pr. Kadish

Outer Continental Shelf Environmental Assessment Program

Final Reports of Principal InvestigatorsVolume 69September 1990

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Office of Oceanography and Marine Assessment Ocean Assessments Division Alaska Office

U.S. DEPARTMENT OF THE INTERIOR Minerals Management Service Alaska OCS Region OCS Study, MMS 90-0074 "Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators" ("OCSEAP Final Reports") continues the series entitled "Environmental Assessment of the Alaskan Continental Shelf Final Reports of Principal Investigators."

It is suggested that reports in this volume be cited as follows:

- Bronson, M. T. 1988. Trace contaminants in surface sediment of the northern Bering Sea: a statistical review. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 69: 1–99.
- Bronson, M. T. 1988. Trace contaminants in the greater St. George Basin: a statistical review. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 69: 101–203.
- Bronson, M. T. 1989. Mercury in Alaska marine surface sediments: a review of the regional data. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 69: 205–225.
- Robertson, D. E., and K. H. Abel. 1979. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 69: 227–419.

OCSEAP Final Reports are published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Ocean Assessments Division, Alaska Office, Anchorage, and primarily funded by the Minerals Management Service, U.S. Department of the Interior, through interagency agreement.

> Requests for receipt of OCSEAP Final Reports on a continuing basis should be addressed to:

NOAA-OMA-OAD Alaska Office Federal Bldg., U.S. Courthouse Room A13 222 West Eighth Ave., #56 Anchorage, AK 99513-7543

OUTER CONTINENTAL SHELF Environmental Assessment Program

Final Reports of Principal Investigators

Volume 69

September 1990

U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Office of Oceanography and Marine Assessment Ocean Assessments Division Alaska Office

U.S. DEPARTMENT OF THE INTERIOR Minerals Management Service Alaska OCS Region OCS Study, MMS 90-0074

Anchorage, Alaska

.

The facts, conclusions, and issues appearing in these reports are based on research results of the Outer Continental Shelf Environmental Assessment Program (OCSEAP), which is managed by the National Oceanic and Atmospheric Administration, U.S. Department of Commerce, and funded (wholly or in part) by the Minerals Management Service, U.S. Department of the Interior, through an Interagency Agreement.

Mention of a commercial company or product does not constitute endorsement by the National Oceanic and Atmospheric Administration. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.

The content of these reports has not been altered from that submitted by the Principal Investigators. In some instances, grammatical, spelling, and punctuation errors have been corrected to improve readability; some figures and tables have been enhanced to improve clarity in reproduction.

Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators

September 1990

 \sim

VOLUME 69

CONTENTS
M. T. BRONSON Trace contaminants in surface sediment of the northern Bering Sea: a statistical review
M. T. BRONSON Trace contaminants in the greater St. George Basin: a statistical review
M. T. BRONSON Mercury in Alaska marine surface sediments: a review of the regional data
D. E. ROBERTSON AND K. H. ABEL Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas

TRACE CONTAMINANTS IN SURFACE SEDIMENT OF THE NORTHERN BERING SEA: A STATISTICAL REVIEW

by

Michael T. Bronson

Laboratory for the Study of Information Science 333 Pastore Hall University of Rhode Island Kingston, Rhode Island 02881

Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 691

September 1988

Thanks go to Lee Ann Gardner, Howard Metsker, and Paul Rusanowski for their generosity in sharing data. William Johnson, Ray Vaa, and Linda Tobiska provided technical support. Carol-Ann Manen and Paul Becker reviewed earlier drafts.

This study was funded by the Minerals Management Service, Department of the Interior, through an Interagency Agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Environmental Assessment Program.

Data are presented for concentrations of nine trace elements and three hydrocarbon measures in surface sediment of the northern Bering Sea from past research reports. Further graphs, maps, and analyses are based on the original data compiled in an appendix.

Statistical summaries indicate means and confidence intervals for twelve normally distributed samples. Contour maps illustrate geographic variation within samples from six investigations. Correlation analyses also indicate the extent to which normalizing variables account for variation in six of the contaminants.

Statistical tests reveal that cadmium, copper, and mercury concentrations in the area near Nome differ significantly between investigations, but zinc does not. Arsenic, barium, and chromium levels differ between the Nome area and the remainder of Norton Basin.

The original research reports themselves are catagorized on the basis of sponsoring program, quantity of raw data, and sampled material.

¢

TABLE OF CONTENTS

	F	'age
ACKNOWLED	AMENTS	. 3
ABSTRACT		. 5
INTRODUCTIO	PN	11
METHODS		11
RESULTS		12
Arsenic . Barium . Cadmium Chromium Copper . Lead Mercury Nickel Zinc Acid-extra	n actable concentrations	12 13 14 14 16 16 17 17 17
DISCUSSION		19
REFERENCES	CITED	. 20
FIGURES		22
Appendix A.	Annotated bibliography of trace contaminants in surface sediment and animal tissue in the northern Bering Sea	79
Appendix B.	Tables of data from original reports	83

- Table 1. Means of trace element concentrations (ppm dry ..12 weight) in surface sediment near Nome, using tabular data in Rusanowski, et al (1988) which fit a normal distribution. The geometric means are calculated from sample distributions made normal by log transformation. Each element is represented by 22 samples, except nickel with 19 samples, collected in 1985, 1986, and 1987 near the <u>Bima</u> dredge.
- Table 2. Kolmogorov-Smirnov tests of metals15 concentrations (ppm dry weight) in northern Bering Sea surface sediment, at .05 level of significance. The null hypotheses are that sample pairs are drawn from the same statistical populations. Statistical significance is the result of large sample differences in either the "location" or "shape" of the frequency distributions, or both.
- Table 3. The proportion of variation in Norton Basin15 sediment trace contaminant concentrationss (ppm dry weight) explained by normalizing variables. The proportion of explained variation is the adjusted R-squared for correlation coefficients found significant at the .05 level.
- Table 4. Geometric means of hydrocarbon concentrations ..18 in northern Bering Sea surface sediment, based on data in Kaplan, et al (1979, 1980). The geometric means and their confidence intervals are calculated from distributions made normal by log transformations.

.

INTRODUCTION

As the northern Bering Sea is leased for mineral extraction, the monitoring of marine pollution will take on increasing importance. Those charged with detecting pollution from the proposed development will find that some past research will be valuable for measuring later changes in contaminant levels in the area. This report compiles the results of research on trace elements and organic contaminants in surface sediment of the northern Bering Sea and draws contrasts between areas and among investigations.

METHODS

I tabulated the numerical values in reports of trace elements and organic contaminants in surface sediment of the American Bering Sea north of 63 degrees latitude. The area conforms to the Norton Basin lease planning area and includes Norton Sound and Norton Basin, as well as the continental shelf west to the international boundary and north to the Bering Strait. I did not consider data from sea-floor sediment deeper than 10 cm.

All the chemical concentrations and ancillary information reflected in the figures and summary tables of this review can be found in tables in Appendix B. The data in the tables of the appendix were extracted, without corrections, from tables in the original published research reports.

I wrote the appendix tables as Lotus 1-2-3 spreadsheets, selecting the variables of interest from the original reports. For statistics and frequency histograms, the data matrix of each spreadsheet was imported to Complete Statistical System (CSS), a commercial application for use on IBM personal computers.

Frequency distributions, shown as histograms, were drawn with CSS-Intergraph. In the graphs, the Y axes denote the number of sediment specimen sites. The X axes' labels denote the upper boundaries of the frequency intervals.

For statistical analyses, chemical concentrations below the lower detection limit were assigned the value of the lower detection limit. For example, I omitted the less-than sign from a datum such as <.005 ppm, and used .005 for subsequent calculations. This practice results in an estimate of the mean biased toward larger values and an estimate of the dispersion biased toward smaller values. These biases are strongest for contaminants whose concentrations are low and therefore close to the lower detection limit. This alternative, however, avoids a high frequency of occurrence in the "zero ppm" class, thereby making samples much more tractable for statistical comparisons.

I tested each analyte in each table for normality of its frequency distribution. Each of these statistical samples was subjected to t-tests for skewness and kurtosis. Those data found with dispersions significantly different from a normal distribution were transformed logarithmically to create a sample distribution closer to normal and more amenable to parametric treatment. Confidence intervals were calculated only for arithmetic or log-transformed distributions whose skewness and kurtosis were not significantly different from a normal distribution at the .05 level of probability. The 95% confidence limits were defined as plus or minus two standard errors of the mean.

Concentrations are expressed in parts per million on a dry weight basis unless otherwise noted.

All the data reviewed here were taken at face value from original reports. I made no assumptions regarding the appropriateness of collecting, storage, or laboratory methods. I did not evaluate the accuracy of the data and did not select data on the basis of quality.

RESULTS

<u>Arsenic</u>

Rusanowski, et al (1988) reported arsenic concentrations in surface sediment near Nome greater than concentrations reported for Norton Sound in general by Robertson and Abel (1979). Table 1 shows the geometric mean of arsenic closer to Nome, calculated from transformations of the values provided by Rusanowski, et al (1988). The

Table 1. Means of trace element concentrations (ppm dry weight) in surface sediment near Nome, using tabular data in Rusanowski, et al (1988) which fit a normal distribution. The geometric means are calculated from sample distributions made normal by log transformation. Each element is represented by 22 samples, except nickel with 19 samples, collected in 1985, 1986, and 1987 near the <u>Bima</u> dredge.

Arith.	Geom.	95% conf.	limits
mean	mean	low	high
	31.84	19.81	51.18
	1.76	1.15	2.69
	15.95	12.13	20.97
	18.45	12.85	26.51
	0.0167	0.0093	0.0298
39.09		29.20	48.98
	8.83	5.76	13.54
65.62		54.42	76.82
	Arith. mean 39.09 65.62	Arith. Geom. mean mean 31.84 1.76 15.95 18.45 0.0167 39.09 8.83 65.62	Arith. Geom. 95% conf. mean mean low 31.84 19.81 1.76 1.15 15.95 12.13 18.45 12.85 0.0167 0.0093 39.09 29.20 8.83 5.76 65.62 54.42

original values are transformed lognormally because they differed significantly from a normal distribution. A twotailed t-test for a difference in the means, using degrees of freedom modified for variances which are unknown and unequal, is significant (t'=4.19, df=25, P<.005). The arithmetic mean arsenic concentration of Robertson and Abel's six specimen means is 10.88 ppm dry weight, with a 95% confidence interval from 7.012 to 14.755 ppm. The sampling locations of Robertson and Abel (1979) are shown in Figure 1.

Such comparisons of the values of Robertson and Abel (1979) to other reports are questionable, however. Parametric methods require assumptions about the dispersion of the sample frequency distributions. Robertson and Abel (1979) report means rather than individual determinations, and they give no indication of the sample sizes or frequency distributions within each grab specimen. For this report, I assumed that the specimen means that Robertson and Abel (1979) reported were arithmetic means of normally distributed data.

The sampling locations reported by Robertson and Abel (1979) for Norton Sound are illustrated in Figure 1. The frequency histograms of arsenic concentrations near Nome reported by Rusanowski, et al (1988) are shown in Figures 2 and 3, for arithmetic and log-transformed values respectively. The sampling locations described by Rusanowski, et al (1988) are shown in Figure 28.

In the case of arsenic, as for all other analytes which they report, Rusanowski, et al (1986, 1987, 1988) and Northern Technical Services (NORTEC) (1985) do not specify the depth of the sediment grabs. For this report, therefore, I assumed that the grab technique itself did not result in sampling of analyte statistical populations which were different than those of the other investigators.

<u>Barium</u>

Barium concentrations in the northern Bering Sea differ little between the studies of Robertson and Abel (1979) and Larsen, et al (1980). The concentrations all fall within a range of less than one order of magnitude, as shown in Figures 1 and 4. The arithmetic mean of barium based on Robertson and Abel's six cores is 484.3 ppm dry weight, with a 95% confidence interval from 229.1 to 739.5 ppm.

Both of these investigations indicate barium concentrations about two times greater than the concentrations reported by Sharma (1979) from the same region.

Nevertheless. the geographic variation of Larsen's barium concentrations (Fig. 4) follow a pattern not unlike that of Sharma (1979: Fig. 10-32). No tabular data are offered in either report to allow a test of the significance of this difference.

<u>Cadmium</u>

For the area near Nome, Sharma (1974) reported cadmium concentrations greater than those reported by Rusanowski, et al (1988). Figure 5 shows geographic distribution of the cadmium levels of Sharma (1974) and Figures 6,7, and 8 show frequency distributions of Sharma's data. Figures 6, 9 and 10 show frequency distributions of Rusanowski's data.

Because Sharma's data are not normally distributed, they are compared to Rusanowski's data using a nonparametric method. A Kolmogorov-Smirnov test (Table 2) indicates that the underlying statistical populations of cadmium are independent, and that the two investigators did not measure the same thing.

Rusanowski's cadmium levels are summarized by their geometric mean and confidence limit in Table 1.

Nearly half of the variation in Rusanowski's cadmium levels is explained by variation in the percentage of solids in the grab samples, as shown in Table 3. A relationship between grain size and concentration is expected for many trace chemicals in sediment.

Chromium

The Norton Sound sample of Robertson and Abel (1979) reflects chromium concentrations significantly greater than those sampled at Nome by Rusanowksi, et al (1988), according to a two-tailed t-test on log-transformed data (t=5.75, df=26, P<.0005).

The arithmetic mean and confidence interval of chromium levels in Norton Basin are 79.67 ppm dry weight, and 60.49 to 98.87 ppm, respectively, based on the six specimens of Robertson and Abel (1979). See Figure 1 for grab locations.

The geometric mean and confidence interval of chromium levels at Nome are shown in Table 1 (Rusanowski, et al 1988). These chromium values are somewhat affected by percentage solids, as determined from correlation analysis (Table 3). See Figures 11 and 12 for frequency histograms of the sample.

Copper

Rusanowski's copper levels are significantly greater than those of Sharma (1974), according to a Kolmogorov-Smirnov test (Table 2). Geographic distribution in the copper concentrations measured by Sharma (1974) is shown in Figure 13. The sample frequency histograms are shown in Figures 14, 15, 16 and 17. The difference between the two samples is displayed in Figure 18.

Sharma's copper concentrations are affected by organic carbon in the grab samples, as shown in Table 3. However, none of Sharma's three metals are significantly affected by grain size. Moreover, none conforms to a normal Table 2. Kolmogorov-Smirnov tests of metals concentrations (ppm dry weight) in northern Bering Sea surface sediment, at .05 level of significance.

The null hypotheses are that sample pairs are drawn from the same statistical populations. Statistical significance is the result of large sample differences in either the "location" or "shape" of the frequency distributions, or both.

Elemen	t Name of sample	N	Arith. mean	SD	Significant difference
Cd	Rusanowski (1988)	22	3.650	7.868	Signif.
	Sharma (1974)	19	5.492	2.679	-
Cu	Rusanowski (1988)	22	23.98	14.08	Signif.
	Sharma (1974)	19	15.37	11.45	-
Hq	Nelson near Nome	28	.0320	.0246	Signif.
-	Rusanowski near Nome	22	.0351	.0401	-
Ha	Nelson not near Nome	94	.0371	.0335	NS
-	Nelson near Nome	28	.0320	.0246	
Zn	Rusanowski (1988)	22	65.62	25.66	NS
	Sharma (1974)	19	84.00	84.16	

Table 3. The proportion of variation in Norton Basin sediment trace contaminant concentrations (ppm dry weight) explained by normalizing variables. The proportion of explained variation is the adjusted R-squared for correlation coefficients found significant at the .05 level.

Data report and normalizer	Analyte	Adjusted R-squared	
Rusanowski, et al (1988) % solids	Cd, ppm Cr, ppm Cu, ppm Hg, ppm Zn, ppm	.472 .255 .281 .338 .257	
Sharma (1974) % wt. non-carbonate	Cu, ppm	.387	
carbon	Zn, ppm	.527	
Kaplan, et al (1979) % organic	Aliphati	c	
carbon	hydrocar	bons .113	

distribution even after correcting for the affect of organic carbon.

<u>Lead</u>

Lead concentrations in surface sediment near Nome are reported by Rusanowski, et al (1988) and are summarized in Table 1. Frequency histograms of the sample distribution, as arithmetic and as log-transformed values, are shown in Figures 19 and 20.

Sharma (1974) reported that lead was not detectable.

Mercury

Nelson, et al (1972) and Rusanowski, et al (1988) sampled mercury populations near Nome which differed greatly in their variances but little in their means. The subset of 28 values of Nelson, et al (1972) near Nome has a geometric mean of .0274 ppm with a 95% confidence interval of .0223 to .0338 ppm. A two-tailed t-test, using log-transformed values and degrees of freedom modified for unequal variances, showed no significant difference in the means of Nelson's and Rusanowski's mercury concentrations near Nome (t'=1.65, df=16). However, F-tests based on log-transformed values indicate a significant difference between the variances (F=6.09; P<.001). Similarly, a Kolmogorov-Smirnov test on untransformed values shows that the two samples were from statistical populations characterized by distinctly different dispersions (Table 2).

Figures 21-25 show the frequency distributions of the two samples from the area near Nome. Table 1 summarizes Rusanowski's mercury concentrations.

Offshore Nome

The highest mercury levels in the Nome area appear near Penny River. Geographic distribution in the subset of the concentrations measured by Nelson, et al (1972) near Nome is shown in Figure 26. Figures 27 and 28 give close views of the Penny River area and the mercury samples of Nelson, et al (1972) and Rusanowski, et al (1988), respectively.

For purposes of detecting changes in mercury concentrations, Nelson's sample has more statistical power. Statistical power is the probability of rejecting a hypothesis of no difference when there is a true difference. Statistical power is calculated as 1 minus beta, the probability of rejecting an alternative hypothesis of a difference when the hypothesis is true. Applying such a calculation, it is found that Nelson's log-transformed sample can detect differences in means equal to its standard deviation of 0.54 ppm approximately 95% of the time, using a two-tailed t-test. However, Rusanowski's standard deviation is large enough that the sample size would have to exceed 100 to detect that difference at that high rate.

<u>Nelson basin-wide</u>

Views of Nelson's sampling locations and mercury concentrations over the northern Bering Sea are shown in Figures 29 and 30. The extensive sampling by Nelson, et al (1972) yielded mercury exceeding 0.10 ppm dry weight only at two points, a station near Penny River and a station 40 km north of the Yukon River delta.

The frequency distribution of Nelson's samples are shown in Figures 31 and 32. Log normal transformation of the original ppm values resulted in a distribution not significantly different from normal. The geometric mean and its 95% confidence interval calculated for this regional sample are .0269 ppm, and .0234 to .0308 ppm, respectively.

Nelson's sampling shows no significant difference between mercury levels near Nome and mercury levels in the remainder of the northern Bering Sea study area (Table 2).

These mercury data are discussed further by Nelson, et al (1975, 1977) and Patry, et al (1977).

<u>Nickel</u>

Rusanowski's research reports are the only published source of raw data on nickel concentrations in the region (Rusanowski, et al, 1986, 1987, 1988). Summary statistics for nickel are presented in Table 1. Figures 33 and 34 show the frequency histograms.

Zinc

No significant difference in the zinc concentrations sampled near Nome by Sharma (1974) and Rusanowski, et al (1988) is indicated by a Kolmogorov-Smirnov test (Table 2). Such pairs of samples which do not lead to a rejection of the null hypothesis of no difference may be combined as a single sample for analytical purposes.

Frequency histograms for both samples are presented in Figures 35-39. Rusanowski's data are summarized in Table 1.

More than half of the variation in the zinc sampled by Sharma (1974) is explained by differences in organic carbon concentrations in the grab samples (Table 3). Zinc concentrations vary widely among locations near Nome, but show no regular pattern (Figure 40).

Acid-extractable concentrations

Burrell (1977, 1978) reported acid-extractable concentrations of six elements in surface sediment of Norton Sound. His data reflect trace contaminants from the soluble fraction of the sediment, unlike the other studies which examine the whole-rock fraction. Burrell's concentrations are therefore not directly comparable to those of the other studies.

The sampling stations of Burrell (1977, 1978) are mapped in Figure 41. The geographic variations in the concentrations of three trace elements are depicted in Figures 42-44. Cadmium concentrations reported by Burrell (1977, 1978) are as high as the lower detection limit at only one station. Thus, cadmium is not mapped here.

<u>Hydrocarbons</u>

Published tabular data on trace levels of hydrocarbons in the northern Bering Sea are available from Kaplan, et al (1979, 1980), Kaplan and Venkatesan (1981), and Venkatesan, et al (1981).

Geographic variation of total n-alkanes, the odd-toeven ratio of n-alkanes, and the ratio of aliphatics plus aromatics to total organic carbon is shown in Figures 45-47. These variables are common indexes of hydrocarbon levels.

Table 4 displays statistical summaries of three major hydrocarbon indexes and a normalizing variable. Geometric means and confidence intervals are calculated after log transformation.

The concentration of aliphatic hydrocarbons in surface sediment is significantly affected by the percentage of organic carbon based on a regression analysis (P=.034). The adjusted R-squared shows that only 11% of the the variation is explained by percentage organic carbon, a minor affect (Table 3).

The frequency histograms of the major hydrocarbon variables are illustrated in Figures 48-57.

Table 4. Geometric means of hydrocarbon concentrations in northern Bering Sea surface sediment, based on data in Kaplan, et al (1979, 1980). The geometric means and their confidence intervals are calculated from distributions made normal by log transformation.

Analyte	N	Geom. mean	95% conf low	. limits high
<pre>% organic carbon</pre>	48	.5635	.4745	.6692
aliphatics, ppm	49	3.771	2.861	4.973
aromatics, ppm	48	2.088	1.624	2.684
n-alkanes, ppm	37	41.86	12.08	145.1

Two patterns emerge from these comparisons.

First, the independent investigations sometimes reported different mean levels for the same analytes from the same areas. Statistically significant differences between studies were found for the frequency distributions of cadmium, copper and mercury within the area near Nome. Although the mean levels of mercury near Nome estimated by two studies cannot be considered different, the variances were different, indicating that two independent mercury populations were investigated there. For the region as a whole, mean barium concentrations differed between one pair of studies and a third investigation.

In addition, arsenic and chromium levels differed between areas sampled by independent investigations.

Such discrepencies may represent real variation in the concentrations of analytes in sediment, or they may be the result of methodological differences between research programs which are not apparent in the reports.

The second conclusion is that the samples vary in their suitability for detecting trends.

For example, some research efforts in the northern Bering Sea have resulted in extensive contour mapping of trace metals. Such work is reported by Larson, et al (1980), Nelson, et al (1975), Nelson (1977), and Sharma (1978). In these reports, the original individual data are reduced to isolines to depict continuous geographic trends in chemical concentrations across the region. However, these reports preclude statistical treatment.

Sample data from other reports, although unreduced and allowing some statistical analysis, cannot be treated by parametric methods simply because their frequency distributions are not normal and cannot be made normal by transformation. For example, the concentrations of Sharma (1974) cannot provide the variance estimates necessary for calculating the precision of the analyte means.

Some of the data, however, are amenable to more rigorous comparisons. For example, confidence intervals and multivariate relationships can be calculated for mercury, hydrocarbon indexes, and all the elements measured by Rusanowski, et al (1988) because the samples do not differ significantly from normal frequency distributions. In addition, samples of large size or narrow dispersions, or both, offer the greatest power in detecting differences. Samples with these characteristics provide the strongest basis for measuring variation among investigations, among study areas, and over time. Burrell, D. C. 1977. Natural distribution of trace heavy metals and environmental background in Alaskan shelf and estuarine areas. OCSEAP research unit 162. Annual reports 13:290-506.

Burrell, D. C. 1978. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. OCSEAP research unit 162. Annual reports of principal investigators for the year ending March, 1978. 8:199-494.

Burrell, D. C. 1979. Distribution and dynamics of heavy metals in Alaskan shelf environments subject to oil development. OCSEAP research unit 162. Annual reports of principal investigators for the year ending March, 1979. 5:326-546.

Kaplan, I. R., M. I. Venkatesan, S. Brenner, E. Ruth, J. Bonilla, D. Meredith. 1979. Characterization of organic matter in sediments from Gulf of Alaska, Bering and Beaufort Seas. OCSEAP research unit 480. Annual reports of principal investigators for the year ending March, 1979. 5:597-659.

Kaplan, I. R., M. I. Venkatesan, E. Ruth, D. Meredith. 1980. Characterization of organic matter in sediments from Cook Inlet and Norton Sound. OCSEAP research unit 480. Annual reports 3:296-352.

Kaplan, I. R. and M. I. Venkatesan. 1981. Characterization of organic matter in sediments from Gulf of Alaska, Bering Sea, and Beaufort Sea. OCSEAP research unit 480. Final reports 33:101-191.

Larsen, B. R., C. H. Nelson, C. Heropolous, J. J. Patry. 1980. Distribution of trace elements in bottom sediment of the northern Bering Sea. OCSEAP research unit 413. Final reports 33:193-314.

Metsker, H., R. West, E. Robinson-Wilson. 1984. Walrus contaminant analyses findings. Pp. 17-22 <u>in</u> Annual report summary of contaminant investigations for Alaska, 1982. Resource Contaminant Assessment Program. USFWS. 55pp.

Nelson, C. H., D. E. Pierce, K. W. Leong, F. F. H. Wang. 1972. Mercury distribution in ancient and modern sediment of northeastern Bering Sea. USGS Open-file Report 533. 33pp. plus appendices.

Nelson, C. H., D. E. Pierce, K. W. Leong, F. F. H. Wang. 1975. Mercury distribution in ancient and modern sediment of northeastern Bering Sea. Marine Geology 18C:91-104.

Nelson, H. 1977. Trace metal content of bottom sediment in northern Bering Sea. OCSEAP research unit 413. Annual report to OCSEAP. 7 pp.

Northern Technical Services, Inc. (NORTEC). 1985. ODCE information data base for Norton Sound 45, Nome Gold Project (AK 841023-08F). Submitted to USEPA, Region X, Seattle, WA. 130pp. plus appendices.

Patry, J. J., B. Larsen, H. Nelson, C. Heropolous. 1977. Trace metal content of bottom sediment in northern Bering Sea. OCSEAP research unit 413. Quarterly reports 1:846-856.

Robertson, D. F. and K. H. Abel. 1979. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. OCSEAP research unit 506. Annual reports of principal investigators for the year ending March 1979. 5:660-698.

Rusanowksi, P. C., L. A. Gardner, S. C. Jewett. 1986. Nome offshore placer project, data report. Prepared for Inspiration Mines, Inc. by Northern Technical Services, Anchorage.

Rusanowski, P. C., L. A. Gardner, S. C. Jewett. 1987. Nome offshore placer project, annual report. Prepared for Inspiration Gold, Inc. by Northern Technical Services, Anchorage.

Rusanowski, P. C., L. A. Gardner, S. C. Jewett. 1988. Nome offshore placer project, annual report. Prepared for Western Gold Exploration and Mining Co. by Nortec, Anchorage.

Sharma, G. D. 1974. Geological oceanography near Nome. Chapter 7, pp.111-142, <u>in</u> D. W. Hood et al (eds). Environmental Study of the Marine Environment near Nome, Alaska. IMS Report 74-3. Sea Grant Report 73-14.

Sharma, G. D. 1979. <u>The Alaskan Shelf: Hydrographic</u>, <u>sedimentary</u>, and geochemical environment. Springer-Verlag, N. Y. 498pp.

Venkatesan, M. I., M. Sandstrom, S. Brenner, E. Ruth, J. Bonilla, I. R. Kaplan, W. E. Reed. 1981. Organic geochemistry of surficial sediments from the eastern Bering Sea. Pp. 389-409 in D. W. Hood and J. A. Calder (eds.) <u>The Eastern Bering Sea Shelf: Oceanography and Resources</u>. Office of Marine Pollution Assessment, NOAA, U. S. Dept. Commerce. Vol. 1. 625pp.

Fig. 1. Mean concentrations of arsenic, barium, and chromium in surface sediment 0-2cm at six HAPS core stations, 1976, in ppm, dry weight. Adapted from Robertson and Abel (1979: Table C.4 and C.5).

Ppm, dry wt.

Fig. 2. Arsenic in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Ppm, dry wt.

Fig. 4. Barium concentration in surface sediment, 0-10cm, based on 180 van Veen and Soutar van Veen grabs, in ppm dry weight. Adapted from Larsen, et al (1980: Fig. 29).

Fig. 5. Isolines of cadmium concentration in surface sediments based on 19 van Veen grabs. Drawn from Sharma (1974:139).

Ppm, dry wt.

Fig. 6. Cadmium in surface sediment near Nome, based on 22 samples of Rusanowski, et al (1988) and 19 samples of Sharma (1974).

Fig. 7. Cadmium in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Fig. 8. Log normal of ppm of cadmium in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Fig. 9. Cadmium in surface sediment at 22 stations near Nome. Drawn from Rusanowski, et al (1988).

Fig. 10. Log normal of cadmium in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 11. Chromium in surface sediment at 22 stations near Nome. Drawn from Rusanowski, et al (1988).

Fig. 12. Log normal of chromium in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 13. Isolines of copper concentration in surface sediments based on 19 van Veen grabs. Drawn from Sharma (1974:139).

Fig. 14. Copper in surface sediment at 22 stations near Nome. Drawn from Rusanowski, et al (1988).

Fig. 15. Log normal of copper in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 16. Copper in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Fig. 17. Log normal of ppm of copper in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Fig. 18. Copper in surface sediment near Nome, based on 22 samples of Rusanowski, et al (1988) and 19 samples of Sharma (1974).

Fig. 19. Lead in surface sediment at 22 stations near Nome. Drawn from Rusanowski, et al (1988).

Fig. 20. Log normal of lead in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

· 🗄

Fig. 21. Mercury in surface sediment near Nome, based on 28 samples of Nelson, et al (1972) and 22 samples of Rusanowski, et al (1988).

Fig. 22. Mercury concentration in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 23. Log normal of mercury in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

44

•

Fig. 24. Mercury concentration in surface sediment at 28 stations near Nome. Based on Nelson, et al (1972).

Log normal of ppm, dry wt.

Fig. 25. Log normal of mercury in surface sediment at 28 stations near Nome. Based on Nelson, et al (1972).

Fig. 26. Isolines of mercury concentration in surface sediments, 0-10 cm, based on 28 van Veen grab and box core samples, in ppm dry weight. Drawn from Nelson, et al (1972: Appendix I).

Fig. 27. Mercury concentrations in surface sediments 0-10 cm, off Nome, in ppm dry weight. Sampled by van Veen grabs and box corers. The western station represents the geometric mean of five subsamples of a single grab. Adapted from Nelson, et al (1972).

Fig. 28. Background mercury concentrations in surface sediments near the BIMA dredge, 1985-1987, in ppm dry weight. Shown are six determinations at four approximate locations, and the geometric mean of sixteen grabs and determinations at the eastern-most location. The geometric mean was calculated from sixteen values, including seven values equal to lower detection limit. Drawn from Rusanowski, et al (1988: Table 3.3-1).

Fig. 29. Sampling locations for mercury concentrations in surface sediment, 0-10 cm, using van Veen grabs and box corers. At five locations, two determinations were made. At another five locations, five determinations were made; these locations are represented by open circles. Adapted from Nelson, et al (1972: Appendix I).

Fig. 30. Mercury concentrations in surface sediments 0-10 cm, based on 105 van Veen grabs and box core samples; ppm dry weight. Drawn from tabular data in Nelson, et al (1972: Appendix I).

Ppm, dry weight

Fig. 31. Mercury in surface sediment at 122 stations in Norton Basin area, Alaska. Based on Nelson, et al (1972).

Ppm, dry weight

Fig. 32. Log normal of ppm mercury at 122 stations in Norton Basin area, Alaska. Based on Nelson, et al (1972).

Fig. 33. Nickel in surface sediment at 19 stations near Nome. Based on Rusanowski, et al (1988).

Log normal of ppm, dry wt.

Fig. 34. Log normal of ppm of nickel in surface sediment at 19 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 36. Log normal of zinc in surface sediment at 22 stations near Nome. Based on Rusanowski, et al (1988).

Fig. 37. Zinc in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Log normal of ppm, dry wt.

Fig. 38. Log normal of zinc in surface sediment at 19 stations near Nome. Based on Sharma (1974).

Fig. 39. Zinc in surface sediment near Nome, based on 22 samples of Rusanowski, et al (1988) and 19 samples of Sharma (1974).

Fig. 40. Isolines of zinc concentration in surface sediments based on 19 van Veen grabs. Drawn from Sharma (1974:139).

Fig. 41. Locations sampled for "acid-extractable" concentrations of cadmium, copper, nickel, and zinc by HAPS corer. The numbers are station labels of Burrell (1977). The letters are labels of stations analyzed for other metals in "wholerock" samples by Robertson and Abel (1979).

Fig. 42. Isolines of the concentration of extractable copper in surface sediment, based on 14 HAPS cores, 1976, in ppm. Adapted from Burrell (1978: Table 1).

Fig. 43. Isolines of the concentration of extractable nickel in surface sediment, based on 14 HAPS cores, 1976, in ppm. Adapted from Burrell (1978: Table 1).

Fig. 44. Isolines of the concentration of extractable zinc in surface sediment, based on 14 HAPS cores, 1976, in ppm. Adapted from Burrell (1978: Table 1).

Fig. 45. Isolines of the concentration of total n-alkanes, resolved by gas chromatography, from C15 to C34, in ppm dry weight, in surface sediment. Based on 41 samples obtained by various methods in 1976, 1977, and 1979. Drawn from tabular data in Kaplan, et al (1980).

Fig. 46. Isolines of the odd-to-even ratio for n-alkanes summed from C15 to C34 in surface sediments. Based on 41 samples obtained by various methods in 1976, 1977, and 1979. Drawn from tabular data in Kaplan, et al (1980).

Fig. 47. Isolines of the ratio of the sum of the aliphatic and aromatic fractions (ppm dry wt.) to total organic carbon in surface sediments. Based on 33 samples obtained by various methods in 1976, 1977, and 1979. Drawn from tabular data in Kaplan, et al (1980).

Percentage organic carbon

Fig. 48. Percentage of organic carbon in surface sediment at 48 stations in Norton Sound. Based on Kaplan, et al (1979).

Log normal of percentage organic carbon

Fig. 49. Log normal of percentage of organic carbon in surface sediment at 48 stations in Norton Sound. Based on Kaplan, et al (1979).

Ppm, dry wt.

Log normal of ppm, dry wt.

Fig. 51. Log normal of ppm of aliphatic hydrocarbons in surface sediment at 49 stations in Norton Basin. Based on Kaplan, et al (1979).

Ppm, dry weight

Fig. 52. Aromatic hydrocarbons in surface sediment at 48 stations in Norton Basin area, Alaska. Based on Kaplan, et al (1979).

Log normal of ppm, dry weight

Fig. 53. Log normal of aromatics in surface sediment at 48 stations in Norton Basin area, Alaska. Based on Kaplan, et al (1979).

Ppm, dry wt.

Fig. 54. N-alkane hydrocarbons in surface sediment at 37 stations in Norton Basin. Based on Kaplan, et al (1979).

Log normal of ppm, dry wt.

Fig. 55. Log normal of n-alkane hydrocarbons in surface sediment at 37 stations in Norton Basin. Based on Kaplan, et al (1979).

Odd/even ratio

Fig. 56. Odd/even ratio of n-alkane hydrocarbons in surface sediment at 48 stations in Norton Basin. Based on Kaplan, et al (1979).

Log normal of odd/even ratio

Fig. 57. Log normal of the odd/even ratio of n-alkane hydrocarbons in surface sediment at 48 stations in Norton Basin. Based in Kaplan, et al (1979).'

Annotated bibliography of data reports on trace contaminants in surface sediment and animal tissue in the northern Bering Sea Trace contaminant concentrations data for the surface sediment and animal tissues of the northern Bering Sea are available in twenty research reports. These reports, both published and unpublished, present the results of four investigations sponsored by the Outer Continental Shelf Environmental Assessment Program as well as four other independent programs.

The contents of the data reports are briefly characterized in Table A1 and Table A2 by analytes and type of sampled material.

Table A3 shows the research programs responsible for the data reports.

All the reports are available as copies at the Alaska Office of the Ocean Assessment Division of NOAA. The OAD office also has magnetic spreadsheets and print files from those reports which presented tabular data.

Table A1. Reports of trace contaminants data from surface sediment of the Bering Sea north of 63 degrees and funded through the Outer Continental Shelf Environmental Assessment Program. Full citations are listed in the References section.

