                |               | Ostracoda    | 1    |      |          |      | 4        | 5     |
|                |               | Tanaidacea   | 6    | 3    | 5        | 4    | 16       | 34    |
|                |               | Cumacea      | 9    | 4    | 4        |      |          | 17    |
| Mollusca:      | Pelecypoda    |              | 1    | 1    | 28       | 4    | 22       | 56    |
|                | Gastropoda    |              | 4    | 5    | 12       | 2    | 20       | 43    |
| Echinodermata: | Holothuroidea |              | 5    | 2    | 5        | 3    |          | 15    |
|                | Ophiuroidea   |              | 1    |      | 1        |      |          | 2     |
| Hemichordata   |               |              |      | 2    | 1        |      | 3        | 6     |
| Chordata:      | Urochordata:  | Ascidacea    |      |      | <u> </u> |      | <u> </u> | 2     |
| Total          |               |              | 251  | 255  | 238      | 212  | 660      | 1,616 |

19

| Phylum:        | Class:        | Order        | 1443 | 1445 | 1446 | 1447 | 1448 | Total |
|----------------|---------------|--------------|------|------|------|------|------|-------|
| Cnidaria:      | Anthozoa      |              | 2    | 2    | 1    | 1    | 2    | 8     |
| Nematoda       |               |              | 6    | 20   | 12   | 12   | 23   | 73    |
| Nemertinea     |               |              | 2    | 8    | 8    | 3    | 5    | 26    |
| Annelida:      | Polychaeta    |              | 69   | 68   | 43   | 69   | 80   | 329   |
| Sipuncula      |               |              |      | 1    | ·    |      |      | 1     |
| Priapulida     |               |              |      |      |      |      | 1    | 1     |
| Arthropoda:    | Crustacea:    | Amphipoda    | 3    | 5    | 3    | 5    | 3    | 19    |
|                |               | Harpacticoda | 1    | 2    |      | 2    |      | 5     |
|                |               | Isopoda      | 1    | 1    | 2    |      | 3    | 7     |
|                |               | Ostracoda    | 2    |      |      | 3    | 1    | 6     |
|                |               | Tanaidacea   | 8    | 34   | 22   | 28   | 6    | 98    |
|                |               | Cumacea      | 21   | 87   | 22   | 21   | 22   | 173   |
| Mollusca:      | Pelecypoda    |              | 4    | 9    | 5    | 3    | 15   | 36    |
|                | Gastropoda    |              | 1    | 2    | 6    | 3    | 6    | 18    |
| Echinodermata: | Holothuroidea |              | 1    | 1    | 3    | 2    |      | 7     |
| Hemichordata   |               |              |      |      |      |      | 1    | 1     |
| Chordata:      | Urochordata:  | Ascidacea    |      | 1    | 4    |      | 2    | 7     |
| Total          |               |              | 121  | 241  | 131  | 152  | 170  | 815   |

Table 6: Animal Densities per grab (0.1 m<sup>2</sup>) for NIB-15 (OCS-5) collected on 28 August 1976.

| Table | 7: | The Gammarid Amphipods from NIB-5 collected during OCS-5. | 2 species |
|-------|----|-----------------------------------------------------------|-----------|
|       |    | were represented in 5 specimens.                          |           |

| Family               | Mean No./m <sup>2</sup> | Frequency | Rank |
|----------------------|-------------------------|-----------|------|
| Oedicerotidae        |                         |           |      |
| Oediceros sagitus    | 2                       | 1/5       | 2    |
| Paroediceros lynceus | 8                       | 2/5       | 1    |
|                      |                         |           |      |

Table 8: The Gammarid Amphipods from NIB-10 collected during OCS-5. 8 species were represented in 26 specimens.

| Family                        | Mean No./m <sup>2</sup> | Frequency | Rank |
|-------------------------------|-------------------------|-----------|------|
| Corophiidae                   |                         |           |      |
| Corophium clarencense         | 6                       | 2/5       | 3    |
| Gammaridae                    |                         |           |      |
| Gammaracanthus loricatus      | 2                       | 1/5       | 4    |
| Haustoriidae                  |                         |           |      |
| Pontoporeia femorata          | 2                       | 1/5       | 4    |
| Priscillina armata            | 24                      | 3/5       | 1    |
| Oedicerotidae                 |                         |           |      |
| Acanthostepheia behringiensis | 2                       | 1/5       | 4    |
| Acanthostepheia malmgreni     | 2                       | 1/5       | 4    |
| Monoculodes borealis          | 8                       | 2/5       | 2    |
| Monoculopsis longicornis      | 6                       | 1/5       | 3    |

Table 9: The Gammarid Amphipods from NIB-15 collected during OCS-5. 8 species were represented in 19 specimens.

| Family                                | Mean No./m <sup>2</sup>               | Frequency | Rank |
|---------------------------------------|---------------------------------------|-----------|------|
| Corophiidae<br><u>Goesia</u> depressa | 2                                     | 1/5       | 4    |
| Haustoriidae<br>Pontoporeia femorata  | б                                     | 2/5       | 2    |
| Oedicerotidae                         | , , , , , , , , , , , , , , , , , , , | 27.2      | 2    |
| Aceroides latipes                     | 2                                     | 1/5       | 4    |
| Arrhis phyllonyx                      | 2                                     | 1/5       | 4    |
| Bathymedon sp.                        | 14                                    | 3/5       | 1    |
| Monoculodes borealis                  | 4                                     | 2/5       | 3    |
| Monoculodes longicornis               | 2                                     | 1/5       | 4    |
| Paroediceros lynceus                  | 4                                     | 2/5       | 3    |

21

|                                      | Station  | Depth        | Station  | Depth    |
|--------------------------------------|----------|--------------|----------|----------|
|                                      | CG 29    | 338 m        | CG 30    | 100 m    |
| Family                               | >1.00 mm | >0.42 mm     | >1.00 mm | >0.42 mm |
| Cerviniidae                          |          |              |          |          |
| Cervinia bradyi                      |          |              | 2        |          |
| Cervinia synarthra                   |          | 1            | 23       | 57       |
|                                      |          |              |          |          |
| Cletodidae                           |          |              |          |          |
| Argestes mollis                      |          | about to use | 1        | 5        |
| <u>Paranannopus</u> <u>echinatus</u> | 1        | 11           | 10       | 1        |
|                                      |          |              |          |          |
| D'arcythompsonidae                   |          |              |          |          |
| D'arcythomsonia sp. A                | 1        | 2            |          | ·        |
| Diasaccidae                          |          |              |          |          |
| Paramphiascopsis giesbrechti         |          |              | 1        | 2        |
| Typhlamphiascus lamellifer           |          | 1            | ±<br>    |          |
|                                      |          | Ŧ            |          |          |
| Ectinosomidae                        |          |              |          |          |
| Bradya confluens                     |          |              | 2        | 1        |
| Bradya typica                        |          | 4            |          | 1        |
| Halectinosoma neglectum              |          |              | 1        | 1        |
|                                      |          |              |          |          |
| Harpacticidae                        |          |              |          |          |
| Harpacticus superflexus              |          | 10           | 12       | 7        |
| Total                                |          |              |          |          |
| local                                | 4        | 29           | 52       | 75       |

Table 10: Harpacticoid copepods found at two stations during WEBSEC-71 cruise. Note the significant difference in abundance estimates of the two size categories of macrofauna.

The data from the two stations show an interesting contrast. In station CG 29, there is a marked increase in the number of species found (from 2 to 6) when the smaller infauna fraction is analyzed. But the number of species found in CG 30 remains the same (8) in both fractions even though a higher density is again found in the smaller fraction. The important factor here is the number of individuals found. It appears if 30 or more are found in a station, that area can be characterized. This density occurs in only 4 of the 44 stations occupied during the cruise. It can be concluded that the communities of the smaller organisms, such as harpacticoids, ostracods, tanaids, nematodes and partially polychaetes will not be fully characterized until the smaller (1.00 <0.42 mm) fraction of the samples are picked and sorted. These data are essential for comparison with the Canadian eastern Beaufort Sea data set and for comparisons with world-wide data based on the total macrofauna.

#### IV. Preliminary Interpretation of Results

Interpretation will be undertaken when further samples have been processed and a more complete data set can be statistically analyzed.

- V. Problems Encountered
  - Beaufort Sea food web cruise station selection and sampling. 1. Difficulties arose from the unusually light sea ice conditions during the 1977 USCGC GLACIER OCS cruise. No large concentrations of marine mammals or birds could be found at locations on the inner shelf to choose as food web stations. The ice edge was too far off shore apparently to act as an ideal environment for benthic feeding water fowl and marine mammals.
  - 2. The definition of macrofauna. Extensive detailed discussions with German, Canadian, and Japanese benthic investigators have forced me to redefine the size of organisms within the ecological group known as the macrofauna. By international convention, these organisms cover the size range, 0.5 mm and above. Our WEBSEC and OCS data must include these small macrofauna to allow direct standardized comparisons with other OCS, Canadian, U.S., and international benthic standing stock information. Additional time and funding will be necessary for completion of these objectives in the future.

| • | Estimate of Funds Exp | Spent              |           |           |              |
|---|-----------------------|--------------------|-----------|-----------|--------------|
|   |                       | Budget             | Spent     | Committed | This Quarter |
|   | Salaries & Wages      | 107,664            | 95,872    | 1,618     | 17,010       |
|   | Materials & Services  | 24,875             | 19,954    | 708       | 502          |
|   | Travel                | 9,900              | 10,206    | 253       | 1,891        |
|   | Equipment             | 47,617             | 47,224    |           |              |
|   | Payroll Assessment    | 16,803             | 14,368    | 333       | 2,704        |
|   | Overhead              | 54,320             | 46,003    | 1,052     | 8,733        |
|   | TOTAL                 | \$261 <b>,</b> 179 | \$233,627 | \$3,711   | \$30,840     |
|   |                       |                    |           |           |              |

VI. Estimate of Funds Expended.

Quarterly Report

R.U. 19 July 1-Sept. 30

# FINFISH RESOURCE SURVEYS IN NORTON SOUND AND KOTZEBUE SOUND

Principal Investigator

LOUIS H. BARTON Alaska Department of Fish and Game Commercial Fisheries Division 333 Raspberry Road Anchorage

September 1977

# I. <u>Task Objectives</u>

The objectives of this research unit are to:

- Determine the spatial and temporal distribution, species composition and relative abundance of finfishes in the coastal waters of Norton Sound and Kotzebue Sound east of 166 Degrees West Longitude.
- 2) Determine the timing and routes of juvenile salmon migrations as well as examine age and growth, relative maturity and food habits of important species in Norton Sound and Kotzebue Sound east of 166 Degrees West Longitude.
- 3) Determine the spatial and temporal distribution and relative abundance of spawning populations of herring and other forage fish within the study area.
- 4) Monitor egg density, distribution and development and document types of spawning substrates of herring and other forage fish species.
- 5) Monitor local resident subsistence utilization of the herring fishery resource.

### II. Field Activities

Activities during this quarter (July - September) included a continuation of data collection in the nearshore waters of Norton Sound. Adjustments were made with personnel and sampling effort, as necessitated by a budget cut in FY78, to insure 1977 fall sampling could be conducted.

The <u>Royal Atlantic</u> offshore sampling program was aborted on July 16 due to heavy ice conditions in parts of the study area. Pack ice at Cape Espenberg precluded entry into Kotzebue Sound. A total of 22 gillnet and 83 surface townet stations had been completed in the offshore waters of Norton Sound by this time (July 13). Data is still pending analysis as all personnel engaged in the large vessel program are being utilized on the nearshore studies which are still in operation. Aerial coverage of the coastline for monitoring distribution and timing of spawning herring and other forage fish populations continued as weather conditions permitted. Coverage during this quarter included more than 4,500 kilometers of coastline and approximately 34 hours of airtime. The majority of this coverage was concentrated on the Seward Peninsula and in excess of 280 fish schools were documented. Nearly half of these were observed between Prince of Wales and Cape Espenberg in mid to late July.

Other activities during this quarter included updating all Data Management forms and submission of all unknown juvenile and larval fish to the National Marine Fisheries Service in Seattle(NWFC) for identification. In addition, a new FY78 work proposal had to be completed and resubmitted after receiving word that the original FY78 proposal submitted last quarter (156.8K) was cut nearly 65%. The actual funding level was 60K.

#### III. Results and Preliminary Interpretation

None at this time.

#### IV. Problems and Changes

The frequency of aerial surveys and results of each were hindered a great deal this quarter due to inclement weather and heavy smoke conditions. The extensive amount of acreage ablaze in Alaska in July and August (much of which was on the Seward Peninsula) and resulting smoke severly reduced the number of surveys which could be flown due to poor visibility. Fires were eventually extinguished with the help of fall rain storms. These storms are appearing more frequently as winter approaches and leave coastal waters extremely turbid for extended periods making observations difficult if not impossible.

To supplement data collection on the timing and distribution of fish species during such periods, flights are made to selected coastal villages and information gathered from local subsistence fishermen and hunters. News releases were also made in most coastal villages requesting anyone with information concerning the arrival of herring and other forage fish species to the coastal waters in their areas to contact the Alaska Department of Fish and Game. A second problem has been associated with determining species identification of many fish schools observed during aerial surveys. Realizing from last years investigations that this would be a problem in view of no float or amphibious plane service in the study area, attempts were made to relocate field sampling crews into areas where large concentrations of fish schools have been observed. This was usually done as soon as possible upon completion of a particular survey and test fishing conducted with variable mesh gillnets.

Finally, the FY78 actual funding level (60K) has affected this past quarters work. Sampling effort and monies have had to be redistributed in such a manner to insure fall sampling in 1977 can be conducted. This was only possible with limited FY77 carryover monies to supplement next years funds in view of the nearly 65% cutback from the originally requested FY78 funding level.

#### V. Estimate of Funds Expended

A balance of approximately \$29,000 exists as of September 15,1977. With the exception of salaries which will be paid from 9/16-9/30 and a few unposted aircharter expenses, remaining monies will be carried over and supplement the FY78 allocation in order to complete fall sampling this season as agreed upon by OCSEAP. Quarterly Report

Contract #03-5-022-69 Research Unit #19E Reporting Period July 1, 1977 -September 30, 1977 Number of Pages: 2

Forage Fish Assessment, Southern Bering Sea: R.U. 19 Extension

Irving M. Warner Alaska Department of Fish and Game P.O. Box 686 Kodiak, Alaska 99615

September 30, 1977

#### I. Task Objectives

- A. To determine the spatial and temporal distribution of spawning forage fish stocks between Cape Sarichef, north to the Yukon Delta, and investigate their life history parameters with emphasis on their late spring and summer spawning periods.
- B. Continuance of assessment studies inititated for boreal smelt, herring and capelin in FY 76.

### II. Field or Laboratory Activities

The field crew returned to the Kodiak base on July 7, 1977. Up to that time they had been resident at Meshik field facility sampling forage fish stocks at the site fished in FY 76. Processing of the specimens had begun before the return of this crew, but continued through this quarter and concluded on August 31, 1977. Forage fish specimens collected ancillary to regular ADF&G functions in the Togiak area were returned to Kodiak base, and processed as an integral part of this research unit.

Analysis began on September 1, 1977 of all data, and is continuing at this time by editing, compiling and analyzing computer runs of 1976-77 R.U. 19 forage fish data. Generation of the project completion report began around September 7, 1977 and will continue until December 1, 1977. Four aerial surveys were completed in early July under the conditions of this research unit. All results were recorded on EDP aerial survey forms. All aerial survey data were edited and prepared for key punching, which is pending as of September 15, 1977.

III. Results

The project completion report is in progress, and will be completed by December 1, 1977.

IV. Preliminary Interpretation of Results

In progress, hence not applicable at this time.

V. Problems Encountered/Recommended Changes

On September 6, 1977 (23 days prior to the date anticipated) we ran out of funds for this research unit due to increased project expenditures due to the ongoing air strike, the increase of salaries, and the compulsory payment of overtime, all of which took place during the FY 77 phase of this study. Monies have been since released to continue this study, and no problems are anticipated in having a project completion report submitted to the project office by December 1, 1977.

It should be noted that in 1976 a fall fishing phase was conducted at Meshik in mid-October. Since the primary purpose of this extension was as a continuance of studies initiated in FY 76 on boreal smelt, herring and capelin, for a full complimentary study to be done, a fall fishing phase should seriously be considered, especially in view of the fact that

## Quarterly Report

a critical life history parameter of the boreal smelt has been since discovered and needs further fall investigation. To date all Pacific sources indicate that Osmerus eperlanus spawn once in the spring; OCSEAP investigations have strongly indicated that there is a <u>double run</u>, i.e., one in the spring and one in either late summer or early fall. Last fall's fishing effort indicates that this second run might take place in the fall. To gain a basic spatial understanding of this forage fish, (if indeed there is a second run) this second run should be better known. If this effort is to be made, this office will need an additional 1.5 K of funding to accomplish it.

VI. Estimate of Funds Expended

| Date | Line  | 100   | Line  | 200   | Line  | 300   | Li  | ne 400 |
|------|-------|-------|-------|-------|-------|-------|-----|--------|
| 7/1  | \$8,3 | 25.78 | \$2,6 | 90.40 | \$5,5 | 27.89 | \$3 | 08.78  |
| 9/30 | \$    | 0     | \$    | 0     | \$    | 0     | \$  | 0      |

Line Item Balances

QUARTERLY REPORT

Contract No. Research Unit #78 Reporting Period-July 1-September 30, 1977 Number of Pages - 11

### BASELINE/RECONNAISSANCE CHARACTERIZATION LITTORAL BIOTA, GULF OF ALASKA AND BERING SEA

by

### Charles E. O'Clair Theodore R. Merrell, Jr.

Northwest and Alaska Fisheries Center Auke Bay Laboratory OUTER CONTINENTAL SHELF ENERGY ASSESSMENT PROGRAM Sponsored by U.S. Department of the Interior Bureau of Land Management

.

October 1, 1977

### ABSTRACT

Our initial studies of biological interactions among rocky intertidal biota at Point Barber, Hinchinbrook Island have focused on <u>Pisaster ochraceus</u>, <u>Mytilus</u> <u>edulis</u> and <u>Alaria marginata</u>. We made counts and feeding observations on <u>Pisaster</u>, and took size measurements of all three species. <u>Mytilus</u> abundance was recorded on permanent plots.

At Point Barber, reduced feeding activity in <u>Pisaster</u> apparently continues later in the spring than in Puget Sound. The size frequency distribution and mean size of <u>Pisaster</u> at Point Barber are similar to those of populations of <u>Pisaster</u> at Monterey Bay whose main food source is barnacles. Change in coverage of <u>M.</u> <u>edulis</u> on one permanent plot between May and July, 1977 and general observations of mussel mortality in July, 1977 at Point Barber suggest that <u>Pisaster</u> may be as important to community structure here as elsewhere in the North Pacific.

Measurements of <u>Alaria</u> show that between May and July, 1977 at Point Barber the rates of erosion of the fronds tended to be greater than the growth rates of the plants. The rate of erosion relative to growth rate in this species may be a useful biological indication of exposure.

At Constantine Harbor we made observations on and photographed sections of two transects which were established in May, 1977. In addition, we measured <u>Cucumaria pseudocurata</u>, weighed <u>Echiurus echiurus alaskensis</u> and <u>Archidoris</u> <u>montereyensis</u> and made feeding observations of <u>Pycnopodia helianthoides</u>. There appeared to be fewer <u>Echiurus</u> holes in July than in May, but because of inadequate field time in July we were unable to determine whether this was a real change in the abundance of the echiuran.

### II. Objectives

The objectives of this task are to characterize the coastline of Alaska according to major littoral habitat types, and to describe the distribution and abundance patterns of biotic populations within habitats.

### III. Field or Laboratory Activities

Our field activities during this quarter entailed the continuation of those studies begun at Hinchinbrook Island in May, 1977 (Zimmerman and Merrell 1977) of the changes in intertidal community structure over time with emphasis on the key biological interactions and physical factors important to community organization. An understanding of community organization is crucial to the prediction of the effects of oil spills on natural communities. These intensive studies have been terminated by direction of the Juneau Project Office of OCSEAP.

A. Schedule: July 31 and August 1, 1977. Charter vessel: Cora B.

B. Scientific Party:

| Name            | Affiliation | Role                             |
|-----------------|-------------|----------------------------------|
| Joyce Gnagy     | ABL.        | Muddy intertidal<br>investigator |
| Charles O'Clair | ABL         | Rocky intertidal<br>investigator |

C. Methods:

1. Rocky intertidal area.

We counted <u>Pisaster ochraceus</u> and examined each starfish for a tag (53 tagged in May, 1977). Disc width, arm length and wet weight had been taken on tagged and untagged <u>Pisaster</u> in May. Tagged <u>Alaria marginata</u> were measured. We photographed permanent plots emplaced in patches dominated by <u>Mytilus edulis</u> in May, 1977 and randomly placed and photographed four more permanent plots.

2. Muddy intertidal area.

We made observations on and photographed sections of two transects established in May, 1977 in Constantine Harbor.

D. Sample Collection Localities

1. Point Barber (Rocky intertidal area).

The intertidal area at Point Barber is a gently sloping bedrock platform. It is partially protected from open ocean waves and swells by the southwestern peninsula of Hinchinbrook Island and nearby Porpoise Rocks, but it probably receives severe wave shock during winter storms.

2. Constantine Harbor (Muddy intertidal area).

The study area in Constantine Harbor encompasses about 500 meters square on the south shore of the harbor. The substrate consists of mud, gravel and small boulders.

E. Data Collected

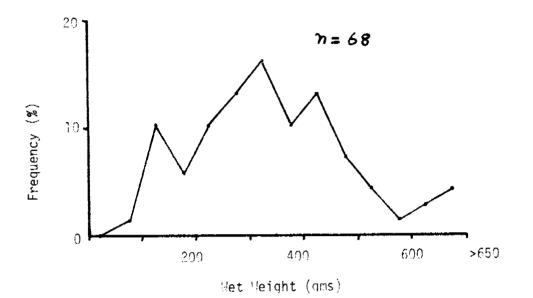
Number and type of measurements and observations.

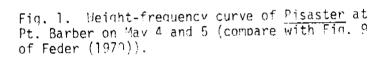
1. Rocky intertidal area

| Number | Type of observation                                        |
|--------|------------------------------------------------------------|
| 1      | Count of <u>Pisaster</u> <u>ochraceus</u> .                |
| 53     | P. ochraceus tagged with a floy tag on the aboral surface  |
|        | in the base of the arm opposite the madreporite.           |
| 69     | Measurements of disk diameter (measured on the aboral      |
|        | surface between the bases of opposite arms through the     |
|        | madreporite), arm length (measured on aboral surface       |
|        | from center of disk to tip of longest arm), and wet weight |
|        | of <u>P. ochraceus</u> .                                   |

- 25 <u>Alaria marginata</u> tagged with surveyors flagging proximal to sporophytes and measured (length from holdfast to tip of frond).
- 15 <u>A. marginata</u> marked by punching a hole at the intersection of the midrib and blade at a distance of from 5 to 10 cm from the distalmost sporophyll.

2. Muddy intertidal area


| Number | Type of observation                                            |
|--------|----------------------------------------------------------------|
| 94     | Observations along two transects.                              |
| 24     | Photographs of sections of two transects.                      |
| 248    | Measurements of lengths <u>Cucumaria pseudocurata</u> expanded |
|        | (tentacular crowns not included).                              |
| 50     | Measurements of wet weights of Archidoris montereyensis.       |
| 100    | Measurements of wet weights of Echiurus echiurus               |
|        | alaskensis.                                                    |


IV. Results

1. Rocky intertidal area.

No tagged <u>Pisaster</u> were recovered in July. We attribute this to tag loss. A brief laboratory study using <u>Evasterias troschelii (Pisaster</u> is not readily available locally at Auke Bay) indicated that these starfish can force floy tags out of their arms. Vital stains which have been used successfully to mark <u>Pisaster</u> elsewhere (Feder 1955) were not available to us in July.

The mean size (329.4 gms) and size distribution of <u>Pisaster</u> (Fig. 1) at Point Barber in May, 1977 are similar to those of natural populations of <u>Pisaster</u> at Monterey Bay, California whose food source is mainly barnacles (Feder 1970). Food available to <u>Pisaster</u> at Point Barber includes <u>Mytilus edulis</u> and <u>Balanus</u> spp. Our data on the diet of <u>Pisaster</u> there are inadequate; only 7% of the starfish examined (n=90) in May were feeding. At San Juan Island, Washington the proportion of <u>Pisaster</u> feeding decreases in winter, but returns to 25% to 50% by May (Mauzey 1966). The apparent late resumption in feeding of <u>Pisaster</u> at Point Barber as compared with that at San Juan Island may reflect latitudinal differences in the seasonal periodicity of feeding and reproduction of the starfish, but our data are inadequate for examining the question. Since <u>Pisaster</u> is the keystone species (see Section V) in Pacific Northwest rocky intertidal communities, spatial , variability in the seasonal periodicity of feeding and reproduction of this starfish





may cause spatial differences in community structure.

Twenty four percent of the <u>Alaria</u> tagged in May, 1977 still had tags in July. The mean change in length of these plants was -66.5 cm (SD 56.6 cm). Apparently the rate of erosion of the fronds was on the average greater than the rate of growth in the interval May to July. Holes punched in the fronds of <u>Alaria</u> in May were not visible in July; therefore, we have no measure of growth during this period.

Analysis of the coverage data from fixed quadrats is incomplete. Generally <u>Fucus</u> cover increased on plots in patches of <u>M. edulis</u> because of growth of <u>Fucus</u> plants present on these plots in May. Changes in <u>Mytilus</u> densities were variable; some plots showed no obvious changes. One plot showed a striking reduction in <u>Mytilus</u> cover (from 37% to 2%). We attribute this reduction to <u>Pisaster</u> predation; several <u>Pisaster</u> surrounded by empty mussel shells and barnacle plates were congregated near the plot.

2. Muddy intertidal area.

As a result of the preliminary survey made in May, 1977, we have observed four abundant animals whose role in the community structure may be followed. These principal animals are:

- a. <u>Cucumaria pseudocurata</u>-sea cucumber- detritus feeder
- b. <u>Archidoris montereyensis</u>-dorid nudibranch- carnivore, preys on <u>Halichondria panicea</u> (Fig. 3).
- c. Echiurus echiurus alaskensis-echiurid worm- detritus feeder
- d. Pycnopodia helianthoides-sea star- carnivore.

On the May trip we were able to make observations and gather data on abundance, size, reproductive state, and feeding behavior. In July, we were only able to work two tides (1 day). We used this time to monitor seasonal changes. The most obvious difference was the growth of a mat-forming filamentous green algae in much of the area. The <u>Echiurus</u> holes were not apparent and there was not enough time to dig for the worms to see whether they were still present. Any kind of

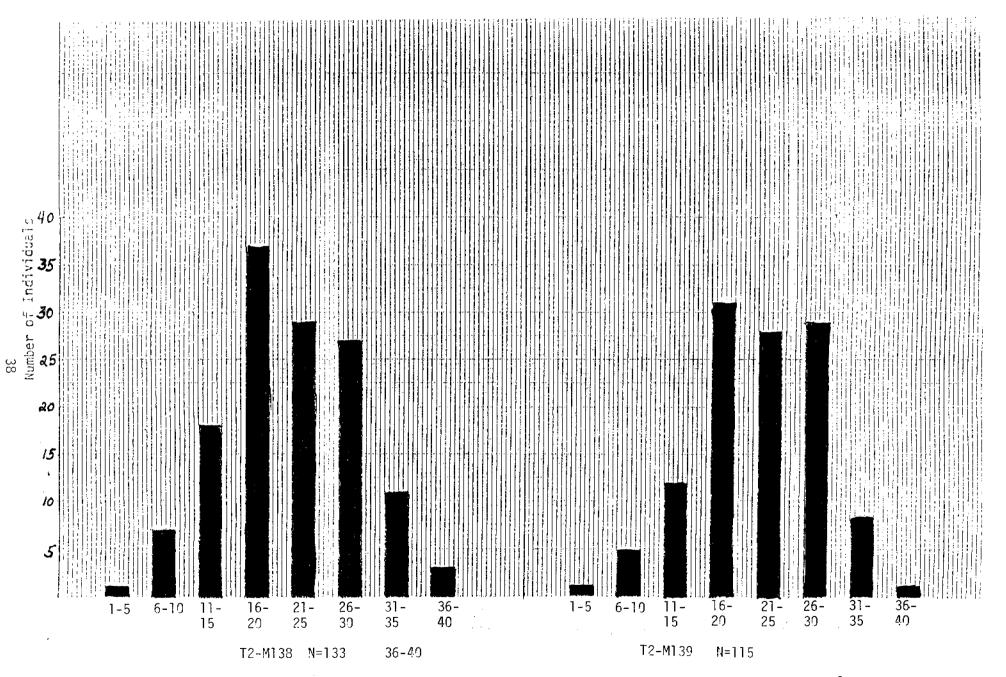
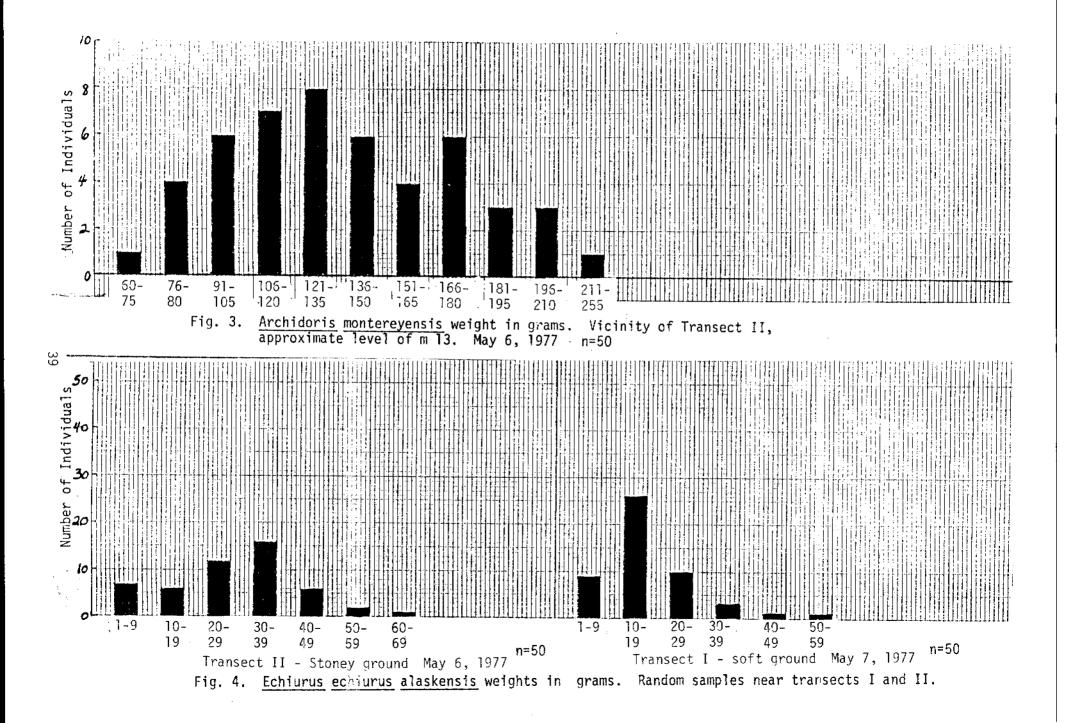




Fig. 2. <u>Cucumaria pseudocurata lengths in mm (expanded, live, crowns not counted) from two 1/16 m<sup>2</sup> quadrat collections along a transect line in Constantine Harbor, May 7, 1977.</u>



field work is time consuming; work in soft bottom areas requires digging and sieving to expose the populations one is studying. In the present phase many questions remain unanswered.

The computer files scheduled for submission to NODC in October are in the final stages of updating.

V. Preliminary Interpretation of Results

In a recent review of research needs on the effect of organic contaminants on ecosystems for the National Science Foundation, Neuhold and Ruggerio (1975) conclude that "one of the largest gaps in our present knowledge concerns species interaction" and that "the extent to which the system will be affected will greatly depend upon previous established species interactions". The key interaction on rocky shores of the outer coast of Washington and probably elsewhere in the eastern North Pacific is that of predation by <u>Pisaster ochraceus</u> on <u>Mytilus californianus</u>. This interaction prevents the monopolization of space by <u>Mytilus</u> thereby mediating the persistance of competitively inferior invertebrates (Paine 1966) and algae (Dayton 1975) in the system. Echinoderms generally and <u>Pisaster</u> specifically are especially sensitive to oil pollution (Nelson-Smith 1972). Even if <u>Pisaster</u> alone were removed from the system by an oil spill it is likely that there would be profound changes in community structure as a result.

<u>M. californianus</u> is absent from Point Barber. Its ecological equivalent, <u>M. edulis</u>, has been shown to be a potentially dominant competitor in the mid-intertidal region on New England rocky shores (Menge 1976). Our preliminary data show that <u>Pisaster</u> preys on <u>M. edulis</u> and therefore probably plays a key role in intertidal communities at Point Barber as in Washington.

### VI. Auxiliary Material

- A. Bibliography of references
  - Dayton, P.K. 1975 Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecological Monographs <u>45</u>:137-159.
  - Feder, H.M. 1955 The use of vital stains in marking Pacific Coast starfish. Calif. Fish and Game 41:245-246.
  - Feder, H.M. 1970 Growth and predation by the Ochre sea star, <u>Pisaster ochraceus</u> (Brandt), in Monterey Bay, California. Ophelia 8:161-185.
  - Mauzey, K.P. 1966 Feeding behavior and reproductive cycles in <u>Pisa</u>ster ochraceus. Biol. Bull. 131:127-144.
  - Menge, B.A. 1976 Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecological Monographs 46:355-393.
  - Nelson-Smith, A 1972 Oil pollution and marine ecology. Elek Science, London 269 pp.
  - Neuhold, J.M. and L.F. Ruggerio 1975 Ecosystem processes and organic contaminants: research needs and an interdisciplinary perspective. U.S. Government Printing Office, Washington, D.C. 52 pp.
  - Paine, R.T. 1966 Food web complexity and species diversity. Am. Nat. 100:65-75.
  - Zimmerman, S.T. and T.R. Merrell, Jr. 1977 Baseline/reconnaissance characterization littoral biota, Gulf of Alaska and Bering Sea. Quarterly Report April 1-June 30, 1977, Outer Continental Shelf Energy Assessment Program. 8 pp.

### B. Papers in preparation or in print

- 1. In preparation:
- Zimmerman, S.T., J.T. Fujioka, J.A. Gharrett, and J.S. MacKinnon 1977 Intertidal biota of the Kodiak Island area. Northwest and Alaska Fisheries Center Auke Bay Laboratory, Auke Bay, Alaska.
- 2. In print:
- Sears, H.S. and S.T. Zimmerman 1977 Alaska Intertidal Survey Atlas. Northwest and Alaska Fisheries Center Auke Bay Laboratory, Auke Bay, Ak. 385 pp.
- Rosenthal, R.J., D.C. Lees and T.M. Rosenthal 1977 Ecological assessment of sublittoral plant communities in the northern Gulf of Alaska for National Marine Fisheries Service, Auke Bay Laboratory. Final Report. Dames & Moore, Anchorage, Ak. 150 pp.

### C. Oral presentations

During the period August 23-26 we presented the form of a poster presentation at the Ninth International Seaweed Symposium at Santa Barbara, California the results of a cooperative study with the Environmental Research Institute of Michigan (ERIM) on the use of multispectral scanning to assess littoral algal cover.

### VII. Problems encountered and recommended changes

More frequent visits to our study sites would have alerted us to the tag loss problem with <u>Pisaster</u> and to the rapid disappearance of the punched holes in the fronds of <u>Alaria</u> and would have allowed us to modify our methods sooner. We were able to spend only 2 days at Hinchinbrook Island in July because of anticipated budget cuts.

In the future, should funds become available for intensive studies at Hinchinbrook Island or elsewhere, we recommend that the minimum visitation frequency of field sites in the first year, and perhaps longer, be bimonthly with more frequent visits optional for certain phases. Alternatively, a study site with appropriate species should be designated nearer Auke Bay for feasibility tests of methodology. Visits to field sites should last at least l week.

## SUPPLEMENT TO RESEARCH UNIT # 78

### ALASKA INTERTIDAL SURVEY ATLAS

Ьy

Howard S. Sears Steven T. Zimmerman

Available from

National Marine Fisheries Service Northwest and Alaska Fisheries Center Auke Bay Laboratory P.O. Box 155 Auke Bay, Alaska

### FINAL REPORT

Supplement to Research Unit 78 (Sub-contract Report)

ECOLOGICAL ASSESSMENT OF SUBLITTORAL PLANT COMMUNITIES IN THE NORTHERN GULF OF ALASKA

FOR

NATIONAL MARINE FISHERIES SERVICE AUKE BAY FISHERIES LABORATORY

EO AN RLM-LA RCM-AN DCL-AN DAMES & MOORE JOB NO. 6797-001-20 SEPTEMBER 16, 1977

### TABLE OF CONTENTS

INTRODUCTION GENERAL STUDY OBJECTIVES METHODS THE MARINE PLANT COMMUNITY RESULTS Description of the Study Site (Latouche Point) Biological Setting (Algal Assemblage) Epifauna and Trophic Interaction Seasonal Patterns Description of the Study Site (Zaikof Bay) Biological Setting (Algal Assemblage) Epifauna and Trophic Interaction Seasonal Patterns Description of the Study Site (Macleod Harbor) Biological Setting (Algal Assemblage) Epifauna and Trophic Interaction Soft Bottom and Faunal Components DISCUSSION

Page

45

LITERATURE CITED

## LIST OF FIGURES

| NUMBER | TITLE                                                                                                                   |
|--------|-------------------------------------------------------------------------------------------------------------------------|
| 1      | Location of Study Sites in Northeastern Gulf of Alaska                                                                  |
| 2      | Study Site and the Subtidal Vegetative Canopies at Latouche Point                                                       |
| 3      | Size Class Distributions of <u>Musculus vernicosus</u> from a<br>Subtidal .25m <sup>2</sup> Quadrat off Latouche Island |
| 4      | Food Web for the Rocky Sublittoral Zone at Latouche<br>Point, Gulf of Alaska                                            |
| 5      | Subtidal Vegetative Profiles - Latouche Point                                                                           |
| 6      | Subtidal Vegetative Profiles - Latouche Point                                                                           |
| 7      | Algal Cover at Latouche Point                                                                                           |
| 8      | Algal Cover at Latouche Point                                                                                           |
| 9      | Study Site and Subtidal Vegetative Canopies,<br>Zaikof Bay                                                              |
| 10     | Food Web for the Conspicuous Species in the Shallow<br>Sublittoral Zone at Zaikof Bay, Montague Island                  |
| 11     | Size Frequency Histogram for <u>Musculus discors</u> Col-<br>lected from the Subtidal Zone in Zaikof Bay, 3/20/76       |
| 12     | Relationship between Shell Length and Dry Tissue<br>Weight for <u>Musculus discors</u> from Zaikof Bay, 3/20/76         |
| 13     | Algal Cover at Zaikof Bay                                                                                               |
| 14     | Study Site and the Subtidal Vegetative Canopies,<br>Macleod Harbor                                                      |
| 15     | Algal Cover at Macleod Harbor                                                                                           |
| 16     | Food Web of a Sublittoral Reef at Macleod Harbor,<br>Montague Island                                                    |

PAGE

# LIST OF TABLES

| NUMBER | TITLE                                                                                          |
|--------|------------------------------------------------------------------------------------------------|
| 1      | Density Estimates of some Dominant Macrophytes at<br>Latouche Point                            |
| 2      | Density Estimates of some Dominant Macrophytes at<br>Latouche Point                            |
| 3      | Ouadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>September 17, 1975        |
| 4      | Quadrat Data (0.25m2) from Latouche Point, Subtidal,<br>November 26, 1975                      |
| 5      | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>November 26, 1975         |
| 6      | Quadrat Data (0.25m²) from Latouche Point, Subtidal,<br>November 26, 1975                      |
| 7      | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point,<br>November 26, 1975                   |
| 8      | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>November 27, 1975         |
| 9      | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtida <b>l,</b><br>November 27, 1975 |
| 10     | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>March 16, 1975            |
| 11     | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>March 16, 1976            |
| 12     | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>March 17, 1976            |
| 13     | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>March 17, 1976            |
| 14     | Quadrat Data (0.25m <sup>2</sup> ) from Latouche Point, Subtidal,<br>March 18, 1976            |
| 15     | Quadrat Data (0.25m²) from Latouche Point, Subtidal,<br>March 18, 1976                         |

PAGE

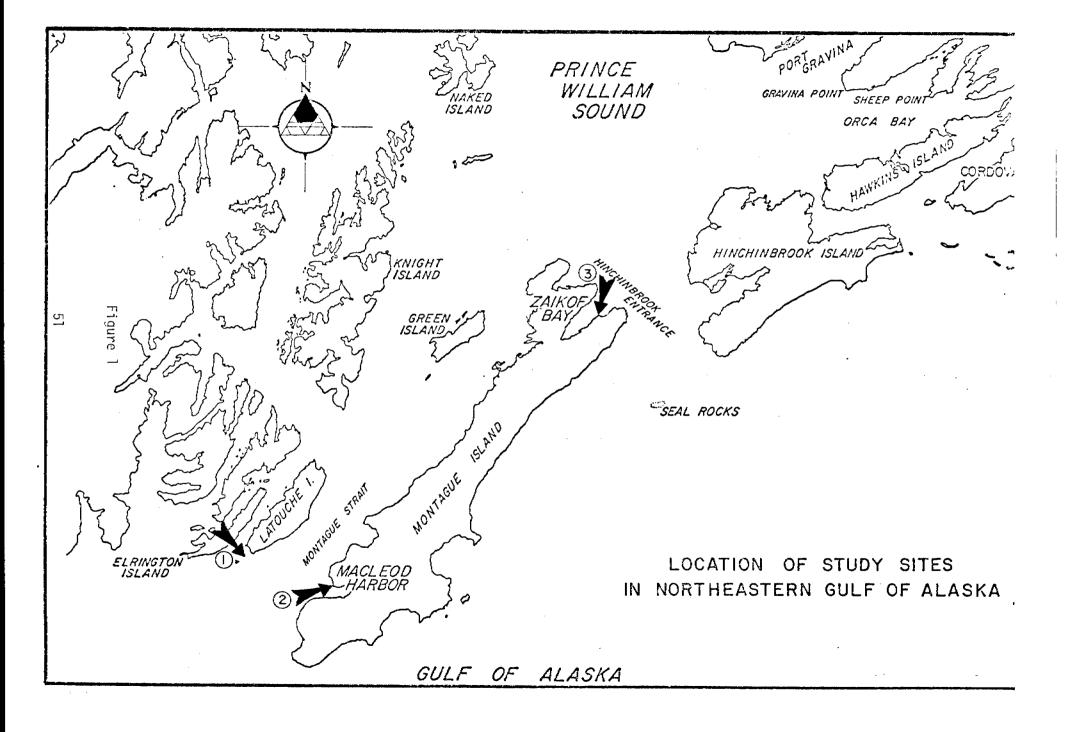
-47

# LIST OF TABLES (Continued)

| NUMBER | TITLE                                                                                                                |
|--------|----------------------------------------------------------------------------------------------------------------------|
| 16     | Quadrat Data (0.25m²) from Latouche Point, Subtidal,<br>June 25 & 26, 1976                                           |
| 17     | List of Macroalgae Collected at OCS Study Sites in<br>the Northeastern Gulf of Alaska                                |
| 18     | List of Benthic Macroinvertebrates Collected at the<br>Three Study Sites in Northeastern Gulf of Alaska<br>(1975-76) |
| 19     | Fishes Observed in the Three Study Sites during<br>1975–76                                                           |
| 20     | Characteristic or Representative Important Species<br>off Latouche Point, Subtidal                                   |
| 21     | Density Estimates of some Common Echinoderms from<br>Latouche Point                                                  |
| 22     | Density Estimates of some Dominant Macrophytes from<br>Zaikof Bay                                                    |
| 23     | Density Estimates of some Dominant Macrophytes from<br>Zaikof Bay                                                    |
| 24     | Quadrat Data (0.25m2) from Zaikof Bay, Subtidal,<br>November 23, 1975                                                |
| 25     | Quadrat Data (0.25m <sup>2</sup> ) from Zaikof Bay, Subtidal,<br>November 24, 1975                                   |
| 26     | Quadrat Data (0.25m <sup>2</sup> ) from Zaikof Bay, Subtidal,<br>March 19, 1976                                      |
| 27     | Quadrat Data (0.25m2) from Zaikof Bay, Subtidal,<br>March 20, 1976                                                   |
| 28     | Quadrat Data (0.25m <sup>2</sup> ) from Zaikof Bay, Subtidal,<br>March 20, 1976                                      |
| 29     | Haphazard Quadrat Casts (0.25m <sup>2</sup> ) from the Sublittoral<br>Zone in Zaikof Bay, March 20, 1976             |
| 30     | Quadrat Data (0.25m²) from Zaikof Bay, Subtidal,<br>June 22, 1976                                                    |

PAGE

# LIST OF TABLES (Continued)


PAGE

| NUMBER | TITLE                                                                                                |
|--------|------------------------------------------------------------------------------------------------------|
| 31     | Quadrat Data (0.25m <sup>2</sup> ) from Zaikof Bay, Subtidal,<br>June 23, 1976                       |
| 32     | Characteristic or Representative Important Species<br>at Zaikof Bay                                  |
| 33     | Density Estimates of some Common Echinoderms at<br>Zaikof Bay                                        |
| 34     | Density Estimates of some Common Echinoderms at<br>Zaikof Bay                                        |
| 35     | List of Aquatic Birds and Mammals Observed at the OCS Study Sites during 1975-76                     |
| 36     | Density Estimates of some Dominant Macrophytes at<br>Macleod Harbor                                  |
| 37     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>November 29, 1975               |
| 38     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtid <mark>al,</mark><br>November 29, 1975 |
| 39     | Quadrat Data (0.25m²) from Macleod Harbor, Subtidal,<br>November 29, 1975                            |
| 40     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>November 29, 1975               |
| 41     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>November 29, 1975               |
| 42     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>November 30, 1975               |
| 43     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtid <b>al,</b><br>November 30, 1975       |
| 44     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>March 13, 1976                  |
| 45     | Quadrat Data (0.25m²) from Macleod Harbor, Subtidal,<br>March 14, 1976                               |

# LIST OF TABLES (Continued)

| NUMBER | <u>TITLE</u>                                                                                              |
|--------|-----------------------------------------------------------------------------------------------------------|
| 46     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>March 14, 1976                       |
| 47     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>March 14, 1976                       |
| 48     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>March 14, 1976                       |
| 49     | Quadrat Data (0.25m <sup>2</sup> ) from Macleod Harbor, Subtidal,<br>March 15, 1976                       |
| 50     | Quadrat Data (0.25m²) from Macleod Harbor, Subtidal,<br>March 15,1976                                     |
| 51     | Density Estimates of some Common Echinoderms at<br>Macleod Harbor                                         |
| 52     | Density Estimates of some Common Echinoderms at<br>Macleod Harbor                                         |
| 53     | Characteristic or Representative Important Species<br>from the Shallow Sublittoral Zone at Macleod Harbor |

·



The solid substratum covers a wide range of geological facies, ranging from patches of gravel and cobbles to extensive reefs composed of exposed bedrock or pavement. Typically, the biota is attached to, or associated with the hard substrate. Because the populations inhabiting various substrata and microhabitat types are frequently different, they require different sampling and study regimes.

The present field study began on July 22, 1975, when diverbiologists associated with Dames & Moore made observations in Zaikof Bay. The nearshore stations were revisited subsequently in mid-September 1975, late November 1975, mid-March 1976 and late June 1976. These observations and sampling periods spanned five seasons from summer 1975 through early summer 1976. Each location was sampled at least three times, and one of the stations (Latouche Point) was visited on five separate occasions.

### GENERAL STUDY OBJECTIVES

The purpose of this study was to provide an inventory of the biological resources and ecological composition of three rocky sublittoral sites in the northeastern Gulf of Alaska. This was accomplished by first making a reconnaissance survey of the study sites in order to make a qualitative assessment of the habitat types present. After this phase, more intensive sampling was conducted at each location.

During this baseline investigation, we attempted to provide a characterization of habitats, biotic assemblages and species composition that reflected seasonal or temporal differences. The intent was to examine the baseline parameters that would partially serve as a basis for assessment of impacts and provide the background data necessary for designing long-term monitoring studies.

### METHODS

Most of the direct observations were made while scuba diving at depths from MLLW to about 30 meters below the sea surface. A total of 52 dives, representing approximately 119 man hours, were spent underwater during this phase of the project. Our normal procedure was to spend between 3 and 4 days working at each site. More casual observations dealing with usage of the inshore zone by birds and mammals were made either in route to, or while anchored on station. Movement to the OCS study sites and living accommodations while in the field were provided by the M.V. <u>Humdinger</u>, a 36' commercial troller that is equipped for diving and intertidal research.

Numerical information was gathered from specific locations in the subtidal zone. Except when collecting specimens, we tried not to disturb the organisms or their environment. All observations were made during daylight hours.

Because of the multitude of species present within the shallow subtidal zone, we chose to limit our sampling to the more conspicuous or characteristic species in the assemblage. Characteristic or representative important species are: (1) species of obvious numerica! (biomass) importance, (2) species that are known to have important structural roles for furnishing habitat, (3) the competitive dominants or key predators which may be uncommon, but which are considered likely to have important functional roles in the maintenance of the community and (4) species of aesthetic or present-day commercial value.

Several types of quantitative data have been collected about the characteristic species present at each site. Included are estimates of density (number of specimens per meter<sup>2</sup>), frequency (spatial distribution), and percent cover (primary and secondary space). Methods of estimating percent cover, or the amount of surface area occupied by a particular taxon or group varied. Usually this information was obtained from replicated 0.25m<sup>2</sup> quadrats. The quadrats were either placed in a haphazard (unbiased) manner, or stratified in such a way that a particular habitat or microhabitat was sampled in the sublittoral zone. The surface or floating seaweed canopies were estimated visually.

Random or haphazard transect bands of various dimensions were also used in each location to estimate density (abundance). The transects were usually run along a specific isobath or depth contour. However, due to physical heterogeneity, some changes in depth and substrate were frequently encountered.

Biomass estimates have been generated for selected species at the study sites as a first step toward estimating consumption rates, and to provide information on temporal variations in population structure at specific sites. Measurements of linear size (length, width, aperture width, etc.) and weight (wet or dry weight of soft tissue) have also been obtained.

In addition to the numerical information derived from the quadrats and transects, species-specific interactions or natural history phenomena involving feeding and reproduction were also recorded. These methods assisted in describing the conditions at each study site and permitted examination of the differences between seasons and locations.

### THE MARINE PLANT COMMUNITY

From the high water mark or splash zone of the littoral zone down to a depth of about 30 meters below the sea surface, the rocky habitats in the northern Gulf of Alaska are visually dominated by marine vegetation. The macroscopic seaweeds and seagrasses (macrophytes) form a conspicuous belt along the seashore. However, this band is not continuous, and is occasionally broken or interrupted by conditions in the physical environment that are unfavorable or preclude plant colonization and growth. Some of the marine plants that occur either in shallow waters, or grow along the beachlines are visible at various stages of the tide. There are a few subtidal species that form floating canopies that periodically become visible to even the casual observer. However, most of the vegetative band is below the low tide level, and is therefore unseen by surface observers.

The terms community and assemblage are used freely and often times interchanged throughout this report. The question of whether a community is an organized unit (system), or simply a collection of species with similar biological requirements is unresolved at the present time. However, a definition we have been able to work with is simply "a community is a group of species which are often found living together" (Fager, 1963).

The rocky sublittoral waters generally contain the greatest number of seaweed species. Typically this habitat is dominated by the

broad-leafed brown algae or kelps which display high standing crop. Frequently, the attached benthic plants form dense stands or beds that are comparable to a meadow or terrestrial forest. In some parts of the North Gulf Coast the vegetative belt is wide and extends approximately 5 to 6 kilometers from shore; in other locations where vertical relief is sharp, the width of the belt is less than a few hundred meters (Rosenthal, unpublished data). In most areas, significant development of algal assemblages is limited to the upper 25 meters of the water column.

Marine plant communities are highly productive systems (Dawson, 1966; Mann, 1973), which typically attract or contain numerous animals, many of the species are of commercial or high aesthetic value. Some of the associated species live year-round or complete their life cycle in these habitats, while others, such as the herring or king crab, have a more temporary or transitory occurrence.

Recent studies (review by Mann, 1973) have pointed out the important role of macrophytes in coastal productivity. For example, Mann (1972) estimated the primary production in the seaweed zone in St. Margaret's Bay, Nova Scotia averaged 1750 grams of carbon per square meter per year. This was about three times more than the total phytoplankton production in the same bay. Additional studies by Westlake (1963) indicate annual levels of production of seaweeds in northern latitudes between 1,000 to 2,000g c/m<sup>2</sup>/yr. Since these figures apply

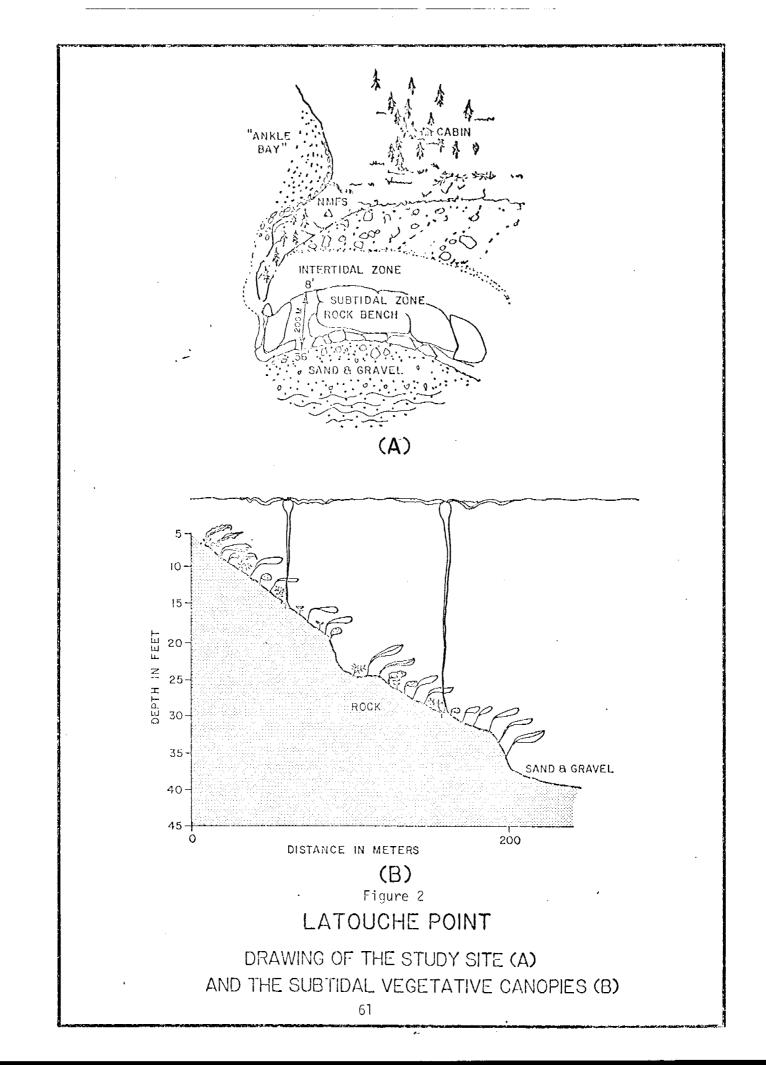
only to a narrow zone adjacent to hand, the estimates are even more important when evaluating the contribution of the seaweeds to the production of carbon in Prince William Sound, a marine ecosystem dominated by its' lengthy, rocky shoreline and extensive macrophyte zone.

The floristic components of sublittoral algal assemblages in southern Alaska have received very little attention until the past decade. Recently, Rosenthal and Barilotti (1973), and Dayton (1975) provided descriptive information on kelp bed ecosystems off the west coast of Chichagof Island, Alexander Archipelago and Amchitka Island in the Aleutian Chain. Additional studies conducted by Rosenthal and Lees (in Dames & Moore, 1976a) in Kachemak Bay; Lees and Rosenthal (in Dames & Moore, 1977) on the Outer Kenai Peninsula, and Rosenthal (in Dames & Moore, 1976b) in northeastern Prince William Sound provide lists of species, vegetative profiles and estimates of density and percent cover for the characteristic seaweeds in these general locations.

Johansen (1971) made a relatively complete collection of the macroalgae from the Prince William Sound region. Thirty-three shoreline stations in the Sound were occupied approximately 15 months after the earthquake of March 27, 1964. However, all of the collections and observations were made in the intertidal zone, and no information was obtained from the shallow sublittoral waters adjacent to the shore.

In 1913, the U.S. Department of Agriculture conducted a survey of the kelp beds of Alaska (Cameron, 1915). This investigation

was primarily designed to inventory the location, size, type and estimated yield of existing kelp beds in southern Alaska. The importance of this kind of information to present day research has been in providing historical records of the size and exact location of Alaskan kelp beds. Two of the locations in this present study, namely, Macleod Harbor and the southwest end of Latouche Island, are listed in the kelp bed inventory of western Alaska (Rigg, 1915).


### RESULTS

### DESCRIPTION OF THE STUDY SITE (LATOUCHE POINT)

Latouche Island is situated on the southwest edge of Prince William Sound. The primary site in this present study was off the extreme southwestern end of the island near a rocky promontory that we have appropriately named Latouche Point (Figure 1). The point is strategically situated between Latouche Passage on the north and Montague Strait to the south. Both waterways are major arteries connecting the Sound to the Gulf of Alaska. The entire island underwent dramatic landlevel changes during the March 27, 1964 earthquake, resulting in the shoreline being uplifted approximately 10 feet (Plafker, 1969). The present-day shoreline is rocky and moderately wooded with spruce and hemlock. Salt grass (<u>Elymus</u>) is common above the high water mark.

The point is exposed to westerly ocean swells, and a great deal of drift accumulates along the beachline, especially during early fall and spring. Tidal currents are typically moderate to weak in the lee of the Point. However, further offshore or in Latouche passage where the water mass is not deflected by land, the tidal currents can exceed 2 nautical miles per hour.

The rocky bench that fringes the southwest end of the island projects at least 200 meters horizontally into the shallow sublittoral zone (Figure 2). These measurements were made directly seaward or southwest of the NMFS intertidal transect, from the intertidal-subtidal



fringe to a point where the rock and unconsolidated sediments merge. An overall change in water depth from between 9 and 10 meters was recorded between these two ecotones. Surge channels cut through the rock bench and generally run in a perpendicular fashion with respect to the shoreline. Beyond the rockbench the seafloor becomes somewhat homogenous, and the bottom is composed mainly of coarse sands, gravel and shell debris. Ripple marks were prominent features of the unconsolidated substrate.

### BIOLOGICAL SETTING (ALGAL ASSEMBLAGE)

Much of the subtidal study area off Latouche Point was covered by a heavy growth of macroalgae. During summer months a large bed of bull kelp (<u>Nereocystis luetkeana</u>) grew on the shoal area between Latouche Point and Danger Island. The floating portion of the kelp bed was highly visible at slack low tide. Most of the <u>Nereocystis</u> grew on either the rock pavement or boulders. Individual plants were found from the intertidal-subtidal fringe, out to depths in excess of 20 meters. The densest part of the bed was between the 3 and 15 meter depth contour. Densities ranging up to 1.40 individuals/m<sup>2</sup> were observed for mature bull kelp (Tables 1 and 2). The average density during all sample periods was 0.35 plants/m<sup>2</sup>. Juvenile <u>Nereocystis</u> were present in the study area during spring and summer; juveniles peaked in the spring and early summer and adult plants peaked in summer and early fall.

The vegetative understory beneath this floating or surface canopy was multi-layered, or composed of a number of separate algal canopies. The second canopy level during summer was composed of the annual brown alga <u>Cymathere triplicata</u>. Typically, <u>Cymathere</u> grew on cobbles, gravel and shell debris. It was extremely common in early summer (1976), and densities during the June survey averaged 3.16 plants/m<sup>2</sup> (Table 2). The plants were highly aggregated with a maximum of 11.60/m<sup>2</sup> in the band transects. Some of these plants were 2 to 3 meters in length. The third canopy level was composed of Laminaria

| Taxon                                      | 9-17-75                    | 9-17-75                     | 11-26-75                       | 11-26-75                       | 11-26-75                         | 11-27-75                  | 3-18-76                       | 3-18-76                        |
|--------------------------------------------|----------------------------|-----------------------------|--------------------------------|--------------------------------|----------------------------------|---------------------------|-------------------------------|--------------------------------|
| Nereocystis luetkeana                      | 3<br>0.12/m <sup>2</sup>   | 0                           | 0                              | 0                              | 1<br>0.06/m <sup>2</sup>         | 14<br>0.93/m <sup>2</sup> | 0                             | 0                              |
| Laminaria spp.                             | 116<br>4.64/m <sup>2</sup> | 251<br>10.04/m <sup>2</sup> | 84(15)*<br>6.60/m <sup>2</sup> | 74(61)*<br>5.60/m <sup>2</sup> | 171(61)*<br>15.47/m <sup>2</sup> | Not counted               | 126<br>12.6/m <sup>2</sup>    | 83<br>8.30/m <sup>2</sup>      |
| Agarum cribrosum                           | 37<br>1.48/m <sup>2</sup>  | 49<br>1.96/m <sup>2</sup>   | 40<br>2.67/m <sup>2</sup>      | 26<br>1.73/m <sup>2</sup>      | 25<br>1.67/m <sup>2</sup>        | Not counted               | 14<br>1.40/m <sup>2</sup>     | 4<br>0.40/m <sup>2</sup>       |
| Pleurophycus gardneri                      | 7<br>0.28/m <sup>2</sup>   | 7<br>0.28/m <sup>2</sup>    | 0                              | 0                              | 2<br>0.13/m <sup>2</sup>         | Not counted               | 16<br>1.60/m <sup>2</sup>     | 9<br>0.90/m <sup>2</sup>       |
| Constantinea spp.                          | Not counted                | Not counted                 | 16<br>1.07/m <sup>2</sup>      | 24<br>1.60/m <sup>2</sup>      | 10<br>0.67/m <sup>2</sup>        | Not counted               | Not counted                   | Not counted                    |
| <u>Opuntiella</u> californica              | Not counted                | Not counted                 | 8<br>0.53/m <sup>3</sup>       | 16<br>1.07/m <sup>2</sup>      | 34<br>2.27/m <sup>2</sup>        | Not counted               | Not counted                   | Not counted                    |
| A Ptilota filicina<br>A .                  | Not counted                | Not counted                 | 17<br>1.37/m <sup>2</sup>      | 6<br>0.40/m <sup>2</sup>       | 31<br>2.07/m <sup>2</sup>        | Not counted               | Not counted                   | Not counted                    |
| Area sampled:<br>Depth:<br>Substrate type: | 25 x lm<br>12m<br>Rock     | 25 x lm<br>12m<br>Rock      | 15 x lm<br>12m<br>Rock & Sand  | 15 x lm<br>14m<br>Rock & Sand  | 15 x lm<br>7m<br>Rock            | 15 x lm<br>7-8m<br>Rock   | l0 x lm<br>lOm<br>Rock & Sand | l0 x lm<br>8m<br>Rock & Gravel |

DENSITY ESTIMATES OF SOME DOMINANT MACROPHYTES AT LATOUCHE POINT (estimates were derived from band transects of different lengths)

\* Number in parenthesis indicates these plants had undergone blade renewal.

#### TABLE 1

TABLE 2

### DENSITY ESTIMATES OF SOME DOMINANT MACROPHYTES AT LATOUCHE POINT

### (Estimates Were Derived from Band Transects of Different Lengths)

1

| Taxon                    | 6-25-76                     | 6-25-76                     | 6-25-76                   | 6-25-76                   | 6-25-76                    | 6-25-76                   | 6-25-76                   | 6-26-76                    | 6-26-76                    | 6-26-76                    | 6-26-76                    | 6-26-76                  |
|--------------------------|-----------------------------|-----------------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|--------------------------|
| Nereocystis luetkeana    | 6<br>1.20/m <sup>2</sup>    | 1<br>0.20/m <sup>2</sup>    | 3<br>0.60/m <sup>2</sup>  | 2<br>0.40/m <sup>2</sup>  | 1<br>0.20/m <sup>2</sup>   | 1<br>0.20/m <sup>2</sup>  | 7<br>1.40/m <sup>2</sup>  | 4 .<br>0.13/m <sup>2</sup> | 0                          | 3<br>0.60/m <sup>2</sup>   | 0                          | 7<br>0.23/m <sup>2</sup> |
| Laminaria groenlandica*  | 27<br>5.40/m <sup>2</sup>   | 21<br>4.20/m <sup>2</sup>   | 48<br>9.60/m <sup>2</sup> | 0                         | 0                          | 0                         | 0                         | Not<br>counted             | 19*<br>3.80/m <sup>2</sup> | 20*<br>4.00/m <sup>2</sup> | 29*<br>5.80/m <sup>2</sup> | Not<br>counted           |
| Laminaria yezoensis<br>; | 11<br>2.20/m <sup>2</sup>   | 13<br>2.60/m <sup>2</sup>   | 19<br>3.80/m <sup>2</sup> | 28<br>5.60/m <sup>2</sup> | 1<br>0.20/m <sup>2</sup>   | 0                         | 0                         | Not<br>counted             | 5<br>1.00/m <sup>2</sup>   | 0                          | 2<br>0.40/m <sup>2</sup>   | Not<br>counted           |
| Laminaria dentigera      | -                           | -                           | -                         | 22<br>4.40/m <sup>2</sup> | 37<br>7.40/m <sup>2</sup>  | 44<br>8.80/m <sup>2</sup> | 32<br>6.40/m <sup>2</sup> | Not<br>counted             | -                          | -                          |                            | Not<br>counted           |
| Agarum cribrosum         | 10<br>2.00/m <sup>2</sup>   | 4<br>0.80/m <sup>2</sup>    | l<br>0.20/m <sup>2</sup>  | 5<br>1.00/m <sup>2</sup>  | 1<br>0.20/m <sup>2</sup>   | 0                         | 0                         | Not<br>counted             | 7<br>1.40/m <sup>2</sup>   | 3<br>0.60/m <sup>2</sup>   | 8<br>1.60/m <sup>2</sup>   | Not<br>counted           |
| Pleurophycus gardneri    | 1<br>0.20/m <sup>2</sup>    | 0                           | 0                         | 2<br>0.40/m <sup>2</sup>  | 5<br>1.00/m <sup>2</sup>   | 24<br>4.80/m <sup>2</sup> | 30<br>6.00/m <sup>2</sup> | Not<br>counted             | 0                          | 2<br>0.40/m <sup>2</sup>   | 4<br>C.80/m <sup>2</sup>   | Not<br>counted           |
| Cymathere triplicata     | 1<br>0.20/m <sup>2</sup>    | 7<br>1.40/m <sup>2</sup>    | 8<br>1.60/m <sup>2</sup>  | 10<br>2.00/m <sup>2</sup> | 53<br>10.60/m <sup>2</sup> | 0                         | 0                         | Not<br>counted             | 0                          | 58<br>11.60/m <sup>2</sup> | 21<br>4.20/m <sup>2</sup>  | Not<br>counted           |
| <u>Alaria</u> sp.        | 1<br>0.20/m <sup>2</sup>    | 3<br>0.60/m <sup>2</sup>    | 3<br>0.60/m <sup>2</sup>  | 0                         | 0                          | 4<br>0.80/m <sup>2</sup>  | 13<br>2.60/m <sup>2</sup> | Not<br>counted             | 0                          | 1<br>0.20/m <sup>2</sup>   | o                          | Not<br>counted           |
| Area sampled:            | 5x1 m                       | 5x1 m                       | 5x1 m                     | 5xl m                     | 5x1 m                      | 5x1 m                     | 5x1 m                     | 30x1 m                     | 5xl m                      | 5x1 m                      | 5xl m                      | 30x1 m .                 |
| Depth:                   | 15 m                        | 13.5 m                      | 13.5 m                    | 6 m.                      | 5 m                        | 3.5 m                     | 3.5 m                     | 9 m                        | 9 m                        | 9 m                        | 9 m                        | 9 m                      |
| Substrate type:          | Sand,<br>gravel<br>& cobble | Gravel,<br>cobble<br>& rock | Gravel,<br>sand &<br>rock | Rock                      | Rock                       | Rock                      | Rock                      | Rock                       | Rock                       | Rock                       | Rock                       | Rock                     |

### TABLE 3

### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL SEPTEMBER 17, 1975

| Taxon                                 | <u>No. 1</u>   | <u>No. 2</u> | <u>No. 3</u> |
|---------------------------------------|----------------|--------------|--------------|
| Laminaria spp.                        | 50%(6)         | 70%          | 16%          |
| Pleurophycus                          |                | 20%          |              |
| Agarum                                |                |              | 40%(1)       |
| Constantinea                          | 20% <b>(7)</b> |              | 20%(4)       |
| Ptilota                               | Р              |              |              |
| Membranoptera                         | 15%            |              |              |
| Foliose, reds, unid.                  |                | 10%          | 1%           |
| Encrusting coralline                  | 50%            | P            | 60%          |
| Articulated coralline                 | 5%             |              | 20%          |
| Hildenbrandia sp.                     | 2%             | 5%           |              |
| Synoicum                              | 18             |              |              |
| Musculus vernicosus                   | Р              |              | Р            |
| Acmaea mitra                          | (1)            |              |              |
| ? Scrupocellaria                      |                |              | 18           |
| Pagurids                              | (3)            |              | (2)          |
| Tonicella spp.                        |                |              | (1)          |
| Chelyosoma sp.                        |                |              | (1)          |
| Balanus nubilus                       |                |              | (1)          |
| · · · · · · · · · · · · · · · · · · · |                |              |              |
|                                       |                |              |              |

| Depth (meters): | 11.0      | 11.0   | 11.0      |
|-----------------|-----------|--------|-----------|
| Substrate type: | Boulder & | Gravel | Boulder & |
|                 | Gravel    |        | Gravel    |

### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL, NOVEMBER 26, 1975

|                        | Percen       | t Cover (n   | umber of     | individua    | <u>ls)</u> |
|------------------------|--------------|--------------|--------------|--------------|------------|
| Taxon                  | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | No. 5      |
| Agarum                 | 0            | 0            | 40%(2)       | 0            | 0          |
| Laminaria spp.         | 50%(2)(5)*   | 10%(2)*      | 5%(2)*       | 60%(2)       | 95%(5)(1)* |
| Ptilota                | 2%(1)        | 10%(1)       | 0            | 1%(1)        | 0          |
| Encrusting coralline   | 80%          | 25%          | 90%          | 95%          | 40%        |
| Constantinea           | 0            | 1%(1)        | 0            | 0            | 2%(2)      |
| Articulated coralline  | 20%(8)       | 0            | 15%(9)       | 15%(6)       | 0          |
| Opuntiella             | 5%(3)        | 0            | 5%(1)        | 0            | 5%(2)      |
| Foliose reds, unid.    | 5%           | 5%           | 2%           | 0            | 0          |
| Rhynchozoon            | 5%           | 1%           | 0            | 0            | 0          |
| <u>Styela</u>          | (1)          | 0            | 0            | 0            | 0          |
| Yellow spatter sponge  | 3%           | 0            | 2%           | 0            | 0          |
| Cancer oregonensis     | 0            | (1)          | 0            | 0            | 0          |
| Trichotropis           | 5%           | 0            | 0            | 0            | 0          |
| Encrusting sponge      | 0            | 1%           | 2%           | 0            | 0          |
| Synoicum               | 0            | 5%           | 28           | 1%           | 0          |
| Pagurids               | (1)          | 0            | 0            | 0            | 0          |
| Serpulidae             | (2)          | 0            | (1)          | (1)          | 0          |
| Syconid sponge         | (1)          | 0            | 0            | 0            | 0          |
| Tonicella              | (1)          | 0            | 0            | 0            | 0          |
| Orange globular sponge | 0            | 0            | 18           | 18           | 0          |
| White globular sponge  | 0            | 0            | 1%           | <b>o</b> _   | 0 ·        |

Depth (meters): 7.0-8.0 Substrate type: rock bench

\* Plants undergoing blade renewal

# QUADRAT DATA $(0.25m^2)$ FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 26, 1975

|                        | Percent Cover (number of individuals) |               |              |                |  |  |  |
|------------------------|---------------------------------------|---------------|--------------|----------------|--|--|--|
| Taxon                  | <u>No. 1</u>                          | No. 2         | <u>No. 3</u> | <u>No. 4</u>   |  |  |  |
| Agarum                 | 30% (2)                               | 25%(2)        | 30%(1)       | 20%(1)         |  |  |  |
| Laminaria spp.         | 40%(7)                                | 20%(2)        | 30%(2)       | 15% <b>(1)</b> |  |  |  |
| Ptilota                | 2%(1)                                 | 1%(1)         | 15%(1)       | 0              |  |  |  |
| Encrusting coralline   | 45%                                   | 60%           | 80%          | 95%            |  |  |  |
| Constantinea           | 8%(2)                                 | 0             | 0            | 5%(1)          |  |  |  |
| Articulated coralline  | 5%(3)                                 | 30%(10)       | 40%(13)      | 15%(7)         |  |  |  |
| Opuntiella             | 0                                     | 5% <b>(1)</b> | 5%(1)        | 0              |  |  |  |
| Foliose reds, unid.    | 5%                                    | 2%            | 0            | 0              |  |  |  |
| Musculus vernicosus    | (2)                                   | (1)           | (1)          | 0              |  |  |  |
| Microporina            | 1%                                    | 5%            | 5%           | 0              |  |  |  |
| Synoicum               | 1%                                    | 2%            | 5%           | 1%             |  |  |  |
| Pagurids               | (7)                                   | (4)           | (7)          | (3)            |  |  |  |
| Cryptolithodes         | 0                                     | (1)           | 0            | 0              |  |  |  |
| Abietinaria            | 0                                     | 0             | 1%(1)        | 0              |  |  |  |
| Lichenopora            | 0                                     | 0             | 1%           | 1%             |  |  |  |
| Tricellaria            | 0                                     | 0             | 2%           | 1%             |  |  |  |
| Orange globular sponge | (1)                                   | 0             | 0            | 0              |  |  |  |
| Tonicella              | 0                                     | 0             | 0            | (1)            |  |  |  |
| Encrusting sponge      | 0                                     | 0             | (1)          | 0 -            |  |  |  |

Depth (meters): 10.0 Substrate type: Rock bench

## QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 26, 1975

,

|                       | Percent Cover (number of individuals) |                |              |                 |  |  |  |
|-----------------------|---------------------------------------|----------------|--------------|-----------------|--|--|--|
| Taxon                 | <u>No. 1</u>                          | <u>No. 2</u>   | <u>No. 3</u> | <u>No. 4</u>    |  |  |  |
| Agarum                | 15%                                   | 50%(2)         | 60%(4)       | 15%(2)          |  |  |  |
| Laminaria spp.        | 10%(3)                                | <b>7</b> 0%(2) | 25%(1)       | 40%(2)          |  |  |  |
| Ptilota               | 20%(4)                                | 4%(2)          | 25%(1)       | 5% <b>(1)</b>   |  |  |  |
| Encrusting coralline  | 90%                                   | 65%            | 50%          | 50%             |  |  |  |
| Constantinea          | 0                                     | 2%(3)          | 0            | 0               |  |  |  |
| Articulated coralline | 10%(5)                                | 25%(8)         | 2%(4)        | 15%(8)          |  |  |  |
| <u>Opuntiella</u>     | 0                                     | 0              | 2%(1)        | 0               |  |  |  |
| Hildenbrandia         | 0                                     | 0              | 1%           | 0               |  |  |  |
| Membranoptera         | 0                                     | 0              | - <b>O</b>   | 2%              |  |  |  |
| Foliose reds, unid.   | 0                                     | 2%             | 1%           | 0               |  |  |  |
| Musculus vernicosus   | 0                                     | (3)            | (7)          | 0               |  |  |  |
| Synoicum              | 1%                                    | 18             | 0            | 0               |  |  |  |
| Rhynchozoon           | 18                                    | 18             | 0            | 0               |  |  |  |
| <u>Tricellaria</u>    | 2%                                    | 2%             | 3%           | 5%              |  |  |  |
| Fusitriton            | (1)                                   | 0              | 0            | 0               |  |  |  |
| Strongylocentrotus    | 0                                     | (1)            | 0            | 0               |  |  |  |
| Orthasterias          | 0                                     | 0              | 0            | (1)             |  |  |  |
| Boltenia              | 0                                     | 0              | 0            | (1)             |  |  |  |
| Microporina           | 0                                     | 0              | 0            | 1%              |  |  |  |
| Dendrobeania          | 0                                     | 2%             | 0            | ʻ4 <del>8</del> |  |  |  |
|                       |                                       |                |              |                 |  |  |  |

# . QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 26, 1975

|                       | Percent      | Cover (numbe | r of individ | uals)        |
|-----------------------|--------------|--------------|--------------|--------------|
| Taxon                 | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |
| Amphissa              | 0            | 0            | 0            | (3)          |
| Pagurids              | (2)          | (2)          | (2)          | (4)          |
| Yellow spatter sponge | 0            | 0            | 0            | 2%           |

| Depth (meters): | 12.0       |
|-----------------|------------|
| Substrate type: | Rock bench |

### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 26, 1975

|                      | Percent Cover (number of individuals) |              |              |            |  |  |  |
|----------------------|---------------------------------------|--------------|--------------|------------|--|--|--|
| Taxon                | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> | No. 4      |  |  |  |
| Agarum               | 15%                                   | 0            | 10%(1)       | 0          |  |  |  |
| Laminaria yezoensis  | 40%(2)                                | 5%           | 30%(2)       | 0          |  |  |  |
| Laminaria spp.       | 40%(2)                                | 0            | 30%(3)*      | 40%(3)(3)* |  |  |  |
| Bossiella            | 8% (4)                                | 0            | 0            | 0          |  |  |  |
| Corallina            | 5%(4)                                 | 5%(1)        | 1%(1)        | 8%(5)      |  |  |  |
| Ptilota              | 1%(1)                                 | 1%(1)        | 1%(1)        | 1%(1)      |  |  |  |
| Constantinea         | 2% <b>(1)</b>                         | 0            | 0            | 0          |  |  |  |
| Foliose reds, unid.  | 0                                     | 2%           | 2%           | 3%         |  |  |  |
| Encrusting coralline | 80%                                   | 80%          | 75%          | 90%        |  |  |  |
| Hildenbrandia        | 0                                     | 0            | 10%          | 0          |  |  |  |
| Microporina          | 40%                                   | 10%          | 30%          | 30%        |  |  |  |
| Syconid sponge       | 0                                     | 0            | 0            | (1)        |  |  |  |
| Musculus vernicosus  | (8)                                   | 0            | ο.           | (8)        |  |  |  |
| Triopha carpenteri   | 0                                     | (1)          | 0            | 0          |  |  |  |
| Serpulidae           | 0                                     | 0            | (1)          | 0          |  |  |  |
| Synoicum             | 1%                                    | 1%           | 1%           | 0          |  |  |  |
| Tricellaria          | 1.8                                   | <u>l</u> %   | 1%           | 0          |  |  |  |
| Dendrobeania         | 0                                     | 0            | 1%           | 1%         |  |  |  |
| Pagurids             | 0                                     | (3)          | 0            | (1)        |  |  |  |
| Heteropora           | 0                                     | 0            | 0            | ,<br>1%    |  |  |  |

# QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 26, 1975

|                       | Percent      | Cover (numbe | r of individ | uals)        |
|-----------------------|--------------|--------------|--------------|--------------|
| Taxon                 | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |
| Diodora               | 0            | 0            | (1)          | 0            |
| <u>Calliostoma</u> .  | 0            | 0            | 0            | (1)          |
| Yellow spatter sponge | 0            | 0            | 2%           | 1%           |

| Depth (meters): | 12.0-14.9  |
|-----------------|------------|
| Substrate type: | Rock bench |

\* Plants undergoing blade renewal

## QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 27, 1975

|                       | Percent Cover (number of individuals) |            |              |              |              |  |  |  |
|-----------------------|---------------------------------------|------------|--------------|--------------|--------------|--|--|--|
| Taxon                 | <u>No. 1</u>                          | No. 2      | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> |  |  |  |
| Agarum                | 40%(3)                                | 25%(O)     | 0            | 25%(1)       | 15%          |  |  |  |
| Laminaria yezoensis   | 0                                     | 0          | 0            | 20%(1)       | 30% (2)      |  |  |  |
| Laminaria spp.        | 10%                                   | 40%(3)(1)* | 40%(4)       | 20%          | 30%(3)(2)*   |  |  |  |
| Laminaria (holdfast)  | 30%                                   | 35%        | 40%          | 40%          | 40%          |  |  |  |
| Hildenbrandia         | 30%                                   | 10%        | 2%           | 10%          | 5%           |  |  |  |
| Bossiella             | 10%(4)                                | 5%(2)      | 0            | 2%(1)        | 1%(1)        |  |  |  |
| Corallina             | 0                                     | 2%(1)      | 0            | 0 ·          | 15%(4)       |  |  |  |
| Foliose reds, unid.   | 2%                                    | 1%         | 2%           | 6%           | 2%           |  |  |  |
| Ptilota               | 0                                     | 0          | 0            | 2%           | 0            |  |  |  |
| Rhodymenia spp.       | 0                                     | 0          | 0            | 0            | 1%(2)        |  |  |  |
| Microporina           | 5%                                    | 5%         | 3%           | 35%          | 40%          |  |  |  |
| Yellow spatter sponge | 3%                                    | 0          | 0            | 3%           | 1%           |  |  |  |
| White globular sponge | 0                                     | 0          | 0            | (1)          | 0            |  |  |  |
| Dendrobeania          | 0                                     | 0          | 1%           | 1%           | 2%           |  |  |  |
| Rhynchozoon           | 5%                                    | 0          | 0            | 0            | 0            |  |  |  |
| Eudendrium            | 1%(3)                                 | 1%(1)      | 1%(3)        | 0            | 0            |  |  |  |
| Synoicum              | 1%                                    | 0          | 2%           | 2%           | 1%           |  |  |  |
| Serpulidae            | 0                                     | 0          | 0            | (1)          | 0            |  |  |  |
| Syconid sponge        | 0                                     | 0          | 0            | 0            | 1%           |  |  |  |
| Acmaea mitra          | (1)                                   | 0          | 0            | 0            | ΄ο           |  |  |  |
| Lichenopora           | 0                                     | 0          | 1%(2)        | 2%(1)        | 0            |  |  |  |

## QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 27, 1975

|                      | Perc         | ent Cover (nu | mber of i    | ndividual    | .s)          |
|----------------------|--------------|---------------|--------------|--------------|--------------|
| Taxon                | <u>No. 1</u> | No. 2         | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> |
| Abietinaria          | 2%(1)        | 1%(1)         | 0            | 1%(1)        | 2%(2)        |
| Chiton (unid.)       | 0            | (1)           | 0            | 0            | 0            |
| Gravel               | 25%          | 50%           | 80%          | 25%          | 20%          |
| <u>Tricellaria</u>   | 1%           | 0             | 0            | 3%           | 5%           |
| Balanus ? alaskensis | (1)          | 0             | 0            | 0            | 0            |
| Musculus vericosus   | (1)          | 0             | 0            | 0            | (10)         |
| Crossaster           | 0            | 0             | (1)          | 0            | 0            |
| Fusitriton           | 0            | 0             | (1)          | 0            | 0            |
| Trichotropis         | 0            | 0             | 0            | (1)          | 0            |
| Pagurids             | 0            | 0             | 0            | 0            | (1)          |
| Heteropora           | 0            | 0             | 0            | (1)          | 0            |
| Styela               | 0            | 0             | 0            | 0            | (1)          |
| White spatter sponge | 0            | 0             | 0            | 1%           | 0            |

Depth (meters): 10-12m Substrate type: boulders, gravel and rock pavement

\* Plants undergoing blade renewal

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL NOVEMBER 27, 1975

| Taxon                                                                                                                                                                |          | <u>No. 1</u>                  | <u>No. 2</u>         | <u>No. 3</u>         | No. 4        | <u>No. 5</u>   | <u>No. 6</u>   | <u>No. 7</u>                     | <u>No. 8</u> | No. 9                  | <u>No. 10</u>   | <u>No. 11</u>           | <u>N</u> o. 12                 | No. 13       | No. 14                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------|----------------------|----------------------|--------------|----------------|----------------|----------------------------------|--------------|------------------------|-----------------|-------------------------|--------------------------------|--------------|------------------------------|
| Laminaria groenlandica<br>Laminaria spp.<br>Agarum cribrosum<br>Opuntiella<br>Constantinea<br>Ralfsia<br>Ptilota<br>Odonthalia                                       | (2)<br>P | (2)<br>(2)<br>P               | (2)<br>(2)<br>P<br>P | (2)<br>(1)<br>P<br>P | (1)          | (2)            |                | (3)<br>(2)<br>P<br>P<br>10%<br>P | (4)          | (1)<br>(1)<br>P<br>10% | (1)<br>(1)<br>P | (2)<br>(2)<br>P<br>P    | (1)<br>(4)<br>P                | (1)<br>(1)   |                              |
| Foliose red, unid.<br>Encrusting coralline<br>Articulated coralline<br>Hildenbrandia<br>Styela<br>Henricia<br>Tonicalla<br>Trophonopsis<br>Microporina<br>Fusitriton | 60%      | 70%<br>(2)<br>20%             | 50%<br>(2)<br>(1)    | 7%<br>25%            |              | 5%             | 10%            | 75%<br>2%<br>15%<br>(1)          | Р            | 20%                    |                 | 15%                     | 50%<br>4%<br>40%<br>(1)<br>(2) | 20%          | 5%                           |
| Depth (meters):<br>Substrate type:                                                                                                                                   | 1<br>1   | ll.5<br>Rock<br>pave-<br>ment |                      |                      | 12.0<br>Rock | 12.5<br>Gravel | 12.5<br>Gravel |                                  |              | 12.5<br>Sand-<br>rock  | Sand-           | 12.5<br>Rock-<br>gravel | 12.0<br>Rock                   | 12.5<br>Rock | (1)<br>12.5<br>Sand-<br>rock |

## QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL March 16, 1976

|                          | Percent          | Cover (numbe | r of individ | uals)        |
|--------------------------|------------------|--------------|--------------|--------------|
| Taxon                    | <u>No. 1</u>     | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |
| Laminaria yezoensis      | 50%( <b>1)**</b> | 40%**        | 20%**        | 50%**        |
| Laminaria groenlandica   | 0                | (2)          | (1)          | (3)          |
| Laminaria (juveniles)    | (3)              | 0            | (10)         | 0            |
| Agarum                   | 20%(2)           | 25%(2)       | 25%          | 25%(2)       |
| Pleurophycus             | 0                | 0            | 20%(1)       | 10%(1)       |
| Encrusting coralline     | 80%              | 80%          | 95%          | 90%          |
| Ptilota                  | 0                | 20%(1)       | 10%(1)       | 0            |
| Constantinea             | 0                | 15%(3)       | 2%(1)        | 0            |
| Rhodymenia               | 6%               | 5%           | 0            | 28           |
| Corallina                | 48               | 20%          | 20%          | 25%          |
| Bossiella                | 2%               | 2%           | 5%           | 0            |
| Hildenbrandia            | 0                | 2%           | 0            | 2%           |
| Ralfsia                  | 0                | 5%           | 0            | 0            |
| Microporina              | 5%               | 10%          | 0            | 0            |
| Lichenopora              | 2%               | 0            | 0            | 0            |
| Distaplia                | 2%               | 0            | 0            | 0            |
| Synoicum                 | 1%               | 10%          | 2%           | 28           |
| Gray colonial ascidian   | 1%               | 2%           | 1%           | 0            |
| Orange encrusting sponge | 1%               | 1%           | 0            | 0            |
| Tricellaria              | 0                | 0            | 0            | 1%,          |

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 16, 1976

|                     | Percent Cover (number of individuals) |              |              |              |  |  |  |  |  |  |
|---------------------|---------------------------------------|--------------|--------------|--------------|--|--|--|--|--|--|
| Taxon               | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |  |  |  |
| Eudendrium          | 0                                     | 0            | 0            | 18           |  |  |  |  |  |  |
| Amphissa            | 0                                     | (1)          | (1)          | 0            |  |  |  |  |  |  |
| <u>Velutina</u> sp. | 0                                     | (1)          | 0            | (1)          |  |  |  |  |  |  |
| Acmaea mitra        | 0                                     | 0            | (2)          | 0            |  |  |  |  |  |  |
| ? Rhynchozoon       | 0                                     | 0            | 0            | 1%           |  |  |  |  |  |  |
| Pagurids            | 0                                     | (4)          | (1)          | (1)          |  |  |  |  |  |  |
| Henricia spp.       | 0                                     | (1)          | 0            | 0            |  |  |  |  |  |  |
| Ophiopholis         | 0                                     | 0            | present      | 0            |  |  |  |  |  |  |

Depth (meters): 9.0 Substrate type: Rock pavement and boulders

\* Total Laminaria cover in quadrat

.

QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 16, 1977

| Taxon                                        | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> | <u>No. 6</u> | <u>No. 7</u> | <u>No. 8</u> | <u>No. 9</u> | <u>No. 10</u> | <u>No. 11</u> | <u>No. 12</u> |
|----------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|---------------|---------------|
| Laminaria groenlandica                       |              | (3)          | (2)          | (3)          | (1)          | (1)          | (2)          | (1)          |              |               |               | (3)           |
| Laminaria yezoensis                          |              |              |              | (1)          | (1)          | (3)          |              |              |              |               |               | (2)           |
| Laminaria spp.                               |              |              | (3)          | (2)          |              | (1)          | (6)          |              |              |               |               | (3)           |
| Agarum cribrosum                             |              | 115          |              |              |              | (2)          | (1)          |              | (1)          |               | (1)           |               |
| <u>Pleurophycus</u> gardneri<br>Ralfsia spp. |              | (1)          |              | -            |              |              |              | (4)          |              |               |               |               |
| Rhodymenia                                   |              | 5%<br>109    |              | 5%           |              |              |              | _            |              |               | 5%            |               |
| Delesseria                                   |              | 10%<br>10%   |              |              |              | 15%          | 5%           | 28           | 10%          |               | 5%            | 5%            |
| Callephyllis                                 |              | 1046         |              |              |              | 10%          | 10%          | 15%          | 28           | 5%            |               |               |
| Constantinea                                 |              | 10%          | 10%          | 10%          | 10%          | ~~           |              | 10%          |              | <b>.</b>      |               |               |
| Membranoptera                                |              | 10%          | 104          | TOS          | 104          | 2%           |              |              |              | 5%            | 10%           |               |
| ∞ Ptilota                                    |              |              |              | 5%           |              | 5%           | 208          | 100          |              | 20%           |               |               |
| Filamentous brown                            |              | 20           | 10%          | 70           |              | 24           | 20%          | 10%          |              | 10%           | 5%            | 5%            |
| Oruntiella                                   |              |              | T0-9         |              | 2%           |              |              |              |              |               |               |               |
| Monostroma                                   |              |              |              |              | 2.0          |              |              |              |              |               | <u>0</u> 0    |               |
| Articulated coralline                        |              | 5%           |              | 3%           |              |              | 15%          |              | 10%          |               | 2%<br>2%      |               |
| Encrusting coralline                         |              | 50%          | 20%          | 60%          |              | 70%          | 85%          | 70%          | 20%          | 25%           | 2%<br>25%     | 500           |
| Calliostoma                                  |              | (1)          |              |              |              | (1)          | 00%          | 708          | 200          | 206           | 205           | 50%<br>(1)    |
| Acmaea mitra                                 |              |              | (1)          |              |              | (-)          |              |              |              | (1)           |               | (1)<br>(1)    |
| Tonicella                                    |              |              |              |              |              |              |              |              |              | (1)           |               | (1)           |
|                                              |              |              |              |              |              |              |              |              |              |               |               | (1)           |
|                                              |              |              | •            |              |              |              |              |              |              |               |               |               |
| Depth (meters):                              | 10.0         | 10.0         | 10.0         | 10.0         | 10.0         | 10.0         | 9.0          | 9.0          | 9.0          | 9.0           | 9.0           | <u> </u>      |
| Substrate type:                              | Gravel       |              | Rock-        |              |              | Gravel-      | Rock         | Rock         | 9.0<br>Rock  | 9.0<br>Rock-  | 9.0<br>Rock-  | 9.0<br>Book   |
|                                              |              |              | Gravel       |              |              | Sand         | 10001        | NUCK         | NUCK         | Gravel        | Sand          | Rock          |

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 17, 1976

|                          | Percent Cover (number of individuals) |              |              |              |  |  |  |  |  |  |
|--------------------------|---------------------------------------|--------------|--------------|--------------|--|--|--|--|--|--|
| Taxon                    | <u>No, l</u>                          | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |  |  |  |
| Laminaria yezoensis      | 50%(1)**                              | 80%(8)**     | 35***        | 20%(1)**     |  |  |  |  |  |  |
| Laminaria groenlandica . | (1)                                   | 0            | (3)          | 0            |  |  |  |  |  |  |
| Laminaria (juveniles)    | 0                                     | (2)          | 0            | 0            |  |  |  |  |  |  |
| Pleurophycus             | 0                                     | 0            | 25%(3)       | 20%          |  |  |  |  |  |  |
| Encrusting coralline     | 40%                                   | 50%          | 30%          | 50%          |  |  |  |  |  |  |
| Ptilota                  | 18                                    | 2%           | 5%           | 2%           |  |  |  |  |  |  |
| Constantinea             | 5%(1)                                 | 0            | 2%(1)        | 0            |  |  |  |  |  |  |
| Rhodymenia               | 0                                     | 0            | 0            | 5%           |  |  |  |  |  |  |
| Corallina                | 15%                                   | 15%          | 8%           | 15%          |  |  |  |  |  |  |
| Bossiella                | 1%                                    | 48           | 0            | 0            |  |  |  |  |  |  |
| Ralfsia                  | 2                                     | 0            | 10%          | 0            |  |  |  |  |  |  |
| <u>Opuntiella</u>        | 20%                                   | 0            | 0            | 12%          |  |  |  |  |  |  |
| Delesseria               | 18                                    | 0            | 18           | 5%           |  |  |  |  |  |  |
| Microporina              | 5%                                    | 2%           | 2% •         | 1%           |  |  |  |  |  |  |
| Lichenopora              | 0                                     | 1%           | 1%           | 0            |  |  |  |  |  |  |
| Synoicum                 | 5%                                    | 2%           | 15%          | 10%          |  |  |  |  |  |  |
| Gray colonial ascidian   | 15%                                   | 2%           | 10%          | 2%           |  |  |  |  |  |  |
| Orange encrusting sponge | 28                                    | 0            | 0            | 1%           |  |  |  |  |  |  |
| <u>Tricellaria</u>       | 0                                     | 0            | 0.           | 1%           |  |  |  |  |  |  |
| Orange colonial ascidian | 0                                     | 0            | 0            | 1%           |  |  |  |  |  |  |
| Green colonial ascidian  | 0                                     | 2%           | 2%           | 0            |  |  |  |  |  |  |
| Velutina                 | 0                                     | 0            | 0            | (1)          |  |  |  |  |  |  |

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 17, 1976

|                       | Percent Cover (number of individuals) |              |              |              |  |  |  |  |  |
|-----------------------|---------------------------------------|--------------|--------------|--------------|--|--|--|--|--|
| Taxon                 | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |  |  |
| Serpulidae            | 0                                     | (1)          | (5)          | 0            |  |  |  |  |  |
| Pagurids              | 0                                     | 0            | (2)          | (5)          |  |  |  |  |  |
| Henricia              | 0                                     | 0            | (1)          | 0            |  |  |  |  |  |
| Ophiopholis           | 0                                     | present      | present      | present      |  |  |  |  |  |
| Yellow globose sponge | 0                                     | 0            | 0            | 1%           |  |  |  |  |  |
| Lacuna                | 0                                     | present      | present      | 0            |  |  |  |  |  |
| Styela                | 0                                     | 0            | (2)          | 0            |  |  |  |  |  |
| Searlesia             | 0                                     | 0            | 0            | (1)          |  |  |  |  |  |
| Margarites            | 0                                     | 0            | 0            | (1)          |  |  |  |  |  |
| Trophon               | 0                                     | 0            | (2)          | 0            |  |  |  |  |  |
| Placiphorella         | (1)                                   | 0            | 0            | 0            |  |  |  |  |  |
| Cancer oregonensis    | 0                                     | (1)          | 0            | 0            |  |  |  |  |  |
| Oregonia              | 0                                     | 0            | 0            | (1)          |  |  |  |  |  |

Depth (meters): 8.0-9.0 Substrate type: Rock pavement and boulders

\*\* Total Laminaria cover in quadrat

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 17, 1976

|                          | Percent Cover (number of individu |              |              |  |  |  |  |
|--------------------------|-----------------------------------|--------------|--------------|--|--|--|--|
| Taxon                    | <u>No. 1</u>                      | <u>No. 2</u> | <u>No. 3</u> |  |  |  |  |
| Laminaria yezoensis      | 40%(2)*                           | 50%(2)       | 60%          |  |  |  |  |
| Laminaria groenlandica   | (1)                               | (1)          | 0            |  |  |  |  |
| Laminaria (juveniles)    | (3)                               | (2)          | (13)         |  |  |  |  |
| Pleurophycus             | 10%(2)                            | 20%(1)       | 0            |  |  |  |  |
| Encrusting coralline     | 40%                               | 70%          | 50%          |  |  |  |  |
| Ptilota                  | 2%                                | 10%          | 0            |  |  |  |  |
| Constantinea             | 0                                 | 0            | 2%           |  |  |  |  |
| Rhodymenia               | 2%                                | 5%           | 0            |  |  |  |  |
| Corallina                | 2%                                | 15%          | 48           |  |  |  |  |
| Bossiella                | 0                                 | 0            | 3%           |  |  |  |  |
| Hildenbrandia            | 28                                | 0            | 0            |  |  |  |  |
| <u>Opuntiella</u>        | 10%                               | 20%          | 5%           |  |  |  |  |
| Delesseria               | 2%                                | 2%           | 0            |  |  |  |  |
| Microporina              | 15%                               | 0            | 48           |  |  |  |  |
| Lichenopora              | 1%                                | 1%           | 18           |  |  |  |  |
| Synoicum                 | 6%                                | 8%           | 6%           |  |  |  |  |
| Gray colonial ascidian   | 15%                               | 8%           | 30%          |  |  |  |  |
| Orange encrusting sponge | 1%                                | 1%           | 2%           |  |  |  |  |
| Abietinaria              | 0                                 | 0            | 28           |  |  |  |  |
| Green colonial ascidian  | 0                                 | 48           | 1%           |  |  |  |  |
| Tonicella                | 0                                 | (2)          | ,<br>(2)     |  |  |  |  |
|                          |                                   |              |              |  |  |  |  |

31

ł

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 17, 1976

|               | Percent Cover | number of indivi | duals)       |
|---------------|---------------|------------------|--------------|
| Taxon         | <u>No. 1</u>  | <u>No. 2</u>     | <u>No. 3</u> |
| Pagurids      | (2)           | (12)             | (6)          |
| ? Rhynchozoon | 0             | 0                | 1%           |
| Searlesia     | (1)           | 0                | 0            |
| Heteropora    | 1%            | 0                | 0            |
| Trophon       | 0             | 0                | (1)          |
| Entodesma     | (1)           | 0                | 0            |

| Dopth (meters): | 7.0-8.0                    |
|-----------------|----------------------------|
| Substrate type: | Rock pavement and boulders |

\* Total Laminaria cover in quadrat

.

## QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 18, 1976

|                          | Percent Cover (number of individuals) |              |                |          |  |  |  |  |  |
|--------------------------|---------------------------------------|--------------|----------------|----------|--|--|--|--|--|
| Taxon                    | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u>   | No. 4    |  |  |  |  |  |
| Laminaria yezoensis      | 70%**                                 | 50%**        | 75%(1)**       | 60%(1)** |  |  |  |  |  |
| Laminaria groenlandica   | (2)                                   | (0)          | (5)            | (2)      |  |  |  |  |  |
| Laminaria (juvenile)     | 0                                     | (2)          | 0              | 0        |  |  |  |  |  |
| Pleurophycus             | 0                                     | 25%(1)       | 0              | 30%(2)   |  |  |  |  |  |
| Agarum                   | 0                                     | 25%(1)       | 10% <b>(2)</b> | 0        |  |  |  |  |  |
| Encrusting coralline     | 60%                                   | 50%          | 80%            | 45%      |  |  |  |  |  |
| Ptilota                  | 25%                                   | 0            | 5%             | 20%      |  |  |  |  |  |
| Constantinea             | 30%                                   | 0            | 0              | 8%       |  |  |  |  |  |
| Rhodymenia               | 0                                     | 0            | 0              | 2%       |  |  |  |  |  |
| Corallina                | 40%                                   | 20%          | 25%            | 8%       |  |  |  |  |  |
| Bossiella                | 10%                                   | 5%           | 0              | 2\$      |  |  |  |  |  |
| Opuntiella               | 0                                     | 5%           | 5%             | 0        |  |  |  |  |  |
| Delesseria               | 0                                     | 8%           | 1%             | 1%       |  |  |  |  |  |
| Membranoptera            | 0                                     | 0            | 0              | 2%       |  |  |  |  |  |
| Lichenopora              | 0                                     | 1%           | 1%             | 1%       |  |  |  |  |  |
| Synoicum                 | 28                                    | 0            | 5%             | 5%       |  |  |  |  |  |
| Distaplia                | 10%                                   | 5%           | 2%             | 0        |  |  |  |  |  |
| Orange encrusting sponge | 3%                                    | 0            | 0              | 1%       |  |  |  |  |  |
| Tricellaria              | 0                                     | 1%           | 1%             | 18       |  |  |  |  |  |
| Didemnum or Trididemnum  | 1%                                    | 3%           | 0              | 0        |  |  |  |  |  |
| Chelyosoma productum     | 0                                     | 0            | 1%(1)          | 0        |  |  |  |  |  |

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 18, 1976

|                   | Percent Cover (number of individuals) |              |              |              |  |  |  |  |  |
|-------------------|---------------------------------------|--------------|--------------|--------------|--|--|--|--|--|
| Taxon             | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |  |  |
| Lacuna            | 0                                     | 0            | 0            | 0            |  |  |  |  |  |
| Acmaea mitra      | 0                                     | (2)          | (2)          | (1)          |  |  |  |  |  |
| Searlesia         | (1)                                   | (1)          | 0            | 0            |  |  |  |  |  |
| <u>Tonicella</u>  | 0                                     | (3)          | (1)          | 0            |  |  |  |  |  |
| Serpulidae        | 0                                     | 0            | 0            | 0            |  |  |  |  |  |
| Ophicpholis       | 0                                     | 0            | 0            | 0            |  |  |  |  |  |
| Pagurids          | 0                                     | (4)          | (2)          | (2)          |  |  |  |  |  |
| <u>Margarites</u> | 0                                     | (2)          | 0            | 0            |  |  |  |  |  |

Depth (meters): 6.0-10.0 Substrate type: Rock bench and boulders

\*\* Total Laminaria cover in quadrat

.....

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL MARCH 18, 1976

|                          | Percent Cover (number of individuals) |              |       |              |  |  |  |  |  |  |
|--------------------------|---------------------------------------|--------------|-------|--------------|--|--|--|--|--|--|
| Taxon                    | <u>No. 1</u>                          | <u>No. 2</u> | No. 3 | <u>No. 4</u> |  |  |  |  |  |  |
| Laminaria yezoensis      | 25%(1)**                              | 40%(1)**     | 60%** | 5***         |  |  |  |  |  |  |
| Laminaria groenlandica   | 0                                     | (1)          | (1)   | 0            |  |  |  |  |  |  |
| Laminaria (juvenile)     | 0                                     | 0            | (8)   | (4)          |  |  |  |  |  |  |
| Pleurophycus             | 0                                     | 10%(2)       | 0     | 15%          |  |  |  |  |  |  |
| Agarum                   | 10%                                   | 0            | 0     | 0            |  |  |  |  |  |  |
| Encrusting coralline     | 40%                                   | 60%          | 50%   | 70%          |  |  |  |  |  |  |
| Ptilota                  | 40%                                   | 15%          | 20%   | 15%          |  |  |  |  |  |  |
| <u>Constantinea</u>      | 16%(2)                                | 0            | 0     | 5%           |  |  |  |  |  |  |
| Corallina                | 40%                                   | 30%          | 40%   | 40%          |  |  |  |  |  |  |
| Bossiella                | 1%                                    | 0            | 0     | 1%           |  |  |  |  |  |  |
| Hildenbrandia            | 1%                                    | 0            | 0     | 0            |  |  |  |  |  |  |
| Ralfsia                  | 0                                     | 5%           | 0     | 0            |  |  |  |  |  |  |
| Delesseria               | 0                                     | 0            | 0     | 1%           |  |  |  |  |  |  |
| <u>Alaria</u> sp.        | 0                                     | 15%          | 0     | 20%(1)       |  |  |  |  |  |  |
| Lichenopora              | 0                                     | 1%           | 0     | 0            |  |  |  |  |  |  |
| Synoicum                 | 20%                                   | 5%           | 5%    | 1%           |  |  |  |  |  |  |
| Distaplia                | 5%                                    | 5%           | 0     | 0            |  |  |  |  |  |  |
| Orange encrusting sponge | 2%                                    | 1%           | 0     | 8%           |  |  |  |  |  |  |
| Tricellaria              | 1%                                    | 0            | 1%    | 0            |  |  |  |  |  |  |
| ? Leucosolenia           | 0                                     | 0            | 1%    | 0            |  |  |  |  |  |  |

#### QUADRAT DATA (0.25m<sup>2</sup>) FROM LATOUCHE POINT, SUBTIDAL March 18, 1976

|                          | Percent Cover (number of individuals) |              |              |         |  |  |  |  |  |  |
|--------------------------|---------------------------------------|--------------|--------------|---------|--|--|--|--|--|--|
| Taxon                    | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> | No. 4   |  |  |  |  |  |  |
| Yellow encrusting sponge | 0                                     | 0            | 2%           | 0       |  |  |  |  |  |  |
| <u>Acmaea</u> mitra      | (1)                                   | 0            | 0            | (3)     |  |  |  |  |  |  |
| Searlesia                | 0                                     | 0            | 0            | (2)     |  |  |  |  |  |  |
| Tonicella                | 0                                     | 0            | 0            | (2)     |  |  |  |  |  |  |
| Serpulidae               | 0                                     | 0            | 0            | present |  |  |  |  |  |  |

Depth (meters): 5.0-6.0 Substrate type: Rock bench

\*\* Total Laminaria cover in quadrat

## QUADRAT DATA (0.25m²) FROM LATOUCHE POINT, SUBTIDAL JUNE 25 and 26, 1976

Percent Cover (Number of Individuals)

| Taxon                                                 | <u>No. 1</u> | <u>No. 2</u> | No. 3         | No. 4         | <u>Nc. 5</u> | <u>No. 6</u> | <u>No. 7</u> | <u>No. 8</u> | No. 9  | <u>No. 10</u> | <u>No. 11</u> | No. 12 | <u>No. 13</u> | No. 14 | No. 15  | <u>No. 16</u>  |
|-------------------------------------------------------|--------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|--------|---------------|---------------|--------|---------------|--------|---------|----------------|
| Laminaria yezoensis                                   | 5%(l)        | 5%(1)        |               |               |              | 5%(1)        |              | 65%(4)       | )      | 40%(3)        | 75%(2)        |        |               |        |         | 10%(1)         |
| Laminaria groenlandica/<br>dentigera                  | 0            | 60%          | 5%(1)         |               | 60%(4)       | 40%(3)       | 90%(7)       |              |        |               |               |        |               |        | 10%     | 40%(1)         |
| Laminaria saccharina<br>Laminaria spp.                | 0<br>5%(10)  | 2%(3)        |               | 50%(1)        | ) 2%(2)      | 5%(10)       | • •          | 8%(5)        | 2%(3)  |               | 10%(2)        |        | 20% ( 20)     | 0~(5)  |         | ,              |
| Pleurophycus                                          | - 30X(3)     |              |               |               |              | 25%(2)       | 10%(1)       | 06(3)        | 2%(3)  | 10%(1)        |               |        | 30%(20)       | 2%(5)  |         |                |
| <u>Agarur</u><br>C/rathere                            | 20%(3)       | 25%          | 50%           | 5%<br>15%     | 25%(1)       |              |              | 25%(4)       | )      | 25(1)         | 10%<br>15%    |        |               |        | 15%     |                |
| Alaria sp.                                            |              |              | •••           |               |              |              |              | 20014        | ,      |               |               |        | 5%(1)         |        |         |                |
| <u>Nereocystis</u><br>Opuntiella                      | 10x          |              |               |               |              | 10%          | 15%          |              |        |               |               |        | 15%(2)        |        |         |                |
| Rhodymenia                                            | 105/01       | 5%           |               |               |              |              |              |              | 15%    |               | 8%            |        | 10%           |        |         | 8:             |
| Constantinea<br>Microcladia                           | 10%(3)<br>5% |              |               |               |              |              |              |              | 2%     | 10%           | 15%           |        |               |        | 10%     | 15%            |
| <u>Ptilota</u><br>Pterosiphonia                       | 5%           |              | 5%            | 2%            | 5%<br>2%     | 10%          | 20%          |              |        | 10%           | 21            |        |               | 2%     |         | 15#            |
| Menbranoptera                                         |              |              | 3*            | 5%            | 22           |              | 5%           |              |        | 10%           | 5%            |        |               |        |         |                |
| foliose reds, unid.<br>Delesseria                     |              | 5%           | 10%           | 20%           | 22           | 5%           | 24           | 5%           | 5%     | 1.54          | 5%            |        | 15%           | 102    |         |                |
| Callophyllis                                          |              |              |               |               | £~           | 3.           | 2%<br>5%     |              |        | 15%<br>15%    |               |        |               |        | 15%     | 15%            |
| filamentous reds, unid.<br>encrusting coralline       | 60%          | 10%          |               |               | 50%          | 70%          | 15%<br>80%   | 15%          |        | 5%<br>60%     | 25%           | 2%     | 20%           | 5%     |         | 40%            |
| articulated coralline                                 | 10%          | 10%          |               |               | 5%           | 5%           | 2%           | 13,5         |        |               | 238           | 6.2    | 208           | 3*     |         | 20%            |
| <u>Palfsia</u> sp.<br>Odonthalia Kamtscha <b>tica</b> | 2%           |              |               |               |              | 2%           |              |              |        | 2%            |               |        | 15x           |        |         | 2%             |
| Bossiella sp.                                         | 15%          |              |               |               |              | 2%           |              |              |        | 10% `         | 10%           |        |               |        |         |                |
| Hildenbrandia sp.<br>Desmarestia viridis              | 15%          |              |               |               |              |              |              |              | 2%     | 5%            |               |        |               |        |         |                |
| Microporina                                           | c.           |              |               |               | 60%          | 2%           | 8%           |              |        |               |               |        |               |        |         | 2%             |
| Heteropora<br>Distaplia                               | 5%           |              |               |               | 30%          | 2%<br>15%    | 10%          |              |        | 2%<br>5%      |               |        |               |        |         | 5%             |
| Synoicum<br>Derdrobeania murryanf                     | 2%<br>2%     |              |               |               | 5%           | 15%          | 30%          |              |        |               |               |        |               |        | 5% '    |                |
| Musculus vernicosus                                   | P            | P            | P             | P             | P            | P            | Р            | Ρ            | Р      | Р             |               |        | Р             | P      | P       | . <del>P</del> |
| Musculus discors<br>Calliostoma                       |              |              |               |               |              | (5)          |              |              |        | Р             |               |        |               |        |         | (1)            |
| Searlesia                                             |              |              |               |               |              | (5)<br>(1)   | (1)          |              |        |               |               |        |               |        |         |                |
| <u>Accaea mítra</u><br>Crossaster                     |              |              |               |               |              |              | •            |              |        | - {}          | (1)           |        | P             |        | (1)     |                |
| Henricia                                              |              |              |               |               |              |              |              |              |        |               |               |        |               |        | (17     | (1)            |
| ? <u>Leptasterias</u> sp.<br>pagurids                 |              |              |               |               |              |              | (1)          |              |        | (1)           |               |        |               | (1)    |         |                |
| Strong/locentrotus spp.                               |              | (1)          |               |               |              |              | •            |              |        |               |               |        |               |        |         | (1)            |
| <u>Trichotropis</u> sp.<br><u>Ulivella</u>            |              |              |               |               |              |              | (1)          |              |        |               |               |        | 1             | (1)    |         |                |
| Tonicella spp.<br>Pycnopodia                          | (0)          |              |               |               |              | (1)          | (1)          |              |        | (2)           |               | (1)    |               | •••    |         | (2)            |
| ryenopoura                                            |              |              |               |               |              |              |              |              |        |               |               | U)     |               |        |         |                |
| Depth (meters):                                       | 14.5         | 14.5         | 12.0          | 12.0          | 10.5         | 5.5          | 5.5          | 11.5         | 11.5   | 11.5          | 11.5          | 11.5   | 11.5          | 11.5   | 10.5    | 10.5           |
| Substrate type:                                       | Rock_&       | Gravel       | Sand,         | Sand,         | Rock         | Rock         | Rock (       | Gravel       | Gravel | Gravel (      | Gravel        | Gravel | Gravel (      | iravel | Rock &  | Rock &         |
|                                                       | gravel       |              | shell         | shel]         |              |              |              | and          | and    | and           | and           |        | and           | ņ      | ravel ( | ravel          |
|                                                       |              |              | and<br>gravel | and<br>gravel |              |              | ۹            | hell         | shell  | rock r        | ock           |        | rock          |        |         |                |
|                                                       |              |              |               |               |              |              | •            |              |        |               |               |        |               |        |         |                |

generally lies prostrate on the substratum. Density estimates ranged from  $0-2.67/m^2$  in the transect bands, however densities up to  $16.00/m^2$  were recorded for Agarum in the quadrats.

Beneath the brown algal undergrowth was another layer of foliose and peltate reds, comprised of <u>Constantinea</u> spp., <u>Opuntiella</u> <u>californica</u>, <u>Ptilota filicina</u>, ? <u>Schizymenia epiphytica</u> and ? <u>Kallymenia oblongifructa</u>. Other ephemeral seaweeds in this red algal guild were <u>Rhodymenia</u> spp.; <u>Delesseria decipiens</u>; <u>Odonthalia</u> <u>kamtschatica</u>; <u>Callophyllis</u> spp.; <u>Membranoptera</u> sp. and <u>Ptercsiphonia</u> <u>bipinnata</u>. Crustose and articulated corallines such as <u>Lithothamnion</u>, <u>Bossiella</u> and <u>Corallina</u>, and encrusting layers of <u>Hildenbrandia</u> and Ralfsia formed the final vegetative veneer on the rock substrate.

During summer months the hair-like brown algae <u>Desmarestia</u> <u>aculeata</u> and <u>D. viridis</u>, and a ligulate member of this group, <u>Desmarestia</u> <u>ligulata</u> var. <u>ligulata</u> were scattered around the study area. Typically this genus was found on cobbles, shells and gravel. Both <u>Desmarestia</u> <u>aculeata</u> and <u>D. viridis</u> are perennials, while <u>D. ligulata</u> is reputed to be an annual (Chapman, 1972).

To date, a total of 54 species of macroalgae have been identified from the shallow sublittoral zone off Latouche Point (Table 17). Of these, more are undoubtedly present in this location, however only the more conspicuous species were collected or included in the species inventory. The coralline algae still need to be properly identified since they are such a difficult group taxonomically.

#### LIST OF MACROALGAE COLLECTED AT OCS STUDY SITES IN THE NORTHEASTERN GULF OF ALASKA

|                                                                                                                                              | Latouche Point | Macleod Harbor | Zaikof Bay |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|------------|
| CHLOROPHYTA (greens)<br><u>Codium fragile</u><br><u>Enteromorpha ? linza</u><br><u>Enteromorpha intestinalis</u><br><u>Halicystis ovalis</u> | x<br>x         | X              | X<br>X     |
| <u>Monostroma ? fuscum</u><br>Monostroma sp.                                                                                                 | X<br>X         | X<br>X         | X<br>X     |
| Spongomorpha sp.                                                                                                                             | X              | X              |            |
| <u>Ulva</u> spp.                                                                                                                             |                | Х              | Х          |
| PHAEOPHYTA (browns)                                                                                                                          |                | Y              |            |
| Agarum cribrosum<br>Alaria fistulosa<br>Alaria ? pylaii<br>Alaria ? marginata                                                                | X<br>X drift   | Х              | Х          |
| <u>Alaria ? pylaii</u>                                                                                                                       | X              | Х              | Х          |
| <u>Alaria ? marginata</u><br><u>Chordaria flagelliformis</u>                                                                                 |                | X              |            |
| Costaria costata                                                                                                                             | Х              | X<br>X         | х          |
| Cymathere triplicata                                                                                                                         | x              | X              | x          |
| Desmarestia aculeata                                                                                                                         | · X            | Х              |            |
| <u>Desmarestia</u> <u>ligulata</u> var.<br>ligulata                                                                                          | Х              | х              | Х          |
| Desmarestia viridis                                                                                                                          | X              | x              | x          |
| Fucus distichus                                                                                                                              | X              | X              | x          |
| <u>Laminaria groenlandica</u>                                                                                                                | Х              | Х              | Х          |
| Laminaria <u>saccharina</u>                                                                                                                  | X              | Х              | Х          |
| <u>Laminaria</u> <u>dentigera</u><br>Laminaria yezoensis                                                                                     | X<br>X         | Х              | х          |
| Melanosiphon intestinalis                                                                                                                    | ~              | x              | Ŷ          |
| <u>Melanosiphon intestinalis</u><br>Nereocystis luetkeana<br>Pleurophycus gardneri                                                           | Х              | X              | x          |
| Pleurophycus gardneri                                                                                                                        | Х              | Х              | Х          |
| Pylaiella ? littoralis                                                                                                                       |                | X              | Х          |
| Ralfsia fungiformis<br>Ralfsia pacifica                                                                                                      | X<br>X         | X<br>X         | X          |
| Scytosiphon Tomentaria                                                                                                                       | Λ              | ۸              | X<br>X     |
| Sphacelaria sp.                                                                                                                              |                | X              | X          |
| RHODOPHYTA (reds)                                                                                                                            |                |                |            |
| Antithamnion sp.                                                                                                                             |                |                | Х          |
| <u>Bossiella orbigniana</u>                                                                                                                  | Х              | Х              | Х          |
| Bosiella sp.                                                                                                                                 | Х              | X              |            |
| <u>Callophyllis</u> edentata<br>Callophyllis flabellulata                                                                                    | X<br>X         | X              | X          |
| Callophyllis cristata                                                                                                                        | ^              | X . Y          | Х          |
| Callophyllis ? crenulata                                                                                                                     | Х              | Â              | x          |
| ? Clathromorphum circumscript                                                                                                                | um X           |                |            |
| Constantinea simplex                                                                                                                         | Х              | X              | X          |
| Constantinea subulifera                                                                                                                      | X              | Х              | Х          |

#### LIST OF MACROALGAE COLLECTED AT OCS STUDY SITES IN THE NORTHEASTERN GULF OF ALASKA

|                                                                                                           | Latouche Point | Macleod Harbor | <u>Zaikof Bay</u> |
|-----------------------------------------------------------------------------------------------------------|----------------|----------------|-------------------|
| <u>Corallina</u> <u>frondescens</u><br><u>Corallina</u> <u>vancouveriensis</u><br><u>Cryptopleura</u> sp. | X<br>X<br>X    | X<br>X         | X<br>X            |
| ? Cryptonemia sp.<br>Delesseria decipiens<br>Erythrophyllum delesserioides                                | X<br>X         | X<br>X         |                   |
| <u>Gigartina spp.</u><br>Halosaccion glandiforme                                                          | X<br>X         | X<br>X         | X<br>X            |
| Hildenbrandia ? occidentalis<br>Iridea sp.                                                                | x              | Х              | Х                 |
| ? Kallymenia oblongifructa<br>Lithothamnion sp.                                                           | X<br>X         | X<br>X         | X<br>X            |
| Lithothrix aspergillum<br>Membranoptera dimorpha                                                          | X<br>X         | X              | X<br>X            |
| Membranoptera ? multiramosa                                                                               | X              | , A            | Ň                 |
| <u>Microcladia borealis</u><br>Odonthalia floccosa                                                        | Х              | X<br>X         | X<br>X            |
| Odonthalia kamtschatica<br>Opuntiella californica                                                         | X<br>X         | X<br>X         | XX                |
| Phycodrys sp.<br>Platythamnion sp.                                                                        | x              | X              | X<br>X            |
| ? Peyssonelia pacifica                                                                                    | X<br>X         | Х              | ň                 |
| Polyneura latissima<br>Polysiphonia pacifica<br>Polyciphonia contractione                                 | x              | X              | X<br>X            |
| Polysiphonia sp.<br>Porphyra spp.                                                                         | â              | x              | XX                |
| <u>Pterosiphonia bipinnata</u><br><u>Ptilota filicina</u><br><u>Ptilota tenuis</u>                        | X<br>X         | X<br>X         | X                 |
| Rhodoglossum affine                                                                                       | X              | x<br>x         | Х                 |
| Rhodymenia palmata<br>Rhodymenia pertusae                                                                 | Х              | Х              | X<br>X            |
| Schizymenia spp.<br>Stenogramme interrupta                                                                | X              | Х              | X                 |

No. taxa or species = 75

.

#### EPIFAUNA AND TROPHIC INTERACTION

Within the three study areas about 211 different taxa of macroinvertebrates (Table 18), and 30 species of inshore fishes (Table 19) were either identified or categorized for future taxonomic verification. Of all groups seen in the seaweed zone, the mollusks were represented by the greatest number of species, and accounted for 36 percent (n=76) of the total macroinvertebrate inventory. Despite this expression of diversity, the molluscan members of the seaweed community appeared to be only a moderate component of the overall biomass. Based on the information obtained from the quadrats ( $0.25m^2$ ), the attached or sessile fauna such as sea anemones, hydroids, sponges, bryozoans and ascidians were dominants in terms of percent cover and biomass.

The seaweed canopy at Latouche Point provided both food and cover for the animal components of the nearshore system; it also served as living substrate for other plants and animals. For example, some serpulid worms such as <u>Spirorbis</u> spp. and encrusting bryozoans spend the entire life cycle following the initial settling stage attached to seaweeds. Other species such as a tiny mussel <u>Musculus vernicosus</u> covered extensive portions of the shallow sublittoral zone during the summers of 1974, 1975 and 1976. <u>Musculus</u> was most often attached to living marine plants, however it was also found on sedentary animals and solid inorganic substrate. Many of the seaweeds off Latouche Point were almost entirely covered by <u>M. vernicosus</u>, which typically attaches with the foot and byssal threads. It occurred in 26 of 86 quadrats, for

| Porifera (sponges)                                | Latouche<br>Point | Macleod<br>Harbor | Zaikof<br>Bay                           |
|---------------------------------------------------|-------------------|-------------------|-----------------------------------------|
|                                                   |                   |                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| <u>Cliona</u> <u>celata</u>                       | х                 | X                 | X                                       |
| Halichondria ? <u>panicea</u><br>Esperiopsis spp. | x                 | х                 | Х                                       |
| Suberites fiscus                                  | Δ                 | х                 | х                                       |
| ? Mycale adhaerens                                |                   | x                 | x                                       |
| White globose, unid.                              | х                 | Λ                 | x                                       |
| Yellow spatter, unid.                             | x                 | х                 | x                                       |
| Red globose, unid.                                | x                 | x                 |                                         |
|                                                   |                   |                   |                                         |
| <u>Cnidaria</u>                                   |                   |                   |                                         |
| Abietinaria spp.                                  |                   |                   |                                         |
| <u>Sertularella</u> turgita                       |                   | Х                 |                                         |
| Anthopleura xanthogrammica                        | Х                 |                   |                                         |
| Cribinopsis ? assimilis                           | Х                 | Х                 | x                                       |
| <u>Peachia</u> ? <u>parasitica</u>                | Х                 |                   |                                         |
| <u>Telia</u> crassicornis                         | Х                 | х                 | X                                       |
| Tealia spp.                                       | Х                 | X                 | x                                       |
| <u>Ptilosarcus</u> gurneyi                        |                   | х                 | х                                       |
| ? <u>Stomphia</u> sp.                             | x                 |                   |                                         |
| Metridium senile                                  | X                 | х                 | X                                       |
| Campanularia verticellata                         | x<br>x            |                   | X                                       |
| <u>Hydractinia</u> sp.<br>Obelia sp.              | Х                 |                   | x<br>x                                  |
| Grammaria sp.                                     |                   |                   | X                                       |
| Eudendrium sp.                                    | х                 |                   | Λ                                       |
| Gersemia rubiformis                               | x                 |                   |                                         |
| Lafoea sp.                                        | А                 | х                 | x                                       |
| Haliclystus ? auricula                            | х                 | x                 | x                                       |
| Cyanca capillata                                  | x                 | x                 | x                                       |
| ? Epizoanthus scotinus                            | x                 |                   |                                         |
| Halcampa sp.                                      | -                 |                   | х                                       |
| Nemertea (ribbon worms)                           |                   |                   |                                         |
| Unid. species A (orange)                          |                   |                   | x                                       |
| Unid. species B (white bands)                     | х                 |                   |                                         |
| sintar spectes 5 (miller sanas)                   |                   |                   |                                         |
| Mollusca (mollusks)                               |                   |                   | ,                                       |
| HOTTUSCA (MOTTUSKS)                               |                   |                   |                                         |
| Cryptochiton stelleri                             | x                 | x                 | х                                       |
| Katharina tunicata                                | x                 | x                 | x                                       |
|                                                   |                   |                   |                                         |

|                                                          | Latouche | Macleod | Zaikof |
|----------------------------------------------------------|----------|---------|--------|
| Mollusca (mollusks)                                      | Point    | Harbor  | Вау    |
| Topicalla livesta                                        | 12       |         |        |
| <u>Tonicella</u> lineata<br>Tonicella insignis           | X<br>X   | X       | X      |
| Placiphorella spp.                                       |          | X       | x      |
| Mopalia muscosa                                          | Х        | X       | x      |
| ? Ischnochiton mertensii                                 | V        | X       | x      |
| Mopalia spp.                                             | X        | x       | x      |
| Puncturella multistriata                                 | x        | X       | x      |
| Diadora aspera                                           | X        | X       | x      |
| Crepipatella lingulata                                   | X        | X       | x      |
| Crepidula nummaria                                       | Х        | X       | х      |
| Cryptobranchia concentrica                               |          | X       |        |
| Collisella instabilis                                    | V        | X       | x      |
| Acmaea mitra                                             | X        | X       | X      |
|                                                          | X        | X       | x      |
| <u>Fusitriton oregonensis</u><br>Trichotropis cancellata | X        | X       | x      |
|                                                          | Х        | х       | x      |
| <u>Trichotropis</u> insignis<br>Margarites ? pupillus    |          |         | X      |
|                                                          | X        | х       | х      |
| Calliostoma annulatum                                    | X        |         |        |
| Calliostoma ligatum                                      | X        | Х       | х      |
| Velutina rubens                                          | X        |         |        |
| Natica spp.                                              | X        | X       | х      |
| Lacuna carinata                                          | X        | Х       | х      |
| <u>Olivella baetica</u>                                  | Х        |         |        |
| Nassarius mendicus                                       |          | Х       |        |
| <u>Ceratostoma</u> <u>nuttallii</u>                      |          | Х       |        |
| Trophon multicostatus                                    | Х        | Х       |        |
| <u>Amphissa</u> columbiana                               | Х        | Х       | Х      |
| Trophonopsis insignis                                    |          |         | Х      |
| <u>Searleisa</u> <u>dira</u>                             | Х        | Х       | Х      |
| Volutharpa ampullacea                                    |          |         | Х      |
| Thais ? canaliculata                                     |          |         |        |
| <u>Thais</u> lamellosa                                   | Х        | Х       | Х      |
| <u>Neptunea</u> lirata                                   |          |         | Х      |
| Turridae, unid.                                          |          | Х       |        |
| Trophonopsis lasius                                      |          |         | Х      |
| Beringinus kenneycotti                                   |          |         | Х      |
| Aglaja ocelligera                                        |          | Х       |        |
| Gastropteron pacificum                                   | Х        | Х       | Х      |
| Dirona aurantia                                          | Х        |         |        |
| Tochuina tetraguetra                                     | Х        |         |        |
| Melibe leonina                                           |          |         | Х      |
| Dendronotus dalli                                        | Х        |         | х.     |
| Dendronotus spp.                                         |          | X       |        |
| Aeolidia papillosa                                       |          | х       |        |
| Hermissenda crassicornis                                 | х        | x       | Х      |
|                                                          |          |         |        |

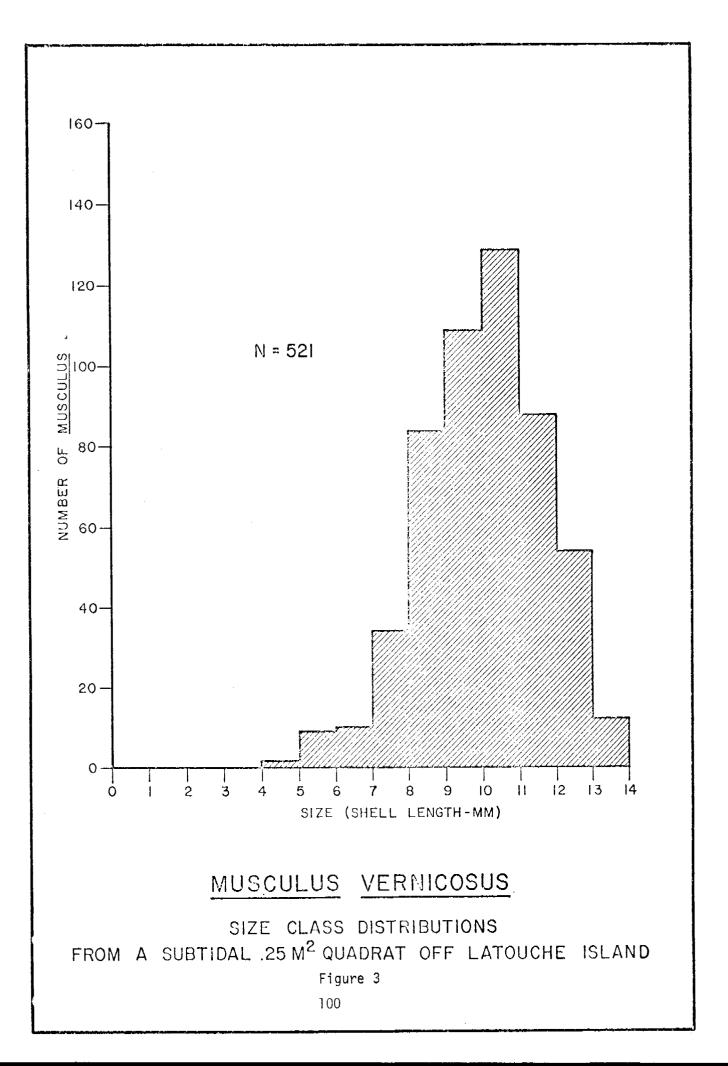
| Mollusca (mollusks)         | Latouche<br>Point | Macleod<br>Harbor | Zaikof<br>Bay |
|-----------------------------|-------------------|-------------------|---------------|
| Coryphella sp.              |                   |                   | x             |
| Triopha carpenteri          | х                 | х                 |               |
| Diaululu sandiegensis       | х                 |                   |               |
| Anisodoris nobilis          | х                 |                   |               |
| Archidoris Odneri           | х                 | Х,                |               |
| Cadlina luteomarginata      | х                 | х                 |               |
| Cadlina sp.                 | х                 |                   |               |
| Pododesmus macroschisma     | Х                 | х                 | х             |
| Pecten caurinus             |                   | х                 |               |
| Chlamus spp.                | х                 | х                 | х             |
| Glycymeris ? subobsoleta    |                   | х                 |               |
| Hiatella arctica            | Х                 | х                 | х             |
| Mytilus edulis              | Х                 | х                 | х             |
| Modiolus modiolus           | Х                 | х                 |               |
| Musculus vernicosus         |                   |                   |               |
| Musculus discors            | Х                 | х                 | х             |
| Musculus ? niger            |                   |                   | х             |
| Tellina sp.                 |                   | х                 |               |
| Clinocardium nuttalli       |                   | х                 | x             |
| Clinocardium ciliatum       |                   |                   | x             |
| Thracia trapezoides         |                   |                   | х             |
| Lyonsia californica         | Х                 | х                 | х             |
| Prototchaca staminea        |                   | х                 | х             |
| Mya truncata                |                   |                   | х             |
| Astarte sp.                 |                   | х                 | х             |
| Saxidomus giganteus         |                   | х                 | Х             |
| Humilaria kennerlyi         | Х                 | х                 | Х             |
| Macoma spp.                 |                   | х                 | х             |
| Octopus sp.                 | х                 |                   | x             |
|                             |                   |                   |               |
| Annelida (segmented worms)  |                   |                   |               |
| Onuphis iridescens          |                   | х                 |               |
| Phyllodoce ? groenlandica   |                   | X                 |               |
| Lumbrineris ? similabris    |                   | Х                 |               |
| Scoloplos ? acmeceps        |                   | х                 |               |
| Chone ? mollis              |                   | Х                 |               |
| Flabelligera infundibularis |                   | х                 |               |
| Nereis ? pelagica           |                   | х                 |               |
| Phyllodoce sp.              |                   | х                 |               |
| ? Sigalion sp.              |                   | х                 |               |
|                             |                   |                   |               |

| Annelida (segmented worms)                                  | Latouche<br>Point | Macleod<br>Harbor | Zaikof<br>Bay |
|-------------------------------------------------------------|-------------------|-------------------|---------------|
| Axiothella rubrocincta                                      |                   | x                 |               |
| Haploscolops elongatus                                      |                   | х                 |               |
| Maldanidae, unid.                                           |                   | х                 | х             |
| Pectinaria (Cistenides) sp.                                 |                   | х                 | х             |
| Eudistylia vancouveri                                       | х                 | х                 | х             |
| Myxicola sp.                                                | х                 | Х                 |               |
| Spirorbis spp.                                              | Х                 | х                 | х             |
| Abarenicola sp.                                             |                   | Х                 |               |
| Serpula vermicularis                                        | Х                 | Х                 | Х             |
| ? <u>Schizobranchia</u> insignis                            |                   |                   | х             |
| Sipincula (peanut worms)                                    |                   |                   |               |
| Eubonellia valida                                           |                   |                   | х             |
| Arthropoda (jointed foot)                                   |                   |                   |               |
|                                                             |                   |                   |               |
| <u>Balanus</u> cariosus                                     |                   | х                 |               |
| Balanus crenatus                                            |                   | X                 | х             |
| Balanus nubilus                                             | Х                 | x                 |               |
| Balanus ? rostrotus alaskensis                              |                   | Х                 |               |
| Cancer magister                                             | 1.1               |                   | x             |
| Cancer oregonensis                                          | X                 |                   |               |
| Cryptolithodes sitchensis                                   | Х                 |                   | х             |
| Phyllolithodes papillosus                                   | V                 |                   |               |
| <u>Hapalogaster mertensii</u><br>Rhinolithodes wosnesenskii | х                 |                   | v             |
| Placetron wosnesenskii                                      |                   |                   | X             |
| Pagurus ochotensis                                          | v                 | x                 | х             |
| Pagurus ? beringanus                                        | х                 | Λ                 | х             |
| Pagurus stenuensae                                          |                   |                   | x             |
| Elassochirus tenuimanus                                     | х                 | x                 | А             |
| Elassochirus gilli                                          | X                 | X                 | x             |
| Oregonia gracilis                                           | x                 | x                 | x             |
| Chionoecetes bairdi                                         | **                | A                 | x             |
| Pugettia gracilis                                           | х                 | х                 | x             |
| Pugettia ? richii                                           |                   | x                 | ••            |
| Hyas lyratus                                                |                   | x                 |               |
| Telmessus cheiragonus                                       |                   | x                 | x             |
| Pandalus danae                                              | х                 | x                 | x             |
| Pandalus sp.                                                |                   | x                 | x             |
| Sclerocrangon sp.                                           |                   |                   | x             |
| Eualus spp.                                                 |                   | х                 | х             |
| Heptacarpus spp.                                            | х                 | х                 | x             |

| Arthropoda                        | Latouche<br>Point | Macleod<br>Harbor | Zaikof<br>Bay |
|-----------------------------------|-------------------|-------------------|---------------|
| Idotea sp.                        | x                 |                   |               |
| Caprella sp.                      | x                 | х                 | х             |
| Gammaridea                        | x                 | x                 | x             |
| Mysidacea                         | x                 | x                 | x             |
| ? Discorsopagurus schmitti        |                   | •-                | x             |
|                                   |                   |                   |               |
| Echinodermata (spiny skin)        |                   |                   |               |
| Ophiopholis aculeata              | х                 | х                 | х             |
| Ophiura ? sarsii                  |                   | х                 |               |
| Leptasterias spp.                 | х                 | х                 | х             |
| Pteraster tesselatus              |                   |                   | •             |
| Dermasterias imbricata            | Х                 | х                 | х             |
| Henricia leviuscula               | Х                 | х                 | х             |
| Henricia tumida                   | х                 |                   |               |
| <u>Orthasterias koehleri</u>      | Х                 | х                 | х             |
| Pisaster ochraceus                | Х                 | х                 | х             |
| Evasterias troschelii             | х                 | Х                 | х             |
| Pycnopodia helianthoides          | Х                 | х                 | х             |
| Crossaster papposus               | Х                 | х                 | х             |
| Solaster stimpsoni                | Х                 | х                 | х             |
| Solaster dawsoni                  | Х                 | Х                 | х             |
| Tosiaster acticus                 | Х                 | х                 |               |
| Strongylocentrotus droebachiensis | х                 | х                 | Х             |
| Strongylocentrotus ? pallidus     | х                 | х                 |               |
| Strongylocentrotus franciscanus   | х                 |                   |               |
| Parastichopus californicus        |                   | х                 | х             |
| Psolus chitonoides                | х                 | х                 | Х             |
| <u>Cucumaria miniata</u>          | Х                 | Х                 | х             |
| Bryozoa (moss animals)            |                   |                   |               |
| <u>Flustrella</u> ? gigantea      |                   |                   | х             |
| Heteropora spp.                   | x                 | х                 | x             |
| ? Lichenopora sp.                 | x                 | x ·               | x             |
| Disporella sp.                    |                   | x                 | x             |
| Microporina borealis              | х                 | x                 | x,            |
| Tricellaria gracilis              | x                 | x ·               | x             |
| Dendrobeania murryana             | x                 | x                 | x             |
| Hippodiplosia insculpta           | x                 | x                 | x             |
|                                   | -                 |                   |               |

| Bryozoa                           | Latouche<br>Point | Macleod<br>Harbor | Zaikof<br>Bay |
|-----------------------------------|-------------------|-------------------|---------------|
| Membranipora sp.                  |                   | х                 |               |
| ? Phidolopora pacifica            | х                 | х                 | х             |
| Costazia sp.                      | Х                 | х                 | х             |
| ? Myriozoum coarctatum            |                   | Х                 |               |
| <u>Crisia</u> sp.                 | х                 | Х                 |               |
| Alcyonidium pedunculatum          |                   | Х                 | х             |
| <u>Carbasea</u> carbasea          |                   |                   | х             |
| Gromia oviformis                  | х                 | х                 | х             |
|                                   |                   |                   |               |
| Brachiopoda                       |                   |                   |               |
| Terebratalia transversa           | х                 | х                 | х             |
| Terebratulina unguicula           |                   | х                 | х             |
| Urochordata                       |                   |                   |               |
| Stycla montereyensis              | x                 |                   | x             |
| Chelyosoma productum              | Х                 |                   | х             |
| Corella willmeriana               |                   |                   | х             |
| <u>Ascidia paratropa</u>          |                   |                   | Х             |
| Boltenia villosa                  | Х                 | х                 | х             |
| <u>Halocythia</u> igab <b>oja</b> |                   |                   |               |
| <u>Halocynthia</u> aurantium      | Х                 |                   | х             |
| <u>Cnemidocarpa</u> finmarkiensis | Х                 | Х                 |               |
| Metandrocarpa taylori             | х                 | х                 | х             |
| <u>Clauelina</u> sp.              | х                 |                   |               |
| Distaplia occidentalis            | х                 | х                 | х             |
| ? <u>Synoicum</u> sp.             | х                 |                   |               |
| Didemnum or Trididemnum           | х                 | х                 | х             |

#### FISHES OBSERVED IN THE THREE STUDY SITES DURING 1975-76


| COMMON NAME              | SCIENTIFIC NAME                   | LOCATION     |
|--------------------------|-----------------------------------|--------------|
| Rock greenling           | Hexagrammos lagocephalus          | L;M;Z        |
| White spotted greenling  | Hexagrammos stelleri              | M;Z          |
| Kelp greenling           | Hexagrammos decagrammus           | L;M;Z        |
| Masked greenling ?       | Hexagrammos octogrammus           | L;M          |
| Lingcod                  | Ophiodon elongatus                | L            |
| Great sculpin            | Myoxocephalus polyacanthocephalus | M;Z          |
| Buffalo scuplin          | Enophrys bison                    | M            |
| Blackfin sculpin ?       | Malacottus kincaidi               | М            |
| Red irish lord           | Hemilepidotus hemilepidotus       | L;M          |
| Yellow irish lord        | Hemilepidotus jordani             | $\mathbf{L}$ |
| Northern sculpin ?       | Icelinus borealis                 | $\mathbf L$  |
| Grunt sculpin            | Rhamphocottus richardsoni         | L            |
| Silverspotted scuplin    | Blespsias cirrhosus               | М            |
| Pacific staghorn sculpin | Leptocottus garmatus              | М            |
| Antlered sculpin         | Enophrys diceraus                 | L;M;Z        |
| Sturgeon poacher         | Agonus acipenserinus              | $\mathbf{Z}$ |
| Pacific spiny lumpsucker | Eumicrotremus orbis               | $\mathbf{Z}$ |
| Black rockfish           | Sebastes melanops                 | L;M;Z        |
| Copper rockfish          | Sebastes caurinus                 | L;M          |
| Yellowtail rockfish      | Sebastes flavidus                 | Ĺ            |
| Rockfishes, unid. juv.   | f: scorpaenidae                   | L;M;Z        |
| Searcher                 | Bathymaster signatus              | L            |
| Northern ronguil         | Ronquilus jordani                 | L;M;Z        |
| Starry flounder          | Platichthys stellatus             | М            |
| Yellowfin sole           | Limanda aspera                    | Μ;Ζ          |
| Pacific halibut          | Hippoglossus stenolepis           | $\mathbf{L}$ |
| Snake prickleback        | Lumpenus sagitta                  | М            |
| Prickleback, unid.       | f; stichaeidae                    | L;M;Z        |
| Crescent gunnel          | Pholis laeta                      | L;M;Z        |
| Artic shanny             | Stichaeus punctatus               | L;M;Z        |
| Pacific tomcod           | Microgadus proximus               | L;M;Z        |
| Sand lance               | Ammodytes hexapterus              | L;M;Z        |
| Pink salmon              | Oncorhynchus gorbuscha            | L            |
|                          |                                   |              |

Location Symbols:

- L = Latouche Point
- M = Macleod Harbor
- Z = Zaikof Bay

which density ranged up to about 2,084 individuals/m<sup>2</sup>. From one  $0.25m^2$  quadrat we removed 521 <u>M. vernicosus</u> that were attached to two elephant-ear kelps (<u>Laminaria groenlandica</u>), each approximately one meter in blade length. Individual <u>Musculus</u> ranged in shell length from 4 to 13mm (Figure 3), however smaller <u>Musculus</u> (<3mm) were also present in the sample, but were not included in the size-frequency histogram. <u>Musculus</u> is a suspension or filter feeder that appears to thrive either in exposed locations of the northern Gulf, or in ocean entrances that are exposed to rapid water exchange. No doubt, <u>Musculus</u> contributes appreciable amounts of energy to secondary consumers. Major predators of <u>Musculus</u> in this location were sea stars, fin fishes and sea otters. Other probable predators are diving sea ducks such as the harlequin and surf scoter, which frequency raft or roost along the rocky shoreline during late spring and summer.

A number of other species utilize the seaweed resource not only for concealment and sites of attachment, but also as a source of food. For example, the limpet <u>Collisella instabilis</u> has only been seen attached to the taller statured understory kelps off Latouche Point. In this case the kelp provides the limpet with both food and cover. One known predator of <u>C. instabilis</u> is the sun star (<u>Pycnopodia</u> <u>helianthoides</u>) which frequently climbs the attached kelps in search of food or potential prey. The limpet seeks refuge from bottom dwelling invertebrates by living on the vegetation suspended above the seafloor.



There are a number of herbivores which feed directly on living marine vegetation, and others that feed on the plants only after they have died. However, before the seaweeds and seagrasses are available to most consumers they must be broken down by bacterial action. Some of the conspicuous herbivores are listed in Table 20. Of these five genera, the most abundant and frequently encountered were the chitons, particularly Tonicella spp. and Mopalia spp. During four of the field surveys Tonicella occurred in 14 of 86 haphazardly placed quadrats (Tables 3 through 16). Densities ranged from 0 to  $9.00/m^2$ ; the average density was 0.98/m<sup>2</sup>. Tonicella was represented in this location by at least two species: T. lineata and T. insignis. It is a microherbivore that reputedly grazes on algal sporelings, and the diatom film that coats the rock surfaces. Other microherbivores were also common; the limpet Acmaea mitra occurred in 11 of 86 quadrats (.025m<sup>2</sup>), and density estimates ranged from 0 to 9.00/m<sup>2</sup>. The snail <u>Calliostoma</u> <u>ligatum</u> had a frequency of occurrence of 8/86, and an average density of 0.60/m<sup>2</sup>. Acmaea mitra was most frequently seen on the algal turf, while Calliostoma was seen equally on rock and vegetative substrates. Asteroids or sea stars were the most important identifiable group of predators on the microherbivore guild at Latouche Point.

Probably the most important macroherbivore in the seaweed assemblages of the north Pacific is the sea urchin. At least two species have been found in this location, the green sea urchin (<u>Strongy-</u> <u>locentrotus</u> <u>drobachiensis</u>) and the giant red urchin (<u>Strongylocentrotus</u> <u>franciscanus</u>). Despite their occurrence off Latouche Point, they were

#### CHARACTERISTIC OR REPRESENTATIVE IMPORTANT SPECIES (RIS) OFF LATOUCHE POINT, SUBTIDAL

| Species                             | Occurrence | Major Taxon  | Trophic Category    |
|-------------------------------------|------------|--------------|---------------------|
| Agarum cribrosum (P)                | А          | Brown alga   | Producer            |
| Laminaria groenlandica (P)          | А          | Brown alga   | Producer            |
| Laminaria yezoensis (P)             | A          | Brown alga   | Producer            |
| Pleurophycus gardneri (P)           | Α          | Brown alga   | Producer            |
| Nereocystis luetkeana (A)           | А          | Brown alga   | Producer            |
| Cymathere triplicata (A)            | С          | Brown alga   | Producer            |
| Constantinea spp. (P)               | С          | Red alga     | Producer            |
| Ptilota filicina (?)                | С          | Ređ alga     | Producer            |
| Opuntiella californica (?)          | С          | Red alga     | Producer            |
| Microporina borealis (?)            | С          | Bryozoan     | Suspension feeder   |
| Encrusting coralline algae (P)      | A          | Red Alga     | Producer            |
| Crossaster papposus (P)             | С          | Sea star     | Predator            |
| Pycnopodia helianthoides (P)        | С          | Sea star     | Predator            |
| Musculus vernicosus (A)             | А          | Mussel       | Suspension feeder   |
| Acmaea mitra (P)                    | С          | Snail        | Herbivore           |
| Tonicella spp. (P)                  | с          | Snail        | Herbivore           |
| Enhydra lutris (P)                  | С          | Sea otter    | Predator            |
| Henricia spp. (P)                   | С          | Sea star     | ? Suspension feeder |
| <u>Orthasterias koehleri</u> (P)    | C          | Sea otter    | Predator            |
| <u>Calliostoma ligatum</u> (P)      | С          | Snail        | Herbivore           |
| <u>Ophiopholis aculeata</u> (P)     | С          | Britile star | Predator            |
| ? <u>Distaplia</u> occidentalis (P) | С          | Ascidian     | Suspension feeder   |
| Strongylocentrotus spp. (P)         | U          | Sea urchin   | Herbivore           |
| Dermasterias imbricata (P)          | С          | Sea star     | Predator            |
| Searlesia dira (P)                  | c          | Snail        | Predator            |
| Pargurus spp. (P)                   | Α          | Hermit crab  | Scavenger/Herbivore |

| Кеу: | (P) | = | perennial |
|------|-----|---|-----------|
|      | (A) | = | annual    |
|      | A   | = | abundant  |
|      | С   | = | common    |
|      | U   | = | uncommon  |

-------

typically cryptic in behavior and relatively uncommon. Most of the sea urchins were small individuals, and densities for both species combined ranged up to about  $4.00/m^2$ ; however, sea urchins occurred in only 3 of 86 quadrats. These data are in agreement with the findings of the transect sampling; densities ranged from 0 to  $0.12/m^2$  with an average of  $0.03/m^2$  in 470 square meters of seafloor that was examined during 1975-76 (Table 21).

Grazers of lesser numerical importance were the limpets (Diadora aspera), gumboot chiton (Cryptochiton stelleri), chink shell (Lacuna variegata) and the snail (Margarites spp.). There are numerous other obligatory herbivores that know doubt play key roles in the macrophyte system, i.e. isopods, gammarid amphipods, etc., however no information is available at this time on their distribution or abundance. Most of the crustaceans seem to be highly seasonal in appearance, with peak influx into the inshore zone during spring and summer. Included in the herbivore guild are the facultative consumers which are more catholic in their diet, and as such either browse on marine plants or ingest vegetation incidental to the uptake of animal material. Some of the common members of this group are the hermit crabs, decorator crabs (Oregonia gracilis and Pugettia gracilis) and the leather star (Dermasterias imbricata).

A great percentage of the epibenthic fauna in this area are suspension or filter feeding types. This group of consumers probably

represents the bulk of the biomass off Latouche Point. A few of these species are listed in the characteristic of representative important species category, and numerous others are probably noteworthy of this ranking. The articulated bryozoan (Microporina borealis) covered considerable portions of the rock substrate; percent cover estimates ranged from 0 to 60 percent during this period of time. Microporina appeared to be either an annual species or somewhat ephemeral in abundance and frequency of occurrence. Two predators of Microporina that have been identified to date, are the leather star Dermasterias and the nudibranch Triopha carpenteri. The compound ascidian Distaplia sp. and the blood star (Henricia spp.) are both listed as suspension feeders. Both animals are common off Latouche Point, for example, Henricia spp. ranged up to 0.36/m<sup>2</sup>, with an average density in the band transects of 0.11/m<sup>2</sup> (Table 21). Distaplia is exquisite in both form and color; it covered between 0 and 30 percent of the rock substratum that was examined during 1975-76.