Citations	Analytes	Material
Burrell 1977, 1978, 1979	6 metals from extracts	sediment
Kaplan 1979, 1980, 1981	hydrocarbons	sediment
Larsen 1980	>50 elements	sediment
Nelson 1977	22 elements	sediment
Patry 1977	27 elements	sediment
Robertson 1979	17 elements	sediment
Venkatesan 1981	hydrocarbons	sediment

Table A2. Reports of trace contaminants data from surface sediment and animal tissue in the Bering Sea north of 63 degrees which were not part of the Outer Continental Shelf Environmental Assessment Program. Full citations are listed in the References section.

Citation	Analytes	Material	Taxa
Metsker 1984	5 metals & 2 org.chlor.	blubber liver kidney	walrus walrus walrus
Nelson 1972, 1975	mercury	sediment	
NORTEC 1985	47 elements	sediment	
Rusanowski 1986, 1987, 1988	8 elements	sediment muscle red k hepatopancreas red k unknown 8 inver liver least c liver saffron muscle least c muscle saffron liver spotted kidney spotted blubber spotted liver bearded kidney bearded blubber bearded	red king crab reas red king crab 8 invert. genera least cisco saffron cod least cisco saffron cod spotted seal spotted seal spotted seal bearded seal bearded seal bearded seal bearded seal
Sharma 1974	4 elements	sediment	
Sharma 1979	15 elements	sediment	

Table A3. Reports of trace contaminants data from surface sediment and animal tissue in the Bering Sea north of 63 degrees, grouped within their research programs. Full citations are listed in the References section.

Research program	Citation
OCSEAP research unit 162	Burrell 1977 Burrell 1978 Burrell 1979
OCSEAP research unit 413	Larsen 1980 Nelson 1977 Patry 1977
OCSEAP research unit 480	Kaplan 1979 Kaplan 1980 Kaplan 1981 Venkatesan 1981
OCSEAP research unit 506	Robertson 1969
USFWS, Resource Contaminant Assessment Program	Metsker 1984
USGS	Nelson 1972 Nelson 1975
Nome Offshore Placer Project	NORTEC 1985 Rusanowski 1986 Rusanowski 1987 Rusanowski 1988
Alaska Sea Grant Program	Sharma 1974 Sharma 1979

Tables of data from original reports

Table B1. Concentrations (ppm, dry wt.) of metals in 14 HAPS core "acid-extracts" of sediment from greater Norton Sound, September, 1976. Adapted from Burrell (1977:32) and Burrell (1978:73).

Sta.	% clay & silt	L. Deg	at. Min.	Long Deg.	Min	Water depth . (m)	Cd	Cu	Ni	Zn	Fe	Mn
1 4 5 9 12d 13 15 17 20 21 23 26 28a	$\begin{array}{c} 22.1\\ 87.0\\ 64.3\\ 86.4\\ 89.0\\ 59.5\\ 81.9\\ 81.9\\ 85.6\\ 35.2\\ 21.5\\ 43.8\\ 17.6\\ 14.8 \end{array}$	$\begin{array}{c} 63\\ 63\\ 63\\ 63\\ 63\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64\\ 64$	$\begin{array}{c} 31.8\\ 19.7\\ 39.5\\ 38.4\\ 41.5\\ 23.5\\ 59.7\\ 0.3\\ 0.0\\ 20.1\\ 15.3\\ 17.5\\ 30.2\\ 44.6 \end{array}$	168 165 164 161 165 165 163 161 163 161 163 162 161 166 167	$\begin{array}{c} 32.2\\ 29.9\\ 32.1\\ 31.0\\ 31.1\\ 44.8\\ 29.7\\ 30.5\\ 30.3\\ 31.0\\ 29.7\\ 30.7\\ 31.5\\ 1.0\\ \end{array}$	29 21 22 13 15 26 20 20 19.5 20 19 15 28 24	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<pre><0.3 0.5 0.5 2.0 1.1 0.5 <0.3 <0.5 <0.3 0.6 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3</pre>	<1.3 2.5 2.9 3.3 4.3 1.4 1.8 <1.3 <1.3 <1.3 <1.3 <1.3 <1.3	6.2 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	746 3050 2843 3084 4250 1609 2086 1779 2961 966 1219 2066 565 745	8 48 121 230 283 75 193 58 52 70 60 20

Table B2. Index ratios for hydrocarbons in Norton Sound sediments, 1976. Adapted from Kaplan (1979: Table 6).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.38 6.065 1.411 1.21 4.02 4.07 5.575 5.269

Table B3. Concentrations (dry wt.) of hydrocarbons in Norton Sound surface sediments, 1976. Samples are from 0-2cm except B- bulk and S- surface. L represents concentrations below detection limit, i.e. "too low to be calculated accurately." Adapted from Kaplan, et al (1979: Tables 4, 5, 6).

					%	%			PP8	
	Sample	Lat.	Long	Depth	Total	Organic	Aliphatic	Aromatic	NORMAL A	LKANES:
Sta.	depth	Deg Min	Deg Min	(m)	carbon	carbon	fr. (ppm)	fr .(ppm)	n-015	n-016
47	0-2cm	64 25.00	165 29.00	15	1.02	0.93	9.644	7.47	L	L
49	0-2cm	63 27.77	163 52.57	10	1.4	1.12	24.782	4.13	L	L
70	0-2cm	65 6.13	167 40.40	31	0.37	0.31	2.207	6.186	L	0.1
89b	bulk 0-10cm	65 46.01	168 5.51	9	0.84	0.53	3,953	5.682	6.9	4.5
105	0-2cm	64 49.00	166 44.00	15	1.29	0.93	1.845	0.006	L	L
121	0-2cm	63 52.99	163 1.34	20	1.37	1.18				
125	0-2cm	64 0.12	162 24.60	18	0.98	0.55	0.141	2.438	1.6	1.4
131	0-2cm	64 23.60	161 49.27	17	0.96	0.44	9.035	2.988	L	L
137	0-2cm	63 40.89	161 13.29	4			17,766	4.531	L	L
147	0-2cm	63 47.00	163 41.50	17	0.87	0.33	6.779	2.293	4.6	L
152	0-2cm	64 5.00	164 26.50	22	0.5	0.35				
154	0-2cm	63 45.08	164 37.43	18	1.25	0. 99	16.264	4.182	L	L
156	0-2cm	63 28.39	165 19.28	17	1.4	1.3	7.119	5.511	L	L
157s	surface 1mm	63 18.11	165 3.26	θ	1.16	0 .82				
160s	surface 1mm	62 54.50	165 8.15	10	2.4	0.7				
162	0-2cm	63 2.80	165 53.99	21	1.26	0.92	45.09	2.316	1.1	1.1
166s	surface 1mm	63 14.62	167 2.21	26	1.54	1.16	39.99	0.756	L	L
168s	surface 1mm	63 26.25	166 29.64	28	1.33	1.1	57.03	2.18	L	L
169s	surface 1mm	63 34.79	166 5.53	27	1.09	0.33	117.12	4.001	3.2	2.6
170s	surface 1mm	63 41.72	165 45.81	25	0.87	0.52	62,89	2.208	L	L
172s	surface 1mm	64 0.10	165 29.25	20	1.36	0.87	80.14	3.773	L	L
174s	surface 1mm	64 21.15	165 0.40	36	1.48	0.82	53.21	2.005	L	L

Table B3 con't

n-C17	Pris- tane	n-C18	Phy- tane	n-019	n-C20	n-021	nC22	n-C23	n-C24	n-C25	n-C26	n-C27
10.7 L 0.3 10 L	L 0.8 20.3 L	11.9 L 0.4 2.5 L	L L 0.1 9.5 L	35 45.9 0.6 19.3 L	43.7 61.3 0.5 13.3 L	164.5 226.2 0.6 257.4 2.6	142.4 201.8 0.6 14.6 2.9	384.3 552 0.7 23.1 8.3	1.4 200.9 0.6 17 3.2	434.1 624.4 0.7 31.1 9.7	111.5 154.9 0.5 20.4 L	740.1 1351.9 0.9 75.6 19.1
3.5 21.3 13.1 14.4	1.4 L L L	3.7 L 18.5 11.3	0.7 L L L	9 30.6 61.9 32.2	9.8 37.7 85.5 37.2	L 174.7 291.1 113.6	26.5 150.5 203.7 100	66.4 469.9 761.3 262.8	28 169.6 316.4 108.5	78.9 647.4 883.7 299.6	25 169.1 292 79.3	151.4 1490.2 1861 533.7
13.4 15.7	L L	15.8 15.1	L L	51 40.4	58.2 49	215.4 178.3	182.2 158.2	501.8 446.3	177.4 169.1	594.9 557.7	149.1 132.1	1375.4 1304
2.4 0.9 6.2 L L L	1.2 0.6 L 3. 6 L L L	2.1 0.6 L 4.3 L L L	L L 1 L L	5.6 1.3 9.1 9.4 L 7.7	5.6 1.5 11.2 10.1 4.3 L 13.5	21.5 4.3 42.8 31.6 63.2 84.3 56.2	16.9 4.6 40.2 29.7 66.5 67 54.5	46.8 12.8 128.2 83.2 218.3 261.3 261.3	17.4 5.8 50.5 34.4 79.7 68.2 59.2	53.5 16.9 167.1 127.5 288.3 339.3 201.2	14.3 5 48.4 38.9 73.9 65 52.9	107.5 36.6 347 199.5 631.2 616.9 416.7

Table B3 con't

n-C28	n-029	n-030	n-C31	n-C32	nC33	n-C34	Total n- alkanes (ppm)
82.1 139.5 0.5 32.6 L	539.6 956.2 1.3 57.4 13.2	131.4 47.4 0.4 7.8 L	480.5 114.1 59.1 15.6	21.1 L 0.3 10.7 L	143.9 266.3 0.3 18.5 L	L L 6.2 L	3.277 5.688 0.0102 0.688 0.0745
21.2 167.9 243.9 52.3	106 1098 1362.1 310.4	12.4 925.3 344.9 168.4	99 1051.9 1296.7 16.6	6.3 28.6 87.9 L	31.5 310.1 486.6 71.2	3.3 L 42.2 L	0.6876 7.184 8.694 2.241
132.6 119.9	879.1 821.6	67.6 59.1	63.8 702	18.7	40.7 224.7	L	5.451 5.061
10.6 4.6 43.5 26.5 62.1 60.8 46	63.4 26.9 255.1 143.5 443.5 521 285.3	5.1 2.2 33.4 14.9 72.6 168.1 75.5	52.2 24.6 230.5 132.6 432.2 454.1 272.5	3.5 1.3 9.1 8.3 7.7 78.5 7.7	15.9 7.5 64.4 43.1 117.6 109.6 72.6	1.4 L 3.6 L L	0.4477 0.1571 1.481 0.954 2.573 2.894 1.792

Table B4. Index ratios for hydrocarbons in Norton Sound sediments, 1977. Adapted from Kaplan, et al (1979: Table 9).

Sta.	Sample depth	(alkanes/ organic carbon) ×10e4	Pristane/ n-C17	Phytane/ n-C18	Pristane/ phytane	0dd/ even
34	0-2cm	0.75	1.38	0.14	2.00	4.55
35	0-2cm	0.87	1.67	0.22	7.00	5.15
- 39	surface 1mm	n 0.24	1.44	0.33	2.50	5.35
41	surface 1m	n 0.53	1.00	0.25	4.00	4.78
42	surface 1mm	1 2.60	1.82	0.25	5.50	4.78
43	0-2cm	0.64	1.06	0.16	6.50	4.22
44	0-2cm	0.48	1.44	0.13	6.00	3.21
48	surface 1mm	0.38	1.38	0.17	5.00	6.37
14	IK 0-3cm	4.37	0.55	0.23	3.10	5.26
17	0-3cm	2.04	2.03	0.19	1.30	5.12
17	SV 0-3cm	6.40	0.50	0.17	2.00	5.67

,

Table 85. Concentrations of hydrocarbons in Norton Sound surface sediments, 1977. L represents concentrations below detection limit, i.e. "too low to be calculated accurately." Adapted from Kaplan, et al (1979: Tables 7 and 8).

Sta.	Sample depth	L Deg.	at. min.	L Deg.	ong. min.	Water depth (m)	% Total carbon	% organic carbon	Aliphatic fraction (ppm)	Aromatic fraction (ppm)	PPB ALKANES: n-C17
34 35 39 41 42 43 44	0-2cm 0-2cm surface 1mm surface 1mm 0-2cm 0-2cm surface 1mm	64 65 64 63 63 63	52.30 14.90 7.09 2.75 58.40 57.85 45.40 59.20	167 167 171 171 169 167 167	39.65 45.70 18.00 36.10 22.65 48.03 0.50	32 52 34 27 39 35 31	0.35 0.67 1.54 0.91 1.76 0.63 0.66	0.12 0.59 0.38 0.44 0.32 0.6 0.6	0.809 2.248 0.643 2.466 4.444 1.01 2.072 5.829	0.678 1.132 0.247 0.847 1.922 1.714 0.9 5.012	L 1.4 0.2 L 1.7 1.2 L
14 17 17	IK 0-3cm sv 0-3cm 0-3cm	64 64 64	14.80 5.10 5.10	165 165 165	25.50 28.62 28.62	10 19 19	1.12 1.09 0.31	0.28 0.86 0.24	5.36 14.066 5.494	1.296 2.228 2.667	4.4 2.7 L

Pris- tane	n-C18	Phy- tane	n-C19	n-C20	n-C21	n-C22	n-C23	n-C24	n-C25	n-C26	n-C27
L	L	L	0.9	1.2	3.2	3.3	7.7	3.3	8.6	3.2	18.9
2.4	1.5	L	3.2	- 4	13.2	13.4	39.8	17.2	52.2	16.9	117.8
0.3	0.3	Ē	0.7	0.0	1.8	2	5.1	2.8	7.9	3	19.6
Ľ	Ľ	Ē	1.3	1.0	6	6.1	18	8.8	24.7	8.8	49.5
3.2	1.8	Ē	9.7	7.1	23.7	22.3	63.8	27.8	79.7	27.1	170.2
1.3	1.2	Ē	3.5	3.9	12.1	11.9	1.6	14.2	41.6	14.2	88.6
Ĺ	0.6	Ē	1.7	2.5	9.2	14.3	34.5	22.3	34.1	13	49.5
5.6	5.1	Ē	16.7	17.3	66.3	43.3	136.5	47.5	185.1	39.1	459
Ĺ	4.6	Ē	11.1	13.1	42.3	36.8	104.2	42.7	129.9	35.9	284.8
Ē	4.5	Ē	14.6	18.3	63	55.3	149.3	59.2	180.5	53.7	409
Ē	Ĺ	Ē	22.7	15.6	54.5	49.2	138	53.6	166.1	45	367.7

n-C28 n-C29 n-C30 n-C31 n-C32 n-C33 n-C34

L	4.9	0.9	14.7	1.4	14.9	2.9
2.6	32.3	6.6	101	10.4	95.4	16.5
0.7	6.2	1.3	19.2	0.4	17	3.1
L	11.6	2.4	41.2	4	41.1	8.6
3.2	45.2	10.2	148.1	16	142.8	27.5
2	21.9	4.6	69.4	7.6	70.2	13.5
L	6.4	L	22.8	0.9	28.4	6.3
L	59.6	9.9	19 0.7	14.7	260.8	39.4
L	62.5	11.7	186.8	18.1	201.6	32.6
0.66	87.3	16.1	268	26.1	292.4	46.8
L	71.7	12.1	223.0	18.4	256.2	40.3

68

Table B6. Index ratios for hydrocarbons in Norton Sound sediment, 1979. Adapted from Kaplan, et al (1979: Table 17).

Sta.	(n-alkanes/ organic carbon) x10e4	Pristane/ n-C17	Phytane/ n-/C18	Pristane/ phytane	0dd/ even
1 5 7	4.92 7.74 7.58	0.37 1.06 0.95	0.18	0.75	3.37 3.91 3.80
8 13 15	12.93 5.48 3.39	0.48 0.59 0.5	0.25 0.24 0.17	1.71 1.65 2.47	3.27 4.32
18 20 21	4.62 3.76 6.07	0.44 0.44 • 0.62	0.19	1.86	4.04
22 25	3.29 2.38	0.42 0.41	Ö. 18	2.44	3.35 4.12
29a 29b 33a 36	3.38 2.49	0.37 0.31 0.54	0.23	1.50	4.33 3.56 4.09 3.97
40 47a	0.38	0.62	0.00		5.27
49 50	0.9	2.27 0.75	0.28	8.88	4.18 3.87

Table 87.	Concentrations (dry wt.) of hydrocarbons in Norton Sound
surface	sediments, 1979. I represents concentrations below detection
limit.	Adapted from Kaplan, et al (1979: Tables 15 and 16).

				z	X	Aliphatic	Aromatic	PPB	
	Lat.	Long.	Depth	Total	Organic	fraction	fraction	ALKAN	ES:
Sta.	Deg Min	Deg Mi	า (ก)	carbon	carbon	(pm)	(ppm)	n-C15	n-016
1	64 19.20	162 0.9	50 17	1.2	0.72	4.68	3,31	3.2	3.3
5	63 39.90	161 17.0	30 13	1.63	0.74	17.83	8.76	4.7	4.7
7	63 40.30	162 59.0	30 17	1.28	0.57	9.66	6.08	L	2.4
8	64 0.30	163 4.0	0 20	0.69	0.46	1.56	1.49	0.8	0.9
13	63 20.20	165 12.	10 15	0.65	0.38	4.51	5.14	L	L
15	63 59,60	164 58.9	50 18	0.73	0.48	3.96	1.79	Ē	Ē
10	64 19.90	165 23.3	20 25	0.62	0.48	3.15	1.53	Ē	Ē
20	64 6.60	165 30.	10 18	0.64	0.4	5.4	1.52	Ē	Ē
21	64 12.10	165 30.5	50 18	0.72	0.47	9.08	5,14	- Ē	1.8
22	64 19.80	165 42.	20 21	1.34	0.86	8.87	5.54	5.9	5.5
25	64 20.20	166 0.1	90 22	1.14	0.66	5.19	1.95	Ĺ	Ē.
29a	63 50.30	165 41.	20 20	0.61	0.41	2.77	0.96	Ē	Ē
29b	63 46.10	166 7.9	50 27	0.96	0.54	3.93		2	1.3
33a	62 25.40	166 40.3	20 20			1.68	0.87	Ē	Ĩ.
36	63 40.00	167 2.0	io 29			8.67	1.73	Ē	Ē
40	64 40.20	167 3.0	50 <u>26</u>	0.2	0.17	2.25	0.11	Ē	0.5
47a	62 26.00	168 48.0	50			1.37	1.14	0.7	1
49	64 20.10	169 0.	30 40			2.45	3.04	1	0.5
50	64 39.40	169 0.3	30 44	0.33	0.28	1.67	1.92	1.1	

Table B7 con't

n-017	Pris- tane	n-C18	Phy- tane	n-C19	n-C20	n-021	n-C22	n-C23	n-C24	n-C25	n-026	n-C27	n-C28
9.3	7.6	8.7	1.6	25.4	30.7	116	96.3	289	124.1	332.5	154.9	875.4	98.7
12.7	13.4	14.4	L	43.1	59.8	199.4	185.9	504.5	215.2	795.8	233.8	1154	153.8
11.1	10.5	13.1	L	38.8	49.4	163.6	138.7	369.2	154.9	570.2	172.3	892.1	116.7
2.5	1.2	2.8	0.7	7.8	8.9	26	20.9	50.2	23.2	73.1	22.6	105.5	15.7
4.3	2.6	6.5	1.6	21	31.7	101.9	84.6	218	85	242.4	60.5	415.7	41
4.1	2	4.9	0.0	14.3	19.8	70.4	63.3	166.4	69.6	195.9	55.8	322.4	36.9
4.1	1.8	5.2	1	15.7	20.3	68.6	62.9	175.9	80.4	280.6	64.8	492.6	59.4
5.1	2.3	5.2	L	15	19.9	65.9	57.1	148.7	60.2	171.9	49.7	287.2	33.3
6.3	3.9	7.2	L	22.3	28.9	100.5	83	230.8	89.3	435.6	115	694.7	71.4
12.7	5.3	12.3	2.2	33.1	42.1	157.4	133.4	346.5	136.6	363.2	97.6	493.4	58.1
5.7	2.7	6.1	L	16.2	20.3	66.4	57.8	150.6	61	177.3	60.2	295.8	35.6
4.1	1.5	4.4	1	13.3	16	50.4	44	120.1	49.3	180.9	55.6	301.4	38.2
3.5	1.1	3.4	L	10.7	13.2	46.9	47.4	128.9	69.3	218.6	77.6	287.9	42
1.3	0.7	1.7	L	4	5	13.2	10.9	26.6	11.7	39.5	11.5	60.6	7.5
2.1	L	L	L	12.6	14.4	52.7	44.3	132.6	54.6	251.6	71.9	416.4	48.9
L	Ľ	L	L	0.7	1.2	3	3.3	7.2	L	10.2	3.5	14.2	2.2
1.3	0.8	0.8	L	4	4.7	21.6	12.2	35.3	16	58.5	18.2	91.6	13
2.6	5.9	5.9	0.7	7.1	8	23	22.5	57	27.8	73.9	23.1	125.4	17.4
0.8	0.6	0.6	L	2.4	3	9	8.4	22.7	9.8	27.5	9.3	44.3	6.8

n-C29	n-C30	n-C31	n-C32	n-C33	n-C34	Total n- alkanes
536.2	252.5	422.5	22.7	121.4	121.4	3540.3
814.6	186.2	673.3	42.7	198.5	198.5	5526.7
634.7	193.1	570.2	33.7	168.8	168.8	4318.9
76.5	33.8	82.7	5.7	28.1	29.1	594.7
325.5	65.1	278.8	14.9	85.3	85.3	2084.8
249.6	68.7	206	11.5	60.3	60.3	1627.7
348.2	64.4	299.9	46.8	91	91	2217
232.2	52.5	210.7	8.9	67.9	67.9	1503.2
400.1	107.1	346.1	11.8	88.6	88.6	2853.9
363	141.5	311.9	18.6	94.5	94.5	2833.2
240.9	51.5	232	11.3	76	76	1567.5
211.9	32.2	184.2	10.9	57.6	57.6	1384.1
178.7	23.2	136.5	8.7	35.7	35.7	1344
40.6	4.6	34.6	1.2	9.3	9.3	286
263.6	100.8	210.7	7.9	50.7	50.7	1743.7
10.3	L	8.4	L	L	L	64.2
68.9	11.2	60.5	3.8	17.9	17.9	444.1
97.8	9.2	86.2	4.5	22.3	22.3	614.9
33.7	3.5	32.6	1.5	9.3	9.3	253.3

Table BB. Concentrations of heavy metals and organochlorine contaminants in walrus samples taken from the Alaska native subsistence harvest of 1981 and 1982. Pesticides analyzed for in blubber but not detected are DDE, DDD, DDT, dieldrin, heptachlor epoxide, trans-monachlor, cismonachlor, endrin, toxaphene, hexachlorobenzene, mirex, and PCB's. Ppm, presumably wet weight basis. Adapted from Metsker, et al (1984: Table 1).

Tissue by	.	~	Age	-	~ .		~	~		oxych-
village	Uate	Sex	(yr)	РЬ	Cđ	Hg	Hs	Se	dieldrin	lordane
Liver:										
Savoonga	1981			0.15	5.6	0.85		2.0		
Savoonga	1981				5.6	0.69	0.13	4.5		
Savoonga	1981				16.0	0.60		2.3		
Savoonga	1981				16.0	0.68		2.7		
Savoonga	1981				9.5	3.00		4.9		
Savoonga	1981				13.0	0.65		4.1		
Savoonga	1981				16.0	0.68		3.8		
Little Diomede	1982	М	14	0.11	3.7	0.20	2.7		0.12	0.12
Little Diomede	1982	М	15		6.0	0.14	1.9		0.16	0.15
Little Diomede	1982	М	20		8.4	0.46	2.3			0.11
Little Diomede	1982	F	24		5.2	0.13	2.2		0.12	
Little Diomede	1982	F	16	0.22	8.7	0.06	2.8		0.12	0.17
Little Diomede	1982	М	15		5.5	0.22	1.9			
Little Diomede	1982	М	19		1.4	0.048	1.4		0.18	0.19
Little Diomede	1982	М	16	0.22	5.6	0.15	1.4		0.26	0.29
Gambell	1981	F	11	0.10	8.9	0.66		12.0		
Gambell	1981	F	14-15		5.2	0.98		2.7		
Gambell	1981	М	21		30.0	0.39		0.05		
Gambell	1981	F	15	0.17	5.8	0.73		4.1		

Tissue by village	Date	Sex	Age (yr)	РЬ	Cd	Hg	As	Se	dieldrin	oxych- lordane
Kidney: Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Gambell Gambell Gambell	1982 1982 1982 1982 1982 1982 1982 1982	****	15 14 19 16 15 24 20 21 14-15 11 15	0.16 0.83 0.22 0.22 0.11	28.0 33.0 10.0 40.0 41.0 56.0 46.0 87.0 43.0 33.0 15.0					
Blubber: Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Little Diomede Gambell	1982 1982 1982 1982 1982 1982 1982 1982	FMMMMFMMFM	16 20 19 14 15 24 16 15 14-15 21						0.12 0.18 0.12 0.16 0.26 0.16 0.11 0.15	0.17 0.11 0.19 0.12 0.15 0.29 0.15 0.13

Table B9. Mercury concentrations (ppm dry wt.) in Norton Basin surface sediment, 0-10 cm, sampled by van Veen grab and box corer. Lower detection limit is 0.01 ppm. Adapted from Nelson, et al (1972: Appendix I).

				Water	
	Lat.		Long.	depth	Hg
Sample	Deg.	Min.	Deg. Min.	(ft.)	(ppm)
67 ANC 30	64	27.560	165 19./68	45	0.04
68 AWF 310	64	28.128	164 41.928	31	0.02
68 AWF 327	64	32.192	164 25.192		0.02
68 AWF 338	64	32.656	163 59.800	46	0.03
68 AWF 343	64	32.768	163 54.288	14	0.03
68 AWF 344	64	33.384	163 50.672	20	0.03
68 AWF 343	64	33.384	163 48.000	22	0.03
68 AWF 346	64	33.384 77 aaa	163 40.384	18	0.03
68 AWF 350	64	32.000	163 50.672	4/	0.01
68 AWF 354	64	33.000	163 43.480	24	0.04
68 AWF 355	63	33.000	163 41.096	20	0.03
68 AWF 357	64	30.768	163 41.096	50	0.02
68 AWF 410	64	30.160	164 11.800	64	0.02
68 AWF 430	64	28.416	164 26.480	71	0.02
68 AWF 440	64	23.640	164 46.496	84	<0.01
68 AWF 505	64	32.768	166 15.000	40	0.03
68 ANL 308	65	42.256	168 7.700	25	0.03
68 ANC 618	65	25.000	167 36.864	49	0.06
68 ANC 708	65	32.096	168 2.300	87	0.03
68 ANC 758	63	49.000	171 40.000	121	0.03
68 ANC 1058	63	37.000	171 10.768	49	0.01
68 ANC 1128	63	42.000	170 38.000	117	0.02
68 ANC 1158	63 	44.000	170 25.192	143	0.08
68 ANC 118A	د6	41.000	170 11.000	142	0.06
68 ANC 1208	63	39.800	170 1.500	143	0.01
68 ANC 1268	63	32.000	169 44.576	121	0.02
68 ANC 1408	63	22.480	168 56.000	87	0.03
68 ANC 154B	63	50.000	169 47.000	104	0.01
68 ANC 1668	64	57.000	167 49.000	136	0.01
68 ANC 179T	65	16.192	166 57.192	50	0.07
68 ANC 181B	65	13.000	167 26.768	69	0.01
68 ANC 1828	65	10.576	167 23.384	63	0.01
68 ANC 187B	65	2.100	167 21.080	76	0.08
68 ANC 190B	64	58.000	167 10.480	45	0.03
68 ANC 2008	64	39.672	166 36.480	72	<0.01
68 ANC 212T	64	37.512	167 14.416	96	0.02
68 ANC 2158	64	26.000	168 4.600	119	0.06
68 ANC 216A	64	18.480	168 20.768	130	0.02
68 ANC 231B	64	20.768	166 8.400	135	0.04
68 ANC 233B	64	26.480	166 4.500	106	0.03
68 ANC 234B	64	29.864	166 2.300	67	0.02

68	ANC	235T	64	27.480	165 45.864	66	0.25
68	ANC	235T	64	29.480	165 45.864	66	0.16
68	ANC	235T	64	29.480	165 45.864	66	0.11
68	ANC	235T	64	29.480	165 45.864	66	0.12
68	ANC	235T	64	29.480	165 45.864	66	0.13
68	ANC	2408	64	18,192	165 40, 192	- 69	0.03
48		2417	64	24 000	145 35,000	102	0.11
49		241T	<u>6</u> 4	24 000	145 35 000	102	0.08
20		2417	64 64	24.000	145 35 000	102	20.0
20		241T	64 44	24.000	145 35 000	102	0.00
20		2411	64	24.000	145 35 000	102	0.02
00 4 0	ANC	2411	6 4 64	24.000	165 33.000	102	0.02
00		2441	04	4/.004	100 24.072	07	0.00
00	HING	2400	04	10.172	165 24.000	·	20.02
68	ANC	201B	64	25.000	165 14.384		<0.01 0.14
69	ANC	1005	63	39.192	162 29.096	ెం — -	0.14
69	ANC	1005	63 	39.192	162 29.096	53	0.03
69	ANC	1005	63	39.192	162 29.096	23	0.02
69	ANC	1005	63	39.192	162 29.096	53	0.01
69	ANC	1005	63	39.192	162 29.096	53	0.02
69	ANC	101B	64	9.700	164 7.600	74	0.03
69	ANC	105B	64	20.576	166 33.672	75	0.02
69	ANC	107B	63	52.000	167 18.768	110	0.01
69	ANC	114	62	31.384	165 57.480	44	0.03
69	ANC	116	63	12.480	165 19.672	42	0.06
69	ANC	118	63	45.576	166 0.670	88	0.02
69	ANC	1205	63	39.480	164 37.000	42	0.02
69	ANC	121	63	35.480	163 59.000	47	0.16
69	ANC	1225	64	22.480	165 44.768	88	0.05
69	ANC	1220	64	22.480	165 44.768	88	0.01
69	ANC	155B	63	52.000	165 44.320	110	0.01
69	ANC	200B	64	25.800	165 25.256	39	0.02
69	ANC	204H III	63	46.576	170 1.500	141	0.04
69	ANC	2065	63	41.000	170 0.000	144	0.03
69	ANC	207	63	43.672	169 54.192	138	0.14
69	ANC	207	63	43.672	169 54.192	138	<0.01
69	ANC	208B	63	42.576	169 36.576	125	0.05
69	ANC	209B	63	53.384	169 29.768	105	<0.01
69	ANC	215	63	54.000	170 48.480	93	0.01
69	ANC	216	64	0.900	170 49.480	89	0.02
69	ANC	220 B	63	51.288	171 59.384	125	0.01
69	ANC	221 B	63	52.288	172 18.000	177	<0.01
69	ANC	222 H II	63	56.768	172 31.000	180	0.1
69	ANC	223	64	0.900	172 25.100	184	0.23
. 49	ANC	224 A	63	58, 288	172 12.768	177	0.01
69		224 B	63	58,288	172 12.768	177	0.03
49		227 B	64	8.200	171 47.288	159	0.06
69		229	64	8,100	171 13.120	118	0.04
ΔQ		230	- 64	13 000	170 52 120	118	0.02
40			Δ- 44	15,480	170 18 000	175	0.04
رن حر		202	<u> </u>	79 94A	149 39 470	121	0.01
40		200	노르	A 500	169 14 472	160	0.01
27		/ ጋለፍ ሀ የፕ	45	11 100	147 57 107	107	0.03
07 (n		270 F 11 7/70 UTT	0J 25	11.174 17 044	167 30.174	110	0.00
07		277/N VII 2510	00 4 E	10.004	167 37,460	110	0.03
07	HNU	2010		6.300 4 700	16/ 3/.172	07	0.03
67	ANC	2011 DEDU TU	60	6. 300 5. 100	10/ 3/.172	100	0.02
- 67	ANC	ZUZH IV	60	2.100	10/ 43.384	120	0.∠8

95

•

69	ANC	252H	IV	65	5.100	167	43.384	120	0.08
69	ANC	252H	IV	65	5.100	167	43.384	120	0.05
69	ANC	252H	IV	65	5.100	167	43.384	120	0.03
69	ANC	252H	IV	65	5.100	167	43.384	120	0.02
69	ANC	252H	IV	65	5.100	167	43.384	120	0.03
69	ANC	253S		65	5.100	167	47.000	102	0.01
69	ANC	254B		65	1.600	168	5.000	112	0.01
69	ANC	25501	4	64	57.000	168	15.000	134	0.03
70	ANC	7B	-	63	17.480	172	18,000	202	0.16
70	ANC	7B		63	17.480	172	18.000	202	0.04
70	ANC	7B		63	17,480	172	18,000	202	0.01
70	ANC	78		63	17,480	172	18,000	202	0.01
70	ANC	78		А.Т.	17.480	172	18 000	202	0.01
70	ANC	118		60 43	18 480	170	55 944	202	0.03
70		138		50	8 200	170	79 000	174	20.01
70		148		47	54 749	170	74 740	170	NU.UI 0.04
70		150		47	57 472	170	20.700	107	0.08
70		140		62 47	5/ 000	140	27.004	177	0.06
70		205		47	37.000	140	34.000	107	0.01
70		203		02 43	37.200	107	24.000	110	<0.01 0.04
70		273		00 47	10.000	108	38.000	88	0.04
70		4/9 700		00 / 7	7.800	10/	36.864	//	<0.01
70	ANC	273		04	32.000	10/	4.000	91	0.07
70		3∠8 750		64	26.6/2	165	51.288	58	0.04
70		305 405		64	28.0/6	165	25.480	53 	0.09
70	ANC	408		64	23.288	163	2.500	9ک	0.03
70		433		64	20./08	162	32.768	61	0.07
70		4/8		64	31.6/2	162	14.000	42	<0.01
70	ANC	488		54	30.288	161	56.5/6	43	0.07
70	ANC	202		64	0.000	162	1.500	60	0.03
70	ANC	045		64	1.500	161	16.5/6	51	0.06
70	ANC	208		<u>د</u> م	41.384	161	11.576	42	0.07
70	ANC	285		<u>د 6</u>	45.480	162	2.500	52	0.07
70	ANC	241		63 	53.100	163	5.576	61	0.08
70	ANC	615		63	26.100	163	27.192	36	0.09
70	ANC	611		63	25.100	163	27.192	36	0.05
71	ADE	<u>د</u>		60	32.384	172	53.192	95	0.01
/1	ADE	6		60 (ŝ	30.100	172	50.672	76	0.01
71	ADE	10		50	25.288	1/2	26.768	135	0.01
71	ADE	10		80 (*	28.5/6	172	22.000	192	0.01
/1	ADE	13		60	30.576	172	29.480	175	0.02
/1	ADE	161		60	32.288	172	32.672	168	0.03
/1	ADE	17		60	33.100	172	34.864	163	0.07
71	ADE	19		60	35.864	172	42.672	146	0.05
71	ADE	20		60	32.480	172	47.576	132	0.04
71	ADE	22		60	29.384	172	41.384	92	0.02
71	ADE	26		60	24.672	172	34.192	93	0.03
71	ADE	30		60	20.192	172	25.480	42	0.05
71	ADE	32		60	23.480	172	48.000	42	0.01
71	ADE	35		60	36.192	172	53.864	117	0.01
71	ADE	36		60	37.768	172	58.100	120	<0.01
71	ADE	38		60	38.864	173	3.670	50	0.01

Table B10. Mercury concentrations (ppm, dry wt.) in surficial sediments sampled by box corer and van Veen grab in Norton Basin as adapted from Nelson, et al (1975: Table III).

	n	Arith. mean	median	Range of 70% of values	Total min.	range to max.
Surface 1mm for: all areas	20	0.06	0.04	0.02 to 0.14	0.01	to 0.23
Surface 0-10cm for:						
from shore	83	0.04	0.03	0.01 to 0.08	<0.01	to 0.23
from shore less than 20km	17	0.03	0.02	0.01 to 0.06	<0.01	to 0.07
from Wales shoreline	3	0.04	0.03	0.03 -	0.03	to 0.06
from Nome shoreline	10	0.04	0.03	0.01 to 0.06	<0.01	to 0.15
from Bluff shoreline	8	0.03	0.03	0.02 to 0.04	0.01	to 0.09
from St. Lawrence Is	29	0.04	0.03	0.01 to 0.07	<0.01	to 0.23

Table B11. Mean concentrations (dry wt.) of elements in "whole rock" surficial sediment at 0-2 cm, from six Norton Sound HAPS core samples, September 1976. Values are arithmetic mean and, presumably, one standard error. Sample size comprising each mean is not specified in the original report. Adapted from Robertson and Abel (1979: Tables C.3, C.4, C.5).