Seven predators are listed in Table 20. Other important secondary consumers at this location were crustaceans, gastropods, sea anemones, fishes and marine mammals. The sea stars are visual dominants in the shallow waters of the northern Gulf of Alaska. Feeding behavior of some common species off the coast of Washington has been adequately described by Mauzey, Birkeland and Dayton (1968). Since this group has such an important functional role in the rocky sublittoral zone, a great deal of time and energy has been devoted to estimating relative abundance, population size structure and gathering information on the

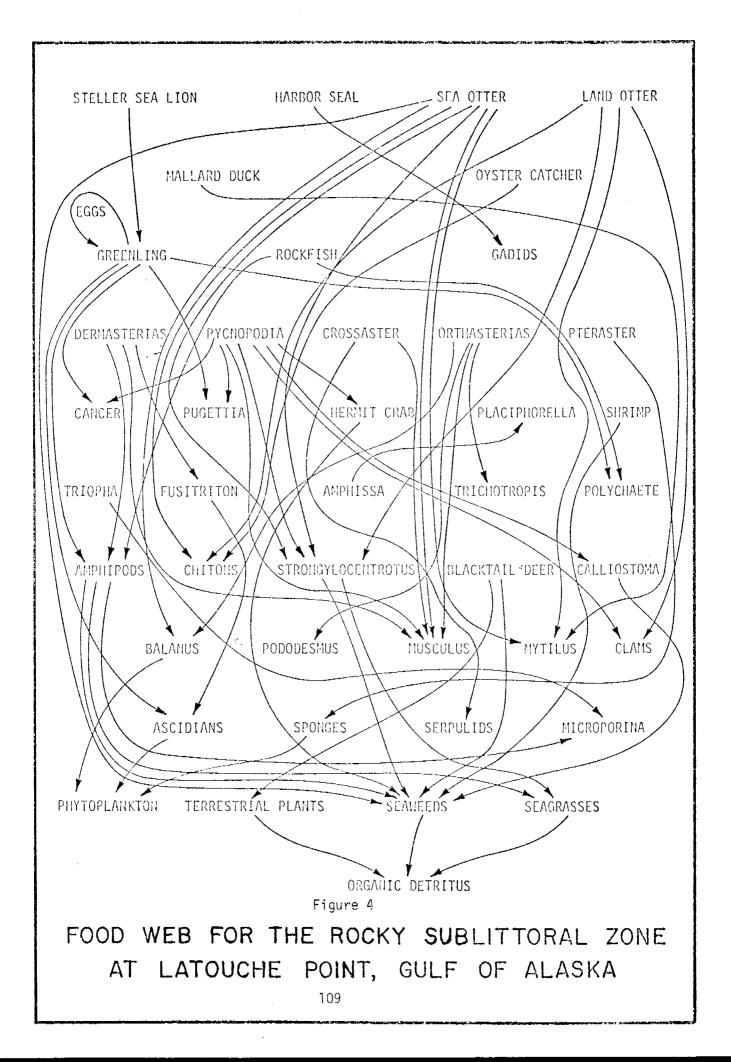
# DENSITY ESTIMATES OF SOME COMMON ECHINODERMS FROM LATOUCHE POINT

| Taxon                    |                            |                          |                          | 9-17-75                  |                          |                          |                          |
|--------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| Pycnopodia helianthoides | 4<br>0.16/m <sup>2</sup>   | 5<br>0.33/m <sup>2</sup> | 9<br>0.36/m <sup>2</sup> | 1<br>0.04/m <sup>2</sup> | 0                        | 3<br>0.12/m <sup>2</sup> | 5<br>0.20/m <sup>2</sup> |
| Dermasterias imbricata   | 0                          | 0                        | l<br>0.04/m <sup>2</sup> | l<br>0.04/m <sup>2</sup> | 0                        | 2<br>0.08/m <sup>2</sup> | 0                        |
| Orthasterias koehleri    | 1<br>0.04/m <sup>2</sup>   | 0                        | 2<br>0.08/m <sup>2</sup> | 0                        | 0                        | 0                        | 3<br>0.12/m <sup>2</sup> |
| Crossaster papposus      | 2<br>0.08/m <sup>2</sup>   | 0                        | 1<br>0.04/m <sup>2</sup> | 0                        | 0                        | 0                        | 1<br>0.04/m <sup>2</sup> |
| <u>Solaster</u> spp.     | l<br>0.04/m <sup>2</sup>   | 0                        | 0                        | 0                        | 0                        | 0                        | 0                        |
| <u>Henricia</u> spp.     | 9<br>0.36/m <sup>2</sup>   | 3<br>0.20/m <sup>2</sup> | 0                        | 1<br>0.04/m <sup>2</sup> | 0                        | 3<br>0.12/m <sup>2</sup> | 6<br>0.24/m <sup>2</sup> |
| Strongylocentrotus spp.  | . 1<br>0.04/m <sup>2</sup> | 0                        | 1<br>0.04/m <sup>2</sup> | 0                        | 1<br>0.04/m <sup>2</sup> | 0                        | 3<br>0.12/m <sup>2</sup> |
| Area sampled:<br>Depth:  | 25 x lm<br>12m             | 15 x lm<br>9-llm         | 25 x lm<br>9-11m         | 25 x lm<br>9m            | 15 x 1m<br>9m            | 25 x 1m<br>9m            | 25 x lm<br>12m           |

# DENSITY ESTIMATES OF SOME COMMON ECHINODERMS FROM LATOUCHE POINT

| Taxon                    | 11-26-75                 | 11-26-75                 | 11-26-75                 | 3-17-76                  | 3-17-76                   | 6-26-76                  | 6-26-76                  |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|
| Pycnopodia helianthoides | 1<br>0.06/m <sup>2</sup> | l<br>0.06/m <sup>2</sup> | 0                        | 2<br>0.02/m <sup>2</sup> | 11<br>0.11/m <sup>2</sup> | 2<br>0.66/m <sup>2</sup> | 1<br>0.20/m <sup>2</sup> |
| Dermasterias imbricata   | 0                        | 0                        | l<br>0.02/m <sup>2</sup> | 1<br>0.01/m <sup>2</sup> | 5<br>0.05/m <sup>2</sup>  | 1<br>0.03/m <sup>2</sup> | 0                        |
| Orthasterias koehleri    | 1<br>0.06/m <sup>2</sup> | 1<br>0.06/m <sup>2</sup> | 0                        | 3<br>0.03/m <sup>2</sup> | 2<br>0.02/m <sup>2</sup>  | 5<br>0.17/m <sup>2</sup> | 0                        |
| Crossaster papposus      | 1<br>0.06/m <sup>2</sup> | 2<br>0.13/m <sup>2</sup> | 4<br>0.08/m <sup>2</sup> | 0                        | 1<br>0.01/m <sup>2</sup>  | 0                        | 0                        |
| <u>Solaster</u> spp.     | 0                        | 0                        | 0                        | 0                        | 0                         | 0                        | 0                        |
| Henricia spp.            | 2<br>0.13/m <sup>2</sup> | 1<br>0.06/m <sup>2</sup> | 1<br>0.02/m <sup>2</sup> | 0                        | 16<br>0.16/m <sup>2</sup> | 0                        | 1<br>0.20/m <sup>2</sup> |
| Strongylocentrotus spp.  | 1<br>0.06/m <sup>2</sup> | 0                        | 0                        | 0                        | 1<br>0.01/m <sup>2</sup>  | 0                        | 0                        |
| Area sampled:<br>Depth:  | 15 x lm<br>12m           | 15 x lm<br>12m           | 25 x 2m<br>13-14m        | 50 x 2m<br>8-11m         | 50 x 2m<br>3-8m           | 30 x lm<br>9m            | 5 x lm<br>9m             |

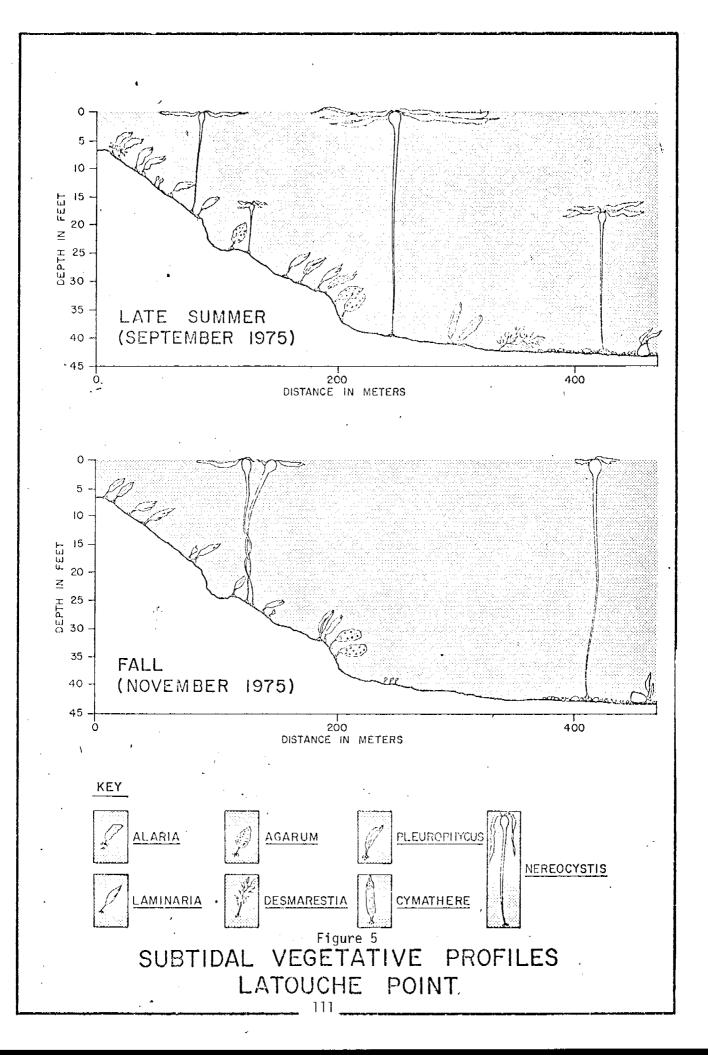
foraging behavior of some of the common species. Four conspicuous species off Latouche Point were the sun star (<u>Pycnopodia helianthoides</u>); leather star (<u>Dermasterias imbricata</u>); <u>Crossaster papposus</u> and <u>Orthasterias koehleri</u>. <u>Pycnopodia</u> ranged in density from 0 to 0.66/m<sup>2</sup>, with an average of 0.17/m<sup>2</sup> (Table 21). Individual sun stars varied in size (radius) from 27 to 185 mm. Hundreds of <u>Pyncopodia</u> were examined for food items; of those feeding 15 were found eating <u>Musculus vernicosus</u>; 3 sea urchin (<u>Strongylocentrotus drobachiensis</u>); 2 <u>Musculus</u> <u>discors</u>; 2 snail (<u>Calliostoma spp.</u>); 3 brittle star (<u>Ophiopholis</u> <u>aculeata</u>; 3 crab (<u>Pugettia gracilis</u>); 2 hermit crab (<u>Pagurus spp.</u>); 2 butter clam (<u>Saxidomus gigantea</u>); 1 snail (<u>Trophonopsis</u> sp.); 1 chitcn (<u>Placiphorella</u> sp.); 2 crab (<u>Cancer oregonensis</u>); 1 chiton (<u>Mopalia</u> sp.); and 1 blood star (<u>Henricia</u> sp.).

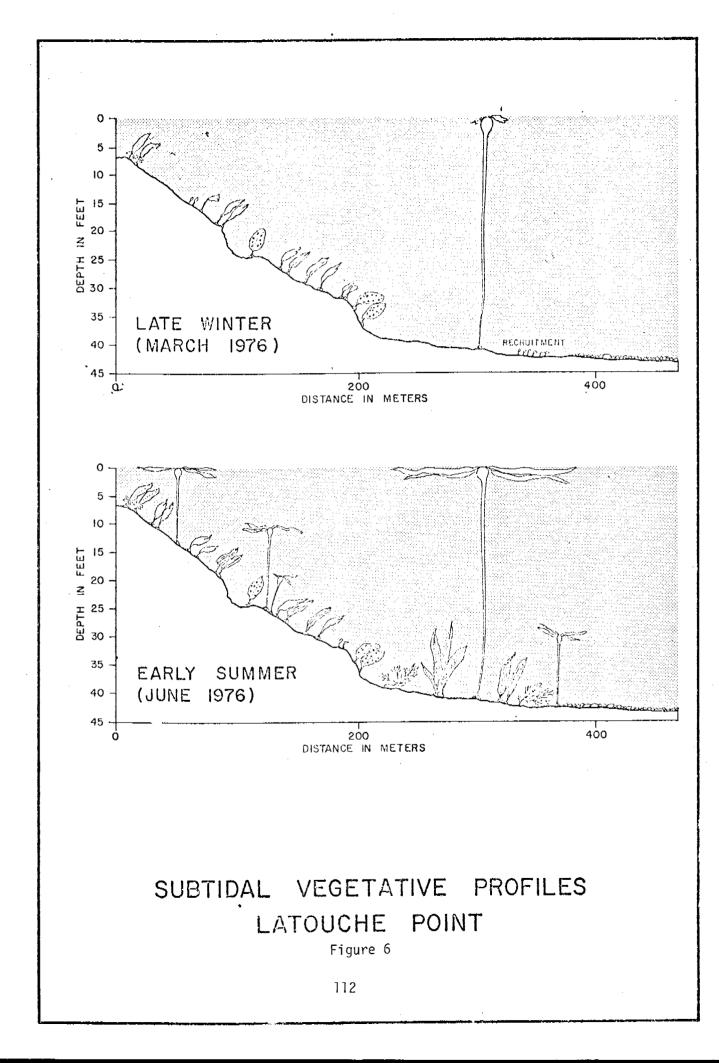

Orthasterias koehleri is one of the most colorful stars on the reef complex; density estimates ranged from 0 to 0.17/m<sup>2</sup>, with an average density of 0.04/m<sup>2</sup> in the band transects (Table 21). Individual <u>Orthasterias</u> ranged in size from 30 to 191 mm; most preyed on mussels (<u>Musculus vernicosus</u> and <u>M. discors</u>; clam (<u>Humilaria</u> <u>kenneryli</u>); rock jingle (<u>Pododesmus macroschisma</u>) and barnacle (<u>Balanus</u> spp.).

The leather star (<u>Dermasterias imbricata</u>) was somewhat less common; density estimates ranged from 0 to  $0.08/m^2$ , and the average was  $0.02/m^2$ . Individual <u>Dermasterias</u> ranged in size from 18 to 180 mm. <u>Dermasterias</u> frequently preyed upon <u>Musculus vernicosus</u>; sea anemone

(<u>Tealia</u> spp.); the clavate ascidian (<u>Synoicum</u>); bryozoa (<u>Microporina</u> borealis); compound ascidians (several species) and red algae.

Another conspicuous sea star in this location was <u>Crossaster</u> <u>papposus</u>. <u>Crossaster</u> is one of the smaller stars in this water, individuals are typically less than 50 mm in radius. Frequently it was found on rock and seaweed substrates, and repeatedly it was attached to understory kelps. Density estimates ranged from 0 to  $0.13/m^2$ , with an average of  $0.03/m^2$ . Identifiable prey included <u>Musculus</u> and the serpulid (Spirorbis).


There is sufficient evidence of trophic interaction to present a very qualitative food web for the conspicuous organisms at Latouche Point (Figure 4). The suspected major pathways were from the macrophytes to herbivores such as snails and sea urchins. Organic debris flowed to clams, mussels and bryozoans, and phytoplankton was ingested by clams, mussels and sponges. Linkages from all categories to tertiary consumers such as predators and scavengers are included in the food web.




#### SEASONAL PATTERNS

The seaweed zone at Latouche Point underwent a marked alteration in appearance with the change of season. One seasonal change that was obvious to even the casual observer was the oscillation in areal cover of the floating portion of the kelp bed. The surface canopy, consisting of bull kelp (Nereocystis), reached peak development and covered considerable areas of the underlying seafloor during the summers of 1974, 1975 and 1976 (Rosenthal, unpublished data). Nereocystis is reputed to be an annual plant, that reaches great size in a single season (Vadas, 1972; Markham, 1969). Most of the growth takes place during the spring and early summer. Fertile plants were observed as early as March, 1976. When bull kelp is mature, zoosporangial sori fall out of the blade and drift to the bottom. Release of zoospores apparently follows soon after. Young sporelings have been observed during early spring, most reached the surface in about 2 to 3 months, and the growth phenology seems to be correlated closely with periods of maximum available light (Vadas, 1972).

During summer, the bull kelp canopy at Latouche Point covered an estimated 50 percent of the underlying seafloor in the central part of the kelp bed (Figures 5 and 6). This same part of the kelp bed was revisited in late November 1975, and at this time the floating canopy was reduced to an estimated 20 percent coverage. Not only was there a reduction in areal cover, but also a heavy attrition of attached plants. Cohorts of adult Nereocystis growing adjacent to one another frequently



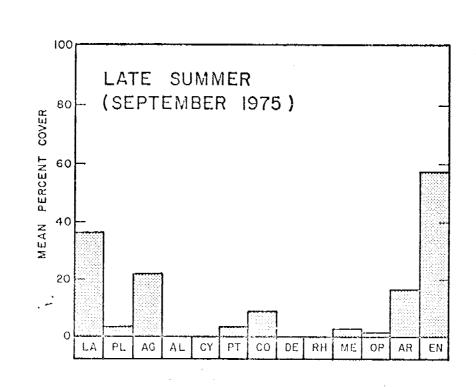


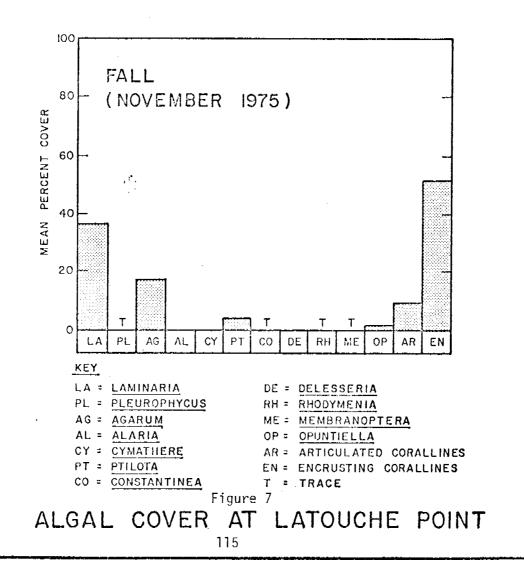
become entangled (Figure 5). Other bull kelp plants that have been detached by storms, substrate dislodgment, and/or grazing, frequently drift through the beds and become entangled with the attached kelps. Mutual entanglement results, thereby leading to further plant mortality. This same source of kelp mortality was described by Rosenthal, Clarke and Dayton (1974) in the stands of giant kelp (<u>Macrocystis</u>) off the coast of southern California.

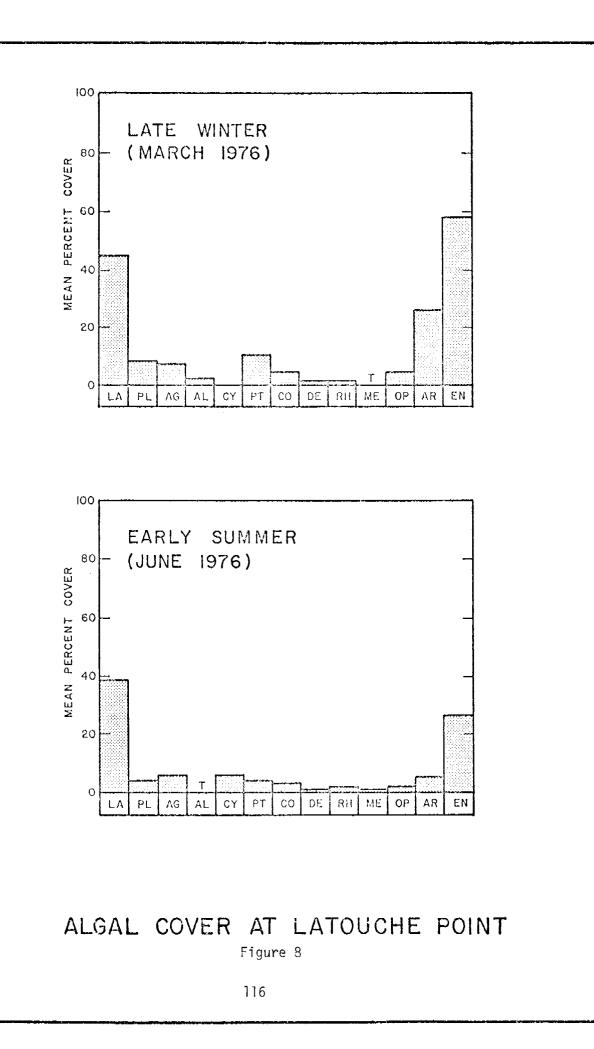
Dives were made off Latouche Point during oceanic winter (March 1976); at this time the surface canopy covered less than 5 percent of the seafloor. Attached <u>Nereocystis</u> was still present in this location; however, the blades of most had either eroded away or were reduced in surface area. Since grazing by macroherbivores is of minor importance at this site, the major cause of bull kelp mortality was probably physical detachment and/or old age (senility). No distinguishable juvenile plants were seen in the area during the March visit, however, by late June 1976 the annual cycle had been renewed, and once again the bull kelp bed was fully developed and supported a heavy surface canopy.

The understory complex or vegetative undergrowth beneath the floating canopy underwent similar change in areal cover and standing crop. The algal understory was typically composed of perennial species such as Laminaria groenlandica; L. yezoensis; L. saccharina; Agarum cribrosum and Pleurophycus gardneri. Annual or more ephemeral algae such as <u>Cymathere triplicata and Desmarestia ligulata var. ligulata were</u> highly seasonal in appearance; typically these species occurred in the shallow subtidal zone during the summer and disappeared during winter

(Figures 7 and 8). Other fleshy reds, i.e. <u>Delesseria decipiens</u>; <u>Pterosiphonia bipinnata; Rhodymenia spp.; Membranoptera spp.; and browns</u> <u>Desmarestia viridis and D. aculeata</u> were short-lived (ephemeral) or perennated (died-back) following the growing season.


In contrast to the growth strategies of the annual species, the perennials such as Agarum, Laminaria and Pleurophycus grow rapidly in the winter and early spring. Whereas, most annuals usually appear during late spring and grow rapidly reaching peak development during the summer. Another seasonal phenomena that is typical of the understory canopy is the shedding of fronds by many of the kelp species. Mann (1973) found that Laminaria and Agarum from eastern Canada completely renewed the tissue of the frond (blade) between one and five times a year. Of the 329 Laminaria spp. examined off Latouche Point during late November 1975, 25 percent (n = 86) had lost or shed a major part of the blade. Only the holdfast, stipe and meristematic growth zone remained of the kelps that were regenerating the blade prior to the active winter growth phase. During the fall when the plants lose their blades a great deal of drift material is present at this site. The surge channels or bathymetric lows in the rocky substrate served as collection points of a great deal of the drift plant material. The process of blade renewal had a significant change in the understory canopy, permitting more available light to reach the seafloor. Kelp germination was apparent during the later winter and spring of 1976.


Seasonal changes in the epifauna were also conspicuous at this location. For example, the mytilid <u>Musculus vernicosus</u> displayed strong


///TT WAW

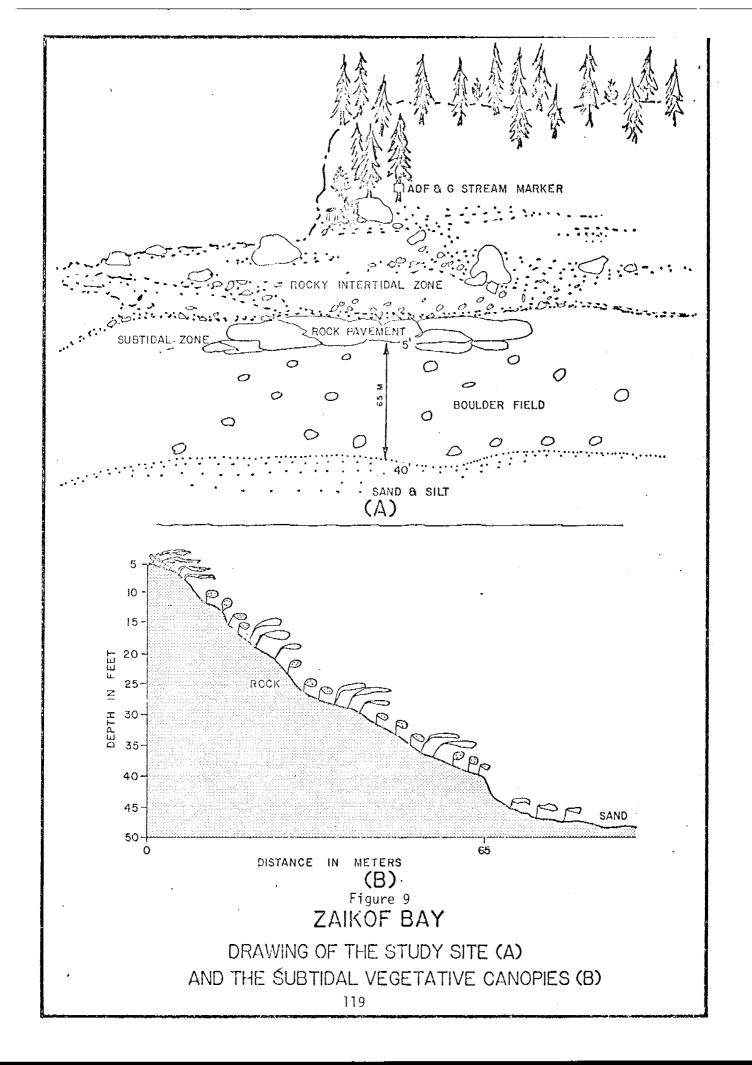
(7)

5792-ULV 34633








seasonal variation in cover and abundance. Since Musculus encrusts large portions of the blades of seaweeds in the lower canopies it is strongly affected by changes in the condition of the marine vegetation. Musculus vernicosus is either annual or bi-annual in terms of life history pattern, most disappeared by winter or early spring. The life history pattern agrees with the recorded longevity of the algal substrates, since the blades of most are continually being removed, and only those mussels that adhere to either the stipes or holdfast portions remain. Possibly because of predation pressures, adult Musculus are rarely successful on the bottom and so decline sharply after fall shedding of the plants. Spring and early summer marked the arrival of the juvenile spat which initially covered the understory seaweeds in such high densities that the bottom had a snow-like appearance. Juveniles were present at each sample period, however, their growth during winter is probably slow, and rapid growth commences concurrently with spring plankton blooms.

Other seasonal patterns were evident in the shallow water zone. For example, the inshore fishes, i.e. rockfish, greenling, flatfish and tomcod etc., which were prominent members of the seaweed assemblages during summer and early fall, tend to either move offshore, or become more secretive in habit. Solitary fishes were common under rock ledges and overhangs, however, schools of fish were not seen in this location until late spring. Even larger vertebrates, such as the ubiquitous sea otter, moved into more protected regions of the Sound; most could be seen either resting or feeding in the embayments and waterways of Elrington, Evans and Latouche Islands.

## DESCRIPTION OF THE STUDY SITE (ZAIKOF BAY)

Zaikof Bay is located on the northeast end of Montague Island. The mouth of the bay is 2.5 miles wide and is situated on the west side of Hinchinbrook Entrance (Figure 1). The shoreline is heavily wooded with Sitka Spruce and Hemlock; the beach is narrow and rocky. The inner confines of the bay are generally protected from ocean swell; however, at times the surface waters are exposed to storm force winds. The winds generally blow from a southeasterly direction during spring and fall. Local jet stream winds or "williwaws" are known to move through these mountain canyons in excess of 120 mph. For example, during the September (1975) survey we were literally driven from Zaikof Bay by rain and storm force winds in excess of 80 mph.

The NMFS intertidal site is located on a rocky promontory on the south side of the bay. An Alaska Department of Fish & Game stream marker served as a reference point for the sublittoral work. Below the tree line the beach is composed of cobbles and large boulders. The shallow sublittoral zone appears to be a continuum of the posed portion of the beach. At the intertidal-subtidal fringe the substratum is pavement rock; below this point is a boulder field interspersed with sand and shell material (Figure 9). A fine layer of silt covered most of the solid substratum and marine vegatation during the four seasons of observation. At a depth of approximately 10 to 12m below the sea surface



the band of exposed rock stopped and was replaced by sand and silty clay. Shell debris, particularly those of the clams <u>Saxidomus</u>, <u>Mya</u> and <u>Humilaria</u> were common in this location.

### **BIOLOGICAL SETTING (ALGAL ASSEMBLAGE)**

Rockweed (Fucus distichus), formed the most conspicuous algal belt in the high intertidal zone during 1975-76. The brown alga, <u>Alaria</u> ? <u>marginata</u> was common at the MLLW mark, a major break point between the intertidal and shallow subtidal zones. The sublittoral macrophyte band was approximately 65 meters wide in the vicinity of the NMFS station (Figure 9). Most of the macroalgae was confined to the rock pavement or shallow water terrace, and the boulder field that borders the shoreline. However, a few kelp plants were found growing on the soft or unconsolidated substratum. Most of these plants were attached to empty clam shells and/or small stones.

Sieve kelp (<u>Agarum cribrosum</u>) was the numerical dominant in the seaweed zone. Density estimates during three of the sample periods ranged from  $2.12/m^2$  to  $8.20/m^2$  in the band transects (Tables 22 and 23); the average density in all transects combined was  $4.62/m^2$ . In 52 quadrats  $(0.25/m^2)$  the density ranged from 0 to  $28.00/m^2$ ; with an average of  $7.77/m^2$ . Elephant-ear kelp (<u>Laminaria groenlandica</u>) was also abundant in this location; density estimates ranged from  $0.20/m^2$  to  $4.80/m^2$  with an average density of  $2.48/m^2$  in the transect bands. These data agree well with the quadrat counts; the range in 41 haphazard casts ( $0.25/m^2$ ) was 0 to  $16.00/m^2$ , and the mean density was  $2.83/m^2$  (Tables 24 through 31). <u>Laminaria yezoensis</u> was also present, although relatively uncommon except in the shallow (9.0m) part of the seaweed band. The average density in the belt transects was  $0.74/m^2$ , compared with  $1.07/m^2$  in the

. . . .

DENSITY ESTIMATES OF SOME DOMINANT MACROPHYTES FROM ZAIKOF BAY (estimates were derived from band transects of different lengths)

| Taxon                                      | 11-23-75                     | 11-24-75                               | <u>3-20-76</u>               | 3-20-76                     | 3-20-76                   |
|--------------------------------------------|------------------------------|----------------------------------------|------------------------------|-----------------------------|---------------------------|
| Nereocystis leutkeana                      | 0                            | 0                                      | 0                            | 0                           | 0                         |
| Laminaria groenlandica                     | /                            | /                                      | 23<br>2.30/m <sup>2</sup>    | 33<br>3.30/m <sup>2</sup>   | 14<br>1.40/m <sup>2</sup> |
| Laminaria yeozoensis                       | 7                            | /                                      | 0                            | 0                           | 12<br>1.20/m <sup>2</sup> |
| Laminaria spp.                             | 39<br>.78/m <sup>2</sup>     | 43<br>1.72/m <sup>2</sup>              | 0                            | 0                           | 0                         |
| Agarum cribrosum                           | 172<br>3.44/m <sup>2</sup>   | 53<br>2.12/m <sup>2</sup>              | 52<br>5.20/m <sup>2</sup>    | 59<br>5.90/m <sup>2</sup>   | 82<br>8.20/m <sup>2</sup> |
| Pleurophycus gardneri                      | 0                            | 0                                      | 0                            | 0                           | 0                         |
| Area sampled:<br>Depth:<br>Substrate Type: | 25 x 2m<br>11.0-12.0<br>Rock | 25 x lm<br>12.0-13.0<br>Rock &<br>Sand | l0 x lm<br>10.5m<br>Boulders | l0 x lm<br>7.5m<br>Boulders | 4.5m                      |

/ = placed under the category of Laminaria spp.

.

#### DENSITY ESTIMATES OF SOME DOMINANT MACROPHYTES FROM ZAIXOF BAY

## (Estimates Were Derived from Band Transects of Different Lengths)

| Taxon                        | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                   | 6-22-76                  |
|------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|
| <u>Nereocystis</u> luetkeana | 0                         | D                         | 0                         | 0                         | 0                         | 0                         | 0                         | 0                         | 0                         | 0                         | 2<br>0.40/m <sup>2</sup> |
| Laminaria groenlandica       | 3<br>0.60/m <sup>2</sup>  | 1<br>0.20/m <sup>2</sup>  | 5<br>1.00/m <sup>2</sup>  | 2<br>0.40/m <sup>2</sup>  | 19<br>3.80/m <sup>2</sup> | 23<br>4.60/m <sup>2</sup> | 22<br>4.40/m <sup>2</sup> | 16<br>3,20/m <sup>2</sup> | 24<br>4.80/m <sup>2</sup> | 11<br>2.20/m <sup>2</sup> | Not counted              |
| Laminaria yezoensis          | 0                         | 0                         | 0                         | 0                         | 0                         | 0                         | 3<br>0.60/m <sup>2</sup>  | 1<br>0.20/m <sup>2</sup>  | 2<br>0.40/m <sup>2</sup>  | 0                         | Not counted              |
| Agarum cribrosum             | 11<br>2.20/m <sup>2</sup> | 19<br>3.80/m <sup>2</sup> | 15<br>3.00/m <sup>2</sup> | 22<br>4.40/m <sup>2</sup> | 24<br>4.80/m <sup>2</sup> | 35<br>7.00/m <sup>2</sup> | 28<br>5.60/m <sup>2</sup> | 29<br>5.80/m <sup>2</sup> | 27<br>5.40/m <sup>2</sup> | 12<br>2.40/m <sup>2</sup> | Not counted .            |
| Pleurophycus gardneri        | 0                         | 0                         | 0                         | 0                         | 1<br>0.20/m <sup>2</sup>  | 0                         | 2<br>0.40/m <sup>2</sup>  | 4<br>0.80/m <sup>2</sup>  | 3<br>0.60/m <sup>2</sup>  | 34<br>6.80/m <sup>2</sup> | Not counted              |
| Area sampled:                | 5xl m                     | 5x1 m                     | 5x1 m                     | 5x1 m                     | 5xl m                     | 5x1 m                     | 5xl m                     | 5x1 m                     | 5x1 m                     | 5 <b>x1</b> m             | 5xl m                    |
| Depth:                       | 13.5 m                    | 13.5 m                    | 12.0 m                    | 12.0 m                    | 10.5 m                    | 10.5 m                    | 9.0 m                     | 9.0 m                     | 7.6 m                     | 6.1 m                     | 4.6 m                    |
| Substrate type:              | Rock &<br>sand            | Boulders                  | Rock                      | Rock                      | Rock                      | Boulders                  | Boulders                 |

# QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL NOVEMBER 23, 1975

|                            | Perc   | ent Cover    | (number of   | individua    | ls)            |
|----------------------------|--------|--------------|--------------|--------------|----------------|
| Taxon                      | No. 1  | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u>   |
| Laminaria spp.             | 0      | 5%           | 30%(2)       | 5%           | 25%(1)         |
| Agarum                     | 20%(1) | 0            | 20%(1)       | 5%(1)        | 40% <b>(2)</b> |
| <u>Constantinea</u>        | 1%(1)  | 0            | 0            | 0            | 0              |
| Ralfsia                    | 15%    | 20%          | 10%          | 20%          | 15%            |
| encrusting coralline       | 80%    | 60%          | 90%          | 80%          | <i>¥</i> 08    |
| Hildenbrandia              | 0      | 0            | 1%           | 0            | 1%             |
| Microcladia spp.           | 0      | 0            | 0            | 1%           | 0              |
| Microporina borealis       | 40%    | 20%          | 25%          | 15%          | 50%            |
| Didemnum/Trididemnum       | 1%     | 1%           | 18           | 5%           | 18             |
| pagurids                   | (2)    | (2)          | (5)          | (1)          | (1)            |
| Heteropora sp.             | 1%     | 5%           | 1%           | 1%           | 5%             |
| Phidolopora pacifica       | 18     | 1%           | 18           | 1%           | 5%             |
| Cryptobranchia concentrica | (1)    | 0            | 0            | 0            | 0              |
| ? Rhynchozoon              | 1%     | 0            | 0            | 0            | 0              |
| Trichotropis cancellata    | 0      | (1)          | 0            | (1)          | 0              |
| Crossaster papposus        | 0      | (1)          | 0            | 0            | 0              |
| serpulidae                 | 0      | (4)          | (2)          | (1)          | (1)            |
| Crepipatella lingulata     | 0      | (1)          | (0)          | (1)          | 0              |
| Acmaea mitra               | 0      | 0            | (1)          | 0            | 0              |
| Flustrella                 | 0      | 0            | 2%           | 35%          | Ó O            |
| Pycnopodia helianthoides   | 0      | 0            | (1)          | 0            | 0              |
|                            |        |              |              |              |                |

# QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL NOVEMBER 23, 1975

|                     | Perc         | ent Cover    | (number of   | individua | ls)   |
|---------------------|--------------|--------------|--------------|-----------|-------|
| Taxon               | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | No. 4     | No. 5 |
| Hydroida (unid.)    | 1%           | 1%           | 0            | 5%        | 1%    |
| Dendrobeania        | 0            | 0            | 0            | 1%        | 0     |
| Thais lamellosa     | 0            | 0            | 0            | 0         | (2)   |
| globular red sponge | (1)          | 0            | (1)          | 0         | 0     |
|                     |              |              |              |           |       |

Location:100m offshore of NMFS TransectDepth (meters):10.0-16.0MSubstrate type:rock outcrop

...

## QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL ZONE NOVEMBER 24, 1975

|                                 | Percent Cover (number of individual |              |              |              |  |  |  |
|---------------------------------|-------------------------------------|--------------|--------------|--------------|--|--|--|
| Taxon                           | <u>No. 1</u>                        | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |
| Laminaria spp.                  | 30%(5)                              | 40%(4)       | 20%(2)       | 10%(1)       |  |  |  |
| Agarum                          | 40%(2)                              | 10%(2)       | 20%(2)       | 40%(1)       |  |  |  |
| Microcladia spp.                | 1%                                  | 18           | 3%           | 2%           |  |  |  |
| Encrusting coralline            | 30%                                 | 40%          | 15%          | 40%          |  |  |  |
| Ralfsia spp.                    | 0                                   | 10%          | 0            | 0            |  |  |  |
| Hildenbrandia                   | 5%                                  | 0            | 15%          | 5%           |  |  |  |
| Microporina borealis            | 5%                                  | 10%          | 28           | 28           |  |  |  |
| <u>Flustrella</u> sp.           | 5%                                  | 5%           | 5%           | 0            |  |  |  |
| Distaplia                       | 5%(1)                               | 0            | 0            | 0            |  |  |  |
| Pagurids                        | (5)                                 | (3)          | (1)          | (1)          |  |  |  |
| Didemnum/Trididemnum            | 1%                                  | 0            | 0            | 0            |  |  |  |
| Dendrobeania                    | 18                                  | 0            | 0            | 0            |  |  |  |
| <u>Puncturella</u> multistriata | 0                                   | 0            | 0            | (1)          |  |  |  |
| Tonicella spp.                  | (2)                                 | (2)          | (1)          | (2)          |  |  |  |
| Calliostoma ligatum             | (1)                                 | 0            | 0            | 0            |  |  |  |
| Cancer oregonensis              | 0                                   | 0            | 0            | (1)          |  |  |  |
| Heteropora sp.                  | 0                                   | 2%           | 0            | 0            |  |  |  |
| Crepipatella lingulata          | (1)                                 | 0            | 0            | 0            |  |  |  |
| Globose red sponge              | (2)                                 | 0            | (3)          | 0            |  |  |  |
| Colonial ascidian (convoluted)  | 0                                   | 2%           | 2%           | 0            |  |  |  |

Depth (meters): 7.0-8.0

-

Substrate type: Boulders, cobbles and shell debris

Location: 100m off NMFS transect

# QUADRAT DATA (0.25m²) FROM ZAIKOF BAY, SUBTIDAL ZONE MARCH 19, 1976

.

|                        | Perc         | ent Cover    | (number of   | individua    | ls)          |
|------------------------|--------------|--------------|--------------|--------------|--------------|
| Taxon                  | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> |
| Laminaria yezoensis    | 0            | 25%(3)       | 0            | 15%          | 20%          |
| Laminaria groenlandica | 0            | 0            | 0            | 0            | 0            |
| Laminaria spp.         | 0            | (2)          | 0            | 0            | (2)          |
| Agarum                 | 90%(6)       | 15%(7)       | 80%(5)       | 50%(2)       | 25%(7)       |
| <u>Constantinea</u>    | 0            | 6%           | 0            | 0            | 1%           |
| Ralfsia                | 58           | 0            | 10%          | 15%          | 10%          |
| encrusting coralline   | 30%          | 5%           | 15%          | 10%          | 20%          |
| Hildenbrandia          | 0 ·          | 0            | 0            | 25%          | 0            |
| Corallina              | 0            | 0            | 0            | 18           | 2%           |
| filamentous reds       | 6%           | 48           | 5%           | 2%           | 10%          |
| Microporina            | 0            | 1%           | 10%          | 20%          | 15%          |
| Didemnum/Trididemnum   | 1%           | 0            | 0            | 0            | 18           |
| pagurids               | (6)          | (3)          | (1)          | (2)          | (2)          |
| Heteropora             | 0            | 0            | 0            | 0            | 2%           |
| Trichotropis           | (1)          | (1)          | (1)          | 0            | 0            |
| serpulidae             | (2)          | (5)          | (1)          | (2)          | (7)          |
| Flustrella             | 5%           | 2%           | 10%          | 5%           | 2%           |
| yellow sponge          | 2%           | ο.           | 0            | 0            | 0            |
| Distaplia              | 18           | 0            | 5%           | 0            | 18           |
| Margarites             | (1)          | 0            | 0            | (1)          | 0            |

## QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL ZONE MARCH 19, 1976

|                       | Perc         | ent Cover    | (number of   | individua | <u>ls)</u>   |
|-----------------------|--------------|--------------|--------------|-----------|--------------|
| Taxon                 | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | No. 4     | <u>No. 5</u> |
| Abietinaria           | 5%           | 0            | 0            | 0         | 0            |
| Lacuna                | present      | 0            | 0            | 0         | 0            |
| Cancer oregonensis    | (1)          | 0            | 0            | 0         | 0            |
| ? <u>Distaplia</u>    | 2%           | 0            | 0            | 8\$       | 5%           |
| Halocynthia aurantium | (1)          | 0            | 0            |           |              |
| Tonicella spp.        |              |              |              | (2)       | 0            |
| Phyllolithodes        | 0            | 0            | 0            | 0         | (1)          |
| Balanus spp.          | 15%          | 8%           | 40%          | 10%       | 20%          |
|                       |              |              |              |           |              |

Location: off NMFS Site Depth (meters): 6.0-7.0 Substrate type: boulders

# QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL ZONE MARCH 20, 1976

|                          | Percent Cover (number of individual |              |              |              |  |  |  |
|--------------------------|-------------------------------------|--------------|--------------|--------------|--|--|--|
| Taxon                    | <u>No. 1</u>                        | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> |  |  |  |
| Laminaria yezoensis      | 4                                   | 0            | 0            | 0            |  |  |  |
| Laminaria groenlandica   | 10%                                 | 25%          | 25%(1)       | 40%(1)       |  |  |  |
| Laminaria spp.           | 0                                   | 0            | (2)          | (2)          |  |  |  |
| Agarum                   | 60%(4)                              | 0            | 25%(2)       | 50%(5)       |  |  |  |
| Constantinea             | 10%                                 | 20%          | 10%          | 1%           |  |  |  |
| Ralfsia                  | 40%                                 | 40%          | 10%          | 25%          |  |  |  |
| encrusting coralline     | 40%                                 | 40%          | 10%          | 65%          |  |  |  |
| Corallina                | 15%                                 | 15%          | 10%          | 15%          |  |  |  |
| Bossiella                | 0                                   | 28           | 0            | 2%           |  |  |  |
| Ptilota                  | 0                                   | 0            | 20%          | 20%          |  |  |  |
| Rhodymenia               | 0                                   | 0            | 0            | 5%           |  |  |  |
| Microporina              | 40%                                 | 15%          | 20%          | 10%          |  |  |  |
| Flustrella               | 5%                                  | 0            | 0            | 0            |  |  |  |
| orange globular ascidian | 0                                   | 0            | 2%           | 0            |  |  |  |
| Didemnum/Trididemnum     | 0                                   | 0            | 0            | 1%           |  |  |  |
| Metandrocarpa            | 0                                   | 0            | 1%           | 0            |  |  |  |
| pagurids                 | 0                                   | (3)          | (3)          | (3)          |  |  |  |
| Balanus sp.              | 0                                   | 1%           | 1%           | 0            |  |  |  |
| Ophiopholis              | present                             | present      | 0            | 0            |  |  |  |
| Tonicella                | (1)                                 | 0            | 0            | 0            |  |  |  |

•

# QUADRAT DATA (0.25m $^2)$ from Zaikof Bay, subtidal zone March 20, 1976

|                       | Percent Cover (number of individuals) |              |              |         |  |  |  |
|-----------------------|---------------------------------------|--------------|--------------|---------|--|--|--|
| Taxon                 | No. 1                                 | <u>No. 2</u> | <u>No. 3</u> | No. 4   |  |  |  |
| Podođesmus            | 0                                     | 0            | 0            | (2)     |  |  |  |
| Amphissa              | 0                                     | (2)          | 0            | 0       |  |  |  |
| Lacuna                | present                               | 0            | present      | present |  |  |  |
| Scarlesia             | 0                                     | (3)          | 0            | 0       |  |  |  |
| Volutharpa ampullacea | 0                                     | (1)          | 0            | 0       |  |  |  |
| Myxicola              | (3)                                   | 0            | 0            | 0       |  |  |  |
| serpulidae            | (9)                                   | (16)         | (2)          | (3)     |  |  |  |
|                       |                                       |              |              |         |  |  |  |
| Location: off NMFS    | Transect                              |              |              |         |  |  |  |

Depth (meters): 4.0-5.0

Substrate type: rock pavement

### QUADRAT DATA (0.25m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL ZONE MARCH 20, 1976

Cover and Composition:

|                                     |              | Percent Cove | r (number of ind | ividuals)    |              |
|-------------------------------------|--------------|--------------|------------------|--------------|--------------|
| Taxon                               | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u>     | <u>No. 4</u> | <u>No. 5</u> |
| Laminaria yezoensis                 | 0            | 0            | (1)              | 0            | 0            |
| Laminaria groenlandica              | 25%(3)       | 0            | 25%(1)           | 25%(2)       | 15%          |
| Laminaria (juveniles)               | 0            | 0            | 0                | 0            | (1)          |
| Agarum                              | 70%(1)       | 25%          | 15%(2)           | 10%          | 75%(3)       |
| Constantinea                        | 2%           | 1%           | 0                | 0            | 0            |
| Ralfsia                             | 30%          | 10%          | 0                | 5%           | 0            |
| encrusting coralline                | 30%          | 20%          | 15%              | 30%          | 20%          |
| Hildenbrandia                       | 5%           | 5%           | 0                | 20%          | 25%          |
| filamentous reds                    | 1%           | 18           | 0                | 3%           | 0            |
| Microporina                         | 3%           | 2%           | 5%               | 5%           | (3)          |
| pagurids                            | (2)          | 0            | (4)              | (2)          | (3)          |
| Heteropora                          | 0            | 0            | 0                | 1% .         | 0            |
| Trichotropis                        | 0            | 0            | (1)              | (2)          | 0            |
| serpulidae                          | 0            | 10%          | 0                | (1)          | 0            |
| Flustrella                          | 1%           | 2%           | 1%               | 15%          | 5%           |
| Distaplia                           | 2%           | 0            | 0                | 0            | 1%           |
| Margarites                          | 0            | 0            | 0                | (1)          | (1)          |
| ? Archidistoma                      | 0            | 2%           | 1%               | 1%           | 0            |
| orange globular ascidian            | 0            | 0            | 0                | 8%           | 7%           |
| <u>Halocynthia</u> <u>aurantium</u> | (1)          | 0            | 0                | ο            | 0            |
| Tonicella                           | (2)          | (2)          | (1)              | (2)          | (1)          |
| Musculus discors                    | (2)          | 0            | 0                | 0            | 0            |
| Cryptobranchia                      | present      | present .    | 0                | present      | present      |
| Trichotropis                        | 0            | 0            | (1)              | (2)          | 0            |
| Puncturella                         | (1)          | 0            | 0                | 0            | 0            |
| Fusitriton                          | 0            | 0            | (1)              | 0            | 0            |
| Trophon                             | (1)          | 0            | (3)              | (1)          | 0            |
| Ophiopholis                         | present      | 0            | 0                | 0            | 0            |
| Strongylocontrotus                  | 0            | 0            | (1)              | 0            | 0            |
| Balanus sp.                         | 58           | 12%          | 10%              | 15%          | 2%           |
|                                     |              |              |                  |              |              |

Location: NMFS Site Depth: 9-10m Substratum: Boulder Field

. ....

# HAPHAZARD QUADRAT CASTS (0.25m<sup>2</sup>) FROM THE SUBLITTORAL ZONE IN ZAIKOF BAY MARCH 20, 1976

| (No. 1) Depth 10.5m; Sand, Shell Debris & Silt                                    |                                         |
|-----------------------------------------------------------------------------------|-----------------------------------------|
| <u>Taxon</u>                                                                      | Percent Cover (number of individuals)   |
| <u>Laminaria</u> (juvenile)<br><u>Rhodymenia</u><br>diatom scum                   | (1)<br>2%(2)<br>80%                     |
| (No. 2) Depth 10.5m; Sand & Silt                                                  |                                         |
| Taxon                                                                             | Percent Cover (number of individuals)   |
| <u>Laminaria</u> (juveniles)<br>unid. foliose red<br>diatom scum<br>Orthasterias  | (3)<br>(1)<br>90%<br>(1)                |
| (No. 3) Depth 10.5m; Sand & Silt                                                  |                                         |
| Taxon                                                                             | Percent Cover (number of individuals)   |
| diatom scum<br>shell debris                                                       | 80%<br>20%                              |
| (No. 4) Depth 10m; Rock & Shell Debri                                             | is                                      |
| Taxon                                                                             | Percent Cover (number of individuals)   |
| Laminaria groenlandica<br>Rhodymenia<br>Desmarestia<br>Unid. filamentous reds     | (1)<br>(1)<br>(1)<br>2%                 |
| (No. 5) Depth 9m; Rock                                                            |                                         |
| Taxon                                                                             | Percent Cover (number of individuals)   |
| Agarum<br>Constantinea<br>Callophyllis<br>Flustrella<br>Microporina<br>Evasterias | (1)<br>5%(1)<br>10%<br>5%<br>30%<br>(1) |

## HAPHAZARD QUADRAT CASTS (0.25m<sup>2</sup>) FROM THE SUBLITTORAL ZONE IN ZAIKOF BAY MARCH 20, 1976

(No. 5) Cont.

| Taxon               | Percent Cover (number of individuals) |
|---------------------|---------------------------------------|
| <u>Ischnochiton</u> | (1)                                   |
| pagurids            | (1)                                   |
| unid. cottid        | (1)                                   |

(No. 6) Depth 8.5m; Rock

| Taxon                  | <u>Percent Cover (number of individuals)</u> |
|------------------------|----------------------------------------------|
| Laminaria groenlandica | (1)                                          |
| Agarum                 | (3)                                          |
| Callophyllis           | 2%                                           |
| encrusting corallines  | 30%                                          |
| Microporina            | 25%                                          |
| Pycnopodia             | (2)                                          |

(No. 7) Depth 8.5m; Rock

| Agarum(5)Callophyllis2%encrusting corallines25%Mission20% | Taxon                                                                     | Percent Cover (number of individuals) |
|-----------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------|
| Microportna30%Balanus40%Calliostoma(2)                    | Agarum<br>Callophyllis<br>encrusting corallines<br>Microporina<br>Balanus | (5)<br>2%<br>25%<br>30%<br>40%        |

# (No. 8) Depth 8.5m; Rock

| Taxon        | Percent Cover (number of individuals) |
|--------------|---------------------------------------|
| Agarum       | (1)                                   |
| Callophyllis | 2%                                    |
| Microporina  | 15%                                   |
| Balanus      | 60%                                   |
| Heteropora   | 5%                                    |

# HAPHAZARD QUADRAT CASTS (0.25m<sup>2</sup>) FROM THE SUBLITTORAL ZONE IN ZAIKOF BAY MARCH 20, 1976

(No. 9) Depth 7.5m; Rock

| Taxon                                                                                                                  | Percent Cover (number of individuals)              |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Agarum<br>Callophyllis<br>encrusting corallines<br>Flustrella<br>Microporina<br>Balanus<br>Calliostoma<br>Ischnochiton | (1)<br>5%<br>15%<br>5%<br>25%<br>(1)<br>(1)<br>(1) |
| Puncturella                                                                                                            | (1)                                                |

(No. 10) Depth 8m; Rock

| Taxon                         | Percent Cover (number of individuals) |
|-------------------------------|---------------------------------------|
| <u>Laminaria groenlandica</u> | (2)                                   |
| Laminaria (juveniles)         | (2)                                   |
| Agarum                        | (2)                                   |
| Callophyllis                  | 5%                                    |
| encrusting corallines         | 60%                                   |
| Microporina                   | 10%                                   |
| Flustrella                    | 2%                                    |
| Evasterias                    | (1)                                   |
| Trichotropis                  | present                               |

(No. 11) Depth 8m; Rock

| Taxon                  | Percent Cover (number of individuals) |
|------------------------|---------------------------------------|
| Laminaria groenlandica | (1)                                   |
| Agarum                 | (1)                                   |
| Callophyllis           | 5%                                    |
| encrusting corallines  | 40%                                   |
| Flustrella             | 5%                                    |
| Balanus                | 2%                                    |
| Trichotropis           | (4)                                   |

## HAPHAZARD QUADRAT CASTS (0.25m<sup>2</sup>) FROM THE SUBLITTORAL ZONE IN ZAIKOF BAY MARCH 20, 1976

(No. 12) Depth 6.5m; Rock

| Taxon                  | Percent Cover (number of individuals) |
|------------------------|---------------------------------------|
| Laminaria groenlandica | (4)                                   |
| Agarum                 | (3)                                   |
| Callophyllis           | 2%                                    |
| encrusting corallines  | 75%                                   |
| Microporina            | 10%                                   |
| Dendrobeania           | 2%                                    |
| Flustrella             | 5%                                    |
| Pycnopodia             | (1)                                   |
| Musculus discors       | present                               |

(No. 13) Depth 7m; Rock & Shell Debris

| Taxon              | Percent Cover (number of individuals) |
|--------------------|---------------------------------------|
| <u>Agarum</u>      | (4)                                   |
| Callophyllis       | 5%                                    |
| <u>Microporina</u> | 10%                                   |
| Balanus            | 20%                                   |

## (No. 14) Depth 4.5m; Rock & Shell Debris

| Taxon Per              |       |
|------------------------|-------|
| Laminaria yezoensis    | (1)   |
| Laminaria groenlandica | (4)   |
| Laminaria (juveniles)  | (3)   |
| Agarum                 | (5)   |
| Rhodymenia             | 2%(1) |
| Odonthalia             | 5%    |
| encrusting corallines  | 60%   |
| Dendrobeania           | 2%    |
| Balanus                | 30%   |

(No. 15) Depth 5m; Rock

| Taxon                         | Percent Cover (number of individuals) |
|-------------------------------|---------------------------------------|
| <u>Laminaria</u> groenlandica | (1)                                   |
| Agarum                        | (6)                                   |

# HAPHAZARD QUADRAT CASTS (0.25m<sup>2</sup>) FROM THE SUBLITTORAL ZONE IN ZAIKOF BAY MARCH 20 1976

(No. 15) Cont.

| <u>Taxon</u>                                                                                   | Percent Cover (number of individuals) |
|------------------------------------------------------------------------------------------------|---------------------------------------|
| Rhodymenia<br>Constantinea<br>unid. filamentous reds<br>Hildenbrandia<br>encrusting corallines | 5%<br>(2)<br>20%<br>5%<br>80%         |
| (No. 16) Depth 5m; Rock                                                                        |                                       |

| Taxon                  | Percent Cover (number of individuals) |
|------------------------|---------------------------------------|
| Laminaria groenlandica | (1)                                   |
| Agarum                 | (6)                                   |
| Rhodymenia             | 5%                                    |
| Constantinea           | 1%(2)                                 |
| unid. filamentous reds | 20%                                   |
| Hildenbrandia          | 5%                                    |
| encrusting coralline   | 80%                                   |

(No. 17) Depth 3m; Rock

| Taxon                 | <u>Percent Cover (number of individuals)</u> |
|-----------------------|----------------------------------------------|
| Laminaria yezoensis   | (2)                                          |
| Agarum                | (2)                                          |
| Rhodymenia            | 15%                                          |
| Ptilota               | 30%                                          |
| Corallina             | 5%                                           |
| encrusting corallines | 85%                                          |

### TABLE 30 & 31

### QUADRAT DATA (0.25 m<sup>2</sup>) FROM ZAIKOF BAY, SUBTIDAL ZONE JUNE 22 and 23, 1976

### Percent Cover (Number of Individuals)

| Taxon                                                                                                                                                                       | <u>No. 1</u>                                        | <u>No. 2</u>                                   | <u>No. 3</u>                                                | <u>No. 4</u>                                     | <u>No. 5</u>                                        | <u>No. 6</u>                                          | <u>No. 7</u>                                     | <u>No. 8</u>                                   | No. 9                                             | <u>No. 10</u>                                                           | <u>No. 11</u>                                     | <u>No. 12</u>                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|--------------------------------------------------|------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|
| Laminaria yezoensis<br>Laminaria groenlandica<br>Laminaria spp.<br>Agarum<br>Pleurophycus<br>Desmarestia viridis<br>Desmarestia ligulata                                    | 0<br>0<br>0<br>0<br>25%                             | 0<br>0<br>5%(6)<br>0<br>2%                     | 0<br>0<br>2%(5)<br>0<br>15%                                 | 0<br>0<br>2%(2)<br>0<br>0<br>0                   | 0<br>20%(1)<br>0<br>50%(1)<br>0<br>15%              | 0<br>0<br>1%(1)<br>30%(1)<br>0<br>35%                 | 0<br>5%(6)<br>35%<br>0<br>0                      | 0<br>0<br>65%(1)<br>25%(1)<br>5%               | 0<br>0<br>50%<br>30%(1)<br>0                      | 0<br>0<br>5%(10)<br>0<br>5%<br>20%                                      | 0<br>80%(4)<br>2%(15)<br>15%<br>0<br>5%           | 0<br>30%(1)<br>2%(4)<br>50%(2)<br>0<br>0                      |
| var. <u>ligulata</u><br>Ralfsia<br>cncrusting coralline<br><u>Hildenbrandia</u><br>filamentous reds<br>Callophyllis<br>Microcladia<br>Phycodrys<br>Bossiella<br>Microporina | 0<br>P<br>0<br>0<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>2%<br>0<br>0<br>0<br>0<br>0     | 0<br>0<br>25%<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>5% | 5%<br>0<br>2%<br>0<br>2%<br>0<br>2%<br>0<br>5%   | 0<br>0<br>5%<br>0<br>15%<br>0<br>0<br>0<br>0<br>25% | 0<br>0<br>0<br>10%<br>0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>2%<br>0<br>0<br>25%          | 0<br>0<br>60%<br>0<br>0<br>2%<br>0<br>0<br>25% | 0<br>0%<br>20%<br>5%<br>5%<br>0<br>2%<br>0<br>60% | 2%<br>P<br>0<br>0<br>0<br>0<br>0<br>25%                                 | 0<br>0<br>50%<br>0<br>0<br>20%<br>0<br>20%<br>20% | 0<br>0<br>30%<br>0<br>0<br>0<br>5%<br>2%<br>0                 |
| pagurids<br>Trichotropis<br>serpulidae<br>Flustrella<br>Balanus sp.<br>Didemnum<br>Dendrobeania<br>foliose reds, unid.<br>Abietinaria<br>Heteropora                         | 0<br>0<br>0<br>30%<br>0<br>0<br>5%<br>2%            | (4)<br>0<br>0<br>15%<br>0<br>2%<br>0<br>0<br>0 | 0<br>0<br>0<br>10%<br>0<br>0<br>5%<br>0                     | (1)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>5%<br>0<br>0<br>0<br>0               | (1)<br>0<br>0<br>5%<br>15%<br>0<br>2%<br>0            | 0<br>0<br>5%<br>5%<br>0<br>10%<br>0              | 0<br>0<br>0<br>30%<br>5%<br>0<br>0<br>0<br>0   | 0<br>0<br>0<br>10%<br>0<br>0                      | 0<br>0<br>0<br>5%<br>10%<br>0<br>0<br>0                                 | (2)<br>0<br>5%<br>0<br>5%<br>10%<br>0<br>0        | (3)<br>0<br>5%<br>0<br>10%<br>0<br>0                          |
| Distaplia<br>Tricellaria<br>Grammaria sp.<br>Hippodiplosia<br>Alcyonidium<br>Hydractinea<br>Fusitriton<br>Ishnochiton spp.<br>Tonicella spp.                                | 2%<br>0<br>30%<br>2%<br>0<br>P<br>(1)<br>(1)<br>(2) | 0<br>0<br>5%<br>0<br>0<br>0<br>0<br>0<br>0     | 0<br>2%<br>10%<br>0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>5%<br>0<br>0<br>0<br>0<br>0<br>0       | 0<br>0<br>25%<br>0<br>5%<br>0<br>0<br>0<br>0        | 0<br>0<br>15%<br>0<br>5%<br>0<br>0<br>0<br>0          | 0<br>0<br>10%<br>2%<br>2%<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>(1)<br>(1)  | 0<br>0<br>0<br>5%<br>0<br>0<br>0<br>0             |                                                                         | 0<br>2%<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0   | 0<br>2%<br>0<br>2%<br>0<br>2%<br>0<br>0<br>0<br>0<br>0<br>(1) |
| Corella<br>Henricia spp.<br>Orthasterias<br>Musculus ? discors<br>Pycnopodia<br>Solaster stimpsoni<br>Phidolopora<br>Diadora<br>Trichotropis<br>Acmaea mitra                |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | (1)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0            | 0<br>0<br>0<br>0<br>(1)<br>0<br>0<br>0           | 0<br>0<br>P<br>(1)<br>0<br>0<br>0<br>0              | 0<br>(1)<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>(1)<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>(1)<br>0<br>0<br>0<br>2%<br>0<br>0<br>0   | 0<br>0<br>0<br>0<br>0<br>0<br>(1)<br>(1)<br>0     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                   | 0<br>0<br>(1)<br>0<br>0<br>0<br>0<br>(1)<br>0                 |
| fan bryozoan<br>Depth:                                                                                                                                                      | 0<br>15.5m                                          | 0<br>15.5m                                     | 0<br>13.5m                                                  | 2%<br>13.5m                                      | 5%<br>12.0m                                         | 0<br>12.0m                                            | 0<br>12.0m                                       | 0<br>10.5m                                     | 0<br>10.5m                                        | 0<br>9.0m                                                               | 0<br>9.0m                                         | 0<br>7.5m                                                     |
| Substrata:                                                                                                                                                                  | Sand,<br>rock &<br>shell<br>debris                  | Rock,<br>sand &<br>shell<br>debris             | Rock,<br>sand &<br>shell<br>debris                          | Rock,<br>sand &<br>shell<br>debris               | Rock &<br>shell<br>debris                           | Rock                                                  | Rock                                             | Rock                                           | Rock                                              | Rock &<br>coarse<br>sand                                                | 9.0m<br>Rock &<br>sand                            | Rock                                                          |

quadrat counts. The third important member of this understory kelp guild was <u>Pleurophycus gardneri</u>. During the first three visits we did not record this species. Despite our oversight, <u>Pleurophycus</u> was obviously present since mature individuals were seen in the shallow regions of the reef complex during the June (1976) survey. The greatest number of <u>Pleurophycus</u> were attached to boulders in the 5-7 meter depth contour. For example, in June (1976) densities ranged from 0 to 6.80/m<sup>2</sup>; the average in 10 band transects was 0.88/m<sup>2</sup> (Table 23) compared with an average density of 0.67/m<sup>2</sup> in the quadrat counts for the same sample period (Table 31).

The other conspicuous or characteristic macroalgae in this location were the reds: <u>Callophyllis</u> spp., <u>Constantinea</u>, <u>Microcladia</u> <u>borealis</u> and <u>Rhodymenia</u> spp. Crustose and articulated coralline algae were typically shallow in distribution and abundance. Drift or detached bull kelp (<u>Nereocystis</u>) was seen along the southern shores of Zaikof Bay, however it was not until June of 1976 that we actually observed attached bull kelp in the study site. Young <u>Nereocystis</u> or juvenile sporophytes grew on the rock substrate within the boulder field; densitie: averaged 0.14/m<sup>2</sup> during the summer survey (1976).

### EPIFAUNA AND TROPHIC INTERACTION

A variety of epifaunal forms were observed in the relatively narrow macrophyte belt below MLLW. Suspension or filter feeders were abundant in this location. Most of these animals occurred along a narrow portion of the shoreline that was dominated by rock pavement and large rocks or boulders. The suspension feeders, along with the macrophyte species flourished from MLLW down to approximately 10 meters below the "O" elevation of the tide. The vertical faces of the rock substrates generally supported the greatest number of organisms. The dominant sessile forms were the bryozoans Microporina borealis, Flustrella gigantea, Heteropora spp. and Dendrobeania murryani; barnacles Balanus spp., serpulid worms; a nestling mytilid Musculus discors and the ascidians Distaplia ? occidentalis, Halocynthia aurantium, and Didemnum or Trididemnum. Hydroids were also common on rock substrata; the genera Abietinaria and Grammaria were particularly common during the June (1976) survey. For example, the tall statured Grammaria was recorded in 7/12 quadrats (.25m<sup>2</sup>), with estimates of percent cover ranging between 0 and 30 percent, with an average coverage of 8.3 percent during this summer sample period.

Microherbivores were common on these same rock substrates. A few of the common species are listed in Table 32. Of the three genera, the most abundant and frequently encountered in the vegetative undergrowth was hermit crabs of the genus <u>Pagurus</u>: Hermit crabs occurred in 26/52 quadrats, with maximum densities of 24.0/m<sup>2</sup>. The average density

### CHARACTERISTIC OR REPRESENTATIVE IMPORTANT SPECIES AT ZAIKOF BAY, ROCKY SUBLITTORAL

| Species                      | Occurrence | <u>Major Taxon</u> | Trophic Category           |
|------------------------------|------------|--------------------|----------------------------|
|                              |            |                    |                            |
| Agarum cribrosum (P)         | A          | Brown alga         | Producer                   |
| Laminaria groenlandica (P)   | С          | Brown alga         | Producer                   |
| Laminaria yezoensis (P)      | С          | Brown alga         | Producer                   |
| Pleurophycus gardneri (P)    | С          | Brown alga         | Producer                   |
| Desmarestia viridis (A)      | С          | Brown alga         | Producer                   |
| Encrusting coralline (P)     | A          | Red alga           | Producer                   |
| Microcladia borealis (?)     | С          | Red alga           | Producer                   |
| Constantinea spp. (P)        | С          | Red alga           | Producer                   |
| Callophyllis spp. (?)        | С          | Red alga           | Producer                   |
| Ralfsia spp. (P)             | С          | Brown alga         | Producer                   |
| Microporina borealis (A)     | С          | Bryozoan           | Suspension feeder          |
| Flustrella gigantea (P)      | С          | Bryozoan           | Suspension feeder          |
| Balanus spp. (P)             | A          | Barnacle           | Suspension feeder          |
| Grammaria sp.                | С          | Hydroid            | Suspension feeder          |
| Heteropora sp. (P)           | С          | Bryozoan           | Suspension feeder          |
| Pycnopodia helianthoides (P) | С          | Sea star           | Predator                   |
| Orthasterias koehleri (P)    | С          | Sca star           | Predator                   |
| Dermasterias imbricata (P)   | С          | Sea star           | Predator                   |
| Crossaster papposus (P)      | С          | Sea star           | Predator                   |
| Henricia spp. (P)            | C.         | Sea star           | Suspension feeder/predator |
| Evasterias troschelii (P)    | С          | Sea star           | Predator                   |
| Fusitriton oregonensis (P)   | С          | Snail              | Predator/scavenger         |
| Musculus discors (A)         | С          | Mussel             | Suspension feeder          |
| Tonicella spp. (P)           | С          | Chiton             | Herbivore                  |
| Pagurus spp. (P)             | A          | Hermit crab        | Herbivore/Scavenger        |
| Margarites pupillus          | С          | Snail              | Herbivore                  |
| Enhydra lutris (P)           | C          | Sea otter          | Predator                   |

| Key: (P) | = | perennial | L |
|----------|---|-----------|---|
|----------|---|-----------|---|

(A) = Annual

 $\begin{array}{l} A = abundant\\ C = common \end{array}$ 

U = uncommon

was 5.1/m<sup>2</sup> in all quadrats combined. Members of this genus are reputed to be opportunistic consumers, and some species are known to consume both plant and animal matter. Herbivory was observed on attached macroalgae, particularly along the erroded edges of older blades where bacterial decomposition and tissue breakdown was no doubt great.

Several chitons (<u>Tonicella insignis</u>, <u>T. lineata</u>; <u>Mopalia</u> spp. and <u>Ishnochiton</u> spp.) and snails (<u>Margarites pupillus</u>, <u>Calliostoma</u> <u>ligatum</u>, <u>Cryptobranchia</u> spp., <u>Puncturella</u> spp., and <u>Acmaea mitra</u>) were also common in this location. The most common genera was <u>Tonicella</u>, and densities ranged as high as 8.0/m<sup>2</sup>. <u>Tonicella</u> spp. occurred in 15 of 52 quadrats (.25m<sup>2</sup>). <u>Margarites</u> and <u>Calliostoma</u> both reached densities of 4.0/m<sup>2</sup>, and most often were seen on either rock or algal substrates. Most of these mollusks are microherbivores, and as such feed on the diatom film or algal turf that is generally composed of gametophytes and algal sporelings.

Macroherbivores, such as sea urchins were uncommon in this location, although a few relatively small individuals were encountered during the quadrat sampling efforts. Most of the green sea urchins (<u>Strongylocentrotus drobachiensis</u>) were less than 30 cm in diameter and were typically cryptic in habit. Densities of <u>S. drobachiensis</u> ranged from 0 to  $4.00/m^2$ , and averaged  $0.04/m^2$  in the 52 haphazardly placed quadrats. Frequency of occurrence was 1/52 in this same quadrats.

These data are comparable to the transect sampling, for only 1 green sea urchin was encountered during this phase of the field work, and densities ranged from 0 to  $0.02/m^2$  in the 292 square meters of seafloor that was sampled by band transects (Tables 33 and 34).

There are a number of other herbivores in the inshore system; i.e. amphipods, isopods, fishes etc.; however, no information has been generated from these groups of organisms since their occurrence at Zaikof Bay was more transient or ephemeral over the 1-year (1975-76) sample period. Other invertebrate species which utilized the seaweed resource in the bay were Lacuna carinata (snail); Diadora aspera (limpet); <u>Mopalia</u> spp. (chitons); <u>Pugettia gracilis</u> (decorator crab); <u>Punturella</u> spp. (snail) and <u>Dermasterias imbricata</u> (sea star).

As stated earlier, the sedentary or attached organisms were common on the solid substratum, and most of these species because of restrictions of mobility gather or collect food items that have either fallen or drifted to them in the water column. Most of the detritus that reaches the seafloor probably needs to be reworked further or broken down by bacterial action before it can be assimilated by the macroinvertebrates of the reef. Conspicuous members of this trophic guild included the articulated bryozoan <u>Microporina borealis</u>, which occurred in 40 of 52 quadrats, and covered between 0 and 60 percent of solid substrate. The average coverage over the 1-year period was 12.56 percent (Tables 24-31). <u>Microporina</u> longevity is unknown, although in some locations of the Northern Gulf the colonies appeared to be short-lived. Another

### DENSITY ESTIMATES OF SOME COMMON ECHINODERMS AT ZAIKOF BAY (estimates were derived from band transects)

| Taxon                                          | 11-23-75                  | <u>11-23-75</u>                     | 11-23-75                  | 11-24-75                            | 11-24-75                 | 03-19-76                  | 03-20-76                           | 03-20-76                 | 03-20-76                 |
|------------------------------------------------|---------------------------|-------------------------------------|---------------------------|-------------------------------------|--------------------------|---------------------------|------------------------------------|--------------------------|--------------------------|
| Pyncopodia helianthoides                       | 19<br>0.38/m <sup>2</sup> | 5<br>0.25/m <sup>2</sup>            | 12<br>0.48/m <sup>2</sup> | 16<br>0.64/m <sup>2</sup>           | 4<br>0.18/m <sup>2</sup> | 11<br>0.22/m <sup>2</sup> | 8<br>0.80/m <sup>2</sup>           | 3<br>0.30/m <sup>2</sup> | 9<br>0.90/m <sup>2</sup> |
| <u>Dermasterias</u> <u>imbricata</u><br>4<br>W | 2<br>0.04/m <sup>2</sup>  | 0                                   | 1<br>0.04/m <sup>2</sup>  | 0                                   | 0                        | 0                         | 0                                  | 0                        | 0                        |
| <u>Orthasterias</u> <u>koehleri</u>            | 3<br>0.06/m <sup>2</sup>  | 1<br>0.05/m <sup>2</sup>            | 1<br>0.04/m <sup>2</sup>  | 0                                   | 1<br>0.05/m <sup>2</sup> | 5<br>0.10/m <sup>2</sup>  | 1<br>0.10/m <sup>2</sup>           | 1<br>0.10/m <sup>2</sup> | . 0                      |
| Crossaster papposus                            | 2<br>0.04/m <sup>2</sup>  | 2<br>0.05/m <sup>2</sup>            | 1<br>0.04/m <sup>2</sup>  | 0                                   | 4<br>0.18/m <sup>2</sup> | 4<br>0.08/m <sup>2</sup>  | 1<br>0.10/m <sup>2</sup>           | 1<br>0.10/m <sup>2</sup> | 0                        |
| Solaster spp.                                  | 1<br>0.02/m <sup>2</sup>  | 1<br>0.03/m <sup>2</sup>            | 0                         | 0                                   | 1<br>0.05/m <sup>2</sup> | O                         | 0                                  | 0                        | 0                        |
| Henricia spp.                                  | 1<br>0.C2/m <sup>2</sup>  | 3<br>0.07                           | 4<br>0.16/m <sup>2</sup>  | 1<br>0.04/m <sup>2</sup>            | 2<br>0.09/m <sup>2</sup> | 5<br>0.10/m <sup>2</sup>  | 1<br>0.10/m <sup>2</sup>           | 0                        | 1<br>0.10/m <sup>2</sup> |
| <u>Evasterias</u> <u>troschelli</u>            | 3<br>0.06/m <sup>2</sup>  | 1<br>0.03/m <sup>2</sup>            | 2<br>0.08/m <sup>2</sup>  | 2<br>0.08/m <sup>2</sup>            | 0                        | 7<br>0.14/m <sup>2</sup>  | 0                                  | 2<br>0.20/m <sup>2</sup> | 0                        |
| Strongylocentrotus spp.                        | 0                         | o                                   | С                         | 0                                   | 0                        | 1<br>0.02/m <sup>2</sup>  | 0                                  | D                        | 0                        |
| Area sampled:<br>Depth:<br>Substrate type:     | 25 x 2m<br>11-12m<br>Rock | 20 x 2m<br>10-11m<br>Rock &<br>Sand | 25 x lm<br>6-7m<br>Rock   | 25 x lm<br>12-13m<br>Rock &<br>Sand | 22 x lm<br>7-8m<br>Rock  | 50 x lm<br>7-12m<br>Rock  | 10 x lm<br>10.5m<br>Rock &<br>Sand | 10 x lm<br>8m<br>Rock    | 10 x lm<br>4.5m<br>Rock  |

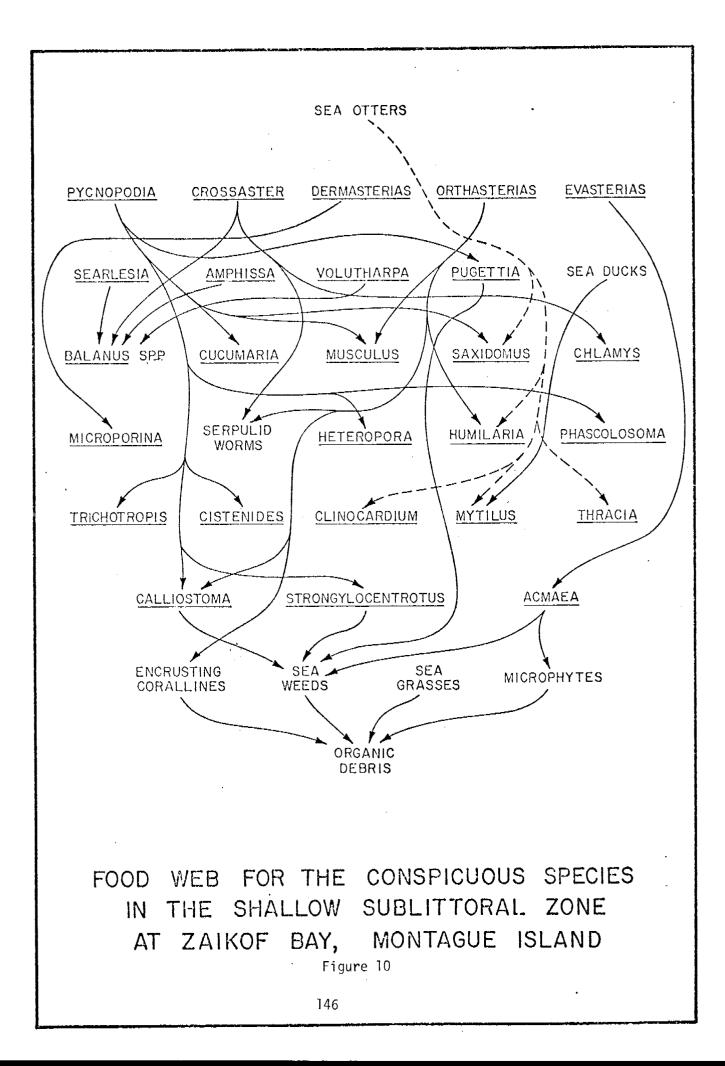
#### DENSITY ESTIMATES OF SOME COMMON ECHINODERMS AT ZAIKOF BAY

(Estimates Were Derived from Band Transects)

| Taxon                               | 6-22-76                  | 6-22-76                  | 6-22-76                  | 6-22-76                  | 6-22-76                  | 6-22-76 | 6-22-76                  | 6-22-76                  | 6-22-76                  | 6-22-76                  | Combined $\frac{\bar{x}/m^2}{}$ |
|-------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|
| Pycnopodia<br>helianthoides         | 2<br>0.40/m <sup>2</sup> | 1<br>0.20/m <sup>2</sup> | 0                        | 1<br>0.20/m <sup>2</sup> | 4<br>0.80/m <sup>2</sup> | 0       | 1<br>0.20/m <sup>2</sup> | 3<br>0.60/m <sup>2</sup> | 1<br>0.20/m <sup>2</sup> | 3<br>0.60/m <sup>2</sup> | 0.39                            |
| <u>Dermasterias imbricata</u>       | 0                        | 1<br>0.20/m <sup>2</sup> | 0                        | 0                        | 0                        | 0       | ٥                        | 0                        | 0                        | 3<br>0.60/m <sup>2</sup> | 0.01                            |
| <u>Crthasterias</u> <u>koehleri</u> | 0                        | 1<br>0.20/m <sup>2</sup> | 2<br>0.40/m <sup>2</sup> | 0                        | 1<br>0.20/m <sup>2</sup> | 0       | 1<br>0.20/m <sup>2</sup> | 0                        | 1<br>0.20/m <sup>2</sup> | O                        | 0.09                            |
| Crossaster papiosus                 | 1<br>0.20/m <sup>2</sup> | 0                        | 0                        | 0                        | 0                        | 0       | 0                        | 0                        | C                        | 0                        | 0.04                            |
| Solaster spp.                       | o                        | 0                        | 0                        | o                        | 0                        | 0       | 0                        | o                        | D                        | c                        | 0.01                            |
| Henricia spp.                       | 0                        | 0                        | 0                        | 0                        | l<br>0.20/m <sup>2</sup> | 0       | 1<br>0.20/m <sup>2</sup> | 0                        | 2<br>0.40/m <sup>2</sup> | 0                        | 0.08                            |
| <u>Evasterias</u> troschelii        | 0                        | 0                        | 0                        | ٥                        | 0                        | 0       | ٥                        | ٥                        | ٥                        | ٥                        | 0.03                            |
| Strongylocentrotus spp.             | o                        | 0                        | 0                        | 0                        | 0                        | 0       | 0                        | Û                        | 0                        | 0                        |                                 |

| Area sampled:   | 5 <b>x1</b> m  | 5xl m          | 5x1 m          | 5x1 m  | 5x1 m    | 5x1 m    | 5xl m | 5x1 m | 5x1 m    | 5x1 m    |
|-----------------|----------------|----------------|----------------|--------|----------|----------|-------|-------|----------|----------|
| Depth:          | 13.5 m         | 13.5 m         | 12.0 m         | 12.0 m | 10.5 m   | 10.5 ព   | 9.0 m | 9.0 m | 7.6 m    | 6.1 m    |
| Substrate type: | Rock &<br>sand | Rock &<br>sand | Rock &<br>sand | Rock & | Boulders | Boulders | Rock  | Rock  | Boulders | Boulders |

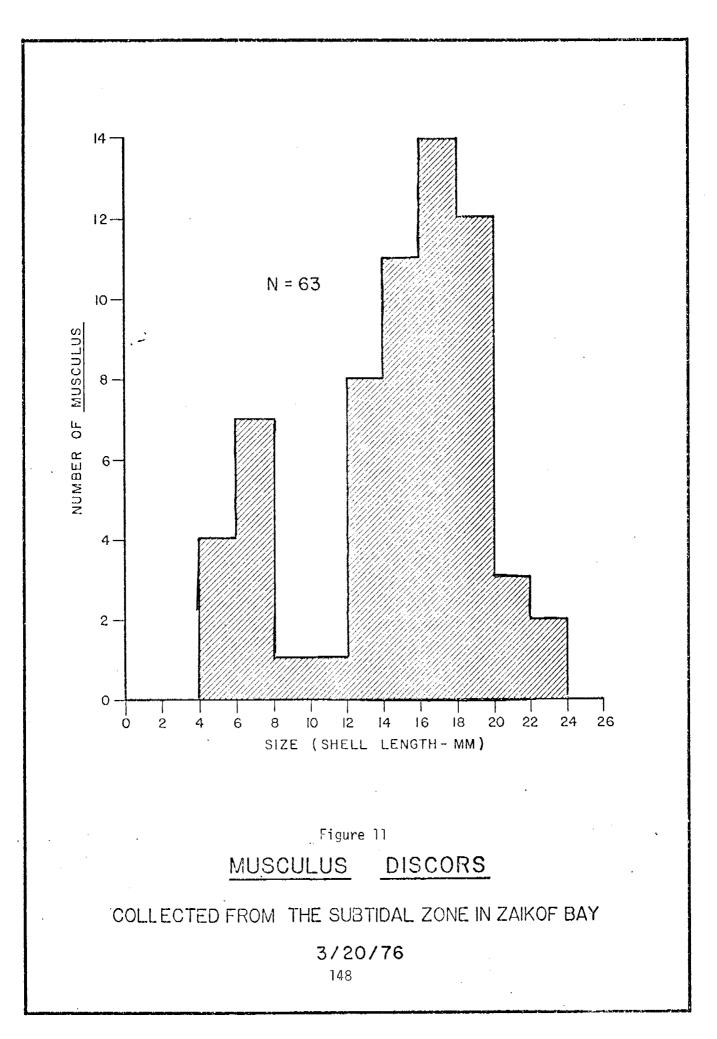
144

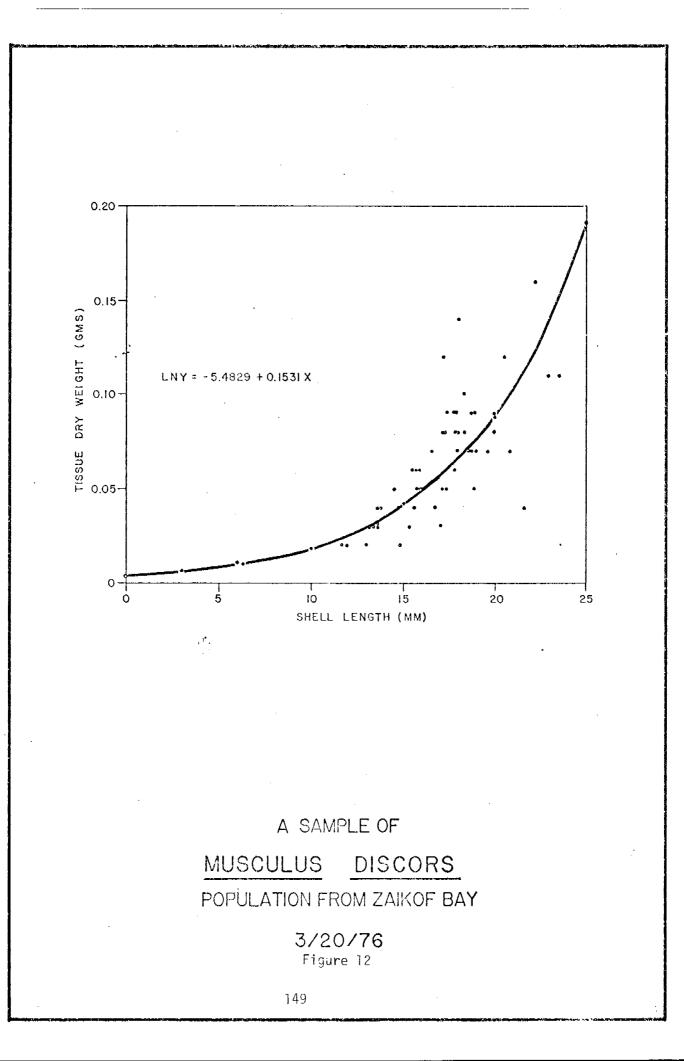

.

.

common bryozoan in this area was <u>Flustrella gigantea</u>, which frequently grew in either mat-like encrustations between boulders or attached to the shell of <u>Fusitriton oregonensis</u> (snail). Estimated coverage of <u>Flustrella</u> ranged between 0 and 35 percent, with an average in all quadrats combined of 2.83 percent. The frequency of occurrence in the shallow water zone was 23/52. Based on observations made in Kachemak Bay (ADF&G, 1977), the canopy produced by <u>Flustrella</u> colonies are important habitats or nursery areas for juvenile crabs and shrimps. The colonies appeared to be perennial, and the only predator known to feed upon <u>Flustrella</u> in Prince William Sound is the white dorid nudibranch (<u>Archidoris odhneri</u>).

A third bryozoan, <u>Heteropora</u> spp. formed calcareous, branched colonies that are frequently referred to as coral by the fishermen of the Sound. <u>Heteropora</u> occurred in 10/52 quadrats, with maximum coverage of 5 percent in the haphazardly placed quadrats. Duration of life is unknown, however, judging from the size of some colonies it appeared to be long-lived. Few predators of <u>Heteropora</u> are known from this site, however, one occasional predator is the sun star, <u>Pycnopodia helianthoides</u> (Figure 10), and another known predator from the Northern Gulf is the China rockfish, <u>Sebastes nebulosus</u>, which probably ingests the colonies incidental to eating the brittle star (<u>Ophiopholis aculeata</u>) (Rosenthal, unpublished data).


Balanoid barnacles: <u>Balanus nubilus</u>, <u>B.</u> ? <u>crenatus</u> and <u>B.</u> <u>glandula</u> encrusted substantial portions of the rock substrate beneath




the vegetative undergrowth. Estimates of barnacle coverage ranged between 0 and 60 percent, with an average of 7.8 percent in all of the quadrats (.25m<sup>2</sup>). Barnacles occurred in 23 of 52 quadrats. Some of the predators of <u>Balanus</u> spp. in this location included the snails: <u>Searlesia</u> <u>dira</u>, <u>Amphissa columbiana</u> and <u>Volutharpa ampullacea</u>; the sea stars <u>Crossaster papposus</u> and <u>Orthasterias Koehleri</u>.

The mytilid, <u>Musculus discors</u> is another member of the suspension feeding guild. It occupies a considerably different niche than it's congener <u>M. vernicosus</u>, and has adopted a substantially different pattern of life history. Most live in byssus nests attached to the vertical faces of rocks, or the holdfast portion of kelps. The population at Zaikof Bay contained a large proportion of adults (Figure 11), which brood tremendous numbers of eggs within the byssal nests until the juveniles are at least 0.5 mm in shell length. A length-weight regression for the winter population is presented in Figure 12. Shell debris at the base of the reef indicate that <u>Musculus</u> populations have been successful in this location during the past few years.

Some of the major predators at Zaikof Bay are listed in Table 32, and of these 6 species are sea stars, 1 is a snail and 1 a sea mammal. Other important tertiary consumers in the bay include crabs, shrimps, gastropods, sea anemones, fishes, marine mammals and sea ducks. Sea stars were the visual dominants in this trophic level. The sun star <u>Pycnopodia</u> was the numerical dominant in the 292 square meters of seafloor that was quantitatively sampled by band transects (Tables 33 and





34). Density estimates ranged between 0 and 0.90 individuals/m<sup>2</sup>; average density in all of the combined transects was 0.39/m<sup>2</sup>. <u>Pycnopodia</u> is an opportunistic predator, and was observed to prey on a wide variety of species and trophic levels such as: <u>Trichotropis</u> spp. (snail); <u>Calliostoma ligatum</u> (snail); <u>Musculus</u> spp. (mussel); <u>Saxidomus gigantea</u> (clam); <u>Cucumaria</u> spp. (sea cucumber); <u>Strongylocentrotus drobachiensis</u> (sea urchin); <u>Cistenides</u> (polychaete); <u>Heteropora</u> spp. (bryozoan); <u>Phascolosoma</u> (sipunculid), and Pugettia gracilis (crab).

The second most abundant sea star was <u>Orthasterias koehleri</u>; density estimates ranged from 0 to 0.20/m<sup>2</sup>, with an average of 0.09/m<sup>2</sup> in the band transects. Typically, it preyed on bivalve mollusks such as <u>Musculus discors</u>, <u>Humilaria kennerlyi</u> (clams) and barnacles Balanus spp.

The blood star <u>Henricia</u> spp. was the third most abundant genus in the shallow sublittoral zone. Since individuals were not identified to species, feeding type cannot be identified. However, one of the species present in this location <u>H. leviuscula</u>, is reputed to be a suspension feeder. Mode of feeding in the other species (<u>H.</u> <u>tumida</u>) is unknown. Densities of <u>Henricia</u> ranged from 0 to  $0.40/m^2$ with the average density of  $0.08/m^2$ .

Another common sea star was the multi-rayed star <u>Crossaster</u> <u>papposus</u>; estimates of density ranged from 0 to 0.20/m<sup>2</sup>, and the average density in all band transects was 0.04/m<sup>2</sup>. Individuals were seen eating serpulid worms, balanoid barnacles and a scallop <u>Chlamys</u> ? <u>rubida</u>. Most were seen either on rock substrate, or were attached to taller statured kelps in the algal understory.

Two other genera, the mottled star (Evasterias troschelli), and the genus <u>Solaster</u> are listed in Tables 33 and 34. Estimates of <u>Evasterias</u> ranged from 0 to  $0.20/m^2$ , with an average density of  $0/03/m^2$ . <u>Solaster stimpsoni</u> and <u>S. dawsoni</u> are presented under the one genus, and as such ranged from 0 to  $0.05/m^2$ . The mean density in all transects during 1975-76 was  $0.01/m^2$ .

Numerous predators and scavengers were seen in Zaikof Bay, and these included several species of fish, namely rock, whitespotted and kelp greenling, great sculpin, antlered sculpin, irish lord, rockfish, northern ronquil and flounder (Table 31). Although marine blocks and mammals were not surveyed, several species of sea duck, i.e. whitewinged scoter, barrow's goldeneye, and great scaup (Table 35), were seen feeding in the shallow waters of the bay. Scoters were seen diving for bay mussels (Mytilus edulis) during the March and June (1976) surveys.

Sea otters are common in Zaikof Bay, with some of the feeding directed at the clams <u>Humilaria</u>, <u>Saxidomus</u>, <u>Clinocardium</u>, <u>Thracia</u> and bay mussel (<u>M. edulis</u>). Shell debris was moderately abundant on the sandy slope below the boulder field.

### A LIST OF AQUATIC BIRDS AND MAMMALS OBSERVED AT THE OCS STUDY SITES DURING 1975-76

| COMMON NAME                                                                                                                                                                                                                      | WATER BIRDS<br>SCIENTIFIC NAME                                                                                                                                                                                                                                         | LOCATION                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Harlequin duck<br>White-winged scoter<br>Oldsquaw<br>Mallard duck<br>Greater scaup<br>Barrow's goldeneye<br>Cormorant<br>Black-legged kittiwake<br>Glaucous-winged gull<br>Grebe<br>Common murre<br>Murrelet<br>Pigeon guillemot | Histrionicus histrionicus<br>Melanitta deglandi<br>Clangula hyemalis<br>Anas platyrhynchos<br>Aythya marila<br>Bucephala islandica<br>Phalacrocorax sp.<br>Rissa tridactyla<br>Larus glaucescens<br>Podiceps sp.<br>Uria aalge<br>Brachyramphus sp.<br>Cepphus columba | L;Z<br>L;M;Z<br>M;Z<br>L<br>M;Z<br>L<br>L;M;Z<br>L<br>L;M;Z<br>L<br>L;M;Z<br>L |
| Black oyster catcher                                                                                                                                                                                                             | Haematopus bachmani                                                                                                                                                                                                                                                    | L;M                                                                            |

### MAMMALS

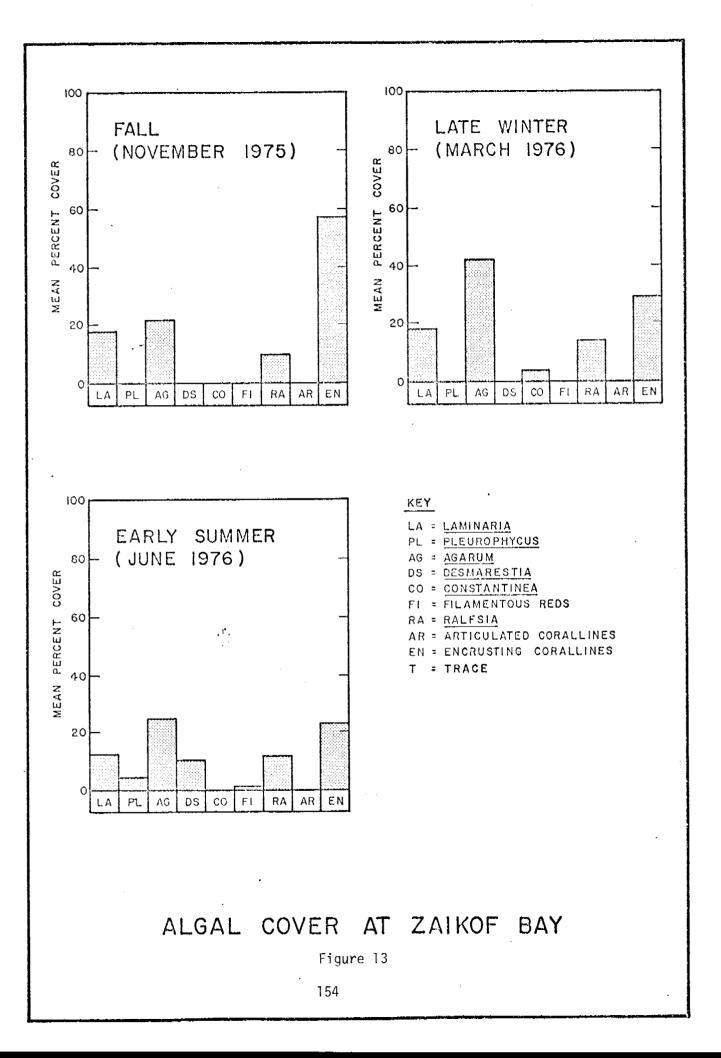
| Sea otter        | Enhydra lutris             | L;M;Z |
|------------------|----------------------------|-------|
| Land otter       | Lutra canadensis           | L     |
| Harbor seal      | Phoca vitulina             | L;M;Z |
| Steller sea lion | Eumetopias jubata          | L;M;Z |
| Harbor porpoise  | Phocoena phocoena          | L;M;Z |
| Killer whale     | Orcinus orca               | L;Z   |
| Dall porpoise    | Phocoenoides dalli         | Z     |
| Minke whale      | Balaenoptera acutorostrata | L     |

Location Symbols:

| L = Latouche Poin | t, |
|-------------------|----|
|-------------------|----|

M = Macleod Harbor

.


Z = Zaikof Bay

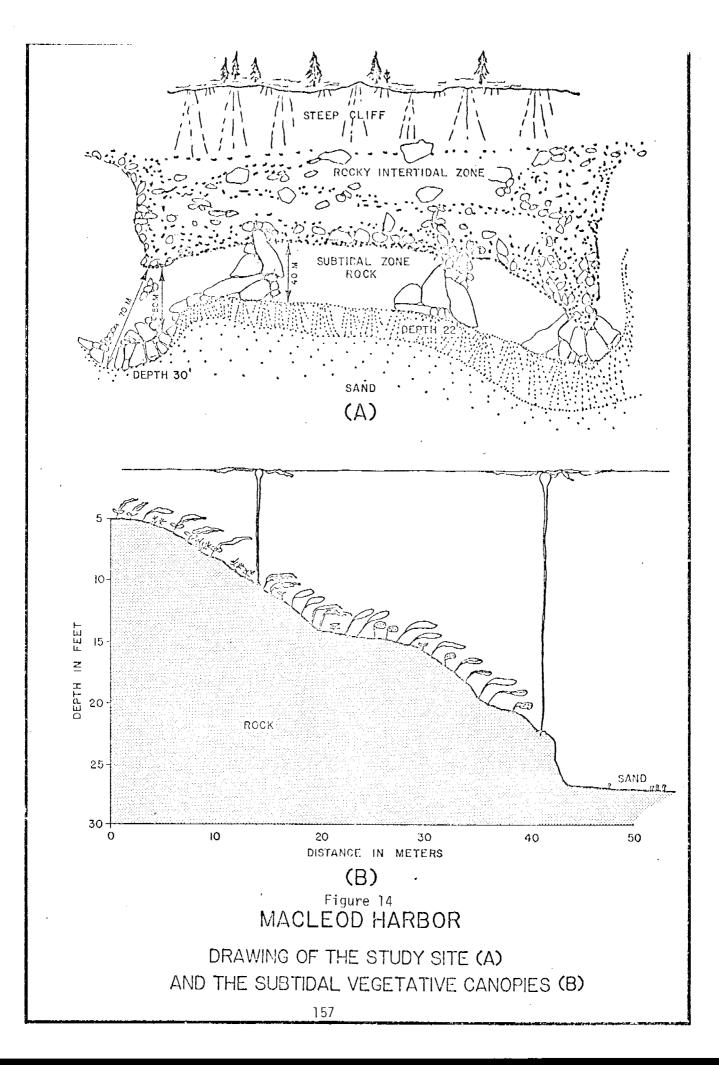
.

### SEASONAL PATTERNS

The macrophyte assemblage in the shallow waters of Zaikof Bay exhibited changes in both algal cover, and number of species present with the movement of time from July, 1975, until June, 1976. The most pronounced change was in the algal undergrowth, particularly the brown algae or phaerophytes. For example, during the November (1975) survey most of the laminarian kelps had either shed or lost most of the blade material above the meristematic growth region. Drift and/or detached pieces of plants, particularly sieve kelp (<u>Agarum</u>); elephant-ear kelp (<u>Laminaria groenlandica</u>) and leaves or turions of eelgrass (<u>Zostera</u> <u>marina</u>) were prominent on the bottom, particularly on soft substratra below the boulder field. Even leaves of terrestrial origin, such as alder were conspicuous in the shallow subtidal.

One of the seaweeds in the brown algal guild that oscillated in areal cover with the change of seasons was hair-kelp (<u>Desmarestia</u> <u>viridis</u>). <u>Desmarestia viridis</u> was rare in the study area during November, however, by late June, it occurred in 8/12 quadrats, and covered between 0 and 35 percent of the area contained in these .25m<sup>2</sup> quadrats. Average coverage for this same time period was 10 percent (Figure 13). <u>Desmasteria</u> <u>viridis</u> is reputed to be perennial alga (Champan 1974), however, it does undergo a perennation (die back) process during fall, with renewed growth during late winter and early spring. Many of the foliose (leaflike), and filamentous varieties of red algae are also highly seasonal in occurrence and physical appearance. Some of these like the filamentous




reds <u>Pterosiphonia bipinnata</u> and <u>Polysiphonia pacifica</u> are summer plants, while others such as the peltate red <u>Constantinea subulifera</u> apparently persist for a number of years provided the plant remains attached to the seafloor.

Several changes in the epifauna were also evident in this location. For instance, during 1975-76, the hydroids <u>Grammaria</u> sp. and <u>Lafoea</u> varied in abundance (coverage) in a similar fashion as the macroalgae; both hydroids covered up to 30 percent of the available surface area in the  $.25m^2$  quadrats. However, prior to the summer survey both genera were rare or absent in this location. <u>Grammaria</u> and <u>Lafoea</u> both appear to be either annuals or exhibit substantial variation in cover and relative abundance during a year's time.

### DESCRIPTION OF THE STUDY SITE (MACLEOD HARBOR)

Macleod Harbor, located on the southwest end of Montague Island (Figure 1) is generally protected from the Gulf of Alaska; however, it does receive some ocean swell and storm surf from Montague Strait. The northern shoreline from the entrance at Point Woodcock to about midway into the harbor is rocky and irregular. The head of the bay is shallow and fed by a large freshwater stream. Fresh water is a prominent feature of the upper part of the water column. The southwest coast of Montague Island was raised by as much as 30 feet during the Good Friday Earthquake of 1964 (Plafker, 1969). One effect of the quake was to separate the pre-earthquake littoral zone from the post earthquake shoreline.

At present, the shoreline is characterized by a band of solid substratum composed of boulders and cobbles (Figure 14). Steeply sloping rocky cliffs overlook the NMFS intertidal station on the northern shores of Macleod Harbor. Sitka spruce and hemlock grow above the rocky buttress. A number of exposed low profile ridges, extend from shore into the shallow subtidal zone. Between these ridges or fingers of rock are broad surge channels. The sublittoral zone in this part of Macleod Harbor is composed of a narrow band of bedrock approximately 40 to 70m wide. Seaward of the exposed bedrock, at depths ranging between 6 and 9m below the sea surface, the seafloor was comprised of sand, silt and moderate amounts of shell material. The surface of the sand was usually covered by a thin layer of benthic diatoms, and sulfur bacteria spotted numerous areas of the bottom.



### BIOLOGICAL SETTING (ALGAL ASSEMBLAGE)

A prominent feature of this location was the fringing bed of bull kelp (Nereocystis luetkeana) that occurred along the northern shoreline. During summer, the bed extended from the rocky promontory midway into the bay to approximately .25 nautical miles beyond Pt. Woodcock. Most of the bull kelp was scattered along the rocky reefs and in only a few locations was the surface canopy moderately heavy. Plants  $^{\circ}$ grew from MLLW to approximately 12 meters below the sea surface. Density estimates ranged from 0 to 0.46/m<sup>2</sup>, with an average density of 0.07/m<sup>2</sup> (Table 36).

A thin band of rockweed (<u>Fucus distichus</u>) grew on the rock substrate above MLLW. Below the <u>Fucus</u> zone around the intertidalsubtidal fringe was a narrow girdle of <u>Alaria</u> ? <u>tenuifolia</u>. The brown alga, <u>Costaria costata</u> also occurred in the shallow water. <u>Costaria</u> is an annual species, and during March (1976) juvenile sporophytes were common in this location. Along most the rocky shoreline the seaweed belt was 40 to 70 meters wide; the width was largely determined by the availability of the hard or rock substrate. The sublittoral algal association was comprised of several layers or canopy levels. <u>Laminaria</u> <u>groenlandica</u> was the most abundant brown alga in the understory complex (Tables 37-50). Density estimates ranged from 0 to 64.00/m<sup>2</sup>, the average density during March 1976 was 14.80/m<sup>2</sup> (Tables 44 to 50). Another congener, L. yezoensis was also common; densities ranged between

DENSITY ESTIMATES OF SOME DOMINANT MACROPHYTES AT MACLEOD HARBOR (estimates were derived from band transects of different lengths)

| Taxon                                      | 9-15-75                        | 9-15-75                        | 9-15-75                   | 3-13-76                       | 3-13-76                   | 3-15-76                           |
|--------------------------------------------|--------------------------------|--------------------------------|---------------------------|-------------------------------|---------------------------|-----------------------------------|
| <u>Nereocystis</u> <u>luetkeana</u>        | 0                              | 0                              | 23<br>0.46/m <sup>2</sup> | 0                             | 0                         | 0                                 |
| Laminaria spp.                             | 83<br>16.6/m <sup>2</sup>      | 71<br>14.2/m <sup>2</sup>      | Not counted               | 42<br>2.80/m <sup>2</sup>     | 31<br>3.10/m <sup>2</sup> | 36<br>5.14/m <sup>2</sup>         |
| Agarum cribrosum                           | 35<br>7.0/m <sup>2</sup>       | 13<br>2.6/m <sup>2</sup>       | Not counted               | 28<br>1.87/m <sup>2</sup>     | 30<br>3.00/m <sup>2</sup> | 12<br>1.71/m <sup>2</sup>         |
| Pleurophycus gardneri<br>J<br>G            | 5<br>1.0/m <sup>2</sup>        | 14<br>2.8/m <sup>2</sup>       | Not counted               | 0                             | 18<br>1.80/m <sup>2</sup> | 2<br>0.28/m <sup>2</sup>          |
| Area sampled:<br>Depth:<br>Substrate type: | 10 x 5m<br>7-8m<br>Rock & Kelp | l0 x 5m<br>7-8m<br>Rock & Kelp | 25 x 2m<br>5m<br>Rock     | 15 x lm<br>10m<br>Rock & Sand | l0 x lm<br>4.5m<br>Rock   | 7 x lm<br>7.5-8.5m<br>Rock & Sand |

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

| Taxon                                          | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> | No. 6 | <u>No. 7</u> | <u>No. 8</u> | <u>No. 9</u> | <u>No. 10</u> | <u>No. 11</u> | No. 12 | No. 13 |
|------------------------------------------------|--------------|--------------|--------------|--------------|--------------|-------|--------------|--------------|--------------|---------------|---------------|--------|--------|
| Laminaria spp.                                 | (3)          | (2)          | (3)          | (3)          | (1)          | (9)   |              | (13)         | (7)          | (6)           | (3)           | (1)    | (1)    |
| Agarum cribrosum                               | (2)          |              |              |              | (1)          |       |              |              |              |               | (1)           | (1)    | (1)    |
| <u>Constantinea</u><br>Opuntiella              |              |              |              |              |              | Р     |              |              |              |               |               |        |        |
| Encrusting coralline                           |              |              | 15.          |              |              | Р     | Р            | 10%          |              |               |               |        |        |
| Microporina                                    | 45%          | 20%          | 15%          | 5.           |              | 30%   | 80%          | 80%          | 50%          |               |               |        |        |
| Dendrobeania                                   | 4-378<br>578 | 2016         |              | 5%           | 2%<br>2%     |       | 60%          | 25%          | -            | 15%           | 10%           | 15%    | 30%    |
| Tricellaria                                    | 58           |              |              |              | 23           |       | 2%           |              | 2%           |               |               | 2%     |        |
| Heteropora                                     |              |              |              |              |              |       | 216<br>5%s   |              |              |               |               |        |        |
| Didemnum/Trididemnum                           | 2%           |              |              |              |              | 5%    | 5%.          |              |              |               |               |        |        |
| Hippodiplosia                                  |              |              |              | Р            |              |       | 20           |              |              |               |               |        |        |
| Halocynthia aurantium                          |              |              |              |              |              |       |              |              |              |               |               | (2)    |        |
| Musculus                                       |              |              |              |              |              |       |              |              | Р            |               |               | (-)    |        |
| Pycnopodia                                     |              |              | (1)          | (1)          | (1)          |       |              |              |              | (1)           |               |        |        |
| <u>Dermasterias</u><br>Thais lamello <b>sa</b> |              |              |              |              |              |       | (1)          |              |              |               |               |        |        |
| Tonicella                                      |              |              |              |              |              | (1)   |              |              |              |               |               |        |        |
| Halocynthia igaboja                            |              |              |              |              |              | (1)   |              |              |              |               |               |        |        |
| Trophonopsis                                   |              |              | (1)          |              |              | (1)   |              |              |              |               |               |        |        |
|                                                |              |              | (1)          |              |              | •     |              |              |              |               |               |        |        |
|                                                |              |              |              |              |              |       |              |              |              |               |               |        |        |
|                                                |              |              |              |              |              |       |              |              |              |               |               |        |        |
| Depth (meters)                                 | 9.0          | 9.0          | 9.0          | 9.0          | 10.0         | 5.0   | 3.0          | 3.0          | 5.0          | 10.0          | 10.0          | 10.0   | 13.0   |
| Substrate type:                                | Rock &       | Rock  | Rock         | Rock         | Rock &       | Rock &        | Rock &        | Rock & | Rock & |
|                                                | sand         | sand         | sand         | sand         | sanđ         |       |              |              | sand         | sand          | sand          | sand   | sand   |

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

|                       | Percent Cover | (number of individ | uals)          |
|-----------------------|---------------|--------------------|----------------|
| Taxon                 | <u>No. 1</u>  | <u>No. 2</u>       | <u>No. 3</u>   |
| Agarum                | 50%           | 15%(1)             | 25%( <b>3)</b> |
| Laminaria spp.        | 0             | 10%(2)             | 50%(3)         |
| <u>Alaria</u> sp.     | 0             | 10%                | 0              |
| Encrusting coralline  | 70%           | 50%                | 40%            |
| <u>Hildenbrandia</u>  | 20%           | 30%                | 20%            |
| Didemnum/Trididemnum  | 3%            | 5%                 | 2%             |
| Yellow spatter sponge | 15%           | 5%                 | 5%             |
| <u>Sertularella</u>   | 1%            | 0                  | 28             |
| ? Scrupocellaria      | 1%            | 0                  | Present        |
| Microporina           | 50%           | 50%                | 30%            |
| ? Rhynchozoon         | 5%            | 18                 | 2%             |
| Musculus discors      | (1)           | (1)                | 0              |
| Tonicella             | (3)           | (1)                | (1)            |
| Serpulidae            | (1)           | 0                  | 0              |
| Trichotropis          | (3)           | (1)                | (1)            |
| Metandrocarpa         | 0             | Present            | 0              |
| Synoicum              | Present       | 0                  | Present        |
| <u>Crepipatella</u>   | (1)           | (1)                | (1)            |

Depth (meters):10.0Substrate type:Rock pavementLocation:Rock projection off NMFS station

## QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

|                            | Percent Cover (numbe | r of individuals) |
|----------------------------|----------------------|-------------------|
| Taxon                      | <u>No. 1</u>         | <u>No. 2</u>      |
| Laminaria groenlandica     | 90%(3)(1)*           | 100% (13) (4)     |
| Laminaria yezoensis        | (2 holdfasts)        | 5%(2)             |
| Agarum                     | 0                    | 10%(1)            |
| Corallina                  | 2%(1)                | 0                 |
| Encrusting coralline       | 80%                  | 80%               |
| Foliose reds, unid.        | 2%                   | 0                 |
| Musculus vernicosus        | 1%                   | 0                 |
| Tonicella                  | (3)                  | 0                 |
| Acmaea mitra               | (3)                  | (2)               |
| <u>Dendrobeania</u>        | ) 0                  | 3%                |
| <u>Sertularella</u>        | 0                    | 38                |
| Microporina                | 15%                  | 15%               |
| Pycnopodia                 | (1)                  | (2)               |
| Pagurids                   | 0                    | (5)               |
| Cryptobranchia concentrica | 0                    | (5)               |
| Synoicum                   | 0                    | 1%                |
| ? Rhynchozoon sp.          | 1%                   | 3%                |
| Crepipatella lingulata     | 6%                   | 5%                |
| Yellow spatter sponge      | 1%                   | 1%                |

| Depth (meters): | 6.0- <b>7.0</b>        |
|-----------------|------------------------|
| Substrate type: | Rock and boulders      |
| Location:       | 200m S.E. NMFS station |

\* Plants undergoing blade renewal

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

|                        | Percent (    | Cover (number | of individual  | ls)          |
|------------------------|--------------|---------------|----------------|--------------|
| Taxon                  | <u>No. 1</u> | <u>No. 2</u>  | <u>No. 3</u>   | <u>No. 4</u> |
| Laminaria groenlandica | 4% (25)      | 15%           | 50%(6)         | 90%(3)       |
| Laminaria yezoensis    | 5% (25)      | 15%(5)        | 10% <b>(3)</b> | 0            |
| Laminaria spp.         | 4% (25)      | 0             | 0              | 0            |
| Cymathere triplicata   | 0            | 30% (7)       | 0              | 0            |
| Desmarestia viridis    | 0            | 20%           | 0              | 0            |
| <u>Ptilota</u>         | 0            | 0             | 0              | 5%(1)        |
| Opuntiella californica | 0            | 0             | 0              | 5%(1)        |
| Constantinea           | 0            | 1%(1)         | 2%(3)          | 0            |
| Hildenbrandia sp.      | 1%           | 0             | 0              | 0            |
| Bossiella              | 0            | 0             | 0              | 2%           |
| Corallina              | 0            | 0             | 5%             | 2%           |
| Foliose reds, unid.    | 1%           | 1%            | 2%             | 5%           |
| Ralfsia                | 0            | 0             | 0              | 0            |
| Encrusting coralline   | 70%          | 5%            | 40%            | 20%          |
| Musculus vernicosus    | 25%          | 20%           | 40%            | 10%          |
| Tonicella              | (3)          | 0             | 0              | 0            |
| Acmaea mitra           | (4)          | 0             | 0              | 0            |
| Dendrobeania           | 1%           | 0             | 1%             | 1%           |
| <u>Sertularella</u>    | 1%           | 0             | 0              | 0            |
| <u>Plumularia</u> sp.  | 18           | 0             | 0              | 0            |
| Microporina borealis   | 0            | 0             | 5%             | 15%          |

### TABLE 40 (Cont.)

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

|                                     | Percent (    | Cover (number | of individual | ls)          |
|-------------------------------------|--------------|---------------|---------------|--------------|
| Taxon                               | <u>No. 1</u> | <u>No. 2</u>  | <u>No. 3</u>  | <u>No. 4</u> |
| Serpulidae                          | 10%          | 0             | 0             | 0            |
| Orange encrusting sponge            | 1%           | 0             | 2%            | 0            |
| Yellow spatter sponge               | 0            | 0             | 5%            | 2%           |
| <u>Tricellaria</u> sp.              | 0            | 0             | 0             | 2%           |
| Pycnopodia                          | (1)          | 0             | (1)           | 0            |
| Didemnum/Trididemnum                | 0            | 0             | 0             | 1%           |
| ? <u>Ritterella</u>                 | 0            | 0             | 0             | 1%(1)        |
| Distaplia sp.                       | 0            | 0             | 0             | 2%(1)        |
| Pagurids                            | 0            | 0             | 0             | 0            |
| <u>Balanus</u> ? <u>alaskiensis</u> | 0            | 0             | 0             | (1)          |
| Sand                                | 25%          | 50%           | 0             | 25%          |

Depth (meters):5.0Substrate type:Rock outcropLocation:200m S.E. NMFS station

\* Plants undergoing blade renewal

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 29, 1975

|                         | Percent Cover (numbe | r of individuals) |
|-------------------------|----------------------|-------------------|
| Taxon                   | <u>No. 1</u>         | <u>No. 2</u>      |
| Laminaria groenlandica  | 40% (4)              | 20%(4)            |
| Laminaria yezoensis     | 20% (5)              | 20% (5)           |
| Cymathere triplicata    | 5%(2)                | 0                 |
| Constantinea            | 2%(3)                | 0                 |
| Corallina               | 5%(2)                | 0                 |
| Foliose reds, unid.     | 10%                  | 1%                |
| Ralfsia spp.            | 18                   | 0                 |
| Encrusting coralline    | 20%                  | 10%               |
| Musculus vernicosus     | 20%                  | 25%               |
| Tonicella               | 0                    | (1)               |
| Dendrobeania            | 1%                   | 0                 |
| Microporina borealis    | 5%                   | 1%                |
| Yellow spatter sponge   | 5%                   | 0                 |
| Pycnopodia              | (1)                  | 0                 |
| Pagurids                | (3)                  | 0                 |
| <u>Distap<b>lia</b></u> | 0                    | 0                 |
| White colonial ascidian | 1%(1)                | 0                 |

| Depth (meters): | 5.0                    |
|-----------------|------------------------|
| Substrate type: | Rock outcrop           |
| Location:       | 200m S.E. NMFS station |

| TABLE 4 | 3 |
|---------|---|
|---------|---|

QUADRAT DAJA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 30, 1975

.

| Taxon                                                            | <u>No. 1</u>           | <u>No. 2</u>           | <u>No. 3</u>           | <u>No. 4</u>           | <u>No. 5</u>           | <u>No. 6</u>          | <u>No. 7</u> | <u>No. 8</u> | <u>No. 9</u> | <u>No. 10</u> |
|------------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-----------------------|--------------|--------------|--------------|---------------|
| Laminaria groenlandica<br>Laminaria yezoensis                    | (1)                    | (4)<br>(1)             | (2)                    | (2)                    | (2)                    | (2)                   |              | (1)          |              | (1)<br>(2)    |
| Laminaria spp.<br>Agarum cribrosum<br>Ralfsia spp.<br>Opuntiella |                        | (1)                    | (1)                    |                        |                        | (4)<br>P<br>P         | <u>(4)</u>   | (1)          |              | (2)<br>2%     |
| Constantinea<br>Hildenbrandia<br>Microporina                     | 5%                     | 25%                    | 30%                    | 10%                    |                        | 5%<br>60%             | 50%          | 15%          | 15%<br>20%   |               |
| <u>Tricellaria</u><br>Abietinaria<br>Heteropora                  |                        | 2%                     |                        |                        |                        |                       |              |              | 2%           | 20%<br>2%     |
| Encrusting c <b>oralline</b><br><u>Dendrobeania</u><br>Distaplia |                        | 25%                    | 20%                    |                        | 10%                    | 85%                   | 75%          | 60%          | 30%          | 60%           |
| ? <u>Ritterella</u><br><u>Pycnopodia</u><br><u>Tonicella</u>     |                        |                        | 2%                     |                        |                        |                       |              |              |              | (1)           |
| Dermasterias<br>Amphissa<br>Calliostoma<br>? Lichenop <b>ora</b> |                        |                        |                        |                        |                        | 2%                    |              | (1)          |              |               |
| Evasterias<br>Henricía<br>Algal debris                           | 50%                    |                        | 5%                     | 5%                     | 15%                    | (1)                   | (1)          |              |              |               |
| Acmaea mitra                                                     |                        |                        |                        |                        |                        |                       |              |              |              |               |
| Depth (meters):<br>Substrate type:                               | 11.0<br>Rock &<br>sand | ll.0<br>Rock &<br>sand | ll.0<br>Rock &<br>sand | 11.0<br>Rock &<br>sand | ll.0<br>Rock &<br>sand | 7.0<br>Rock &<br>sand | 7.0<br>Rock  | 7.5<br>Rock  | 7.5<br>Rock  | 7.5<br>Rock   |

QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL NOVEMBER 30, 1975

| Taxon                                                | <u>No. 11</u> | <u>No. 12</u>       | <u>No. 13</u> | <u>No. 14</u> | <u>No. 15</u> | <u>No. 16</u> | No. 17 | <u>No. 18</u> | <u>No. 19</u> | No. 20 |
|------------------------------------------------------|---------------|---------------------|---------------|---------------|---------------|---------------|--------|---------------|---------------|--------|
| <u>Laminaria groenlandica</u><br>Laminaria yezoensis | (2)           | (1)                 | (1)<br>(1)    | (3)           | (2)           | (5)           | (3)    |               | (8)           | (5)    |
| Laminaria spp.                                       | (3)           | (3)                 | (1)           | (2)           | (8)           | (6)           | (13)   | (1)           | (7)           | (19)   |
| Agarum cribrosum                                     | (3)           | <b>1</b> - <b>7</b> | (2)           | (1)           | • •           |               | . ,    |               | • •           | • •    |
| Ralfsia spp.                                         |               |                     |               |               |               |               |        |               |               |        |
| Opuntiella                                           | 10%           |                     | P             | Р             |               | P             | P      | P             |               | Р      |
| Constantinea                                         |               | -                   | _             | Р             | _             |               |        |               |               |        |
| Hildenbrandia                                        |               | 20%                 | 10%           | 20%           | 5%            |               | 10%    | 10%           | 15%           | 10%    |
| Microporina                                          | 20%           | 60%                 | 25%           | 25%           | 30%           | 20%           | 20%    | 20%           | 5%            | 10%    |
| <u>Tricellaria</u>                                   |               |                     |               |               | 5%            |               |        |               | . 5%          |        |
| Abietinaria                                          |               |                     |               |               |               |               |        |               |               | 10%    |
| Heteropora ·                                         | 5%            |                     |               |               |               |               | _      |               |               |        |
| Encrusting coralline                                 | 70%           | 80%                 | 70%           | 60%           | 70%           | 70ቄ           | 60%    | 70%           | 60%           | 70%    |
| <u>Dendrobeania</u>                                  |               | 5%                  |               |               |               |               |        |               |               | 5%     |
| <u>Distaplia</u> sp.                                 |               |                     | 5%            |               |               |               |        | _             |               |        |
| ? <u>Ritterella</u>                                  |               |                     |               |               | 2%            |               |        | 2*            |               |        |
| Pycnopodia                                           |               |                     |               |               |               |               |        | (1)           |               |        |
| Tonicella                                            |               |                     |               |               |               |               |        |               |               | (1)    |
| Dermasterias                                         |               |                     |               |               |               | (1)           |        |               |               |        |
| Amphissa                                             |               |                     |               |               | (3)           |               |        |               |               |        |
| Calliostoma                                          |               |                     | (1)           | (2)           |               |               |        |               |               |        |
| Evasterias                                           |               |                     |               |               |               |               |        |               |               | ,      |
| Henricia                                             |               |                     |               |               |               |               | (1)    |               |               |        |
| Algal debris                                         |               |                     |               |               |               |               |        |               |               |        |
| Acmaea mitra                                         |               |                     |               |               |               |               | (1)    |               |               |        |
|                                                      |               |                     |               |               |               |               |        |               |               |        |
| Depth (meters):                                      | 6.0           | 6.0                 | 6.0           | 6.0           | 5.0           | 5.0           | 5.0    | 5.0           | 3.5           | 3.5    |
| Substrate type:                                      | Rock          | Rock                | Rock          | Rock          | Rock          | Eock          | Rock   | Rock          | Rock          | Rock   |

### QUADRAT DATA $(0.25m^2)$ FROM MACLEOD HARBOR, SUBTIDAL MARCH 13, 1976

|                        | Perce        | nt Cover (nu | mber of i    | ndividual    | <u>s)</u>    |
|------------------------|--------------|--------------|--------------|--------------|--------------|
| Taxon                  | <u>No. 1</u> | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> |
| Laminaria groenlandica | 40% (13)     | 50% (16)     | 90%(6)       | 40%(12)      | 60%(7)       |
| Agarum                 | (1)          | (1)          | 0            | 25%(2)       | 0            |
| Encrusting coralline   | 60%          | 70%          | 70%          | 60%          | 60%          |
| <u>Corallina</u>       | 0            | 0            | 0            | 10%          | 0            |
| Bossiella              | 0            | 15%          | 0            | 0            | 10%          |
| Hildenbrandia          | Present      | Present      | 30%          | 20%          | 0            |
| <u>Opuntiella</u>      | 0            | (2)          | 0            | 0            | 0            |
| Microp <b>orina</b>    | 0            | 15%          | 0            | 1%           | 0            |
| <u>Distaplia</u>       | 0            | 5%           | 0            | 0            | 0            |
| Serpulidae             | (2)          | 0            | 0            | 0            | 0            |
| Tonicella              | Ó            | (1)          | 0            | 0            | 0            |
| Musculus vernicosus    | Present      | Present      | Present      | Present      | Present      |
| Pagurids               | 0            | (2)          | 0            | 0            | 0            |

Depth (meters): 3.0-5.0 Substrate type: Survey of Survey channel with rock bedrock

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 14, 1976

| Taxon                                                | <u>No. 1</u>   | <u>No. 2</u> | <u>No. 3</u> | <u>No. 4</u> | <u>No. 5</u> | No. 6 | <u>No. 7</u> | <u>No. 8</u> | <u>No. 9</u> | No. 10         | <u>No. 11</u> |
|------------------------------------------------------|----------------|--------------|--------------|--------------|--------------|-------|--------------|--------------|--------------|----------------|---------------|
| <u>Laminaria</u> groenlandica<br>Laminaria yezoensis |                | (1)          | (2)<br>(2)   | (4)          | (3)          | (5)   |              | (5)          | (3)          | (3)<br>(11)    | (4)<br>(1)    |
| Laminaria spp. (juv.)                                | (14)           | (2)          | (5)          | (8)          | (3)          |       |              |              | (10)         | (4)            | (4)           |
| - Agarum cribrosum                                   | (1)            | (4)          | (8)          | (2)          | (5)          | (1)   |              |              | ,,           |                | (1)           |
| 9 Pleurophycus gardneri                              | (1)            |              | (2)          |              | (3)          |       |              |              | (2)          |                |               |
| Ralfsia spp.                                         |                |              | 5%           |              |              | 5%    |              |              | . ,          |                |               |
| Costaria costata                                     |                |              |              |              |              |       |              |              | (3)          |                |               |
|                                                      |                |              |              |              |              |       |              |              | juv.         |                |               |
| Nereocystis luetkeana                                |                |              |              |              |              |       |              |              | -            |                |               |
| Opuntiella                                           |                | 10%          | 2%           |              | 10%          | 10%   |              |              |              |                |               |
| Rhodymenia spp.                                      |                |              |              |              |              | 5%    |              |              |              | 25             |               |
| Delesseria                                           |                | 2%           |              |              | 5%           | 15%   | 15%          | 10%          | 5%           |                |               |
| <u>Callophyllis</u>                                  |                |              | 2%           |              | 10%          |       |              |              |              |                |               |
| <u>Hildenbrandia</u>                                 | 10%            | 20%          | 15%          |              |              | 10%   |              |              |              |                |               |
| Microeladia                                          | 2%             |              |              |              |              |       |              |              |              |                |               |
| Encrusting coralline                                 | 60%            | 80%          | 80%          | 80%          | 85%          | 70%   |              | 75%          | 70%          | 10             | 15%           |
| Articulated coralline                                | 5%             | 2%           |              | 15%          | 10%          | 5%    |              | 10%          |              | 10%            |               |
| Constantinea                                         | 2%             |              |              |              |              |       |              |              | 5%           |                |               |
| <u>Tonicella</u>                                     | (1)            | (1)          | (2)          |              | (1)          |       |              |              |              | (1)            |               |
| <u>Acmaea mitra</u>                                  |                |              |              |              | (1)          | (1)   |              |              |              |                |               |
| Pycnopodia                                           | (1)            |              | (1)          |              |              |       |              |              |              |                |               |
| Musculus                                             |                | Р            | Р            | Р            | P            | P     |              |              | P            | Р              | Р             |
|                                                      |                |              |              |              |              |       |              |              |              |                |               |
| Depth (meters):                                      | 8.0            | 8.0          | 6.0          | 6.0          | .50          | 5.0   | 3.0          | 3.0          | 4.0          | 7.0            | 7.0           |
| Substrate type:                                      | Rock &<br>sand | Rock         | Rock         | Rock         | Rock         | Rock  | Rock         | Rock         | Rock         | Rock &<br>sand | Rock & sand   |

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 14, 1976

| Taxon                                                                 | No. 12      | No. 13      | No. 14             | No. 15                | No. 16      | <u>No. 17</u> | <u>No. 18</u> | No. 19      | No. 20                | <u>No. 21</u>         | <u>No. 22</u>         |
|-----------------------------------------------------------------------|-------------|-------------|--------------------|-----------------------|-------------|---------------|---------------|-------------|-----------------------|-----------------------|-----------------------|
| Laminaria groenlandica                                                | (1)         | (2)         | (1)                | (6)                   | (15)        | (5)           | (8)           | (2)         | (1)<br>(1)            | (2)                   | (3)<br>(1)            |
| Laminaria yezoensis<br>Laminaria spp. (juv.)<br>Agarum cribrosum      | (8)<br>(2)  | (1)<br>(8)  | (5)<br>(10)<br>(2) | (10)<br>(1)           | (6)<br>(20) | (10)          | (10)          | (9)         | (25)                  | (4)<br>(2)            | (12)                  |
| O <u>Pleurophycus</u> gardneri<br><u>Ralfsia</u> spp.                 |             |             | 5%                 | 2%                    |             |               |               |             |                       |                       |                       |
| <u>Costaria costata</u><br><u>Nereocystis luetkeana</u><br>Opuntiella | 5%          |             | 2%                 | 5%                    |             | 5%            | 15%           | 10%         |                       | 2%<br>5%              | (3)<br>2%             |
| Rhodymenia spp.<br>Delesseria                                         | 5%          | 2%<br>2%    | 2%                 |                       | 2%          | 2%<br>5%      |               | 5%          |                       |                       |                       |
| <u>Callophyllis</u><br><u>Hildenbrandia</u><br>Microcladia            |             |             | 5%                 | 2%<br>2%              | 10%         | 50%           | 20%           | 10%         |                       |                       |                       |
| Encrusting coralline<br>Articulated coralline                         | 80%<br>5%   | 50%         | 80%                |                       | 50%         | 60%<br>10%    |               | 65%         | 15%                   | 20%                   | 30%                   |
| <u>Constantinea</u><br>Tonicella                                      | (1)         | 2%          |                    |                       |             |               |               |             |                       |                       |                       |
| Acmaea mitra<br>Pycnopodia                                            | (1)         |             | (1)                |                       | P           |               |               | (1)<br>P    | P                     | (1)<br>P              | Р                     |
| Musculus                                                              | Р           | P           | Р                  | р                     | р           |               |               | L           | -                     |                       |                       |
| Depth (mete <b>rs):</b><br>Substrate type:                            | 7.0<br>Rock | 7.0<br>Rock | 6.0<br>Rock        | 6.0<br>Rock &<br>sand | 6.0<br>Rock | 5.0<br>Rock   | 4.0<br>Rock   | 6.0<br>Rock | 5.0<br>Rock &<br>sand | 5.0<br>Rock &<br>sand | 6.0<br>Rock &<br>sand |

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 14, 1976

|                                  | Percent Cover | (number of individ | uals)   |
|----------------------------------|---------------|--------------------|---------|
| Taxon                            | <u>No. 1</u>  | <u>No. 2</u>       | No. 3   |
| Laminaria spp.                   | 5%(1)         | 60%(5)             | 80%(14) |
| <u>Costaria</u> (juveniles)      | 2%(3)         | 5%(3)              | 0       |
| <u>Alaria</u> ? <u>marginata</u> | 80%(1)        | 0                  | 0       |
| Constantinea                     | 10%(6)        | 2%(1)              | 0       |
| Rhodymenia                       | 20%           | 5%                 | 2%      |
| Corallina                        | 20%           | 18                 | 0       |
| Bossiella                        | 20%           | 0                  | 0       |
| Encrusting coralline             | 30%           | 40%                | 60%     |
| Membranoptera spp.               | 0             | 0                  | 0       |
| Phycodrys sp.                    | 0             | 5%                 | 10%     |
| Distaplia                        | 0             | 18                 | 0       |
| Yellow sponge                    | 0             | 1%                 | 0       |
| Orange encrusting sponge         | 0             | 0                  | 2%      |
| Dendrobeania                     | 0             | 0                  | 1%      |
| Diatom film                      | 0             | 50%                | 50%     |
| Musculus spp.                    | Present       | Present            | Present |
| Tonicella                        | 0             | (2)                | 0       |

| Depth (meters): | 3.0-5.0           |
|-----------------|-------------------|
| Substrate type: | Rock              |
| Location:       | Off NMFS transect |

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 14, 1976

|                                  | Percent Cover (number of individuals) |              |                |
|----------------------------------|---------------------------------------|--------------|----------------|
| Taxon                            | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u>   |
| Laminaria spp.                   | 0                                     | 25%(4)       | 50%( <b>3)</b> |
| <u>Costaria</u> (juveniles)      | 5%(1)                                 | 5%(1)        | 0              |
| <u>Alaria</u> ? <u>Marginata</u> | 50%(3)                                | 60%(1)       | 10%            |
| Constantinea                     | 0                                     | 15%(3)       | 0              |
| Rhodymenia                       | 15%                                   | 5%           | 15%            |
| Corallina                        | 1%                                    | 40%          | 0              |
| Bossiella                        | 0                                     | 40%          | 2%             |
| Encrusting coralline             | 80%                                   | 30%          | 60%            |
| Membranoptera sp.                | 0                                     | 60%          | 0              |
| Phycodrys sp.                    | 10%                                   | 0            | 10%            |
| Thais canaliculata               | 0                                     | (1)          | (4)            |
| Distaplia                        | 0                                     | 1%           | 1%             |
| Yellow sponge                    | 0                                     | 0            | 2%             |
| Serpulidae                       | 0                                     | 0            | (1)            |
| Pagurids                         | 0                                     | 0            | (5)            |
| Orange encrusting sponge         | 1%                                    | 0            | 0              |
| Dendrobeania                     | 0                                     | 0            | 0              |
| Diatom film                      | 25%                                   | 0            | 25%            |
| Musculus vernicosus              | Present .                             | Present      | Present        |
| Tonicella                        | 0                                     | 0            | (3)            |

Depth (meters): 3.5-5.0 Substrate type: Rock pavement

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 15, 1976

| Percent Cover (number of individuals) |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No. 1                                 | <u>No. 2</u>                                                                              | <u>No. 3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (5)                                   | (2)                                                                                       | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 50% (6) **                            | 25%(3)**                                                                                  | 25%(1)**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5%                                    | 0                                                                                         | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                     | 18                                                                                        | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 60%                                   | 30%                                                                                       | 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8%                                    | 18                                                                                        | 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8%                                    | 0                                                                                         | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                     | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                     | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                     | 2%                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1%                                    | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7%                                    | 0                                                                                         | 1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0                                     | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (1)                                   | 0                                                                                         | (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                     | (1)                                                                                       | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (6)                                   | (4)                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Present                               | Present                                                                                   | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                     | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (2)                                   | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                     | (1)                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Present                               | 0                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       | <pre>No. 1 (5) 50%(6)** 5% 0 60% 8% 8% 8% 0 0 1% 7% 0 (1) 0 (1) 0 (6) Present 0 (2)</pre> | No. 1         No. 2           (5)         (2)           50%(6)**         25%(3)**           5%         0           0         1%           60%         30%           8%         1%           8%         0           0         0           0         0           0         0           0         0           0         2%           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0           1%         0      1%         0 |

### TABLE 49 (Cont.)

### QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 15, 1976

|                | Percent Cover (number of individuals) |              |              |  |
|----------------|---------------------------------------|--------------|--------------|--|
| Taxon          | <u>No. 1</u>                          | <u>No. 2</u> | <u>No. 3</u> |  |
| Cryptobranchia | 0                                     | Present      | Present      |  |
| Puncturella    | (1)                                   | 0            | 0            |  |
| Pycnopodia     | 0                                     | 0            | (1)          |  |

Depth (meters): 6.0-8.0 Substrate type: Rock

\*\* Total Laminaria cover in the quadrat

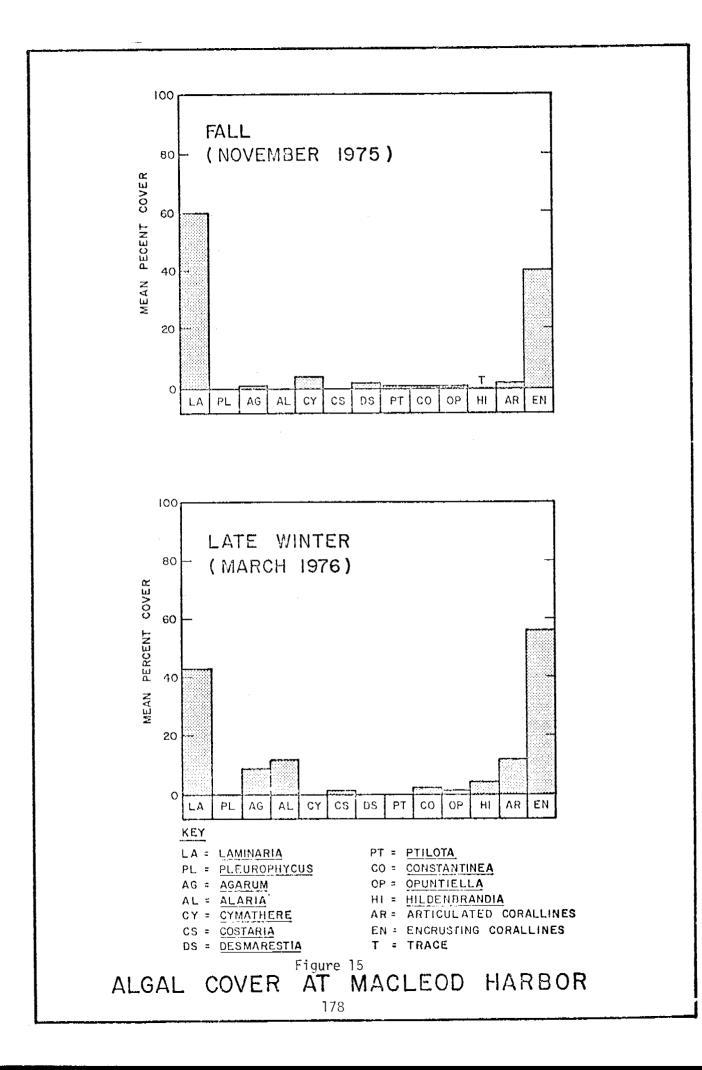
# TABLE 50

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 15, 1976

|                        | Percent Cover (number of individuals) |              |          |  |
|------------------------|---------------------------------------|--------------|----------|--|
| Taxon                  | <u>No. 1</u>                          | <u>No. 2</u> | No. 3    |  |
| Laminaria yezoensis    | 0                                     | (1)          | 0        |  |
| Laminaria groenlandica | 10%(3)**                              | 60%(6)**     | 75%(8)** |  |
| Agarum                 | 60%(5)                                | 15%          | 15%      |  |
| Rhodymenia             | 18                                    | .0           | 28       |  |
| Encrusting coralline   | 75%                                   | 60%          | 50%      |  |
| Corallina              | 3%                                    | 1%           | 28       |  |
| Bossiella              | 8%                                    | 3%           | 38       |  |
| Delesseria             | 0                                     | 5%(1)        | 15       |  |
| <u>Opuntiella</u>      | 0                                     | 5%           | 10%      |  |
| Hildenbrandia          | 0                                     | 10%          | 18       |  |
| Ralfsia spp.           | 0                                     | 10%          | 0        |  |
| Distaplia              | 3%                                    | 38           | 15%      |  |
| Microporina            | 0                                     | 18           | 0        |  |
| <u>Tonicella</u>       | 0                                     | (2)          | 0        |  |
| Metandrocarpa          | 0                                     | 5%           | 0        |  |
| Pagurids               | (2)                                   | (10)         | (5)      |  |
| Musculus               | Present                               | Present      | Present  |  |
| Dendrobeania           | 1%                                    | 18           | 2%       |  |
| Serpulida <b>e</b>     | (1)                                   | 0            | 0        |  |
| Acmaea mitra           | 0                                     | (2)          | (1)      |  |
| Crepipatella           | Present                               | 0            | 0        |  |

## TABLE 50 (Cont.)

# QUADRAT DATA (0.25m<sup>2</sup>) FROM MACLEOD HARBOR, SUBTIDAL MARCH 15, 1976


|                | Percent Cover ( | r (number of individuals) |              |  |  |  |
|----------------|-----------------|---------------------------|--------------|--|--|--|
| Taxon          | <u>No. 1</u>    | <u>No. 2</u>              | <u>No. 3</u> |  |  |  |
| Cryptobranchia | 0               | Present                   | Present      |  |  |  |
| Lichenopora    | 0               | 1%                        | 0            |  |  |  |
| Puncturella    | 0               | 0                         | (1)          |  |  |  |

Depth (meters): 6.0 Substrate type: Rock Location: Off NMFS transect

\*\* Total Laminaria cover in quadrat

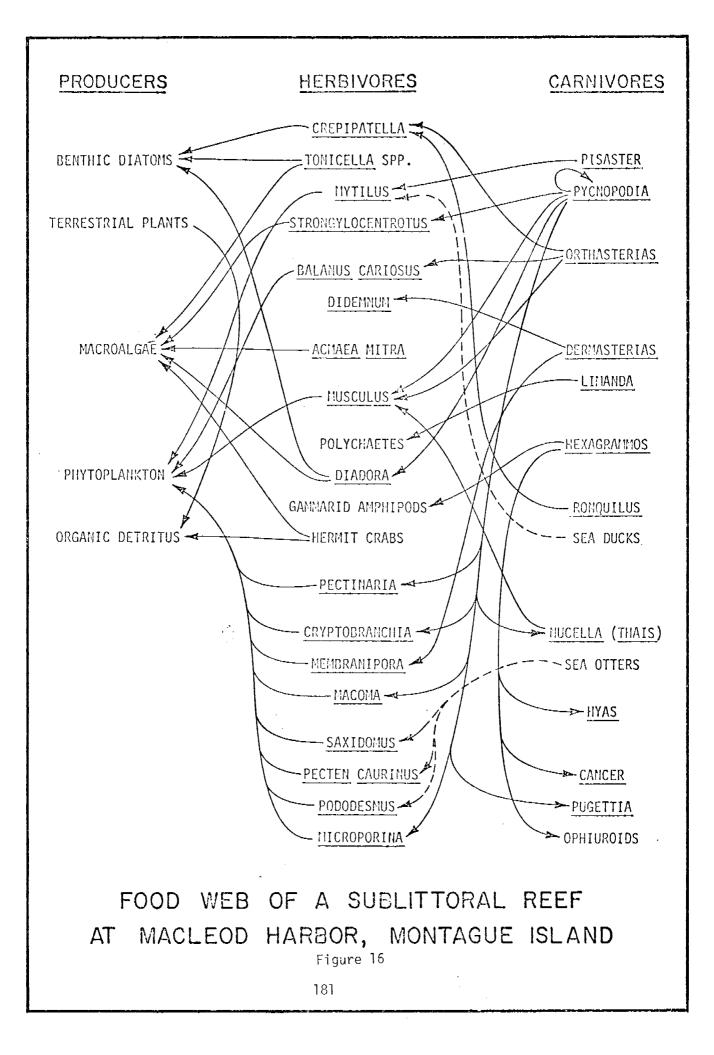
O to  $44.00/m^2$  and averaged  $4.97/m^2$  during this same sample period. Another conspicuous species in this assemblage was sieve kelp (Agarum), the average density in 37 quadrats ( $0.25m^2$ ) during March 1976 was  $3.68/m^2$ . These estimates are in good agreement with the average estimate of  $3.24/m^2$  that was obtained from the band transects (Table 36). <u>Pleurophycus gardneri</u> was an important member of this brown algal understory; density estimates ranged from 0 to  $2.80/m^2$  in the band transects, the average density in all of the transects was  $1.05/m^2$ . Density estimates from the  $0.25m^2$  quadrats averaged  $0.86/m^2$ .

The other conspicuous brown algae in this location were <u>Cymathere triplicata</u> and <u>Desmarestia viridis</u>. Both species were somewhat ephemeral in occurrence, and were uncommon except during the summer and fall seasons of the year (Figure 15). Below the kelp canopies were the fleshy, erect reds such as <u>Opuntiella californica</u>, <u>Callophyllis</u> spp., <u>Membranoptera spp.</u>, <u>Rhodymenia palmata</u> and <u>R. pertusa</u>, <u>Constantinea</u> and <u>Ptilota filicina</u>. The final vegetative layer in Macleod Harbor included the rock encrusting forms: <u>Corallina spp.</u>, <u>Lithothamnium</u> spp., <u>Ralfsia spp.</u>, and <u>Hildenbrandia</u> sp.



# EPIFAUNA AND TROPHIC INTERACTION

The major rock habitats examined in Macleod Harbor were the (1) rock fingers which extended from shore, (2) surge channels between the rock-like appendages, and the (3) rock/sand interface at the base of the shoreline. The fingers are deeply fissured, with numerous overhanding ledges and shelves. Many large blocks and boulders were located around the base of the steeply sloped platform. Typically, the larger boulders were interspersed with sandy channels and patches of gravel and cobble.


The epifauna was dominated by suspension feeders and species composition was relatively diverse. The suspension feeding assemblage was dominated by the bryozoan <u>Microporina borealis</u>; it occurred in 37 of 71 quadrats (Tables 37-50). Estimates of percent cover ranged from 0 to 60 percent; however, the average coverage was 9.37 percent during the one year sample period.

Other common suspension feeders in this location were the filibranch mussels <u>Musculus discors</u> and <u>M. vernicosus</u>. During the late fall (1975) and winter (1975) surveys heavy sets of juveniles were observed in the shallow subtidal waters; most samples were collected on macrophytes and larger attached macroinvertebrates such as ascidians. Size structures of the population at this time is virtually indistinguishable.

It appeared as though there was little or no growth during the winter months, and this is probably due to the fact that as suspension or filter feeders the food source, i.e. phytoplankton, was extremely scarce during this time of year. <u>Musculus</u> species were encountered in 41 of 71 quadrats during two observation periods. Estimates of percent cover ranged between 0 and 40 percent. An important predator of this age group of <u>Musculus</u> was the muricid snail <u>Thais canaliculata</u>, many of which were observed feeding on dense populations of juvenile <u>Musculus</u>. Maximum densitiies of 16.0/m<sup>2</sup> were observed for <u>Thais</u> in this location during the March (1976) survey.

Hydroids and bryozoans such as <u>Dendrobeania murryani</u>, <u>Sertularella</u>; <u>Tricellaria</u> and <u>Heteropora</u> spp. were moderately common in this site. Other common suspension feeding forms were the ascidians <u>Halocynthia</u> <u>aurantium</u>; <u>Distaplia</u> sp; <u>Synoicum</u> sp.; <u>? Ritterella rubra</u> and <u>Didemnum</u> or <u>Trididemnum</u>.

Few herbivores were seen at Macleod Harbor, however, others species were no doubt present, but because of their size and/or behavioral traits were not recorded, or listed in the generalized food web (Figure 16). As previously noted for the other two locations, the sea urchins were relatively small and cryptic in behavior. Most were seen beneath rocks, or were found crawling on the undersides of the leaf-like brown algae. Maximum densities of  $0.10/m^2$  of <u>S. droebachiensis</u> were recorded in the band transects (Tables 51 and 52).



| Taxon                                     | <u>9-14-75</u>                    | 9-14-75                          | 9-14-75                            | 9-14-75                  | <u>9-15-75</u>                   | <u>9-15-75</u>                     | <u>9-15-75</u>                     | <u>9-15-75</u>                  | <u>9-15-75</u>                    |
|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------|--------------------------|----------------------------------|------------------------------------|------------------------------------|---------------------------------|-----------------------------------|
| Pycnopodia helianthoides                  | 7<br>0.14/m <sup>2</sup>          | 3<br>0.12/m <sup>2</sup>         | 5<br>0.33/m <sup>2</sup>           | 1<br>0.06/m <sup>2</sup> | 1<br>0.04/m <sup>2</sup>         | 0                                  | 13<br>0.26/m <sup>2</sup>          | 6<br>0.24/m <sup>2</sup>        | 4<br>0.16/m <sup>2</sup>          |
| Dermasterias imbricata                    | 0                                 | 1<br>0.04/m <sup>2</sup>         | 1<br>0.06/m <sup>2</sup>           | 0                        | 1<br>0.04/m <sup>2</sup>         | 0                                  | 2<br>0.04/m <sup>2</sup>           | 0                               | 0                                 |
| <u>Orthasterias</u> <u>koehleri</u>       | 0                                 | 0                                | 1<br>0.06/m <sup>2</sup>           | 0                        | 0                                | 0                                  | 0                                  | 0                               | 0                                 |
| Crossaster papposus                       | o                                 | 0                                | 0                                  | 0                        | 0                                | 0                                  | 0                                  | 0                               | 0                                 |
| Henricia spp.                             | 0                                 | 0                                | 1<br>0.06/m <sup>2</sup>           | 0                        | 0                                | 0                                  | 1<br>0.02/m <sup>2</sup>           | 0                               | 0                                 |
| Pisaster ochraceus                        | 0                                 | 0                                | 0                                  | 0                        | 0                                | 0                                  | 0                                  | 0                               | 0                                 |
| <u>Evasterias</u> troschelii              | 0                                 | 0                                | 0                                  | 0                        | 0                                | 0                                  | 0                                  | 0                               | 0                                 |
| Strongylocentrotus spp.                   | 0                                 | 0                                | 0                                  | 0                        | 0                                | 1<br>0.02/m <sup>2</sup>           | 0                                  | 0                               | 0                                 |
| Area sampled:<br>Depth:<br>Substate type: | 25 x 2m<br>6-7m<br>Rock &<br>sand | 25 x lm<br>12m<br>Sand &<br>rock | l5 x lm<br>8m<br>Rock out-<br>crop | 15 x lm<br>5m<br>Rock    | 25 x lm<br>l2m<br>Sand &<br>rock | 10 x .5m<br>7-8m<br>Rock &<br>kelp | 50 x lm<br>7-llm<br>Rock &<br>sand | 25 x lm<br>6m<br>Rock &<br>kelp | 25 x lm<br>3-5m<br>Rock &<br>kelp |

## TABLE 51

#### DENSITY ESTIMATES OF SOME COMMON ECHINODERMS AT MACLEOD HARBOR

| TABLE | 52 |
|-------|----|
|-------|----|

#### DENSITY ESTIMATES OF SOME COMMON ECHINODERMS AT MACLEOD HARBOR

| Taxon                                      | 11-29-75                       | 11-29-75                 | 11-30-75                     | 11-30-75                 | 11-30-75                 | 3-13-76                       | 3-13-76                  | 3-14-76                   | 3-14-76                       | 3-15-76                   |
|--------------------------------------------|--------------------------------|--------------------------|------------------------------|--------------------------|--------------------------|-------------------------------|--------------------------|---------------------------|-------------------------------|---------------------------|
| Pyncopodia helianthoides                   | 18<br>0.72/m <sup>2</sup>      | 8<br>0.80/m <sup>2</sup> | 15<br>0.38/m <sup>2</sup>    | 4<br>0.40/m <sup>2</sup> | 0.                       | 12<br>0.80/m <sup>2</sup>     | 1<br>0.10/m <sup>2</sup> | 10<br>0.20/m <sup>2</sup> | 5<br>0.33/m <sup>2</sup>      | 10<br>0.20/m <sup>2</sup> |
| <u>Dermasterias</u> <u>imbricata</u>       | 1<br>0.04/m <sup>2</sup>       | 2<br>0.20/m <sup>2</sup> | 2<br>0.05/m <sup>2</sup>     | 1<br>0.10/m <sup>2</sup> | 0                        | 0                             | 0                        | 4<br>0.08/m <sup>2</sup>  | 1<br>0.06/m <sup>2</sup>      | 0                         |
| Orthasterias koehleri                      | 0                              | 3<br>0.30/m <sup>2</sup> | 3<br>0.08/m <sup>2</sup>     | 0                        | 0                        | o                             | 1<br>0.10/m <sup>2</sup> | 1<br>0.02/m <sup>2</sup>  | 0                             | 1<br>0.02/m <sup>2</sup>  |
| Crossaster papposus                        | O                              | 0                        | 0                            | 0                        | 0                        | 1<br>0.06/m <sup>2</sup>      | 0                        | 0                         | 0                             | 0                         |
| <u>Henricia</u> spp.                       | 0                              | 1<br>0.10/m <sup>2</sup> | 2<br>0.05/m <sup>2</sup>     | 3<br>0.30/m <sup>2</sup> | 0                        | 1<br>0.60/m <sup>2</sup>      | 0                        | 1<br>0.02/m <sup>2</sup>  | 0                             | 1<br>0.02/m <sup>2</sup>  |
| Pisaster ochraceus                         | O                              | 0                        | ۰.                           | 0                        | 12<br>1.2/m <sup>2</sup> | 0                             | 0                        | 0                         | 0                             | 0                         |
| <u>Evasterias</u> troschelii               | 0                              | 0                        | 1<br>0.03/m <sup>2</sup>     | 1<br>0.10/m <sup>2</sup> | 0                        | 0                             | 0                        | 0                         | 0                             | 0                         |
| Strongylocentrotus spp.                    | 0                              | 0                        | 0                            | 1<br>0.10/m <sup>2</sup> | 6                        | 0                             | Q                        | 0                         | 0                             | 0                         |
| Area sampled:<br>Depth:<br>Substrate type: | 25 x lm<br>6-7m<br>Rock & sand | l0 x lm<br>3-4m<br>Rock  | 40 x lm<br>9m<br>Rock & sand | l0 x lm<br>6-7m<br>Rock  | 10 x lm<br>1-2m<br>Rock  | 15 x lm<br>10m<br>Rock & sand | _0 x lm<br>5m<br>Rock    | 50 x lm<br>2-7m<br>Rock   | l5 x lm<br>lOm<br>Rock & sand | 50 x lm<br>3-9m<br>Rock   |

Some of the other conspicuous herbivores are listed in Table 53 of Representative Important Species (RIS). These are the limpet <u>Acmaea mitra</u>, chitons <u>Tonicella lineata</u> and <u>T. insignis</u>, and the occasional herbivore <u>Dermasterias imbricata</u> (sea star). The snail <u>Calliostoma</u> <u>ligatum</u>, <u>Diadora aspera</u> (limpet), <u>Puncturella</u> spp. (snail), <u>Crepipatella</u> spp. (snail), <u>Lacuna carinata</u> (snail) and hermit crabs of the genus <u>Pagurus</u> were also common in this location. Most of these are microherbivores, and none were sufficiently abundant to influence the flora appreciably.

The most numerous predators in the rock habitat were the sea stars. Eight species of predatory starfish were observed in the study area, and of these the sun star <u>Pycnopodia helianthoides</u> was the most abundant species (Tables 51 and 52). Density estimates ranged from 0 to 0.80/m<sup>2</sup>, and averaged 0.28 individuals/m<sup>2</sup> in the 470 square meters of seafloor that was quantitatively sampled during 1975-76. <u>Pycnopodia</u> was observed to feed on <u>Musculus</u> spp.; <u>Diadora aspera</u>; <u>Cryptochiton stelleri</u> (chiton); <u>Thais</u> spp. (snail); <u>Macoma</u> spp. (clam); <u>Microporina</u> (bryozoan); <u>Pectinaria</u> (polychaete worm) and <u>Strongylocentrotus droebachiensis</u> (Figure 16).

The second most common species in this location was the leather star <u>Dermasterias imbricata</u>; density estimates ranged from 0 to 0.20/m<sup>2</sup>, and averaged 0.04/m<sup>2</sup> in all of the combined transects. <u>Demasterias</u> preyed on <u>Didemnum</u> (ascidian); <u>Membranipora</u> spp. (bryozoan) and the clavate ascidian Synoicum sp. and macroalgae.

## TABLE 53

# CHARACTERISTIC OR REPRESENTATIVE IMPORTANT SPECIES FROM THE SHALLOW SUBLITTORAL ZONE AT MACLEOD HARBOR

| Species                                  | Occurrence | Major Taxon | Trophic Category   |
|------------------------------------------|------------|-------------|--------------------|
| Agarum cribrosum (P)                     | А          | Brown alga  | Producer           |
| Laminaria groenlandica (P)               | A          | Brown alga  | Producer           |
| Laminaria yezoensis (P)                  | c          | Brown alga  | Producer           |
| Pleurophycus gardneri (P)                | Ċ          | Brown alga  | Producer           |
| Nereocystis luetkeana (A)                | с          | Brown alga  | Producer           |
| Costaria costata (A)                     | с          | Brown alga  | Producer           |
| Opuntiella californica (?)               | С          | Red alga    | Producer           |
| Constantinea spp. (P)                    | С          | Red alga    | Producer           |
| Callophyllis spp. (?)                    | С          | Red alga    | Producer           |
| Rhodymenia spp. (?)                      | С          | Red alga    | Producer           |
| Ralfsia spp. (P)                         | С          | Brown alga  | Producer           |
| Hildenbrandia ? occidentalis (           | (P) C      | Red alga    | Producer           |
| Delesseria decipiens (A)                 | С          | Red alga    | Producer           |
| Encrusting coralline (P)                 | А          | Red alga    | Producer           |
| Strongylocentrotus spp. (P)              | U          | Sea urchin  | Herbivore          |
| Tonicella spp. (P)                       | С          | Snail       | Herbivore          |
| <u>Acmaea</u> <u>mitra</u> (P)           | С          | Snail       | Herbivore          |
| <u>Orthasterias koehleri</u> (P)         | С          | Sea star    | Predator           |
| Pycnopodia helianthoides (P)             | С          | Sea star    | Predator           |
| <u>Dermasterias</u> <u>imbricata</u> (P) | С          | Sea star    | Predator/Herbivore |
| <u>Henricia</u> spp. (P)                 | С          | Sea star    | Suspension feeder  |
| Fusitriton oregonensis (P)               | С          | Snail       | Predator/Scavenger |
| Thais canaliculata (P)                   | С          | Snail       | Predator           |
| Halocynthia aurantium (P)                | С          | Ascidian    | Suspension feeder  |
| Musculus spp. (A)                        | С          | Mussel      | Suspension feeder  |
| Enhydra lutris (P)                       | С          | Sea otter   | Predator           |
| Microporina bore <b>alis</b>             | С          | Bryozoan    | Suspension feeder  |

| Key: | (P) | = | perennial |
|------|-----|---|-----------|
|      | (A) |   | annual    |
|      | A   | = | abundant  |
|      | С   | = | common    |

U = uncommon

185

The star <u>Orthasterias koehleri</u> was next in abundance; densities of up to 0.03/m<sup>2</sup> were recorded for <u>Orthasterias</u>, however the average of 0.03/m<sup>2</sup> is probably a more realistic estimate of density. <u>Orthasterias</u> was seen eating <u>Balanus cariosus</u> (barnacle), <u>Crepipatella</u> (snail), and the mussels <u>Musculus vernicosus</u> and <u>M. discors</u>.

Another common asteroid was the blood star <u>Henricia</u> spp. The predominant blood star in this area was <u>H. leviuscula</u>, although two other species: <u>H. tumida</u> and <u>H. sanquinolenta</u> occurred in the same shallow water habitat. Because of taxonomic difficulities inherent in field identifications the numerical data are presented as combined counts. Estimates of density ranged from 0 to  $0.60/m^2$ , with a mean density of  $0.06/m^2$ .

One of the other common sea stars in the littoral zone was the ochre star, <u>Pisaster ochraceus</u>. <u>Pisaster</u> was relatively rare in the rocky subtidal regions of Macleod Harbor, however, around the MLLW mark it was more common. For example, within one 10 x 1m transect we counted 12 <u>P. Ochracens</u> for a mean density of  $1.2/m^2$  (Table 52). The only feeding observations that involved <u>P. ochraceus</u> during this time period were with the bay mussel, Mytilus edulis.

A number of other secondary and tertiary consumers were observed in Macleod Harbor, notably sea otters, diving ducks, harbor seals and fin fishes. Density estimates of these species were not made at this time, however in some cases feeding observations were recorded

or the occurrence of a particular species present in a certain habitat was noted. A total of 31 species of fishes are listed in Table 19; of these the most conspicuous families in the kelp habitat were the greenlings (Hexagrammidae), sculpins (Cottidae); ronquils (Bathymasteridae) and righteye flounders (Pleuronectidae). Other fishes such as pricklebacks (Stichaeidae), and gunnels (Pholididae) were seen, but because of their small size and secretive nature could not be counted properly by our sampling methodology.

# SOFT BOTTOM AND FAUNAL COMPONENTS

The soft bottom directly seaward of the NMFS intertidal station consisted of fine silty sand, with ripple marks and large amounts of shell debris. The upper layer of the shell debris was composed heavily of empty Musculus spp. and clam shells. Organic debris of marine and terrestrial origin was moderate, i.e. alder leaves were common on the seafloor during the November (1975) survey. At slightly deeper depths, beyond the rock/sand interface the sand was siltier, and contained low fecal mounds that were produced by tubicolous polychaetes. A dense layer or film comprised of sessile diatoms covered the surface of the sand during March 1976. Dominant invertebrates observed on the sand were tubicolous polychaetes, the most conspicuous of which was a large maldanid or bamboo worm with a slightly branched, thick walled sandy tube. The estimated density of the maldanid ranged between 0 and 64.0 individual/ $m^2$ ; the average density in 48 quadrats (.25 $m^2$ ) was  $25.6/m^2$ . The maldanid bed was best developed at depths of between 5 and 7 meters on a sandy bench west of the shoreline. A less conspicuous, but possibly larger worm was also common in this habitat; the tube did not extend very far above the sand surface. This species was identified as Onuphis iridescens. Non-tubicolous species of worms were common about 15 cm below the surface of the unconsolidated sediment.

There were a number of species observed in this soft bottom habitat including: <u>Pycnopodia helianthoides</u> (sea star); <u>Crangon</u> sp.

(shrimp); Ophuira ? sarsii (brittle star); Olivella baetica (snail); Tellina sp. (bivalve); Chone ? mollis (sabellid worm); Margarites sp. (snail); Nassarius mendicus (snail); Pagurus ochotensis (hermit crab); unid. hermit crabs; Clinocardium spp. (bivalve); Halcampa sp. (sea anemone); unid. nemertean worm and Aglaja ocelligera (opisthobranch snail). A few fishes were also common on the softer substrates, notably the yellow fin sole Limanda aspera, starry flounder Platichthys stellatus; whitespotted greenling, Hexagrammos stelleri, and pacific tomcod, Microgadus proximus.

#### DISCUSSION

Seaweeds and their associated microflora are important sources of energy in the coastal ecosystems of the northern Gulf of Alaska. Much of the carbon production in the Gulf is undoubtedly derived from within a narrow band of the shoreline where the marine plant life flourishes. Other forms of organic carbon are pumped into the system from terrestrial sources such as freshwater streams, island meadows, forests, and shallow bays or estuaries. Despite the seaward flow of energy, usually in the form of detritus, there is a positive feedback to the terrestrial system. Many of the terrestrial life forms, i.e. waterfowl, deer and land otter, utilize the resources of both major environments. One example of this feedback is the foraging behavior of the blacktail deer (Odocoileus columbianus), which utilize seaweed resources of the Prince William Sound Archipelago on a fairly regular, yet seasonal basis. This is especially evident during winter months, when heavy snows push the deer from the high country down to the beaches where they browse on both attached and drift seaweeds. For example, during the March survey (1976) four blacktail deer were sighted in the rocky intertidal zone at Latouche Point, and an equal number were seen browsing at the NMFS intertidal station in Zaikof Bay. Even higher consumer species such as the land otter, Lutra canadensis derive a great deal of energy from the sea by foraging in the shallow subtidal waters of the Sound for clams, mussels, chitons and sea urchins. Undoubtedly, however, considerably more energy flows from terrestrial to estuarine and marine systems than is returned through such pathways as described above.

Many commercially valuable species like Pacific salmon pass through the waters of Zaikof Bay, Macleod Harbor and Latouche Point on their way to and from the spawning streams of Prince William Sound. The major species in these areas are pink and chum salmon. Recently Sibert, Brown, Healey and Kask (1977) described a detritus-based food web that involved juvenile chum salmon from coastal waters of southern British Columbia and it appears that they also use some resource associated with kelp beds during their development. Additionally, schools of juvenile salmon were observed in the seaweed beds off Latouche Point during August, 1974, and early September, 1976. Usage of these habitats by salmon has been poorly documented in Alaska.

During the 12 months of this study (1975-76), there was a pronounced oscillation in the appearance and areal dimensions of the subtidal vegetative canopies. Concurrent with these subsurface changes was a physical alteration in the size of the floating canopies of bull kelp (<u>Nercocystis luetkeana</u>) that typically grew above the shorter statured species. These pronounced seasonal changes have been interpreted as characteristic for this part of the Gulf of Alaska. Annual brown algae such as <u>Nereocystis</u>, <u>Cymathere triplicata</u> and <u>Costaria costata</u> germinated in early spring and formed dense cánopies by mid to late summer. However, most of these same plants were lost by late fall of the same year. Conversely, the perennial kelps, such as <u>Agarum cribrosum</u>, <u>Laminaria</u> spp. and <u>Pleurophycus gardneri</u> persisted year round, and exhibited maximum growth

during late winter and early spring. The rapid growth period usually follows a period of tissue shedding or blade loss. One hypothesis to account for the winter growth strategies of these perennial species is that it results from competition with both understory and taller statured annuals such as bull kelp (<u>Nereocystis</u>). The alternation in peak growth and development between different canopy levels would possibly negate some competitive interactions between kelps (Dames & Moore, 1976a). These factors would lead to the creation of more free space, and light penetration in the rocky subtidal zone. All of these factors could contribute to the high plant diversity and high standing crop and plant production exhibited by the seaweeds of the Gulf.

Many of the same parameters that influenced the seaweed populations in the NEGOA study sites also affected the associated invertebrate fauna. The species composition of the epifauna was reasonably constant throughout the year, however patterns of distribution, frequency of occurrence and relative abundance was effected or altered with variations of the calendar year. The variations in distribution, density and size for the mussel (<u>Musculus vernicosus</u>) population at Latouche Point can be used as an example. This small filibranch is a conspicuous member of the seaweed assemblages of the northeastern Gulf. Shell debris at the base of some rocky reefs and previous field observations by Rosenthal (unpublished data) indicate that these populations have thrived in the vicinity of

Latouche Point and Danger Island for the past 3 years. Heavy sets of juvenile <u>Musculus</u> or spat were attached to algal substrates during the spring and summers of 1974-76. However, by late November, most of the population was drastically reduced in number, and this is probably due in part to algal shedding and fall storms which periodically remove the mussels along with their attachment sites. Several other epifaunal species exhibited substantial seasonal variations in abundance and coverage of the underlying substrate. Among these were the hydroids <u>Campanularia</u>, <u>Grammaria</u> and <u>Abietinaria</u>, which covered substantial portions of the rocky substrate in Zaikof Bay during spring and summer, but typically were reduced in coverage by late fall leading to the conclusion that annual variations in abundance are part of the life history patterns of these hydroids.

The physical oceanographic conditions in the shallow waters of Zaikof Bay, Macleod Harbor and Latouche Point differ somewhat in terms of exposure to ocean swell, velocity of tidal currents and transparency of the sea water. Two of the stations (Macleod Harbor and Zaikof Bay) are generally protected from the power of deep sea swells so conspicuous in the Gulf of Alaska. However, the southwest end of Latouche Island does receive moderate wave activity when storm surf breaks over the reef complex between the Point and Danger Island. The second major difference between stations seemed to be in the degree and/or velocity of the tidal currents. Although no measurements were made in conjunction with the

biological surveys, strongest currents observed during this study were at the Latouche Point. The third physical parameter which was measured in the field was water transparency or visibility in sea water. Transparency was determined by making either visual observations while submerged, or estimating water transparency with the aid of a standard white secchi disc. Again, the Latouche Point station generally had the clearest water with a maximum secchi disc reading of 13 meters during the March (1976) survey. Latouche Point was typically bathed in an oceanic environment characteristic of exposed outer coast habitats, whereas the other 2 stations were more typical of embayment or fiord systems in Prince William Sound. At Latouche Point the bottom was usually free of silt, and the subtidal plant life formed a lush submarine forest which covered several square kilometers of the reef complex. Whereas in more protected areas such as Zaikof Bay and Macleod Harbor the hard substrate and bottom vegetation were usually dusted with a thin veneer of silt, and the seaweeds were generally restricted to a narrow girdle along the rocky shoreline.

For the most part, the composition of the subtidal algal assemblage was rather similar in all 3 areas, however, in terms of species composition, frequency and abundance the areas were dissimilar. At all three stations the benthos was dominated by marine plants, with the kelps being visual, numerical and biomass dominants. Recent subtidal surveys in the vicinity of Danger Island have shown algal biomass (wet weight) at

between 1,468 and 5,676 grams/m<sup>2</sup> during late summer (Rosenthal, unpublished data). However, these estimates are conservative, and would be much higher if the floating canopies were included.

The underlying invertebrate fauna was dominated by suspension or filter feeders; macroherbivores appeared to be somewhat unimportant on a year-round basis. Tertiary consumers were visually conspicuous with the asteroids appearing to be the most important group in this level of the food chain. However, the importance of finfish, diving birds and marine mammals has not been assessed. For the most part, energy pathways appeared to be basically similar in each of the 3 sites, with the inshore food chain dependent upon a regular flow of plant and animal detritus.

Because circulation appeared to be somewhat restricted in Macleod Harbor and Zaikof Bay, they appear to have a higher probability of prolonged exposure to contaminants drifting on the sea surface than Latouche Point. However, since the latter is strategically situated between two major arteries of Prince William Sound, biological processes are definitely susceptible to man-induced contaminants that would affect species of aesthetic and commercial importance.

## LITERATURE CITED

Fager, E. W., 1963. Communities of Organisms. The Sea, Vol. 2, Interscience Publishers, New York, 415-437

Mann, K. H., 1973. Seaweeds: Their Productivity and Strategy for Growth. Science, Vol. 182 (4116): 975-981

Westlake, D. F., 1963. Comparisons of Plant Productivity. Bio. Review, Vol. 38: 385-425

Mann, K. H., 1972. Ecological Energetics of the Seaweed Zone in a Marine Bay on the Atlantic Coast of Canada. II. Productivity of the Seaweeds. Mar. Biol. 14: 199-209

Dawson, E. Y., 1966. <u>Marine Botany</u>. Holt, Rienhart and Winston, Inc., 371 p.

Rosenthal, R. J. and D. C. Barilotti, 1973. Feeding Behavior or Transplanted Sea Otters and Community Interactions off Chichagof Island, Southeast Alaska, p. 74-88. In W. J. North (ed.), Calif. Inst. Tech., Kelp Habitat Improv. Proj., Ann. Rept., July 1, 1972-June 30, 1973

Dayton, P. K., 1975. Experimental Studies of Algal Canopy Interactions in a Sea Otter-Dominated Kelp Community at Amchitka Island, Alaska. U. S. Fishery Bull. 73(2): 230-237

Dames & Moore, 1976a. Marine Plant Community Studies, Kachemak Bay, Alaska. Final Report, Alaska Department of Fish and Game: 288 pp.

Dames & Moore, 1976b. Herring Spawn on Kelp.Fishery of Prince William Sound. Final Report, Alaska Department of Fish and Game: 63 pp.

Dames & Moore, 1977. An Ecological Assessment of the Littoral Zone along the Outer Coast of the Kenai Peninsula. Final Report, Alaska Department of Fish and Game: 101 pp.

Rigg, G. B., 1915. Potash from Kelp V. The Kelp Beds of Western Alaska. U. S. Department of Agriculture Report 100: 105-122

Rosenthal, R. J., W. D. Clarke and P. K. Dayton, 1974. Ecology and Natural History of a Stand of Giant Kelp, <u>Macrocystis pyrifera</u> off Del Mar, California. Fishery Bull.: Vol. 72(3): 670-684

Johansen, H. W., 1971. Effects of Elevation Changes on Benthic Algae in Prince William Sound. (In). The Great Alaska Earthquake of 1964: Bilogy, NAS. Public 1604, Washington: 35-68

## LITERATURE CITED (Continued)

Plafker, G., 1969. Tectonics of the March 27, 1964, Alaska Earthquake. U. S. Geological Survey Professional Paper 543-I. Washington Government Printing Office: 122 pp.

Cameron, F. K., 1915. Potash from Kelp. U. S. Department of Agriculture, Report No. 100, Washington Government Printing Office: 122 pp.

Chapman, A. R. O., 1972. Morphological Variaion and its Taxonomic Implications in the Ligulate Members of the Genus <u>Desmarestia</u> Occurring on the West Coast of North America. Syesis, 5: 1-20

Mauzey, K. P., C. Birkeland, and P. K. Dayton, 1968. Feeding Behavior of Asteroids and Escape Responses of their Prey in the Fuget Sound Region. Ecology 49: 603-619

Vadas, R. L., 1972. Ecological Implications of Culture Studies on Nereocystis luetkeana, J. Phycol. 8: 196-203

Markham, J. W., 1969. Vertical Distribution of Epiphytes on the Stipe of <u>Nereocystis</u> <u>luetkeana</u> (Merteus) Postels and Ruprecht. Syesis 2: 277-340

Chapman, A. R. O., 1974. The Ecology of Macroscopic Marine Algae. Annual Sev. of Ecol. and Syst., Vol. 5: 65-80 RU #174

REPORT NOT RECEIVED

Quarterly Report

Contract #03-5-022-69 Research Unit #233 Reporting Period - July through September 1977 2 Pages

#### Beaufort Sea Estuarine Fishery Study

Principal Investigator:

Terrence N. Bendock Fisheries Biologist Sport Fish Division 1300 College Road Fairbanks, Alaska 99701

29 September 1977

OCS Quarterly Report - September 1977

#### I. Task objectives

The objectives of the Beaufort Sea Estuarine Fishery Study are as follows:

- A. To detmine the seasonal distribution, relative abundance, size and species composition, growth rates, feeding habits and reproductive capabilities of Beaufort Sea nearshore fishes in the area from the Colville to the Canning Rivers and between shore and the barrier islands, including river deltas.
- B. To determine migration pattens and timing of these fishes.
- C. To identify critical habitats including spawning, overwintering, feeding, rearing and migration areas.
- D. To determine the interrelationship of Arctic fishes to lower food-web organisms.
- E. To determine the present rate of exploitation of the anadromou fishes of the area and to monitor changes in this usage as development of the area's petroleum resource progresses.
- II. Field or laboratory activities

Field activities during the summer of 1977 were directed toward identifying the migration patterns, timing of movements, and seasonal abundances of Beaufort Sea fish in Prudhoe Bay.

Up to seven trap stations were monitored daily near Prudhoe Bay in July and August. Daily captures were organized by species and enumerated, All salmonids over 200 mm in length were tagged with numbered Floy FD 67 internal anchor tags and released (Table I). Physical parameters monitored daily included: air temperature, water temperature, salinity, bottom type, present weather, cloud amount, sea state, wind direction, and wind force. The fish were captured in fyke traps, and on occasion with gill nets.

Analysis of tagging, capture and movement data is presently underway in Fairbanks. Detailed results are not available at this time, but will be presented in the final report for the project in November, 1977.

Some tag returns are expected in October and early.November.

| Species            |                            | Number<br>Captured | Number<br>Tagged |
|--------------------|----------------------------|--------------------|------------------|
| Arctic char        | Salvelinus alpinus         | 903                | 233              |
| Grayling           | Thymallus arcticus         | 3                  | 0                |
| Humpback whitefish | Coregonus pidschian        | 16                 | 15               |
| Broad whitefish    | C. <u>nasus</u>            | 89                 | 34               |
| Least cisco        | <u>C. sardinella</u>       | 1,078              | 522              |
| Arctic cisco       | <u>C. autumnalis</u>       | 238                | 140              |
| Arctic cod         | Boregadus saida            | 647                |                  |
| Fourhorn sculpin   | Myoxocephalus quadricornis | 2,171              |                  |
| Arctic flounder    | Liopsetta glacialis        | 7                  |                  |
| Boreal smelt       | Osmerus mordax             | 7                  |                  |
| Pink salmon        | Oncorhynchus gorbuscha     | 1                  |                  |
| Totals             |                            | 5,160              | 944              |

Table I. Fish species captured, number caught and number tagged during the 1977 summer season at Prudhoe Bay.

## QUARTERLY REPORT

Contract # 03-5-022-56 Task Order # 21 Research Unit # 284 Reporting Period 6/30/77-9/30/77

Food and Feeding Relationships in the Benthic and Demersal Fishes of the Gulf of Alaska and Bering Sea

Ronald L. Smith, Principal Investigator Alan C. Paulson John R. Rose

> Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

> > October 1, 1977

## SUMMARY OF THIS QUARTER'S OPERATIONS

Ship and Laboratory Activities

- 1. Ship or field work: None
- 2. Scientific party involved in project:
  - R. L. Smith, IMS, Principal Investigator
  - A. C. Paulson, IMS
  - J. R. Rose, IMS
- 3. Methods: Same as previous methods.
- 4. Sample localities: Same as previous, no new samples have been obtained.
- 5. Data analyzed:

stomach analyses included shortfin eelpout capelin

verification of difficult prey organisms for the following:

Dover sole Rock sole shortfin eelpout flathead sole

computer summaries and interpretation of data trends completed on rex sole and flathead sole.

A discussion of the feeding habits of the rex sole and flathead sole are appended below in the form of manuscripts which have been submitted for publication.

## Problems Encountered

No new problems have been encountered this quarter. An old problem, lack of necessary funds to complete this project adequately, has resulted in slow progress on the last of the stomach analyses and slow progress on interpreting the results of those analyses. All time spent by project personnel during the last two quarters toward the completion of this project is being donated gratis due to the exhaustion of project funds. The rex sole, *Glyptocephalus zachirus*, occurs from southern California to the eastern Bering Sea. Needler (1954) reported that this species grows slowly with a lifespan of at least 24 years, and Mineva (1968) noted that 75 percent of fish captured in the Bering Sea were between 12 and 16 years of age. Hart (1973) reports females most abundant in Pacific Ocean catches while Mineva (1968) found males most abundant in the Bering Sea. As juveniles grow, they move out of shallow water down to 150 m, and as adults are most abundant from 200 to 550 m. The rex sole has been reported down to 1100 m (Grinols, 1965). Little is known about the life history of this species. This study provides some insight into the feeding habits of the rex sole from the Gulf of Alaska.

#### METHODS

Fishes were captured by otter trawl from May through July, 1975. Trawl stations occupied in this study are the same used by the International Pacific Halibut Commission in their yearly surveys (Fig. 1). Abdomens were slit and the whole fishes were packed in 10 percent formalin (per total volume of water and fish), buffered with 20 grams of hexamethylenetetramine per liter. Upon return to the lab, 300 specimens were measured for standard length to the nearest millimeter. Sex and maturity were recorded.

Prey were identified to the most specific taxa permitted by their state of preservation. Counts were made of all items, and volumes were measured for each taxon to the nearest 0.1 ml. The frequency of prey occurrence (F), the percent contribution by volume (V), the percent by number (N), and an index of relative importance (IRI) were calculated for each station and for all stations combined. The index was developed by Pinkas *et al.* (1971) using the formula IRI = (N + V)F. It should be noted that values reported for

consumption of a prey taxon may be conservative. This is reflected in partially unidentifiable material being assigned to a higher taxon; for example, the importance of the Amphipoda is far greater than suggested by values for amphipods identified to lower taxa.

An index of stomach fullness was recorded for each predator such that 0 = no information, 1 = empty, 2 = trace, 3 = 25 percent, 4 = 50 percent, 5 = 75 percent, 6 = 100 percent, and 7 = distended. Mean stomach fullness was calculated for each prey taxon at a station, for all taxa at a station, for each taxon combining all stations, and for all taxa combining all stations. Mean predator length was calculated in the same fashion. It was hoped that these last two criteria might illucidate possible changes in food preference with stomach fullness (i.e., satiation) or with predator size. The fortran program developed for this study is highly machine specific for the Honeywell 66/40.

#### RESULTS

OF 300 rex sole stomachs collected in 1975, 7 were empty and 293 contained food (Table 1). Ten families of polychaetes contributed most of the food consumed. Pelecypods, cumaceans, amphipods, euphausiids, and decapods (especially *Pandalus horealis* and postlarval *Chionoecetes bairdi*) were also common in the diet (Table 2; Fig. 2).

Prey availability data came from Best (1964), Feder *et al.* (1976), and R. T. Conney (personal communication). Biologically important taxa (BIT) in terms of prey availability were determined using the method of Feder *et al.* (1976). To qualify as a BIT, a taxon must be distributed in 50 percent or more of total stations sampled, comprise over 10 percent of population numbers or biomass at any one station, or satisfy a population density or

biomass criterion. These density and biomass criteria are based upon a percentage calculated for each taxon, with the sum of the population density or biomass of all taxa equaling 100 percent. These percentages are ranked in descending order. The percentages of each taxon are then summed in descending order until a cut-off point of 50 percent is reached. BIT by these population density or biomass criteria are those taxa whose percentages are used to reach the 50 percent cut-off point.

#### DISCUSSION

De Groot (1971) discussed the interrelationships of alimentary morphology, behavior, and feeding of flatfishes. From the feeding habits of 59 species, he concluded that flatfishes can be classified according to three feeding strategies: (1) fish feeders, (2) crustacean feeders, and (3) polychaete-mollusc feeders. De Groot classified two congenerics of the rex sole, *Glyptocephalus cynoglossus* and *G. stelleri*, as feeding group (3) (polychaete-mollusc feeders). He described their principal prey as polychaetes, crustaceans, and molluscs. Compatible with De Groots polychaetemollusc strategy are the more detailed discussions of feeding in these species by Rae (1969) and Hayase and Hamai (1974). These studies suggest that polychaetes and crustaceans were the dominant food items, with molluscs far less important.

Mineva (1968) states that feeding data on the rex sole are limited, and suggests that the intensity of feeding is less in the middle of September than at the beginning of the month. There is no information concerning prey composition. Figure 2 portrays the feeding habits of the rex sole. Clearly the rex sole feeds predominantly on polychaetes and crustaceans. Molluses

and other prey taxa contribute much less. Thus, the rex sole feeds much as the two congenerics already discussed, and can also be classified as De Groot's feeding group (3). This feeding strategy was used by 23 of the 49 species of Pleuronectidae investigated by De Groot. Regional variation of diet in the rex sole is suggested by Table 3.

The scope of this study is too limited to permit a detailed discussion of prey selectivity by the rex sole, but several points are worth mentioning. Molluscs consumed were predominantly in the Nuculanidae. Most individuals were only several mm long, suggesting that they had recently settled. Thus postlarval molluscs and crabs (Fig. 2) seem to be important in the early summer diet of the rex sole. Table 2 shows that the Onuphidae contributed most of the polychaetes consumed. Probably most of the unidentified polychaetes that gave the large F, N, V, and IRI values for the Polychaeta were also Onuphidae. Yet the only species identified from this family was *Onuphis iridescens*, which is not a BIT in this area according to Feder *et al.* (1976). They reported *Onuphis geophiliformis* as the only BIT from this family. With this exception, taxa important in the diet of the rex sole tend to be important members of the local community.

#### ACKNOWLEDGEMENTS

I wish to thank Ronald L. Smith for providing the opportunity to do this study and for reading the manuscript. George Mueller, Ken Coyle, and Nora Foster provided invaluable taxonomic assistance. I also thank Shirley Liss for help with the computer work. This study was supported in part under contract 03-5-022-56 between the University of Alaska (R. L. Smith, Principal Investigator) and NOAA, Department of Commerce to which funds were provided by the Bureau of Land Management through an interagency agreement.

#### LITERATURE CITED

- BEST, E. 1964. Catch records of a trawl survey conducted by the International Pacific Halibut Commission between Unimak Pass and Cape Spencer, Alaska from May 1961 to April 1963. Rept. Int. Pac. Halibut Comm. 36:1-524.
- DE GROOT, S. J. 1971. On the interrelationships between morphology of the alimentary tract, food and feeding behaviour in flat fishes (Pisces: Pleuronectiformes). Netherlands J. Sea Res. 5(2):121-196.
- FEDER, H.M., G. MUELLER, G. MATHEKE, And S. JEWETT. 1976. The distribution, abundance, diversity, and productivity of benthic organisms in the Gulf of Alaska. Environmental Assessment of the Alaska Continental Shelf, Annual Report 1976(7):263-454.
- GRINOLS, R. B. 1965. Check-list of offshore marine fishes occurring in the northeastern Pacific Ocean, principally off the coasts of British Columbia, Washington, and Oregon. M.S. Thesis, Univ. Washington. 217 p.
- HART, L. 1973. Pacific fishes of Canada. Fish. Res. Bd. Canada Bull. 180. 740 p.
- HAYASE, S., and I. HAMAI. 1974. Studies on feeding habits of three flatfishes, Cleisthenes pinetorum herzensteini (Schmidt), Hippoglossoides dubius (Schmidt), and Glyptocephalus stelleri (Schmidt). Bull. Fac. Fish. Hokkaido Univ. 25(2):82-99.
- MINEVA, T. A. 1968. On the biology of some flatfishes in the eastern Bering Sea. In Sov. Fish. Inv. N. Pac. Pt. II:227-235. Isr. Prog. Sci. Trans. TT67-51204. 289 p.
- NEEDLER, M. 1954. Confidential report. Fish. Res. Bd. Canada Pac. Biol. Sta., Nanaimo 1953:1-128.
- PINKAS, L., M.S. OLIPHANT, and I. L. K. IVERSON. 1971. Food habits of albacore, bluefin tuna, and bonito in California waters. Calif. Fish Game, Fish. Bull. 152:3-82.
- RAE, B. B. 1969. The food of the witch. Dept. Agr. Fish. Scotland, Marine Research 1969(2):5-23.
- INSTITUTE OF MARINE SCIENCE, UNIVERSITY OF ALASKA, FAIRBANKS, ALASKA 99701

|                                            |        | STATION |        |        |        |        |                   |
|--------------------------------------------|--------|---------|--------|--------|--------|--------|-------------------|
| Variable                                   | 810    | 98B     | 771    | 78H    | 100B   | 82D    | Gulf of<br>Alaska |
| Latitude (°N)                              | 59.88  | 59.53   | 59.55  | 59.73  | 59.45  | 59.88  | 59.67             |
| Longitude (°W)                             | 144.95 | 140.73  | 145.98 | 145.73 | 140.23 | 144.73 | 143.73            |
| Time of Day<br>(1-24h)                     | 23     | 1       | 22     | 6      | 22     | 21     | 21                |
| Date                                       | 7-14   | 7-4     | 7-27   | 5-14   | 6-3    | 5-15   | -                 |
| Depth (m)                                  | 111    | 149     | 76     | 89     | 122    | 63     | 102               |
| Number Feeding                             | 106    | 65      | 3      | 36     | 16     | 67     | 293               |
| Number Empty                               | 4      | 1       | 1      | 0      | 0      | 1      | 7                 |
| Mean Fullness<br>of Feeding<br>Individuals | 60     | 59      | 8      | 46     | 77     | 82     | 63                |
| Mean Length<br>of Predator (mm)            | 240    | 267     | 121    | 250    | 251    | 261    | 228               |
|                                            |        |         |        |        |        |        |                   |

Table 1. Station data for rex sole collections in the Gulf of Alaska.

.

Table 2. Prey consumed by rex sole for all Gulf of Alaska stations. Data are expressed as percent frequency of occurrence (F), percent by number (N), percent by volume (V), and by index of relative importance (IRI). Biologically important taxa in terms of prey availability are noted by an asterisk under BIT. Mean predator length in mm (MPL) and mean fullness of stomach in percent (MFS) are given for each prey taxon consumed.

| Taxon              | MPL | MFS | F    | N    | V    | IRI  | BIT |
|--------------------|-----|-----|------|------|------|------|-----|
| POLYCHAETA         | 231 | 68  | 79.7 | 42.3 | 54.6 | 7722 | *   |
| PHYLLODOCIDAE      | 207 | 84  | 3.9  | 1.1  | 0.3  | 5    |     |
| Anaitides sp.      | 250 | 100 | 0.7  | 0.2  | 0.0  | 0.2  |     |
| Eulalia sp.        | 174 | 25  | 0.4  | 0.1  | 0.0  | 0    |     |
| Notophyllum sp.    | 228 | 100 | 0.4  | 0.1  | 0.0  | 0.1  |     |
| NEPHTYIDAE         | 241 | 100 | 0.7  | 0.1  | 0.8  | 0.6  | *   |
| GONIADIDAE         | 245 | 76  | 6.6  | 1.3  | 1.1  | 16   | *   |
| Glycinde pieta     | 182 | 100 | 0.4  | 0.1  | 0.0  | 0    |     |
| Goniada annulata   | 247 | 74  | 5.9  | 1.2  | 1.1  | 13   | *   |
| ONUPHIDAE          | 231 | 87  | 28.7 | 18.8 | 21.9 | 1166 | *   |
| Onuphis icidescens | 232 | 89  | 25.5 | 18.0 | 21.0 | 996  |     |
| LUMBRINERIDAE      | 210 | 79  | 6.3  | 1.4  | 1.5  | 18   | *   |
| Lumbrinereis sp.   | 253 | 38  | 0.7  | 0.1  | 0.2  | 0.2  |     |
| STERNASPIDAE       | 261 | 88  | 5.2  | 1.0  | 0.7  | 9    | *   |
| Sternaspis scutata | 261 | 88  | 5.2  | 1.0  | 0.7  | 9    | *   |
| SABELLARIIDAE      | 222 | 0   | 0.4  | 0.1  | 0.2  | 0.1  |     |
| PECTINARIDAE       | 278 | 100 | 0.7  | 0.1  | 0.1  | 0.2  |     |
| AMPHARETIDAE       | 217 | 100 | 0.7  | 0.1  | 0.1  | 0.1  | *   |
| SABELLIDAE         | 326 | 100 | 0.4  | 0.1  | 0.1  | 0    | *   |
|                    |     |     |      |      |      |      |     |

# Table 2. Continued.

| Taxon                | MPL | MFS | F    | N    | ۷    | IRI  | BIT |
|----------------------|-----|-----|------|------|------|------|-----|
| PELECYPODA           | 265 | 71  | 16.8 | 6.3  | 3.1  | 157  | *   |
| CRUSTACEA            | 160 | 83  | 95.5 | 74.3 | 21.6 | 9148 | *   |
| COPEPODA             | 214 | 38  | 0.7  | 0.1  | 0.0  | 0.1  | ·   |
| Calanus sp.          | 214 | 38  | 0.7  | 0.1  | 0.0  | 0.1  |     |
| CUMACEA              | 196 | 74  | 26.6 | 6.0  | 0.2  | 164  | *   |
| Eudorella sp.        | 198 | 60  | 4.6  | 1.5  | 0.2  | 8    |     |
| Eudorella emarginata | 187 | 56  | 2.8  | 1.2  | 0.2  | 4    | *   |
| Diastylis sp.        | 174 | 100 | 0.4  | 0.1  | 0.0  | 0    |     |
| Campylaspis sp.      | 194 | 69  | 3.2  | 0.4  | 0.2  | 2    |     |
| AMPHIPODA            | 190 | 75  | 27.3 | 14.2 | 0.8  | 408  | *   |
| Haploops tubercula   | 250 | 100 | 0.7  | 0.3  | 0.0  | 0.2  | *   |
| AMPITHOIDAE          | 273 | 50  | 0.4  | 0.1  | 0.2  | 0.1  | 2   |
| Neohela sp.          | 232 | 100 | 0.4  | 0.1  | 0.0  | 0    |     |
| GAMMARIDAE           | 251 | 25  | 0.4  | 0.1  | 0.0  | 0    |     |
| Hyperia sp.          | 256 | 100 | 0.4  | 0.1  | 0.0  | 0    |     |
| CAPRELLIDAE          | 230 | 88  | 2.1  | 0.4  | 0.0  | 0.9  |     |
| EUPHAUSIACEA         | 228 | 78  | 16.8 | 3.7  | 4.3  | 134  | *   |
| Euphausia pacifica   | 265 | 81  | 1.4  | 0.3  | 0.6  | 1.2  | *   |
| Thysanoessa sp.      | 174 | 80  | 1.8  | 0.2  | 0.2  | 0.8  |     |
| Thysanoessa rashii   | 205 | 100 | 0.4  | 0.1  | 0.1  | 0.1  |     |
| DECAPODA             | 219 | 70  | 52.1 | 20.4 | 16.7 | 1933 | *   |
| PANDAL I DAE         | 258 | 84  | 9.1  | 3.3  | 7.5  | 98   |     |
| Pandalus borealis    | 264 | 79  | 4.6  | 1.9  | 6.3  | 37   |     |
| HIPPOLYTIDAE         | 205 | 88  | 6.3  | 1.8  | 2.1  | 24   |     |

\_

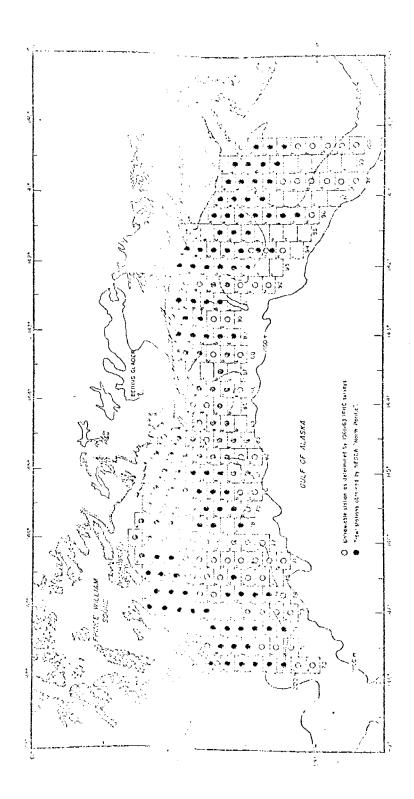
211

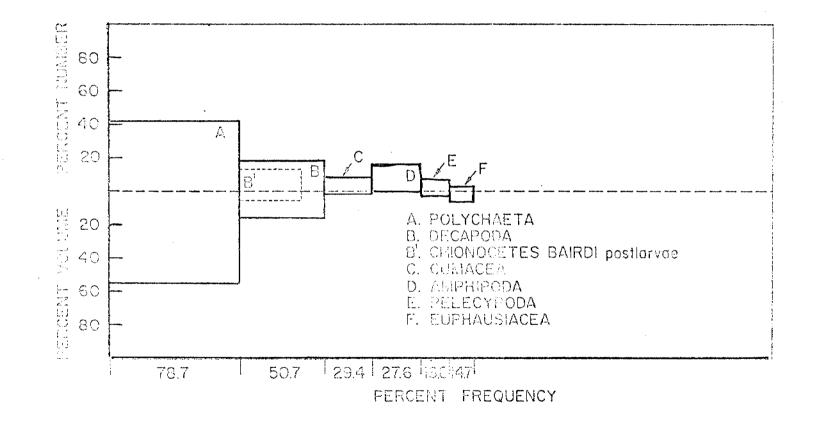
. . .

## Table 2. Continued.

| Taxon                        | MPL | MFS | · F  | N    | ٧    | IRI | BIT |
|------------------------------|-----|-----|------|------|------|-----|-----|
| DECAPODA (cont'd)            |     |     |      |      |      |     |     |
| Spirontocaris sp.            | 284 | 50  | 0.4  | 0.5  | 0.4  | 0.3 |     |
| CALLIDNASSIDAE               | 289 | 88  | 0.7  | 0.1  | 0.4  | 0.3 |     |
| MAJIIDAE                     | 214 | 70  | 39.5 | 13.9 | 4.7  | 734 | *   |
| Hyas sp.                     | 139 | 100 | 0.7  | 0.1  | 0.0  | 0.1 |     |
| Chionoecetes bairdi          | 214 | 70  | 38.8 | 13.6 | 4.8  | 709 | *   |
| XANTHIDAE                    | 262 | 25  | 0.4  | 0.1  | 0.1  | 0.1 |     |
| OPHIUROIDEA                  | 265 | 82  | 3.9  | 0.5  | 0.4  | 4   | *   |
| TELEOSTEI                    | 258 | 75  | 1.4  | 0.2  | 1.0  | 2   | *   |
| ZOARCIDAE                    | 225 | 100 | 0.4  | 0.1  | 0.1  | 0   |     |
| Unidentified animal material |     |     | 38.8 | 0.0  | 15.8 | 620 |     |

Table 3. Prey consumed by rex sole for each Gulf of Alaska station. Numbers are expressed as IRI (index of relative importance). Biologically important taxa in terms of prey availability are noted by an asterisk under BIT.


|                    |          | Index of | Relative   | Importance by S |       | ation       |     |
|--------------------|----------|----------|------------|-----------------|-------|-------------|-----|
| Taxon              | 810      | 98B      | 77 I       | <b>7</b> 8H     | 1008  | 82D         | BIT |
| POLYCHAETA         | 8466     | 8135     | 16153      | 3537            | 13652 | 6230        | *   |
| PHYLLODOCIDAE      | 2        | 16       | -          | -               | -     | 17          |     |
| Anaitides sp.      | -        | 5        | -          |                 | -     | -           |     |
| Eulalia sp.        | 0.1      | _        | -          | -               | . –   | -           |     |
| Notophyllum sp.    | <b>a</b> | 2        | <u></u>    | -               | -     | . –         |     |
| NEPHTYIDAE         | -        | 3        | -          | -               | -     | 4           | *   |
| GONIADIDAE         | 25       | 24       | -          | -               | 55    | 7           | *   |
| Glycinde sp.       | -        | 0.4      | -          | •-              | -     | <del></del> | ·   |
| Goniada annulata   | 25       | 11       | **         | -               | 55    | 7           | *   |
| ONUPHIDAE          | 2069     | 97       | ••         | 3               | 2487  | 1685        | *   |
| Onuphis iridescens | 1846     | 28       | -          | -               | 2487  | 1513        |     |
| LUMBRINERIDAE      | 0.1      | 44       | -          | 5               | 18    | 107         | *   |
| Lumbrinereis sp.   | 0.1      | 2        | -          | -               | -     | -           |     |
| STERNASPIDAE       | 0.2      | 103      | -          | -               | 176   | -           | *   |
| Sternaspis scutata | 0.2      | 103      | -          | -               | 176   | -           | *   |
| SABELLARIIDAE      | -        | **       | -          | 12              |       | -           |     |
| PECTINARIDAE       |          | -        | -          | -               | 47    | -           |     |
| AMPHARETIDAE       | -        | 0.8      | -          |                 | -     | -           | *   |
| SABELLIDAE         |          | 1        | <b>-</b> . | ۰               |       | -           | *   |
| PELECYPODA         | ı        | 2567     | -          | 173             | 21    | 0.6         | *   |


|                      | I    | ndex of          | Relative | Importan | ce by Sta | ution |     |
|----------------------|------|------------------|----------|----------|-----------|-------|-----|
| Taxon                | 810  | 98B              | 771      | 78H      | 100B      | 82D   | BIT |
| CRUSTACEA            | 6963 | 1577             | _        | 8192     | 3690      | 9148  | *   |
| COPEPODA             | -    | -                | -        | -        | _         | 0     |     |
| Calanus sp.          | -    | -                | -        | -        | -         | 0     |     |
| CUMACEA              | 263  | 110              | -        | 190      | 64        | 734   | *   |
| Eudorella sp.        | 36   | -                | -        | -        | · _       | -     |     |
| Eudorella emarginat  | a 15 | -                | -        | -        | -         | 3     | *   |
| <i>Diastilis</i> sp. | -    | -                | -        | _        | . 🛥       | 0.5   |     |
| Campylaspis sp.      | -    | 4                | -        | 12       | <b></b>   | 6     |     |
| AMPHIPODA            | 28   | 49               | -        | 858      | 322       | 2937  | *   |
| Haploops tubercula   | -    | -                | _        | 20       | <b>.</b>  | ~     | *   |
| AMPITHOIDAE          | 0.4  | -                | _        | _        | -         | -     | ٠   |
| Nechela sp.          | -    |                  | -        | 3        | -         | -     |     |
| GAMMARIDAE           | 0.1  | . <del>.</del> . | -        | -        | ч.<br>—   | -     |     |
| Hyperia sp.          | 0.1  | -                | -        | -        | <b></b> . | -     |     |
| CAPRELLIDAE          | 0.1  | 17               | -        | -        | -         |       |     |
| EUPHAUSIACEA         | 222  | 123              | -        | **       | 32        | 119   | *   |
| Euphausia pacifica   | 2    | 2                | -        | -        | 13        | -     | *   |
| Thysanoessa sp.      | -    | 4                | -        | -        | -         | 3     |     |
| Thysanoessa rachii   | 0.4  | <b>4</b> 79      | -        | -        | •-        | -     |     |
| DECAPODA             | 4431 | 287              | -        | 20       | 1817      | 2070  | *   |
| PANDALIDAE           | 509  | ۱                |          | -        | -         | 3     |     |
| Pandalus borealis    | 214  | -                | •        | -        | -         | ••    |     |
| HIPPOLYTIDAE         | l    | 8                | -        | -        | 29        | 270   |     |

---

## Table 3. Continued.

|                              | Inc  | lex of F | elative  | Importanc | e by Sta | tion |     |
|------------------------------|------|----------|----------|-----------|----------|------|-----|
| Taxon                        | 810  | 98B      | 77 I     | 78H       | 100B     | 82D  | BIT |
| DECAPODA (Cont'd)            |      |          |          |           |          |      |     |
| Spirontocaris sp.            | -    | 8        | <b></b>  | -         | -        | -    |     |
| CALLIANASSIDAE               | 0.2  | 3        | -        | -         | -        | _    |     |
| MAJIIDAE                     | 1916 | 9        | -        | 2         | 947      | 820  | *   |
| Hyas                         | -    | -        | _        | -         | -        | 1    |     |
| Chionoecetes bairdi          | 1933 | 5        | -        | 2         | 947      | 778  | *   |
| XANTHIDAE                    | 0.5  | -        | -        | -         | -        |      |     |
| OPHIUROIDEA                  | 0.6  | 55       | <u>-</u> | 2         |          | -    | *   |
| TELEOSTEI                    | 272  | 42       | -        |           | -        | -    | *   |
| ZOARCIDAE                    | 272  | ~        | -        | _         | -        | -    |     |
| Unidentified animal material | 274  | 654      | 1923     | 1051      | 614      | 1611 |     |





## FEEDING HABITS OF THE FLATHEAD SOLE,

HIPPOGLOSSOIDES ELASSODON, IN ALASKAN WATERS

Alan C. Paulson

Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

Running Head: Feeding of Flathead Sole

#### ABSTRACT

Prey consumption by the flathead sole, *Hippoglossoides elassodon*, is described for the Gulf of Alaska and the Bering Sea. Data are presented as frequency of prey occurrence (F), percent contribution by volume (V), percent by number (N), and an index of relative importance (IRI) where IRI = (N + V)F. In the Gulf of Alaska, the respective dominance of euphausiids (*Thysanoessa spp.*) in shallow water, and ophiuroids (*Ophiura sarsi*) in deeper water feeding was nearly absolute. Diet was more varied in the Bering Sea, but also exhibited a shift from chiefly benthic to nektonic feeding near the 50 m isobath. Prey availability is discussed.

The flathead sole, *Hippoglossoides elassodon*, occurs from northern California to the Bering Sea, at depths ranging from the surface to 550 m. While maximum abundance tends to occur at depths of 91-181 m in the Gulf of Alaska and 2-90 m in the Bering Sea (Alderdice and Forrester 1974), geographic and bathymetric migrations have been described with respect to season and maturity (Hughes 1974). The possibility of flathead sole rising to the surface at night, and returning to the bottom during the day was proposed by Cooney (1967).

Limited information on feeding in this species has been reported by Suyehiro (1934), Smith (1936), and Skalkin (1968). These studies suggested that the flathead sole feeds on both benthic organisms such as polychaetes, molluscs, and brittle stars, and nektonic organisms such as fishes and shrimps. Mineva (1968) found that the flathead sole feeds in winter, unlike allied species. Miller (1970) discussed changes in the diet of the flathead sole with size and season in Washington waters. This study describes prey consumption by the flathead sole in the Gulf of Alaska and the Bering Sea in terms of four importance criteria. Prey availability is also discussed.

#### METHODS

Fishes were captured by otter trawl in the Gulf of Alaska from May through July, 1975. The six Gulf of Alaska stations occupied in this study are from among those used by the International Pacific Halibut Commission in their yearly surveys. Five trawls in the Bering Sea were made in August 1975, October 1975, and May 1976 representing summer, autumn, and spring respectively. It was impossible to influence when or where any trawls were made in this study, so collections were opportunistic rather than according to a particular sampling plan. Abdomens were slit and the

whole fishes were packed in 10% formalin (per total volume of water and fish) buffered with 20 grams of hexamethylenetetramine per liter. Upon return to the lab, 286 specimens were measured for standard length to the nearest millimeter. Sex and maturity were recorded.

Prey were identified to the most specific taxa permitted by their state of preservation. Counts were made of all items and volumes were measured for each taxon to the nearest 0.1 ml. The frequency of prey occurrence (F), the percent contribution by volume (V), the percent by number (N), and an index of relative importance (IRI) were calculated for each station and for all stations combined. The index was developed by Pinkas *et al* (1971) using the formula IRI = (N + V)F. It should be noted that values reported for consumption of a prey taxon may be conservative. This is reflected in partially unidentifiable material being assigned to a higher taxon. For example, the importance of Euphasiidae (Table 1) is greater than suggested by values for euphausiids identified to lower taxa.

Stomach fullness and mean predator length for each taxon consumed were calculated. It was hoped that these last two criteria might illucidate possible changes in food preference with stomach fullness (i.e. satiation) or with predator size. The fortran program developed for this study is highly machine specific for the Honeywell 66/40.

Prey availability information came from Motoda and Minoda (1974), Feder *et al.* (1976a,b) and Pereyra *et al.* (1976). Biologically important taxa (BIT) in terms of prey availability were determined using the method of Feder *et al* (1976a). To qualify as a BIT, a taxon must be distributed in 50% or more of total stations sampled, comprise over 10% of population numbers or biomass at any one station, or satisfy a population density or biomass criterion. These density and biomass criteria are based upon

a percentage calculated for each taxon, with the sum of the population density or biomass of all taxa equally 100 percent. These percentages are ranked in descending order. The percentages of each taxon are then summed in descending order until a cut-off point of 50 percent is reached. BIT by these population density or biomass criteria are those taxa whose percentages are used to reach the 50 percent cut-off point.

#### RESULTS

Prey consumption by 247 flathead sole in the Gulf of Alaska is listed in Table 1. Euphausiids (probably all *Thysanoessa spp*.) and the brittle star, *Ophiura sarsi*, comprise most of the diet of the 139 feeding individuals. Only 39 flathead sole were collected in the Bering Sea (Table 2). These limited data suggest that the shrimp *Pandalus borealis* is the most important spring prey, while mysids, amphipods, and *Ophiura sarsi* dominated summer feeding. Crangonid shrimps and juvenile pollock were the most important autumn prey in the Bering Sea. Biologically important prey taxa in the local community are noted in Tables 1 and 2.

#### DISCUSSION

Diet differences with depth in the Gulf of Alaska are pronounced, and therefore the importance of the euphausiids in Table 1 may be somewhat misleading. Five trawls at 66 to 88 m ( $\tilde{x} = 73$  m) vielded 176 flathead sole. Empty stomachs occurred in 49 percent of these fishes. The index of relative importance for ophiuroids (IRI = 18,279) far exceeded the value for euphausiids (IRI = 274) for these five trawls. A single trawl south of Hinchinbrook Island at 26 m yeilded 71 fishes, of which 30 percent had empty stomachs. Here the importance of euphausiids (IRI = 17,854)

in the diet contrasts with that of the ophiuroids (IRI = 1). The theoretically maximum IRI value is 20,000 (given feeding predators have a particular prey species in every stomach, and this prey comprises 100 percent of the volume and count). Thus the respective dominance of euphausiids in shallow water, and ophiuroids in the deep water feeding is nearly absolute.

The flathead sole diet in the Gulf of Alaska differs from that of a population in East Sound, Orcas Island, a shallow (28 m) embayment in Washington. Miller (1970) found that mysids comprised most of the diet (F = 77) followed by shrimps, fishes, clams, and polychaetes. Miller found 31 percent of the scomachs empty. Feeding intensity of Alaskan populations was greater in shallow areas (above the 50 m isobath), as evidenced by the frequency of empty stomachs and the mean fullness of stomachs. The flathead sole feeding in shallow water had a mean fullness of 57 percent while the deeper individuals had a mean fullness of 29 percent. Miller (1970) discussed how predator size, season, and bottom temperature affected the frequency of empty stomachs in a Washington population of flathead sole. Size and season do not account for the observed frequencies in the Gulf of Alaska population and temperature data are not available. While feeding by Washington and Alaskan flathead sole may always be more intense on nektonic organisms, one would expect from the Van't Hoff rule that the higher metabolic rate induced by warmer shallow waters would require a higher feeding rate than deeper populations.

Mineva (1968) found that in the Bering Sea, flathead sole fed chiefly on ophiuroids, followed by shrimps, amphipods, fishes, and molluscs. The limited sampling of this study tends to support these conclusions. According to Mineva the flathead sole is caught together with yellowfin

sole, Alaska plaice and rock sole in the southeast Bering. The present study suggests a similarity in geographic and depth-related feeding patterns of the flathead sole with Skalkin's (1968) study of the yellowfin sole. The flathead sole seems to feed primarily on pink shrimp and fishes from 200 to 100 m, on ophiuroids and pink shrimp just above the 100 m isobath, on crangonid shrimps, fishes and molluscs below the 50 m isobath, and upon nekton such as mysids in more shallow waters. Seasonal differences suggested by Table 2 may simply result from migration-induced changes in prey availability with depth.

This study suggests that taxa important in the diet of the flathead sole tend to be important members of the local community. Both benthic and nektonic prey are consumed. This study plus the data of Mineva (1968) and Skalkin (1968) suggest a depth-related change from predominantly benthic to nektonic feeding somewhere around the 50 m isobath.

#### ACKNOWLEDGEMENTS

I wish to thank Ronald L. Smith for providing the opportunity to do this study and for commenting on the manuscript. George Mueller, Ken Coyle, and Nora Foster provided invaluable taxonomic assistance. I also thank Shirley Liss for help with the computer work. This study (R. L. Smith, Principal Investigator) was supported in part by the Bureau of Land Management through interagency agreement with the National Oceanic and Atmospheric Administration, under which a multi-year program responding to needs of petroleum development of the Alaskan Continental Shelf is managed by the Outer Continental Shelf Environmental Assessment Program (OCSEAP) Office.

#### REFERENCES

- Alderdice, D. F., and C. R. Forrester. 1974. Early development and distribution of the flathead sole (*Hippoglossoides elassodon*). J. Fish. Res. Bd. Can. 31:1879-1918.
- Cooney, R. T. 1967. Diet differences in trawl catches of some demersal fishes. M.S. Thesis, Univ. of Wash. 97 p.
- Feder, H. M., G. Mueller, G. Matheke, and S. Jewett. 1976a. The distribution, abundance, diversity, and productivity of benthic organisms in the Gulf of Alaska. Environmental Assessment of the Alaska Continental Shelf Annual Report 1976 (7):263-454.
- Feder, H. M., G. Mueller, S. Jewett, M. Hoberg, and K. Haflinger. 1976b. Environmental assessment of the Bering Sea: benthic biology. Environmental Assessment of the Alaska Continental Shelf Annual Report 1976 (5):1-218.
- Hughes, S. E. 1974. Groundfish and crab resources in the Gulf of Alaska based on International Pacific Halibut Commission trawl surveys, May 1961-March 1963. U.S. Dept. Commer., NOAA, NMFS, Seattle, WA Processed Rep. 87 p.
- Miller, B. S. 1970. Food of flathead sole (*Hippoglossoides elassodon*) in East Sound, Orcas Island, Washington. J. Fish. Res. Bd. Can. 27(9): 1661-1665.
- Mineva, T. A. 1968. On the biology of some flatfishes in the Bering Sea. In Sov. Fish. Inv. N. Pac. Pt. II: 227-235. Isr. Prog. Sci. Trans. TT67-51204. 289 p.
- Motoda, S., and T. Minoda. 1974. Plankton of the Bering Sea. In D. W. Kood and E. J. Kelley, eds., Oceanography of the Bering Sea. Inst. Mar. Sci. Occas. Publ. No. 2, University of Alaska, Fairbanks. pp. 207-242.

- Pereyra, W. T., J. E. Reeves, and R. G. Bakkala. 1976. Demersal fish and shellfish resources of the eastern Bering Sea in the baseline year 1975. U.S. Dept. Commer., NOAA, NMFS, Seattle, WA Processed Rep. 619 p.
- Pinkas, L., M. S. Oliphant, and I. L. K. Iverson. 1971. Food habits of albacore, bluefin tuna, and bonito in California waters. Calif. Fish Game, Fish. Bull. 152:3-82.
- Skalkin, V. A. 1968. Diet of flatfishes in the southeastern Bering Sea. In Sov. Fish. Invest. N. Pac. Pt. I: 235-250. Isr. Prog. Sci. Trans. TT67-51203. 333 p.
- Smith, R. T. 1936. Report on Puget Sound otter trawl investigations. Wash. Dept. Fish. Biol. Rept. 36B:1-61.
- Suyehiro, Y. 1934. Studies on the digestive system and the feeding habits of the important fishes in the North Pacific. II. The plaice, *Lepidopsetta mochigarei* Snyder and the halibut, *Hippoglossoides elassodon* Jordan and Gilbert. *Bull. Jap. Soc. Sci. Fish.* 3:65-72.

TABLE 1. Prey consumed by flathead sole for all Gulf of Alaska stations (n=247). Data are expressed as percent frequency of occurrence (F), percent by number (N), percent by volume (V), and by index of relative importance (IRI). Biologically important taxa in terms of prey availability are noted by an asterisk under BIT. Mean predator length (MPL) in mm and mean fulness of stomach in percent (MFS) are given for each prey taxon consumed.

| Taxon                           | MPL | MFS | F    | <u>N</u> | v    | IRI  | BIT |
|---------------------------------|-----|-----|------|----------|------|------|-----|
| MOLLUSCA                        | 240 | 100 | 1.4  | 0.1      | 0.1  | 0.3  | *   |
| PELECYPODA                      | 253 | 100 | 0.7  | 0.0      | 0.0  | 0    | *   |
| GASTROPODA                      | 227 | 100 | 0.7  | 0.0      | 0.0  | 0    | *   |
| CEPHALOPODA                     | 227 | 100 | 0.7  | 0.1      | 0.0  | 0    |     |
| CRUSTACEA                       | 210 | 77  | 51.1 | 73.8     | 38.2 | 5718 | *   |
| Euphausiidae                    | 209 | 78  | 49.6 | 73.7     | 37.9 | 5537 | *   |
| Thysanoessa sp.                 | 201 | .82 | 20,1 | 37.6     | 18.3 | 1125 | *   |
| Thysanoessa<br>spinifera        | 177 | 104 | 13.0 | 33.4     | 18.0 | 665  | *   |
| DECAPODA                        | 243 | 50  | 2.2  | 0.1      | 0.3  | 0.9  | *   |
| Majiidae                        | 263 | 63  | 1.4  | 0.1      | 0.2  | 0.4  | *   |
| Hyas sp.                        | 248 | 75  | 0.7  | 0.0      | 0.0  | 0    |     |
| OPHIUROIDEA                     | 263 | 53  | 61.9 | 26.1     | 59.6 | 5297 | *   |
| Ophiura sarsi                   | 263 | 57  | 56.8 | 26.0     | 58.4 | 4793 | *   |
| TELEOSTEI                       | 258 | 50  | 1.4  | 0.1      | .1.8 | 2.6  | *   |
| UNIDENTIFIED ANIMAL<br>MATERIAL |     |     | 3.6  | 0.0      | 0.4  | 1.4  |     |

TABLE 2. Seasonal prey consumption by flathead sole in the Bering Sea. Data are expressed as index of relative importance (IRI), and biologically important taxa in terms of prey availability are noted by an asterisk under BIT. Probable BIT are noted by a question mark.

| Taxon                        | Spring<br>1976 | Summer<br>1975 | Autumn<br>1975 | BIT |
|------------------------------|----------------|----------------|----------------|-----|
| POLYCIIAETA                  | 381            |                |                | *   |
| PELECYPODA                   | 116            |                | 108            | *   |
| Nuculana fossa               | 70             |                |                |     |
| CRUSTACEA                    | 7936           | 7645           | 11651          | *   |
| AMPHIPODA                    |                | 2700           | 69             | *   |
| Rhachotropis oculatus        |                | 2700           |                | *   |
| DECAPODA                     | 6561           | 159            | 11234          | *   |
| Crangon dalli                |                |                | 11234          | ?   |
| Majiidae                     | 23             |                |                | ?   |
| Pandalus borealis            | 5485           | 159            |                | ?   |
| OPHIUROIDEA                  | 68             | 1946           | 35             | ?   |
| Ophiopenia disacantha        | 35             |                |                |     |
| Ophiura sarsi                |                | 1946           |                | ?   |
| Ophiuroidae                  |                |                | 35             |     |
| TELEOSTEI                    | 235            | 157            | 416 ·          | *   |
| Theragra chalcogramma        |                |                | 416            | *   |
| UNIDENTIFIED ANIMAL MATERIAN | L 66           | ·              | 1              |     |

Contract 03-5-022-81 Research Unit 356 July 1 to September 30, 1976 8 Pages

### QUARTERLY REPORT

Environmental Assessment of Selected Habitats in the Beaufort and Chukchi Sea Littoral System

> Principal Investigator Carter Broad West Washington State College Bellingham, Wash.

> > September 30, 1977

### I. TASK OBJECTIVES

The task objectives of this quarter were specified in our proposal/work statement for fiscal 1977 as updated in quarterly reports:

- To amplify the 1976 sampling of the Chukchi coast by resampling at most of the beach stations.
- To continue subtidal sampling of the Beaufort Sea (shoreline to 5M depth).
- To establish permanent shore stations and sample repeatedly during the season at:
  - A. Nuvagapak Point in the Beaufort Lagoon region
  - B. Barter Island
  - C. Prudhoe Bay
  - D. Colville River delta
  - E. Point Barrow
  - F. Wainwright
  - G. Cape Thompson
  - H. Cape Krusenstern
  - I. Kotzebue Sound at Arctic Circle
  - J. Wales (Cape Prince of Wales)
- 4. To establish permanent salt marsh experimental plots at Prudhoe Bay (mouth of Putuligayak River) and on the Baldwin Peninsula (Arctic Circle landing strip) and initiate measurements of productivity, grazing rates and recovery from various perturbations.
- 5. To initiate experiments designed to help elucidate:
  - A. The contributions to the shallow water ecosystem of landoriginated aetritus (peat);
  - B. The food web and energy pathways in the littoral zone.

### II. FIELD OR LABORATORY ACTIVITIES

A. Ship or field trip schedule:

- June 23 to August 19, 1977: Repetitive sampling of permanent shore stations at Wales, Arctic Circle Landing strip, Cape Krusenstern and Cape Thompson: seven stations sampled three times each. Investigators: Clayton, Basabe
- July 3 to August 29, 1977: Sampling of Chukchi Sea shore stations at Shishmarif (4 stations); Cape Espenberg (2 stations); south shore of Kotzebue Sound and Eschscholtz Bay (4 stations); Baldwin Peninsula (1 station); Hathom Inlet (3 stations); Kivalina (1 station); Point Hope (2 stations); Cape Lisburne (1 station); Icy Cape (4 stations); and Peard Bay (5 stations). Investigators: Benedict, Henderson, Spawn.
- August 2 to 26, 1977: Benthic, epibenthic and plankton sampling of 36 stations comprising 17 transects of the littoral zone (shoreline to 10M depth) between Point Barrow and Tapkaurak Entrance in the Beaufort Sea aboard R/V ALUMIAK (NARL, OCS chartered). Investigators: Cordell, Broad.
- 4. July 7 to August 26, 1977: Repetitive sampling of permanent shore stations at Wainwright (2 stations) and Barrow (2 stations) and establishment of lagoon stations in Wainwright Inlet and the Kuk River (6 stations). Investigators: Stiefel, Koch, Fonda.
- 5. July 11 to September 6, 1977: Repetitive sampling of shore stations at Colville River delta (1 station); Prudhoe Bay (1 station); Barter Island (2 stations); and Nuvagapak Point (2

2,31

stations) and establishment of lagoon or estuarine transects at the Colville River mouth (6 stations); Putuligayak River mouth (2 stations); and Beaufort Lagoon (3 stations). Investigators: Dunton, Maier.

- 6. June 17 to September 4, 1977. A study of salt marsh ecology, productivity, and recovery from various perturbations at Prudhoe Bay (mouth of Putuligayak River) and on the Baldwin Peninsula (Arctic Circle landing strip). Investigators: Mason, Kiera.
- 7. July 5 to September 7, 1977. Observations and experiments of: feeding of amphipods and other invertebrates; and the role of peat (of terrestreal origin) as a nutritional source. Investigators: Schneider, Koch, Fonda, Stiefel.
- July 1 to August 15, 1977. Verification of beach plant identifications and ecological data, Beaufort and Chukchi shore stations. Investigator: Taylor.
- August 1 to 31, 1977. Macroalgae of the Alaskan Arctic littoral region. Investigator: Dube.
- B. Scientific Party:
  - 1. Principal Investigator

A. C. Broad - July 1 to September 15

2. Associate Investigators:

Maurice A. Dube, August 1-31 Richard W. Fonda, July 1 - August 31 David T. Mason, July 1 - August 31 David E. Schneider, July 1 - August 31 Ronald J. Taylor, July 15 - August 31

3. Research Aide II (all July 1 to September 15) Alice B. Benedict Jeffery R. Cordell Cheryl Clayton Ken Dunton 4. Research Aide I (all July 1 to September 15) Felix A. Basabe Richard Henderson Eileen Kiera (plus June 15 to 30) Bob Maier Raymond Steifel 5. Computer Programmer Gregg M. Petrie - hourly wages 6. Laboratory Supervisor Helmut Koch, July 1 to September 30

7. Laboratory Assistants (all hourly wages)

Mark Childers James Hanes Scott Hansen Wendy Pounds Carl Wheeler Marijean Winchell

C. Methods

1. The methods employed in all shore stations were essentially those given on page 5 of the current work statement/proposal for fiscal 1977 and in recent annual reports. In addition to the Ekman grab for benthos sampling, which is ineffective in gravel, a hand-operated scoop of the same dimensions was devised. In a few instances, a Ponar grab of the same size as the hand-operated Ekman was used in deeper stations.

- For subtidal benthic sampling from R/V ALUMIAK, a 0.1M<sup>2</sup>
   Smith-McIntyre grab was used instead of the VanVenn or Ekman suggested in the work statement.
- 3. Methods employed in the salt marsh ecology study include introduction of crude oil, sand overlay, light attenuation, nitrate and phosphate applications, artificial grazing, salt stress, selective transplants, peat overlays and other perturbations. The study has been a measurement of the strain induced in the community by these stresses and includes cover, plant heights, and biomass measurements and descriptive indices (watershed, physiography, profiles, soil salinities, general biologic relationships, wind and temperature profiles). These methods will be amplified in subsequent reports.
- 4. Laboratory and field experiments on the feeding of amphipods and the introduction of peat into littoral zone food webs included examination of gut contents and fecal pellets of common amphipods and some other animals (15 species), feeding experiments in which various foods were offered to animals of the littoral zone (8 species), choice experiments, experiments designed to test reduction of size of peat particles by animals (5 species), a growth experiment (using <u>Gammarus setosa</u>), a field experiment to verify the roles of <u>Gammarus</u> and <u>Onisimus</u> in the breakdown of peat under natural conditions, and observations on respiration of peat (including contained microorganisms). These methods will be amplified in subsequent reports.

- The method verification of beach plant data and for arctic macroalgae was simply to put experts in the field.
- Methods of laboratory analyses of samples have been dealt with in previous reports.
- D. Sample Localities/Ship Tracklines
  - Shore stations (beach transects): the general locations of beach transects are given above (items IIA1, IIA2, IIA4, and IIA5).
  - Deeper benthic stations: The 17 transects of the Beaufort sea littoral zone and the depths of the stations on each transect are given below:

| Transect Location           | stations<br>(depth in meters) |
|-----------------------------|-------------------------------|
| Point Barrow                | 2,6,10                        |
| Cooper Island               | 2, 5, 10                      |
| Cape Simpson (DEWline site) | 5,10                          |
| Smith Bay (Ikpikpuk River)  | 5,10                          |
| Pitt Point (Lonely)         | 3, 5, 10                      |
| Cape Halkett                | 2, 5, 10                      |
| Kogru River                 | 2, 5, 10                      |
| Colville River              | 2, 5, 10                      |
| Pingok Island               | 5,10                          |
| Prudhoe Bay (west)          | 2, 5, 10                      |
| Heald Point                 | 2, 5, 10                      |
| Foggy Island Bay            | 2, 5, 9                       |
| Flaxman Island              | 3, 5, 10                      |
| Simpson Cove                | 5,10                          |
| Hulahula River              | 5,10                          |
| Barter Island               | 5,10                          |
| Tapkaurak Entrance          | 3.5, 10                       |

- The salt marsh ecology study was based in marshes in the mouth of the Putuligayak River (at Prudhoe Bay) and at Arctic Circle Landing Strip (Baldwin Peninsula south of Kotzebue).
- E. Data Collected or Analyzed
  - 1. Number and types of samples:

| a. | sediment samples (for particle size analys | sis) 214    |
|----|--------------------------------------------|-------------|
| b. | benthos samples                            | 1,230       |
| c. | epibenthos samples                         | 196         |
| d. | plankton samples                           | 185         |
| e. | other, biological samples                  | 215         |
| f. | plant voucher samples r                    | not counted |

- Sorting of 1976 samples was completed and lab analysis of 1977 samples begun.
- F. Milestone Chart Update
  - Unanticipated taxonimic problems (possible undescribed species) have delayed reporting 1976 field season data. It is anticipated that these data can be reported (possibly with only generic identification of some species) this quarter.
- III. RESULTS

Except as indicated above (item IIA), none reported.

IV. PRELIMINARY INTERPRETATION OF RESULTS
None given.

### V. PROBLEMS ENCOUNTERED

- There were mechanical problems that caused delays in the schedule and sampling program of R/V ALUMIAK. These delays combined with near shore drift ice in the eastern Beaufort Sea prevented our sampling transects at Nuvagapak Entrance and Demarcation Bay.
- An experiment (field experiments to verify the role of <u>Gammarus</u> and <u>Onisimus</u> in the breakdown of peat) was destroyed by a storm.
- 3. Adverse weather and uncertainty over relationships with native people late in the summer resulted as a decision not to complete the final sampling of shore stations at Wainwright.

|                      | amount<br>budgeted | amount<br>spent | amount<br>remaining |
|----------------------|--------------------|-----------------|---------------------|
| Salary, P.I.         | \$ 25,000          | \$ 27,021       | \$-2,021            |
| Salaries, Associates | 56,000             | 49,512          | 6,488               |
| Salaries, other      | 90,000             | 92,598          | -2,598              |
| Fringe               | 18,000             | 19,337          | -1,337              |
| Travel & Freight     | 30,500             | 29,695          | 805                 |
| Chukchi logistics    | 78,611             | 39,440          | 39,171              |
| Supplies             | 6,000              | 7,337           | -1,337              |
| Equipment            | 15,765             | 5,548           | 10,217              |
| Computer Costs       | 5,800              | 3,441           | 2,359               |
| Overhead             | 68,000             | 45,408          | 22,592              |
|                      | \$393,676          | \$319,337       | \$74,339            |

VI. ESTIMATE OF FUNDS EXPENDED (September 15, 1977)

QUARTERLY REPORT

Contract #: Research Unit #: 359 Reporting Period: 1 Jul - 30 Sep 1977 Number of Pages: 18

Beaufort Sea Plankton Studies

Rita A. Horner

1 October 1977

### I. Abstract - Highlights

This quarter was spent preparing for and going on the USCGC *Glacier* food web cruise in the Chukchi and Beaufort seas.

### II. Task Objectives

The objectives of this study are to assess the density distribution and environmental requirements of zooplankton and ichthyoplankton in an array of samples of opportunity, and to make index measurements of phytoplankton activity.

#### III. Field or Laboratory Activities

- A. Ship schedule
  - 1. 01 Aug to 07 Sep 1977
  - 2. USCGC Glacier
- B. Scientific party
  - 1. Rita A. Horner, Principal Investigator
  - 2. Thomas Kaperak, Assistant Oceanographer
- C. Methods Field Sampling

Zooplankton were collected with bongo nets having a mouth size of 333 and 505  $\mu$ m. The net was lowered at 40 m per min to a depth approximately 10 m from the bottom at shallow stations or to 200 m at deep stations, allowed to soak for 30 sec, and then hauled to the surface at 20 m per min. A 2 m English umbrella net with a mesh size of 571  $\mu$ m was used when we were in heavy concentrations of ice or when the ship was stopped on station for long periods of time. This net, designed to fall open after it is in the water beneath the ice, was lowered to a depth near the bottom and then vertically hauled to the surface. The net was closed approximately 1 m below the surface by dropping a messenger.

Acoustic surveys for layers of plankton were made with a Ross 200A Fine Line echo sounder system operated at a frequence of 105 kHz. A  $10^{\circ}$  transducer mounted in a 0.6 m V-fin depressor was lowered over the side when the ship was stopped on station.

Phytoplankton for standing stock, chlorophyll, and primary productivity measurements were collected with 5  $\ell$  Niskin bottles. Salinity was measured on water collected by the Niskin bottle.

Temperature was measured with reversing thermometers. Water transparency was measured with a Secchi disc.

| Station  | Latitude<br>(N)  | Longitude<br>(W)   | Sonic<br>Depth<br>(m) | Location                   |
|----------|------------------|--------------------|-----------------------|----------------------------|
| 01       | 71°19'           | 157°59'            | 102                   | Chukchi Sea                |
| 02       | 71°22'           | 160°04'            | 48                    | Chukchi Sea                |
| 03       | 71°24'           | 162°00'            | 46                    | Chukchi Sea                |
| 04       | 71°25'           | 164°00'            | 42                    | Chukchi Sea                |
| 05       | 71°12'           | 158°22'            | 107                   | Chukchi Sea                |
| 06       | 71°25'           | 156°56'            | 112                   | Chukchi Sea                |
| 07       | 71°46'           | 155°51'            | 123                   | Beaufort Se                |
| 08       | 71°57'           | 154°33'            | 183                   | Beaufort Se                |
| 09       | 72°24'           | 154°37'            | 2196                  | Beaufort S                 |
| 10       | 71°35'           | 153°29'            | 51                    | Beaufort Se                |
| 11       | 71°18'           | 152°43'            | 55                    | Beaufort Se                |
| 12       | 71°10'           | 151°30'            | 24                    | Beaufort Se                |
| 13       | 71°05'           | 150°23'            | 29                    | Beaufort Se                |
| 14       | 71°10'           | 150°04′            | 45                    | Beaufort Se                |
| 15       | 70°38'           | 148°28'            | 21                    | Beaufort Se                |
| 16       | 70°42'           | 147°59'            | 31                    | Beaufort So                |
| 16A      | 70°40'           | 147°48'            | 32                    | Beaufort Se                |
| 17       | 70°33'           | 147°24'            | 28                    | Beaufort Se                |
| 18       | 70°25'           | 146°41'            | 31                    | Beaufort Se                |
| 19       | 70°32'           | 146°30'            | 3658                  | Beaufort Se                |
| 20       | 72°46'           | 146°23'            | 3568                  | Beaufort Se                |
| 21       | 72°47'           | 146°34'            | 3568                  | Beaufort Se                |
| 22       | 72°57'           | 143°20'            | 3292                  | Beaufort Se                |
| 23       | 72°54′           | 142°08'            | 3531                  | Beaufort Se                |
| 24       | 70°45'           | 141°28'            | 1189                  | Beaufort Se                |
| 25       | 70°32'           | 141°32'            | 406                   | Beaufort Se                |
| 26       | 69°49'           | 141°31'            | 28                    | Beaufort Se                |
| 27       | 70°04'           | 142°14'            | 35                    | Beaufort Se                |
| 28       | 70°19'           | 142°32'            | 49                    | Beaufort Se                |
| 29       | 70°21'           | 143°29'            | 38                    | Beaufort Se                |
| 30       | 70°14'           | 144°28'            | 28                    | Beaufort Se                |
| 31       | 70°10'           | 145°32'            | 20                    | Beaufort Se                |
| 32       | 70°39'           | 145°34'            | 51                    | Beaufort Se                |
| 33       | 70°23'           | 146°26'            | 28                    | Beaufort Se                |
| 34       | 71°46'           | 147°02'            | 54                    | Beaufort Se                |
| 35       | 70°32'           | 147°35'            | 18                    | Beaufort Se                |
| 36       | 70°36'           | 148°26'            | 22                    | Beaufort Se                |
| 37       | 70°45'           | 149°03'            | 27                    | Beaufort Se                |
| 38       | 71°58'           | 155°43'            | 150                   | Beaufort Se                |
| 39       | 71°30'           | 155°12'            | 26                    | Beaufort Se                |
| 40<br>41 | 71°30'<br>71°32' | 155°13'<br>156°30' | 26<br>160             | Beaufort Se<br>Chukchi Sea |

Table 1. Station locations, USCGC Glacier, Ol Aug to 07 Sep 1977.

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/00) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
| 01        | 02 4.45                 | 71 91 61        |                  |                       |                        |                         |                        | • <u></u>    |                    |
| 01        | 02 Aug                  | 71°19'          | 157°59'          | 102                   |                        | 2                       | 000                    | 5.08         | 30.24              |
|           |                         |                 |                  |                       |                        |                         | 005                    | 4.43         | 31.66              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 4.21         | 32.09              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.92         | 32.18              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.31        | 32.67              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.46        | 32.95              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.20        | 32.89              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -0.93        | 33.01              |
| 02        | 02 Aug                  | 71°22'          | 160°04'          | 48                    |                        | 0                       | 000                    | 1.77         | 20.20              |
|           |                         |                 |                  |                       |                        | 0                       | 000                    | 1.54         | 30.20<br>*         |
|           |                         |                 |                  |                       |                        |                         | 004                    | -0.62        |                    |
|           |                         |                 |                  |                       |                        |                         | 011                    | -1.15        | 30.90              |
|           |                         |                 |                  |                       |                        |                         | 022                    | -1.41        | 31.29<br>32.27     |
|           |                         |                 |                  |                       |                        |                         | 022                    | -1.41        |                    |
|           |                         |                 |                  |                       |                        |                         | 035                    | -1.40        | 32.40              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.72        | 32.80              |
| <u></u>   | <u>.</u>                |                 |                  |                       |                        |                         | 045                    | -1.72        | 33.64              |
| 03        | 03 Aug                  | 71°24′          | 162°00'          | 46                    | 10                     | 0                       | 000                    | -0.17        | 28.09              |
|           |                         | *               |                  |                       |                        |                         | 004                    | 2.10         | 30.12              |
|           |                         |                 |                  |                       |                        |                         | 008                    | 2.28         | 30.30              |
|           |                         |                 |                  |                       |                        |                         | 014                    | 4.25         | 31.60              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.51        | 32.57              |

Table 3. Summary of station locations, sampling depths, temperature and salinity data, Secchi disc depths, and ice cover for USCGC *Glacier* cruise, Ol Aug to O6 Sep 1977.

\* No water sample because the Niskin bottle didn't trip.  $\dot{}$ 

<sup>†</sup> Depth discrepancy because ship drifted after fathometer was read.

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C)   | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|----------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 027                    | -1.71          | 33.09              |
|           |                         |                 |                  |                       |                        |                         | 035<br>045             | -1.71<br>-1.72 | 33.16<br>33.17     |
| 04        | 04 440                  | 71°25'          | 164°00'          | 42 <sup>†</sup>       | 8                      | 1                       | 000                    | -0.14          | 27.14              |
| 04        | 04 Aug                  | 71 25           | 104 00           | 72                    | Ŭ                      | -                       | 005                    | 1.36           | 30.50              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -0.47          | 31.77              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.43          | 32.32              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.53          | 32.49              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.70          | 32.82              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.70          | 33.18              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.74          | 33.45              |
| 05        | 06 Aug                  | 71°12'          | 158°22'          | 107                   | 9                      | 1                       | 000                    | 1.20           | 24.26              |
| 05        | 00 mug                  | /               |                  |                       |                        |                         | 010                    | 3.89           | 31.32              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.09          | 31.97              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.63          | 32.78              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.62          | 32.92              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.64          | 32.86              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.65          | 32.87              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.70          | 32.92              |
| 06        | 06 Aug                  | 71°25'          | 156°56'          | 112                   | 11                     | 1                       | 000                    | 2.81           | 29.38              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 2.83           | 30.64              |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.13           | 32.36              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -0.21          | 32.46              |
|           |                         |                 |                  |                       |                        |                         | 045                    | 1.69           | 32.47              |

Table 3. (continued)

S

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 060                    | -0.60        | 32.49              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -0.72        | 32.51              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.38        | 32.69              |
| 07        | 07 Aug                  | 71°46'          | 155°51'          | 123                   | 16                     | 1                       | 000                    | 0.27         | 27.94              |
|           | U                       |                 |                  |                       |                        |                         | 010                    | -0.79        | 30.85              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.97        | 31.19              |
|           |                         | •               |                  |                       |                        |                         | 030                    | -1.41        | 31.55              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.29        | 32.04              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.26        | 32.44              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.08        | 32.95              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.61        | 33.20              |
| 08        | 09 Aug                  | 71°57'          | 154°33'          | 183                   | - 15                   | 1                       | 000                    | 1.12         | 28,22              |
| •         |                         |                 |                  |                       |                        |                         | 010                    | 1.12         | 28.27              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.33        | 30.27              |
|           |                         |                 |                  |                       |                        |                         | 030                    | 0.85         | 31.58              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -0.50        | 32.54              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.24        | 33.01              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.29        | 33.13              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.66        | 33.43              |
| 09        | 10 Aug                  | 72°24'          | 154°37'          | 2196                  |                        | 8                       | 000                    | -0.73        | 25.20              |
|           | -                       |                 |                  |                       |                        |                         | 010                    | -0.63        | *                  |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.95         | 31.80              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.38        | 32.29              |
|           |                         |                 |                  |                       |                        |                         | 045                    | 3.34         | 32.90              |

Table 3. (continued)

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 060                    | 2.34         | 32.86              |
|           |                         |                 |                  |                       |                        |                         | 075                    | 1.68         | 32.92              |
|           |                         |                 |                  |                       |                        |                         | 100                    | 0.16         | 33.01              |
| 10        | 10 Aug                  | 71°35'          | 153°29'          | 51                    |                        | 1                       | 000                    | 1.24         | 29.45              |
| 20        | 20 1000                 |                 |                  |                       |                        |                         | 010                    | 1.02         | 29.58              |
|           |                         |                 |                  |                       |                        |                         | 020                    | 3.90         | 31.95              |
|           |                         |                 |                  |                       |                        |                         | 025                    | 5.19         | 32.24              |
|           |                         |                 |                  |                       |                        |                         | 030                    | 5.06         | 32.33              |
|           |                         |                 |                  |                       |                        |                         | 035                    | 4.81         | 32.48              |
|           |                         |                 |                  |                       |                        |                         | 040                    | 5.02         | 32.58              |
|           |                         |                 |                  |                       |                        |                         | 045                    | 3.39         | 32.62              |
| 11        | ll Aug                  | 71°18'          | 152°43'          | 55                    |                        | 0                       | 000                    | 1.39         | 29.39              |
|           | 0                       |                 |                  |                       |                        |                         | 010                    | 1.35         | 29.41              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.33         | 29.45              |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.77         | 30.68              |
|           |                         |                 |                  |                       |                        |                         | 025                    | 0.83         | 31.99              |
|           |                         |                 |                  |                       |                        |                         | 035                    | 1.77         | 32.57              |
|           |                         |                 |                  |                       |                        |                         | 045                    | 2.57         | 32.77              |
|           |                         |                 |                  |                       |                        |                         | 050                    | 1.15         | 32.78              |
| 12        | 12 Aug                  | 71°10'          | 151°30'          | 24                    |                        | 0                       | 000                    | -0.71        | 28.80              |
|           | 8                       |                 |                  |                       |                        |                         | 005                    | -0.81        | 29.35              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -1.23        | 31.18              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.30        | 32.84              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.28        | 32.87              |

Table 3. (continued)

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/00) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
| 13        | 13 Aug                  | 71°05'          | 150°23'          | 29                    |                        | 1                       | 000                    | -1.00        | 30.29              |
|           |                         |                 |                  |                       |                        |                         | 005                    | -1.06        | 30.35              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -1.03        | 30.31              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.48        | 32.67              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.29        | 32.81              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.40        | 32.82              |
| 14        | 14 Aug                  | 71°10'          | 150°04'          | 45                    | 7                      | 4                       | 000                    | -0.85        | 30.95              |
|           | 0                       |                 |                  |                       |                        |                         | 005                    | -1.00        | 31.32              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -0.97        | 31.71              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.13        | 31.96              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.45        | 32.24              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.49        | 32.33              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.49        | 32.54              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.53        | 32.86              |
| 15        | 16 Aug                  | 70°38'          | 148°28'          | 21                    |                        | 0-1                     | 000                    | 0.05         | 31.25              |
| 10        | 10 1105                 | 10 30           | 140 20           | ~~~                   |                        | Ŭ I                     | 003                    | -0.69        | 31.80              |
|           |                         |                 |                  |                       |                        |                         | 006                    | -0.74        | 31.83              |
|           |                         |                 |                  |                       |                        |                         | 009                    | -0.94        | 31.90              |
|           |                         |                 |                  |                       |                        |                         | 012                    | -0.84        | 32.13              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.23        | 32.13              |
|           |                         |                 |                  |                       |                        |                         | 019                    | -1.24        | 32.13              |
|           |                         |                 |                  |                       |                        |                         | 010                    | ±•64         | 54413              |
| 16        | 17 Aug                  | 70°42'          | 147°59'`         | 31                    |                        | 3                       | 000                    | 0.19         | 31.03              |
|           | 3                       |                 |                  |                       |                        |                         | 005                    | -0.47        | 31.97              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -0.98        | 32.31              |

Table 3. (continued)

....

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.12        | 32.42              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.98        | 32.47              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.21        | 32.46              |
| 16A       | 17 Aug                  | 70°40'          | 147°48'          | 32                    | 4                      | 2                       | 000                    | -0.39        | 30.44              |
|           | -                       |                 |                  |                       |                        |                         | 005                    | -0.43        | 32.18              |
|           |                         |                 |                  |                       |                        |                         | 010                    | -0.65        | 32.39              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.02        | 32.41              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.09        | 32.43              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.12        | 32.42              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.17        | 32.42              |
| 17        | 18 Aug                  | 70°33'          | 147°24'          | 28                    | 4                      | 2-3                     | 000                    | -0.15        | 31.48              |
|           | •                       |                 |                  |                       |                        |                         | 003                    | -0.16        | 31.51              |
| •         |                         |                 |                  |                       |                        |                         | 006                    | -0.28        | 31.55              |
|           |                         |                 |                  |                       |                        |                         | 009                    | -0.47        | 31.61              |
|           |                         |                 |                  |                       |                        |                         | 012                    | -0.50        | 31.65              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -0.64        | 31.85              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.78        | 31.98              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -0.97        | 32.09              |
| 18        | 18 Aug                  | 70°25'          | 146°41'          | 31                    |                        | 0                       | 000                    | 0.90         | 32.06              |
|           | 2                       |                 |                  |                       |                        |                         | 003                    | 0.86         | 32.06              |
|           |                         |                 |                  |                       |                        |                         | 006                    | 0.88         | 32.06              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 0.82         | 32.06              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 0.90         | 32.06              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.02         | 32.06              |

Table 3. (continued)

X

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C)   | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|----------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 020<br>025             | -0.72<br>-0.74 | 32.38<br>32.40     |
|           |                         |                 |                  |                       |                        |                         | 025                    | 0174           | 52140              |
| 19        | 19 Aug                  | 70°32'          | 146°30'          | 3658                  | 30                     | 0                       | 000                    | -0.97          | 26.66              |
|           | U                       |                 |                  |                       |                        |                         | 010                    | -0.94          | 28.10              |
|           |                         | •               |                  |                       |                        |                         | 020                    | -1.24          | 30.98              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.45          | 31.63              |
|           |                         |                 |                  |                       |                        | 045                     | -1.33                  | 31.91          |                    |
|           |                         |                 |                  | 50                    |                        |                         | 060                    | -0.79          | 32.24              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.42          | 32.52              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.50          | 32.83              |
|           |                         |                 |                  |                       |                        |                         | 200                    | -0.77          | 34.27              |
|           |                         |                 |                  |                       |                        |                         | 400                    | 0.47           | 34.88              |
|           |                         |                 |                  |                       |                        |                         | 500                    | 0.45           | 34.90              |
|           |                         |                 |                  |                       |                        |                         | 600                    | -0.29          | 34.91              |
|           |                         |                 |                  |                       |                        |                         | 700                    | -0.23          | 34.91              |
|           |                         |                 |                  |                       |                        |                         | 800                    | 0.03           | 34.92              |
|           |                         |                 |                  |                       |                        |                         | 900                    | -0.04          | 34.92              |
|           |                         |                 |                  |                       |                        |                         | 1000                   | -0.15          | 34.93              |
| 20        | 21 Aug                  | 72°46'          | 146°23'          | 3568                  | 42                     | 8                       | 000                    | 1.35           | 05.02              |
|           | Ū                       |                 |                  |                       |                        |                         | 010                    | -0.85          | 29.76              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.19          | 30.71              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.43          | 31.45              |
|           |                         |                 |                  |                       |                        |                         | 945                    | -1.35          | 31.74              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.48          | 32.10              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.44          | 32.40              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.47          | 32.76              |

Table 3. (continued)

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/00) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
| 21        | 22 Aug                  | 72°47'          | 146°34'          | 3658                  | 14                     | 1                       | 000                    | 1.41         | 24.42              |
|           | 0                       |                 |                  |                       |                        | +                       | 010                    | 2.15         | 26.30              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.14        | 30.60              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.42        | 31.54              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.50        | 31.88              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.44        | 32.18              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.42        | 32.37              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.50        | 32.81              |
| 22        | 23 Aug                  | 72°57'          | 143°20'          | 3292                  | 21                     | 4                       | 000                    | 2.13         | 17.72              |
|           | _                       |                 |                  |                       |                        |                         | 010                    | -0.48        | 27.01              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.87        | 30.93              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.26        | 31.82              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.17        | 31.82              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.48        | 32.17              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.47        | 32.42              |
|           |                         |                 |                  |                       | •                      |                         | 100                    | -1.45        | 32.78              |
| 23        | 23 Aug                  | 72°54'          | 142°08'          | 3531                  | 21                     | 5                       | 000                    | 3.34         | 21.22              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 1.16         | 29.20              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.65        | 31.17              |
|           |                         |                 |                  |                       |                        |                         | 035                    | -1.45        | 31.71              |
|           |                         |                 |                  |                       |                        |                         | 050                    | -1.59        | 31.95              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.59        | 32.43              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.46        | 32.76              |
|           |                         |                 |                  |                       |                        |                         | 3400                   | -0.28        | 34.98              |

Table 3. (continued)

Ľ

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
| 24        | 25 Aug                  | 70°45'          | 141°28'          | 1189                  | 12                     | 0                       | 000                    | 2.59         | 30.50              |
|           | 0                       |                 |                  | 2109                  |                        | Ŭ                       | 010                    | 2.39         | 30.50              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.10        | 31.65              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.49        | 31.92              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.59        | 32.18              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.56        | 32.43              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.51        | 32.63              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.50        | 32.95              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.50        | JZ.9J.             |
| 25        | 25 Aug                  | 70°32'          | 141°32'          | 406                   | 20                     | 0                       | 000                    | 2.02         | 30.92              |
|           | -                       |                 |                  |                       |                        | -                       | 010                    | -0.14        | 31.44              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.73        | 31.96              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.04        | 32.15              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -0.85        | 32.40              |
|           |                         |                 |                  |                       |                        |                         | 060                    | -1.43        | 32.72              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.48        | 32.81              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.49        | 32.86              |
| 26        | 26 Aug                  | 69°49'          | 141°31'          | 28                    | 5                      | 0                       | 000                    | 2.38         | 32.52              |
|           | 0                       |                 |                  |                       | -                      | ·                       | 003                    | 2.36         | 32.53              |
|           |                         |                 |                  |                       |                        |                         | 006                    | 2.41         | 32.52              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 2.37         | 32.53              |
|           |                         |                 | •                |                       |                        |                         | 012                    | 2.33         | 32.52              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 2.36         | 32.53              |
|           |                         |                 | •                |                       |                        |                         | 020                    | 0.36         | 32.76              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -0.18        | 32.79              |

Table 3. (continued)

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinit<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|-------------------|
| 27        | 26 Aug                  | 70°04           | 142°14'          | 35                    | 4                      | 0                       | 000                    | 1.27         | 32.34             |
|           | 20 1148                 | 10 04           | <u><u> </u></u>  |                       | •                      | Ŭ                       | 003                    | 1.23         | 32.34             |
|           |                         |                 |                  |                       |                        |                         | 006                    | 1.26         | 32.34             |
|           |                         |                 |                  |                       |                        |                         | 009                    | 1.20         | 32.34             |
|           |                         |                 |                  |                       |                        |                         | 012                    | 1.19         | 32.34             |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.21.        | 32.34             |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.20         | 32.45             |
|           |                         |                 |                  |                       |                        |                         | 030                    | -0.33        | 32.50             |
| 28        | 27 Aug                  | 70°19'          | 142°32'          | 49                    | 13                     | 0                       | 000                    | 1.47         | 31.22             |
|           | 0                       |                 |                  |                       |                        |                         | 005                    | 1.45         | 31.21             |
|           |                         |                 |                  |                       |                        |                         | 010                    | 1.47         | 31.21             |
|           |                         |                 |                  |                       |                        |                         | 015                    | 0.93         | 32.09             |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.55         | 32.35             |
|           |                         |                 |                  |                       |                        |                         | 025                    | -1.03        | 32.56             |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.08        | 32.56             |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.20        | 32.59             |
| 29        | 28 Aug                  | 70°21'          | 143°29'          | 38                    |                        | 0                       | 000                    | 1.47         | 31.71             |
|           | •                       |                 |                  |                       |                        |                         | 005                    | 1.45         | 31.76             |
|           |                         |                 |                  |                       |                        |                         | 010                    | 1.38         | 32.03             |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.61         | 32.16             |
|           |                         |                 | -                |                       |                        |                         | 020                    | 1.15         | 32.19             |
|           |                         |                 |                  |                       |                        |                         | 025                    | -0.64        | 32.46             |
|           |                         |                 | -                |                       |                        |                         | 030                    | -0.61        | 32.46             |
|           |                         |                 |                  |                       |                        |                         | 035                    | -0.62        | 32.46             |

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/00) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
| 30        | 28 Aug                  | 70°14'          | 144°28'          | 28                    | 11                     | 0                       | 000                    | 1.37         | 32.13              |
|           |                         |                 |                  | 20                    | **                     | 0                       | 003                    | 1.36         | 32.13              |
|           |                         |                 |                  |                       |                        |                         | 005                    | 1.42         | 32.14              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 1.36         | 32.14              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 1.33         | 32.21              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.35         | 32.14              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.76        | 32.37              |
|           |                         |                 |                  |                       |                        |                         | 025                    | -0.80        | 32.38              |
| 31 2      | 29 Aug                  | 70°10'          | 145°32'          | 20                    | 5                      | 0                       | 000                    | 1.04         | 31.39              |
|           |                         |                 |                  |                       |                        |                         | 003                    | 1.07         | 31.39              |
|           |                         |                 |                  |                       |                        |                         | 006                    | 1.09         | 31.42              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 1.09         | 31.52              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 1.07         | 31.61              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.30         | 31.68              |
|           |                         |                 |                  |                       |                        |                         | 018                    | 1.36         | 31.71              |
| 32        | 30 Aug                  | 70°39'          | 145°34'          | 51                    | 10                     | 0                       | 000                    | 2.08         | 29.62              |
|           |                         |                 |                  |                       |                        |                         | 005                    | 2.08         | 29.62              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 2.08         | 29.65              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 1.28         | 31.67              |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.56         | 31.89              |
|           |                         |                 |                  | -                     |                        |                         | 025                    | -0.84        | 32.14              |
|           |                         |                 | •                |                       |                        |                         | 030                    | -0.83        | 32.29              |
|           |                         |                 |                  |                       |                        |                         | 045                    | -1.45        | 32.59              |

Table 3. (continued)

| Table | 3. ( | (continued) |
|-------|------|-------------|
|       |      |             |

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C)  | Salinity<br>(°/••) |      |       |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|---------------|--------------------|------|-------|
| 33        | 3 30 Aug                | 70°23'          | 146°26'          | 28                    | 8                      | 2                       | 000<br>003             | -0.20<br>0.12 | 29.82<br>30.24     |      |       |
|           |                         |                 |                  |                       |                        |                         | 005                    | 0.12          | 30.86              |      |       |
|           |                         |                 |                  |                       |                        |                         | 009                    | -0.07         | 31.40              |      |       |
|           |                         |                 |                  |                       |                        |                         | 012                    | -0.21         | 31.40              |      |       |
|           |                         |                 |                  |                       |                        |                         | 015                    | -0.46         | 31.55              |      |       |
|           |                         |                 |                  |                       |                        |                         | 020                    | -0.69         | 31.63              |      |       |
|           |                         |                 |                  |                       |                        |                         | 025                    | -0.73         | 31.64              |      |       |
| 34        | 31 Aug                  | 71°46'          | 147°02'          | 54                    | 24                     | 0                       | 000                    | 1.04          | 28.02              |      |       |
| •         | 0                       |                 |                  |                       |                        |                         | 005                    | 1.75          | 28.99              |      |       |
|           |                         |                 |                  |                       |                        |                         | 010                    | 0.70          | 29.90              |      |       |
|           |                         |                 |                  |                       |                        |                         | 015                    | 0.59          | 29.91              |      |       |
|           |                         |                 |                  |                       |                        |                         | 020                    | 0.19          | 30.54              |      |       |
| -         |                         |                 |                  |                       |                        |                         | 025                    | -1.08         | 31.36              |      |       |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.19         | 31.55              |      |       |
|           |                         |                 |                  |                       |                        |                         | 045                    | 0.12          | 32.24              |      |       |
| 35        | 01 Sep                  | 70°32'          | 147°35'          | 18                    | 18                     | 18                      | 5                      | 3-4           | 000                | 0.55 | 29.89 |
|           | -                       |                 |                  |                       |                        |                         | 003                    | 0.75          | 30.00              |      |       |
|           |                         |                 |                  |                       |                        |                         | 006                    | 0.53          | 30.17              |      |       |
|           |                         |                 |                  |                       |                        |                         | 009                    | 0.27          | 30.23              |      |       |
|           | ,                       |                 | •                |                       |                        |                         | 012                    | 0.15          | 30.67              |      |       |
|           |                         |                 |                  |                       |                        |                         | 015                    | 0.04          | 30.99              |      |       |
| 36        | 01 Sep                  | 70°36'          | 148°26'          | 22                    |                        | 1                       | 000                    | 0.66          | 28.78              |      |       |
|           | -                       |                 |                  |                       |                        |                         | 003                    | 1.17          | 28.87              |      |       |
|           |                         |                 |                  |                       |                        |                         | 006                    | 0.90          | 28.91              |      |       |

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 009                    | 0.40         | 30.07              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 0.21         | 30.81              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -0.26        | 31.22              |
|           |                         |                 |                  |                       |                        |                         | 018                    | -0.27        | 31.22              |
| 37        | 02 Sep                  | 70°45'          | 149°03'          | 27                    | 11                     | 3                       | 000                    | 0.67         | 28.45              |
|           |                         |                 |                  |                       |                        |                         | 003                    | 0.36         | 28.78              |
|           |                         |                 |                  |                       |                        |                         | 006                    | -0.13        | 29.79              |
|           |                         |                 |                  |                       |                        |                         | 009                    | -0.15        | 30.04              |
|           |                         |                 |                  |                       |                        |                         | 012                    | -0.50        | 30.47              |
|           |                         |                 |                  |                       |                        |                         | 015                    | -1.06        | 31.29              |
|           |                         |                 |                  |                       |                        |                         | 018                    | -1.43        | 31.83              |
| 38        | 04 Sep                  | 71°58'          | 155°43'          | 150                   |                        | 0                       | 000                    | 5.96         | 29.17              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 6.21         | 29.23              |
|           |                         |                 |                  |                       |                        |                         | 020                    | -1.16        | 31.70              |
|           |                         |                 |                  |                       |                        |                         | 030                    | -1.38        | 31.93              |
|           |                         |                 |                  | -                     |                        |                         | 040                    | -1.40        | 32.10              |
|           |                         |                 |                  |                       |                        |                         | 050                    | -1.10        | 32.27              |
|           |                         |                 |                  |                       |                        |                         | 075                    | -1.06        | 32.68              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -1.46        | 32.98              |
| 39        | 04 Sep                  | 71°30'          | 155°12'          | 26                    | 9                      | 0                       | 000                    | 7.97         | 28.62              |
|           |                         |                 | a                |                       |                        |                         | 003                    | 8.07         | 28.63              |
|           |                         |                 |                  |                       |                        |                         | 006                    | 8.47         | 28.98              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 8.54         | 28.97              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 8.37         | 29.03              |

Table 3. (continued)

| Sta<br>No | Date<br>(1977)<br>(GMT) | Latitude<br>(N) | Longitude<br>(W) | Sonic<br>Depth<br>(m) | Secchi<br>Depth<br>(m) | Ice<br>Cover<br>(oktas) | Sample<br>Depth<br>(m) | Temp<br>(°C) | Salinity<br>(°/••) |
|-----------|-------------------------|-----------------|------------------|-----------------------|------------------------|-------------------------|------------------------|--------------|--------------------|
|           |                         |                 |                  |                       |                        |                         | 015                    | 8.42         | 29.15              |
|           |                         |                 |                  |                       |                        |                         | 018                    | 8.35         | 29.21              |
|           |                         |                 |                  |                       |                        |                         | 021                    | 7.83         | 29.37              |
| 40 0      | 04 Sep                  | 71°30'          | 155°13'          | 26                    | 6                      | 0                       | 000                    | 8.57         | 29.03              |
|           | -                       |                 |                  |                       |                        |                         | 003                    | 8.58         | 29.13              |
|           |                         |                 |                  |                       |                        |                         | 006                    | 8.59         | 29.02              |
|           |                         |                 |                  |                       |                        |                         | 009                    | 8.57         | 29.02              |
|           |                         |                 |                  |                       |                        |                         | 012                    | 8.50         | 29.04              |
|           |                         |                 |                  |                       |                        |                         | 015                    | 8.48         | 29.13              |
|           |                         |                 |                  |                       |                        |                         | 018                    | 8.50         | 29.18              |
|           |                         |                 |                  |                       |                        |                         | 021                    | 8.51         | 29.21              |
| 41        | 05 Sep                  | 71°32'          | 156°30'          | 160                   | 9                      | 0                       | 000                    | 3.56         | 27.67              |
|           |                         |                 |                  |                       |                        |                         | 010                    | 4.39         | 31.26              |
|           |                         |                 |                  |                       |                        |                         | 020                    | 3.01         | 31.52              |
|           |                         |                 |                  |                       |                        |                         | 030                    | 1.22         | 31.98              |
|           |                         |                 |                  |                       |                        |                         | 040                    | 0.83         | 32.06              |
|           |                         |                 |                  |                       |                        |                         | 050                    | 0.63         | 32.10              |
|           |                         |                 |                  |                       |                        |                         | 075                    | 0.51         | 32.13              |
|           |                         |                 |                  |                       |                        |                         | 100                    | -0.16        | 32.28              |

Table 3. (continued)

.

## VIII. Estimate of Funds Expended

| Salaries and Wages     | \$4500.00 |
|------------------------|-----------|
| Miscellaneous Supplies | 500.00    |
| Shipping               | 1000.00   |
| Travel                 | 900.00    |
|                        |           |

Total

\$6900.00

# QUARTERLY REPORT

| Contract No.      | : R7120824                   |
|-------------------|------------------------------|
| Research Unit No. | : RU-380                     |
| Reporting Period  | : 1 July - 30 September 1977 |
| Number of Pages   | : 6                          |

# ICHTHYOPLANKTON OF THE EASTERN BERING SEA

# Co-Principal Investigators

Kenneth D. Waldron and Felix Favorite National Marine Fisheries Service Northwest and Alaska Fisheries Center Seattle, Washington

#### PI QUARTERLY PROGRESS REPORT

Reporting Period: 1 July - 30 September 1977

Project Title: Ichthyoplankton of the eastern Bering Sea (RU-380)

- I. <u>Abstract</u> Ichthyoplankton sorted from plankton samples collected during MILLER FREEMAN Cruise RP-4-MF-77B Legs V and VI was received and larvae from the .505 mm mesh bongo samples and from a portion of the neuston samples have been identified.
- II. Objectives

Collect and analyze ichthyoplankton samples from a portion of the eastern Bering Sea during the spring of 1976 (completed) and 1977 (in progress).

III. Field or Laboratory Activities

A. Ship or Field Trip Schedules None

| в. | Scientific Party   |      |                                        |
|----|--------------------|------|----------------------------------------|
|    | Kenneth D. Waldron | NMFS | Co-Principal Investigator (part-time)  |
|    | Beverly M. Vinter  | NMFS | Ichthyoplankton specialist (part-time) |
|    | Donald M. Fisk     | NMFS | Technician (part-time)                 |

C. Methods

Ichthyoplankton was removed from the general plankton under contract with the Ecological Services Division of Texas Instruments, Inc., of Dallas, Texas.

Fish larvae were identified by microscopic examination and standard procedures used in larval fish taxonomy.

D. Sample Collection Localities No samples were collected during the quarter.

E. Data Collected and/or Analyzed

- 1. Number of samples examined: .505 mm mesh bongo samples 134 Neuston samples 66
- 2. Number and type of analyses: Larval specimens identified (bongo samples) 9,694 Larval specimens identified (neuston samples) 2,959

3. Flowmeters used during the survey were recalibrated at the Corps of Engineers Division Hydraulics Laboratory, Bonneville, Oregon.

### IV. Results

Collections made with the .505 mm mesh, 60 cm bongo nets contained 9,694 fish larvae in 134 samples, an average of 71 larvae per sample (range 0-844); only 5 samples did not contain fish larvae. Samples collected during the same months of 1976 contained only 42 fish larvae per sample (range 0-202). Examination of catches of the neuston net has not been completed, but the average catch appears to be greater than for similar samples collected during 1976.

Walleye pollock larvae (Theragra chalcogramma) made up 83% of the bongo catch; only 2% have not yet been identified to at least the family level (most of these are badly damaged specimens), and the remaining 15% were divided among 24 taxa (species, genus, or family) (Table 1). The 1977 collections included all taxa present in the 1976 collections, plus an additional 5 taxa (those marked with an asterisk in Table 1) represented by a few specimens.

Numbers and distribution of pollock larvae in April-May 1977 differed from 1976. Standardized maximum number (No./10 m<sup>2</sup>) caught during the 1976 survey was 881 larvae at a single station, while in the 1977 survey maximum number in a single sample was 5,751 larvae, and 13 samples contained more than 1,000 pollock larvae per 10 m<sup>2</sup>.

During the 1977 survey, samples were collected more than once at a number off stations -- with 24 stations occupied 3 times, and 39 stations occupied 2 times within a one month period, 16 April - 15 May 1977. We will thus be able to ascertain some indication of short-term variability in catches of fish eggs and fish larvae. Figure 1 shows the difference in abundance of walleye pollock larvae (.505 mm mesh bongo samples) at 39 stations for two periods, 19-26 April and 3-15 May 1977. In the relatively short interval between the two sampling periods, average abundance declined from 727 pollock larvae/station to 245 pollock larvae/station, and centers of high abundance observed during the first period were not apparent during the second period.

Fish eggs collected during the survey have not yet been identified and enumerated. Cursory examination of the 1977 samples indicates that the distribution of eggs will not be the same as that of larvae, and centers of abundance may be expected to differ from those of larvae.

- Preliminary Interpretation of Results ν. None
- VI. Auxiliary Material
  - A. Bibliography of References. None
  - B. Papers in Preparation or in Print Waldron, Kenneth D. Ichthyoplankton of the eastern Bering Sea, April-Journal: NMFS Special Report, Status of the Environment, 1976 May 1976. (manuscript).
  - C. Oral Presentations None

### VII. Problems Encountered and Recommended Changes

Lack of adequate published descriptions has made it difficult to identify certain groups of larvae, especially those in the families Agonidae, Bathymasteridae, Cottidae, Cyclopteridae, Hexagrammidae, Pholidae, and Stichaeidae. Taxonomic status of the Bering Sea members of some of these groups is uncertain and adequate descriptions of adults are lacking in many instances. One solution to this problem would be funding of specific systematic and taxonomic studies by OCSEAP or NMFS.

### Table 1.--Larval fish identified in samples collected with a .505 mm mesh bongo net, Miller Freeman Cruise RP-4-MF77B, Legs V & VI, eastern Bering Sea, 16 April-15 May 1977.

|                                 | No. of larvae |               |
|---------------------------------|---------------|---------------|
| Taxon                           | in sample     | Percent       |
| Theragra chalcogramma           | 8,048         | 83.0          |
| Ammodytes hexapterus            | 401           | 4.1           |
| Sebastes sp.                    | 351           | 3.6           |
| Pleuronectidae (A) $\frac{1}{}$ | 157           | 1.6           |
| Atheresthes sp.                 | 134           | 1.4           |
| Reinhardtius hippoglossoides    | 117           | 1.2           |
| Bathylagus pacificus            | 78            | 0.8           |
| Cottidae (non-Hemilepidotinae)  | 57            | 0.6           |
| Leuroglossus schmidti           | 38            | 0.4           |
| Stichaeidae                     | 32            | 0.3           |
| Cottidae (Hemilepidotinae)      | 31            | 0.3           |
| Mallotus villosus               | 20            | 0.2           |
| Cyclopteridae                   | 18            | 0.2           |
| Bathymasteridae                 | 17            | 0.2           |
| Stenobrachius leucopsarus2/     | 17            | 0.2           |
| Agonidae                        | 14            | 0.4           |
| Hexagrammos sp.                 | 13            | 0.1           |
| Hippoglossus stenolepis         | 8             | 0.1           |
| Nectoliparis pelagicus          | 8             | 0.1           |
| Pleurogrammus monopterygius     | 7             | 0.1           |
| Gadidae (non-Theragra)          | 6             | 0.1           |
| Pholidae                        | 3             | <u>3</u> /    |
| Macrouridae                     | 1             | <u> </u>      |
| Ptilichthys goodei              | 1             | _ <del></del> |
| Zaprora silenus                 | 1             |               |

1/ This pleuronectid has not yet been identified to species.

2/ An asterisk indicates taxa not present in samples collected during April-May, 1976, during a survey in the same general area.

3/ -- Indicates a value less than 0.05%.

VIII. Estimate of Funds Expended Total for the FY 1977 \$50,000.

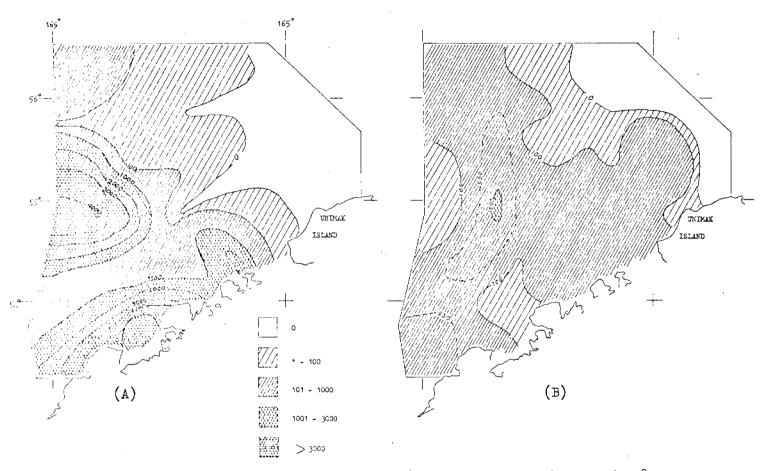



Figure 1. Distribution of larvae of walleye pollock (<u>Theragra chalcogramma</u>), as No./10 m<sup>2</sup>, during two sampling periods, (A) 19 - 26 April 1977, and (B) 3 - 15 May 1977. Cruise RP-4-MF77B. (RU-380)

| Ρf           | PRINCIPAL INFESTIGATORS F. Favorite and K. Waldron, NWA | NAAFC                                 |                |   |                          |          |                                                                                                                                                 | . [               |
|--------------|---------------------------------------------------------|---------------------------------------|----------------|---|--------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ł            |                                                         | LAS 0. 1 UL 5 JAS                     |                |   | F                        |          | 1178                                                                                                                                            |                   |
| <b>*</b> *   | NILLER FREEVAN Cruise 754. Collect Plankton Semples     |                                       |                |   |                          | +        |                                                                                                                                                 | -                 |
| ~            | Surples returned to Se                                  | $\overline{\mathbb{V}}$               |                |   |                          |          | <br> <br> <br>                                                                                                                                  |                   |
| • •          | 3 Aurrà sorting contract                                |                                       |                |   |                          | <br>     |                                                                                                                                                 | ļ                 |
|              | 4 Sort plankton for ichthycplankton and major texa      |                                       |                |   |                          |          |                                                                                                                                                 |                   |
| , " <b>`</b> |                                                         |                                       |                |   | <br> <br> <br>           |          |                                                                                                                                                 | ł                 |
| 1            | 6 Analysis of data                                      |                                       |                |   |                          |          |                                                                                                                                                 |                   |
|              | 7 Annual Report                                         |                                       | <br>           |   |                          |          |                                                                                                                                                 |                   |
|              | 8 Cunterly Reports                                      | (\]                                   |                |   |                          | 4        | 4                                                                                                                                               | 4                 |
|              | 9 Cranscription to 005EAP format & submit mag tapes     |                                       |                |   | <br> <br> <br> <br> <br> |          |                                                                                                                                                 | $ \triangleleft $ |
| 0            | MILLIR PERENAN Cruise 775. Collect plankton             |                                       | <br> <br> <br> |   |                          |          |                                                                                                                                                 |                   |
| ;<br>;       | 1  Samples returned to Seattle via connercial carrier   |                                       |                | 4 |                          |          |                                                                                                                                                 |                   |
| €1<br>T      | 2 Sort samples for ichilyoplanicton by contract '       |                                       |                |   |                          |          | -<br>-<br>-<br>-                                                                                                                                |                   |
| <b>v</b>     | 12 Lientification of ichthyoplarkton                    | · · · · · · · · · · · · · · · · · · · |                |   | .  <br> <br>             |          |                                                                                                                                                 |                   |
| ÷ 1          | 14 Analysis of Cara                                     |                                       |                |   |                          | <b>L</b> | $\left  \begin{array}{c} \uparrow \\ \uparrow $ | -                 |
| • }          | 15 Final Report (a) Start                               |                                       |                | 2 |                          |          | 4                                                                                                                                               |                   |
| ·· }         | 16 (b) Substit for internal review                      |                                       |                |   |                          |          |                                                                                                                                                 | 1                 |
| τ <b>י</b>   | 17 (c) Finel draft proparation                          |                                       |                |   |                          |          | <br>                                                                                                                                            | <                 |
| ۳-           | 10 (a) Submit + + 1 NOW                                 | -<br>                                 |                |   |                          |          |                                                                                                                                                 | 7                 |

QUARTERLY REPORT

RESEARCH UNIT #: 417 JOB NUMBER: 6797-004-20 REPORTING PERIOD: June 1, 1976 -September 30, 1977 NUMBER OF PAGES 324

## ECOLOGICAL STUDIES OF INTERTIDAL AND SHALLOW SUBTIDAL HABITATS IN LOWER COOK INLET

Dennis C. Lees Marine Biologist DAMES & MOORE

October 1, 1977

262

.

### QUARTERLY REPORT

### I. Task Objectives

The main purpose of the study is to describe some of the important features of the principal intertidal and nearshore assemblages in lower Cook Inlet. The overall objectives are to obtain information on patterns of trophic dynamics and succession, and to develop preliminary estimates of primary and secondary production in the assemblages examined. Considerable effort is being placed in obtaining biomass and production estimates for the algai assemblages in the rocky intertidal and subtidal region on the south side of Kachemak Bay.

### II. Field and Laboratory Activities

- A. Ship or Field Trip Schedule
  - 1. 29, 30 June Gull Island via Dames & Moore vessel, Sea Star.
  - 2. 2, 3 July Seldovia Point rocky beach via charter aircraft and inflatable boat.
  - 3. 12, 15, 22, 25 July Jakolof Bay dive study via Dames & Moore vessel, Sea Star.
  - 4. 28 July Homer Spit via personal car.
  - 5. 29 July Deep Creek sand beach via personal car.
  - 6. 30 July Chinitna Bay mudflat via chartered aircraft.
  - 7. 31 July Douglas River beach via chartered aircraft.
  - 4, 5 August Seldovia Point dive study via Dames & Moore vessel,
     Sea Star.

- 18 August Jakolof Bay dive study via Dames & Moore vessel, Sea Star.
- 10. 27, 30 August Gull Island via Dames & Moore vessel, Sea Star.
- 28, 29 August Seldovia Point rocky beach via Dames & Moore vessel, Sea Star.
- 12. 13 September Seldovia Point subtidal survey via Dames & Moore vessel, Sea Star.

### B. Scientific Party

- 1. Deborah Boettcher, Dames & Moore, Assistant Biologist
- 2. William Driskell, Dames & Moore, Assistant Biologist
- 3. Dr. Jonathan Houghton, Dames & Moore Project Marine Biologist
- 4. Dennis Lees, Dames & Moore, Project Manager
- 5. Richard Rosenthal, Alaska Coastal Research, Consulting Biologist

### C. Methods

- 1. Field sampling
  - a. Soft Substrates
    - (1) A profile of beach elevations is established.
    - (2) A stratified random sample design is being utilized.
    - (3) Ten cores 10 cm in diameter and about 30 cm long are collected randomly at each of at least four levels of the beach below MLLW.
    - (4) Samples are individually bagged and labeled.

- (5) After sample collection is completed (about one hour), the fresh samples are screened in seawater through a 1 mm sieve to remove the sand. The sample remaining in the screen is rebagged with its label and fixed with a 10% formaldehyde-seawater solution.
- b. Rock Substrates
  - (1) A stratified sampling design is being used.
  - (2) Levels being occupied at Seldovia Point are about +8 ft., +2 ft., MLLW, -1 ft., -30 ft., -40 ft. and -60 ft. elevations.
  - (3) Levels being occupied at Gull Island are about +12 ft.,+5 ft., MLLW and -1 ft. elevations.
  - (4) Ten 1/4 m<sup>2</sup> quadrats are placed randomly at each level; within each quadrat the number and/or relative cover of each plant taxon are recorded and all plants attached within the frame are removed and bagged. Additionally, the number and/or relative cover of conspicuous invertebrates and fish are recorded.
  - (5) Additional quadrats (from  $1/16 \text{ m}^2$  to  $25 \text{ m}^2$ ) are utilized at each level to obtain better estimates of density and cover for the plants and animals in the study area.
  - (6) Feeding observations are recorded.
  - (7) Samples of many invertebrates are collected to establish size distributions.

- (8) At Jakolof Bay, individual plants of <u>Laminaria</u> <u>groenlandica</u>, <u>Agarum cribrosum</u> and <u>Alaria fistulosa</u> were tagged, measured and marked in such a manner as to allow the determination of growth rates.
- 2. Laboratory Procedures
  - a. Soft Substrates
    - In the laboratory, the samples are sorted and the organisms identified to the lowest practical taxon and counted.
    - (2) Aggregate drained wet weights are measured for each species, where practical, or for major taxa.
    - (3) Representative specimens are sent to taxonomic specialists for identification or verification.
  - b. Rock Substrates
    - Plant samples from each level are handled and recorded individually.
    - (2) Drained wet weight and length are measured for each laminarian; aggregate drained wet weights are measured for all other algae.
    - (3) Sizes are measured for various invertebrate species to establish size distributions.
    - (4) Fish and selected invertebrate species are observed or dissected in order to determine food habits and develop food webs.

### D. <u>Sample Localities</u>

- 1. Soft Substrates
  - a. Deep Creek 1<sup>1</sup>/<sub>2</sub> mi. south of beach access at beach park (Figure 1); transect based on very large triangular boulder at base of cliff;
  - Homer Spit 2<sup>1</sup>/<sub>2</sub> mi. south of Kachemak Drive, off beach access
     ramp on west side of spit (Figure 1);
  - c. Glacier Spit at Byer's home site, on the north side of Chinitna Bay (Figure 1); transect based on a solitary intertidal boulder clump near MLLW.
- 2. Rock Substrates
  - Gull Island, in Kachemak Bay Gorilla Rock at west end of island (Figure 1);
  - Jakolof Bay, in Kachemak Bay on the reef at the mouth of Jakolof Bay, under the overhead high tension wires (Figure 1);
  - c. Seldovia Point, in Kachemak Bay directly at the point; transect based on a very large boulder, marked by a pointed arrow, at the base of the cliff (Figure 1).

### E. Data Collected or Analyzed

- 1. Soft Substrates (7-28-77)
  - a. Homer Spit
    - (1) Beach profile
    - (2) Forty core samples sorted and identified
  - b. Deep Creek (7-29-77)
    - (1) Beach profile

- (2) Forty core samples sorted and identified
- (3) Size distribution for four species
- c. Chinitna Bay Glacier Spit (7-30-77)
  - (1) Forty core samples collected
  - (2)  $1/16 \text{ m}^2$  quadrats for density and dominant invertebrate 100
- d. Douglas River (7-31-77)
  - (1) Reconnaissance survey

### 2. Rock Substrate

- a. Gull Island (6-29-77 and 6-30-77)
  - (1)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 26
  - (2)  $1/4 \text{ m}^2$  quadrats for cover and density of plants and invertebrates 6
  - (3) Feeding observations 2
  - (4) Size distribution for two species
- b. Seldovia Point intertidal survey (7-2-77 and 7-3-77)
  - (1)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 39
  - (2)  $1/4 \text{ m}^2$  quadrats for cover and density of plants and invertebrates 2
  - (3) Beach profile
  - (4) Feeding observations 2
  - (5) Size distribution for four species
  - (6) Reproductive status for one species

- c. Jakolof Bay Subtidal Studies (7-12, 15, 22, 25-77)
  - (1) Large quadrats for plants and large invertebrates:0.5 x 28m 1
    - 0.5 x 30m 8
  - (2)  $1/4 \text{ m}^2$  quadrats for plant density, cover and biomass -9 + 7 = 16
  - (3) Tagged plants measured:

<u>Agarum cribrosum - 6</u>

<u>Alaria fistulosa</u> - 9

Laminaria groenlandica - 13

Nereocystis luetkeana - 6

- (4) Feeding observations 35
- (5) Size distribution for six species
- d. Seldovia Point Subtidal Survey (8-4-77 and 8-5-77)

(1) Large quadrats for plants and large invertebrates

- 0.5 x 12m 1
- $0.5 \times 25m 5$
- 1.0 x 25m 2
- (2)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 30
- (3)  $1/4 \text{ m}^2$  quadrats for cover and density of dominant plants and animals 4
- (4) Feeding observations 1
- (5) Size distribution for three species

- e. Jakolof Bay Subtidal Studies (8-18-77)
  - (1) Tagged plants measured:

Laminaria groenlandica - 10

- (2) Feeding observations 8
- (3) Size distribution for one species
- f. Gull Island (8-27-77 and 8-30-77)
  - (1)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 25
  - (2) Feeding observations 1
  - (3) Size distribution for two species
- g. Seldovia Point Intertidal Survey (8-28-77 and 8-29-77)
  - (1)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 39
  - (2) Feeding observations 5
  - (3) Size distribution for three species
- h. Seldovia Point Subtidal Survey (9-13-77)
  - (1)  $1/4 \text{ m}^2$  quadrats for plant cover, density and biomass 10
  - (2) Size distribution for three species

### F. Milestone Chart and Data Submission Schedule

The scheduling projected in the milestone chart is being met, with two exceptions. Submission of data reports and digital data are lagging because of field schedules, keypunch backlog and delays in taxonomic assistance. However, the situation is better than at last reporting. Taxonomic information has become available and a data report covering through August is in progress. Completion of that report is projected for 30 November 1977.

### III. <u>Results</u>

A brief data report will be submitted after laboratory analysis is completed.

### IV. Preliminary Interpretation of Results

Plant production was high during the summer at Seldovia Point and Gull Island, except on the horizontal portion of the bench at Gull Island. The disappearance of the thatched barnacle <u>Balanus cariosus</u> there resulted in the absence of a usually dense cover of <u>Alaria</u> ?praelonga that zone. Causes cannot be determined.

The kelp bed at Seldovia Point was well developed this year and included large numbers of both <u>Nereocystis luetkeana</u> and <u>Alaria fistulosa</u>. Growth rates for those two species were consistently quite high, but were decreasing to a low rate through the summer for <u>Laminaria groenlandica</u> and <u>Agarum cribrosum</u>.

V. Estimated Funds Expended

\$92,000.00

RECONNAISSANCE OF THE INTERTIDAL AND SHALLOW SUBTIDAL BIOTIC LOWER COOK INLET (SUPPLEMENT TO RESEARCH UNIT #417) WILL BE AVAILABLE AT A LATER DATE. QUARTERLY REPORT

Contract # 03-5-022-67-TA8 #4 Research Unit # 424 Reporting Period: 1 Apr 76 - 1 Oct 77 Number of Pages: 361

Lower Cook Inlet Meroplankton

T. Saunders English Department of Oceanography University of Washington Seattle, Washington 98195

1 October 1977

Departmental Concurrence:

Ander

George C. Anderson Associate Chairman for Research

REF: A77-17

### TABLE OF CONTENTS

Page Number

List of Figures

### List of Tables

- I. Task Objective
- II. Laboratory Activities
  - A. Ship or Field Trip Schedule
  - B. Scientific Party
  - C. Methods
  - D. Sample Localities
  - E. Data Analyzed
  - F. Milestone Chart
- III. Results
- IV. Discussion
- V. Future Work
- VI. Estimate of Funds Expended

#### LIST OF FIGURES

### Figure

#### Page Number

- 1. Station locations, Cook Inlet area
- Comparison of concentrations between 333 and 505 µm mesh nets

### Seasonal quantitative density distribution of early life history stages (10 stations, 7 cruises)

- 3. Fish eggs < 1 mm in diameter
- 4. Fish eggs  $\sim 1$  mm in diameter
- 5. Fish eggs  $\sim$  2 mm in diameter
- 6. Fish eggs  $\sim$  3 mm in diameter
- 7. Ammodytes hexapterus larvae
- 8. Ammodytes hexapterus juveniles
- 9. Clupea harengus pallasi larvae
- 10. Clupea harengus pallasi juveniles
- 11. Gadidae larvae
- 12. Gadidae juveniles
- 13. Hippoglossoides sp. larvae
- 14. *Hippoglossoides* sp. juveniles
- 15. Mallotus villosus larvae
- 16. Mallotus villosus juveniles
- 17. Osmeridae larvae
- 18. Osmeridae juveniles
- 19. Pandalopsis dispar stage I
- 20. P. dispar stage II

### Figure

| 21. | P. dispar stage III       |
|-----|---------------------------|
| 22. | P. dispar stage IV        |
| 23. | P. dispar stage V         |
| 24. | P. dispar juveniles       |
| 25. | Pandalus borealis stage I |
| 26. | P. borealis stage II      |
| 27. | P. borealis stage III     |
| 28. | P. borealis stage IV      |
| 29. | P. borealis stage V       |
| 30. | P. borealis stage VI      |
| 31. | P. borealis stage VII     |
| 32. | P. borealis juveniles     |
| 33. | P. danae stage I          |
| 34. | P. danae stage II         |
| 35. | P. danae stage III        |
| 36. | P. danae stage IV         |

- 37. P. danae stage V
- 38. P. danae stage VI
- 39. *P. danae* juveniles
- 40. P. goniurus stage I
- 41. P. goniurus stage II
- 42. P. goniurus stage III
- 43. P. goniurus stage IV

### Page <u>Number</u>

## Figure

| Page   |   |
|--------|---|
| Number | • |

| and the second second |                          |
|-----------------------|--------------------------|
| 44.                   | P. goniurus stage V      |
| 45.                   | F. goniurus stage VI     |
| 46.                   | P. goniurus stage VII    |
| 47.                   | P. goniurus juveniles    |
| 48.                   | P. hypsinotus stage I    |
| 49.                   | P. hypsinotus stage II   |
| 50.                   | P. hypsinotus stage III  |
| 51.                   | P. hypsinotus stage $IV$ |
| 52.                   | P. hypsinotus stage V    |
| 53.                   | P. hypsinotus stage VI   |
| 54.                   | P. hypsinotus juveniles  |
| 55.                   | P. platyceros stage I    |
| 56.                   | P. platyceros stage II   |
| 57.                   | P. platyceros stage III  |
| 58.                   | P. platyceros stage IV   |
| 59.                   | P. platyceros juveniles  |
| 60.                   | P. stenolepis stage I    |
| 61.                   | P. stenolepis stage II   |
| 62.                   | P. stenolepis stage III  |
| 63.                   | P. stenolepis stage IV   |
| 64.                   | P. stenolepis stage V    |
| 65.                   | P. stenolepis stage VI   |
| 66.                   | P. stenolepis juveniles  |

# Figure

•

Page <u>Number</u>

| 67.  | P. montagui tridens stage I              |
|------|------------------------------------------|
| 68.  | P. montagui tridens stage II             |
| 69.  | P. montagui tridens stage III            |
| 70.  | P. montagui tridens stage IV             |
| 71.  | P. montagui tridens juveniles            |
| 72.  | Non-commercial anomuran crab zoeae       |
| 73.  | Non-commercial anomuran crab megalopae   |
| 74.  | Non-commercial brachyuran crab zoeae     |
| 75.  | Non-commercial brachyuran crab megalopae |
| 76.  | Cancer magister stage I                  |
| 77.  | C. magister stage II                     |
| 78 - | C. magister stage III                    |
| 79.  | C. magister stage IV                     |
| 80.  | C. magister stage V                      |
| 81.  | C. magister megalopae                    |
| 82.  | C. oregonensis stage I                   |
| 83.  | C. oregonensis stage II                  |
| 84.  | C. oregonensis stage III                 |
| 85.  | C. oregonensis stage IV                  |
| 86.  | C. oregonensis stage V                   |
| 87.  | C. oregonensis megalopae                 |
| 88.  | C. productus stage I                     |
| 89.  | C. productus stage II                    |

### List of Figures (continued)

### Figure

Page Number

| 90.  | C. productus stage III            |
|------|-----------------------------------|
| 91.  | C. productus stage IV             |
| 92.  | C. productus stage V              |
| 93.  | C. productus megalopae            |
| 94.  | Chionoecetes bairdi stage I       |
| 95.  | C. bairdi stage Il                |
| 96.  | Chionoecetes sp. megalopae        |
| 97.  | Paralithodes camtschatica stage I |
| 98.  | P. camtschatica stage II          |
| 99.  | P. camtschatica stage III         |
| 100. | P. camtschatica stage IV          |
| 101. | P. comtschatica megalopae         |
| 102. | P. platypus stage I               |
| 103. | P. platypus stage II              |
| 104. | P. platypus stage III             |
| 105. | P. platypus stage IV              |
| 106. | P. platypus megalopae             |
|      |                                   |

Seasonal quantitative density distribution of early history stages (sums of 10 stations, 7 cruises)

- 107. Fish eggs
- 108. Fish larvae
- 109. Non-commercial anomuran crabs
- 110. Non-commercial brachyuran crabs

## Fi

Page Number

| igure |                           |
|-------|---------------------------|
| 111.  | Cancer magister           |
| 112.  | C. oregonensis            |
| 113.  | C. productus              |
| 114.  | Chionoecetes              |
| 115.  | Paralithodes camtschatica |
| 116.  | P. platypus               |
| 117.  | Pandalopsis dispar        |
| 118.  | Pandalus borealis         |
| 119.  | P. danae                  |
| 120.  | P. goniurus               |
| 121.  | P. hypsinotus             |
| 122.  | P. platyceros             |
| 123.  | P. stenolepis             |
| 124.  | P. montagui tridens       |

#### LIST OF TABLES

### Table

Page Number

 Station locations
 Samples taken at ten locations on seven seasonal cruises in Lower Cook Inlet, April 1976 through February 1977
 Percentage of sample volume examined for four categories of organisms

4. UW haul summary sheet, 06-13 April 1976, bongo tows

- 5. UW haul summary sheet, 06-13 April 1976, 1-m NIO tows
- UW haul summary sheet, 06-13 April 1976, miscellaneous net tows
- 7. UW haul summary sheet, 05-09 May 1976, bongo tows
- 8. UW haul summary sheet, 05-09 May 1976, 1-m NIO tows

9. UW haul summary sheet, 22-30 May 1976, bongo tows

- 10. UW haul summary sheet, 22-30 May 1976, 1-m NIO tows
- 11. UW haul summary sheet, 08-15 July 1976, bongo tows
- 12. UW haul summary sheet, 24-31 August 1976, bongo tows
- 13. UW haul summary sheet, 17-29 October 1976, bongo tows
- 14. UW haul summary sheet, 21-26 February 1977, bongo tows
- 15. Milestone chart
- Number of fish eggs and larvae at each station, 06-13 April 1976
- 17. Summary of taxonomic categories of fish eggs, larvae, young and adults, 06-13 April 1976
- 18. List of possible fish for egg size categories

### Table

| 19. | Identification of fish eggs and larvae by station,<br>06-13 April 1976, bongo tows                 |
|-----|----------------------------------------------------------------------------------------------------|
| 20. | Identification of fish eggs and larvae by station,<br>06-13 April 1976, 1-m NIO tows               |
| 21. | Identification of fish and larvae by station,<br>06-13 April 1976, miscellaneous net tows          |
| 22. | Summary of taxonomic categories of commercially important crab and shrimp larvae, 06-13 April 1976 |
| 23. | Identification of shrimp and crab larvae by station,<br>06-13 April 1976, bongo tows               |
| 24. | Identification of shrimp and crab larvae by station,<br>06-13 April 1976, 1~m NIO tows             |
| 25. | Identification of shrimp and crab larvae by station, 06-13 April 1976, miscellaneous net tows      |
| 26. | Number of fish eggs and larvae at each station,<br>05-09 May 1976                                  |
| 27. | Summary of taxonomic categories of fish eggs, larvae,<br>young and adults, 05–09 May 1976          |
| 28. | Identification of fish eggs and larvae by station, 05-09 May 1976, bongo tows                      |
| 29. | Identification of fish eggs and larvae by station, 05-09 May 1976, 1-m NIO tows                    |
| 30. | Summary of taxonomic categories of commercially important crab and shrimp larvae, 05-09 May 1976   |
| 31. | Identification of crab and shrimp larvae by station,<br>05-09 May 1976, bongo and 1-m NIO tows     |
| 32. | Number of fish eggs and larvae at each station,<br>22-30 May 1976                                  |
| 33. | Summary of taxonomic categories of fish eggs, larvae,<br>young and adults, 22-30 May 1976          |

.

List of Tables (continued)

| Table |                                                                                                     | Page<br>Number |
|-------|-----------------------------------------------------------------------------------------------------|----------------|
| 34.   | Identification of fish eggs and larvae by station, 22-30 May 1976, bongo tows                       |                |
| 35.   | Identification of fish eggs and larvae by station, 22-30 May 1976, 1-m NIO tows                     |                |
| 36.   | Summary of taxonomic categories of commercially important crab and shrimp larvae, 22-30 May 1976    |                |
| 37.   | Identification of crab and shrimp larvae by station,<br>22-30 May 1976, bongo and 1-m NIO tows      |                |
| 38.   | Number of fish eggs and larvae at each station, 08-15 July 1976                                     |                |
| 39.   | Summary of taxonomic categories of fish eggs, larvae, young and adults, 08-15 July 1976             |                |
| 40.   | Identification of fish eggs and larvae by station, 08-15 July 1976, bongo tows                      |                |
| 41.   | Summary of taxonomic categories of commercially important crab and shrimp larvae, 08-15 July 1976   |                |
| 42.   | Identification of crab and shrimp larvae by station, 08-15 July 1976, bongo tows                    |                |
| 43.   | Number of fish eggs and larvae at each station,<br>24-31 August 1976                                |                |
| 44.   | Summary of taxonomic categories of fish eggs,<br>larvae, young and adults, 24-31 August 1976        |                |
| 45.   | Identification of fish eggs and larvae by station,<br>24-31 August 1976, bongo tows                 |                |
| 46.   | Summary of taxonomic categories of commercially important crab and shrimp larvae, 24-31 August 1976 |                |
| 47.   | Identification of crab and shrimp larvae by station, 24-31 August 1976, bongo tows                  |                |
| 48.   | Number of fish eggs and larvac at each station, 17-29 October 1976                                  |                |
|       |                                                                                                     |                |

Table

| 49. | Summary | of ta | xonoi | nic ( | categ | gories | of  | fish | eggs, |
|-----|---------|-------|-------|-------|-------|--------|-----|------|-------|
|     | larvae, | young | and   | adu   | lts,  | 17-29  | 0ct | ober | 1976  |

- 50. Identification of fish eggs and larvae by station, 17-29 October 1976, borgo tows
- 51. Summary of taxonomic categories of commercially important crab and shrimp larvae, 17-29 October 1976
- 52. Identification of crab and shrimp larvae by station, 17-29 October 1976, bongo tows
- 53. Number of fish eggs and larvae at each station, 21-26 February 1977
- 54. Summary of taxonomic categories of fish eggs, larvae, young and adults, 21-26 February 1977
- 55. Identification of fish eggs and larvae by station, 21-26 February 1977, bongo tows
- 56. Summary of taxonomic categories of commercially important crab and shrimp larvae, 21-26 February 1977
- 57. Identification of crab and shrimp larvae by station, 21-26 February 1977, bongo tows
- 58. Fishes collected in the Lower Cook Inlet region, April 1976 through February 1977
- 59. Pandalid shrimp collected in the Lower Cook Inlet region, April 1976 through February 1977
- 60. Commercially important species of crab larvae collected in the Lower Cook Inlet region, April 1976 through February 1977
- 61. Relatively abundant fish eggs taken at 10 stations on 7 cruises in the Lower Cook Inlet region
- 62. Relatively abundant fish larvae taken at 10 stations on 7 cruises in the Lower Cook Inlet region

List of Tables (continued)

Table

Page Number

63. Relatively abundant crab larvae taken at 10 stations on 7 cruises in the Lower Cook Inlet region

....

64. Relatively abundant shrimp larvae taken at 10 stations on 7 cruises in the Lower Cook Inlet region

#### I. Task Objective

Our main objective is to conduct a quantitative survey to determine the seasonal distribution of commercially or ecosystem important species of ichthyoplankton, crab and shrimp larvae in Lower Cook Inlet, Alaska.

- II. Field or Laboratory Activities
  - A. Ship or Field Trip Schedule

None in this quarter.

B. Scientific Party

None in this quarter.

C. Methods

Ten routine sampling locations were established in the Lower Cook Inlet region (Figure 1 and Table 1). Seven seasonal cruises were made from April 1976 through February 1977; bad weather prevented sampling four stations (Table 2).

Plankton samples were obtained by using open bongo nets in doubleoblique hauls. The diameter of the nets was 60 cm and the mesh sizes were 333 and 505 µm. The volume of water filtered was estimated as the product of the area of the net opening and the distance of each haul measured by a calibrated flow meter in the mouth of each net. The assumption was implicit that the efficiency of filtration was 100%. If one flow meter failed, the other meter reading was used; in two instances when both meters failed, an estimate was made using the duration relative to other hauls.

The samples were sorted repeatedly to remove fish eggs, fish larvae and juveniles, shrimps, and crabs. In most cases the entire sample was examined; subsamples were taken when organisms in a group were relatively abundant (Table 3). When the first subsample contained too few of the desired organisms, further subsamples were examined.

The organisms were identified to the lowest practicable taxonomic category and life history stage. The concentrations of the organisms were recorded, and reported in data submissions destined for the National Oceanographic Data Center, as abundance per cubic meter, with a minimum concentration of 0.001.

The concentrations taken with paired 333 and 505 µm meshes did not appear to differ as might occur with extrusion of small organisms with escapement of large organisms (Figure 2). Therefore, the catches of the paired nets for each haul were combined as the geometric means of the two

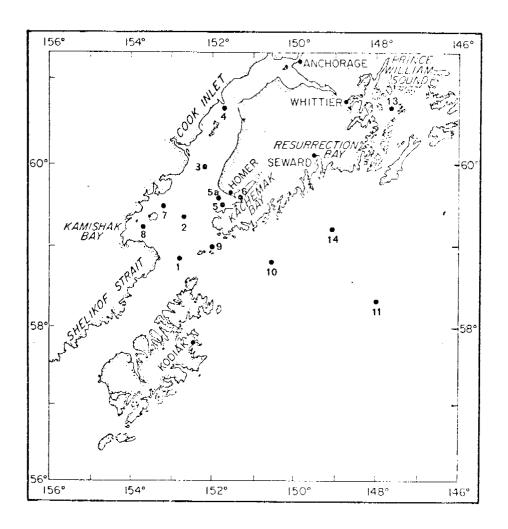



Figure 1. Station locations, Cook Inlet area.

•

| Table | 1. | Station | Locations |
|-------|----|---------|-----------|

| Station | Latitude (N) | Longitude (W) | Chart<br>Depth<br>(m) | Location             |
|---------|--------------|---------------|-----------------------|----------------------|
|         |              |               |                       |                      |
| 1       | 58° 53.0'    | 152° 48.0'    | 174                   | Lower Cook Inlet     |
| 2       | 59° 22.0'    | 152° 40.0'    | 62                    | Lower Cook Inlet     |
| 3       | 60° 00.0'    | 152° 10.0'    | 58                    | Lower Cook Inlet     |
| 4       | 60° 40.0'    | 151° 40.0'    | <b>3</b> 6            | Cook Inlet           |
| 5       | 59° 31.0'    | 151° 45.0'    | 80                    | Outer Kachemak Bay   |
| 5a      | 59° 35.0'    | 151° 49.0'    | 36                    | Outer Kachemak Bay   |
| 6       | 59° 36.0'    | 151° 18.0'    | 77                    | Inner Kachemak Bay   |
| 7       | 59° 30.0'    | 153° 10.0'    | 35                    | Lower Cook Inlet     |
| 8       | 59° 14.0'    | 153° 40.0'    | 29                    | Kamishak Bay         |
| 9       | 59° 02.0'    | 151° 58.0'    | 196                   | Kennedy Entrance     |
| 10      | 58° 52.0'    | 150° 51.0'    | 210                   | Gulf of Alaska       |
| 11      | 58° 23.0'    | 148° 03.0'    | 1005                  | Gulf of Alaska       |
| 13      | 60° 42.0'    | 147° 41.0'    | 686                   | Prince William Sound |
| 14      | 58° 24.0'    | 149° 05.0'    | 214                   | Gulf of Alaska       |

.

•

| Station    | 6-13<br>Apr | 6-9<br>May | 22-30<br>May | 8-15<br>Jul | 24-31<br>Aug | 17-29<br>Oct | 21-26<br>Feb |
|------------|-------------|------------|--------------|-------------|--------------|--------------|--------------|
| 1          | х           | х          | x            | x           | x            | х            | х            |
| 2          | х           | х          | x            | Х           | Х            | х            | x            |
| 3          | X           | х          | x            | Х           | Х            | X            | х            |
| <i>l</i> , | х           | х          | х            | Х           | Х            | Х            | х            |
| 5          | х           | х          | x            | х           | X            | Х            | х            |
| 6          | х           | Х          | x            | х           | X            | Х            | х            |
| 7          | Х           | X          | x            | х           | X            | Х            | х            |
| 8          |             | x          | х            | х           | Х            | Х            | х            |
| 9          | Х           | Х          |              | х           | X ·          | Х            | х            |
| 10         | х           |            | х            | х           | х            |              | x            |

Table 2. Samples taken at ten locations on seven seasonal cruises in Lower Cook Inlet, April 1976 through February 1977.

# Table 3. Percentage of sample volume examined for four categories of organisms.

.

| 18<br>30 | 51<br>7 | 54<br>7 | 53<br>6 |
|----------|---------|---------|---------|
| 30       | 7       | 7       | 6       |
|          |         |         |         |
| 7        | 4       | 4       | 4       |
| 5        | 1       | 1       | 1       |
| 3        | 0       | 0       | 2       |
| 3        | 0       | 0       | 0       |
|          | 3       | 3 0     | 3 0 0   |

290

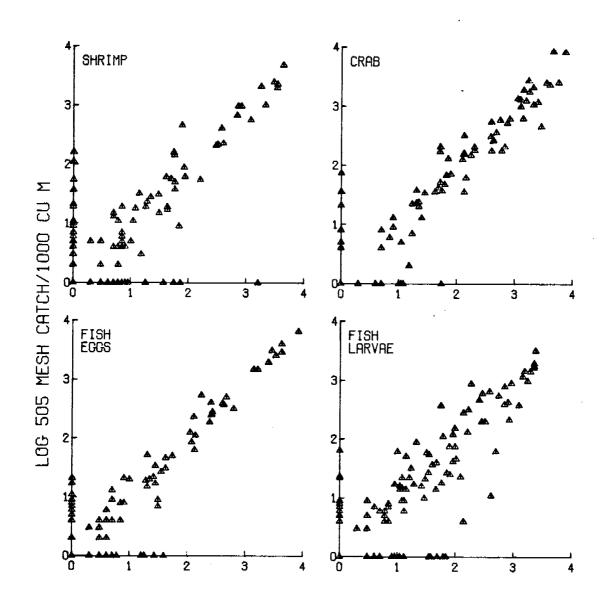



Figure 2. Comparison of concentrations between 333 and 505 µm mesh mets

LOG 333 MESH CATCH/1000 CU M

concentrations. Those mean concentrations per cubic meter were transformed, based on the depth of each sample, to abundance per 10 square meters for graphical and tabular presentations.

The methods of laboratory analysis are unchanged from earlier reports.

D. Sample Localities

See Figure 1 and Table 1.

E. Data Analyzed

The number and kinds of net hauls analyzed from the *Discoverer* cruise, Leg III, 06-13 April 1976, are reported in Tables 4, 5 and 6. Thirteen replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes. Fifteen samples were collected using a 1-m NIO (National Institute of Oceanography) net with 571  $\mu$ m mesh. One sample was collected with a Miller net, one sample with a 3-m NIO net and one sample with a 5 x 6-m NIO. The Miller net mesh size was 571  $\mu$ m; the two NIO nets had 2 inch meshes. Samples were collected at 11 stations, including 2 in the Gulf of Alaska and 1 in Prince William Sound.

The number and kinds of net hauls analyzed from the *Discoverer* cruise, Leg V, 05-09 May 1976, are reported in Tables 7 and 8. Twelve replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes, and one sample was collected with a 1-m NIO (National Institute of Oceanography) net at 11 stations, including 1 station in the Culf of Alaska.

The number and kinds of net hauls analyzed from the *Discoverer* cruise, Leg VII, 22-30 May 1976, are reported in Tables 9 and 10. Eighteen replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes, and one sample was collected with a 1-m NIO net at twelve stations, including 3 stations in the Gulf of Alaska and one in Prince William Sound.

The number and kinds of net hauls analyzed from the *Acona* cruise, Leg III, 08-15 July 1976, are reported in Table 11. Fifteen replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes at 11 stations, including 2 stations in the Gulf of Alaska.

The number and kinds of net hauls analyzed from the Surveyor cruise, Leg II, 24-31 August 1976, are reported in Table 12. Fifteen replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes at 13 stations, including 3 stations in the Gulf of Alaska and 1 in Prince William Sound.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT)         | Station  | Haul       | Latitude (N)           | Longitude (W)     | Maximum<br>Sampling<br>Depth<br>(m) | Spec 1<br>(m/sec) | Doration<br>of Haul<br>(secs) | Volume <sup>a</sup><br>Filtered<br>(m <sup>3</sup> ) |
|-------------------------|-----------------------|----------|------------|------------------------|-------------------|-------------------------------------|-------------------|-------------------------------|------------------------------------------------------|
| 7 Apr                   | 0844                  | 1        | 1          | 58° 52.7'              | 152° 42.8'        | 125                                 | 2.2               | 600                           | 350                                                  |
| 7 Apr                   | 1620                  | 2        | 2          | 59° 23.2'              | 152° 41.5'        | <sup>b</sup>                        | 1.1               | . 251                         | 79                                                   |
| 7 Apr                   | 2239                  | 3        | 2          | 59° 56.5'              | 152° 11.7'        | c                                   | 1.4               | 276                           | 106                                                  |
| 8 Apr                   | 0440                  | 4        | 1          | 60° 40.5'              | 151° 35.0'        | <sup>c</sup>                        | 1.4               | 240                           | 95                                                   |
| 8 Apr                   | 1520                  | 5        | 3          | 59° 32.0'              | 151° 39.5'        | d                                   | 2.2               | 446                           | 272                                                  |
| 8 Apr                   | 1635                  | 6        | 1          | 59° 35.9'              | 151° 21.6'        | 40                                  | 1.8               | 411                           | 208                                                  |
| 9 Apr                   | 0155                  | 6        | 5          | 59° 36.3'              | 151° 19.5'        | 59                                  | 1.8               | 690                           | 353                                                  |
| 10 Apr                  | 0810                  | 7        | <b>,</b> 1 | 59° 30.7'              | 153° 06.6'        | 41                                  | 1.2               | 180                           | 64                                                   |
| 10 Apr                  | 1536                  | 9        | 2          | 59° 01.7'              | 151° 54.2'        | 147                                 | 1.9               | 1143                          | 612                                                  |
| 10 Apr                  | 2120                  | 10       | 1          | 58° 51.8'              | 150° 41.4'        | 110                                 | 1.5               | 840                           | 359                                                  |
| 11 Apr                  | 1255                  | 11       | 2          | 58° 27.4'              | 148° 08.3'        | 130                                 | 1.8               | 720                           | 365                                                  |
| 12 Apr                  | 0355                  | 13       | 2          | 60° 41.8'              | 147° 41.7'        | 190                                 | 1.7               | 1338                          | 657                                                  |
| 12 Apr                  | 1448                  | 13       | 4          | 60° 41.7'              | 147° 41.1'        | 350                                 | 1.4               | 2992                          | 1186                                                 |
|                         | <sup>a</sup> Averaged | Ъ<br>ВKG | not use    | d <sup>C</sup> Depth g | greater than spri | ng maximum                          | d BK              | G not calib                   | orated                                               |

## Table 4. UW Haul Summary Sheet, Discoverer, Leg III, 06-13 April 1976

Bongo Tows

| Table | 5. | UW Haul | Summary | Sheet, | Discoverer, | Leg | III, | 06-13 | April | 1976 |
|-------|----|---------|---------|--------|-------------|-----|------|-------|-------|------|
|       |    |         |         |        |             |     |      |       |       |      |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Tow <sup>a</sup><br>Type | Speed<br>(m/sec)  | Duration<br>of Haul<br>(secs) | Volume <sup>b</sup><br>Filtered<br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|--------------------------|-------------------|-------------------------------|------------------------------------------------------|
| 7 Apr                   | 0916          | 1       | 2    | 58° 52.7'    | 152° 46.6'    | 100 <sup>d</sup>                    | DO                       | ∿1.3 <sup>e</sup> | 607                           | ~790 <sup>e</sup>                                    |
| 7 Apr                   | 1639          | 2       | 3    | 59° 22.7'    | 152° 40.2'    | f                                   | DO                       | ∿2.0 <sup>e</sup> | 268                           | ∿536 <sup>e</sup>                                    |
| 7 Apr                   | 2217          | 3       | 1    | 59° 56.5'    | 152° 11.7'    | 80                                  | DO                       | 0.9               | 476                           | 413                                                  |
| 8 Apr                   | 0456          | 4       | 2    | 60° 40.5'    | 151° 35.0'    | 30                                  | DO                       | 2.1               | 220                           | 456                                                  |
| 8 Apr                   | 1507          | 5       | 2    | 59° 31.6'    | 151° 42.0'    | 38                                  | DO                       | 2.2               | 296                           | 659                                                  |
| 8 Apr                   | 1650          | 6       | 2    | 59° 36.5'    | 151° 19.0'    | 75                                  | DO                       | 1.2               | 391                           | 481                                                  |
| 9 Apr                   | 0115          | 6       | 4    | 59° 36.5'    | 151° 19.8'    | 36                                  | DO                       | 1.5               | 656                           | 975                                                  |
| 9 Apr                   | 0610          | 6       | 6    | 59° 36.4'    | 151° 18.2'    | 25                                  | HZ                       | 2.0               | 1420                          | 2920                                                 |
| 9 Apr                   | 1457          | 6       | 7    | 59° 36.5'    | 151° 19.0'    | 64                                  | ΗZ                       | 1.5               | 732                           | 1079                                                 |
| 9 Apr                   | 1628          | 6       | 8    | 59° 36.5'    | 151° 19.1'    | 27                                  | ΗZ                       | ∿2.0 <sup>e</sup> | 741                           | ∿1487 <sup>e</sup>                                   |
| 10 Apr                  | 1515          | 9       | 1    | 59° 01.5'    | 151° 54.2'    | 29                                  | HZ                       | 2.6               | 631                           | 167                                                  |
| 10 Apr                  | 2243          | 10      | 2    | 58° 51.8'    | 150° 42.0'    | 100                                 | DO                       | 1.4               | 1200                          | 1634                                                 |
| 12 Apr                  | 0224          | 13      | 1    | 60° 41.5'    | 147° 41.0'    | 20                                  | ΗZ                       | ∿1.5 <sup>e</sup> | 732                           | ∿1100 <sup>e</sup>                                   |
| 12 Apr                  | 0632          | 13      | 3    | 60° 41.1'    | 147° 41.1'    | <sup>c</sup>                        | DO                       | 1.2               | 600                           | 723                                                  |
| 12 Apr                  | 1640          | 13      | 5    | 60° 42.1'    | 147° 40.7'    | 10                                  | HZ                       | 1.9               | 455                           | 877                                                  |

1-m NIO Tows

<sup>d</sup> Depth estimated by wire angle

<sup>a</sup> Tow type: HZ - horizontal DO - double oblique

e TSK malfunctioned

<sup>b</sup> Averaged

f BKG not calibrated

<sup>C</sup> BKG not used

294 -

| Table | 6. | UW Haul | Summary | Sheet, | Discoverer, | Leg III, | 06-13 April | 1976 |
|-------|----|---------|---------|--------|-------------|----------|-------------|------|

| Time<br>(GMT) | Station               | Haul                              | Latitude (N)                               | Longitude (W)                                                               | Net                                                                                                                                                                                               | Tow<br>Type                                                                                                                                                                                                                            | Maximum<br>Samplin<br>Depth<br>(m)                                                                                                                                                                                                                                  | g<br>Speed<br>(m/sec)                                                                                                                                                                                                                                                                                                                          | Duration<br>of Haul<br>(secs)                                                                                                                                                                  | Volume <sup>a</sup><br>Filtered<br>(m <sup>3</sup> )                                                                                                                                                                                                             |
|---------------|-----------------------|-----------------------------------|--------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2310          | 3                     | 3                                 | 59° 56.5'                                  | 152° 11.7'                                                                  | 5 x 6-m<br>NIO                                                                                                                                                                                    | DO                                                                                                                                                                                                                                     | 50 <sup>b</sup>                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                            | 5700                                                                                                                                                                                           | 220,077                                                                                                                                                                                                                                                          |
| 1607          | 9                     | 3                                 | 59° 01.3'                                  | 151° 56.5'                                                                  | Miller                                                                                                                                                                                            | HZ                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                   | 6.0                                                                                                                                                                                                                                                                                                                                            | 1800                                                                                                                                                                                           | 80                                                                                                                                                                                                                                                               |
| 0631          | 11                    | 1                                 | 58° 25.1'                                  | 148° 05.2'                                                                  | 3-m NIO                                                                                                                                                                                           | HZ                                                                                                                                                                                                                                     | 35 <sup>b</sup>                                                                                                                                                                                                                                                     | 2.2                                                                                                                                                                                                                                                                                                                                            | 4560                                                                                                                                                                                           | 90,288                                                                                                                                                                                                                                                           |
|               | (GMT)<br>2310<br>1607 | (GMT) Station<br>2310 3<br>1607 9 | (GMT) Station Haul<br>2310 3 3<br>1607 9 3 | (GMT) Station Haul Latitude (N)<br>2310 3 3 59° 56.5'<br>1607 9 3 59° 01.3' | (GMT)       Station       Haul       Latitude (N)       Longitude (W)         2310       3       3       59° 56.5'       152° 11.7'         1607       9       3       59° 01.3'       151° 56.5' | (GMT)       Station       Haul       Latitude (N)       Longitude (W)       Net         2310       3       3       59° 56.5'       152° 11.7'       5 x 6-m         1607       9       3       59° 01.3'       151° 56.5'       Miller | (GMT)       Station       Haul       Latitude (N)       Longitude (W)       Net       Type         2310       3       3       59° 56.5'       152° 11.7'       5 x 6-m       DO         1607       9       3       59° 01.3'       151° 56.5'       Miller       HZ | Time<br>(GMT)       Station       Haul       Latitude (N)       Longitude (W)       Net       Tow<br>Type       Sampling<br>Depth<br>(m)         2310       3       3       59° 56.5'       152° 11.7'       5 x 6-m<br>NIO       DO       50 <sup>b</sup> 1607       9       3       59° 01.3'       151° 56.5'       Miller       HZ       0 | Time<br>(GMT)StationHaulLatitude (N)Longitude (W)NetTow<br>TypeSampling<br>Depth<br>(m)Speed<br>(m)23103359° 56.5'152° 11.7'5 x 6-m<br>NIODO $50^{b}$ 1.516079359° 01.3'151° 56.5'MillerHZ06.0 | Time<br>(GMT)StationHaulLatitude (N)Longitude (W)NetTow<br>TypeSampling<br>Depth<br>TypeDuration<br>of Haul<br>(m)Duration<br>of Haul<br>(secs)23103359° 56.5'152° 11.7' $5 \times 6 - m$<br>NIODO $50^{b}$ 1.5 $5700$ 16079359° 01.3'151° 56.5'MillerHZ06.01800 |

a Averaged.