Stat	ion	N	-1	N	-5	N-9		N-	15	N	20	N-3	26
Deg/i Deg/i Deptl	min N. min W. h (m)	63 168 29	31.0 32.2	63 165 22	39,5 32,1	63 161 15	41.5 31.1	64 163 20	0.3 30.5	64 163 20	20.1 31	64 166 28	30.2 31.5
Ele-													
ment	Units	mean	S.E.	nean	5.E.	mean	S.E.	nean	5.E.	nean	5.E.	mean	S.E.
A1	z	5.35	0.18	6.18	0.21	7.32	0.24	5.88	0.2	5.57	0.19	4.43	1.5
Ti	%	0.45	0.09	0.46	0.09	0.36	0.09	0.45	0.09	0.46	0.09	0.36	0.08
Mn	ppm	344	21	586	30	544	29	458	25	396	23	417	54
V	ppm	82	10	113	12	149	14	102	11	73	10	56	. 9
Na	%	2.03	0.01	2.02	0.01	2.31	0.01	2.01	0.01	1.65	0.01	1.72	0.01
ĸ	ppm	1.88	0.24	1.65	0.22	2.14	0.24	1.14	0.18	1.60	0.19	1.29	0.17
As	ppm	7.8	1.1	11.8	1.2	19.8	1.1	10.7	1.0	6.9	0.8	.8.3	0.8
La	ppm	24.6	1.1	30.2	0.9	36.8	0.8	29.0	0.7	31.2	0.8	19.7	0.6
Sm	ppm	_3.5	0.1	4.4	0.1	5.5	0.1	4.2	0.1	4.7	0.1	_ 3. 5	0.1
50	ppm	9.40	0.08	11.52	0.08	16.98	0.08	10.49	0.08	8.00	0.05	8.80	0.09
Cr	ppm	25	2	83	1	114	2	71		6/		47	A AF
re	ppm	2.34	0.07	3.15	0.08	4.92	0.09	2.75	0.00	2.10	0.04	2.47	0.00
	bbw	0.49	0.05	12.00	0.17	19.00	0.10	11.27	0.23	9.31	0.05	0.04	0.00
50	ppm	700	0.06	0.97	0.03	1.79	V. UB	1.05	0.07	670	0.04	0.04 620	20.00
ba C	ppm	1 05	0 00	750	20	970	0 17	20	0 10	2 44	A 60	2 10	00 0
С.».	hhw	1.00	0.03	1 00	0.00	1 76	0.17	2.42	0.10	2.44	0.00	0 07	0.02
с.u ть	hhii	0.52	0.05	0.70	0.02	1.30	0.02	1.03	0.03	1.02	0.02	0.07	0.02
To To		0.00	0.03	0.70	0.00	0.04		0.07	0.00	0.04	0.03	1 32	0.03
Th	hhiii	5 40	0.00	7 36	0.00	11 60	0.05	0.60	0.07	2 92	0.07	1.JZ	0.13
111	hhm	J.40	0.07	r.JD	0.00	11.00	0.10	V.DC	V. V/	0.72	v. vo	7.70	0.00

Table 812. Concentrations (ppm, dry wt.) of recoverable background trace metals in surficial sediments near Nome. The method of sampling is not specified in the original reports. Adapted from Rusanowski, et al (1986: Table 3.22), Rusanowski, et al (1987: Table 3.3-1), Rusanowski, et al (1988: Table 3.3-1).

*Sediment sample was gray colored and very sticky; handled like a silt high in clay-sized material; different in appearance from all other sediment samples.

**Different in appearance from other sediment samples as evidenced by by the percent total solids value.

				1.1.1	SOLIDS
1985 Norton Sound 24.9 0.80 Offshore Penny River 10/10/85 29.3 0.50 Sumfzone Penny River 10/10/85 37.1 1.50 1985 dredge location 10/10/85 27.9 (0.5	$\begin{array}{rrrr} 13.3 & 10.6 \\ 10.2 & 6.12 \\ 15.5 & 14.5 \\ 10.4 & 6.95 \end{array}$	4,44 53. 4.29 51. 7.25 68. 4.4 46.	8 0.139 2 0.020 6 0.030 9 0.040		
1986 500m upstream of dredge 8/21/86 - 15.8 8.00 500m upstream of dredge 9/2/86* - 62.99 3.26 500m upstream of dredge 9/25/86 - 9.35 2.46	4.2 2.5 31.35 53.41 12.92 16.88	5 36. 13.57 119. 1.99 39.3	4 0.040 2 8.125 1 0.106	15.0 58.8 19.7	77.3 49.8 74.0
1987 500m upstream of dradge 6/26/87 120.0 1.90 500m upstream of dradge 7/8/87** 77.0 39.00 500m upstream of dradge 7/16/87** 4.3 1.35 500m upstream of dradge 7/23/87 29.2 1.87 500m upstream of dradge 7/23/87 29.2 1.87	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0 65. 22.0 75. 34.0 76. 10.0 85.	$\begin{array}{c} 0 & 0.077 \\ 0 & 0.140 \\ 0 & 0.050 \\ 0 & 0.002 \\ 0 & 0.002 \end{array}$	30.0 53.0 39.0 49.0	78.910.040.167.1
500m Upstream of dredge 7/27/67 28.5 2.37 500m Upstream of dredge 8/5/87 24.1 0.30 500m Upstream of dredge 8/12/87 130.0 1.30 500m Upstream of dredge 8/26/87 9.3 2.40 500m Upstream of dredge 9/3/87 11.0 1.50 500m Upstream of dredge 9/2/87 31.5 9.7	32 38.0 28 34.0 18 25.0 23 27.0 33 36.0 (8 8 (8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.003 0 0.003 0 (0.005 0 0.009 0 0.009	$48.0 \\ 40.0 \\ 43.0 \\ 46.0 \\ 52.0 \\ 72.4 \\ $	63.3 69.4 73.9 76.8 72.1 75.3
500m upstream of dredge 9/16/87 33.0 2.50 500m upstream of dredge 9/22/87 140.0 1.80 500m upstream of dredge 9/29/87 89.0 3.30 500m upstream of dredge 10/7/87 92.0 <0.93	6.9 10.0 25 47.0 7 17.0 24 26.0 (5.6 (3.4 27 30.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0.024 0 <0.035 0 <0.023 0 <0.009 0 <0.009 0 <0.002	22.0 60.0 24.0 93.0 <5.6	92.4 57.7 86.4 74.0 98.6 70 9

Table B13 . Concentrations (ppm, dry ut.) of trace metals in sediments between Cripple River and Nome River within 5 miles of shore. Lead was not detectable in any sample. Modified van Veen grab, July 1973. Adapted from Shanma (1974: 111-142).

	Wt. % of 1.5	Wt. % of 2.5	Wt. % non-			Water			
Sample	to 2.0	to 3.0	carbonate	Minut	es	depth			
1700.	phi	phi	carbon 64	deg.	165 deg.	(m)	Cd	Cu	Zn
NS-1	3.6	5.3	0.66	26.2	25.9	27	11	10	130
115-3	2.5	4.4	0.542	28.1	24.8	18	11	10	38
115-4	4.5	4.88	0.666	29.1	24.2	13	7.7	12	58
115-5	0.5	39.8	0.364	29.35	34.2	8	7.7	10	37
NS-8	7.34	17.8	0.893	28.6	29.3	20	6.5	18	55
NS-9	2	9.5	0.9	27.4	30	23	5.1	13	48
145-10	11.8	29.7	0.827	26.7	30,4	21	5.1	10	62
145-11	0.6	3.2	1.568	27.2	35,2	23	7.7	60	170
NS-12	0.6	1.5	0.904	28.1	34.5	50	1.05	11	52
NS-13	0.7	0.15	1.355	29.3	30.4	14	4	8	160
115-16	9.8	27.7	0.611	30.9	37.7	11	4	10	67
NS-18	7.1	1.4	0.423	29.9	38.2	14	4	10	42
NS-19	1.88	6.07	0.837	28.7	38.8	20	4	11	55
NS-20	2.6	1.28	0.694	28	4ŭ	22	4	12	45
NS21	5	24.76	0.786	28.2	43.8	24	1	19	- 42
NS-23	2.08	ú.5		30.7	43.3	16			
NS24	0.12	0.13		31.5	42.5	13			
NS-26	45.9	3.41	0.356	31.1	47.7	16.5	5	11	45
NS-27	1.4	Ŭ.6		29.S	48	18			
NS-28	1.37	3.9	0.704	28.8	48.5	18	4	11	40
NS-29	6.45	5.5	0.868	26.3	23.2	20	7.5	19	50
NS-30	5.87	8.35	0.855	26	20.5	21	4	27	→4ü0

TRACE CONTAMINANTS IN SURFACE SEDIMENT OF THE NORTHERN BERING SEA: A STATISTICAL REVIEW

by

Michael T. Bronson

Laboratory for the Study of Information Science 333 Pastore Hall University of Rhode Island Kingston, Rhode Island 02881

Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 691

September 1988
ACKNOWLEDGMENTS

Thanks go to J. V. Gardner, D. M. Metzger, H. M. Ohlendorf, and E. J. Skoch for sharing unpublished data. The staff of the Alaska Resources Library, Department of the Interior, and the staff of the Publications Department of the Institute of Marine Science, University of Alaska, provided many other sources of data. I am grateful to Raymond Vaa of LSIS for writing the computer program for calculating expected normal distributions.

This study was funded by the Minerals Management Service, Department of the Interior, through an Interagency Agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Assessment Program.

ABSTRACT

Reported data on the concentrations of trace chemical contaminants in surface sediments and animal tissues are reviewed for the greater St. George Basin area of the southeastern Bering Sea. The tabular data from original reports are compiled in an appendix, summarized statistically, and compared among investigations.

Thirty reports from sixteen investigations were found for the area. These include hydrocarbon concentrations for sediment from one investigation and for animals from two other studies. Organochlorine residue data are examined from four investigations of fur seals and one report on seabird eggs. Concentrations of elements, including trace metals, are reviewed from three investigations of surface sediment. Seven other research efforts, including five investigations of seals, provide data on metals concentrations in animals.

The reports vary in their usefulness for monitoring contaminant levels. Many samples are constrained by low testing power and by frequency distributions which violate assumptions of parametric methods. However, other investigations report large samples, examine them for normality of distribution, and accompany them with measures of auxiliary variables. These latter data offer more robust estimates of trace contaminant levels for monitoring and further analyses.

Keywords: Bering Sea, hydrocarbons, marine contaminants, Pribilof Islands, seals, sediments, trace metals.

TABLE OF CONTENTS

Page
CKNOWLEDGMENTS 103
BSTRACT
NTRODUCTION
IETHODS
ESULTS
Sediment hydrocarbons114Sediment metals116Tissue hydrocarbons123Tissue metals125Tissue organochlorines134National Status and Trends136
DISCUSSION
EFERENCES CITED
IGURES
ppendix. Tables of data from the original reports

LIST OF TABLES

		age
Table 1.	Summary of the concentrations of hydrocarbons in upper 10 cm of sediment in the greater St. George Basin	115
Table 2.	Summary of the concentrations of elements in the whole-rock fraction of surface sediment in the greater St. George Basin	117
Table 3.	Summary statistics for concentrations of elements in surficial sediments of the greater St. George Basin	118
Table 4.	Tests of differences between gravity cores and van Veen grabs for two normalizing variables in surface sediment collected by Gardner, et al. (1987a, b) between 168 and 170 degrees longitude in 1976 and 1977	120
Table 5.	Kolmogorov-Smirnov tests of differences between 1976 and 1977 for selected elements and normalizers sampled by Gardner, et al. (1978a, b)	121
Table 6.	Skewness and kurtosis of selected elements and normalizers sampled in surface sediment of greater St. George Basin in 1976 by Gardner, et al. (1978a, b)	122
Table 7.	Tests for differences in variances between cores and van Veen grabs for the area between 168 and 170 degrees longitude, 1976, based on data in Gardner, et al. (1978a, b)	123
Table 8.	Spearman's rank order correlations for element concentrations with normalizing variables measured in 1976	124
Table 9.	The number of seabird regurgitate samples having n-alkane peaks which match the peaks of a Prudhoe Bay crude oil standard and thus scored as ''dirty'' by Boersma (1984)	125
Table 10.	Hydrocarbon concentrations in animal tissues in the St. George Basin planning area reported by Shaw (1977, 1978)	126
Table 11.	Mean level of mercury in king crab tissue in St. George Basin, based on three means presented in Robertson and Abel (1979)	125
Table 12.	Concentrations of heavy metal contents in intertidal benthic tissues in St. George Basin planning area, collected in summer of 1976, reported as means of duplicate determinations by Burrell (1978)	127

Table 13.	Mean concentrations of heavy metals in seal tissues in the St. George Basin planning area, calculated from data in Burrell (1979) 128
Table 14.	Statistical summaries of metal concentrations in northern fur seals collected on the Pribilof Islands by four investigations 129
Table 15.	Means and confidence intervals for elements in tissues of male northern fur seals, aged 2 to 4 years, at five rookeries in the Pribilof Islands
Table 16.	Selected arithmetic means and confidence intervals for elements in tissues of northern fur seals, Pribilof Islands
Table 17.	The quantity of non-proprietary data on organochlorine concentrations in animal tissue in the greater St. George Basin 135
Table 18.	Mean concentrations of selected organochlorines in eggs of seabirds on the Pribilof Islands and Bogoslof Island

Frontispiece. Map of the location of the St. George Basin planning area in the southeastern Bering Sea, Alaska.

INTRODUCTION

The monitoring of marine pollutants in the southeastern Bering Sea will become increasingly important as the area is leased for oil and gas development. To evaluate pollution changes in the area, scientists and regulators are likely to rely on past reports of contaminants. However, some of these past research efforts may be more useful than others for detecting trace chemical trends and anomalies.

This review indicates the availability of data on trace contaminant concentrations in surface sediment and organisms of the greater St. George Basin according to area, sampled material, and chemical analyte. The report also characterizes contaminant levels statistically, compares the results of various investigations, and indicates features of samples which affect their usefulness for statistical inferences.

METHODS

Tabular data were extracted from available reports of trace element and organic contaminant concentrations in surface sediment and animal tissue in the St. George Basin lease planning area.

These extracted data are presented in a series of tables in the appendix of this report. Although the data in the appendix are rearranged for clarity, they are otherwise unchanged and uncorrected from the original reports. The calculations and figures in this review are based solely on data in the appendix tables.

All the data reviewed here were taken at face value from original reports. No assumptions were made regarding the appropriateness of collecting, storage, or laboratory methods. Furthermore, the accuracy of the data was not evaluated and data were not selected on the basis of quality.

The appendix tables were written as Lotus electronic spreadsheets to include variables of interest from the original reports. The appendix tables reflect the information, labels, and conventions of expression as found in the original reports.

For statistical calculations and histograms, data matrices were imported to Complete Statistical System (CSS), produced by SoftStat, Inc., Tulsa, Oklahoma. Each sample was tested for departure from normal skewness and kurtosis. Samples significantly different from normal were transformed to log-normal values for parametric treatment. The 95% confidence intervals of the mean were calculated as plus or minus two standard errors of the mean, and they were determined only with samples indicating a normal distribution. Significance tests were at probability level alpha=.05. Power of t-tests for the significance of the difference between two means was determined from Table E-1 in O. L. Davies (ed.) 1978. <u>The design and analysis of industrial</u> <u>experiments</u>. Longman Group Ltd., New York. 636pp.

<u>experiments</u>. Longman Group Ltd., New York. 636pp. Histograms of expected, normal frequency distributions are based on calculations of areas under the normal curve carried out with a C-language program written by Ray Vaa.

Lines of equal concentrations were interpolated by eye for the contour maps of trace chemical concentrations in the St. George Basin lease planning area.

As illustrated in the frontispiece, the planning area includes the Pribilof Islands and Unalaska and Umnak Islands. It is bounded on the south by the southern shore of the Aleutian Island chain, on the east by 165 degrees west longitude, and on the north by 59 degrees north latitude. The western boundary is 174 degrees west longitude near the Pribilof Islands and 171 degrees west longitude southward of those islands.

RESULTS

Sediment hydrocarbons

Concentrations and ratio indices of hydrocarbons in surface sediment were reported for the greater St. George Basin by Kaplan, et al (1977) and Venkatesan, et al (1981). They analyzed sediment from fourteen locations within the St. George Basin lease planning area. Unsummarized tabular data from these specimens presented in the original reports are repeated in the appendix. Figure 1 shows the locations of the sampling stations.

Geographical variation in four measures of hydrocarbons within the lease planning area is depicted by lines of equal quantities in Figures 2 to 5. These isolines are interpolated for 12 to 14 sampling locations.

The regional trends suggested by the contour maps, however, are valid only if it is assumed that variation is actually small within localities. Because localities are represented by single grab specimens, local variation and regional variation cannot be distinguished.

In the statistical summaries of the data for this review, station 35 is omitted. As Venkatesan, et al (1981) pointed out, hydrocarbons were anomalously high in the grab specimen. Indeed, the concentrations of the aliphatic fraction, the aromatic fraction, and total hydrocarbons each exceeded their respective regional means by more than three standard deviations at this station.

Table 1 lists the means and confidence intervals for hydrocarbon indicators and a normalizing variable. None of the variables was found to be significantly different from an expected normal distribution, on the basis of two-tailed t-tests of skewness and kurtosis (P>.05). Percentage organic carbon accounts for a significant part of the variation in the concentrations of total nalkanes and total hydrocarbons. These two dependent variables show significant simple linear regressions on percentage of organic carbon (P<.0026, P<.0002, respectively). The coefficients of determination, based on the adjusted R-squares, indicate that 72% of the variation in n-alkanes, and 90% of the variation in total hydrocarbons can be "explained" by variation in organic carbon. No other hydrocarbon measure shows a significant affect by organic carbon.

The samples of this investigation provide a moderate power to detect differences in means representing the region. The four estimates of hydrocarbon concentrations shown in Table 1 have samples of size 13 and coefficients of variation in the narrow range of .48 to .58, where coefficient of variation is the sample standard deviation divided by the mean. Samples with these means and dispersions will reject a null hypothesis of no difference between means about 65% of the time when the means differ by

Table 1. Summary of the concentrations (ppm, dry weight) of hydrocarbons in upper 10 cm of sediment in the greater St. George Basin. Based on data in Kaplan, et al (1977) and Venkatesan, et al (1981). N-alkanes are carbon chain lengths 15 to 34.

The 95% confidence interval of the mean is two standard errors about the mean. The 95% confidence interval of the sample is two standard deviations about the mean and measures "precision."

		7 mi+h	<u>95% confiden</u>	<u>ce_interval</u>
Variable	n	mean	of mean	of sample
N-alkanes, ppm	13	1.198	.7758-1.621	0-2.663
Aliphatics, ppm	13	6.523	4.464-8.582	0-13.66
Aromatics, ppm	13	5.992	4.082-7.903	0-12.61
Total hydro- carbons, ppm	13	12.52	9.079-15.95	.6120-24.42
Org. carbon, %	12	.5300	.42726328	.18918709

an amount equal to the standard deviation.

<u>Sediment metals</u>

The small surveys

Three OCSEAP regional reconnaisance surveys of trace metal concentrations in surface sediment provide small sample sizes for the St. George Basin planning area.

Concentrations of nine metals in surface sediment of the southeastern Bering Sea were determined by Burrell (1977, 1978) using a weak acid-extraction method. Figure 6 shows the locations of the fourteen specimen cores obtained within the St. George Basin planning area. In this area, Burrell shared eight locations with the investigation of Kaplan, et al (1977) and Venkatesan, et al (1981), and four locations with Robertson and Abel (1979). However, Burrell's "acid-extracts" determinations are not directly comparable to concentrations from the "whole-rock" fraction measured by other investigators.

Robertson and Abel (1979) report "whole-rock" mean concentrations of elements in the surface sediment at eight locations in the St. George Basin planning area (Figure 7). Table 2 lists summary statistics of the mean concentrations for 10 elements. None of the samples of means is significantly different from a normal distribution. Excluded from the summary statistics is one mean each for the aluminum, vanadium, and arsenic samples which exceeded three standard deviations. Robertson and Abel (1979) did not provide original, unsummarized concentrations of elements in their sediment specimens nor indicate sample size.

The Gardner survey

Statistical summaries

Gardner, et al (1978a, 1978b) reported the largest collection of sediment samples of elemental concentrations in the southeastern Bering Sea. The authors measured 31 elements, grain size, total carbon, and mineral composition at 65 stations, but did not measure organic carbon. Their reports provide summary statistics and analysis of variance for log-transformed data. They also illustrate "contour" distributions of metals, grain size, mineral, and carbon normalizing variables.

Gardner, et al (1978a, 1978b) estimated the variation in analyte concentrations within stations, as well as regional variation among stations. After measuring local variation, they concluded that differences between stations showed real regional trends and were not simply a result of sampling error within collecting locations.

Figure 8 shows a chart of the collecting locations. The

Table 2. Summary of the concentrations (dry weight) of elements in the whole-rock fraction of surface sediment in the greater St. George Basin. Based on data in Robertson and Abel (1979: Tables C.1 and C.2).

		<u>95% confide</u>	<u>nce interval</u>
. of	Mean of		
eans	means	of mean	of sample
8	4.851	3.726-5.976	1.875-7.828
8	2.366	2.182-2.847	1.391-3.638
8	441.1	371.9-510.3	258-624.3
8	87.50	79.53-95.47	66.41-108.6
7	3.000	2.138-3.862	.8888-3.056
5	644.0	298.4-989.6	0-1,335
7	8.871	8.189-9.554	7.195-10.54
7	71.57	53.11-90.04	26.34-116.4
7	2.657	2.320-2.794	1.831-3.483
7	.5900	.53106490	.44547346
	. of eans 8 8 8 8 7 5 7 7 7 7 7	. of Mean of eans means 8 4.851 8 2.366 8 441.1 8 87.50 7 3.000 5 644.0 7 8.871 7 71.57 7 2.657 7 .5900	95% confide:. of Mean ofeans meansof mean84.8513.726-5.97682.3662.182-2.8478441.1371.9-510.3887.5079.53-95.4773.0002.138-3.8625644.0298.4-989.678.8718.189-9.554771.5753.11-90.0472.6572.320-2.7947.5900.53106490

latitude and longitude points for Figure 8 are based on unpublished data received from Gardner (pers. comm., 1988).

Gardner, et al (1978a, 1978b) transformed their original values to log values and then summarized the data (Gardner, et al, 1978b: Tables 6 and 7). Using their summary statistics for eight selected elements, I calculated the confidence intervals shown in Table 3.

Effect of collection methods

Gardner, et al (1978a, 1978b) collected samples by different methods according to the coarseness of the sediment. Coarse sediment was collected with a van Veen grab and yielded the undisturbed top 3 cm for analysis. Finer sediments were collected with core devices and the analyzed material was representative of the homogenized top 30 cm. The variation among specimens in percentage silt and clay (dry weight) is graphed in Figure 9. The horizontal axis is labelled with the upper limits of the frequency intervals.

I tested the possibility that the use of various collection instruments led to differences in estimates of element concentrations which are not solely the result of grain size variation. The calculations below show that, with one exception, estimates were not biased by sampling device differences.

Initial Kolmogorov-Smirnov tests show that the frequency distributions of some of the element concentrations are

significantly different between collection techniques. Such differences between techniques, however, are expected if grain size affects the concentrations. Indeed, levels of mercury, zinc, chromium, copper, nickel, vanadium, siltclay, and total carbon differ significantly between the gravity core sample and the van Veen grab sample (P<.05). Barium and arsenic, however, do not differ between the two methods.

The van Veen and piston core techniques differ significantly for mercury, zinc, copper, and vanadium, but do not result in significant differences for barium, chromium, and nickel.

Differences are not significant between the gravity core and the piston core samples for any variable.

To further determine the affect of collection method without the affect of area, I compared gravity cores and van Veen grabs obtained within the same area. Table 4 shows the results of t-tests of normalizers over that area near St. George Island. Without area affects, collection methods are seen to yield significant differences in the means and variances of percentage silt and clay and percentage total carbon, as expected.

Table 3. Summary statistics for concentrations (dry weight) of elements in surficial sediments of greater St. George Basin. Pooled sample calculations are based on the sample sizes, logarithm variances and geometric means reported for 103 grab specimens at 65 stations by Gardner, et al (1978b: Tables 6 and 7). The confidence intervals shown with geometric means are the antilogs of the confidence limits of the log values and are calculated for this review. The underlying lognormal frequency distributions may not be normal.

Arithmetic means and intervals are calculated from samples, pooled for 1976 and 1977, having skewness and kurtosis not significantly different from normal. The original data were presented in appendices of Gardner, et al (1978a, 1978b) and are in the appendix of this review.

Method &		Geom. mean	95% confidence	ce interval
analyte	n	mean	or mean	ot sample
All methods po	oled			
Barium, ppm	103	570	547-594	371-875
Chromium, ppm	103	50	45.92-54.45	20-123
Copper, ppm	103	30	26.49-33.96	8.6-105
Mercury, ppm	103	.041	.03870435	.022076
Nickel, ppm	103	20	18.49-21.63	8.8-46
Vanadium, ppm	103	130	121.6-139.0	64-262
Zinc, ppm	103	80	75.68-84.53	47-135

Table 3. con't

		Arith.		
		mean		
<u>Gravity core</u>				
Silt-clay, %	41	58.31	49.52-67.09	2.749-113.9
Tot. carbon, %	41	.5493	.46266360	.0013-1.097
Zinc, ppm	81	85.22	80.58-89.86	43.71-126.7
Copper, ppm	98	36.73	32.81-42.66	0-75.38
Vanadium, ppm	98	138.2	129.1-147.2	49.39-226.9
<u>van Veen grab</u>				
Silt-clay, %	15	7.805	6.219-9.392	1.870-13.74
*Tot. carbon, %	\$ 15	.2640	.21603120	.08424438
Mercury, ppm	15	.0333	.03010365	.02130453
Arsenic, ppm	9	5.616	4.92-6.311	3.648-7.584
Barium, ppm	27	651.9	591.1-712.6	342.2-961.5
Vanadium, ppm	27	99.63	85.86-113.4	29.4-169.9
Piston core				
Mercury, ppm	6	.0517	.03510683	.01450889
Zinc, ppm	6	103.2	90.05-115.7	75.18-131.2
Barium, ppm	8	700.0	553.6-846.4	312.7-1.087
Chromium, ppm	8	58.75	45,97-71,53	24.93-92.57
Copper, ppm	8	58,75	43,9-73,60	19.46-98.04
Nickel, ppm	8	23.75	18.84-28.66	10.76-36.74
Vanadium, ppm	8	156.3	134.2-178.3	96.30-216.2
-98-5 × 98-2000		Geom.		
van Voon arch		mean		
Chromium nom	27	70 50	67 77-00 07	27 07-166 2
Nickol ppm	21	10.04	0/.//-90.9/	J/.U/~100.J
wroker, bhu	41	29.0	24.32-30.51	10.21-03.33
*Estimated kurt	osis=2	2.69 > critic	al value=2.35 a	t .05 level.

Table 4. Tests of differences between gravity cores and van Veen grabs for two normalizing variables in surface sediment collected by Gardner, et al (1978a, 1978b) between 168 and 170 degrees longitude in 1976 and 1977. The variables percentage silt and clay and percentage total carbon are normally distributed. Dry weight.

	<u> </u>	clay	<u> </u>		
	<u>gravity cor</u>	<u>e van Veen</u>	gravity com	<mark>re v</mark> an Veen	
mean	51.63	7.805	.8375	.2640	
n	12	15	12	15	
SD	31.6	2.97	.5153	.0899	
2-tail t value	· 5.	2	4.	1	
test probabili	.ty <.	001	<.	001	
		0	22	F	
HU:r value	JJ.	8 001	33	• 9	
test probabili	.ty <.	001	۲	.001	

Although total carbon differs significantly between collection methods by t-test (Table 4), this difference becomes insignificant when adjusted for silt and clay. Gardner, et al (1978b:28) noted that concentrations of total carbon generally show a negative correlation with grain size in fine-grain marine environments. Analysis of covariance (ANCOVA) in this review indicates a significant covariance between these two normalizing variables (F=14.2; df=1, 24; P=.001) near St. George Island. The adjusted means of percentage total carbon are .589 and .463 for gravity cores and van Veen grabs, respectively, and the affect of collecting method on percentage total carbon becomes insignificant after this adjustment (F=.592; df=1, 24; P=.455).

Of the elements examined, only arsenic remains significantly different between collection methods after adjustment by the covariate of percentage silt and clay (F=20.23; df=1, 8; P=.0024). None of the other seven elements listed in Table 3 demonstrate a significant difference in means after adjustment using percentage silt and clay as the covariate. Hence, except for arsenic, collection methods cannot be said to introduce differences unaccounted for by grain size.

Effect of year

Six variables examined in this review are significantly affected by differences between sampling years (Table 5). Kolmogorov-Smirnov tests using data in the appendix indicate significant differences between 1976 and 1977 for percentage total carbon and for the concentrations of arsenic, chromium, copper, nickel, and zinc. Consequently, these samples cannot be combined between years.

In contrast, year differences are not significant for percentage silt and clay, or for concentrations of barium, mercury, and vanadium. Thus, the year samples for these four variables may be combined for stronger estimates.

Table 5. Kolmogorov-Smirnov tests of differences between 1976 and 1977 for selected elements and normalizers sampled by Gardner, et al (1978a, 1978b). Dry weight.

	19	976	19	977	Max. absol.	
Variable	n	mean	n	mean	difference	Signif.
Silt & clay, %	56	39.9	12	45.5	.40	NS
Tot. carbon, %	52	.52	13	1.21	.85	S
Arsenic, ppm	42	5.9	8	16.5	.33	S
Barium, ppm	132	614	18	744	.17	NS
Chromium, ppm	132	60.0	18	41.4	.38	S
Copper, ppm	132	34.2	18	81.4	.75	S
Mercury, ppm	102	.044	18	.046	.28	NS
Nickel, ppm	132	24.6	18	35.3	. 52	S
Vanadium, ppm	132	132	18	182	.33	NS
Zinc, ppm	103	82.8	16	101	.46	S

Normality of the distributions

Half of the variables examined in this review have frequency distributions for 1976 which exhibit significant skewness or kurtosis (Table 6). The majority of the specimens of Gardner, et al (1978a, 1978b) was collected in 1976. The sample for 1977 was small, offers poor testing power, and is omitted from tests for normality. Testing for skewness and kurtosis in the 1976 data shows that arsenic, barium, chromium, mercury, and nickel are not from normally distributed statistical populations. Furthermore, log normal transformation of the original values for these five elements does not make their distributions normal. Consequently, these five elements in 1976 do not meet the assumption of normality necessary for parametric statistical methods. Because parametric methods of statistical analyses are sensitive to departures from zero skewness, and somewhat affected by departures from zero kurtosis, they should not be applied to the five samples.

The frequency distributions of the five elements found to be different from normal in 1976 are graphed in Figures 10 to 14. Each histogram compares the observed number of specimens to the number expected if concentrations were normally distributed in the sediment.

Table 6. Skewness and kurtosis of selected elements and

normalizers s George Basin Dry weight.	sampled in 1976	in surface by Gardner	sediment , et al (of greater 1978a, 197	st. 8b).
Variable	n	Skewness	Signif.	Kurtosis	Signif.
Silt and clay,	\$ 56	.27	NS	-1.49	NS
Tot. carbon, $\frac{1}{2}$	52	.509	NS	-1.23	NS
Arsenic, ppm	42	3.24	S	12.8	S
Barium, ppm	132	1.74	S	7.01	S
Chromium, ppm	132	1.60	S	3.88	S
Copper, ppm	132	.765	NS	27	NS
Mercury, ppm	102	2.06	S	5.22	S
Nickel, ppm	132	4.01	S	22.7	S
Vanadium, ppm	132	.404	NS	069	NS
Zinc, ppm	103	.272	NS	905	NS

Effects on variances

Collection method affects variances for four variables measured in 1976 (Table 7). F-tests, on samples between 168 and 170 degrees longitude indicating no significant departure from zero skewness and kurtosis, show significantly larger variances for the cores than for van Veen grabs with regard to silt and clay, log normal total carbon, arsenic, and log normal mercury. Refer to Table 4 for F-test results on the two normalizers pooled between years. Such differences among grain-size catagories probably reflect a correlation between grain size, mean concentrations and variance of the concentrations.

Such differences violate the assumption of equal variances which underlies parametric methods, and thus preclude multivariate analyses for percentage silt-clay, percentage carbon, arsenic, and mercury.

However, the variances of the log-normal values of

barium, chromium, and vanadium are not significantly affected by collection method and thus may be used in multivariate analyses.

Table 7. Tests for differences in variances between cores and van Veen grabs for the area between 168 and 170 degrees longitude, 1976, based on data in Gardner, et al (1978a, 1978b). F-tests are conducted only on pairs of samples showing no significant departures from normal distribution. Dry weight.

Variable	Core SD	Grab SD	F	Test prob.	Signif.
Silt and clay, %	17.1	2.97	33.8	<.001	S
<pre>1n tot. carbon, %</pre>	.42	.19	4.93	.013	S
Arsenic, ppm	5.2	.98	29.5	<.001	S
ln Mercury, ppm	.40	.19	4.3	.009	S
ln Barium, ppm	.25	.19	1.64	.229	NS
ln Chromium, ppm	.34	.37	1.16	.709	NS
ln Vanadium, ppm	.33	.31	1.06	.889	NS

Effect of the normalizing variables

Copper, mercury, zinc, and vanadium concentrations increase significantly with percentage silt and clay and with percentage total carbon. Chromium and nickel concentrations, however, decrease significantly with increases in either normalizer. Arsenic and barium are not significantly correlated to either normalizer. Table 8 shows the results of Spearman's rank order non-parametric tests of correlation from which these trends are inferred. The correlations indicate that the two normalizers can reduce the variance of five of the elements, thereby increasing the power of tests and the precision of estimated means.

In Table 8, coefficients of determination (R-square) indicate the part of the variation in the concentrations of elements which is "explained" by normalizing variables.

<u>Tissue hydrocarbons</u>

Hydrocarbon concentrations in animals in the greater St. George Basin are not well documented. Two research projects, sponsored by the Outer Continental Shelf Environmental Assessment Program, examined levels of hydrocarbons in small samples of animals. Table 8. Spearman rank order correlations for element concentrations (ppm, dry weight) with normalizing variables measured in 1976. Calculations for this review are based on data from surface sediment specimens collected in greater St. George Basin (Gardner, et al 1978a, 1978b), and repeated in the appendix of this review.

				Test		
Variables	Spearman R	R-squa	re Z	prob.	Signif.	n
% Silt and	clay with:					
Arsenic	073	-	.309	.75	NS	19
Barium	20		1.48	.13	NS	56
Chromium	42	.18	3.09	.0025	S	56
Copper	.75	.81	5.57	.00001	S	56
Mercury	.52	.27	3.27	.003	S	56
Nickel	28	.078	2.08	.035	S	56
Vanadium	.57	.33	4.25	.0001	S	56
Zinc	.74	.55	5.50	.00001	S	56
% Total car	rbon:					
Arsenic	.050	_	.201	.821	NS	17
Barium	149	-	1.065	.287	NS	52
Chromium	358	.128	2.560	.0102	S	52
Copper	.715	.511	5.11	.0002	Ŝ	52
Mercury	.564	.318	3.99	.00022	S	51
Nickel	226	-	1.61	.103	NS	52
Vanadium	.496	.246	3.54	.0007	S	52
Zinc	.713	.508	5.09	.00002	S	52

For one of these projects, Boersma (1984) reported n-alkanes in the regurgitate of pelagic birds at rookeries including two Aleutian Islands. The geometric mean of the quantity of n-alkane peaks in 32 specimens collected in 1981 is 207 ng/ml (Boersma, 1984: Table 24). "Dirty" specimens are considered those regurgitates which contained n-alkane peaks matching a Prudhoe Bay crude oil standard. Frequency of occurrence of dirty specimens is shown in Table 9.

Shaw (1977, 1978) surveyed fish and invertebrates in the Bering Sea for tissue concentrations of hydrocarbons. He concludes that, "None of the plankton analyses show evidence of petrogenic hydrocarbons," and that, "...None of the [fish] materials analysed shows evidence of petrogenic hydrocarbons," (Shaw, 1977: 43, 44). He further states that, "All the hydrocarbons...identified in the biota of the Bering Sea are biogenic and probably algal in origin," (Shaw, 1978:65). Table 10 shows the hydrocarbon concentrations reported by Shaw (1977, 1978) for the St. George Basin planning area.

Tissue metals

Invertebrates

Robertson and Abel (1979) reported estimates of metals in small samples of invertebrate animals collected in 1976. Their data are repeated in the appendix for eight metals and four animal taxa. Table 11 summarizes the authors' data pertaining to king crab mercury levels.

Table 11. Mean level (ppm, wet weight) of mercury in king crab tissue in St. George Basin, based on three means presented in Robertson and Abel (1979). Sample sizes of the original means were not reported.

Arith. mean 95% conf. int. Geom. mean 95% conf. int.

.30 .19-.41 .29 .20-.43

Burrell (1978: Tables 52 and 53) reported heavy metal concentrations in soft body tissues of blue mussels and seaweed in the intertidal zone of three islands in the southern part of the St. George Basin area. Table 12 presents the original data, in addition to summaries calculated for this review.

Table 9. The number of Aleutian Island seabird regurgitate samples having n-alkane peaks which match the peaks of a Prudhoe Bay crude oil standard and thus scored as "dirty," (Boersma, 1984:Table 7). Specimens were collected from 24 fork-tailed storm-petrels and 8 Leach's storm-petrels at Egg Island and Emerald Island near Unalaska Island in the St. George Basin planning area in 1981.

	<u>No</u> .	<u>% total samples</u>
Samples with 9 matched peaks between C-20 and C-28	7	22
Samples with 21 matched peaks between C-11 and C-32	1	3

Table 10. Hydrocarbon animal tissues in the reported by Shaw (197 hydrocarbons eluted b and some olefinic hydrocarbons unsaturates, aromatic compounds. The data are taken Shaw (1978: Table 8-2	concent St. Ge 77, 1978 by hexar drocarbo cs, and from St 3, p. 66	cration eorge B 3). Fr ne and ons. F some naw (19	s (ppm, we asin plann action 1 r consists c raction 2 non-hydroc 77: Table ept geomet	et weight ing area epresent of satura has larg arbon or 2, p. 21 ric mean	:) in :s ites ger ganic .) and
which are calculated	for thi	s revi	ew.		. –
			Geom.		Geom.
<u>1975, 1976</u> :		Fr. 1	mean	Fr. 2	mean
<u>Chionocetes opilio</u> , en	tire	0.2 3.1 1.0 0.1	.499	2.1 3300. 330. 18.	80.1
				101	
<u>Hippoglossus_stenolepis</u>	<u>s</u> , gills live	5 6.6 c 6.9		130. 1.9	
<u>Pleuronectes_quadritube</u>	erculati	<u>us</u> <.01		3.4	
Theragra chalcogramma,	gills liver	1.0 1800. 19. 17.	59.1	9.1 300. 170. 300.	329.2
		- 21		470. 590	
	skin	7.3		30.	
skin,	flesh/	.1 .1 .0	2.0952 2 6	2.3 47. -	10.4
1077	Total	To	tal	• .	
<u>1977</u> :	satur.	GM un	satur. GM	Pristar	ne GM
Medusae	2.3		7.5	2.3	3
<u>Parathemisto pacifica</u>	70		20	70	
Chaetognathae	60.2 53.1 33.6 7.5 11.1	24.56	10.3 1.0 2.3 8.9 0.6 < .01	05 60.2 53.1 33.6 7.5 11.1	24.56 5 5
Euphausiacea	52 66 58 3.6 1.0	14.83	31 44.4 150 100 34 11	7 52.5 57.5 49 1.2 1.0	5 11.22 5

Table 12. Concentrations (ppm, dry weight) of heavy metal contents in intertidal benthic tissues in St. George Basin planning area, collected in summer of 1976, reported as means of duplicate determinations by Burrell (1978: Tables 52 and 53). The geometric means with confidence intervals are added for this review.

Location Lat/long	Cadmium	Copper 1	Nickel	Zinc
<u>Mytilus</u> , blue mussel:				
Eider Pt. 53d 58m, 166d 35m	4.0	9.8	1.3	122
Otter Is. 57d 3m, 170d 24m	4.6	6.0	1.8	156
Makushin Bay 53d 44m, 166d 4	46m 6.0	6.0	1.4	81
Geometric mean	4.8	7.1	1.5	116
95% confidence interval	3.8-6.1	5.1-9.8	1.2-1.8	79-169
Fucus, seaweed:				
Eider Pt.	5.5	1.5	4.9	17
Otter Is.	3.1	5.0	5.1	8
Makushin Bay	3.8	0.8	7.1	10
Geometric mean	4.0	1.8	5.6	11
95% confidence interval	2.8-5.6	1.0-3.4	4.4-7.1	7-17

Seals

Burrell (1979) reported the concentrations of heavy metals in tissues of three seal species collected in the St. George Basin planning area in 1977. The original data from that report are repeated in the appendix of this review.

Kruskal-Wallis non-parametric tests show there is no significant affect of species on levels of the metals, with one exception. Cadmium in liver is affected by differences associated with species (P=.0445). Nearly significantly different among species is cadmium in muscle (P=.0671). Frequency distributions of concentrations pooled among all three species do not depart significantly from normal, therefore the data are combined as single samples. Table 13 shows the means and confidence intervals for the four metals reported in spotted, ribbon, and bearded seals.

Four other investigations have reported metal concentrations in northern fur seals on the Pribilof Islands. None of these research projects was sponsored by the Outer Continental Shelf Environmental Assessment Program. Results of the four investigations are compared in Table 14 for those elements sampled by more than one investigation. Although E. J. Skoch and his associates have produced a series of reports on metals concentrations in northern fur seals, only the most recent data, summarized in Skoch and Metzger (1988), are reviewed here. Earlier reports contain data which are "off by a certain factor" (Skoch, pers. comm., 1987). These earlier reports, available at the Alaska office of NOAA, are comprised of Skoch, Hoste, and Bral (no date), Hoste, Skoch, and Grills (1984), and Richard and Skoch (1986).

Statistics in Table 15 summarize the raw data in unpublished laboratory records accompanying the report by Skoch and Metzger (1988). For calculation purposes, I first substituted the data labelled "re-do's" in the laboratory records for several initial determinations. The concentrations of each analyte in each of the three tissues were then tested for skewness and kurtosis. Only those samples or their log-normal transformed values which were not found significantly different from normal are summarized as means and confidence intervals in Table 15.

Table 16 compares the arithmetic mean levels of those elements which have normal distributions and which were measured by more than one investigation.

The high mean concentration of mercury in liver is among the salient features of the four studies. Smith's (1986) sample provides an estimate that the mean level of mercury in livers of the young male fur seals on St. George Island in 1986 has a 95% chance of lying between 50 and 84 ppm, dry weight (Table 15). Goldblatt and Anthony (1983) report a similar level. Their dry weight estimates, re-calculated by dividing wet weight by their factor of .21 g dry/g wet,

Table 13. Mean concentrations (ppm, dry wt.) of heavy metals in seal tissues in St. George Basin planning area, calculated from data in Burrell (1979: Tables 3 and 5). Data are pooled for spotted, ribbon, and bearded seals.

	n	Arith. mean	95% conf. interval
Kidney:			
Cadmium	9	29.84	21.97-37.72
Nickel	6	.2000	.08453155
Copper	9	22.41	14.02-30.80
Zinc	9	110.2	88.48-131.96
Liver:			
*Cadmium	10	12.54	5.057-20.02
Nickel	7	1.543	.8817-2.33
Copper	10	22.09	15.57-28.52
Zinc	10	121.6	90.85-152.35
Muscle:			
Cadmium	10	.4090	.18036377
Nickel	8	3.175	1.317-5.034
Copper	9	5,533	4.293-6.773
Zinc	10	67.20	40.91-93.49

*Includes significant species difference

WET WEIGHT	BASIS: Goldblatt n=37			Anas n=29			
	mean	SD	range	mean	SD	range	
KIDNEY:							
Mercury							
Cadmium	56.05						
Zinc	58.36						
Lead	0.057						
Copper	-						
Nickel	0.117						
LIVER:							
Mercury	10.74	6.53	4.09-42.94	10	0.8	- 3.0-19.0	
Cadmium	16.13						
Zinc	67.76						
Lead	0.328						
Copper	-						
Nickel	0.119						
MUSCLE: Mercury				X	_	- 0.1-0.4	
Cadmium	0.271						
Zinc	42.16						

Table 15. Means and confidence intervals for elements in tissues of male northern fur seals, aged 2 to 4 years, at five rookeries in the Pribilof Islands. Original data are single determinations per tissue per animal, except 6 kidneys, 1 liver, and 1 muscle for which 2 determinations were recorded. Geometric means and confidence intervals are back-transformed from the log normal values. Based on data from Skoch and Metzger (1988) repeated in the appendix of this review.

Tissue	&	•	Arith.	Geom.	
sample	e size	Element	mean	mean	95% conf. int.
Kidney	23	Titanium		64.3	37.6-110.1
	60	Iron		461	378-562
	72	Zinc	77.4		70.8-84.0
	72	Zinc		72.1	65.7-79.1
	66	Chromium		1.34	1.13-1.59
	72	Lead		26.8	22.1-32.5
Liver	19	Titanium		70.6	36.2-137.6
	56	Iron	1567		1306-1828
	59	Cadmium		58.3	46.2-73.4
	56	Selenium	167		146-189
	58	Nickel		4.58	3.52-5.96
	58	Copper		85.8	73.3-100
	58	Zinc	69.7		63.2-76.1
	52	Chromium	· · ·	1.33	1.07-1.64
Muscle	16	Titanium		95.5	55.8-163
	54	Selenium	224		192-256
	56	Nickel		6.77	5.37-8.52
	56	Zinc		62.1	55.6-69.5
	56	Aluminum	1.22		1.16-1.29
	56	Aluminum		1.20	1.14-1.26

Table 16. Selected arithmetic means and confidence intervals for elements in tissues of northern fur seals, Pribilof Islands. Based on the data of the four investigations represented in Table 14. Samples which depart from normal in tests of skewness and kurtosis are omitted. Values are rounded for ease of comparison. Ppm, dry weight.

Tissue	Element	Author	Arith. mean	95% confid. interval
Kidney	Cadmium	Goldblatt Smith	267 249	234-300 120-378
	Copper	Smith	22.5	18.4-26.6
	Lead	Goldblatt	0.27	.203349
	Mercury	Smith	5.46	3.65-7.26
	Nickel	Goldblatt	0.556	.366746
	Zinc	Goldblatt Skoch Smith	278 77.4 237	258-298 71-84 182-292
Liver	Cadmium	Goldblatt Smith	55.6 67.3	46.3-64.9 18.6-116
	Copper	Smith	32.5	19.1-45.9
	Lead	Goldblatt	1.13	.323-1.94
	Mercury	Smith	61.1	38.0-84.2
	Nickel	Goldblatt	.411	.304518
	Zinc	Goldblatt Skoch Smith	234 69.7 210	221-247 64-75 157-262
Muscle	Cadmium	Goldblatt Smith	0.9 0.6	.69-1.1 0-1.3
	Lead	Goldblatt	0.26	5.1042
	Mercury	Smith	1.4	.53-2.2
	Zinc	Goldblatt Smith	139 90	126-152 78-102

yield a mean of 51 ppm, with a 95% confidence interval of 41 to 61 ppm. The wet weight mean of Goldblatt and Anthony (1983) is almost identical to that of Anas (1973, 1974). However, Anas reported no sample dispersion and thus the two means cannot be tested for significant difference.

Assuming that the statistics of Goldblatt and Anthony (1983) are from a normally distributed statistical population, samples of mercury in liver with the size and standard deviation of theirs can detect a significant difference in means of 5 ppm wet weight (less than the standard deviation of 6.53 ppm) about 90% of the time.

Cadmium levels (dry weight) in kidney are similar and high among the three investigations reporting the element. Cadmium in kidney has among the highest concentrations of the trace elements reported in fur seals and is similar to the levels of zinc in kidney and liver (Table 14). Goldblatt and Anthony (1983) compared cadmium levels among pinniped species and also tested for the affect of animal age on cadmium levels in fur seals.

Unlike cadmium, lead concentrations (dry weight) vary widely among the studies (Table 14). The unpublished laboratory records of Skoch and Metzger (1988) indicate mean levels from 40 to 55 ppm among three tissues, which are values far greater than those of other investigators. Goldblatt and Anthony (1983) found lead levels of approximately 1 ppm and lower. Smith (1983) did not detect lead at all above the lower detection limit .034 ppm dry weight. He suggests that the higher concentrations reported by the older investigations are either representative of different animal populations or "inaccurate due to sample and analytical contamination."

Zinc in kidney and liver was measured at lower concentrations by Skoch and Metzger (1988) than measured by Goldblatt and Anthony (1983) and by Smith (1986), as shown in Table 16.

These four investigations offer little opportunity for obtaining more robust estimates of analyte concentrations by combining sample data. Significant differences in the mean levels for several analytes, as well as the absence of the original laboratory determinations in two reports preclude calculations of means and confidence intervals from pooled samples.

Nevertheless, these four studies indicate that fur seals carry greater burdens of cadmium and zinc than the three Phocidae species sampled by Burrell (1979). A comparison of the mean concentrations of the metals listed in Tables 13 and 16 shows this difference. Zinc mean concentrations appear twice as great in the fur seals of Goldblatt and Anthony (1983) as in the earless seals of Burrell (1979) for three tissues. Differences in cadmium levels are even more pronounced between the two sets of species. However, the confidence intervals of copper concentrations in kidney and liver overlap, suggesting that mean levels are not significantly greater in fur seals than in the phocids.

<u>Tissue organochlorines</u>

Five research programs offer data on organochlorine concentrations in animal tissues from the greater St. George Basin. The amount of data on organochlorine residue concentrations for each of the reports is summarized in Table 17. Four investigations sampled northern fur seals at the Pribilof Islands. In addition, one investigation analyzed the eggs of three species of seabirds at the Pribilof Islands and Bogoslof Island (Ohlendorf et al, 1982; Ohlendorf, pers. comm., 1988). Hence, a total of 1,560 laboratory determinations of organochlorine concentrations in various tissues is available.

Northern fur seals

Most samples of organochlorine residues in northern fur seals provide poor power to detect differences in mean levels because samples are small. For example, Anas and Wilson (1970) reported sample sizes of eight for DDE in brain and in liver. Differences in means as large as the sample standard deviation would be significant only 50% of the time. Calambokidis and Peard (1985) report sample sizes of four, which would detect differences in means equal to two standard deviations only 50% of the time.

Power is improved in the samples of Kurtz (no date) which have sizes of 18. These samples have statistical power to detect differences in means equal to one standard deviation approximately 80% of the time.

An example may illustrate the power of tests. Kurtz (no date) examined Aroclor PCB mixture 1254 in 18 fat specimens, and found a mean of 3.705 ppm, wet weight, and a standard deviation of 1.802 ppm. The 95% confidence interval of this mean is 2.86 to 4.55 ppm. The power of the t-test is determined from a power table, using the sample size and arbitrarily specifying a difference in means equal to the standard deviation. In this example, a second independent sample with size 18 and standard deviation 1.8 would require a mean as large as 5.5 ppm for a t-test to indicate a significant difference with a 80% chance of correctly rejecting the null hypothesis that the means are equal. Thus, more than 20% of the time a real increase of less than 50% in mean level of this PCB would be undetected.

Wise (pers. comm., 1988) reported two animals' concentrations of 20 PCB congeners and 15 pesticides. No other report available for this review examined PCB congeners and only Kurtz and Kim (1976) and Kurtz (no date) examined DDT and its metabolites as closely as Wise. The sampling of Wise (1988) is further distinguished by repeated determinations within individual tissues. However, the absence of the original, unsummarized values and the Table 17. The quantity of non-proprietary data on organochlorine concentrations in animal tissue in the greater St. George Basin. Analytes are the chemical species analyzed. Specimens are the northern fur seals and seabird eggs sampled. Tissues are the types sampled within specimens. The number of concentrations in the table includes those attempts which measured no quantities of the analyte.

NUM	BER	OF LAB DETI	ERMINATIO	ONS:
Citation Anal	ytes	Specimens	Tissues	Concentrations
Anas 1970	4	8	2	64
Calambokidis 1987	5	1	4	20
Calambokidis 1985	2	4	2	16
Kurtz 1976	8	7	2	112
Kurtz no date	7	18	4	504
Ohlendorf 1982,88	12	47	1	564
Wise 1988	35	2	4	280

censoring of data below lower detection limit precludes testing of assumptions about frequency distributions. These constraints and the small sample size of two may limit comparisons among such important factors as year, age, place, and species. Nevertheless, comparisons with other investigations reviewed here indicate that some means, such as for DDE congeners and dieldrin in liver and blubber, are so much lower that statistical tests of differences with other reports are unnecessary.

For northern fur seals, the only tissue-chemical combination with testable sample sizes in more than one investigation shows significant variation in concentrations among investigations. DDE concentrations in liver of subadult males, uncorrected for percentage recovery, are significantly different according to a Kruskal-Wallis rank test using samples of Anas and Wilson (1970), Calambokidis and Peard (1985), and Kurtz (no date) (test statistic H=11.4; df=2; P=.0037). Figure 15 illustrates the variation in mean levels of DDE in livers among the four studies.

Because the data on DDE in liver of Calambokidis and Peard (1985) and Kurtz (no date) are similar, they may be combined to increase sample size. Their log-transformed values have means and variances which are not significantly different between studies, according to t-test and F-test. The resulting pooled sample of 22 has a geometric mean equal to .201 ppm wet weight, with a 95% confidence interval of .162 to .249 ppm. Figure 16 shows the frequency distribution of the untransformed concentration values for the pooled sample.

Seabird eggs

Ohlendorf, et al (1982) surveyed organochlorine residue concentrations in the eggs of Alaskan seabirds from 1973 to 1976. All of the data from that report regarding the four species and three islands studied in the greater St. George Basin are repeated in the appendix. The appendix also includes a table containing unpublished, unsummarized data received from Ohlendorf (pers. comm., 1988).

The values are not corrected for percentage recovery, which ranges from 83% to 104%. The lower limit of detection was .02 ppm for toxaphene and PCB's, and .005 ppm for the other pesticides (Ohlendorf, et al, 1982:4).

Table 18 shows the arithmetic means of DDE and PCB's in eggs collected in the St. George Basin area, based on the unpublished data of Ohlendorf (pers. comm., 1988). These two chemicals are represented by the largest sample sizes and the highest concentrations in the data set. Their sample distributions do not differ significantly from normal according to tests for skewness and kurtosis. Figure 17 illustrates the variation in the mean levels of DDE and PCB's among bird species shown in Table 18.

The eggs of glaucous-winged gulls on Bogoslof Island exhibit the highest organochlorine residue quantities measured for St. George Basin area eggs. This sample includes an egg with 11.0 ppm DDE, wet weight, and another with 6.3 ppm PCB's, wet weight. See the appendix.

Table 18. Mean concentrations (ppm, wet wt.) of selected organochlorines in eggs of seabirds on Pribilof Islands and Bogoslof Island. Based on data from Ohlendorf (pers. comm., 1988).

	DDE:		PCB's:		
			95%		958
Species	n	Mean	conf. int.	Mean	conf. int.
Northern fulmar	6	.312	.216408	.400	.223577
Glaucous-winged gull	3	6.37	.938-11.8	3.90	1.28-6.52
Black-legged kittiwake	10	.033	.023043	.481	.375587
Common murre	7	.119	.111127	.126	.098155

National Status and Trends

The National Status and Trends Program of NOAA has developed several hundred data on trace contaminants in bottom fish and surface sediments at Dutch Harbor in 1986 and 1988 (Varanasi, et al, in prep.). A preliminary view of the 1986 data indicated that the data include concentrations of 38 organochlorines, 16 metals, several classes of polynuclear aromatic hydrocarbons, in addition to auxiliary variables from the sampled material and quality assurance documentation. The sampled material and the analytes of 1988 are similar to those of 1986.

The NS&T Program makes its data available to other users two years after the collection. Hence, the first set of data in this series will become available after October, 1988.

DISCUSSION

Availability of data

Data on trace contaminants in sediment of the St. George Basin area are available from several OCSEAP reconnaisance surveys. For three surveys, a small number of collecting stations fall in the area of the St. George Basin. Of these surveys, one measures hydrocarbons and percentage organic carbon, an important normalizing variable. The other two studies sample metals concentrations, unaccompanied by other specimen measurements. In contrast, the survey of Gardner, et al (1978a, 1978b) provides a large collection of metals determinations as well as measurements of grain size and carbon normalizers.

Tissue data for the St. George Basin were found in a wider variety of sources, including both reconnaisance and monitoring research. Concentrations of hydrocarbon fractions are provided for small samples of a large array of taxa in surveys by Shaw (1977, 1978). In addition, small samples of metals concentrations in several species of invertebrates at a few locations were determined by Burrell (1978) and Robertson and Abel (1979). Ohlendorf (1982) surveyed organochlorine residues in bird eggs. In contrast to these studies, designed to characterize contaminant levels within taxa, Boersma (1984) used hydrocarbon peaks as a tool for monitoring changes in oil pollution over time.

Seals have received more attention than any other taxon in the St. George Basin area. Seal organochlorines and metals have been sampled in five species and eight tissues by nine sets of investigators over a period of twenty years. Nevertheless, the small samples do not necessarily offer a basis for detecting increases and decreases in trace contaminant levels.

Adequacy of data

Some trace contaminant analytes in the St. George Basin area are well-characterized by robust sampling. Chief among these analytes are the elements in sediment studied by Gardner, et al (1978a, 1978b), and in the fur seal tissue of Goldblatt and Anthony (1983). Both investigations offer larger samples, attempt to account for variability in contaminant concentrations using auxiliary variables, and
are explicit about assumptions of normality. Consequently, both sets of results may be used in detecting moderate differences in metals concentrations with other investigations.

Most available data sets for the St. George Basin area do not measure geographical trends in trace contaminant concentrations. Only the research of Gardner, et al (1978a, 1978b) measures the variation in analyte concentrations within localities. Because the other studies of sediment and tissue do not partition total variance into its local and regional sources, they can offer for each analyte only a single mean which represents the entire sampled area.

Several characteristics of the data sets detract from their usefulness in monitoring temporal changes as well. First, small sample sizes for individual tissues and areas restrict testing power for detecting differences. Secondly, some results are presented as summaries, without the original determinations, precluding most further manipulation and requiring weakly supported assumptions about frequency distributions. In addition, non-normally distributed samples do not allow confidence limits of the mean or multi-variate analyses, although differences can be tested with non-parametric methods. For these reasons, most past sampling efforts in the St. George Basin area are of limited help in measuring trends and moderate changes in levels of trace contaminants.

REFERENCES CITED

Anas, R. E. 1973. Mercury in fur seals. Pp. 91-96 in D. R. Buhler (ed.). <u>Mercury in the western environment</u>. Environmental Health Sciences Center, Oregon State University. Continuing Education Publications, Corvallis, Oregon. 360pp.

Anas, R. E. 1974. Heavy metals in the northern fur seal, <u>Callorhinus ursinus</u>, and harbor seal, <u>Phoca vitulina</u> <u>richardi</u>. Fishery Bulletin 72:133-137.

Anas, R. E. and A. J. Wilson, Jr. 1970. Organochlorine pesticides in fur seals. Pesticides Monitoring Journal 3: 198-200.

Boersma, P. D. 1984. Storm-petrels as indicators of environmental conditions. OCSEAP Final Report. 114 pp.

Burrell, D. C. 1977. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. OCSEAP Environmental Assessment of the Alaskan Continental Shelf, Annual Reports 13:290-506. Burrell, D. C. 1978. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. OCSEAP Environmental Assessment of the Alaskan Continental Shelf, Annual Reports 8:199-494.

Burrell, D. C. 1979. Heavy metal contents of Bering Sea seals. Pp. 525-546, Appendix III <u>in</u> D. C. Burrell. Distribution and dynamics of heavy metals in Alaskan Shelf Environments subject to oil and gas development. OCSEAP Annual Reports of principal Investigators for the year ending March, 1979. 5:326-546.

Calambokidis, J. 1987. Contaminant concentrations in northern fur seals and preliminary evaluation of risk from consumption. Final report for NMFS, Juneau, by Cascadia Research Collective. 25 pp.

Calambokidis, J. and J. Peard. 1985. Chlorinated hydrocarbons in tissues of northern fur seals from St. Paul Island, Alaska. Pp. 75-79 <u>in</u> P. Kozloff (ed.) Fur Seal Investigations, 1982. NOAA Technical Memorandum NMFS-F/NWC-71. National Marine Mammal Lab, Seattle.

Goldblatt, C. J. and R. G. Anthony. 1983. Heavy metals in northern fur seals (<u>Callorhinus ursinus</u>) from the Pribilof Islands, Alaska. J. Environmental Quality 12(4):478-482.

Gardner, J. V., T. L. Vallier, W. E. Dean. 1978a. Grain size, total carbon, mineralogy, and inorganic geochemical data from surface sediments of the southern Bering Sea outer continental shelf. U.S.G.S. Open file report 78-923. 7 pp.

Gardner, J. V., T. L. Vallier, W. E. Dean. 1978b. Distributions of grain size, total carbon, heavy and light minerals, clay mineralogy, and inorganic geochemistry, outer continental shelf, southern Bering Sea. OCSEAP Environmental Assessment of the Alaskan Continental Shelf, Annual Reports 11:300-382.

Gardner, J. V. 1988. Personal communication to Bronson; latitude and longitude of collections.

Hoste, R., E. J. Skoch, and J. Grills. 1984. Heavy metal analysis in the northern fur seal, <u>Callorhinus ursinus</u>. Proceedings 15th Annual IAAAM Conference 1(1):81-96. Plus tables of unpublished data.

Kaplan, I. R., W. E. Reed, M. W. Sandstrom, M. I. Venkatesan. 1977. Characterization of organic matter in sediment from Gulf of Alaska, Bering and Beaufort Seas. OCSEAP Environmental Assessment of the Alaskan Continental Shelf, Annual Reports 13:751-857. Kurtz, D. A. and K. C. Kim. 1976. Chlorinated hydrocarbons and PCB residues in tissues and lice of northern fur seals, 1972. Pesticides Monitoring Journal. 10(3):79-83.

Kurtz, D. A. no date. Analysis of northern fur seals for the years 1975-1981 for DDT analogs and PCB mixtures. Entomology Dept., Pennsylvania State University. 27 pp.

Ohlendorf, H. M. 1988. Personal communication to Bronson of raw organochlorine concentrations in SAS tables dated March 19, 1979. 18 pp.

Ohlendorf, H. M., J. C. Bartonek, G. J. Divoky, E. E. Klaas, A. J. Krynitsky. 1982. Organochlorine residues in eggs of Alaskan seabirds. Special scientific report, Wildlife No. 245. U.S. Fish and Wildlife Service. 41 pp.

Richard, C. A. and E. J. Skoch. 1986. Comparison of heavy metal concentrations between specific tissue sites in the northern fur seal. Proceedings 17th Annual IAAAM Conference 1(3):94-103. Plus data logs.

Robertson, D. E. and K. H. Abel. 1979. Natural distribution and environmental background of trace heavy metals in Alaskan shelf and estuarine areas. Prepared by Battelle Labs as final report for OCSEAP, NOAA. 18pp. and appendices.

Shaw, D. G. 1977. Hydrocarbons: Natural distribution and dynamics on the Alaskan outer continental shelf. OCSEAP Environmental Assessment of the Alaskan Outer Continental Shelf. Annual reports 13:507-727.

Shaw, D. G. 1978. Hydrocarbons: Natural distribution and dynamics on the Alaskan outer continental shelf. OCSEAP Environmental Assessment of the Alaskan Outer Continental Shelf. Annual reports 8:495-588.

Skoch, E. J. 1987. Personal communication to Bronson.

Skoch, E. J. and D. M. Metzger. 1988. Heavy metal levels in tissues of the northern fur seal (<u>Callorhinus ursinus</u>); collected from five rookeries in the Pribilof Islands-1985. Marine Mammal Research Lab, John Carroll University, Ohio. Unpublished MS. 10pp. Plus data logs.

Skoch, E. J., D. R. Hoste, and C. Bral. no date. Titanium, aluminum and fluoride levels in tissues of the northern fur seal, <u>Callorhinus ursinus</u>. Unpublished MS. 4pp. Plus data logs. Smith, D. R. 1986. Trace metal concentrations in northern fur seals (<u>Callorhinus ursinus</u>) from the Pribilof Islands. Prepared by Creative Educational Consultants, Monterey, for NMFS, Juneau. Unpublished MS. 5 pp.

Varanasi, U. et al. (in prep.) Benthic Surveillance of the National Status and Trends Program; three year report for 1984, 1985, and 1986. NOAA. Seattle, Washington.

Venkatesan, M. I., M. Sandstrom, S. Brenner, E. Ruth, J. Bonilla, I. R. Kaplan, and W. E. Reed. 1981. Organic geochemistry of surficial sediments from the eastern Bering Sea. Pp. 389-409, Ch. 25 <u>in</u> D. W. Hood and J. A. Calder (eds.) <u>The Eastern Bering Sea Shelf: Oceanography and resources</u>. Vol 1. Office of Marine Pollution and Assessment, NOAA. 625 pp.

Wise, S. A. 1988. Determination of organic contaminants in northern fur seal samples from the 1987 collection. Report of analysis 552-88-079. Prepared by Center for Analytical Chemistry, National Institute of Standards and Technology, Gaithersburg, Maryland. Submitted as personal communication to P. R. Becker, OAD, NOAA, Anchorage, Alaska.

Fig. 1. Fourteen sediment grab stations reported for 1975 trace hydrocarbon sampling in the St. George Basin planning area by Kaplan, et al (1977) and Venkatesan, et al (1981). Numbers represent station labels.

Fig. 2. Isolines of the concentration (ppm, dry weight) of total n-alkanes from C-15 to C-34 in surface sediment of greater St. George Basin. Based on 13 grab specimens in 1975 reported by Kaplan, et al (1977) and Venkatesan, et al (1981).

Fig. 3. Isolines of the ratio of total hydrocarbons to organic carbon x 10,000 in surface sediment of greater St. George Basin. Based on 14 grab specimens in 1975 reported by Kaplan, et al (1977) and Venkatesan, et al (1981).

Fig. 4. Isolines of the ratio of total n-alkanes to organic carbon x 10,000 in surface sediment of greater St. George Basin. Based on 12 grab specimens in 1975 reported by Kaplan, et al (1977) and Venkatesan, et al (1981).

Fig. 5. Isolines of the odd-to-even ratio for alkanes C-15 to C-34 in surface sediment of greater St. George Basin. Based on 13 grab specimens in 1975 reported by Kaplan, et al (1977) and Venkatesan, et al (1981).

Fig. 6. Fourteen sediment grab stations reported for 1975 extractable metals sampling in the St. George Basin planning area by Burrell (1977, 1978). Numbers represent OSS <u>Discoverer</u> station labels.

Fig. 7. Eight sediment grab stations reported for 1975 trace metals sampling in the St. George Basin planning area by Robertson and Abel (1979). Numbers represent OSS <u>Discoverer</u> station labels.

Fig. 8. Location of sediment collections for concentrations of elements in 1976 (circles) and 1977 (triangles) reported by Gardner, et al (1978b). Latitude and longitude are from Gardner (pers. comm., 1988).

Interval boundaries, percentage dry wt.

Fig. 9. Frequency of percent silt-clay in surface sediment of St. George Basin. Sample pooled for 1976 and 1977. Based on data in Gardner, et al (1978a).

150

Upper interval boundaries, ppm, dry wt.

Fig. 11. Frequency distribution of barium in surface sediment of St. George Basin. Based on Gardner, et al (1978a).

Upper interval boundaries, ppm, dry wt.

Upper interval boundaries, ppm, dry wt.

Fig. 13. Frequency distribution of mercury in surface sediment of St. George Basin. Based on Gardner, et al (1978a).

Upper interval boundaries, ppm, dry wt.

Fig. 14. Frequency distribution of nickel in surface sediment of St. George Basin. Based on Gardner, et al (1978a).

Report by author

Upper interval boundary, ppm wet wt.

Species

Fig. 17. Organochlorine residues in seabird eggs from islands in greater St. George Basin area. Based on unsummarized data from H. M. Ohlendorf (pers. comm., 1988). Appendix

Tables of data from the original reports

Table A1. Concentrations of pesticides in liver and brain of subadult male northern fur seals (ppm, wet weight basis) at Pribilof Islands, July 2, 1968. Based on Anas and Wilson (1970: Table 1).

Concentrations are not corrected for percent recovery. Recovery rates are as follows: p,p'-DDE, 80-85%; p,p'-DDD (TDE), 82-95%; p,p'-DDT, 91-95%; and dieldrin, 85-90%. PCB's were not in the samples. ND means not detected at lower limit of sensitivity <0.010 ppm, dry weight. Concentrations are unsummarized, single determinations.

Tissue &					
field no.	Age				
	(years)	DDE	DDD	DDT	dieldrin
Liver					
R-6683	3	0.075	ND	0.025	ND
R-8317	3	0.083	ND	0.038	ND
R-9514	3	0.042	ND	0.031	ND
Q-17766	4	0.044	ND	ND	ND
Q-19800	4	0.30	ND	ND	ND
Q-21025	4	0.068	ND	0.025	ND
Q-21777	4	0.061	ND	ND	ND
Q-24993	4	0.054	ND	0.021	ND
Brain					
R-6683	3	0.019	ND	ND	ND
R-8317	3	0.029	ND	ND	ND
R-9514	3	0.017	ND	ND	ND
Q-17766	4	0.015	ND	ND	ND
Q-19800	4	0.079	ND	ND	ND
Q-21025	4	0.019	ND	ND	ND
Q-21777	4	0.023	ND	ND	ND
Q-24993	4	0.018	ND	ND	ND

Table A2. Mercury concentrations (ppm, wet weight) in northern fur seals in 1970 and in harbor seals on Aug. 17, 1971, at Pribilof Islands. Concentrations are means of four replicates from each tissue specimen. Recoveries were over 90%. Based on Anas (1973, 1974: Tables 1 and 3).

Age		No.		Ppm, mercury		
(years)	Sex	seals	Tissue	mean	range	
Fur seals: 0.3 (pups) 0.3 (pups) 2-3 2-3	mixed mixed male male	10 5 29 29	liver muscle liver muscle	0.20 0.06 10.80 0.25	0.1-0.3 0.05-0.11 3.0-19.0 0.1-0.4	

Harbor seals:

-	male	1	liver	0.6	-
-	female	1	liver	3.2	-
-	male	1	liver	0.9	-

Table A3. Concentrations (ppm, dry weight) of heavy metal contents of the soft tissue of legs and claws of tanner crab and soft tissue of Neptunea snails in the St. George Basin planning area. Collected in April, 1976, from Miller Freeman vessel. From OCSEAP report by Burrell (1977: Tables 25 and 26).

		Cd	Cu	Ni	Zn
Sampl	e no.	•			
Tanne	r cra	ab:			
1 annie	16	<1 3	30.3	~1 3	120
	10	×1.J	50.5	×1.J	100
	29	<1.3	25.0	<1.3	182
	33	<1.3	27.5	<1.3	169
	37	3.8	20.4	<1.3	158
	48	<1.3	21.4	<1.3	155
Neptu	nea:				
-	15	13	215.9	<0.63	72.8
	31	<1.3	111.2	0.7	56.8
	50	2.5	155.8	0.63	84.8

Table A4. Concentrations (ppm, dry weight) of heavy metals in seals collected in St. George Basin planning area, March 31 to April 27, 1977, from Surveyor vessel. Based on OCSEAP report by Burrell (1979: Tables 3 and 5). Concentrations which are expressed plus or minus 1 SD are for sample sizes of n=2 from duplicate determinations. b=duplicate determinations. c=single determinations.