 $^{b}$  Depth estimated by wire angle.

| Table 🛛 | 7. | UW Haul | Summary | Sheet, | Discoverer, | Leg | V, | 05-09 | May | 1976 |
|---------|----|---------|---------|--------|-------------|-----|----|-------|-----|------|
|---------|----|---------|---------|--------|-------------|-----|----|-------|-----|------|

Date Volume Filtered<sup>b</sup> Duration (1976) Time of Haul Depth Speed (GMT) (GMT) Station Haul Latitude (N) Longitude (W) (m) (m/sec) (secs) (m<sup>3</sup>) 6 May 1325 1 58° 52.5' 152° 49.2' 1.8 1 170 1200 645 6 May 1552 1 59° 21.0' 2 152° 39.7' 53 1.3 242 660 6 May 2117 59° 58.5' 152° 11.4' 3 1 65 1.7 594 280 7 May 0259 1 60° 39.2' 151° 37.1' 4 65 1.6 260 600 7 May 1030 2 59° 34.4' 151° 47.2' 5 20 2.4 360 244 7 May 1312 6 1 59° 37.0' 151° 18.3' 1.4 480 182 75 7 May 1709 2 59° 37.1' 151° 19.0' 6 1.5 656 268 70 8 May  $25^{\alpha}$ 0020 1 59° 34.6' 151° 47.5' 5a 1.7 240 116 8 May 0402 7 1 153° 10.4' 35 59° 30.0' 420  $32^{\alpha}$ 8 May 0734 1 59° 14.2' 153° 40.3' 8 1.3 331 121 8 May 1315 9 1 59° 02.0' 151° 59.1' 130 1.6 1200 546  $195^{\alpha}$ 9 May 0145 11 1 58° 21.8' 148° 01.7' 1.6 1740 795 <sup>b</sup> Averaged

Bongo Tows

 $^{\alpha}$  Estimated by wire angle

 $^{c}$  TSK malfunctioned

296

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>a</sup><br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 7 May                   | 1757          | 6       | 3    | 59° 37.2'    | 151° 17.6'    | 40                                  | 1.1              | 619                           | 710                                                  |

## Table 8. UW Haul Summary Sheet, Discoverer, Leg V, 05-09 May 1976

1-m NIO Tows

<sup>a</sup> Averaged

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>a</sup><br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 25 May                  | 0732          | 1       | 1    | 58° 53.7'    | 152° 47.5'    | 105                                 | 1.9              | 1240                          | 652                                                  |
| 25 May                  | 1150          | 2       | 1    | 59° 23.9'    | 152° 37.3'    | 40                                  | 1.6              | 480                           | 216                                                  |
| 25 May                  | 1607          | 3       | 1    | 59° 58.6'    | 152° 13.4'    | 58                                  | 1.4              | 420                           | 170                                                  |
| 25 May                  | 2217          | 4       | 1    | 60° 41.3'    | 151° 37.5'    | 40                                  | 1.5              | 604                           | 252                                                  |
| 26 May                  | 0541          | 5a      | 2    | 59° 35.1'    | 151° 45.9'    | 45                                  | 1.6              | 311                           | 149                                                  |
| 26 May                  | 0835          | 6       | 1    | 59° 36.7'    | 151° 17.8'    | 90                                  | 1.4              | 539                           | 221                                                  |
| 26 May                  | 1928          | 6       | 3    | 59° 36.6'    | 151° 18.6'    | 67                                  | 1.8              | 418                           | 212                                                  |
| 27 May                  | 0056          | 6       | 、4   | 59° 36.5'    | 151° 19.5'    | 51                                  | 1.4              | 420                           | 174                                                  |
| 27 May                  | 0708          | 6       | 7    | 59° 36.5'    | 151° 19.6'    | 50                                  | 1.7              | 389                           | 193                                                  |
| 27 May                  | 1300          | 7       | 1    | 59° 29.4'    | 153° 09.6'    | 36                                  | 1.1              | 490                           | 156                                                  |
| 27 May                  | 1701          | 8       | 1    | 59° 13.4'    | 153° 38.5'    | 32                                  | 1.3              | 240                           | 87                                                   |
| 30 May                  | 1813          | 10      | 1    | 58° 52.0'    | 150° 41.4'    | 90                                  | 1.7              | 710                           | 348                                                  |
| 30 May                  | 0253          | 11      | 1    | 58° 24.1'    | 148° 06.2'    | 130                                 | 1.8              | 1581                          | 797                                                  |
| 30 May                  | 0813          | 11      | 2    | 58° 21.3'    | 148° 02.4'    | 265                                 | 1.5              | 1809                          | 764                                                  |

# Table 9. UW Haul Summary Sheet, Discoverer, Leg VII, 22-30 May 1976

Bongo Tows

| Table 9. (Continued) | ntinued) | 9. ( | Table |
|----------------------|----------|------|-------|
|----------------------|----------|------|-------|

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>a</sup><br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 28 May                  | 1831          | 13      | 1    | 60° 42.1'    | 147°40.5'     | 165                                 | 1.9              | 1735                          | 1055                                                 |
| 28 May                  | 2248          | 13      | 2    | 60° 42.5'    | 147° 40.7'    | 230                                 | 2.0              | 3960                          | 2244                                                 |
| 29 May                  | 1029          | 13      | 3    | 60° 42.6'    | 147° 40.9'    | 190                                 | 2.3              | 1680                          | 1114                                                 |
| 28 May                  | 0536          | 14      | 1    | 59° 24.6'    | 149° 05.0'    | 165                                 | 1.8              | 1378                          | 708                                                  |

~

 $^{lpha}$  Averaged

14

## Table 10. UW Haul Summary Sheet, Discoverer, Leg VII, 22-30 May 1976

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>a</sup><br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 27 May                  | 0120          | 6       | 5    | 59° 36.7'    | 151° 19.5'    | 49                                  | 1.2              | 480                           | 581                                                  |

1-m NIO Tows

 $^{lpha}$ averaged

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Sp∶ed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>6</sup><br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 13 July                 | 0119          | 1       | 1    | 58° 53.0'    | 152° 48.0'    | 150                                 | 1.5              | 1445                          | 616                                                  |
| 12 July                 | 1133          | 2       | 1    | 59° 23.0'    | 152° 40.0'    | 30                                  | 1.8              | 490                           | 245                                                  |
| 10 July                 | 0901          | 3       | 1    | 60° 00.0'    | 152° 10.0'    | 83                                  | 1.0              | 720                           | 207                                                  |
| 10 July                 | 1556          | 4       | l    | 60° 38.1'    | 151° 38.5'    | 60                                  | 2.0              | 540                           | 297                                                  |
| 11 July                 | 0018          | 5a      | 1    | 59° 35.0'    | 151° 48.0'    | 28                                  | 2.0              | 300                           | 168                                                  |
| 11 July                 | 1009          | 6       | 2    | 59° 37.0'    | 151° 19.0'    | 27                                  | 1.5              | 240                           | 108                                                  |
| ll July                 | 1031          | 6       | 3    | 59° 37.0'    | 151° 19.0'    | 73                                  | 1.9              | 540                           | 283                                                  |
| 11 July                 | 2051          | 6       | 4    | 59° 37.0'    | 151° 19.0'    | 17                                  | 2.2              | 435                           | 272                                                  |
| 11 July                 | 2113          | 6       | 5    | 59° 37.0'    | 151° 19.0'    | 45                                  | 2.1              | 632                           | 373                                                  |
| 10 July                 | 0405          | 7       | 1    | 59° 30.0'    | 153° 10.0'    | 20                                  | 1.8              | 420                           | 209                                                  |
| 10 July                 | 0010          | 8       | 1    | 59° 14.0'    | 153° 40.0'    | 23                                  | 2.8              | 275                           | 221                                                  |
| 13 July                 | 0548          | 9       | 1    | 59° 02.0'    | 151° 58.0'    | 200                                 | 1.4              | 1829                          | 732                                                  |
| 13 July                 | 1230          | 10      | 1    | 58° 52.1'    | 150° 48.7'    | 104                                 | 2.5              | 1371                          | 958                                                  |
| 13 July                 | 2243          | 11      | 1    | 58° 24.0'    | 148° 02.0'    | 207                                 | 1.7              | 1805                          | 880                                                  |
| 14 July                 | 0835          | 11      | 2    | 58° 24.0'    | 148° 02.0'    | 206                                 | 1.8              | 1890                          | 956                                                  |

# Table 11. UW Haul Summary Sheet, Acona, Leg II, 08-15 July 1976

Bongo Tows

 $^{lpha}$ averaged

301

| Table 12. | UW Haul Summary | Sheet, Surveyor, | Leg II, | 24-31 August 1 | 976 |
|-----------|-----------------|------------------|---------|----------------|-----|
|           |                 |                  |         |                |     |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec <b>s</b> ) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered<br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|----------------------------|-------------------------------|-----------------------------------------|
| 25 Aug                  | 0840          | 1       | 1    | 58° 54.6'    | 152° 45.4'    | 163                                 | 1.2                        | 1391                          | 476                                     |
| 25 Aug                  | 1206          | 2       | 1    | 59° 22.1'    | 152° 40.0'    | 70                                  | <sup>b</sup>               | 540                           | <sup>b</sup>                            |
| 25 Aug                  | 1952          | 3       | 1    | 59° 59.5'    | 152° 11.0'    | 48                                  | 1.4                        | 566                           | 217                                     |
| 26 Aug                  | 0400          | 4       | 1    | 60° 41.6'    | 151° 37.4'    | 90                                  | 2.1                        | 543                           | 322                                     |
| 26 Aug                  | 1040          | 5a      | 1    | 59° 36.5'    | 151° 50.9'    | 30                                  | 2.7                        | 360                           | 277                                     |
| 26 Aug                  | 2203          | 6       | 1    | 59° 36.5'    | 151° 17.7'    | 40                                  | 3.2                        | 539                           | 488                                     |
| 27 Aug                  | 1000          | 6       | 2    | 59° 36.8'    | 151° 16.9'    | 50                                  | 2.0                        | 660                           | 370                                     |
| 28 Aug                  | 0650          | 7       | 1    | 59° 29.8'    | 153° 09.5'    | 48                                  | 2.0                        | 368                           | 1190                                    |
| 28 Aug                  | 0330          | 8       | 1    | 59° 14.8'    | 153° 40.8'    | 34                                  | 0.3                        | 152                           | 33                                      |
| 28 Aug                  | 1832          | 9       | 1    | 59° 02.2'    | 151° 59.0'    | 100                                 | 1.4                        | 620                           | 1387                                    |
| 28 Aug                  | 1919          | 9       | 2    | 59° 01.8'    | 151° 58.0'    | 115                                 | 0.9                        | 1407                          | 1989                                    |
| 29 Aug                  | 0459          | 10      | 1    | 58° 51.2'    | 150° 37.8'    | 135                                 | 1.2                        | 1044                          | 1907                                    |
| 29 Aug                  | 1922          | 11      | 1    | 58° 23.1'    | 148° 06.5'    | 270                                 | 1.4                        | 1631                          | 3645                                    |
| 31 Aug                  | 0641          | 13      | 1    | 60° 41.7'    | 147° 41.4'    | 165                                 | 1.4                        | 2058                          | 848                                     |
| 30 Aug                  | 0459          | 14      | 1    | 59° 23.5'    | 149° 04.0'    | 170                                 | 0.8                        | 2145                          | 468                                     |

.

Bongo Tows

averaged

<sup>b</sup>TSK's malfunctioned

302

The number and kinds of net hauls analyzed from the *Miller Freeman* cruise, Leg III, 17-29 October 1976, are reported in Table 13. Nine replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes at 9 stations.

The number and kinds of net hauls analyzed from the *Discoverer* cruise, Leg I, 21-26 February 1977, are reported in Table 14. Eighteen replicate samples were collected by standard MARMAP procedures using a 60 centimeter bongo net with 333 and 505  $\mu$ m mesh sizes at 11 stations, including 2 stations in the Gulf of Alaska.

F. Milestone Chart

The Milestone Chart (Table 15) covers the contract period of this report from October 1976 to October 1977.

#### III. Results

The summaries of samples analyzed from the *Discoverer* cruise, Leg III, 06-13 April 1976, cover the taxonomic categories of fish eggs, fish larvae, crab and shrimp larvae and adult shrimps (Tables 16-25). These data are complete and correct and correspond to data cards (024 DIS001 DISCOVERER III 76/04/06 - 76/04/13 GOA/ICHTHYOPLANKTON).

The summaries of samples analyzed from the *Discoverer* cruise, Leg V, 05-09 May 1976, cover the same taxonomic categories (Tables 26-31). These data are complete and correct and correspond to data cards (024 DIS002 DISCOVERER V 76/05/05 - 76/05/09 GOA/ICHTHYOPLANKTON).

The summaries of samples analyzed from the *Discoverer* cruise, Leg VII, 22-30 May 1976 cover the same taxonomic categories (Tables 32-37). These data are complete and correct and correspond to data cards (024 DISO03 DISCOVERER VII 76/05/22 - 76/05/30 GOA/ICHTHYOPLANKTON).

The summaries of samples analyzed from the *Acona* cruise, Leg II, 08-15 July 1976 cover the same taxonomic categories (Tables 38-42). Crab larvae were sorted from the 505  $\mu$ m mesh nets, but not the 333  $\mu$ m mesh nets. All other data are complete and correct and correspond to data cards (024 ACØ001 ACONA II 76/07/08 - 76/07/15 GOA/MEROPLANKTON).

The summaries of samples analyzed from the Surveyor cruise, Leg II, 24-31 August 1976, cover the same taxonomic categories (Tables 43-47). Crab larvae were sorted from the 505  $\mu$ m mesh nets, but not the 333  $\mu$ m mesh nets. All other data are complete and correct and correspond to data cards (024 SUR003 SURVEYOR II 76/08/24 - 76/08/31 GOA/MEROPLANKTON).

The summaries of samples analyzed from the *Miller Freeman* cruise, Leg III, 17-29 October 1976, cover the same taxonomic categories (Tables 48-52). Crab larvae were sorted from the 505  $\mu$ m mesh nets, but only one 333  $\mu$ m mesh net from station 1, haul 1, was sorted.

| (1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered <sup>a</sup><br>(m <sup>3</sup> ) |
|-----------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|------------------------------------------------------|
| 19 Oct          | 0400          | 1       | 1    | 58° 54.3'    | 152° 51.1'    | 172                                 | 1.2              | 705                           | 244                                                  |
| 28 Oct          | 0845          | 2       | 2    | 59° 22.8'    | 152° 40.8'    | 66                                  | 1.6              | 294                           | 130                                                  |
| 23 Oct          | 1935          | 3       | 1    | 60° 00.8'    | 152° 13.6'    | 57                                  | 1.9              | 212                           | 115                                                  |
| 24 Oct          | 1004          | 4       | 1    | 60° 38.4'    | 151° 39.0'    | 50                                  | 1.5              | 375                           | 162                                                  |
| 23 Oct          | 1006          | 5a      | 1    | 59° 35.1'    | 151° 49.2'    | 35                                  | 1.9              | 203                           | 110                                                  |
| 22 Oct          | 1758          | 6       | 1    | 59° 36.7'    | 151° 16.8'    | 75                                  | 1.6              | 350                           | 162                                                  |
| 21 Oct          | 0907          | 7       | 1    | 59° 29.9'    | 153° 10.0'    | 31                                  | 1.0              | 165                           | 45                                                   |
| 22 Oct          | 0403          | 8       | 1    | 59° 15.9'    | 153° 41.8'    | 27                                  | 2.2              | 246                           | 153                                                  |
| 28 Oct          | . 1244        | 9       | 1    | 59° 02.6'    | 151° 59.4'    | 199                                 | 2.5              | 1000                          | 706                                                  |

## Table 13. UW Haul Summary Sheet, Miller Freeman, Leg III, 17-29 October 1976

 $a_{averaged}$ 

Υ.

.

Bongo Tows

| Table 14. | UW Haul | . Summary | Sheet, | Discoverer, | Leg I, | , 21-26 | February | 1977 |
|-----------|---------|-----------|--------|-------------|--------|---------|----------|------|
|-----------|---------|-----------|--------|-------------|--------|---------|----------|------|

| Bongo | Tows |
|-------|------|
| Dougo | TOMP |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Latitude (N) | Longitude (W) | Maximum<br>Sampling<br>Depth<br>(m) | Speed<br>(m/sec) | Duration<br>of Haul<br>(secs) | Volume<br>Filtered<br>(m <sup>3</sup> ) |
|-------------------------|---------------|---------|------|--------------|---------------|-------------------------------------|------------------|-------------------------------|-----------------------------------------|
| 24 Feb                  | 1331          | 1       | 1    | 58° 52.4'    | 152° 48.9'    | 105                                 | 2.8              | 926                           | 737                                     |
| 22 Feb                  | 0736          | 2       | 1    | 59° 23.1'    | 152° 39.5'    | 68                                  | 1.4              | 584                           | 223                                     |
| 25 Feb                  | 2340          | 2       | 3    | 59° 22.3'    | 152° 38.2'    | 38                                  | 1.6              | 240                           | 106                                     |
| 22 Feb                  | 2180          | 3       | 1    | 59° 59.2'    | 152° 12.0'    | 35                                  | 1.8              | 480                           | 241                                     |
| 22 Feb                  | 1723          | 4       | 1    | 60° 41.7'    | 151° 37.2'    | 60                                  | 1.8              | 510                           | 261                                     |
| 22 Feb                  | 0447          | 5a      | 1    | 59° 34.4'    | 151° 49.8'    | 40                                  | 1.6              | 309                           | 139                                     |
| 23 Feb                  | 0415          | 5a      | 2    | 59° 34.7'    | 151° 49.2'    | 22                                  | 1.6              | 218                           | 98                                      |
| 25 Feb                  | 0031          | 5a      | 3    | 59° 34.8'    | 151° 48.0'    | 30                                  | 1.9              | 292                           | 158                                     |
| 25 Feb                  | 0745          | 5a      | 4    | 59° 34.6'    | 151° 48.6'    | 26                                  | 2.2              | 279                           | 171                                     |
| 22 Feb                  | 0050          | 6       | 1    | 59° 36.6'    | 151° 17.8'    | 70                                  | 2.0              | 636                           | 362                                     |
| 23 Feb                  | 0645          | 6       | . 2  | 59° 36.8'    | 151° 16.3'    | 70                                  | 1.4              | 966                           | 397                                     |
| 25 Feb                  | 0235          | 6       | 3    | 59° 36.7'    | 151° 15.8'    | 50                                  | 1.7              | 560                           | 267                                     |
| 25 Feb                  | 1039          | 6       | 4    | 59° 36.7'    | 151° 17.7'    | 30                                  | 2.2              | 527                           | 328                                     |
| 24 Feb                  | 1604          | 7       | 1    | 59° 18.3'    | 153° 07.3     | 58                                  | 1.2              | 341                           | 119                                     |
| 26 Feb                  | 0429          | 8       | 3    | 59° 15.7'    | 153° 30.5'    | 30                                  | 1.6              | 163                           | 75                                      |
| 23 Feb                  | 1055          | 9       | 1    | 59° 00.7'    | 151° 59.2'    | 188                                 | 1.2              | 1380                          | 481                                     |
| 23 Feb                  | 1501          | 10      | 1    | 58° 52.2'    | 150° 40.2'    | 110                                 | 1.5              | 683                           | 307                                     |
| 23 Feb                  | 2137          | 11      | 1    | 58° 22.0'    | 148° 02.7'    | 180                                 | 1.6              | 1366                          | 862                                     |

 $^{a}$ averaged

Table 15. Milestone Chart

RU #: 424 PI: T. Saunders English

Major Milestones: Reporting, data management and other significant contractual requirements; periods of field work; workshops; etc.

| · ·                                | 1 | 976 |   |             |   |   |             |   | 19 | 77          |      |   |          |       |      |
|------------------------------------|---|-----|---|-------------|---|---|-------------|---|----|-------------|------|---|----------|-------|------|
| MAJOR MILESTONES                   | 0 | N   | D | J           | F | м | A           | М | J  | J           | A    | S | 0        | N     | D    |
| Autumn Sampling                    |   |     |   |             |   |   |             |   |    |             |      |   |          |       | ļ    |
| Quarterly Report 1                 |   |     |   |             |   |   |             |   |    |             |      |   |          |       |      |
| Submit Summer 76 Cruise Data       |   |     |   | $\triangle$ |   |   |             |   |    |             |      |   |          |       |      |
| Winter-Early Spring Sampling       |   |     |   | <b> </b>    |   |   |             |   |    |             |      |   |          |       | <br> |
| Quarterly Report 2                 |   |     |   |             |   | 2 |             |   |    |             |      |   |          |       |      |
| Annual Report                      |   |     |   |             |   |   |             |   |    |             | <br> |   |          |       |      |
| Submit Fall 76 Data                |   |     |   |             |   |   | $\triangle$ |   |    |             |      |   |          |       |      |
| Quarterly Report 3                 |   |     |   |             |   |   |             |   |    |             |      |   |          | [<br> |      |
| Submit Winter-Early Spring 77 Data |   |     |   |             |   |   |             |   |    | $\triangle$ |      |   |          |       | <br> |
| Final Report                       |   |     |   |             |   |   |             |   |    |             |      | 2 | <u>}</u> |       |      |
| Quarterly Report 4                 |   |     |   |             |   |   |             |   |    |             |      |   |          |       |      |

 $\bigwedge$  Planned Completion Date

▲ Actual Completion Date

306

| Date<br>(1976) |       |         |      | Mesh Size |      | Fish or |
|----------------|-------|---------|------|-----------|------|---------|
| (GMT)          | (GMT) | Station | Haul | (µm)      | Eggs | Larvae  |
| 7 Apr          | 0844  | 1       | 1    | 333       | 0    | 4       |
| 7 Apr          |       | 1       | 1    | 505       | 1    | 3       |
| 7 Apr          |       | 2       | 2    | 333       | 0    | Ō       |
| 7 Apr          |       | 2       | 2    | 505       | 0    | 0       |
| 7 Apr          |       | 3       | 2    | 333       | 1    | 3       |
| 7 Apr          |       | 3       | 2    | 505       | 2    | 1       |
| 8 Apr          | 0440  | 4       | 1    | 333       | 0    | 0       |
| 8 Apr          |       | 4       | 1    | 505       | 0    | 0       |
| 8 Apr          | 1520  | 5       | 3    | 333       | 0    | 1       |
| 8 Apr          | 1520  | 5       | 3    | 505       | 4    | 5       |
| 8 Apr          | 1635  | 6       | 1    | 333       | 5    | 3       |
| 8 Apr          | 1635  | 6       | 1    | 505       | 0    | 3       |
| 9 Apr          | 01.55 | 6       | 5    | 333       | 15   | 7       |
| 9 Apr          | 0155  | 6       | 5    | 505       | 12   | 7       |
| 10 Apr         | 0810  | 7       | 1    | 333       | 16   | 1       |
| 10 Apr         | 0810  | 7       | 1    | 505       | 16   | 2       |
| 10 Apr         | 1536  | 9       | 2    | 333       | 1    | 16      |
| 10 Apr         | 1536  | 9       | 2    | 505       | 2    | 13      |
| 10 Apr         |       | 10      | 1    | 333       | 1    | 2       |
| 10 Apr         | 2120  | 10      | 1    | 505       | 1    | 1       |
| ll Apr         |       | 11      | 2    | 333       | 1    | 13      |
| 11 Apr         | 1255  | 11      | 2    | 505       | 8    | 8       |
| 12 Apr         | 0355  | 13      | 2    | 333       | 512  | 4156    |
| 12 Apr         | 0355  | 13      | 2    | 505       | 504  | 3680    |
| 12 Apr         | 1448  | 13      | 4    | 333       | 2622 | 8056    |
| 12 Apr         | 1448  | 13      | 4    | 505       | 3336 | 8112    |

## Table 16. Number of Fish Eggs and Larvae at each Station

Lower Cook Inlet Bongo Tows, Discoverer, Leg III, 6-13 April 1976

## 1-m NIO Tows (571 µm mesh size)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|------|-------------------|
| 7 Apr                   | 0916          | 1       | 2    | 0    | 2                 |
| 7 Apr                   | 1639          | 2       | 3    | 0    | 2                 |
| 7 Apr                   | 2217          | 3       | 1    | 1    | 9                 |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs    | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|---------|-------------------|
| 8 Apr                   | 0456          | 4       | 2    | 0       | 1                 |
| 8 Apr                   | 1507          | 5       | 2    | 2       | 13                |
| 8 Apr                   | 1650          | 6       | 2    | 7       | 16                |
| 9 Apr                   | 0115          | 6       | 4    | 12      | 24                |
| 9 Apr                   | 0610          | 6       | 6    | 28      | 107               |
| 9 Apr                   | 1457          | 6       | 7    | 6       | 17                |
| 9 Apr                   | 1628          | 6       | 8    | 21      | 14                |
| 10 Apr                  | 1515          | 9       | 1    | 1       | 10                |
| 10 Apr                  | 2243          | 10      | 2    | 2       | 4                 |
| 12 Apr                  | 0224          | 13      | 1    | 396     | 5880              |
| 12 Apr                  | 0632          | 13      | 3    | 115,200 | 69                |
| 12 Apr                  | 1640          | 13      | 5    | 456     | 5040              |

## Table 16. (continued)

#### Miscellaneous Net Tows

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Net         | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|-------------|------|-------------------|
| 7 Apr                   | 2310          | 3       | 3    | 5 x 6-m NIO |      | 195               |
| 10 Apr                  | 1607          | 9       | 3    | Miller      | 0    | 0                 |
| <b>1</b> 1 Apr          | 0631          | 11      | 1    | 3-m NIO     |      | 109               |

Table 17. Summary of taxonomic categories of fish eggs, larvae, young and adults found in Bongo, 1-m, 3-m, and 5 x 6-m NIO net samples collected on the Lower Cook Inlet Discoverer cruise, Leg III, 6-13 April 1976

A total of 44 samples contained 123,192 fish eggs and 35,609 fish and larvae that were examined. The fish were distributed into 11 families, 15 genera and 12 species. The eggs are distributed into 4 size categories.

Family Ammodytidae

189 larvae sandlance<sup>1</sup> Ammodytes hexapterus Pallas

Family Bathylagidae

2745 larvae northern smoothtongue Bathylagus stilbius (Gilbert)

Family Cottidae

1 adult marbled sculpin *Oligocottus rimensis* (Greeley) 1 larva genus? species?

Family Gadidae

32,083 larvae Alaska pollock *Theragra chalcogramma* (Pallas) 1 young Pacific tomcod *Microgadus proximus* (Girard) 125 larvae genus? species?

Family Liparidae

2 young marbled snailfish Liparis dennyi Jordan and Starks

Family Myctophidae

29 larvae smallfin lanternfish Stenobrachius leucopsarus (Eigenmann and Eigenmann)

125 young smallfin lanternfish Stenobrachius leucopsarus (Eigenmann and Eigenmann)

11 larvae lanternfish genus? species?

Family Osmeridae

17 larvae capelin Mallotus villosus Müller 3 larvae longfin smelt Spirinchus thaleichthys (Ayres) 189 young longfin smelt Spirinchus thaleichthys (Ayres) 1 adult candlefish Thaleichthys pacificus (Richardson) 1 young genus? species?

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Table 17. (continued)

Family Pleuronectidae

1 larva Pacific halibut Hippoglossus stenolepis Schmidt

Family Scorpaenidae

18 larvae rockfishes Sebastes sp.

Family Stichaeidae

2 larvae cockscomb Anoplarchus sp. 1 larva prickleback Lumpenus sp.

Family Zoarcidae

8 young pallid eelpout Lycodapus mandibularis Gilbert

56 larvae unidentified

123,192 eggs categorized (see Table 18, List of Possible Fish for Egg Size Categories):

16 eggs < 1 mm (0.74-0.88 mm) 121,419 eggs ∿ 1 mm (0.90-1.28 mm) 1,635 eggs ∿ 2 mm (1.30-2.54 mm) 122 eggs ∿ 3 mm (2.56-3.90 mm)

#### Table 18. List of Possible Fish for Egg Size Categories

< 1 mm category (0.74-0.88 mm)

Limanda aspera Limanda proboscidea

∿ 1 mm category (0.90-1.28 mm)

Gadus macrocephalus Isopsetta isolepis Parophrys vetulus Platichthys stellatus Psettichthys melanostictus

 $\sim$  2 mm category (1.30-2.54 mm)

Bathylagus stilbius Eopsetta jordani Glyptocephalus zachirus Lyopsetta exilis Microstomus pacificus Pleuronectes quadrituberculatus Pleuronichthys coenosus Pleuronichthys decurrens Theragra chalcogramma

∿ 3 mm category (2.56-3.90 mm)

Hippoglossoides elassodon Hippoglossoides robustus Hippoglossus stenolepis

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs           | Fish or<br>Larvae | Identification of Fish Eggs and Larvae           |
|-------------------------|---------------|---------|------|-------------------|----------------|-------------------|--------------------------------------------------|
| 7 Apr                   | 0844          | 1       | 1    | 333               | 0 <sup>a</sup> | 4 <sup>a</sup>    | 1 larva 8.2 mm <sup>b</sup> Ammodytes hexapterus |
| -                       |               |         |      |                   |                |                   | 2 larvae 31, 44 mm Mallotus villosus             |
|                         |               |         |      |                   |                |                   | 1 larva 4.5 mm Stenobrachius leucopsarus         |
| 7 Apr                   | 0844          | 1       | 1    | 505               | 1              | 3                 | $1 \text{ egg} \sim 2 \text{ mm}$ (1.44 mm)      |
|                         |               |         |      |                   |                |                   | 2 larvae 6.7, 7.7 mm Ammodytes hexapterus        |
|                         |               |         |      |                   |                |                   | l larva 45 mm Mallotus villosus                  |
| 7 Apr                   | 2239          | 3       | 2    | 333               | 1              | 3                 | $1 \text{ egg} \sim 1 \text{ mm}$ (1.14 mm)      |
|                         |               |         |      |                   |                |                   | 3 larvae 7.0 mm Anmodytes hexapterus             |
| 7 Apr                   | 2239          | 3       | 2    | 505               | 2              | 1                 | 2 eggs $\sim$ 1 mm (1.10 mm)                     |
|                         |               |         |      |                   |                |                   | 1 larva 7.0 mm Ammodytes hexapterus              |

Table 19. Identification of Fish Eggs and Larvae by Station Cook Inlet Bongo Tows, *Discoverer*, Leg III, 06-13 April 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                               |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------------------------------|
| 8 Apr                   | 1520          | 5       | 3    | 333               | 0    | 1                 | l larva 9.0 mm <i>Sebastes</i> sp.                                   |
| 8 Apr                   | 1520          | 5       | 3    | 505               | 4    | 5                 | 4 eggs $\sim$ 1 mm (1.10 mm)                                         |
|                         |               |         |      |                   |      |                   | <pre>1 larva 7.0 mm damaged, probably Ammodytes     hexapterus</pre> |
|                         |               |         |      |                   |      |                   | 4 larvae 8.0-9.0 mm Sebastes sp.                                     |
| 8 Apr                   | 1635          | 6       | 1    | 333               | 5    | 3                 | 5 eggs ∿ 1 mm (1.03 mm)                                              |
|                         |               |         |      |                   |      |                   | 2 larvae 4.8, 5.6 mm Anmodytes hexapterus                            |
|                         |               |         |      |                   |      |                   | l larva 14 mm Myctophidae                                            |
| 8 Apr                   | 1635          | 6       | 1    | 505               | 0    | 3                 | 2 larvae 4.8, 6.1 mm Ammodytes hexapterus                            |
|                         |               |         |      |                   |      |                   | 1 larva 28 mm Mallotus villosus                                      |
| 9 Apr                   | 0155          | 6       | 5    | 333               | 15   | 7                 | 14 eggs ∿ 1 mm (1.03 mm)                                             |
|                         |               |         |      |                   |      |                   | $1 \text{ egg } \sim 2 \text{ mm}$ (1.36 mm)                         |
|                         |               |         |      |                   |      |                   | 6 larvae 6.0-8.0 mm Ammodytes hexapterus                             |
|                         |               |         |      |                   |      |                   | l larva 16 mm Myctophidae                                            |
| 9 Apr                   | 0155          | 6       | 5    | 505               | 12   | 7                 | ll eggs $\sim$ 1 mm (1.10 mm)                                        |
|                         |               |         |      |                   |      |                   | $1 \text{ egg} \sim 2 \text{ mm}$ (1.40 mm)                          |
|                         |               |         |      |                   |      |                   | 6 larvae 4.8-7.5 mm Annmodytes hexapterus                            |
|                         |               |         |      |                   |      |                   | l larva 18 mm Myctophidae                                            |

~

Table 19. (continued)

.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                 |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------|
| 10 Apr                  | 0810          | 7       | 1    | 333               | 16   | 1                 | 16 eggs ∿ 1 mm (1.03 mm)                               |
|                         |               |         |      |                   |      |                   | 1 larva 5.0 mm Annodytes hexapterus                    |
| 10 Apr                  | 0810          | 7       | 1    | 505               | 16   | 2                 | 16 eggs ~ 1 mm (1.03 mm)                               |
|                         |               |         |      |                   |      |                   | 2 larvae 6.0 mm Ammodytes hexapterus                   |
| 10 Apr                  | 1536          | 9       | 2    | 333               | 1    | 16                | l egg $\sim$ 1 mm (1.10 mm)                            |
| -                       |               |         |      |                   |      |                   | l larva 6.0 mm Ammodytes hexapterus                    |
|                         |               |         |      |                   |      |                   | 3 larvae 35, 42, 45 mm Mallotus villosus               |
|                         |               |         |      |                   |      |                   | 7 larvae approximately 4 mm Theragra chalcogramma      |
|                         |               |         |      |                   |      |                   | 5 larvae 3.2-7.0 mm elongate, damaged and unidentified |
| 10 Apr                  | 1536          | 9       | 2    | 505               | 2    | 13                | 2 eggs $\sim$ 2 mm (1.44 mm)                           |
| -                       |               |         |      |                   |      |                   | 1 larva 9.0 mm Bathylagus stilbius                     |
|                         |               |         |      |                   |      |                   | 3 larvae 40-43 mm Mallotus villosus                    |
|                         |               |         |      |                   |      |                   | 5 larvae 4.0-4.4 mm Theragra chalcogramma              |
|                         |               |         |      |                   |      |                   | 4 larvae 4.0-6.0 mm unidentified                       |
| 10 Apr                  | 2134          | 10      | 1    | 333               | 1    | 2                 | l egg $\sim$ 1 mm (1.20 mm)                            |
| ~                       |               |         |      |                   |      |                   | 1 larva 5.0 mm Myctophidae                             |
|                         |               |         |      |                   |      |                   | l larva 5.0 mm with 2 dorsal bands,<br>unidentified    |

| Date<br>(1976<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae           |
|------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------|
| 10 Apr                 | 2120          | 10      | 1    | 505               | 1                | 1                 | l egg ∿ 1 mm (1.20 mm)                           |
|                        |               |         |      |                   |                  |                   | 1 larva 4.0 mm Annodytes hexapterus              |
| 11 Apr                 | 1255          | 11      | 2    | 333               | 1                | 13                | l egg $\sim$ 1 mm (egg not measured)             |
|                        |               |         |      |                   |                  |                   | 4 larvae 6.0 mm Stenobrachius leucopsarus        |
|                        |               |         |      |                   |                  |                   | 9 young 19-36 mm Stenobrachius<br>leucopsarus    |
| ll Apr                 | 1255          | 11      | 2    | 505               | 8                | 8                 | 8 eggs < 1 mm (0.70-0.98 mm)                     |
|                        |               |         |      |                   |                  |                   | l larva 13 mm Hippoglossus stenolepis            |
|                        |               |         |      |                   |                  |                   | 7 young 21-50 mm Stenobrachius leucopsaru        |
| 12 Apr                 | 0355          | 13      | 2    | 333               | 512 <sup>C</sup> | 4156 <sup>c</sup> | 500 eggs ~ 2 mm (1.24-1.56 mm)                   |
|                        |               |         |      |                   |                  |                   | 12 eggs ∿ 3 mm (2.40-3.10 mm)                    |
|                        |               |         |      |                   |                  |                   | 748 larvae 7.2-10 mm Bathylagus stilbius         |
|                        |               |         |      |                   |                  |                   | 3320 larvae approx. 5-6 mm Theragra chalcogramma |
|                        |               |         |      |                   |                  |                   | 84 larvae 5.0-5.4 mm Gadidae                     |
|                        |               |         |      |                   |                  |                   | 4 larvae 10 mm unidentified                      |
| 12 Apr                 | 0355          | 13      | 2    | 505               | 504 <sup>d</sup> | 3680 <sup>d</sup> | 480 eggs ∿ 1 mm (1.20-1.30 mm)                   |

Table 19. (continued)

c The sample was split and 1/4 was sorted for fish eggs and larvae; totals given are for the entire sample.
 d The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs              | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                             |
|-------------------------|---------------|---------|------|-------------------|-------------------|-------------------|--------------------------------------------------------------------|
| 12 Apr                  | 0355          | 13      | 2    | 505               | 504               | 3680              | 18 eggs ∿ 2 mm (1.68-1.80 mm)                                      |
|                         |               |         |      |                   |                   |                   | 6 eggs $\sim$ 3 mm (2.44-3.10 mm)                                  |
|                         |               |         |      |                   |                   |                   | 2 larvae 7.0 mm Anoplarchus sp.                                    |
|                         |               |         |      |                   |                   |                   | 648 larvae 7.0-11 mm Bathylagus stilbius                           |
|                         |               |         |      |                   |                   |                   | 3030 larvae 4.0-8.0 mm Theragra chalcogramma                       |
| 12 Apr                  | 1448          | 13      | - 4  | 333               | 2622 <sup>e</sup> | 8056 <sup>e</sup> | 2546 eggs $\sim$ 1 mm (1.20-1.30 mm)                               |
|                         |               |         |      |                   |                   |                   | 76 eggs ∿ 2 mm (1.90-2.00 mm)                                      |
|                         |               |         |      |                   |                   |                   | 532 larvae 8.0-10 mm Bathylagus stilbius                           |
|                         |               |         |      |                   |                   |                   | 7524 larvae 4.0-6.0 mm extensively damage<br>Theragra chalcogramma |
| 12 Apr                  | 1448          | 13      | 4    | 505               | 3336 <sup>£</sup> | 8112 <sup>f</sup> | 3048 eggs $\sim$ 1 mm (1.20-1.35 mm)                               |
|                         |               |         |      |                   |                   |                   | 264 eggs ∿ 2 mm (1.60-1.75 mm)                                     |
|                         | ٠             |         |      |                   |                   |                   | 24 eggs ~ 3 mm (2.72-3.00 mm)                                      |
|                         |               |         |      |                   |                   |                   | 816 larvae 5.6-10 mm Bathylagus stilbius                           |
|                         |               |         |      |                   |                   |                   | 8 young 115 mm Lycodapus mandibularis                              |

Table 19. (continued)

<sup>e</sup> The total sample had nine 32 oz. jars; settled volume was 4.8 liters. 126 ml or 1/38 of the sample was sorted for fish eggs and larvae; totals given are for entire sample.

 $^{
m f}$  The sample was split and 1/8 was sorted for fish eggs and larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae            |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|---------------------------------------------------|
| 12 Apr                  | 1448          | 13      | 4    | 505               | 3336 | 8112              | 7272 larvae 3.0-5.6 mm Theragra chalco-<br>gramma |
|                         |               |         |      |                   |      |                   | 16 larvae 6.0, ll mm unidentified                 |

.

Table 19. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae      |
|-------------------------|---------------|---------|------|------|-------------------|---------------------------------------------|
| 7 Apr                   | 0916          | 1       | 2    | 0    | 2                 | 2 larvae 5.0, 7.0 mm Ammodytes hexapterus   |
| 7 Apr                   | 1639          | 2       | 3    | 0    | 2                 | l larva 5.0 mm Anmodytes hexapterus         |
|                         |               |         |      |      |                   | l larva 9.0 mm Sebastes sp.                 |
| 7 Apr                   | 2217          | 3       | 1    | 1    | 9                 | $1 \text{ egg} \sim 1 \text{ mm}$ (1.10 mm) |
|                         |               |         |      |      |                   | 9 larvae 7.0 mm Ammodytes hexapterus        |
| 8 Apr                   | 0456          | 4       | 2    | 0    | 1                 | 1 larva 6.0 mm Annodytes hexapterus         |
| 8 Apr                   | 1507          | 5       | 2    | 2    | 13                | 2 eggs $\sim$ 1 mm (1.10 mm)                |
|                         |               |         |      |      |                   | 5 larvae 5.0-6.0 mm Ammodytes hexapterus    |
|                         |               |         |      |      |                   | 2 larvae 28, 31 mm Mallotus villosus        |
|                         |               |         |      |      |                   | 2 larvae 8.0 mm Sebastes sp.                |
|                         |               |         |      |      |                   | 4 larvae 11-14 mm Myctophidae               |
| 8 Apr                   | 1650          | 6       | 2    | · 7  | 16                | 7 eggs $\sim$ 1 mm (1.03 mm)                |
|                         |               |         |      |      |                   | 15 larvae 4.4-6.8 mm Ammodytes hexapterus   |
|                         |               |         |      |      |                   | l larva 18 mm Myctophidae                   |
| 9 Apr                   | 0115          | 6       | 4    | 12   | 24                | 8 eggs ~ 1 mm (1.10 mm)                     |
|                         |               |         |      |      |                   | 4 eggs $\sim$ 2 mm (1.40 mm)                |

Table 20. Identification of Fish Eggs and Larvae by Station 1-m NIO Tows (571 µm mesh size), Discoverer, Leg III

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                         |
|-------------------------|---------------|---------|------|------|-------------------|----------------------------------------------------------------|
| 9 Apr                   | 0115          | 6       | 4    | 12   | 24                | 20 larvae 4.0-7.2 mm Armnodytes hexapterus                     |
|                         |               |         |      |      |                   | 4 larvae 32-40 mm Mallotus villosus                            |
| 9 Apr                   | 0610          | 6       | 6    | 28   | 107               | 28 eggs ∿ 1 mm (1.03-1.10 mm)                                  |
|                         |               |         |      |      |                   | 79 larvae 5.0-6.0 mm Ammodytes hexapterus, many damaged        |
|                         |               |         |      |      |                   | 1 larva 17 mm <i>Lumpenus</i> sp.                              |
|                         |               |         |      |      |                   | 3 larvae 25, 25, 28 mm Spirinchus thaleichth                   |
|                         |               |         |      |      |                   | 22 larvae 10-16 mm Stenobrachius leucopsarus                   |
|                         |               |         |      |      |                   | l larva 5.6 mm Cottidae                                        |
|                         |               |         |      |      |                   | l larva 13 mm unidentified                                     |
| 9 Apr                   | 1457          | 6       | 7    | 6    | 17                | 5 eggs $\sim$ 1 mm (1.03 mm)                                   |
|                         |               |         |      |      |                   | 1 egg ∿ 2 mm (1.40 mm)                                         |
|                         |               |         |      |      |                   | 15 larvae 5.6-7.2 mm Ammodytes hexapterus                      |
|                         |               |         |      |      |                   | 2 larvae 16 mm Stenobrachius Leucopsarus                       |
| 9 Apr                   | 1628          | 6       | 8    | 21   | 14                | 19 eggs $\sim$ 1 mm (1.03 mm)                                  |
|                         |               |         |      |      |                   | 2 eggs $\sim$ 2 mm (1.40 mm)                                   |
|                         |               |         |      |      |                   | 13 larvae 5.0-6.0 mm Annmodytes hexapterus, some badly damaged |
|                         |               |         |      |      |                   | l larva 30 mm <i>Mallotus villosus</i>                         |

Table 20. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs                 | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                        |
|-------------------------|---------------|---------|------|----------------------|-------------------|-----------------------------------------------------------------------------------------------|
| 10 Apr                  | 1515          | 9       | 1    | 1                    | 10                | l egg ∿ 1 mm (1.10 mm)                                                                        |
|                         |               |         |      |                      |                   | 9 larvae 5.0-10 mm <i>Sebastes</i> sp.                                                        |
|                         |               |         |      |                      |                   | l larva damaged Myctophidae                                                                   |
| 10 Apr                  | 2243          | 10      | 2    | 2                    | 4                 | $1 \text{ egg } \sim 1 \text{ mm}$ (0.96 mm)                                                  |
|                         |               |         |      |                      |                   | $1 \text{ egg} \sim 2 \text{ mm}$ (1.40 mm)                                                   |
|                         |               |         |      |                      |                   | l larva 11 mm Sebastes sp.                                                                    |
|                         |               |         |      |                      |                   | l larva 4.4 mm Theragra chalcogramma                                                          |
|                         |               |         |      |                      |                   | 1 larva 3.4 mm Myctophidae                                                                    |
|                         |               |         |      |                      |                   | l larva 6.0 mm with two dorsal bars<br>unidentified (similar to larva in st.<br>#10, haul 1). |
| 12 Apr                  | 0224          | 13      | · 1  | 396 <sup>a</sup>     | 5880 <sup>a</sup> | 8 eggs < 1 mm (0.80 mm)                                                                       |
|                         |               |         |      |                      |                   | 340 eggs ∿ 2 mm (1.32-1.40 mm)                                                                |
|                         |               |         |      |                      |                   | 48 eggs ∿ 3 mm (2.95-3.95 mm)                                                                 |
|                         |               |         |      |                      |                   | 5880 larvae 5.0-6.0 mm Theragra chalcogramma                                                  |
| 12 Apr                  | 0632          | 13      | 3    | 115,200 <sup>b</sup> | 69                | 115,200 eggs ∿ 1 mm (1.20-1.30 mm) with one<br>0.16 mm oil globule                            |

<sup>a</sup> The sample was split and 1/4 was sorted for fish eggs and larvae; totals given are for the entire sample.

<sup>b</sup> The total sample had three 1 gallon jars, two of the three jars were broken in transit. Settled volume for the one jar was 2.4 liters. 116 ml or approximately 1/60 of the sample was sorted for fish eggs; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                          |
|-------------------------|---------------|---------|------|------------------|-------------------|-------------------------------------------------------------------------------------------------|
| 12 Apr                  | 0632          | 13      | 3    | 155,200          | 69                | 4 larvae 4.0-5.0 mm Theragra chalcogramma                                                       |
|                         |               |         |      |                  |                   | 41 larvae 4.8-5.8 mm Gadidae (some damaged<br>larvae)                                           |
|                         |               |         |      |                  |                   | 1 larva 4.5 mm unidentified (non-elongate)                                                      |
|                         |               |         |      |                  |                   | <pre>l larva 2.1 mm unidentified (very early<br/>embryo that escaped from a ruptured egg)</pre> |
|                         |               |         |      |                  |                   | 22 larvae unidentified due to extensive damage (non-elongate)                                   |
| 12 Apr                  | 1640          | 13      | 5    | 456 <sup>C</sup> | 5040 <sup>C</sup> | 424 eggs ∿ 2 mm (1.28-1.36 mm)                                                                  |
|                         |               |         | -    |                  |                   | 32 eggs ∿ 3 mm (3.00-3.60 mm)                                                                   |
|                         |               |         |      |                  |                   | 5040 larvae 4.8-5.5 mm Theragra chalco-<br>gramma                                               |

<sup>c</sup> The sample was split and 1/8 was sorted for fish eggs and larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Depth<br>(m) | Net         | Fish or<br>Larvae | Identification of Fish or Larvae            |
|-------------------------|---------------|---------|------|--------------|-------------|-------------------|---------------------------------------------|
| 7 Apr                   | 2310          | 3       | 3    | 50           | 5 x 6-m NIO | 195               | 2 young 65 mm Liparis dennyi                |
| •                       |               |         |      |              |             |                   | 1 young 90 mm Microgadus proximus           |
|                         |               |         |      |              |             |                   | 1 adult 65 mm Oligocottus rimensis          |
|                         |               |         |      |              |             |                   | 189 young 46-106 mm Spirinchus thaleichthys |
|                         |               |         |      |              |             |                   | l adult 185 mm Thaleichthys pacificus       |
|                         |               |         |      |              |             |                   | 1 young 53 mm Osmeridae                     |
| L1 Apr                  | 0631          | 11      | 1    | 35           | 3-m NIO     | 109               | 109 young Stenobrachius leucopsarus         |

Table 21. Identification of Fish and Larvae by Station Gulf of Alaska Miscellaneous Net Tows, *Discoverer*, Leg III Table 22. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo, 1-m, 3-m, and 5 x 6-m NIO net samples collected on the Lower Cook Inlet Discoverer cruise, Leg III, 6-13 April 1976

A total of 44 samples contained 576 crab zoeae and 28 megalopae. The commercially important crabs were distributed into 3 families, 2 genera, and 2 species. The 44 samples contained 1200 shrimp zoeae and 1702 adults. The commercially important shrimp were distributed into 1 family, 2 genera, and 5 species.

Section Anomura

Family Lithodidae

47 zoeae king crab<sup>1</sup> Paralithodes camtschatica (Tilesius)

131 zoeae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

267 zoeae non-commercially important Cancer spp.

Family Majidae

25 zoeae tanner crab Chionoecetes bairdi (Rathbun) 28 megalopae Chionoecetes spp.

106 zoeae unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

40 zoeae sidestripe shrimp Pandalopsis dispar Rathbun 402 zoeae northern pink shrimp Pandalus borealis Kröyer 15 zoeae humpy shrimp Pandalus goniurus Stimpson 1 adult Pandalus goniurus 2 zoeae Pandalus montagui tridens Rathbun 1 zoeae Pandalus stenolepis Rathbun 3 zoeae Pandalus spp., damaged

737 zoeae unidentified hippolytids 1701 adult non-commercially important shrimp

<sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage     | Total  | Identification of Larvae                            |
|-------------------------|---------------|---------|------|-------------------|-----------|--------|-----------------------------------------------------|
| 7 Apr                   | 0844          | 1       | 1    | 333               |           | 6      | unidentified anomurans                              |
| 7 Apr                   | 0844          | 1       | 1    | 505               |           | 2      | unidentified anomurans                              |
| 7 Apr                   | 1620          | 2       | 2    | 333               |           | 0      |                                                     |
| 7 Apr                   | 1620          | 2       | 2    | 505               |           | 0      |                                                     |
| 7 Apr                   | 2239          | 3       | 2    | 333               |           | 0      |                                                     |
| 7 Apr                   | 2239          | 3       | 2    | 505               |           | 0      |                                                     |
| 8 Apr                   | 0440          | 4       | 1    | 333               |           | 0      |                                                     |
| 8 Apr                   | 0440          | 4       | . 1  | 505               |           | 0      |                                                     |
| 8 Apr                   | 1520          | 5       | 3    | 333               |           | 0      |                                                     |
| 8 Apr                   | 1520          | 5       | 3    | 505               | IV        | 1      | Cancer oregonensis                                  |
| 8 Apr                   | 1635          | 6       | 1    | 333               | I<br>zoea | 3<br>2 | Paralithodes camtschatica<br>Unidentified anomurans |
| 8 Apr                   | 1635          | 6       | 1    | 505               | I<br>zoea | 1<br>1 | Paralithodes camtschatica<br>unidentified anomuran  |
| 9 Apr                   | 0155          | 6       | 5    | 333               | I         | 3      | Paralithodes camtschatica                           |

Table 23. Identification of Shrimp and Crab Larvae by Station Lower Cook Inlet Bongo Tows, *Discoverer*, Leg III, 06-13 April 1976

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae                |
|-------------------------|---------------|---------|------|-------------------|----------|-------|-----------------------------------------|
| 9 Apr                   | 0155          | 6       | 5    | 333               | zoea     | 14    | unidentified anomurans                  |
|                         |               |         |      |                   | I        | 2     | Pandalus borealis                       |
|                         |               |         |      |                   | I        | 1     | P. goniurus                             |
| 9 Apr                   | 0155          | 6       | 5    | 505               | II       | 1     | Paralithodes camtschatica               |
| -                       |               |         |      |                   | zoea     | 13    | unidentified anomurans                  |
|                         |               |         |      |                   | I        | 1     | Pandalopsis dispar                      |
| 10 Apr                  | 0810          | 7       | 1    | 333               |          | 0     |                                         |
| 10 Apr                  | 0810          | 7       | 1    | 505               | adult    | 1     | Pandalus goniurus                       |
| 10 Apr                  | 1536          | 9       | 2    | 333               | megalopa | 2     | Chionoecetes sp.                        |
|                         |               | -       |      |                   | I.       | 1     | Pandalopsis dispar                      |
| 10 Apr                  | 1536          | 9       | 2    | 505               | I        | 1     | Pandalus montagui t <mark>ridens</mark> |
| 10 Apr                  | 2134          | 10      | · 1  | 333               | megalopa | 1     | Chionoecetes sp.                        |
| 10 Apr                  | 2134          | 10      | 1    | 505               |          | 0     |                                         |
| 11 Apr                  | 1307          | 11      | 2    | 333               | megalopa | 5     | Chionoecetes sp.                        |
|                         |               |         |      |                   | zoea     | 1     | unidentified brachyuran                 |
|                         |               |         |      |                   | adult    | 1     | Sergestes sp.                           |
| 11 Apr                  | 1307          | 11      | 2    | 505               | megalopa | 2     | Chionoecetes sp.                        |
| 12 Apr                  | 0355          | 13      | 2    | 333               | I        | 10    | Chioncecetes bairdi                     |
| -                       |               |         |      |                   | megalopa |       | . Chicnoscetes sp.                      |
|                         |               |         |      |                   | zoea     | 28    | unidentified anomurans                  |

Table 23. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|-------|-------|--------------------------|
| 12 Apr                  | 0355          | 13      | 2    | 333               | zoea  | 5     | unidentified brachyurans |
| L                       |               |         |      |                   | I     | 4     | Pandalopsis dispar       |
|                         |               |         |      |                   | I     | 79    | Pandalus borealis        |
|                         |               |         |      |                   | II    | 2     | P. borealis              |
|                         |               |         |      |                   | I     | 1     | P. goniurus              |
|                         |               |         |      |                   | I     | 1     | P. stenolepis            |
|                         |               |         |      |                   | zoea  | 36    | unidentified hippolytids |
| 12 Apr                  | 0355          | 13      | 2    | 505               | zoea  | 12    | unidentified anomurans   |
|                         |               |         |      |                   | zoea  | 3     | unidentified brachyurans |
|                         |               |         |      |                   | I     | 3     | Pandalopsis dispar       |
|                         |               |         |      |                   | I     | 53    | Pandalus borealis        |
|                         |               |         |      |                   | II    | 4     | P. borealis              |
|                         |               |         |      |                   | I     | 3     | P. goniurus              |
|                         |               |         |      |                   | zoea  | 111   | unidentified hippolytids |
| 12 Apr                  | 1448          | 13      | 4    | 333               | I     | 9     | Chionoecetes bairdi      |
| •                       |               |         |      |                   | zoea  | 14    | unidentified anomurans   |
|                         |               |         |      |                   | zoea  | 4     | unidentified brachyurans |
|                         |               |         |      |                   | I     | 15    | Pandalopsis dispar       |
|                         | •             |         |      |                   | I     | 22    | Pandalus borealis        |
|                         |               |         |      |                   | II    | 2     | P. borealis              |
|                         |               |         |      |                   | zoea  | 205   | unidentified hippolytids |
|                         |               |         |      |                   | adult | 7     | Pasiphaea sp.            |
| 12 Apr                  | 1448          | - 3     | 4    | 505               | zoea  | 5     | unidentified anomurans   |
| -                       |               |         |      |                   | zoea  | 5     | unidentified brachyurans |
|                         |               |         |      |                   | I     | 9     | Pandalopsis dispar       |

Table 23. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|-------|-------|--------------------------|
| 12 Apr                  | 1448          | 13      | 4    | 505               | I     | 18    | Pandalus borealis        |
|                         |               |         |      |                   | II    | 5     | P. borealis              |
|                         |               |         |      |                   | zoea  | 147   | unidentified hippolytids |
|                         |               |         |      |                   | adult | 9     | Pasiphaea sp.            |

٠

,

•

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Stage    | Total | Identification of Larvae                               |
|-------------------------|---------------|---------|------|----------|-------|--------------------------------------------------------|
| 7 Apr                   | 0916          | 1       | 2    |          | 0     |                                                        |
| 7 Apr                   | 1639          | 2       | 3    |          | 0     |                                                        |
| 7 Apr                   | 2217          | 3       | 1    | adult    | 7     |                                                        |
| , npr                   | 221)          | 5       | Т    | auurt    | 1     | Crangon franciscorum angustimano<br>(2 gravid females) |
| 8 Apr                   | 0456          | 4       | 2    |          | 0     |                                                        |
| 8 Apr                   | 1507          | 5       | 2    | I        | 1     | Pandalopsis dispar                                     |
|                         |               |         |      | I        | 9     | Pandalus borealis                                      |
| 8 Apr                   | 1650          | 6       | 2    | zoea     | 2     | unidentified anomurans                                 |
|                         |               |         |      | zoca     | 19    | unidentified brachyurans                               |
|                         |               |         |      | I        | 2     | Pandalus borealis                                      |
|                         |               |         |      | I        | 1     | P. goniurus                                            |
|                         |               |         |      | zoca     | 6     | unidentified hippolytids                               |
| 9 Apr                   | 0115          | 6       | 4    | I        | 19    | Paralithodes camtschatica                              |
| -                       |               |         |      | zoea     | 6     | unidentified anomuran                                  |
|                         |               |         |      | zoea     | 38    | unidentified brachyurans                               |
|                         |               |         |      | Τ        | 3     | Pandalus goniurus                                      |
|                         |               |         |      | zoe.     | 9     | unidentified hippolytids                               |
| 9 Apr                   | 0210          | 6       | 6    | megalopa | 1     | Chionoecetes sp.                                       |
|                         |               |         |      | I        | 21    | Paralithodes camtschatica                              |
|                         |               |         |      | zoea     | 4     | unidentified anomurans                                 |

## Table24. Identification of Shrimp and Crab Larvae by Station.Lower Cook Inlet 1-m NIO Net Tows

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Stage    | Total | Identification of Larvae  |
|-------------------------|---------------|---------|------|----------|-------|---------------------------|
| 9 Apr                   | 0210          | 6       | 6    | zoea     | 14    | unidentified brachyurans  |
| 9 Apr                   | 1657          | 6       | 7    |          | 0     |                           |
| 9 Apr                   | 1828          | 6       | 8    | zoea     | 9     | unidentified brachyrans   |
|                         |               |         |      | I        | 1     | Pandalus borealis         |
|                         |               |         |      | I        | 2     | P. goniurus               |
|                         |               |         |      | zoea     | 5     | unidentified hippolytids  |
| 10 Apr                  | 1515          | 9       | 1    | megalopa | 11    | Chionoecetes sp.          |
|                         |               |         |      |          | 1     | unidentified hippolytids  |
| 10 Apr                  | 2243          | 10      | 2    | megalopa | 5     | Chionoecetes sp.          |
|                         |               |         |      |          | 1     | unidentified anomuran     |
| 12 Apr                  | 0224          | 13      | 1    | II       | 1     | unidentified Cancer sp.   |
|                         |               |         |      | II<br>I  | 6     | Chionoecetes bairdi       |
|                         |               | •       |      | I        | 2     | Paralithodes camtschatica |
|                         |               |         |      | zoea     | 20    | unidentified anomurans    |
|                         |               |         |      | zoea     | 8     | unidentified brachyurans  |
|                         |               |         |      | I        | 3     | Pandalopsis dispar        |
|                         |               |         |      | I        | 154   | Pandalus borealis         |
|                         |               |         |      | II       | 4     | P. borealis               |
|                         |               |         |      | I        | 1     | P. goniurus               |
|                         |               |         |      | I        | 1     | P. montagui tridens       |
|                         |               |         |      | zoea     | 121   | unidentified hippolytids  |

Table 24. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Stage | Total | Identification of Larvae           |
|-------------------------|---------------|---------|------|-------|-------|------------------------------------|
| 12 Apr                  | 0632          | 13      | 3    | zoea  | 1     | unidentified anomuran              |
|                         |               |         |      | I     | 2     | Pandalopsis dispar                 |
|                         |               |         |      | I     | 33    | Pandalus borealis                  |
|                         |               |         |      | I     | 3     | unidentified Pandalus sp., damaged |
|                         |               |         |      | zoea  | 15    | unidentified hippolytids           |
| 12 Apr                  | 1640          | 13      | 5    | I     | 1     | Pandalopsis dispar                 |
| -                       |               |         |      | I     | 12    | Pandalus borealis                  |
|                         |               |         |      | I     | 3     | P. goniurus                        |
|                         |               |         |      | zoea  | 81    | unidentified hippolytids           |

\_\_\_\_

Table 24. (continued)

.

.

.

## Table 25. Identification of Shrimp and Crab Larvae by Station

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Net         | Stage                            | Total                 | Identification of Larvae                                                                    |
|-------------------------|---------------|---------|------|-------------|----------------------------------|-----------------------|---------------------------------------------------------------------------------------------|
| 7 Apr                   | 2310          | 3       | 3    | 5 x 6-m NIO | adult<br>adult<br>adult<br>adult | 1<br>1629<br>1<br>777 | Crangon alaskensis<br>Crangon franciscorum angustimana<br>Eualus suckleyi<br>Boreomysis sp. |
| 10 Apr                  | 1607          | 9       | 3    | miller      |                                  | 0                     |                                                                                             |
| 11 Apr                  | 0631          | 11      | 1    | 3-m NIO     | adult                            | 46                    | Sergestes sp.                                                                               |

Lower Cook Inlet Misc. Net Tows

## Table 26. Number of fish eggs and larvae at each station Lower Cook Inlet, *Discoverer*, Leg V, 05-09 May 1976

| Bongo | Tows |
|-------|------|
|-------|------|

| Date<br>(1976) | Time   |            |      | Mesh Size |      | Fish or |
|----------------|--------|------------|------|-----------|------|---------|
| (GMT)          | (GMT)  | Station    | Haul | (µm)      | Eggs | Larvae  |
| 6 May          | 1325   | 1          | 1    | 333       | 42   | 34      |
| 6 May          | 1325   | 1.         | 1    | 505       | 32   | 40      |
| 6 May          | 1552   | 2          | 1    | 333       | 0    | 26      |
| 6 May          | 1552   | 2          | 1    | 505       | 3    | 13      |
| 6 May          | 2117   | 3          | 1    | 333       | 41   | 12      |
| 6 May          | 2117   | 3          | 1    | 505       | 37   | 18      |
| 7 May          | 0259   | 4          | 1    | 333       | 0    | 3       |
| 7 May          | 0259   | <b>4</b> . | 1    | 505       | 0    | 2       |
| 7 May          | 1030   | 5          | 2    | 333       | 40   | 119     |
| 7 May          | 1030   | 5          | 2    | 505       | 136  | 852     |
| 7 May          | 1312   | 6          | 1    | 333       | 992  | 290     |
| 7 May          | 1312   | 6          | 1    | 505       | 1616 | 326     |
| 7 May          | 1709   | 6          | 2    | 333       | 1296 | 352     |
| 7 May          | 1709   | 6          | 2    | 505       | 364  | 236     |
| 8 May          | 0020   | 5a         | 1    | 333       | 48   | 182     |
| 8 May          | 0020   | 5a         | 1    | 505       | 50   | 162     |
| 8 May          | 0402   | 7          | 1    | 333       | 54   | 4       |
| 8 May          | 0402   | 7          | 1    | 505       | 60   | 8       |
| 8 May          | 0734   | 8          | 1    | 333       | 360  | 17      |
| 8 May          | 0734   | 8          | 1    | 505       | 353  | 20      |
| 8 May          | 1.31.5 | 9          | 1    | 333       | 25   | 22      |
| 8 May          | 1315   | 9          | 1    | 505       | 24   | 18      |
| 9 May          | 0145   | 11         | 1    | 333       | 11   | 44      |
| 9 May          | 0145   | 11         | 1    | 505       | 11   | 24      |

1-m NIO Tows

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | . Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|-------------------|--------|-------------------|
| 7 May                   | 1757          | 6       | 3    | 571               | 1096   | 352               |

Table 27. Summary of taxonomic categories of fish eggs, larvae, young and adults found in Bongo and 1-m NIO net samples collected on Lower Cook Inlet, *Discoverer* cruise, Leg V, 05-09 May 1976.

A total of 25 samples were collected. The fish are distributed into 15 families, 16 genera and 11 species. The eggs are distributed into 4 size categories.

Family Agonidae

24 larvae genus? species?

Family Ammodytidae

1373 larvae sandlance<sup>1</sup> Ammodytes hexapterus Pallas

Family Bathylagidae

4 larvae smoothtongue Bathylagus stilbius (Gilbert)

Family Bathymasteridae

18 larvae genus? species?

Family Cottidae

3 larvae cabezon *Scorpaenichthys marmoratus* (Ayres) 120 larvae genus? species?

Family Cyclopteridae

12 larvae genus? species?

Family Gadidae

20 larvae Alaska pollock *Theragra chalcogramma* (Pallas) 77 larvae genus? species?

Family Liparidae

1 larva snailfish Liparis sp.

Family Myctophidae

23 larvae northern lampfish Stenobrachius leucopsarus (Eigenmann and Eigenmann)

6 larvae genus? species?

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Family Osmeridae

11 larvae capelin Mallotus villosus (Müller)
4 larvae longfin smelt Spirinchus thaleichthys (Ayres)
11 larvae genus? species?

Family Pholidae

4 larvae penpoint gunnel Apodichthys flavidus Girard 4 larvae gunnel Pholis sp. 96 larvae genus? species?

Family Pleuronectidae

11 larvae butter sole Isopsetta isolepis (Lockington)
4 larvae rock sole Lepidopsetta bilineata (Ayres)?

Family Scorpaenidae

16 larvae rockfish Sebastes sp.
3 larvae genus? species?

Family Stichaeidae

10 larvae cockscomb Anoplarchus sp.
1137 larvae prickleback Lumpenus spp.
2 larvae rock prickleback Xiphister mucosus (Girard)

Family Tetragonuridae

1 larva genus? species?

181 larvae unidentified

6691 eggs categorized (see Table 18, List of possible fish for egg size categories):

12 eggs < 1 mm (0.74-0.88 mm) 6510 eggs ∿ 1 mm (0.90-1.28 mm) 78 eggs ∿ 2 mm (1.30-2.54 mm) 89 eggs ∿ 3 mm (2.56-3.90 mm) 2 eggs unidentified, damaged

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs            | Fish or<br>Larvae             | Identification of Fish Eggs and Larvae        |
|-------------------------|---------------|---------|------|-------------------|-----------------|-------------------------------|-----------------------------------------------|
| 6 May 1325              | 1325          | 1       | 1    | 333               | 42 <sup>a</sup> | 34 <sup>a</sup>               | 2 eggs $\sim$ 2 mm (1.60 mm) <sup>b</sup>     |
|                         |               |         |      |                   |                 | 38 eggs ~ 3 mm (2.90-3.20 mm) |                                               |
|                         |               |         |      |                   |                 |                               | 2 eggs damaged unidentified                   |
|                         |               |         |      |                   |                 |                               | 4 larvae 32, 42 mm <i>Mallotus villosus</i>   |
|                         |               |         |      |                   |                 |                               | 2 larvae 9.7 mm <i>Sebastes</i> sp.           |
|                         |               |         |      |                   |                 |                               | 8 larvae 4.4 mm Stenobrachius leucopsaru      |
|                         |               |         |      |                   |                 |                               | 8 larvae 3.6-5.2 mm Theragra chalcogramm      |
|                         |               |         |      |                   |                 |                               | 6 larvae 5.5 mm Myctophidae                   |
|                         |               |         |      |                   |                 |                               | 2 larvae 10 mm unidentified (elongate)        |
|                         |               |         |      |                   |                 |                               | 4 larvae unidentified due to extensive damage |

Table 28. Identification of Fish Eggs and Larvae by Station Lower Cook Inlet Bongo Tows, *Discoverer*, Leg V, 05-09 May 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature. The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for the entire sample.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs                                                                                                   | Fish or<br>Larvae                         | Identification of Fish Eggs and Larvae    |
|-------------------------|---------------|---------|------|-------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|
| 6 May                   | 1325          | 1       | 1    | 505               | 32                                                                                                     | 40                                        | 3 eggs ∿ 1 mm (1.28 mm)                   |
| •                       |               |         |      |                   | <pre>29 eggs ∿ 3 mm (2.97-3.52 mm) (27 whole<br/>eggs, 2 yolksac embryos without mem-<br/>brane)</pre> |                                           |                                           |
|                         |               |         |      |                   |                                                                                                        | 4 larvae 7.2-54 mm Mallotus villosus      |                                           |
|                         |               |         |      |                   | 9 larvae 4.0-5.2 mm Stenobrachius leucopsar                                                            |                                           |                                           |
|                         |               |         | :    |                   |                                                                                                        | 4 larvae 3.6-5.2 mm Theragra chalcogramma |                                           |
|                         |               |         |      |                   |                                                                                                        | 8 larvae 6.0-7.0 mm Bathymasteridae       |                                           |
|                         |               |         |      |                   |                                                                                                        |                                           | 8 larvae 3.1-11 mm Gadidae                |
|                         |               |         |      |                   |                                                                                                        |                                           | 1 larva 8.0 mm Scorpaenidae               |
|                         |               |         |      |                   |                                                                                                        |                                           | 6 larvae 5.0 mm damaged, unidentified     |
| 6 May                   | 1552          | 2       | 1.   | 333               | 0                                                                                                      | 26                                        | 4 larvae 7.7-18 mm Sebastes sp.           |
|                         |               |         |      |                   |                                                                                                        |                                           | 2 larvae 6.0 mm Stenobrachius leucopsarus |
|                         |               |         |      |                   |                                                                                                        |                                           | 2 larvae 3.8 mm Theragra chalcogramma     |
|                         |               |         |      |                   |                                                                                                        |                                           | 2 larvae 5.6,18 mm Bathymasteridae        |
|                         |               |         |      |                   |                                                                                                        |                                           | l larva 5.6 mm Cottidae                   |
|                         |               |         |      |                   |                                                                                                        |                                           | 5 larvae 3.8-5.0 mm Gadidae               |
|                         |               |         |      |                   |                                                                                                        |                                           | 9 larvae 7.7-8.1 mm Osmeridae             |
|                         |               |         |      |                   |                                                                                                        |                                           | l larva 6.0 mm Scorpaenidae               |

Table 28. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae             | Identification of Fish Eggs and Larvae                                       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------------------|------------------------------------------------------------------------------|
| 6 May                   | 1552          | 2       | 1    | 505               | 3    | 13                            | l egg < 1 mm (0.93 mm)                                                       |
|                         |               |         |      |                   |      |                               | 2 eggs $\sim$ 2 mm (1.68 mm)                                                 |
|                         |               |         |      |                   |      |                               | 5 larvae 7.0-9.0 mm Ammodytes hexapterus                                     |
|                         |               |         |      |                   |      |                               | 2 larvae 4.8 mm <i>Sebastes</i> sp.                                          |
|                         |               |         |      |                   |      |                               | 2 larvae 3.8, 4.0 mm Theragra chalcogramme                                   |
|                         |               |         |      |                   |      |                               | 3 larvae 4.0 mm Gadidae                                                      |
|                         |               |         |      |                   |      |                               | l larva 5.6 mm Scorpaenidae                                                  |
| 6 May 2117              | 17 3          | 1       | 333  | 41                | 12   | 36 eggs ∿ 1 mm (0.97-1.10 mm) |                                                                              |
|                         |               |         |      |                   |      |                               | 5 eggs ∿ 2 mm (1.33-1.50 mm)                                                 |
|                         |               |         |      |                   |      |                               | 9 larvae 4.8-6.0 mm Ammodytes hexapterus                                     |
|                         |               |         |      |                   |      |                               | 2 larvae 3.6, 4.0 mm Cottidae                                                |
|                         |               |         |      |                   |      |                               | l larva 4.8 mm damaged, unidentified                                         |
| 6 May                   | 2117          | 3       | 1    | 505               | 37   | 18                            | 33 eggs ∿ 1 mm (0.93-1.10 mm)                                                |
|                         |               |         |      |                   |      |                               | 4 eggs $\sim$ 2 mm (1.30-1.40 mm)                                            |
|                         |               |         |      |                   |      |                               | 16 larvae 4.4-7.7 mm Ammodytes hexapterus                                    |
|                         |               |         |      |                   |      |                               | 2 larva 4.0 mm Cottidae                                                      |
| 7 May                   | 0259          | 4       | 1    | 333               | 0    | 3                             | l larva 4.4 mm Cottidae                                                      |
|                         |               |         |      |                   |      |                               | l larva $\sim$ 5 mm damaged Gadidae                                          |
|                         |               |         |      |                   |      |                               | <pre>1 larva &gt; 6 mm extensively damaged,<br/>elongate, unidentified</pre> |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT)                         | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae                | Identification of Fish Eggs and Larvae    |
|-------------------------|---------------------------------------|---------|------|-------------------|------------------|----------------------------------|-------------------------------------------|
| 7 May                   | 0259                                  | 4       | 1    | 505               | 0 -              | 2                                | 2 larvae 5.2 mm Ammodytes hexapterus      |
| 7 May                   | 1030                                  | 5       | 2    | 333               | 40               | 119                              | 36 eggs ∿ 1 mm (0.96-1.20 mm)             |
| 1 101)                  | · · · · · · · · · · · · · · · · · · · | ·       |      |                   |                  |                                  | 4 eggs $\sim$ 2 mm (1.76–1.91 mm)         |
|                         |                                       |         |      |                   |                  |                                  | 63 larvae 5.0-10 mm Ammodytes hexapterus  |
|                         |                                       |         |      |                   |                  |                                  | 1 larva 9.0 mm <i>Liparis</i> sp.         |
|                         |                                       |         |      |                   |                  | 24 larvae 12-23 mm Lumpenus spp. |                                           |
|                         |                                       |         |      |                   |                  | 1 larva 40 mm Mallotus villosus  |                                           |
|                         |                                       |         |      |                   |                  |                                  | l larva 10 mm Scorpaenichthys marmoratus  |
|                         |                                       |         |      |                   |                  |                                  | 3 larvae 9.0 mm Agonidae                  |
|                         |                                       |         |      |                   |                  |                                  | 2 larvae 9.0,10 mm Cottidae               |
|                         |                                       |         |      |                   |                  |                                  | 1 larva 10 mm Cottidae                    |
|                         |                                       |         |      |                   |                  |                                  | 20 larvae 10-15 mm Pholidae               |
|                         |                                       |         |      |                   |                  |                                  | 1 larva 10 mm Tetragonuridae              |
|                         | -                                     |         |      |                   |                  |                                  | 2 larvae 5.0 mm unidentified              |
| 7 May                   | 1030                                  | 5       | 2    | 505               | 136 <sup>c</sup> | 852 <sup>c</sup>                 | 124 eggs ~ 1 mm (0.96-1.20 mm)            |
| / Hay                   | 1030                                  | 5       | -    | 200               |                  |                                  | 12 eggs $\sim$ 2 mm (1.52-1.92 mm)        |
|                         |                                       |         |      |                   |                  |                                  | 486 larvae 6.0-10 mm Ammodytes hexapterus |
|                         |                                       |         |      |                   |                  |                                  | 134 larvae 12-24 mm Lumpenus spp.         |
|                         |                                       |         |      |                   |                  |                                  | 2 larvae 43 mm Mallotus villosus          |

<sup>c</sup> The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae        |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-----------------------------------------------|
| 7 May                   | 1030          | 5       | 2    | 505               | 136  | 852               | 2 larvae 10 mm Scorpaenichthys marmoratus     |
|                         |               |         |      |                   |      |                   | 4 larvae 9.3 mm Sebastes sp.                  |
|                         |               |         |      |                   |      |                   | 4 larvae $\sim$ 29 mm Spirinchus thaleichthys |
|                         |               |         |      |                   |      |                   | 4 larvae 4.8 mm Theragra chalcogramma         |
|                         |               |         |      |                   |      |                   | 16 larvae 8.1-10 mm Agonidae                  |
|                         |               |         |      |                   |      |                   | 8 larvae Bathymasteridae                      |
|                         |               |         |      | -                 |      |                   | 10 larvae 9.0-12 mm Cottidae                  |
|                         |               |         |      |                   |      |                   | 18 larvae 3.7-5.1 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | 18 larvae 4.0-8.5 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | 38 larvae 4.8-6.2 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | 8 larvae 8.0-12 mm Cottidae                   |
|                         |               |         |      |                   |      |                   | 12 larvae 3.2-4.0 mm Gadidae                  |
|                         |               |         |      |                   |      |                   | 76 larvae 9.0-11 mm Pholidae                  |
|                         |               |         |      |                   |      |                   | 4 larvae 9.0, 10 mm unidentified              |
|                         |               |         |      |                   |      |                   | 8 larvae unidentified                         |
| 8 May                   | 0020          | 5a      | 1    | 333               | 48   | 182               | 45 eggs ∿ 1 mm (0.96-1.03 mm)                 |
|                         |               |         |      |                   |      |                   | 3 eggs ∿ 2 mm (1.28-1.36)                     |
|                         |               |         |      |                   |      |                   | 159 larvae 7.0-10 mm Annodytes hexapterus     |
|                         |               |         |      |                   |      |                   | 12 larvae 12-24 mm Lumpenus spp.              |

Table 28. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs             | Fish or<br>Larvae                                          | Identification of Fish Eggs and Larvae       |
|-------------------------|---------------|---------|------|-------------------|------------------|------------------------------------------------------------|----------------------------------------------|
| 8 May 0020              | 0020          | 5a      | 1    | 333               | 48               | 182                                                        | 3 larvae 3.7, 3.8, 4.8 mm Isopsetta isolepis |
|                         |               |         |      |                   |                  | 1 larva 8.2 mm Agonidae                                    |                                              |
|                         |               |         |      |                   |                  | 5 larvae 4.7-9.6 mm Cottidae                               |                                              |
|                         |               |         |      |                   |                  | l larva 7.9 mm Cottidae                                    |                                              |
|                         |               |         |      |                   |                  | l larva unidentified due to extensive<br>damage (elongate) |                                              |
| 8 May                   | 0020          | 5a      | 1    | 505               | 50               | 162                                                        | 48 eggs ~ 1 mm (0.91-1.10 mm)                |
| -                       |               |         |      |                   |                  |                                                            | 2 eggs $\sim$ 2 mm (1.30, 1.69 mm)           |
|                         |               |         |      |                   |                  |                                                            | 143 larvae 5.7-8.5 mm Annodytes hexapteru    |
|                         |               |         |      |                   |                  |                                                            | 6 larvae 4.0-5.9 mm Iscpsetta isolepis       |
|                         |               |         |      |                   |                  |                                                            | 6 larvae 12-21 mm Lumperus spp.              |
|                         |               |         | •    |                   |                  |                                                            | 6 larvae 5.0-8.4 mm Cottidae                 |
|                         |               |         |      |                   |                  |                                                            | l larva 7.4 mm Cottidae                      |
| 7 May                   | 1312          | 6       | 1    | 333               | 992 <sup>d</sup> | 290 <sup>d</sup>                                           | 992 eggs ∿ 1 mm (0.96-1.10 mm)               |
|                         |               |         |      |                   |                  |                                                            | 84 larvae 4.0-6.3 mm Ammodytes hexapterus    |
|                         |               |         |      |                   |                  |                                                            | 184 larvae 9.0-14 mm Lumpenus spp.           |

<sup>d</sup> The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul              | Mesh Size<br>(µm)  | Eggs                                 | Fish or<br>Larvae                         | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|-------------------|--------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------|
| 7 May                   | 1312          | 6       | 1                 | 333                | 992                                  | 290                                       | 2 larvae 4.4 mm Sebastes sp.                                 |
|                         |               |         |                   |                    |                                      |                                           | 2 larvae 20 mm Xiphister mucosus                             |
|                         |               |         |                   |                    |                                      |                                           | 18 larvae unidentified due to extensive<br>damage (elongate) |
| 7 May 1312              | 1312 6 1      | 505     | 1616 <sup>e</sup> | 326 <sup>e</sup> . | 1616 eggs $\sim$ 1 mm (0.98-1.10 mm) |                                           |                                                              |
|                         |               |         |                   |                    |                                      | 96 larvae 4.3-7.7 mm Anmodytes hexapterus |                                                              |
|                         |               |         |                   |                    |                                      |                                           | 184 larvae 9.0-18 mm Lumpenus spp.                           |
|                         |               |         |                   |                    |                                      |                                           | 4 larvae 8.1-9.5 mm Pholis sp.                               |
|                         |               |         |                   |                    |                                      |                                           | 2 larvae 30 mm Osmeridae                                     |
|                         |               |         |                   |                    |                                      |                                           | 40 larvae unidentified due to extensive<br>damage (elongate) |
| 7 May                   | 1709          | 6       | 2、                | 333                | 1296 <sup>f</sup>                    | 352 <sup>f</sup>                          | 1280 eggs ∿ 1 mm (0.96-1.08 mm)                              |
|                         |               |         |                   |                    |                                      |                                           | 16 eggs ∿ 2 mm (1.40-1.83 mm)                                |
|                         | E             |         |                   |                    |                                      |                                           | 92 larvae 5.1-8.3 mm Ammodytes hexapterus                    |
|                         |               |         |                   |                    |                                      |                                           | 220 larvae 9.7-17 mm Lumpenus spp.                           |
|                         |               |         |                   |                    |                                      |                                           | 4 larvae 4.2 mm Cottidae                                     |

e The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for the entire sample.

f The sample was split and 1/8 was sorted for fish eggs and 1/4 was sorted for larvae; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae                                            | Identification of Fish Eggs and Larvae                                           |
|-------------------------|---------------|---------|------|-------------------|------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------|
| 7 May                   | 1709          | 6       | 2    | 333               | 1296             | 352                                                          | 12 larvae 3.3-3.7 mm Cyclopteridae                                               |
|                         |               |         |      |                   |                  | 24 larvae unidentified due to extensive<br>damage (elongate) |                                                                                  |
| 7 May 1709              | 9 6 2         | 2       | 505  | 364 <sup>8</sup>  | 236 <sup>g</sup> | 362 eggs ∿ 1 mm (0.96-1.10 mm)                               |                                                                                  |
|                         |               |         |      |                   |                  |                                                              | 2 eggs ∿ 2 mm (1.95 mm)                                                          |
|                         |               |         |      |                   |                  |                                                              | 44 larvae 4.4-7.3 mm Ammodytes hexapterus                                        |
|                         |               |         |      |                   |                  |                                                              | 4 larvae 8.2-9.5 mm Apodichthys flavidus                                         |
|                         |               |         |      |                   |                  |                                                              | 154 larvae 9.6-21 mm Lumpenus spp.                                               |
|                         |               |         |      |                   |                  |                                                              | 34 larvae unidentified due to extensive damage (elongate)                        |
| 8 May                   | 0402          | 7       | 7 1  | 333               | 54 <sup>g</sup>  | 4 <sup>g</sup>                                               | 54 eggs ~ 1 mm (1.00-1.20 mm)                                                    |
|                         |               |         |      |                   |                  |                                                              | 2 larvae 8.4 mm Anmodytes hexapterus                                             |
|                         |               |         |      |                   |                  |                                                              | 2 larvae 10 mm Lumpenus sp.                                                      |
| 8 May                   | 0402          | 7       | 1    | 505               | 60 <sup>h</sup>  | $8^{\mathrm{h}}$                                             | 56 eggs ∿ 1 mm (1.06-1.24 mm)                                                    |
|                         |               |         |      |                   |                  |                                                              | 4 eggs $\sim$ 2 mm (1.36 mm)                                                     |
|                         |               |         |      |                   |                  |                                                              | 8 larvae unidentified due to extensive<br>damage (1 elongate and 1 non-elongate) |

<sup>g</sup> The sample was split and 1/2 was sorted for fish eggs and larvae; totals given are for the entire sample.
<sup>h</sup> The sample was split and 1/4 was sorted for fish eggs and larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                                                                                                                                                                                                                                                   |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 May                   | 0734          | 8       | 1    | 333               | 360 <sup>i</sup> | 17                | 358 eggs ∿ 1 mm (0.92-1.30 mm)<br>2 eggs ∿ 2 mm (1.36 mm)<br>17 larvae 6.9-9.0 mm <i>Ammodytes hexapterus</i>                                                                                                                                                                                                            |
| 8 May                   | 0734          | 8       | 1    | 505               | 353              | 20                | 346 eggs $\sim$ 1 mm (0.94-1.24 mm)<br>7 eggs $\sim$ 2 mm (1.34-1.64 mm)<br>18 larvae 3.4-4.5 mm Ammodytes hexapterus<br>1 larva 3.7 mm Lepidopsetta bilineata ?<br>1 larva 9.7 mm Lumpenus sp.                                                                                                                          |
| 8 May                   | 1315          | 9       | 1    | 333               | 25               | 22                | <pre>13 eggs ∿ 1 mm (0.94-1.16 mm) 1 egg ∿ 2mm (1.40 mm) 11 eggs ∿ 3 mm (2.80-3.84 mm) 4 larvae 5.8-6.0 mm Anoplarchus sp. 1 larva 5.3 mm Isopsetta isolepis ? 2 larvae 3.3, 3.9 mm Lepidopsetta bilineate 2 larvae 5.1, 6.3 mm Cottidae 1 larva 4.4 mm Gadidae 1 larva 5.3 mm unidentified (intense body pigment)</pre> |

i The sample was split for fish eggs and 1/2 was sorted; totals given are for entire sample.

Table 28. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                           |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------------|
| 8 May                   | 1315          | 9       | 1    | 333               | 25   | 22                | l larva 5.2 mm unidentified (elongate)                           |
|                         |               |         |      |                   |      |                   | 10 larvae unidentified due to extensive<br>damage (all elongate) |
| 8 May                   | 1315          | 9       | 1    | 505               | 24   | 18                | 12 eggs $\sim$ 1 mm (0.94-1.20 mm)                               |
|                         |               |         |      |                   |      |                   | 1 egg $\sim$ 2 mm (1.60 mm)                                      |
|                         |               |         |      |                   |      |                   | 11 eggs ∿ 3 mm (2.97-3.56)                                       |
|                         |               |         |      |                   |      |                   | 3 larvae 4.6, 5.5, 9.5 mm Ammodytes hexapterus                   |
|                         |               |         |      |                   |      |                   | 6 larvae 5.0-6.2 mm Anoplarchus sp.                              |
|                         |               |         |      |                   |      |                   | 1 larva 3.5 mm Isopsetta isolepis                                |
|                         |               |         |      |                   |      |                   | l larva 11 mm Lumpenus sp.                                       |
|                         |               |         |      |                   |      |                   | 2 larvae 4.0 mm, one damaged, Gadidae                            |
|                         |               |         |      |                   |      |                   | 5 larvae unidentified due to extensive damage (all elongate)     |
| 9 May                   | 0145          | 11      | 1    | 333               | 11   | 44                | 11 eggs < 1 mm (0.67-0.83 mm)                                    |
|                         |               |         |      |                   |      |                   | 3 larvae 7.9, 11, 21 mm Bathylagus stilbius                      |
|                         |               |         |      |                   |      |                   | 1 larva 29 mm Lumpenus sp.                                       |
|                         |               |         |      |                   |      |                   | 4 larvae 3.4-4.1 mm Stenobrachius leucopsarus                    |
|                         |               |         |      |                   |      |                   | -<br>32 larvae 3.4-4.4 mm Gadidae                                |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                                             |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| 9 May                   | 0145          | 11      | 1    | 333               | 11   | 44                | l larva 8.8 mm unidentified (elongate)                                                                             |
|                         |               |         |      |                   |      |                   | 2 larvae 3.7, 6.0 mm unidentified (non-<br>elongate)                                                               |
|                         |               |         |      |                   |      |                   | <pre>l larva 12 mm unidentified (w/large<br/>ellipsoidal eyes extending to the<br/>articulation of the jaws)</pre> |
| 9 May                   | 0145          | 11      | 1    | 505               | 11   | 24                | 11 eggs ∿ 2 mm (1.36-2.56 mm)                                                                                      |
|                         |               |         |      |                   |      |                   | l larva 7.4 mm Bathylagus stilbius                                                                                 |
|                         |               |         |      |                   |      |                   | 1 larva 3.3 mm Lepidopsetta bilineata ?                                                                            |
|                         |               |         |      |                   |      |                   | 2 larvae 5.5, 6.1 mm Sebastes sp.                                                                                  |
|                         |               |         |      |                   |      |                   | 13 larvae 3.5-4.6 mm Gadidae                                                                                       |
|                         |               |         |      |                   |      |                   | 7 larvae unidentified due to extensive damage (all elongate)                                                       |

| Table 29.     | Identification o  | f Fish Eggs and | Larvae by  | Station  |
|---------------|-------------------|-----------------|------------|----------|
| Lower Cook In | let 1-m NIO Tows, | Discoverer, Le  | g V, 05-09 | May 1976 |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Kaul | Mesh Size<br>(µm) | Eggs              | Fish or<br>Larvae | Identification of Fish Eggs and Larvae      |
|-------------------------|---------------|---------|------|-------------------|-------------------|-------------------|---------------------------------------------|
| 7 May                   | 1757          | 6       | 3    | 571               | 1096 <sup>j</sup> | 352 <sup>k</sup>  | 1096 eggs ~ 1 mm (0.96-1.10 mm)             |
|                         |               |         |      |                   |                   |                   | 134 larvae 5.6-9.4 mm Annmodytes hexapterus |
|                         |               |         |      |                   |                   |                   | 214 larvae 12-22 mm Lumpenus spp.           |
|                         |               |         |      |                   |                   |                   | 4 larvae 7.1-8.3 mm Agonidae                |

<sup>j</sup> The sample was split for fish eggs and 1/8 was sorted; totals given are for entire sample.

 $^{\rm k}$  The sample was split for fish larvae and 1/2 was sorted; totals given are for entire sample.

Table 30. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo and 1-m NIO net samples collected on the Lower Cook Inlet Discoverer cruise, Leg V, 05-09 May 1976.

A total of 25 samples contained 14,327 crab zoeae and 69 megalopae. The commercially important crabs were distributed into 3 families, 2 genera and 2 species. The 25 samples contained 15,962 shrimp zoeae and 43 adult shrimp. The commercially important shrimp were distributed into 1 family, 2 genera and 6 species.

Section Anomura

Family Lithodidae

5,675 zoeae king crab<sup>1</sup> Paralithodes camtschatica (Tilesius) 86 zoeae damaged Paralithodes spp.

4,377 zoeae unidentified, non-commercially important anomurans.

Section Brachyura

Family Cancridae

8 zoeae non-commercially important Cancer spp.

Family Majidae

743 zoeae tanner crab *Chionoecetes bairdi* (Rathbun) 69 Megalopae *Chionoecetes* spp.

3,438 zoeae unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

11 zoeae sidestripe shrimp Pandalopsis dispar Rathbun
2544 zoeae northern pink shrimp Pandalus borealis Kröyer
8962 zoeae humpy shrimp Pandalus goniurus Stimpson
562 zoea Pandalus montagui tridens Rathbun
43 zoeae Pandalus stenolepis Rathbun
18 zoeae coonstripe shrimp Pandalus hypsinotus Brandt
4 zoeae Pandalus spp., damaged
2 adult Pandalus borealis
5 adult Pandalus goniurus

3,818 zoeae unidentified hippolytids
36 adult non-commercially important shrimp

The common name is presented for the first time for each species; thereafter, only the scientific name is recorded.

## Table 31. Identification of Crab and Shrimp Larvae by Station

Lower Cook Inlet Bongo and 1-m NIO Net Tows, Discoverer, Leg V, 05-09 May 1976

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul    | Mesh Size<br>(µm) | Stage    | Total         | Identification of Larvae  |
|-------------------------|---------------|---------|---------|-------------------|----------|---------------|---------------------------|
| 6 May                   | 1325          | 1       | 1       | 333               | zoea     | 140           | unidentified anomurans    |
| 2                       |               |         |         |                   | I        | 3             | Cancer productus          |
|                         |               |         |         |                   | I        | 1             | Chionoecetes bairdi       |
|                         |               |         |         |                   | zoea     | 122           | unidentified brachyurans  |
|                         |               |         |         |                   | I        | 9             | Pandalus borealis         |
|                         |               |         |         |                   | II       | 8             | P. borealis               |
|                         |               |         |         | •                 | I        | 39            | P. montagui tridens       |
|                         |               |         |         | I                 | 4        | P. stenolepis |                           |
|                         |               |         |         |                   | zoea     | 247           | unidentified hippolytids  |
| б Мау                   | 1325          | 1       | 1       | 505               | zoea     | 122           | unidentified anomurans    |
|                         |               |         |         |                   | I        | 4             | Cancer productus          |
|                         |               |         |         |                   | megalopa | 2             | Chionoecetes sp.          |
|                         |               |         |         |                   | zoea     | 88            | unidentified brachyurans  |
|                         |               |         |         |                   | I        | 18            | Pandalus boreal <b>is</b> |
|                         |               |         |         |                   | II       | 10            | P. borealis               |
|                         |               |         |         |                   | I        | 85            | P. montagui tridens       |
|                         |               |         |         |                   | I        | 3             | P. sterolepis             |
|                         |               |         |         |                   | zoea     | 295           | unidentified hippolytids  |
| б Мау                   | 1552          | 2       | $1^{a}$ | 333               | zoea     | 64            | unidentified anomurans    |
|                         |               |         |         |                   | megalopa | 4             | Chionoecetes sp.          |
|                         |               |         |         |                   | zoea     | 180           | unidentified brachyurans  |
|                         |               |         |         |                   | zoea     | 82            | unidentified hippolytids  |

<sup>a</sup> The sample was split for crab larvae and 1/4 was sorted; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage         | Total | Identification of Larvae                               |
|-------------------------|---------------|---------|------|-------------------|---------------|-------|--------------------------------------------------------|
| б Мау                   | 1552          | 2       | 1    | 505               | zoea          | 50    | unidentified anomurans                                 |
| -                       |               |         |      |                   | I             | 1     | Cancer productus                                       |
|                         |               |         |      |                   | megalopa      | 5     | Chionoecetes sp.                                       |
|                         |               |         |      |                   | zoea          | 126   | unidentified brachyurans                               |
|                         |               |         |      |                   | I             | 1     | Pandalus borealis                                      |
|                         |               |         |      |                   | II            | 1     | P. borealis                                            |
|                         |               |         |      |                   | . I           | 1     | P. montagui tridens                                    |
|                         |               |         |      |                   | I             | 2     | P. stenolepis                                          |
| 6 May                   | 2117          | 3       | 1    | 333               | I             | 1     | Paralithodes camtschatica                              |
| -                       |               |         |      |                   | megalopa      | 3     | Chionoecetes sp.                                       |
|                         |               |         |      |                   | zoea          | 16    | unidentified brachyurans                               |
|                         |               |         |      |                   | I             | 2     | Pandalus goniuru <b>s</b>                              |
|                         |               |         |      |                   | zoea          | 51    | unidentified hippolytids                               |
| ·                       |               |         |      |                   | adul <b>t</b> | 12    | Crangon franciscorum angust<br>imana (1 gravid female) |
| 6 May                   | 2117          | 3       | 1    | 505               | I             | 1     | Paralithodes camtschatica                              |
| -                       |               |         |      |                   | I             | 1     | Chionoecetes bairdi                                    |
|                         |               |         |      |                   | zoea          | 14    | unidentified brachyurans                               |
|                         |               |         |      |                   | zoea          | 50    | unidentified hippolytids                               |
|                         |               |         |      |                   | adult         | 1     | Crangon alaskensis                                     |
|                         |               |         |      |                   | adult         | 13    | C. franciscorum angustimana<br>(4 gravid females)      |
| 7 May                   | 0259          | 4       | 1    | 333               | zoea          | 1     | unidentified anomuran                                  |
|                         |               |         |      |                   | I             | 1     | Chionoecetes bairdi                                    |
|                         |               | -       |      |                   | I             | 1     | Pandalus goniurus                                      |
|                         |               |         |      |                   | zoea          | 4     | unidentified hippolytids                               |

.

Table 31. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage                                                              | Total                                                                 | Identification of Larvae                                                                                                                                                                                             |
|-------------------------|---------------|---------|----------------|-------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 May                   | 0259          | 4       | 1              | 505               | zoea                                                               | 2                                                                     | unidentified hippolytids                                                                                                                                                                                             |
| 7 May                   | 1030          | 5       | 2 <sup>b</sup> | 333               | I<br>II<br>zoea<br>zoea<br>I<br>II<br>II<br>II<br>II<br>I<br>zoea  | 880<br>384<br>944<br>208<br>440<br>104<br>1416<br>152<br>8<br>696     | Paralithodes camtschatica<br>P. camtschatica<br>unidentified anomurans<br>unidentified brachyurans<br>Pandalus borealis<br>P. borealis<br>P. goniurus<br>P. goniurus<br>P. hypsinotus<br>unidentified hippolytids    |
| 7 Мау                   | 1030          | 5       | 2 <sup>c</sup> | 505               | I<br>II<br>zoea<br>megalopa<br>zoea<br>I<br>II<br>II<br>II<br>zoea | 1792<br>544<br>1696<br>32<br>608<br>752<br>192<br>2984<br>640<br>1168 | Paralithodes camtschatica<br>P. camtschatica<br>unidentified anomurans<br>Chionoecetes sp.<br>unidentified brachyurans<br>Pandalus borealis<br>P. borealis<br>P. goniurus<br>P. goniurus<br>unidentified hippolytids |

Table 31. (continued)

b The sample was split and 1/16 was sorted for crab larvae and 1/8 was sorted for shrimp larvae; totals given are for entire sample.

<sup>c</sup> The sample was split and 1/32 was sorted for crab larvae and 1/8 was sorted for shrimp larvae; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae                      |
|-------------------------|---------------|---------|----------------|-------------------|-------|-------|-----------------------------------------------|
| 8 May                   | 0020          | 5a      | 1 <sup>d</sup> | 333               |       | 192   | Paralithodes comtschatica                     |
| 0 1103                  | 0020          | 54      | *              | 555               | ÎI    | 192   | P. camtschatica                               |
|                         |               |         |                |                   | zoea  | 628   | unidentified anomurans                        |
|                         |               |         |                |                   | I     | 444   | Chionoecetes bairdi                           |
|                         |               |         |                |                   | zoea  | 316   |                                               |
|                         |               |         |                |                   | I     | 80    | unidentified brachyurans<br>Pandalus borealis |
|                         |               |         |                |                   | II .  | 44    | P. borealis                                   |
|                         |               |         |                |                   | I     | 480   |                                               |
|                         |               |         |                |                   | II    | 76    | P. goniurus<br>P. goniurus                    |
|                         |               |         |                |                   | I     | 4     | P. goniurus<br>P. hypsinotus                  |
|                         |               |         |                |                   | I     | 4     | P. montagui tridens                           |
| 9 Mars                  | 0000          | F       | 1 <sup>d</sup> |                   | _     |       |                                               |
| 8 May                   | 0020          | Эa      | $5a$ $1^{u}$   | 505               | I     | 336   | Paralithodes camtschatica                     |
|                         |               |         |                |                   | II    | 160   | P. camtschatica                               |
|                         |               |         |                |                   | zoea  | 312   | unidentified anomurans                        |
|                         |               |         |                |                   | I     | 284   | Chionoecetes bairdi                           |
|                         |               |         |                |                   | zoea  | 56    | unidentified brachyurans                      |
|                         |               |         |                |                   | I     | 120   | Pandalus borealis                             |
|                         |               |         |                |                   | II    | 28    | P. borealis                                   |
|                         |               |         |                |                   | I     | 592   | P. goniurus                                   |
|                         | •             |         |                |                   | II    | 84    | P. goniuru <b>s</b>                           |
| 7 May                   | 1312          | 6       | ıe             | 333               | I     | 46    | Paralithodes comtschatica                     |
| •                       |               |         |                |                   | ĪI    | 24    | P. camtschatica                               |
|                         |               |         |                |                   | zoea  | 50    | unidentified anomurans                        |

<sup>d</sup> The sample was split and 1/4 was sorted for crab and shrimp larvae; totals given are for the entire sample. <sup>e</sup> The sample was split and 1/2 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total           | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|-------------------|-------|-----------------|---------------------------|
| 7 May                   | 1312          | 6       | 1              | 333               | zoea  | 252             | unidentified brachyurans  |
| •                       |               |         |                |                   | II    | 2               | Pandalopsis dispar        |
|                         |               |         |                |                   | I     | 142             | Pandalus borealis         |
|                         |               |         |                |                   | II    | 8               | P. borealis               |
|                         |               |         |                |                   | I     | 412             | P. goniurus               |
| 7 May                   | 1312          | 6       | lt             | 505               | Ŧ     | 77              |                           |
| / nay                   | 1312          | 0       | Ŧ              | 202               | I     | 76              | Paralithodes comtschatico |
|                         |               |         |                | II                | 44    | P. camtschatica |                           |
|                         |               |         |                |                   | zoea  | 64              | unidentified anomurans    |
|                         |               |         |                |                   | zoea  | 264             | unidentified brachyurans  |
|                         |               |         |                |                   | I     | 140             | Pandalus borealis         |
|                         |               |         |                |                   | II    | 2               | P. borealis               |
|                         |               |         |                |                   | I     | 562             | P. goniurus               |
|                         |               |         |                |                   | I     | 2               | P. hypsinotus             |
| 7 May                   | 1709          | 6       | 2 <sup>g</sup> | 333               | I     | 92              | Paralithodes camtschatice |
|                         |               |         |                |                   | zoea  | 110             | unidentified anomurans    |
|                         |               |         |                |                   | I     | 4               | Chionoecetes bairdi       |
|                         |               |         |                |                   | zoea  | 430             | unidentified brachyurans  |
|                         |               |         |                | •                 | I     | 156             | Pandalus borealis         |
|                         |               |         |                |                   | I     | 256             | P. goniurus               |
|                         |               |         |                |                   | II    | 4               | P. goniurus               |
|                         |               |         |                |                   | I     | 2               | P. hypsinotus             |
|                         |               |         |                |                   | zoea  | 178             | unidentified hippolytids  |

f The sample was split and 1/4 was sorted for crab larvae and 1/2 was sorted for shrimp larvae; totals given are for entire sample.

 $^{g}$  The sample was split and 1/2 was sorted for crab and shrimp larvae; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total                    | Identification of Larvae      |
|-------------------------|---------------|---------|----------------|-------------------|----------|--------------------------|-------------------------------|
| 7 May                   | 1709          | 6       | 2              | 505               | I        | 42                       | Paralithodes camtschatica     |
|                         |               |         |                |                   | ĪI       | 2                        | P. comtschatica               |
|                         |               |         |                |                   | zoea     | 24                       | unidentified anomurans        |
|                         |               |         |                | megalopa          | 2        | Chionoecetes sp.         |                               |
|                         |               |         |                | zoea              | 190      | unidentified brachyurans |                               |
|                         |               |         |                | Ι                 | 70       | Pandalus borealis        |                               |
|                         |               |         |                |                   | I        | 148                      | P. goniurus                   |
|                         |               |         |                | I                 | 2        | P. hypsinotus            |                               |
|                         |               |         |                | I                 | 2        | damaged Pandalus sp.     |                               |
|                         |               |         |                |                   | zoea     | 78                       | unidentified hippolytids      |
| 7 Mars                  | 1757          |         | 3 <sup>h</sup> |                   |          |                          |                               |
| 7 May                   | 1757          | .757 6  | ) 3            | 571               | I        | 100                      | Paralithodes camtschatica     |
|                         |               |         |                |                   | II       | 8                        | P. camtschatica               |
|                         |               |         |                |                   | zoea     | 24,                      | unidentified anomurans        |
|                         |               |         |                |                   | I        | 4                        | Chionoecetes bairdi           |
|                         |               |         |                |                   | zoea     | 400                      | unidentified brachyurans      |
|                         |               | •       |                |                   | . II     | 4                        | Pandalopsis dispar            |
|                         |               |         |                |                   | I        | 108                      | Pandalus borealis             |
|                         |               |         |                |                   | I        | 352                      | P. goniurus                   |
|                         |               |         |                |                   |          | 168                      | unidentified hippolytid larva |
| 8 May                   | 0402          | 7       | li             | 333               | т        | 226                      | Dana 7. the dealer of the     |
| ,                       | 0702          | ,       | +              | ورو               | I<br>I   | 226                      | Paralithodes camtschatica     |
|                         |               |         |                |                   | —        | 52                       | damaged Paralithodes sp.      |
|                         |               |         |                |                   | zoea     | 14                       | unidentified anomurans        |
|                         |               |         |                |                   | megalopa | 2                        | Chionoecetes sp.              |

Table 31. (continued)

<sup>h</sup> The sample was split and 1/4 was sorted for crab and shrimp larvae; totals given are for entire sample. <sup>i</sup> The sample was split and 1/2 was sorted for crab and shrimp larvae; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|-------------------|-------|-------|---------------------------|
| 8 May                   | 0402          | 7       | 1              | 333               | zoea  | 10    | unidentified brachyurans  |
| -                       |               |         |                |                   | I     | 8     | Pandalus borealis         |
|                         |               |         |                |                   | I     | 60    | P. goniurus               |
|                         |               |         |                |                   | zoea  | 120   | unidentified hippolytids  |
|                         |               |         |                |                   | adult | 2     | Crangon dalli             |
| 8 May                   | 0402          | 7       | 1 <sup>j</sup> | 505               | I.    | 272   | Paralithodes camtschatica |
|                         | 0402          | •       | -              | 505               | II    |       | P. camtschatica           |
|                         |               |         |                |                   | Ĩ     | 28    | damaged Paralithodes sp.  |
|                         |               |         |                |                   | zoea  | 26    | unidentified anomurans    |
|                         |               |         |                |                   | zoea  | 34    | unidentified brachyurans  |
|                         |               |         |                |                   | I     | 12    | Pandalus borealis         |
|                         |               |         |                |                   | I     | 42    | P. goniurus               |
|                         |               |         |                |                   | zoea  | 116   | unidentified hippolytids  |
|                         |               |         |                |                   | adult | 2     | Crangon alaskensis        |
|                         |               |         |                |                   | adult | 2     | Crangon dalli             |
| 8 May                   | 0734          | 8       | 1              | 333               | I     | 136   | Paralithodes camtschatica |
| -                       |               |         |                |                   | II    | 2     | P. camtschatica           |
|                         | •             |         |                |                   | I     | 3     | damaged Paralithodes sp.  |
|                         |               |         |                |                   | zoea  | 14    | unidentified anomurans    |
|                         |               |         |                |                   | zoea  | 2     | unidentified brachyurans  |
|                         |               |         |                |                   | I     | 316   | Pandalus goniurus         |
|                         |               |         |                |                   | II    | 6     | P. goniurus               |
|                         |               |         |                |                   | zoea  | 94    | unidentified hippolytids  |
|                         |               |         |                |                   | adult | 3     | Crangon alaskensis        |
|                         |               |         |                |                   | adult | 1     | Pandalus borealis         |
|                         |               |         |                |                   | adu1t | 2     | P. goniurus               |

<sup>j</sup> The sample was split and 1/2 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae  |
|-------------------------|---------------|---------|------|-------------------|----------|-------|---------------------------|
| 8 May                   | 0734          | 8       | 1    | 505               | I        | 135   | Paralithodes camtschatica |
| ·                       |               |         |      |                   | II       | 3     | P. camtschatica           |
|                         |               |         |      |                   | I        | 3     | damaged Paralithodes sp.  |
|                         |               |         |      |                   | zoea     | 22    | unidentified anomurans    |
|                         |               |         |      |                   | megalopa | 1     | Chionoecetes sp.          |
|                         |               |         |      |                   | zoea     | 5     | unidentified brachyurans  |
|                         |               |         |      |                   | I.       | 340   | Pandalus goniurus         |
|                         |               |         |      |                   | II       | 5     | P. goniurus               |
|                         |               |         |      | •                 | zoea     | 94    | unidentified hippolytids  |
|                         |               |         |      |                   | adult    | 1     | Crangon alaskensis        |
|                         |               |         |      |                   | adult    | 1     | Pandalus borealis         |
|                         |               |         |      |                   | adult    | 2     | P. goniurus               |
| 8 May                   | 1315          | 9       | 1    | 333               | I        | 14    | Paralithodes camtschatica |
| -                       |               |         |      |                   | zoea     | 34    | unidentified anomurans    |
|                         |               |         |      |                   | zoea     | 75    | unidentified brachyurans  |
| •                       |               | _       |      |                   | I        | 30    | Pandalus borealis         |
|                         |               | •       |      |                   | II       | 22    | P. borealis               |
|                         |               |         |      |                   | I        | 15    | P. goniurus               |
|                         |               |         |      |                   | Ι        | 197   | P. montagui tridens       |
|                         |               |         |      |                   | I        | 22    | P. stenoľepis             |
|                         |               |         |      |                   | zoea     | 227   | unidentified hippolytids  |
|                         |               |         |      |                   | adult    | 1     | Pandalus goniurus         |
| 3 May                   | 1315          | 9       | 1    | 505               | I        | 19    | Paralithodes camtschatica |
|                         |               | -       |      | -                 | zoea     | 38    | unidentified anomurans    |
|                         |               |         |      |                   | megalopa | 4     | Chionoecetes sp.          |
|                         |               |         |      |                   | zoea     | 35    | unidentified brachyurans  |
|                         |               |         |      |                   | I        | 28    | Pandatus borealis         |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>( m) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|----------|-------|--------------------------|
| 3 May                   | 1315          | 9       | 1    | 505               | II       | 9     | P. borealis              |
| 2                       |               |         |      |                   | I        | 17    | P. goniurus              |
|                         |               |         |      |                   | I        | 233   | P. montagui tridens      |
|                         |               |         |      |                   | 1        | 10    | P. stenolepis            |
|                         |               |         |      |                   | II       | 2     | P. stenolepis            |
|                         |               |         |      |                   | II       | 2     | damaged Pandalus sp.     |
|                         |               |         |      |                   | zoea     | 132   | unidentified hippolytids |
| May                     | 0145          | 11      | 1    | 333               | megalopa | 7     | Chionoecetes sp.         |
| 2                       |               |         |      |                   | ĬI       | 2     | Pandalopsis dispar       |
| -                       |               |         |      |                   | zoea     | 6     | unidentified hippolytids |
| May                     | 0145          | 11      | 1    | 505               | I        | 4     | Chionoecetes bairdi      |
| -                       |               |         |      |                   | megalopa | 7     | Chionoecetes sp.         |
|                         |               |         |      |                   | zoea     | 7     | unidentified brachyurans |
|                         |               |         |      |                   | I        | 2     | Pandalopsis dispar       |
|                         |               |         |      |                   | IV       | 1     | P. dispar                |
|                         |               |         |      |                   | I        | 2     | Fandalus borealis        |
|                         |               |         |      |                   | I        | 3     | P. montagui tridens      |
|                         |               |         |      |                   | zoea     | 10    | unidentified hippolytids |

Table 31. (continued)

| Date            | 0) •          |         |      |                   |      |                   |
|-----------------|---------------|---------|------|-------------------|------|-------------------|
| (1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae |
| 24 May          | 0732          | 1       | 1    | 333               | 76   | 138               |
| 24 May          | 0732          | 1       | 1    | 505               | 47   | 107               |
| 25 May          | 1150          | 2       | 1    | 333               | 11   | 59                |
| 25 May          | 1150          | 2       | 1    | 505               | 6    | 58                |
| 25 May          | 1607          | 3       | 1    | 333               | 85   | 7                 |
| 25 May          | 1607          | 3       | 1    | <b>5</b> 05       | 86   | 8                 |
| 25 May          | 2217          | 4       | 1    | 333               | 3    | 4                 |
| 25 May          | 2217          | 4 ·     | 1    | 505               | 1    | 2                 |
| 26 May          | 0541          | 5a      | 2    | 333               | 28   | 70                |
| 26 May          | 0541          | 5a      | 2    | 505               | 85   | 167               |
| 26 May          | 0835          | 6       | 1    | 333               | 648  | 27                |
| 26 May          | 0835          | 6       | 1    | 505               | 684  | . 29              |
| 26 May          | 1928          | 6       | 3    | 333               | 380  | 36                |
| 26 May          | 1928          | 6       | 3    | 505               | 242  | 29                |
| 27 May          | 0056          | 6       | 4    | 333               | 169  | 84                |
| 27 May          | 0056          | 6       | 4    | 505               | 181  | 79                |
| 27 May          | 0708          | 6       | 7    | 333               | 17   | 70                |
| 27 May          | 0708          | 6       | 7    | 505               | 37   | 76                |
| 27 May          | 1300          | 7       | 1    | 333               | 692  | 67                |
| 27 May          | 1300          | 7       | 1    | 505               | 656  | 52                |
| 27 May          | 1701          | 8       | 1    | 333               | 190  | 33                |
| 27 May          | 1701          | 8       | 1    | 505 <sup>-</sup>  | 258  | 26                |
| 30 May          | 1813          | 10      | 1    | 333               | 22   | 121               |
| 30 May          | 1813          | 10      | 1    | 505               | 18   | 57                |
| 30 May          | 0253          | 11      | 1    | 333               | 1.   | 55                |
| 30 May          | 0253          | 11      | 1    | 505               | 0    | 40                |
| 30 May          | 0813          | 11      | 2    | 333               | 2    | 31                |
| 30 May          | 0813          | 11      | 2    | 505               | 1    | 51                |
| 28 May          | 1831          | 13      | 1    | 333               | 13   | 940               |
| 28 May          | 1831          | 13      | 1    | 505               | . 8  | 876               |
| 28 May          | 2248          | 13      | 2    | 333               | ´ 99 | 2992              |
| 28 May          | 2248          | 13      | 2    | 505               | 100  | 2384              |

Table 32. Number of fish eggs and larvae at each station Lower Cook Inlet Bongo Tows, *Discoverer*, Leg VII, 22-30 May 1976

357

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|
| 29 May                  | 1029          | 13      | 3    | 333               | 1    | 800               |
| 29 May                  | 1029          | 13      | 3    | 505               | 0    | 700               |
| 28 May                  | 0536          | 14      | 1    | 333               | 74   | 11                |
| 28 May                  | 0536          | 14      | 1    | 505               | 74   | 13                |

<sup>1-</sup>m NIO Tows

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|
| 27 May                  | 0120          | 6       | 5    | 571               | 248  | 162               |

Table 33. Summary of taxonomic categories of fish eggs, larvae, young, and adults found in Bongo net samples and 1-m NIO net sample collected in Lower Cook Inlet and Prince William Sound, Discoverer cruise, Leg VII, 22-30 May 1976.

A total of 38 samples were collected. All samples were sorted for fish larvae and identified or sized for fish eggs and summarized below. The fish are distributed into families, genera, and species. The eggs are distributed into 4 size categories.

Family Agonidae

17 larvae genus? species?

Family Ammodytidae

376 larvae Pacific sandlance<sup>1</sup> Ammodytes hexapterus Pallas 1 adult Ammodytes hexapterus

Family Bathylagidae

4434 larvae smoothtongue Bathylagus stilbius (Gilbert) 32 young Bathylagus stilbius

Family Bathymasteridae

4 larvae genus? species?

Family Clupeidae

138 larvae Pacific herring Clupea harengus pallasi Valenciennes

Family Cottidae

1 larva northern sculpin Icelinus borealis Gilbert ?
3 larvae sculpin Myoxocephalus sp. (2 uncertain)
187 larvae genus? species?
2 young genus? species?

Family Cyclopteridae

58 larvae genus? species? 68 young genus? species?

Family Gadidae

390 larvae cod Gadus sp.
3 larvae Alaska pollock Theragra chalcogramma (Pallas)
317 larvae genus? species?

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Table 33. (continued) Family Hexagrammidae 2 young greenling Hexagrammos sp. 19 young genus? species? Family Myctophidae 1 young bigeye lanternfish Protomyctophum thompsoni (Chapman) 104 larvae smallfin lanternfish Stenobrachius leucopsarus (Eigenmann and Eigenmann) 3 young Stenobrachius leucopearus Family Osmeridae 6 larvae capelin Mallotus villosus (Müller) 2 larvae genus? species? Family Pholidae 3 larvae penpoint gunnel Apodichthys flavidus Girard 21 larvae genus? species? Family Pleuronectidae 64 larvae sole Hippoglossoides sp. 33 larvae butter sole Isopsetta isolepis (Lockington) 12 larvae rock sole Lepidopsetta bilineata (Ayres) (8 uncertain) 3 larvae slender sole Lyopsetta exilis (Jordan and Gilbert) Family Ptilichthyidae 1 larva quillfish Ptilichthys goodei Bean Family Scorpaenidae 2328 larvae rockfish Sebastes spp. Family Stichaeidae 30 larvae cockscomb Anoplarchus sp. 157 larvae prickleback Lumpenus spp. 1 young Lumpenus sp. 1040 larvae unidentified, many badly damaged. 5243 eggs categorized (see Table 18, List of possible fish for egg size categories): 146 eggs <1 mm (0.74-0.88 mm) 4539 eggs ∿ 1 mm (0.90-1.28 mm) 302 eggs  $\sim$  2 mm (1.30-2.54 mm)

256 eggs ∿ 3 mm (2.56-3.90 mm)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs            | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                   |
|-------------------------|---------------|---------|------|-------------------|-----------------|-------------------|----------------------------------------------------------|
| 24 May                  | 0732          | 1       | 1    | 333               | 76 <sup>a</sup> | 138 <sup>a</sup>  | $1 \text{ egg } \sim 2 \text{ mm} (2.16 \text{ mm})^{b}$ |
|                         |               |         |      |                   |                 |                   | 75 eggs ∿ 3 mm (2.74-3.60 mm)                            |
|                         |               |         |      |                   |                 |                   | 7 larvae 4.7-6.5 mm Annodytes hexapterus                 |
|                         |               |         |      |                   |                 |                   | 2 larvae 8.1, 8.7 mm Anoplarchus sp.                     |
|                         |               |         |      |                   |                 |                   | 40 larvae 4.3-6.9 Hippoglossoides sp.                    |
|                         |               |         |      |                   |                 |                   | 1 larva 3.3 mm Icelinus borealis ?                       |
|                         |               |         |      |                   |                 |                   | 6 larvae 6.8-8.7 mm Lepidopsetta bilineata ?             |
|                         |               |         |      |                   |                 |                   | 3 larvae 3.6, 4.2, 5.2 mm Lyopsetta exilis               |
|                         |               |         |      |                   |                 |                   | 2 larvae 8.9, 9.9 mm <i>Myoxocephalus</i> sp.            |
|                         |               |         |      |                   |                 |                   | l larva 36 mm Ptilichthys goodei                         |
|                         |               |         |      |                   |                 |                   | 2 larva 3.8, 5.4 mm Stenobrachius leucopsaru             |

Table 34. Identification of Fish Eggs and Larvae by Station

Lower Cook Inlet Bongo Tows, Discoverer, Leg VII, 22-30 May 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                           |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------------------------------------------|
| 24 May                  | 0732          | 1       | 1    | 333               | 76   | 138               | 1 1arva 7.7 mm Cottidae                                                          |
| -                       |               |         |      |                   |      |                   | 2 larvae 4.4, 4.2 mm Gadidae                                                     |
|                         |               |         |      |                   |      |                   | 65 larvae 3.6-6.7 mm unidentified (elongate)                                     |
|                         |               |         |      |                   |      |                   | l larva 5.8 mm unidentified (non-elongate)                                       |
|                         |               |         | ·    | -                 |      |                   | 5 larvae unidentified due to extensive<br>damage (1 elongate and 1 non-elongate) |
| 24 May                  | 0732          | 1       | 1    | 505               | 47   | 107               | 1 egg $\sim$ 2 mm (2.08 mm)                                                      |
| -                       |               |         |      |                   |      |                   | 46 eggs ∿ 3 mm (2.74-3.60 mm)                                                    |
|                         |               |         |      |                   |      |                   | 4 larvae 8.8-14 mm Ammodytes hexapterus                                          |
|                         |               |         |      |                   |      |                   | 2 larvae 8.0, 8.5 mm Anoplarchus sp.                                             |
|                         |               |         |      |                   |      |                   | 3 larvae 5.3, 7.4, 9.0 mm Gadus sp.                                              |
|                         |               |         |      |                   |      |                   | <b>19</b> larvae 4.0-5.6 mm Hippoglossoides sp.                                  |
|                         |               |         |      |                   |      |                   | 2 larvae 3.2, 8.0 mm Lepidopsetta bilineata                                      |
|                         |               |         |      |                   |      |                   | 1 larva 4.1 mm Myoxocephalus sp. ?                                               |
|                         |               |         |      |                   |      |                   | 2 larvæ 4.3 mm Stenobrachius leucopsarus                                         |
|                         |               |         |      |                   |      |                   | l larva 6.4 mm Cottidae ("Cottid 2" from<br>Blackburn 1973)                      |
|                         |               |         |      |                   |      |                   | 3 larvae 3.8, 3.9, 5.0 mm Cottidae                                               |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae                         | Identification of Fish Eggs and Larvae                   |
|-------------------------|---------------|---------|------|-------------------|------|-------------------------------------------|----------------------------------------------------------|
| 24 May                  | 0732          | 1       | 1    | 505               | 47   | 107                                       | 1 larva 4.8 mm Cyclopteridae                             |
|                         |               |         |      |                   |      |                                           | l larva 5.5 mm Gadidae                                   |
|                         |               |         |      |                   |      |                                           | 62 larvae 5.5-6.4 unidentified (elongate)                |
|                         |               |         |      |                   |      |                                           | l larva 8.9 mm unidentified (non-elongate                |
|                         |               |         |      |                   |      |                                           | 5 larvae unidentified due to extensive damage            |
| <b>25 May 115</b> 0     | 1150          | 2       | 1    | 333               | 11   | 59                                        | 7 eggs $\sim$ 1 mm (0.94-1.02 mm)                        |
|                         |               |         |      |                   |      |                                           | 3 eggs ∿ 2 mm (1.34, 1.34, 1.40 mm)                      |
|                         |               |         |      |                   |      |                                           | 1 egg ∿ 3 mm (3.12 mm)                                   |
|                         |               |         |      |                   |      |                                           | 16 larvae 7.4-13 mm Ammodytes hexapterus                 |
|                         |               |         |      |                   |      |                                           | 5 larvae 5.5-11 mm Anoplarchus sp.                       |
|                         |               |         |      |                   |      | 3 larvae 14, 17, 18 mm Apodichthys flavid |                                                          |
|                         |               |         |      |                   |      |                                           | 8 larvae 4.9-6.5 mm Isopsetta isolepis                   |
|                         |               |         |      |                   |      |                                           | l larva 6.5 mm Theragra chalcogramma                     |
|                         |               |         |      |                   |      |                                           | l larva 6.7 mm Bathymasteridae                           |
|                         |               |         |      |                   |      |                                           | 17 larvae 4.1-9.1 mm Cyclopteridae                       |
|                         |               |         |      |                   |      |                                           | 8 larvae unidentified due to extensive damage (elongate) |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm)                 | Eggs | Fish or<br>Larvae                       | Identification of Fish Eggs and Larvae                                     |
|-------------------------|---------------|---------|------|-----------------------------------|------|-----------------------------------------|----------------------------------------------------------------------------|
| 25 May                  | 1150          | 2       | 1    | 505                               | 6    | 58                                      | 6 eggs $\sim$ 1 mm (0.93-1.00 mm)                                          |
|                         |               |         |      |                                   |      |                                         | 17 larvae 6.8-13 mm Annmodytes hexapterus                                  |
|                         |               |         |      |                                   |      |                                         | 3 larvae 5.5, 9.3, 9.5 mm Anoplarchus sp.                                  |
|                         |               |         |      |                                   |      |                                         | l larva 4.4 mm Hippoglossoides sp.                                         |
|                         |               |         |      |                                   |      | 2 larvae 5.2, 5.5 mm Isopsetta isolepis |                                                                            |
|                         |               |         |      | 2 larvae 5.6, 18 mm Lumpenus spp. |      |                                         |                                                                            |
|                         |               |         |      |                                   |      |                                         | l larva 5.9 mm Sebastes sp.                                                |
|                         |               |         |      |                                   |      |                                         | l larva 9.4 mm Theragra chalcogramma                                       |
|                         |               |         |      |                                   |      |                                         | 3 larvae 6.6, 6.7, 7.2 mm Bathymasteridae                                  |
|                         |               |         |      |                                   |      |                                         | 2 larvae 6.9, 7.1 mm Cottidae                                              |
|                         |               |         |      |                                   |      |                                         | 2 larvae 5.8, 6.4 mm Cottidae                                              |
|                         |               |         | •    |                                   |      |                                         | 1 larva 8.3 mm Cottidae                                                    |
|                         |               |         |      |                                   |      |                                         | 14 larvae 4.8-7.8 mm Cyclopteridae                                         |
|                         |               |         |      |                                   |      |                                         | <pre>l larva 4.7 mm unidentified (very intensel<br/>pigmented larva)</pre> |
|                         |               |         |      |                                   |      |                                         | 8 larvae unidentified due to extensive damage                              |
| 25 May                  | 1607          | 3       | 1    | 333                               | 85   | 7                                       | 80 eggs ∿ 1 mm (0.96-1.24 mm)                                              |
| ,                       |               |         |      |                                   |      |                                         | 5 eggs ∿ 2 mm (1.30-1.50 mm)                                               |
|                         |               |         |      |                                   |      |                                         |                                                                            |

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------|
| 25 May                  | 1607          | 3       | 1    | 333               | 85   | 7                 | l larva 13 mm Ammodytes hexapterus           |
|                         |               |         |      |                   |      |                   | 5 larvae 3.4-4.0 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | l larva unidentified due to extensive damage |
| 25 May                  | 1607          | 3       | 1    | 505               | 86   | 8                 | 85 eggs $\sim$ 1 mm (0.90-1.20 mm)           |
|                         |               |         |      |                   |      |                   | 1 egg ~ 2 mm (1.54 mm)                       |
|                         |               |         |      |                   |      |                   | l larva 6.2 mm Ammodytes hexapterus          |
|                         |               |         |      |                   |      |                   | l larva 5.9 mm Theragra chalcogramma         |
|                         |               |         |      |                   |      |                   | 5 larvae 3.4-4.0 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | l larva 5.5 mm unidentified (non-elongate    |
| 25 May                  | 2217          | 4       | 1    | 333               | 3    | 4                 | 2 eggs $\sim$ 1 mm (1.10-1.16 mm)            |
|                         |               |         | •    |                   |      |                   | 1 egg ∿ 2 mm (1.70 mm)                       |
|                         | ٠             |         |      |                   |      |                   | 4 larvae 3.8-4.1 mm Ammodytes hexapterus     |
| 25 May                  | 2217          | 4       | 1    | 505               | 1    | 2                 | $1 \text{ egg} \sim 1 \text{ mm}$ (1.10 mm)  |
|                         |               |         |      |                   |      |                   | 2 larvae 5.1, 6.3 mm Ammodytes hexapterus    |
| 26 May                  | 0541          | 5a      | 2    | 333               | 28   | 70                | 26 eggs ∿ 1 mm (0.93-1.02 mm)                |
|                         |               |         |      |                   |      |                   | 1 egg ∿ 2 mm (1.36 mm)                       |
|                         |               |         |      |                   |      |                   | 1 egg ∿ 3 mm (3.28 mm)                       |

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------------------------|
| 26 May                  | 0541          | 5a      | 2    | 333               | 28   | 70                | 38 larvae 5.2-11 mm Annmodytes hexapterus                                    |
|                         |               |         |      |                   |      |                   | 5 larvae 4.7-5.9 mm Anoplarchus sp.                                          |
|                         |               |         |      |                   |      |                   | 2 larvae 4.4, 4.5 mm Hippoglossoides sp.                                     |
|                         |               |         |      |                   |      |                   | 5 larvae 2.8-5.5 mm Isopsetta isolepis                                       |
|                         |               |         |      |                   |      |                   | 2 larvae 15, 24 mm Lumpenus sp.                                              |
|                         |               |         |      |                   |      |                   | l larva 3.4 mm Cottidae                                                      |
|                         |               |         |      |                   |      |                   | 3 larvae 3.7, 4.3, 5.4 mm Cyclopteridae                                      |
|                         | •             |         |      |                   |      |                   | 6 larvae 10-17 mm Pholidae                                                   |
|                         |               |         |      |                   |      |                   | 2 larvae 1.9, 2.3 mm unidentified (yolk sac absorption has already occurred) |
|                         |               |         |      |                   |      |                   | 6 larvae unidentified due to extensive<br>damage (5 elongate, 1 other)       |
| 26 May                  | 0541          | 5a      | 2    | 505               | 85   | 167               | 1 egg < 1 mm (0.79 mm)                                                       |
| -                       |               |         |      |                   |      |                   | 80 eggs $\sim$ 1 mm (0.91-1.06 mm)                                           |
|                         |               |         |      | •                 |      |                   | 3 eggs ∿ 2 mm (1.34-1.38 mm)                                                 |
|                         |               |         |      |                   |      |                   | $1 \text{ egg } \sim 3 \text{ mm} (2.56 \text{ mm})$                         |
|                         |               |         |      |                   |      |                   | 69 larvae 5.5-17 mm Ammodytes hexapterus                                     |
|                         |               |         |      |                   |      |                   | 8 larvae 4.7-7.0 mm Anoplarchus sp.                                          |
|                         |               |         |      |                   |      |                   | 2 larvae 5.3, 6.1 mm Hippoglossoides sp.                                     |

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                          |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|---------------------------------------------------------------------------------|
| 26 May                  | 0541          | 5a      | 2    | 505               | 85               | 167               | 18 larvae 2.1-6.7 mm Isopsetta isolepis                                         |
|                         |               |         |      |                   |                  |                   | 4 larvae 19-24 mm Lumpenus sp.                                                  |
|                         |               |         |      |                   |                  |                   | l larva 6.8 mm <i>Agonidae</i>                                                  |
|                         |               |         |      |                   |                  |                   | l larva 7.1 mm Cottidae                                                         |
|                         |               |         |      |                   |                  |                   | 3 larvae 3.0, 4.3, 4.7 mm Cyclopteridae                                         |
|                         |               |         |      |                   |                  |                   | 8 larvae 9.6-18 mm Pholidae                                                     |
|                         |               |         |      |                   |                  |                   | 2 larvae 2.3, 3.4 mm unidentified                                               |
|                         |               |         |      |                   |                  |                   | 51 larvae unidentified due to extensive<br>damage (45 elongate, 6 others)       |
| 26 May                  | 0835          | 6       | 1    | 333               | 648 <sup>c</sup> | 27                | 4 eggs < 1 mm (0.86 mm)                                                         |
|                         |               |         |      |                   |                  |                   | 644 eggs $\sim$ 1 mm (0.94-1.10 mm)                                             |
|                         |               |         | •    |                   |                  |                   | 1 adult 73 mm Ammodytes hexapterus                                              |
|                         | ·             |         |      |                   |                  |                   | 2 larvae 29, 30 mm <i>Lumpenus</i> sp.                                          |
|                         |               |         |      |                   |                  |                   | l larva 13 mm Agonidae                                                          |
|                         |               |         |      |                   |                  |                   | 23 larvae unidentified due to extensive<br>damage (22 elongate, l non-elongate) |

<sup>c</sup> The sample was split for fish eggs and 1/4 was sorted; totals given are for entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------------------|
| 26 May                  | 0835          | 6       | 1    | 505               | 684 <sup>d</sup> | 29                | 4 eggs < 1 mm (0.86 mm)                                      |
| -                       |               |         |      |                   |                  |                   | 680 eggs ∿ 1 mm (0.90-1.06 mm)                               |
|                         |               |         |      |                   |                  |                   | 1 larva 7.3 mm Anoplarchus sp.                               |
|                         |               |         |      |                   |                  |                   | 8 larvae 15-29 mm Lumpenus spp.                              |
|                         |               |         |      |                   |                  | •                 | 1 larva 18 mm Pholidae                                       |
|                         |               |         |      |                   |                  |                   | 1 larva 19 mm unidentified (non-elongate                     |
|                         |               |         |      |                   |                  |                   | 18 larvae unidentified due to extensive<br>damage (elongate) |
| 26 May                  | 1928          | 6       | 3    | 333               | 380 <sup>e</sup> | 36                | 378 eggs ~ 1 mm (0.90-1.06 mm)                               |
|                         |               |         |      |                   |                  |                   | 2 eggs $\sim$ 2 mm (1.34 mm)                                 |
|                         |               |         |      |                   |                  |                   | 13 larvae 5.1-9.0 mm Ammodytes hexapteru                     |
|                         |               |         |      |                   |                  |                   | 13 larvae 20-28 mm Lumpenus sp.                              |
|                         |               |         |      |                   |                  |                   | 1 larva 35 mm Mallotus villosus                              |
|                         | ·             |         |      |                   | •                |                   | l larva 8.0 mm Cottidae                                      |
|                         |               |         |      |                   |                  |                   | 2 larvae 4.2, 6.3 mm Cyclopteridae                           |
|                         |               |         |      |                   |                  |                   | 6 larvae unidentified due to extensive<br>damage (elongate)  |

<sup>d</sup> The sample was split for fish eggs and 1/4 was sorted; totals given are for the entire sample. <sup>e</sup> The sample was split for fish eggs and 1/2 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                 |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|------------------------------------------------------------------------|
| 26 May                  | 1928          | 6       | 3    | 505               | 242 <sup>f</sup> | 29                | 2 eggs < 1 mm (0.84 mm)                                                |
|                         |               |         |      |                   |                  |                   | 238 eggs ∿ 1 mm (0.94-1.06 mm)                                         |
|                         |               |         |      |                   |                  |                   | 2 eggs ∿ 2 mm (1.36 mm)                                                |
|                         |               |         |      |                   |                  |                   | 13 larvae 5.9-13 mm Ammodytes hexapterus                               |
|                         |               |         |      |                   |                  |                   | 7 larvae 13-23 mm Lumpenus spp.                                        |
|                         |               |         |      |                   |                  |                   | 2 larvae 5.5, 6.3 mm Mallotus villosus                                 |
|                         |               |         |      |                   |                  |                   | 3 larvae 3.8, 4.8, 5.8 mm Cyclopteridae                                |
|                         |               |         |      |                   |                  |                   | l larva 6.7 mm Osmeridae                                               |
|                         |               |         |      |                   |                  |                   | 2 larvae 2.9, 3.2 mm unidentified (non-elongate)                       |
|                         |               |         |      |                   |                  |                   | <pre>1 larva unidentified due to extensive<br/>damage (elongate)</pre> |
| 27 May                  | 0056          | 6       | 4    | 333               | 169              | 84                | 168 eggs ∿ 1 mm (0.94-1.16 mm)                                         |
|                         |               |         |      | ·                 |                  |                   | $1 \text{ egg} \sim 2 \text{ mm}$ (1.40 mm)                            |
|                         |               |         |      |                   |                  |                   | 42 larvae 6.5-12 mm Ammodytes hexapterus                               |
|                         |               |         |      |                   |                  |                   | l larva 6.7 mm Anoplarchus sp.                                         |
|                         |               |         |      |                   |                  |                   | 11 larvae 17-30 mm Lumpenus spp.                                       |
|                         |               |         |      |                   |                  |                   | 3 larvae 5.3, 5.9, 6.4 mm Mallotus<br>villosus                         |

 $^{
m f}$  The sample was split for fish eggs and 1/2 was sorted; totals given are for the entire sample.

369

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                            |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------------|
| 27 May                  | 0056          | 6       | 4    | 333               | 169  | 84                | 2 larvae 4.7, 5.5 mm Cottidae ("Cottid<br>6" from Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 3 larvae 3.4, 4.4, 5.2 mm Cyclopteridae                           |
|                         |               |         |      |                   |      |                   | 7 larvae 2.5-3.3 mm unidentified (non-<br>elongate)               |
|                         |               |         |      |                   |      | -                 | 15 larvae unidentified due to extensive<br>damage (elongate)      |
| 27 May                  | 0056          | 6       | 4    | 505               | 181  | 79                | 180 eggs ~ 1 mm (0.94-1.10 mm)                                    |
| .,,                     |               |         |      |                   |      |                   | $1 \text{ egg} \sim 2 \text{ mm}$ (1.40 mm)                       |
|                         |               |         |      |                   |      |                   | 49 larvae 6.2-14 mm Ammodytes hexapteru                           |
|                         |               |         |      |                   |      |                   | 11 larvae 16-23 mm Lumpenus spp.                                  |
|                         |               |         |      |                   |      |                   | l larva 6.1 mm Cottidae                                           |
|                         |               |         | •    |                   |      |                   | l larva 3.9 mm Cyclopteridae                                      |
|                         |               |         |      |                   |      |                   | 1 larva 3.8 mm Gadidae                                            |
|                         | ·             |         |      |                   |      |                   | 6 larvae 2.0-3.3 mm unidentified (non-<br>elongate)               |
|                         |               |         |      |                   |      |                   | 10 larvae unidentified due to extensive<br>damage (elongate)      |
| 27 May                  | 0708          | 6       | 7    | 333               | 17   | 70                | 16 eggs $\sim$ 1 mm (0.94-1.10 mm)                                |
| 21 riay                 | 0700          | 0       | ·    | • • •             |      |                   | 1 egg ~ 2 mm (1.40 mm)                                            |

370

| Date<br>(1976)<br>(CMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                            |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------------|
| 27 May                  | 0708          | 6       | 7    | 333               | 17   | 70                | 18 larvae 2.9-4.9 mm Ammodytes hexapterus                         |
|                         |               |         |      |                   |      |                   | 37 larvae 15-29 mm Lumpenus spp.                                  |
|                         |               |         |      |                   |      |                   | 1 young 58 mm Lumpenus sp.                                        |
|                         |               |         |      |                   |      | •                 | 2 larvae 6.5, 6.7 mm Cottidae ("Cottid 6"<br>from Blackburn 1973) |
|                         |               |         |      |                   |      |                   | l young 21 mm Cottidae                                            |
|                         |               |         |      |                   |      |                   | l larva 7.5 mm Cyclopteridae                                      |
|                         |               |         |      |                   |      |                   | l larva 19 mm Pholidae                                            |
|                         |               |         |      |                   |      |                   | l larva 5.6 mm unidentified (non-elongate                         |
|                         |               |         |      |                   |      |                   | 8 larvae unidentified due to extensive<br>damage (elongate)       |
| 27 May                  | 0708          | 6       | • 7  | 505               | 37   | 76                | 36 eggs ∿ 1 mm (0.94-1.16 mm)                                     |
|                         |               |         |      |                   |      |                   | 1 egg ~ 2 mm (1.40 mm)                                            |
|                         |               |         |      |                   |      |                   | 36 larvae 4.4-13 mm Ammodytes hexapterus                          |
|                         |               |         |      |                   |      |                   | 2 larvae 3.2 mm Lepidopsetta bilineata                            |
|                         |               |         |      |                   |      |                   | 28 larvae 16-29 mm Lumpenus spp.                                  |
|                         |               |         |      |                   |      |                   | 4 larvae 5.1-5.8 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)  |
|                         |               |         |      |                   |      |                   | 1 larva 2.8 mm unidentified (non-elongate                         |
|                         |               | x       |      |                   |      |                   | 5 larvae unidentified due to extensive<br>damage (elongate)       |

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                    |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|-----------------------------------------------------------|
| 27 May                  | 1300          | 7       | 1    | 333               | 692 <sup>g</sup> | 67                | 20 eggs < 1 mm (0.84-0.86 mm)                             |
|                         |               |         |      |                   |                  |                   | 668 eggs ∿ 1 mm (0.90-1.10 mm)                            |
|                         |               |         |      |                   |                  |                   | 4 eggs ∿ 2 mm (1.30 mm)                                   |
|                         |               |         |      |                   |                  |                   | 16 larvae 5.9-10 mm Ammodytes hexapterus                  |
|                         |               |         |      |                   |                  |                   | l larva 8.0 mm Anoplarchus sp.                            |
|                         |               |         |      | 4                 |                  |                   | 2 young 33, 36 mm Hexagrammos sp.                         |
|                         |               |         |      |                   |                  |                   | 17 larvae 10-17 mm Lumpenus spp.                          |
|                         |               |         |      |                   |                  |                   | 8 larvae 6.4-8.4 mm Agonidae                              |
|                         |               |         |      |                   |                  |                   | l larva 4.7 mm Cyclopteridae                              |
|                         |               |         |      |                   |                  |                   | 22 larvae unidentified due to extensive damage (elongate) |
| 27 May                  | 1300          | 7       | ` 1  | 505               | 656 <sup>g</sup> | 52                | 36 eggs < 1 mm (0.82-0.86 mm)                             |
|                         |               |         |      |                   |                  |                   | 620 eggs ~ 1 mm (0.90-1.10 mm)                            |
|                         |               |         |      |                   |                  |                   | 7 larvae 6.3-7.9 mm Ammodytes hexapterus                  |
|                         |               |         |      |                   |                  |                   | 7 larvae 10-20 mm Lumpenus spp.                           |
|                         |               |         |      |                   |                  |                   | 5 larvae 7.2-8.1 mm Agonidae                              |
|                         |               |         |      |                   |                  |                   | 2 larvae 4.0, 5.5 mm Cyclopteridae                        |
|                         |               |         |      |                   |                  |                   | 31 larvae unidentified due to extensive damage (elongate) |

Table 34. (continued)

 $^{g}$  The sample was split and 1/4 was sorted for fish eggs; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                         |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------------------------------------|
| 27 May                  | 1701          | 8       | 1    | 333               | 190              | 33                | 38 eggs < 1 mm (0.80-0.88 mm)                                                  |
|                         |               |         |      |                   |                  |                   | 151 eggs $\sim$ 1 mm (0.90-1.14 mm)                                            |
|                         |               |         |      |                   |                  |                   | l egg ∿ 2 mm (1.40 mm)                                                         |
|                         |               |         |      |                   |                  |                   | 2 larvae 9.6, 10 mm Annodytes hexapterus                                       |
|                         |               |         |      |                   |                  |                   | 1 larva 8.3 mm Lepidopsetta bilineata                                          |
|                         |               |         |      |                   |                  |                   | 1 1arva 9.6 mm Lumpenus sp.                                                    |
|                         |               |         |      |                   |                  |                   | 4 larvae 5.6-5.9 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)               |
|                         |               |         |      |                   |                  |                   | l larva 4.9 mm Cyclopteridae                                                   |
|                         |               |         |      |                   |                  |                   | 7 larvae 2.5-3.2 mm unidentified (non-<br>elongate)                            |
|                         |               |         |      |                   |                  |                   | 17 larvae unidentified due to extensive<br>damage (7 elongate, 6 non-elongate) |
| 27 May                  | 1701          | 8       | 1    | 505               | 258 <sup>h</sup> | 26                | 36 eggs < 1 mm (0.80-0.86 mm)                                                  |
|                         |               |         |      |                   |                  |                   | 222 eggs ∿ 1 mm (0.90-1.14 mm)                                                 |
|                         |               |         |      |                   |                  |                   | 3 larvae 11, 11, 13 mm Ammodytes hexapter                                      |
|                         |               |         |      |                   |                  |                   | 1 larva 6.7 mm Anoplarchus sp.                                                 |
|                         |               |         |      |                   |                  |                   | 6 larvae 5.0-5.4 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)               |

Table 34. (continued)

 $^{\rm h}$  The sample was split for fish eggs and 1/2 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                         |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------------------------|
| 27 May                  | 1701          | 8       | 1    | 505               | 258  | 26                | 1 larva 9.3 mm Cottidae                                                        |
|                         |               |         |      |                   |      |                   | l larva 3.2 mm unidentified (non-<br>elongate)                                 |
|                         |               |         |      |                   |      | -                 | 14 larvae unidentified due to extensive<br>damage (9 elongate, 1 non-elongate) |
| 30 May                  | 1813          | 10      | 1    | 333               | 22   | 121               | 1 egg < 1 mm (0.84 mm)                                                         |
|                         |               |         |      |                   |      |                   | 2 eggs $\sim$ 1 mm (0.90-0.94 mm)                                              |
|                         |               |         |      |                   |      |                   | 9 eggs ∿ 2 mm (1.26-2.26 mm)                                                   |
|                         |               | •       |      |                   |      |                   | 10 eggs ~ 3 mm (3.06-3.80 mm)                                                  |
|                         |               |         |      |                   |      |                   | l larva 14 mm Bathylagus sp.                                                   |
|                         |               |         |      |                   |      |                   | 1 larva 4.3 mm Sebastes sp.                                                    |
|                         |               |         | ,    |                   |      |                   | 8 larvae 3.7-5.5 mm Stenobrachius leucopsar                                    |
|                         |               |         |      |                   |      |                   | 101 larvae 4.2-6.1 mm unidentified (elongate)                                  |
|                         |               |         |      |                   |      |                   | 10 larvae unidentified due to extensive<br>damage (elongate)                   |
| 30 May                  | 1813          | 10      | 1    | 505               | 18   | 57                | 2 eggs < 1 mm (0.74-0.84 mm)                                                   |
|                         |               |         |      |                   |      |                   | 1 egg ∿ 1 mm (0.96 mm)                                                         |
|                         |               |         |      |                   |      |                   | 12 eggs $\sim$ 2 mm (1.50-2.54 mm)                                             |
|                         |               |         |      |                   |      |                   | 3 eggs ∿ 3 mm (2.70-3.90 mm)                                                   |

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                        |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------------------------|
| 30 May                  | 1813          | 10      | 1    | 505               | 18   | 57                | l larva 3.7 mm Sebastes sp.                                                   |
|                         |               |         |      |                   |      |                   | 3 larvae 3.7, 4.2, 5.2 mm Stenobrachius<br>leucopsarus                        |
|                         |               |         |      |                   |      |                   | 44 larvae 4.4-6.5 mm unidentified (elongate)                                  |
|                         |               |         |      |                   |      |                   | 9 larvae unidentified due to extensive<br>damage (7 elongate, 2 non-elongate) |
| 0 May                   | 0253          | 11      | 1    | 333               | 1    | 55                | l egg $\sim$ 2 mm (1.37 mm)                                                   |
|                         |               |         |      |                   |      |                   | 26 larvae 3.2-17 mm Bathylagus stilbius                                       |
|                         |               |         |      |                   |      |                   | 10 larvae 3.4-6.1 mm Sebastes spp.                                            |
|                         |               |         |      |                   |      |                   | 11 1arvae 3.2-5.6 mm Stenobrachius leucops                                    |
|                         |               |         |      |                   |      |                   | 2 larvae 5.3, 6.4 mm Cottidae                                                 |
|                         |               |         |      |                   |      |                   | 2 larvae 10, 10 mm Gadidae (both larvae ar<br>quite damaged)                  |
|                         |               |         | •    |                   |      |                   | 4 larvae unidentified due to extensive dam<br>(3 elongate, 1 non-elongate)    |
| 10 May                  | 0253          | . 11    | 1    | 505               | 0    | 40                | 3 larvae 6.4, 8.2, 9.8 mm Bathylagus stilb                                    |
|                         |               |         |      |                   |      |                   | 6 larvae 3.4-5.5 mm Sebastes spp.                                             |
|                         |               |         |      |                   |      |                   | 24 larvae 3.6-6.9 mm Stenobrachius leucops                                    |

Table 34. (continued)

Table 34. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                        |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------------------------|
| 30 May                  | 0253          | 11      | 1    | 505               | 0    | 40                | l young 19 mm Cottidae                                                        |
|                         |               |         |      |                   |      |                   | 2 larvae 10, 11 mm Gadidae (both larvae<br>are quite damaged)                 |
|                         |               |         |      |                   |      |                   | 4 larvae unidentified due to extensive<br>damage (2 elongate, 2 non-elongate) |
| 30 May                  | 0813          | 11      | 2    | 333               | 2    | 31                | 1 egg < 1 mm (0.89 mm)                                                        |
|                         |               |         |      |                   |      |                   | $1 \text{ egg} \sim 1 \text{ mm}$ (1.04 mm)                                   |
|                         |               |         |      |                   |      |                   | 1 larva 8.2 mm Bathylagus stilbius                                            |
|                         |               |         |      |                   |      |                   | 4 larvae 3.0-4.9 mm Sebastes spp.                                             |
|                         |               |         |      |                   |      |                   | 22 larvae 3.5-5.5 mm Stenobrachius leucopsaru                                 |
|                         |               |         |      |                   |      |                   | 3 young 21, 25, 39 mm Stenobrachius leucopsar                                 |
|                         |               |         |      |                   |      |                   | <pre>1 larva unidentified due to extensive damage   (non-elongate)</pre>      |
| 30 May                  | 0813          | 1.1     | 2    | 505               | 1    | 51                | l egg < 1 mm (0.85 mm)                                                        |
|                         |               |         |      |                   |      |                   | 2 larvae 19, 28 mm Bathylagus stilbius                                        |
|                         |               |         |      |                   |      |                   | 1 young 21 mm Protomyctophym thompsoni                                        |
|                         |               |         |      |                   |      |                   | 3 larvae 4.0, 5.3, 7.2 mm Sebastes sp.                                        |
|                         |               |         |      |                   |      |                   | 24 larvae 3.9-4.8 mm Stenobrachius leucopsaru                                 |
|                         |               |         |      |                   |      |                   | 19 young 14-30 mm Hexagrammidae                                               |
|                         |               |         |      |                   |      |                   | 2 larvae unidentified due to extensive damage<br>(1 elongate, 1 non-elongate) |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul   | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|--------|-------------------|------|-------------------|--------------------------------------------------------------|
| 28 May                  | 1831          | 13      | 1      | 333               | 13   | 940 <sup>1</sup>  | 3 eggs ∿ 1 mm (1.02, 1.21, 1.24 mm)                          |
|                         |               |         |        |                   |      |                   | 10 eggs $\sim$ 2 mm (1.29-1.72 mm)                           |
|                         |               |         |        |                   |      |                   | 704 larvae 7.0-17 mm Bathylagus stilbius                     |
|                         |               |         |        |                   |      |                   | 88 larvae 8.8-13 mm Clupea harengus pallasi                  |
|                         |               |         |        |                   |      |                   | 8 larvae 13 mm <i>Gadus</i> sp.                              |
|                         |               |         |        |                   |      |                   | 92 larvae 4.6-4.8 mm Sebastes sp.                            |
|                         |               |         |        |                   |      |                   | 4 larvae 4.8 mm Stenobrachius leucopsarus                    |
|                         |               |         |        |                   |      |                   | 16 larvae 4.4-5.5 mm Cottidae                                |
|                         |               |         |        |                   |      |                   | 4 larvae 8.4 mm Gadidae                                      |
|                         |               |         |        |                   |      |                   | 24 larvae unidentified due to extensive<br>damage (elongate) |
| 28 May                  | 1831          | 13      | ,<br>1 | 505               | 8    | 876 <sup>i</sup>  | 8 eggs ∿ 2 mm (1.26-2.17 mm)                                 |
|                         |               |         |        |                   |      |                   | 632 larvae 8.0-16 mm Bathylagus stilbius                     |
|                         |               |         |        |                   |      |                   | 32 larvae 11-14 mm Clupea harengus pallasi                   |
|                         |               |         |        |                   |      |                   | 20 larvae 8.5-11 mm <i>Gadus</i> sp.                         |
|                         |               |         |        |                   |      |                   | 76 larvae 4.2-4.7 mm Sebastes sp.                            |
|                         |               |         |        |                   |      |                   | 4 larvae 4.5 mm Stenobrachius leucopsarus                    |
|                         |               |         |        |                   |      |                   | 8 larvae 6.0-7.6 mm Cottidae                                 |

i The sample was split for fish larvae and 1/4 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                        |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|---------------------------------------------------------------|
| 28 May                  | 1831          | 13      | 1    | 505               | 8    | 876               | 20 larvae 5.8-10 mm Gadidae                                   |
|                         |               | ÷       |      |                   |      |                   | 84 larvae unidentified due to extensive<br>damage (elongate)  |
| 28 May                  | 2248          | 13      | 2    | 333               | 99   | 2992 <sup>j</sup> | 99 eggs ∿ 2 mm (1.25-1.92 mm)                                 |
|                         |               |         |      |                   |      |                   | 1424 larvae 6.3-17 mm Bathylagus stilbius                     |
|                         |               |         |      |                   |      |                   | 16 young 37 mm Bathylagus stilbius                            |
|                         |               |         |      |                   |      |                   | 16 larvae 13 mm Clupea harengus pallasi                       |
|                         |               |         |      |                   |      |                   | 192 larvae 9.0-13 mm Gadus sp.                                |
|                         |               |         |      |                   |      |                   | 1104 larvae 3.9-5.1 Sebastes sp.                              |
|                         |               |         |      |                   |      |                   | 32 larvae 5.9-7.3 mm Cottidae                                 |
|                         |               |         |      |                   |      |                   | 16 young 26 mm Cyclopteridae                                  |
|                         |               |         | •    |                   |      |                   | 80 larvae 6.0-9.1 mm Gadidae                                  |
|                         |               |         |      |                   |      |                   | ll2 larvae unidentified due to extensive<br>damage (elongate) |
| 28 May                  | 2248          | 13      | 2    | 505               | 100  | 2384 <sup>j</sup> | 100 eggs $\sim$ 2 mm (1.29-2.17 mm)                           |
|                         |               |         |      |                   |      |                   | 1056 larvae 7.4-15 mm Bathylagus stilbius                     |
|                         |               |         |      |                   |      |                   | 16 young 30 mm Bathylagus stilbius                            |

 $^{j}$  The sample was split for fish larvae and 1/16 was sorted; totals given are for the entire sample.