Specimen	n Lati	ltude	Long	jitude	Species	Sex
Muscle:						
4	58deg	45.6min	172deg	55.4min	Spotted	М
30	58deg	34.8min	169deg	28.8min	Spotted	М
28	58deg	54.2min	169d e g	13.6min	Spotted	F
6	58deg	53.Omin	173deg	7min	Ribbon	М
3	58deg	56min	172deg	40min	Ribbon	М
2	58deg	51.Omin	173deg	8.Omin	Ribbon	М
29	58deg	54.2min	169deg	40.3min	Ribbon	Μ
1	58deg	51.Omin	173deg	8.Omin	Ribbon	F
7	58deg	43.9min	169deg	32.9min	Bearded	М
8	58deg	48.5min	169deg	41.3min	Bearded	M
Liver:						
4	58deg	45.6min	172deg	55.4min	Spotted	M
30	58deg	34.8min	169deg	28.8min	Spotted	М
28	58deg	54.2min	169deg	13.6min	Spotted	F
6	58deg	53.Omin	173deg	7min	Ribbon	М
3	58deg	56min	172deg	40min	Ribbon	М
2	58deg	51.Omin	173deg	8.Omin	Ribbon	M
29	58deg	54.2min	169deg	40.3min	Ribbon	М
1	58deg	51.Omin	173deg	8.Omin	Ribbon	F
7	58deg	43.9min	169deg	32.9min	Bearded	M
8	58deg	48.5min	169deg	41.3min	Bearded	М
Kidney:						
-4	58deg	45.6min	172deg	55.4min	Spotted	М
30	58deg	34.8min	169deg	28.8min	Spotted	М
28	58deg	54.2min	169deg	13.6min	Spotted	F
6	58deg	53.Omin	173deg	7min	Ribbon	М
3	58deg	56min	172deg	40min	Ribbon	М
2	58deq	51.0min	173deg	8.Omin	Ribbon	М
29	58deg	54.2min	169deq	40.3min	Ribbon	М
1	58deq	51.Omin	173deq	8.Omin	Ribbon	F
7	58deq	43.9min	169deq	32.9min	Bearded	М
8	58deg	48.5min	169deg	41.3min	Bearded	М

Table 4. con't

	Cd		N	i	Cu		Z	n
Specimen	Mean	SD	Mean	SD	Mean	SD	Mean	SD
Muscle:								
4	0.14	0.01	3.0	0.2	6.7	1.3	51	9
30	0.16	0.04	<0.5		4.0	0.1	133	0
28	0.11	0.01	<0.5		6.4	0.05	68	1
6	0.47	0.01	5.8	0.0	6.8	0.8	18	6
3	0.25	0	8.3	1.0	5.5	0	54	2
2	0.3	С	1.3	С	4.4	0.6	50	0
29	0.7	0.03	<0.5		1.7	0	74	2
1	0.13	0.01	2.5	0.4	6.7	0.5	37	12
7	0.57	0.04	2.8	0.2	< 5	b	147	20
8	1.26	0	1.2	0.1	7.6	0	40	1
Liver:								
4	0.4	0.1	2.5	0.2	25	2.5	116	С
30	7.3	0.2	<0.5		18.5	0.2	160	0
28	4.5	0.05	<0.5		16.4	0.1	136	1
6	11.4	0.1	0.9	0.2	29	2.5	100	10
3	6.4	0.1	2.2	0.4	26.9	1.3	140	15
2	8.7	1.2	1.3		16.5	3.5	8	2
29	17.0	0.3	<0.5		5.2	1.4	130	3
1	6.4	0.1	2.6	0.9	16.5	0.2	169	7
7	22.2	1.3	0.8		22.8	0.2	170	17
8	41.1	0.9	0.5	0	44.1	2.4	87	3
Kidney:								
4	16.7	0.2	2.4	0.4	44.0	13.0	113	23
30	34	5	<0.5	b	15.0	2.5	120	17
28	-	-	-	-	-	-	-	-
6	33.4	0.0	1.2	0.2	17.5	0.3	48	0
3	34.5	С	3.0		16.0	С	98	C
2	20.1	4.5	0.5	0.0	16.5	3.5	102	22
29	37	5	<0.5	b	5.2	1.3	92	14
1	53.0	0.3	2.8	0.2	19.4	0.1	149	1
7	22.5	2.0	1.3	0.3	40.0	6.0	160	15
8	17.4	0.1	1.5	0.1	28.1	0.6	110	1

Table A5. Concentrations (ppm, dry weight) of heavy metal contents in extracts of surface sediment in the St. George Basin planning area. Collected with HAPS corer from Discoverer vessel in 1975. Based on OCSEAP report by Burrell (1977: Tables 34, 38, 39; 1978: Table 43). nd=not detected.

			Mud %									Sep.	25
	Lat.	Long.	silt&	June	2-1	9:						-Oct	.3:
Sta.	Deg/Min	Deg/Min	clay	Cđ	Cu	Ni	Zn	Fe	Mn	Cd	Cr	Al	Se

30	55	59	166	53		<0.25	2.5	17.3	23.9						
31					23.1	0.25	<2.5	<2.5	7.1	637	9.0				
35	56	12.4	168	20.4									0.4	102	0.09
43	58	42.5	166	16.0	14.7	0.25	<2.5	2.5	6.3				1.7	55	nd
44					14.9	0.25	<2.5	<2.5	5.9	1040	16.2				
46	57	34.5	168	4.5								1.7	0.5	84	nd
51	55	49	170	47									0.9	122	nd
54	56	56.4	170	54.8									0.3	211	.020
56	58	6.5	169	5.4	37.6	0.25	9.9	8.2	19.3					60	nd
57					19.2	0.25	<2.5	<2.5	6.8						
63					49.5	0.25	<2.5	<2.5	13.3	1756	27.3				
64	58	1.5	171	17.0	43.5	0.25	<2.5	<2.5	12.0	1350	20.9	2.8			
65	57	24.9	172	4.6	40.4	0.25	<2.5	<2.5	10.5	915	18.8	2.9	1.9	138	nd
69					41.9	0.25	<2.5	<2.5	12.5	985	21.3				

160

Table A6. Concentrations (ppm, dry weight) of heavy metal contents in intertidal benthic tissues in the St. George Basin planning area, collected in the summer of 1976. Expressed as the means of duplicate determinations. Based on Burrell (1978: Tables 52 and 53).

	Eider Pt.	Otter Is.	Makushin Bay
	53d 57.5m N	57a 3m N	530 44M N
	166d 35.1m W	170d 23.8m W	166d 45.8m W
Mytilus		с. С	
(blue mussel)			,
Cđ	4.0	4.6	. 6.0
Cu	9.8	6.0	6.0
Ni	1.3	1.8	1.4
Zn	122	156	81
Fucus			
(seaweed)			
Cd	5.5	3.1	3.8
Cu	1.5	5.0	0.8
Ni	4.9	5.1	7.1
Zn	17	8	10

Table A7. Concentrations (ppm) of metals in northern fur seals collected on St. Paul Island in the summer of 1975 (Goldblatt and Anthony, 1983). The authors state that the means for each metal which share a common letter are not significantly different (P>.05) by Student-Newman-Keul's test, and that they transformed all data to common logarithms for statistical analysis to ensure homogeneity of variance. .

	Liver	Kidney	Muscle	Bone
Dry weight: Cadmium				
Mean	55.63a	266.92b	0.90c	0.09c
Range	22.50-153.72	127.0-567.76	0.372-3.70	0.035-0.26
SD	27.8	977	0.641	0.045
n	37	37	39	39
Zinc				
Mean	233.67a	277.91b	139.15c	119.89d
Range	183.80-331.68	187.74-420.45	60.57-221.99	92.34-142.81
SD	38.8	60.5	38.4	12.9
n	37	36	39	39
Lead				
Mean	1.13a	0.27b	0.26b	1.78c
Range	0.23-14.76	0.02-0.97	0-2.44	0.15 - 10.30
SD	2.42	0.22	0.48	2.24
n	36	36	38	38
Nickel			·	
Mean	0.411a	0.556b	0.530b	1.220c
Range	0.0-3.38	0.10-2.45	0-3.38	0.47-1.65
SD	0.32	0.57	0.63	0.27
n	36	36	38	39
Wet weight: Mercury				
Mean	10.74			
Range	4.09-42.94			
SD	6.53			
n	37			
Cadmium	16.13	56.05	0.271	0.08
Zinc	67.76	58.36	42.16	108.38
Lead	0.328	0.057	0.081	1.61
Nickel	0.119	0.117	0.161	1.1

Table A8. Proportion of the variation in cadmium and mercury concentrations among 37 northern fur seals which is accounted for by age of seals (Goldblatt and Anthony, 1983: Table 3). The squared correlation coefficients (R-square) are calculated from the significant (P<.05) regressions of concentrations with age.

Metal	Tissue	R-square
Cadmium	liver	0.4516
Cadmium	muscle	0.6593
Cadmium	bone	0.8724
Mercury	liver	0.8427

Table A9. Concentrations of selected elements and auxiliary variables in samples of surface sediment in the St. George Basin, from OCSEAP report by Gardner, et al (1978a: Appendix A and B) and personal communication of latitude and longitude (1988). The investigators state that the upper 30 cm of cores were homogenized by mixing with sea water as a result of the coring operations, and consequently, analyses from cores represent an average value for the upper 30 cm of sea floor. Samples collected by Soutar van Veen were undisturbed and representative of surface sediment to within a few centimeters below the sediment-water interface (Gardner et al, 1978b). Values were determined by x-ray fluorescence (SRF or X), atomic absorption spectroscopy (AAS or A), instrumental neutron activation (N), and emission spectroscopy (S) techniques. Percentage carbon is mean of three determinations of total carbon.

Sample	Sampling	Ŵ	later			Top of
label	method	Ŭ	(m)	Lat.	Long.	(cm)
			()			()
1976 C	ruise S4-7	6:				
g2	gravity c	core	248	54.736	165.883	15
g5	gravity c	core	118	55.037	165.486	0
g6	gravity c	core	118	55.037	165.48	3
g8	gravity c	core	109	55.281	165.129	7
g9	gravity o	core	109	55.279	165.125	4
g10	gravity c	core	101	55.504	164.835	0
g11	gravity c	core	101	55.501	165.837	13
g12	gravity o	core	101	55.498	164.839	4
g13	gravity o	core	109	55.899	165.701	14
g14	gravity c	core	109	55.900	165.703	4
g15	gravity c	core	108	56.226	166.441	4
g16	gravity o	core	108	56.227	166.448	7
g17	gravity o	core	91	56.700	166.921	4
g18	gravity o	core	91	56.698	166.92	4
g19	gravity o	core	90	56.789	166.921	0
g20	gravity o	core	95	56.786	167.836	6
g21	gravity o	core	95	56.789	167.803	4
g21	gravity d	core	95	56.789	167.803	4
g27	gravity d	core	98	56.789	168.605	14
g28	gravity d	core	98	56.794	168.601	CC
g29	gravity d	core	98	56.792	168.599	4
g29	gravity d	core	98	56.792	168.599	4
g32	gravity of	core	107	56.605	168.285	6
g33	gravity d	core	111	56.530	167.977	8
g34	gravity o	core	111	56.528	167.976	4
g34	gravity o	core	111	56.528	167.976	4
g36	gravity o	core	111	56.527	167.983	2
g41	gravity o	core	115	56.452	167.672	6
a42	gravity o	core	121	56.332	167.447	0

~12	gravity gara	1 2 1	FC 227	167 461	0
945	gravity core	121	50.32/	107.451	11
940	gravity core	120	56.148	10/.110	LL .
947 ~10	gravity core	129	55.982	100.740	4
940 ~40	gravity core	129	55.982	166./5/	U
g49	gravity core	126	55.800	166.332	0
g49	gravity core	126	55.800	166.332	0
g50	gravity core	120	55.668	166.027	0
g50	gravity core	120	55.668	166.027	0
g51	gravity core	120	55.667	166.027	6
g52	gravity core	114	55.517	165.701	9
g53	gravity core	122	55.289	165.984	0
g54	gravity core	122	55.291	165.985	0
g55	gravity core	127	55.432	166.351	4
g55	gravity core	127	55.432	166.351	4
g56	gravity core	128	55.432	166.351	0
g57	gravity core	128	55.431	166.351	0
g59	gravity core	130	55.596	166.669	5
g60	gravity core	131	55.592	166.678	0
g61	gravity core	135	55.795	167.023	4
g62	gravity core	135	55.798	167.029	0
g63	gravity core	133	55.949	167.402	15
g64	gravity core	134	56.106	167.776	4
g65	gravity core	134	56.107	167.769	10
q66	gravity core	157	56.316	168.293	4
q67	gravity core	157	56.328	168.289	5
q69	gravity core	122	56.090	170.05	co
q70	gravity core	400	56.105	170.559	0
q71	gravity core	400	56.105	170.558	2
q75	gravity core	125	56.405	170.972	- 6
q75	gravity core	125	56.405	170.972	6
<u>q</u> 77	gravity core	113	56.620	170.669	0
<u>9</u> 80	gravity core	108	56.690	170.563	Ō
g90	gravity core	105	56.486	170.067	2
g91	gravity core	110	56.371	170.148	0
q105	gravity core	320	56.134	169.543	10
q107	gravity core	411	56.131	169.544	0
q109	gravity core	135	55.790	168.214	3
a110	gravity core	135	55.800	168.208	4
a111	gravity core	132	55.616	167.84	1
a112	gravity core	133	55.616	167.833	4
g112	gravity core	133	55.616	167.833	4
a113	gravity core	138	55.449	167.481	3
all4	gravity core	138	55.450	167.483	Ő
α115	gravity core	140	55,289	167 111	4
α115	gravity core	140	55,289	167 111	·
g116	gravity core	140	55.201	167,111	· • •
al 17	gravity core	144	55 132	166 76	ů 0
all8	gravity core	144	55 139	166 76	6
a119	gravity core	1/5	54 001	166 /21	
a120	gravity core	1/5	54.003	166 400	И
9120 a120	gravity core	145	54.903	166 400	
9120 a121	gravity core	140 E7	54.903	165 740	4
9161 V)	Van Voon gro)/ 75	54.LJZ	100./40 160 965	0
v 4 17 2	van veen gra	10	57.UI3 57 101	100.200	
v J	van veen yra	/4	21.171	700°229	U

V6	van Veen gra	82	56.884	168.903	0
v 7	van Veen gra	122	56.097	170.048	0
v 7	van Veen gra	122	56.097	170.048	0
v 9	van Veen gra	60	57.024	169.548	0
v11	van Veen gra	68	56.937	169.414	0
v12	van Veen gra	68	56.861	169.521	0
v14	van Veen gra	126	56.232	169.827	0
v14	van Veen gra	126	56.232	169.827	0
v15	van Veen gra	145	56.326	169.693	0
v17	van Veen gra	85	56.707	169.18	0
v18	van Veen gra	100	56.569	168.907	0
v18	van Veen gra	110	56.569	168.907	0
v21	van Veen gra	101	56.536	168.79	0
v28	van Veen gra	57	54,130	165.744	Ō
n3	niston core	120	55,661	166.016	3
p5 n5	piston core	125	55.001	167 015	0
p5 25	piston core	125	55.790	167 015	0
p5 n6	piston core	122	55 944	167.015	6
ро 27	piston core	110	55.944	170 154	5
р/ ~0	piscon core	110	50.3/0	1/0.154	5
рв	piston core	320	56.121	169.554	3
S4-76	Misc. Seds., F	ribil	of Islan	ds; EM on	ly
a30	aravity core	107	56 639	169 627	1
930 731	gravity core	100	56 625	169 627	1
931 777	gravity core	107	56.635	167 004	*
y37 ~27	gravity core	107	56.579	167.904	2
937	gravity core	107	50.5/9	167.904	2
g38	gravity core	107	56.607	167.862	0
g39	gravity core	107	56.607	167.862	0
g40	gravity core	100	56.678	167.774	6
g40	gravity core	100	56.678	167.774	6
g72	gravity core	300	56.252	171.203	4
g72	gravity core	300	56.252	171.203	4
g78	gravity core	111	56.666	170.6	0
g79	gravity core	111	56.664	170.598	0
g81	gravity core	103	56.745	170.483	30
g82	gravity core	97	56.807	170.399	20
g89	gravity core	96	56.564	169.94	0
g94	gravity core	123	56.379	169.624	cc
g103	gravity core	125	56.361	169.041	2
v 4	van Veen gra	80	56.997	168.738	0
v 5	van Veen gra	81	56.995	168.805	0
v10	van Veen gra	60	56.951	169.638	0
v19	van Veen gra	110	56.562	168.748	0
v20	van Veen gra	102	56.556	168.766	Ō
v22	van Veen gra	102	56.504	168.837	0
v22	van Veen gru	102	56.504	168.837	ñ
v27	van Veen gru	103	56.491	168.857	ů n
v23	van Veen gra	103	56.491	168 857	ů n
v2J V25	van veen yrd	125	56 363	160.007	0
v 20 m10	van veen yrd	70EV	56 424	170 005	107
b10	piston core	2000	55.034 55 510	160 250	2E
ртз	piston core	2080	22°2T3	707.50X	20

1977 cruise S6-77:

g14 g16 g20 g22 g23 g24 g25 g26 g29 v4 v6	gravity core gravity core	1309 825 1190 2230 2151 2030 2900 3158 2648 166 76	54.213 54.336 54.376 55.173 55.524 55.514 55.719 55.944 56.200 54.804	166.637 167.515 168.089 168.707 169.332 170.37 170.02 170.028 170.79 170.673 168.34 164.975
1977	cruise S6-77 da	ata, s	eawater	corrected:
v5		62	55.041	164.512
v 6		76	54.804	164.975
v 6		76	54.804	164.975
v 7		142	54.478	165.153
q7		109	54.478	165.153
g12		154	56.298	168.235
g12		154	56.298	168.235
g14		1309	54.213	166.637
g16		825	54.336	167.515
g19		1190	54.376	168.089
g20		2230	54.763	168.707
g22		2151	55.174	169.332
g23		2030	54.839	170.37
g24		2900	55.524	170.02
g25		2900	55.514	170.028
g25		2900	55.514	170.028
g26		3158	55.719	170.79
g29		2648	55.944	T/0.2/3

Table A9. con't

Sample	Pct. silt	Mean %	Parts	per 1	nillion	:				
label	&clay	carbon	Hg-a	Zn-a	As-x	Ba-s	Cr-a	Cu-a	Ni-s	V-s
1976 cr	uise S4	-76:								
g2	18.88	0.39	0.03	116	4.065	500	15	70	16	
g5	23.64	0.41	0.04	107	41005	300	15	70	10	150
g6			0.03	119	3.773	500	20	70	10	200
g8	36.02	0.43	0.04	91	6.023	500	30	70	15	300
g9			0.03	97	4.520	500	30	50	15	200
g10		-	0.05	72	11020	700	50	20	15	200
g11	24.39	0.32	0.04	71		700	50	20	15	150
g12			0.04	71	5.825	500	50	30	15	150
g13	57.18	0.72	0.03	83		500	50	30	20	100
g14			0.04	79	5.927	500	30	30	20	100
g15			0.08	77	5.612	700	50	20	20	100
g16			0.05	82		700	100	50	15	150
g17			0.04	70	6.289	700	30	20	15	150
g18			0.04	68		700	70	30	20	100
g19	36.61	0.48	0.03	65	5.719	700	50	15	20	150
g20	23.21	0.40	0.06	63		500	30	15	20	100
g21			0.04	63	6.084	700	70	15	20	100
g21			0.04	63		700	50	15	20	100
g27	24.48	0.39	0.03	62		700	50	15	20	100
g28		,	0.04	58		500	50	15	20	100
g29			0.04	.58		700	50	20	20	70
g29			0.04	58		700	50	15	20	70
g32	18.09	0.31	0.03	58		700	50	15	20	100
g33	26.40	0.46	0.04	65		500	30	20	20	70
g34			0.03	57	4.697	700	50	15	30	100
g34			0.04	61		500	70	15	15	100
g36			0.04	55		700	70	15	20	70
g41	36.00	0.47	0.04	70	5.726	700	30	20	20	100
g42	<i></i>		0.04	85	4.566	700	100	30	20	150
g43	61.26	0.69	0.06	84		500	50	50	20	100
946	81.83	0.97	0.04	94		500	50	30	30	150
947 ~19	06.65		0.04	101	6.265	500	50	50	20	150
948	86.65	0.98	0:04	100		500	50	50	20	150
949 ~10	86.09	0.83	0.04	107		500	30	70	15	150
g49 ~50	86.09	0.83	0.05	98		500	30	50	15	150
950			0.04	102		500	30	50	15	150
g50 g51	74 50		0.08	115		500	30	50	15	200
951 652	/4.58	0.67	0.05	106		500	50	50	20	200
y52 ~52	/8.94	0.61	0.00	96		500	30	50	10	150
yoy ~54	<pre></pre>		0.03	112	5.108	500	30	70	15	200
y54	63.07	0.56	0.05	108	5.843	500	50	70	15	200
955			0.05	99	5.594	500	30	50	15	200
955		•	0.04	99		500	30	50	20	200
920	17.37	0.75	0.04	99	5.726	500	30	50	15	200

g57			0.04	101		500	30	50	15	200
g59	80.48	0.88	0.04	93		500	30	50	15	150
g60			0.06	99		500	50	50	15	150
g61			0.03	108	6.048	500	50	50	30	150
g62	71.86	0.94	0.04	94		500	50	50	15	150
g63	79.00	0.99	0.04	102	3.484	700	50	50	15	150
g64			0.05	68	4.278	500	50	20	15	100
g65	36.96	0.50	0.04	69		700	50	20	20	150
g66			0.04	73	4.945	700	70	30	30	150
q 67	13.65	0.31	0.04	72		500	50	20	15	100
g69	15.22	0.34	0.04	58		700	50	15	15	100
g70			0.08	111	8.549	700	100	50	20	200
g71	79.98	0.70	0.07	118		500	70	50	20	150
g75	23.17	0.00	0.03	55		500	50	15	20	70
g75	23.17	0.00	0.04	59		500	50	15	20	100
q77	45.80	0.52	0.04	62	4.065	500	50	15	20	100
q80	62.06	0.82	0.05	72		700	70	20	20	100
a90	75.86	0.87	0.05	79		700	100	30	30	100
q91			0.04	79	4.049	700	100	20	30	150
a105	75.71	0.91	0.08	134	18.530	700	100	70	50	150
q107			0.11	140	13.310	1500	100	70	50	200
q109	12.53	0.34	0.02	57		700	70	30	15	100
q110			0.04	60	4.995	500	50	15	15	100
q111	32.81	0.43	0.04	66		700	50	30	15	150
q112			0.05	66	4.013	700	30	20	15	150
g112			0.04	65		500	50	20	15	150
g113	52.87	0.00	0.03	82	5.608	500	30	50	15	150
g114			0.05	82	3.816	700	70	50	15	150
g115			0.04	97	4.897	500	30	50	15	150
g115			0.05	104		500	30	50	15	150
g116	44.97	0.41	0.05	90		500	30	50	15	150
g117			0.03	110		500	50	70	15	200
g118	58.29	0.59	0.04	97		500	30	50	15	150
g119	66.46	0.55	0.05	99		500	30	70	15	200
g120			0.03	108		500	50	70	20	200
g120			0.05	108		500	30	50	15	150
g121	67.64	0.75	0.11	102		300	30	70	15	200
v 2	7.19	0.25	0.03	45	5.191	500	70	7	15	70
v 3	5.94	0.22	0.03	45	5.419	700	200	7	15	70
v 6	8.26	0.00	0.02	46	6.358	700	50	7	15	70
v 7	14.38	0.40	0.03	59		700	50	15	15	100
v 7	14.38	0.40	0.04	113		500	70	20	20	70
v 9	4.14	0.22	0.04	55		500	70	7	50	70
v11	5.74	0.29	0.04	55	6.700	700	70	15	30	100
v12	5.91	0.23	0.03	48	6.984	700	100	10	30	100
v14	8.76	0.31	0.04	61	5.257	500	50	15	20	100
v14	8.76	0.31	0.04	58		500	50	15	30	70
v15	5.02	0.22	0.03	68		500	150	15	. 50	150
v 17	7.23	0.28	0.04	71	5.639	500	150	20	150	100
v18	5.90	0.26	0.03	63	5.559	700	70	15	50	150
v1 8	5.90	0.26	0.03	62		500	100	15	30	150
v21	9.57	0.31	0.03	58	3.433	700	70	15	30	100
v28			0.08	102		300	30	100	70	200
p3			0.04	102	· · · · · ·	500	50	70	15	200
p5			0.03	109		700	50	50	20	150
p5			0.05	97		500	50	50	15	150

p6			0.05	96		500	50	50	20	150
p7	79.20	0.76	0.05	85		700	100	30	30	150
p8			0.09	130	8.331	700	70	50	30	200
		_								
S4- 76	Misc. Se	ds., Pri	bilof	Island	ls, EM d	only:				
g30						700	70	15	30	100
g31						700	70	20	30	100
g37						1000	50	15	20	100
g37						700	50	15	15	70
g38						700	50	20	20	100
g39						700	100	30	30	150
g40						1000	50	15	20	100
g40						700	50	20	20	70
g72						700	100	50	50	150
g72						500	70	50	50	150
g78						700	70	15	20	70
g79						700	70	15	20	70
g81						700	70	30	30	150
g82						1000	70	30	30	150
g89						700	100	20	50	150
g94						500	150	70	100	200
g103						700	100	20	50	150
v 4						700	70	10	15	70
v 5						500	150	15	20	70
v1 0						500	70	10	70	70
v19						700	70	15	30	70
v 20						700	100	15	30	100
v22						500	70	20	30	70
v22						700	100	15	30	100
v23						700	70	15	30	70
v23						1000	70	15	30	150
v25						700	100	20	50	200
p10						1000	50	70	30	150
p13						1000	50	100	30	100

1977 cruise S6-77:

g14	32.17	1.46
g16	33.24	1.13
g19	39.40	1.12
g20	39.04	1.52
g22	37.56	1.70
g23	33.99	1.56
g24	41.16	1.43
g25	42.44	1.22
g26	22.76	1.15
g29	43.40	1.45
V4	89.40	0.00
v 6	91.43	0.37

1977 cruise S6-77 data, seawater corrected:

v 5	0.04	135	14.000	300	50	20	30	300
V6	0.04	0	0.000	500	20	70	15	300
v 6	0.01	107	4.600	500	15	70	15	150
v7	0.03	102	86.000	500	30	70	15	300
g7	0.04	56	4.900	700	70	15	30	150
g12	0.08	121	4.800	700	100	70	70	300
g12	0.09	126	9.000	700	70	70	70	150
g14	0.01	101	0.000	500	30	100	50	200
g16	0.04	119	5.200	500	30	150	30	200
g19	0.01	110	3.400	700	30	150	30	150
g20	0.04	95	0.000	1000	30	100	50	150
g22	0.01	88	0.000	1000	30	100	30	150
g23	0.01	0	0.000	1500	30	70	30	70
g24	0.08	89	0.000	1500	30	100	50	100
g25	0.12	83	0.000	700	30	70	30	150
g25	0.04	84	0.000	700	50	70	30	150
g26	0.10	105	0.000	700	50	100	30	150
g29	0.03	99	0.000	700	50	7,0	30	150

a de c

Table A10. Concentrations (ppm, dry weight) and ratio indices of hydrocarbons in surface sediment, 0-10 cm, of St. George Basin planning area. Bottom was sampled by steel van Veen grabs in 1975. From Venkatesan, et al (1981: Table 25-1) and OCSEAP report by Kaplan, et al (1977: Tables 1, 5, 7, 9). Total hydrocarbons = sum of hexane and benzene fractions. nd=not determined. nr=not resolved.

Station label	Latitud	le	Longitud	le .	Water depth (m)
17	55deg.	26.4min.	165deg.	49.1min.	119
28	57deg.	10.4min.	165deg.	04.4min.	70
35	56deg.	12.4min.	168deg.	20.4min.	160
37	57deg.	05.3min.	167deg.	00.6min.	75
38	57deg.	40.1min.	166deg.	05.8min.	66
40	58deg.	07.3min.	165deg.	15.6min.	46
43	58deg.	42.5min.	166deg.	16.Omin.	37
46	57deg.	34.5min.	168deg.	04.5min.	70
51	55deg.	49min.	170deg.	47min.	-
54	56deg.	56.4min.	170deg.	54.8min.	105
56	58deg.	06.5min.	169deg.	05.4min.	71
58	58deg.	43.5min.	167đeģ.	21.Omin.	44
64	58deg.	01.5min.	171deg.	17.Omin.	90
65	57deg.	24.9min.	172deg.	04.6min.	109

Aliphatic fraction	Aromatic fraction	Total hydrocarbons	Total % n-alkanes	organic carbon	Pristane/ phytane
13	5.2	18.2	1.09	0.76	3.97
8.7	4.1	12.8	2.93	0.59	10.2
180.1	60.8	240.9	nr	0.41	nr
5.8	`4.0	9.8	0.76	0.41	1.76
4.9	10.6	15.5	1.64	0.66	5.18
1.9	2.6	4.5	0.61	0.32	3.37
2.4	2.7	5.1	0.52	0.30	2.26
4.3	7.5	11.8	0.74	0.42	17.90
2.8	0.6	3.4	0.77	nd	3.49
7.4	9.9	17.3	2.10	0.68	8.80
10.6	8.5	19.1	0.75	0.47	2.93
3.8	2.8	6.6	0.28	0.31	4.80
12.3	9.8	22.1	1.79	0.77	2.27
6.9	9.6	16.5	1.60	0.67	16.43

Table A10. con't

Pristane/ C-17	Phytane/ C-18	(Total hydrocarbons/ organic carbon) x 10exp4	(Total n-alkanes/ organic carbon) x 10exp4	Odd/even for C-15 to C-34
	0.41	23.9	1.4	3.43
18.1	0.41	21 7	5.0	4.09
2.16	0.26		nr	nr
nr	nr	587.0	1.8	3.28
1.45	0.36	23.9		4.41
2.21	0.30	23.5	2.3	2 11
0 93	0.32	14.1	1.9	2.41
0.95	0.48	17.0	1.8	3.08
0.97	0.40	28.1	1.8	3.59
10.3	0.41	25.4	nd	2.56
2.14	0.49	25.1	3.1	2.57
3.06	0.36	25.4	1.6	3.78
3.34	2.71	40.6		3 33
1.26	0.32	21.3	0.9	2.55
0.96	0.96	28.7	2.3	2.75
7.74	7.74	24.6	2.3	3.77

Table All. Trace element concentrations (dry weight) in surface sediment collected by HAPS corer from Discoverer vessel, June 12-19, 1975. From OCSEAP report by Robertson and Abel (1979: Tables C.1 and C.2). The authors did not provide labels for dispersion estimates accompanying each mean, nor the sample sizes.

Station (MB label)	Lat.	Long.	Water depth (m)	Alu per Mean	minum cent	Calc perc Mean	ium ent	Mangar pr Mean	nese om
$\begin{array}{cccc} 28 & (0-3 cm) \\ 29 & (0-4 cm) \\ 30 & (0-4 cm) \\ 37 & (0-2 cm) \\ 43 & (0-2 cm) \\ 56 & (0-2 cm) \\ 59 & (0-2 cm) \\ 64 & (0-2 cm) \\ \end{array}$	57d 10m - 55d 59m 57d 06m 58d 42m 58d 06m 59d 12m 58d 01m	165d 04m - 166d 53m 167d 01m 166d 17m 169d 05m 167d 18m 171d 07m	69 - 134 75 38 71 38 85	1.05 5.90 6.10 5.50 5.05 5.01 5.10 5.10	0.03 0.02 0.03 0.03 0.07 0.10 0.02 0.03	2.31 2.09 2.97 2.32 1.70 1.73 2.08 3.73	1.03 0.33 1.34 1.00 0.25 0.50 0.47 1.25	524 572 571 358 400 341 366 397	50 45 42 13 7 42 48

Vanadium ppm Mean		Arsenic ppm Mean		Barium ppm Mean		Cobalt ppm Mean		Chromium ppm Mean		Iron % Mean		Antimony ppm Mean	
	25	2.0	05	490	170	9	_	63	4	2.67	-	0.56	0.14
92	25	2.9	0.5	450	2.10		_			-	-		
77	23			-		10		28	5	3.55		0.55	0.13
112	24	3.4	0.6	200	190	10		50	4	2 53	_	0.61	0.11
85	23	4.1	0.6	430	190	9.1		53	4	2.55		0 57	0 1
00	23	2 2	0 5	<420		7.0		61	5	2.06		0.57	0.1
90	21	5.2	0.5	<120		G	_	86		2.59	-	0.63	0.08
85	17	0.7	0.6	<260		,		107		2 52	-	0.73	0.08
77	22	4.0	0.4	1070	340	9	-	107		2.52		0 49	0 09
82	24	2.7	0.8	1030	340	9	-	93		2.68		0.40	0.05
Table A12. Concentrations (ppm, wet weight) of metals in tissues of 62 male northern fur seals, aged 2 to 4 years, at 5 rookeries in the Pribilof Islands, 1985 (Skoch and Metzger, 1988).

These data have been entered by hand from tables of original lab determinations provided by the authors in a personal communication from Metzger (1987). Missing data are represented by blank spaces. Codes are m=muscle, k=kidney, l=liver, nda=no detectable amount.

Rookery & Parts per million: animal label Tiss. Titan. Iron Cadmium Selenium

North East Point West Rookery

14 m	nda	2100.50	17.14	227 10
14 k	nda	5230.84	259.56	102 06
14 1	nda	1350.69	163.68	192.00
10 1	nda	1085.81	56.80	191.0/
10 k	nda	406.25	331 56	104.44 202 EA
10 m	30.72	2 1066.27	4.76	302.30
21 1	13.86	5 2453.18	56.37	300./3
21 m	13.45	5 1098.65	7.31	200.43
21 k	35.11	. 336.41	138.85	565 65
24 k	10.44	1097.64	52 29	225.05
24 m	nda	1725.81	24 72	250.02
24 k	nda	432.31	343 80	220.8/
24 k	3.04	585.55	261 04	110 20
28 k	nda	192.31	105 00	119.39
28 1	5.77	1282.05	52 95	1/1.98
28 m	nda	1150.49	92.85	108.97
5 k	nda	255.32	150 57	187.86
51	9.64	2358.82	124 20	160.00
51	nda	1981 98	124.30	140.50
5 m	nda	1524 75	10 64	329.73
32 m	nda	3651 38	10.04	201.98
32 1	nda	2526 98	2.94	378.90
32 k	nda	896 00	221 04	137.46
20 1	nda	1317 16	351.84	183.60
20 m	nda	1661 65	100.04	179.85
20 k	nda	813 13	4.81	393.23
25 m	nda	1501 56	339.39	2/6.26
25 k	nda	612 72	10.50	312.77
25 1	nda	3344 07	0/4.68	227.47
31 1	nda	2607 72	215./1	180.11
31 m	nda	2007.73	/0.//	330.94
31 m	nda	1622 42	1.07	130.52
31 k	nda	1032.43	0.76	144.86
31 k	nda	1026.92	173.85	111.15
3 1	nda	912.32	196.37	114.11
3 F	nua	1000 45	96.86	104.62
3 m	nua	1222.41	217.74	121.82
42 m	nua	1896.71	15.45	177.00
76 10	naa	5655.17	20.23	214.94

	42	k	nda	1159.29	443.66	109.49
	42	1	nda	2245.17	202.80	84.61
Polovina 1	Rookeı	сy				
	6	m	nda	1953.61	10.26	122.16
	6	k	nda	1087.14	324.90	159.75
	6	1	nda	3931.25	371.13	281.25
	18	k	15.44	1007.72	271.01	145.80
	18	1	36.78	2990.41	290.41	168.44
	18	m	-	-	-	-
	29	m	30.82	2731.66	323.94	375.48
	29	k	65.39	743.93	343.77	99.84
	29	1	nda	2851.08	55.55	142.39
	21	1	nda	1967.36	90.79	137.93
	21	k	nda	791.67	242.08	197.08
	21	m	nda	3650.79	5.89	191.73
	25	m	nda	1164.31	5.95	229.33
	25	k	nda	597.74	373.99	180.53
	25	k	nda	577.35	351.46	227.02
	25	1	nda	1182.52	156.30	125.64
	23	1	nda	1273.15	313.60	273.15
	23	m	45.45	1097.56	8.76	465.63
	23	k	nda	567.69	247.27	224.89
	11	m	nda	376.17	2.23	137.82
	11	k	nda	520.45	234.94	138.66
	11	1	11.92	1248.01	28.75	187.60
	4	k	68.15	685.19	202.59	84.81
	4	1	-	1672.28	114.71	142.38
	4	m	67.25	1822.13	3.15	136.66
	10	1	-	-	-	-
	10	m	13.09	737.53	30.79	172.25
	10	k	71.26	408.91	821.86	72.87
	14	m	56.06	1969.70	58.26	222.73
	14	Ţ	-		· —	
	14	к	18.67	307.23	556.63	204.22
	2	m	56.07	549.13	18.03	106.36
	2	k	36.48	435.32	130.60	112.77
	2	ĸ		-		-
	2	1	72.50	673.26	24.91	247.18
	32	1	20.66	1368.23	40.86	149.68
	32	m	nda	625.00	21.92	201.67
	32	k	nda	506.85	218.68	118.72
	5	k	nda	340.43	67.28	177.13
	5	m	nda	334.19	35.58	171.59
	5	1	nda	689.53	97.95	91.58
Gorbatch	Rooke	ry				
	19	k	nda	1836.96	59.54	104.43
	19	k	nda	1821.55	60.20	101.35
	19	m	nda	785.05	10.33	83.64
	19	1	nda	2188.17	57.20	162.37
	36	k	-	-	—	-
	36	1	nda	399.40	54.65	81.98
	36	1	-			-

36 m	-		-	-
26 k	-	-		
26 m	. 🛶	-	-	-
26 1		-	-	-
26 k	-	-	-	-
26]	-	_	_	-
26 m	_	_	_	_
	nda	nda	17 11	07 70
9 M	nua	nua	1/.11	97.78
91	nda	1001.08	40.49	87.19
9 k	-	-	-	-
10 m	nda	291.89	23.03	116.76
10 k	-	-		-
10 1	-	-	-	-
12 m	-	-	-	-
12 1	_	_	_	_
12 1			_	-
12 K		-	-	-
4 1	-		-	-
4 k	-	-	-	-
4 m	nda	670.83	23.29	120.42
28 1	nda	1992.65	40.44	114.71
28 k	-	-	-	
28 k	nda	84.97	205.72	132.83
28 m	·	_		_
22 1	_	_	_	-
22 1	_	_	_	_
22 I 22 k		_	—	-
22 K	-			-
22 m	-	-	-	-
30 k	-		-	
30 k	-			-
30 m	-	-		-
30 1	nda	334.26	26.18	162.05
				202100
Zapadni Rookery				
27 k	nda	386.53	10.89	97.52
27 m	nda	1633.99	16.47	114 87
27 1	-	-	-	-
27 I	_			—
	-	100 24	-	104 40
28 1	nua	180.34	1.97	104.49
28 m	-	-	-	-
28 k	nda	266.72	9.30	99.61
20 1	-	-	-	-
20 m	nda	210.94	18.05	232.03
20 k	nda		9.08	116.80
4 k	nda	387.15	9.23	135.50
4 1	nda	4166.67	9.65	168.86
4 m	-		-	-
	nda	74 51	0 51	102 52
Э К с 1	nua	74.5L	0.01	T03.33
5 1	naa	310.92	0.59	110.//
5 m	-		-	-
26 m	nda	315.53	10.29	139.81
26 1	-	-	-	-
26 k	-	-	-	-
16 1	nda	401.69	7.06	91.55
16 m		-	-	
	_	-	-	-
TO V	_	-		

17	T	· -	-		-
17	m	-	-	-	-
17	k	nda	28.97	725.99	162.67
3	1	-	-		-
3	1	-	-	-	-
3	m	-		<u>с</u> н	-
3	k	nda	166.79	265.77	159.54
25	k	nda	nda	185 87	263 04
25	m	nda	1101 02	21 55	270 30
25	7	nda	1262 20	16 02	102 20
2.5	1	nda	1202.30	10.93	102.30
11	1	nda	2342.22	19.38	204.00
11	к.	nda	naa	95.34	182.63
TT	m	nda	411.03	2.08	206.56
2	m	nda	854.55	11.16	203.18
2	ĸ	nda	nda	400.96	204.19
2	1	nda	2897.11	153.05	159.16
19	m	nda	44.78	244.28	200.00
19	k	nda	nda	298.75	174.17
19	1	-	-	-	-
18	k	nda	217.21	107.33	186.97
18	1	nda	3428.08	21.10	179.79
18	m	nda	699.45	4.75	253.55
13	m	nda	805 88	1 38	270 00
12	lu Ir	nda	005.00 ndn	102 54	270.00
12	л 1	nua	11ua	103.34	214.21
тэ	Ŧ	паа	340.98	87.85	152.20
kery	Y				
32	1	nda	232.82	37.48	195.80
32	m	nda	nda	6.48	344.12
32	k	nda	nda	5.63	317.36
19	1	nda	1466.44	48.83	208.40
19	m	nda	1250.00	5 44	239 48
19	k	nda	547 12	108 49	235.40
19	k k	nda	570 01	144 02	200 43
19	л т	nda	1042 92	10 24	200.43
5	10 1-	nua	1943.02	10.34	285.39
2	ĸ	nua	555.56	186.75	196.15
5	Ţ	nda	1260.07	52.01	167.40
12	ĸ	nda	478.63	122.65	198.72
12	1	nda	931.37	43.43	146.41
12	m	nda	907.69	9.23	393.08
14	m	-		-	-
14	k	nda	65.22	185.65	180.00
14	1	nda	2221.09	81.29	165.65
14	1	nda	1545.82	6.22	176.49
17	k	nda	535.86	166.67	184.39
17	m	nda	1669 81	2 03	243.87
17	1	nda	1750 00	38 40	162 85
1 K	1	nda	1766 60		122.63
10	يد ابد	nua	670.09	1 4 4 4 4 4	100.01
12	ĸ	naa	0/0.48	144.52	100.80
12	m	naa	1325.58	4.59	154.0/
28	К	nda	539.42	368.46	101.24
28	m	nda	702.97	7.28	128.22
28	1	nda	555.98	44.86	191.12
2	k	nda	352.14	184.62	189.74
2	1	nda	916.40	21.00	151.45

Tolstoi Rookery

2	m	nda	1567.25	3.63	266.67
29	m	nda	2601.23	4.05	324.54
29	1 .	nda	1981.35	29.22	198.91
29	k	nda	1179.49	147.01	227.35
31	1	nda	1614.46	33.13	225.30
31	k	nda	1324.00	181.60	198.80
31	m	nda	2103.31	2.77	206.61
9	1	nda	2692.31	42.95	217.09
9	k	nda	1722.66	213.67	201.56
9	m	-		-	
41	1	nda	1642.86	35.06	179.55
41	k	nda	1197.37	164.47	235.96
41	m	nda	3492 19	6.02	414.84
41	m	nua	J 4 92.19	0.02	414.04
Redo's					
Polovina Rooke	rv				
rorovina noone	-1				
10	1	nda	1281.55	91.77	212.07
10	k	101.22	934.20	894.86	358.22
10	m	103.32	1147.69	16.52	397.69
10		105152	1147.05	10.52	557705
Zapadni Rooker	v				
	1				
16	1	171.41	1883.69	46.99	392.63
16	k	nda	591.77	492.85	94.63
16	m	nda	1775.60	6,93	558.06
20	1	69.06	1396.85	33.53	161.57
20	k	118.94	642.02	306.34	186.82
28	k	nda	892.40	184.06	186.22
28	1	nda	5189 98	32 96	144 73
20	* m	110 01	224 72	2 00	245.06
20	nu Ir	60 26	554.75	2.00	110 25
10	1	205.00	50.04 51 61	10 10	119.30
13	1 m	395.09	1050 20	19.40	340.02
20	ภ	11ua 22 00	1050.20	4.37	374.UI
20	1-	33.00	nua	21.90	2/3.00
26	К	68.94	265.44	4.01	13/./2
4	m	394.90	404.98	306.06	234.82
4	K	nda	202.65	49.67	73.67
4	1	120.22	2029.75	29.66	252.76
5	1	31.90	437.93	232.67	52.76
5	k	108.26	nda	266.87	161.03
27	k	nda	nda	4.16	106.49
27	m	nda	1608.22	22.20	63.89
27	1	196.84	2897.13	154.91	95.24
3	k	10.77	nda	3.29	144.81
3	m	253.68	578.95	35.68	38.42
3	1	nda	4325.38	356.41	75.01
17	k	nda	nda	46.59	159.29
17	1	683.56	598.00	46.59	193.33
17	m	nda	482.95	9.54	nda
			-	_	
Tolstoi Rooker	У				
	-				
1 4	ጉ ጉ	nda	nda	316 83	144 36

14	k	nda	nda	316.83	144.36
14	1	60.11	nda	56.01	83.12

Gorbatch Rookery

30	k	150.18	565.84	174.38	64.59
22	m	nda	nda	3.26	186.16
22	1	nda	733.98	70.33	29.53
22	k	1526.21	nda	224.36	nda
28	1	nda	1109.94	33.00	nda
36	k	178.11	118.97	196.92	nda
26	k	nda	136.89	217.55	37.00
26	1	nda	637.39	49.47	42.44
24	m	314.14	nda	17.24	108.20
24	k	nda	125.66	755.45	nda '
24	k	47.10	121.48	616.79	19.61
12	k	122.19	186.17	596.92	nda
10	1	nda	211.95	71.27	23.79
10	k	98.83	113.07	53.18	nda
10	k	nda	255.77	40.87	nda
9	m	nda	421.08	6.21	65.95
9	k	250.47	520.18	161.21	59.64
9	k	nda	nda	178.53	nda
4	m	134.67	430.88	21.35	95.76

North East Point West

32	k	108.34	296.22	134.28	nda
32	m	310.12	1331.33	2.39	nda
32	1	445.49		22.64	nda
14	k	nda	303.50	377.47	nda
14	m	58.24	306.82	14.20	nda
14	m	613.23	nda	3.30	113.74
14	1	nda	1513.08	22.00	nda
14	1	448.55	1540.39	21.94	93.76

Tolstoi Rookery

1	nda	1382.75	44.45	30.21
k	175.96	218.43	10.90	56.60
m	80.45	1258.87	5.85	95.52
m	nda	1087.40	3.05	31.25
1	271.56	1900.83	21.24	133.33
k	nda	643.68	143.98	104.32
	1 k m 1 k	l nda k 175.96 m 80.45 m nda l 271.56 k nda	1nda1382.75k175.96218.43m80.451258.87mnda1087.401271.561900.83knda643.68	1nda1382.7544.45k175.96218.4310.90m80.451258.875.85mnda1087.403.051271.561900.8321.24knda643.68143.98

Rookery & animal label Tiss. Nickel Copper Zinc Chrom. Lead Alum.

North East Point West Rookery

÷

	14	m	11.66	4.12	44.74	1.51	17.09	18.59
	14	k	8.68	29.32	84.16	nda	10.16	7.85
	14	1	11.22	52.10	60.52	0.80	9.72	6.25
	10	1	7.36	58.18	31.62	1.22	9.24	6.60
	10	k	12.81	24.44	56.06	1.81	18.13	nda
	10	m	11.99	4.52	54.94	1.93	17.47	30.12
	21	1	7.30	64.08	65.38	1.27	10.86	7.12
	21	m	7.49	4.62	46.10	1.84	12.11	nda
	21	k	15.14	30.70	56.34	2.06	20.61	9.16
	24	k	8.11	65.25	56.90	0.91	8.08	8.42
	24	m	9.35	12.82	34.52	1.77	10.89	nda
	24	k	8.52	28.12	70.66	1.62	12.23	nda
	24	k	8.10	26.84	57.38	1.52	10.65	20.91
	28	k	14.40	25.93	54.18	2.14	15.38	29.12
	28	1	4.36	59.42	55.29	0.99	8.33	15.06
	28	m	7.62	7.86	28.83	1.80	12.62	11.65
	5	k	9.40	29.10	75.62	1.62	11.49	20.00
	. 5	1	1.00	48.80	55.75	1.34	7.92	10.33
	5	1	12.97	56.31	50.45	3.24	22.52	24.32
	5	m	3.12	3.91	26.73	2.23	13.86	nda
	32	m	4.08	6.24	38.35	3.85	25.69	nda
	.32	1	4.54	65.05	53.94	1.56	13.33	nda
	32	k	5.20	21.40	61.08	1.88	16.80	nda
	20	1	3.43	108.51	77.87	2.24	14.55	nda
	20	m	5.64	6.77	33.23	3.68	29.32	nda
	20	k	4.75	28.99	100.96	2.37	20.20	nda
	25	m	2.41	5.32	160.71	3.55	27.66	nda
	25	k	5.56	29.27	99.83	2.23	16.74	nda
	25	1	3.18	124.42	73.92	1.91	14.15	nda
	31	1	1.66	45.64	61.27	2.43	22.65	nda
	31	m	5.26	4.04	35.49	2.16	18.78	40.85
	31	m	1.84	5.35	44.86	3.03	22.70	47.03
	31	k	9.38	32.54	70.23	2.09	15.00	nda
	31	k	8.99	33.99	71.98	2.14	15.73	7.66
	3	1	6.06	67.82	62.95	1.60	11.69	11.69
	3	k	19.06	36.97	103.61	4.91	18.25	42.02
	3	m	9.15	4.79	29.06	2.82	19.81	nda
	42	m	8.39	5.63	69.02	3.05	22.41	19.54
	42	k	5.34	25.87	73.81	1.80	10.62	nda
	42	1	5.10	53.40	62.23	2.30	10.66	nda
Polovina	Rooke	ry						
	6	m	12.73	6.03	27.06	4.48	18.04	nda
	6	k	7.84	30.33	95.06	2.16	17.01	17.43

6	1	9.06	77.44	76.56	3.69	25.00	8.75
18	k	8.49	32.72	103.17	2.40	18.87	67.75
18	1	12.21	190.41	93.66	3.30	22.92	52.77
18	m	-	-	-	-	-	
29	m	26.25	154.15	60.52	9.27	38.61	47.30
29	k	2.74	20.44	87.55	2.82	12.92	56.77
29	1	5.78	51.86	50.59	2.12	13.72	21.55
21	1	5.39	79.00	47.44	1.85	12.93	11.39
21	k	10.56	30.63	65.25	3.33	17.08	40.00
21	m	10.74	8.19	62.55	3.34	17 13	53 47
25	m	10 74	5 29	62.25	2.23	20 16	19 66
25		8 36	30 65	63 61	2.52	16 16	17 77
25	л к	0.50		99 /5	2.13	24 10	25 20
25	л 1	7 40	29.00	50.45	J. 76	24.10	16 07
22	1	10 01	99.55	50.13	2.25	12.85	10.07
23	1	10.01	80.79	88.02	4.05	24.31	36.46
23	m D-	22.39	9.98	1/4.61	8.54	51.00	210.64
23	к	10.44	24.02	84.77	4.75	22.93	15.83
11	m	6.99	7.99	36.42	4.16	13.32	34.95
11	ĸ	8.29	29.44	59.18	3.42	15.99	31.60
11	1	39.67	191.02	116.93	14.55	31.00	62.80
4	ĸ	5.93	44.48	55.96	3.07	14.44	14.07
4	1	9.98	69.92	66.55	4.47	17.69	32.86
4	m	4.23	5.64	83.19	4.77	20.07	29.28
10	1		-	-	-	-	-
10	m	10.68	4.82	64.05	0.79	12.04	nda
10	k	7.98	36.32	101.38	1.09	9.31	nda
14	m	18.26	7.58	78.79	2.23	18.94	nda
14	1	-	-	-		-	
14	k	15.00	27.29	134.64	2.29	14.46	nda
2	m	10.06	5.38	48.38	3.47	14.45	nda
2	k	6.88	20.02	85.32	2.28	9.95	nda
2	k	-	_	_		_	-
2	1	5.89	14.83	40.49	0.94	13.65	nda
32	1	5.97	88.48	91.97	0.60	18.37	16.99
32	m	18.00	6.92	61.50	2.92	23.33	31.67
32	k	16.35	30.73	91.23	1.92	11.87	nda
5	k	11.38	26.86	121.28	1 12	12 23	18 62
5	m	13.43	4.69	72.69	0 64	16 71	nda
5	1	-	4.05	72.05	0.04	10.71	
5	1				-	-	
Gorbatch Rooker	гy						
10]e	C C D	100 00	70 00	0.64	0.00	0 00
19	K le	6.09	100.26	78.93	0.64	8.26	0.38
19	ĸ	0.50	87.34	/4.95	1.31	7.41	nda
19	m D	8.32	7.52	48.22	2.29	10.28	nda
19	1	11.34	101.83	118.92	1.45	13.44	18.28
36	ĸ	-	-	-	-	-	
36	1	4.08	144.59	67.57	0.87	6.91	nda
36	T	-	-			-	-
36	m	-	-	-	-	-	-
26	k	-	-	-	-	-	-
26	m	-	-	-	-	-	-
26	1	-	-	-	-		-
26	k	-	-		-		-
26	1		-	-	-	-	-
26	m	-	-	-	-	-	-

9 π	n -	10.94	5.33	51.44	1.61	20.56	11.67
9]	_	10.33	94.13	87.81	2.11	17.36	nda
9)	ζ	·	-		-	-	-
10 m	n	10.22	6.00	56.11	3.19	21.08	19.46
10 1	C	-	-	-	-		-
10]	L	-	-	-	-	-	-
12 m	n		-			-	-
12]	L	-	-	· _	-	-	-
12 4	c	-	-	-	-		-
4]	L	-	-			-	-
4 }	c	-				-	-
4 n	n	8.96	6.00	60.29	1.33	6.34	nda
28]	L	8.46	94.08	82.54	2.13	15.07	8.09
28 }	C i	-	-	-	-		-
28 }	c	10.60	26.61	101.25	1.48	25.49	nda
28 m	n	-	-	-	-	-	-
22]	L	-		-		-	-
22]	L	-	-		-	-	-
22 }	c	-		-		-	-
22 n	n	-	-	-	-	-	-
30 }	C	-	-	-	-	-	-
30 }	۲.	-	-	-	-	-	-
30 r	n	-	-	-	-	-	-
30]	L	5.79	74.46	62.37	1.03	11.98	nda
Zapadni Rookery							
27 }	c	1.91	26.72	87.41	2.08	16.21	12.49
27 m	n	1.31	6.73	84.18	2.22	33.33	45.75
27]	L		_		_	_	-
27]	L		-	-	-	-	-
28]	L	1.30	35.98	7.94	1.11	13.02	21.16
28 r	n	-	-			-	-
28]	c	0.55	18.44	70.74	1.50	10.94	5.86
20]	1	-	-	-		-	-
20 1	n	2.89	6.64	57.50	5.94	35.94	nda
20]	c	2.20	32.96	85.73	3.32	15.60	nda
4]	c	2.06	26.61	87.11	2.25	14.42	9.88
4 3	L	0.39	140.53	101.36	3.16	16.67	17.11
4 r	n	-	-	-		-	-
5 }	۲.	1.06	34.71	79.18	3.65	17.65	nda
5]	L	0.62	185.54	68.65	2.52	12.31	11.38
5 r	n	-	-		-		-
26 r	n		6.17	56.12	4.90	18.45	nda
26]	1	-	-	-	-		-
26]	ĸ	-	-	-	-	-	-
16 .	1	1.28	49.09	73.72	3.72	12.50	18.58
16 1	n	-	-	-	-	-	-
16]	k	-	-	-	-	-	-
17 .	1	-	-	-	-	-	-
17 1	m	-	-	-	-	-	-
17]	ĸ	3.02	43.92	100.12	1.20	15.31	12.42
3	1	-	-	-	-	-	-
3	1	-	-			-	-
3 1	m	-			-	-	-
3]	k	1.92	31.80	77.92	1.02	14.14	nda

	25 k	1.36	28.21	110.05	1.30	20.11	11.96
	25 m	3.33	5.45	111.33	1.39	22.42	33 33
	25 1	1.11	92 21	73 77	1 22	15 16	nda
	11 1	1 16	70 67		1 20	15.10	nua
	11 1	2 00	72.07	00.00	1.30	12.50	nua
	11 K	2.00	20.89	88.52	1.06	14.83	9.32
	11 M	3.54	5.05	75.70	1.30	18.21	9.89
	2 m	2.73	4.82	67.27	1.36	16.82	nda
	2 K	2.57	28.01	98.21	1.18	17.02	nda
	2 1	5.14	201.61	75.63	0.90	12.54	nda
	19 m	2.84	24.88	114.68	1.94	17.91	nda
	19 k	2.13	27.08	92.71	1.46	15.00	nda
	19 1			-	1.40		nuu
	18 2	1 66	11 42	00 45	0.05		-
	10 1	1.00	11.42	02.40	0.85	10.01	naa
	10 1	1.2/	65.14	81.22	1.20	14.04	31.51
	18 m	1.09	6.83	76.39	1.91	24.59	nda
	13 m	1.24	5.12	64.41	1.88	21.18	22.35
	13 k	1.84	21.63	97.96	1.43	18.40	nda
	13 1	0.90	73.90	64.63	1.12	11.78	5.58
							0100
i R	ookerv						
	eenerj						
	22 1	2 51	60 54	7 0 / -			-
	32 I	3.51	69.54	70.65	1.45	13.74	nda
	32 m	2.43	6.18	86.25	2.35	25.74	22.79
	32 k	1.68	4.79	99.74	2.07	24.61	36.27
	19 l	0.87	113.42	75.12	1.38	15.10	8.72
	19 m	1.61	8.62	67.74	1.86	17.14	16.13
	19 k	1.42	20.14	93.65	1.84	18.40	nda
	19 k	0.85	19 19	80 57	1 75	16 67	nda
	n 5 m	9 10	1 01	57 70	1.75	10.07	nua
	5 16	9.10	4.94	57.70	2.13	30.34	nda
	5 K	0.98	20.90	94.79	1.41	17.09	23.50
	51	0.48	75.49	80.77	1.32	14.29	nda
	12 K	0.26	24.36	77.52	1.37	14.96	10.26
	12 1	3.95	54.71	68.92	1.27	12.75	nda
	12 m	6.23	7.31	79.77	2.54	29.92	nda
	14 m	-	-			-	-
	14 k	4.43	21.00	92.26	1.65	15.65	nda
	14 1	3.61	71.50	81.80	1.19	12.59	nda
	14 1	5 50	79 57	60 29	1 27	12.04	1 20
	17 1	5.30	27 05	00.28	1.2/	13.94	1.20
	17 m	5.27	27.05	92.78	2.07	16.46	nda
	17 M	5.66	5.71	90.85	3.11	16.51	9.43
	17 1	4.17	96.98	78.61	0.63	11.51	nda
	15 1	4.05	95.25	68.61	0.94	12.14	nda
	15 k	1.88	24.49	84.01	0.98	14.31	nda
	15 m	2.79	4.77	58.76	1.04	28.49	nda
	28 k	3.03	47.22	90.54	1 69	15 35	0 41
	28 m	2 4 9	4 95	67 92	1 20	17 22	
	20 1	1 07	122 22	70 50	1.39	10 00	
	20 1	1.97	133.32	/9.58	0.89	18.92	8.11
		2.09	30.94	94.32	1.28	21.79	nda
	21	1.03	66.75	69.45	0.74	12.86	nda
	2 m	0.99	6.26	66.08	1.35	22.81	nda
	29 m	3.07	6.07	68.71	0.98	24.54	nda
	29 1	0.85	74.98	84.15	1.01	15.54	nda
	29 k	2 18	31.62	86 84	1.20	17 00	nda
	31 1	0 75	60 12	72 22		17 17	nda
	JI I-	0.75	00.14	13.22	0.70	1/.1/	nud a
	JT K	1.52	27.28	92.00	1.10	18.40	nda
	. J I M				· _		-

Tolsto

9]	L	1.32	129.19	92.91	1.37	20.09	10.68
9 }	τ	1.33	27.73	96.64	0.86	19.14	13.28
9 n	n	· 🕳	-	-	-	-	-
41]	L	1.95	83.46	72.37	0.78	16.23	nda
41)	C	1.71	24.87	93.07	0.96	21.93	nda
41 r	n	2.11	6.33	77.97	2.27	39.84	nda
Redo's							
Polovina Rookery	7						
10]	L	2.18	191.34	46.19	nda	39.56	6.69
10 }	C	4.46	34.77	49.40	nda	55.83	13.04
10 1	n	19.10	24.97	65.70	0.78	//.48	9.96
Zapadni Rookery							
16	1	39.84	69.19	72.22	0.80	77.32	51.71
16	k	10.96	26.46	28.70	0.43	26.16	14.58
16 1	m	15.45	39.23	94.35	1.65	166.40	47.89
20	1	6.26	400.77	60.55	8.47	64.90	76.82
20	k	4.42	37.75	38.67	0.72	42.84	12.91
28	k i	7.73	36.97	67.68	0.26	71.28	nda
28	1	3.23	31.97	38.50	nda	38.82	nda
28 1	m	9.48	34.28	79.28	2.34	104.12	59.18
19	k	3.53	23.55	40.95	0.65	41.40	14.54
19	1	7.47	100.96	83.11	0.37	98.18	28.69
26 1	m	10.27	102.69	92.10	4.23	139.42	137.40
26	1	15.12	36.29	105.71	2.24	123.88	48.24
26	K	4.03	75.27	45.61	0.20	49.16	14.72
.4	m	7.53	24.90	62.42	0.56	86.37	16.67
4	ĸ	2.94	32.20	38.71	0.76	38.07	9.09
4	1	12.76	117.29	141.49	1.65	167.05	nda
5	1	3.45	331.38	35.14	0.38	30.52	6.55
5	K)-	5.16	31.28	56.40	nda	59.03	nda
27	К	12.15	30.33	110.09	1.//	120.05	nda nda
27	m J	5.85	10.78	49.94	nua	01.73	11UA
21	1	8.90	115.09	60.37	1.03	10.74	10 69
3	ĸ	14.28	59.01	90.10	2.95	118./4	19.00
	m v	6.48	11.68	40.39	0.89	58.10	nua
5	7 T	2.80	382.3/	23.00	1.30	20.00	9.13 nda
17	K 1	11.48	/1./5	129.04	1.24	100.//	11ua 0 56
17	1 	TO.22	91.20	92.44	nda	56 53	nda
17	M	3.00	10.57	40.09	Ilua	50.55	nua
Tolstoi Rookery							
14	k	13.43	32.97	138.03	1.48	167.72	nda
14	1	4.75	61.75	58.62	nda	64.83	nda
Gorbatch Rooker	У						
30	k	3.79	18.35	34.41	0.41	40.21	0.36
22	m	27.61	18.66	112.47	3.26	286.16	nda
22	1	3.69	273.26	27.41	0.45	28.97	nda
22	k	24.41	52.36	166.21	2.62	286.46	nda
28	1	14.99	78.82	115.31	1.28	168.90	nda

36	k	7.24	31.37	59.12	nda	73.94	nda
26	k	4.92	32.75	50.11	nda	56.23	nda
26	1	4.46	141.43	58.20	nda	64.82	nda
24	m	15.27	26.04	92.98	1.13	180.57	nda
24	k	3.88	41.10	49.81	nda	54.12	nda
24	k	3.79	36.98	41.84	0.45	44.97	nda
12	k	11.06	31.39	50.45	nda	55.26	nda
10	1	11.89	84.31	53.03	nda	61.31	nda
10	k	9.48	20.77	39.91	0.50	42.42	nda
10	k	4.66	14.22	46.34	0.55	52.91	nda
9	m	27.74	110.82	101.23	7.62	277.40	nda
9	k	7.83	26.84	43.36	0.78	49.78	nda 🕤
9	k	16.61	30.66	87.00	0.79	106.52	nda
4	m	15.66	19.35	73.19	0.63	104.52	nda
North East Poin	nt West						
32	k	9.64	16.80	31.97	0.70	34.02	5.37
32	m	35.27	21.94	98.15	0.42	360.12	nda
32	1	14.71	65.72	99.97	0.21	137.62	nda
14	k	3.87	22.91	27.94	0.35	30.21	nda
14	m	7.45	10.23	50.77	0.77	60.80	nda
14	m	13.17	5.77	52.84	0.06	116.31	nda
14	1	5.41	37.48	55.92	0.68	67.78	nda
14	1	6.28	37.84	66.56	0.28	87.48	nda
Tolstoi Rookery	Į.						
9	1	3.26	97.63	41.08	nda	50.37	nda
9	k	10.26	28.05	95.31	0.37	128.65	nda
9	m	4.57	7.62	58.51	nda	108.37	nda
15	m	6.15	6.96	38.16	0.46	63.01	nda
15	1	27.03	84.36	103.89	0.79	260.40	nda
15	k	15.70	29.32	93.80	1.16	145.13	nda

Table A13. Concentrations (ppm, dry weight) of elements in tissues collected in St. George Basin planning area, April, 1976, from Freeman Miller vessel. From OCSEAP report by Robertson and Abel (1979: Tables A.9, G.1 and G.2). The authors did not label the dispersion estimates accompanying the means, nor provide sample sizes.

						Water depth		Ag ppm		As ppm	
Sta	tion	Lati	itude	Longi	tude	(m)	Taxon	Mean		Mean	
MF	3	54d	47.3m	165d	18.3m	161.9	king crab	0.82	0.03	<0.25	
MF	5	54d	43.6m	165d	17.2m	167.9	rock sole	<.034		21	1
MF	25	54d	50.4m	166d	35.8m	183.8	pollock	<.015		11	1
MF	27	55d	Om	166d	15.2m	112.8	rock sole	<.011		19	1
MF	29	55d	9.3m	166d	2m	134.6	king crab	0.93	0.01	34	1
MF	31	55d	32.1m	165d	26m	114.3	Neptunea	8.6		10	1
MF	39	56d	1.6m	166d	19.2m	124.2	pollock	0.032	0.01	4.6	0.2
MF	48	55d	18.3m	167d	28.9m	151	k. crab le	≥g 1.20	0.02	57	1
MF	49	55d	15.4m	167d	37.7m	178.3	pollock	<.025		7.3	0.2
ott	er Is.	57d	3.Om	170d	23.8m		Mytilus	0.12	0.02	6.2	0.7
Ma}	ushin Bay	53d	44.Om	166d	45.8m		Mytilus	0.075	0.03	4.4	1
Eid	ler Pt.	53d	57.5m	166d	35.1m		Mytilus			1.0	1

Cr		Fe Hg		Sb		Se		Zn			
ppr	n	ppm		ppn	n	ppm		ppn	n	pp	om
Mean		Mean		Mean		Mean		Mean		Mean	
<0.10		17	8	0.31	0.20	0.028	0.006	10.7	0.2	134	-
5.60	0.20	19	5	0.47	0.10	0.010	0.007	3.4	0.1	36	-
0.24	0.08	6	2	0.15	0.04	0.019	0.002	0.97	0.01	18	-
0.30	0.05	15	2	0.27	0.03	0.030	0.001	1.7	0.1	30	-
0.44	0.05	26	3	0.20	0.01	0.009	0.003	13	1	136	-
0.69	0.06	1130	10	0.61	0.03	0.110	0.005	3.7	0.1	870	-
<0.6		8	2	0.04	0.03	0.012	0.002	1.15	0.03	31	-
<0.06		<7.5		0.39	0.03	0.087	0.004	4.45	0.03	83	-
<0.10		14	2	0.16	0.04	0.008	0.005	1.5	0.1	27	-
1.60	0.10	230	10	0.12	0.03	0.008	0.006	2.3	0.1	77	-
4.70	0.20	530	10	0.31	0.05	0.084	0.010	2.5	0.1	77	-
1.20	0.10	150	10	0.19	0.04	<.009		2.5	0.1	170	-

Table A14. Concentrations of metals (ppm, dry weight) in subadult male northern fur seals collected on St. George Island in late summer, 1986. Based on Smith (1986: Tables 1 and 2). ND means not detected, i.e., below lower detection limit. Lower detection limits are <.005 ppm for Ag, and <.034 ppm for Pb. Concentrations are single, unsummarized determinations.

Animal	Age	ક						· .	e.
label	(yr)	moist.	Tissue	Cđ	Zn	Hg	Ag	Cu	Pb
1	1	68.6	liver	118	276	50.73	0.37	46	ND
		74.4	heart	3.2	105	0.64	0.07	13	ND
		75.7	kidney	410	278	4.95	0.01	28	ND
2	2	76.5	neck muscle	1.4	97	0.89	0.01	4.5	ND
		69.1	liver	99	229	89.76	0.56	35	ND
		78.9	heart	2.9	174	0.63	0.02	26	ND
		75.1	kidney	297	291	5.59	0.01	22	ND
3	1	76.2	neck muscle	0.3	76	2.24	ND	5.6	ND
		69.6	liver	34	164	36.1	0.44	35	ND
		74.8	heart	0.6	111	1.01	0.01	18	ND
		73.6	kidney	146	185	6.67	0.01	22	ND
4	2	74.6	neck muscle	0.2	96	1.03	ND	5.0	ND
		68.9	liver	18	170	67.77	0.34	14	ND
		75.1	heart	0.4	105	0.84	0.01	15	ND
		75.2	kidney	144	194	4.62	0.01	18	ND

Table A15. Concentrations (ppm) of organic contaminants in four subadult male northern fur seals collected on St. Paul Island in 1980. From Calambokidis and Peard (1985: Table 26).

Tissue &		8	Wet we	ight	Lipid w	eight 🚽
specimen	label	lipids	DDE	PCB	DDE	PCB
Liver						
	486	5.2	0.136	0.092	2.61	1.77
	487	2.6	0.197	0.094	7.59	3.61
	491	3.7	0.259	0.123	6.95	3.31
	488	3.0	0.357	0.106	11.80	3.51
Mean		3.6	0.237	0.104	7.23	3.05
SD		1.1	0.094	0.014	3.74	0.86
Blubber						
	486	83.8	2.69	1.51	3.21	1.80
	487	78.6	7.77	2.21	9.89	2.81
	491	70.3	7.13	2.24	10.10	3.19
	488	71.5	12.50	4.00	17.50	5.60
Mean		76.1	7.52	2.49	10.20	3.35
SD		6.3	4.01	1.06	5.84	1.61

Table A16. Concentrations (ppm) of organic contaminants in four northern fur seals collected on St. George Island, 1986. Trace levels of DDD, DDT, and lindane were also detected but were below quantifiable levels. Based on Calambokidis (1987: Tables 1, 2 and appendix data sheets). Smith (1986) analyzed these four animals for metals and catagorized them as subadult males. Dry weight: SampleAge%labelRookery(yr)Tissue moist.4-4'-DDE 303 Zapadni1heart740.067304 Zapadni-muscle760.220305 Zapadni1liver690.083306 Northeast1muscle750.061 Wet weight: Sample size Tissue DDT PCB dieldrin lindane

 1
 liver
 0.026
 <.06</td>
 trace

 2
 muscle
 0.034
 <.06</td>
 trace

 1
 heart
 0.017
 <.06</td>
 trace

Table A17. Concentrations (ppm, wet weight) of organic contaminants in northern fur seals collected at Pribilof Islands, July, 1972. From Kurtz and Kim (1976: Tables 1 and 2). The range of recoveries of DDT and metabolites was 55 to 66 percent from seal fat and 56 to 58 percent from blood. Analyses for all fat residues except dieldrin and o,p'-TDE were corrected for recovery. TR = trace (approx. 0.01 ppm). ND = no detectable residue, <.003 ppm. Sum o,p'- o,p'- p,p'- p,p'- p,p'p,p'-Aroclor diel- TDE DDT DDE Specimen TDE DDT DDT's 1254 drin Fat tissue: nursing cow #2 6.8 0.16 0.4 1.5 3.8 1.0 2.2 7.0 newborn pup #2 3.8 0.2 3.3 0.6 5.3 0.12 1.0 1.4 nursing cow #3 4.7 0.07 0.1 0.6 2.0 0.4 0.9 3.3 7.2 Т 3.9 0.6 5.8 newborn pup #3 0.3 1.0 1.3 mean of cows 5.8 0.12 0.3 2.9 0.7 5.2 1.1 1.6 5.5 0.06 mean of pups 1.0 5.6 0.3 3.6 0.6 1.4 Two-month old pup **#13** 16 ND TR 0.6 98 4.7 3.1 106 pup #14 TR 81 TR 2.0 70 3.3 3.2 77 TR ND pup #15 1.3 TR 5.1 0.1 0.1 5.3 mean of pups TR 0.9 2.1 33 TR 58 2.7 63 Blood tissue: nursing cow #2 T 0.02 ND ND ND ND ND ND newborn pup #2 T 0.02 ND ND ND ND ND ND nursing cow #3 T 0.02 ND ND ND ND ND ND newborn pup #3 T 0.02 ND ND TR ND ND ND Two-month old pup **#13** T 0.07 ND ND 2.8 0.2 TR 3.0 T 0.06 ND ND 0.6 0.1 TR 0.7 pup #14 pup #15 3.4 0.05 ND ND 10 0.3 0.1 10

0.06

4.5

0.2

4.6

mean of pups

Table A18. Concentrations (ppm, wet weight) of organic contaminants in northern fur seals on St. Paul Island. Six seals, whose sex is unreported, were collected in July in each of three years. Collections were at Northeast Point Rookery in 1975, Reef Rookery in 1978, and Tolstoi Rookery in 1981. Seals collected in 1975 and 1981 were 3 to 4 years old. Based on Kurtz (no date: Tables 2 to 5).