1

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------|
| 28 May                  | 2248          | 13      | 2    | 505               | 100  | 2384              | 80 larvae 10-13 mm <i>Gadus</i> sp.                          |
|                         |               |         |      |                   |      |                   | 880 larvae 4.3-5.0 mm Sebastes sp.                           |
|                         |               |         |      |                   |      |                   | 64 larvae 6.3-6.9 mm Cottidae                                |
|                         |               |         |      |                   |      |                   | 32 young 15, 71 mm Cyclopteridae                             |
|                         |               |         |      |                   |      |                   | 16 young 25 mm Cyclopteridae                                 |
|                         |               |         |      |                   |      |                   | 160 larvae 7.3-12 mm Gadidae                                 |
|                         |               |         |      |                   |      |                   | 80 larvae unidentified due to extensive<br>damage (elongate) |
| 29 May                  | 1029          | 13      | 3    | 333               | 1    | 800 <sup>k</sup>  | $1 \text{ egg} \sim 2 \text{ mm}$ (1.71 mm)                  |
|                         |               |         |      |                   |      |                   | 8 larvae 9.5-10 mm Ammodytes hexapterus                      |
|                         |               |         |      |                   |      |                   | 580 larvae 7.7-18 mm Bathylagus stilbius                     |
|                         |               |         | •    |                   |      |                   | 8 larvae 13, 14 mm Clupea harengus pallasi                   |
|                         |               |         |      |                   |      |                   | 44 larvae 9.0-14 mm Gadus sp.                                |
|                         |               |         |      |                   |      |                   | 116 larvae 4.4-5.3 mm Sebastes sp.                           |
|                         |               |         |      |                   |      |                   | 4 larva 6.3 mm Cottidae                                      |
|                         |               |         |      |                   |      |                   | 321arvae 5.5-13 mm Gadidae                                   |
|                         |               |         |      |                   |      |                   | 8 larvae unidentified due to extensive damage (non-elongate) |

k The sample was split for fish larvae and 1/4 was sorted; totals given are for the entire sample.

379

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------|
| 29 May                  | 1029          | 13      | 3    | 505               | 0    | 700               | 4 larvae 20 mm Ammodytes hexapterus                          |
|                         |               |         |      |                   |      |                   | 440 larvae 8.1-15 mm Bathylagus stilbius                     |
|                         |               |         |      |                   |      |                   | 76 larvae 9.4-16 mm <i>Gadus</i> sp.                         |
|                         |               |         |      |                   |      | -                 | 120 larvae 4.7-5.5 mm Sebastes sp.                           |
|                         |               |         |      |                   |      |                   | 16 larvae 5.6-6.8 mm Cottidae                                |
|                         |               |         |      |                   |      |                   | 4 young 96 mm Cyclopteridae                                  |
|                         |               |         |      |                   |      |                   | 32 larvae 5.1-9.7 mm Gadidae                                 |
|                         |               |         |      | •                 |      |                   | 4 larvae 6.1 mm unidentified (elongate)                      |
|                         |               |         |      |                   |      |                   | 4 larvae unidentified due to extensive damage (non-elongate) |
| 28 May                  | 0536          | 14      | 1    | 333               | 74   | 11                | 14 eggs ∿ 2 mm (2.00-2.40 mm)                                |
|                         |               |         |      |                   |      |                   | 60 eggs ~ 3 mm (2.80-3.77 mm)                                |
|                         | •             |         |      |                   |      |                   | 4 larvae 13 mm Lumpenus sp.                                  |
|                         |               |         |      |                   |      |                   | 2 larvae 5.7, 6.7 mm Gadidae                                 |
|                         |               |         |      |                   |      |                   | 5 larvae 5.2-6.6 mm unidentified (elongat                    |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae     |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------|
| 28 May                  | 0536          | 14      | 1    | 505               | 74   | 13                | 15 eggs ∿ 2 mm (2.00-2.48 mm)              |
|                         |               |         |      |                   |      |                   | 59 eggs ∿ 3 mm (2.97-3.52 mm)              |
|                         |               |         |      |                   |      |                   | l larva 4.6 mm Sebastes sp.                |
|                         |               |         |      |                   |      |                   | 3 larvae 4.0-5.5 mm Gadidae                |
|                         |               |         |      |                   |      |                   | 9 larvae 5.2-6.1 mm unidentified (elongate |

.

Table 34. (continued)

## Table 35. Identification of Fish Eggs and Larvae by Station

| 1-m NIO Tow, Discoverer, | Leg VII, | 22-30 May 1976 |
|--------------------------|----------|----------------|
|--------------------------|----------|----------------|

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                            |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|-----------------------------------------------------------------------------------|
| 27 May                  | 0120          | 6       | 5    | 571               | 248 <sup>a</sup> | 162               | 244 eggs ∿ 1 mm (0.93-1.05 mm)                                                    |
|                         |               |         |      |                   |                  |                   | 4 eggs ∿ 2 mm (1.29-1.37 mm)                                                      |
|                         |               |         |      |                   |                  | •                 | 12 larvae 5.0-14 mm Ammodytes hexapterus                                          |
|                         |               |         |      |                   |                  |                   | l larva 7.7 mm Anoplarchus sp.                                                    |
|                         |               |         |      |                   |                  |                   | 1 larva 3.9 mm Lepidopsetta bilineata ?                                           |
|                         |               |         |      |                   |                  |                   | 3 larvae 10, 17, 18 mm Lumpenus sp.                                               |
|                         |               |         |      |                   |                  |                   | 2 larvae 10, 13 mm Agonidae                                                       |
|                         |               | •       |      |                   |                  |                   | 5 larvae 6.9-9.0 mm Cottidae ["Cottid 6"<br>from Blackburn 1973]                  |
|                         |               | -       |      |                   |                  |                   | 6 larvae 4.7-6.3 mm Cyclopteridae                                                 |
|                         |               |         |      |                   |                  |                   | l larva 8.0 mm Osmeridae                                                          |
|                         | •             |         |      |                   |                  |                   | 5 larvae 13-19 mm Pholidae                                                        |
|                         |               | ·       |      |                   |                  |                   | 126 larvae unidentified due to extensive<br>damage (123 elongate, 3 non-elongate) |
|                         |               |         |      | •                 |                  |                   |                                                                                   |

 $^{a}$  The sample was split for fish eggs and 1/2 was sorted; totals given are for the entire sample.

Table 36. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo and 1-m net samples collected on the Lower Cook Inlet *Discoverer* cruise, Leg VII, 22-30 May 1976.

A total of 37 samples contained 29,582 crab zoeae and 120 megalopae. The commercially important crabs were distributed into 3 families, 2 genera and 2 species. The 37 samples contained 16,834 shrimp zoeae and 798 adult shrimp. The commercially important shrimp were distributed into 1 family, 2 genera and 6 species.

Section Anomura

Family Lithodidae

1010 zoeae king crab<sup>1</sup> Paralithodes camtschatica (Tilesius)

5,969 zoeae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

18 zoeae non-commercially important Cancer spp.

Family Majidae

3469 zoeae tanner crab Chionoecetes bairdi (Rathbun) 1070 zoeae damaged Chionoecetes spp. 120 megalopae Chionoecetes spp.

18,046 zoeae unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

42 zoeae sidestripe shrimp Pandalopsis dispar Rathbun 1421 zoeae northern pink shrimp Pandalus borealis Kröyer 5710 zoeae humpy shrimp Pandalus goniurus Stimpson 280 zoeae Pandalus montagui tridens Rathbun 18 zoeae Pandalus stenolepis Rathbun 472 zoeae coonstripe shrimp Pandalus hypsinotus Brandt 41 zoeae Pandalus spp., damaged 594 adult Pandalus borealis 83 adult Pandalus goniurus

8850 zoeae unidentified hippolytids
121 adult non-commercially important shrimp

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter, only the scientific name is recorded.

## Table 37. Identification of Crab and Shrimp Larvae by Station

Lower Cook Inlet Bongo and 1-m NIO Net Tows, Discoverer, Leg VII, 22-30 May 1976

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|---------------------------|
| 25 May                  | 0732          | 1       | 1 <sup>a</sup> | 333               | I        | 6     | Paralithodes camtschatica |
| 29 1149                 | 0752          | -       | -              |                   | II       | 2     | P. camtschatica           |
|                         |               |         |                |                   | III      | 8     | P. camtschatica           |
|                         |               |         |                |                   | zoea     | 274   | unidentified anomurans    |
|                         |               |         |                |                   | I        | 4     | Cancer productus          |
|                         |               |         |                |                   | Ι        | 12    | Chionoecetes bairdi       |
|                         |               |         |                |                   | megalopa | 4     | Chionoecetes sp.          |
|                         |               |         |                |                   | zoea     | 906   | unidentified brachyurans  |
|                         |               |         |                |                   | II       | 6     | Pandalus borealis         |
|                         |               |         |                |                   | III      | 28    | P. borealis               |
|                         |               |         |                |                   | IV       | 4     | P. borealis               |
|                         |               |         |                |                   | I        | 2     | P. montagui tridens       |
|                         |               |         |                |                   | II       | 49    | P. montagui tridens       |
|                         |               |         |                |                   | III      | 4     | P. montaqui tridens       |
|                         |               |         |                |                   | I        | 5     | P. stenolepis             |
|                         |               |         |                |                   | II       | 1     | P. stenolepis             |
|                         |               |         |                |                   | zoea     | 590   | unidentified hippolytids  |
|                         |               |         |                |                   | adult    | 1     | Eualus sp.                |
| 25 May                  | 0732          | 1       | 1              | 505               | I        | 3     | Paralithodes camtschatica |
| -                       |               |         |                |                   | II       | 5     | P. comtschatica           |
|                         |               |         |                |                   | III      | 1     | P. camtschatica           |
|                         |               |         |                |                   | zoea     | 265   | unidentified anomurans    |
|                         |               |         |                |                   | I        | 6     | Cancer productus          |

 $^{a}$  The sample was split for crab larvae and 1/2 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage            | Total  | Identification of Larvae                                  |
|-------------------------|---------------|---------|----------------|-------------------|------------------|--------|-----------------------------------------------------------|
| 25 May                  | 0732          | 1       | 1              | 505               | I                | 17     | Chionoecetes bairdi                                       |
|                         |               |         |                |                   | megalopa<br>zoea | 9      | Chionoecetes sp.                                          |
|                         |               |         |                |                   | II               | 917    | unidentified brachyurans                                  |
|                         |               |         |                |                   | II               | 1<br>7 | Pandalopsis dispar                                        |
|                         |               |         |                |                   | III              |        | Pandalus borealis                                         |
|                         |               |         |                |                   | II ·             | 41     | P. borealis                                               |
|                         |               |         |                |                   | I ·              | 1      | P. goniuris<br>P. montagui tridens<br>B. montagui tridens |
|                         |               |         |                |                   | II               | 9      |                                                           |
|                         |               |         |                |                   |                  | 45     | P. montagui tridens                                       |
|                         |               |         |                |                   | III<br>I         | 2      | P. montagui tridens                                       |
|                         |               |         |                |                   |                  | 3      | P. stenolepis                                             |
|                         |               |         |                |                   | II               | 3      | P. stenolepis                                             |
|                         |               |         |                |                   | zoea             | 567    | unidentified hippolytids                                  |
|                         |               |         |                |                   | adult            | 1      | Eualus sp.                                                |
| 5 May                   | 1150          | 0 2     | 1 <sup>b</sup> | 333               | II               | 16     | Paralithodes camtschatic                                  |
|                         |               |         |                |                   | zoea             | 2432   | unidentified anomurans                                    |
|                         |               | `       |                |                   | I                | 288    | Chionoecetes bairdi                                       |
|                         |               |         |                |                   | zoea             | 2272   |                                                           |
| r.                      |               |         |                |                   | I                | 1      | unidentified brachyurans<br>Pandalus borealis             |
|                         |               |         |                |                   | ÎII              | 1      | P. borealis                                               |
|                         |               |         |                |                   | III              | 1      | F. porealis<br>P. goniurus                                |
|                         |               |         |                |                   | zoea             | 239    | unidentified hippolytids                                  |

 $^{
m b}$  The sample was split for crab larvae and 1/8 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae                |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|-----------------------------------------|
| 25 May                  | 1150          | 2       | 1 <sup>c</sup> | 505               | I        | 8     | Paralithodes comtschatica               |
| 25 1149                 | 1100          | -       | <b>-</b> .     |                   | II       | 16    | P. camtschatica                         |
|                         |               |         |                |                   | zoea     | 1352  | unidentified anomurans                  |
|                         |               |         |                |                   | I        | 144   | Chionoecetes bairdi                     |
|                         |               |         |                | -                 | zoea     | 1816  | unidentified brachyurans                |
|                         |               |         |                |                   | III      | 1     | Pandalopsis dispar                      |
|                         |               |         |                |                   | II       | 1     | Pandalus montagui tridens               |
|                         |               |         |                |                   | II       | 1     | P. stenolepis                           |
|                         |               |         |                |                   | III      | 1     | P. stenolepis                           |
|                         |               |         |                |                   | zoea     | 291   | unidentified hippolytids                |
| 25 May                  | 1607          | 3       | 1              | 333               | zoea     | 8     | unidentified anomurans                  |
| 25 Hay                  | 1007          | 5       | <u> </u>       | 000               | I        | 4     | Chionoecetes bairdi                     |
|                         |               |         |                |                   | zoea     | 304   | unidentified brachyurans                |
|                         |               |         |                |                   | I        | 1     | Pandalus goniurus                       |
|                         |               |         |                |                   | zoea     | 67    | unidentified hippolytids                |
| 25 May                  | 1607          | 3.      | 1              | 505               | zoea     | 7     | unidentified anomurans                  |
| 25 May                  | 2007          | 2       | -              | 2                 | I        | 2     | Chicnoecetes bairdi                     |
|                         |               |         |                |                   | zoea     | 300   | unidentified brachyurans                |
|                         |               |         |                |                   | I        | 3     | Pandalus goniurus                       |
|                         |               |         |                |                   | zoea     | 93    | unidentified hippolytids                |
|                         |               |         |                |                   | adult    | 1     | Crangon franciscorum ang <b>ustiman</b> |
| 25 May                  | 2217          | 4       | 1              | 333               | megalopa | 1     | Chionoecetes sp.                        |
| 2.) Hay                 | 6621          | 4       | -              | 232               | zoea     | 48    | unidentified brachyurans                |
|                         |               |         |                |                   | zoea     | 16    | unidentified hippolytids                |

 $^{
m c}$  The sample was split for crab larvae and 1/8 was sorted; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total                  | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|-------------------|-------|------------------------|---------------------------|
| 25 May                  | 2217          | 4       | 1              | 505               | zoea  | 1                      | unidentified anomuran     |
|                         |               |         | <u> </u>       | 202               | zoea  | 46                     | unidentified brachyurans  |
|                         |               |         |                |                   | zoea  | 9                      | unidentified hippolytids  |
| .6 May                  | 0541          | 5a      | $2^{d}$        | 333               | II    | 64                     | Paralithodes comtschatica |
| 20 may 0541             | Ja            | 2       | 555            | zoea              | 376   | unidentified anomurans |                           |
|                         |               |         |                | v                 | 8     | Cancer oregonensis     |                           |
|                         |               |         |                |                   | Ī     | 312                    | Chicnoecetes bairdi       |
|                         |               |         |                |                   | zoea  | 1112                   | unidentified brachyurans  |
|                         |               |         |                |                   | I     | 240                    | Pandalus borealis         |
|                         |               |         |                |                   | III   | 24                     | P. borealis               |
|                         |               |         |                |                   | I     | 8                      | P. goniurus               |
|                         |               |         |                |                   | II    | 512                    | P. goniurus               |
|                         |               |         |                |                   | III   | 320                    | P. goniurus               |
|                         |               |         |                |                   | zoea  | 1984                   | unidentified hippolytids  |
| 6 May                   | 0541          | 5a      | 2 <sup>d</sup> | 505               | II    | 40                     | Paralithodes camtschatica |
| <b>j</b>                |               |         |                |                   | zoea  | 176                    | unidentified anomurans    |
|                         |               |         |                |                   | I     | 312                    | Chionoecetes bairdi       |
|                         |               |         |                |                   | zoea  | 1232                   | unidentified brachyurans  |
|                         |               |         |                |                   | II    | 24                     | Pandalus borealis         |
|                         |               |         |                |                   | III   | 8                      | P. borealis               |
|                         |               |         |                |                   | IV    | 24                     | F. borealis               |
|                         |               |         |                |                   | I     | 24                     | P. goniurus               |
|                         |               |         |                |                   | II    | 296                    | P. goniurus               |
|                         |               |         |                |                   | III   | 152                    | P. goniurus               |
|                         |               |         |                |                   | I     | 8                      | P. hypsinotus             |
|                         |               |         |                |                   | zoea  | 1816                   | unidentified hippolytids  |

<sup>d</sup> The sample was split and 1/8 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae                   |
|-------------------------|---------------|---------|----------------|-------------------|-------|-------|--------------------------------------------|
| 26 May                  | 0835          | 6       | 1 <sup>e</sup> | 333               | I     | 88    | Chionoecetes bairdi                        |
|                         |               |         |                |                   | I     | 320   | damaged Chionoecetes sp.                   |
|                         |               |         |                |                   | zoea  | 1024  | unidentified brachyurans (many damaged)    |
|                         |               |         |                |                   | IV    | 16    | Pandalus goniurus                          |
|                         |               |         |                |                   | adult | 235   | P. korealis                                |
|                         |               |         |                |                   | adult | 26    | P. goniurus                                |
| 26 May                  | 0835          | 6       | le             | 505               | zoea  | 16    | unidentified anomurans                     |
| 20 1                    | 0000          | •       | -              | 305               | I     | 120   | Chionoecetes bairdi                        |
|                         |               |         |                |                   | I     | 416   | damaged Chionoecetes sp.                   |
|                         |               |         |                |                   | zoea  | 1864  | unidentified brachyurans<br>(many damaged) |
|                         |               |         |                |                   | II    | 8     | Pandalus vorealis                          |
|                         |               |         |                |                   | I     | 24    | P. goniurus                                |
|                         |               |         |                |                   | II    | 24    | P. goniurus                                |
|                         |               |         |                |                   | adult | 211   | P. borealis                                |
|                         |               | •       |                |                   | adult | 44    | P. goniurus                                |
|                         |               |         |                |                   | adult | 1     | Crangon communis                           |
| 26 May                  | 1928          | 6       | 3 <sup>e</sup> | 333               | III   | 8     | Paralithodes cantschatica                  |
| 20 may                  | 1)20          | 0       | 5              | 000               | zoea  | 8     | unidentified anomurans                     |
|                         |               |         |                |                   | I     | 128   | Chionoecetes bairdi                        |
|                         |               |         |                |                   | I     | 96    | damaged Chionoecetes sp.                   |
|                         |               |         |                |                   | zoea  | 552   | unidentified brachyurans<br>(many damaged) |
|                         |               |         |                |                   | III   | 24    | Pandalus borealis                          |

e The sample was split and 1/8 was sorted for crab and shrimp larvac; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae                   |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------------------------|
| 26 May                  | 1928          | 6       | 3              | 333               | ī        | 24    | P. corrigina                               |
| -                       |               | -       | 5              | 333               | zoea     | 24    | P. goniurus                                |
|                         |               |         |                |                   | adult    | 24    | unidentified hippolytids<br>P. borealis    |
|                         |               |         |                |                   | adult    | 4     | P. goniurus                                |
| 26 May                  | 1928          | 6       | $3^{f}$        | 505               | ·r -r -r | 0     | ~                                          |
| 20 may                  | 1920          | 0       | 3              | 505               | III      | 8     | Paralithodes camtschatica                  |
|                         |               |         |                |                   | IV       | 4     | P. camtschatica                            |
|                         |               |         |                |                   | I        | 88    | Chionoecetes bairdi                        |
|                         |               |         |                |                   | I        | 52    | damaged <i>Chionoecetes</i> sp.            |
|                         |               |         |                |                   | zoea     | 308   | unidentified brachyurans (many damaged)    |
|                         |               |         |                |                   | I        | 4     | Pandalus borealis                          |
|                         |               |         |                |                   | II       | 4     | P. borealis                                |
|                         |               |         |                |                   | I        | 16    | P. goniurus                                |
|                         |               |         |                |                   | II       | 16    | P. goniurus                                |
|                         |               |         |                |                   | III      | 4     | P. goniums                                 |
|                         |               |         |                |                   | zbea     | 68    | unidentified hippolytids                   |
|                         |               |         | `              |                   | adult    | 20    | P. borealis                                |
| 27 May                  | 0056          | 6       | 4 <sup>g</sup> | 333               | II       | 32    | Paralithodes comtschatica                  |
|                         |               |         |                |                   | III      | 32    | P. cantschatica                            |
|                         |               |         |                |                   | zoea     | 48    | unidentified anomurans                     |
|                         |               |         |                |                   | I        | 264   | Chionoecetes bairdi                        |
|                         |               |         |                |                   | Ĩ        | 104   | damaged <i>Chionoecetes</i> sp.            |
| ····                    |               |         |                |                   | zoea     | 584   | unidentified brachyurans<br>(some damaged) |

f Adult shrimp were sorted from the entire sample. The sample was split and 1/4 was sorted for crab and shrimp larvae; totals given are for the entire sample.

<sup>g</sup> Adult shrimp were sorted from the entire sample. The sample was split and 1/8 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mes. Size<br>(Ln) | Stage | Total | Identification of Larvae                   |
|-------------------------|---------------|---------|----------------|-------------------|-------|-------|--------------------------------------------|
| 27 May                  | 0056          | 6       | 4              | 333               | I     | 32    | Pandalus borealis                          |
| -,,                     |               |         |                | •                 | II    | 8     | P. borealis                                |
|                         |               |         |                |                   | III   | 8     | P. borealis                                |
|                         |               |         |                |                   | I     | 16    | P. goniurus                                |
|                         |               |         |                |                   | II    | 8     | P. goniurus                                |
|                         | •             |         |                |                   | III   | 16    | F. goniurus                                |
|                         |               |         |                |                   | I     | 72    | P. hypsinotus                              |
|                         |               |         |                |                   | II    | 24    | P. hyrsinotus                              |
|                         |               |         |                | ٩                 | zoea  | 272   | unidentified hippolytids                   |
|                         |               |         |                |                   | adult | 6     | P. borcalds                                |
|                         |               |         |                |                   | adult | 1     | P. goniurus                                |
| 27 May                  | 0056          | 6       | 4 <sup>h</sup> | 505               | II    | 32    | Paralithodes camtschatica                  |
| 2.7 100.9               | 0000          | Ŭ       | -              | 505               | III   | 56    | P. contschatica                            |
|                         |               |         |                |                   | zcea  | 48    | unidentified anomurans                     |
|                         |               |         |                |                   | I     | 248   | Chicnoecetes bairdi                        |
|                         |               |         |                |                   | I     | 80    | damaged Chionoecetes sp.                   |
|                         |               |         |                |                   | zoea  | 496   | unidentified brachyurans<br>(some damaged) |
|                         |               |         |                |                   | III   | 8     | Pandalus borealis                          |
|                         |               |         |                |                   | IV    | 8     | P. borealis                                |
|                         |               |         |                |                   | I     | 8     | P. goniurie                                |
|                         |               |         |                |                   | III   | 8     | P. goniuris                                |
|                         |               |         |                |                   | I     | 112   | P. hypsinotu <b>s</b>                      |
|                         |               |         |                |                   | II    | 48    | P. hypsinctus                              |
|                         |               |         |                |                   | III   | 16    | P. hypsinotus                              |
|                         |               |         |                |                   | zoea  | 208   | unidentified hippolytids                   |
|                         |               |         |                |                   | adult | 8     | P. Lorealis                                |
|                         |               |         |                |                   | adult | 1     | P. goniuris                                |

Table 37. (continued)

<sup>h</sup> Adult shrimp were sorted from the entire sample. The sample was split and 1/8 was sorted for crab and '\_\_\_\_\_\_ larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(CMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm)   | Stage | Total | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|---------------------|-------|-------|---------------------------|
| 27 May                  | 0120          | 6       | 5 <sup>1</sup> | 571                 | II    | 24    | Paralithodes comtschatica |
| 2                       |               |         |                | <b>0</b> · <b>1</b> | III   | 28    | P. comtschatica           |
|                         |               |         |                |                     | IV    | 8     | P. cantschatica           |
|                         |               |         |                |                     | zoea  | 104   | unidentified anomurans    |
|                         |               |         |                |                     | I     | 24    | Chionoecetes bairdi       |
|                         |               |         |                |                     | zoea  | 544   | unidentified brachyurans  |
|                         |               |         |                |                     | I     | 28    | Pandalus borealis         |
|                         |               |         |                |                     | II    | 16    | P. borealis               |
|                         |               |         |                |                     | III   | 20    | P. borealis               |
|                         |               |         |                |                     | I     | 16    | P. goriurus               |
|                         |               |         |                |                     | II    | 36    | P. goniurus               |
|                         |               |         |                |                     | III   | 8     | P. goniumus               |
|                         |               |         |                |                     | II    | 12    | damaged Fandalus sp.      |
|                         |               |         |                |                     | zoea  | 728   | unidentified hippolytids  |
| 27 May                  | 0708          | 6       | 7j             | 333                 | II    | 8     | Paralithodes camtschatica |
| -                       |               |         |                |                     | III   | 8     | P. camtschatica           |
|                         |               |         |                |                     | zoea  | 56    | unidentified anomurans    |
|                         |               |         |                |                     | I     | 288   | Chionoecetes bairdi       |
|                         |               |         |                |                     | zoea  | 552   | unidentified brachyurans  |
|                         |               |         |                |                     | III   | 8     | Pandalus borealis         |
|                         | •             |         |                |                     | I     | 8     | P. goniurus               |
|                         |               |         |                |                     | III   | 16    | P. goniurus               |
|                         |               |         |                |                     | I     | 120   | P. hypsinotus             |
|                         |               |         |                |                     | II    | 64    | P. hypsinotus             |

Table 37. (continued)

<sup>i</sup> Adult shrimp were sorted from the entire sample. The sample was split and 1/4 was sorted for crab and shrimp larvae; totals given are for the entire sample.

<sup>j</sup> Adult shrimp were sorted from the entire sample. The sample was split and 1/8 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage                                 | Total | Identification of Larvae                    |
|-------------------------|---------------|---------|------|-------------------|---------------------------------------|-------|---------------------------------------------|
|                         | <b></b>       |         |      |                   | · · · · · · · · · · · · · · · · · · · |       | ······································      |
| 27 May                  | 0708          | 6       | 7    | 333               | zoea                                  | 16    | damaged Pandalus sp.                        |
|                         |               |         |      |                   | adult                                 | 56    | P. borealis                                 |
|                         |               |         |      |                   | adult                                 | 3     | P. goniurus                                 |
|                         |               |         |      |                   | adult                                 | 1     | Crangon fran <b>ciscorum</b><br>angustimana |
| 27 May                  | 0708          | 6       | 7j   | 505               | II                                    | 8     | Paralithodes camtschatica                   |
| <b>.</b> , 110,         | 0700          | Ũ       | ,    | 505               | zoea                                  | 56    | unidentified anomurans                      |
|                         |               |         |      |                   | I                                     | 304   | Chionoecetes bairdi                         |
|                         |               |         |      |                   | zoea                                  | 616   | unidentified brachyurans                    |
|                         |               |         |      |                   | III                                   | 8     | Pandalus poniurus                           |
|                         |               |         |      |                   | III                                   | 8     | P. hypsinotus                               |
|                         |               |         |      |                   | adult                                 | 36    | P. borealis                                 |
|                         |               |         |      |                   | adult                                 | 4     | P. goniurus                                 |
|                         |               |         |      |                   | adult                                 | 4     | Crangon franciscorum                        |
|                         |               |         |      |                   | acuit                                 | Ŧ     | angustimana                                 |
| 27 May                  | 1300          | 7       | lk   | 333               | I                                     | 8     | Paralithodes camtschatica                   |
|                         |               |         | _    |                   | ĪI                                    | 196   | P. camtschatica                             |
|                         |               |         |      |                   | III                                   | 20    | P. cantschatica                             |
|                         |               |         |      |                   | zoea                                  | 88    | unidentified anomurans                      |
|                         |               |         |      |                   | I                                     | 8     | Chionoecetes bairdi                         |
|                         |               |         |      |                   | zoea                                  | 128   | unidentified brachyurans                    |
|                         |               |         |      |                   | I                                     | 280   | Pandalus goniurus                           |
|                         |               |         |      |                   | II                                    | 1440  | P. goniurus                                 |
|                         |               |         |      |                   | III                                   | 128   | P. goniurus                                 |
|                         |               |         |      |                   | zoea                                  | 20    | damaged Pandalus goniurus                   |
|                         |               |         |      |                   | zoea                                  | 544   | unidentified hippolytids                    |

k The sample was split and 1/4 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae                  |
|-------------------------|---------------|---------|----------------|-------------------|-------|-------|-------------------------------------------|
| 27 May                  | 1300          | 7       | 1 <sup>2</sup> | 505               | I     | 32    | Paralithodes camtschatica                 |
| 2, 114,                 | 1300          | ,       | Ŧ              | 505               | II    | 204   | P. camtschatica                           |
|                         |               |         |                |                   | III   | 24    | P. comtschatica                           |
|                         |               |         |                |                   | zoea  | 92    | unidentified anomurans                    |
|                         |               |         |                |                   | I     | 8     | Chionoecetes bairdi                       |
|                         |               |         |                |                   | zcea  | 96    | unidentified brachyurans                  |
|                         |               |         |                |                   | I     | 328   | Pandalus goniurus                         |
|                         |               |         |                |                   | ĨI    | 1752  | P. goniurus                               |
|                         |               |         |                |                   | III   | 152   | P. goniurus                               |
|                         |               |         |                |                   | zoea  | 8     | damaged Pandalus sp.                      |
|                         |               |         |                |                   | zoea  | 544   | unidentified hippolytids                  |
| 27 May                  | 1701          | 8       | 1 <sup>m</sup> | 333               | II    | 24    | Paralithodes camtschatica                 |
| -                       |               |         |                |                   | III   | 36    | P. cantschatica                           |
|                         |               |         |                |                   | zoea  | 212   | unidentified anomurans                    |
|                         |               |         |                |                   | I     | 8     | Chionoecetes bairdi                       |
|                         |               |         |                |                   | zoea  | 976   | unidentified brachyurans                  |
|                         |               |         |                |                   | II    | 5     | Pandalus goniurus                         |
|                         |               |         |                |                   | III   | 1     | P. goniurus                               |
|                         |               |         |                |                   | zoea  | 122   | unidentified hippolytids                  |
| 27 May                  | 1701          | 8       | 1 <sup>m</sup> | 505               | II    | 20    | Doma <sup>1</sup> it is don to the 1 it   |
| -                       |               | -       | -              | 202               | III   | 20    | Paralithodes camtschatica                 |
|                         |               |         |                |                   | zoea  | 284   | P. camtschatica<br>unidentified anomurans |
|                         |               |         |                |                   | I     | 204   | Chionoecetes bairdi                       |

Table 37. (continued)

I The sample was split and 1/4 was sorted for crab larvae and 1/8 was sorted for shrimp larvae; totals given are for the entire sample.

<sup>m</sup> The sample was split and 1/4 was sorted for crab larvae; totals given are for the entire sample.

Table 37. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|----------|-------|--------------------------|
| 27 May                  | 1701          | 8       | 1    | 505               | megalopa | 4     | Chionoecetes sp.         |
|                         |               |         |      |                   | zoea     | 892   | unidentified brachyurans |
|                         |               |         |      |                   | I        | 1     | Pandalus borealis        |
|                         |               |         |      |                   | II       | 2     | P. borealis              |
|                         |               |         |      |                   | I        | 1     | P. goniurus              |
|                         |               |         |      |                   | II       | 10    | P. goniurus              |
|                         |               |         |      |                   | III      | 2     | P. goniurus              |
|                         |               |         |      |                   | zoea     | 3     | damaged Pandalus sp.     |
|                         |               |         |      |                   | zoea     | 152   | unidentified hippolytids |
| 30 May                  | 1813          | 10      | 1    | 333               | zoea     | 7     | unidentified anomurans   |
| 50 may                  | 1015          | 20      | -    |                   | I        | 18    | Chionoecetes bairdi      |
|                         |               |         |      |                   | megalopa | 2     | Chioroecetes sp.         |
|                         |               |         |      |                   | zoea     | 41    | unidentified brachyurans |
|                         |               |         |      |                   | III      | 1     | Pandalopsis dispar       |
|                         |               |         |      |                   | III      | 2     | Pandalus borealis        |
|                         |               |         |      |                   | IV ?     | 1     | damaged P. borealis ?    |
|                         |               |         |      |                   | II       | 1     | P. goniurus              |
|                         |               |         |      |                   | I        | 7     | P. montagui tridens      |
|                         |               |         |      |                   | II       | 6     | P. montagui tridens      |
|                         |               |         |      |                   | III      | 2     | P. montagui tridens      |
|                         |               |         |      |                   | zoea     | 2     | unidentified hippolytids |
| 30 May                  | 1813          | 10      | 1    | 505               | zoea     | 7     | unidentified anomurans   |
| SU IMY                  | 1010          |         | -    |                   | I        | 13    | Chionoecetes bairdi      |
|                         |               |         |      |                   | megalopa | 2     | Chionoecetes sp.         |
|                         |               |         |      |                   | zoea     | 46    | unidentified brachyurans |
|                         |               |         |      |                   | I        | 1     | Pandalopsis dispar       |
|                         |               |         |      |                   | ĪI       | 2     | Pandalus borealis        |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|----------|-------|--------------------------|
| 30 May                  | 1813          | 10      | 1    | 505               | III      | 2     | P. borealis              |
|                         |               |         |      |                   | IV       | 3     | P. borealis              |
|                         |               |         |      |                   | I        | 10    | P. montagui tridens      |
|                         |               |         |      |                   | II       | 8     | P. montagui tridens      |
|                         |               |         |      |                   | III      | 1     | P. montagui tridens      |
|                         |               |         |      |                   | IV       | 1     | damaged Pandalus sp.     |
|                         |               |         |      |                   | zoea     | 14    | unidentified hippolytids |
| 30 May                  | 0253          | 11      | 1    | 333               | zoea     | 1     | unidentified anomuran    |
|                         |               |         |      |                   | I        | 6     | Chionoecetes bairdi      |
|                         |               |         |      |                   | megalopa | 6     | Chicnoecetes sp.         |
|                         |               |         |      |                   | zoea     | 33    | unidentified brachyurans |
|                         |               |         |      |                   | I        | 1     | Pandalus montagui triden |
|                         |               |         |      |                   | II       | 1     | damaged Pandalus sp.     |
|                         |               |         |      |                   | zoea     | 11    | unidentified hippolytids |
|                         |               |         |      |                   | adult    | 1     | Pasiphaea sp.            |
| 0 May                   | 0253          | 11      | 1    | 505               | I        | 1     | Chionoecetes bairdi      |
|                         |               |         |      |                   | megalopa | 2     | Chionoecetes sp.         |
|                         |               |         |      |                   | zoea     | 4     | unidentified brachyurans |
|                         |               |         |      |                   | IV ?     | 1     | Pandalopsis dispar       |
|                         |               |         |      |                   | zoea     | 6     | unidentified hippolytids |
| 0 May                   | 0813          | 11      | 2    | 333               | megalopa | 3     | Chionoecetes sp.         |
|                         |               |         |      |                   | zoea     | 7     | unidentified brachyurans |
|                         |               |         |      |                   | zoea     | 4     | unidentified hippolytids |

Table 37. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae  |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|---------------------------|
| 30 May                  | 0813          | 11      | 2              | 505               | megalopa | 5     | Chionoecetes sp.          |
| 50 may                  | 0010          | **      | -              |                   | zoea     | 24    | unidentified brachyurans  |
|                         |               |         |                |                   | IV       | 1     | Pandalopsis dispar        |
|                         |               |         |                |                   | III      | 1     | Pandalus montagui tridens |
|                         |               |         |                |                   | zoea     | 4     | unidentified hippolytids  |
| 28 May                  | 1831          | 13      | ı <sup>n</sup> | 333               | zoea     | 4     | unidentified anomurans    |
| 20 May                  | TOPT          | 1.5     | 1              | 333               | I        | 140   | Chicnoecetes bairdi       |
|                         |               |         |                |                   | megalopa | 4     | Chionoecetes sp.          |
|                         |               |         |                |                   | zoea     | 96    | unidentified brachyurans  |
|                         |               |         |                |                   | I        | 4     | Pandalopsis dispar        |
|                         |               |         |                |                   | ĪĪ       | 2     | P. dispar                 |
|                         |               |         |                |                   | III      | 2     | P. dispar                 |
|                         |               |         |                |                   | II       | 2     | Pandalus borealis         |
|                         |               |         |                |                   | III      | 48    | P. borealis               |
|                         |               |         |                |                   | IV       | 60    | P. borealis               |
|                         |               |         |                |                   | V        | 6     | P. borealis               |
|                         |               |         |                |                   | I        | 2     | P. montagui tridens       |
|                         |               |         |                |                   | II       | 6     | P. montagui tridens       |
|                         |               |         |                |                   | III      | 6     | P. montagui tridens       |
|                         |               |         |                |                   | zoea     | 72    | unidentified hippolytids  |
| 28 May                  | 1831          | 13      | $1^n$          | 505               | zoea     | 8     | unidentified anomurans    |
| 20 may                  | 1001          |         |                |                   | I        | 122   | Chionoecetes bairdi       |
|                         |               |         |                |                   | megalopa | 2     | Chionoecetes sp.          |

Table 37. (continued)

<sup>n</sup> The sample was split and 1/2 was sorted for crab and shrimp larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total      | Identification of Larvae                       |
|-------------------------|---------------|---------|------|-------------------|----------|------------|------------------------------------------------|
| 28 May                  | 1831          | 13      | 1    | 505               | zoea     | 102        | unidontifici Lucchauman                        |
| 2                       |               |         | -    | 505               | I        | 2          | unidentified brachyurans<br>Pandalopsis dispar |
|                         |               |         |      |                   | ĨI       | 2          | P. dispar                                      |
|                         |               |         |      |                   | II       | 4          | Pandalus borealis                              |
|                         |               |         |      |                   | III      | 46         | P. borealis                                    |
|                         |               |         |      |                   | IV       | 40         | P. borealis                                    |
|                         |               |         |      |                   | v.       | 10         | P. borealis                                    |
|                         |               |         |      |                   | I        | 6          | P. montagui tridens                            |
|                         |               |         |      |                   | ĪI       | 14         | P. montagui tridens                            |
|                         |               |         |      |                   | III      | 2          | P. montagui tridens                            |
|                         |               |         |      |                   | I        | 2          | P. stenolepis                                  |
|                         |               |         |      |                   | zoea     | 62         | unidentified hippolytids                       |
| 8 May                   | 2248          | 13      | 2    | 333               | zoea     | 2          | unidentified anomurans                         |
|                         |               |         |      |                   | I        | 88         | Chichoecetes bairdi                            |
|                         |               |         |      |                   | II       | 1          | Chionoecetes sp.                               |
|                         |               |         |      |                   | megalopa | 1          | Chionoecetes sp.                               |
|                         |               |         |      |                   | zcea     | 23         | unidentified brachyurans                       |
|                         |               |         |      |                   | I        | 8          | Pandalopsis dispar                             |
|                         |               |         |      |                   | II       | 3          | P. dispar                                      |
|                         |               |         |      |                   | III      | 2          | P. disvar                                      |
|                         |               |         |      |                   | III      | 60         | Pandalus borealis                              |
|                         |               |         |      |                   | IV       | <b>6</b> 6 | P. borealis                                    |
|                         |               |         |      |                   | V        | 3          | P. borealis                                    |
|                         |               |         |      |                   | II       | 8          | P. montagui tridens                            |
|                         |               |         |      |                   | III      | 1          | P. montagui tridens                            |
|                         |               |         |      |                   | zoea     | 64         | unidentified hippolytids                       |
|                         |               |         |      |                   | adult    | 34         | Pasiphaea sp.                                  |

Table 37. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(um) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| 28 May                  | 2248          | 13      | 2 <sup>0</sup> | 505               | zoea     | 2     | unidentified anomurans   |
| 2                       |               |         |                |                   | I        | 59    | Chionoecetes bairdi      |
|                         |               |         |                |                   | megalopa | 2     | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 10    | unidentified brachyurans |
|                         |               |         |                |                   | II       | 2     | Pandalopsis dispar       |
|                         |               |         |                |                   | III      | 96    | Pandalus borealis        |
|                         |               |         |                |                   | IV       | 55    | P. borealis              |
|                         | ١             |         |                |                   | v        | 7     | P. borealis              |
|                         | 1             |         |                |                   | I        | 2     | P. montagui tridens      |
|                         |               |         |                |                   | II       | 9     | P. montagui tridens      |
|                         |               |         |                |                   | zoea     | 94    | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 2     | Pandalus borealis        |
|                         | •             |         |                |                   | adult    | 39    | Pasiphaea sp.            |
| 29 May                  | 1029          | 13      | 30             | 333               | zoea     | 3     | unidentified anomurans   |
|                         | 2029          | 10      | 5              | 555               | I        | 104   | Chicnoecetes bairdi      |
|                         |               |         |                |                   | ĪI       | 1     | Chionoecetes sp.         |
|                         |               |         |                |                   | megalopa | 2     | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 9     | unidentified brachyurans |
|                         |               |         |                |                   | II       | 2     | Pandalopsis dispar       |
|                         |               |         |                |                   | III      | 2     | P. dispar                |
|                         |               |         |                |                   | II       | 4     | Pandalus borealis        |
|                         |               |         |                |                   | III      | 46    | P. borealis              |
|                         |               |         | •              |                   | IV       | 78    | P. borealis              |
|                         |               |         |                |                   | v        | 16    | P. borealis              |
|                         |               |         |                |                   | II       | 9     | P. montagui tridens      |
|                         |               |         |                |                   | III      | 2     | P. montagui tridens      |
|                         |               |         |                |                   | IV       | 2     | P. montagui tridens      |
|                         |               | •       |                |                   | zoea     | 66    | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 25    | Pasichaea sp.            |

<sup>o</sup> The sample was split and 7/16 was sorted for shrimp larvae and adult shrimp; totals given are for the entire sample.

Т

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae    |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|-----------------------------|
| 29 May                  | 1029          | 13      | 3 <sup>p</sup> | 505               | zcea     | 8     | unidentified anomurans      |
|                         | <b>-</b>      |         | 0              | 505               | I        | 168   | Chionoecetes bairdi         |
|                         |               |         |                |                   | zoea     | 6     | unidentified brachyurans    |
|                         |               |         |                |                   | 111      | 2     | Pandalopsis dispar          |
|                         |               |         |                |                   | II       | 2     | Pandalus borealis           |
|                         |               |         |                |                   | III      | 53    | P. borealis                 |
|                         |               |         |                |                   | IV .     | 96    | P. bcrealis                 |
|                         |               |         |                |                   | v .      | 18    | P. borealis                 |
|                         |               |         |                |                   | ÎI       | 2     | P. montagui tridens         |
|                         |               |         |                |                   | III      | 4     | P. montagui tridens         |
|                         |               |         |                |                   | zoea     | 82    | unidentified hippolytids    |
|                         |               |         |                |                   | adult    | 16    | Pasiphaea sp.               |
| 28 May                  | 0536          | 14      | 1              | 333               | III      | 1     | Paralithodes camtschatico   |
|                         |               |         |                |                   | zoea     | 10    | unidentified anomurans      |
|                         |               |         |                |                   | I        | 44    | Chionoecetes bairdi         |
|                         |               |         |                |                   | megalopa | 39    | Chionoecetes sp.            |
|                         |               | •       |                |                   | zoea     | 33    | unidentified brachyurans    |
|                         |               |         |                |                   | I        | 1     | Pandalopsis dispar          |
|                         |               |         |                |                   | II       | 1     | P. dispar                   |
|                         |               |         |                |                   | II       | 1     | Pandalus borealis           |
|                         |               |         |                |                   | I        | 16    | P. montagui tridens         |
|                         |               |         |                |                   | ίI       | 3     | P. montagui triden <b>s</b> |
|                         |               |         |                |                   | III      | 1     | P. montagui tridens         |
|                         |               |         |                |                   | zoea     | 12    | unidentified hippolytids    |

<sup>p</sup> The sample was split and 5/8 was sorted for crab larvae and 7/16 was sorted for shrimp larvae; totals given are for the entire sample.

399

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|----------|-------|--------------------------|
| 28 May                  | 0536          | 14      | 1    | 505               | zoea     | 14    | unidentified anomurans   |
| 2                       |               |         |      |                   | I        | 35    | Chionoecetes bairdi      |
|                         |               |         |      |                   | megalopa | 32    | Chicroecetes sp.         |
|                         |               |         |      |                   | zoea .   | 27    | unidentified brachyurans |
|                         |               |         |      |                   | I        | 1     | Pandalopsis dispar       |
|                         |               |         |      |                   | I        | 1     | Pandalus borealis        |
|                         |               |         |      |                   | II       | 1     | P. borealis              |
|                         |               |         |      |                   | III      | 5     | P. borealis              |
| -                       |               |         |      |                   | IV       | 1     | P. borealis              |
|                         |               |         |      | •                 | I        | 28    | P. montagui tridens      |
|                         |               |         |      |                   | II       | 6     | P. montagui tridens      |
|                         |               |         |      |                   | III      | 3     | P. montagui tridens      |
|                         |               |         |      |                   | I        | 1     | P. stenclepis            |
|                         |               |         |      |                   | III      | 1     | P. stenciepis            |
|                         |               |         |      |                   | zoea     | 23    | unidentified hippolytids |

•

.

Table 37. (continued)

| Date<br>(1976)  | Time  |         |      | Mesh Size     |      | Fish or |
|-----------------|-------|---------|------|---------------|------|---------|
| (GMT)           | (GMT) | Station | Haul | (µm)          | Eggs | Larvae  |
| <b>1</b> 3 July | 0119  | 1       | 1    | 333           | 1    | 1116    |
| 13 July         | 0119  | 1       | 1    | 505           | 3    | 1584    |
| 12 July         | 1133  | 2       | 1    | 333           | 28   | 1272    |
| 12 July         | 1133  | 2       | 1    | 505           | 35   | 1312    |
| 10 July         | 0901  | 3       | 1    | 333           | 1    | 150     |
| lO July         | 0901  | 3       | 1    | 505           | 1    | 101     |
| 10 July         | 1556  | 4       | 1    | 333           | 5    | 304     |
| 10 July         | 1556  | 4       | 1    | 505           | 0    | 422     |
| 11 July         | 0018  | 5       | 1    | 333           | 299  | 744     |
| 11 July         | 0018  | 5       | 1    | 505           | 338  | 668     |
| 11 July         | 1009  | 6       | 2    | 333           | 123  | 33      |
| ll July         | 1009  | 6       | 2    | 505           | 92   | 45      |
| ll July         | 1031  | 6       | 3    | 333           | 104  | 37      |
| 11 July         | 1031  | 6       | 3    | 505           | 122  | 38      |
| 11 July         | 2051  | 6       | 4    | 333           | 656  | 64      |
| ll July         | 2051  | 6       | 4    | 505           | 816  | 99      |
| ll July         | 2113  | 6       | 5    | 333           | 1176 | 79      |
| 11 July         | 2113  | 6       | 5    | 505           | 740  | 131     |
| 10 July         | 0405  | 7       | 1    | 333           | 330  | 532     |
| 10 July         | 0405  | 7       | 1    | 505           | 386  | 484     |
| 10 July         | 0010  | 8       | 1    | 333           | 660  | 214     |
| 10 July         | 0010  | 8       | 1    | <b>5</b> 05 · | 920  | 31      |
| 13 July         | 0548  | 9       | 1    | 333           | 2    | 119     |
| 13 July         | 0548  | 9       | 1    | 505           | 7    | 217     |
| 13 July         | 1230  | 10      | 1    | 333           | 5    | 313     |
| 13 July         | 1230  | 10      | 1    | 505           | 3    | 413     |
| 13 July         | 2243  | 11      | 1    | 333           | 0    | 1       |
| 13 July         | 2243  | 11      | 1    | 505           | 1    | 3       |
| 14 July         | 0835  | 11      | 2    | 333           | 0    | 39      |
| 14 July         | 0835  | 1.1.    | 2    | 505           | 0    | 47      |

Table 38. Number of fish eggs and larvae at each station Lower Cook Inlet Bongo Tows, *Acona*, Leg II, 08-15 July 1976

401

Table 39. Summary of taxonomic categories of fish eggs, larvae, young and adults found in bongo net samples collected on Lower Cook Inlet, *Acona* Cruise, Leg II, 08-15 July 1976.

A total of 30 samples were collected. All samples were sorted for fish eggs and larvae and the results are summarized below. The fish are distributed into 15 families, 18 genera, and 11 species. Eggs are distributed into 4 size categories.

Family Agonidae

1 young sturgeon poacher<sup>1</sup> Agonus acipenserinus (Tilesius)

Family Bathylagidae

3 larvae smoothtongue Bathylagus stilbius Gilbert 3 larvae deepsea smelt Bathylagus spp.

Family Bathymasteridae

124 larvae genus? species?

Family Clupeidae

48 larvae Pacific herring Clupea harengus pallasi Valenciennes

Family Cottidae

1 larva northern sculpin Icelinus borealis Gilbert
1 young Icelinus borealis
83 larvae genus? species?

Family Cyclopteridae

96 larvae genus? species? 1 young genus? species?

Family Gadidae

4 larvae cod *Gadus* 3 larvae genus? species?

Family Myctophidae

23 larvae northern lampfish Stenobrachius leucopsarus Eigenmann & Eigenmann

68 young Stenobrachius leucopsarus

1 adult Stenobrachius leucopsarus

3 larvae genus? species?

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Family Osmeridae

5363 larvae capelin *Mallotus villosus* (Müller) 3122 larvae genus? species?

Family Pholidae

89 larvae genus? species?

Family Pleuronectidae

19 larvae Rex sole Glyptocephalus zachirus Lockington
240 larvae sole Hippoglossoides sp.
8 larvae rock sole Lepidopsetta bilineata (Ayres)
45 larvae yellowfin sole Limanda aspera (Pallas) ( l uncertain)
1 young starry flounder Platichthys stellatus?
3 larvae sand sole Psettichthys melanostictus
3 larvae genus? species

Family Salmonidae

2 young salmon Onchorhynchus sp.

Family Scorpaenidae

26 larvae rockfish *Sebastes* sp. 25 larvae thornyhead *Sebastolobus* sp.

Family Stichaeidae

21 larvae cockscomb Anoplarchus sp. 52 larvae prickleback Lumpenus sp.

1135 larvae unidentified (many badly damaged)

6854 eggs categorized (see Table 18, List of possible fish for egg size categories)

6450 eggs <1 mm (0.71-0.90 mm) 394 eggs ∿1 mm (0.90~1.20 mm) 4 eggs ∿2 mm (1.34~2.00 mm) 6 eggs ∿3 mm (2.64-3.24 mm)

| Table 40. Identification of Fish Eggs and Larvae by Sta | ation |
|---------------------------------------------------------|-------|
|---------------------------------------------------------|-------|

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul     | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|----------|-------------------|------|-------------------|--------------------------------------------------------------|
| 13 Jul                  | 0119          | 1       | <u>1</u> | 333               | ıa   | 1116 <sup>a</sup> | 1 egg < 1 mm (0.71 mm) <sup>b</sup>                          |
|                         |               |         |          |                   |      |                   | 16 larvae 8.4-14 mm Hippoglossoides sp.                      |
|                         |               |         |          |                   |      |                   | 912 larvae 3.1-12 mm Mallotus villosus                       |
|                         |               |         |          |                   |      |                   | 4 larvae 6.7 mm Cottidae ("Cottid 2" from<br>Blackburn 1973) |
|                         |               |         |          |                   |      |                   | 180 larvae 3.4-16 mm Osmeridae                               |
|                         |               |         |          |                   |      |                   | 4 larvae 3.0 mm unidentified (non-elongate)                  |
| 13 Jul                  | 0119          | 1       | 1        | 505               | 3    | 1584 <sup>°</sup> | 2 eggs < 1 mm (0.71, 0.87 mm)                                |
|                         |               |         |          |                   |      |                   | $1 \text{ egg} \sim 1 \text{ mm}$ (0.93 mm)                  |
|                         |               |         |          |                   |      |                   |                                                              |

Lower Cook Inlet Bongo Tows, Acona, Leg II, 08-15 July 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature. The sample was sorted for fish eggs. Then it was split and 1/4 of the sample was sorted for fish larvae; totals are given for the entire sample.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

<sup>c</sup> The sample was split and 1/8 of the sample was sorted for fish larvae; totals are given for the entire sample.

404

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                     |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------|
| 13 Jul                  | 0119          | l       | 1    | 505               | 3    | 1.584             | 1088 larvae 3.7-12 mm Mallotus villosus                    |
|                         |               |         |      |                   |      |                   | 496 larvae 3.2-15 mm Osmeridae                             |
| 12 Jul                  | 1133          | 2       | 1    | 333               | 28   | 1272 <sup>d</sup> | l egg <1 mm (0.85 mm)                                      |
|                         |               |         |      |                   |      |                   | 26 eggs ∿ 1 mm (0.91-1.02 mm)                              |
|                         |               |         |      |                   |      |                   | l egg ∿ 2 mm (1.34 mm)                                     |
|                         |               |         |      |                   |      |                   | 8 larvae 7.1 mm Lepidopsetta bilinea.                      |
|                         |               |         |      |                   |      |                   | 536 larvae 6.2-11 mm <i>Mallotus villosus</i>              |
|                         |               |         |      |                   |      |                   | 8 larvae 8.6 mm Cottidae                                   |
|                         |               |         |      |                   |      |                   | 16 larvae 6.5-6.7 mm Cyclopteridae                         |
|                         |               |         |      |                   |      |                   | 520 larvae 6.4-14 mm Osmeridae                             |
|                         |               |         |      |                   |      |                   | 24 larvae 10-17 mm Pholidae                                |
|                         |               |         | •    |                   |      |                   | 160 larvae unidentified due to extensive damage (elongate) |
| 12 Jul                  | 1133          | 2       | 1    | 505               | 35   | 1312 <sup>e</sup> | 3 eggs < 1 mm (0.85-0.89)                                  |
|                         |               |         |      |                   |      |                   | 32 eggs ∿ 1 mm (0.91-1.00 mm)                              |
|                         |               |         |      |                   |      |                   | 16 larvae 5.9 mm Hippoglossoides sp.                       |

Table 40. (continued)

d The sample was split and 1/8 of the sample was sorted for fish larvae; totals are given for the entire sample.

<sup>e</sup> The sample was split and 1/16 of the sample was sorted for fish larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                     |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------|
| 12 Jul                  | 1133          | 2       | 1    | 505               | 35   | 1312              | 496 larvae 7.5-11 mm Mallotus villosus                     |
|                         |               |         |      |                   |      |                   | 32 larvae 6.7-7.6 mm Cottidae                              |
|                         |               |         |      |                   |      |                   | 48 larvae 9.1-10 mm Cyclopteridae                          |
|                         |               |         |      |                   |      |                   | 416 larvae 6.9-11 mm Osmeridae                             |
|                         |               |         |      |                   |      |                   | 32 larvae 11-23 mm Pholidae                                |
|                         |               |         |      |                   |      |                   | 16 larvae 3.8 mm unidentified (non-elongat                 |
|                         |               |         |      |                   |      |                   | 16 Larvae 3.8 mm unidentified (non-elongat                 |
|                         |               |         |      |                   |      |                   | 240 larvae unidentified due to extensive damage (elongate) |
| 10 Jul                  | 0901          | 3       | 1    | 333               | 1    | 150               | $1 \text{ egg} \sim 2 \text{ mm}$ (1.40 mm)                |
|                         |               |         |      |                   |      |                   | 1 larva 42 mm Lumpenus sp.                                 |
|                         |               |         |      |                   |      |                   | 91 larvae 4.9-11 mm <i>Mallotus villosus</i>               |
|                         |               |         |      |                   |      |                   | 6 larvae 13-14 mm Cyclopteridae                            |
|                         |               |         |      |                   |      |                   | 3 larvae 11, 13, 15 mm Cyclopteridae                       |
|                         |               |         |      |                   |      |                   | 4 larvae 7.1-10 mm Osmeridae                               |
|                         |               |         |      |                   |      |                   | 5 larvae 20-30 mm Pholidae                                 |
|                         |               |         |      |                   |      |                   | 40 larvae unidentified due to extensive damage (elongate)  |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 10 Jul                  | 0901          | 3       | 1    | 505               | 1    | 101               | l egg < 1 mm (0.84 mm)                                      |
|                         |               |         |      |                   |      |                   | 1 young 20 mm Agonus acipenserinus                          |
|                         |               |         |      |                   |      |                   | 2 larvae 48, 51 mm Lumpenus sp.                             |
|                         |               |         |      |                   |      |                   | 60 larvae 5.3-12 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | l larva 8.7 mm Cottidae ("Cottid 5"<br>from Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 2 larvae 13, 15 mm Cyclopteridae                            |
|                         |               |         |      |                   |      |                   | 5 larvae 6.7-8.1 mm Osmeridae                               |
|                         |               |         |      |                   |      |                   | 2 larvae 18, 22 mm Pholidae                                 |
|                         |               |         |      |                   |      |                   | 3 larvae 4.4, 4.5, 4.9 mm unidentified (elongate)           |
|                         |               |         |      |                   |      |                   | 25 larvae unidentified due to extensive damage (elongate)   |
| 10 Jul                  | 1556          | 4       | 1    | 333               | 5    | 304 <sup>f</sup>  | 5 eggs < 1 mm (0.81-0.85 mm) <sup>b</sup>                   |
|                         |               |         |      |                   |      |                   | 16 larvae 8.9-11 mm Clupea harengus pallasi                 |
|                         |               |         |      |                   |      |                   | 164 larvae 5.9-9.4 mm Mallotus villosus                     |
|                         |               |         |      |                   |      |                   | 2 young 42 mm Onchorhynchus sp.?                            |
|                         |               |         |      |                   |      |                   | 4 larvae 13-21 mm Cyclopteridae                             |

Table 40. (continued)

f The sample was split and 1/2 of the sample was sorted for fish larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------------------|
| 10 Jul                  | 1556          | 4       | 1    | 333               | 5                | 304               | 106 larvae 6.6-7.2 mm Osmeridae                              |
|                         |               |         |      |                   |                  |                   | 12 larvae unidentified due to extensive<br>damage (elongate) |
| 10 Jul                  | 1556          | 4       | 1    | 505               | 0                | 422 <sup>g</sup>  | 2 larvae 8.1 mm Bathylagus stilbius                          |
|                         |               |         |      |                   |                  |                   | 10 larvae 9.0-10 mm Clupea harengus pallas                   |
|                         |               |         |      |                   |                  |                   | 174 larvae 6.7-9.1 mm Mallotus villosus                      |
|                         |               |         |      |                   |                  |                   | 2 larvae 5.6 mm Cottidae ("Cottid 5" from<br>Blackburn 1973) |
|                         |               |         |      |                   |                  |                   | 8 larvae 3.4-15 mm Cyclopteridae                             |
|                         |               |         |      |                   |                  |                   | 196 larvae 5.8-10 mm Osmeridae                               |
|                         |               |         |      |                   |                  |                   | 30 larvae unidentified due to extensive damage (elongate)    |
| ll Jul                  | 0018          | 5a      | ì    | 333               | 299 <sup>h</sup> | 744 <sup>h</sup>  | 259 eggs < 1 mm (0.71-0.89 mm)                               |
|                         | •             |         |      |                   |                  |                   | 40 eggs ∿ 1 mm (0.90-0.94 mm)                                |
|                         |               |         |      |                   |                  |                   | 12 larvae 11-13 mm Anoplarchus sp.                           |
|                         |               |         |      |                   |                  |                   | 360 larvae 4.7-12 mm Kallotus villosus                       |
|                         |               |         |      |                   |                  |                   | 4 larvae 4.4 mm Cottidae ("Cottid 6"<br>from Blackburn 1973) |

Table 40. (continued)

<sup>g</sup> The sample was split and 1/2 was sorted for fish larvae; totals given are for the entire sample.

<sup>h</sup> The sample was split and 5/8 was sorted for fish eggs and 1/4 was sorted for larvae; totals given are for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Naul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|--------------------------------------------------------------|
| 11 Jul                  | 0018          | 5a      | 1    | 333               | 299              | 744               | 276 larvae 4.6-13 mm Osmeridae                               |
|                         |               |         |      |                   |                  |                   | 12 larvae 14-27 mm Pholidae                                  |
|                         |               |         |      |                   |                  |                   | 12 larvae 4.5-8.5 mm unidentified (elongat                   |
|                         |               |         |      |                   |                  |                   | 24 larvae 3.5-5.2 mm unidentified (non-<br>elongate)         |
|                         |               |         |      |                   |                  |                   | 8 larvae 6.9 mm unidentified (non-elongat                    |
|                         |               |         |      |                   |                  |                   | 36 larvae unidentified due to extensive damage (elongate)    |
| ll Jul                  | 0018          | 5a      | 1    | 505               | 338 <sup>i</sup> | 668 <sup>i</sup>  | 266 eggs <1 mm (0.74-0.88 mm)                                |
|                         |               |         |      |                   |                  |                   | 72 eggs $\sim$ 1 mm (0.90-1.00 mm)                           |
|                         |               |         |      |                   |                  |                   | 8 larvae 11-12 mm Anoplarchus sp.                            |
|                         |               |         |      |                   |                  |                   | 4 larvae 5.9 mm <i>Gadus</i> sp.                             |
|                         |               |         |      |                   |                  |                   | 4 larvae 8.8 mm Hippoglossoides sp.                          |
|                         |               |         |      |                   |                  |                   | 312 larvae 5.9-12 mm <i>Mallotus villosus</i>                |
|                         |               |         |      |                   |                  |                   | 4 larvae 6.0 mm Cottidae ("Cottid 5" from<br>Blackburn 1973) |
|                         |               |         |      |                   |                  |                   | 4 larvae 3.5 mm Cyclopteridae                                |
|                         |               |         |      |                   |                  |                   | 176 larvae 5.2-13 mm Osmeridae                               |

Table 40. (continued)

<sup>i</sup> The sample was split and 1/2 of the sample was sorted for fish eggs and 1/4 sorted for larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                                 |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------------------------------------------------|
| 11 Jul                  | 0018          | 5a      | 1    | 505               | 338  | 668               | 8 larvae 16-19 mm Pholidae                                                                             |
|                         |               |         |      |                   |      |                   | 24 larvae 4.8-7.7 mm unidentified (elongate                                                            |
|                         |               |         |      |                   |      |                   | 12 larvae 3.8-5.4 mm unidentified (non-<br>elongate)                                                   |
|                         |               |         |      |                   |      |                   | 4 larvae 6.8 mm unidentified (non-elongate                                                             |
|                         |               |         |      |                   |      |                   | 108 larvae unidentified due to extensive<br>damage (elongate)                                          |
| 11 Jul                  | 1009          | 6       | 2    | 333               | 123  | 33                | 123 eggs <1 mm (0.74-0.86 mm)                                                                          |
|                         |               |         |      |                   |      |                   | 2 larvae 7.0, 8.0 mm Hippoglossoides sp.                                                               |
|                         |               |         |      |                   |      |                   | 13 larvae 38-52 mm Lumpenus spp.                                                                       |
|                         |               |         |      |                   |      |                   | 2 larvae 4.2, 9.5 mm Mallotus villosus                                                                 |
|                         |               |         |      |                   |      |                   | l larva 9.2 mm Cottidae ("Cottid 5" from<br>Blackburn 1973)                                            |
|                         |               |         |      |                   |      |                   | 11 larvae 4.4-8.9 mm unidentified (elongate                                                            |
|                         |               |         |      |                   |      |                   | 1 larva 2.0 mm unidentified (appears to be<br>a very early embryo that escaped from a<br>ruptured egg) |
|                         |               |         |      |                   |      |                   | 3 larvae unidentified due to extensive<br>damage (all elongate)                                        |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                 |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------------------|
| 11 Ju1                  | 1009          | 6       | 2    | 505               | 92   | 45                | 91 eggs < 1 mm (0.75-0.87 mm)                                          |
|                         |               |         |      |                   |      |                   | l egg $\sim$ 1 mm (l.14 mm)                                            |
|                         |               |         |      |                   |      |                   | l larva 17 mm Clupea harengus pallasi                                  |
|                         |               |         |      |                   |      |                   | 15 larvae 36-42 mm Lumpenus sp.                                        |
|                         |               |         |      |                   |      |                   | 4 larvae 5.6-9.3 mm Mallotus villosus                                  |
|                         |               |         |      |                   |      |                   | 1 young 17 mm Platichthys stellatus ?                                  |
|                         |               |         |      |                   |      |                   | 1 larva 4.1 mm Psettichthys melanostictus ?                            |
|                         |               |         |      |                   |      |                   | 3 larvae 5.2, 6.3, 6.8 mm Cottidae<br>("Cottid 5" from Blackburn 1973) |
|                         |               |         |      |                   |      |                   | l larvae 32 mm Pholidae                                                |
|                         |               |         |      |                   |      |                   | 16 larvae 4.5-8.2 mm unidentified (elongate)                           |
|                         |               |         |      |                   |      |                   | <pre>3 larvae unidentified due to extensive   damage (elongate)</pre>  |
| 11 Jul                  | 1031          | 6       | 3    | 333 <sup>.</sup>  | 104  | 37                | 103 eggs < 1 mm (0.74-0.86 mm)                                         |
|                         |               |         |      |                   |      |                   | $1 \text{ egg} \sim 1$ mm (1.04 mm)                                    |
|                         |               |         |      |                   |      |                   | 3 larvae 7.1, 7.2, 10 mm Hippoglossoides sp.                           |
|                         |               |         |      |                   |      |                   | 11 larvae 37-45 mm Lumpenus spp.                                       |
|                         |               |         |      |                   |      |                   | 6 larvae 5.2-15 mm Mallotus villosus                                   |
|                         |               |         |      |                   |      |                   | 1 larva 8.6 mm Psettichthys melanostictus                              |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 11 Jul                  | 1031          | 6       | 3    | 333               | 104  | 37                | 1 larva 8.0 mm Cottidae ("Cottid 5" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 1 larva 6.3 mm Cottidae                                     |
|                         |               |         |      |                   |      |                   | 12 larvae 4.9-9.1 mm unidentified (elongate)                |
|                         |               |         |      |                   |      |                   | <pre>1 larva 3.5 mm unidentified (non-<br/>elongate)</pre>  |
|                         |               |         |      |                   |      |                   | <pre>1 larva 2.2 mm unidentified (non-<br/>elongate)</pre>  |
| 11 Jul                  | 1031          | 6       | 3    | 505               | 122  | 38                | 121 eggs < 1 mm (0.76-0.90 mm)                              |
|                         |               |         |      |                   |      |                   | l egg $\sim$ 1 mm (l.00 mm)                                 |
|                         |               |         |      |                   |      |                   | l larva 14 mm Anoplarchus sp.                               |
|                         |               |         |      |                   |      |                   | 10 larvae 37-41 mm Lumpenus sp.                             |
|                         |               |         |      |                   |      |                   | 5 larvae 6.9-14 mm <i>Mallotus villosus</i>                 |
|                         |               |         |      |                   |      |                   | l larva 8.8 mm Cottidae ("Cottid 5" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 1 larva 4.5 mm Cottidae ("Cottid 6" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | l larva 10 mm Cottidae                                      |
|                         |               |         |      |                   |      |                   | 14 larvae 5.7-9.4 mm unidentified (elongat                  |
|                         |               |         |      |                   |      |                   | 5 larvae unidentified due to extensive damage (elongate)    |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                     |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|----------------------------------------------------------------------------|
| il Jul                  | 2051          | 6       | 4    | 333               | 656 <sup>j</sup> | 64                | 656 eggs < 1 mm (0.76-0.90 mm)                                             |
|                         |               |         |      |                   |                  |                   | 4 larvae 3.5-9.0 mm Hippoglossoides sp.                                    |
|                         |               |         |      |                   |                  |                   | 28 larvae 5.8-16 mm Mallotus villosus                                      |
|                         |               |         |      |                   |                  |                   | 17 larvae 5.2-11 mm Bathymasteridae                                        |
|                         |               |         |      |                   |                  |                   | 3 larvae 5.0, 5.3, 6.7 mm Cottidae<br>("Cottid 5" from Blackburn 1973)     |
|                         |               |         |      |                   |                  |                   | l larva 3.4 mm Cottidae ("Cottid 6" from<br>Blackburn 1973)                |
|                         |               |         |      |                   |                  |                   | 2 larvae 8.9, 9.6 mm Osmeridae                                             |
|                         |               |         |      |                   |                  |                   | l larva 3.0 mm unidentified (non-elongate)                                 |
|                         |               |         |      |                   |                  |                   | 8 larvae unidentified due to extensive damage (7 elongate, 1 non-elongate) |
| ll Jul                  | 2051          | 6       | 4    | 505               | 816 <sup>j</sup> | 99                | 808 eggs < 1 mm (0.76-0.86 mm)                                             |
|                         |               |         |      |                   |                  |                   | 8 eggs $\sim$ 1 mm (1.00 mm)                                               |
|                         |               |         |      |                   |                  |                   | l larva 3.7 mm Hippoglossoides sp.                                         |
|                         |               |         |      |                   |                  |                   | 1 larva 3.6 mm Limanda aspera ?                                            |
|                         |               |         |      |                   |                  |                   | 33 larvae 4.7-15 mm Mallotus villosus                                      |
|                         |               |         |      |                   |                  |                   | 16 larvae 4.4-8.8 mm Bathymasteridae                                       |

 $^{
m j}$  The sample was split and 1/4 of the sample was sorted for fish eggs; totals are given for the entire sample.

| Date<br>(1976)<br>(CMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs              | Fish cr<br>Larvae | Identification of Fish Eggs and Larvae                                          |
|-------------------------|---------------|---------|------|-------------------|-------------------|-------------------|---------------------------------------------------------------------------------|
| ll Jul                  | 2051          | 6       | 4    | 505               | 816               | 99                | 1 larva 5.8 mm Cottidae ("Cottid 5" from<br>Blackburn 1973)                     |
|                         |               |         |      |                   |                   |                   | <pre>1 larva 7.8 mm Cottidae ("Cottid 6" from<br/>Blackburn 1973)</pre>         |
|                         |               |         |      |                   |                   |                   | 1 larva 4.5 mm Cyclopteridae                                                    |
|                         |               |         |      |                   |                   |                   | 3 larvae 6.0, 6.4, 6.7 mm Osmeridae                                             |
|                         |               |         |      |                   |                   |                   | 42 larvae unidentified due to extensive<br>damage (40 elongate, 2 non-elongate) |
| 11 Jul                  | 2113          | 6       | 5    | 333               | 1176 <sup>k</sup> | 79                | 1176 eggs < 1 mm (0.71-0.89 mm)                                                 |
|                         |               |         |      |                   |                   |                   | 45 larvae 5.2-18 mm Mallotus villosus                                           |
|                         |               |         |      |                   |                   |                   | 9 larvae 5.0-8.7 mm Bathymasteridae                                             |
|                         |               |         | ,    |                   |                   |                   | <pre>1 larva 5.0 mm Cottidae ("Cottid 5" from<br/>Blackburn 1973)</pre>         |
|                         |               |         |      |                   |                   |                   | 12 larvae 6.5-16 mm Osmeridae                                                   |
|                         | •             |         |      |                   |                   |                   | 1 larva 29 mm Pholidae                                                          |
|                         |               |         |      |                   |                   |                   | 11 larvae unidentified due to extensive<br>damage (elongate)                    |

Table 40. (continued)

<sup>k</sup> The sample was split and 1/8 of the sample was sorted for fish eggs; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|-------------------------------------------------------------|
| 11 Jul                  | 2113          | 6       | 5    | 505               | 740 <sup>1</sup> | 131               | 736 eggs < 1 mm (0.71-0.89 mm)                              |
|                         |               |         |      |                   |                  |                   | 4 eggs ∿ 1 mm (0.91 mm)                                     |
|                         |               |         |      |                   |                  |                   | 1 larva 10 mm Hippoglossoides sp.                           |
|                         |               |         |      |                   |                  |                   | 56 larvae 5.7-18 mm Kallotus villosus                       |
|                         |               |         |      |                   |                  |                   | 21 larvae 4.8-9.4 mm Bathymasteridae                        |
|                         |               |         |      |                   |                  |                   | l larva 4.9 mm Cottidae ("Cottid 2" from<br>Blackburn 1973) |
|                         |               |         |      |                   |                  |                   | l larva 5.1 mm Cottidae ("Cottid 5" from<br>Blackburn 1973) |
|                         |               |         |      |                   |                  |                   | 17 larvae 6.5-18 mm Osmeridae                               |
|                         |               |         |      |                   |                  |                   | l larva 14 mm unidentified (elongate)                       |
|                         |               |         |      |                   |                  |                   | 1 larva 3.2 mm unidentified (non-elongate                   |
|                         |               |         |      |                   |                  |                   | 32 larvae unidentified due to extensive damage (elongate)   |
| 10 Jul                  | 0405          | 7       | 1    | 333               | 330              | 532 <sup>m</sup>  | 278 eggs < 1 mm (0.74-0.87 mm)                              |
|                         |               |         |      |                   |                  |                   | 52 eggs ∿ 1 mm (0.90-1.04 mm)                               |
|                         |               |         |      |                   |                  |                   | 56 larvae 4.1-7.0 mm Hippoglossoides sp.                    |

 $^{1}$  The sample was split and 1/4 of the sample was sorted for fish eggs; totals are given for the entire sample.

<sup>m</sup> The sample was split and 1/4 of the sample was sorted for fish larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Hau1 | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                           |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|----------------------------------------------------------------------------------|
| 10 Jul                  | 0405          | 7       | 1    | 333               | 330              | 532               | 36 larvae 2.6-5.1 mm Limanda aspera                                              |
|                         |               |         |      |                   |                  |                   | 308 larvae 4.5-13 mm Mallotus villosus                                           |
|                         |               |         |      |                   |                  |                   | 24 larvae 4.4-4.5 mm Bathymasteridae                                             |
|                         |               |         |      |                   |                  |                   | 4 larvae 5.0 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)                     |
|                         |               |         |      |                   |                  |                   | 64 larvae 8.4-15 mm Osmeridae                                                    |
|                         |               |         |      |                   |                  |                   | 40 larvae unidentified due to extensive<br>damage (20 elongate, 20 non-elongate) |
| 10 Jul                  | 0405          | 7       | 1    | 505               | 386 <sup>n</sup> | 484 <sup>n</sup>  | 330 eggs < 1 mm (0.67-0.89 mm)                                                   |
|                         |               |         |      |                   |                  |                   | 56 eggs ∿ 1 mm (0.91-1.02 mm)                                                    |
|                         |               |         |      |                   |                  |                   | 44 larvae 3.1-8.1 mm Hippoglossoides sp.                                         |
|                         |               |         |      |                   |                  |                   | 316 larvae 7.7-13 mm Mallotus villosus                                           |
|                         |               |         |      |                   |                  |                   | 16 larvae 4.5-4.9 mm Bathymasteridae                                             |
|                         |               |         |      |                   |                  |                   | 44 larvae 8.1-11 mm Osmeridae                                                    |
|                         |               |         |      |                   |                  |                   | 4 larvae 24 mm Pholidae                                                          |
|                         |               |         |      |                   |                  |                   | 60 larvae unidentified due to extensive<br>damage (56 elongate, 4 non-elongate)  |

<sup>n</sup> The sample was split and 1/2 of the sample was sorted for fish eggs and 1/4 sorted for larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs             | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                       |
|-------------------------|---------------|---------|------|-------------------|------------------|-------------------|------------------------------------------------------------------------------|
| 10 Jul                  | 0010          | 8       | 1    | 333               | 660 <sup>0</sup> | 214 <sup>°</sup>  | 624 eggs < 1 mm (0.71-0.87 mm)                                               |
|                         |               |         |      |                   |                  |                   | 36 eggs $\sim$ 1 mm (0.91-1.00 mm)                                           |
|                         |               |         |      |                   |                  |                   | 20 larvae 11-18 mm Clupea harengus pallasi                                   |
|                         |               |         |      |                   |                  |                   | 60 larvae 3.4-5.1 mm <i>Hippoglossoides</i> sp.                              |
|                         |               |         |      |                   |                  |                   | 6 larvae 5.1, 5.2, 5.5 mm <i>Limanda aspera</i>                              |
|                         |               |         |      |                   |                  |                   | 72 larvae 6.1-11 mm Mallotus villosus                                        |
|                         |               |         |      |                   |                  |                   | 16 larvae 4.0-4.5 mm Bathymasteridae                                         |
|                         |               |         |      |                   |                  |                   | 4 larvae 4.2-6.2 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)             |
|                         |               |         |      |                   |                  |                   | 10 larvae 5.2-8.4 mm Osmeridae                                               |
|                         |               |         |      |                   |                  |                   | 26 larvae unidentified due to extensive damage (22 elongate, 4 non-elongate) |
| 10 Jul                  | 0010          | 8       | 1    | 505               | 920 <sup>p</sup> | 31                | 864 eggs < 1 mm (0.76-0.86 mm)                                               |
|                         |               |         |      |                   |                  |                   | 56 eggs ∿ 1 mm (0.90-1.04 mm)                                                |
|                         |               |         |      |                   |                  |                   | 1 larva 20 mm Clupea harengus pallasi                                        |
|                         |               |         |      |                   |                  |                   | 3 larvae 3.8, 4.1, 4.7 mm Hippoglossoides                                    |

<sup>o</sup> The sample was split and 1/4 of the sample was sorted for fish eggs and 1/2 sorted for fish larvae; totals are given for the entire sample.

<sup>p</sup> The sample was split and 1/8 of the sample was sorted for fish eggs; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 10 Jul                  | 0010          | 8       | 1    | 505               | 920  | 31                | 2 larvae 4.9, 5.3 mm Limanda aspera                         |
|                         | •••           |         |      |                   |      |                   | 18 larvae 5.5-8.6 mm Mallotus villosus                      |
|                         |               |         |      |                   |      |                   | 7 larvae unidentified due to extensive damage (elongate)    |
| 13 Jul                  | 0548          | 9       | 1    | 333               | 2    | 119               | 1 egg < 1 mm (0.73 mm)                                      |
|                         |               |         |      |                   |      |                   | $1 \text{ egg} \sim 2 \text{ mm}$ (1.97 mm)                 |
|                         |               |         |      |                   |      |                   | l larva 9.6 mm Glyptocephalus zachirus                      |
|                         |               |         |      |                   |      |                   | l larva 13 mm Hippoglossoides sp.                           |
|                         |               |         |      |                   |      |                   | 1 larva 3.0 mm Icelinus borealis                            |
|                         |               |         |      |                   |      |                   | 57 larvae 4.2-13 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | 1 larva 4.6 mm Sebastes sp.                                 |
|                         |               |         | •    |                   |      |                   | l larva 3.6 mm Cottidae ("Cottid 6" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 1 larva 8.7 mm Cyclopteridae                                |
|                         |               |         |      |                   |      |                   | 1 1arva 21 mm Gadidae                                       |
|                         |               |         |      |                   |      |                   | 52 larvae 4.1-16 mm Osmeridae                               |
|                         |               |         |      |                   |      |                   | 3 larvae unidentified due to extensive damage (elongate)    |

÷

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 13 Jul                  | 0548          | 9       | 1    | 505               | 7    | 217               | 1 egg < 1 mm (0.77 mm)                                      |
|                         |               |         |      |                   |      |                   | 5 eggs $\sim$ 1 mm (1.00-1.20 mm)                           |
|                         |               |         |      |                   |      |                   | l egg ∿ 3 mm (lost)                                         |
|                         |               |         |      |                   |      |                   | l larva 12 mm Glyptocephalus zachirus                       |
|                         |               |         |      |                   |      |                   | 7 larvae 8.2-15 mm Hippoglossoides sp.                      |
|                         |               |         |      |                   |      |                   | 1 young 12 mm Icelinus borealis                             |
|                         |               |         |      |                   |      |                   | 65 larvae 5.3-16 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | l larva 12 mm Bathymasteridae                               |
|                         |               |         |      |                   |      |                   | l larva 7.7 mm Cottidae ("Cottid 6" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 2 larvae 6.4, 9.7 mm Cyclopteridae                          |
|                         |               |         |      |                   |      |                   | 2 larvae 22, 29 mm Gadidae                                  |
|                         |               |         |      |                   |      |                   | 106 larvae 5.9-18 mm Osmeridae                              |
|                         |               |         |      |                   |      |                   | 31 larvae unidentified due to extensive damage (elongate)   |
| 13 Jul                  | 1230          | 10      | 1    | 333               | 5    | 318               | $1 \text{ egg } \sim 1 \text{ mm}$ (0.94 mm)                |
|                         |               |         |      |                   |      |                   | 1 egg ∿ 2 mm (2.00 mm)                                      |
|                         |               |         |      |                   |      |                   | 3 eggs ∿ 3 mm (2.84, 3.04, 3.24 mm)                         |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 13 Jul                  | 1230          | 10      | 1    | 333               | 5    | 318               | 6 larvae 9.5-19 mm Glyptocephalus zachirus                  |
|                         |               |         |      |                   |      |                   | 9 larvae 7.2-18 mm Hippoglossoides sp.                      |
|                         |               |         |      |                   |      |                   | 67 larvae 6.1-15 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | l larva 8.8 mm Psettichthys melanostictus                   |
|                         |               |         |      |                   |      |                   | 11 larvae 6.6-9.7 mm Sebastes sp.                           |
|                         |               |         |      |                   |      |                   | 18 larvae 2.4-3.4 mm Sebastolobus sp.                       |
|                         |               |         |      |                   |      |                   | 10 larvae 5.1-6.1 mm Stenobrachius<br>Leucopsarus           |
|                         |               |         |      |                   |      |                   | 1 larva 9.1 mm Myctophidae                                  |
|                         |               |         |      |                   |      |                   | 186 larvae 7.6-19 mm Osmeridae                              |
|                         |               |         |      |                   |      |                   | 2 1arvae 6.6, 6.7 mm Pleuronectidae                         |
|                         |               |         |      |                   |      |                   | 5 larvae 5.7-10 mm unidentified (elongate)                  |
|                         |               |         |      |                   |      |                   | 2 larvae unidentified due to extensive<br>damage (elongate) |
| 13 Jul                  | 1230          | 10      | 1    | 505               | 3    | 413               | 2 eggs $\sim$ 1 mm (lost)                                   |
|                         |               |         |      |                   |      |                   | 1 egg ∿ 3 mm (3.23 mm)                                      |
|                         |               |         |      |                   |      |                   | 10 larvae 5.1-17 mm Glyptocephalus zachirus                 |
|                         |               |         |      |                   |      |                   | 13 larvae 5.9-20 mm Hippoglossoides sp.                     |
|                         |               |         |      |                   |      |                   | 88 larvae 8.1-18 mm Kallotus villosus                       |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(CMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                 |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------------------|
| 13 Jul                  | 1230          | 10      | 1    | 505               | 3    | 413               | 14 larvae 3.3-7.0 mm Sebastes sp.                                      |
|                         |               |         |      |                   |      |                   | 7 larvae 2.2-3.1 mm Schastolobus sp.                                   |
|                         |               |         |      |                   |      |                   | 7 larvae 5.1-7.1 mm Stenobrachius<br>Leucopsarus                       |
|                         |               |         |      |                   |      |                   | 251 larvae 9.1-19 mm Osmeridae                                         |
|                         |               |         |      | ,                 |      |                   | l larva 8.1 mm Pleuronectidae                                          |
|                         |               |         |      |                   |      |                   | 6 larvae 6.0-8.9 mm unidentified (elongate                             |
|                         |               |         |      |                   |      |                   | <pre>16 larvae unidentified due to extensive   damage (elongate)</pre> |
| 13 Jul                  | 2243          | 11      | l    | 333               | 0    | 1                 | l larva unidentified due to extensive<br>damage (elongate)             |
| 13 Jul.                 | 2243          | 11      | 1    | 505               | 1    | 3                 | l egg ∿ 3 mm (2.64 mm)                                                 |
|                         |               |         |      |                   |      |                   | l larva 10 mm Bathylagus stilbius                                      |
|                         |               |         |      |                   |      |                   | l larva 7.6 mm Cyclopteridae                                           |
|                         |               |         |      |                   |      |                   | l larva unidentified due to extensive<br>damage (elongate)             |
| 14 Jul                  | 0835          | 11      | 2    | 333               | 0    | 39                | 2 larvae 13, 15 mm Bathylagus spp.                                     |
|                         |               |         |      |                   |      |                   | 4 larvae 5.5-7.7 mm Stenobrachius<br>leucopsarus                       |

Table 40. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Hau1 | Mesh Sizc<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                          |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-----------------------------------------------------------------|
| 14 Jul                  | 0835          | 11      | 2    | 333               | 0    | 39                | 28 young 22-39 mm Stenobrachius leucopsaru                      |
|                         |               |         |      |                   |      |                   | 1 adult 78 mm Stenobrachius leucopsarus                         |
|                         |               |         |      |                   |      |                   | 3 larvae 11, 12, 12 mm Bathymasteridae                          |
|                         |               |         |      |                   |      |                   | l young 36 mm Cyclopteridae                                     |
| 14 Jul                  | 0835          | 11      | 2    | 505               | 0    | 47                | 1 larva 13 mm Bathylagus sp.                                    |
|                         |               |         |      |                   |      |                   | l larva 21 mm <i>Glyptocephalus zachirus</i>                    |
|                         |               |         |      |                   |      |                   | 2 larvae 5.5, 6.8 mm <i>Stenobrachius</i><br><i>leucopsarus</i> |
|                         |               |         |      |                   |      |                   | 40 young 23-53 mm Stenobrachius leucopsaru                      |
|                         |               | •       |      |                   |      |                   | l larva 11 mm Bathymasteridae                                   |
|                         |               |         |      |                   |      |                   | 2 larvae 8.2, 15 mm Myctophidae                                 |

.

Table 40. (continued)

Table 41. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo net samples collected on the Lower Cook Inlet, *Acona* cruise, Leg II, 8-15 July, 1977.

A total of 30 samples contained 20462 crab zoeae and 2081 megalopae. The commercially important crabs were distributed into 3 families, 3 genera, and 3 species. The 30 samples contained 14180 shrimp zoeae, 6 juveniles and 98 adults. The commercially important shrimp were distributed into 1 family, 2 genera, and 7 species.

Section Anomura

Family Lithodidae

8 megalopac blue king crab<sup>1</sup> Paralithodes platyous (Brandt)

2773 zoeae unidentified, non-commercially important anomurans 84 megalopae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

59 zoeae dungeness crab Cancer magister (Dana) 9957 zoeae non-commercially important Cancer sp. 95 megalopae non-commercially important Cancer sp.

Family Majidae

152 zoeae tanner crab Chionoecetes bairdi Rathbun 65 megalopae Chionoecetes sp.

7521 zoeae unidentified, non-commercially important brachyurans 1829 megalopae unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

4 zoeae sidestripe shrimp Pandalopsis dispar Rathbun 234 zoeae northern pink shrimp Pandalus borealis Kröyer 23 zoeae dock shrimp Pandalus danae Stimpson 1 zoea coonstripe shrimp Pandalus hypsinotus Brandt 1 zoea Pandalus montagui tridens Rathbun 43 zoeae Pandalus stenolepis Rathbun 20 zoeae Pandalus spp., damaged

<sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Family Pandalidae (continued)

6 juvenile humpy shrimp Pandalus goniurus 1 adult Pandalopsis dispar 63 adult Pandalus borealis 7 adult Pandalus goniurus

13854 zocae unidentified hippolytids 27 adult non-commercially important shrimp

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| 13 Ju1                  | 0119          | 1       | 1              | 333 <sup>a</sup>  | V        | 1     | Pandalus borealis        |
|                         | 0127          | ~       | -              | 555               | II       | 2     | P. stenolepis            |
|                         |               |         |                |                   | III      | 3     | P. stenolepis            |
|                         |               |         |                |                   | IV       | 3     | P. stenolepis            |
|                         |               |         |                |                   | v ·      |       | P. stenolepis            |
|                         |               |         |                |                   | VI       | 1     | P. stenolepis            |
|                         |               |         |                |                   | zoea     | 206   | unidentified hippolytids |
| 13 Jul                  | 0119          | 1       | ı <sup>b</sup> | 505               | zoea     | 256   | unidentified anomurans   |
|                         |               | -       | -              | 2.00              | I        | 1824  | Cancer oregonensis       |
|                         |               |         |                |                   | ĨI       | 576   | C. oregonensis           |
|                         |               |         |                |                   | III      | 80    | C. oregonensis           |
|                         |               |         |                |                   | IV       | 8     | C. oregonensis           |
|                         |               |         |                |                   | I        | 8     | Chionoecetes bairdi      |
|                         |               |         |                |                   | ĪI       | 88    | C. bairdi                |
|                         |               |         | •              |                   | zoea     | 664   | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 176   | unidentified brachyurans |
|                         | <b>B</b>      |         |                |                   | IV       | 2     | Pandalus borealis        |
|                         |               |         |                |                   | V        | 1     | P. borealis              |
|                         |               |         |                |                   | I        | 1     | P. stenolepis            |
|                         |               |         |                |                   | II       | 2     | P. stenolepis            |
|                         |               |         |                |                   | III      | 5     | P. stenolepis            |
|                         |               |         |                |                   | IV       | 3     | P. stenolepis            |
|                         |               |         |                |                   | zoea     | 308   | unidentified hippolytids |

Table 42. Identification of crab and shrimp larvae by station Lower Cook Inlet bongo net tows, *Acona*, Leg II, 8-15 July 1976

 $\overset{a}{\phantom{a}}$  333  $\mu m$  samples were not sorted for crab larvae.

<sup>b</sup> The sample was split and 1/8 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station        | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae    |
|-------------------------|---------------|----------------|----------------|-------------------|----------|-------|-----------------------------|
| 12 Jul                  | 1133          | 2              | 1 <sup>c</sup> | 333               | IV       | 2     | Pandalus sp.                |
|                         |               |                |                |                   | zoea     | 837   | unidentified hippolytids    |
| 12 Jul                  | 1133          | 2              | ıd             | 505               | zoea     | 165   | unidentified anomurans      |
| 12 Jui                  | 1135          | 2              | Т              | 505               | megalopa | 20    | unidentified anomurans      |
|                         |               |                |                |                   | I        | 293   | Cancer oregonensis          |
|                         |               |                |                |                   | ĨŢ       | 320   | C. oregonensis              |
|                         |               |                |                |                   | III      | 10    | C. oregonensis              |
|                         |               |                |                |                   | zoea     | 384   | unidentified brachyurans    |
|                         |               |                |                |                   | megalopa | 71    | unidentified brachyurans    |
|                         |               |                |                |                   | zcea     | 1301  | unidentified hippolytids    |
| 10 Jul                  | 0901          | 3              | 1 <sup>e</sup> | 333               | τv       | 24    | Pandalus borealis           |
| IO JUI                  | 0901          | 3              | Ŧ              | 222               | zoea     | 64    | unidentified hippolytids    |
|                         |               |                |                |                   | adult    | 1     | Crangon alaskensis elongata |
|                         |               |                |                |                   | adult    | 1     | C. franciscorum angustimana |
|                         |               |                |                |                   | adult    | 1     | C. stylirostris             |
| 10 1.1                  | 0001          | 3 <sup>f</sup> | `<br>1         | 505               | zoea     | 152   | unidentified anomurans      |
| 10 Jul                  | 0901          | S              | T              | 101               | megalopa | 8     | Paralithodes platypus       |
|                         |               |                |                |                   | I        | 1568  | Cancer oregonensis          |

Table 42. (continued)

<sup>C</sup> The sample was split and 19/32 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

<sup>d</sup> The sample was split and 19/64 of the sample was sorted for crabs and shrimp larvae; totals are given for the entire sample.

<sup>e</sup> The sample was split and 1/8 of the sample was sorted for shrimp larvae; the entire sample was sorted for adult shrimp; totals are given for the entire sample.

<sup>f</sup> The sample was split and 1/8 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station        | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|----------------|------|-------------------|----------|-------|--------------------------|
| 10 Jul                  | 0901          | 3              | 1    | 505               | II       | 192   | C. oregonensis           |
|                         |               |                |      |                   | III      | 8     | C. oregonensis           |
|                         |               |                |      |                   | zoea     | 200   | unidentified brachyurans |
|                         |               |                |      |                   | megalopa | 24    | unidentified brachyurans |
|                         |               |                |      |                   | lII      | 2     | Pandalopsis dispar       |
|                         |               |                |      |                   | IV       | 46    | Pandalus borealis        |
|                         |               |                |      |                   | V        | 1     | P. danae                 |
|                         |               |                |      |                   | zoea     | 137   | unidentified hippolytids |
|                         |               |                |      |                   | adult    | 1     | Crangon alaskensis       |
|                         |               |                |      | -                 | adult    | 2     | Pandalus goniurus        |
| 10 Jul                  | 1556          | 4              | 1    | 333               | IV       | 1     | Pandalus borealis        |
|                         |               |                |      |                   | zoea     | 62    | unidentified hippolytids |
| 10 Jul                  | 1556          | 4              | 1    | 505               | zoea     | 3     | unidentified anomurans   |
|                         |               |                |      |                   | zuea     | 3     | unidentified brachyurans |
|                         |               |                |      |                   | megalopa | 1     | unidentified brachyurans |
|                         |               |                |      |                   | zoea     | 3     | unidentified hippolytids |
|                         |               |                |      |                   | adult    | 10    | Crangon sp.              |
|                         |               |                |      |                   | adult    | 1     | Heptacarpus brevirostris |
| 11 Jul                  | 0018          | 5              | 1    | 333               |          | 0     |                          |
| 11 Ju1                  | 0018          | 5 <sup>8</sup> | 1    | FAF               |          | 750   |                          |
| TT JAT                  | UUTO          | 5-             | 1    | 505               | zoea     | 752   | unidentified anomurans   |
|                         |               |                |      |                   | II       | 32    | Cancer magister          |
|                         |               |                |      |                   | I        | 3776  | C. oregonensis           |
|                         |               |                |      |                   | II       | 240   | C. oregonensis           |

Table 42. (continued)

<sup>g</sup> The sample was split and 1/16 of the sample was sorted for crab and shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total       | Identifica+ion of Larvae       |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------------|--------------------------------|
| 11 Jul                  | 0018          | 5       | 1              | 505               | zoea     | 1008        | unidentified brachyurans       |
|                         |               |         |                |                   | megalopa | 16          | unidentified brachyurans       |
|                         |               |         |                |                   | zoea     | 1728        | unidentified hippolytids       |
| 1 Ju1                   | 1009          | 6       | 2 <sup>h</sup> | 333               | IV       | 0           |                                |
| T JUT                   | 1009          | 0       | 2              | 333               | T V<br>V | 8<br>4      | Pandaius borealis<br>Reporting |
|                         |               |         |                |                   | -        |             | P. borealis                    |
|                         |               |         |                |                   | adult    | 36          | P. borealis                    |
| ll Jul                  | 1009          | 6       | 2              | 505               | zoea     | 61          | unidentified anomurans         |
|                         |               |         |                |                   | megalopa | 2           | unidentified anomurans         |
|                         |               |         |                |                   | I        | 2<br>5<br>1 | Cancer magister                |
|                         |               |         |                |                   | II       | 1           | C. magister                    |
|                         |               |         |                |                   | I        | 146         | C. oregonensis                 |
|                         |               |         |                |                   | II       | 8           | C. oreconersis                 |
|                         |               |         |                |                   | zoea     | 352         | unidentified brachyurans       |
|                         |               |         |                |                   | megalopa | 2           | unidentified brachyurans       |
|                         |               |         |                |                   | IV       | 12          | Pandalus borealis              |
|                         |               |         |                |                   | III      | 1           | Pandalus sp. (damaged)         |
|                         |               |         |                |                   | zoea     | 180         | unidentified hippolytids       |
|                         |               |         |                |                   | adult    | 7           | Pandalus borealis              |
|                         |               |         |                |                   | adult    | 2           | P. goniurus                    |
|                         |               |         |                |                   | adult    | l           | Eualus towneendi               |

<sup>h</sup> The sample was split and 1/4 of the sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMI) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| ll Jul                  | 1031          | 6       | 3 <sup>i</sup> | 333               | III      |       | Pandalus stenolepis      |
|                         |               |         | -              |                   | zoea     | 120   | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 1     | Pandalopsis dispar       |
|                         |               |         |                |                   | adult    | 8     | Pandalus borealis        |
|                         |               |         |                |                   | adult    | 2     | P. goniurus              |
| 11 Jul                  | 1031          | 6       | 3j             | 505               | zoea     | 180   | unidentified anomurans   |
|                         |               | -       | 0              | 202               | megalopa | 12    | unidentified anomurans   |
|                         |               |         |                |                   | I        | 4     | Cancer magister          |
|                         |               |         |                | *                 | Ī        | 124   | C. oregonensis           |
|                         |               |         |                |                   | ĪI       | 10    | C. oregonensis           |
|                         |               |         |                |                   | zoea     | 522   | unidentified brachyurans |
|                         |               |         |                |                   | IV       | 1     | Pandalus borealis        |
|                         |               |         |                |                   | v        | l     | P. borealis              |
|                         |               |         |                |                   | juvenile | Ĝ     | P. goviurus ?            |
|                         |               |         |                |                   | ]        | 1     | Pandalus sp. (damaged)   |
|                         |               |         |                |                   | zoea     | 141   | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 12    | Pandalus borealis        |
|                         |               |         |                |                   | adult    | 1     | Crangon alaskensis       |
| 7 7 7                   | 0.051         |         | 4 <sup>k</sup> |                   |          |       |                          |
| l Jul                   | 2051          | 6       | 4              | 333               | II       | 4     | Pandalus danae           |
|                         |               |         |                |                   | zoea     | 168   | unidentified hippolytids |

<sup>i</sup> The sample was split and 1/4 of the sample was sorted for shrimp larvae and the entire sample was sorted for adult shrimp; totals are given for the entire sample.

<sup>j</sup> The sample was split and 1/2 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

k The sample was split and 1/4 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station  | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae  |
|-------------------------|---------------|----------|----------------|-------------------|----------|-------|---------------------------|
| 11 Jul                  | 2051          | 6        | 4              | 505               | zoea     | 82    | unidentified anomurans    |
|                         |               |          |                |                   | I        | 12    | Cancer magister           |
|                         |               |          |                |                   | ĪI       | 4     | C. magister               |
|                         |               |          |                |                   | Ţ        | 296   | C. oregonensis            |
|                         |               |          |                |                   | II       | 4     | C. oregonensis            |
|                         |               |          |                |                   | zoea     | 104   | unidentified brachyurans  |
|                         |               |          |                |                   | I        | 1     | Pandalus dance ?          |
|                         |               |          |                |                   | II       | 1     | P. danae                  |
|                         |               |          |                |                   | zoea     | 130   | unidentified hippolytids  |
| 11 7.1                  | 0110          | <i>r</i> | 5 <sup>1</sup> | 000               |          | 0     | n 14 1 <b>1</b>           |
| 11 Jul                  | 2113          | 6        | 2              | 333               | IV       | 8     | Pandalus borealis         |
|                         |               |          |                |                   | II       | 8     | P. danae                  |
|                         |               |          |                |                   | zoea     | 856   | unidentified hippolytids  |
| 11 Ju1                  | 2113          | 6        | 5              | 505               | zoea     | 97    | unidencified anomurans    |
|                         |               |          |                |                   | megalopa | 2     | unidentified anomurans    |
|                         |               |          |                |                   | ī        | 1     | Concer magister           |
|                         |               |          |                |                   | ĩ        | 62    | C. oregonensis            |
|                         |               |          |                |                   | zoea     | 166   | unidentified brachyurans  |
|                         |               |          |                |                   | IV       | 11    | Pandalus borealis         |
|                         |               |          |                |                   | II       | 1     | P. hypeinotus             |
|                         |               |          | •              |                   | zoea     | 544   | unidentified hippolytids  |
|                         |               |          |                |                   | adult    | 3     | Pandalus geniur <b>us</b> |

Table 42. (continued)

<sup>1</sup> The sample was split and 1/8 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

430

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae                      |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|-----------------------------------------------|
| 10 Jul                  | 0405          | 7       | 1 <sup>m</sup> | 333               | IV       | 64    | Pandalus borealis                             |
|                         |               |         |                |                   | ?        | 16    | Pandalus sp. (damaged)                        |
|                         |               |         |                |                   | zoea     | 3072  | unidentified hippolytids                      |
| 0 Jul                   | 0405          | 7       | l <sup>n</sup> | 505               | zoea     | 528   | unidentified anomurans                        |
|                         | 0,00          |         | 1              | 505               | I        | 16    |                                               |
|                         |               |         |                |                   | zoea     | 2768  | Cancer oregonensis                            |
|                         |               |         |                |                   | megalopa | 80    | unidentified brachyurans                      |
|                         |               |         |                |                   | III      | 8     | unidentified brachyurans<br>Pandalus borealis |
|                         |               |         |                |                   | IV       | 48    | P. borealis                                   |
|                         |               |         |                |                   | V        | 8     |                                               |
|                         |               |         |                |                   | ,<br>II  | 8     | P. borealis                                   |
|                         |               |         |                |                   | zoea     | 3280  | P. danae                                      |
|                         |               |         | 2              |                   | 2004     | 5200  | unidentified hippolytids                      |
| .0 Jul                  | 0010          | 8       | 10             | 333               | IV       | 8     | Pandalus borealis                             |
|                         |               |         |                |                   | zoea     | 58    | unidentified hippolytids                      |
| 0 Jul                   | 0010          | 8       | 1              | 505               | zoea     | 9     | unidentified anomurans                        |
|                         |               |         |                |                   | zoea     | 22    | unidentified brachyurans                      |
|                         |               |         |                |                   | megalopa | 4     | unidentified brachyurans                      |
|                         |               |         |                |                   | II       | 1     | Fandalus stenolepis                           |
|                         |               |         |                |                   | zoea     | 39    | unidentified hippolytids                      |

<sup>m</sup> The sample was split and 1/16 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

<sup>n</sup> The sample was split and 1/16 of the sample was sorted for crab larvae, and 1/8 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

<sup>o</sup> The sample was split and 1/2 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(um) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| 13 Jul                  | 0548          | 9       | 1              | 333               | IV       | 3     | Pandalus borealis        |
|                         |               |         |                |                   | III      | 1     | P. montagui tridens      |
|                         |               |         |                |                   | I        | 8     | P. stenolepis            |
|                         |               |         |                |                   | zoea     | 248   | unidentified hippolytids |
| 13 Jul                  | 0548          | 9       | 1 <sup>p</sup> | 505               | zoea     | 480   | unidentified anomurans   |
| 10 041                  | 03.0          | -       | -              |                   | megalopa | 48    | unidentified anomurans   |
|                         |               |         |                |                   | ĭ.       | 112   | Cancer oregonensis       |
|                         |               |         |                |                   | II       | 64    | C. oregonensis           |
|                         |               |         |                |                   | III      | 144   | C. oregonensis           |
|                         |               |         |                |                   | zoea     | 1312  | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 1440  | unidentified brachyurans |
|                         |               |         |                |                   | III      | 2     | Pandalopsis dispar       |
|                         |               |         |                |                   | IV       | 1     | Pandalus borealis        |
|                         |               |         |                |                   | Ι        | 2     | P. stenclepis            |
|                         |               |         |                |                   | IV       | 1     | P. stenolepis            |
|                         |               |         |                |                   | zoea     | 311   | unidentified hippolytids |
| 13 Jul                  | 1230          | 10      | 1              | 333               | III      | 6     | Pandalus borealis        |
|                         |               |         |                |                   | IV       | 4     | P. borealis              |
|                         |               |         |                |                   | v        | 1     | P. borealis              |
|                         |               |         |                |                   | III      | 2     | P. stenolep <b>is</b>    |
|                         |               |         |                |                   | zoea     | 30    | unidentified hippolytids |

<sup>p</sup> The sample was split and 1/16 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Tíme<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Stage    | Total | Identification of Larvae          |
|-------------------------|---------------|---------|------|-------------------|----------|-------|-----------------------------------|
| 13 Jul                  | 1230          | 10      | ld   | 505               | zoea     | 8     | unidentified anomurans            |
|                         |               |         |      |                   | I        | 2     | Cancer oregonensis                |
|                         |               |         |      |                   | II       | 54    | C. oregonensis                    |
|                         |               |         |      |                   | III      | 18    | C. oregonensis                    |
|                         |               |         |      |                   | IV       | 2     | C. oregonensis                    |
|                         |               |         |      |                   | II       | 32    | Chicnoecetes bairdi               |
|                         |               |         |      |                   | zoea     | 1.4   | unidentified brachyu <b>r</b> ans |
|                         |               |         |      |                   | megalopa | 102   | unidentified brachyurans          |
|                         |               |         |      |                   | III      | 8     | Pandalus borealis                 |
|                         |               |         |      |                   | IV       | 11    | P. borealis                       |
|                         |               |         |      |                   | V        | 3     | P. borealis                       |
|                         |               |         |      |                   | IV       | 2     | P. stenolepis                     |
|                         |               |         |      |                   | V        | 1     | P. stenolepis                     |
|                         |               |         |      |                   | zoea     | 22    | unidentified hippolytids          |
| 13 Jul                  | 2243          | 11      | 1    | 333               |          | 0     |                                   |
| 13 Jul                  | 2243          | 11 .    | 1    | 505               | II       | 11    | Chionoecetes bairdi               |
|                         |               |         |      |                   | megalopa | 45    | Chionoecetes sp.                  |
|                         |               |         |      |                   | zoea     | 2     | unidentified brachyurans          |
| •                       |               |         |      |                   | megalopa | 8     | unidentified brachyurans          |
| 14 Jul                  | 0835          | 11      | 2    | 333               | adult    | 5     | Sergestes sp.                     |
| 14 Jul                  | 0835          | 11      | 2    | 505               | II       | 13    | Chionoecetes bairdi               |
|                         |               |         |      |                   | megalopa | 20    | Chionoecetes sp.                  |
|                         |               |         |      |                   | IV       | 1     | Pandalus borealis                 |
|                         |               |         |      |                   | adult    | 3     | Pasiphaea sp.                     |

Table 42. (continued)

<sup>q</sup> The sample was split and 1/2 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul       | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------------|-------------------|------|-------------------|
|                         |               |         | . <u> </u> |                   |      | 105               |
| 25 Aug                  | 0840          | 1       | 1          | 333               | 0    | 125               |
| 25 Aug                  | 0840          | 1       | 1          | 505               | 0    | 772               |
| 25 Aug                  | 1206          | 2       | 1          | 333               | 0    | 102               |
| 25 Aug                  | 1206          | 2       | 1          | 505               | 0    | 127               |
| 25 Aug                  | 1952          | 3       | 1          | 333               | 0    | 4                 |
| 25 Aug                  | 1952          | 3       | 1          | 505               | 0    | 24                |
| 26 Aug                  | 0400          | 4       | 1          | 333               | 0    | 460               |
| 26 Aug                  | 0400          | 4       | 1          | 505               | 0    | 50                |
| 26 Aug                  | 1040          | 5       | 1          | 333               | 34   | 504               |
| 26 Aug                  | 1040          | 5       | 1          | 505               | 24   | 528               |
| 26 Aug                  | 2203          | 6       | 1          | 333               | 21   | 852               |
| 26 Aug                  | 2203          | 6       | 1          | 505               | 19   | 270               |
| 27 Aug                  | 1000          | 6       | 2          | 333               | 16   | 1384              |
| 27 Aug                  | 1000          | 6       | 2          | 505               | 17   | 1584              |
| _                       |               |         | _          |                   | 0    | 107               |
| 28 Aug                  | 0650          | 7       | 1          | 333               | 0    | 107               |
| 28 Aug                  | 0650          | 7       | 1          | 505               | 1    | 90                |
| 28 Aug                  | 0330          | 8       | 1          | 333               | 0    | 83                |
| 28 Aug                  | 0330          | 8       | 1          | 505               | 0    | 50                |
| 28 Aug                  | 1832          | 9       | . 1        | 333               | 2    | 21                |
| 28 Aug                  | 1832          | . 9     | 1          | 505               | 1    | 17                |
| 28 Aug                  | 1919          | 9       | 2          | 333               | 0    | 219               |
| 28 Aug                  | 1919          | 9       | 2          | 505               | 1    | 207               |
| 29 Aug                  | 0459          | 10      | 1          | 333               | , 0  | 39                |
| 29 Aug                  | 0459          | 10      | 1          | 505               | 1    | 55                |
| 29 Aug                  | 1922          | 11      | 1          | 333               | 5    | 5                 |
| 29 Aug                  | 1922          | 11      | 1 -        | 505               | 23   | 4                 |
| -                       | 06/3          | 10      | 7          | 333               | 5    | 131               |
| 31 Aug                  | 0641          | 13      | 1          |                   | 1    | 107               |
| 31 Aug                  | 0641          | 13      | 1          | 505               | T    | 107               |
| 30 Aug                  | 0459          | 14      | 1          | 333               | 0    | 0                 |
| 30 Aug                  | 0459          | 14      | 1          | 505               | 1    | 4                 |

Table 43. Number of fish eggs and larvae at each station

Lower Cook Inlet Bongo Tows, Surveyor, Leg II, 24-31 August 1976

Table 44.Summary of taxonomic categories of fish eggs, larvae,<br/>young and adults found in bongo net samples collected<br/>on Lower Cook Inlet, Surveyor cruise, Leg II, 24-31 August 1976.

A total of 30 samples were collected. All samples were sorted for fish eggs and larvae and the results are summarized below. The fish are distributed into 15 families, 17 genera, and 11 species. Eggs are distributed into 4 size categories.

Family Ammodytidae

2 young Pacific sandlance<sup>1</sup> Annodytes hexapterus Pallas

Family Bathylagidae

96 larvae deepsea smelt Bathylagus spp. (4 uncertain)

Family Bathymasteridae

4 larvae genus? species?

Family Clupeidae

3 larvae Pacific herring Clupea harengus pallasi Valenciennes

Family Cottidae

12 larvae genus? species?

Family Cyclopteridae

1 larva genus? species?
3 young genus? species?

Family Gadidae

4 young walleye pollock Theragra chalcogramma (Pallas)

Family Gasterosteidae

502 young threespine stickleback *Gasterosteus aculeatus* Linnaeus 1 young ninespine stickleback *Pungitius pungitius* (Linnaeus)

Family Hexagrammidae

8 larvae greenling Hexagrammos sp.

<sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Family Myctophidae

- 6 larvae northern lampfish *Stenobrachius leucopsarus* Eigenmann and Eigenmann
- 2 young Stenobrachius leucopsarus
- 1 adult Stenobrachius leucopsarus

Family Osmeridae

3456 larvae capelin Mallotus villoous (Müller) 1 young Mallotus villoous 1750 larvae genus? species?

Family Pleuronectidae

larva Rex sole Glyptocephalus machinus Lockington
 larvae sole Hippoglossoides sp. (luncertain)
 young Hippoglossoides sp.
 larvae yellowfin sole Limanda aspera (Pallas)
 young Limanda aspera
 larvae sond sole Psettichthys melanostictus Girard

Family Ptilichthyidae

2 young quillfish Ptilichthys goodei Bean

Family Scorpaenidae

60 larvae rockfish *Sebastes* sp. 1 larva thornyhead *Sebastolobus* sp.

Family Stichaeidae

1 young prickleback Lumpenus sp.

1976 larvae unidentified (many badly damaged)

172 eggs categorized (see Table 18, List of possible fish for egg size categories).

 134 eggs
 <1 mm (0.73-0.90 mm)</td>

 4 eggs
 ∿1 mm (0.90-1.00 mm)

 31 eggs
 ∿2 mm (1.34-2.12 mm)

 3 eggs
 ∿3 mm (2.88, 3.39, 3.59 mm)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs           | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|----------------|-------------------|--------------------------------------------------------------|
| 25 Aug                  | 0840          | 1       | 1    | 333               | 0 <sup>a</sup> | 125 <sup>a</sup>  | 26 larvae 4.7-12 mm <sup>b</sup> Mallotus villosus           |
|                         |               |         |      |                   |                |                   | 2 larvae 3.4, 4.0 mm Sebastes sp.                            |
|                         |               |         |      |                   |                |                   | 88 larvae 4.7-31 mm Osmeridae                                |
|                         |               |         |      |                   |                |                   | 9 larvae unidentified due to extensive damage (elongate)     |
| 25 Aug                  | 0840          | 1       | 1    | 505               | 0              | 772 <sup>c</sup>  | 176 larvae 4.7-11 mm <i>Mallotus villosus</i>                |
|                         |               |         |      |                   |                |                   | 12 larvae 3.6-4.1 mm Sebastes sp.                            |
|                         |               |         |      |                   |                |                   | 4 larvae 8.2 mm Cottidae ("Cottid 6"<br>from Blackburn 1973) |
|                         |               |         |      |                   |                |                   | 420 larvae 5.8-22 mm Osmeridae                               |
|                         |               |         |      |                   |                |                   | 4 larvae 8.4 mm unidentified (elongate,                      |
|                         |               |         |      |                   |                |                   | 156 larvae unidentified due to extensive damage (elongate)   |

Table 45. Identification of Fish Eggs and Larvae by Station

Lower Cook Inlet Bongo Tows, Surveyor, Leg II, 24-31 August 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largost and the smallest are measured. Larvae are measured by standard length.

<sup>c</sup> The sample was split and 1/4 of the sample was sorted for larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                          |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|---------------------------------------------------------------------------------|
| 25 Aug                  | 1206          | 2       | 1    | 333               | 0    | 102               | 24 larvae 6.5-22 mm Mallotus villosus                                           |
|                         |               |         |      |                   |      |                   | 34 larvae 7.0-31 mm Osmeridae                                                   |
|                         |               |         |      |                   |      |                   | 44 larvae unidentified due to extensive<br>damage (43 elongate, 1 non-elongate) |
| 25 Aug                  | 1206          | 2       | 1    | 505               | 0    | 127               | l larva 14 mm Hippeglossoides sp.                                               |
|                         |               |         |      |                   |      |                   | 1 larva 20 mm Hippoglossoides sp. ?                                             |
|                         |               |         |      |                   |      |                   | 38 larvae 6.3-20 mm Mallotus villosus                                           |
|                         |               |         |      |                   |      |                   | 1 young 63 mm Mallotus villosus                                                 |
|                         |               |         |      |                   |      |                   | 1 larva 18 mm Psettichthys melanostictus                                        |
|                         |               |         |      |                   |      |                   | l young 123 mm Ptilichthys goodei                                               |
|                         |               |         |      |                   |      |                   | 70 larvae 7.3-20 mm Osmeridae                                                   |
|                         |               |         |      |                   |      |                   | l4 larvae unidentified due to extensive<br>damage (elongate)                    |
| 25 Aug                  | 1952          | 3       | 1    | 333               | 0    | 4                 | 2 larvae 5.2, 9.3 mm Mallotus villosus                                          |
|                         |               |         |      |                   |      |                   | 2 larvae 3.0, 20 mm Osmeridae                                                   |
| 25 Aug                  | 1952          | 3       | 1    | 505               | 0    | 24                | 13 larvae 3.7-21 mm Mallotus villosus                                           |
|                         |               |         |      |                   |      |                   | 9 larvae 7.7-21 mm Osmeridae                                                    |
|                         |               |         |      |                   |      |                   | 2 Larvae unidentified due to extensive damage (elongate)                        |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                    |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-----------------------------------------------------------|
| 26 Aug                  | 0400          | 4       | 1    | 333               | 0    | 460               | 2 larva 23, 30 mm Clupea harengus pallasi                 |
|                         |               |         |      |                   |      |                   | 453 young 15-27 mm Gasterosteus aculeatus                 |
|                         |               |         |      |                   |      |                   | l larva 29 mm <i>Hippoglossoides</i> sp.                  |
|                         |               |         |      |                   |      |                   | 3 larvae 24, 25, 31 mm Mallotus villosus                  |
|                         |               |         |      |                   |      | -                 | 1 young 30 mm Pungitius pungitius                         |
| 26 Aug                  | 0400          | 4       | 1    | 505               | 0    | 50                | l larva 27 mm Clupea harengus pallasi                     |
|                         |               |         |      |                   |      |                   | 48 young 18-24 mm Gasterosteus aculeatus                  |
|                         |               |         |      |                   |      |                   | l larva 7.5 mm <i>Hexagrammos</i> sp.                     |
| 26 Aug                  | 1040          | 5       | 1    | 333               | 34   | 504 <sup>d</sup>  | 33 eggs <1 mm (0.74-0.90 mm) <sup>b</sup>                 |
|                         |               |         |      |                   |      |                   | l egg ∿ 1 mm (0.94 mm)                                    |
|                         |               |         |      |                   |      |                   | 260 larvae 6.4-18 mm <i>Mallotus villosus</i>             |
|                         |               |         |      |                   |      |                   | 4 young 48 mm Theragra chalcogramma                       |
|                         | •             |         |      |                   |      |                   | 200 larvae 7.6-30 mm Osmeridae                            |
|                         |               |         |      |                   |      |                   | 40 larvae unidentified due to extensive damage (elongate) |

<sup>d</sup> The sample was split and 1/4 of the sample was sorted for fish larvae; tocals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                            |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-----------------------------------------------------------------------------------|
| 26 Aug                  | 1040          | 5       | 1    | 505               | 24   | 528 <sup>e</sup>  | 22 eggs < 1 mm (0.75-0.89 mm)                                                     |
|                         |               |         |      |                   |      |                   | 2 eggs ∿ 1 mm (0.91-0.93 mm)                                                      |
|                         |               |         |      |                   |      |                   | 4 larvae 28 mm Bathylagus sp. ?                                                   |
|                         |               |         |      |                   |      |                   | 232 larvae 8.0-15 mm <i>Mallotus villosus</i>                                     |
|                         |               |         |      |                   |      |                   | 204 larvae 8.3-31 mm Osmeridae                                                    |
|                         |               |         |      | ,                 |      |                   | 88 larvae unidentified due to extensive damage (elongate)                         |
| 26 Aug                  | 2203          | 6       | 1    | 333               | 21   | 852 <sup>e</sup>  | 21 eggs < 1 mm (0.77-0.81 mm)                                                     |
|                         |               |         |      |                   |      |                   | 148 larvae 4.2-20 mm Mallotus villosus                                            |
|                         |               |         |      |                   |      |                   | 8 larvae 18, 25 mm Osmeridae                                                      |
|                         |               |         |      |                   |      |                   | 696 larvae unidentified due to extensive<br>damage (692 elongate, 4 non-elongate) |
| 26 Aug                  | 2203          | 6       | l    | 505               | 19   | 270 <sup>f</sup>  | 19 eggs < 1 mm (0.73-0.85 mm)                                                     |
|                         |               |         |      |                   |      |                   | 38 larvae 5.9-23 mm Mallotus villosus                                             |
|                         |               |         |      |                   |      |                   | 2 larvae 7.2 mm Cottidae ("Cottid 6"<br>from Blackburn 1973)                      |

Table 45. (continued)

<sup>e</sup> The sample was split and 1/4 of the sample was sorted for fish larvae; totals are given for the entire sample.

f The sample was split and 1/2 of the sample was sorted for fish larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                        |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|---------------------------------------------------------------|
| 26 Aug                  | 2203          | 6       | 1    | 505               | 19   | 270               | 10 larvae 10-25 mm Osmeridae                                  |
|                         |               |         |      |                   |      |                   | 220 larvae unidentified due to extensive damage (elongate)    |
| 27 Aug                  | 1000          | 6       | 2    | 333               | 16   | 1384 <sup>g</sup> | 16 eggs < 1 mm (0.75-0.83 mm)                                 |
|                         |               |         |      |                   |      |                   | 936 larvae 8.2-26 mm Mallotus villosus                        |
|                         |               |         |      |                   |      |                   | 216 larvae 7.3-27 num Osmeridae                               |
|                         |               |         |      |                   |      |                   | 232 larvae unidentified due to extensive damage (elongate)    |
| 27 Aug                  | 1000          | 6       | 2    | 505               | 17   | 1584 <sup>h</sup> | 16 eggs <1 mm (0.76-0.80 mm)                                  |
|                         |               |         |      |                   |      |                   | 1 egg ~ 1 mm (1.00 mm)                                        |
|                         |               |         |      |                   |      |                   | 16 larvae 6.9 mm Limanda aspera                               |
|                         |               |         |      |                   |      |                   | 1120 larvae 8.7-21 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | 192 larvae 8.7-13 mm Osmeridae                                |
|                         |               |         |      |                   |      |                   | 256 larvae unidentified due to extensive<br>damage (elongate) |

<sup>g</sup> The sample was split and 1/8 of the sample was sorted for fish larvae; totals are given for the entire sample.

h The sample was split and 1/16 of the sample was sorted for fish larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                       |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------|
| 28 Aug                  | 0650          | 7       | 1    | 333               | 0    | 107               | l young 19 mm Gasterosteus aculeatus                         |
| U                       |               |         |      |                   |      |                   | 73 larvae 5.5-21 mm Mallotus villosus                        |
|                         |               |         |      |                   |      |                   | 16 larvae 4.7-23 mm Osmeridae                                |
|                         |               |         |      |                   |      |                   | 17 larvae unidentified due to extensive<br>damage (elongate) |
| 28 Aug                  | 0650          | 7       | 1    | 505               | 1    | 90                | 1 egg ~ 2 mm (1.38 mm)                                       |
| 0                       |               |         |      |                   |      |                   | l young 31 mm Hippoglossoides sp.                            |
|                         |               |         |      |                   |      |                   | 35 larvae 4.7-20 mm Mallotus villosus                        |
|                         |               |         |      |                   |      |                   | l larva 5.1 mm Bathymasteridae                               |
|                         |               |         |      |                   |      |                   | 23 larvae 5.0-21 mm Osmeridae                                |
|                         |               |         |      |                   |      |                   | 30 larvae unidentified due to extensive damage (elongate)    |
| 28 Aug                  | 0330          | 8       | 1    | 333               | 0    | 83                | 7 larvae 5.9-8.9 mm Hexagrammos sp.                          |
| 8                       | •             |         |      |                   |      |                   | 28 larvae 6.3-18 mm Mallotus villosus                        |
|                         |               |         |      |                   |      |                   | 2 larvae 9.6, 10 mm Osmeridae                                |
|                         |               |         |      |                   |      |                   | 46 larvae unidentified due to extensive damage (elongate)    |
| 28 Aug                  | 0330          | 8       | 1    | 505               | 0    | 50                | 7 larvae 5.3-11 mm <i>Mallotus villosus</i>                  |
|                         |               |         |      |                   |      |                   | 43 larvae unidentified due to extensive damage (elongate)    |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 28 Aug                  | 1832          | 9       | 1    | 333               | 2    | 21                | 2 eggs ∿ 3 mm (2.88, 3.59 mm)                               |
|                         |               |         |      |                   |      |                   | 6 larvae 5.1-15 mm <i>Mallotos villosus</i>                 |
|                         |               |         |      |                   |      |                   | 3 larvae 3.5, 3.8, 3.9 mm Sebastes sp.                      |
|                         |               |         |      |                   |      |                   | 3 larvae 9.1, 11, 15 mm Bathymasteridae                     |
|                         |               |         |      |                   |      |                   | 9 larvae 10-26 mm Osmeridae                                 |
| 28 Aug                  | 1832          | 9       | 1    | 505               | 1    | 17                | 1 egg < 1 mm (0.87 mm)                                      |
|                         |               |         |      |                   |      |                   | 1 larva 4.8 mm Hippoglossoides sp.                          |
|                         |               |         |      |                   |      |                   | 5 larvae 6.1-14 mm <i>Mallotus villosus</i>                 |
|                         |               |         |      |                   |      |                   | 3 larvae 3.7, 3.8, 4.0 mm Sebastes sp.                      |
|                         |               |         |      |                   |      |                   | 1 larva 3.2 mm Cottidae ("Cottid 6" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 2 larvae 5.1, 11 mm Osmeridae                               |
|                         |               |         |      |                   |      |                   | l larva 7.9 mm unidentified (non-elongate)                  |
|                         |               |         |      |                   |      |                   | 4 larvae unidentified due to extensive damage (elongate)    |
| 28 Aug                  | 1919          | 9       | 2    | 333               | 0    | 219               | 1 larva 19 mm <i>Bathylagus</i> sp.                         |
|                         |               |         |      |                   |      |                   | 3 larvae 4.3, 5.8, 21 mm Hippoglossoides sp.                |
|                         |               |         |      |                   |      |                   | 1 young 58 mm Lumpenus sp.                                  |
|                         |               |         |      |                   |      |                   | 55 larvae 3.9-14 mm Mallotus villosus                       |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                            |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------------|
| 28 Aug                  | 1919          | 9       | 2    | 333               | 0    | 219               | l young 152 mm Ptilichthys goodei                                 |
|                         |               |         |      |                   |      |                   | 18 larvae 3.0-3.9 mm <i>Sebastes</i> sp.                          |
|                         |               |         |      |                   |      |                   | l larva 7.1 mm Cottidae ("Cottid 6" from<br>Blackburn 1973)       |
|                         |               |         |      |                   |      |                   | 84 larvae 4.2-24 mm Osmeridae                                     |
|                         |               |         |      |                   |      |                   | l larva 7.0 mm unidentified (elongate)                            |
|                         |               |         |      |                   |      |                   | 54 larvae unidentified due to extensive<br>damage (elongate)      |
| 28 Aug                  | 1919          | 9       | 2    | 505               | 1    | 207               | 1 egg ∿ 3 mm (3.39 mm)                                            |
|                         |               |         |      |                   |      |                   | 3 larvae 3.2, 4.8, 5.6 mm Hippoglossoides s                       |
|                         |               |         |      |                   |      |                   | 108 larvae 4.2-18 mm <i>Mallotus villosus</i>                     |
|                         |               |         |      |                   |      |                   | l larva 9.4 mm Psettichthys melanostictus                         |
| <i>i</i>                |               |         |      |                   |      |                   | 19 larvae 3.0-4.1 mm <i>Sebastes</i> sp.                          |
|                         |               |         |      |                   |      |                   | l larva 5.2 mm <i>Sebastolobus</i> sp.                            |
|                         |               |         |      |                   |      |                   | 2 Iarvae 4.4, 7.0 mm Cottidae ("Cottid 6"<br>from Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 71 larvae 4.5-28 mm Osmeridae                                     |
|                         |               |         |      |                   |      |                   | l larva 4.2 mm unidentified (non-elongate)                        |
|                         |               |         |      |                   |      |                   | l larva unidentified due to extensive damage (elongate)           |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(CMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                      |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------------------------|
| 29 Aug                  | 0459          | 10      | 1    | 333               | 0    | 39                | 19 larvae 9.1-13 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | l larva 8.5 mm Cottidae ("Cottid 6" from<br>Blackburn 1973) |
|                         |               |         |      |                   |      |                   | 19 larvae 7.0-19 mm Osmeridae                               |
| 29 Aug                  | 0459          | 10      | 1    | 505               | 1    | 55                | 1 egg < 1 mm (0.74 mm)                                      |
|                         |               |         |      | :                 |      |                   | 25 larvae 8.7-12 mm <i>Mallotus villosus</i>                |
|                         |               |         |      |                   |      |                   | 28 larvae 8.3-23 mm Osmeridae                               |
|                         |               |         |      |                   |      |                   | 2 larvae unidentified due to extensive<br>damage (elongate) |
| 29 Aug                  | 1922          | 11      | 1    | 333               | 5    | 5                 | 5 eggs ~ 2 mm (1.76-1.80 mm)                                |
| ·                       |               |         |      |                   |      |                   | 2 larvae 3.5, 4.4 mm Sebastes sp.                           |
|                         |               |         |      |                   |      |                   | 3 larvae 6.1, 7.0, 8.1 mm Stenobrachius<br>leucopsarus      |
| 29 Aug                  | 1922          | 11      | 1    | 505               | 23   | 4                 | 23 eggs ∿ 2 mm (1.80-2.12 mm)                               |
|                         |               |         |      |                   |      |                   | l larva 47 mm Glyptocephalus zachirus                       |
|                         |               |         |      |                   |      |                   | 2 larvae 6.7, 14 mm Stenobrachius<br>leucopsarus            |
|                         |               |         |      |                   |      |                   | 1 young 23 mm Stenobrachius leucopsarus                     |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                     |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------------------------------------|
| 31 Aug                  | 0641          | 13      | 1    | 333               | 5    | 131               | 5 eggs < 1 mm (0.77-0.87 mm)                                               |
|                         |               |         |      |                   |      |                   | 2 young 52, 70 mm Ammodytes hexapterus                                     |
|                         |               |         |      |                   |      |                   | 48 larvae 12-30 mm Bathylagus spp.                                         |
|                         |               |         |      |                   |      |                   | 1 larva 6.6 mm <i>Limanda aspera</i>                                       |
|                         |               |         |      |                   |      |                   | 50 larvae 9.1-23 mm Mallotus villosus                                      |
|                         |               |         |      |                   |      |                   | 1 young 85 mm Stenobrachius leucopsarus                                    |
|                         |               |         |      |                   |      |                   | l larva 4.2 mm Cottidae ("Cottid 6" from<br>Blackburn 1973)                |
|                         |               |         |      |                   |      |                   | 1 young 97 mm Cyclopteridae                                                |
|                         |               |         |      |                   |      |                   | 22 larvae 7.4-38 mm Osmeridae                                              |
|                         |               |         |      |                   |      |                   | 5 larvae unidentified due to extensive damage (4 elongate, 1 non-elongate) |
| 31 Aug                  | 0641          | 13      | 1    | 505               | 1    | 107               | $1 \text{ egg } \sim 2 \text{ mm}$ (1.34 mm)                               |
|                         |               |         |      |                   |      |                   | 43 larvae 14-27 mm Bathylagus spp.                                         |
|                         |               |         |      |                   |      |                   | l larva 7.9 mm <i>Limanda aspera</i>                                       |
|                         |               |         |      |                   |      |                   | 1 young 13 mm Limanda aspera                                               |
|                         |               |         |      |                   |      |                   | 29 larvae 8.2-27 mm Mallotus villosus                                      |
|                         |               |         |      |                   |      |                   | 1 adult 89 mm Stenobrachius leucopsarus                                    |
|                         |               |         |      |                   |      |                   | 2 young 102, 128 mm Cyclopteridae                                          |

Table 45. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                   |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|--------------------------------------------------------------------------|
| 31. Aug                 | 0641          | 13      | 1    | 505               | ī    | 107               | 20 larvae 17-34 mm Osmeridae                                             |
|                         |               |         |      |                   |      |                   | <pre>10 larvae unidentified due to extensive     damage (elongate)</pre> |
| 30 Aug                  | 0459          | 14      | 1    | 333               | 0    | 0                 |                                                                          |
| 30 Aug                  | 0459          | 14      | 1    | 505               | 1    | 4                 | l egg ∿ 2 mm (2.08 mm)                                                   |
|                         |               |         |      |                   |      |                   | 1 larva 3.7 mm Sebastes sp.                                              |
|                         |               |         |      |                   |      |                   | 1 larva 5.6 mm Stenobrachius leucopsarus                                 |
|                         |               |         |      |                   |      |                   | l larva 4.8 mm Cyclopteridae                                             |
|                         |               |         |      |                   |      |                   | l larva 18 mm Osmeridae                                                  |

Table 45. (continued)

.

•

Table 46. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo net samples collected on the Lower Cook Inlet, Surveyor cruise, Leg II, 24-31 August 1976

A total of 30 samples contained 5609 crab zoeae, 1128 megalopae and 2 adults. The commercially important crabs were distributed into 2 families, 2 genera, and 1 species. The 30 samples contained 3025 shrimp zoea, 13 juveniles and 51 adults. The commercially important shrimp were distributed into 1 family, 2 genera and 5 species.

Section Anomura

1705 zoeae unidentified, non-commercially important anomurans 59 megalopae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

57 zoeae dungeness crab<sup>1</sup> Cancer magister (Dana)
2460 zoeae non-commercially important Cancer spp.
950 megalopae non-commercially important Cancer spp.

Family Majidae

60 megalopae Chionoecetes sp.

1387 zoeae unidentified, non-commercially important brachyurans 59 megalopae unidentified, non-commercially important brachyurans 2 adult unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

- 3 zoeac sidestripe shrimp Pandalopsis dispar Rathbun
- 5 zoeae northern pink shrimp Pandalus borealis Kröyer
- 1 zoeae dock shrimp Pandalus danae Stimpson
- 2 zocae Pandalus stenolepis Rathbun
- 6 juvenile Pandalus borealis
- 8 adult Pandalus borealis
- 14 adult humpy shrimp Pandalus goniurus Stimpson

3014 zoeae unidentified hippolytids 7 juvenile non-commercially important shrimp 29 adult non-commercially important shrimp

448

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| 25 Aug                  | 0840          | 1       | 1              | 333 <sup>a</sup>  | v        | 1     | Pandalus borealis        |
| 0                       |               |         |                |                   | juvenile | 1     | Pandalus borealis ?      |
|                         |               |         |                |                   | zoea     | 37    | unidentified hippolytids |
| 25 Aug                  | 0840          | 1       | 1              | 505               | zoea     | 342   | unidentified anomurans   |
|                         |               |         |                |                   | megalopa | 16    | unidentified anomurans   |
|                         |               |         |                |                   | II       | 1     | Cancer magister          |
|                         |               |         |                |                   | III      | 19    | C. oregonensis           |
|                         |               |         |                |                   | IV       | 53    | C. oregonensis           |
|                         |               |         |                |                   | V        | 74    | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 9     | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 4     | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 20    | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 2     | unidentified brachyurans |
|                         |               |         |                |                   | v        | 1     | Pandalus danae           |
|                         |               |         |                |                   | juvenile | 2     | P. borealis ?            |
|                         |               |         |                |                   | zoea     | 202   | unidentified hippolytids |
| 25 Aug                  | 1206          | 2       | 1              | 333               | zoea     | 98    | unidentified hippolytids |
| 25 Aug                  | 1206          | 2       | 1 <sup>b</sup> |                   |          |       |                          |
| LJ AUg                  | 1200          | 2       | T              | 505               | zoea     | 36    | unidentified anomurans   |
|                         |               |         |                |                   | megalopa | 12    | unidentified anomurans   |
|                         |               |         |                |                   | I        | 12    | Cancer oregonensis       |
|                         |               |         |                |                   | II       | 8     | C. oregonensis           |

Table 47. Identification of crab and shrimp larvae by station Lower Cook Inlet bongo net tows, *Surveyor*, Leg II, 24-31 August 1976

 $^{\rm a}$  333  $\mu{\rm m}$  samples were not sorted for crab larvae.

<sup>b</sup> The sample was split and 1/4 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total  | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|--------|--------------------------|
| 25 Aug                  | 1206          | 2       | ı <sup>b</sup> | 505               | III      | 128    | C. oregonensis           |
| 25 Aug                  | 1200          | 2       | 1              |                   | IV       | 396    | C. oregonensis           |
|                         |               |         |                |                   | v        | 132    | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 8      | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 36     | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 68     | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 24     | unidentified brachyurans |
|                         |               |         |                |                   | zoea     | 204    | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 1      | Crangon alaskensis       |
|                         |               |         |                |                   | adult    | 1      | C. dalli                 |
|                         |               |         |                |                   | adult    | 4      | C. nigricauda            |
| 25 Aug                  | 1952          | 3       | 1              | 333               | juvenile | 1      | Pandalue borealis ?      |
| 25 Aug                  | 1952          | 3       | 1              | 505               | zoea     | 6      | unidentified anomurans   |
|                         |               | -       |                |                   | megalopa | 2      | unidentified anomurans   |
|                         |               |         |                |                   | Ĭ        | 2<br>2 | Cancer oregonensis       |
|                         |               |         |                |                   | II       | 3      | C. oregonensis           |
|                         |               |         |                |                   | III      | 10     | C. oregonensis           |
|                         |               |         |                |                   | IV       | 44     | C. oregonensis           |
|                         |               |         |                |                   | V        | 21     | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 2      | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 2      | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 64     | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 4      | unidentified brachyurans |
|                         |               |         |                |                   | zoea     | 15     | unidentified hippolytids |
|                         |               |         |                |                   | adult    | 1      | Pandalopsis dispar       |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage            | Total          | Identification of Larvae    |
|-------------------------|---------------|---------|----------------|-------------------|------------------|----------------|-----------------------------|
| 26 Aug                  | 0400          | 4       | 1              | 333               | zoea             | 1              | unidentified hippolytids    |
|                         |               |         |                |                   | adult            | 1              | Crangon alaskensis elongata |
|                         |               |         |                |                   | adult            | l              | Crangon dalli               |
| 26 Aug                  | 0400          | 4       | 1              | 505               | zoea             | 6              | unidentified anomurans      |
|                         |               |         |                |                   | megalopa         | 2              | unidentified anomurans      |
|                         |               |         |                |                   | II               | 5              | Cancer oregonensis          |
|                         |               |         |                |                   | 111              | 21             | C. oregonensis              |
|                         |               |         |                |                   | IV               | 24             | C. oregonensis              |
|                         |               |         |                | V                 | 5                | C. cregonensis |                             |
|                         |               |         |                |                   | zoea             | 92             | unidentified brachyurans    |
|                         |               |         |                |                   | megalopa         | 1              | unidentified brachyuran     |
|                         |               |         |                |                   | juveni <b>le</b> | 2              | Pandalus borealis ?         |
|                         |               |         |                |                   | adult            | 1              | Crangon nigricauda          |
| 26 Aug                  | 1040          | 5a      | l              | 333               | zoea             | 228            | unidentified hippolytids    |
| 26 Aug                  | 1040          | 5a      | 1 <sup>c</sup> | 505               | zoea             | 1024           | unidentified anomurans      |
|                         |               |         |                |                   | I                | 8              | Cancer oregonensis          |
|                         |               |         |                |                   | II               | 8              | C. oregonensis              |
|                         |               |         |                |                   | III              | 24             | C. oregonensis              |
|                         |               |         |                |                   | IV               | 248            | C. cregonensis              |
|                         |               |         |                |                   | V                | 72             | C. oregonensis              |
|                         |               |         |                |                   | megalopa         | 32             | C. oregonensis              |

<sup>c</sup> The sample was split and 1/8 of the sample was sorted for crabs and 1/4 of the sample was sorted for shrimp larvae; totals are given for the entire sample.

**4**.

| Date<br>(1976) | Time  |         |      | Mesh Size |                  |          |                                                      |
|----------------|-------|---------|------|-----------|------------------|----------|------------------------------------------------------|
| (GMT)          | (GMT) | Station | Haul | (µm)      | Stage            | Total    | Identification of Larvae                             |
| 26 Aug         | 1040  | 5a      | lc   | 505       | zoea             | 712      | unidentified brachyurans                             |
|                |       |         |      |           | megalopa<br>zoea | 8<br>728 | unidentified brachyurans<br>unidentified hippolytids |
| 26 Aug         | 2203  | 6       | 1    | 333       | zoea             | 91       | unidentified hippolytids                             |
| 26 Aug         | 2203  | 6       | 1    | 505       | zoea             | 50       | unidentified anomurans                               |
| 0              |       |         |      |           | megalopa         | 3        | unidentified anomurans                               |
|                |       |         |      |           | II               | 2        | Cancer magister                                      |
|                |       |         |      |           | II               | 1        | C. oregonensis                                       |
|                |       |         |      |           | III              | 13       | C. oregonensis                                       |
|                |       |         |      |           | IV               | 117      | C. oregonensis                                       |
|                |       |         |      |           | V                | 89       | C. oregonensis                                       |
|                |       |         |      |           | megalopa         | 11       | C. oregonensis                                       |
|                |       |         |      |           | zoea             | 68       | unidentified brachyurans                             |
|                |       |         | •    |           | megalopa         | 3        | unidentified brachyurans                             |
|                |       |         |      |           | zoea             | 37       | unidentified hippolytids                             |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(um) | Stage    | Total       | Identification of Larvae    |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------------|-----------------------------|
| 27 Aug                  | 1000          | 6       | 2 <sup>d</sup> | 333               | IV       | 2           | Pandalus borealis           |
| 27 Aug                  | 1000          | 0       | 2              | JJJ               | zoea     | 542         | unidentified hippolytids    |
|                         |               |         |                |                   | adult    | 6           | Pandalus borealis           |
|                         |               |         |                |                   | adult    | <b>с</b> ,  | Pandalus geniurus           |
|                         |               |         |                |                   | adult    | 2           | Crangon alaskensis elongata |
|                         |               |         |                |                   | adult    | 2           | Eualus fabricii             |
|                         |               |         |                |                   | adult    | 2           | Eualus townsendi            |
| 27 Aug                  | 1000          | 6       | 2 <sup>e</sup> | 505               | zoea     | 132         | unidentified anomurans      |
| .,                      | 2000          | Ũ       | -              | 202               | megalopa | 2           | unidentified anomurans      |
|                         |               |         |                |                   | III      | 12          | Cancer pregonensis          |
|                         |               |         |                |                   | IV       | 78          | C. cregonensis              |
|                         |               |         |                |                   | v        | 86          | C. oregonensis              |
|                         |               |         |                |                   | megalopa | 24          | C. oregonezais              |
|                         |               |         |                |                   | megalopa | 2           | Chicroecetes sp.            |
|                         |               |         |                |                   | zoea     | <b>2</b> 02 | unidentified brachyurans    |
|                         |               |         |                |                   | megalopa | 2           | unidentified brachyurans    |
|                         |               |         |                |                   | ĬII Î    | 1           | Pandalopsis dispar          |
|                         |               |         |                |                   | IV       | 1           | Pandalus borealis           |
|                         |               |         |                |                   | zoea     | 50          | unidentified hippolytids    |
|                         |               |         |                |                   | adult    | 2           | Paráclus corealis           |
|                         |               |         |                |                   | adult    | 1           | P. goniums                  |
|                         |               |         |                |                   | adult    | -           | P. gondurus ? (damaged)     |

<sup>d</sup> The sample was split and 1/2 of the sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

<sup>e</sup> The sample was split and 1/2 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae             |
|-------------------------|---------------|---------|------|-------------------|----------|-------|--------------------------------------|
| 28 Aug                  | 0650          | 7       | 1    | 333               | zoea     | 24    | unidentified hippolytids             |
| Ũ                       |               |         |      |                   | adult    | 6     | Pandalus goniunus                    |
| 28 Aug                  | 0650          | 7       | 1    | 505               | zoea     | 38    | unidentified anomurans               |
| -                       |               |         |      |                   | megalopa | 16    | unidentified anomurans               |
|                         |               |         |      |                   | II       | 8     | Cancer oregonensis                   |
|                         |               |         |      |                   | III      | 29    | C. oregonensis                       |
|                         |               |         |      |                   | IV       | 38    | C. oregonensis                       |
|                         |               |         |      |                   | V        | 19    | C. oregonensis                       |
|                         |               |         |      |                   | megalopa | 1     | C. oregonensis                       |
|                         |               |         |      |                   | zoea     | 18    | unidentified brachyurans             |
|                         |               |         |      |                   | adult    | 2     | unidentified demersal<br>brachyurans |
|                         |               |         |      |                   | zoea     | 20    | unidentified hippolytids             |
|                         |               |         |      |                   | adult    | 2     | Panáclus coniurus                    |
| 28 Aug                  | 0330          | 8       | 1    | 333               | zoea     | 40    | unidentified hippolytids             |
| 28 Aug                  | 0330          | 8       | 1    | 505               | zoea     | 16    | unidentified anomurans               |
| -                       |               |         |      |                   | megalopa | 1     | unidentified anomurans               |
|                         |               |         |      |                   | III      | 5     | Canser pregonensis                   |
|                         |               |         |      |                   | IV       | 25    | C. oregonensis                       |
|                         |               |         |      |                   | V        | 14    | C. oregonensis                       |
|                         |               |         |      |                   | zoea     | 33    | unidentified brachyurans             |
|                         |               |         |      |                   | megalopa | 1     | unidentified brachyurans             |
|                         |               |         |      |                   | zoea     | 32    | unidentified hippolytids             |

Table 47. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul    | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|---------|-------------------|----------|-------|--------------------------|
| 28 Aug                  | 1832          | 9       | 1       | 333               | zoea     | 48    | unidentified hippolytids |
| 28 Aug                  | 1832          | 9       | 1       | 505               | zoea     | 9     | unidentified anomurans   |
|                         |               |         |         |                   | megalopa | 1     | unidentified anomurans   |
|                         |               |         |         |                   | V        | 1     | Cancer magister          |
|                         |               |         |         |                   | ILI      | 4     | C. oregorensis           |
|                         |               |         |         |                   | IV       | 17    | C. oregonensis           |
|                         |               |         |         |                   | V        | 67    | C. oregonensis           |
|                         |               |         |         |                   | megalopa | 18    | C. creponensis           |
|                         |               |         |         |                   | V        | 5     | Cancer sp.               |
|                         |               |         |         |                   | zoea     | 8     | unidentified brachyurans |
|                         |               |         |         |                   | megalopa | 1     | unidentified brachyurans |
|                         |               |         |         |                   | zoea     | 46    | unidentified hippolytids |
| 28 Aug                  | 1919          | 9       | 2       | 333               | zoea     | 203   | unidentified hippolytids |
| 28 Aug                  | 1919          | 9       | $2^{f}$ | 505               | zoea     | 38    | unidentified anomurans   |
| U                       |               |         |         |                   | III      | 12    | Cancer oregonensis       |
|                         |               |         |         |                   | IV       | 52    | C. oragonensis           |
|                         |               |         |         |                   | V        | 336   | C. oregonensis           |
|                         |               |         |         |                   | megalopa | 140   | C. cregonensis           |
|                         |               |         |         |                   | megalopa | 6     | Chionoecetes sp.         |
|                         |               |         |         |                   | zoea     | 32    | unidentified brachyurans |
|                         |               |         |         |                   | IV ?     | 1     | Pandalopsis dispar       |
|                         |               |         |         |                   | VI       | ĩ     | Pandalus stenolepis      |
|                         |               |         |         |                   | zoea     | 169   | unidentified hippolytids |

Table 47. (continued)

f The sample was split and 1/2 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae; totals are given for the entire sample.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae      |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|-------------------------------|
| 29 Aug                  | 0459          | 10      | 1              | 333               | VI       | 1     | Pandalus stenclepis           |
| e                       |               |         |                |                   | zoea     | 8     | unidentified hippolytids      |
| 29 Aug                  | 0459          | 10      | 1              | 505               | IV       | 3     | Cancer oregonensis            |
| 0                       |               |         |                |                   | v        | 23    | C. oregonersis                |
|                         |               |         |                |                   | megalopa | 2     | C. oregonensis                |
|                         |               |         |                |                   | zoea     | 4     | unidentified brachyurans      |
|                         |               |         |                |                   | zoea     | 10    | unidentified hippolytids      |
| 29 Aug                  | 1922          | 11      | 1              | 333               | V        | 1     | Pandalus borealis ? (damaged) |
|                         |               |         |                |                   | zoea     | 5     | unidentified hippolytids      |
| 29 Aug                  | 1922          | 11      | 1              | 505               | v        | 4     | Cancer magister               |
| 0                       |               |         | -              | 505               | IV       | 2     | C. oregonensis                |
|                         |               |         |                |                   | v        | 3     | C. oregonensis                |
|                         |               |         |                |                   | megalopa | 15    | C. oregonensis                |
|                         |               |         |                |                   | megalopa | 1     | unidentified brachyuran       |
|                         |               | •       |                |                   | zoea     | 6     | unidentified hippolytids      |
|                         |               |         |                |                   | adult    | 1     | Eualus townsendi              |
| 31 Aug                  | 0641          | 13      | 1              | 333               | zoea     | 183   | unidentified hippolytids      |
| Ū                       |               |         |                |                   | juvenile | 1     | Pasiphaea sp.                 |
|                         |               |         |                |                   | adult    | 12    | Pasiphaea sp.                 |
| 31 Aug                  | 0641          | 13      | 1 <sup>g</sup> | 505               | zoea     | 8     | unidentified anomurans        |
| 0                       | ·             |         | -              |                   | megalopa | 4     | unidentified anomurans        |
|                         |               |         |                |                   | III      | 4     | Cancer magister               |

<sup>g</sup> The sample was split and 1/4 of the sample was sorted for crab larvae and the entire sample was sorted for shrimp larvae and adults; totals are given for the entire sample.

 $\sim$ 

| Date<br>(1976)<br>(GMI) | Time<br>(GMT) | Station | Haul           | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae |
|-------------------------|---------------|---------|----------------|-------------------|----------|-------|--------------------------|
| 31 Aug                  | 0641          | 13      | 1 <sup>g</sup> | 505               | v        | 44    | C. magister              |
| -                       |               |         |                |                   | IV       | 12    | C. oregonensis           |
|                         |               |         |                |                   | V        | 44    | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 548   | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 116   | Cancer sp.               |
|                         |               |         |                |                   | megalopa | 4     | Chicnoecetes sp.         |
|                         |               |         |                |                   | zoea -   | 64    | unidentified brachyurans |
|                         |               |         |                |                   | megalopa | 12    | unidentified brachyurans |
|                         |               |         |                |                   | zoea     | 61    | unidentified hippolytids |
|                         |               |         |                |                   | juvenile | 6     | Pasiphaea sp.            |
|                         |               |         |                |                   | adult    | 1     | Pasiphaea sp.            |
| 30 Aug                  | 0459          | 14      | 1              | 333               | zoea     | 10    | unidentified hippolytids |
| 0 Aug                   | 0459          | 14      | 1              | 505               | v        | 1     | Cancer magister          |
|                         |               |         |                |                   | V        | 29    | C. oregonensis           |
|                         |               |         |                |                   | megalopa | 22    | C. oregonensis           |
|                         |               | L.      |                |                   | megalopa | 2     | Cancer sp.               |
|                         |               |         |                |                   | megalopa | 6     | Chionoecetes sp.         |
|                         |               |         |                |                   | zoea     | 1     | unidentified brachyuran  |
|                         |               |         |                |                   | megalopa | 1     | unidentified brachyuran  |
|                         |               |         |                |                   | zoea     | 7     | unidentified hippolytids |

Table 47. (continued)

-

Table 48 . Number of Fish Eggs and Larvae at each Station

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs     | Fish or<br>Larvae          |
|-------------------------|---------------|---------|------|-------------------|----------|----------------------------|
| 19 Oct.                 | 0400          | 1       | 1    | 333               | 0        | 13                         |
| 19 Oct.                 | 0400          | 1       | 1    | 505               | 0        | 15                         |
| 28 Oct.                 | 0845          | 2       | 2    | 333               | No samp. | le: cod end o<br>net broke |
| 28 Oct.                 | 0845          | 2       | 2    | 505               | 0        | 6                          |
| 23 Oct.                 | 1935          | 3       | 1    | 333               | 0        | 0                          |
| 23 Oct.                 | 1935          | 3       | 1    | 505               | 0        | 1                          |
| 24 Oct.                 | 1004          | 4       | 1    | 333               | 0        | 1                          |
| 24 Oct.                 | 1004          | 4       | 1    | 505               | 0        | 0                          |
| 23 Oct.                 | 1006          | 5       | 1    | 333               | 0        | 3                          |
| 23 Oct.                 | 1006          | 5       | 1    | 505               | Ò        | 5                          |
| 22 Oct.                 | 1758          | 6       | 1.   | 333               | 0        | 0                          |
| 22 Oct.                 | 1758          | 6       | 1    | 505               | 0        | 1                          |
| 21 Oct.                 | 0907          | 7       | 1    | 333               | 0        | 1.                         |
| 21 Oct.                 | 0907          | 7       | 1    | 505               | · 0      | 0                          |
| 22 Oct.                 | 0403          | 8       | 1    | 333               | 0        | 9                          |
| 22 Oct.                 | 0403          | 8       | 1    | 505               | 0        | 2                          |
| 28 Oct.                 | 1244          | 9       | 1    | 333               | 0        | 0                          |
| 28 Oct.                 | 1244          | 9       | 1    | 505               | 0        | 12                         |

Lower Cook Inlet Bongo Tows, Miller Freeman, Leg III 17-29 October 1976 Table 49. Summary of taxonomic categories of fish eggs, larvae, young and adults found in bongo net samples collected on Lower Cook Inlet, *Miller Freeman* cruise, Leg III, 17-29 October 1976.