Tissue,

animal	p,p'	p,p'-	p,p'-	o,p'-	Total	Aroclor	Aroclor
& year	DDE	TDE	DDT	DDT	DDT	1242	1254
Fat, 1975:							
FS-2	5.30	0.27	0.28	0.11	5.96	0.10	3.00
FS-7	4.17	0.31	0.53	0.29	5.30	0.07	3.29
FS-8	3.33	0.21	0.29	0.11	3.94	0.12	2.94
FS-10	2.83	0.23	0.39	0.16	3.61	0.07	3.34
FS-12	5.33	0.57	0.67	0.41	6.98	0.14	5.84
FS-14	4.11	0.50	0.72	0.16	5.49	0.15	3.68
1978:							
K78-9	2.51	0.17	0.25	0.10	3.03	0.06	1.63
K78-11	4.33	0.40	0.62	0.17	5.52	0.18	4.62
K78-13	2.43	0.36	0.35	0.33	3.47	0.12	2.31
K78-15	6.70	0.40	0.51	0.23	7.84	0.11	4.21
K78-17	16.2	0.96	1.38	0.72	19.3	0.25	9.38
K78-19	5.90	0.41	0.50	0.66	7.47	0.08	3.17
1981:							
81-M-1	1.41	0.19	0.23	0.11	1.94	0.06	1.29
81-M-2	3.54	0.36	0.39	0.10	4.39	0.09	3.65
81-M-3	3.84	0.46	0.54	0.32	5.16	0.10	3.47
81-M-4	3.26	0.39	0.51	0.24	4.40	0.09	2.71
81-M-5	6.13	0.58	0.67	0.39	7.77	0.21	5.14
81-M-6	3.44	0.27	0.33	0.15	4.19	0.09	3.02
Liver, 1975:							
FS-2	0.17	0.02	<.01	<.01	0.19	<.05	0.14
FS-7	0.19	0.04	<.01	<.01	0.23	<.05	0.22
FS-8	0.28	0.02	0.01	<.01	0.31	<.05	0.39
FS-10	0.32	0.05	<.01	<.01	0.37	<.05	0.48
FS-12	0.35	0.06	<.01	<.01	0.41	<.05	0.05
FS-14	0.15	0.03	<.01	<.01	0.18	<.05	0.22
1978:							
K78-9	0.12	0.02	<.01	<.01	0.14	<.05	0.16
K78-11*	0.19	0.03	<.01	<.01	0.22	<.05	0.29

K78-13	0.11	0.02	<.01	<.01	0.13	<.05	0.17
K78-15	0.19		0 02	< 01	0.24	< 05	0.15
K78-17	0.75		0.02	< 01	0 87	< 05	0.50
K78-19	0.70		< 01	< 01	0.07	< 05	0.30
V/0-13	0.57	0.03	<.01	<.01	0.40	<.05	0.31
1981:							
81-M-1	0.09	0.02	0.01	<.01	0.12	<.05	0.15
81-M-2	0.16	5 0.03	0.02	0.01	0.22	<.05	0.27
81-M-3	0.13	0.03	0.90	<.01	0.18	<.05	0.20
81-M-4	0.14	0.03	0.03	0.01	0.21	<.05	0.19
81-M-5	0.23	0.03	0.02	0 01	0.20	< 05	0 30
81-M-6	0.15	5 0.02	0.01	<.01	0.18	<.05	0.21
Brain	1075.						
EC-2	19101	. < 01	< 01	< 01	0.00	4 05	0.00
F5-2	0.00	S <.01	<.01	<.01	0.06	<.05	0.06
r5-/	0.00		0.01	0.01	0.09	<.05	0.10
FS-8	0.04	0.01	<.01	<.01	0.05	<.05	0.07
FS-10	0.0	3	<.01	<.01	0.03	<.05	0.06
FS-12	0.08	3 0.01	<.01	<.01	0.09	<.05	0.11
FS-14	0.03	8 0.01	<.01	<.01	0.04	<.05	0.06
1978:							
K78-9	0.03	3 0.01	<.01	<.01	0.04	<.05	0.05
K78-11	0.0	5 0.01	<.01	<.01	0.06	<.05	0.08
K78-13	0.0	3 0.01	<.01	<.01	0.04	<.05	0.05
K78-15	0.09	0.01	<.01	<.01	0.10	<.05	0.09
K78-17	0.2	3 0.02	0.02	<.01	0.27	<.05	0.14
K78-19	0.0	5 0.01	<.01	<.01	0.07	<.05	0.07
1981:		÷					
81-M-1	0.03	2 <.01	<.01	<.01	0.02	<.05	0.03
81-M-2	0.05	5 0.01	0.01	<.01	0.07	<.05	0.08
81-M-3	0.04	0.01	0.01	0.01	0.07	<.05	0.07
81-M-4	0.04	0.01	0.01	<.01	0.06	<.05	0.07
81-M-5	0.0	5 0.01	0.01	<.01	0.08	<.05	0.06
81-M-6	0.03	3 <.01	0.01	<.01	0.04	<.05	0.06
Blood.	1975:						
FS-2	0.01	4 <.0013	<.0013	<.0013	0.014	<.013	0.03
FS-7	0,00	3 <.0013	<.0013	<.0013	0.008	<.013	<.013
FS-8	0.00	7 < .0013	<.0013	<.0013	0.007	<.013	<.013
FS-10	0.00	9 < .0013	<.0013	<.0013	0.009	<.013	<.013
FS-12	0.00	5 < 0.0013	<. 0013	<. 0013	0.005	<.013	0 02
FS=14		5 < 0013	< 0013	< 0013	0 005	< 013	< 013
10 74	0.00		~•0013	Z.0013	0.000	~•0T3	~•013
1978:							
K78-9	0.00	3 <.0013	<.0013	<.0013	0.008	0.02	0.02
K78-11	0.01	2 <.0013	<.0013	<.0013	0.012	<.013	0.02

K78-15 $0.039 < .0013 < .0013$ $<.0013 & 0.039 < .013$ 0 K78-17 $0.046 & 0.002 < .0013$ $<.0013 & 0.048 < .013$ 0 K78-19 $0.028 < .0013 < .0013$ $<.0013 & 0.028 < .013$ $<.013$ 1981: $81-M-1$ $0.004 < .0013 < .0013$ $<.0013 & 0.004 < .013$ 0 81-M-2 $0.01 < .0013 < .0013$ $<.0013 & 0.014 < .013$ 0 $81-M-3$ $0.009 < .0013 < .0013$ $<.0013 & 0.009 < .013$ $<.013$ $81-M-4$ $0.009 < .0013 < .0013$ $<.0013 & 0.009 < .013$ $<.0013 & 0.009 < .013$	03
K78-17 0.046 0.002 $<.0013$ 0.048 $<.013$ 0 K78-19 0.028 $<.0013$ $<.0013$ 0.028 $<.0013$ $<.013$ $<.013$ 1981:81-M-1 0.004 $<.0013$ $<.0013$ 0.004 $<.013$ 0 81-M-2 0.01 $<.0013$ $<.0013$ $<.0013$ 0.014 $<.013$ 0 81-M-3 0.009 $<.0013$ $<.0013$ $<.0013$ 0.009 $<.013$ $<.013$ $<.013$ 81-M-4 0.009 $<.0013$ $<.0013$ $<.0013$ 0.009 $<.013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.0013$ $<.00$	05
K78-19 $0.028 < .0013 < .0013$ $<.0013 0.028 < .013$ $<.013$ 1981: $81-M-1$ $0.004 < .0013 < .0013$ $<.0013 0.004 < .013$ 0 $81-M-2$ $0.01 < .0013 < .0013$ $<.0013 0.01 < .013$ 0 $81-M-3$ $0.009 < .0013 < .0013$ $<.0013 0.009 < .013 < .013$ $<.0013 0.009 < .013 < .013$ $81-M-4$ $0.009 < .0013 < .0013$ $<.0013 0.009 < .013$ $<.0013 0.009 < .013$	
1981: 81-M-1 0.004 <.0013 <.0013	ţ
81-M-1 0.004 <.0013 <.0013	
81-M-2 0.01 <.0013 <.0013	02
81-M-30.009 <.0013 <.0013<.00130.009 <.013<.01381-M-40.009 <.0013	.02
81-M-4 0.009 <.0013 <.0013 <.0013 0.009 <.013 0	3
	. 02
81-M-5 0.015 <.0013 <.0013 <.0013 0.015 <.013 <.013	3
81-M-6 0.006 <.0013 <.0013 <.0013 0.006 <.013 <.013	

*Approximate losses of 15% in extraction.

Table A19. Percent frequency of occurrence of organochlorine residues in eggs of Pribilof Island seabirds, 1973-1976. In addition to compounds listed here, DDE was found in all samples and PCB's were detected in all eggs. Frequency index is computed as total occurrences/possible occurrences. Total occurrences = no. times an organochlorine was present in eggs; possible occurrences = no. clutches from that species. From Ohlendorf, et al (1982: Table 2).

Question			000		Hepta- chlor	.
Species	N	ססט	DDT	Dielarin	epoxide	Mirex
Northern fulmar	6	83.3	100	83.3	50	33.3
Black-legged kittiwake	10	0	0	10	50	0
Common murre	21	52.4	47.6	61.9	95.2	0

	N	Oxy- chlor- dane	cis- chlor- dane	cis- nona- chlor	нсв	Toxa- phene
Northern fulmar	6	100	33.3	33.3	100	100
Black-legged kittiwake	10	100	0	0	100	100
Common murre	21	100	4.8	9.5	100	81

Table A20. Geometric means of DDE and PCB residue concentrations (ppm, wet weight) in eggs of seabirds at Pribilof Islands. Asterisk denotes species significantly different (P<.05) within a compound. Species were included only if 5 or more eggs were collected. From Ohlendorf, et al (1982: Table 5).

	DDE	PCB's
Black-legged kittiwake	0.033*	0.472
Common murre	0.205	0.239*
Northern fulmar	0.307	0.387

oxychlordane St. Geo. Is. St. Paul Is. Bogoslof Is. cis-chlordane St. Geo. Is. St. Paul Is. Bogoslof Is. cis-nonachlor St. Geo. Is. St. Paul Is. Bogoslof Is. toxaphene St. Geo. Is. St. Paul Is. Bogoslof Is. PCB's St. Geo. Is. St. Paul Is. Bogoslof Is.

0.018 B 0.026 B 0.005 C not determinedB <.001 В <.001 В not determinedC 0.080 B 0.066 B 0.037 A 0.019 AB not determinedB 0.270 B 0.205 B 0.126 B

Table A22. Concentrations of organochlorine residues (ppm, wet weight) in eggs of seabirds in St. George Basin area, 1973-1976. Chemicals not listed were not detected. ND = not detected. N = sample size, i.e., no. eggs. From Ohlendorf, et al (1982: Appendix III). Northern fulmar No. Geometric 95% confid. St. George Island eggs mean interval Range N=6; 1975 DDE 6 $0.307 \ 0.19 - 0.44$.14 - .45DDD 5 0.008 0.002-0.013 nd-.015 DDT 6 0.015 .001-.029 .006-.041 dieldrin 5 0.008 .003-.013 nd-.015 heptachlor epoxide 3 0.005 0-.011 nd-.013 2 6 2 2 Mirex 2 0.002 0-.006 nd-.008 0.067 .021-.12 oxychlordane .007 - .140.001 0-.004 cis-chlordane nd-.005 2 cis-nonachlor 0.003 0-.007 nd-.008 0.055 .033-.077 .028-.089 0.051 .028-.074 .029-.081 HCB 6 toxaphene 6 PCB's 6 0.387 .19-.61 .26-.81 Glaucous-winged gull Bogoslof Island $\mathbf{\hat{r}}$ N=3; 1973 DDE 3 5.16 0-42.0 1.6-11.0 DDT 2 0.037 0-.13 0.214 0-1.1 nd-.073 dieldrin 3 .049-.58 0.036 .013-.59 Mirex 3 .025-.042 0.251 0-1.1 0.058 0-.12 oxychlordane 3 .054-.56 HCB 3 .030-.073 3.55 .38--14.0 PCB's 3 1.8-6.3 Black-legged kittiwake St. Paul Island N=10; 1975 DDE 10 0.033 .022-.044 .014-.066 dieldrin 1 <.001 0-.002 nd-.006 0.003 0-.006 heptachlor epoxide 5 nd-.013 oxychlordane 10 0.034 .029-.039 .023-.043 HCB 10 .015-.060 0.043 .033-.054 toxaphene 10 0.025 .021-.030 .019-.036 PCB's 10 0.472 .35-.60 .23-.68 Common murre Bogoslof Island N=7; 1973 DDE 7 0.119 .11-.13 .10-.13 DDD 1 0.001 0-.004 nd-.008 dieldrin 6 0.034 0-.073 nd-.12

heptachlor epoxide	4	0.004 0008	nd009
oxychlordane	6	0.005 .002008	3 nd009
cis-chlordane	1	<.001 0003	nd005
cis-nonachlor	4	0.008 0016	nd020
HCB	6	0.066 .034098	3 nd096
PCB's	7	0.126 .09216	.0818
St. George Island			
N=11; 19/5			
DDE	11	0.273 .1443	.08479
DDD	10	0.035 .022047	7 nd068
DDT	10	0.013 .007019	nd023
dieldrin	7	0.009 .002016	5 nd025
heptachlor epoxide	11	0.012 .009015	5.005019
oxychlordane	11	0.018 .012024	.004032
HCB	11	0.079 .059098	0.048-0.16
toxaphene	.9	0.037 .003072	2 nd19
PCB's	11	0.270 .2232	.1235
St. Paul Island			
N=10; 1975			
DDE	10	0.135 .09817	.06926
DDD	1	<.001 0-0.002	nd006
dieldrin	6	0.005 .001008	3 nd015
heptachlor epoxide	9	0.011 .005016	5 nd024
oxychlordane	10	0.026 .020033	.012041
cis-chlordane	1	<.001 0002	nd006
cis-nonachlor	2	$0.002 \ 0004$	nd013
HCB	10	0.08 .062098	.04411
toxaphene	8	0.019 .008029	9 nd044
PCB's	10	0.205 .1625	.1131

Table A23. Concentrations of organochlorine residues (ppm, wet weight) in individual eggs of seabirds in St. George Basin planning area. Based on the unpublished, raw data of H. M. Ohlendorf (personal communication, 1988). These data are published in a summarized form in Ohlendorf, et al (1982).

					heptachlor	
	DDE	DDD	DDT	dieldrin	epoxide	Mirex
Northern	0.26	0.0052	0.0076	0.0067	0.0079	
fulmar	0.30	0.0070	0.0086	0.0086		-
St. George Is.	0.44	0.0110	0.0160	0.0150	0.0079	0.0081
1975	0.45	0.0080	0.0110	0.0110	0.0130	0.0040
	0.14	-	0.0057		_	_
	0.28	0.0150	0.0410	0.0074	-	-
Glaucous-winged	6.5	-	0.073	0.580	-	0.040
gull	11.0		0.038	0.080	-	0.042
Bogoslof Is. 1973	1.6	-	-	0.049	-	0.025
Black-legged	0.028	· -	-	_	-	-
kittiwake	0.028	-		-	-	-
St. Paul Is.	0.014	-	-	-	-	-
1975	0.033	-	-		0.0047	-
	0.035	-	-	-	0.0048	-
	0.036	-		-	0.0051	-
	0.019		-	-	0.0043	-
	0.020	-	-	-	-	-
	0.066	-	-	0.0062	0.0130	-
	0.052	-		-	-	~
Common	0.13	0.0075		0.120	0.0092	-
murre	0.12	-	-	0.012	-	-
Bogoslof Is.	0.11	-	-	0.033	0.0073	-
1973	0.13	-	-	-	0.0057	-
	0.12	-	-	0.059	0.0075	-
	0.12	-	-	0.011	-	-
	0.10		-	0.011	-	-
St. George Is.	0.180		0.004	0.0250	0.0160	-
1975	0.150	0.068	-	0.0210	0.0190	-
	0.700	0.048	0.021	0.0055	0.0150	
	0.410	0.016	0.007	-	0.0057	-
	0.140	0.025	0.011	-	0.0092	
	0.084	0.025	0.081	-	0.0052	-
	0.790	0.045	0.022	0.0048	0.0120	-
	0.200	0.048	0.023	0.0190	0.0170	-
	0.160	0.036	0.014	0.0044	0.0120	-
	0.160	0.043	0.023	0.0190	0.0120	-
	0.220	0.026	0.013		0.0084	

St. Paul Is.	0.150				0.0068	
1975	0.150	-	-	-	0.0081	
	0.160	-	-	0.0088	0.0064	-
	0.130	-	-	-	0.0060	-
	0.120	-	-	0.0044	0.0095	-
	0.140	-		0.0082	0.0170	-
	0.260	-	-	0.0150	0.0240	-
	0.093	-	-	-	0.0070	-
	0.087	-	. 🗕	0.0039	-	
	0.069	0.0064	-	0.0062	0.0230	-

oxy-	cis-	cis-			
chlordane	chlordane	nonachlor	HCB	toxaphene	PCB
0 0074	_	_	0 062	0 052	0 20
0.0074	0 0049		0.003	0.032	0.20
0.0530	0.0048	- 0.081	0.052	0.030	0.27
0.1400	-	0.0081	0.089	0.081	0.01
0.1000	-	0.0081	0.028	0.075	0.48
0.0600	0.0042	-	0.057	0.029	0.26
0.0490		. 🛥	0.041	0.033	0.30
0.560	-	-	0.030	-	6.3
0.190	_	-	0.073	-	3.6
0.054	-	-	0.072	-	1.8
0.026	_	-	0.031	0.028	0.28
0.043	-	-	0.044	0.019	0,65
0.028	-	-	0.029	0.019	0.23
0.036	-	-	0.060	0.020	0.68
0.038		-	0.050	0.029	0.48
0.033	-	-	0.056	0.024	0,60
0.023	-	_	0.058	0.019	0.27
0.034	-	-	0.015	0.026	0.47
0.043	-	-	0.045	0.032	0.53
0.040	-	-	0.046	0.036	0.62
0.0042	-	0.0130	0.070	-	0.160
0.0048	-	0.0046	0.050	· •	0.110
0.0086	-	0.0180	0.096		0.084
0.0042		-	0.063	-	0.140
0.0089	0.0054	0.0200	-	-	0.180
0.0044		-	0.088	-	0.130
-	-	-	0.096	-	0.080

0.0160	-	-	0.077	0.1900	0.33
0.0320	-	-	0.068	0.0660	0.34
0.0250	-	-	0.078	0.0310	0.26
0.0094	-	-	0.160	0.0071	0.15
0.0160	-	-	0.053	0.0150	0.27
0.0110		-	0.081	-	0.12
0.0044	-	-	0.048	-	0.32
0.0320	-	-	0.094	0.0360	0.35
0.0170	-	-	0.074	0.0150	0.26
0.0170	-	-	0.070	0.0390	0.26
0.0190	-	-	0.065	0.0210	0.33
0.0377	-	-	0.100	0.0340	0.25
0.0410	-	-	0.082	0.0440	0.28
0.0270	-	-	0.110	0.0270	0.16
0.0270	-	-	0.100	-	0.13
0.0200	-	-	0.062	0.0110	0.19
0.0290	-	-	0.100	0.0150	0.31
0.0310	0.0064	0.0025	0.093	0.0250	0.25
0.0120		0.0130	0.065	0.0061	0.11
0.0140	-	-	0.044	-	0.19
0.0260	-		0.044	0.0270	0.20

Table A24a. Concentrations (ppb, wet weight) of PCB's in two male northern fur seals collected at North East Point Rookery, St. Paul Island, July 29, 1987. Ages of Animal Nos. 1 and 2 are 3 and 2 years, respectively. Based on Wise (pers. comm., 1988).

•

•• .

Means of two tissue extracts analyzed in triplicate; concentration value is the mean value, and numbers in parentheses are one standard deviation. The < values indicate the minimum detectable level for a compound in a sample.

IUPAC PCB #	MM1L013 Liver	MM1K014 Kidney	MM1M015 Muscle	MM1B016 Blubber
bring No. 1.				
8 (2.4')	<1	0.2(0.0)	0.1(0.0)	1.8 (0.0)
18 (2.2'.5)	0.1(0.0)	0.2(0.0)	0.1(0.0)	0.9(0.0)
28 (2,4,4')	0.4(0.0)	0.9 (0.0)	0.5 (0.0)	11.5 (0.7)
52 (2,2', 5,5')	1.3 (0.0)	1.2 (0.0)	0.8 (0.0)	21.7 (0.4)
44 (2,2',3,5')	<1	<1	<1	2.8 (0.1)
66 (2,3',3,5')	2.7 (0.0)	1.4 (0.0)	1.2 (0.0)	29.7 (0.2)
101 (2,2',4,5,5')	0.4 (0.0)	0.8 (0.0)	0.4 (0.0)	7.8 (0.2)
77 (3,3,4,4)	<1	<1	<1	<1
110 (2,3,4,4,5)	1.4 (0.0)	0.9(0.0)	0.8 (0.0)	31.3(1.9)
105 (2, 2, 4, 4, 5, 5)	5.7(0.1)	5.2(0.1)	(0.3)	120(0.0)
138 (2,2',3,4,4',5')	4.3 (0.2)	3.6(0.1)	3.2(0.1)	17.5 (0.9)
126 (3.3'.4.4'.5)	<1	<1	<1	<1
187 (2,2',3,4',5,5',6)	<1	<1	<1	<1
128 (2,2',3,3',4,4',)	<1	<1	<1	<1
180 (2,2',3,4,4',5,5')	1.1 (0.0)	1.4 (0.1)	1.1 (0.0)	1.5 (0.0)
170 (2,2',3,3',4,4',5)	0.4 (0.0)	0.6 (0.0)	0.4 (0.0)	12.0 (0.2)
195 (2,2',3,3',4,4',5,6)	<1	<1	<1	<1
206 (2,2',3,3',4,4',5,5',6)	<1	<1	<1	<1
209 (deca)	<1	<1	<1	<1
Animal No. 2:				
8 (2,4')	<1	<1	<1	<3
18 (2,2',5)	<1	0.3 (0.0)	<1	<3
28 (2,4,4')	0.8 (0.0)	2.3 (0.0)	0.7 (0.0)	13.5 (0.4)
52(2,2',5,p)	1.0 (0.0)	1.8 (0.1)	0.5 (0.0)	12.5 (0.3)
$44 (2, 2', 3, 5') \leftarrow 66 (2, 2', 3, 5')$	<i (0="" 2)<="" td=""><td><1 7 8 (0 3)</td><td><1 (0.1)</td><td><2</td></i>	<1 7 8 (0 3)	<1 (0.1)	<2
101 (2,3), 4, 4, 5, 51	5.2(0.3)	7.8(0.3)	3.1 (0.1)	111 (3.7)
77 (3 3! 4 4!)	<1	<1	<1	<3
118 (2.3', 4.4', 5)	6.7 (0.2)	9.0 (0.1)	1.3 (0.1)	95.5 (5.0)
153 (2,2',4,4',5,5')	15.8 (0.9) 30.8 (0.5)	12.4(1.0)	191 (6.1)
105 (2.3.3'.4.4')	1.3 (0.1)	3.9 (0.1)	1.3 (0.0)	18.6 (1.0)
138 (2,2',3,4,4',5')	10.8 (0.3)20.4(0.7)	7.1 (0.1)	91.6 (1.8)
126 (3,3',4,4',5)	<2	<2	<2	<10
187 (2,2',3,4',5,5',6)	<1	<1	<1	<3
128 (2,2',3,3',4,4',)	<1	<1	<1	<3
180 (2,2',3,4,4',5,5')	3.7 (0.1)	5.9 (0.1)	2.3 (0.1)	32.6 (1.2)
170 (2,2',3,3',4,4',5)	1.4 (0.1)	1.8 (0.1)	0.9 (0.0)	11.6 (0.4)
195 (2,2',3,3',4,4',5,6)	<1	<1	<1	<2
206 (2,2',3,3',4,4',5,5',6))<1	<1	<1	<2
209 (deca)	<1	<1	< T	<z< td=""></z<>

Table A24b. Concentrations (ppb, wet weight) of pesticides in two male northern fur seals collected at North East Point Rookery, St. Paul Island, July 29, 1987. Ages of Animal Nos. 1 and 2 are 3 and 2 years, respectively. Based on Wise (pers. comm., 1988).

Means of two tissue extracts analyzed in triplicate; concentration value is the mean value, and numbers in parentheses are one standard deviation. The < values indicate the minimum detectable level for a compound in a sample.

Pesticide	MM1L013 Liver	MM1K014 Kidney	MM1M015 Muscle	MM1B016 Blubber
Animal No. 1:				
Hexachlorobenzene Aldrin	<1 <1	0.2 (0.0) <1	<1 <1	1.8 (0.0) <1
2,4'-DDE	<1	<1	<1	1.1 (0.1)
4,4'-DDE	36.6 (0.4)	34.4 (1.4)	36.0 (1.4)	1330 (46.9)
	1.2 (0.0)	<1	<1	12.1 (0.5)
2,4'-DDD	3.5(0.1)	3.0(0.1)	2.9(0.1)	118 (4.2)
4, 4' - DDT	$\frac{1}{2.8}$ (0.1)		<1 1 9 (0 1)	<1
Lindane	1.0(0.0)	1.4 (0.1)	1.0 (0.1)	25.7 (0.6)
Heptachlor epoxide	1.1 (0.1)	2.0 (0.1)	2.3 (0.1)	34.1 (0.8)
alpha-chlordane	0.2 (0.0)	0.2 (0.0)	0.2 (0.0)	4.3 (0.1)
Trans-nonachlor	5.9 (0.2)	8.0 (0.2)	8.8 ((0.3)	302 (13.6)
Hentachlor	0.9(0.0)	1.1 (0.0)	0.7 ((0.0)	26.3 (0.7)
Mirex	<1	<1	<1	<1
		`	~1	~1
Animal No. 2:				
Hexachlorobenzene	<1	<1	<1	<2
Aldrin	<1	<1	<1	<2
2,4'-DDE	<1	<1	<1	<3
4,4'-DDE	85.1 (4.3)	187 (6.7)	72.0 (4.6)	1050 (42.4)
	0.9(0.0)	0.5 (0.0)	0.2 (0.0)	0.4 (0.0)
2, 4' - DDT	4.2 (0.2)	9.2 (0.4)	3.3(0.1)	19.0 (1.2)
4,4'-DDT	3.3(0.1)	7.2(0.3)	(0,1)	
Lindane	0.4(0.0)	1.9(0.1)	0.5(0.0)	2.8(0.2)
Heptachlor epoxide	2.4 (0.1)	4.3 (0.2)	1.8 (0.1)	14.7 (0.4)
alpha-chlordane	<1	<1	<1	<1
Trans-nonachlor	6.8 (0.2)	32.7 (0.9)	11.3 ((0.4)	64.8 (2.7)
Heptachlor	0.3 (0.0)	0.8 (0.0)	0.3 (0.0)	1.2 (0.0)
Mirex	< <u>1</u>	<1	<1 21	<2
		·	< <u>-</u>	N6

MERCURY IN ALASKA MARINE SURFACE SEDIMENTS: A REVIEW OF THE REGIONAL DATA

by

Michael T. Bronson

Laboratory for the Study of Information Science 333 Pastore Hall University of Rhode Island Kingston, Rhode Island 02881

Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 691

February 1989

ACKNOWLEDGMENTS

Thanks to to J. V. Gardner, and L. A. Gardner for sharing unpublished data, and to L. Tobiska, and R. A. Vaa for technical support.

This study was funded by the Minerals Management Service, Department of the Interior, through an Interagency Agreement with the National Oceanic and Atmospheric Administration, Department of Commerce, as part of the Alaska Outer Continental Shelf Assessment Program.

·

ABSTRACT

Mercury concentrations reported by eight studies of surface sediments varied significantly among regions of the Alaska shelf. Chukchi Sea data indicated the lowest mercury geometric means, .0121ppm and .0127ppm, for sand and mud, respectively. One Beaufort Sea study reported the highest concentrations, with means of .0615ppm and .0877ppm, for sand and mud, respectively.

Mercury levels did not differ significantly between the mud and sand fractions when data were combined among studies. Laboratory and collection methods differed among the studies and may have affected the mercury estimates, but no clear relationship emerged from a comparison of the reports.
TABLE OF CONTENTS

	Page
ACKNOWLEDGMENTS	. 207
ABSTRACT	. 209
INTRODUCTION	. 213
METHODS	. 213
RESULTS	. 214
The reports	214 215 215 215 217 221
DISCUSSION	. 221
Means	. 221 . 221
REFERENCES CITED	. 225

INTRODUCTION

Offshore mineral and petroleum developments which disturb surface sediments may increase heavy metal pollution in Alaska marine areas. Gold dredges off Nome and drilling pads in Arctic waters, for example, currently introduce toxic metals into the water column. Whether these activities represent a significant pollution problem is an issue of continuing research in Alaska.

Past sampling data on concentrations of heavy metals in Alaska marine sediments may contribute to an understanding of the source and extent of such pollution. First, the likelihood that development will cause significant pollution varies from place to place as a consequence of geographical differences in heavy metal concentrations. In addition, past estimates of these toxic elements can serve as a basis for measuring future effects of development.

This paper examines mercury concentrations reported by past investigators of Alaska shelf regions. The review establishes estimates for mean mercury levels in several regions and tests whether the samples are adequate for indicating patterns of variation in mercury among regions.

METHODS

Reported concentrations of mercury in surface sediments off the Alaska coast were characterized statistically.

Non-proprietary reports, identified in a search of published and unpublished literature, were selected for examination in this review. Only those reports providing ten or more mercury concentrations exceeding the lower detection limit were selected. Mercury samples which may have been affected by specific industrial activity were omitted from consideration in this review for the two studies which reported such activity, i. e. NORTEC (1982) and Rusanowski et al (1988). For these two local studies, only "control" mercury samples known to be unaffected by dredging and effluent disposal are included here.

Each sediment specimen was classified as mud, sand, or gravel by applying the grain-size classification criteria of its report. These grain-size classes were then assigned to the individual mercury values from each report. Subsequent statistical treatments of mercury concentrations were carried out within the grain-size classes. Mud is defined as silt and clay combined.

The mercury concentrations were first summarized as geometric means and confidence intervals by backtransforming from natural logarithms. The log values were examined for departure from an expected normal frequency distribution using tests for skewness and kurtosis. Bartlett's test of homogeneity of variances was applied to the samples using the method described by Sokal and Rohlf (1969:370). Where heterogeneity of variances precluded parametric analysis of variance, a Kruskal-Wallis rank test among studies was performed. Statistical calculations, except Bartlett's test, were carried out with Complete Statistical System, a micro-computer application distributed by Statsoft, Inc., Tulsa, Oklahoma.

All the data reviewed here were taken at face value from the original reports. Data on grain size and mercury concentrations were selected without regard to methods of collection, storage, or laboratory analysis, and were subjected to no modifications other than log transformation.

Mercury concentrations are expressed as parts per million on a dry weight basis. For purposes of statistical calculations, concentrations reported as lower than the lower detection limit were assigned a value equal to the product of the lower detection limit times 0.7.

The alpha level of significance is P<.05 for statistical tests.

RESULTS

The reports

Eight reports with unreduced data on concentrations of mercury in sediment were identified for Alaska shelf areas.

Barnes et al (1974) collected sediment with a variety of instruments in 1971 in the Beaufort Sea. The sampled area lay between 143 and 155 degrees west longitude and extended from the coast to approximately 2,000 meters water depth. It encompassed lagoonal areas and depths less than 10 meters. Barnes and his USGS colleagues provided sediments analyzed by Weiss et al (1974) for Beaufort Sea waters outside lagoons, from approximately 10 meters to 2,000 meters depth.

Barnes and Leong (1971) reported mercury levels from the Chukchi Sea collected in 1970. The sampled area extended from Cape Lisburne northward to 70.5 degrees north latitude and westward from Icy Cape to approximately 168 degrees west longitude.

Nelson et al (1972) sampled mercury in the northern Bering Sea, including Norton Sound, St. Lawrence Island, St. Matthew Island, and offshore Seward Peninsula. The investigation collected sediments at various depths with several instruments. For this review, only the material indicated as surficial sediment by the authors was considered.

Gardner et al (1979) collected surface sediments from the greater St. George Basin area of the southeastern Bering Sea employing three collection methods. The area extended from around the Pribilof Islands southeastward to Unimak Pass in the Aleutian Island archipelago, and lay east of the continental slope. The report associated mercury concentration values with a grain-size distribution in 1976 and only that year's data are reviewed here.

Burrell (1978) reported mercury concentrations determined by H. V. Weiss for the shelf area of northeastern Gulf of Alaska, lying between 140 and 150 degrees west longitude. Although no grain size data were reported for the cruise which collected the mercury samples, the mercury values can be associated with the grain sizes for eight of the stations occupied by the vessel <u>Silas Bent</u> earlier in the year (Burrell, 1978: Table 22).

Two studies measured the affects of artificial perturbations on the sea floor. NORTEC (1982) experimented with drilling mud disposal on sea ice east of the Sagavanirktok River delta in 1980. Rusanowski et al (1988) studied mercury concentrations near the <u>Bima</u> dredge off Nome. This review considered only the sediment collected at Endeavor and Resolution Islands before NORTEC's experimental work, and upstream of the dredge at Nome.

Methods differences

Collection methods varied among the seven studies which reported methods of collecting sediment. There was no indication that any of the studies collected sediment from the same depth range below the sediment surface (Table 1). The three studies which reported the collection depth each sampled from unique ranges. Four studies did not report the depth range for collected sediment, and one study (Rusanowski et al, 1988) reported mercury concentrations from stations unassociated with the grain-size collections.

Storage also differed among the studies. For example, Weiss et al (1974), NORTEC (1982), and Burrell (1978) reported that sediment specimens were frozen (Table 1).

Six of the eight studies measured mercury concentrations by means of atomic absorption spectrometry. In contrast, H. V. Weiss employed neutron activation to determine mercury levels reported by Burrell (1978) and by Weiss et al (1974).

Grain-size criteria

Five reports shared similar grain-size classification criteria for the mud and sand fractions (Table 2). Sand and mud were separated at .062mm to .063mm diameter for the Beaufort Sea (Barnes et al, 1974; Weiss et al, 1974), the Chukchi Sea (Barnes and Leong, 1971), the St. George Basin (Gardner et al, 1979), and the northeastern Gulf (Burrell, 1978). Because Weiss et al (1974) did not report grain sizes, their mercury concentration data are associated in

Table 1. Reported methods for estimating whole-rock concentrations of mercury in surface sediment collected from Alaska shelf areas.

Area & citation	Methods summarized
Beaufort Sea Barnes et al (1974)	Upper 2cm of surface sediment. Stored unfrozen in plastic 4-6 months. Sieved and air dried at room temp. Gentle disaggregation with mortar and pestel. AAS (Vaughn and McCarthy, 1964). Lower detection limit is inferred as .01ppm from the lower boundary of the range.
Beaufort Sea Weiss et al (1974)	Sediments provided by Barnes. Frozen. Neutron activation analysis. No lower detection limit reported.
Chukchi Sea Barnes & Leong (1971)	2-10cm. Sieved and air dried. Gentle disaggregation with mortar and pestel. AAS (Vaughn and McCarthy, 1964). Lower detection limit .01ppm.
No. Bering Sea Nelson et al (1972)	0-10cm. Air dried. Gentle dis- aggregation with mortar and pestel. AAS (Vaughn and McCarthy, 1964). Lower detection limit .01ppm.
St. Geo. Basin Gardner et al (1979)	0-30cm. Stored moist, air tight at 3 deg C. Air dried, ground to <.149mm. AAS. No lower detection limit reported.
Sag Delta NORTEC (1982)	Pipe dredge. Frozen in plastic bags. Digested with K-permanganate, aqua regia, and K-persulfate; cold vapor AAS. Lower detection limits varied .001 to .003ppm.
Nome Rusanowski et al (1988)	Refrigerated. Digested by EPA method 3050. Perkin-Elmer 603 AAS and EPA method 7471. Lower detection limits varied .002 to .035ppm.
NE Gulf Burrell (1978)	Frozen in polyethylene jars. Neutron activation analysis. No lower detection limit reported.

this review with grain sizes shown on the sediment-type map of Barnes et al (1974) for the same region.