A total of 18 samples were collected. All samples were sorted for fish eggs and larvae and the results are summarized below. The fish are distributed into 5 families, 4 genera, and 3 species. No eggs were found in any of the samples.

Family Clupeidae

1 young Pacific herring<sup>1</sup> Clupea harengus pallasi Valenciennes

Family Cyclopteridae

1 larva genus? species?

Family Gasterosteidae

1 young threespine stickleback Gasterosteus aculeatus Linnaeus

Family Hexagrammidae

43 larvae greenling Hexagrammos sp.

Family Osmeridae

1

5 larvae genus? species? 17 larvae capelin *Mallotus villosus* (Müller)

1 larva unidentified due to extensive damage

The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs           | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                                                                                                                               |
|-------------------------|---------------|---------|------|-------------------|----------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 Oct                  | 0400          | 1       | 1    | 333               | 0 <sup>a</sup> | 13 <sup>a</sup>   | 3 larvae 5.9, 13, 23 mm <sup>b</sup> Mallotus villosu<br>10 larvae 5.0-5.9 mm <i>Hexagrammos</i> sp.                                                                                                 |
| 19 Oct                  | 0400          | 1       | 1    | 505               | С              | 15                | 1 young 28 mm <i>Gasterosteus aculeatus</i><br>2 larvae 15, 24 mm <i>Mallotus villosus</i><br>10 larvae 5.0-5.6 mm <i>Hexagrammos</i> sp.<br>1 larva 4.5 mm Cyclopteridae<br>1 larva 18 mm Osmeridae |

Table 50. Identification of Fish Eggs and Larvae by Station Lower Cook Inlet Bongo Tows, *Miller Freeman*, Leg III, 17-29 October 1976

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

175

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                     |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------|
| 28 Oct                  | 0845          | 2       | 2    | 505               | 0    | 6                 | 3 larvae 5.1, 5.7, 6.3 mm Heragrammos sp                   |
|                         |               |         |      |                   |      |                   | 2 larvae 16, 27 mm Mallotus villosus                       |
|                         |               |         |      |                   |      |                   | l larva unidentified due to extensive<br>damage (elongate) |
| 23 Oct                  | 1935          | 3       | 1    | 505               | 0    | 1                 | 1 larva 12 mm Hexagrammos sp.                              |
| 24 Oct                  | 1004          | 4       | 1    | 333               | 0    | 1                 | l young 59 mm Clupea harengus pallasi                      |
| 23 Oct                  | 1006          | 5       | 1    | 333               | 0    | 3                 | 3 larvae 7.3, 8.5, 11 mm <i>Hewagrammos</i> sp.            |
| 23 Oct                  | 1006          | 5       | 1    | 505               | 0    | 5                 | 5 larvae 8.6-11 mm <i>Hexagrammos</i> sp.                  |
| 22 Oct                  | 1758          | 6       | 1    | 505               | 0    | 1                 | l larva 16 mm <i>Mallotus villosus</i>                     |
| 21 Oct                  | 0907          | 7       | 1    | 333               | 0    | 1                 | 1 larva 27 mm Osmeridae                                    |
| 22 Oct                  | 0403          | 8       | 1    | 333               | 0    | 9                 | 2 larvae 11, 12 mm Hexagrommos sp.                         |
|                         |               |         |      |                   |      |                   | 7 larvae 28-36 mm Mallotus villosus                        |
| 22 Oct                  | 0403          | 8       | 1    | 505               | 0    | 2                 | 2 larvae 31, 34 mm Mallotus villosus                       |
| 28 Oct                  | 1244          | 9       | 1    | 505               | 0    | 12                | 9 larvae 4.3-6.4 mm <i>Hexagrommos</i> sp.                 |
|                         |               |         |      |                   |      |                   | 3 larvae 15, 18, 23 mm Osmeridae                           |

Table 51. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo net samples collected on the Lower Cook Inlet, *Miller Freeman* cruise, Leg III, 17-29 October 1976

A total of 17 samples contained 15 crab zoeae and 27 megalopae. The commercially important crabs were distributed into 2 families, 2 genera and 1 species. The 17 samples contained 11 shrimp zoeae and 63 adults. The commercially important shrimp were distributed into 1 family, 1 genus and 2 species.

Section Anomura

10 zoeae unidentified, non-commercially important anomurans 4 megalopae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

- 1 zoea dungeness crab<sup>1</sup> Cancer magister Dana
- 18 megalopae Cancer magister
- 4 zoeae non-commercially important Cancer sp.
- 4 megalopae non-commercially important Cancer sp.

Family Majidae

1 megalopa tanner crab Chionoecetes sp.

Section Caridea

Family Pandalidae

1 adult northern pink shrimp Pandalus borealis Kröyer 13 adult humpy shrimp Pandalus goniurus Stimpson

11 zoeae unidentified hippolytids

49 adult non-commercially important shrimp

<sup>&</sup>lt;sup>1</sup> The common name if presented for the first time for each species; thereafter only the scientific name is recorded.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage    | Total | Identification of Larvae        |
|-------------------------|---------------|---------|------|-------------------|----------|-------|---------------------------------|
| 19 Oct                  | 0400          | 1       | 1    | 333 <sup>a</sup>  | megalopa | 10    | Cancer magister                 |
|                         |               |         |      |                   | megalopa | 1     | Chionoecetes sp.                |
|                         |               |         |      |                   | zoea     | 4     | unidentified hippolytids        |
|                         |               |         |      |                   | adult    | 7     | Crangon communis                |
|                         |               |         |      |                   | adult    | 2     | C. nigricauda                   |
|                         |               |         |      |                   | adult    | 1     | Eualus avinus                   |
|                         |               |         |      |                   | adult    | 1     | Eualus sp.                      |
| 19 Oct                  | 0400          | 1       | 1    | 505               | v        | 1     | Cancer magister                 |
|                         |               |         |      |                   | megalopa | 8     | C. magister                     |
|                         |               |         |      |                   | adult    | 9     | Crangon communis                |
|                         |               |         |      |                   | adult    | 3     | Eualus avinus                   |
| 28 Oct                  | 0845          | 2       | 2    | 333               |          | 0     | cod end broke; no sample        |
| 28 Oct                  | 0845          | 2       | 2    | 505               | zoea     | 4     | unidentified anomurans          |
|                         |               |         |      |                   | megalopa | 3     | Cancer oregonensis              |
|                         | •             |         |      |                   | zoea     | 2     | unidentified hippolytids        |
|                         |               |         |      |                   | adult    | 4     | Crangon alaskensis              |
| 23 Oct                  | 1935          | 3       | 1    | 333               |          | 0     |                                 |
| 23 Oct                  | 1935          | 3       | 1    | 505               |          | 0     |                                 |
| 24 Oct                  | 1004          | Źţ.     | 1    | 333               | adult    | ]     | Crangon franciscorum angustiman |

## Table 52. Identification of crab and shrimp larvae by station Lower Cock Inlet bongo net tows, *Miller Freeman*, Leg III, 17-29 October 1976

 $^{\rm a}$  333  $\mu m$  samples were not sorted for crab larvae except Station 1, Haul 1.

463

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage                                          | Total                  | Identification of Larvae                                                                                          |
|-------------------------|---------------|---------|------|-------------------|------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------|
| 24 Oct                  | 1004          | 4       | l    | 505               | adult                                          | 3                      | Crangon franciscorum angustimana                                                                                  |
| 23 Oct                  | 1006          | 5a      | 1    | 333               | zoea                                           | 5                      | unidentified hippolytids                                                                                          |
| 23 Oct                  | 1006          | 5a      | 1    | 505               | zoea<br>megalopa<br>megalopa                   | 5<br>3<br>2            | unidentified anomurans<br>unidentified anomurans<br>Cancer oregonensis                                            |
| 22 Oct                  | 1758          | 6       | 1    | 333               | adult                                          | 1                      | Pandalus borealis                                                                                                 |
| 22 Oct                  | 1758          | 6       | 1    | 505               |                                                | 0                      |                                                                                                                   |
| 21 Oct                  | 0907          | 7       | 1    | 333               | adult<br>adult                                 | 2<br>6                 | Pandalus goniurus<br>Crangon alaskensis                                                                           |
| 21 Oct                  | 0907          | 7       | 1    | 505               | zoea<br>megalopa<br>megalopa<br>adult<br>adult | 1<br>].<br>]<br>2<br>4 | unidentified anomurans<br>unidentified anomurans<br>Cancer oregonensis<br>Pandalus coniurus<br>Crangon alaskensis |
| 22 Oct                  | 0403          | 8       | 1    | 333               | adult<br>adult<br>adult                        | 1<br>4<br>1            | Pandalus goniurus<br>Crangon alaskensis<br>Crangon dalli                                                          |
| 22 Oct                  | 0403          | 8       | l    | 505               | megalopa<br>adult<br>adult                     | 1<br>8<br>3            | Cancer oregonensis<br>Pardalus goniurus<br>Crangon alaskensis                                                     |
| 28 Oct                  | 1244          | 9       | 1    | 333               |                                                | 0                      |                                                                                                                   |
| 28 Oct                  | 0344          | 9       | 1    | 505               | v                                              | l                      | Cancer oregonensis                                                                                                |

Table 52. (continued)

464

All other data are complete and correct and correspond to data cards (024 MFR001 M. FREEMAN III 76/10/17 - 76/10/29 LCI/MEROFLANKTON).

The summaries of samples analyzed from the *Discoverer* cruise, Leg I, 21-26 February 1977, cover the same taxonomic categories (Tables 53-57). Crab larvae were sorted from the 505  $\mu$ m mesh nets, but not the 333  $\mu$ m mesh nets. All other data are complete and correct and correspond to data cards (024 DISO04 DISCOVERER I 77/02/21 -77/02/26 LCI/MEROPLANKTON).

Many species of fishes, shrimps, and crabs of commercial, sport, and ecosystem importance were identified from the bongo net samples on seven seasonal cruises in the Lower Cook Inlet region (Tables 58, 59, and 60). In some cases the early life history stages could not be identified to species reliably and have, therefore, been reported in more inclusive categories. The more abundant and important categories were selected for further analysis (Tables 61, 62, 63, and 64).

The seasonal quantitative density distributions of early life history stages of the selected categories are presented, as abundance per 10 square meters, on maps of the Lower Cook Inlet region (Figures 3 to 106).

The planktonic fish eggs are considered in four nominal size categories based on the diameter of the chorion: less than 1 mm, about 1 mm, about 2 mm, and about 3 mm (Table 18).

The fish eggs in the category less than 1 mm are between 0.74 and 0.88 mm in diameter. The fish eggs in this category are probably *Limanda aspera*, the yellowfin sole. The fish eggs in this category were caught from May through August (Figure 3). These fish eggs were most abundant in the July samples near Kachemak Bay and Kamishak Bay.

The fish eggs in the category about 1 mm are between 0.90 and 1.28 mm in diameter. The fish eggs in this category are probably a complex of four fishes: *Isopsetta isolepis*, the butter sole; *Parophrys vetulus*, the English sole; *Platichthys stellatus*, the starry founder; and *Psettichthys melanostictus*, the sand sole. The fish eggs in this category were caught from April through August (Figure 4). These fish eggs were most abundant in the May samples near Kachemak Bay and Kamishak Bay.

The fish eggs in the category about 2 mm are between 1.30 and 2.54 mm in diameter. The fish eggs in this category are probably *Theragra* chalcogramma, the walleye pollock, and three flatfishes, Atheresthes stomias, the arrowtooth flounder, *Glyptocephalus zachirus*, the rex sole, and *Lyopsetta exilis*, the slender sole. The fish eggs in this category were caught from April through August (Figure 5). These fish eggs were most abundant in the May samples at scattered locations in the Lower Cook Inlet region.

# Table 53. Number of Fish Eggs and Larvae at each Station

Lower Cook Inlet Bongo Tows, Discoverer, Leg I

21-26 February 1977

| Date<br>(1976)   | Time         | <u></u> | U.s., 1 | Mesh Size  | Eggs | Fish or<br>Larvae |
|------------------|--------------|---------|---------|------------|------|-------------------|
| (GMT)            | (GMT)        | Station | Haul    | · µm)      |      |                   |
| 24 Feb           | 1331         | 1       | 1       | 333        | 0    | 0                 |
| 24 Feb           | 1331         | 1       | 1       | 505        | 0    | 0                 |
| 22 Feb           | 0736         | 2       | 1       | 333        | 0    | 17                |
| 22 Feb           | 0736         | 2       | 1       | 505        | 0    | 14                |
| 25 Feb           | 2340         | 2       | 3       | 333        | 0    | 0                 |
| 25 Feb           | 2340         | 2       | 3       | 505        | - 0  | 0                 |
| 22 Feb           | 2108         | 3       | 1.      | 333        | 0    | 12                |
| 22 Feb           | 2108         | 3       | 1       | 505        | 0    | 10                |
| 22 Feb           | 1723         | 4       | 1       | 333        | 0    | 0                 |
| 22 Feb           | 1723         | 4       | 1       | 505        | 0    | 0                 |
| 22 Feb           | 0447         | 5       | 1       | 333        | 0    | 4                 |
| 22 Feb           | 0447         | 5       | 1       | 505        | 0    | 11                |
| 23 Feb           | 0415         | 5       | 2       | 333        | 0    | 10                |
| 23 Feb           | 0415         | 5       | 2       | 505        | 0    | 4                 |
| 25 Feb           | 0031         | 5       | 3       | 333        | 0    | 2                 |
| 25 Feb           | 0031         | 5       | 3       | 505        | 0    | 4                 |
| 25 Feb<br>25 Feb | 0745<br>0745 | 5       | 4       | 333<br>505 | 0    | 14<br>17          |
| 22 Feb           | 0050         | 6       | 1       | 333        | 0    | 16                |
| 22 Feb           | 0050         | 6       | 1       | 505        | 0    | 98                |
| 23 Feb           | 0645         | 6       | 2       | 333 .      | 0    | 29                |
| 23 Feb           | 0645         | 6       | 2       | 505        | 0    | 12                |
| 25 Feb           | 0235         | 6       | 3       | 333        | 0    | 70                |
| 25 Feb           | 0235         | 6       | 3       | 505        | 0    | 34                |
| 25 Feb           | 1039         | 6       | 4       | 333        | 0    | 12                |
| 25 Feb           | 1039         | 6       | 4       | 505        | 1    | 11                |
| 24 Feb           | 1604         | 7       | 1       | 333        | 0    | 3                 |
| 24 Feb           | 1604         | 7       | 1       | 505        | 0    | 0                 |
| 26 Feb           | 0429         | 8       | 3       | 333        | 0    | 0                 |
| 26 Feb           | 0429         | 8       | 3       | 505        | 0    | 0                 |
|                  |              |         |         |            |      |                   |

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|
|                         |               |         |      |                   |      |                   |
| 23 Feb                  | 1055          | 9       | 1    | 333               | 0    | 2                 |
| 23 Feb                  | 1055          | 9       | 1    | 505               | 0    | 2                 |
| 23 Feb                  | 1501          | 10      | 1    | 333               | 0    | 3                 |
| 23 Feb                  | 1501          | 10      | 1    | 505               | 0    | 1                 |
| 23 Feb                  | 2137          | 11      | 1    | 333               | 0    | 1                 |
| 23 Feb                  | 2137          | 11      | 1    | 505               | õ    | 8                 |

.

Table 53. (continued)

.

Table 54. Summary of taxonomic categories of fish eggs, larvae, young and adults found in bongo net samples collected on Lower Cook Inlet, *Discoverer* cruise, Leg I, 21-26 February 1977.

A total of 36 samples were collected. All samples were sorted for fish eggs and larvae and the results are summarized below. The fish are distributed into 9 families, 12 genera, and 10 species. One egg was found in all of the samples.

Family Ammodytidae

251 larvae Pacific sandlance<sup>1</sup> Ammodytes hexapterus Pallas

Family Cottidae

6 larvae genus? species?

Family Cyclopteridae

19 larvae genus? species?

Family Hexagrammidae

5 larvae greenling Hexagrammos sp.

Family Macrouridae

2 larvae genus? species?

Family Osmeridae

45 larvae genus? species?
2 larvae capelin Mallotus villosus (Müller)
2 young Mallotus villosus
1 young eulachon Thaleichthys pacificus (Richardson)

Family Pholidae

1

1 larva genus? species?
1 larva penpoint gunnel Apodichthys flavidus Girard

The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

Table 54. (continued)

Family Pleuronectidae

- 5 larvae arrowtooth flounder *Atheresthes stomias* (Jordan and Gilbert)?
- 2 young rock sole Lepidopuetta bilineata (Ayres)
- 2 larvae yellowfin sole Limanda aspera (Pallas)
- 1 larva slender sole Lyopsetta exilis (Jordan and Cilbert)

Family Stichaeidae

- 2 larvae warbonnet Chirolophis sp.
- 44 larvae prickleback Lumpenus sp.
- 4 larvae black prickleback Xiphister atropurpureus
- 7 larvae rock prickleback Xiphister mucosus

19 larvae unidentified, most badly damaged.

l egg categorized (see Table 18, List of possible fish for egg size categories):

 $1 \text{ egg} \sim 1 \text{ mm}$  (1.10 mm)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                               |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------------------------------|
| 24 Feb                  | 1331          | l       | 1    | 333               | 0    | 0                 |                                                                      |
| 24 Feb                  | 1331          | 1       | 1    | 505               | 0    | 0                 |                                                                      |
| 22 Feb                  | 0736          | 2       | 1    | 333               | 0    | 17 <sup>a</sup>   | 1 young 40 $mm^b$ Lepidopsetta bilineata                             |
|                         |               |         |      |                   |      |                   | 2 larvae 14, 14 mm Limanda aspera                                    |
|                         |               |         |      | I                 |      |                   | 2 larvae 15, 16 mm Lumpenus sp.                                      |
|                         |               |         |      |                   |      |                   | l larva 3.7 mm Cyclopteridae                                         |
|                         |               |         |      |                   |      |                   | 10 larvae 28-39 mm Osmeridae                                         |
|                         |               |         |      |                   |      |                   | <pre>1 larva unidentified due to extensive   damage (elongate)</pre> |

Table 55. Identification of Fish Eggs and Larvae by Station

Lower Cook Inlet Bongo Tows, Discoverer, Leg I, 21-26 February 1977

<sup>a</sup> All specimens are classified into four main categories: eggs include all stages of eggs prior to hatching; larvae include newly hatched and all stages prior to metamorphosis; young include fish after metamorphosis to acquisition of adult fin rays and adult body configuration; adults include fish that are sexually mature.

<sup>b</sup> Eggs are measured to the nearest hundredths of a millimeter in diameter. Fish or larvae, if less than 10 mm in length, are measured to the nearest tenth of a millimeter under a microscope using a calibrated micrometer eye piece. If 10 mm or greater in length, the fish or larvae are measured by a metric ruler to the nearest millimeter. When there are more than three eggs, fish or larvae, the largest and the smallest are measured. Larvae are measured by standard length.

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae    |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-------------------------------------------|
| 22 Feb                  | 0736          | 2       | 1    | 505               | 0    | 14                | 1 young 40 mm Lepidopsetta bilineata      |
|                         |               |         |      |                   |      |                   | 2 larvae 15, 16 mm <i>Lumponus</i> sp.    |
|                         |               |         |      |                   |      |                   | 2 larvae 3.9, 4.0 mm Cyclopteridae        |
|                         |               |         |      |                   |      |                   | 9 larvae 28-34 mm Osmeridae               |
| 25 Feb                  | 2340          | 2       | 3    | 333               | 0    | 0                 |                                           |
| 25 Feb                  | 2340          | 2       | 3    | 505               | 0    | 0                 |                                           |
| 22 Feb                  | 2108          | 3       | 1    | 333               | 0    | 12                | 9 larvae 5.4-5.8 mm Ammodytes hexapterus  |
|                         |               |         |      |                   |      |                   | 1 young 53 mm Thaleichthys pacificus      |
|                         |               |         |      |                   |      |                   | 2 larvae 3.6, 3.7 mm Cycloperidae         |
| 22 Feb                  | 2108          | 3       | 1    | 505               | 0    | 10                | 9 larva 4.0-5.3 mm Ammodytes hexapterus   |
|                         |               |         |      |                   |      |                   | 1 1arva 3.9 mm Cyclopteridae              |
| 22 Feb                  | 1723          | 4       | 1    | 333               | 0    | 0                 |                                           |
| 22 Feb                  | 1723          | . 4     | 1    | 505               | 0    | 0                 | *                                         |
| 22 Feb                  | 0447          | 5       | 1    | 333               | 0    | 4                 | 2 larvae 4.1, 5.4 mm Annodytes hexapterus |
|                         |               |         |      |                   |      |                   | 1 larva 9.3 mm <i>Hexagrammos</i> sp.     |
|                         |               |         |      |                   |      |                   | l larva 33 mm. Mallotus villosus          |

Table 55. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station      | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                   |
|-------------------------|---------------|--------------|------|-------------------|------|-------------------|----------------------------------------------------------|
| 22 Feb                  | 0447          | 5            | 1    | 505               | 0    | 11                | 3 larvae 4.7, 4.8, 5.5 mm Annodytes<br>hexopterus        |
|                         |               |              |      |                   |      |                   | l larva 16 mm Lumpenus sp.                               |
|                         |               |              |      |                   |      |                   | 2 larvae 3.8, 4.2 mm Cyclopteridae                       |
|                         |               |              |      |                   |      |                   | l larva 31 mm Osmeridae                                  |
|                         |               |              |      |                   |      |                   | 4 larvae unidentified due to extensive damage (elongate) |
| 23 Feb                  | 0415          | 5            | 2    | 333               | 0    | 10                | 3 larvae 5.1, 5.2, 5.7 mm Annodytes hexapterus           |
|                         |               |              |      |                   |      |                   | l larva ll mm Apodichthys flavidus                       |
|                         |               |              |      |                   |      |                   | 2 larvae 18, 19 mm <i>Lumpenus</i> sp.                   |
|                         |               |              |      |                   |      |                   | 2 larvae 14, 15 mm Xiphister atropurpureus               |
|                         |               |              | •    |                   |      |                   | 2 larvae 4.4, 4.6 mm Cyclopteridae                       |
| 23 Feb                  | . 0415        | 5            | 2    | 505               | 0    | 4                 | l larva 17 mm Lumpenus sp.                               |
|                         |               |              |      |                   |      |                   | 2 larvae 12, 14 mm Xiphister atropurpureus               |
|                         |               |              |      |                   |      |                   | l larva ll mm Pholidae                                   |
| 25 Feb                  | 0031          | 5            | 3    | 333               | 0    | 2                 | l larva 8.6 mm Hexagrammos sp.                           |
|                         | į             | <del>,</del> |      |                   |      |                   | 1 larva 17 mm Xiphister mucosus                          |

Table 55. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                  |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|---------------------------------------------------------|
| 25 Feb                  | 0031          | 5       | 3    | 505               | 0    | 4                 | 3 larva 16, 17, 18 mm Xiphister mucosus                 |
|                         |               |         |      |                   |      |                   | l larva unidentified due to extensive damage (elongate) |
| 25 Feb                  | 0745          | 5       | 4    | 333               | 0    | 14                | 1 larva 5.8 mm Annodytes hexapterus                     |
|                         |               |         |      |                   |      |                   | 1 larva 14 mm Chirolophis sp.                           |
|                         |               |         |      |                   |      |                   | 1 larva 8.1 mm Hexagrammos sp.                          |
|                         |               |         |      |                   |      |                   | 1 larva 30 mm Mallotus villosus                         |
|                         |               |         |      |                   |      |                   | l larva 3.9 mm Cyclopteridae                            |
|                         |               |         |      |                   |      |                   | 9 larvae 30-38 Osmeridae                                |
| 25 Feb                  | 0745          | 5       | 4    | 505               | 0    | 17                | 2 larvae 5.2, 6.0 mm Ammodytes hexapterus               |
|                         |               |         |      |                   |      |                   | 2 larvae 16, 17 mm Xiphister mucosus                    |
|                         |               |         |      |                   |      |                   | 2 larvae 12, 12 mm Cottidae                             |
|                         |               |         |      |                   |      |                   | ll larvae 30-34 mm Osmeridae                            |
| 22 Feb                  | 0050          | 6       | 1    | 333               | 0    | 16                | 15 larvae 4.7-6.2 mm Ammodytes hexapterus               |
|                         |               |         |      |                   |      |                   | l larva 3.4 mm Cyclopteridae                            |
| 22 Feb                  | 0050          | 6       | 1    | 505               | 0    | 98                | 94 larvae 4.4-5.5 mm Ammodytes hexapterus               |
|                         |               |         |      |                   |      |                   | l larva 14 mm <i>Lumpenus</i> sp.                       |

Table 55. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                                                                                                                                                                                 |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 Feb                  | 0050          | 6       | 1    | 505               | 0    | 98                | 2 larvae 3.4, 3.5 mm Cyclopteridae<br>l larva 7.9 mm unidentified, elongate                                                                                                                                            |
| 23 Feb                  | 0645          | 6       | 2    | 333               | 0    | 29                | 22 larvae 4.7-6.6 mm <i>Ammodytes hexapteru</i><br>6 larvae 12-13 mm <i>Lumpenus</i> sp.<br>1 larva 40 mm Osmeridae                                                                                                    |
| 23 Feb                  | 0645          | 6       | 2    | 505               | 0    | 12                | 7 larvae 4.7-5.1 mm Ammodytes hexapterus<br>3 larvae 10, 11, 11 mm Lumpenus sp.<br>2 young 63, 90 mm Mallotus villosus                                                                                                 |
| 25 Feb                  | 0235          | 6       | 3    | 333               | 0    | 70                | 56 larvae 4.6-5.7 mm <i>Anmodytes hexapteru</i><br>12 larvae 10-12 mm <i>Lumpenus</i> sp.<br>2 larvae 3.2, 3.4 mm Cyclopteridae                                                                                        |
| 25 Feb                  | 0235          | . 6     | 3    | 505               | 0    | 34                | <ul> <li>21 larvae 4.7-5.8 mm Ammodytes hexapteru</li> <li>10 larvae 11-16 mm Lumpenus sp.</li> <li>2 larvae 3.5, 3.6 mm Cyclopteridae</li> <li>1 larva unidentified due to extensive<br/>damage (elongate)</li> </ul> |

Table 55. (continued)

| Date<br>(1976)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae                   |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|----------------------------------------------------------|
| 25 Feb                  | 1039          | 6       | 4    | 333               | 0    | 12                | 1 larva 5.4 mm Ammodytes hexapterus                      |
|                         |               |         |      |                   |      |                   | l larva 13 mm Chirolophis sp.                            |
|                         |               |         |      |                   |      |                   | 2 larvae 12, 12 mm Lumpenus sp.                          |
|                         |               |         |      |                   |      |                   | 8 larvae unidentified due to extensive damage (elongate) |
| 25 Feb                  | 1039          | 6       | 4    | 505               | 1    | 11                | l egg $\sim$ 1 mm (1.10 mm)                              |
|                         |               |         |      |                   |      |                   | 6 larvae 4.4-5.1 mm Annodytes hexapterus                 |
|                         |               |         |      |                   |      |                   | 1 larva 11 mm <i>Larpenus</i> sp.                        |
|                         |               |         |      |                   |      |                   | l larva 17 mm Xiphister mucceus                          |
|                         |               |         |      |                   |      |                   | l larva 41 mm Osmeridae                                  |
|                         |               |         |      |                   |      |                   | 2 larvae unidentified due to extensive damage (elongate) |
| 24 Feb                  | 1604          | 7       | 1    | 333               | 0    | 3                 | l larva 18 nun Lumpenus sp.                              |
|                         |               |         |      |                   |      |                   | l larva 4.4 mm Cyclopteridae                             |
|                         |               |         |      |                   |      |                   | l larva 28 mm Osmeridae                                  |
| 24 Feb                  | 1604          | 7       | 1    | 505               | 0    | 0                 |                                                          |
| 26 Feb                  | 0429          | 8       | 3    | 333               | 0    | 0                 |                                                          |
| 26 Feb                  | 0429          | 8       | 3    | 505               | 0    | 0                 |                                                          |

Table 55. (continued)

| Date<br>(1976)<br>(CMT) | Time<br>(CMT) | Station | Haul | Mesh Size<br>(µm) | Eggs | Fish or<br>Larvae | Identification of Fish Eggs and Larvae  |
|-------------------------|---------------|---------|------|-------------------|------|-------------------|-----------------------------------------|
| 23 Feb                  | 1055          | 9       | 1    | 333               | 0    | 2                 | 1 Jarva 10 mm Hexagrammos sp.           |
|                         |               |         |      |                   |      |                   | 1 larva 49 mm Osmeridae                 |
| 23 Feb                  | 1055          | 9       | 1    | 505               | 0    | 2                 | l larva 9.8 mm Hexagrammos sp.          |
|                         |               |         |      |                   |      |                   | l larva 41 mm Osmeridae                 |
| 23 Feb                  | 1501          | 10      | 1    | 333               | 0    | 3                 | 3 larvae 9.3, 10, 10 mm Cottidae        |
| 23 Feb                  | 1501          | 10      | 1    | 505               | 0    | 1                 | 1 larva 7.5 mm Atheresthes stomias ?    |
| 23 Feb                  | 2137          | 11      | 1    | 333               | 0    | 1                 | l larva ll mm Macrouridae               |
| 23 Feb                  | 2137          | 11      | 1    | 505               | 0    | 8                 | 4 larvae 7.1-7.6 Atheresthes stomias ?  |
|                         |               |         |      |                   |      |                   | l larva 13 mm Lyopsetta exilis          |
|                         |               |         |      |                   |      |                   | l larva 9.6 mm Cottidae                 |
|                         |               |         |      |                   |      |                   | 1 larva 10 mm Macrouridae               |
|                         |               |         |      |                   |      |                   | l larva 8.4 mm unidentified, non-elonga |

Table 55. (continued)

Table 56. Summary of taxonomic categories of commercially important crab and shrimp larvae found in bongo net samples collected on the Lower Cook Inlet, *Discoverer* Cruise, Leg I, 21-26 February 1977

A total of 36 samples contained 464 crab zoeae. The commercially important crabs were distributed into 1 family, 1 genus, and 1 species. The 36 samples contained 549 shrimp zoeae and 39 adults. The commercially important shrimp were distributed into 1 family, 2 genera, and 4 species.

Section Anomura

Family Lithodidae

20 zoeae king crab' Paralithodes camtschatica (Tilesius)

70 zoeae unidentified, non-commercially important anomurans

Section Brachyura

Family Cancridae

58 zoeae non-commercially important Cancer sp.

316 zoeae unidentified, non-commercially important brachyurans

Section Caridea

Family Pandalidae

20 zoeae sidestripe shrimp Pandalopsis dispar Rathbun 1 zoea spot shrimp Pandalus platyceros Brandt 18 adult northern pink shrimp Pandalus borealis Kröyer 3 adult humpy shrimp Pandalus coniurus Stimpson

528 zoeae unidentified hippolytids
18 adult non-commercially important shrimp

<sup>&</sup>lt;sup>1</sup> The common name is presented for the first time for each species; thereafter only the scientific name is recorded.

| Date<br>(1977)<br>(GMT) | Tíme<br>(GMT) | Station | Hau1 | Mesh Size<br>(µm) | Stage                      | Total            | Identification of Larvae                                                                                    |
|-------------------------|---------------|---------|------|-------------------|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------|
| 24 Feb                  | 1331          | 1       | 1    | 333 <sup>a</sup>  |                            | 0                |                                                                                                             |
| 24 Feb                  | 1331          | 1       | 1    | 505               |                            | 0                |                                                                                                             |
| 22 Feb                  | 0736          | 2       | 1    | 333               | adult                      | 2                | Crangon alaskensis elongata                                                                                 |
| 22 Feb                  | 0736          | 2       | 1    | 505               | adult<br>adult             | 1<br>1           | Crangon alaskensis<br>C. alaskensis elongata                                                                |
| 25 Feb                  | 2340          | 2       | 3    | 333               | zoea                       | 1                | unidentified hippolytid                                                                                     |
| 25 Feb                  | 2340          | 2       | 3    | 505               | zoea<br>II                 | 1<br>1           | unidentified anomuran<br>Pandalus platyceros                                                                |
| 22 Feb                  | 2108          | 3.      | 1    | 333               | adult                      | 1                | Crangon alaskensis elongata                                                                                 |
| 22 Feb                  | 2108          | 3       | 1    | 505               | zoea<br>I<br>zoea<br>adult | 6<br>1<br>1<br>1 | unidentified anomurans<br><i>Cancer oregonensis</i><br>unidentified brachyuran<br><i>Crangon alaskensis</i> |
| 22 Feb                  | 1723          | 4       | 1    | 333               |                            | 0                |                                                                                                             |
| 22 Feb                  | 1723          | 4       | 1    | 505               |                            | 0                |                                                                                                             |

### Table 57. Identification of crab and shrimp larvae by station

Lower Cook Inlet bongo net tows, Discoverer, Leg I, 21-26 February 1977

 $^{\rm a}$  333  $\mu m$  samples were not sorted for crab larvae.

| Date<br>(1977)<br>(GMI) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(um) | Stage | Total | Identification of Larvae          |
|-------------------------|---------------|---------|------|-------------------|-------|-------|-----------------------------------|
| 22 Feb                  | 0447          | 5       | 1    | 333               | I     | 4     | Pandalopsis dispar                |
|                         |               | -       |      |                   | zoea  | 1     | unidentified hippolytids          |
|                         |               |         |      |                   | adult | 1     | Crangon dalli                     |
| 22 Feb                  | 0447          | 5       | 1    | 505               | I     | 4     | Paralithodes cantschatica         |
|                         |               |         |      |                   | zoea  | 1     | unidentified anomurans            |
|                         |               |         |      |                   | I     | 2     | Pandalopsis dispar                |
|                         |               |         |      |                   | zoea  | 3     | unidentified hippolytids          |
| 23 Feb                  | 0415          | 5       | 2    | 333               | I     | 2     | Fandalopsis dispar                |
| 23 Feb                  | 0415          | 5       | 2    | 505               | I     | 3     | Paralithodes cantschat <b>ica</b> |
|                         |               |         |      |                   | zoea  | 12    | unidentified anomurans            |
|                         |               |         |      |                   | I     | 23    | Cancer oregonensis                |
|                         |               |         |      |                   | I.    | 1     | Pandalop <b>sis</b> dispon        |
|                         |               |         |      |                   | zoea  | 8     | unidentified hippolytids          |
| 25 Feb                  | 0031          | 5       | 3    | 333               | I     | 4     | Pandalopsis dispar                |
| 25 Feb                  | 0031          | 5       | 3    | 505               | I     | 6     | Paralithodes camtschatica         |
|                         |               |         |      |                   | zoea  | 5     | unidentified anomurans            |
|                         |               |         |      |                   | I     | 5     | Cancer preponensis                |
|                         |               |         |      |                   |       | 1     | Fancalopeie dispar                |
| 25 Feb                  | 0745          | 5       | 4    | 333               | I     | 1     | Pandaloysis dispar                |
|                         |               |         |      |                   | zoea  | 4     | unidentified hippolytlds          |

Table 57. (continued)

| Date<br>(1977)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae         |
|-------------------------|---------------|---------|------|-------------------|-------|-------|----------------------------------|
| 25 Feb                  | 0745          | 5       | 4    | 505               | I     | 1     | Paralithodes camtschatica        |
|                         |               |         |      |                   | zoea  | 25    | unidentified anomurans           |
|                         |               |         |      |                   | I     | 1     | Cancer cregonensis               |
|                         |               |         |      |                   | zoea  | 1     | unidentified brachyuran          |
|                         |               |         |      |                   | I     | 5     | Pandalopsis dispar               |
|                         |               |         |      |                   | zoea  | 6     | unidentified hippolytids         |
| 22 Feb                  | 0050          | 6       | 1    | . 333             | zoea  | 139   | unidentified hippolytids         |
| 22 Feb                  | 0050          | 6       | 1    | 505               | I     | 2     | Paralithodes camtschatica        |
|                         |               |         |      |                   | zoea  | 29    | unidentified anomurans           |
|                         |               |         |      |                   | I     | 28    | Cancer oregonensis               |
|                         |               |         |      |                   | zoea  | 168   | unidentified brachyurans         |
|                         |               |         |      |                   | zoea  | 203   | unidentified hippolytids         |
| 23 Feb                  | 0645          | 6       | 2    | 333               | zoea  | 16    | unidentified hippolytids         |
|                         |               | -       |      |                   | adult | 11    | Pandalus porealis                |
|                         |               |         |      |                   | adult | 1     | Crangon franciscorum angustimano |
|                         |               |         |      |                   | adult | 1     | Eualus suckleyi                  |
| 23 Feb                  | 0645          | 6       | 2    | 505               | I     | 1     | Paralithodes contschatica        |
|                         |               |         |      |                   | zoea  | 1     | unidentified anomuran            |
|                         |               |         |      |                   | zoea  | 38    | unidentified brachyurans         |
|                         |               |         |      |                   | zoea  | 9     | unidentified hippolytids         |
|                         |               |         |      |                   | adult | 6     | Pandalus borealis                |
|                         |               |         |      |                   | adult | 2     | P. goniurus                      |
|                         |               |         |      |                   | adult | 1     | Crangon franciscorum angustimana |

#### Table 57. (continued)

| Date<br>(1977)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage         | Total  | Identification of Larvae                      |
|-------------------------|---------------|---------|------|-------------------|---------------|--------|-----------------------------------------------|
| 25 Feb                  | 0235          | 6       | 3    | 333               | zoea          | 84     | unidentified hippolytids                      |
| 25 Feb                  | 0235          | 6       | 3    | 505               | I             | 3      | Paralithodes camtschatica                     |
|                         |               |         |      |                   | zoea          | 2      | unidentified anomurans                        |
|                         |               |         |      |                   | zoea          | 98     | unidentified brachyurans                      |
|                         |               |         |      |                   | zoea          | 40     | unidentified hippolytids                      |
| 25 Feb                  | 1039          | 6       | 4    | 333               | adult         | 1      | Crangon franciscorum ang <mark>ustiman</mark> |
| 25 Feb                  | 1039          | 6       | 4    | 505               | zoea          | 9      | unidentified brachyurans                      |
|                         |               |         |      |                   | zoea          | 2      | unidentified hippolytids                      |
|                         |               |         |      |                   | adult         | 4      | Crangon franciscorum angustiman               |
| 24 Feb                  | 1604          | 7       | 1    | 333               | adult         | 1      | Crangon dalli                                 |
| 24 Feb                  | 1604          | 7       | 1    | 505               | adult         | 1      | Argis alaskensis                              |
| 26 Feb                  | 0429          | . 8     | 3    | 333               | adult         | 1      | Crangon dalli                                 |
| 26 Feb ·                | 0429          | 8       | 3    | 505               |               | 0      |                                               |
| 23 Feb                  | 1055          | 9       | 1    | 333               |               | 0      |                                               |
| 23 Feb                  | 1055          | 9       | 1    | 505               | zoea<br>adult | 1<br>1 | unidentified brachyuran<br>Pandalus goniurus  |

#### Table 57. (continued)

| Date<br>(1977)<br>(GMT) | Time<br>(GMT) | Station | Haul | Mesh Size<br>(µm) | Stage | Total | Identification of Larvae |
|-------------------------|---------------|---------|------|-------------------|-------|-------|--------------------------|
| 23 Feb                  | 1501          | 10      | 1    | 333               |       | 0     |                          |
| 23 Feb                  | 1501          | 10      | 1    | 505               | adult | 1     | Pandalus borealis        |
| 23 Feb                  | 2137          | 11      | 1    | 333               |       | 0     |                          |
| 23 Feb                  | 2137          | 11      | 1    | 505               |       | 0     |                          |

٠

Table 57. (continued)

.

Table 58. Fishes collected in the Lower Cook Inlet region, April 1976 through February 1977.

Family Clupeidae - herrings

Clupea harengus pallasi Pacific herring

Family Salmonidae - trouts

Oncorhynchus sp. salmon

Family Osmeridae - smelts

Mallotus villosus capelin Spirinchus thaleichthys longfin smelt Thaleichthys pacificus eulachon

Family Bathylagidae - deepsea smelt

Bathylagus sp. blacksmelt Leuroglossus schunisti northern smoothtongue

Family Myctophidae - lanternfishes

Stenobrachius leucopsarus northern lampfish

Family Cadidae - codfishes

Gadus sp. Pacific cod Theragra chalcogramma walleye pollock

Family Gasterosteidae - sticklebacks

Gasterosteus aculeatus threespine stickleback Pungitius pungitius ninespine stickleback

Family Bathymasteridae - ronquils

Family Stichaeidae - pricklebacks

Anoplarchus sp. cockscomb Chirolophis sp. warbonnet Lumpenus spp. prickleback Xiphister atropurpureus black prickleback Xiphister mucosus red prickleback

Family Pholidae - gunnels

Apodichthys flavidus penpoint gunnel Pholis sp. gunnel Table 58. (continued)

Family Ptilichthyidae - quillfishes

Ptilichthyidae goodei quillfish

Family Ammodytidae - sand lances

Ammodytes hexapterus Pacific sand lance

Family Tetragonuridae - squaretails

Family Scorpaenidae - scorpionfishes

Sebastes sp. rockfish Sebastolobus thornyhead

Family Hexagrammidae - greenlings

Hexagrammos sp. greenling

Family Cottidae - sculpins

Icelinus borealis northern sculpin Myoxocephalus sculpin Scorpaenichthys marmoratus cabezon

Family Agonidae - poachers

Agonus acipenserinus sturgeon poacher

Family Cyclopteridae - lumpfishes and snailfishes

Liparis sp. snailfish

Family Pleuronectidae - righteye flounders

Atheresthes stomias arrowtooth flounder Glyptocephalus zachirus rex sole Hippoglossoides sp. (probably flathead sole) Isopsetta isolepis butter sole Lepidopsetta bilineata rock sole Limanda aspera yellowfin sole Lyopsetta exilis slender sole Platichthys stellatus starry flounder Psettichthys melanostictus sand sole Table 59. Pandalid shrimp collected in the Lower Cook Inlet region,April 1976 through February 1977.

Order Decapoda

Suborder Natantia

Section Caridea

Family Pandalidae

Pandalopsis dispar Rathbun side-stripe shrimp (larvae and adults)
Pandalus borealis Kröyer northern pink shrimp (larvae and adults)
Pandalus danae Stimpson dock shrimp (larvae)
Pandalus goniurus Stimpson humpy shrimp (larvae and adults)
Pandalus hypsinotus Brandt coonstripe shrimp (larvae)
Pandalus montagui tridens Rathbun no common name (larvae)
Pandalus platyceros Brandt spot shrimp (larvae)
Pandalus stenolepis Rathbun no common name (larvae) Table 60. Commercially important species of crab larvae collected in Lower Cook Inlet region, April 1976 through February 1977.

Order Decapoda

Suborder Reptantia

Section Anomura

Family Lithodidae

Paralithodes camtschatica (Tilesius) king crab Paralithodes platypus (Brandt) blue king crab

Section Brachyura

Superfamily Brachyrhyncha

Family Cancridae

Cancer magister Dana Dungeness crab

Superfamily Oxyrhyncha

Family Majidae

Subfamily Oregoniinae

Chionoecetes bairdi Rathbun tanner or snow crab

### Table 61.

FISH EGGS/10 SQ M

| -       | -   |           |             |            | :            |             |                                        |              |               |
|---------|-----|-----------|-------------|------------|--------------|-------------|----------------------------------------|--------------|---------------|
| STATION | SI  | ZE        | APR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31                           | OCT<br>17-29 | FEB<br>21-26  |
| 2       |     |           |             |            |              | <u> </u>    | ************************************** |              |               |
| 1       | <1  | MM        | 0           | 0          | 0            | 4           | - 0                                    | 0            | 0             |
| -       | ī   | MM        | Ō           | 2          |              | 1           | 0                                      | 0            | 0             |
|         | ź   | MM        | 1           | Ż          | 0<br>2       | ō           | ŏ                                      | ō            | ō             |
|         | 3   | MM        | Ô.          | 87         | 96           | ŏ           | ŏ                                      | ŏ            | ō             |
|         | 3   | ti Li     | Ų.          | 01         | × <b>v</b>   | Ŭ           | v                                      | v            | Ŭ             |
| 2       | <1  | MM        | 0           | 1          | 0            | 2           | 0                                      | 0            | 0             |
|         | 1   | MM        | 0           | 0          | 12           | 35          | 0                                      | 0            | 0             |
|         | 2   | MM        | 0           | 1          | 1            | 1           | 0                                      | ý,           | 0             |
|         | 3   | MM        | 0           | 0          | 1            | 0           | 0                                      | Ĵ            | 0             |
| 3       | <1  | <b>MH</b> | 0           | 0          | 0            | Z           | 0                                      | 0            | - <b>14</b> - |
|         | 1   | MM        | 11          | 80         | 281          | 0           | 0                                      | ŝ.           | 0             |
|         | 2   | MM        | 0           | 11         | 8            | 1           | 0                                      | 0            | 0             |
|         | 3   | MH        | 0           | 0          | 0            | 0           | 0                                      |              | 0             |
|         | -   |           | -           |            |              |             |                                        |              |               |
| 4       | <1  | MM        | 0           | 0          | 0            | 3           | Ç                                      | 0            | 0             |
|         | 1   | MM        | 0           | 0          | 3            | 0           | 0                                      | 0            | 0             |
|         | . 2 | MM        | 0           | 0          | 1            | 0           | 0                                      | 1.<br>1.     | 0             |
|         | 3   | MM        | 0           | 0          | 0            | Û           | 0                                      | 0            | 0             |
|         | <1  |           | 0           | 0          | 1            | 438         | 30                                     | 0            | 0             |
| 5       |     |           | 1           | 100        | 138          |             | 2                                      | 0            | ŏ             |
|         | 1   | MH        |             |            | 150          | 90<br>0     | 0                                      | 0            | ŏ             |
| -       | 2   |           | 0           | 5          | 3            |             | 0                                      | 0            | 0             |
|         | 3   | MM        | 0           | 0          | د            | 0           | U                                      | 0            | U             |
| 6       | <1  | MM        | 0           | 0          | 16           | 291         | 21                                     | 0            | 0             |
|         | 1   | MM        | 21          | 5550       | 2701         | 3           | 1                                      | 0            | 0             |
|         | 2   | BH .      | 2           | 0          | 0            | 0           | 0                                      | 0            | 0             |
|         | 3   | MM        | 0           | 0          | 0            | 0           | 0                                      | 0            | 0             |
| 7       | 4   | MM        | 0           | 0          | 62           | 290         | 0                                      | 0            | 0             |
|         | 1   | MM        | 101         | 96         | 1485         | 52          | 0                                      | 0            | 0             |
|         | 2   |           | 0           |            | 2            | 0           | 1                                      | 0            | 0             |
|         | 3   |           | Ō           | 1<br>0     | Ō            | Ő           | Õ                                      | Ō            | 0             |
| 8       | 61  | MM        |             | 0          | 144          | 811         | 0                                      | 0            | 0             |
| -       | 1   |           |             | 938        | 712          | 49          | õ                                      | ō            | Ō             |
|         |     | MM        |             | 10         | 1            | Ó           | Ö                                      | õ            | õ             |
|         | 2   | NM        |             | 0          | ō            | ŏ           | ŏ                                      | ŏ            | ŏ             |
|         | 3   | nπ        |             | V          | Ŭ            | v           | v                                      | U U          | v             |

| CONTINU | IATIO             | N-FIS                | H EGGS/10        | SQM                |                    |                  |                  |      |             |
|---------|-------------------|----------------------|------------------|--------------------|--------------------|------------------|------------------|------|-------------|
| 9       | 1<br>2            | MM<br>MM<br>MM<br>MM | 0<br>1<br>1<br>0 | 0<br>30<br>3<br>26 |                    | 3<br>3<br>1<br>1 | 0<br>0<br>1      | 0000 | 0<br>0<br>0 |
| 10      | <1<br>1<br>2<br>3 | MM<br>MM<br>MM       | 0<br>3<br>0<br>0 |                    | 4<br>4<br>27<br>14 | 0<br>2<br>1<br>2 | 1<br>0<br>0<br>0 |      | C<br>0<br>0 |

Table 62.

| HIPPOGL | CSSCIDES. | SP./10 | SC M |
|---------|-----------|--------|------|
|         |           |        |      |

| STATION  | STAGE          | A P R<br>6-13 | MAY<br>6-9   | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31 | 0CT<br>17-29 | FFP<br>21-26 |
|----------|----------------|---------------|--------------|--------------|-------------|--------------|--------------|--------------|
| 1        | L A R<br>J U V | 0<br>0        | 0            | 45<br>0      | 7<br>0      | 0<br>0       | 0<br>0       | 0<br>C .     |
| 2        | L A P<br>J U V | 0<br>0        | 0<br>0       | 1<br>C       | 2<br>0      | 1<br>0       | 0<br>0       | 0<br>0       |
| 3        | L AR<br>JUV    | 0<br>0        | 0<br>0       | 0<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 0<br>0       |
| 4        | L A R<br>J U V | 0<br>0        | 0<br>0       | 0<br>0       | 0<br>0      | 1<br>0       | 0<br>0       | 0<br>0       |
| 5        | LAR<br>JUV     | С<br>О        | 0<br>0       | 6<br>C       | 1<br>0      | С<br>0       | 0<br>0       | 0            |
| 6        | L A R<br>J U V | 0<br>0        | 0<br>0       | C<br>C       | 2<br>0      | 0<br>0       | 0<br>0       | 0            |
| 7        | LAR<br>JUV     | 0<br>0        | 0<br>C       | 0<br>0       | 4.8<br>C    | 0<br>1       | 0<br>0       | 0<br>0       |
| 8        | L A R<br>J U V |               | 0<br>0       | 0<br>0       | 15<br>0     | 0<br>0       | 0<br>0       | 0<br>0       |
| 9        | L A R<br>J U V | 0<br>0        | 0<br>0       |              | 8<br>0      | 2<br>C       | 0<br>0       | 0<br>0       |
| 10       | L A R<br>J U V | 0             |              | 0<br>0       | 12<br>0     | 0<br>0       |              | 0<br>0       |
| GADIDAE/ | IO SO M        |               |              |              |             |              |              |              |
| STATION  | STAGE          | A P R<br>6-13 | MAY .<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31 | 0CT<br>17-29 | FER<br>21-26 |
| 1        | L A R<br>J U V | 0             | 26<br>0      | 5<br>0       | 0<br>0      | 0<br>6       | 0<br>0       | 0<br>0       |
| 2        | L A R<br>J U V | 0<br>0        | 13<br>0      | 2<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 0            |

| CONTINU | ATIEN-GADIE    | DAE/10 SQ | 15            |               |        |        |        |        |
|---------|----------------|-----------|---------------|---------------|--------|--------|--------|--------|
| 3       | L AR<br>JUV    | 0<br>F    | o<br>c        | <b>1</b><br>0 | 0<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| 4       | L A R<br>J U V | 0<br>0    | 1<br>0        | 0<br>0        | 0<br>0 | с<br>0 | 0<br>0 | 0      |
| 5       | L A R<br>J U V | 0<br>0    | <b>0</b><br>0 | 0<br>0        | 1<br>0 | 0<br>1 | 0<br>0 | 0      |
| 6       | L A R<br>J U V | C<br>O    | 0<br>0        | O<br>O        | 0<br>0 | 0<br>C | 0<br>0 | 0<br>0 |
| 7       | L A R<br>J U V | O<br>C    | 0<br>0        | O<br>C        | C<br>O | 0<br>0 | 0<br>0 | C<br>C |
| 8       | LAR<br>JUV     |           | 0<br>0        | 0<br>0        | 0<br>0 | 0<br>0 | 0<br>0 | с<br>0 |
| 9       | LAR<br>JUV     | 14<br>C   | 4<br>0        |               | 4<br>0 | 0<br>0 | 0<br>0 | 0<br>0 |
| 10      | L A R<br>J U V | 0<br>0    |               | C<br>C        | 0<br>0 | С<br>0 |        | 0<br>0 |

OSMERIDAE/10 SQ M

| STATION | STAGE          | APP<br>613 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUC<br>24-31 | OCT<br>17-29 | FFB<br><u>21-26</u> |
|---------|----------------|------------|------------|--------------|-------------|--------------|--------------|---------------------|
| 1       | L A R          | с          | 0          | 0            | <b>7</b> 52 | 659          | 2            | 0                   |
|         | J U V          | 0          | 0          | 0            | 0           | 0            | 0            | 0                   |
| 2       | L A R          | 0          | 3          | C            | .571        | 137          | 0            | 29                  |
|         | J U V          | 0          | 0          | 0            | 0           | 0            | 0            | 0                   |
| 3       | LAR            | 0          | 0          | 0            | 21          | 29           | 0            | 0                   |
|         | JUV            | 0          | 0          | 0            | 0           | 0            | 0            | 1                   |
| 4       | LAR            | 0          | 0          | 0            | 351         | 0            | 0            | 0                   |
|         | JUV            | 0          | 0          | 0            | 0           | 0            | 0            | 0                   |
| 5       | L A R          | 0          | 0          | 0            | 368         | 224          | 0            | <b>1</b>            |
|         | J U V          | 0          | 0          | C            | 0           | 0            | 0            | 0                   |
| 6       | L A R<br>J U V | C<br>O     | 1<br>0     | 0<br>0       | 0<br>0      | 275<br>0     | 0<br>0       | 1<br>0              |

| CONTINU | ATION- <u>OSMER</u> | IDAE/10 | SG M   |        |          |         |        |        |
|---------|---------------------|---------|--------|--------|----------|---------|--------|--------|
| 7       | L A R<br>J U V      | 0<br>0  | 0<br>0 | С<br>0 | 51<br>0  | 6<br>0  | 2<br>0 | 1<br>0 |
| 8       | L A R<br>J U V      |         | 0<br>0 | 0<br>0 | 2<br>0   | 2<br>0  | 0<br>0 | 0<br>0 |
| 9       | L A R<br>J U V      | 0       | 0<br>0 |        | 207<br>0 | 49<br>0 | 2<br>0 | 4<br>0 |
| 10      | L AR<br>J U V       | O<br>C  |        | 0<br>0 | 238<br>0 | 17<br>0 |        | с<br>С |

# MALLOTUS VILLESUS/10 SQ M

| STATION | STAGE          | APR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 |          | 0CT<br>17-29 | F5B<br>21-26 |
|---------|----------------|-------------|------------|--------------|-------------|----------|--------------|--------------|
| 1       | LAR            | 5           | 11         | 0            | 2505        | 233      | 17           | C            |
|         | JUV            | 0           | 0          | 0            | 0           | 0        | 0            | O            |
| 2       | L A R          | 0           | 0          | 0            | 633         | 85       | 9            | 0            |
|         | J U V          | 0           | 0          | 0            | 0           | 1        | 0            | 0            |
| 3       | L A R          | 0           | 0          | 0            | 346         | 11       | 0            | C            |
|         | J U V          | 0           | 0          | 0            | 0           | 0        | 0            | C            |
| 4       | LAR<br>JUV     | 0<br>0      | 0          | 0<br>0       | 412<br>0    | 2<br>0   | 0<br>0       | С<br>0       |
| 5       | L A R          | 0           | 0          | 0            | 560         | 272      | 0            | 1            |
|         | J U V          | 0           | 0          | 0            | 0           | 0        | 0            | 0            |
| 6       | L A R          | 0           | С          | 0            | . 14        | 1383     | 1            | 0            |
|         | J U V          | 0           | О          | C            | · 0         | 0        | 0            | 1            |
| 7       | LAR            | 0           | 0          | 0            | 299         | 21       | 0            | 0            |
|         | JUV            | 0           | 0          | 0            | 0           | 0        | 0            | 0            |
| 8       | LAR<br>JUV     |             | 0<br>C     | 0<br>0       | 4 0<br>0    | 144<br>0 | 7<br>0       | 0<br>0       |
| 9       | L A R<br>J U V | 7<br>C      | 0<br>0     |              | 170<br>0    | 49<br>0  | 0<br>0       | 0<br>0       |
| 10      | L A R<br>J U V | 0<br>C      |            | 0<br>0       | 85<br>0     | 15<br>0  |              | 0<br>0       |

|          |                |                  |            | -            |             |              |              |              |
|----------|----------------|------------------|------------|--------------|-------------|--------------|--------------|--------------|
| STATION  | STAGE          | APR<br>6-13      | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31 | 0CT<br>17-29 | FFB<br>21-26 |
| 1        | L A P<br>J U V | 0<br>0           | 0<br>0     | 0<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 0<br>0       |
| 2        | L A R<br>J U V | 0<br>0           | 0<br>0     | 0<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 0<br>0       |
| 3        | L A P<br>J U V | 0<br>0           | 0<br>0     | 0<br>0       | O<br>C      | 0<br>0       | 0<br>0       | С<br>0       |
| 4        | LAR<br>JUV     | 0<br>0           | 0<br>0     | 0<br>0       | 31<br>C     | 4<br>0       | 0<br>1       | O<br>C       |
| 5        | LAR<br>JUV     | 0<br>0           | 0<br>0     | O<br>C       | 0<br>0      | 0<br>0       | 0            | 0<br>0       |
| 6        | LAR<br>JUV     | 0                | 0<br>0     | C<br>O       | 0<br>0      | 0<br>C       | 0<br>0       | C<br>O       |
| 7        | LAR<br>JUV     | 0                | 0<br>C     | C<br>O       | C<br>O      | 0            | 0<br>0       | C<br>O       |
| 8        | L A R<br>J U V |                  | C<br>O     | 0<br>0       | 5<br>0      | o<br>e       | 0<br>0       | 0            |
| 9        | LAR<br>JUV     | 0                | 0<br>0     |              | 0<br>0      | 0<br>0       | 0<br>0       | 0<br>0       |
| 10       | L A R<br>J U V | 0<br>0           |            | 0<br>0       | 0<br>0      | 0<br>0       |              | 0<br>0       |
| AMMODYTE | S HEXAPTE      | RUS/10 S         | 0 M        |              |             |              |              |              |
| STATION  | STAGE          | Δ P R<br>6 - 1 3 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31 |              | FEP<br>21-26 |
| 1        | L A R<br>J U V | 5<br>0           | 0<br>0     | 8<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 0<br>0       |
| 2        | L A R<br>J U V | 0<br>0           | 2<br>0     | 30<br>0      | 0<br>0      | 0<br>0       | 0<br>0       | с<br>0       |
| 3        | LAR<br>JUV     | 13<br>0          | 28<br>0    | 3<br>0       | 0<br>0      | 0<br>0       | 0<br>0       | 13<br>0      |

#### CLUPEA HARFNGUS PALLASI/10 SQ M

| 4  | LAR | C  | 1   | 5   | 0 | 0 | 0 | 0  |
|----|-----|----|-----|-----|---|---|---|----|
|    | JUV | 0  | 0   | 0   | 0 | 0 | 0 | 0  |
| 5  | LAR | 1  | 324 | 155 | 0 | 0 | 0 | 7  |
|    | JUV | 0  | 0   | 0   | С | C | 0 | C  |
| 6  | LAR | 10 | 394 | 1   | 0 | 0 | 0 | 22 |
|    | JUV | C  | O   | 0   | 0 | C | 0 | 0  |
| 7  | LAR | 9  | 1   | 24  | 0 | 0 | 0 | C  |
|    | JUV | 0  | 0   | 0   | 0 | 0 | 0 | 0  |
| 8  | LAR |    | 47  | ò   | С | 0 | 0 | с  |
| -  | JUV |    | 0   | O   | 0 | C | 0 | Ō  |
| 9  | LAR | 1  | 2   |     | 0 | С | 0 | C  |
|    | JUV | 0  | 0   |     | 0 | 0 | Ō | Ó  |
| 10 | LAR | 1  |     | 0   | 0 | 0 |   | e  |
|    | JUV | Ó  |     | 0   | Õ | č |   | Č  |
|    |     |    |     |     |   |   |   |    |

# CONTINUATION-AMMODYTES HEXAPTEPUS/10 SC M

### Table 63.

| ANGMURA/ | 10 | SC | Μ |
|----------|----|----|---|
|----------|----|----|---|

| STATION | SIAGE          | APR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8+15 | AUG<br>24-31 | DCT<br>17-29 | FEB<br>21-26 |
|---------|----------------|-------------|------------|--------------|-------------|--------------|--------------|--------------|
|         | Z G E          | 12          | 346        | 438          | 501         | 1170         | 0            | 0            |
|         | M E G          | 0           | 0          | 0            | 0           | 55           | 0            | C            |
| È       | ZDE            | 0           | 199        | 3363         | 194         | 101          | 17           | Ŭ            |
|         | Meg            | 0           | 0          | 0            | 23          | 34           | C            | C            |
| 3       | ZÜE            | 0           | 0          | 25           | 1262        | 13           | C            | 8            |
|         | Meg            | 0           | 0          | 0            | Ú           | 4            | O            | 0            |
| 4       | ZUE            | 0           | 1          | 1            | 4           | 16           | с            | 0            |
|         | Meg            | 0           | 0          | 6            | 0           | 5            | С            | 0            |
| 5       | ZCE            | 0           | 951        | 777          | 1176        | 1186         | 14           | 3            |
|         | Meg            | 0           | 0          | 0            | C           | 0            | 8            | U            |
| 6       | ZCIE           | 22          | 248        | 7            | 403         | 187          | 0            | ジ4           |
|         | Meg            | · 0         | 0          | 6            | 27          | 3            | 0            | い            |
| 7       | ZÜE            | 0           | 33         | 208          | 478         | 12           | 4            | 0            |
|         | Meg            | 0           | 0          | ບ            | 0           | 5            | 4            | 0            |
| ъ       | ZCE<br>Meg     |             | 47<br>0    | 953<br>0     | 7<br>C      | 165<br>10    | 0<br>0       | С<br>С       |
| 9       | Z D E<br>M E G | 0<br>0      | 86<br>0    |              | 1090<br>108 | 36<br>C      | C<br>C       | 0<br>0       |
| 10      | ZCE<br>Meg     | 0<br>0      |            | 18<br>0      | 10<br>0     | 0<br>0       |              | 0<br>0       |

BRACHYUKA/10 SC M

| STATION | STAGE          | APR<br>6-13 | MAY<br>22-30 |  |  |
|---------|----------------|-------------|--------------|--|--|
| 1       | ZGE<br>Meg     |             | 1479<br>0    |  |  |
| 2       | Z O E<br>M E G |             | 3767<br>0    |  |  |

.

.

## CONTINUATION-BRACHYURA/10 SQ M

| 3  | Z L E<br>M E G | 0<br>0 | 35<br>0   | 1030<br>0 | 1660<br>199  | 142       | C<br>C | 1<br>0        |
|----|----------------|--------|-----------|-----------|--------------|-----------|--------|---------------|
| 4  | ZGE<br>Meg     | 0      | 0<br>0    | 83<br>0   | 4<br>1       | 248<br>3  | 0<br>C | C<br>C        |
| 5  | Z C E<br>M E G | 0      | 286<br>0  | 3535<br>0 | 1577<br>25   | 525<br>9  | С<br>0 | 0<br>0        |
| б  | Z D E<br>M E G | 0<br>0 | 1131<br>0 | 5635<br>C | 1169<br>0    | 286<br>3  | C<br>C | 313<br>C      |
| 7  | Z C E<br>M E G | 0<br>0 | 3 2<br>C  | 256<br>0  | 2505<br>72   | 6<br>C    | C<br>C | 0<br>C        |
| ٤  | Z O E<br>M E G |        | 9<br>C    | 3626<br>0 | 17<br>3      | 340<br>10 | C<br>C | С<br>0        |
| 9  | ZÜE<br>MEG     | 0      | 122<br>0  |           | 2975<br>3268 | 30<br>0   | C<br>C | <b>4</b><br>0 |
| 10 | Z C Ľ<br>M Ł G | O<br>C |           | 113<br>6  | 19<br>133    | 3<br>0    |        | C<br>G        |

#### PARALITHEDES CAMTSCHATICA/10 SQ M

| STATION | STAGE | APR<br>6-13 | NAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUC<br>24-31 | DCT<br>17-29 | F£8<br>21-25 |
|---------|-------|-------------|------------|--------------|-------------|--------------|--------------|--------------|
| 1       | 1     | 0           | 0          | 7            | С           | 0            | C            | 0            |
|         | 11    | 0           | 0          | £            | 0           | Û            | С            | C            |
|         | I11   | 0           | C          | 5            | G           | 0            | С            | С            |
|         | νI    | 0           | 0          | C            | 0           | 0            | С            | ¢            |
|         | MEG   | 0           | 0          | C            | r C         | 0            | С            | 0            |
| . 2     | I     | 0           | 0          | 2            | 0           | 0            | С            | 0            |
|         | II    | 0           | С          | 30           | 0           | 0            | C            | C            |
|         | 111   | 0           | C          | 0            | 0           | 0            | С            | 0            |
|         | IV    | 0           | 0          | G            | 0           | 0            | 0            | 0            |
|         | NEG   | 0           | С          | C            | С           | O            | С            | C            |
| 3       | I     | 0           | 2          | С            | 0           | 0            | С            | 0            |
|         | 11    | 0           | С          | C            | 0           | 0            | C            | G            |
|         | III   | 0           | C          | 0            | С           | Ũ            | С            | Ö            |
|         | 1 V   | 0           | 0          | G            | 0           | 0            | C            | C            |
|         | MEG   | 0           | 0          | C            | 0           | 0            | С            | C            |

| 4  | I<br>I I<br>I I I<br>I V<br>MEG |                       | 0<br>0<br>0<br>0          | 6<br>6<br>6<br>6<br>6    | C<br>C<br>O<br>O<br>C      |                       | 0<br>G<br>0<br>C      | 0<br>0<br>0<br>0<br>0  |
|----|---------------------------------|-----------------------|---------------------------|--------------------------|----------------------------|-----------------------|-----------------------|------------------------|
| 2  | 1<br>1 I<br>1 I I<br>I V<br>MEG | 0<br>0<br>0<br>0      | 546<br>322<br>0<br>0<br>0 | C<br>153<br>0<br>C<br>C  | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | с<br>с<br>с<br>с      | 11<br>6<br>0<br>0<br>6 |
| ٤  | 1<br>11<br>111<br>1V<br>MEG     | 1<br>1<br>0<br>0<br>0 | 259<br>143<br>0<br>0<br>0 | 6<br>6<br>6<br>6         | С<br>С<br>С<br>С<br>С<br>С | 0<br>0<br>0<br>0      | с<br>0<br>0<br>0      | 3<br>0<br>0<br>0       |
| 7  | 1<br>11<br>111<br>IV<br>MEG     | 0<br>0<br>0<br>0      | 434<br>1<br>0<br>0<br>0   | 37<br>461<br>51<br>C     | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0      | С<br>0<br>0<br>С      | C<br>O<br>O<br>O       |
| 8  | I<br>I I<br>I I I<br>I V<br>MEG |                       | 361<br>7<br>0<br>0<br>0   | 0<br>85<br>104<br>C<br>C | C<br>C<br>O<br>O<br>O      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0 | 0<br>C<br>C<br>O       |
| 9  | 1<br>11<br>111<br>IV<br>MEG     | 0<br>0<br>0<br>0      | 39<br>C<br>0<br>0         |                          | 0<br>C<br>0<br>0<br>C      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0       |
| 10 | I<br>1 I<br>I I I<br>I V<br>MEG | 0<br>0<br>0<br>0      |                           | 0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0 |                       |                        |

CUNTINUATION-PARALITHODES CAMTSCHATICA/IC SG M

# PARALITHEDES PLATYPUS/10 SG M

| STATION | STAGË                           | APR<br>6-13      | MAY<br>6-9            | MAY<br>22-36               | JUL<br>8-15                     | AUG<br>24-31          | 0CT<br><u>17-29</u>        | FEB<br><u>21-26</u>   |
|---------|---------------------------------|------------------|-----------------------|----------------------------|---------------------------------|-----------------------|----------------------------|-----------------------|
| ì       | I<br>II<br>III<br>IV<br>MEG     | 0<br>0<br>0<br>0 |                       | ()<br>()<br>()<br>()<br>() |                                 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      |
| 2       | 1<br>11<br>111<br>1V<br>MEG     | 0<br>0<br>0<br>0 |                       | C<br>C<br>C<br>O           | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | C<br>C<br>O<br>O<br>O      | C<br>0<br>0<br>C<br>0 |
| 3       | 1<br>11<br>111<br>1V<br>MEG     |                  | C<br>C<br>O<br>O<br>O | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>6 0         | 0<br>0<br>0<br>0      | с<br>с<br>с<br>с           | 0<br>0<br>0<br>0      |
| 4       | I<br>II<br>III<br>IV<br>MEG     | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0 | С<br>С<br>С<br>С<br>С      |                       |
| 5       | I<br>I I<br>I I I<br>I V<br>MEG | 0<br>0<br>0<br>0 | C<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           |                                 | 0<br>0<br>0<br>0      | 0<br>C<br>C<br>C<br>C      | 0<br>0<br>0<br>0      |
| 6       | I<br>II<br>III<br>IV<br>MEG     | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0           | - 0<br>0<br>0                   | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | C<br>O<br>O<br>O<br>O |
| 7       | I<br>II<br>III<br>IV<br>MEG     | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0                | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      |

497

| ε  | 1   |   | 0 | U | <b>C</b> | 0 | 0 | C  |
|----|-----|---|---|---|----------|---|---|----|
|    | 11  |   | 0 | O | C        | 0 | 0 | Û  |
|    | III |   | 0 | C | 0        | 0 | 0 | 0  |
|    | ĪV  |   | С | С | С        | 0 | С | O  |
|    | MEG |   | С | C | G        | 0 | 0 | G  |
| 9  | 1   | 0 | С |   | C        | 0 | С | 6  |
| •  | ĪĪ  | 0 | 0 |   | 0        | 0 | 0 | C  |
|    | 111 | 0 | 0 |   | U        | 6 | 0 | U  |
|    | 1 V | 0 | С |   | С        | Ũ | C | U  |
|    | MEG | 0 | 0 |   | 0        | Û | С | U  |
| 10 | I   | 0 |   | 0 | G        | Ũ |   | Ű  |
|    | 11  | C |   | 6 | C        | 0 |   | Ú. |
|    | ĨĪI | 0 |   | 0 | Û        | 0 |   | 0  |
|    | ĪV  | 0 |   | 0 | C        | 0 |   | С  |
|    | MEG | õ |   | õ | ō        | Õ |   | С  |
|    |     |   |   |   |          |   |   |    |

### Table 63 (continued). CUNIINUATION-PARALIIHODES PLATYPUS/10 SC M

# CANCER MAGISTER/10 30 M

| STATION | STAGE | APR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | ALG<br>24-31 | 0CT<br>17-29 | FEB<br>21-25 |
|---------|-------|-------------|------------|--------------|-------------|--------------|--------------|--------------|
| 1       | I     | 0           | 0          | C            | 0           | 0            | C            | O            |
| -       | ĪI    | 0           | C          | G            | C           | 3            | С            | Q            |
|         | III   | 0           | 0          | 6            | C           | 0            | 0            | C            |
|         | IV    | 0           | 0          | 0            | 0           | 0            | 0            | 0            |
|         | V     | 0           | 0          | C            | Ú           | 0            | 7            | С            |
|         | MEG   | 0           | 0          | O            | 0           | C            | 58           | Û            |
| 2       | I     | 0           | С          | 0            | С           | 0            | C            | Ú            |
| -       | II    | 0           | C          | С            | 0           | 0            | C            | C            |
|         | I I I | 0           | 0          | C            | , C         | 0            | C            | 0            |
|         | 1 V   | 0           | 0          | 6            | C           | 0            | 0            | C            |
|         | V     | 0           | 0          | С            | C           | 0            | C            | G            |
|         | MEG   | 0           | 0          | 0            | 0           | 0            | C            | C            |
| 3       | I     | 0           | 0          | 0            | C           | 0            | 0            | С            |
| -       | ĪI    | 0           | 0          | Û            | 0           | 0            | 0            | Ŭ            |
|         | 111   | 0           | 0          | Ģ            | 0           | 0            | 0            | ¢            |
|         | IV    | 0           | 0          | C            | 0           | 0            | C            | Ú            |
|         | ν     | 0           | 0          | 0            | C           | 0            | 0            | C            |
|         | MEG   | Q           | 0          | C            | 0           | C            | С            | C            |

.

| CONTINU | JATION- <u>CANCER</u>                | MAGIST                     | R/10                       | 50 M                                    |                                                               |                            |                                      |                                           |
|---------|--------------------------------------|----------------------------|----------------------------|-----------------------------------------|---------------------------------------------------------------|----------------------------|--------------------------------------|-------------------------------------------|
| 4       | I<br>I I<br>I I I<br>I V<br>V<br>MEG |                            | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0<br>C<br>C<br>C<br>C<br>C           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 5       | I<br>I I<br>I I<br>I V<br>V<br>MEG   | 0<br>0<br>0<br>0<br>0<br>0 | C<br>O<br>C<br>O<br>O      | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>50<br>0<br>0<br>0<br>0                                   |                            | 0<br>0<br>0<br>0<br>0<br>0           |                                           |
| 6       | 1<br>11<br>11<br>1 V<br>V<br>MEG     | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | C<br>O<br>O<br>O<br>O                   | 9<br>0<br>0<br>0<br>0<br>0<br>0                               |                            | 0<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 0<br>0<br>0<br>0<br>0<br>0                |
| 7       | 1<br>11<br>111<br>1V<br>V<br>MEG     | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0      | 000000000000000000000000000000000000000 | 0000000                                                       |                            |                                      |                                           |
| 8       | I<br>I I<br>I I<br>I V<br>V<br>ME G  | -                          | 0<br>0<br>0<br>0<br>0      | 6<br>0<br>6<br>6<br>6                   | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                     | 0<br>0<br>0<br>0<br>0      | C<br>C<br>C<br>C<br>O<br>O           | 00000<br>00000000000000000000000000000000 |
| 9       | I<br>I I<br>I I I<br>I V<br>V<br>MEG |                            |                            |                                         | ,<br>0<br>0<br>0<br>0<br>0                                    | 0<br>0<br>0<br>0<br>0<br>0 | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 10      | I<br>I I<br>I I I<br>I V<br>V<br>MEG |                            |                            | 0<br>0<br>0<br>0<br>0<br>0              | 0<br>0<br>0<br>0<br>0<br>0                                    |                            |                                      | 0<br>0<br>0<br>0<br>0<br>0                |

CANCER UREGUNENSIS/10 SO M

| STATION | STAGE                                  | APR<br>6-13           | MAY<br>6-9                 | MAY<br>22-30               | JUL<br>8-15                          | 40G<br>24-31                         | 0CT<br>17-29                         |                                                |
|---------|----------------------------------------|-----------------------|----------------------------|----------------------------|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|
| 1       | I<br>I I<br>I I I<br>I V<br>V<br>ME G  | 0<br>0<br>0<br>0<br>0 |                            | 0<br>C<br>C<br>C<br>C<br>O | 3567<br>1126<br>156<br>15<br>0<br>C  | 0<br>0<br>181<br>253<br>31           | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 2       | I<br>I I<br>I I I<br>I V<br>V<br>M E G |                       |                            |                            | 345<br>376<br>12<br>0<br>0           | 34<br>22<br>358<br>1109<br>370<br>22 | 0<br>0<br>0<br>0<br>0<br>13          | 0<br>0<br>0<br>1<br>0                          |
| 3       | 1<br>11<br>111<br>1V<br>V<br>MEG       |                       |                            | 0<br>0<br>0<br>0<br>0<br>0 | 13014<br>1594<br>66<br>0<br>0<br>0   | 4<br>7<br>22<br>97<br>47<br>4        | 000000                               |                                                |
| 4       | 1<br>11<br>11<br>1<br>V<br>V<br>MEG    | 0<br>0<br>0<br>0<br>0 |                            | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>13<br>57<br>65<br>13<br>0       |                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0           |
| 5       | I<br>I I<br>I I<br>I V<br>V<br>MEG     | 0<br>0<br>1<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>3<br>0      | 8147<br>375<br>0<br>0<br>0<br>0<br>0 | 9<br>28<br>287<br>83<br>37           | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                                                |
| Ł       | I<br>I I<br>I I I<br>I V<br>V<br>MEG   |                       |                            | 0<br>0<br>0<br>0<br>0      |                                      | 0<br>0<br>17<br>110<br>122<br>34     | C<br>C<br>0                          | C<br>0<br>0                                    |

# CONTINUATION-CANCER EREGENENSIS/10 SQ M

| 7        | 1<br>11<br>111<br>1V<br>V<br>MEG      |             | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>C<br>C<br>C<br>0      | 14<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>2<br>10<br>12<br>6<br>1     | 00004                           |                                 |
|----------|---------------------------------------|-------------|---------------------------------|----------------------------|----------------------------------|----------------------------------|---------------------------------|---------------------------------|
| υ        | I<br>I I<br>I I I<br>I V<br>V<br>ME G |             |                                 | 0<br>6<br>6<br>6<br>6<br>6 | 0<br>0<br>0<br>0<br>0<br>0       | 0<br>52<br>258<br>144<br>0       | C<br>C<br>C<br>C<br>C<br>2      | 0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 9        | I<br>I I<br>I I<br>I V<br>V<br>MEG    |             | C<br>0<br>0<br>0<br>0<br>0      |                            | 254<br>146<br>326<br>C<br>C<br>C | 0<br>0<br>11<br>48<br>315<br>131 | С<br>С<br>С<br>С<br>С<br>С<br>С | C<br>0<br>0<br>0<br>0<br>0      |
| 10       | I<br>11<br>111<br>1V<br>V<br>MEG      |             |                                 |                            | 2<br>71<br>24<br>2<br>0<br>0     | C<br>0<br>3<br>16<br>1           |                                 | C<br>0<br>0<br>0<br>0<br>0      |
| CANCER P | REDUCTUS/10                           | <u>so</u> m |                                 |                            |                                  | •                                |                                 |                                 |
| STATION  | STAGE                                 | APR<br>6-13 | MAY<br>6-9                      | MAY<br>22-30               | JUL<br>8−15                      | AUG<br>24-31                     | 0CT<br>17-29                    | FEB<br>21-20                    |
| 1        | I<br>II<br>III<br>IV<br>V<br>MEG      |             | 9<br>0<br>0<br>0<br>0<br>0      | ძ<br>0<br>0<br>0<br>0<br>0 |                                  |                                  | 0<br>0<br>0<br>0<br>0           |                                 |
| Ź        | I<br>II<br>III<br>IV<br>V<br>MEG      |             | 1<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0           |                                  | - 0<br>- 0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0      |                                 |

# CONTINUATION-CANCER PRODUCTUS/10 SQ M

| 3 | 1<br>11<br>111<br>1V<br>V<br>MEG      |                       |                                           |                                 | С<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0                   | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С                     |                                      |
|---|---------------------------------------|-----------------------|-------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------------|----------------------------------------------------------|--------------------------------------|
| 4 | I<br>I I<br>I I I<br>I V<br>V<br>ME G |                       | 0<br>0<br>0<br>0<br>0<br>0                |                                 | 0<br>0<br>0<br>0<br>0<br>0                | 000000000000000000000000000000000000000 | С<br>С<br>С<br>С<br>С<br>С<br>С<br>С<br>О<br>С<br>О<br>С | С<br>С<br>С<br>С<br>О<br>О           |
| 5 | I<br>II<br>III<br>IV<br>V<br>MEG      |                       | C<br>O<br>O<br>O<br>O                     | C<br>C<br>C<br>C<br>C<br>C      | 0<br>0<br>0<br>0<br>0<br>0<br>0           |                                         | с<br>0<br>0<br>0<br>0<br>0                               | 0<br>0<br>0<br>0<br>0<br>0<br>0      |
| 6 | I<br>I 1<br>I 1<br>I V<br>V<br>MEG    |                       | 0<br>0<br>0<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0                |                                         | С<br>С<br>С<br>С<br>С                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 7 | l<br>II<br>III<br>IV<br>V<br>MEG      | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>6<br>6<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0<br>0           |                                         | С<br>С<br>С<br>С<br>С<br>С                               | 0<br>0<br>0<br>0<br>0                |
| 8 | 1<br>11<br>11<br>1V<br>V<br>MEG       |                       | C<br>O<br>O<br>O<br>O                     | C ·<br>C C<br>C C<br>C C<br>C C | 0<br>0<br>0<br>0<br>0<br>0                |                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>0<br>0<br>0                     |
| 9 | I<br>I I<br>I I I<br>I V<br>V<br>MEG  |                       | 0<br>0<br>0<br>0<br>0                     |                                 | C .<br>C .<br>C .<br>O .                  |                                         | 0<br>C<br>C<br>C<br>C<br>C<br>C                          |                                      |

| CONTINU | ATIGN-CANCE | R PRODUCTUS. | /10 SQ M |   |   |        |
|---------|-------------|--------------|----------|---|---|--------|
| 10      | I           | 0            | G        | Û | 0 | G      |
|         | I 1         | 0            | 0        | 0 | 0 | C      |
|         | 111         | 0            | С        | C | 0 | с<br>С |
|         | 1 V         | 0            | Ċ        | C | 0 | 0      |
|         | v           | 0            | . O      | 0 | O | Ŭ      |
|         | MEG         | 0            | C        | С | O | Ŭ      |

#### CHIGNDECETES BAIRDI/10 SQ M

| <b>Ν</b> ΊΤΑΓΖ | STAGE    | 4PR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 |        | OCT<br>17-25 |         |
|----------------|----------|-------------|------------|--------------|-------------|--------|--------------|---------|
| 7              | 1<br>I 1 | 0<br>0      | 1<br>C     | 23.<br>C     | 15<br>172   | C<br>O | (,<br>C      | ç.<br>G |
| 2              | I<br>11  | 0<br>0      | o<br>c     | 376<br>0     | C<br>C      | 0<br>0 | C<br>C       | C<br>O  |
| 3              | I<br>I 1 | 0           | 1<br>0     | 1 C<br>0     | C<br>C      | 0<br>0 | C<br>C       | G<br>G  |
| 4              | 1<br>1 1 | 0<br>0      | 1<br>0     | C<br>C       | C<br>C      | 0<br>0 | C<br>C       | 0 0     |
| 5              | I<br>I I | 0<br>0      | 763<br>0   | 942<br>0     | С<br>0      | 0<br>0 | o<br>c       | 0<br>C  |
| 6              | 1<br>1 1 | 0<br>0      | 0<br>0     | 419<br>0     | 0<br>C      | 0<br>0 | C<br>O       | 0<br>0  |
| 7              | 1<br>1 1 | 0<br>0      | 0<br>C     | 18<br>6      | 0<br>C      | 0<br>0 | C<br>C       | 0<br>0  |
| . E            | I<br>I l |             | C<br>O     | 22<br>0      | - 0<br>C    | 0<br>6 | C<br>C       | 0<br>0  |
| 9              | I<br>Il  | 0<br>0      | C<br>O     |              | 0<br>C      | 0<br>0 | С<br>0       | С<br>С  |
| 10             | I<br>1 I | 0<br>0      |            | 4 C<br>0     | 0<br>42     | 0<br>0 |              | Ŭ<br>O  |

| ¢Н | I | С | Ν | Ū | E | С | E | T | È | S | S | Ρ | 1 | 1 | U | -5 | ú | М |  |
|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|---|---|--|
|    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |   |   |  |

| STATION | STAGE | APR<br>6-13 | MAY<br>6-9 | MAY<br>22-30 | JUL<br>8-15 | AUG<br>24-31 | 0CT<br>1 <b>7-</b> 29 | FEB<br>21-26 |
|---------|-------|-------------|------------|--------------|-------------|--------------|-----------------------|--------------|
| 1       | MEG   | 0           | 2          | 10           | 0           | 13           | 0                     | υ            |
| 2       | MEG   | 0           | 10         | С            | C           | 101          | C                     | 0            |
| З       | MEG   | 0           | 2          | Û            | 0           | 4            | 0                     | 0            |
| 4       | MEG   | 0           | 0          | 1            | C           | 0            | 0                     | 0            |
| 5       | MEG   | 0           | 0          | О            | G           | 0            | 0                     | Ö            |
| 6       | MEG   | 0           | C          | C            | Ŭ           | 3            | C                     | С            |
| 7       | MEG   | 0           | 1          | C            | 0           | 0            | C                     | 0            |
| ö       | MEG   |             | 1          | 2            | C           | 0            | 0                     | υ            |
| 9       | MĒG   | 1           | 2          |              | 0           | 6            | С                     | 0            |
| 10      | MEG   | 1           |            | 5            | C           | O            |                       | C            |

#### Table 64.

## PANDALUPSIS DISPAR/10 SQ M

| STATION | STAGE                                  | APR<br>6-13                | MAY<br>6-9                      | MAY<br>22-30               | JUL<br>8-15                          | AUG<br>24-31          | 0CT<br><u>17-29</u>                       | FEB<br>21-25                         |
|---------|----------------------------------------|----------------------------|---------------------------------|----------------------------|--------------------------------------|-----------------------|-------------------------------------------|--------------------------------------|
| 1       | I<br>I I<br>I I<br>I V<br>V<br>JUV     |                            |                                 | 0<br>1<br>0<br>0<br>0<br>0 | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                       |                                           | 0<br>0<br>0<br>0<br>0                |
| 2       | I<br>I I<br>I I<br>I V<br>V<br>J U V   |                            |                                 | 0<br>1<br>0<br>0<br>0      |                                      | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                      |
| 3       | I<br>I 1<br>I 1<br>I V<br>V<br>JUV     | 0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0      | 、                          | 0<br>5<br>0<br>0<br>0                | 0<br>0<br>0<br>0<br>0 | C<br>O<br>C<br>O<br>O                     |                                      |
| 4       | 1<br>11<br>111<br>1V<br>V<br>JLV       |                            | C<br>0<br>0<br>0<br>0<br>0      |                            | C<br>0<br>0<br>0<br>0<br>0           |                       | с<br>0<br>с<br>с<br>с                     | C<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 5       | 1<br>1 I<br>1 I I<br>1 V<br>V<br>J U V | 0<br>0<br>0<br>0<br>0      |                                 |                            | C<br>O<br>C<br>C<br>O<br>O           |                       | 0<br>0<br>0<br>0<br>0<br>0<br>0           | 8<br>0<br>0<br>0<br>0                |
| 6       | I<br>I I<br>I I<br>I V<br>V<br>J L V   | 1<br>0<br>0<br>0<br>0<br>0 | 0<br>2<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      |                                      | 0<br>0<br>1<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0      |

\_ - - -

| CUNTINUA | TIGN- <u>PANCA</u>                                            | LCPSIS                | DISPA                             | R/10 SC                                  | <u>M</u>                               |                            |                                 |                            |
|----------|---------------------------------------------------------------|-----------------------|-----------------------------------|------------------------------------------|----------------------------------------|----------------------------|---------------------------------|----------------------------|
| 7        | I<br>I I<br>I I<br>I V<br>V<br>J U V                          |                       | 0<br>0<br>0<br>0<br>0<br>0        |                                          |                                        |                            | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                            |
| <b>ປ</b> | I<br>1 I<br>1 I I<br>I V<br>V<br>J L V                        |                       |                                   |                                          | 0<br>0<br>0<br>0<br>0<br>0<br>0        | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0<br>0 |
| 9        | I<br>I I<br>I I<br>I V<br>V<br>J U V                          | 1<br>0<br>0<br>0<br>0 |                                   |                                          | 0<br>0<br>1<br>0<br>0<br>0<br>0        | 0<br>0<br>1<br>0           | 0<br>0<br>0<br>0<br>0<br>0      |                            |
| 10       | I<br>I I<br>I I<br>I V<br>V<br>J U V                          |                       |                                   | 1<br>0<br>0<br>0                         |                                        |                            |                                 |                            |
| PANDALUS | BOREALIS/                                                     | IU SQ M               |                                   |                                          |                                        |                            |                                 |                            |
| STATIUN  | STAGE                                                         | APR<br>6-13           | MAY<br>6-9                        | MAY<br>22-30                             | JUL<br>8-15                            | AUG<br>24-31               | DCT<br>17-29                    | FEB<br>21-20               |
| 1        | I<br>I 1<br>I 1<br>I V<br>V<br>V<br>V<br>I<br>V I<br>J U<br>V |                       | 34<br>23<br>0<br>0<br>0<br>0<br>0 | 0<br>1 C<br>5 5<br>2<br>C<br>0<br>C<br>0 | . 0<br>0<br>1<br>2<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>5 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                            |

#### CONTINUATION-PANDALOPSIS DISPAR/10 SQ M

# CONTINUATION-PANCALUS BOREALIS/10 SC M

| 2 | I<br>II<br>IV<br>V<br>VI<br>VII<br>JUV                             |                                 | 1<br>C<br>O<br>O<br>O<br>O<br>O                     |                                 |                                           |                                      |                                      | 00000000000000000000000000000000000000 |
|---|--------------------------------------------------------------------|---------------------------------|-----------------------------------------------------|---------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|
| 3 | I<br>I<br>I<br>I<br>V<br>V<br>V<br>I<br>V<br>I<br>I<br>J<br>U<br>V |                                 | C<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>6<br>6<br>6<br>6<br>6      | C<br>C<br>156<br>0<br>0<br>0<br>0         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1 |                                      |                                        |
| 4 | 1<br>11<br>1V<br>V<br>V1<br>V1<br>JUV                              |                                 |                                                     |                                 | C<br>C<br>1<br>0<br>C<br>C<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>1 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                        |
| 5 | I<br>I 1<br>I 1<br>I V<br>V<br>V<br>I<br>V 1<br>I<br>J U V         | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 211<br>76<br>0<br>0<br>0<br>0<br>0                  | 18<br>42<br>5<br>0<br>0<br>0    | 0<br>0<br>0<br>0<br>0<br>0                |                                      |                                      |                                        |
| 6 | I<br>II<br>IV<br>V<br>VI<br>VI<br>JUV                              |                                 | 618<br>18<br>0<br>0<br>0<br>0<br>0<br>0             | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>6<br>1<br>1<br>6<br>0<br>0           | 0<br>0<br>2<br>0<br>0<br>0<br>0<br>0 | С С С С С С С С С С                  |                                        |

| Table | 64  | (continued). |
|-------|-----|--------------|
| TOUTC | 0-1 | (concruce)   |

CONTINUATILN-PANDALUS BOREALIS/10 SQ M

| 7  | I<br>1 I<br>1 I I<br>I V<br>V<br>V<br>V<br>V<br>1<br>V<br>1<br>J U<br>V             | 17<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                           | C<br>0<br>1<br>53<br>1<br>0<br>0<br>0     | C<br>C<br>C<br>C<br>C<br>C<br>C |           |
|----|-------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|-----------|
| δ  | 1<br>11<br>1V<br>V<br>V<br>V<br>V<br>V<br>I<br>J<br>U<br>V                          |                                            | 1<br>6<br>0<br>0<br>0<br>0<br>6           | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0      |                                 |           |
| 9  | I<br>I I<br>I V<br>V<br>V I<br>V I I<br>J U V                                       | 69<br>34<br>0<br>0<br>0<br>0<br>0          |                                           | 0<br>0<br>5<br>0<br>0<br>0<br>0<br>0<br>0 | C<br>C<br>C<br>C<br>C<br>C<br>C | 000000000 |
| 10 | 1<br>11<br>11<br>1<br>V<br>V<br>V<br>V<br>V<br>V<br>I<br>V<br>1<br>I<br>J<br>U<br>V |                                            | 0<br>1<br>5<br>2<br>0<br>0<br>0<br>0<br>0 | C<br>0<br>7<br>8<br>2<br>0<br>0<br>0      |                                 |           |

# PANDALUS DANAE/10 SQ M

| STATION | STAGE                                | APR<br>6-13           | MAY<br>6-9                           | MAY<br>22-30               | JUL<br>8-15                                    | AUG<br>24-31               | 0CT<br>17-29                                                  | FEB<br>21-26                          |
|---------|--------------------------------------|-----------------------|--------------------------------------|----------------------------|------------------------------------------------|----------------------------|---------------------------------------------------------------|---------------------------------------|
| 1       | I<br>I I<br>I V<br>V<br>V<br>J L V   |                       |                                      |                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>1<br>0<br>0 | C<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                       |
| 2       | I<br>I]<br>IV<br>V<br>VI<br>JUV      |                       |                                      |                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0          |                            | 0<br>C<br>C<br>C<br>C<br>O<br>O                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| 3       | 1<br>11<br>1V<br>V<br>V1<br>JUV      |                       |                                      | υ<br>Ο<br>Ο<br>Ο<br>Ο<br>Ο |                                                |                            | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с                          |                                       |
| 4       | I<br>I I<br>I V<br>V<br>V U<br>J U V |                       |                                      |                            | 0<br>0<br>0<br>0<br>0<br>0                     |                            | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с                          |                                       |
| 5       | I<br>I I<br>I V<br>V<br>V I<br>J U V | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            |                                                | 0<br>0<br>0<br>0<br>0<br>0 | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с                          |                                       |

•

## CONTINUATION-PANDALUS DANAE/10 SO M

| 6  | I<br>I I<br>I I<br>I V<br>V<br>V<br>V<br>I<br>J U V        | 0<br>0<br>0<br>0<br>0<br>0<br>0      |                                                                                                  | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                            | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |                                         |
|----|------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-------------------------------------------|-----------------------------------------|
| 7  | I<br>11<br>111<br>IV<br>V<br>V<br>V<br>JUV                 | 0<br>0<br>0<br>0<br>0<br>0           | 6<br>6<br>7<br>7<br>7<br>7<br>8<br>7<br>8<br>7<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8 | 0<br>1<br>0<br>0<br>0<br>0      |                            | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | 0<br>0<br>0<br>0<br>0<br>0              |
| 8  | I<br>I I<br>I I I<br>I V<br>V<br>V<br>I<br>J U V           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  |                                 |                            | с с о о о о о о о                         |                                         |
| 9  | I<br>I I<br>I I<br>I V<br>V<br>V<br>V<br>V<br>J U<br>V     |                                      |                                                                                                  |                                 | 0<br>0<br>0<br>0<br>0<br>0 |                                           |                                         |
| 10 | 1<br>11<br>11<br>1<br>V<br>V<br>V<br>V<br>1<br>J<br>U<br>V |                                      | C<br>C<br>C<br>C<br>C<br>C<br>C                                                                  | 0<br>C<br>C<br>C<br>C<br>C      |                            |                                           | 000000000000000000000000000000000000000 |

510

# PANDALUS GUNIURUS/10 SQ M

| STATION  | STAGE                                                                                  | APR - 6-13 | MAY<br>6-9                                               | MAY<br>22-30                                   | JUL<br>ε-15                                         | ALG<br>24-31                         | 001<br>17-29                                                                                | FEB<br>21-26                            |
|----------|----------------------------------------------------------------------------------------|------------|----------------------------------------------------------|------------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------|
| 1        | I<br>II<br>IV<br>V<br>VI<br>VI<br>JUV                                                  |            | 0<br>0<br>0<br>0<br>0<br>0<br>0                          | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0           |                                                     |                                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0         |
| 2        | I<br>III<br>IV<br>V<br>VI<br>VII<br>JUV                                                |            |                                                          | 0<br>0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0      | 0 C C O C C C C C C C C C C C C C C C C                                                     | 0 U O O O O O O O O O O O O O O O O O O |
| 3        | I<br>I I<br>I V<br>V<br>V I<br>V I I<br>J U V                                          |            | 1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                       | 000000000000000000000000000000000000000 |
| <b>4</b> | I<br>III<br>IV<br>V<br>VI<br>JUV                                                       |            | 1<br>0<br>0<br>0<br>0<br>0<br>0                          |                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      |                                      | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с | 0 0 0 0 0 0<br>                         |
| 5        | 1<br>111<br>111<br>11<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |            | 1146<br>172<br>0<br>0<br>0<br>0<br>0<br>0                | 42<br>1176<br>666<br>0<br>0<br>0<br>0          |                                                     |                                      |                                                                                             | 00000<br>0000<br>0000<br>0000           |

| CONTINUATION-PANDALUS | GONIURUS/10 | SC M |
|-----------------------|-------------|------|
|-----------------------|-------------|------|

| 6  | I<br>II<br>IV<br>V<br>VI<br>VII<br>JUV                                    |   | 9 9<br>5 6<br>5 7<br>5 0<br>5 0<br>5 0<br>5 0                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>1              |                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0                     |                                      |
|----|---------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|-----------------------------------------------------|--------------------------------------|
| 7  | 1<br>11<br>1V<br>V<br>V<br>V<br>V<br>V<br>I<br>V<br>I<br>I<br>J<br>U<br>V |   | 8     699       0     3666       0     322       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0       0     0 | 000000000000000000000000000000000000000 |                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                      |
| 8  | I<br>I I<br>I V<br>V<br>V<br>V I<br>V I I<br>J C V                        | ( | 5 27                                                                                                                                                                     |                                         |                                 | 0<br>C<br>C<br>C<br>C<br>C<br>C<br>C                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 9  | I<br>I I<br>I V<br>V<br>V<br>V I<br>V I I<br>J U V                        |   | ט<br>ט<br>ט<br>ט                                                                                                                                                         |                                         |                                 | C<br>O<br>C<br>C<br>C<br>C<br>C<br>C<br>C           |                                      |
| 10 | I<br>II<br>IV<br>V<br>VI<br>JUV                                           |   | 0<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                | 000000000000000000000000000000000000000 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                     |                                      |

# PANDALUS HYPSINGTUS/16 SQ M

| STATION  | STAGE                                                   | APR<br>6-13                | MA Y<br>6-9                     | MAY<br>22-30                    | JUL<br>8-15                                                                                      | ALG<br>24-31 | 0CT<br>17-29                                                                                | FEB<br>21-26                            |
|----------|---------------------------------------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|-----------------------------------------|
| 1        | I<br>I I<br>I V<br>V<br>V I<br>J L V                    |                            |                                 |                                 |                                                                                                  |              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000000000000000000000000000000000000000 |
| Z        | I<br>II<br>IV<br>V<br>V<br>V<br>JUV                     |                            |                                 |                                 |                                                                                                  |              | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                             | 0<br>0<br>0<br>0<br>0<br>0              |
| 3        | I<br>11<br>11<br>1<br>1<br>V<br>V<br>V<br>V<br>1<br>JUV |                            |                                 | 0<br>6<br>6<br>6<br>0<br>6      |                                                                                                  |              |                                                                                             |                                         |
| <b>4</b> | 1<br>11<br>1V<br>V<br>V<br>V<br>1<br>JLV                | 0<br>0<br>0<br>0<br>0<br>0 | C<br>0<br>0<br>0<br>0<br>0<br>0 | 6<br>6<br>6<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                  |              | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с                          |                                         |
| 5        | I<br>II<br>IV<br>V<br>VI<br>JUV                         | 0<br>0<br>0<br>0<br>0<br>0 | 1<br>0<br>0<br>0<br>0<br>0      | 3<br>0<br>0<br>0<br>0<br>0      | -<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |              | с с о с о<br>с о с о с о                                                                    | 0<br>0<br>0<br>0<br>0<br>0              |

| 6        | I<br>I 1<br>I 1<br>I V<br>V<br>V<br>V<br>V<br>V<br>J U<br>V | 1<br>0<br>0<br>0<br>0<br>0           |                                 |                                 | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C      | 000000000000000000000000000000000000000 |
|----------|-------------------------------------------------------------|--------------------------------------|---------------------------------|---------------------------------|------------------------------------------------|-----------------------------------------|
| <b>7</b> | I<br>I I<br>I V<br>V<br>V<br>J L V                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                                 |                                                | 0000000                                 |
| ٤        | I<br>11<br>111<br>1V<br>V<br>V1<br>JUV                      | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                 |                                 |                                                | 000000                                  |
| 9        | I<br>I I<br>I V<br>V<br>V I<br>J U V                        | 0<br>C<br>C<br>0<br>0                |                                 |                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                         |
| 10       | 1<br>111<br>1V<br>V<br>V1<br>JUV                            |                                      | 0<br>C<br>C<br>O<br>O<br>O<br>O | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                                                |                                         |

# CONTINUATION-PANDALUS HYPSINOTUS/10 SC M

514

| PANDALUS | PLAIYCER | 05/10 | SQ M |
|----------|----------|-------|------|
|          |          |       |      |

| STATION | STAGE                             | APR<br>6-13      | MAY<br>6-9            | MAY<br>22-30               | JUL<br>8-15           | AUG<br>24-31          | DCT<br>17-29                    | FEB<br>21-26               |
|---------|-----------------------------------|------------------|-----------------------|----------------------------|-----------------------|-----------------------|---------------------------------|----------------------------|
| 1       | 1<br>11<br>111<br>1V<br>JUV       | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>C<br>C<br>O                | 0<br>0<br>0<br>0<br>0      |
| 2       | I<br>1 1<br>I I I<br>I V<br>J L V | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | C<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>C<br>C<br>C                | 0<br>1<br>0<br>0<br>0<br>0 |
| 3       | I<br>I I<br>I I I<br>I V<br>J L V | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      |                       | 0<br>0<br>0<br>0      | 0<br>C<br>C<br>C<br>C           | 0<br>0<br>0<br>0<br>0      |
| 4       | I<br>I 1<br>I I I<br>I V<br>J L V | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0      |
| 5       | I<br>I I<br>I I I<br>I V<br>J U V | 0<br>0<br>0<br>0 | 0<br>0<br>0           | 0<br>0<br>0<br>0           | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | с<br>с<br>с<br>с                | 0<br>0<br>0<br>0<br>0      |
| 6       | I<br>I I<br>I I I<br>I V<br>J U V | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>C<br>C<br>C<br>O |                       | 0<br>0<br>0<br>0<br>0           | 0<br>G<br>C<br>C           |
| 7       | I<br>II<br>III<br>IV<br>JUV       | 0<br>0<br>0<br>0 | 0<br>C<br>C<br>0<br>0 |                            |                       |                       | с<br>о<br>с<br>с<br>с           | 0<br>0<br>0<br>0           |

CONTINUATION-PANUALUS PEATYCEROS/10 SC M

| ზ  | 1<br>1 I<br>1 I 1<br>I V<br>3 U V |                  | 0<br>0<br>C<br>C      | C<br>U<br>C<br>C      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | C<br>C<br>C<br>C      | 0<br>0<br>0<br>0<br>0 |
|----|-----------------------------------|------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 9  | I<br>I I<br>I I I<br>I V<br>J U V | 0<br>0<br>0<br>0 | C<br>O<br>C<br>C<br>C |                       | C<br>C<br>C<br>O<br>O |                       | C<br>C<br>C<br>C<br>C | 0<br>0<br>0<br>0<br>0 |
| 10 | I<br>II<br>III<br>IV<br>JUV       | 0<br>0<br>0<br>0 |                       | C<br>C<br>C<br>C<br>C | ີ ເ<br>ເ<br>ເ<br>ເ    | 0<br>0<br>0<br>0<br>0 |                       | 0<br>0<br>0<br>0      |

.....

## PANDALUS STENULEPIS/10 SG M

| STATION | STAGE                                               | APR<br>6-13                | MAY<br>6-9                      | MAY<br>22-30                    | JUL<br>8-15                  | ALG<br>24-31 | 0CT<br>17-29                                   | F£B<br>21-26               |
|---------|-----------------------------------------------------|----------------------------|---------------------------------|---------------------------------|------------------------------|--------------|------------------------------------------------|----------------------------|
| 1       | I<br>I I<br>I I I<br>I V<br>V                       | 0<br>0<br>0<br>0           | 9<br>0<br>0<br>0                | 6<br>3<br>0<br>0<br>0           | 1<br>5<br>7<br>7<br>2        |              | C<br>C<br>C<br>C<br>C                          | C<br>C<br>O<br>C           |
|         | V I<br>ЈС V                                         | 0<br>0                     | с<br>0                          | C<br>O                          | 1<br>0                       | 0<br>0       | C<br>C                                         | 0<br>0                     |
| 2       | I<br>II<br>IV<br>V<br>V<br>JUV                      | 0<br>0<br>0<br>0<br>0      | 1<br>0<br>0<br>0<br>0<br>0<br>0 | C<br>1<br>0<br>C<br>0           | 0<br>- 0<br>0<br>0<br>0<br>0 |              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                            |
| 3       | 1<br>111<br>1 V<br>V<br>V I<br>J U V                | 0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0 |                                 |                              |              |                                                |                            |
| 4       | I<br>I I<br>I I<br>I V<br>V<br>V<br>V<br>I<br>J L V |                            |                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0   |              | с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с<br>с | 0<br>0<br>0<br>0<br>0<br>0 |

# CENTINUATION-PANDALUS STENGLEPISZIG SC M

| 5 | 1<br>11<br>11<br>1V<br>V<br>V<br>V<br>JUV                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>C<br>C<br>C<br>C<br>C<br>C<br>C |                                       |                                 | C<br>C<br>C<br>C<br>C<br>C                     |                                      |
|---|-------------------------------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------|---------------------------------|------------------------------------------------|--------------------------------------|
| 6 | 1<br>1 I<br>1 I I<br>1 V<br>V<br>V<br>V<br>J<br>U<br>V            | C<br>C<br>C<br>O<br>O<br>O                | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>2<br>0<br>C<br>C                 |                                 | 0<br>C<br>C<br>C<br>C<br>C<br>O                | 00000<br>0000                        |
| 7 | I<br>II<br>II<br>IV<br>V<br>V<br>JUV                              | 0<br>C<br>C<br>C<br>O<br>C<br>O           | 0<br>0<br>0<br>0<br>0<br>0           | C<br>C<br>C<br>C<br>C<br>C<br>C       |                                 | C<br>C<br>C<br>C<br>C<br>C<br>C                |                                      |
| 8 | I<br>  I<br>  I<br>  I<br>  V<br>V<br>V<br>  V<br>  J<br>  U<br>V | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0           | 0<br>1<br>0<br>0<br>0<br>0<br>0       |                                 | C<br>O<br>O<br>C<br>O                          | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| 9 | 1<br>1 I<br>1 I I<br>I V<br>V<br>V<br>V I<br>J U V                | 36<br>2<br>0<br>0<br>0<br>0               |                                      | 11<br>0<br>0<br>1<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>1<br>0 | C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | C<br>0<br>0<br>0<br>0<br>0<br>0      |

517

### CONTINUATION-PANDALUS STENULEPIS/IC SC M

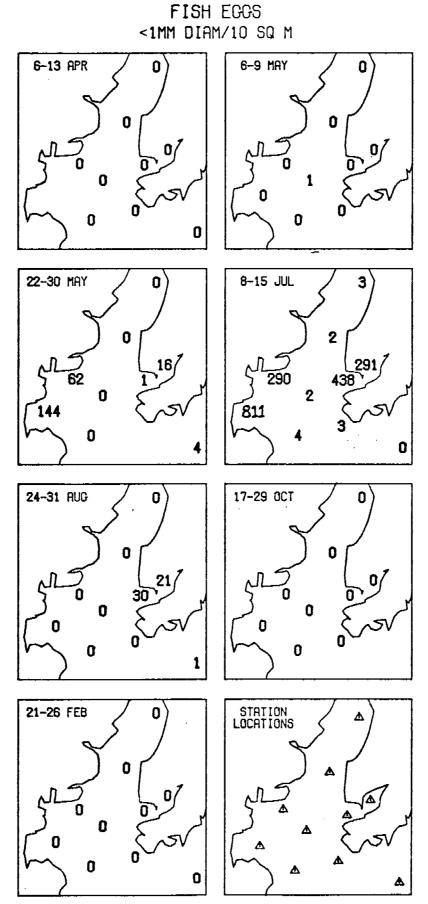
| 10 | 1   | 0 | O | 0 | O | С |
|----|-----|---|---|---|---|---|
|    | 11  | 0 | 0 | C | 0 | Ú |
|    | III | 0 | U | 1 | 0 | 0 |
|    | IV  | 0 | C | 1 | 0 | С |
|    | ν   | 0 | G | 1 | 0 | C |
|    | VI  | 0 | 0 | 0 | 1 | С |
|    | JUV | 0 | L | 0 | 0 | 0 |

#### PANDALUS MONTAGUI TRIDENS/10 SQ M

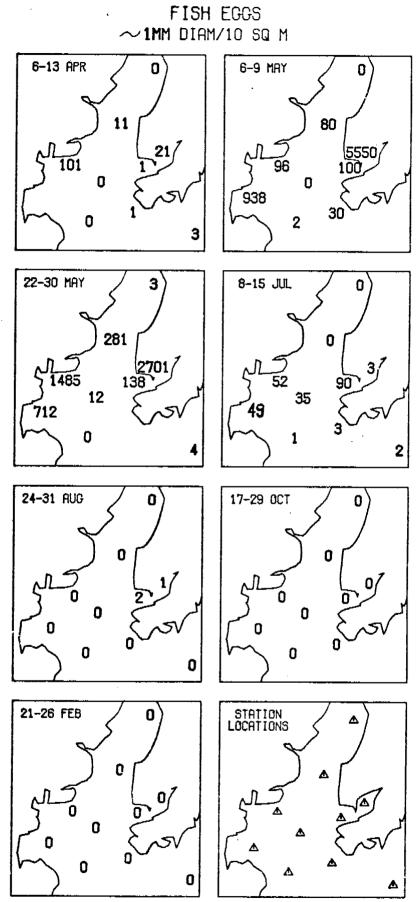
| STATION  | STAGE                             | APR<br>6-13           | MA Y<br>6-9             | MAY<br>22-30           | JUL<br>8-15           | AUG<br>24-31          | 0CT<br>17-29          | FEB<br>21-26               |
|----------|-----------------------------------|-----------------------|-------------------------|------------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| 1        | I<br>I I<br>I I I<br>I V<br>J L V | 0<br>0<br>0<br>0      | 153<br>C<br>C<br>C<br>C | 7<br>76<br>5<br>0<br>0 | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | с<br>с<br>с<br>с      | 0<br>0<br>0<br>0<br>0      |
| 2        | I<br>I I<br>I I I<br>I V<br>J U V | 0<br>0<br>0<br>0      | 1<br>0<br>0<br>0        | C<br>1<br>C<br>C<br>C  | 0<br>0<br>0<br>0      |                       | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0<br>0 |
| З        | 1<br>11<br>11<br>1V<br>JUV        | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0   | 0<br>C<br>C<br>C<br>C  | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0      | 0<br>0<br>0<br>0<br>0 |                            |
| <b>4</b> | 1<br>1 I<br>I I I<br>I V<br>J U V | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0        | с<br>с<br>о<br>о       |                       | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0      | C<br>C<br>O<br>C<br>O      |
| 5        | I<br>I 1<br>I 1<br>I V<br>J U V   | 0<br>0<br>0<br>0      | 1<br>0<br>0<br>6        | 0<br>0<br>0<br>0<br>0  | 0<br>0<br>0<br>0<br>0 |                       |                       | 0<br>C<br>0<br>C<br>C      |

•

| 6  | I<br>I I<br>I I I<br>I V<br>J L V |                       | 0<br>C<br>0<br>0<br>0 |                         | 0<br>C<br>C<br>C<br>C | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 |                       |
|----|-----------------------------------|-----------------------|-----------------------|-------------------------|-----------------------|------------------|------------------|-----------------------|
| 7  | I<br>1 I<br>1 I 1<br>I V<br>J U V | 0<br>0<br>0<br>0      | C<br>0<br>C<br>0      | 0<br>0<br>0<br>0        | 6<br>6<br>0<br>0      | 0<br>0<br>0<br>0 | C<br>C<br>C<br>O |                       |
| δ  | I<br>11<br>I I I<br>I V<br>J L V  |                       | C<br>C<br>C<br>C      |                         | C<br>C<br>C<br>C      | 0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 | 00000<br>0000         |
| 9  | I<br>I 1<br>I I I<br>I V<br>J U V | 1<br>0<br>0<br>0<br>0 | 510<br>C<br>O<br>C    |                         | 0<br>C<br>1<br>0<br>C | 0<br>0<br>0<br>0 | C<br>C<br>C<br>C | C<br>0<br>0<br>0      |
| 10 | I<br>1 1<br>I I I<br>I V<br>J L V | 0<br>0<br>0<br>0      |                       | 21<br>18<br>4<br>0<br>0 | 0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0 |                  | 0<br>0<br>0<br>0<br>0 |


#### CONTINUATION-PANDALUS MONTAGUI TRIDENS/10 56 N

Figures 3 - 106. Seasonal quantitative density


distributions of early life history stages.

Relative abundance of organisms of commercial, sport, and ecosystem importance from under 10  $m^2$  surface area taken at 10 stations on 7 cruises in the Lower Cook Inlet region.

Figure 3.









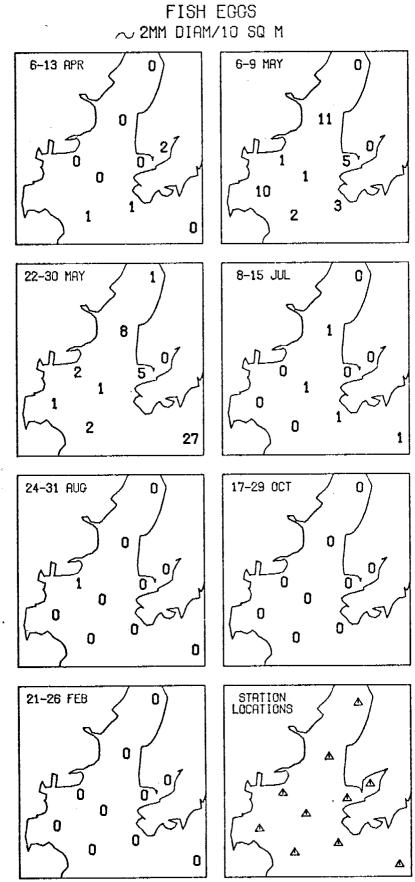







Figure 7.

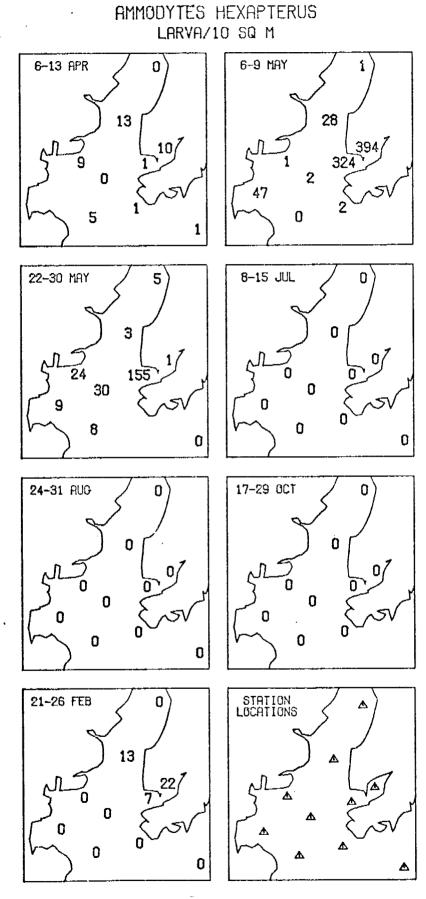
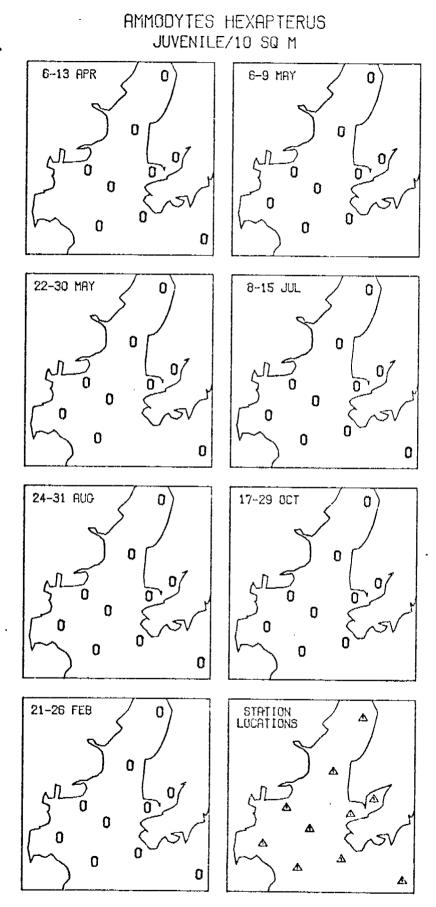
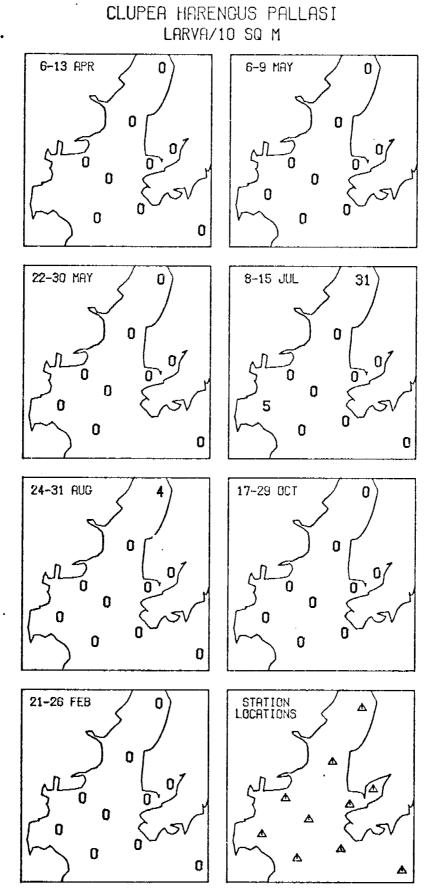
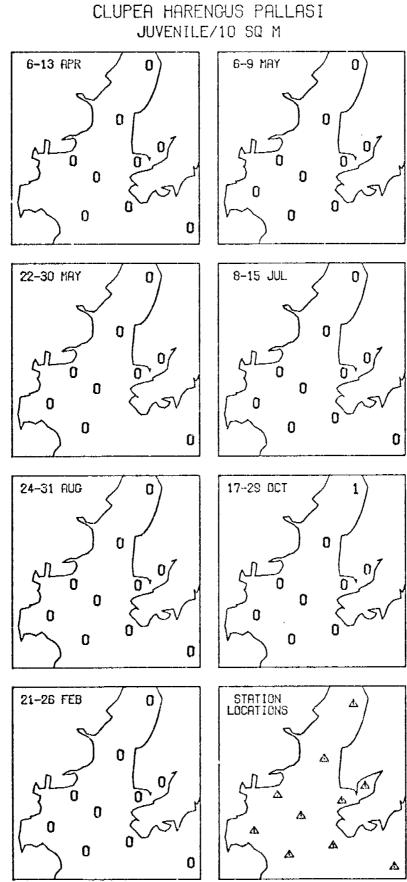
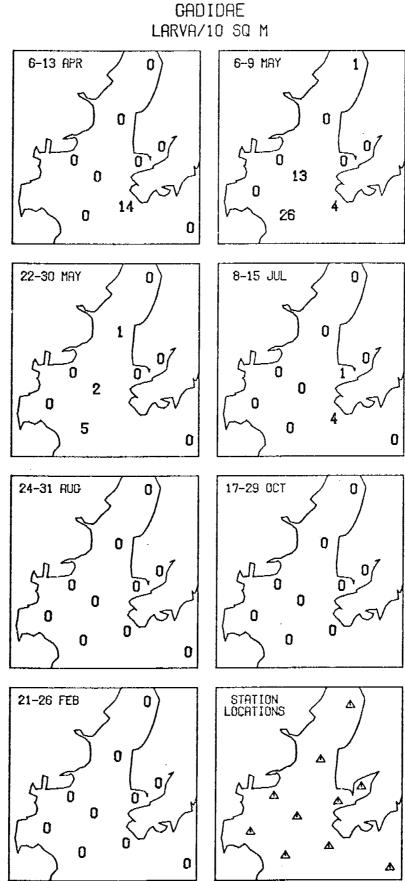
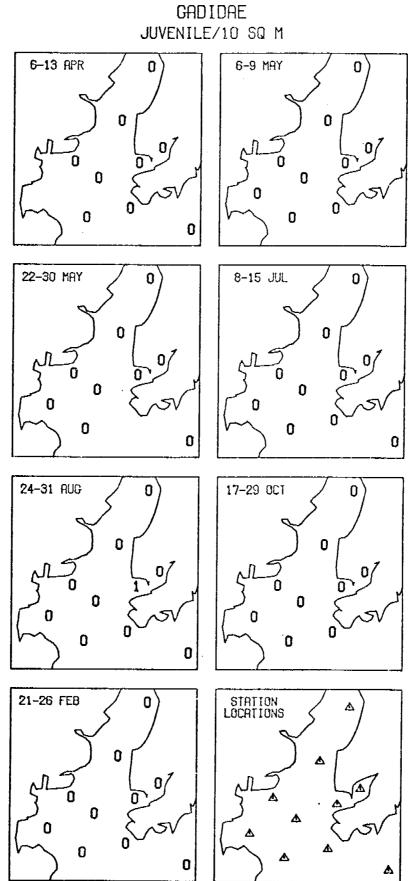



Figure 8.

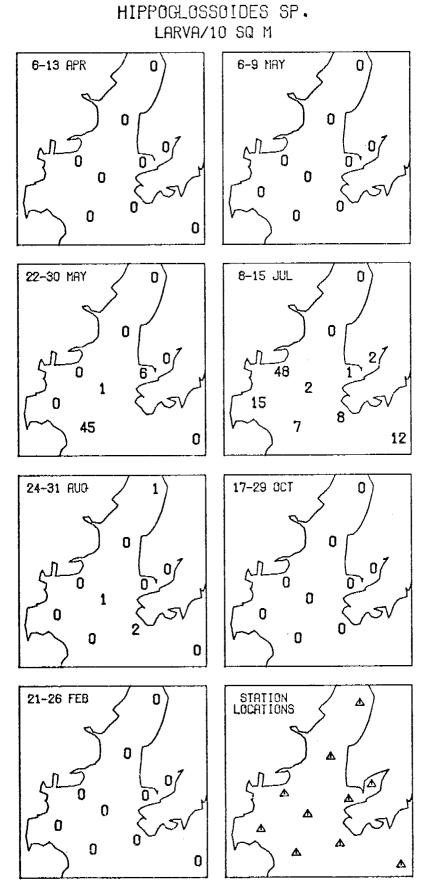






Figure 9.

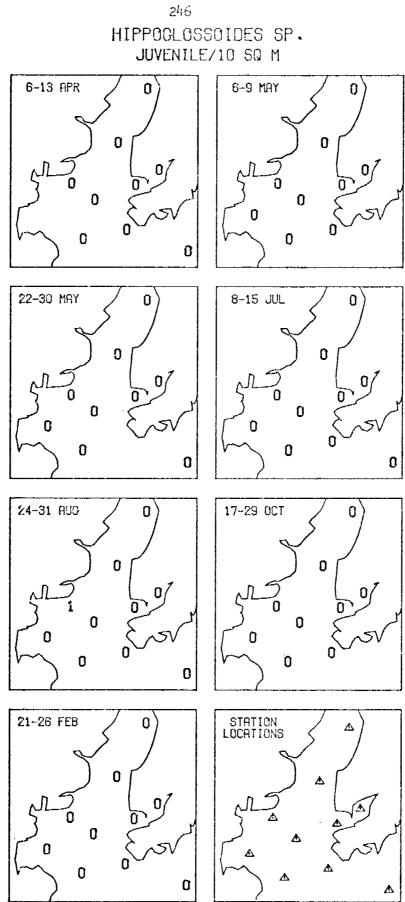




















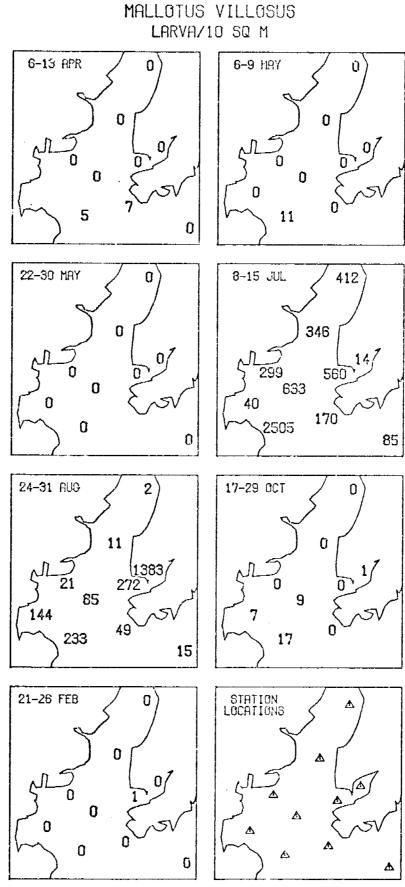
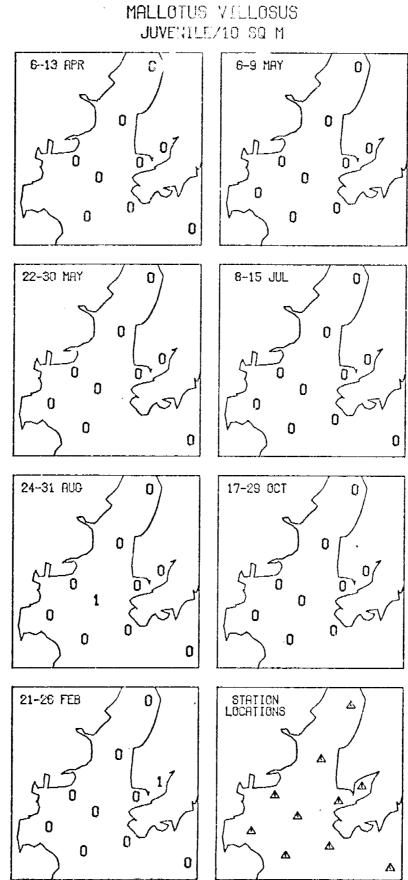
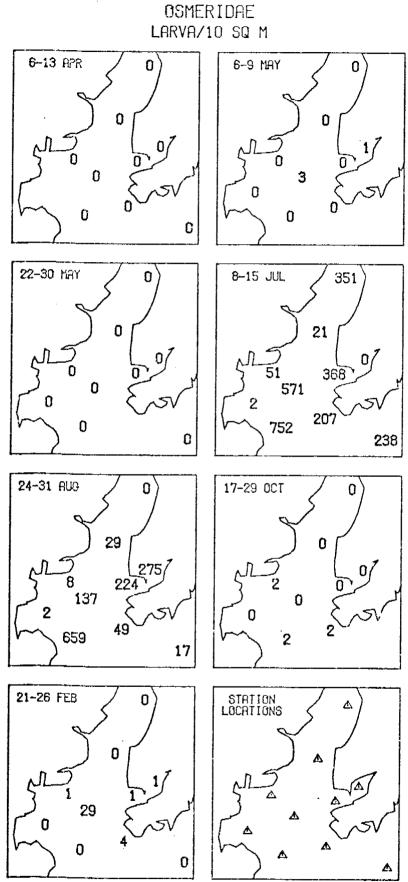






Figure 16.

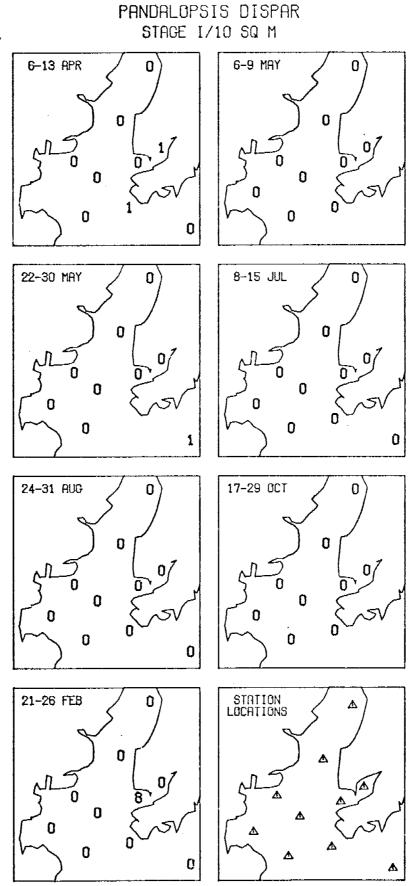
.

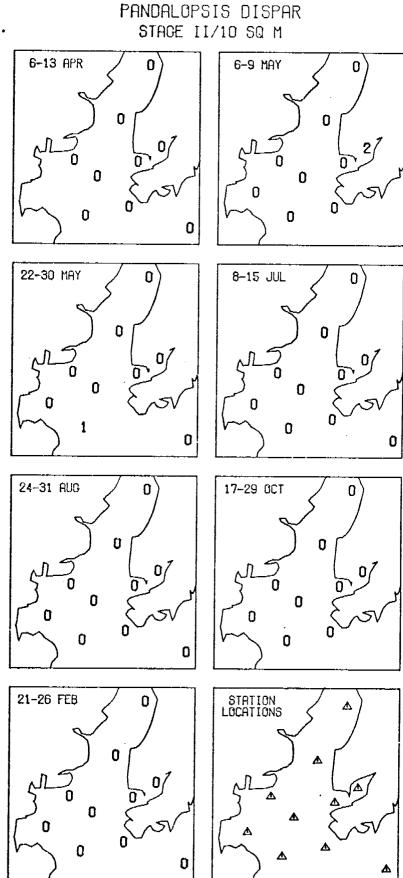




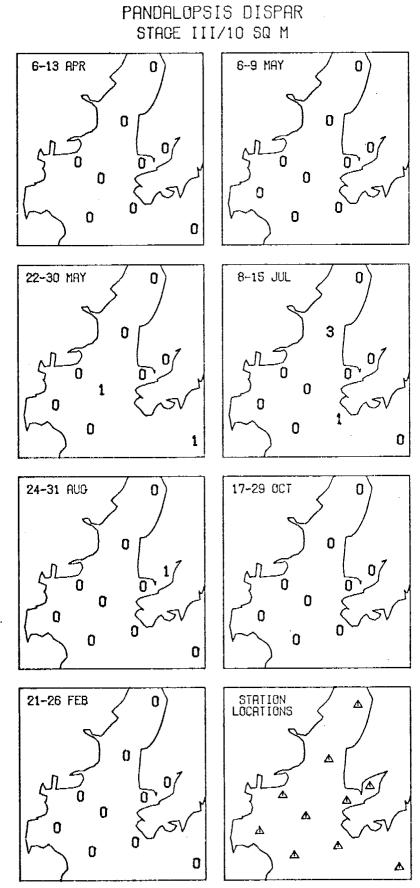




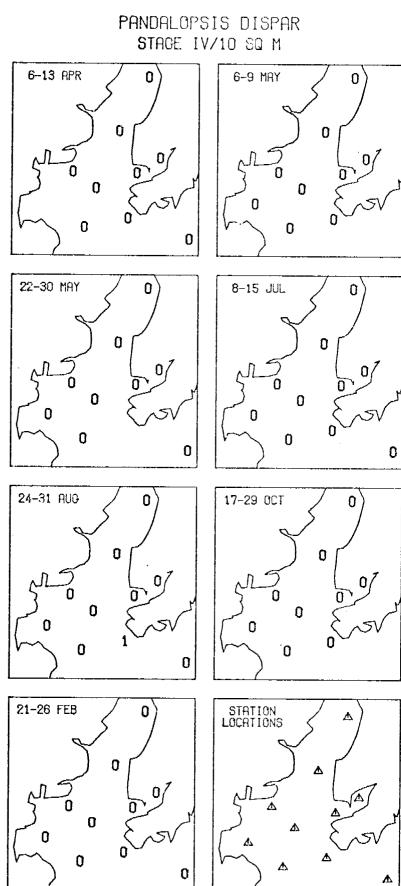





Figure 19.

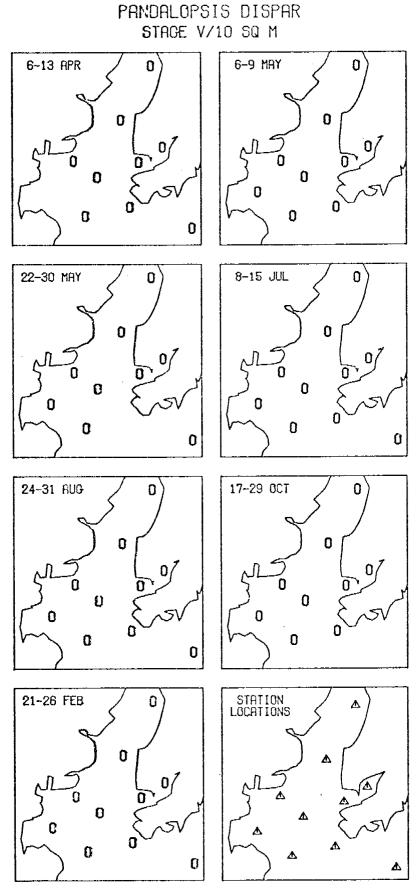
.







.

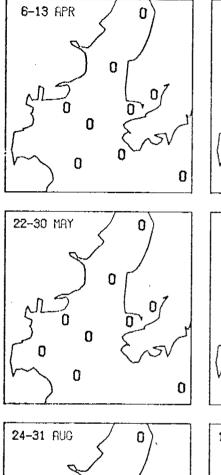


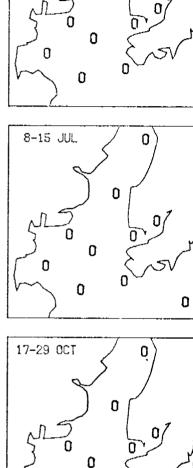


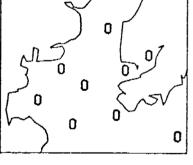


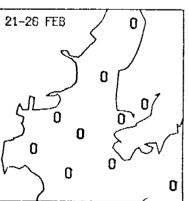


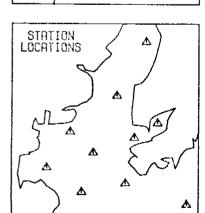


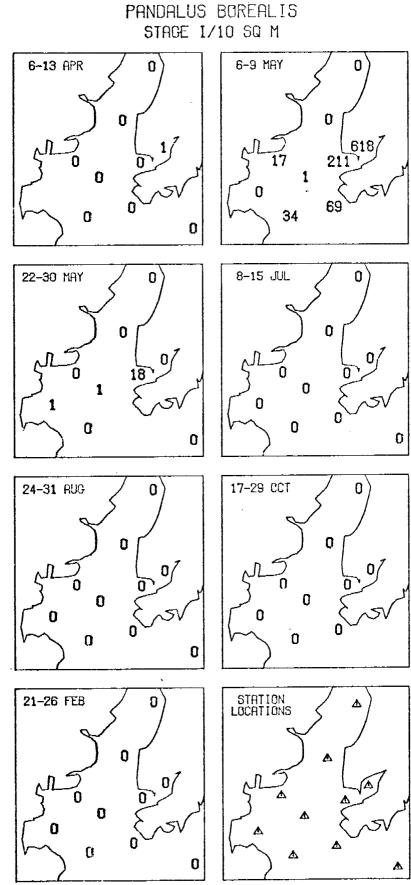





PANDALOPSIS DISPAR JUVENILE/10 SQ M


6-9 MAY









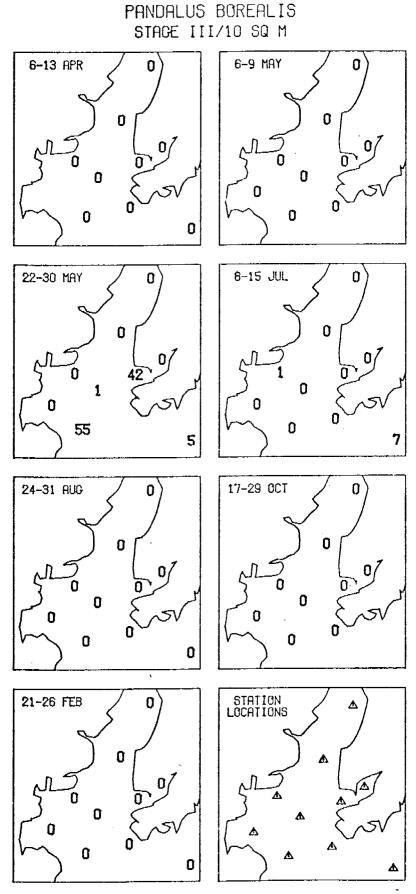




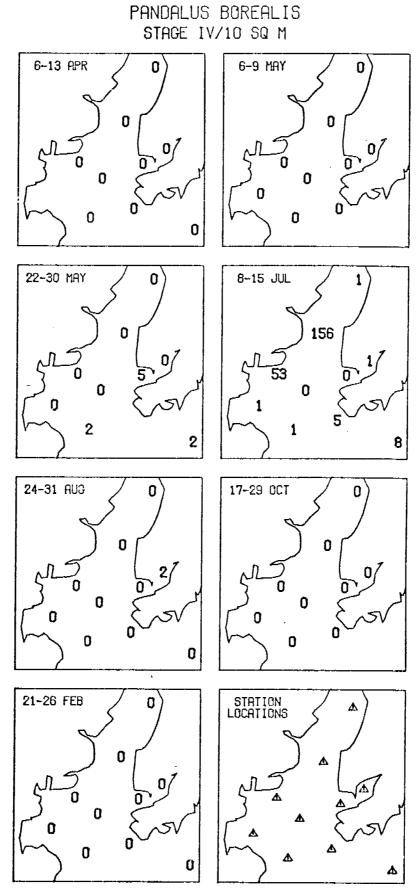




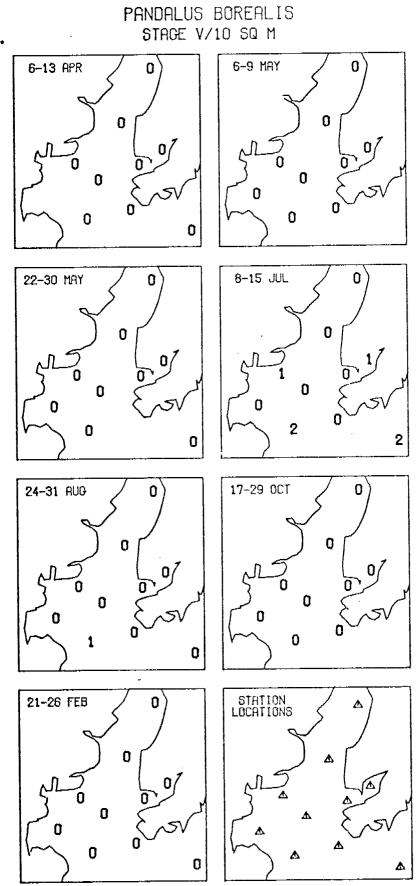

PANDALUS BOREALIS STAGE II/10 SQ M 6-13 APR 6-9 MAY **.**18/ 0/ S 22-30 MAY 8-15 JUL Ũ 5/ ΟŻ n 24-31 AUG 17-29 OCT 9/ 0/ Ü n . STATION LOCATIONS 21-26 FEB Δ ₫ 0/


Ø

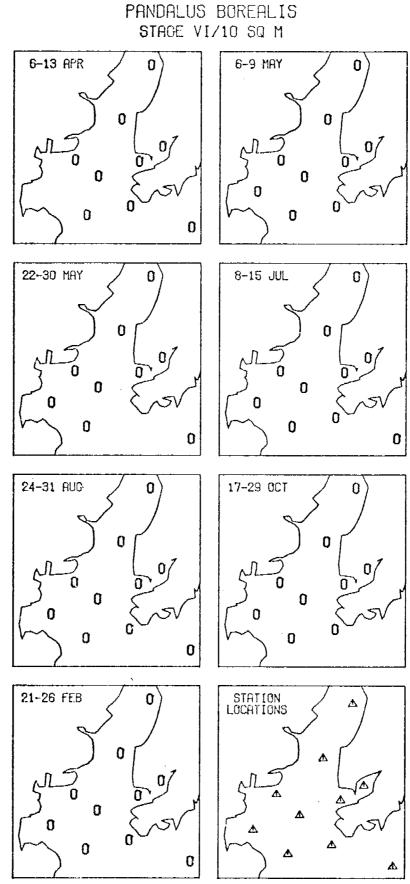
▲


♪

⊿

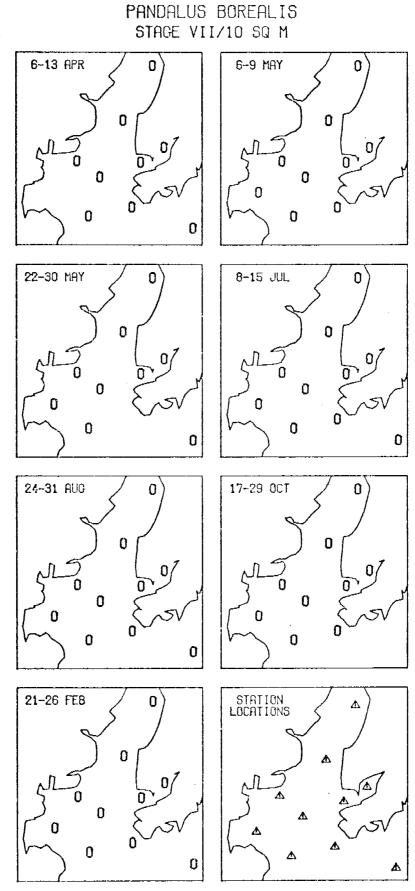




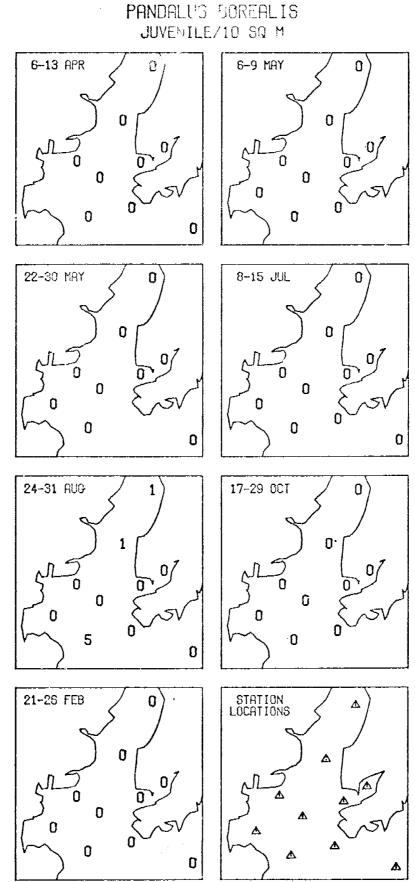





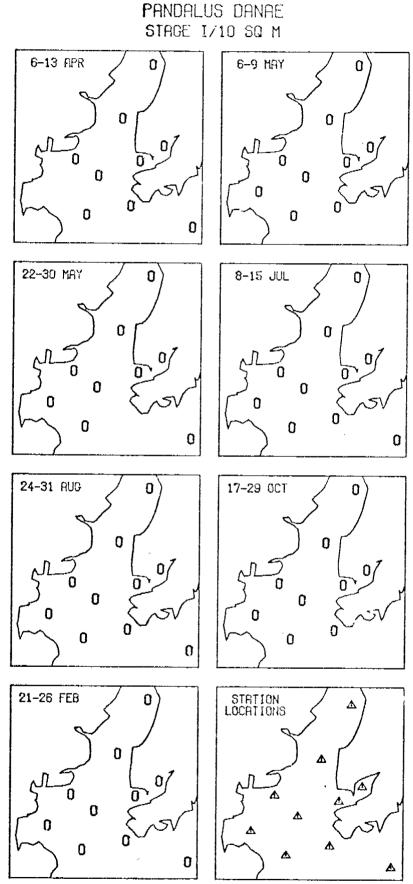


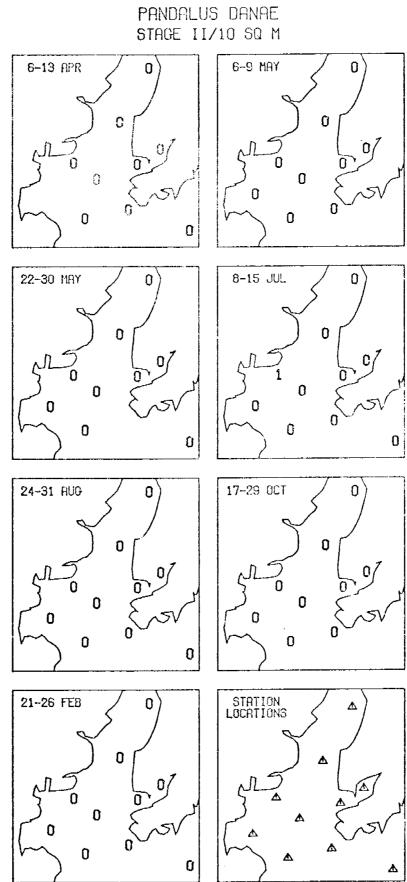


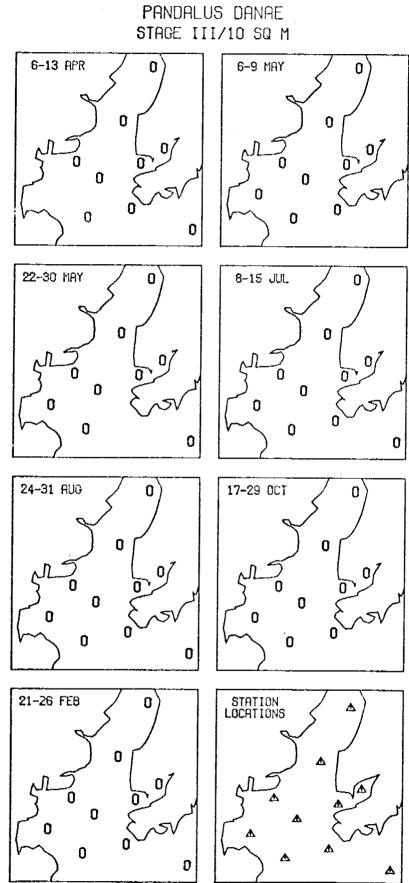

. . .


Figure 31.

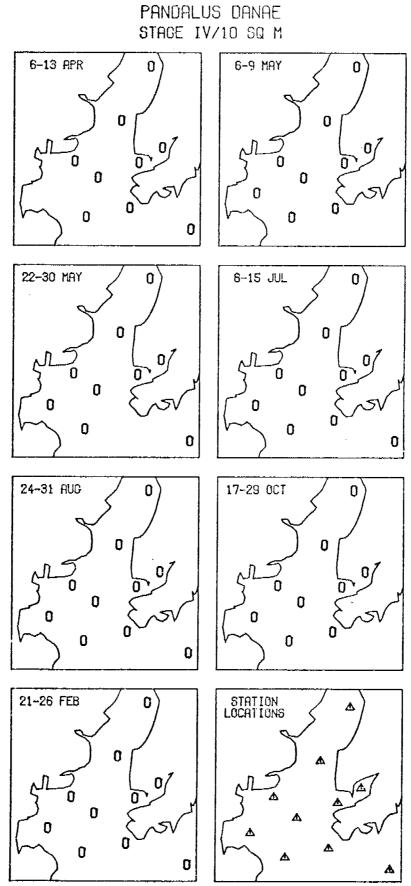




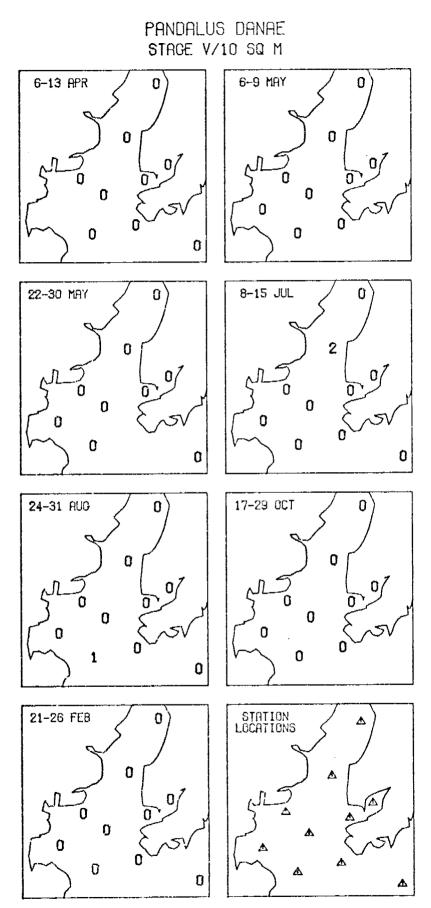






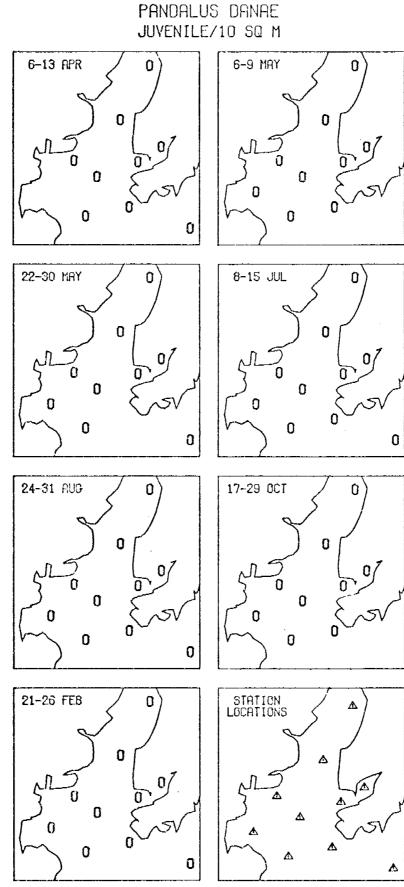





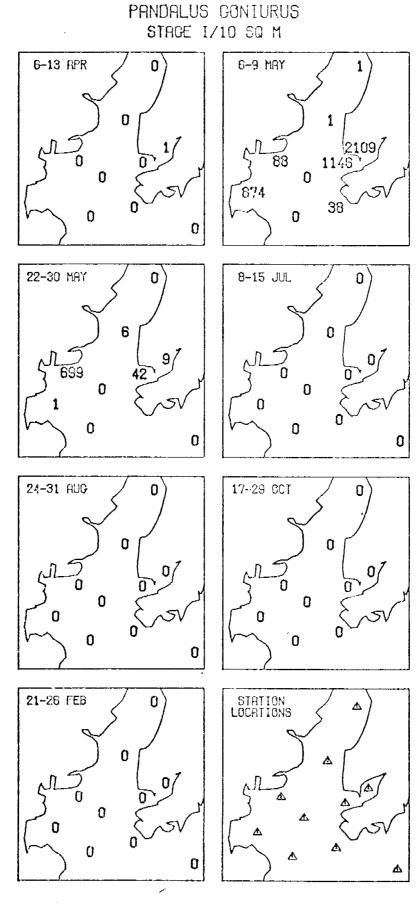




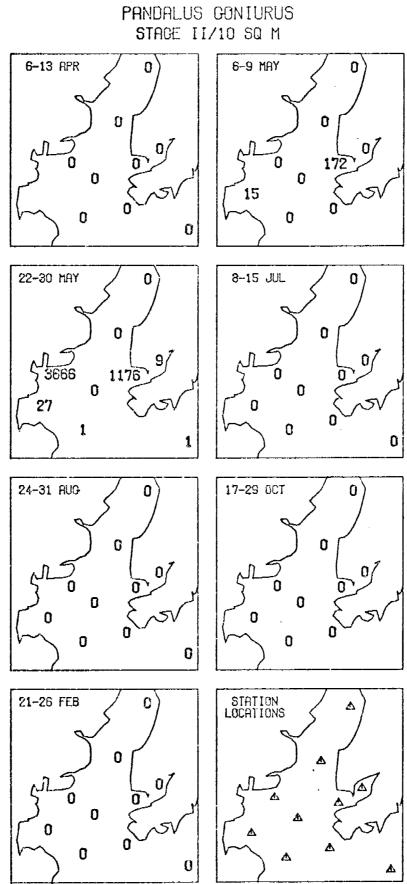


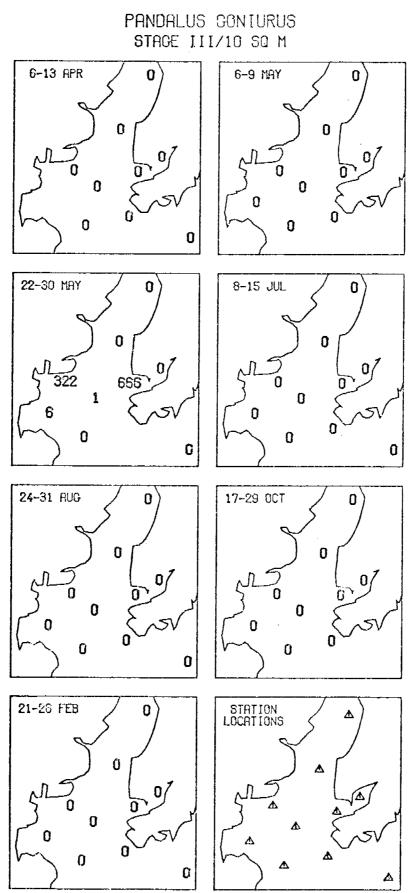




.

PANDALUS DANAE STACE VI/10 SQ M 6-13 APR 6-9 MAY 0/ 0/ Û 22-30 MAY 8-15 JUL 0/ 0/ ſ 24-31 AUG 17-29 BCT D 0/ n Û STATION LOCATIONS 21-26 FEB ₫ ♪ 0/ n ♪ ⊘ ₫ ♪ ₼

















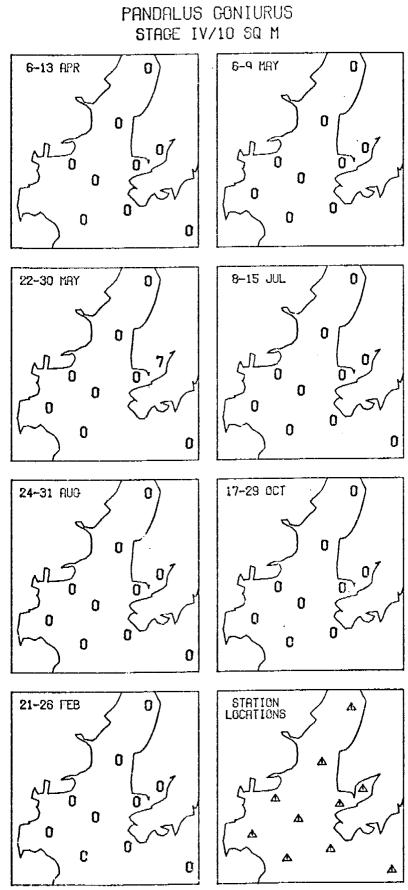
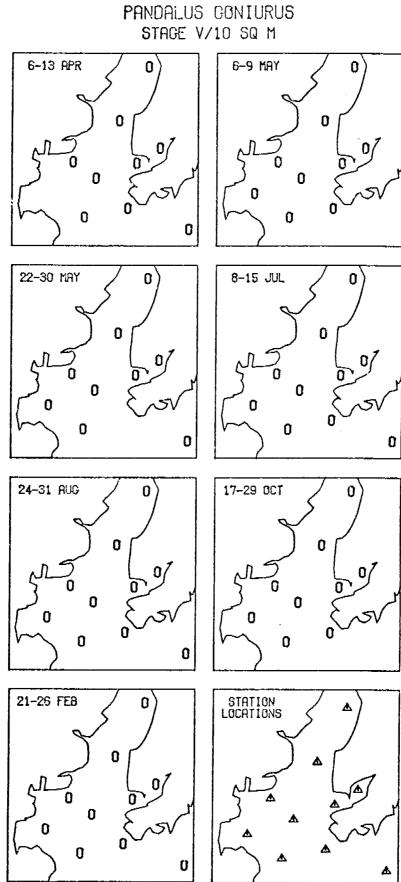





Figure 44.





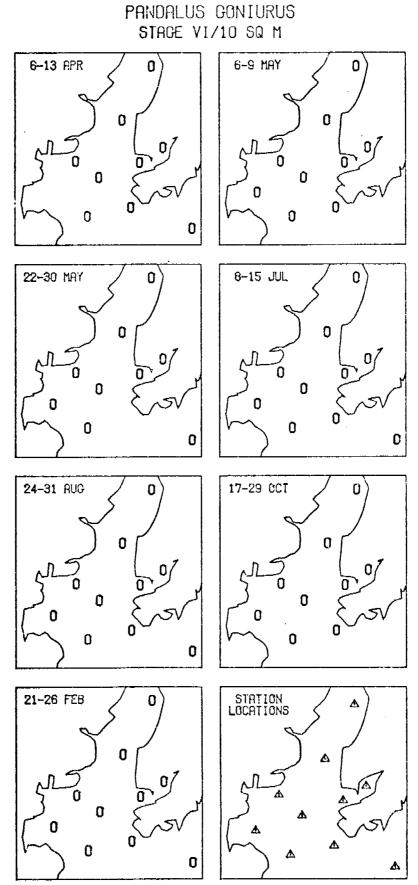



Figure 46.

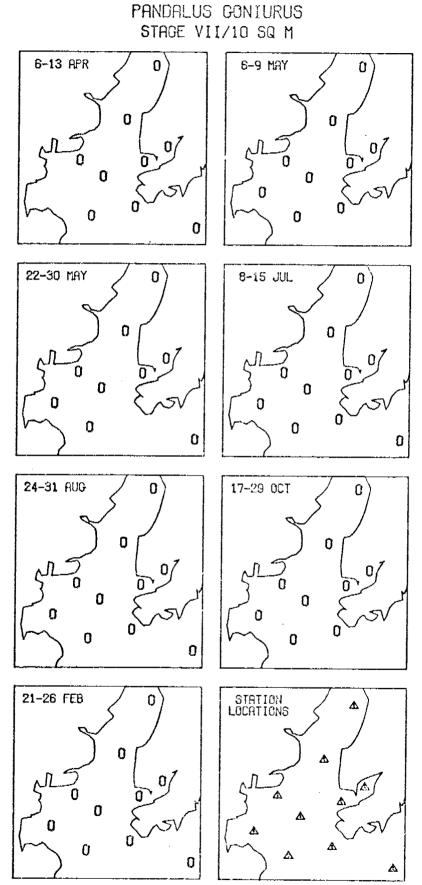
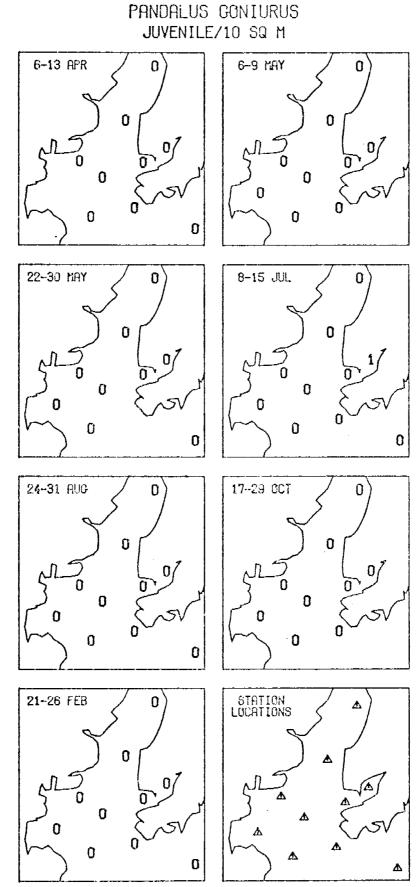
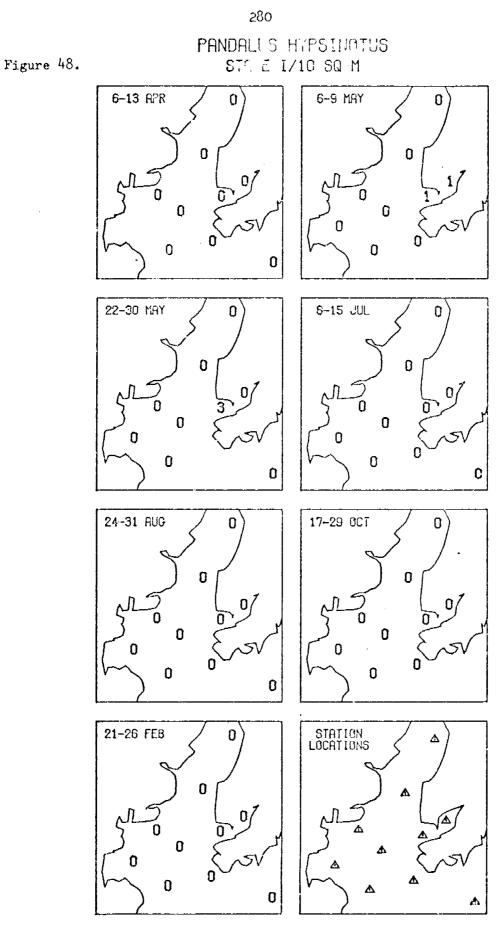
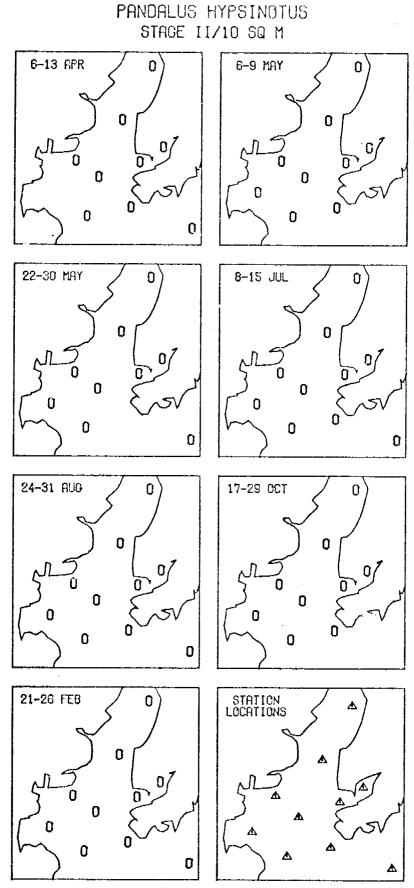
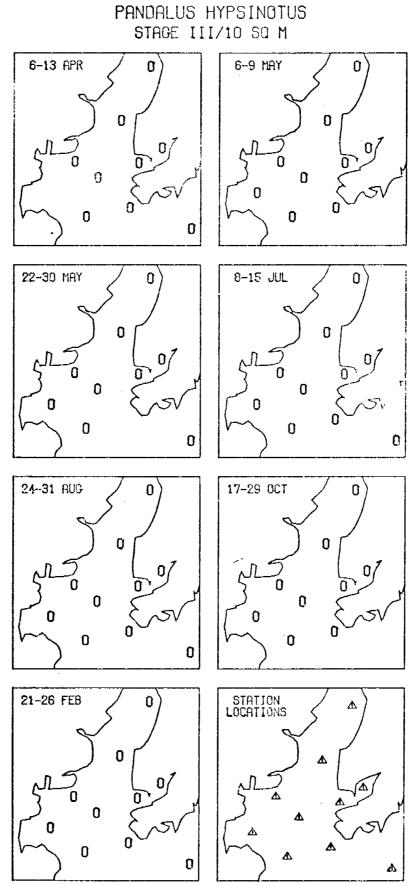
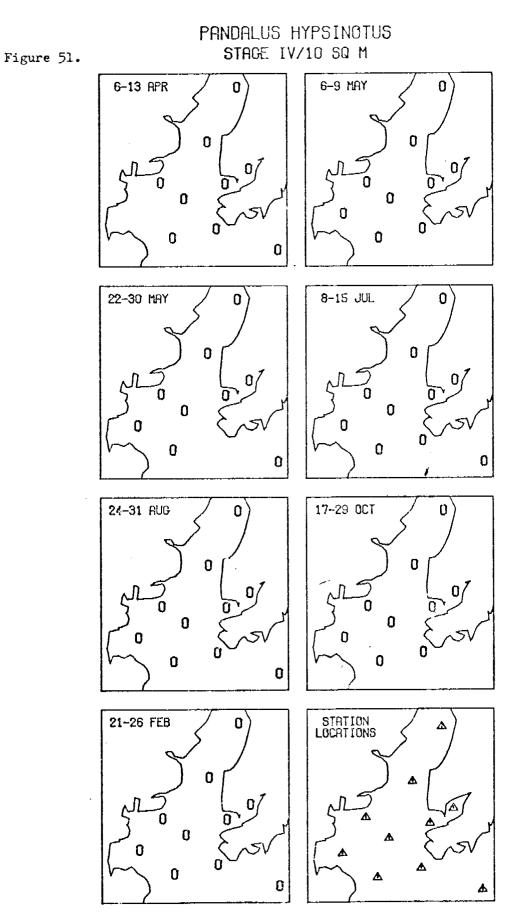
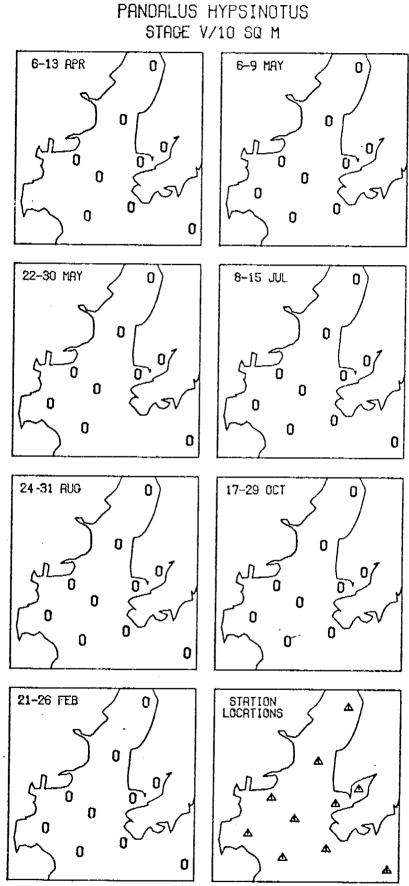






Figure 47.

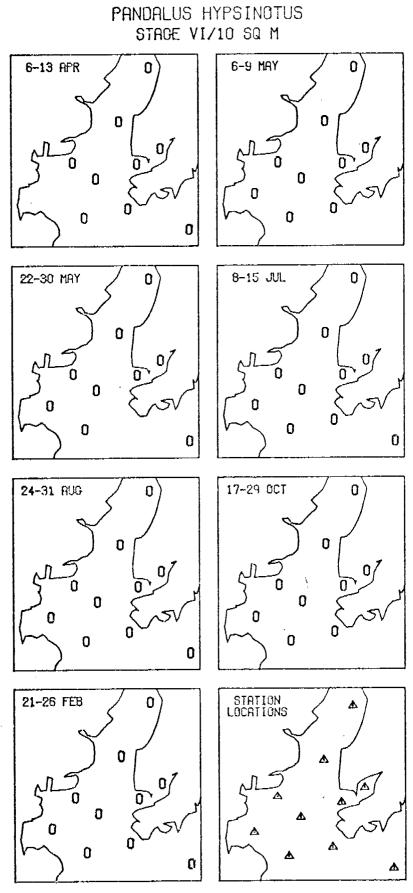


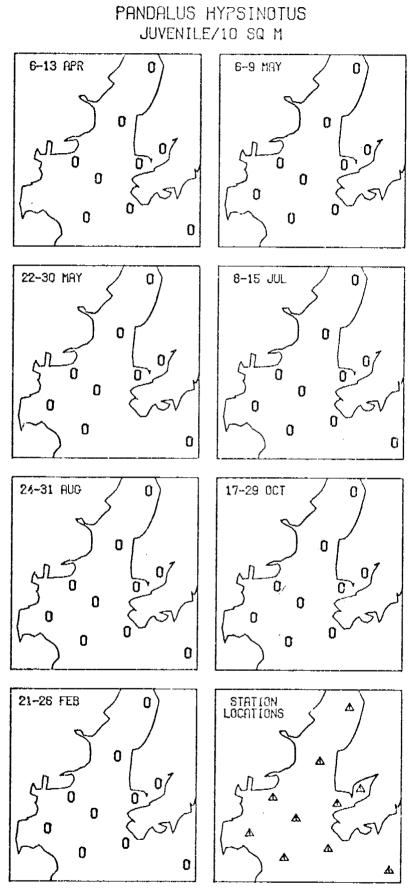


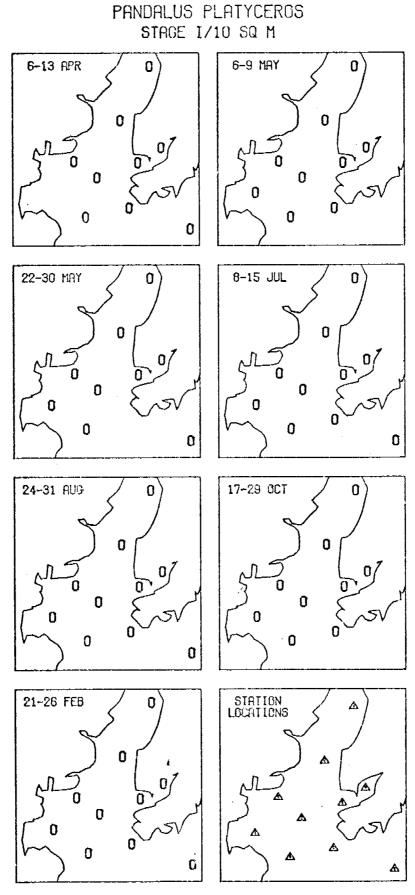


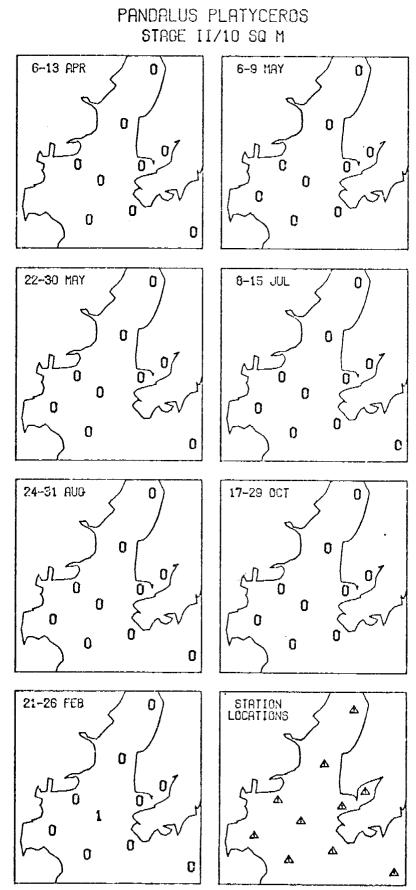


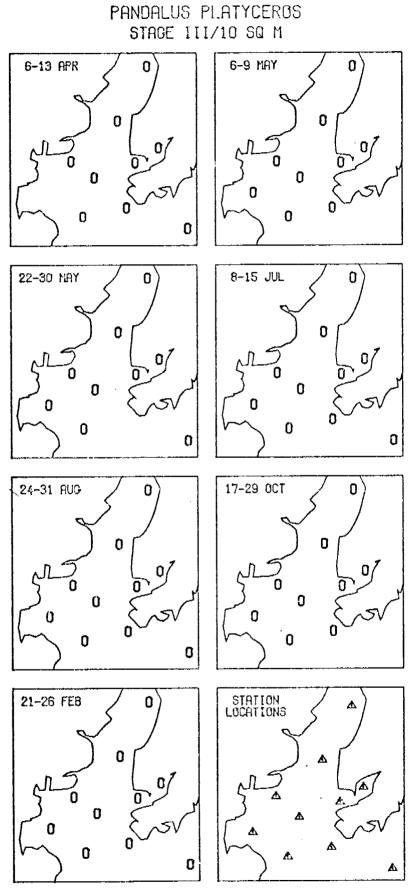


















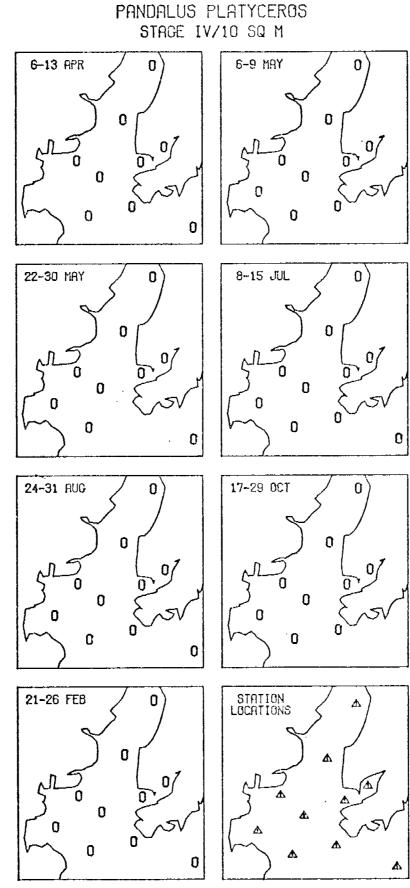



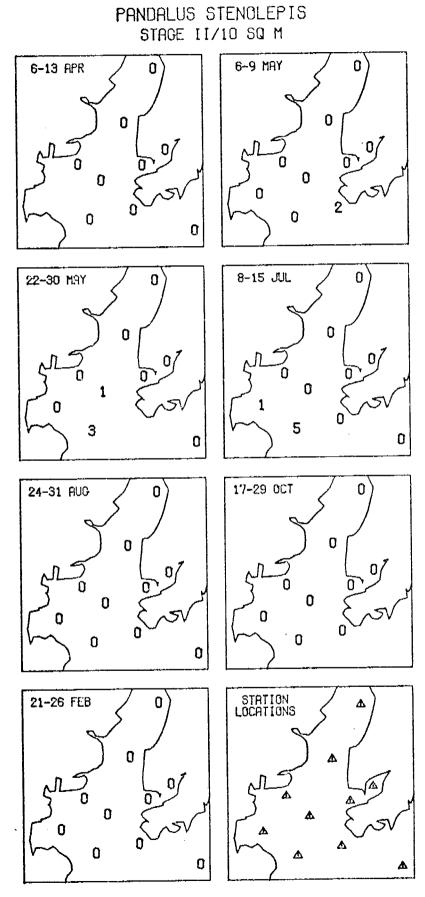
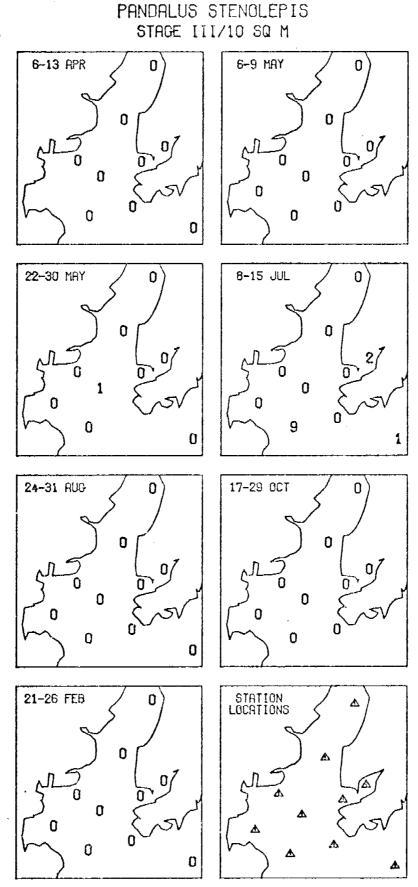
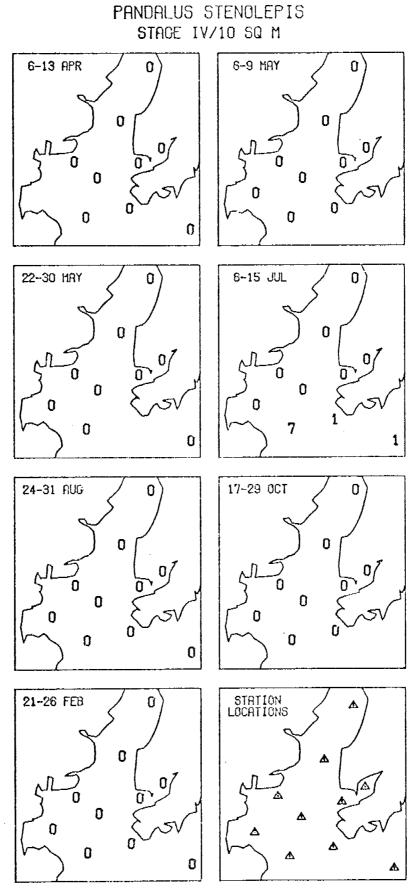

Figure 59.

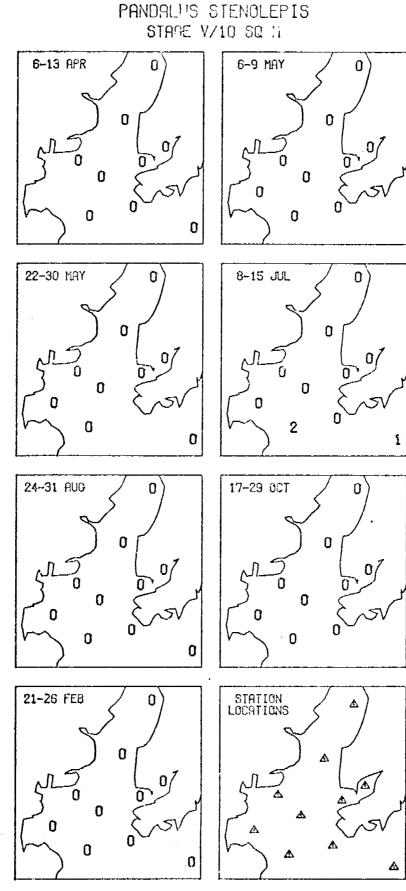










Figure 62.













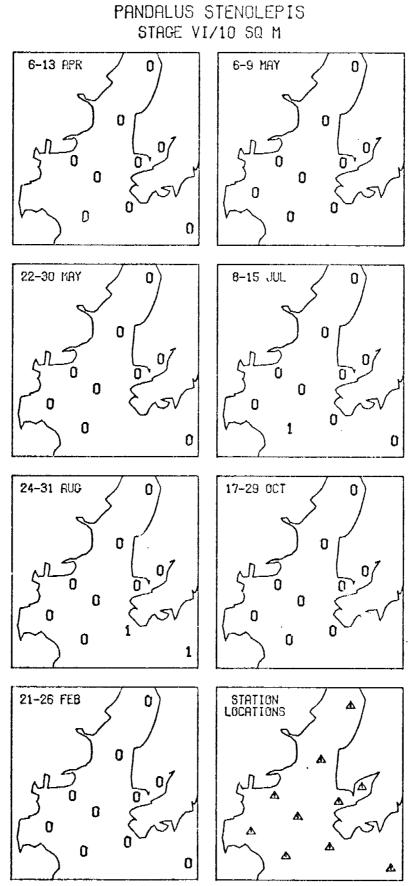
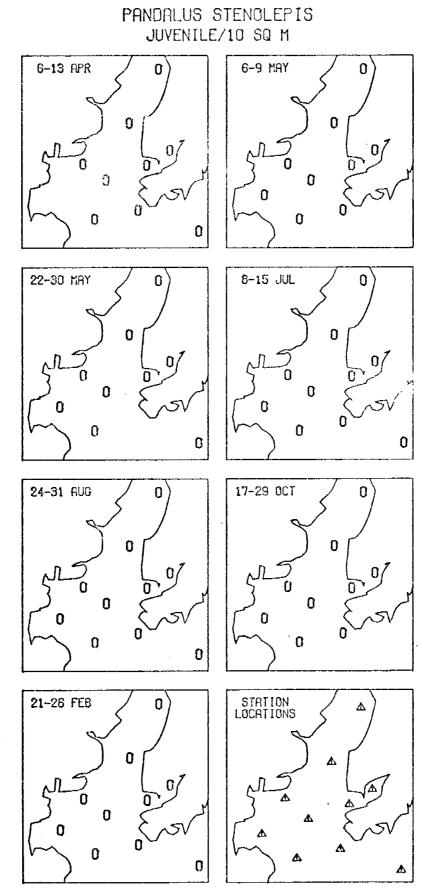




Figure 66.





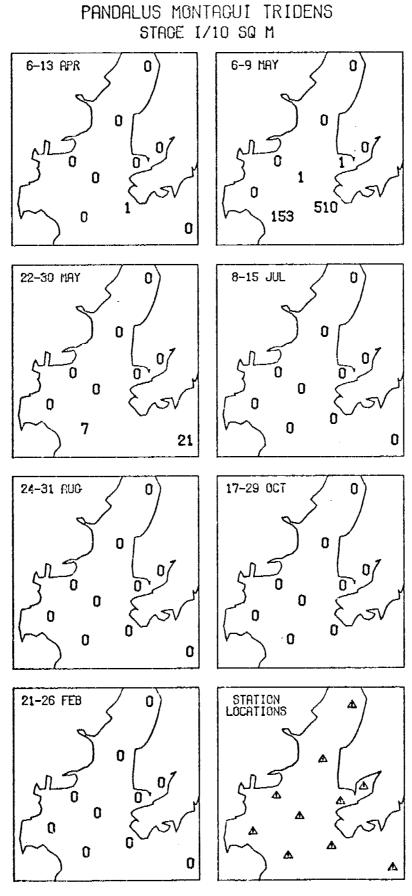
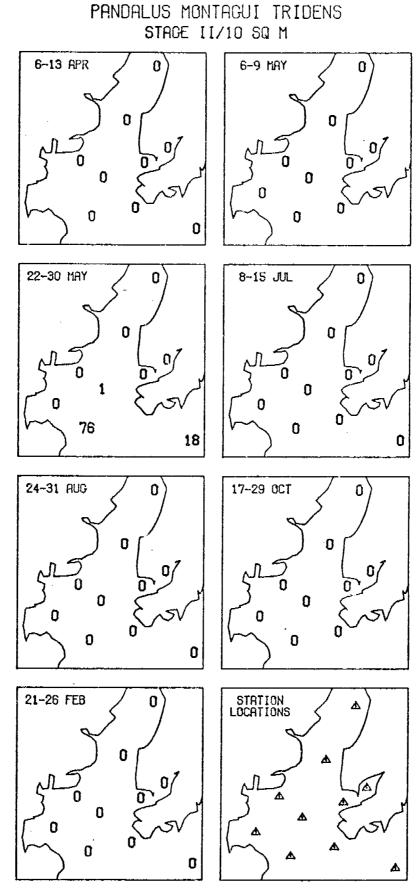
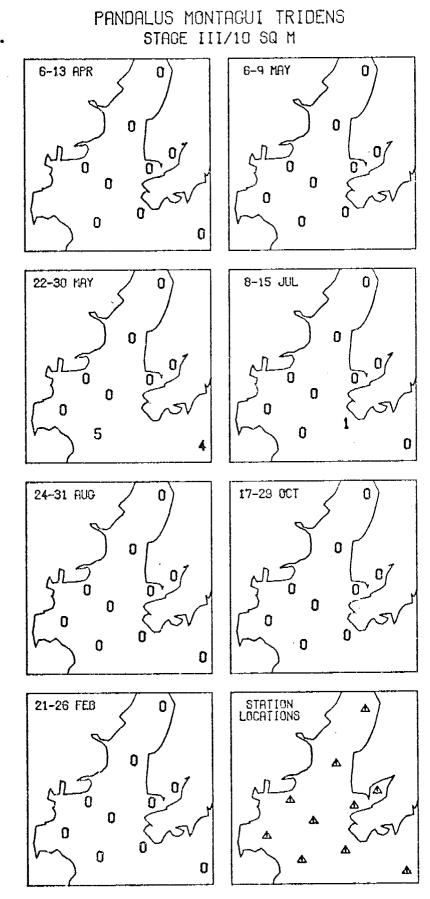





Figure 68.





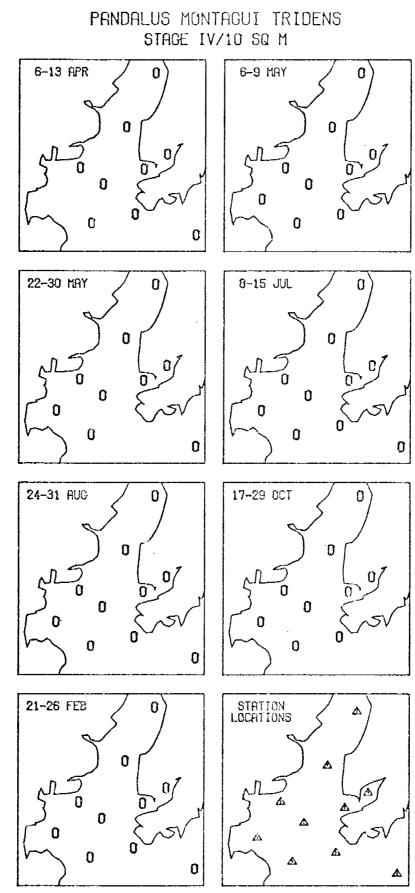
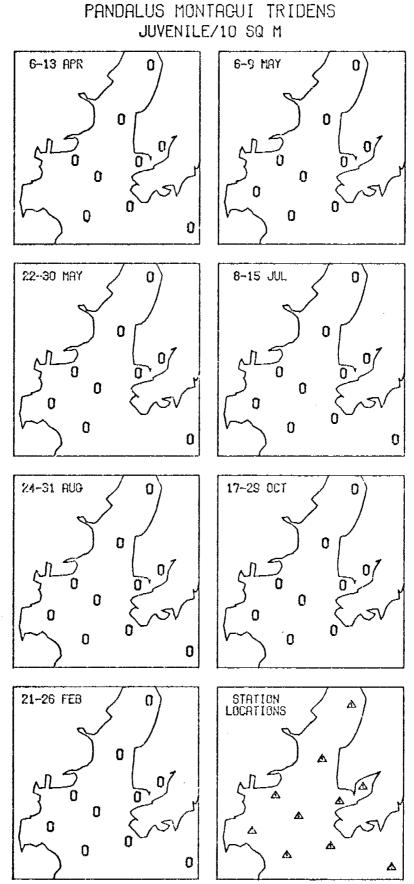
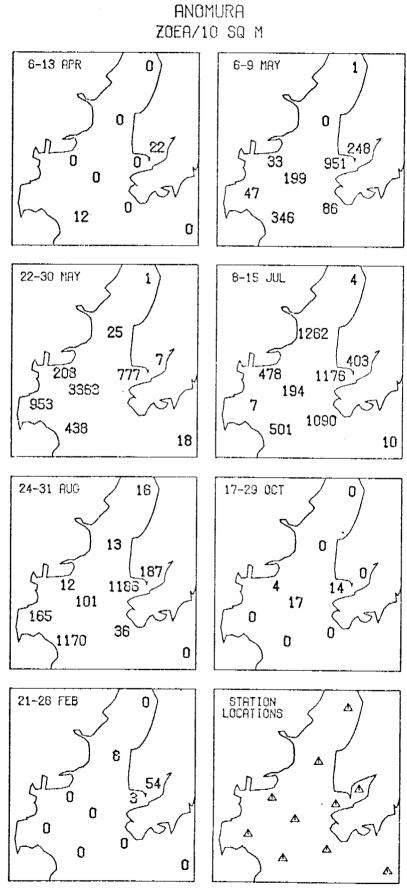
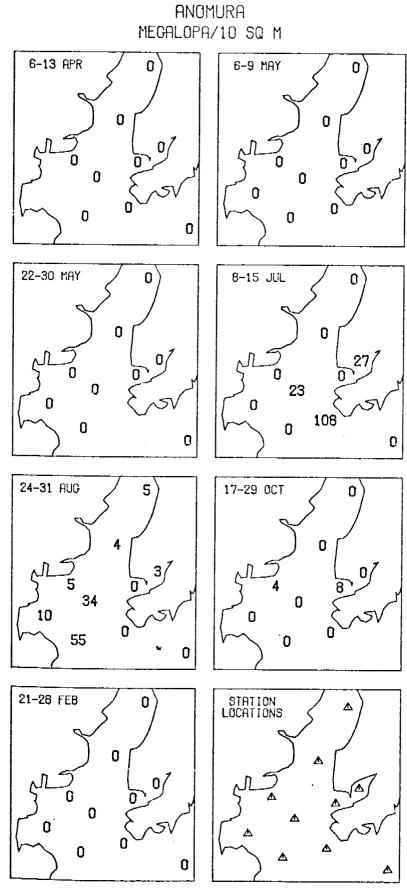
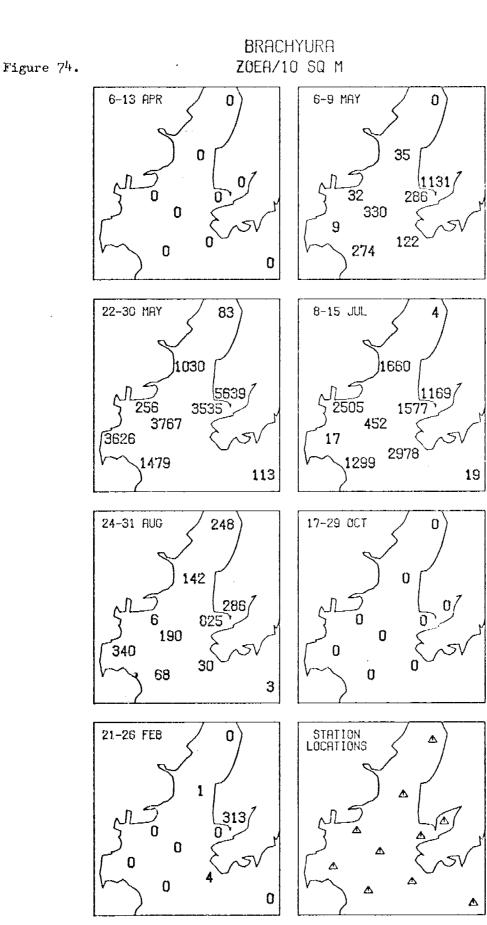




Figure 70.

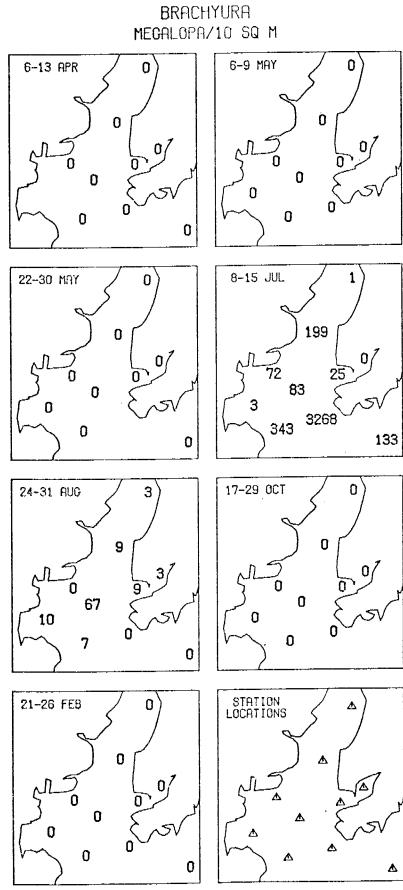

587

ŧ

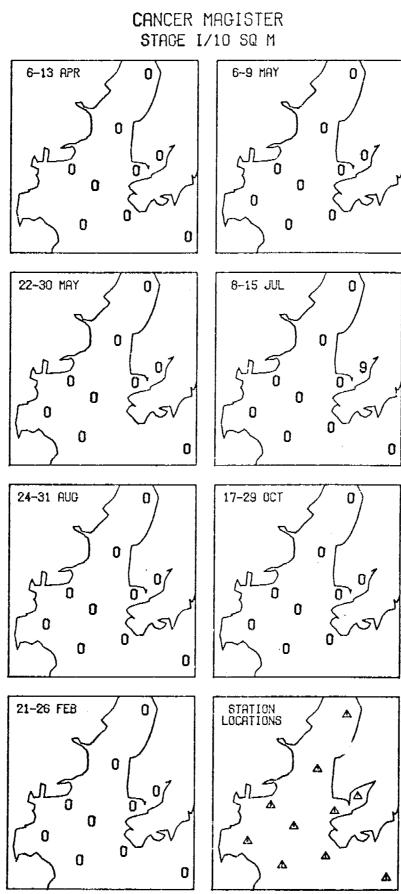

Figure 71.





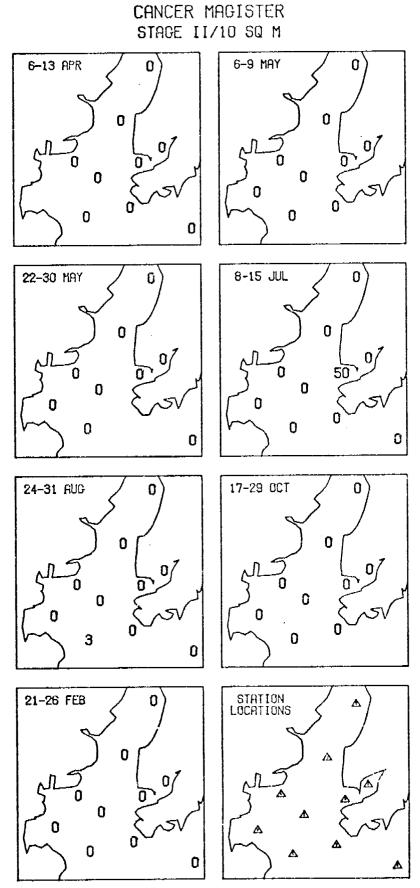





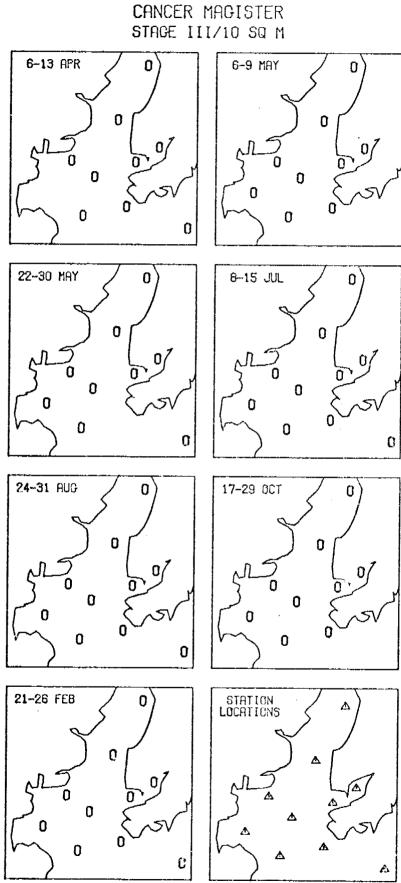





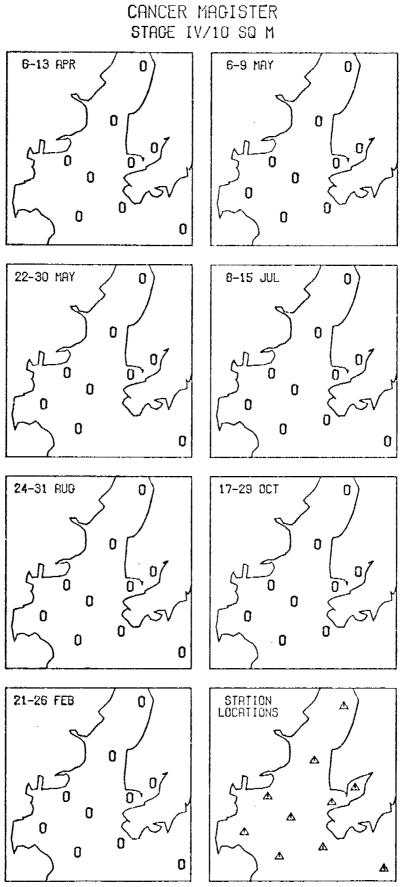


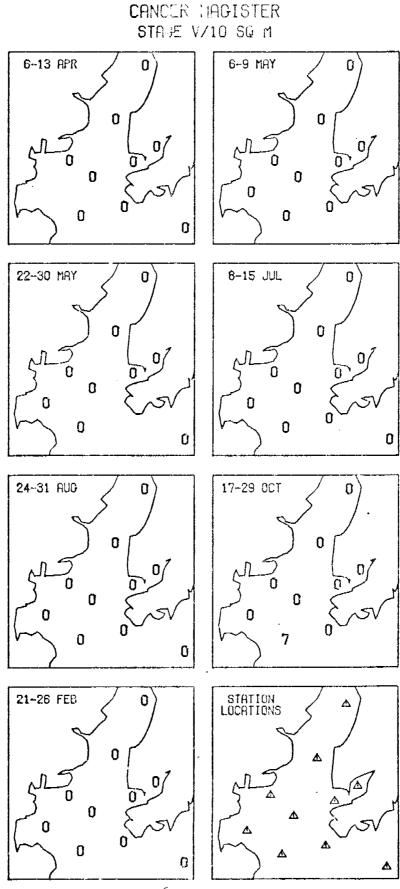




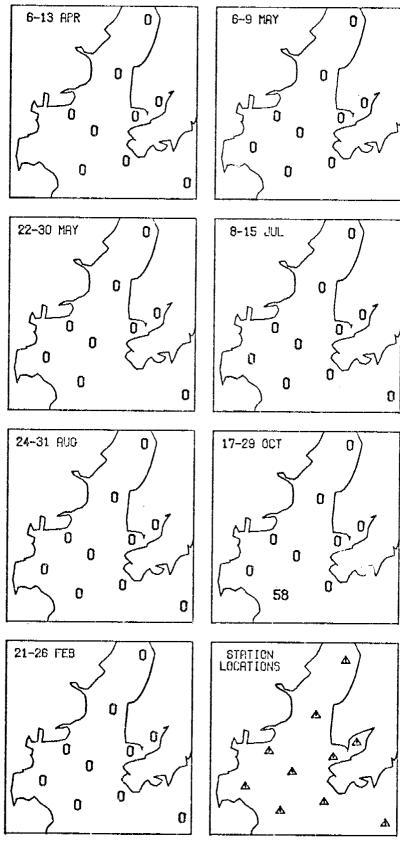





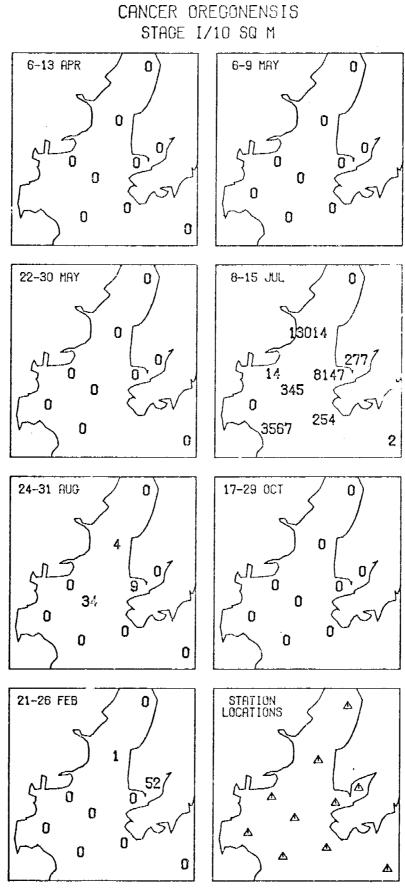












## CANCER MAGISTER MEGALOPA/10 SQ M









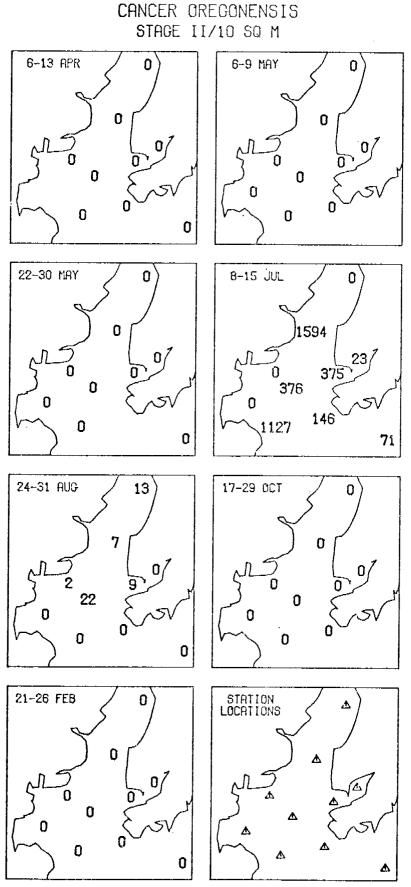
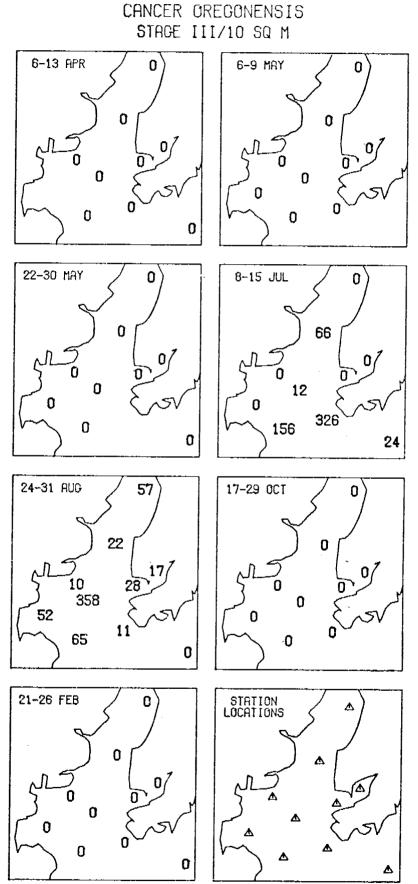
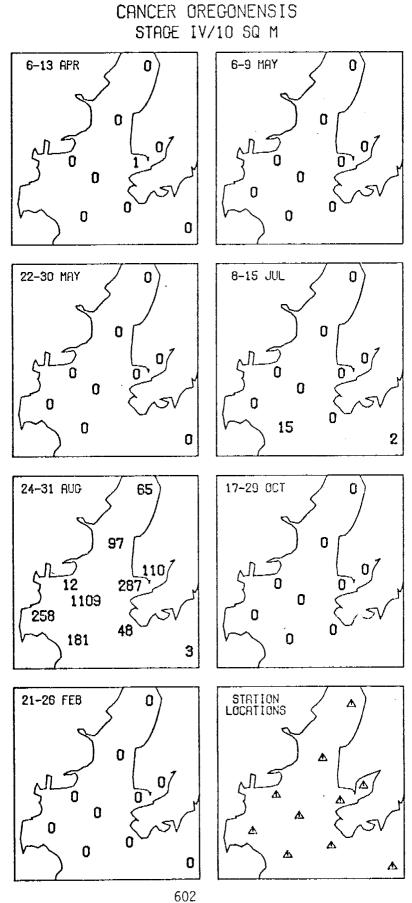





Figure 84.









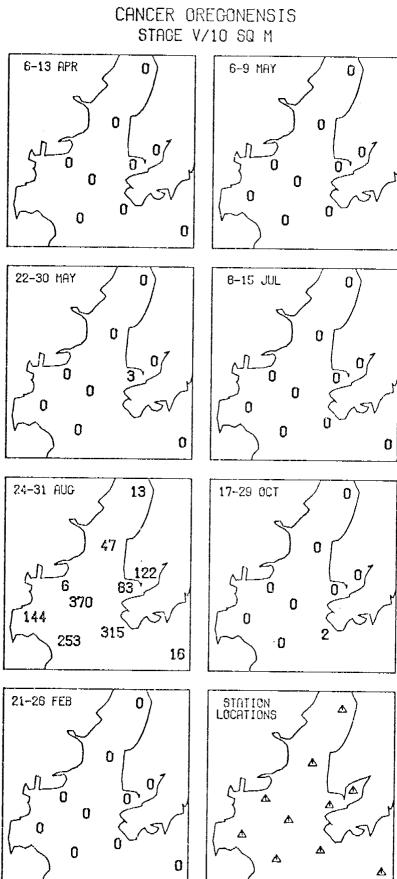
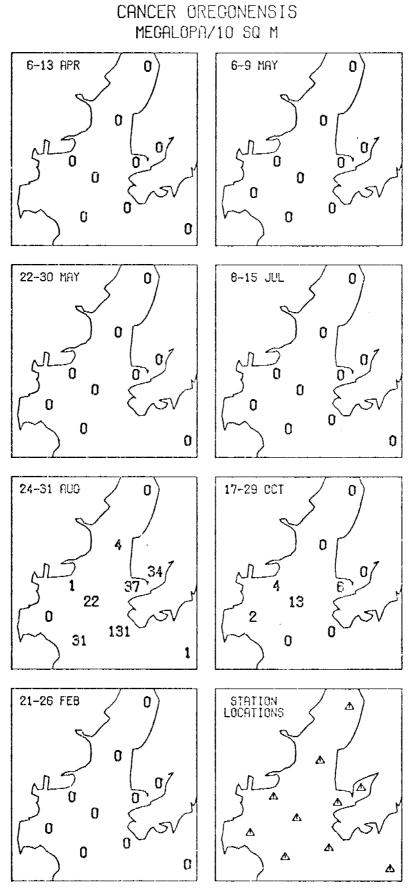




Figure 87.





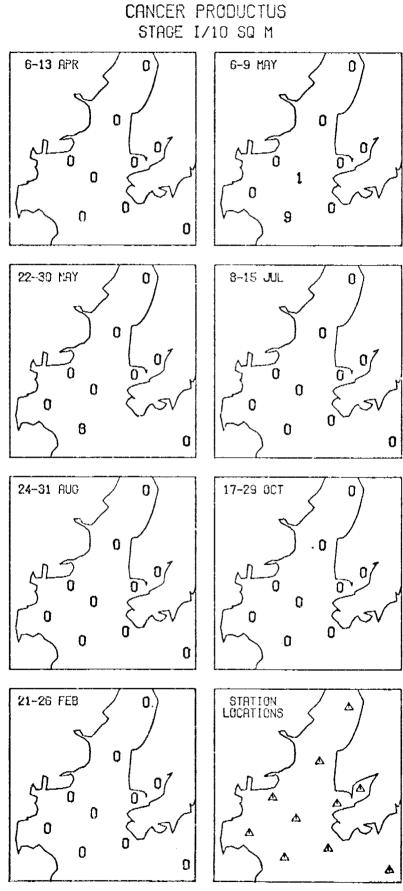
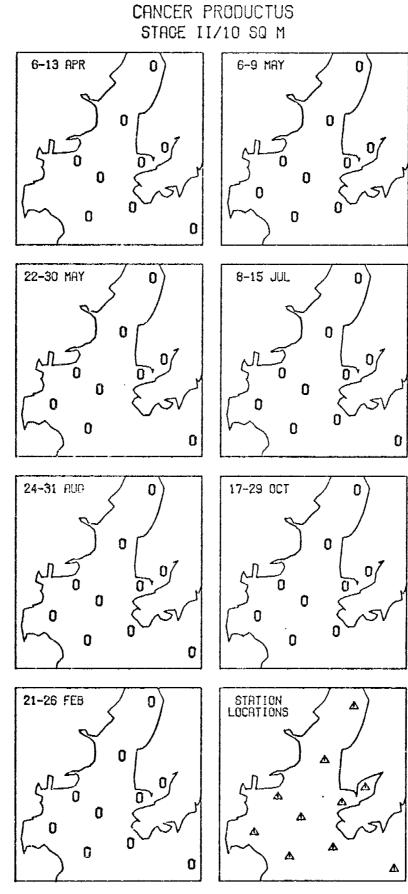
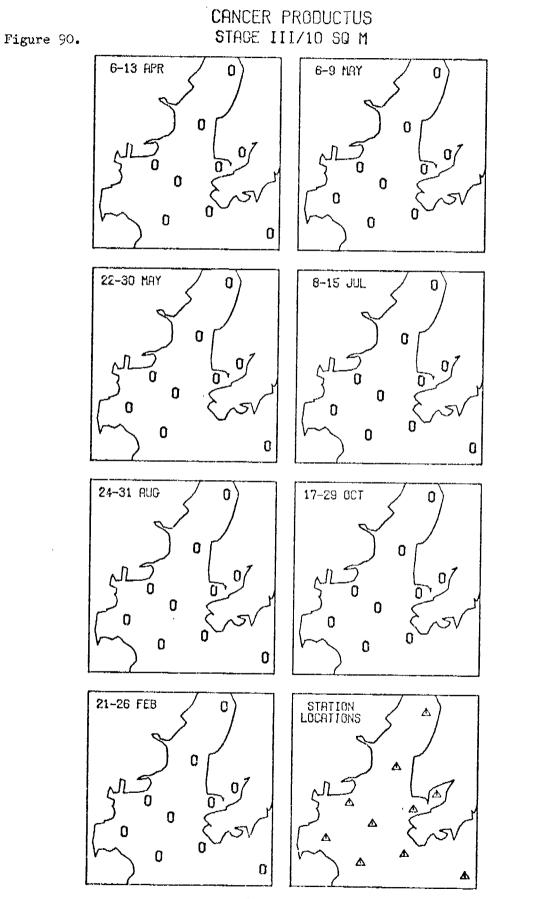
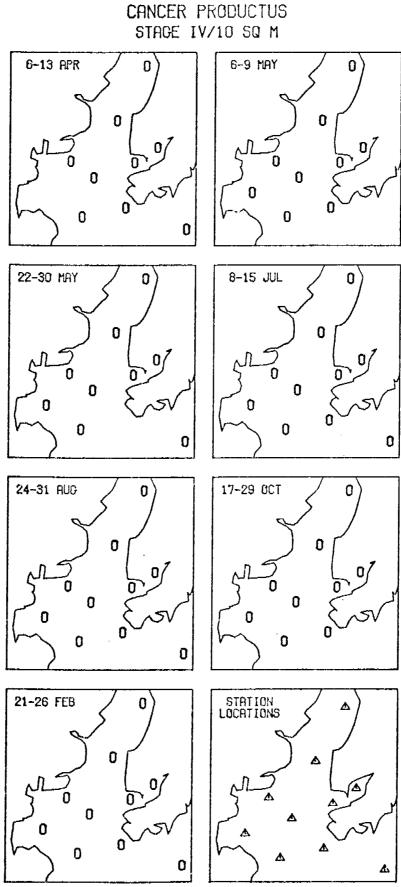






Figure 89.











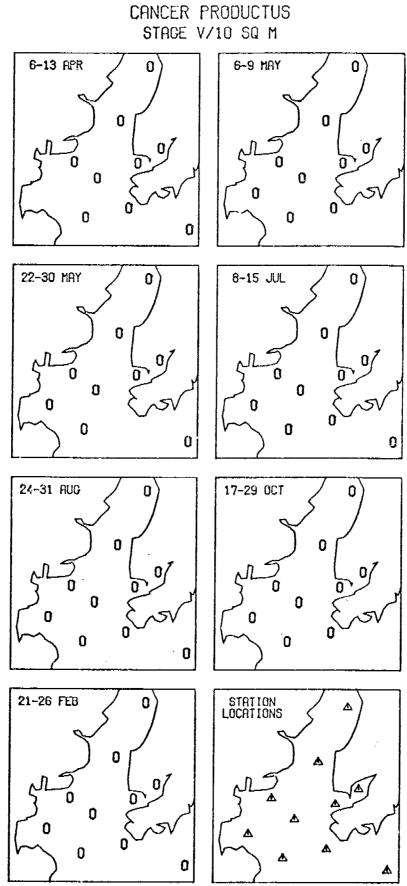



Figure 93.

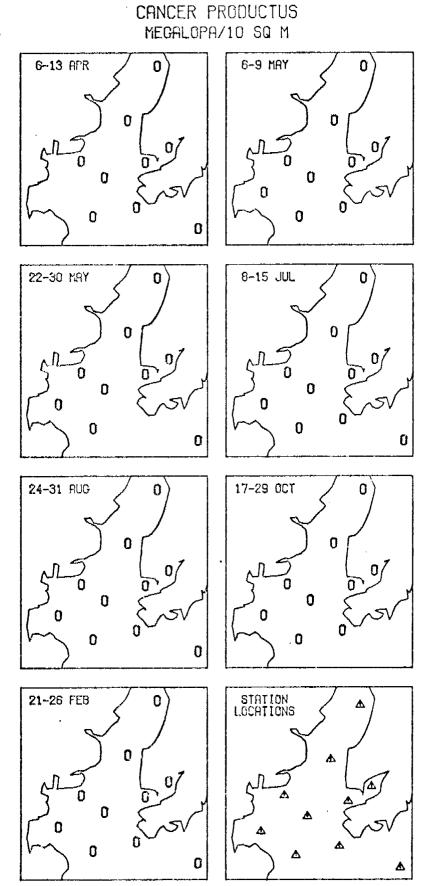
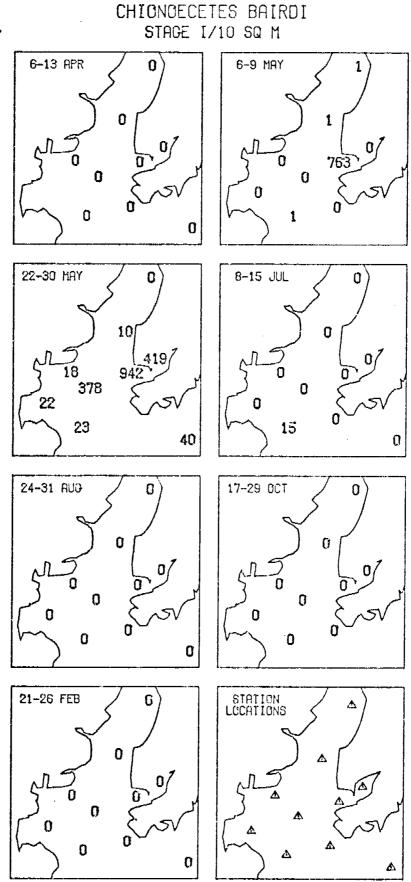




Figure 94.



611

-

Figure 95.

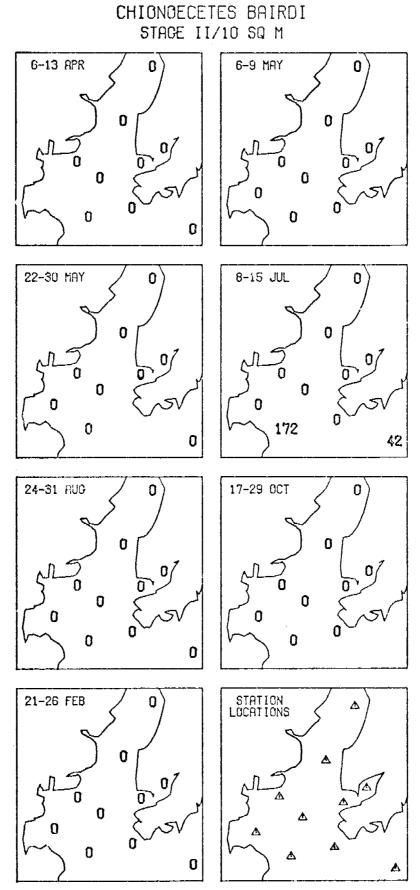



Figure 96.

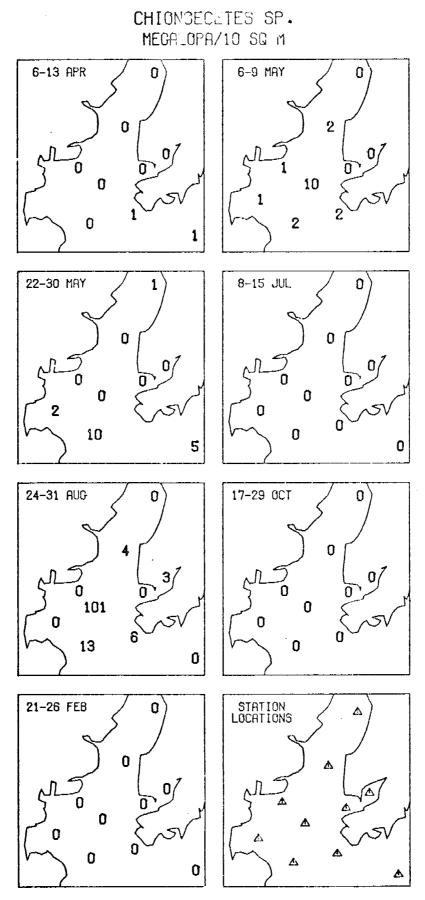



Figure 97.

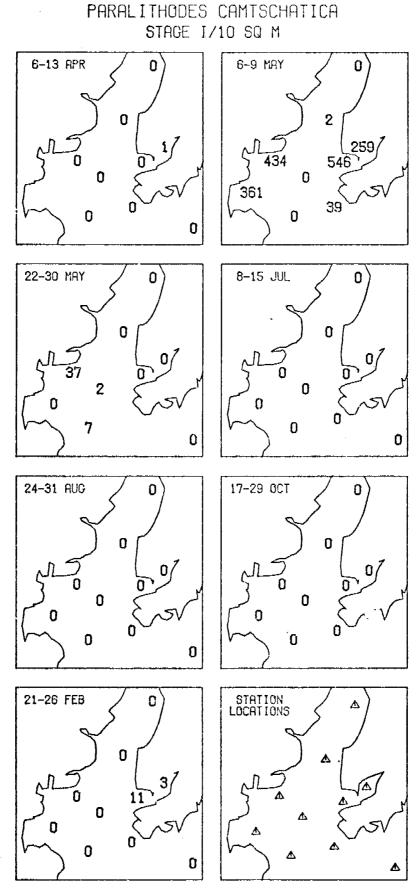
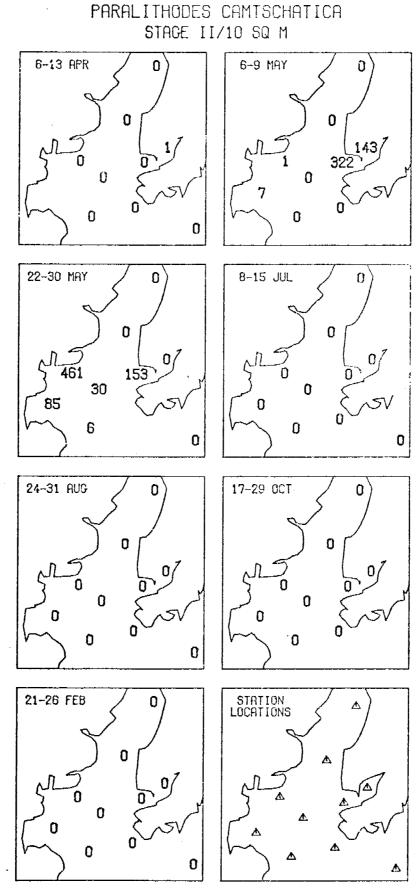




Figure 98.



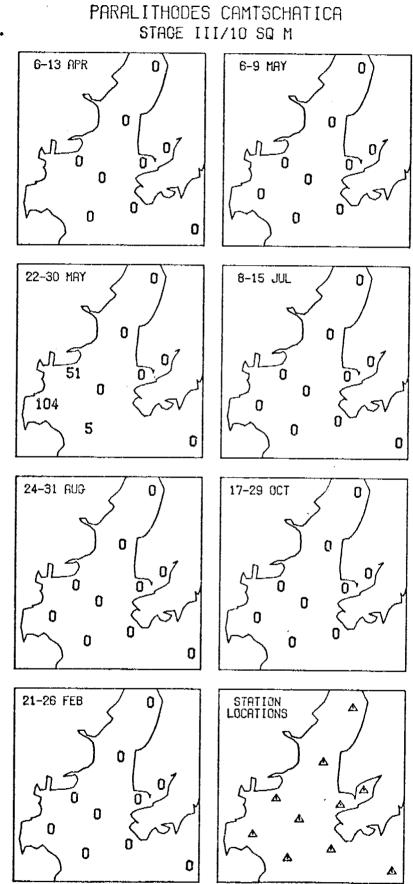
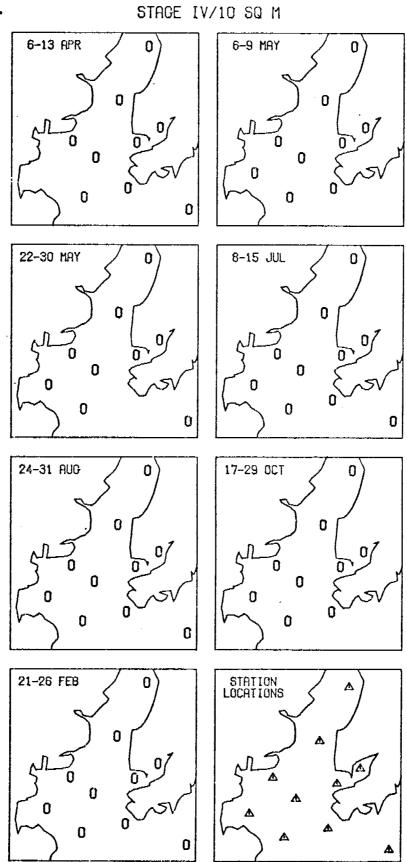
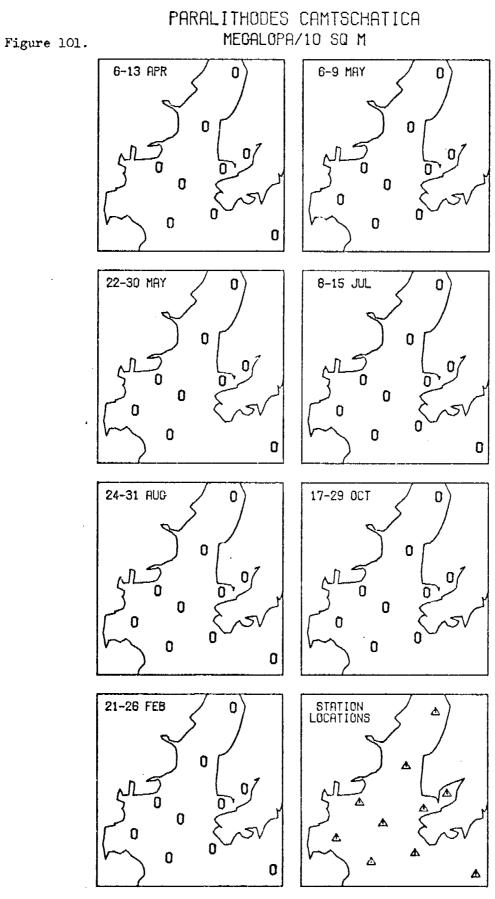
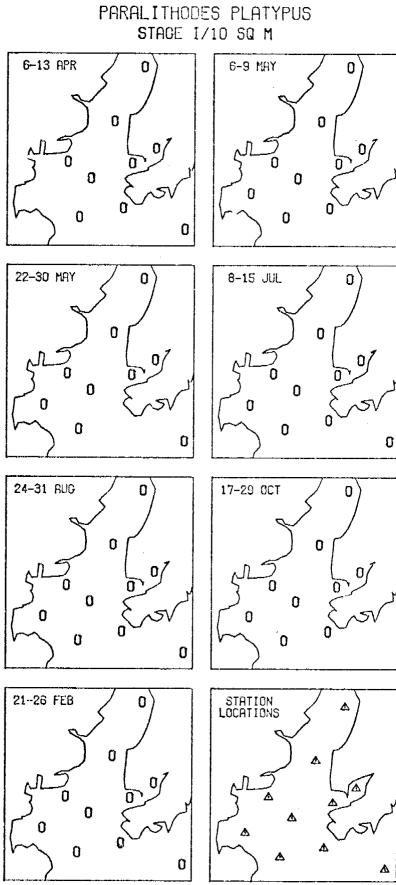
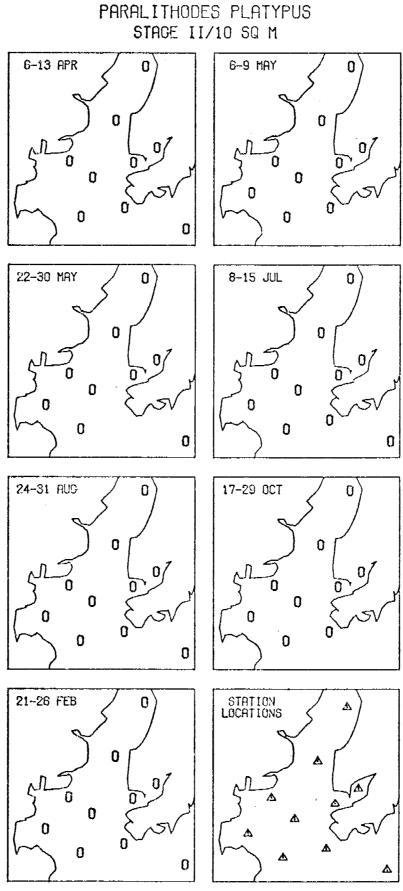




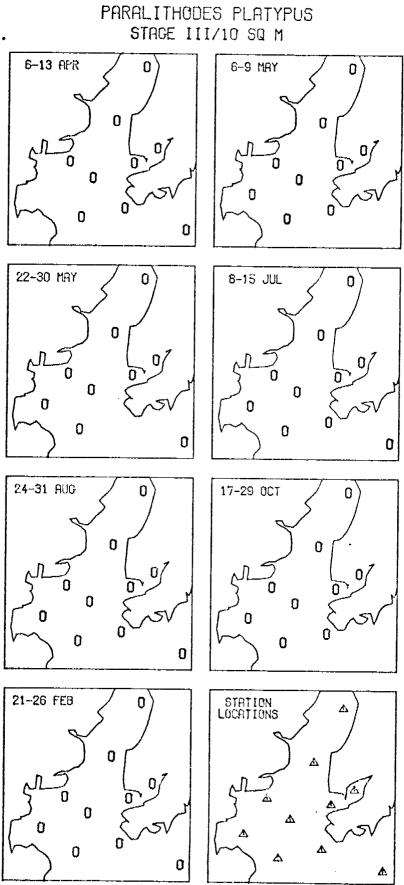

Figure 99.


Figure 100.

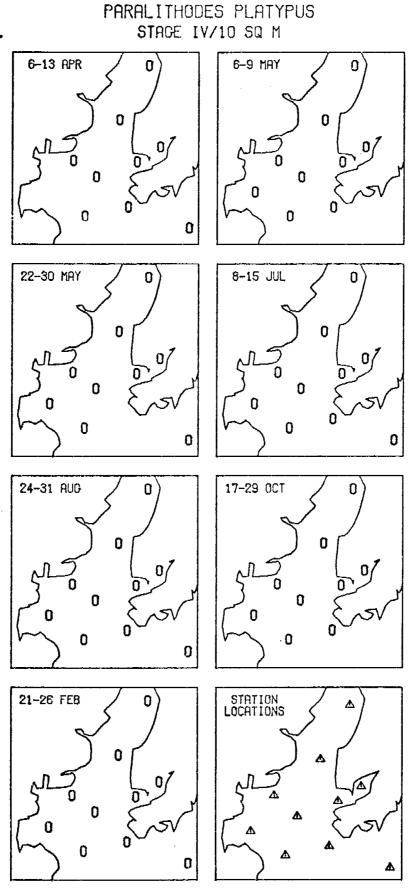



PARALITHODES CAMTSCHATICA

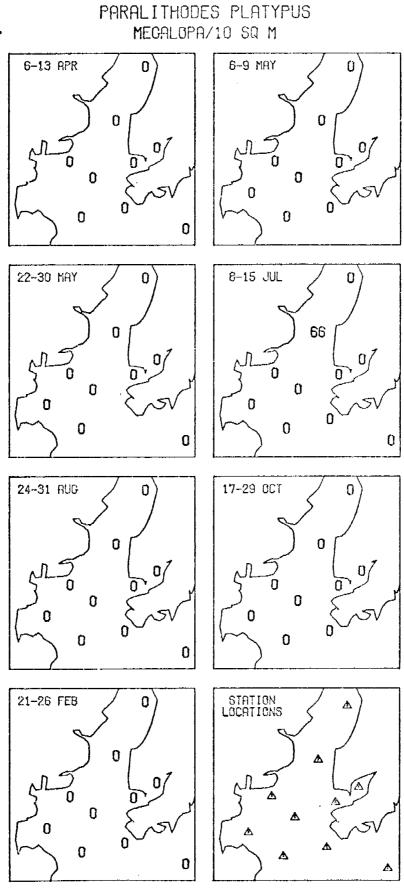



















The fish eggs in the category about 3 mm are 2.56 mm and larger in diameter. The fish eggs in this category are *Hippoglossoides* of an undetermined species, probably *H. elassodon*, the flathead sole. The fish eggs in this category were caught from May through August (Figure 6). These fish eggs were most abundant in the May samples at locations near the mouth of Cook Inlet.

The larvae of Ammodytes hexapterus, the Pacific sand lance, were caught from April through August and again in February (Figure 7). These larvae were most abundant in May in Kachemak Bay. No juvenile Ammodytes were observed (Figure 8).

The larvae of *Clupea harengus pallasi*, the Pacific herring, were caught in July and August (Figure 9). These larvae were most abundant in July at the most northern station location. One juvenile herring was taken in October at the same location (Figure 10).

The larvae of the Gadidae, the codfishes, are probably *Theragra* chalcogramma, the walleye pollock, and *Gadus macrocephalus*, the Pacific cod. The gadid larvae were caught from April through July (Figure 11). These larvae were most abundant in May toward the mouth of Cook Inlet. One gadid juvenile was taken in August near Kachemak Bay (Figure 12).

The larvae identified as *Hippoglossoides* sp. are probably one species, *H. elassodon*, the flathead sole. The larvae of *Hippoglossoides* were caught from May through August (Figure 13). One juvenile *Hippoglossoides* was taken in August near Kachemak Bay (Figure 14).

The larvae of *Mallotus villosus*, the capelin, were caught on every cruise except late May (Figure 15). The capelin larvae were most abundant in July and August near Kachemak Bay and Kamishak Bay, but were taken at all sampling locations. One juvenile capelin was taken in August and another in February (Figure 16).

The larvae of the family Osmeridae, the smelts, probably include Thaleichthys pacificus, the eulachon, Spirinchus thaleichthys, the longfin smelt, some small Mallotus, and other smelt. The larvae of Osmeridae were caught on five cruises, but not in April and late May (Figure 17). The osmerid larvae were most abundant in July and August and were widely scattered over the Lower Cook Inlet region. One juvenile osmerid was taken in February (Figure 18).

The early life history stages of *Pandalopsis dispar*, the sidestripe shrimp, were taken on all cruises except October (Figures 19-24). Stages I, II, III and IV were represented in the samples; Stage V and juveniles were not represented.

The early life history stages of *Pandalus borealis*, the northern pink shrimp, were taken from April through August (Figures 25-32). Stages I, II, III, IV, V and juveniles were represented; stages VI and VII were not represented.

The early life history stages of the shrimp *Pandalus danae* were taken in July and August (Figures 33-39). Stages II and V were represented; stages I, III, IV, VI, and juveniles were not represented.

The early life history stages of *Pandalus goniurus*, the humpback shrimp, were taken from April through July (Figures 40-47). Stages I, II, III, IV, and juveniles were represented; stages V, VI, and VII were not represented.

The early life history stages of the *Pandalus hypsinotus*, the coonstripe shrimp, were taken in May (Figures 48-54). Stage I was represented; stages II, III, IV, V, VI, and juveniles were not represented.

The early life history stages of the shrimp *Pandalus platyceres* were taken in February (Figures 55-59). Stage II was represented; stages I, III, IV, and juveniles were not represented.

The early life history stages of the shrimp *Pandalus stenolepis* were taken from May through August (Figures 60-66). Stages I, II, III, IV, V, and VI were represented; the juveniles were not represented.

The early life history stages of the shrimp *Pandalus montagui* tridens were taken from April through July (Figures 67-71). Stages I, II, and III were represented; stage IV and juveniles were not represented.

The early life history stages of non-commercial crabs of the category Anomura were taken on all cruises (Figures 72-73). The zoea and megalopa stages were represented.

The early life history stages of non-commercial crabs of the category Brachyura, the true crabs, were taken from May through August and in February (Figures 74-75). The zoea and megalopa stages were represented.

The early life history stages of *Cancer magister*, the Dungeness crab, were taken from July through October (Figures 76-81). Stages I, II, V, and megalopa were represented; stages III and IV were not represented.

The early life history stages of *Cancer oregonensis*, the small non-commercial hairy cancer crab, were taken on all cruises except early May (Figures 82-87). Stages I, II, III, IV, V, and megalopa were represented.

The early life history stages of *Cancer productus*, the rock crab, were taken in May (Figures 88-93). Stage I was represented; stages II, III, IV, V, and megalopa were not represented.

The early life history stages of *Chionoecetes bairdi*, the tanner crab, were taken in May and July (Figures 94-95). Stages I and II were

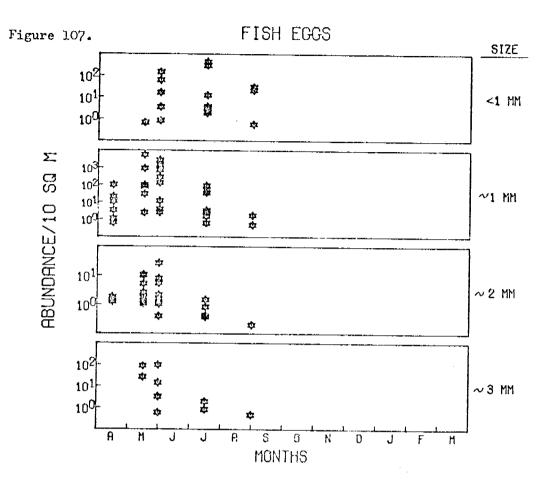
represented. The megalopa stage of *Chionoecetes* sp. is probably mostly *C. bairdi*, but that stage has not been described well enough to be certain. *Chionoecetes* sp. megalopa occurred in April and May, and again in August (Figure 96).

The early life history stages of *Paralithodes camtschatica*, the red king crab, were taken in April and May, and again in February (Figures 97-101). Stages I, II, and III were represented; stage IV and the megalopa were not represented.

The early life history stages of *Paralithodes platypus*, the blue king crab, were taken in July (Figures 102-106). The megalopa stage was represented; stages I, II, III, and IV were not represented.

Time series plots were prepared to emphasize the seasonal aspect of quantitative density distributions of the early life history stages of categories of fish eggs, fish larvae, crabs, and shrimps (Figures 107-124). This graphic representation depicts the samples from the ten station locations on each seasonal cruise as replicates representing the distributions of abundance within the cruise. The wide differences in abundance within and between seasons suggested the format of a semi-logarithmic plot of log abundance against linear time.

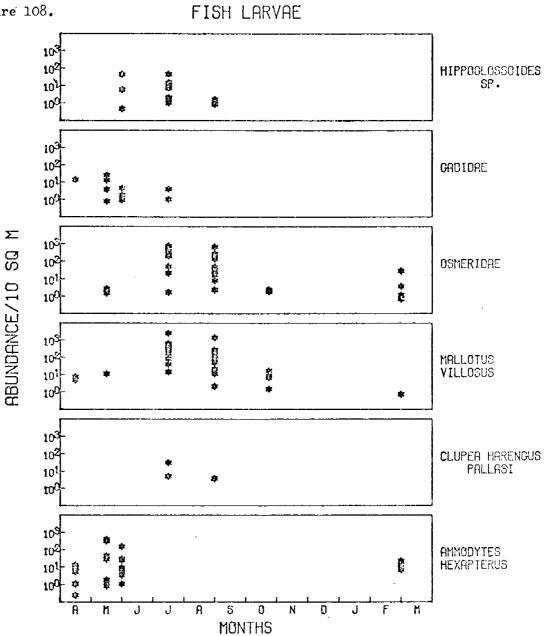
The fish eggs of the four size categories occurred from April through August, with the smallest and largest eggs restricted to May through August (Figure 107). The 1-mm eggs were most abundant and the less than 1-mm eggs were the second most abundant.

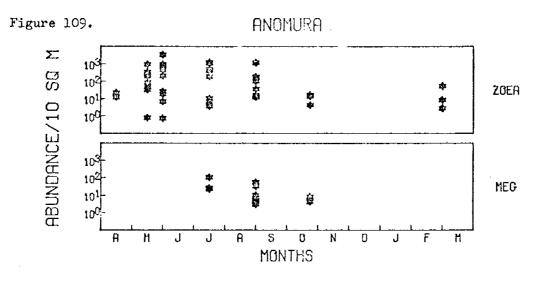

The fish larvae of the six categories occurred from April through October and in February, with all individual categories restricted to a shorter period (Figure 108). The *Mallotus villosus* and Osmeridae were the most abundant, with *Ammodytes hexaplerus* next in abundance.

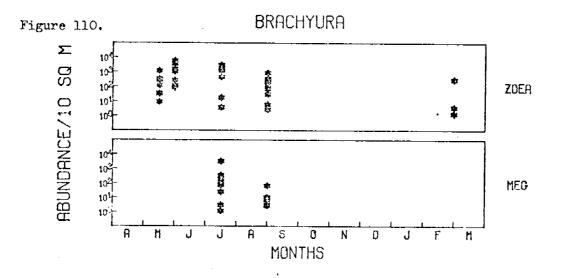
The time series plots for the shrimps and crabs emphasize the seasons at which the species occur, the progression of life history stages over time, and the stages which did not occur in the samples.

The most abundant shrimp was Fandalus goniurus, with Pandalus borealis and Pandalus montagui trident next most abundant. The noncommercial Anomura and Brachyura were very abundant, and the small Cancer oregonensis were the most abundant species identified. Paralithodes camtschatica was the most abundant commercial crab, with Chionoecetes bairdi next in abundance.

## IV. Discussion


The sampling and analysis reported here has provided quantitative seasonal density distributions for the early life history stages of representative fishes, shrimps, and crabs in the Lower Cook Inlet region. The more abundant categories of organisms differed in abundance by factors of 10 to 10,000 between seasons, between stations, and even between stations within seasons.





## Figures 107 - 124. Seasonal quantitative density

## distributions of early life history stages.

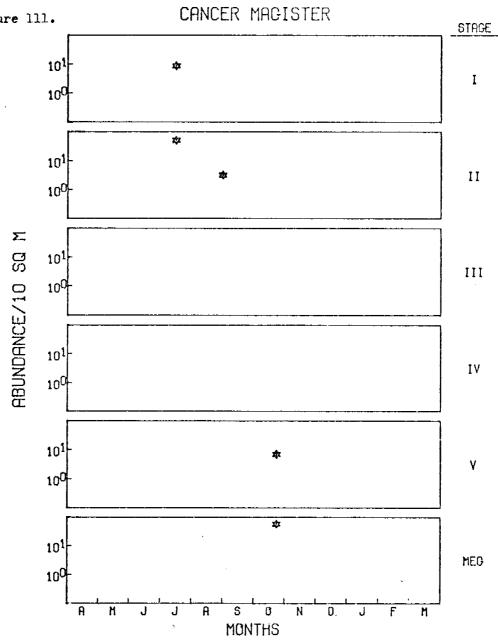
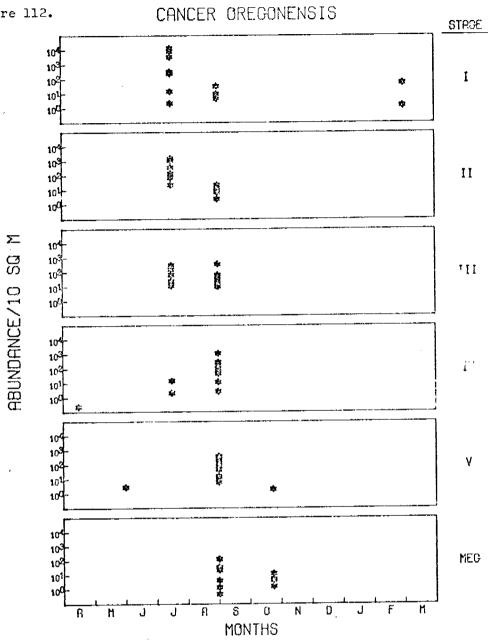
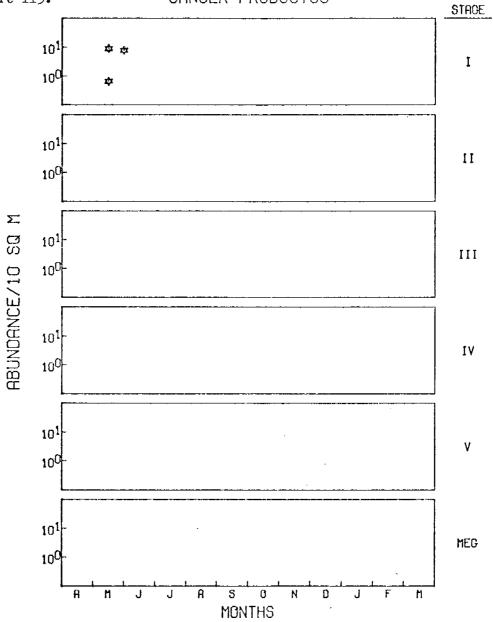
Relative abundance of organisms of commercial, sport, and ecosystem importance from under 10  $m^2$  surface area. Sums of 10 stations on 7 cruises in the Lower Cook Inlet region.

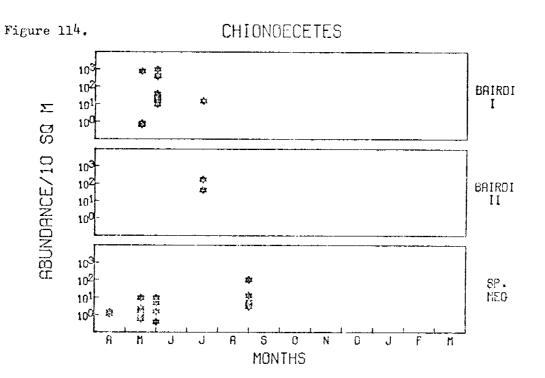




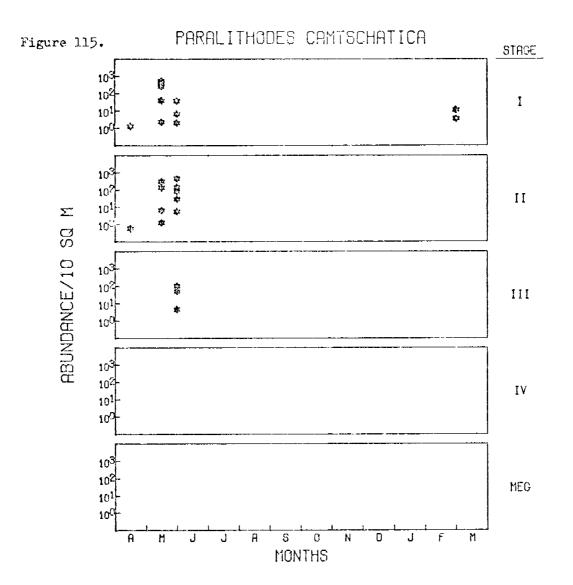






Figure 112.






## CANCER PRODUCTUS





F 33



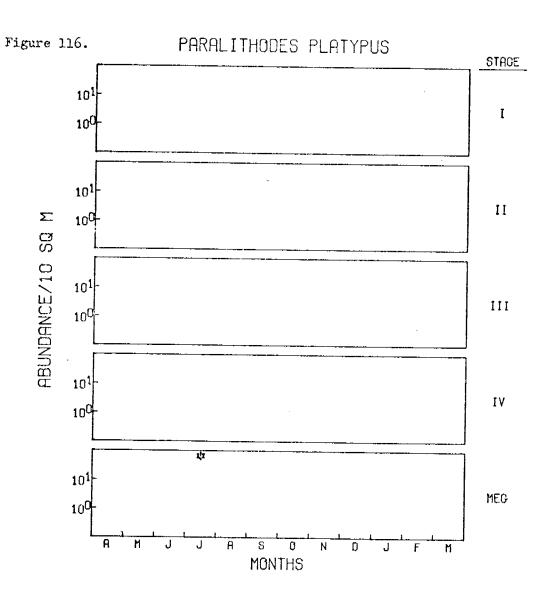
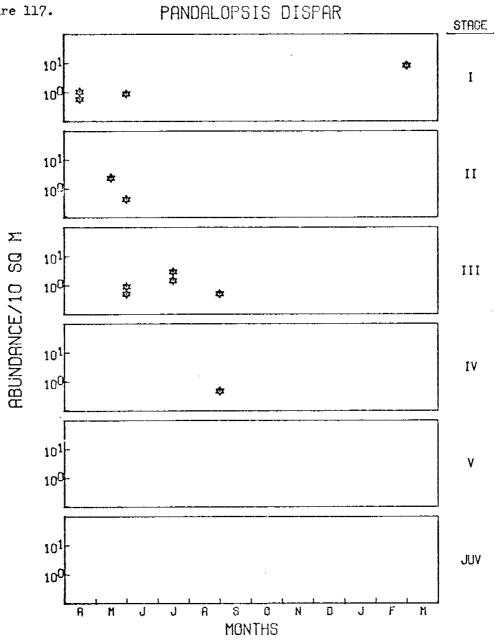
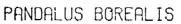
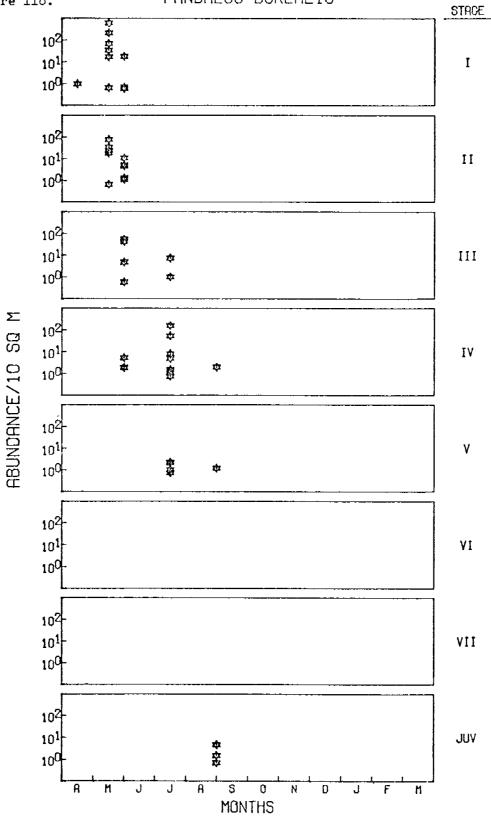






Figure 117.









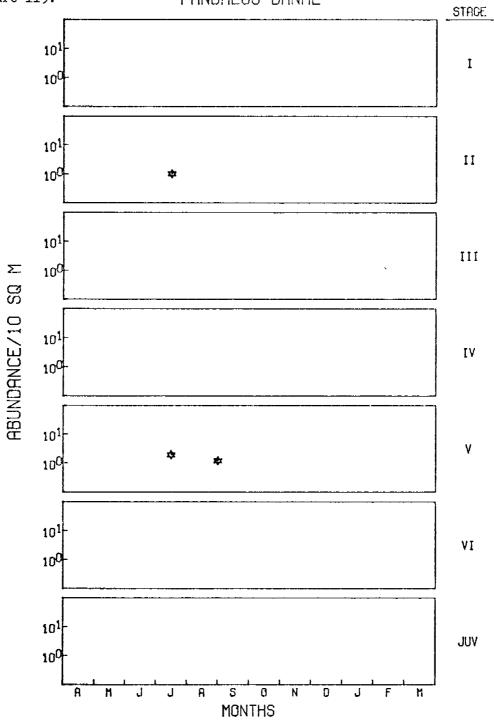



Figure 120.



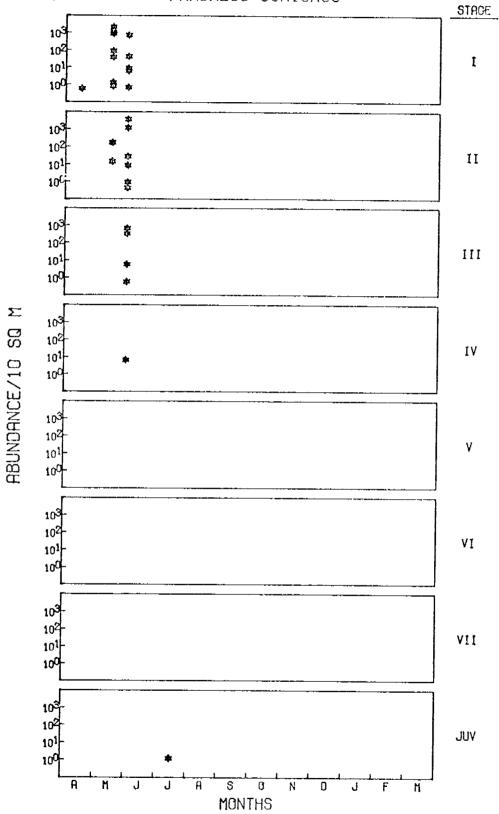
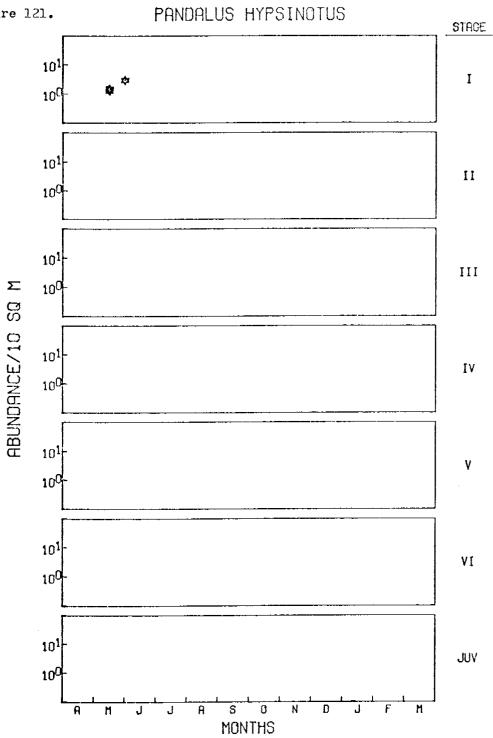




Figure 121.



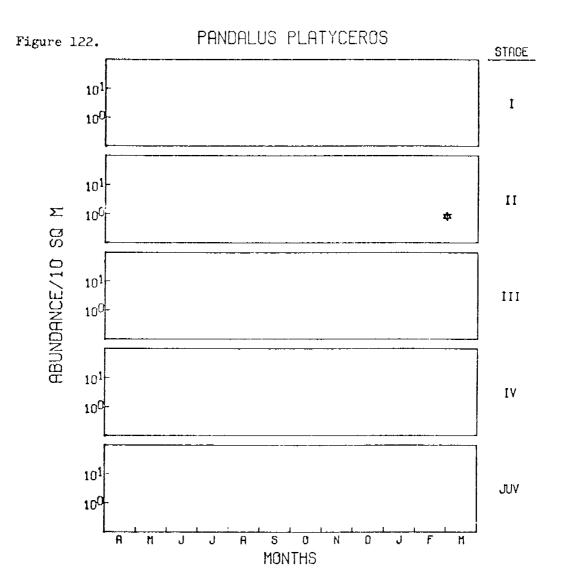
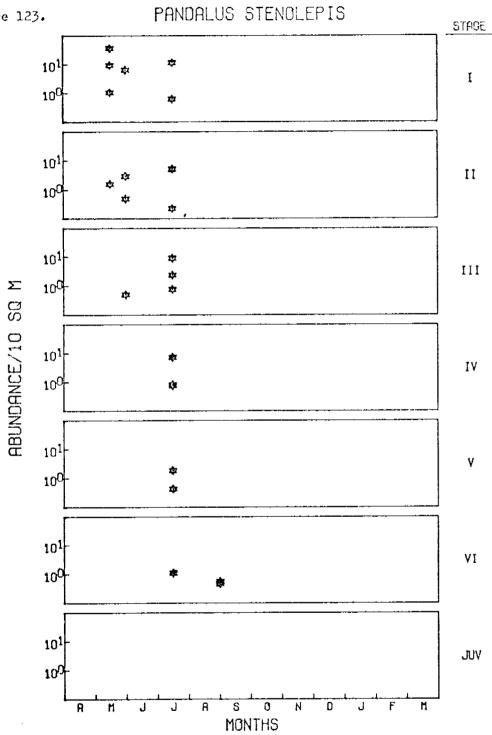
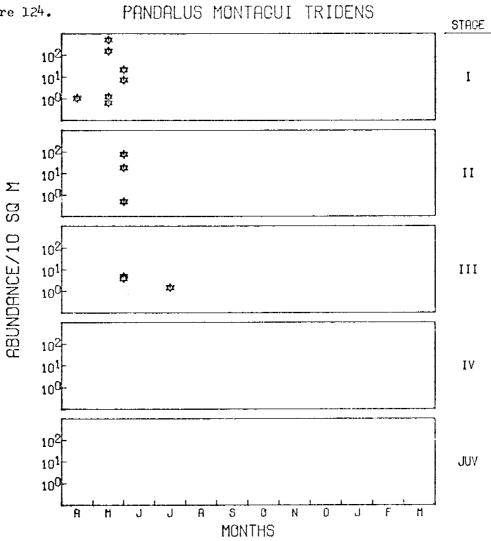





Figure 123.







The Kachemak Bay area, and secondarily the Kamishak Bay area, were foci of abundance for the earliest life history stages of a variety of species. The lowest concentrations of abundance were often in the most northern sampling locations, in the center of Lower Cook Inlet on a line between Kachemak Bay and Kamishak Bay, and near the mouth of Lower Cook Inlet.

The older early life history stages tended to be more uniformly distributed and less concentrated near the locations of maximum abundance of the earliest life history stages. There is no reason to believe that most populations in Lower Cook Inlet are supplied from spawning populations outside Cook Inlet which provide planktonic early life history stages that are swept into Lower Cook Inlet and concentrated.

The seasonal and geographic sampling patterns were sufficiently diffuse to leave many unanswered questions. The apparent low relative abundance of early life history stages of several exploited species, the Dungeness crab, the sidestripe shrimp, and the coonstripe shrimp, is believed to reflect inadequate temporal and spatial sampling, although we have no information on the range of natural annual variability. Several populations show indications of peak abundances at two or more times or places, but the observations are too few to establish such patterns with any confidence.

The apparent seasons of abundance are undoubtedly extended when more than one species is contained in a category. Better identifications of planktonic fish eggs will be possible when living eggs can be reared until the formation of pigment can be observed. The larval fishes can be identified with more certainty when more complete developmental series can be obtained.

The bongo nets caught few juvenile fishes and relatively few later life history stages of shrimps and crabs. More effective sampling gear could increase the catch of larger organisms which may have avoided the bongo nets.

The year of reconnaissance level sampling has demonstrated that some early life history stages of organisms important in sport and commercial fisheries and forage fishes and non-commercial shell fishes of ecosystem significance were present during all seasons sampled in Lower Cook Inlet. Those early life history stages are necessary to sustain many important fish and shellfish populations in Lower Cook Inlet. These data are adequate to give a preliminary indication of the geographic areas and seasons with the greatest abundance of early life history stages in Lower Cook Inlet.

The reconnaissance level sampling strongly suggests that unit populations can be identified in Lower Cook Inlet, particularly near Kachemak Bay. A major strength of the bongo net sampling is that a complex of heavily exploited and unexploited non-commercial species of fishes, shrimp, and crabs are available for analysis to establish a quantitative ecological baseline and to allow monitoring for input to models to assess changes related to exploitation, natural variation, and environmental degradation.

The abundance of small pelagic forage fishes is striking. The herring, smelt, and sand lance spawn on the bottom in relatively shallow water. That complex of species can provide a good annual integrated assessment of any effects of environmental degradation in the shallow areas of Lower Cook Inlet. The bongo net, as expected, does not catch many juvenile fishes, juvenile shrimp, or crab megalopa. Those later early life history stages should not be emphasized in the analysis of bongo net catches; the older, larger forms can be sought with other sampling equipment when the hypothesis of interest evolves toward more site specific process studies.

## V. Future Work

We are working toward the synthesis meeting in December and the annual report in March. We will try to separate several more categories of fish eggs and fish larvae for tabular and graphic presentation. We will seek graphic formats that further summarize the results of our analyses. The trade-off will be to sacrifice some detail to gain visual impact and enhance comprehension.

We will continue to attempt to synthesize our work with other research units. The residual currents in Lower Cook Inlet have a strong influence on the dispersal of early life history stages of fishes, shrimps, and crabs from the area in which they were spawned. The apparent tendency toward retention of populations in Kachemak Bay, and to a lesser extent Kamishak Bay, must reflect relatively restricted water movements in those areas. The favorable aspect of being able to determine the relative, and sometimes absolute, ages in days of early life history stages could be used to track and verify water movements if a sufficiently intensive sampling scheme could be implemented. Further insight into the earliest stages released near the bottom and later stages settling toward the bottom could be gained by a sampling plan to determine vertical distributions.

We should be able to begin a preliminary model of an appropriate portion of the Lower Cook Inlet ecosystem when the synthesis meeting has clarified BLM needs and OCSEAP objectives. The year of reconnaissance level sampling has provided the necessary preliminary quantitative information about important species present and spatial and temporal patterns to facilitate the design of an efficient approach to program objectives.

# VI. Estimate of funds expended.

100% of the funds have been expended.

QUARTERLY REPORT

Contract 03-5-022-56 Research Unit #426 Task Order #13 Reporting Period 7/1-9/30/77

ZOOPLANKTON AND MICRONEKTON STUDIES OF THE BERING/CHUKCHI SEAS - INSHORE STUDIES

> Dr. R. Ted Cooney Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

> > October 15, 1977

#### I. Task Objectives:

This study addresses the survey of zooplankton and micronekton communities in the inshore region from Norton Sound to Point Hope. Standing stocks and occurrance of cominant species in the diets of fish collected by other investigators will be used to evaluate the importance of animal plankters in the nearshore zone during the mid-summer period.

#### II. Field Activities:

Samples were collected from the NOAA vessel <u>Surveyor</u>, June 26-July 7, 1977 in the Norton Sound-Bering Strait region. Unseasonably heavy and late ice restricted the survey to the nearshore area south of Kotzebue Sound. The following samples were obtained:

| 1. | l-m net (vertical tows)     | 55 |
|----|-----------------------------|----|
| 2. | 1/2-m net (horizontal tows) | 8  |
| 3. | Bongo net                   | 3  |
| 4. | Tucker trawl                | 16 |

The field effort was undertaken by Mr. Ken Coyle, Mr. Lee Neimark, Ms. Liz Clarke, and Mr. Al Rude.

Sampling locations and the ships track is available as part of the cruise report filed by the Chief Scientist.

# III. Results:

The onsite evaluation of sampling is included as part of the cruise report for <u>Surveyor</u> June 26-July 7, 1977. Due to budget limitations, the samples presently on hand cannot be processed. Monies allocated for these collections were spent analysing the remainder of the extensive inventory from the previous summer which was considerably larger than anticipated. I estimate that an additional \$5,000 will be required to sort, tabulate, and submit these results.

#### IV. Problems:

Aside from the sample processing problem, the field work went relatively smoothly. The <u>Surveyor</u> has become a very adequate platform to work from particularly since the crew is now familiar with our filed sampling requirements. RU #485

NO REPORT WAS RECEIVED

Quarterly Report

Contract #03-5-022-69 Research Unit #486 Reporting Period July 1, 1977 -September 30, 1977 Number of Pages: 1

Demersal Fish and Shellfish Assessment in Selected Estuary Systems of Kodiak Island

> James E. Blackburn Alaska Department of Fish and Game P.O. Box 686 Kodiak, Alaska 99615

> > September 30, 1977

# I. Task Objectives

- A. Determine the spatial and temporal (June-September) distribution, relative abundance and inter-relationships of the various demersal finfish and shellfish species in the study area.
- B. Determine the growth rate and food habits of selected demersal fish species.
- C. Conduct literature survey to obtain and summarize an ordinal level documentation of commercial catch, stock assessment data, distribution as well as species and age group composition of various shellfish species in the study area.
- D. Obtain basic oceanographic and atmospheric data to determine any correlations between these factors and migrations and/or relative abundance of various demensal fish and shellfish species encountered.

# II. Field or Laboratory Activities

Activities have consisted of data analysis and final report preparation.

# III. Results

The final report is partially completed and will be completed and reviewed during the coming quarter and prepared for submission December 31, 1977, as approved per letter from Herb Bruce dated September 9, 1977. IV. Preliminary Interpretation of Results

Not applicable.

- V. Problems Encountered/Recommended Changes We have had difficulty implementing the use of the computer for data analysis.
- VI. Estimate of Funds Expended

The contract period is ending at this time and preliminary accounting indicates the budget is virtually exhausted. An exact accounting of funds expended is being determined by State auditors.

RU #502

NO REPORT WAS RECEIVED

Quarterly Report

Contract #03-5-022-69 Research Unit #512 Reporting Period July 1, 1977 -September 30, 1977 Number of Pages: 1

Pelagic and Demersal Fish Assessment in the Lower Cook Inlet Estuary System

James E. Blackburn Alaska Department of Fish and Game P.O. Box 686 Kodiak, Alaska 99615

September 30, 1977

# I. Task Objectives

- A. Determine the spatial and temporal (June-September) distribution, relative abundance and inter-relationships of the various pelagic and demersal finfish and shellfish species in the study area.
- B. Determine when, where, at what rate and in what relative abundance pelagic fish species (primarily salmonids) migrate into and through the study area.
- C. Determine the growth rate and food habits of selected pelagic and demersal fish species.
- D. Survey the literature to obtain and summarize an ordinal level documentation of commercial catch, stock assessment data, distribution, as well as species and age group composition of various shellfish species in the study area.
- E. Survey the literature to inventory and characterize salmon spawning streams as well as timing of fry and smolt migrations.
- F. Obtain basic oceanographic and atmospheric data to determine any correlations between these factors and migrations and/or relative abundance of various pelagic and demersal fish and shellfish species encountered.
- II. Field or Laboratory Activities

Activities have consisted of data analysis and final report preparation.

III. Results

The final report is largely completed and will be reviewed during the coming quarter and prepared for submission on December 31, 1977 as approved per letter from R. Engelmann, dated September 14, 1977.

IV. Preliminary Interpretation of Results

Not applicable.

V. Problems Encountered/Recommended Changes

We have had difficulty in implementing the use of the computer for data analysis.

VI. Estimate of Funds Expended

The contract period is ending at this time and preliminary accounting indicates the budget is virtually exhausted. An exact amount of funds expended is being determined by State auditors.

FINAL REPORT

CONTRACT #: 03-5-022-56 TASK ORDER #: 29 RESEARCH UNIT #: 517 REPORTING PERIOD: June 1, 1976 -September 30, 1977 NUMBER OF PAGES: 79

THE DISTRIBUTION, ABUNDANCE AND DIVERSITY OF THE EPIFAUNAL BENTHIC ORGANISMS IN TWO BAYS (ALITAK AND UCAK) OF KODIAK ISLAND ALASKA

Dr. H. M. Feder, Principal Investigator

with

Stephen C. Jewett

Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

1 October 1977

#### ACKNOWLEDGEMENTS

We would like to thank the following for assistance during this study: the crew of the M/V *Big Valley*; Pete Jackson and James Blackburn of Alaska Department of Fish and Game, Kodiak, for their assistance in a cooperative benthic trawl study; University of Alaska, Institute of Marine Science personnel Rosemary Hobson for assistance in data processing, Max Hoberg for shipboard assistance, and Nora Foster for taxonomic assistance.

# TABLE OF CONTENTS

|       | ACKNOWLEDGEMENTS                                                                                   |
|-------|----------------------------------------------------------------------------------------------------|
|       | LIST OF FIGURES                                                                                    |
|       | LIST OF TABLES                                                                                     |
| I.    | SUMMARY OF OBJECTIVES, CONCLUSIONS AND IMPLICATIONS<br>WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT |
| II.   | INTRODUCTION                                                                                       |
|       | General Nature and Scope of Study                                                                  |
| III.  | CURRENT STATE OF KNOWLEDGE                                                                         |
| IV.   | STUDY AREA                                                                                         |
| V.    | SOURCES, METHODS AND RATIONALE OF DATA COLLECTION                                                  |
| VI.   | RESULTS                                                                                            |
| VII.  | Distribution, Abundance and Reproductive Biology<br>Alitak Bay                                     |
|       | Food Habits                                                                                        |
| VIII. | CONCLUSIONS                                                                                        |
| IX.   | NEEDS FOR FURTHER STUDY                                                                            |
| х.    | REFERENCES                                                                                         |
| XI.   | APPENDIX                                                                                           |

## LIST OF FIGURES

| Figure 1            | •  | Trawl station grid and stations occupied in<br>Alitak Bay, Kodiak Island, Alaska                                                 |
|---------------------|----|----------------------------------------------------------------------------------------------------------------------------------|
| Figure 2            | 2. | Trawl station grid and stations occupied in<br>Ugak Bay, Kodiak Island, Alaska                                                   |
| Figure 3            | 3. | A food web based on the epibenthic species taken<br>from Alitak and Ugak Bays and inshore waters<br>around Kodiak Island, Alaska |
| Figure <sup>2</sup> | 4. | Food web for the snow crab in Alitak and Ugak<br>Bays and inshore waters around Kodiak Island,<br>Alaska                         |
| Figure 5            | 5. | Food web for the king crab in Alitak and Ugak<br>Bays and inshore waters around Kodiak Island,<br>Alaska                         |
| Figure 6            | 6. | Food web for the Pacific cod from inshore waters around Kodiak Island, Alaska                                                    |

# LIST OF TABLES

| Table  | Ι.      | Total epifaunal invertebrate biomass from benthic trawling activities in Alitak and Ugak Bay                                              |
|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Table  | II.     | A list of species taken by trawl from Alitak Bay<br>Kodiak Island, Alaska                                                                 |
| Table  | III.    | Number, weight, and density of major epifaunal invertebrate phyla of Alitak and Ugak Bays                                                 |
| Table  | IV.     | Number, weight, and density of major epifaunal invertebrate families of Alitak and Ugak Bays                                              |
| Table  | ν.      | Number weight, and density of the major epifaunal species of Arthropoda (Crustacea) from Alitak and Ugak Bays                             |
| Table  | VI.     | Sex and maturity composition of king crabs and snow crabs in Alitak and Ugak Bays                                                         |
| Table  | VII.    | Sex and maturity composition of king crabs<br>and snow crabs in Alitak and Ugak Bays                                                      |
| Table  | VIII.   | Sex ratios of king crabs in outer Alitak Bay                                                                                              |
| Table  | IX.     | List of species taken by trawl from Ugak Bay,<br>Kodiak Island, Alaska                                                                    |
| Table  | Χ.      | Sex ratios of king crabs in Ugak Bay                                                                                                      |
| Table  | XI.     | Percent frequency of occurrence of food items<br>found in stomachs of king and snow crabs and<br>yellowfin sole from Alitak and Ugak Bays |
| Table  | XII.    | Feeding methods of organisms included in the<br>Kodiak Island food web                                                                    |
| APPENI | IX TABI | JES                                                                                                                                       |
| Table  | I.      | Occurrence of each species in Alitak Bay                                                                                                  |
| Table  | II.     | Percentage composition by weight of all phyla from all stations in Alitak Bay                                                             |
| Table  | III.    | Percentage composition of all phyla by family from all stations in Alitak Bay                                                             |
| Table  | IV.     | Percentage composition of all phyla by species from all stations in Alitak Bay                                                            |

# APPENDIX TABLES (cont'd)

| Table V. | 0cc | urrence of each s                      | species in | Ugak H | Bay. | <br>• • | • | • | <br>• |
|----------|-----|----------------------------------------|------------|--------|------|---------|---|---|-------|
| Table VI | -   | centage compositi<br>m all stations ir |            |        |      |         | • | • |       |
| Table VI |     | centage compositi<br>m all stations ir |            |        |      |         | • | • | <br>• |
| Table VI |     | centage compositi<br>m all stations ir |            | -      |      |         |   |   |       |

## I. SUMMARY OF OBJECTIVES, CONCLUSIONS AND IMPLICATIONS WITH RESPECT TO OCS OIL AND GAS DEVELOPMENT

Little is known about the biology of the invertebrate components of the shallow, nearshore benthos of the bays of Kodiak Island, and yet these components may be the ones most significantly affected by the impact of oil derived from offshore petroleum operations. Baseline data on species composition is essential before industrial activities take place in waters adjacent to Kodiak Island. It was the intent of this investigation to collect information on the composition, distribution, and biology of the epifaunal invertebrate components of two bays of Kodiak Island.

The specific objectives of this study were:

- A qualitative inventory of dominant benthic invertebrate epifaunal species within two study sites (Alitak and Ugak Bays).
- 2. A description of spatial distribution patterns of selected benthic invertebrate epifaunal species in the designated study sites.
- Observations of biological interrelationships between segments of the benthic biota in the designated study areas.

Fifty-three permanent stations were established in two bays - 28 stations in Alitak Bay and 25 stations in Ugak Bay. These stations were occupied with a 400-mesh Eastern otter trawl on four separate cruises in June, July and August of 1976, and March 1977. Taxonomic analysis of the epifauna collected delineated 12 phyla, 23 classes, 66 families, 79 genera and 106 species. The Arthropoda (Crustacea) dominated in species composition and biomass. Porifera, Cnidaria, Annelida, Mollusca, and Echinodermata accounted for only 2.0% of the biomass collected.

Differences in sex composition and stage of maturity of king and snow crabs between and within the two bays were noted. King crabs,

Paralithodes camtschatica, occurred mainly at the outer stations of Alitak Bay and consisted mostly of egg-bearing females and juveniles. King crabs were well dispersed throughout Ugak Bay, and mainly consisted of juveniles. Snow crabs, *Chionoecetes bairdi*, in Alitak Bay were primarily juveniles; snow crabs in Ugak Bay were primarily adult males. Preliminary life history data for these crabs for the two bays are now available.

Food data for king and snow crabs for the two bays are also available, and these data, in conjunction with similar data from Cook Inlet and the Bering Sea, enhance our understanding of the trophic role of these crustaceans in their respective ecosystems. Additional food data for three species of flatfishes, as well as an assessment of the literature, have made it possible to develop a preliminary food web for benthic and nektobenthic species of Alitak and Ugak Bays and the inshore waters around Kodiak Island. Comprehension of basic food interrelationships is essential for assessment of the potential impact of oil on the crab-dominated benthic systems of the nearshore waters of Kodiak.

The importance of deposit-feeding clams in the diet of king and snow crabs in the two Kodiak bays has been demonstrated by preliminary feeding data collected there. It is suggested that an understanding of the relationship between oil, sediment, deposit-feeding clams, and crabs be developed in a further attempt to understand the possible impact of oil on the two commercially important species of crabs in the Kodiak area.

Initial assessment of data suggests that a few unique, abundant, and/or large invertebrate species (king crab, snow crab, several species of clams) are characteristic of the bays investigated and that these species may represent organisms that could be useful for monitoring purposes.

It is suggested that a complete understanding of the benthic systems in both bays can only be obtained when the infauna is also assessed in conjunction with the epifauna. Based on stomach analyses, infaunal species are important food items for king and snow crabs. However, the infaunal components of the Kodiak shelf have not been investigated to date. A program designed to examine the infauna should be initiated in the very near future.

#### II. INTRODUCTION

General Nature and Scope of Study

The operations connected with oil exploration, production, and transportation in the Gulf of Alaska present a wide spectrum of potential dangers to the marine environment (see Olson and Burgess, 1967, for general discussion of marine pollution problems). Adverse affects on a marine environment cannot be assessed, or even predicted, unless background data pertaining to the area are recorded prior to industrial development.

Insufficient long-term information about an environment and the basic biology of species present can lead to erroneous interpretations of changes that might occur if the area becomes altered (see Nelson-Smith, 1973; Pearson, 1971, 1972; Rosenberg, 1973, for general discussions on benthic biological investigations in industrialized marine areas). Populations of marine species fluctuate over a time span of a few to 30 or more years (Lewis, 1970).

Benthic organisms (primarily the infauna and sessile and slow-moving epifauna) are useful as indicator species for a disturbed area because they tend to remain in place, typically react to long-range environmental changes, and by their presence, generally reflect the nature of the

substratum. Consequently, the organisms of the infaunal benthos have frequently been chosen to monitor long-term pollution effects, and are believed to reflect the biological health of a marine area (see Pearson, 1971, 1972, 1975; and Rosenberg, 1973, for discussions on usage of benthic organisms for monitoring pollution). The presence of large numbers of benthic epifaunal species of actual or potential commercial importance (crabs, shrimps, scallops, snails, fin fishes) in the shelf ecosystem of Kodiak Island further dictates the necessity of understanding benthic communities since many commercial species feed on infaunal and small epifaunal residents of the benthos (see Feder *et al.*, 1977, Zenkevitch, 1963, and this report for a discussion of the interaction of commercial species and the benthos). Thus, drastic changes in density of the food benthos would affect the health and numbers of these fisheries organisms.

Experience in pollution-prone areas of England (Smith, 1968), Scotland (Pearson, 1972), and California (Straughan, 1971) suggests that at the completion of an initial exploratory study, selected stations should be examined regularly on a long-term basis to determine any changes in species composition, diversity, abundance, and biomass. Such long-term data acquisition should make it possible to differentiate between normal ecosystem variation and pollutant-induced biological alteration. An intensive investigation of the benthos of the Kodiak shelf, as well as its bays, is essential to an understanding of the trophic interactions there and the potential changes that could take place once oil-related activities are initiated. An intensive benthic biological program in the northeast Gulf of Alaska (NEGOA) has emphasized the development of a qualitative and quantitative inventory of prominent species of the benthic infauna and epifauna there (Feder *et al.*, 1976). In addition, a developing investigation

concerned with the biology of selected benthic species from NEGOA and lower Cook Inlet will further our understanding of the overall Gulf of Alaska benthic system (Feder *et al.*, 1977). Initiation of a program designed to examine the subtidal benthos of the Kodiak shelf will expand the coverage of the Gulf of Alaska benthic system, and an assessment of the fauna of two bays of Kodiak will extend investigations into little-known shallow-water benthic systems. The study reported here is a preliminary assessment of two shallow bays of Kodiak Island, and is intended to precede a greater overall investigation of the Kodiak Island shelf.

# Relevance to Problems of Petroleum Development

The effects of oil pollution on subtidal benthic organisms have been seriously neglected, although the results of a few studies, conducted after serious oil spills, have been published (see Boesch *et al.*, 1974 for review of these papers). Thus, lack of a broad data base elsewhere makes it difficult to predict the effects of oil-related activity on the subtidal benthos of the Kodiak shelf and the two Kodiak bays investigated. However, the expansion of research activities into Kodiak waters should ultimately enable us to identify certain species or areas that might bear closer scrutiny once industrial activity is initiated. It must be emphasized that a considerable time span is needed to understand fluctuations in density of marine benthic species, and it cannot be expected that a short-term research program will result in predictive capabilities. Assessment of the environment must be conducted on a continuing basis.

Data indicating the effects of oil on most subtidal benthic invertebrates are fragmentary (Nelson-Smith, 1973). The tanner or snow crab (*Chionoecetes bairdi*) is a conspicuous member of the shallow shelf of

Kodiak Island and its bays, and supports a commercial fishery of considerable importance there. Laboratory experiments with this species have shown that postmolt individuals lose most of their legs after exposure to Prudhoe Bay crude oil; obviously this aspect of the biology of the snow crab must be considered in the continuing assessment of this benthic species in the Gulf of Alaska (Karinen and Rice, 1974). Few other direct data based on laboratory experiments are available for subtidal benthic species (see Nelson-Smith, 1973 for review). Experimentation on toxic effects of oil on other common members of the subtidal benthos should be strongly encouraged for the near future in Kodiak waters as well as for all Outer Continental Shelf (OCS) areas of investigation. In addition, potential effects of the loss of sensitive species to the trophic structure of the shelf must be examined. The above problems can best be addressed once benthic food studies are made available as a result of the Outer Continental Shelf Environmental Assessment Program (OCSEAP) (e.g., see the following annual reports: Feder *et al.*, 1977, and Smith *et al.*, 1977).

A direct relationship between trophic structure (feeding type) and bottom stability has been demonstrated by Rhoads (see Rhoads, 1974 for review). He describes a diesel-fuel oil spill that resulted in oil becoming adsorbed on sediment particles which in turn caused death of deposit feeders living on sublittoral muds. Bottom stability was altered with the death of these organisms, and a new complex of species became established in the altered substratum. Many common members of the infauna of the Gulf of Alaska are deposit feeders; thus, oil-related mortality of these species could result in a changed near-bottom sedimentary regime with alteration of species composition there. In addition, the commercially important king and snow crabs, and some bottom fishes, use deposit feeders as food (Feder *et al.*, 1977 and present report); thus, contamination of the bottom by oil might indirectly affect the commercial species around Kodiak Island.

#### III. CURRENT STATE OF KNOWLEDGE

Little is known about the biology of the invertebrate benthos of the Gulf of Alaska, although a compilation of some relevant data on the Gulf of Alaska is available (AEIDC, 1975; Rosenberg, 1972). The exploratory trawl surveys of the National Marine Fisheries Service (undated) are the most extensive investigations of the benthic epifauna of the Kodiak shelf.<sup>1</sup> However, caution must be exercised in interpreting data from these surveys. Results, each directed toward different groups and/or species, are not typically comparable due to the alteration of gear and sampling effort from one cruise to another. Some unpublished information on the epifauna in the vicinity of Kodiak Island is available (i.e., Alaska Department of Fish and Game King Crab Indexing Surveys).<sup>2</sup> The International Pacific Halibut Commission surveys parts of the Kodiak shelf annually, but the only invertebrates recorded are the commercially important crabs (see Intl. Pac. Halibut Comm., 1964).

Alitak Bay has a past history as a king crab mating ground (Kingsbury and James, 1971), and has been a major producer of commercial-sized crab in the Kodiak Island area since 1953 (Gray and Powell, 1966). Outer Alitak Bay was also the site of king crab distribution, abundance, and composition studies (Gray and Powell, 1966; Kingsbury *et al.*, 1974) conducted by the Alaska Department of Fish and Game during the summer months of 1962 and 1970.

<sup>&</sup>lt;sup>1</sup>Unpublished data. Reports available from the National Marine Fisheries Service Laboratory, Kodiak, Alaska.

<sup>&</sup>lt;sup>2</sup>Unpublished reports. Inquiries may be directed to Alaska Department of Fish and Game, Box 686, Kodiak, Alaska 99615.

## IV. STUDY AREA

A large number of stations were occupied in two Kodiak Island bays in conjunction with the Alaska Department of Fish and Game. Alitak Bay and Ugak Bay, located on the south and east side of the Island respectively, were the sites of benthic trawling activities during the summer of 1976 and March, 1977 (Figs. 1 and 2).

#### V. SOURCES, METHODS AND RATIONALE OF DATA COLLECTION

Benthic epifauna was collected onboard the M/V *Big Valley* in 1976 during June 17-22, July 18-28 and August 19-29, and in 1977 during March 3-18. Thirty-minute tows were made at predetermined stations (Figs. 1 and 2) using a commercial size 400-mesh Eastern otter trawl with a 12.2 m horizontal opening.

Fifty-three permanent stations were established in the two bays - 28 stations in Alitak Bay and 25 stations in Ugak Bay.

| <u>Cruise Date</u> | <u>Alitak Bay</u> | Ugak Bay | Total Stations |
|--------------------|-------------------|----------|----------------|
| June 17-22, 1976   | 28                | 25       | 53             |
| July 18-28, 1976   | 28                | 25       | 53             |
| August 19-29, 1976 | 22                | 25       | 47             |
| March 3-18, 1977   | 21                | 23       | 44             |
| TOTAL              | 99                | 98       | 197            |

The number of stations occupied in each bay by cruise are as follows:

Bay stations were arbitrarily divided into three sections; inner stations, mid-bay stations, and outer stations (Figs. 1 and 2).

Invertebrates were sorted on shipboard, given tentative identifications, counted, and weighed. Aliquot samples of individual species were preserved and labeled for final identification at the Institute of Marine Science,

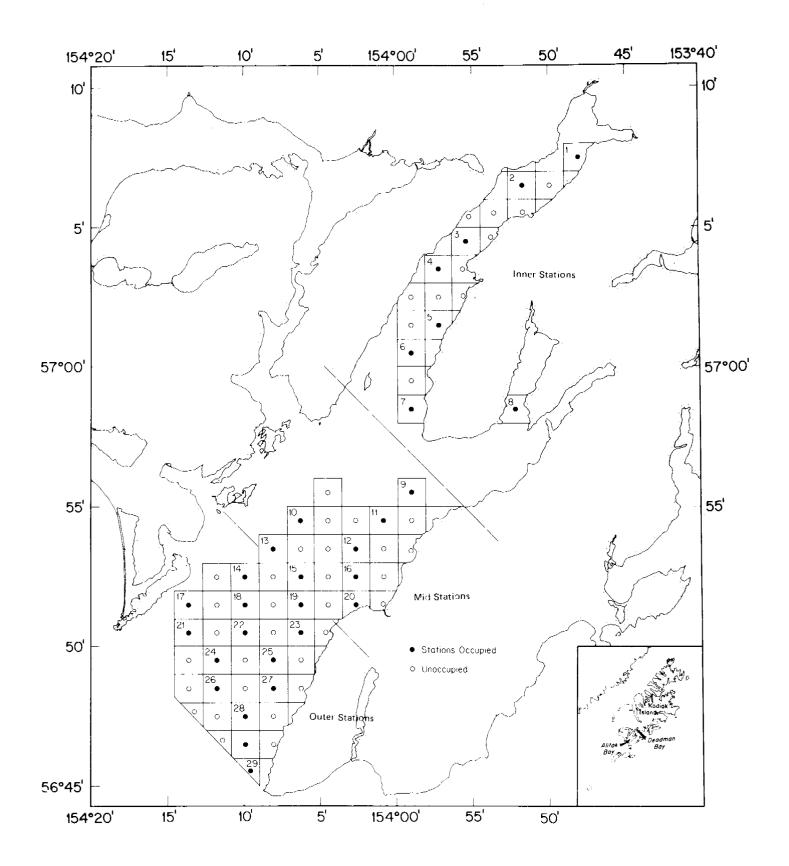



Figure 1. Trawl station grid and stations occupied in Alitak Bay, Kodiak Island, Alaska. June, July, and August 1976, and March 1977. The oblique, dashed lines drawn across the bay divide it into three sections referred to in the text.

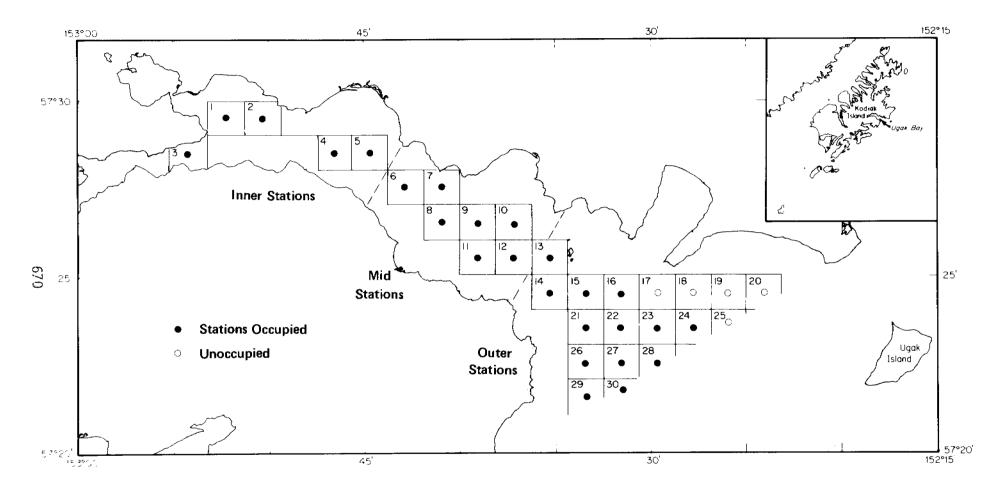



Figure 2. Trawl station grid and stations occupied in Ugak Bay, Kodiak Island, Alaska. June, July, and August 1976, and March 1977. The oblique, dashed lines drawn across the bay divide it into three sections referred to in the text.

University of Alaska. Laboratory examination occasionally revealed more than one species in a sample that had been identified to a single species in the field (e.g., field identifications of *Evalus macilenta* were later found to also contain *E. gaimardii belcheri*). The counts and weights of the species in question were arbitrarily expanded from the laboratory species ratio to encompass the entire catch of the trawl.

After final identification, all invertebrates were assigned code numbers (Mueller, 1975) to facilitate data analysis by computer. Representative and voucher samples of invertebrates are temporarily stored at the Institute of Marine Science, University of Alaska, Fairbanks, Alaska.

The major limitation of the survey was that imposed by the selectivity of the otter trawl used. In addition, rocky-bottom areas could not be sampled since otter trawls of the type used can only be fished on relatively smooth bottoms. Location of stored commercial crab gear in Alitak Bay, necessitated elimination of six stations (9 through 13) during the August sampling period. Seven (7) outer Alitak Bay stations (14, 18, 25 through 29) were eliminated in March, 1977 due to heavy concentrations of ovigerous female king crabs.

Food data were collected by examination of stomachs, either on shipboard or in the laboratory, of two species of crabs (snow crab, *Chionoecetes bairdi* and king crab, *Paralithodes camtschatica*) and four species of flatfishes (*Limanda aspera*, *Platichthys stellatus*, *Hippoglossoides elassodon* and *Lepidopsetta bilineata*). Male snow crabs between 75 and 180 mm carapace width and male king crabs between 90 and 200 mm carapace length were examined. Food organisms are expressed in frequency of occurrence, i.e., the percent of stomachs containing various food items from the total number of stomachs analyzed.

King and snow crabs were separated by weight, sex, and state of maturity. Male king crabs were considered sexually mature if their wet weight was at least 2.0 kg. Male snow crabs were considered mature if their wet weight was at least 0.45 kg. Weight criteria established for maturity of both crab species are approximations based on the minimum weight of legal-size crabs (J. Hilsinger and S. Jewett, unpublished data). Female king and snow crabs were classified as immature (pre-reproductive) or mature (reproductive or post-reproductive) based on the enlarged abdomen, modified pleopods, and egg clutch of the adults.

All station data not included in tables and appendices in this report are on file at the National Oceanographic Data Center (NODC).

#### VI. RESULTS

Distribution, Abundance and Reproductive Biology
Alitak Bay

The average epifaunal invertebrate biomass for all Alitak Bay stations sampled was 6.24  $g/m^2$  (Table I). The lowest biomass recorded was in August, 3.17  $g/m^2$ , while the highest biomass was in March 1977, 10.59  $g/m^2$ .

Taxonomic analysis of epifaunal invertebrates from Alitak Bay delineated 10 phyla, 16 classes, 46 families, 60 genera, and 79 species (Table II; Appendix Table I). Arthropoda (Crustacea) and Mollusca dominated species representation with 34 and 22 species, respectively (Table II; Appendix Table I). Arthropod crustaceans accounted for 99.1% of the total invertebrate biomass (Table III; Appendix Table II); 97.7% of this biomass was made up of the families Pandalidae, Lithodidae, and Majidae (Table IV; Appendix Table III). The leading species in each of these families, respectively, were the pink shrimp (*Pandalus borealis*), the king crab (*Paralithodes camtschatica*)

# TABLE I

# TOTAL EPIFAUNAL INVERTEBRATE BIOMASS FROM BENTHIC TRAWLING ACTIVITIES IN ALITAK AND UGAK BAY; JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

|              | A.         | litak Bay              |                  |            | Ugak Bay               |                  | Alitak and Ugak Bay |                        |                  |  |
|--------------|------------|------------------------|------------------|------------|------------------------|------------------|---------------------|------------------------|------------------|--|
|              | Weight, kg | Distance<br>fished, km | g/m <sup>2</sup> | Weight, kg | Distance<br>fished, km | g/m <sup>2</sup> | Weight, kg          | Distance<br>fished, km | g/m <sup>2</sup> |  |
| June, 1976   | 2998.427   | 47.15                  | 5.21             | 1264.732   | 42.50                  | 2.43             | 4263.159            | 89.65                  | 3.98             |  |
| July, 1976   | 3313.600   | 45.30                  | 5.99             | 2086.509   | 43.46                  | 3.93             | 5400.110            | 88.76                  | 4.98             |  |
| August, 1976 | 1431.266   | 36.98                  | 3.17             | 1862.656   | 41.14                  | 3.71             | 3293.922            | 78.12                  | 3.45             |  |
| March, 1977  | 3939.625   | 30.49                  | 10.59            | 1900.674   | 37.90                  | 4.11             | 5840.300            | 68.39                  | 6.99             |  |
| All months   | 11682.919  | 159.92                 | 6.24             | 7114.572   | 165.00                 | 3.54             | 18797.493           | 324.92                 | 4.74             |  |

#### TABLE II

A LIST OF SPECIES TAKEN BY TRAWL FROM ALITAK BAY, KODIAK ISLAND, ALASKA IN JUNE, JULY, AUGUST, 1976 AND MARCH, 1977

```
Phylum Porifera
               unidentified sp.
Phylum Cnidaria
     Class Hydrozoa
               unidentified sp.
     Class Scyphozoa
               unidentified sp.
     Class Anthozoa
          Family Pennatulidae
               Ptilosarcus gurneyi (Gray)
          Family Actinostolidae
               Stomphia coccinea (0. F. Müller)
          Family Actiniidae
               Tealia crassicornis (O. F. Müller)
Phylum Annelida
     Class Polychaeta
          Family Polynoidae
               unidentified sp.
          Family Nereidae
               Nereis sp.
          Family Scrpulidae
               Crucigera irregularis Bush
     Class Hirudinea
          Family Acanthochitonidae
               Notostomobdella sp.
Phylum Mollusca
     Class Pelecypoda
          Family Nuculonidae
               Nuculana fossa Baird
               Yoldia thraciaeformis Storer
          Family Mytilidae
               Mytilus edulis Linnaeus
               Musculus discors (Gray)
          Family Pectinidae
               Chlamys rubida Hinds
               Pecten caurinus Gould
          Family Anomiidae
               Pododesmus macrochisma Deshayes
          Family Astartidae
               Astarte rollandi Bernardi
               Astarte esquimalti Baird
          Family Cardiidae
               Clinocardium ciliatum (Fabricius)
               Serripes groenlandicus (Bruguiére)
```

# TABLE II

```
CONTINUED
```

Phylum Mollusca (cont'd) Family Veneridae Saxidomus gigantea (Deshayes) Protothaca staminea (Conrad) Family Tellinidae Macoma calcarea (Gmelin) Family Hiatellidae Hiatella arctica (Linnaeus) Class Gastropoda Family Calyptraeidae Crepidula nummaria Gould Family Velutinidae Velutina sp. Family Cymatiidae Fusitriton oregonensis (Pedfield) Family Thaididae Nucella lamellosa (Gmelin) Family Neptunidae Neptunea lyrata (Gmelin) Class Cephalopoda Family Gonatidae Gonatus sp. Family Octopodidae Octopus sp. Phylum Arthropoda Class Crustacea Family Balanidae Balanus balanus Pilsbury Balanus hesperius Pilsbury Balanus rostratus Pilsbury Order Amphipoda unidentified sp. Order Decapoda Family Pandalidae Pandalus borealis Kröyer Pandalus goniurus Stimpson Pandalus hypsinotus Brandt Pandalopsis dispar Rathbun Family Hippolytidae Eualus biunguis Rathbun Eualus gaimardii belcheri (Bell) Eualus macilenta (Kröyer) Family Crangonidae Crangon dalli Rathbun Crangon communis Rathbun Sclerocrangon boreas (Phipps)

## TABLE IT

#### CONTINUED

Phylum Arthropoda (cont'd) Family Crangonidae (cont'd) Argis sp. Argis lar (Owen) Argis dentata (Rathbun) Argis crassa Rathbun Family Paguridae Pagurus sp. Pagurus ochotensis Brandt Pagurus aleuticus (Benedict) Paqurus capillatus (Benedict) Pagurus kennerlyi (Stimpson) Pagurus beringanus (Benedict) Labidochirus splendescens (Owen) Family Lithodidae Paralithodes camlschatica (Tilesius) Paralithodes platypus Brandt Family Majidae Oregonia gracilis Dana *Ilyas lyratus* Dana Chionoecetes bairdi Bathbun Pugettia gracilis (Dana) Family Cancridae Cancer magister Dana Cancer oregonensis (Dana) Family Atelecyclidae Telmessus cheiragonus (Tilesius) Phylum Sipunculida unidentified sp. Phylum Ectoprocta unidentified sp. Phylum Brachiopoda Class Articulata Family Dallinidae Terebratalia transversa (Sowerby) Phylum Echinodermata Class Asteroidea Family Echinasteridae Henricia sp. Family Pterasteridae Pteraster tesselatus Fisher Family Asteridae Evasterias echinosoma (Stimpson) Evasterias troschelii (Stimpson)

# FABLE II

# CONTINUED

Phylum Echinodermata (cont'd) Family Asteridae (cont'd) Stylasterias formeri (de Loriol) Pyenopodia helianthoides (Brandt) Family Strongylocentrotidae Strongylocentrotus droebachiensis (O. F. Müller) Class Holothuroidea Family Molpadiidae Molpadia sp. Family Cucumariidae Cucumaria sp.

Phylum Chordata Class Ascidiaces unidentified sp.

## TABLE III

# NUMBER, WEIGHT, AND DENSITY OF MAJOR EPIFAUNAL INVERTEBRATE PHYLA OF ALITAK AND UGAK BAYS, JUNE, JULY, AUGUST, 1976 AND MARCH 1977

|                                | Number of<br>organisms |        | Weig     | Weight (kg) |        | Percent of total weight |        | Mean grams per<br>square meter |  |  |
|--------------------------------|------------------------|--------|----------|-------------|--------|-------------------------|--------|--------------------------------|--|--|
| Phylum                         | Alitak                 | Ugak   | Alitak   | Ugak        | Alitak | Ugak                    | Alitak | Ugak                           |  |  |
| Porifera                       | 649                    | 1037   | 43.86    | 89.35       | 0.38   | 1,25                    | 0.022  | 0.044                          |  |  |
| Cnidaria                       | 71                     | 275    | 12.23    | 44.75       | 0.10   | 0.63                    | 0.006  | 0.022                          |  |  |
| Mollusca                       | 276                    | 570    | 16.62    | 6.48        | 0.14   | 0.09                    | 0.008  | 0.003                          |  |  |
| Arthropoda<br>(Crustacea only) | 294718                 | 162337 | 11586.55 | 6819.85     | 99.10  | 95.85                   | 5.938  | 3.387                          |  |  |
| Echinodermata                  | 77                     | 577    | 22.62    | 137.36      | 0.19   | 1.93                    | 0.011  | 0.068                          |  |  |
| TOTAL                          | 295791                 | 164796 | 11681.88 | 7097.79     | 99.91  | 99.75                   | 5.985  | 3.524                          |  |  |

# TABLE IV

#### NUMBER, WEIGHT, AND DENSITY OF MAJOR EPIFAUNAL INVERTEBRATE FAMILIES OF ALITAK AND UGAK BAYS, JUNE, JULY, AUGUST, 1976 AND MARCH 1977

|              | Numb   | er of     |          |         | Percent | of    | Mean g | rams per |
|--------------|--------|-----------|----------|---------|---------|-------|--------|----------|
|              | orga   | organisms |          | ht (kg) | total w | eight | square | meter    |
| Phylum       | Alitak | Ugak      | Alitak   | Ugak    | Alitak  | Ugak  | Alitak | Ugak     |
| Actiniidae   | 32     | 249       | 8.31     | 43.26   | 0.07    | 0.60  | 0.004  | 0.021    |
| Pandalidae   | 263376 | 143595    | 2316.23  | 1392.23 | 19.82   | 19,56 | 1.187  | 0.691    |
| Hippolytidae | 14559  | 3793      | 109.34   | 35.73   | 0.93    | 0.50  | 0.056  | 0.017    |
| Lithodidae   | 3013   | 3460      | 4366.32  | 2586.71 | 37.37   | 36.35 | 2.237  | 1.285    |
| Majidae      | 7874   | 6420      | 4731.85  | 2743.04 | 40.50   | 38.55 | 2.425  | 1.362    |
| Asteridae    | 52     | 197       | 21.41    | 130.03  | 0.18    | 1.82  | 0.010  | 0.064    |
| TOTAL        | 288906 | 157714    | 11553.46 | 6931.00 | 98.87   | 97.38 | 5.919  | 3.440    |

and the snow or tanner crab (*Chionoecetes bairdi*) (Table V; Appendix Table IV). Although 22 species of Mollusca were represented, these species only accounted for 0.14% of the total invertebrate biomass (Table III).

The average catch of *Pandalus borealis* for all Alitak Bay stations in all sampling periods was 15.97 kg per tow  $(\frac{1581.86 \text{ kg}}{99 \text{ tows}})$  (also see Table V). Abundant catches of pink shrimps were obtained during June, July and August 1976, from Alitak Bay stations 11-16 (Fig. 1). During March 1977 the greatest catches came from stations 3-7 (Fig. 1). The greatest single catch was obtained in July at station 23; 426.0 kg.

Pink shrimps were not carrying eggs during June and July. However, in August, aqua-colored eggs were either visible through the cephalothorax and/or were attached to the abdominal appendages. By the following March, the eggs had advanced to the eyed-condition. Other pandalid and crangonid shrimps displayed similar timing of egg maturation.

The average catch of *Paralithodes camtschatica* for all Alitak Bay tows was 44.10 kg per tow  $(\frac{4365.87 \text{ kg}}{99 \text{ tows}})$  (also see Table V). During June through August, Alitak Bay stations 21 through 29 had good catches. However, the largest catches were obtained in the outer stations during March 1977. Several 10-minute tows were made in this outer bay area and these short tows produced full catches of adult female king crabs. Due to the concentrations of these female crabs and the high mortality which would probably result from continued sampling, trawling was aborted in seven of the outer Alitak Bay stations.

Ovigerous king crabs were collected in each of the four sampling periods. Many egg clutches were partially hatched and approximatel 3% were completely hatched by March. No grasping was observed at the latter time. Differences in sex composition and stage of maturity were observed over the four sampling

# TABLE V

# NUMBER, WEIGHT, AND DENSITY OF THE MAJOR EPIFAUNAL SPECIES OF ARTHROPODA (CRUSTACEA) FROM ALITAK AND UGAK BAYS, JUNE, JULY, AUGUST, 1976 AND MARCH, 1977

|                                | Number of<br>organisms |        | Weight (kg) |         | Percent<br>total we |       | Mean grams per<br>square meter |       |
|--------------------------------|------------------------|--------|-------------|---------|---------------------|-------|--------------------------------|-------|
| Phylum                         | Alitak                 | Ugak   | Alitak      | Ugak    | Alitak              | Ugak  | Alitak                         | Ugak  |
| Pandalus borealis              | 81668                  | 91225  | 1581.86     | 881.96  | 13.54               | 12.40 | 0.810                          | 0.438 |
| Pandalus goniurus              | 33109                  | 26688  | 270.15      | 253.04  | 2.31                | 3.56  | 0.138                          | 0.125 |
| Pandalus hypsinotus            | 45509                  | 25343  | 414.10      | 253.81  | 3.54                | 3.57  | 0.212                          | 0.126 |
| Pandalopsis dispar             | 3089                   | 338    | 50.54       | 3.41    | 0.43                | 0.05  | 0.025                          | 0.001 |
| Eualus gaimardii<br>belcheri   | 11288                  | -      | 81.96       | -       | 0.70                | -     | 0.042                          | _     |
| Argis dentata                  | 2349                   | 1600   | 17.84       | 11.33   | 0.15                | 0.16  | 0.009                          | 0.005 |
| Paralithodes camts-<br>chatica | 3012                   | 3460   | 4365.87     | 2586.71 | 37.37               | 36.36 | 2.237                          | 1.285 |
| Chionoecetes bairdi            | 7772                   | 6085   | 4728.56     | 2740.74 | 40.47               | 38.52 | 2.423                          | 1,361 |
| TOTAL                          | 187796                 | 154739 | 11510.88    | 6731.00 | 98.51               | 94.62 | 5.896                          | 3.341 |

periods (Tables VI and VII). The sex ratio of king crabs in the outer Alitak Bay stations for the present study, as well as from other studies (Gray and Powell, 1966; Kingsbury and James, 1971), is presented in Table VIII.

The average catch of *Chionoecetes bairdi* was 47.76 kg per tow  $(\frac{4728.56 \text{ kg}}{99 \text{ tows}})$  (also see Table V). Large catches of snow crabs were obtained in Alitak Bay stations 2 through 5 from June through August. The largest catch, 119.51 kg, was recorded at Alitak Bay station 3 in July. The catch of snow crabs in Alitak Bay declined from June to August; the catch was up slightly in March. Adult males were the main component of the population during the summer sampling periods (Table VI); in March adult females carrying eyed-eggs were common (Table VII). Ovigerous snow crabs were present during the four sampling periods.

#### Ugak Bay

The average epifaunal invertebrate biomass for all Ugak Bay stations sampled was  $3.54 \text{ g/m}^2$  (Table I). The lowest and highest biomasses were recorded in June 1976 and March 1977, respectively.

During the four Ugak Bay sampling periods, in which 98 tows were made, epifaunal invertebrates were identified to 12 phyla, 19 classes, 50 families, 67 genera and 84 species (Table IX; Appendix Table V). Arthropoda and Mollusca dominated Ugak Bay in species representation with 30 and 22 species present, respectively (Table IX). Crustaceans accounted for 95.8% of the total invertebrate biomass (see Appendix Tables VI, VII, and VIII for biomass data); 87.2% of the biomass consisting of pink shrimps, king crabs and snow crabs (Table V).

The average catch of *Pandalus borealis* for 98 Ugak Bay tows was 9.0 kg per tow  $(\frac{881.96 \text{ kg}}{98 \text{ tows}})$  (Table V). Large catches of pink shrimps were all in the structure of the str

# TABLE VI

| Alitak Bay             |                            |             |            | ine         |            |             | <u> </u>   | ly          |            |             | Aug        | ust     |            |
|------------------------|----------------------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|---------|------------|
| Stations               | Composition                | King<br>No. | crabs<br>% | Snow<br>No. | crabs<br>% | King<br>No. | crabs<br>% | Snow<br>No. | crabs<br>% | King<br>No. | crabs<br>% |         | crabs<br>% |
| 1-7                    | Adult males 1              | 0           | 0          | 1148        | 98         | 0           | 0          | 653         | 97         | 3           | 30         | 417     | 95         |
| (inner)                | Adult females <sup>1</sup> | 0           | 0          | 8           | 1          | 0           | 0          | 16          | 2          | 7           | 70         | 11      | 3          |
|                        | Juvenile males             | 0           | 0          | 0           | 0          | 0           | 0          | 0           | 0          | ,<br>0      | Ö          | 2       | <1         |
|                        | Juvenile females           | 0           | 0          | 8           | 1          | 0           | 0          | 6           | 1          | Ő           | õ          | 9       | 2          |
|                        | Total                      | 0           | 0          | 1164        | 100        | 0           | 0          | 675         | 100        | 10          | 100        | 439     | 100        |
| 9-13, 15, <sup>2</sup> | Adult males                | 0           | 0          | 603         | 88         | 41          | 67         | 895         | 92         | 6           | 15         | 84      | 92         |
| 16, 20                 | Adult females              | 1           | 100        | 55          | 8          | 4           | 6          | 53          | 6          | 16          | 39         | 04<br>4 | 92         |
| (mid-bay)              | Juvenile males             | ō           | 0          | 0           | õ          | 13          | 21         | 14          | 1          | 14          | 39         | 4<br>2  | 4          |
|                        | Juvenile females           | Ō           | õ          | 27          | 4          | 4           | 6          | 8           | 1          | 5           | 12         | 2       | 2          |
|                        | Total                      | 1           | 100        | 685         | 100        | 62          | 100        | 970         | 100        | 41          | 100        | 92      | 100        |
| 14, 17, 18,            | Adult males                | 25          | 7          | 1037        | 76         | 28          | 4          | 583         | 61         | 21          | 8          | 178     | 67         |
| 19, 21-29              | Adult females              | 165         | 50         | 319         | 23         | 244         | 35         | 271         | 28         | 100         | 37         | 69      | 26         |
| (outer)                | Juvenile males             | 87          | 26         | 8           | 1          | 236         | 34         | 12          | 1          | 92          | 34         | 9       | 3          |
|                        | Juvenile females           | 56          | 17         | 4           | <1         | 186         | 27         | 93          | 10         | 56          | 21         | 11      | 4          |
|                        | Total                      | 333         | 100        | 1368        | 100        | 694         | 100        | 959         | 100        | 269         | 100        | 267     | 100        |
| Ugak Bay<br>Stations   |                            |             |            |             |            |             |            |             |            |             |            |         |            |
| 1-5                    | Adult males                | 8           | 7          | 180         | 87         | 23          | 2          | 214         | 42         | 20          | 5          | 190     | 77         |
| (inner)                | Adult females              | 1           | 1          | 16          | 8          | 2           | <1         | 59          | 12         | 5           | 1          | 19      | 8          |
|                        | Juvenile males             | 43          | 38         | 0           | 0          | 397         | 43         | 196         | 38         | 193         | 50         | 18      | 7          |
|                        | Juvenile females           | 61          | 54         | 11          | 5          | 511         | 55         | 42          | 8          | 169         | 44         | 21      | 8          |
|                        | Total                      | 113         | 100        | 207         | 100        | 933         | 100        | 511         | 100        | 387         | 100        | 248     | 100        |
| 6-12                   | Adult males                | 7           | 29         | 567         | 90         | 23          | 6          | 212         | 56         | 2           | 1          | 213     | 81         |
| (mid-bay)              | Adult females              | 3           | 13         | 31          | 5          | 9           | 2          | 33          | 9          | 1           | 1          | 8       | 3          |
|                        | Juvenile males             | 12          | 50         | 0           | 0          | 189         | 50         | 109         | 29         | 76          | 45         | 25      | 10         |
|                        | Juvenile females           | 2           | 8          | 35          | 5          | 159         | 42         | 25          | 6          | 88          | 53         | 16      | 6          |
|                        | Total                      | 24          | 100        | 633         | 100        | 380         | 100        | 379         | 100        | 167         | 100        | 262     | 100        |

# SEX AND MATURITY COMPOSITION OF KING CRABS AND SNOW CRABS IN ALITAK AND UGAK BAYS, JUNE, JULY, AND AUGUST, 1976

# TABLE VI

| CONTIN | UED |
|--------|-----|
|--------|-----|

|                      |                  | June        |            |             | July       |             |            | August      |            |             |            |             |            |
|----------------------|------------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------|------------|
| Ugak Bay<br>Stations | Composition      | King<br>No. | crabs<br>% | Snow<br>No. | crabs<br>% | King<br>No. | crabs<br>% | Snow<br>No. | crabs<br>% | King<br>No. | crabs<br>% | Snow<br>No. | crabs<br>% |
| 13-30                | Adult males      | 21          | 29         | 591         | 83         | 21          | 8          | 728         | 62         | 2           | <1         | 339         | 76         |
| (outer)              | Adult females    | 7           | 10         | 38          | 5          | 36          | 13         | 61          | 5          | 9           | 1          | 23          | 5          |
|                      | Juvenile males   | 29          | 40         | 0           | 0          | 149         | 53         | 189         | 16         | 379         | 57         | 59          | 14         |
|                      | Juvenile females | 15          | 21         | 79          | 12         | 73          | 26         | 200         | 17         | 282         | 42         | 24          | 5          |
|                      | Total            | 72          | 100        | 708         | 100        | 279         | 100        | 1178        | 100        | 672         | 100        | 445         | 100        |

 $^1_{
m All}$  adult female king and snow crabs in both bays were carrying eggs.

 $^2$ Stations 9–13 in Alitak Bay were not sampled during August due to the presence of stored crab gear.

# TABLE VII

| Alitak Bay           | · · · · · · · · · · · · · · · · ·           | King             | crabs            | Snow      | crabs            |
|----------------------|---------------------------------------------|------------------|------------------|-----------|------------------|
| stations             | Composition                                 | No.              | %                | No.       | %                |
|                      |                                             | _                |                  | • •       |                  |
| 1-7                  | Adult males 1                               | 1                | 50               | 99        | 51               |
| (inner)              | Adult females <sup><math>\perp</math></sup> | 1                | 50               | 5         | 2                |
|                      | Juvenile males                              | 0                | 0                | 80        | 41               |
|                      | Juvenile females                            | $\frac{0}{2}$    | 0                | <u>12</u> | _6               |
|                      | TOTAL                                       | 2                | $1\overline{00}$ | 196       | 100              |
| 9-13, 15,            | Adult males                                 | 66               | 24               | 109       | 29               |
| 16, 17, 20           | Adult females                               | 184              | 67               | 36        | 9                |
| (mid-bay)            | Juvenile males                              | 22               | 8                | 146       | 39               |
|                      | Juvenile females                            | 2                | 1                | 88        | 23               |
|                      | TOTAL                                       | 274              | 100              | 379       | 100              |
| 19, 21-24            | Adult males                                 | 68               | 7                | 23        | 4                |
| (outer)              | Adult females                               | 862              | 92               | 413       | 82               |
| (******              | Juvenile males                              | 10               | 1                | 28        | 6                |
|                      | Juvenile females                            | 0                | Ō                | 40        | 8                |
|                      | TOTAL                                       | 940              | 100              | 504       | $1\overline{00}$ |
| Usel: Por            |                                             | ·                |                  |           |                  |
| Ugak Bay<br>stations |                                             |                  |                  |           |                  |
| 1-5                  | Adult males                                 | 0                | 0                | 94        | 27               |
| (inner)              | Adult females                               | 13               | 12               | 48        | 14               |
| (Inner)              | Juvenile males                              | 37               | 33               | 190       | 55               |
|                      | Juvenile females                            | 61               | 55               | 14        | 4                |
|                      | TOTAL                                       | $1\overline{11}$ | 100              | 346       | $1\overline{00}$ |
|                      |                                             |                  | 100              | 540       | 100              |
| 6-12                 | Adult males                                 | 9                | 16               | 120       | 22               |
| (mid-bay)            | Adult females                               | 10               | 18               | 97        | 18               |
|                      | Juvenile males                              | 29               | 52               | 300       | 55               |
|                      | Juvenile females                            | 8                | 14               | 29        | _5               |
|                      | TOTAL                                       | 56               | 100              | 546       | $1\overline{00}$ |
| 13-16, 21-23,        | Adult males                                 | 20               | 9                | 119       | 19               |
| 26-29                | Adult females                               | 31               | 15               | 130       | 21               |
| (outer)              | Juvenile males                              | 1.32             | 63               | 278       | 43               |
| <u> </u>             | Juvenile females                            | 28               | 13               | 106       | 17               |
|                      | TOTAL                                       | $\frac{-1}{211}$ | 100              | 633       | 100              |
|                      |                                             |                  |                  |           |                  |

# SEX AND MATURITY COMPOSITION OF KING CRABS AND SNOW CRABS IN ALITAK AND UGAK BAYS, MARCH, 1977

<sup>1</sup>All adult female king crabs and snow crabs in both bays were carrying eggs.

# TABLE VIII

|                         | Ma     | ture Cra |                    | Immature Crabs |      |                    |  |  |
|-------------------------|--------|----------|--------------------|----------------|------|--------------------|--|--|
| Date                    | Female | Male     | Ratio <sup>2</sup> | Female         | Male | Ratio <sup>2</sup> |  |  |
| April 1970 <sup>3</sup> | 1440   | 421      | 3.42:1             | 77             | 60   | 1.28:1             |  |  |
| May 1962 <sup>4</sup>   | 584    | 366      | 1.60:1             | 21             | 28   | 0.75:1             |  |  |
| June 1970 <sup>3</sup>  | 359    | 198      | 1.81:1             | 66             | 103  | 0.64:1             |  |  |
| June 1976               | 165    | 25       | 6.60:1             | 56             | 87   | 0.64:1             |  |  |
| July 1976               | 244    | 28       | 8.71:1             | 186            | 236  | 0.79:1             |  |  |
| August 1976             | 100    | 21       | 4.76:1             | 56             | 92   | 0.61:1             |  |  |
| March 1977              | 1047   | 135      | <b>7.</b> 76:1     | 2              | 32   | 0.06:1             |  |  |

# Sex ratios of King crabs in outer alitak $\operatorname{\mathsf{BAY}}^1$

Additional data for months not reported here is found in Kingsbury *et al.*, 1974.

<sup>2</sup>Females per male.

<sup>3</sup>Kingsbury and James, 1971.

<sup>4</sup>Gray and Powell, 1966.

#### TABLE IX

LIST OF SPECIES TAKEN BY TRAWL FROM UGAK BAY, KODIAK ISLAND, ALASKA IN JUNE, JULY, AUGUST, 1976 AND MARCH, 1977

Phylum Porifera Unidentified species Phylum Cnidaria Class Hydrozoa Family Campanulariidae Campanularia sp. Family Lafoeidae Unidentified species Family Sertulariidae Sertularella sp. Sertularia sp. Abietinaria sp. Family Plumulariidae Unidentified species Class Scyphozoa Unidentified species Class Anthozoa Subclass Alcyonaria Family Actinostolidae Stomphia coccinea (O. F. Müller) Family Actiniidae Tealia crassicornis (0. F. Müller) Phylum Ctenophora Unidentified species Phylum Annelida Class Polychaeta Family Polynoidae Unidentified species Family Spintheridae Spinther alaskensis Hartman Family Nereidae Nereis sp. Family Serpulidae Crucigera irregularis Bush Phylum Mollusca Class Pelecypoda Family Nuculanidae Nuculana fossa Baird Yoldia hyperborea Lovén in Torell Family Mytilidae Mytilus edulis Linnaeus Musculus discors (Gray) Modiolus modiolus (Linnaeus)

#### TABLE IX

#### CONTINUED

Family Pectinidae Pecten caurinus Gould Chlamys rubida Hinds Family Cardiidae Clinocardium ciliatum (Fabricius) Clinocardium nuttallii Conrad Serripes groenlandicus (Bruguiére) Family Tellininidae Macoma calcarea (Gmelin) Macoma moesta (Deshayes) Family Hiatellidae Hiatella arctica (Linnaeus) Family Teredinidae Bankia sp. Bankia setacea Tryon Class Gastropoda Family Calyptraeidae Crepidula nummaria Gould Family Velutinidae Velutina sp. Family Cymatiidae Fusitriton oregonensis (Redfield) Family Thaididae Nucella lamellosa (Gmelin) Family Dorididae Unidentified species Class Cephalopoda Family Gonatidae Gonatus sp. Family Octopodidae Octopus sp. Phylum Arthropoda Class Crustacea Family Balanidae Balanus sp. Balanus balanus Pilsbury Order Isopoda Unidentified species Order Decapoda Family Pandalidae Pandalus borealis Kröyer Pandalus goniurus Stimpson Pandalus hypsinotus Brandt Pandalopsis dispar Rathbun Family Hippolytidae Eualus biunguis Rathbun Eualus macilenta (Kröyer)

#### TABLE IX

#### CONTINUED

Family Crangonidae Crangon dalli Rathbun Crangon communis Rathbun Argis sp. Argis lar (Owen) Argis dentata (Rathbun) Family Paguridae Pagurus ochotensis Brandt Pagurus aleuticus (Benedict) Pagurus capillatus (Benedict) Pagurus kennerlyi (Stimpson) Pagurus beringanus (Benedict) Elassochirus tenuimanus (Dana) Family Lithodidae Paralithodes camtschatica (Tilesius) Family Majidae Oregonia gracilis Dana Hyas lyratus Dana Chionoecetes bairdi Rathbun Pugettia gracilis (Dana) Family Cancridae Cancer sp. Cancer magister Dana Cancer oregonensis (Dana) Family Atelecyclidae Telmessus cheiragonus (Tilesius) Family Pinnotheridae Pinnixa occidentalis Rathbun Phylum Sipunculida Unidentified species Phylum Echiurida Class Echiuroidea Family Echiuridae Echiurus echiurus Fisher Phylum Ectoprocta Class Cheilostomata Family Flustridae Unidentified species Family Microporidae Microporina sp. Class Ctenostomata Family Flustrellidae Flustrella sp. Phylum Brachiopoda Class Articulata Family Cancellothridae Terebratulina unguicula Carpenter

TABLE IX

```
CONTINUED
```

Family Dallinidae Terebratalia transversa (Sowerby) Phylum Echinodermata Class Asteroidea Family Solasteridae Solaster stimpsoni Verrill Family Asteridae Stylasterias forreri (de Loriol) Evasterias echinosoma (Stimpson) Evasterias troschelii (Stimpson) Pycnopodia helianthoides (Brandt) Family Stongylocentrotidae Strongylocentrotus droebachiensis (0. F. Müller) Class Ophiuroidea Family Gorgoncephalidae Gorgonocephalus caryi (Lyman) Family Ophiactidae Ophiopholis aculeata (Linnaeus) Class Holothuroidea Family Cucumariidae Cucumaria sp. Phylum Chordata Class Ascidiacea Family Styelidae Pelonaia corrugata Forbes Goods

from Ugak Bay stations 10-14, 22 and 23 (Fig. 2) during June, July and August, 1976. During March 1977 the greatest pink shrimp catches came from stations 6-14 (Fig. 2). The reproductive state of pink shrimps in Ugak Bay was similar to that observed for Alitak Bay.

Paralithodes camtschatica was not as common in Ugak Bay as in Alitak Bay. The average catch in Ugak Bay for all stations and all sampling periods was nearly half the average catch of Alitak Bay, i.e., 26.40 kg per tow in Ugak Bay  $(\frac{2586.71 \text{ kg}}{98 \text{ tows}})$  (Table V) as opposed to 44.10 kg per tow in Alitak Bay. During June, July, and August, large catches were made at Ugak Bay stations 1-4; the largest catch was 99.88 kg in August at station 4.

King crabs were well dispersed throughout Ugak Bay in all months. The composition during all sampling months was mainly juveniles (Tables VI and VII). Ovigerous females were present in each of the four sampling periods. The king crab sex ratio in Ugak Bay is presented in Table X. Seven grasping pairs were observed in March.

Chionoecetes bairdi was normally dominant at all stations. Large catches were obtained at Ugak stations 9, 10, 13, and 22 during June through August. Station 9 had the largest catch during March; 89.08 kg. The composition was mainly adult males during June through August (Table VI). Ovigerous females and juvenile males and females were more common during March than for the period June through August (Tables VI and VII).

#### Feeding Data

The food of *Paralithodes camtschatica*, *Chionoecetes bairdi*, and the yellowfin sole *Limanda aspera* was determined (Table XI). King crabs from Alitak and Ugak Bays fed almost exclusively on molluscs, crustaceans, and unidentified fishes. Snow crabs fed primarily on polychaetes, clams, and

| TTTD TTT 12 | TABLE | Х |
|-------------|-------|---|
|-------------|-------|---|

|             | Ma     | ture Cra | bs                 | Immature Crabs |      |                    |  |  |
|-------------|--------|----------|--------------------|----------------|------|--------------------|--|--|
| Date        | Female | Male     | Ratio <sup>1</sup> | Female         | Male | Ratio <sup>1</sup> |  |  |
| June 1976   | 11     | 36       | 0.31:1             | 78             | 84   | 0.93:1             |  |  |
| July 1976   | 47     | 67       | 0.70:1             | 743            | 735  | 1.01:1             |  |  |
| August 1976 | 15     | 24       | 0.63:1             | 539            | 648  | 0.83:1             |  |  |
| March 1977  | 54     | 29       | 1.86:1             | 97             | 198  | 0.49:1             |  |  |

SEX RATIOS OF KING CRABS IN UGAK BAY

<sup>1</sup>Females per male.

. -

### TABLE XI

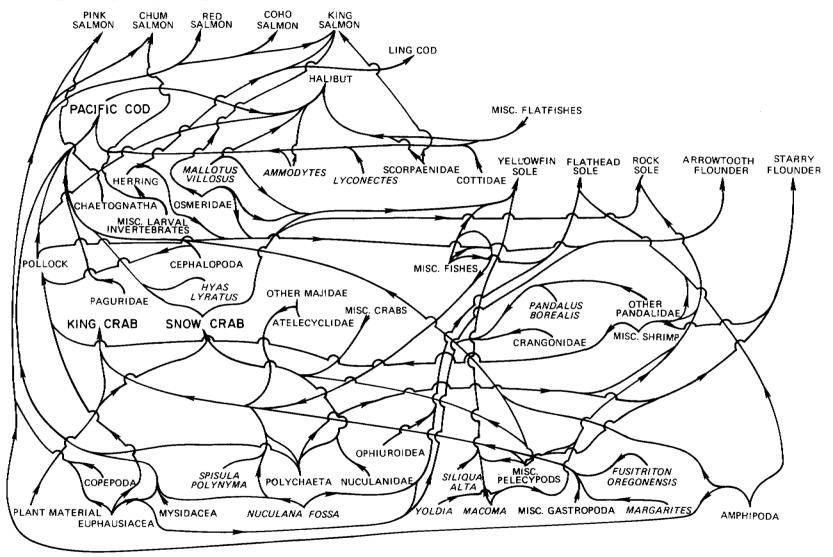
# PERCENT FREQUENCY OF OCCURRENCE OF FOOD ITEMS (LISTED ACCORDING TO LOWEST LEVEL OF TAXONOMIC IDENTIFICATION) FOUND IN STOMACHS OF KING AND SNOW CRABS AND YELLOWFIN SOLE FROM ALITAK AND UGAK BAYS, KODIAK ISLAND, JUNE, JULY, AUGUST, 1976 AND MARCH 1977

|                        | Percent        |              | y of occur<br>nd in stor |              |                | ems          |
|------------------------|----------------|--------------|--------------------------|--------------|----------------|--------------|
|                        | King           | Crabs        | Snow                     | Crabs        | Yellowf        | in Sole      |
| Food Item              | Alitak<br>N=37 | Ugak<br>N=10 | Alitak<br>N=34           | Ugak<br>N=36 | Alitak<br>N=45 | Ugak<br>N=12 |
| Polychaeta             | -              | _            | 23.5                     | 5.6          |                | -            |
| Nuculanidae            | 5.4            | 20.0         | 2.9                      | 13,9         | -              | -            |
| Nuculana fossa         | 13.5           | 20.0         | -                        | -            | -              | -            |
| Pelecypoda             | 10.8           | 30.0         | 26.5                     | 27.8         | 6.7            | -            |
| Macoma sp.             | -              | -            |                          |              | 2.2            | -            |
| Tellina sp.            | -              | -            | -                        | 2.8          | _              | -            |
| Spisula polynyma       | 2.7            | -            | -                        | -            | 2.2            | -            |
| Siliqua alta           | -              | _            | -                        | -            | 2.2            | -            |
| Mytilus edulis         | -              | -            | _                        | 2.8          |                | -            |
| Gastropoda             | 5.4            | 10.0         | -                        | -            | -              | -            |
| Margarites sp.         | 5.4            | -            |                          | -            | -              | -            |
| Fusitriton oregonensis | 2.7            | -            | -                        | -            | -              | -            |
| Octopi                 | _              | -            |                          | -            | 4.4            | -            |
| Crustacea              | 2.7            | -            | _                        | 5.6          | -              | -            |
| Euphausiacea           | 2.7            | -            |                          | -            | _              | _            |
| Caridea                | 10.8           | -            | 20.6                     | 11.1         | -              | -            |
| Crangonidae            | -              | -            | -                        | 2.8          | -              | -            |
| Brachyura              | -              | -            | 2.9                      | 13.9         | -              | -            |
| Majidae                | -              | 10.0         | -                        | -            | -              | -            |
| Chionoecetes bairdi    | -              | -            | -                        | -            | 4.4            | -            |
| Atelecyclidae          | 2.7            |              | _                        | -            | -              | -            |
| Pisces                 | 18.9           | 20.0         | 8.8                      | 5.6          | -              | 25.0         |
| Stichaeidae            | -              | _            | -                        | -            | 2.2            | -            |
| Osmeridae              | -              | -            | **                       | -            | -              | 8.3          |
| Mallotus villosus      | -              | -            | -                        | -            | 2.2            | -            |

N = Number of Stomachs Examined

| TABLE | XI |
|-------|----|
|-------|----|

#### CONTINUED


|                      | Percent        | Percent frequency of occurrence of food items<br>found in stomachs of: |                |              |                |              |  |  |  |
|----------------------|----------------|------------------------------------------------------------------------|----------------|--------------|----------------|--------------|--|--|--|
|                      | King           | <u>Crabs</u>                                                           | Snow_(         |              | Yellowfin Sole |              |  |  |  |
| Food Item            | Alitak<br>N=37 | Ugak<br>N=10                                                           | Alitak<br>N=34 | Ugak<br>N=36 | Alitak<br>N=45 | Ugak<br>N=12 |  |  |  |
| Unidentified plants  | 5.4            | 10.0                                                                   | 38.2           | 22.2         | _              | _            |  |  |  |
| Sediment             | -              | _                                                                      | 55.9           | 27.8         | -              | _            |  |  |  |
| Unidentified remains | -              | -                                                                      | 2.9            | -            | -              | -            |  |  |  |
| Empty stomachs       | 32.4           | 30.0                                                                   | 11.8           | 30.6         | 84.4           | 58.3         |  |  |  |

unidentified fishes. Sediment and plant material were also frequently present in stomachs of *C. bairdi*.

Clams and fishes were the main organisms consumed by *L. aspera*. Flathead sole, *Hippoglossoides elassodon*, fed on euphausiids and caridean shrimps (five fish examined), and rock sole, *Lepidopsetta bilineata*, fed primarily on polychaetes and the clam *Nuculana fossa* (four fish examined). Of the 40 yellowfin stomachs examined in March (Alitak Bay) 38 were empty. Also during March, 27 starry flounder, *Platichthys stellatus*, were examined, and were also found to be empty.

The Kodiak Island food web (Fig. 3) is based on data presented in this report, information from McDonald and Peterson (1976), Feder *et al.* (1977), and Jewett (1977). The food web is presented so that carbon flow is generally from bottom to top and always in the direction of the arrows. Data were insufficient to clearly identify major food pathways. Polychaetes, gastropods (snails), pelecypods (clams), amphipods, anomurans (hermit crabs), brachyurans (true crabs), and carideans (shrimps) are the major invertebrate food items in the web. Shrimps and crabs are important food items for most fishes as well as some of the crabs. Small fishes such as herring (*Clupea harengus pallasi*), capelin (*Mallotus villosus*), and sand lance (*Anmodytes hexapterus*) are important as food for larger predatory fishes such as Pacific cod (*Gadus macrocephalus*), king salmon (*Oncorhynchus tshawytscha*), and halibut (*Hippoglossus stenolepis*) (see Feder *et al.*, 1977 for additional Culf of Alaska food data).

Feeding relationships for snow crabs, king crabs, and Pacific cod (data from Feder *et al.*, 1977 and Jewett, 1977) are shown in more detail in Figures 4, 5, and 6, respectively. Snow and king crabs feed heavily on benthic animals that, in turn, rely in whole or in part on detritus, bacteria,



ALITAK and UGAK BAYS and INSHORE WATERS around KODIAK ISLAND - Food Web

Figure 3. A food web based on the epibenthic species taken from Alitak and Ugak Bays and inshore waters around Kodiak Island, Alaska.

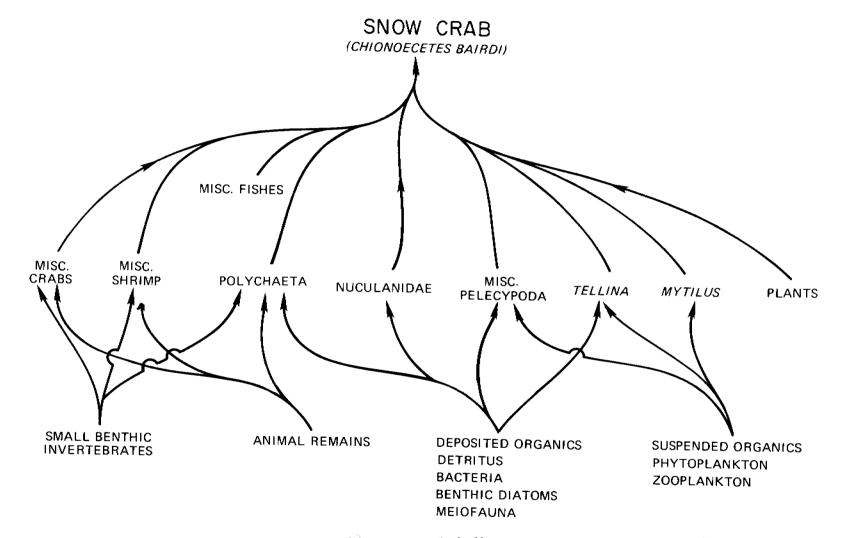



Figure 4. Food web for the snow crab (*Chionoecetes bairdi*) in Alitak and Ugak Bays and inshore waters around Kodiak Island, Alaska.

Food Web - KODIAK ISLAND

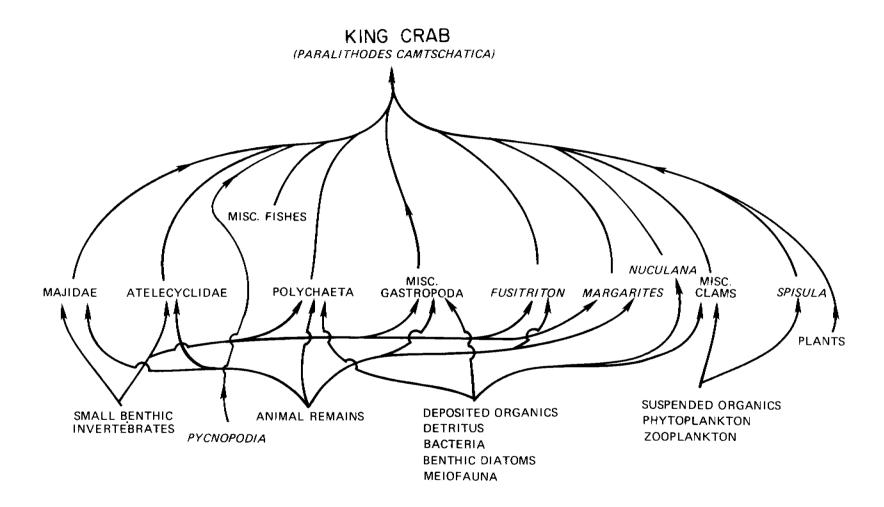



Figure 5. Food web for the king crab (*Paralithodes camtschatica*) in Alitak and Ugak Bays and inshore waters around Kodiak Island, Alaska.

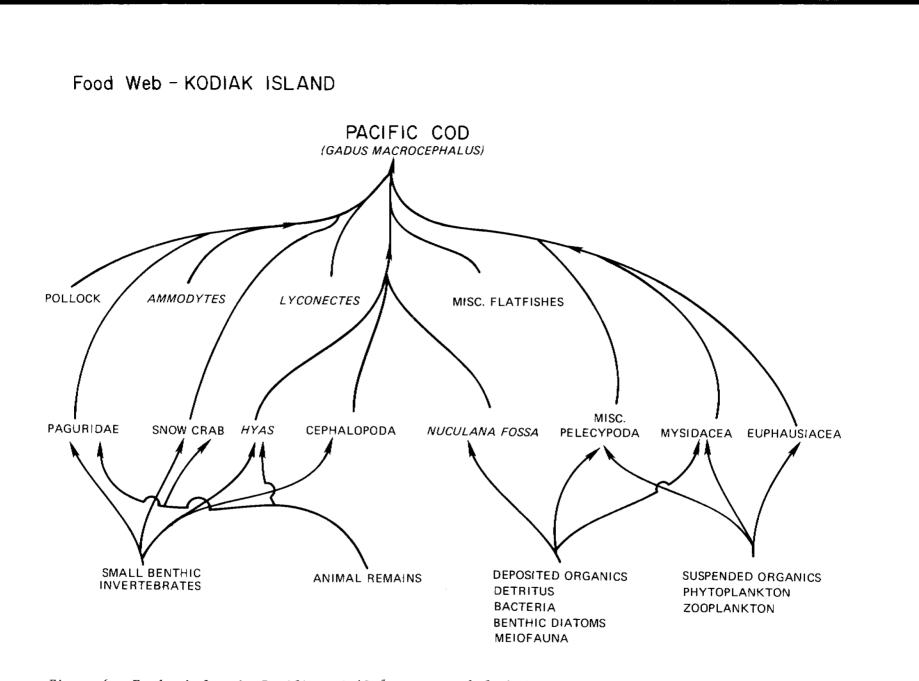



Figure 6. Food web for the Pacific cod (*Gadus macrocephalus*) from inshore waters around Kodiak Island, Alaska. (Also see Jewett, 1977 for comments on cod food habits in the Gulf of Alaska.)

benthic diatoms, and meiofauna for food (Figs. 5 and 6). Pacific cod feeds primarily on animals that are feeding on small benthic invertebrates or scavenging animal remains (Fig. 6; Table XII). The invertebrates in the two bays relied on a variety of feeding methods while the fishes tended to be predators (Table XII).

Number, weight and frequency of occurrence calculations used in this report are based on Appendix Tables I through VIII.

#### VII. DISCUSSION

#### Station Coverage

The trawl program discussed in this report represents the first intensive coverage of epifaunal invertebrates of Alitak and Ugak Bays. Preliminary plans called for 28 stations to be occupied monthly in Alitak Bay and 25 stations in Ugak Bay for June, July, and August 1976, and March 1977. August sampling in Alitak Bay was hampered when stored crab gear prevented sampling of five stations. Seven outer Alitak Bay stations were eliminated in March 1977 due to high concentrations of ovigerous king crabs. During the four sampling periods, 99 stations were occupied in Alitak Bay covering a total of 1.99 km<sup>2</sup>. Station coverage in the 98 Ugak Bay stations totalled 2.03 km<sup>2</sup>. The average distance fished at each station was 1.85 km.

#### Biomass

The epifaunal standing stock reported in the present study is similar to standing stock estimates presented in other OCSEAP benthic trawl studies elsewhere, i.e., see Jewett and Feder, 1976; Feder *et al.*, 1977. The total biomass of epifaunal invertebrates of the northeast Culf of Alaska was 2.6  $g/m^2$  (Jewett and Feder, 1976). The biomass determined for epifaunal

# TABLE XII

# FEEDING METHODS<sup>1</sup> OF ORGANISMS INCLUDED IN THE KODIAK ISLAND (ALITAK AND UGAK BAYS AND OTHER INSHORE WATERS) FOOD WEB

Phylum abbreviations: A=Annelida; M=Mollusca; Art=Arthropoda; Ecd=Echinodermata Ctn=Chaetognatha; Cho=Chordata; X=dominant feeding method; O=other feeding method

| Organism                       | Phylum | Deposit Feeder | Suspension Feeder | Scavenger | Predator | Unknown |
|--------------------------------|--------|----------------|-------------------|-----------|----------|---------|
| Polychaeta                     | A      | X              | X                 | X         | X        |         |
| Gastropoda                     | М      | Х              | -                 | Х         | Х        | -       |
| Margarites                     | М      | -              | -                 | _         | -        | Х       |
| Fusitriton oregonensis         | 3 M    | -              | -                 | Х         | Х        | -       |
| Nuculana fossa                 | М      | Х              | -                 | _         | _        | _       |
| Yoldia sp.                     | М      | Х              | -                 | -         | -        | -       |
| Spisula polynyma               | М      | -              | Х                 | -         | _        | -       |
| Axinopsida sp.                 | М      | -              | -                 | _         | -        | Х       |
| Siliqua alta                   | М      | -              | -                 | -         | -        | Х       |
| Macoma sp.                     | М      | Х              | 0                 | -         | -        | _       |
| Cephalopoda                    | М      | -              | -                 | Х         | Х        | -       |
| Mysidacea                      | Art    | -              | Х                 | Х         | Х        | -       |
| Amphipoda                      | Art    | Х              | -                 | х         | Х        | -       |
| Euphausiacea                   | Art    | -              | Х                 | -         | -        | -       |
| Pandalidae                     | Art    | _              | -                 | х         | Х        | -       |
| Pandalus borealis              | Art    | -              | -                 | х         | Х        | -       |
| Crangonidae                    | Art    | -              | -                 | Х         | х        | -       |
| Paguridae                      | Art    | -              | -                 | х         | Х        | -       |
| Paralithodes cam-<br>tschatica | Art    | -              | _                 | х         | Х        | _       |
| Majidae                        | Art    | _              | -                 | х         | Х        | -       |
|                                |        |                |                   |           |          |         |

# TABLE XII

# CONTINUED

| Organism                                | Phylum    | Deposit Feeder | Suspension Feeder | Scavenger  | Predator | Unknown |
|-----------------------------------------|-----------|----------------|-------------------|------------|----------|---------|
| Hyas lyratus                            | Art       | _              | _                 | X          | X        | _       |
| Chionoecetes bairdi                     | Art       | -              | -                 | Х          | Х        |         |
| Atelecyclidae                           | Art       | -              | -                 | -          | -        | Х       |
| Ophiuroidea                             | Ecd       | Х              | Х                 | Х          | Х        | _       |
| Chaetognatha                            | Ctn       | -              | -                 | -          | Х        |         |
| Clupea harengus pallas<br>(herring)     | si<br>Cho | -              | -                 | -          | Х        | -       |
| Oncorhynchus gorbuscho<br>(pink salmon) | z<br>Cho  | -              | _                 | -          | Х        | -       |
| 0. keta<br>(chum salmon)                | Cho       | -              | _                 |            | Х        | -       |
| 0. k <i>isutch</i><br>(coho salmon)     | Cho       | -              | _                 | -          | Х        | _       |
| 0. nerka<br>(red salmon)                | Cho       | -              | -                 | 1<br>1<br> | х        | -       |
| 0. tshawytscha<br>(King salmon)         | Cho       | -              | -                 | _          | Х        | _       |
| Osmeridae                               | Cho       | -              | -                 | -          | Х        | -       |
| Mallotus villosus<br>(capelin)          | Cho       | -              | -                 | _          | Х        |         |
| Theragra chalcogramma<br>(pollock)      | Cho       | -              | -                 | -          | Х        | -       |
| Gadus macrocephalus<br>(Pacific cod)    | Cho       | -              | -                 | х          | Х        | -       |
| Lyconectes sp.                          | Cho       | -              | -                 | -          | Х        | -       |

# TABLE XII

# CONTINUED

| Organism Pl                                  | nylum     | Deposit Feeder | Suspension Feeder | Scavenger | Predator | Unknown |
|----------------------------------------------|-----------|----------------|-------------------|-----------|----------|---------|
| Ammodytes sp.<br>(sand lance)                | Cho       | _              | _                 |           | X        | _       |
| Scorpaenidae                                 | Cho       | _              | -                 | _         | Х        | -       |
| <i>Ophiodon</i> sp.<br>(lingcod)             | Cho       | _              | -                 | _         | Х        | -       |
| Cottidae                                     | Cho       | -              | -                 | -         | Х        | _       |
| Atheresthes stomias<br>(arrowtooth flounder) | Cho       | _              | _                 | -         | X        | -       |
| Hippoglossoides elassoda<br>(flathead sole)  | on<br>Cho | _              | _                 | -         | х        | -       |
| Hippoglossus stenolepis<br>(Pacific halibut) | Cho       | -              | _                 | _         | X        | _       |
| Lepidopsetta bilineata<br>(rock sole)        | Cho       | _              | _                 | _         | X        | -       |
| <i>Limanda aspera</i><br>(yellowfin sole)    | Cho       | _              | _                 | _         | Х        | _       |
| Platichthys stellatus<br>(starry flounder)   | Cho       | -              | -                 | -         | Х        | _       |

<sup>1</sup>Based on Barnes, 1968; Feder, unpublished data; Hart, 1973; Newell, 1970; Pearce and Thorson, 1967; and Rasmussen, 1973.

invertebrates in the southeast Bering Sea was 3.3  $g/m^2$  in 1975 and 5.0  $g/m^2$  in 1976 (Feder *et al.*, 1977). The average epifaunal biomass for Alitak and Ugak Bay during all sampling months was 4.74  $g/m^2$  (Table I).

Russian benthic investigations (Neyman, 1963), provide biomass estimates based on grab samples for infauna and small epifauna from the southeast Bering Sea with the lowest value reported as  $55 \text{ g/m}^2$ . Use of a commercial trawl results in the loss of infaunal and small epifaunal organisms that are an important part of the benthic biomass. Therefore, the total benthic biomass value is probably best expressed by combining both grab and trawl values. Combined infaunal and epifaunal surveys should be part of all future investigations designed by OCSEAP.

#### Species Composition and Diversity

Examination of the species composition of both bays revealed crustaceans and molluscs to be the major epifaunal invertebrates present. In general, epifaunal diversity was similar to that reported in Feder *et al.* (1976) and Jewett and Feder (1976) for the northeast Gulf of Alaska. Major differences between the northeast Gulf of Alaska and the Kodiak bay fauna were the low numbers of species of Annelida and Echinodermata found in the bays. The survey in the northeast Gulf of Alaska revealed 30 species of annelids and 36 species of echinoderms; however, these phyla in Alitak and Ugak Bays only comprised 5 and 12 species respectively. The hermit crab, *Pagurus*, was the most diverse genus present with six species collected (Tables II and IX).

King crabs live most of their lives on the deeper part of the continental shelf, coming into shallow water once a year to mate. Except during the mating season (mid-March to June), the sexes remain segregated in deeper

water (lverson, 1966). Changing physical conditions from year to year may alter the periodicity of migration and breeding. The documented-life history of king crabs reported elsewhere is reflected in the observations made on this crab in the Kodiak bays discussed in this report. Examination of sex composition and stage of maturity of king crabs from past and present studies in outer Alitak Bay indicates a high number of adult females to adult males during the mating season (Tables VI-VIII). The low numbers of adult male king crabs in Alitak Bay during the summer months probably reflect their departure following spawning. The migratory pattern of king crabs in Ugak Bay was not clearly defined during the study period. Segregation between sexes in juveniles is not apparent (Tables VI-VIII; Powell and Nickerson, 1965).

Catches of king and snow crabs in Ugak Bay during the present study reflect a similar sex-maturity composition to that found during the A.D.F. & G. crab indexing studies in this bay, i.e., a predominance of juvenile king crabs of both sexes and adult male snow crabs from June-August (A.D.F. & G., unpublished reports). Juvenile male and female king crabs and juvenile snow crabs were most common in March. Although Ugak Bay does not typically yield commercial-size king crabs, the outer bay is often fished for snow crabs (A.D.F. & C., Kodiak, Alaska snow crab catch statistics).

#### Food Habits

The main species examined for stomach contents, *Chionoecetes bairdi* and *Paralithodes camtschatica*, in the present study were the most abundant and widely dispersed organisms present.

Inferences from the present study, as well as other snow crab food data (Feder *et al.*, 1977; Yasuda, 1967; Feder, unpublished data from Prince William Sound) concerning prey species, suggest that food used by snow crabs are

area specific. Most of the important food items consumed by Alitak Bay and Ugak Bay snow crabs (i.e., polychaetes, clams, shrimps, plants, sediment) differed from food items used by this species in Cook Inlet. Feder *et al.* (1977) examined 715 snow crabs in Cook Inlet, and found the main items, in order of decreasing percent frequency of occurrence, in stomachs were *Macoma* spp. (clams), *Pagurus* spp. (hermit crabs), *Balanus* spp. (barnacles), and sediment. The only similar stomach items in the present study were clams and sediment. The role of sediment in crab feeding is not known. However, Moriarty (1977) reported on the occurrence of sediment in the food contents of five species of Penaeid shrimps. The nutritional benefit of sediment intake to these shrimps appears to be derived from the film of organic carbon, inclusive of bacteria, on sand grains. Yasuda (1967) found benthic diatoms to be abundant in *Chionoecetes opilio elongatus* in the Bering Sea, and postulated that diatoms were taken indirectly with food and sediment.

Food items among king crabs appear to be similar at different geographic locations. McLaughlin and Hebard (1961) found molluscs to be the most frequently consumed food group (69.0%) in Bering Sea king crabs (with pelecypods more frequent than gastropods). Echinoderms ranked second, appearing in 42.2% of the crabs. Takeuchi (1959; 1967) examined the stomach contents of king crabs from the west coast of Kamchatka, and found molluscs (primarily pelecypods) to be the dominant food group. Crustaceans and echinoderms were the second and third most important groups, respectively. Bering Sea king crabs examined by Feder *et al.* (1977) also showed pelecypod molluscs to be the dominant food, specifically *Clinocardium* sp. and *Nuculanq* sp. *Nuculana*, a deposit feeder, is the most frequently occurring food used by king crabs in Alitak and Ugak Bays. Gastropods and shrimps were food items of secondary importance in the present study. Although echinoderms were absent from the

46 king crabs examined, sand dollars (*Dendraster* sp.) are occasionally consumed by king crabs occupying the outer continental shelf between Alitak and Ugak Bays (Guy C. Powell, A.D.F. & G., personal communication).

The two commercially important animals of great abundance near Kodiak Island, king crabs and snow crabs, feed on a wide variety of organisms. The king crab, with its large claws, is taking snails, clams, and fishes, while the snow crab with its long, thin, curved claws is better able to remove plant material, polychaetes, shrimps, and small clams from the bottom. Post larval stages of king crabs were not preyed upon by any of the fishes examined. However, the soft-shelled stage of the king crab is probably preyed upon since soft-shell snow crabs are known prey of *Octopus* spp. and sea stars (J. Hilsinger, unpublished data). Juvenile snow crabs are major prey of Pacific cod, *Gadus macrocephalus*, on the Kodiak continental shelf (Jewett, 1977).

The use of deposit-feeding animals as food, as well as the consistent uptake of sediment, by king and snow crabs in the Kodiak area may be critical in the event of oil contamination of sediments on crab feeding grounds.

#### VIII. CONCLUSIONS

Fifty-three permanent stations have been established in two bays of Kodiak Island - Alitak (28 stations) and Ugak (25 stations) bays. These stations have been occupied in conjunction with Alaska Department of Fish and Game personnel.

There is now a satisfactory knowledge, on a station basis (for the months sampled), of the distribution and abundance of the major epifaunal invertebrates of the two study bays. Twelve phyla are represented in

the collection. The important groups, in terms of species, in descending order of importance are the Arthropoda (Crustacea), Mollusca, Echinodermata and Annelida. The latter three groups only accounted for less than 1.0% of the biomass collected in each bay, while Arthropoda accounted for 95.8 and 99.1% of the biomass in Ugak and Alitak Bay respectively.

Additional seasonal data are essential. It is only when such continuing information is available that a reasonable biological assessment of the effect of an oil spill on these bays can be made.

Differences in sex composition and stage of maturity of king and snow crabs between and within the two bays were evident. Throughout the sampling period in Alitak Bay, king crabs occurred mainly at the outer stations and consisted primarily of egg-bearing females and juveniles of both sexes. King crabs were well dispersed throughout Ugak Bay during this period, and consisted mainly of juveniles. Snow crabs in Alitak Bay were primarily juvenile while mainly adult males inhabited Ugak Bay. Life history data for these crabs for March, June, July and August are now available.

Preliminary feeding data for the most common epifaunal species of the two bays is presented in this report. Of special importance is the food data compiled for the two commercially important crabs of the Kodiak area - snow and king crabs. These data in conjunction with similar data compiled for these two species in Cook Inlet and the Bering Sea (Feder *et al.*, 1977) should contribute to an understanding of the trophic role of the crabs in their respective ecosystems and the impact of oil on crabdominated systems such as those found in Alitak and Ugak Bays.

The importance of deposit-feeding clams in the diet of king and snow crabs is demonstrated for the two bays; this situation is also true for crabs observed elsewhere. A high probability exists that oil hydrocarbons will

enter crabs *via* these deposit-feeding molluses, suggesting that studies interrelating sediment, oil, deposit feeding clams, and crabs should be initiated soon.

Sampling crabs and fishes using trawls and stomach analysis has made it possible to understand a major component (the epifauna) of two Kodiak bays. However, a full comprehension of the benthic system there will only be achieved when these studies are expanded to include an assessment of infauna as well. Data available suggest that adequate numbers of unique, abundant, and/or large species are available to permit nomination of likely monitoring candidates. Presumably, a monitoring program would be based primarily on recruitment, growth, food habits, and reproduction of the chosen species.

#### IX. NEEDS FOR FURTHER STUDY

1. Although the trawling activities were satisfactory for determination of the distribution and abundance of epifauna, a substantial component of both bays - the infauna - was not sampled. Since infaunal species represent important food items, it is essential that dredging be accomplished at the bay stations in the near future.

2. The present study has produced a data base describing the abundance, density, and distribution of epibenthic invertebrates as well as notes on reproductive biology of commercially important crabs during June, July, and August 1976, and March 1977. Additional studies are needed during other seasons and years to describe seasonal and year-to-year variations in the distribution and relative abundance of the epifauna.

3. Seasonal predator-prey relationships should be examined in conjunction with simultaneous infaunal sampling.

4. It is essential that large samples of the dominant clam prey species be obtained to initiate recruitment, age, growth, and mortality studies. These data will then be comparable to similar data being collected for clams of Cook Inlet and the Bering Sea (Feder *et al.*, 1977). Any future modeling efforts concerned with carbon or energy flow in the Kodiak area will need this type of information.

5. No physical, chemical, and sediment data are currently available. This information should be obtained in the future in conjunction with all biological sampling efforts.

#### X. REFERENCES

- Arctic Environmental Information and Data Center. 1975. Kadyak a background for living. Univ. Alaska, AEIDC Publ. No. B-75, Sea Grant Publ. No. 75-9. 326 pp.
- Barnes, R. D. 1968. Invertebrate Zoology. W. B. Sanders Company, Philadelphia. 743 pp.
- Boesch, D. F., C. H. Hershner and J. H. Milgram. 1974. Oil Spills and the Marine Environment. Ballinger Publishing Co., Cambridge, Mass. 114 pp.
- Feder, H. M., G. Mueller, G. Matheke and S. Jewett. 1976. The distribution, abundance, diversity, and productivity of benthic organisms in the Culf of Alaska. Ann. Rep. to NOAA R.U. #281, Inst. Mar. Sci., Univ. Alaska, Fairbanks. 174 pp.
- Feder, H. M., K. Haflinger, J. Hilsinger, M. Hoberg, S. Jewett, G. Matheke and G. Mueller. 1977. The distribution, abundance, diversity, and productivity of benthic organisms in the Gulf of Alaska and the Bering Sea. Ann. Rep. to NOAA R.U. #281, Inst. Mar. Sci., Univ. Alaska, Fairbanks. 340 pp.
- Gray, G. W. and C. C. Powell. 1966. Sex ratios and distribution of spawning king crabs in Alitak Bay, Kodiak Island, Alaska (Decapoda Anomura, Lithodidae). Crustaceana 10(3):303-309.
- Hart, J. L. 1973. Pacific fishes of Canada. Fish. Res. Bd. Can. Bull. 180. 740 pp.
- International Pacific Halibut Commission. 1964. Catch records of a trawl survey conducted by the Intl. Pac. Halibut Comm. between Unimak Pass and Cape Spencer, Alaska from May 1961 to April 1963. Intl. Pac. Halibut Comm. Doc. No. 36. 524 pp.

Iversen, E. F. 1966. The King-sized crab. Sea Frontiers 12(4):228-237.

- Jewett, S. C. 1977. Food of the Pacific cod, Gadus macrocephalus Tilesius near Kodiak Island, Alaska. M.S. Thesis, Univ. Alaska. 23 pp.
- Jewett, S. C. and H. M. Feder. 1976. Distribution and Abundance of Some Epibenthic Invertebrates of the Northeast Gulf of Alaska, with Notes on the Feeding Biology of Selected Species. Inst. Mar. Sci. Rept. R76-8, Univ. of Alaska, Fairbanks. 61 pp.
- Karinen, J. F. and S. D. Rice. 1974. Effects of Prudhoe Bay crude oil on molting tanner crabs, *Chionoecetes bairdi*. Marine Fisheries Review 36(7):31-37.

- Kingsbury, A. P. and K. E. James. 1971. Abundance and composition of king crabs in the Alitak and Kaguyak Bay areas during April and June, 1970. Alaska Dept. Fish Game Inf. Leafl. No. 152. 42 pp.
- Kingsbury, A. P., N. P. Johnson and R. J. Kaiser. 1974. King crab study. Completion report for period July 1, 1962 to June 30, 1972. Proj. No. 5-22-R, Comm. Fish Res. Dev. Act. prepared for NOAA, Natl. Mar. Fish. Serv. by Alaska Dept. Fish Game. 93 pp.
- Lewis, J. R. 1970. Problems and approaches to base-line studies in coastal communities. FAO Tech. Conf. on Mar. Pollution and its Effect on Living Resources and Fishing. FIR:MP 70/E-22. 7 pp.
- McDonald, K. B. and K. K. Petersen. 1976. Kodiak Island: physical environment, biota, and potential problems related to oil exploration. A scientific report based primarily on OCSEAP-sponsored research. Science Applications, Inc., Boulder, Colorado. 146 pp.
- McLaughlin, P. A. and J. F. Hebard. 1961. Stomach contents of the Bering Sea king crab. Intl. North Pac. Fish. Comm. Bull. 5:5-8.
- Moriarty, D. J. W. 1977. Quantification of carbon, nitrogen and bacterial biomass in the food of some Penaeid prawns. Aust. J. Freshwater Res. 28:113-118.
- Mueller, G. 1975. A preliminary taxon list and code for ADP processing. Sea Grant Proj. A/77-02. 159 pp.
- Nelson-Smith, A. 1973. Oil Pollution and Marine Ecology. Paul Elek (Scientific Books) Ltd., London. 260 pp.
- Newell, R. G. 1970. Biology of Intertidal Animals. Logos Press Limited, London. 444 pp.
- Neyman, A. A. 1963. Quantitative distribution of benthos and food supply of demersal fish in the eastern part of the Bering Sea. Tr. Vses. Nauchno-issled. Inst. Morsk. Rybn. Khoz. Okeanogr. 48. (Izv. Tikhookean. Nauchno-issled. Inst. Morsk. Tybn., Khoz. Okeanogr. 50): 145-205. (Transl. from Russian by Israel Prog. Sci. Transl., Jerusalem, as Soviet Fish. Inv. Northeast Pacific. Part I. p. 143-217.)
- Olson, T. A. and F. J. Burgess, eds. 1967. Pollution and Marine Ecology. Interscience, New York. 364 pp.
- Pearce, J. B. and G. Thorson. 1967 The feeding and reproductive biology of the red whelk, *Neptunea antigua* (L.) (Gastropoda, Prosobranchia). *Ophelia* 4(2):277-314.
- Pearson, T. H. 1971. The benthic ecology of Loch Linnhe and Loch Eil, a sea loch system on the west coast of Scotland. III. The effect on the benthic fauna of the introduction of pulp mill effluent. J. Exp. Mar. Biol. Ecol. 6:211-233.

- Pearson, T. H. 1972. The effect of industrial effluent from pulp and paper mills on the marine benthic environment. Proc. Roy. Soc. Lond. B. 130: 469-485.
- Pearson, T. H. 1975. The benthic ecology of Loch Linnhe and Loch Eil, a sea loch system on the west coast of Scotland. IV. Changes in the benthic [auna attributable to organic enrichment. J. Exp. Mar. Biol. Ecol. 20:1-41.
- Powell, G. C. and R. B. Nickerson. 1965. Aggregations among juvenile king crabs (*Paralithodes camtschatica*, Tilesius) Kodiak, Alaska. *Animal Behaviour* 13:2-3.
- Rasmussen, E. 1973. Systematics and ecology of the Iselfjord marine fauna. Ophelia 11(1-2):1-495.
- Rhoads, D. C. 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev. 12:263-300.
- Rosenberg, D. H. 1972. A review of the oceanography and renewable resources of the northern Gulf of Alaska. Report R72-23, Inst. Mar. Sci., Univ. Alaska, Fairbanks. Sea Grant Report 73-3, 690 pp.
- Rosenberg, R. 1973. Succession in benthic macrofauna in a Swedish fjord subsequent to the closure of a sulphite pulp mill. *Oilos* 24:244-258.
- Smith, J. E., ed. 1968. Torrey Canyon Pollution and Marine Life. Cambridge Univ. Press, Cambridge. 196 pp.
- Smith, R., A. Paulson, J. and J. Rose. 1976. Food and feeding relationships in the benthic and demersal fishes of the Gulf of Alaska and Bering Sea. Ann. Rep. to NOAA R.U. #284, Inst. Mar. Sci., Univ. Alaska, Fairbanks. 38 pp.
- Straughan, D. 1971. Biological and oceanographical survey of the Santa Barbara Channel oil spill 1969-1970. Allan Hancock Foundation, Univ. of Southern California, Los Angeles. 425 pp.
- Takeuchi, I. 1959. Food of king crab (Paralithodes camtschatica) off the west coast of Kamchatka in 1958. Bull. Hokkaido Reg. Fish. Res. Lab. 20:67-75. (Transl. from Jap.-Fish. Res. Bd. Can. Transl. Ser. No. 1193.)
- Takeuchi, I. 1967. Food of king crab, Paralithodes camtschatica, off the west coast of the Kamtchatka Peninsula, 1958-1964. Bull. Jap. Sea Reg. Fish Res. Lab. 33:32-44. (Transl. from Jap.-Fish. Res. Bd. Can. Transl. Ser. No. 1194.)
- Yasuda, T. 1967. Feeding habits of the zuwaigani, *Chionoecetes opilio* elongatus, in Wakasa Bay. I. Specific composition of the stomach contents. *Bull. Jap. Soc. Sci. Fish* 33(4):315-319. (Transl. from Jap.-Fish. Res. Bd. Can. Transl. Ser. No. 1111.)
- Zenkevitch, L. A. 1963. *Biology of the Seas of the USSR*. George Allen and Unwin., Ltd., London. 955 pp.

#### XI. APPENDIX

The following Appendix tables are taken from computer printouts of OCSEAP data submitted to the National Oceanographic Data Center (NODC).

# OCCURRENCE OF EACH SPECIES IN ALITAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

# A total of 99 stations were occupied. Taxonomic names represent the lowest level of identification.

| Taxonomic name         | Cumulative<br>occurrence | % of all <sup>1</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Porifera               | 20                       | 2.632                               | 20.619                            |
| Hydrozoa               | 3                        | 0.395                               | 3.093                             |
| Scyphozoa              | 1                        | 0.132                               | 1.031                             |
| Ptilosarcus gurneyi    | 8                        | 1.053                               | 8.247                             |
| Stomphia coccinea      | 1                        | 0.132                               | 1.031                             |
| Actiniidae             | 7                        | 0.921                               | 7.216                             |
| Tealia crassicornis    | 1                        | 0.132                               | 1.031                             |
| Polychaeta             | 1                        | 0.132                               | 1.031                             |
| Polynoidae             | 1                        | 0.132                               | 1.031                             |
| Nereis sp.             | 2                        | 0.263                               | 2.062                             |
| Crucigera irregularis  | 1                        | 0.132                               | 1.031                             |
| Hirudinea              | 1                        | 0.132                               | 1.031                             |
| Notostomobdella sp.    | 8                        | 1.053                               | 8.247                             |
| Nuculana fossa         | 5                        | 0.658                               | 5,155                             |
| Yoldia thraciaeformis  | 1                        | 0.132                               | 1,031                             |
| Mytilus edulis         | 1                        | 0.132                               | 1.031                             |
| Musculus discors       | 3                        | 0.395                               | 3,093                             |
| Chlamys rubida         | 4                        | 0.526                               | 4.124                             |
| Pecten caurinus        | 1                        | 0.132                               | 1.031                             |
| Pododesmus macrochisma | 1                        | 0.132                               | 1.031                             |
| Astarte rollandi       | 1                        | 0.132                               | 1.031                             |
| Astarte esquimalti     | 1                        | 0.132                               | 1.031                             |
| Clinocardium ciliatum  | 1                        | 0.132                               | 1.031                             |
| Serripes groenlandicus | 2                        | 0.263                               | 2.062                             |
| Saxidomus gigantea     | 1                        | 0.132                               | 1.031                             |
| Protothaca staminea    | 1                        | 0.132                               | 1.031                             |
| Nacoma calcarea        | 5                        | 0.658                               | 5.155                             |
| Hiatella arctica       | 6                        | 0.789                               | 6.186                             |

| faxonomic name            | Cumulative<br>occurrence | % of all <sup>1</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|---------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Crepidula nummaria        | 2                        | 0.263                               | 2.062                             |
| Velutina sp.              | 1                        | 0.132                               | 1.031                             |
| Fusitrition oregonensis   | 10                       | 1.316                               | 10.309                            |
| Vucella lamellosa         | 3                        | 0.395                               | 3.093                             |
| Veptunea lyrata           | 8                        | 1.053                               | 8.247                             |
| Gonatidae                 | 1                        | 0.132                               | 1.031                             |
| Gonatus sp.               | 2                        | 0.263                               | 2.062                             |
| Octopus sp.               | 1                        | 0.132                               | 1.031                             |
| Balanus balanus           | 1                        | 0.132                               | 1.031                             |
| Balanus hesperius         | 3                        | 0.395                               | 3.093                             |
| Balanus rostratus         | 1                        | 0.132                               | 1.031                             |
| Amphipoda                 | 1                        | 0.132                               | 1.031                             |
| Pandalus borealis         | 66                       | 8.684                               | 68.041                            |
| Pandalus goniurus         | 39                       | 5.132                               | 40.206                            |
| Pandalus hypsinotus       | 70                       | 9,211                               | 72.165                            |
| Pandalopsis dispar        | 19                       | 2.500                               | 19.588                            |
| Sualus biunguis           | 30                       | 3.947                               | 30.928                            |
| Sualus gaimardii belcheri | 24                       | 3.158                               | 24.742                            |
| Eualus macilenta          | 14                       | 1.842                               | 14.433                            |
| Crangon dalli             | 17                       | 2.237                               | 17.526                            |
| Crangon communis          | 19                       | 2.500                               | 19.588                            |
| Sclerocrangon boreas      | 2                        | 0.263                               | 2.062                             |
| Argis sp.                 | 3                        | 0.395                               | 3.093                             |
| Argis lar                 | 14                       | 1.842                               | 14.433                            |
| Argis dentata             | 28                       | 3.684                               | 28.866                            |
| Argis crassa              | 3                        | 0.395                               | 3.093                             |
| Pagurus sp.               | 1                        | 0.132                               | 1.031                             |
| Pagurus ochotensis        | 18                       | 2.368                               | 18.557                            |
| Pagurus aleuticus         | 20                       | 2.632                               | 20.619                            |
| Pagurus capillatus        | 11                       | 1.447                               | 11.340                            |

#### CONTINUED

| Taxonomic name                        | Cumulative<br>occurrence | % of all <sup>l</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|---------------------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Pagurus kennerlyi                     | 2                        | 0.263                               | 2.062                             |
| Pagurus beringanus                    | 1                        | 0.132                               | 1.031                             |
| Labidochirus splendescens             | 5                        | 0.658                               | 5.155                             |
| Paralithodes camtschatica             | 66                       | 8.684                               | 68.041                            |
| Paralithodes platypus                 | 1                        | 0.132                               | 1.031                             |
| Oregonia gracilis                     | 16                       | 2.105                               | 16.495                            |
| Hyas lyratus                          | 5                        | 0.658                               | 5.155                             |
| Chionoecetes bairdi                   | 95                       | 12.500                              | 97.938                            |
| Pugettia gracilis                     | 6                        | 0.789                               | 6.186                             |
| Cancer magister                       | 6                        | 0.789                               | 6.186                             |
| Cancer oregonensis                    | 5                        | 0.658                               | 5.155                             |
| Telmessus cheiragonus                 | 1                        | 0.132                               | 1.031                             |
| Sipunculida                           | 1                        | 0.132                               | 1.031                             |
| Ectoprocta                            | 1                        | 0.132                               | 1.031                             |
| Terebratalia transversa               | 1                        | 0.132                               | 1.031                             |
| llenricia sp.                         | 4                        | 0.526                               | 4.124                             |
| Pteraster tesselatus                  | 1                        | 0.132                               | 1.031                             |
| Evasterias echinosoma                 | 2                        | 0.263                               | 2.062                             |
| Evasterias troschelii                 | 3                        | 0.395                               | 3,093                             |
| Stylasterias forreri                  | 1                        | 0.132                               | 1.031                             |
| Pycnopodia helianthoides              | 1                        | 0.132                               | 1.031                             |
| Strongylocentrotus droebach<br>iensis | <b>-</b> 6               | 0.789                               | 6.186                             |
| Molpadia sp.                          | 1                        | 0.132                               | 1.031                             |
| Cucumaria sp.                         | 1                        | 0.132                               | 1.031                             |
| Chordata:Ascidiacea                   | 7                        | 0.921                               | 7.216                             |
| TOTAL                                 | 760                      | 100.000                             | _                                 |

1 cumulative occurrence total cumulative occurrence

<sup>2</sup><u>cumulative occurrence</u> total no. of stations occupied

# PERCENTAGE COMPOSITION BY WEIGHT OF ALL PHYLA FROM ALL STATIONS IN ALITAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

|                      | Total No.<br>indiv. |          |             |          | gm/m <sup>2</sup> |
|----------------------|---------------------|----------|-------------|----------|-------------------|
| Taxonomic name       | (count)             | % Count  | Weight (gm) | % Weight | all Sta.          |
| Porifera             | 649                 | 0.2193   | 43866.00    | 0.3755   | 0.02248           |
| Cnidaria             | 71                  | 0.0238   | 12230.72    | 0.1047   | 0.00627           |
| Annelida             | 131                 | 0.0443   | 233.00      | 0,0020   | 0.00012           |
| Mollusca             | 276                 | 0.0934   | 16629.67    | 0.1423   | 0.00852           |
| Arthropoda:Crustacea | 294718              | 99.5748  | 11586552.50 | 99.1751  | 5.93870           |
| Sipunculida          | 1                   | 0.0003   | 8.00        | 0.0001   | 0.00000           |
| Ectoprocta           | 1                   | 0.0003   | 225.00      | 0.0019   | 0.00012           |
| Brachiopoda          | 2                   | 0.0007   | 28.00       | 0.0002   | 0.00001           |
| Echinodermata        | 78                  | 0.0262   | 22622.67    | 0.1936   | 0.01160           |
| Chordata:Ascidiacea  | 50                  | 0.0168   | 524.33      | 0.0045   | 0.00027           |
| TOTALS               | 295977              | 100.0000 | 11682919.89 | 100.0000 | 5.98810           |

PERCENTAGE COMPOSITION OF ALL PHYLA BY FAMILY FROM ALL STATIONS IN ALITAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

| Taxonomic name                    | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>all Sta. |
|-----------------------------------|--------------------------------|---------|-------------|----------|-------------------------------|
| Porifera (unid. family)           | 649                            | 0.2193  | 43866.00    | 0.3755   | 0.02248                       |
| Hydrozoa (unid. family)           | 4                              | 0.0012  | 1854.33     | 0.0159   | 0.00095                       |
| Scyphozoa (unid. family)          | 1                              | 0.0003  | 100.00      | 0.0009   | 0.00005                       |
| Pennatulacea pennatulidae         | 30                             | 0.0102  | 597.00      | 0.0051   | 0.00031                       |
| Actinostolidae                    | 4                              | 0.0014  | 1360.00     | 0.0116   | 0.00070                       |
| Actiniidae                        | 32                             | 0.0107  | 8319.38     | 0.0712   | 0.00426                       |
| Polychaeta (unid. family)         | 8                              | 0.0027  | 16.00       | 0.0001   | 0.00001                       |
| Polynoidae                        | 2                              | 0.0007  | 2.00        | 0.0000   | 0.00000                       |
| Nereidae                          | 10                             | 0.0034  | 22.00       | 0.0002   | 0.00001                       |
| Serpulidae                        | 100                            | 0.0338  | 170.00      | 0.0015   | 0.00009                       |
| Hirudinea (unid. f <i>a</i> mily) | 2                              | 0.0006  | 1.67        | 0.0000   | 0.00000                       |
| Acanthochitonidae                 | 9                              | 0.0032  | 21.33       | 0.0002   | 0.00001                       |
| Nuculanidae                       | 7                              | 0.0023  | 55.67       | 0.0005   | 0.00003                       |
| Mytilidae                         | 32                             | 0.0108  | 748.00      | 0.0064   | 0.00038                       |
| Pectinidae                        | 10                             | 0.0034  | 1832.33     | 0.0157   | 0.00094                       |
| Anomiidae                         | 4                              | 0.0014  | 80.00       | 0.0007   | 0.00004                       |
| Astartidae                        | 4                              | 0.0014  | 8.00        | 0.0001   | 0.00000                       |
| Cardiidae                         | 3                              | 0.0010  | 650.00      | 0.0056   | 0.00033                       |
| Veneridae                         | 3                              | 0.0010  | 128.00      | 0.0011   | 0.00007                       |

| Taxonomic name             | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>all Sta. |
|----------------------------|--------------------------------|---------|-------------|----------|-------------------------------|
| Tellinidae                 | 12                             | 0.0041  | 198.00      | 0.0017   | 0.00010                       |
| Hiatellidae                | 71                             | 0.0240  | 46.00       | 0.0004   | 0.00002                       |
| Calyptraeidae              | 4                              | 0.0014  | 3.00        | 0.0000   | 0.00000                       |
| Velutinidae                | 1                              | 0.0003  | 2,00        | 0.0000   | 0.00000                       |
| Cymatiidae                 | 103                            | 0.0349  | 11380.33    | 0.0974   | 0.00583                       |
| ſhaididae                  | 4                              | 0.0014  | 25.00       | 0.0002   | 0.00001                       |
| leptuneidae                | 14                             | 0.0047  | 1010.00     | 0.0086   | 0.00052                       |
| Gonatidae                  | 3                              | 0.0010  | 130.00      | 0.0011   | 0.00007                       |
| Octopodidae                | l                              | 0.0005  | 333.33      | 0.0029   | 0.00017                       |
| Balanidae                  | 257                            | 0.0868  | 3525.00     | 0.0302   | 0.00181                       |
| Amphipoda (unid. family)   | 2                              | 0.0007  | 1.00        | 0.0000   | 0.00000                       |
| Pandalidae                 | 263376                         | 88.9854 | 2316668.75  | 19.8295  | 1.18741                       |
| lippolytidae               | 14560                          | 4.9191  | 109340.33   | 0.9359   | 0.05604                       |
| Crangonidae                | 5277                           | 1.7830  | 40458.00    | 0.3463   | 0.02074                       |
| Paguridae                  | 328                            | 0.1107  | 6643.21     | 0.0569   | 0.00340                       |
| Lithodidae                 | 3013                           | 1.0180  | 4366325.50  | 37.3736  | 2.23797                       |
| Majidae                    | 7874                           | 2.6604  | 4731857.00  | 40.5024  | 2.42532                       |
| Cancridae                  | 31                             | 0.0104  | 11563.67    | 0.0990   | 0.00593                       |
| Atelecyclidae              | 1                              | 0.0003  | 170.00      | 0.0015   | 0.00009                       |
| Sipunculida (unid. family) | 1                              | 0.0003  | 8.00        | 0.0001   | 0.00000                       |

#### CONTINUED

|                                       | Total No.<br>indiv. |         |             |          | gm/m <sup>2</sup> |
|---------------------------------------|---------------------|---------|-------------|----------|-------------------|
| Taxonomic name                        | (count)             | % Count | Weight (gm) | % Weight | all Sta.          |
| Ectoprocta (unid. family)             | 1                   | 0.0003  | 225.00      | 0.0019   | 0.00012           |
| Dallinidae                            | 2                   | 0.0007  | 28.00       | 0.0002   | 0.00001           |
| Echinasteridae                        | 7                   | 0.0024  | 198.00      | 0.0017   | 0.00010           |
| Pterasteridae                         | 1                   | 0.0003  | 45.00       | 0.0004   | 0.00002           |
| Asteridae                             | 52                  | 0.0176  | 21411.00    | 0.1833   | 0.01097           |
| Strongylocentrotidae                  | 15                  | 0.0053  | 40.67       | 0.0003   | 0.00002           |
| folpadiidae                           | 1                   | 0.0003  | 20.00       | 0.0002   | 0.00001           |
| Cucumariidae                          | 1                   | 0.0003  | 908.00      | 0.0078   | 0.00047           |
| Chordata:Ascidiacea<br>(unid. family) | 50                  | 0.0168  | 524.33      | 0.0045   | 0.00027           |

ł

# PERCENTAGE COMPOSITION OF ALL PHYLA BY SPECIES FROM ALL STATIONS IN ALITAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

Taxonomic names represent the lowest level of identification.

| Taxonomic name                   | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|----------------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Porifera                         | 649                            | 0.2     | 43866.00    | 0.38     | 0.1080                                     | 0.02248                       | 100.00                    | 100.00                     |
|                                  | 4                              | 0.0     | 1854.33     | 0.02     | 0.0329                                     | 0.00095                       | 5.20                      | 15.16                      |
| Hydrozoa                         | 4                              | 0.0     | 100.00      | 0.00     | 0.0044                                     | 0.00005                       | 1.42                      | 0.82                       |
| Scyphozoa<br>Ptilosarcus gurneyi | т<br>30                        | 0.0     | 597.00      | 0.01     | 0.0038                                     | 0.00031                       | 43.00                     | 4.88                       |
| Stomphia coccinea                | 4                              | 0.0     | 1360.00     | 0.01     | 0.0603                                     | 0.00070                       | 5.67                      | 11.12                      |
| Actiniidae                       | 30                             | 0.0     | 8119.38     | 0.07     | 0.0554                                     | 0.00416                       | 41.88                     | 66.39                      |
| Tealia crassicornis              | 2                              | 0.0     | 200.00      | 0.00     | 0.0178                                     | 0.00010                       | 2.84                      | 1.64                       |
| Polychaeta                       | 8                              | 0.0     | 16.00       | 0.00     | 0.0014                                     | 0.00001                       | 6.11                      | 6.87                       |
| Polynoidae                       | 2                              | 0.0     | 2.00        | 0.00     | 0.0002                                     | 0.00000                       | 1.53                      | 0.86                       |
| Nereis sp.                       | 10                             | 0.0     | 22.00       | 0.00     | 0.0010                                     | 0.00001                       | 7.63                      | 9.44                       |
| Crucigera irregularis            | 100                            | 0.0     | 170.00      | 0.00     | 0.0151                                     | 0.00009                       | 76.34                     | 72.96                      |
| Hirudinea                        | 2                              | 0.0     | 1.67        | 0.00     | 0.0001                                     | 0.00000                       | 1.27                      | 0.72                       |
| Notostomoidella sp.              | 9                              | 0.0     | 21.33       | 0.00     | 0.0001                                     | 0.00001                       | 7.12                      | 9.16                       |
| Nuculana fossa                   | 6                              | 0.0     | 5.67        | 0.00     | 0.0001                                     | 0.00000                       | 2.05                      | 0.03                       |
| Yoldia thraciaeformis            | 1                              | 0.0     | 50.00       | 0.00     | 0.0022                                     | 0.00003                       | 0.36                      | 0.30                       |
| Mytilus edulis                   | 2                              | 0.0     | 80.00       | 0.00     | 0.0071                                     | 0.00004                       | 0.72                      | 0.48                       |
| Musculus discors                 | 30                             | 0.0     | 668.00      | 0.01     | 0.0148                                     | 0.00034                       | 10.86                     | 4.02                       |
| Chlamys rubida                   | 8                              | 0.0     | 1307.33     | 0.01     | 0.0232                                     | 0.00067                       | 2.77                      | 7.86                       |
| Pecten caurinus                  | 3                              | 0.0     | 525.00      | 0.00     | 0.0233                                     | 0.00027                       | 0.90                      | 3.16                       |

| Taxonomic name          | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|-------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Pododesmus macrochisma  | 4                              | 0.0     | 80.00       | 0.00     | 0.0071                                     | 0.00004                       | 1.45                      | 0.48                       |
| Astarte rollandi        | 2                              | 0.0     | 4.00        | 0.00     | 0.0004                                     | 0.00000                       | 0.72                      | 0.02                       |
| Astarte esquimalti      | 2                              | 0.0     | 4.00        | 0.00     | 0.0004                                     | 0.00000                       | 0.72                      | 0.02                       |
| Clinocardium ciliatum   | 1                              | 0.0     | 30.00       | 0.00     | 0.0013                                     | 0,00002                       | 0.36                      | 0.18                       |
| Serripes groenlandicus  | 2                              | 0.0     | 620.00      | 0.01     | 0.0137                                     | 0.00032                       | 0,72                      | 3.73                       |
| Saxidomus gigantea      | 2                              | 0.0     | 118.00      | 0.00     | 0.0105                                     | 0.00006                       | 0.72                      | 0.71                       |
| Protothaca staminea     | 1                              | 0.0     | 10.00       | 0.00     | 0.0004                                     | 0.00001                       | 0.36                      | 0.06                       |
| Macoma calcarea         | 12                             | 0.0     | 198.00      | 0.00     | 0.0018                                     | 0.00010                       | 4.34                      | 1.19                       |
| Hiatella arctica        | 71                             | 0.0     | 46.00       | 0.00     | 0.0004                                     | 0.00002                       | 25,69                     | 0.28                       |
| Crepidula nummaria      | 4                              | 0.0     | 3.00        | 0.00     | 0.0001                                     | 0.00000                       | 1.45                      | 0.02                       |
| Velutina sp.            | 1                              | 0.0     | 2.00        | 0.00     | 0.0002                                     | 0.00000                       | 0.36                      | 0.01                       |
| Eusitrition oregonensis | s 103                          | 0.0     | 11380.33    | 0.10     | 0.0561                                     | 0.00583                       | 37.33                     | 68.43                      |
| Nucella lamellosa       | 4                              | 0.0     | 25.00       | 0.00     | 0.0007                                     | 0.00001                       | 1.45                      | 0.15                       |
| Neptunea lyrata         | 14                             | 0.0     | 1010.00     | 0.01     | 0.0060                                     | 0.00052                       | 5.07                      | 6.07                       |
| Gonatidae               | 1                              | 0.0     | 60.00       | 0.00     | 0.0027                                     | 0.00003                       | 0.36                      | 0.36                       |
| Gonatus sp.             | 2                              | 0.0     | 70.00       | 0.00     | 0.0016                                     | 0.00004                       | 0.72                      | 0.42                       |
| Octopus sp.             | 1                              | 0.0     | 333.33      | 0.00     | 0.0148                                     | 0.00017                       | 0,48                      | 2.00                       |
| Balanus balanus         | 180                            | 0.1     | 1814.00     | 0.02     | 0.1616                                     | 0.00093                       | 0.06                      | 0.02                       |
| Balanus hesperius       | 24                             | 0.0     | 111.00      | 0.00     | 0.0025                                     | 0.00006                       | 0.01                      | 0.00                       |
| Balanus rostratus       | 53                             | 0.0     | 1600.00     | 0.01     | 0.1426                                     | 0.00082                       | 0.02                      | 0.01                       |

| Taxonomic name               | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|------------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Amphipoda                    | 2                              | 0.0     | 1.00        | 0.00     | 0.0001                                     | 0.00000                       | 0.00                      | 0.00                       |
| Pandalus borealis            | 81668                          | 61.4    | 1581865.13  | 13.54    | 1.1129                                     | 0.81079                       | 61.64                     | 13.65                      |
| Pandalus goniurus            | 33109                          | 11.2    | 270151.00   | 2.31     | 0.3193                                     | 0.13847                       | 11.23                     | 2.33                       |
| Pandalus hypsinotus          | 45510                          | 15.4    | 414110.61   | 3.54     | 0.2846                                     | 0.21225                       | 15.44                     | 3.57                       |
| Pandalopsis dispar           | 3090                           | 1.0     | 50542.00    | 0.43     | 0.1244                                     | 0.02591                       | 1.05                      | 0.44                       |
| Eualus biunguis              | 2409                           | 0.8     | 20219.67    | 0.17     | 0.0326                                     | 0.01036                       | 0.82                      | 0.17                       |
| Eualus gaimardii<br>belcheri | 11289                          | 3.8     | 81966.67    | 0.70     | 0.1513                                     | 0.04201                       | 3.83                      | 0.71                       |
| Eualus macilenta             | 862                            | 0.3     | 7154.00     | 0.06     | 0.0226                                     | 0.00367                       | 0,29                      | 0.06                       |
| Crangon dalli                | 660                            | 0.2     | 5816.33     | 0,05     | 0.0184                                     | 0.00298                       | 0.22                      | 0.05                       |
| Crangon communis             | 696                            | 0.2     | 4893.67     | 0.04     | 0.0117                                     | 0.00251                       | 0.24                      | 0.04                       |
| Sclerocrangon boreas         | 87                             | 0.0     | 289.00      | 0.00     | 0.0129                                     | 0.00015                       | 0.03                      | 0.00                       |
| Argis sp.                    | 217                            | 0.1     | 2825.00     | 0.02     | 0.0501                                     | 0.00145                       | 0.07                      | 0.02                       |
| Argis lar                    | 1261                           | 0.4     | 8770.00     | 0.08     | 0.0278                                     | 0.00450                       | 0.43                      | 0.08                       |
| Argis dentata                | 2350                           | 0.8     | 17841.00    | 0.15     | 0.0293                                     | 0.00914                       | 0.80                      | 0.15                       |
| Argis crassa                 | 7                              | 0.0     | 23.00       | 0.00     | 0.0007                                     | 0.00001                       | 0.00                      | 0.00                       |
| Pagurus sp.                  | 2                              | 0.0     | 2.00        | 0.00     | 0.0002                                     | 0.00000                       | 0.00                      | 0.00                       |
| Pagurus ochotensis           | 192                            | 0.1     | 3443.21     | 0.03     | 0.0109                                     | 0.00176                       | 0.07                      | 0.03                       |
| Pagurus aleuticus            | 82                             | 0.0     | 2583.33     | 0.02     | 0.0064                                     | 0.00132                       | 0.03                      | 0.02                       |
| Pagurus capillatus           | 23                             | 0.0     | 356.67      | 0.00     | 0.0017                                     | 0.00018                       | 0.01                      | 0.00                       |

| Taxonomic name                 | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|--------------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Pagurus kennerlyi              | 20                             | 0.0     | 190.00      | 0.00     | 0.0085                                     | 0.00010                       | 0.01                      | 0.00                       |
| Pagurus beringanus             | 3                              | 0.0     | 15.00       | 0.00     | 0.0013                                     | 0.00001                       | 0.00                      | 0.00                       |
| Labidochirus splendesc         | ens 5                          | 0.0     | 53.00       | 0.00     | 0.0006                                     | 0.00003                       | 0.00                      | 0.00                       |
| Paralithodes camts-<br>chatica | 3012                           | 1.0     | 4365871.50  | 37.37    | 3.4268                                     | 2.23773                       | 1.02                      | 37.68                      |
| Paralithodes platypus          | 1                              | 0.0     | 454.00      | 0.00     | 0.0201                                     | 0.00023                       | 0.00                      | 6.00                       |
| Oregonia gracilis              | 57                             | 0.0     | 743.00      | 0.01     | 0.0023                                     | 0.00038                       | 0.02                      | 0.01                       |
| Hyas lyratus                   | 35                             | 0.0     | 2478.00     | 0.02     | 0.0314                                     | 0.00127                       | 0.01                      | 0.02                       |
| Chionoecetes bairdi            | 7773                           | 2.6     | 4728562.00  | 40.47    | 2.4518                                     | 2.42363                       | 2.64                      | 40.81                      |
| Pugettia gracilis              | 9                              | 0.0     | 74.00       | 0.00     | 0.0007                                     | 0.00004                       | 0.00                      | 0.00                       |
| Cancer magister                | 16                             | 0.0     | 11519.67    | 0.10     | 0.0851                                     | 0.00590                       | 0.01                      | 0.10                       |
| Cancer oregonensis             | 15                             | 0.0     | 44.00       | 0.00     | 0.0006                                     | 0.00002                       | 0.01                      | 0.00                       |
| Telmessus cheiragonus          | 1                              | 0.0     | 170.00      | 0.00     | 0.0151                                     | 0.00009                       | 0.00                      | 0.00                       |
| Sipunculida                    | 1                              | 0.0     | 8.00        | 0.00     | 0.0004                                     | 0.00000                       | 100.00                    | 100.00                     |
| Ectoprocta                     | 1                              | 0.0     | 225.00      | 0.00     | 0.0200                                     | 0.00012                       | 100.00                    | 100.00                     |
| Terebratalia transvers         | a 2                            | 0.0     | 28.00       | 0.00     | 0.0025                                     | 0.00001                       | 100.00                    | 100.00                     |
| Henricia sp.                   | 7                              | 0.0     | 198.00      | 0.00     | 0.0025                                     | 0.00010                       | 9.01                      | 0.88                       |
| Pteraster tesselatus           | 1                              | 0.0     | 45.00       | 0.00     | 0.0020                                     | 0.00002                       | 1.29                      | 0.20                       |
| Evasterias echinosoma          | 7                              | 0.0     | 5598.00     | 0.05     | 0.1657                                     | 0,00287                       | 9.01                      | 24.75                      |
| Evasterias troschelii          | 42                             | 0.0     | 14473.00    | 0.12     | 0.3215                                     | 0.00742                       | 54.08                     | 63.98                      |

| Taxonomic name                       | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|--------------------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Stylasterias forreri                 | 2                              | 0.0     | 1250.00     | 0.01     | 0.1114                                     | 0.00064                       | 2.58                      | 5.53                       |
| Pycnopodia helianthoide              | s 1                            | 0.0     | 90.00       | 0.00     | 0.0040                                     | 0.00005                       | 1.29                      | 0.40                       |
| Strongylocentrotus<br>droebachiensis | 16                             | 0.0     | 40.67       | 0.00     | 0.0004                                     | 0.00002                       | 20.17                     | 0.18                       |
| Molpadia sp.                         | 1                              | 0.0     | 20.00       | 0.00     | 0.0009                                     | 0.00001                       | 1.29                      | 0.09                       |
| Cucumaria sp.                        | 1                              | 0.0     | 908.00      | 0.01     | 0.0402                                     | 0.00047                       | 1.29                      | 4.01                       |
| Chordata:Ascidiacea                  | 50                             | 0.0     | 524.33      | 0.00     | 0.0039                                     | 0.00027                       | 100.00                    | 100.00                     |

# OCCURRENCE OF EACH SPECIES IN UGAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

# A total of 98 stations were occupied. Taxonomic names represent lowest level of identification.

| Taxonomic name          | Cumulative<br>occurrence | % of all <sup>1</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|-------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Porifera                | 32                       | 3.493                               | 32.653                            |
| Hydrozoa                | 4                        | 0.437                               | 4.082                             |
| Campanularia sp.        | 1                        | 0.109                               | 1.020                             |
| Lafoeidae               | 1                        | 0.109                               | 1.020                             |
| Sertulariidae           | 1                        | 0.109                               | 1.020                             |
| Sertularella sp.        | 1                        | 0.109                               | 1.020                             |
| Sertularia sp.          | 1                        | 0.109                               | 1.020                             |
| Abietinaria sp.         | 1                        | 0.109                               | :.020                             |
| Plumulariidae           | 1                        | 0.109                               | 1.020                             |
| Scyphozoa               | 1                        | 0.109                               | 1.020                             |
| Stomphia coccinea       | 1                        | 0.109                               | 1.020                             |
| Actiniidae              | 20                       | 2.183                               | 20.408                            |
| Iealia crassicornis     | 2                        | 0.218                               | 2.041                             |
| Ctenophora              | 1                        | 0.109                               | 1.020                             |
| Polychaeta              | 6                        | 0.655                               | 6.122                             |
| Polynoidae              | 3                        | 0.328                               | 3.061                             |
| Spinther alaskensis     | 1.                       | 0.109                               | 1.020                             |
| Vereis sp.              | 1                        | 0.109                               | 1.020                             |
| Crucigera irregularis   | 2                        | 0.218                               | 2.041                             |
| Nuculana fos <b>s</b> a | 13                       | 1.419                               | 13.265                            |
| Yoldia hyperborea       | 4                        | 0.437                               | 4.082                             |
| Mytilus edulis          | 3                        | 0.328                               | 3.061                             |
| Musculus discors        | Ţ                        | 0.109                               | 1.020                             |
| Modiolus modiolus       | 1.                       | 0.109                               | 1.020                             |
| Chlamys rubida          | 2                        | 0.218                               | 2.041                             |
| Pecten caurinus         | 3                        | 0.328                               | 3.061                             |
| Clinocardium ciliatum   | 10                       | 1.092                               | 10.204                            |
| Clinocardium nuttallii  | 3                        | 0.328                               | 3.061                             |
|                         |                          |                                     |                                   |

| Taxonomic name            | Cumulative<br>occurrence | % of all <sup>1</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|---------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Serripes groenlandicus    | 6                        | 0.655                               | 6.122                             |
| Macoma calcarea           | 4                        | 0.437                               | 4.082                             |
| Macoma moesta             | 3                        | 0.328                               | 3.061                             |
| Hiatella arctica          | 4                        | 0.437                               | 4.082                             |
| Bankia sp. '              | 1                        | 0.109                               | 1.020                             |
| Bankia setacea            | 3                        | 0.328                               | 3.061                             |
| Crepidula nummaria        | l                        | 0.109                               | 1.020                             |
| Velutina sp.              | 1                        | 0.109                               | 1.020                             |
| Fusitrition oregonensis   | 4                        | 0.437                               | 4.082                             |
| Nucella lamellosa         | 1                        | 0.109                               | 1.020                             |
| Dorididae                 | 1                        | 0.109                               | 1.020                             |
| Gonatus sp.               | 1                        | 0.109                               | 1.020                             |
| Octopus sp.               | 1                        | 0.109                               | 1.020                             |
| Balanus sp.               | 1                        | 0.109                               | 1.020                             |
| Balanus balanus           | 10                       | 1.092                               | 10.204                            |
| Isopoda                   | 1                        | 0.109                               | 1.020                             |
| Pandalus borealis         | 73                       | 7 <b>.9</b> 69                      | 74.490                            |
| Pandalus goniurus         | 25                       | 2.729                               | 25.510                            |
| Pandalus hypsinotus       | 72                       | 7.860                               | 73.469                            |
| Pandalopsis dispar        | 10                       | 1.092                               | 10.204                            |
| Eualus biunguis           | 38                       | 4.148                               | 38.776                            |
| Eualus macilenta          | 3                        | 0.328                               | 3.061                             |
| Crangon dalli             | 33                       | 3.603                               | 33.673                            |
| Crangon communis          | 26                       | 2.838                               | 26.531                            |
| Argis sp.                 | 6                        | 0.655                               | 6.122                             |
| Argis lar                 | 9                        | 0.983                               | 9.184                             |
| Argis dentata             | 41                       | 4.476                               | 41.837                            |
| Pagurus ochotensis        | 23                       | 2.511                               | 23.469                            |
| Pagu <b>rus</b> aleuticus | 37                       | 4.039                               | 37.755                            |
| Pagurus capillatus        | 9                        | 0.983                               | 9.184                             |

| Taxonomic name                        | Cumulative<br>occurrence | % of all <sup>l</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|---------------------------------------|--------------------------|-------------------------------------|-----------------------------------|
| Pagurus kennerlyi                     | 1                        | 0.109                               | 1.020                             |
| Pagurus beringanus                    | 2                        | 0.218                               | 2.041                             |
| Elassochirus tenuimanus               | 3                        | 0.328                               | 3,061                             |
| Paralithodes camtschatica             | 93                       | 10.153                              | 94.898                            |
| Oregonia gracilis                     | 1.7                      | 1.856                               | 17,347                            |
| Hyas lyratus                          | 4                        | 0.437                               | 4.082                             |
| Chionoecetes bairdi                   | 97                       | 10.590                              | 98.980                            |
| Pugettia gracilis                     | 11                       | 1.201                               | 11.224                            |
| Cancer sp.                            | 1                        | 0,109                               | 1.020                             |
| Cancer magister                       | 5                        | 0,546                               | 5,102                             |
| Cancer oregonensis                    | 10                       | 1.092                               | 10.204                            |
| Telmessus cheiragonus                 | 3                        | 0.328                               | 3.061                             |
| Pinnixa occidentalis                  | 1                        | 0.109                               | 1.020                             |
| Echiurus echiurus alaskanus           | 1                        | 0.109                               | 1.020                             |
| Ectoprocta                            | 1                        | 0.109                               | 1.020                             |
| Flustridae                            | 1                        | 0.109                               | 1.020                             |
| Microporina sp.                       | 1                        | 0.109                               | 1.020                             |
| Flustrella                            | 1                        | 0.109                               | 1.020                             |
| Brachiopoda                           | 1                        | 0.109                               | 1.020                             |
| Terebratulina unguicula               | 1                        | 0.109                               | 1.020                             |
| Terebratalia transversa               | 1                        | 0.109                               | 1.020                             |
| Solaster slimpsoni                    | 2                        | 0.218                               | 2.041                             |
| Evasterias echinosoma                 | 21                       | 2.293                               | 21.429                            |
| Evasterias troschelii                 | 9                        | 0.983                               | 9.184                             |
| Stylasterias forreri                  | 1                        | 0.109                               | 1.020                             |
| Pycnopodia helianthoides              | 2                        | 0.218                               | 2.041                             |
| Strongylocentrotus droebach<br>iensis | - 22                     | 2.402                               | 22.449                            |
| Ophiuroidea                           | 1                        | 0.109                               | 1.020                             |
| Gorgonocephalus caryi                 | 1                        | 0.109                               | 1.020                             |
| Ophiopholis aculeata                  | 1                        | 0.109                               | 1.020                             |

# CONTINUED

| Taxonomic name      | Cumulative<br>occurrence | % of all <sup>1</sup><br>occurrence | % of all <sup>2</sup><br>stations |
|---------------------|--------------------------|-------------------------------------|-----------------------------------|
| Cucumaria sp.       | 5                        | 0.546                               | 5.102                             |
| Chordata:Ascidiacea | 24                       | 2.620                               | 24.490                            |
| Pelonaia corrugata  | _2                       | 0.218                               | 2.041                             |
| TOTAL               | 916                      | 100.000                             | -                                 |

1 cumulative occurrence total cumulative occurrence

2 <u>cumulative occurrence</u> total no. of stations occupied

# PERCENTAGE COMPOSITION BY WEIGHT OF ALL PHYLA FROM ALL STATIONS IN UGAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

|                      | Total No.<br>indiv. |          |             |          | gm/m <sup>2</sup> |
|----------------------|---------------------|----------|-------------|----------|-------------------|
| Taxonomic name       | (count)             | % Count  | Weight (gm) | % Weight | all Sta.          |
| Porifera             | 1037                | 0.6207   | 89350.55    | 1.2559   | 0.04439           |
| Cnidaria             | 275                 | 0.1645   | 44755.90    | 0.6291   | 0.02223           |
| Ctenophora           | 2                   | 0.0012   | 40.00       | 0.0006   | 0.00002           |
| Annelida             | 1692                | 1.0133   | 3980.02     | 0.0559   | 0.00198           |
| Mollusca             | 570                 | 0.3412   | 6482.70     | 0.0911   | 0.00322           |
| Arthropoda:Crustacea | 162337              | 97.1995  | 6819853.63  | 95.8575  | 3.38791           |
| Echiuroidea          | 2                   | 0.0010   | 25.00       | 0.0004   | 0.00001           |
| Ectoprocta           | 291                 | 0.1740   | 102.00      | 0.0014   | 0.00005           |
| Brachiopoda          | 74                  | 0.0446   | 362.14      | 0.0051   | 0.00018           |
| Echinodermata        | 577                 | 0.3456   | 137365.27   | 1.9308   | 0.06824           |
| Chordata:Ascidiacea  | 158                 | 0.0945   | 12255.86    | 0.1723   | 0.00609           |
| TOTALS               | 167015              | 100.0000 | 7114573.07  | 100.0000 | 3.53430           |

| Taxonomic name            | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>all Sta. |
|---------------------------|--------------------------------|---------|-------------|----------|-------------------------------|
| Porifera (unid. family)   | 1037                           | 0.6207  | 89350.55    | 1.2559   | 0.04439                       |
| •                         |                                | 0.0207  | 385.71      | 0.0054   | 0.00019                       |
| Hydrozoa (unid. family)   | 6                              |         |             |          |                               |
| Campanulariidae           | 1                              | 0.0009  | 28,57       | 0.0004   | 0.00001                       |
| Lafoeidae                 | 1                              | 0.0009  | 28.57       | 0.0004   | 0.00001                       |
| Sertulariidae             | 6                              | 0.0034  | 342.86      | 0.0048   | 0.00017                       |
| Plumulariidae             | 1                              | 0.0009  | 14.29       | 0.0002   | 0.00001                       |
| Scyphozoa (unid. family)  | 1                              | 0.0006  | 45.00       | 0.0006   | 0.00002                       |
| Actinostolidae            | 8                              | 0.0048  | 650.00      | 0.0091   | 0.00032                       |
| Actiniidae                | 249                            | 0.1492  | 43260.90    | 0.6081   | 0.02149                       |
| Ctenophora (unid. family) | 2                              | 0.0012  | 40.00       | 0.0006   | 0.00002                       |
| Polychaeta (unid. family) | 1556                           | 0.9314  | 3877.57     | 0.0545   | 0.00193                       |
| Polynoidae                | 60                             | 0.0362  | 61.81       | 0.0009   | 0.00003                       |
| Spintheridae              | 1                              | 0.0009  | 1.43        | 0.0000   | 0.00000                       |
| Nereidae                  | 3                              | 0.0015  | 2.50        | 0.0000   | 0.00000                       |
| Serpulidae                | 72                             | 0.0434  | 36.71       | 0.0005   | 0.00002                       |
| Nuculanidae               | 113                            | 0.0678  | 102.74      | 0.0014   | 0.00005                       |
| Mytilidae                 | 166                            | 0.0993  | 948.14      | 0.0133   | 0.00047                       |
| Pectinidae                | 8                              | 0.0051  | 2279.78     | 0.0320   | 0.00113                       |
| Cardiidae                 | 51                             | 0.0305  | 1690.00     | 0.0238   | 0.00084                       |
| <b>Tellinidae</b>         | 12                             | 0.0072  | 702.62      | 0.0099   | 0.00035                       |

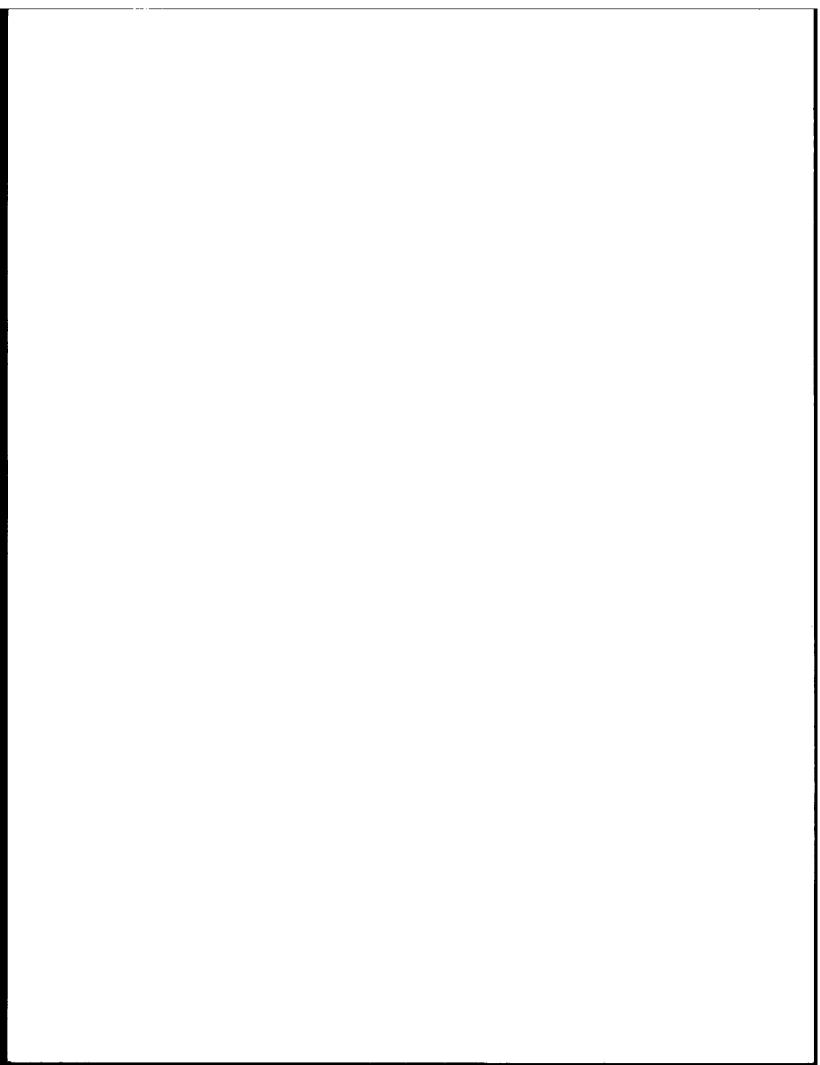
# PERCENTAGE COMPOSITION OF ALL PHYLA BY FAMILY FROM ALL STATIONS IN UGAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

| faxonomic name       | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>all Sta. |
|----------------------|--------------------------------|---------|-------------|----------|-------------------------------|
| liatellidae          | 54                             | 0.0324  | 39.18       | 0.0006   | 0,00002                       |
| ſeredinidae          | 150                            | 0.0896  | 59.71       | 0.0008   | 0.00003                       |
| Calyptraeidae        | 1                              | 0.0009  | 1.43        | 0.0000   | 0.00000                       |
| elutinidae           | 1                              | 0.0006  | 1.00        | 0.0000   | 0.00000                       |
| ymatiidae            | 6                              | 0.0037  | 353.33      | 0.0050   | 0.00018                       |
| haididae             | 2                              | 0:0013  | 33.33       | 0.0005   | 0.00002                       |
| orididae             | 1                              | 0.0009  | 1.43        | 0.0000   | 0.00000                       |
| onatidae             | 2                              | 0.0012  | 20.00       | 0.0003   | 0.00001                       |
| ctopodidae           | 1                              | 0.0006  | 250.00      | 0.0035   | 0.00012                       |
| lanidae              | 65                             | 0.0389  | 434.81      | 0.0061   | 0.00022                       |
| opoda (unid. family) | 1                              | 0.0006  | 1.00        | 0.0000   | 0.00000                       |
| ndalidae             | 143596                         | 85.9784 | 1392238.77  | 19.5688  | 0.69162                       |
| ppolytidae           | 3793                           | 2.2712  | 35734.55    | 0.5023   | 0.01775                       |
| angonidae            | 4589                           | 2.7478  | 41478.04    | 0.5830   | 0.02061                       |
| iguridae             | 266                            | 0.1591  | 7927.65     | 0.1114   | 0.00394                       |
| thodidae             | 3460                           | 2.0719  | 2586714.91  | 36.3580  | 1.28500                       |
| ıjidae               | 6421                           | 3.8445  | 2743048.47  | 38,5554  | 1.36267                       |
| ncridae              | 137                            | 0.0822  | 10856.42    | 0.1526   | 0.00539                       |
| elecyclidae          | 6                              | 0.0035  | 1416.43     | 0.0199   | 0.00070                       |
| nnotheridae          | 3                              | 0.0015  | 2.50        | 0.0000   | 0.00000                       |
| chiuridae            | 2                              | 0.0010  | 25.00       | 0.0004   | 0.00001                       |

|                                       | Total No.<br>indiv. |         |             |          | gm/m <sup>2</sup> |
|---------------------------------------|---------------------|---------|-------------|----------|-------------------|
| Taxonomic name                        | (count)             | % Count | Weight (gm) | % Weight | all Sta.          |
| Ectoprocta (unid. family)             | 2                   | 0.0012  | 2.00        | 0.0000   | 0.00000           |
| Flustridae                            | 1                   | 0.0009  | 7.14        | 0.0001   | 0.00000           |
| Microporidae                          | 1                   | 0.0009  | 7.14        | 0.0001   | 0.00000           |
| Flustrellidae                         | 286                 | 0.1711  | 85.71       | 0.0012   | 0.00004           |
| Brachiopoda (unid. family)            | 71                  | 0.0428  | 357.14      | 0.0050   | 0.00018           |
| Cancellothyrididae                    | 1                   | 0.0006  | 1.00        | 0.0000   | 0.00000           |
| Dallinidae                            | 2                   | 0.0012  | 4.00        | 0.0001   | 0.00000           |
| Solasteridae                          | 4                   | 0.0025  | 275.00      | 0.0039   | 0.00014           |
| Asteridae                             | 197                 | 0.1180  | 130035.57   | 1.8277   | 0.06460           |
| Strongylocentrotidae                  | 336                 | 0.2009  | 1346.13     | 0.0189   | 0.00067           |
| Ophiuroidea (unid. family)            | 2                   | 0.0012  | 2.00        | 0.0000   | 0.00000           |
| Gorgonocephalidae                     | 1                   | 0.0008  | 80.00       | 0.0011   | 0.00004           |
| Ophiactidae                           | 29                  | 0.0171  | 28,57       | 0.0004   | 0.00701           |
| Cucumariidae                          | 9                   | 0.0051  | 5598.00     | 0.0787   | 0.002.78          |
| Chordata:Ascidiacea<br>(unid. family) | 128                 | 0.0768  | 12190.71    | 0.1713   | 0.00606           |
| Styelidae                             | 30                  | 0.0177  | 65.14       | 0.0009   | 0.00003           |

# PERCENTAGE COMPOSITION OF ALL PHYLA BY SPECIES FROM ALL STATIONS IN UGAK BAY - JUNE, JULY, AND AUGUST 1976, AND MARCH 1977

Taxonomic names represent the lowest level of identification.


| Taxonomic name        | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|-----------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Porifera              | 1037                           | 0.6     | 89350.55    | 1.26     | 0.1366                                     | 0.04439                       | 100.00                    | 100.00                     |
| Hydrozoa              | 6                              | 0.0     | 385.71      | 0.01     | 0.0043                                     | 0.00019                       | 2.34                      | 0.86                       |
| Campanularia sp.      | 1                              | 0.0     | 28.57       | 0.00     | 0.0013                                     | 0.00001                       | 0.52                      | 0.06                       |
| Lafoeidae             | 1                              | 0.0     | 28.57       | 0.00     | 0.0013                                     | 0.00001                       | 0.52                      | 0.06                       |
| Sertulariidae         | 1                              | 0.0     | 85.71       | 0.00     | 0.0038                                     | 0.00004                       | 0.52                      | 0.19                       |
| Sertularella sp.      | 1                              | 0.0     | 85.71       | 0.00     | 0.0038                                     | 0.00004                       | 0.52                      | 0.19                       |
| Sertularia sp.        | 1                              | 0.0     | 85.71       | 0.00     | 0.0038                                     | 0.00004                       | 0.52                      | 0.19                       |
| Abietinaria sp.       | 1                              | 0.0     | 85.71       | 0.00     | 0.0038                                     | 0.00004                       | 0.52                      | 0.19                       |
| Plumulariidae         | 1                              | 0.0     | 14.29       | 0.00     | 0.0006                                     | 0.00001                       | 0.52                      | 0.03                       |
| Scyphozoa             | 1                              | 0.0     | 45.00       | 0.00     | 0.0020                                     | 0.00002                       | 0.36                      | 0.10                       |
| Stomphia coccinea     | 8                              | 0.0     | 650.00      | 0.01     | 0.0579                                     | 0.00032                       | 2.91                      | 1.45                       |
| Actiniidae            | 246                            | 0.1     | 43100.90    | 0.61     | 0,1108                                     | 0.02141                       | 89.65                     | 96.30                      |
| Tealia crassicornis   | 3                              | 0.0     | 160.00      | 0.00     | 0.0035                                     | 0.00008                       | 1.09                      | 0.36                       |
| Ctenophora            | 2                              | 0.0     | 40.00       | 0.00     | 0.0018                                     | 0.00002                       | 100.00                    | 100.00                     |
| Polychaeta            | 1556                           | 0.9     | 3877.57     | 0.05     | 0.0344                                     | 0.00193                       | 91.91                     | 97.43                      |
| Polynoidae            | 61                             | 0.0     | 61.81       | 0.00     | 0.0011                                     | 0.00003                       | 3.57                      | 1.55                       |
| Spinther alaskensis   | 1                              | 0.0     | 1.43        | 0.00     | 0.0001                                     | 0.00000                       | 0.08                      | 0.04                       |
| Nereis sp.            | 3                              | 0.0     | 2.50        | 0.00     | 0.0001                                     | 0.00000                       | 0.15                      | 0.06                       |
| Crucigera irregularis | 72                             | 0.0     | 36.71       | 0.00     | 0.0011                                     | 0.00002                       | 4,28                      | 0.92                       |

| Taxonomic name         | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Nuculana fossa         | 103                            | 0.1     | 74.07       | 0.00     | 0.0003                                     | 0.00004                       | 18.00                     | 1.14                       |
| Yoldia hyperborea      | 11                             | 0.0     | 28.67       | 0.00     | 0.0004                                     | 0.00001                       | 1.87                      | 0.44                       |
| Mytilus edulis         | 48                             | 0.0     | 480.00      | 0.01     | 0.0071                                     | 0.00024                       | 8.35                      | 7.40                       |
| Musculus discors       | 114                            | 0.1     | 457.14      | 0.01     | 0.0203                                     | 0.00023                       | 20.06                     | 7.05                       |
| Modiolus modiolus      | 4                              | 0.0     | 11.00       | Ô.00     | 0.0005                                     | 0.00001                       | 0.70                      | 0.17                       |
| Chlamys rubida         | 3                              | 0.0     | 21.11       | 0.00     | 0.0007                                     | 0.00001                       | 0.55                      | 0.33                       |
| Pecten caurinus        | 5                              | 0.0     | 2258.67     | 0.03     | 0.0502                                     | 0.00112                       | 0.94                      | 34.84                      |
| Clinocardium ciliatum  | 33                             | 0.0     | 321.67      | 0.00     | 0.0017                                     | 0.00016                       | 5.85                      | 4.96                       |
| Clinocardium nuttallii | 5                              | 0.0     | 996.67      | 0.01     | 0.0177                                     | 0.00050                       | 0.82                      | 15.37                      |
| Serripes groenlandicus | 13                             | 0.0     | 371.67      | 0.01     | 0.0033                                     | 0.00018                       | 2.28                      | 5.73                       |
| Macoma calcarea        | 6                              | 0.0     | 520,95      | 0.01     | 0.0058                                     | 0.00026                       | 1.07                      | 8.04                       |
| Macoma moesta          | 6                              | 0.0     | 181.67      | 0.00     | 0.0032                                     | 0.00009                       | 1.05                      | 2.80                       |
| Hiatella arctica       | 54                             | 0.0     | 39.18       | 0.00     | 0.0004                                     | 0.00002                       | 9.51                      | 0.60                       |
| Bankia sp.             | 36                             | 0.0     | 35.71       | 0.00     | 0.0032                                     | 0.00002                       | 6.27                      | 0.55                       |
| Bankia setacea         | 114                            | 0.1     | 24.00       | 0.00     | 0.0004                                     | 0.00001                       | 20.01                     | 0.37                       |
| Crepidula nummaria     | 1                              | 0.0     | 1.43        | 0.00     | 0.0001                                     | 0.00000                       | 0.25                      | 0.02                       |
| Velutina sp.           | 1                              | 0.0     | 1.00        | 0.00     | 0.0001                                     | 0.00000                       | 0.18                      | 0.02                       |
| Fusitrition oregonensi |                                | 0.0     | 353.33      | 0.00     | 0.0052                                     | 0.00018                       | 1.08                      | 5.45                       |
| Nucella lamellosa      | 2                              | 0.0     | 33.33       | 0.00     | 0.0015                                     | 0.00002                       | 0.39                      | 0.51                       |
| Dorididae              | 1                              | 0.0     | 1.43        | 0.00     | 0.0001                                     | 0.00000                       | 0.25                      | 0.02                       |

| Taxonomic name      | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|---------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Gonatus sp.         | 2                              | 0.0     | 20.00       | 0.00     | 0.0009                                     | 0.00001                       | 0.35                      | 0.31                       |
| Octopus sp.         | 1                              | 0.0     | 250.00      | 0.00     | 0.0111                                     | 0.00012                       | 0.18                      | 3.86                       |
| Balanus sp.         | 3                              | 0.0     | 15.00       | 0.00     | 0.0013                                     | 0.00001                       | 0.00                      | 0.00                       |
| Balanus balanus     | 62                             | 0.0     | 419.81      | 0.01     | 0.0021                                     | 0.00021                       | 0.04                      | 0.01                       |
| Isopoda             | 1                              | 0.0     | 1.00        | 0.00     | 0.0000                                     | 0.00000                       | 0.00                      | 0.00                       |
| Pandalus borealis   | 91226                          | 54.6    | 881963.02   | 12.40    | 0.5770                                     | 0.43813                       | 56.20                     | 12.93                      |
| Pandalus goniurus   | 26688                          | 16.0    | 253044.02   | 3.56     | 0.4773                                     | 0.12570                       | 16.44                     | 3.71                       |
| Pandalus hypsinotus | 25344                          | 15.2    | 253817.72   | 3.57     | 0.1643                                     | 0.12609                       | 15.61                     | 3.72                       |
| Pandalopsis dispar  | 338                            | 0.2     | 3414.00     | 0.05     | 0.0159                                     | 0.00170                       | 0.21                      | 0.05                       |
| Sualus biunguis     | 3737                           | 2.2     | 35336.55    | 0.50     | 0.0432                                     | 0.01755                       | 2.30                      | 0.52                       |
| Sualus macilenta    | 56                             | 0.0     | 398.00      | 0.01     | 0.0059                                     | 0.00020                       | 0.03                      | 0.01                       |
| Crangon dalli       | 1328                           | 0.8     | 10970.75    | 0.15     | 0.0158                                     | 0.00545                       | 0.82                      | 0.16                       |
| Crangon communis    | 788                            | 0.5     | 5342.95     | 0.08     | 0.0099                                     | 0.00265                       | 0.49                      | 0.08                       |
| Argis sp.           | 495                            | 0.3     | 11192.00    | 0.16     | 0.0826                                     | 0.00556                       | 0.30                      | 0.16                       |
| Argis lar           | 377                            | 0.2     | 2640.00     | 0.04     | 0.0130                                     | 0.00131                       | 0.23                      | 0.04                       |
| Argis dentata       | 1601                           | 1.0     | 11332.34    | 0.16     | 0.0132                                     | 0.00563                       | 0.99                      | 0.17                       |
| Pagurus ochotensis  | 115                            | 0.1     | 4253.33     | 0.06     | 0.0099                                     | 0.00211                       | 0.07                      | 0.06                       |
| Pagurus aleuticus   | 116                            | 0.1     | 3302.73     | 0.05     | 0.0044                                     | 0.00164                       | 0.07                      | 0.05                       |
| Pagurus capillatus  | 27                             | 0.0     | 288.02      | 0.00     | 0.0016                                     | 0.00014                       | 0.02                      | 0.00                       |
| Pagurus kennerlyi   | 1                              | 0.0     | 28.57       | 0.00     | 0.0013                                     | 0.00001                       | 0.00                      | 0.00                       |

| Taxonomic name                  | Total No.<br>indiv.<br>(count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|---------------------------------|--------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
|                                 | 3                              | 0.0     | 35.00       | 0.00     | 0.0008                                     | 0.00002                       | 0.00                      | 0.00                       |
| Pagurus beringanus              |                                |         |             |          | 0.0004                                     | 0.00001                       | 0.00                      | 0.00                       |
| Elassochirus tenuimanu          | <i>is</i> 4                    | 0.0     | 20.00       | 0.00     |                                            |                               |                           |                            |
| Paralithodes camts-<br>chatica  | 3460                           | 2.1     | 2586714.91  | 36.36    | 1.3613                                     | 1.28500                       | 2.13                      | 37.93                      |
| Oregonia gracilis               | 121                            | 0.1     | 1583.57     | 2.02     | 0.0045                                     | 0.00079                       | 0.07                      | 0.02                       |
| Hyas lyratus                    | 13                             | 0.0     | 424.29      | 0.01     | 0.0054                                     | 0.00021                       | 0.01                      | 0.01                       |
| Chionoecetes bairdi             | 6086                           | 3.6     | 2740746.19  | 38,52    | 1.3770                                     | 1.36152                       | 3.75                      | 40.19                      |
| Pugettia gracilis               | 201                            | 0.1     | 294.43      | 0.00     | 0.0013                                     | 0.00015                       | 0.12                      | 0.00                       |
| Cancer sp.                      | 3                              | 0.0     | 2.50        | 0.00     | 0.0001                                     | 0.00000                       | 0.00                      | 0.00                       |
| Cancer magister                 | 10                             | 0.0     | 10309.35    | 0.14     | 0.1016                                     | 0.00512                       | 0.01                      | 0.15                       |
| Cancer oregonensis              | 125                            | 0.1     | 544.57      | 0.01     | 0.0030                                     | 0.00027                       | 0.08                      | 0.01                       |
| Telmessus cheiragonus           | 6                              | 0.0     | 1416.43     | 0.02     | 0.0209                                     | 0.00070                       | 0.00                      | 0.02                       |
| Pinnixa occidentalis            | 3                              | 0.0     | 2.50        | 0.00     | 0.0001                                     | 0.00000                       | 0.00                      | 0.00                       |
| Echiurus echiurus<br>alaskensis | 2                              | 0.0     | 25.00       | 0.00     | 0.0011                                     | 0.00001                       | 100.00                    | 100.00                     |
| Ectoprost                       | 2                              | 0.0     | 2.00        | 0.00     | 0.0001                                     | 0.00000                       | 0.69                      | 1.96                       |
| Flustridae                      | 1                              | 0.0     | 7.14        | 0.00     | 0.0003                                     | 0.00000                       | 0.49                      | 7.00                       |
| Microporina sp.                 | 1                              | 0.0     | 7.14        | 0.00     | 0.0003                                     | 0.00000                       | 0.49                      | 7.00                       |
| Flustrella                      | 286                            | 0.2     | 85.71       | 0.00     | 0.0038                                     | 0.00004                       | 98.33                     | 84.03                      |
| Brachiopoda                     | 71                             | 0.0     | 357.14      | 0.01     | 0.0158                                     | 0.00018                       | 95.97                     | 98.62                      |
| Terebratulina unguicu           | la 1                           | 0.0     | 1.00        | 0.00     | 0.0001                                     | 0.00000                       | 1.34                      | 0.28                       |

|                                        | otal No.<br>indiv.<br>count) | % Count | Weight (gm) | % Weight | gm/m <sup>2</sup><br>Occurrence<br>station | gm/m <sup>2</sup><br>All Sta. | % of<br>Phylum<br>(count) | % of<br>Phylum<br>(weight) |
|----------------------------------------|------------------------------|---------|-------------|----------|--------------------------------------------|-------------------------------|---------------------------|----------------------------|
| Terebratalia transversa                | 2                            | 0.0     | 4.00        | 0.00     | 0.0004                                     | 0.00000                       | 2.69                      | 1.10                       |
| Solaster stimpsoni                     | 4                            | 0.0     | 275.00      | 0.00     | 0.0061                                     | 0.00014                       | 0.72                      | 0.20                       |
| Evasterias echinosoma                  | 99                           | 0.1     | 13268.89    | 0.19     | 0.0310                                     | 0.00659                       | 17.12                     | 9.66                       |
| Evasterias troschelii                  | 22                           | 0.0     | 4255.57     | 0.06     | 0.0236                                     | 0.00211                       | 3.76                      | 3.10                       |
| Stylasterias forreri                   | 1                            | 0.0     | 20.00       | 0.00     | 0.0009                                     | 0.00001                       | 0.17                      | 0.01                       |
| Pycnopodia helianthoides               | 76                           | 0.0     | 112491.11   | 1.58     | 3.3287                                     | 0.05588                       | 13.09                     | 81.89                      |
| Strongylocentrotus droe-<br>bachiensis | 336                          | 0.2     | 1346.13     | 0.02     | 0.0028                                     | 0.00067                       | 58.13                     | 0.98                       |
| Ophiuroidea                            | 2                            | 0.0     | 2.00        | 0.00     | 0.0001                                     | 0.00000                       | 0.35                      | 0.00                       |
| Gorgonocephalus caryi                  | 1                            | 0.0     | 80.00       | 0.00     | 0.0071                                     | 0.00004                       | 0.23                      | 0.06                       |
| Ophiopholis aculeata                   | 29                           | 0.0     | 28.57       | 0.00     | 0.0013                                     | 0.00001                       | 4.95                      | 0.02                       |
| Cucumaria sp.                          | 9                            | 0.0     | 5598.00     | 0.08     | 0.0496                                     | 0.00278                       | 1.47                      | 4.08                       |
| Chordata:Ascidiacea                    | 128                          | 0.1     | 12190.71    | 0.17     | 0.0246                                     | 0.00606                       | 81.27                     | 99.47                      |
| Pelonaia corrugata                     | 30                           | 0.0     | 65.14       | 0.00     | 0.0014                                     | 0.00003                       | 18.73                     | 0.53                       |



# RECEPTORS (BIOTA)

MICROBIOLOGY

# RECEPTORS (BIOTA)

# MICROBIOLOGY

| Research<br>Unit | Proposer                                                                  | Title                                                                                                                                                      | <u>Page</u>  |
|------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 29               | R. M. Atlas<br>U. of Louisville<br>Dept. of Biology                       | Assessment of Potential Interactions of<br>Microorganisms and Pollutants Resulting<br>from Petroleum Development on the Outer<br>Shelf in the Beaufort Sea | 744          |
| 30               | R. M. Atlas<br>U. of Louisville<br>Dept. of Biology                       | Assessment of Potential Interactions of<br>Microorganisms and Pollutants Resulting<br>from Petroleum Development in Cook Inlet                             | 748          |
| 190              | R. Y. Morita<br>R. P. Griffiths<br>Oregon State U.<br>Dept, of Microbiol. | Study of Microbial Activity in the Lower<br>Cook Inlet and Analysis of Hydrocarbor<br>Degradation by Psychrophilic Microorganisms                          | 751          |
| 332              | B. B. McCain<br>et al.<br>NMFS/NWFC                                       | Determine the Frequency and Pathology <sub>Cf</sub><br>Marine Fish Diseases in the Bering Sea,<br>Gulf of Alaska, and Beaufort Sea                         | 7 <b>5</b> 8 |
| 427              | V. Alexander<br>R. T. Cooney<br>IMS/U, of Alaska                          | Ice Edge Ecosystem Bering Sea                                                                                                                              | 765          |
| 537              | D. M. Schell<br>IMS/U. of Alaska                                          | Nutrient Dynamics in Nearshore Under-Ice<br>Waters                                                                                                         | <b>76</b> 8  |

Quarterly Report

Contract # 03-5-022-85 Research Unit 29 Period 6/1 - 9/30

Assessment of Potential Interactions of Microorganisms and Pollutants Resulting from Petroleum Development on the Outer Continental Shelf in the Beaufort Sea

Submitted by:

Ronald M. Atlas Principal Investigator Department of Biology University of Louisville Louisville, Kentucky 40208

October 1, 1977

#### I. Task Objectives

- A. To characterize marine microbiological communities in sufficient detail to establish a baseline description of microbiological community characteristics on a seasonal basis.
- B. To determine the role of microorganisms in biodegradation of petroleum hydrocarbons.

#### II. Field and Laboratory Activities

A. Field Schedule

Pilot studies were carried out to test methodology for studying oil degradation in Beaufort Sea sediment. During June, sediment was collected in Elson Lagoon and placed in Plexiglas trays 25 cm x 25 cm x 5 cm. Two hundred ml Prudhoe crude oil was added to each tray. The trays were placed back <u>in situ</u> under the ice in Elson Lagoon by scuba divers. Excess oil washed from the sediment. After 1,2 and 3 weeks replicate trays were recovered. During this period ice still covered the area. Replicate trays were also recovered after 8 weeks exposure when there was open water. Observations were made on the benthic invertebrates on or in the oiled sediment and unoiled control sediment.

B. Laboratory Activities

To recover oil from the sediment portions of diethyl ether were mixed with sediment and decanted. The diethyl ether portions were combined and concentrated. Analysis of residual oil will initially be performed by gas liquid chromatography.

745

#### III. <u>Results</u>

Nutrient analyses from the 1976 Glacier cruise were received from Dr. Vera Alexander. Results of these analyses are being incorporated into previously established data files at NIH.

Orange pigmented bacteria were found to be dominant in Arctic waters during summer months. Additional cluster analyses were performed on orange pigmented bacteria isolated from 1975 and 1976 samplings. The results indicate that orange pigmentation is distributed in very heterogeneous groups of bacteria and not in a single group. Many of the orange pigmented taxonomic groups appear to represent genera of bacteria not previously described.

The <u>in situ</u> oil-sediment exposure experiments showed that oil could be added to sediment under ice and later recovered both under ice and when there is open water. The ability to relocate the oil-sediment trays will permit needed long term studies. Analyses of the recovered oil have not yet been performed.

Initial examination of invertebrates recolonizing the oil contaminated sediment indicates that while extensive recolonization occurs within two months after oil exposure, the benthic invertebrate community recolonizing oil contaminated sediment is significantly different than the benthic invertebrate community of unoiled control sediment.

746

# IV. Interpretation of Results

No new interpretation of analyses were made during this period.

# V. <u>Problems Encountered</u>

None.

# VI. Estimate of Funds

It is estimated that 100% of this year's funds were expended as of October 1, 1977.

Quarterly Report

Contract # 03-6-022-35109 Research Unit 30 Period 6/1 - 9/30

Assessment of Potential Interactions of Microorganisms and Pollutants Resulting from Petroleum Development in Cook Inlet

Submitted by: Ronald M. Atlas Principal Investigator Department of Biology University of Louisville Louisville, Kentucky 40208

October 1, 1977

#### I. <u>Task Objectives</u>

- A. To characterizemarine microbiological communities in sufficient detail to establish a baseline description of microbiological community characteristics on a seasonal basis.
- B. To determine the role of microorganisms in the biodegradation of petroleum hydrocarbons.

#### II. Field and Laboratory Activities

A. Field Schedule

No field activities were scheduled during this quarter.

B. Laboratory Activities

Numerical taxonomic testing of 500 isolates from the April Cook Inlet sampling was carried out. As previously described, each isolate is characterized by 300 features. Data acquisition from these tests has been completed, and the data is being transmitted to NIH for data archival and analysis.

#### III. <u>Results</u>

No new samples were collected for enumeration during this period. Also, no new cluster analyses were performed during this period.

IV. Interpretation of Results

No new interpretation of analyses was made during this period.

V. Problems Encountered

Due to the size and cost of cluster analyses of data from Cook Inlet isolates, a decision has been made to change the computer programs we have been using. This change has resulted in a transition period during which no cluster and feature frequency

749

analyses are being performed. Computer programmers at NIH have almost completed initial program modifications. These programs should be functional during the next month. An additional transition will occur later when further efficiency program modifications are made.

An additional problem is a personnel change in our program. Dr. Kaneko, who worked on this project for two years, unexpectly moved to an industrial position. We are presently searching for a replacement according to required affirmative action procedures. This personnel change will result in a temporary delay in analysing data, but should not effect the overall output or quality of our project.

#### VI. Estimate of Funds

It is estimated that 90% of this year's funds were expended as of October 1, 1977.

Quarterly Report

Task Numbers A-27; B-9 Contract #03-5-022-68 Research Unit 190-E Reported Period 1 July to 30 September, 1977

Number of pages 7

Study of Microbial Activity in the Lower Cook Inlet and Analysis of Hydrocarbon Degradation by Psychrophilic Microorganisms

#### SUBMITTED BY:

Richard Y. Morita Principal Investigator Professor of Microbiology and Oceanography Department of Microbiology Oregon State University Corvallis, OR 97331 Robert P. Griffiths Co-Investigator Research Associate Department of Microbiology Oregon State University Corvallis, OR 97331

Date Submitted

September 30, 1977

# I. Task Objectives

a. To measure the relative levels of microbial activity in the waters and sediments of the Lower Cook Inlet and to measure the concentration of bacteria found in the same samples using epifluorescent microscopy (Task A-27).

b. To study hydrocarbon degradation by psychrophilic hydrocarbon degrading bacteria (Task B-9).

c. To study the effects of crude oil on growth and metabolism of natural marine microbial populations.

d. To coordinate the above studies with Dr. Atlas and his associates (R U #29).

# II. Field and Laboratory Activities

A. Field trip schedule

No field trips during this period; however, we did receive sediment samples from the Beaufort Sea Glacier cruise for analysis.

B. Scientific party

All of the personnel involved in this project are in the Department of Microbiology, Oregon State University. Ms. Steven started her employment with us on 8/16/77.

C. Personnel

Dr. Richard Y. Morita, Principal Investigator Dr. Robert Griffiths, Co-Principal Investigator Mr. Thomas McNamara, Technician (Research Assistant, Unclassified) Ms. Sue Steven, Technician (Research Assistant, Unclassified)

D. Methods

The methods that have been used to analyze the sediment samples from the Beaufort Sea Glacier cruise are essentially the same as those described in our 1977 annual report. The methods that we have been evaluating during this quarter will be reported in the next quarterly report after a more extensive analysis has been completed.

## III. Results

A. Laboratory studies

1. Two sets of experiments were completed on sediments that were returned to our laboratory at Oregon State University after the April, 1977 Lower Cook Inlet cruise. One set involved the study of the effects of crude oil on the growth of marine heterotrophic bacteria on agar plates and the other was a study of presumptive nitrogen fixing bacteria concentrations in many of the same samples.

In the first study, the effects of crude oll in the agar medium on the growth of heterotrophic bacteria were measured in 10 Cook Inlet sediment samples (Table 1). In 6 of the 10 samples, there was a reduction in the number of organisms that were capable of growth in the presence of crude oil.

In the second study there was a positive correlation of 0.47 between the presumptive nitrogen fixing bacterial concentrations and the relative nitrogen fixation rates observed in the same samples (Table 2). Work is continuing to give positive confirmation of nitrogen fixation by these organisms.

2. Eighteen chitinoclastic bacterial strains were isolated from Cook Inlet and Beaufort Sea sediments. These strains were screened for their ability to grow and produce chitinase activity in the presence of crude oil vapors. None of the strains tested appeared to show growth inhibition under these conditions but at least four strains showed reduced chitinase activity. The same type of study is currently underway using another technique which will produce more definitive measurements of the effects of crude oil on chitinase.

3. The effect of crude oil on nitrogen fixation rates in five sediment samples taken from Yaquina Bay was also studied. This is the same type of experiment that we conducted on four Cook Inlet samples that was reported in Table 9, page 26 of our last quarterly report. In all cases, there was some reduction in the amount of ethylene produced in the samples that were treated with Cook Inlet crude oil. In the samples that were treated with sucrose (used to increase ethylene production rates), crude oil treatment decreased ethylene production in three of the five samples studied. Further studies of this nature will be conducted on Arctic sediment samples in the future.

4. Three methods of determining rates of crude oil biodegradation are also currently being evaluated in our laboratory. The primary method being evaluated involves the use of gas chromotography in the determination of crude oil compositional changes. Preliminary results indicate that by summing the total area of a wide range of peaks, we obtain values that correlate well with gravimetric measurements. We are in the process of comparing the results of these studies with values obtained by measuring the respiration of <sup>14</sup>C labeled hexadecane and pristane in Cook Inlet crude oil. 5. We are also in the process of evaluating the relative biodegradative efficiency of a number of oil enrichment cultures obtained from sediments taken from both the Beaufort Sea and the Cook Inlet. We are studying these natural mixed populations under conditions where all known inorganic nutrient requirements are met. By studying these cultures, we hope to determine how crude oil might be degraded under idealized conditions.

It is also hoped that we will obtain a microbial population that might be unusually effective in degrading crude oil under the severe environmental conditions found in the Beaufort Sea. Future studies of these natural mixed populations should give us information about the dynamics of crude oil degradation under conditions that more closely approximate those found in the natural marine environment.

6. On September 8 we received a number of fresh sediment samples from the Beaufort Sea Glacier cruise. These were collected by Dr. Eugene Ruff (an associate of Dr. Andrew Carey) during the recent Glacier cruise and transported to us by Dr. Rita Horner. These samples are in the process of being subjected to the following experiments: (a) the effects of crude oil on both the uptake and respiration of 14C labeled glucose and glutamic acid, (b) crude oil biodegradation potentials (c) the effects of crude oil on nitrogen fixation rates (d) total numbers of bacteria present using agar plate counts (e) the concentration of lipolytic bacteria present. In addition, we will be using these samples to obtain natural microbial populations that are especially effective in degrading crude oil. A report of these findings will be presented in the next quarterly report.

#### B. Data processing

We are in the process of placing all applicable data into the same data bank at NIH that Dr. Atlas is currently using. Soon after we received additional funds for that purpose, Dr. Krichevsky of NIH visited our laboratory and gave us a briefing on the procedures for incorporating our data into this data base. All data through the October, 1976 Cook Inlet cruise is now on file at NIH. All data collected in the Beaufort Sea and NEGOA area from August, 1975 to April, 1976 is in file number 100188. The data collected in the Beaufort Sea during the August, 1976 Glacier cruise is in file number 100236 and the data from the October, 1976 Lower Cook Inlet cruise is in file number 100237. These are the same file numbers that Dr. Atlas has used for his data from the same sources. Computer cards containing data collected during the April, 1977 Cook Inlet cruise will be submitted to Dr. Krichevsky during the next quarter.

As of this date, Dr. Griffiths is in Washington confering with Drs. Atlas and Krichevsky in an effort to optimize data formats for the integration of the data sets generated by both our group and Dr. Atlas. Discussions are also being conducted on the most efficient method of obtaining statistical analysis of the data being produced by these two groups. IV. Preliminary interpretation of results

None available at this time.

V. Problems encountered, recommended changes, acknowledgements

A. Problems encountered: none

B. Recommended changes: none

C. Acknowledgements:

We would like to thank Dr. John Baross of our laboratory (not funded by NOAA) for his analysis of bacterial numbers, concentrations of nitrogen fixing bacteria and <u>Vibrio</u> sp. concentrations in the sediment samples taken during the Glacier cruise.

We would also like to thank Dr. Eugene Ruff with Dr. Andrew Carey's group (RU#7) for collecting sediment samples for us during the August, 1977 Beaufort Sea cruise. In addition, we would like to thank Dr. Rita Horner (RU#359) for transporting these samples from the field to our laboratory at Oregon State University.

Table 1. The effects of crude oil on the growth of marine bacteria plated on a marine agar medium. Dilutions were made from sediments taken from the Lower Cook Inlet during the April, 1977 Discoverer cruise.

|               |                | <u>Plate co</u> | unts x     | 10 <sup>6</sup> per g dry wt. |
|---------------|----------------|-----------------|------------|-------------------------------|
| Sample number | Station number | <u>No oil</u>   | <u>0i1</u> | Percent change                |
| GB 412        | V              | 3.3             | 3.3        | 0                             |
| GB 421        | ĸ              | 10.9            | 1.5        | -86                           |
| GB 424        | J              | 3.2             | 3.1        | - 3                           |
| GB 425        | 229            | 0.9             | 0.9        | 0                             |
| GB 430        | 213            | 2.7             | 3.4        | +26                           |
| GB 431        | 214            | 7.1             | 5.0        | -30                           |
| GB 432        | 204            | 1.2             | 1.2        | 0                             |
| GB 436        | 212            | 9.3             | 5.5        | -40                           |
| GB 440        | 395            | 1.5             | 0.8        | -49                           |
| GB 444        | 388            | 3.5             | 2.8        | -20                           |

Table 2. Concentration of presumptive nitrogen fixing bacteria in sediments collected during the April, 1977 Lower Cook Inlet cruise.

| Sample | number | Station number | Counts x 10 <sup>3</sup> per g dry wt. |
|--------|--------|----------------|----------------------------------------|
| GB 4   | 401    | D              | 4.0                                    |
| GB 4   | 410    | 242            | <0.01                                  |
| GB 4   | 411    | U              | 2.4                                    |
| GB 4   | 412    | v              | 1.2                                    |
| GB 4   | 420    | 227            | 340                                    |
| GB 4   | 421    | К              | 22                                     |
| GB 4   | 424    | J              | 1.3                                    |
| GB 4   | 425    | 229            | 800                                    |
| GB 4   | 430    | 213            | 0.02                                   |
| GB 4   | 431    | 214            | <0.01                                  |
| GB 4   | 432    | 204            | 40                                     |
| GB 4   | 434    | 212            |                                        |
| GB 4   | 435    | 215            | 0.8                                    |
| GB 4   | 436    | 212            | 0.2                                    |
| GB 4   | 437    | 208            | 14                                     |
| GB 4   | 40     | 395            | 56                                     |
| GB 4   | 442    | 105            | 0.7                                    |
| GB 4   | 44     | 388            | <0.01                                  |
| GB 4   | 445    | 378            | 0.2                                    |

Table 3. The effects of crude oil on nitrogen fixation rates in sediment samples taken from Yaquina Bay, Oregon. Quantities of ethylene production are given as pmoles ethylene produced during a 41 hr. incubation period at 24 C. Treatments used (1) no additives, (2) sucrose added, (3) crude oil added, (4) sucrose and crude oil added.

| Sample | Treatment        | pmoles ethylene |
|--------|------------------|-----------------|
| Α      | 1                | 41              |
|        | 1<br>2<br>3<br>4 | 2377            |
|        | 3                | 33              |
|        | 4                | 2535            |
| В      | 1                | 72              |
|        | 2<br>3           | 90              |
|        | 3                | 71              |
|        | 4                | 90              |
| С      | 1                | 127             |
|        | 2                | 1256            |
|        | 1<br>2<br>3<br>4 | 109             |
|        | 4                | 553             |
| D      | 1                | 52              |
|        | 1<br>2<br>3      | 492             |
|        |                  | 43              |
|        | 4                | 231             |
| E      | 1                | 43              |
|        | 2                | 1428            |
|        | 3                | 31              |
|        | 4                | 1052            |

DETERMINE THE FREQUENCY AND PATHOLOGY OF MARINE FISH DISEASES IN THE BERING SEA, GULF OF ALASKA, AND BEAUFORT SEA

by

Bruce B. McCain\* Harold O. Hodgins\* William D. Gronlund\*

Submitted as a Quarterly Report for Contract #R7120817 Research Unit #332 OUTER CONTINENTAL SHELF ENERGY ASSESSMENT PROGRAM Sponsored by U.S. Department of the Interior Bureau of Land Management

July 1 to September 30, 1977

\* Principal Investigators, Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard East, Seattle, Washington 98112

## ABSTRACT

Increased emphasis has been placed on the health status of demersal fishes in the northern Gulf of Alaska (NGOA). During a cruise on the Polish research vessel, Professor Siedlecki, in this area from July 1 to August 8, 1977, Tour species of fish were found to have pathological conditions. The affected species, condition, and prevalence were as follows: Pacific cod (Gadus macrocephalus), pseudobranchial tumors (1.3%) and skin ulcers (1.0%); walleye pollock (Theragra chalcogramma), pseudobranchial tumors (0.1%); and Pacific ocean perch (Sebastes alutus) and sharpchin rockfish (S. zacentrus), opercular tumors (0.5 and 1.5%, respectively). In general, the frequencies of occurrence of pathological conditions in the NGOA were much lower than previously found in the above fish species in the Bering Sea.

#### OBJECTIVES

Determine the frequency, geographical distribution, and biological and pathological characteristics of demersal marine animals and macro-invertebrates in the Bering and Beaufort Seas, and the Gulf of Alaska. Also, characterize the microorganisms isolated from diseased animals using standard microbiological procedures.

# FIELD AND LABORATORY ACTIVITIES

#### Ship or field trip schedule

Dates: July 1 to August 8, 1977. Vessel: R/V <u>Professor Siedlecki</u> Arrangement: A joint scientific investigation between the Polish and U.S. governments.

## Scientific party

1. Field activities:

a. <u>Professor Siedlecki</u>, Leg I, July 1 to July 18, 1977. William D. Gronlund, P.I., Party Chief, responsible for examining fish for pathological conditions, and collecting specimens and statistical data.

Sue Gazarek, electron microscope technician, aided in examination of fish and collection of specimens for electron microscopy.

b. Professor Siedlecki, Leg II, July 19 to August 8, 1977. Bruce B. McCain, PhD, P.I., Party Chief, examined fish for pathological conditions, collected tissue specimens and bacterial isolates.

Mark S. Myers, assisted in the examination of fish and collected statistical data.

2. Laboratory activities:

| Bruce B. McCain, PhD   | P.I., coordinates field and<br>laboratory activities, parti-<br>cipated in histopathological,<br>and microbiological analyses,<br>and writes progress reports<br>and manuscripts. |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Harold O. Hodgins, PhD | P.I., supervises NMFS investi-<br>gations and reviews all reports<br>and manuscripts.                                                                                             |
| Mark S. Myers          | Performs histopathological<br>analyses of tissue specimens<br>and participates in data<br>processing.                                                                             |
| William D. Gronlund    | P.I., participates in data<br>processing and analyses of<br>biological data.                                                                                                      |
| Katherine King         | Invertebrate pathologist,<br>participates in data process-<br>ing, analyses of biological<br>data, and histopathological<br>examination of invertebrate<br>tissue specimens.      |
| S.R. Wellings, MD, PhD | Consultant, coordinates histo-<br>pathological analyses of<br>tissue specimens (Dept. of<br>Pathology, School of Medicine,<br>Univ. California, Davis).                           |
| Linda Rhodes           | Histology technician.                                                                                                                                                             |

Methods

1. Field activities:

Aboard the <u>Professor Siedlecki</u>, fish were examined for lesions and for <u>overall appearance</u>. Wherever possible, the fish samples examined were identical to those used by biologists from the RACE Division, NWAFC for collection of length, weight, sex, and age data.

Fish with pathological signs were weighed, measured for length, and aged. The lesion(s) and usually the major organs were preserved for histological examination. In cases of previously unreported or unusual pathological conditions, photographs of the fish were taken. Attempts were also made to isolate bacteria from some tumors and skin ulcers. Bacterial isolates were colony-purified and inoculated into tubes containing agar medium for storage until further tests can be performed at the NWAFC.

2. Laboratory activities:

Histological examination of fish tissues from the NGOA was continued.

# Sample collection localities

Approximately 152° to 133° West Longitude by 54.5° to 58° North Latitude.

#### Data collected and/or analyzed

## Number and type of samples

a. Field activities:

15,088 fish were examined for pathological conditions; 18 tissue specimens were collected for light microscope histology; 3 tissue specimens were collected for electron microscopy; 30 bacterial isolates were obtained.

b. Laboratory activities:

273 tissue specimens were processed for histology; 546 histological slides were prepared.

#### Number and type of analyses

250 histological slides were examined and interpreted; 80 statistical analyses of data on invertebrates from Norton Sound/Chukchi Sea.

#### RESULTS

#### Field activities:

A total of 15,088 fish in 56 trawl catches were examined aboard the Professor Siedlecki. Of the 28 species of fish examined, four species had pathological conditions involving 41 fish (Table 1). The affected species were Pacific cod, walleye pollock, Pacific ocean perch, and the sharpchin rockfish (Sebastes zacentrus). Pacific cod and walleye pollock had pseudobranchial tumors at frequencies of 1.3 and 0.1%, respectively. These tumors were located in the antero-dorsal region of the buccal cavity in a position surrounding the pseudobranchial gland. The Pacific ocean perch and sharpchin rockfish had epithelial tumors in the opercular region just posterior to the last (5th) gill arch on the translucent marginal

| Common and scientific names | <pre># of hauls     examined</pre> | Total # of<br>individuals | <pre># with   pathology</pre> | Frequency<br>(%) | Condition  |
|-----------------------------|------------------------------------|---------------------------|-------------------------------|------------------|------------|
| Walleye pollock,            | 46                                 | 3,558                     | 5                             | 0.1              | tumor      |
| Theragra chalcogramma       |                                    | ,                         |                               |                  |            |
| Pacific cod,                | 35                                 | 1,050                     | 14                            | 1.3              | tumor      |
| Gadus macrocephalus         | 35                                 | 1,050                     | 9                             | 1.0              | skin ulcer |
| Black cod,                  | 19                                 | 454                       | _                             |                  |            |
| Anoplopoma fimbria          |                                    |                           |                               |                  |            |
| Flathead sole,              | 32                                 | 1,271                     |                               |                  |            |
| Hippoglossoides elassodon   | 0 -                                | <b>- ,</b> - /            |                               |                  |            |
| Rex sole,                   | 29                                 | 1,373                     |                               |                  |            |
| Glyptocephalus zachirus     |                                    | <b></b>                   |                               |                  |            |
| Dover sole,                 | 23                                 | 660                       |                               |                  |            |
| Microstomus pacificus       | 20                                 | 000                       |                               |                  |            |
| Arrowtooth flounder,        | 22                                 | 2,215                     |                               |                  |            |
| Atheresthes stomias         | 22                                 | 4,410                     |                               |                  |            |
| Rock sole,                  | 5                                  | 90                        |                               |                  |            |
|                             | J                                  | 50                        |                               |                  |            |
| Lepidopsetta bilineata      | 25                                 | 603                       |                               |                  |            |
| Idiot,                      | 25                                 | 005                       |                               |                  |            |
| Sebastolobus alascanus      | 77                                 | 2 117                     | 12                            | 0.5              | tumor      |
| Pacific ocean perch,        | 33                                 | 2,447                     | 12                            | 0.5              | tumor      |
| Sebastes alutus             | 27                                 | FDF                       |                               |                  |            |
| Rougheye rockfish,          | 27                                 | 525                       |                               |                  |            |
| Sebastes aleutianus         | 0                                  | 200                       |                               |                  |            |
| Harlequin rockfish,         | 9                                  | 288                       |                               |                  |            |
| Sebastes variagatus         |                                    | 011                       |                               |                  |            |
| Yellowtail rockfish,        | 4                                  | 211                       |                               |                  |            |
| Sebastes flavidus           | _                                  |                           |                               |                  |            |
| Silvergrey rockfish,        | 7                                  | 72                        |                               |                  |            |
| Sebastes brevispinis        |                                    | <i>.</i> -                | -                             |                  |            |
| Sharpchin rockfish,         | 1                                  | 65                        | 1                             | 1.5              | tumor      |
| Sebastes zacentrus          |                                    |                           |                               |                  |            |
| Dusky rockfish,             | 6                                  | 80                        |                               |                  |            |
| Sebastes ciliatus           |                                    |                           |                               |                  |            |
| Miscellaneous species (12)  |                                    | 126                       |                               |                  |            |
| (<50 individuals/species)   |                                    |                           |                               |                  |            |

TABLE 1. Summarization of fish pathology data from the R.V. Professor Siedlecki

epithelium; the prevalence was 0.5 and 1.5%, respectively. In some cases, these tumors had spread over the roof of the buccal cavity onto the pharngeal aperture, and often solitary tumors were seen on the gill filaments. Pacific cod with skin ulcers were also found; however, fish from only two hauls had significant involvement.

## Laboratory activities:

Intensive histopathological examination of tissue specimens from tumor-bearing and normal Pacific ocean perch was performed. Particular attention was paid to the tumor-specific X-cells, which have been described previously (OCSEAP Report RU 332, June 1977). These cells were variable in size with the smaller cells positioned adjacent to the basement membrane of both the collagenous and vascular stomal components. Although a clear demarcation between the X-cells and stroma was usually seen, in some cases these cells were present within the stroma. A lymphocytic infiltrate of variable intensity was often present in the nests of X-cells in the tumor. Such infiltrates are seldom observed in X-cell tumors from Pacific cod or flatfish.

One tumor-bearing Pacific ocean perch had a chondroma (benign tumor of cartilaginous tissue) of unknown órigin in the spleen.

## PRELIMINARY INTERPRETATION OF RESULTS

## Field activities:

Most of the fish species examined during the cruise of the <u>Professor Siedlecki</u> in the NGOA were free of externally detect-<u>able pathological signs</u>. Although tumors were found in Pacific cod and walleye pollock, and skin ulcers were seen on Pacific cod, the frequencies of occurrence were much lower than previously found in these species in the Bering Sea.

Previous to this cruise, opercular tumors had been found only in Pacific ocean perch (OCSEAP Report RU 332, June 1977). This new data contributes significantly to our knowledge of the prevalence and geographical distribution of opercular tumors in Pacific ocean perch. In addition, a new species of <u>Sebastes</u> (<u>S. zacentrus</u>) with these tumors was found. In one instance, a Pacific ocean perch was found with opercular tumors, which had spread to and completely covered the anterior portion of the esophogeal epithelium.

#### Laboratory activities:

Although the opercular tumors in Pacific ocean perch have many similarities to the skin tumor of flatfish and the pseudobranchial tumors of Pacific cod and walleye pollock, such as the presence of X-cells and their epithelial nature, some major differences exist. The most important of these differences is the presence of lymphocytic infiltration in the perch tumors, suggesting a more intense host response to the tumors by this species.

### AUXILIARY MATERIAL

# Bibliography of references

ALPERS, C.E., B.B. McCAIN, M.S. MYERS, AND S.R. WELLINGS. 1977. Lymphocystis disease in yellowfin sole (<u>Limanda aspera</u>) in the Bering Sea. J. Fish. Res. Board Can. 34:611-6.

# Papers in preparation or in press

- ALPERS, C.E., B.B. McCAIN, M.S. MYERS, AND S.R. WELLINGS. 1977. Pathology of pharnygeal tumors in Pacific cod, <u>Gadus</u> <u>macrocephalus</u>, of the Bering Sea. J. Natl. Cancer Inst. (In press).
- McCAIN, B.B., S.R. WELLINGS, C.E. ALPERS, M.S. MYERS, AND W.D. GRONLUND. 1977. The frequency, distribution, and pathology of three diseases of demersal fishes in the Bering Sea. J. Fish. Biol. (In press).
- McCAIN, B.B., M.S. MYERS, W.D. GRONLUND, AND S.R. WELLINGS. 1977. Baseline data on diseases of fishes from the Bering Sea for 1976. Fish. Bull. (Submitted).
  MYERS, M.S., B.B. McCAIN, AND S.R. WELLINGS. Preliminary
- MYERS, M.S., B.B. McCAIN, AND S.R. WELLINGS. Preliminary description of an epidermal tumor in <u>Sebastes</u> alutus from the Gulf of Alaska. (In preparation).

PROBLEMS ENCOUNTERED/RECOMMENDED CHANGES -- None

ESTIMATE OF FUNDS EXPENDED -- 53.6 K

Quarterly Report

Contract #03-5-022-56 Research Unit #427 Task Order #1 Reporting Period 7/1 - 9/30/77

ICE EDGE ECOSYSTEM BERING SEA

Dr. Vera Alexander Dr. R. T. Cooney Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

October 1, 1977

# Quarterly Report for Quarter Ending September 30, 1977

| Project Title:          | Phytoplankton Studies in the Bering Sea                                                                                             |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Contract Number:        | 03-5-022-56                                                                                                                         |
| Task Order Number:      | 1                                                                                                                                   |
| Principal Investigator: | Dr. Vera Alexander<br>Professor of Marine Science<br>Institute of Marine Science<br>University of Alaska<br>Fairbanks, Alaska 99701 |

#### I. Task Objectives

To study the dynamics of phytoplankton populations at the edge of the retreating ice pack in the Bering Sea in order to assess the significance of the ice edge in the productivity of the Bering Sea. Secondly, to assess the levels of phytoplankton productivity in the southeast Bering Sea during ice free conditions in order to compare seasonal activity, and also to look at the role of the shelfbreak and the Aleutian upwelling in Bering Sea production dynamics. The seasonal role of algae growing on the underside of the ice is also included in the study.

## II. Field Activities

No field activities have been undertaken this quarter. Laboratory analyses and preparation of the final report covering the 1975 and 1976 data have been in progress. The status of samples collected during the three spring cruiser is as follows:

- 1. Nutrient analyses for all cruises are complete and calculations are in progress.
- 2. Chlorophyll values have been calculated and the *in situ* flurometer calibrated.
- 3. Primary productivity values are complete for the two *Surveyor* cruises. Counting is complete and alkalinities have been determined for *Discoverer*, Leg VI but final calculations are not yet available.
- 4. Phytoplankton counts are in progress for all cruises.

#### III. Results

The three cruises this spring covered a time span which began with pre-bloom conditions showing very low chlorophyll concentrations through a well defined bloom associated with the retreating ice front on the last cruise. Chlorophyll profiles of the water column appear to show a tongue of chlorophyll-rich colder surface water sinking beneath the warmer oceanic water approaching from the south. This may explain the deep chlorophyll layer observed with discreet samplings in the past. The ice edge bloom appears while the water is uniformly mixed and cold. When the warmer ocean water encroaches from the south the colder productive water slips beneath. This phenomena could be of major importance for containing and transporting dissolved hydrocarbons downward to the benthic community.

IV. No major problems were encountered.

QUARTERLY REPORT

Contract #3-5-022-56Research Unit 537 Task order 32 Reporting period: 3/1/77-10/1/77Number of Pages: 2

NUTRIENT DYNAMICS IN NEARSHORE UNDER-ICE WATERS

Dr. Donald M. Schell

Institute of Marine Science University of Alaska Fairbanks, Alaska 99701

# I. TASK OBJECTIVES

- Establish mass balance relationships for particulate and dissolved nitrogenous nutrients beneath the winter ice cover in the nearshore Beaufort Sea.
- Compare standing stocks of epontic algae in relation to under-ice circulation.
- 3) Begin data collection to delineate temporal and spatial variability in ice algae blooms in the nearshore Beaufort Sea.

The scope of the above objectives was restricted due to delays in project funding but work has begun on all aspects. The groundwork has been established for a more intense and complete study in conjunction with the LGL-Barrier Island study group for 1978.

#### II. FIELD ACTIVITIES

Two field trips were undertaken during spring 1977 from the Naval Arctic Research Laboratory at Barrow:

- 1) A trip to Dease Inlet was made using NARL fixed wing aircraft on 30 and 31 March 1977. Ice cores and water samples were collected at five stations on a transect of Dease Inlet from the head to outside of the barrier islands. Samples were processed for later chemical analyses upon returning to NARL.
- 2) A transect of Elson Lagoon between Plover Point and the mainland was made on 23 May 1977, using a NARL tracked vehicle. The slow travel rate and worsening weather limited sample collection to three stations. Ice algae samples, ice cores and water column samples were taken at each station.

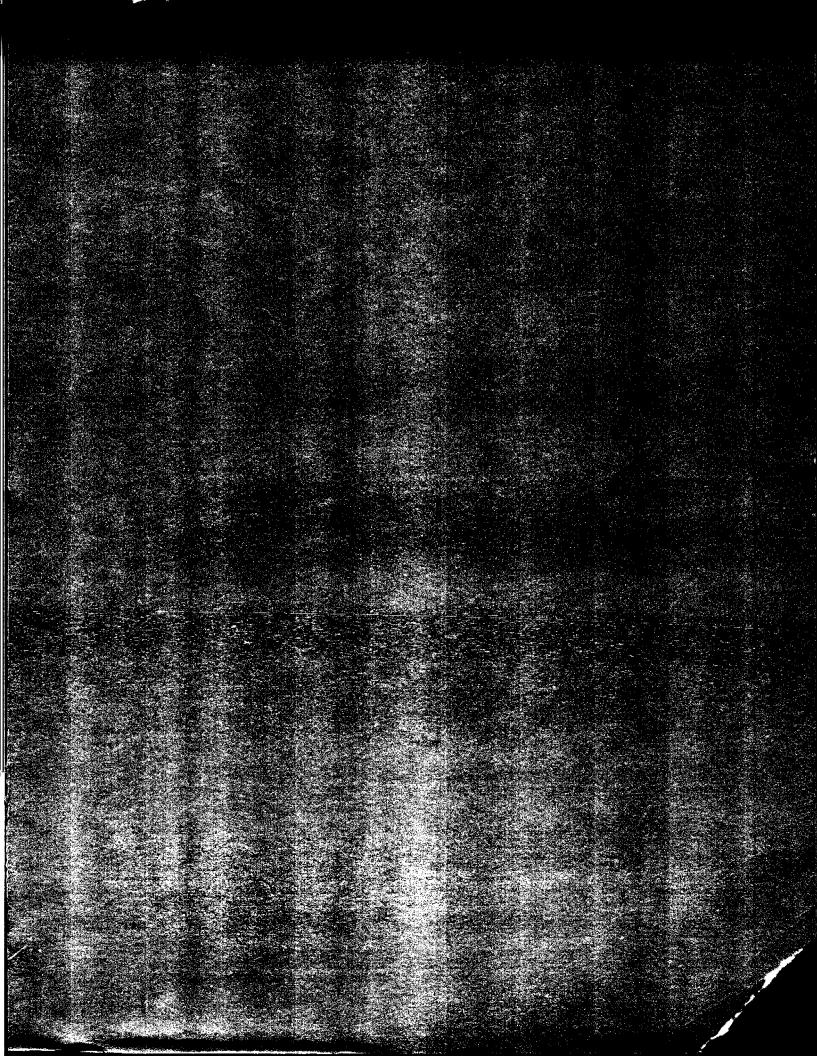
769

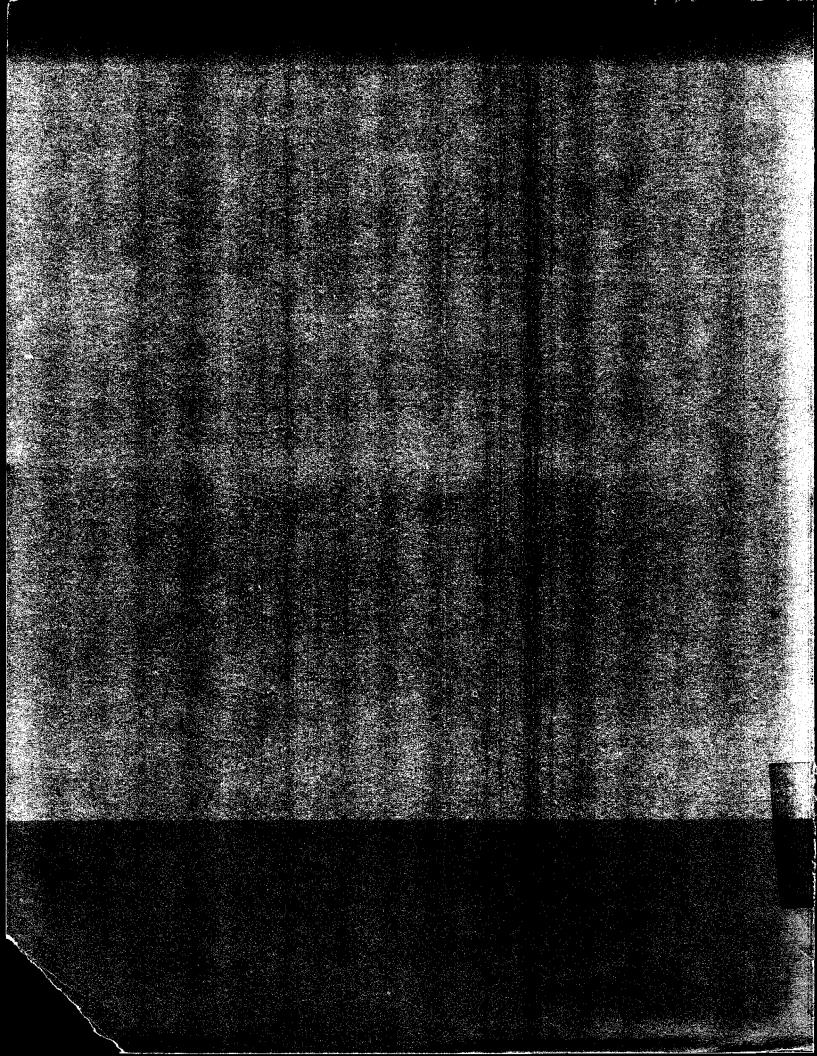
### **III. LABORATORY ACTIVITIES**

Filtration and processing of acquired ice and water samples was completed immediately after acquisition at the Naval Arctic Research Laboratory at Barrow. The analyses for nitrogenous nutrients has begun at the Institute of Marine Science. Inorganic nutrient analyses are now complete for all ice and water samples taken and data processing has begun. Further analyses for dissolved organic nitrogen and particulate nitrogen will be completed in the future.

#### IV. PROBLEMS ENCOUNTERED

Logistic problems arising from severe weather and competing needs for aircraft were the principle difficulties encountered. The March 1977 trip to Dease Inlet was hampered by winds and temperatures of -28°C which presented equipment handling problems. However, the basic sampling objectives of this trip were accomplished.


The May 1977 trip to Dease Inlet was not accomplished due to severe weather and whiteout conditions that prevented fixed-wing aircraft from being able to land on the ice. Helicopter support was unfortunately unavailable and the ice algae collections were made'in Elson Lagoon utilizing a NARL tracked vehicle. The slow speed and rough surface of the ice limited sampling from this vehicle to the immediate vicinity of Barrow.


Overall, the field season provided a start for 1978 data collection and the basis for an effective late winter-spring sampling program to be conducted in conjunction with the LGL-Barrier Island study group.

770

<sup>#</sup> U.S. GOVERNMENT PRINTING OFFICE:1978-782-214 / 210 REGION NO.8

÷.,