For the three other studies, grain-size classes were defined by unequal criteria. NORTEC (1982) expressed grain-

Table 2. Criteria for assigning grain-size classes to mercury concentrations in surface sediment collected from Alaska shelf areas.

•• •

Amon S		Station	Percentage wt.
citation	Mans	labels	
Beaufort Sea Barnes et al (1974)	Sed. type & [Hg]		Mean diam.: silt and clay <.062 sand .062-2.5mm gravel >2.5mm
Beaufort Sea Weiss et al (1974)	[Hg]		None reported. (Criteria are imposed for this review from Barnes (1974).)
Chukchi Sea Barnes & Leong (1971)	Sed. type & [Hg]	&	mud >50% <.062mm sand >50% .062-2mm gravel >25% >2mm
No. Bering Sea Nelson et al (1972)	Sed. type	Lat/lon for each [Hg]	Undefined grain diam. classes are mapped as: silt 0%-50% gravel >50% gravel
St. Geo. Basin Gardner et al (1979)	Gr. size classes & [Hg]	Lat/lon for each [Hg] & gr. size	mud >50% <.063mm sand >50% >.063mm
Sag Delta NORTEC (1982)	1	labels for each [Hg] & gr. size	mud >50% <.045mm sand >50% >.045mm
Nome Rusanowski et al (1988)	:	labels for each [Hg]	Not applicable
NE Gulf Burrell (1978)	:	labels for each [Hg]	Grain size for 8 of 28 stations. mud <.062mm

Table 3. Kruskal-Wallis non-parametric rank tests for grain size affect and study affect on mercury concentrations in mud and sand of the Alaska shelf.

Grain size affect for five studies

Fraction:	Mud	Sand
Sample size:	213	181
Sum of ranks:	43765	34049

Degrees of freedom:	1, 394
Test statistic:	H = 2.320
Probability:	P = .1236 NS

Study affect for seven studies

Study	Sample	size Sum of ran	ks
Beaufort Sea Barnes et al (1974)	172	38964	
Chukchi Sea Barnes & Leong (1971)	51	4283	
No. Bering Sea Nelson et al (1972)	49	11311	
St. George Basin Gardner et al (1979)	100	28300	
Sag Delta NORTEC (1982)	22	4314	
Nome Rusanowski et al (1988)	22	3696	
NE Gulf Burrell (1978)	28	7921	
Degrees of fr Test statisti Probability:	eedom: c:	6, 444 H = 96 P < .0001	

Table 4. Mean mercury concentrations in mud and sand fractions of surface sediment collected from Alaska shelf areas. Mud and sand are defined in the original reports. Sample size is number of sediment specimens. The geometric means and confidence bounds are back-transformed from mean and confidence bounds of the natural logs of the original values. Transformed values of the St. George Basin mercury samples indicated significant skewness (1.04) for mud and significant kurtosis (1.88) for sand. No other samples showed significant departures from normal. Expressed as ppm dry weight of mercury in whole-rock digests.

		Sample	Geom.	
Area & citation	Fraction	size	mean	95% Conf. Int.
Beaufort Sea	mud	119	.0293	.02510341
Barnes et al	sand	53	.0362	.03040431
(1974)	gravel	7	.0157	.01330221
Beaufort Sea	mud	42	.0877	.07770990
Weiss et al	sand	5	.0615	.03431104
(1974)	grave1	1	.036	
Chukchi Sea	mud	19	.0127	.01000161
Barnes & Leong	sand	32	.0121	.01010145
(1971)	gravel	12	.0178	.01340237
No. Bering Sea	mud	17	.0369	.02460554
Nelson et al	sand	32	.0277	.02050373
(1972)	gravel	53	.0253	.02060313
St. George				
Basin area	mud	48	.0464	.04240508
Gardner et al (1979)	sand	52	.0381	.03540410
Sag Delta	mud	10	.0384	.02810524
NORTEC (1982)	sand	12	.0166	.01040266
Nome				
Rusanowski et al (1988)	-	22	.0147	.00780278
NE Gulf Burrell (1978)	-	28	.0402	.03440470

Heterogeneity of variances

Bartlett's test of the five studies which reported grain sizes indicates significant heterogeneity among the variances within sediment fractions (Table 5).

Figures 2 and 3 show confidence intervals which reflect these regional differences in variance. Figure 4 illustrates the proportion of the total sample contributed by each of the studies.

DISCUSSION

Means

The reported mercury concentrations varied widely among the investigations, although the sources of the variation could not be determined. Proportions of mud and sand were shown to have no significant affect on mercury concentrations, and as a result offer little explanation for the regional differences in mercury levels. Similarly, collection depths, storage methods, and analytical procedures showed no clear relationship with variation in mean mercury levels. Consequently, the variation in mercury concentrations among the studies was not attributable to particular factors, including geographic affects.

Variances

Significant heterogeneity of variances placed additional limits on an attempt to measure regional differences in mercury concentrations. The inequality of variances among studies violated an assumption of parametric methods. As a result, analysis of variance cannot be employed to partition total mercury variation into its components and to estimate the relative strength of geographic and grain-size affects.

Furthermore, because the variances must be considered as representing independent "statistical populations" of mercury, the studies' samples cannot be pooled to achieve a single estimate of an overall mean.

Fig. 2. Confidence intervals (95%) for geometric means of mercury in surface sediments of Alaska shelf areas. Nome and NE Gulf samples are all grain size fractions combined. Other area samples are mud fraction.

Fig. 3. Confidence intervals (95%) for geometric means of mercury in surface sediments of Alaska shelf areas. Nome and NE Gulf samples are all grain size fractions combined. Other area samples are sand fraction.

Fig. 4. The proportions of total mud-sand samples for mercury in Alaska shelf areas.

Table 5. Bartlett's test of homogeneity of variances among five studies of mercury concentration in surface mud and sand from the Alaska shelf. Calculations follow Sokal and Rohlf (1969:370). Significant differences in variances are inferred from the test statistics which exceed the critical chi-square of 9.5 for alpha=.05 and df=4.

Individual studies

	Degrees	
	of freedom	SD
Mud:		
Beaufort Sea	118	.83188
Chukchi Sea	18	.51107
No. Bering Sea	16	.81169
St. Geo. Basin	47	.30995
Sag Delta	9	.49149
Sand:		
Beaufort Sea	52	.62918
Chukchi Sea	31	.50898
No. Bering Sea	31	.83122
St. Geo. Basin	51	.26156
Sag Delta	11	.77887

Studies combined

	Degrees of freedom	Weighted avg. var.	Test chi-square	
Mud	208	49.8	52.2	S
Sand	176	34.2	55.0	S

- Barnes, P. W. and K. Leong. 1971. Distribution of copper, lead, zinc, mercury, and arsenic in the surface sediments off the coast of northwestern Alaska. USGS Misc. Field Studies Map MF-316.
- Barnes, P., K. Leong, and C. Gustafson. 1974. Map showing distribution of copper, lead, zinc, mercury, and arsenic in the sediments off the coast of northern Alaska. USGS Misc. Field Studies Map MF-614.
- Burrell, D. C. 1978. Natural distribution and environmental background of trace heavy metals in Alaska shelf and estuarine areas. Environmental Assessment of the Alaska Continental Shelf, Annual Reports 8:199-494.
- Gardner, J. V., T. L. Vallier, and W. E. Dean. 1979. Sedimentology and geochemistry of surface sediments and the distribution of faults and potentially unstable sediments, St. George Basin region of the outer continental shelf, southern Bering Sea. Final report to OCSEAP for Research Unit #206. 88pp.
- Nelson, C. H., D. E. Pierce, K. W. Leong, and F. F. H. Wang. 1972. Mercury distribution in ancient and modern sediment of northeastern Bering Sea. USGS Open-file report 533. 17pp.
- Northern Technical Services (NORTEC). 1982. Above-ice drilling effluent disposal tests; Sag Delta No. 7, Sag Delta No. 8 and Challenge Island No. 1 wells, Beaufort Sea, Alaska. Prepared for Sohio Alaska Petroleum Co., Anchorage, Alaska. 185pp.
- Rusanowski, P. C., L. A. Gardner, and S. C. Jewett. 1988. Nome offshore placer project. 1987 annual report, prepared for Western Gold Exploration and Mining Co., Nome, Alaska.
- Weiss, H. V., K. Chew, M. Guttman, and A. Host. 1974.
 Mercury in the environs of the north slope of Alaska.
 Pp. 737-746 in The Coast and Shelf of the Beaufort Sea.
 J. C. Reed and J. E. Sater (eds.). Arctic Institute of North America. Proc. of a symposium on Beaufort Sea coast and shelf research.

NATURAL DISTRIBUTION AND ENVIRONMENTAL BACKGROUND OF TRACE HEAVY METALS IN ALASKAN SHELF AND ESTUARINE AREAS

by

David E. Robertson and Keith H. Abel

Battelle Pacific Northwest Laboratories Richland, Washington 99352

Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 506

November 1979

ACKNOWLEDGMENTS

This study was supported by the Bureau of Land Management through interagency agreement with the National Oceanic and Atmospheric Administration, under which a multi-year program responding to needs of petroleum development of the Alaskan continental shelf is managed by the Outer Continental Shelf Environmental Assessment Program (OCSEAP) Office.

SUMMARY

Data are presented which help describe the natural distribution and environmental background of trace metals in Alaskan shelf and estuarine areas selected for future offshore oil exploration and recovery. This baseline information will provide a basis for assessing any future environmental perturbations of the trace metal distribution in the Alaskan shelf environment by the oil production operations. The suite of trace metals which have been emphasized in our phase of the overall Outer Continental Shelf Environmental Assessment Program (OCSEAP) are those most amenable to measurement by neutron activation analysis and include V, As, Sb, Zn, Co, Ba, Mn, Fe and Cr. These analyses complement the measurements of other investigators using atomic absorption spectrometry and X-ray fluorescence techniques. In addition to the above elements we have also measured other major and trace elements automatically detected by the instrumental neutron activation methods which we employ. This multielement approach is extremely valuable because much additional information is available to more completely characterize the biogeochemistry and history of the many samples which have been analyzed.

Between June, 1975 and September 1978, we have participated in five separate cruises off the Alaskan shelf to collect sediments, suspended particulate matter and seawater for trace metal analyses. These cruises covered the Bering Sea, the Gulf of Alaska, Cook Inlet and the Shelikof Strait. In addition sediment samples from Norton Sound, the Chukchi Sea and the Beaufort Sea were supplied by Dr. David Burrell of the University of Alaska. Biological samples of shelf and intertidal marine organisms were supplied to us from the April-June, 1976 sampling set by Drs. David Burrell and Howard Feder. During the program field efforts 631 samples

ranging from sediments (300 samples), suspended particulates (109 samples), water (137 samples) and biota (85 samples) were collected from the various study areas. Of this total of 631 samples, analyses were conducted on 451 including 109 suspended particulate samples, 133 sediments samples, 124 water samples, and 85 biota samples. All samples including the remainder of those analyzed have been frozen and retained for archival purposes.

In general, the Alaskan OCS study areas are characterized by trace metal concentrations and distributions in the sediments, suspended particulates, seawater and biota which are quite typical of uncontaminated coastal regions at the mid-latitudes. Considerable variability in trace metal distributions in sediments, suspended matter, seawater and biota is evident. However, these variations fall within the expected range when compared with literature values for other mid-latitude locations.

This baseline data will be of value in assessing any future potential trace metal impacts due to offshore oil recovery. However, based on the data at hand we cannot conceive of any activities related to offshore oil recovery that could <u>significantly</u> alter or provide a detrimental impact upon the trace metal distributions in the lease areas. Any impact from these activities would likely be so small as to be masked by the natural geographical and temporal variations in trace metal distributions in the sediments, suspended matter, water and biota. The trace metal concentrations in the oil itself (with the possible exception of vanadium) are so low compared with the concentrations naturally present in the sediments, suspended particulates, seawater and biota that no foreseeable trace metal contamination could result directly from oil pollution. More probable trace metal impacts, although viewed as non-problems, might result from the

physical disturbances created by the platform construction, drilling operations and dredging that accompany the oil recovery operations. However, natural disturbances or processes such as storms, tidal cycles and river drainage would probably overshadow the small scale and localized perturbations in trace metal distributions which could possibly result from the oil related activities. .

· · · ·

TABLE OF CONTENTS

		Page
AC	KNO	WLEDGMENTS 229
SUI	мма	RY
LIS	t of	FIGURES
LIS	t of	TABLES
I.	INT	RODUCTION
II.	SO	URCES, METHODS AND RATIONALE OF DATA COLLECTION
111.	AN	ALYTICAL METHODS 244
IV.	RE	SULTS AND DISCUSSION
V.	со	NCLUSIONS
APF	PENI	DIXES
	Α.	Sample Inventory and Disposition 259
	В.	Sample Grids Utilized During Alaskan Shelf Studies
	C.	Elemental Composition of Alaska Shelf Surficial Sediments
	D.	Display of Surficial Sediment Composition
	E.	"Available" Metals in Alaskan Shelf Sediments
	F.	Suspended Particulate Composition in Alaskan Shelf Waters
	G.	Elemental Composition of Alaskan OCS Biological Materials
	Н.	Dissolved Trace Element Concentrations in Alaskan Shelf Waters 411

LIST OF FIGURES

	Page
Figure B.1	Sampling Locations in the Northwest Gulf of Alaska 273
Figure B.2	Sampling Locations in the Northeast Gulf of Alaska 274
Figure B.3	Sampling Locations in Cook Inlet and Shelikof Strait 275
Figure B.4	Sampling Locations in the Bering Sea
Figure B.5	Sampling Locations in Norton Sound
Figure B.6	Sampling Locations in the Chukchi Sea
Figure B.7	Sampling Locations in the Beaufort Sea
Figure B.8	Sampling Locations for Intertidal Biota
Figures D.1-D.11	Al, Fe, Ca, Mn, V, Ba, Cr, Co, Sc, As, Sb Concentrations in Northwest Gulf of Alaska Surficial Sediments
Figures D.12-D.22	AI, Fe, Ca, Mn, V, Ba, Cr, Co, Sc, As, Sb Concentrations in Northeast Gulf of Alaska Surficial Sediments
Figures D.23-D.33	Al, Fe, Ca, Mn, V, Ba, Cr, Co, Sc, As, Sb Concentrations in Bering Sea Surficial Sediments
Figures D.34-D.43	AI, Fe, Mn, V, K, Cr, Co, Sc, As, Sb Concentrations in Shelikof Strait and Cook Inlet Surficial Sediments 340
Figures D.44-D.55	AL, Fe, Mn, V, K, Cr, Co, Sc, As, Sb, Eu, Th Concentrations in Norton Sound Surficial Sediments 350
Figures D.56-D.65	AI, Fe, Mn, V, K, Cr, Co, Sc, As, Sb Concentrations in Chukchi Sea Surficial Sediments
Figures D.66-D.75	AI, Fe, Mn, V, K, Cr, Co, Sc, As, Sb Concentrations in Beaufort Sea Surficial Sediments
Figure F.1	ERTS Satellite Photograph of the Northeast Gulf of Alaska

•

LIST OF TABLES

Page

Table A.1	Sediment and Water Sample Station Coordinates and Sample Disposition for the Western Gulf of Alaska
Table A.2	Sediment and Water Sample Station Coordinates and Sample Disposition for the Eastern Gulf of Alaska
Table A.3	Sediment and Water Sample Station Coordinates and Sample Disposition for Cook Inlet and Shelikof Strait
Table A.4	Sediment and Water Sample Station Coordinates and Sample Disposition for the Bering Sea
Table A.5	Sediment and Water Sample Stations and Sample Disposition for Norton Sound
Table A.6	Sediment and Water Sample Stations and Sample Disposition for the Chukchi Sea
Table A.7	Sediment and Water Sample Station Coordinates and Sample Disposition for the Beaufort Sea
Table A.8	Biological Sampling Stations for Intertidal Organisms and Sample Disposition
Table A.9	Biological Sampling Station Coordinates for Benthic Organisms and Sample Disposition
Table C.1	Al, Ca, Mn, and V Concentrations in Bering Sea, Northwestern Gulf of Alaska, and Northeastern Gulf of Alaska Surficial Sediments
Table C.2	As, Ba, Co, Cr, Fe, Sb, and Sc in Bering Sea, Northwestern Gulf of Alaska, and Northeastern Gulf of Alaska Surficial Sediments
Table C.3	Al, Ti, Mn, and V Concentrations in Cook Inlet, Shelikof Strait, Chukchi Sea, Norton Sound and Beaufort Sea Surficial Sediments
Table C.4	Na, K, As, La, and Sm Concentrations in Cook Inlet, Shelikof Strait, Chukchi Sea, Norton Sound, and Beaufort Sea Surficial Sediments
Table C.5	Sc, Cr, Fe, Co, Sb, Ba, Cs, Eu, Tb, Ta, and Th Concentrations in Cook Inlet, Shelikof Strait, Chukchi Sea, Norton Sound and Beaufort Sea Surficial Sediments
Table C.6	Regional Average Concentrations of Major and Trace Metals 298
Table C.7	Western Gulf of Alaska Surficial Sediment Elemental Correlation Matrix

Table C.8	Eastern Gulf of Alaska Surficial Sediment Elemental Correlation Matrix
Table C.9	Bering Sea-Bristol Bay Surficial Sediment Elemental Correlation Matrix
Table C.10	Silver Concentrations in Selected Alaskan Shelf Surficial Sediments
Table C.11	Silver Concentrations in Two Sediment Cores from the Alaskan Shelf
Table E.1	"Available" Vanadium in Alaskan OCS Sediments
Table E.2	"Available" Manganese in Alaskan OCS Sediments
Table E.3	"Available" Fe, Co, Sc in Alaskan OCS Surficial Sediments
Table F.1	Elemental Concentrations of Suspended Particulate Material from the Alaska Outer Continental Shelf
Table F.2	Elemental Composition of Suspended Particulate Material in Alaskan Shelf Waters
Table F.3	Elemental Concentrations in Cook Inlet and Shelikof Strait Suspended Particulates
Table F.4	Cook Inlet-Time Series-Suspended Particulate Matter Station CB-10
Table F.5	Elemental Concentration Ranges in Suspended Particulate Material from the Alaska Outer Continental Shelf Study Areas
Table G.1	Elemental Composition of Biological Materials from Alaska Continental Shelf Study Areas
Table G.2	Vanadium Concentrations in Selected Alaskan OCS Biological Materials
Table G.3	Mean Concentrations of Selected Elements in Alaska OCS Biota 410
Table H.1	Vanadium Concentrations in Alaska Coastal Waters
Table H.2	Dissolved Vanadium Concentrations in Cook Inlet and Shelikof Strait Waters
Table H.3	Dissolved Manganese Concentrations in Cook Inlet and Shelikof Strait Waters
Table H.4	Vanadium Concentrations in Alaska Shelf Waters
Table H.5	Dissolved Trace Elements in OCS Sea Water

I. INTRODUCTION

The projected recovery of crude oil from the Alaskan continental shelf carries with it the risk of altering this environment by physical perturbations or spillage of crude oil. Such disturbances could result in detrimental impacts on the natural cycling of trace metals in the shelf environment. It is therefore necessary to perform pre-development evaluations of the trace metal distributions and behavior in promising shelf areas so that any future contamination or perturbation may be identified, quantified and assessed.

The primary objective of this study is to determine environmental baseline concentrations of selected trace metals in seawater (both dissolved and suspended fractions), in sediments, and in selected marine "indicator organisms" of the Alaskan Outer Continental Shelf study area.

The research plan that has been formulated was designed to complement the University of Alaska's program under the direction of Dr. David C. Burrell by measuring those trace metals most amenable to neutron activation analysis. Of the total suite of elements measured in the overall program we have concentrated our efforts on the analyses of V, As, Sb, Co, Ba, Mn, Fe, and Cr in sediments, biota and seawater. We do, however, measure additional major and trace metals automatically detected by the instrumental neutron activation analysis methods which we employ, and these measurements are included in this report.

This final report includes results of all analyses performed during our research efforts associated with the Alaskan shelf program including first field efforts in June 1975 through final sampling in September, 1978. Areal coverage extends from the Gulf of Alaska to the Bering Sea, Norton Sound, the Chukchi Sea, and to the Beaufort Sea.

This report contains information detailing the elemental composition of sediments, biota, and within the water column (both soluble and dissolved) for extensive areas of the Alaskan continental shelf. This information is useful since for many of the areas covered herein, previous data concerning elemental composition was scant to nonexistent, and the data reported provides a benchmark against which alterations caused by anthropogenic activities, including petroleum and other mineral extraction, can be measured.

II. SOURCES, METHODS AND RATIONALE OF DATA COLLECTION

A. <u>Sources of Samples</u>

During our participation in the Alaskan OCS program from first field efforts in June, 1975 to final field sampling in September, 1978, sediments, suspended particulate matter, and seawater samples were obtained from the Bering Sea (OSS Discoverer, June, 1975), the Western Gulf of Alaska (OSS Discoverer, October, 1975), the Eastern Gulf of Alaska (OSS Discoverer, November-December, 1975), and Cook Inlet and Shelikof Strait (OSS Discoverer, May, 1978 and August-September, 1978). In addition, samples from cruises in Norton Sound (OSS Discoverer, September, 1976), the Chukchi Sea (OSS Discoverer, September, 1976) and the Beaufort Sea (USCGC Glacier, August-September, 1976) were supplied to us by Dr. David Burrell of the University of Alaska Institute of Marine Science.

Biological samples of intertidal organisms were supplied to us from the May-June, 1976 sampling set by Drs. David Burrell and Howard Feder. Benthic biota samples from the South Bering Sea (OSS Miller Freeman, April, 1976) were likewise supplied to us by Drs. Burrell and Feder.

Information regarding geographical station locations, types of samples obtained, and sample disposition are shown in Tables A.1 through A.9 of Appendix A. Regional sampling grids are displayed in Appendix B, Figures B.1 through B.8. During the program field efforts 631 samples ranging from sediments (300 samples), suspended particulates(109 samples), water (137 samples) and biota (85 samples) were collected from the various study areas. Of this total of 631 samples, analyses were conducted on 451 including 109 suspended particulate samples, 133 sediments samples, 124 water samples, and 85 niota samples. All samples including the remainder of analyzed samples, as well as those unanalyzed have been frozen and retained for archival purposes as noted in the Tables A.1 through A.9.

B. Methods of Sample Collection

Water samples were obtained via the stern hydrowinch and rosette aboard the OSS Discoverer using Top Drop $\mathbb{R}^{\mathbb{R}}$ Niskin Bottles during the 1975 field work and Teflon coated Go Flo $\mathbb{R}^{\mathbb{R}}$ Niskin Bottles during 1978 field work. The Niskin Bottles were acid washed prior to use and kept closed until the last possible moment before water sampling to avoid potential contamination from the ships atmosphere. Water samples were filtered through 0.4μ Nuclepore filters using a specially designed all plastic filtration system. During filtration the

102 Niskin bottle was pressurized using N_2 and the water forced through an in-line filter assembly which was attached to the Niskin bottle outlet by a short piece of acid-washed polyethylene tubing. The water sample for analysis was taken after approximately 4-5 liters of water had washed through the filter assembly; in this way potential contamination during filtration was minimized.

The 0.4μ Nuclepore filter was saved for suspended particulate analysis after 10 or more liters of seawater had been filtered. Where possible the filter was further rinsed with an aliquot of distilled deionized water to remove the sea salts and thus facilitate analysis by neutron activation.

Sediment cores were obtained using a HAPS corer of Danish design. Surficial sediment cores of up to 30 cms were obtained with very minimal disturbance of the sediment surface. These cores were then sectioned into 2 cm intervals on shipboard using all plastic tools, the core segments placed into wide mouth 500 ml plastic bottles and frozen for return to the laboratory for subsequent analysis.

Biota samples were placed in plastic bags and kept frozen until analysis.

C. Rationale of Data Collection

Since little or no information existed previous to these field efforts concerning trace metal distributions in the OCS Alaskan shelf study areas, the initial phases of the program were designed to give maximum geographical coverage and thus generate baseline information concerning as wide an area of the Alaskan shelf as possible. Since potential impacts from oil production and transportation were the primary concern and the top of the sediment column would be first likely effected by oil spills, sediment examinations focused upon shallow coring and examination of the upper few centimeters of sediment. Likewise, water sampling was conducted in the nearshore shelf areas. Here the water column is generally well-mixed in most locations excepting estuaries and thus only near-surface and near-bottom water and suspended matter samples were felt necessary. In locations less than 50M only a near-surface sample was taken.

Biological samples focused upon intertidal organisms such as mytilus, while benthic organisms such as Neptunia and crab and the fin fish, rock sole and pollock were analyzed from nearshore waters.

III. ANALYTICAL METHODS

A. <u>Sediments - "Whole Rock" Analyses</u>

Some 300 sediments were collected during the sampling activities. Of these, 133 samples were subjected to neutron activation analysis. Samples were thawed and homogenized, a subsample was then withdrawn and oven dried at 85°C, and the remainder of the original sample refrozen. A wet-to-dry weight ratio was obtained after oven drying and a further subsample taken for neutron activation after the dried sample had been ground in an agate mortar and pestle. The subsample for neutron activation (10-100 mg) was placed into a sealed polyethylene bag and neutron activated along with standard reference materials (NBS Orchard leaf) or well-characterized materials such as USGS standard rocks. Two irradiation intervals and three counting periods were employed for quantitative measurement of short, medium and long-lived activation products via Ge(Li) gamma-ray spectrometry. In this manner the following elements were measured: Al, As, Ba, Ca, Co, Cr, Cs, Eu, Fe, K, La, Mn, Sb, Sc, Ta, Tb, Ti, Th, and V. Although such elements as Al, Ca, Fe, Mn and Sc were not considered to be toxic metals, they do play important roles in various marine geochemical cycles which could potentially be altered by severe oil impaction. These elements are also good indicators of the origin and type of sediment, and their measurement is important in understanding the distribution and geochemistries of the more toxic trace metals of major concern.

Silver concentrations in selected sediment samples were measured by dissolution of the neutron activated sediments by lithium metaborate fusion and then separating the silver by solvent extraction with dithizone. The extracts were counted in an anticoincidence NaI(Tl) well crystal to measure the ^{110m}Ag activity for determining the silver concentrations.

B. <u>Sediments - "Available Fraction" Analyses</u>

In addition to the "whole rock" analyses performed during the earlier baseline survey of the Alaskan shelf, selective leaching experiments were performed to determine the fraction of metals which are presumed to be readily "available" from sediments for biological assimilation. This readily "available" fraction is thought to best represent the part of the total sedimentary repository which might be subject to alteration and/or release due to petroleum related activities.

The methodology settled upon for the determination of "available" metals is that published by Malo, 1977. Briefly, it involves sequential exposure to dilute hydrogen peroxide followed by exposure to 0.3M HCl. Elements investigated by us were V, Mn, Fe, Co, and Sc. Scandium was chosen since it should indicate whether any degradation of mineral matter took place during the weak acid leaching.

C. Suspended Particulate Matter

The suspended particulate matter collected on the Nuclepore filters was analyzed in essentially the same manner as the sediments. The filters were encapsulated in 2/5 dram polyethylene vials and irradiated, along with appropriate standards (NBS Orchard Leaf and USGS Standard Rocks), in the Washington State University Triga reactor. Two irradiation intervals and three counting periods were employed to measure the short, medium and long-lived neutron activation products

D. <u>Seawater</u>

Instrumental neutron activation analysis was employed to measure Zn, Co, Sb, U, Cs, Fe and Rb in selected OCS seawater samples. This was accomplished by evaporating 30 ml of seawater and transferring the salts into 2/5 dram polyethylene irradiation vials. The vials,together with appropriate standards, were neutron irradiated for 16 hours in the Hanford Reactor. Because of the large amounts of 24 Na (15 hr) and 82 Br (36 hr) which interfere with the measurement of other activation products, the samples were stored for 4 weeks following the irradiation to permit the decay of these interferences. The samples were then counted overnight (1000 minutes) on a Ge(Li) gamma-ray spectrometer.

Vanadium analyses require pre-separation from the seawater matrix to eliminate interferences. This was accomplished as follows: to 100 ml aliquots of seawater in precleaned polystyrene beakers was added 5 mg high purity iron solution and 250 μ l of phenol red indicator (0.1 gm per 250 ml of 0.001<u>M</u> NaOH). High purity 1.5<u>M</u> NH₄OH was then added dropwise while stirring until the first permanent color change from yellow to red occurred at a pH of about 7.8 ± 0.3. The Fe(OH)₃ precipitates were allowed to settle for about 20 minutes and the precipitates were then centrifuged and washed 3 times with 0.5<u>M</u> ammonium acetate containing 1 g/ μ of Magnifloc. The precipitates were then transferred to 2/5 dram precleaned polyethylene snap-top vials and were dried slowly under a heat lamp. The vials were then sealed in polyethylene bags and encapsulated in 2-dram polyethylene vials for neutron activation. Vanadium standards (14.2 µg) were prepared by pipetting 10 µl of standard solution onto discs of high purity IPC filter media, drying the discs and encapsulating them in the same manner as the Fe(OH)₃ precipitates. The samples and standards were neutron irradiated at
the Washington State University Triga reactor, one at a time, standards interspersed between samples, for 2.0 minutes each. Following the irradiation the samples were allowed to decay for 2.0 minutes and were then counted directly on a Ge(Li) diode detector for 10 minutes to measure the 1434 KeV γ -ray of ⁵²V (3.8 minutes).

The chemical recovery of vanadium for this procedure was $95.6 \pm 1.4\%$, and the precision and accuracy were estimated to be less than 10%. The average procedural blank amounted to $0.11 \pm 0.03 \mu g/\ell$.

Dissolved manganese concentrations in seawater were determined by neutron activation analyses. The manganese was pre-concentrated by solvent extraction of 500 ml of seawater with 8-hydroxy-quinoline. The organic extract was washed with high purity water and back extracted into dilute nitric acid. The acid was evaporated and transferred into 2/5 dram vials and activated with appropriate standards in the WSU Triga reactor for 6 hours. Several hours after the irradiation the samples were counted for 20 minutes on a Ge(Li) gamma-ray spectrometer to measure the 56 Mn (2.58 hr) activation product.

E. <u>Biota</u>

The instrumental neutron activation analysis of biological tissue samples consisted of encapsulating a 10-100 mg sample of dried tissue (fresh to dry weight ratios were obtained) in a cleaned plastic irradiation vial, and neutron irradiating the sample and appropriate standards to an integral thermal neutron exposure of about 10^{17} n/cm². After the irradiation, the samples and standards were transferred into standard counting geometries and counted on a Ge(Li) detector at optimum times following the irradiation to measure both shortand long-lived neutron activation products. Two to four days out of the reactor the major neutron activation products were ²⁴Na and ⁸²Br, but normally high enough concentrations of ⁴²K and ⁷⁶As were present for accurate measurements.

After the samples had been out of the reactor for about two weeks, most of the 24 Na and much of the 82 Br had decayed to tolerable levels, and a new suite of long-lived neutron activation products were instrumentally measured including Rb, Cs, Fe, Zn, Ag, Co, Cr, Hg, Se, Sb and Sc.

Muscle tissue from the rock sole and pollock were dissected from the dorsal muscle midway between the head and tail. The King Crab muscle tissue was removed from the leg joints which were directly adjacent to the body. The soft parts of the Neptunia were removed from the shell and the upper end of the digestive system was used for analysis. The mytilus soft parts were removed from the shell and analyzed whole.

IV. RESULTS AND DISCUSSION

A. "Whole-Rock" Analyses of Sediments

Table C.1 contains Al, Ca, Mn and V concentrations in Bering Sea and Northwest and Northeast Gulf of Alaska surficial sediments. Core segments down to 24 cm were analyzed and showed no systematic variability in trace metal distribution versus depth. Aluminum and calcium are good indicator elements of the sediment types encountered in these study areas.

Vanadium is an element of particular concern from a potential oil pollution aspect because it is contained in crude oils in relatively high concentrations, ranging from a few ppm to as high as 1200 ppm. The vanadium distribution in sediments within each region is normally rather uniform. However, two stations in the western Gulf of Alaska (GASS-105 and GASSW-122) exhibited unusually low vanadium concentrations in the sediments. Table C.2 contains As, Ba, Co, Cr, Fe, Sb, and Sc concentrations for these same locations. Again no systematic variability versus depth is noted, at least down to 24 cm. Because no variability was noted in the upper 20 cm, only surficial segments were analyzed in water samples from Cook Inlet, Shelikof Strait, the Chukchi Sea, Norton Sound, and the Beaufort Sea. Al, Ti, Mn, and V concentrations are shown for 0-2 cm segments in Table C.3 for these areas while Table C.4 caontains Na, K, As, La, and Sm concentrations, and Table C.5 contains Sc, Cr, Fe, Co, Sb, Ba, Cs, Eu, Tb, Ta, and Th concentrations.

Regional average surface sediment concentrations were calculated for the Eastern Bering Sea, the Northwest Gulf of Alaska, the Northeast Gulf of Alaska, Norton Sound, the Chukchi Sea, and the Beaufort Sea and are shown in Table C.6. The regional averages are in some cases based upon only a few samples, numbers ranging from 5 to 15, however certain conclusions can be made from the table. First, there is considerable variability within each region, perhaps best exemplified by calcium concentrations in the Northwest and Northeast Gulf of Alaska, where the standard deviation about the means are 119% and 54%, respectively. This might well be expected for calcium since its primary source to the sediments may be shells and other biological debris.

The Al and Fe variability are often much less than Ca, being on the order of 15-20% of the mean for most locations.

There appear to be differences in regional average concentrations in certain elements. For example, manganese appears to be lower in the Bering Sea, Norton Sound, Chukchi Sea and Beaufort Sea than in the Northwest or Northeast Gulf of Alaska. The Chukchi Sea appears to be lower in Al, Fe, Mn, Co, and Sc than the other regions. The Beaufort Sea has a much higher regional average arsenic concentration than the other study areas and a somewhat higher iron average concentration.

Correlation matrices were run for the surficial sediments from the Northwestern and Northeastern Gulf of Alaska and the Bering Sea area. These are shown in Tables C.7 through C.9.

Correlations in the Western Gulf appear as expected between Fe and As, Co, Sc, Al, Mn, and V with an inverse Fe, Ca correlation. Calcium correlates negatively with Co, Cr, Fe, Sc, Al, which indicates its source is different, and undoubtely biologically related.

In the Eastern Gulf and Bering Sea, the correlations are not as strongly developed. In the Eastern Gulf, Fe correlates with Co, Cr, and Mn. Al correlates only with Mn, V and negatively with Ca.

In the Bering Sea, Fe correlates with Co, Sc, Mn, and V. Chromium correlates with Ba and negatively with Sc and Mn. Aluminum and calcium do not correlate at the 95% level with any other elements.

Silver concentrations were determined in surficial sediments in Bristol Eay and in the Northwestern and Northeastern Gulf of Alaska, and are shown in Table C.10. Mean values for the three areas were calculated and are also shown in the table. Additionally, the depth distribution of silver was determined in two cores, Bristol Bay Station MB-64 and Eastern Gulf Station 49. The silver concentrations versus depth to 24 cm at MB-64 and to 18 cm at GASSE-49 are shown in Table C.11, and no systemic variability with depth was noted.

The elemental concentrations versus station locations are shown on the geographical grid maps. These are Figures D.1 through D.11 for the Northwest Gulf of Alaska; D.12 through D.22 for the Northeast Gulf; D.23 through D.33 for the Bering Sea; D.34 through D.43 for Cook Inlet and Shelikof Straight; D.44 through D.55 for Norton Sound; D.56 through D.65 for the Chukchi Sea; and D.66 through D.75 for the Beaufort Sea.

B. "Available Metals" in Surficial Sediments

In addition to the "whole rock" analyses performed during the earlier baseline survey of the Alaskan shelf, selective leaching experiments were performed to determine the fraction of metals which are readily "available" from sediments. This readily "available" fraction is thought to best represent that part of the total sedimentary repository which might be subject to biological assimilation or to alteration and/or release of metals due to petroleum related activities.

Elements investigated by us were V, Mn, Fe, Co, and Sc. Scandium was chosen since it should probably indicate whether any degradation of mineral matter took place during the weak acid leaching. Table E.1 shows the peroxide leachable vanadium, weak acid leachable and total available vanadium based upon "whole rock"analysis of a separate sediment split. The fraction leached by the H_2O_2 treatment (supposedly organically bound vanadium) was usually small and ranged from 1.17 to 7.63 μ g/g of dry sediments, or about 1 to 6% of the total vanadium present in the sediments. The 0.3M HCl treatment released significantly more vanadium than the $\rm H_2O_2$, ranging from 7.7 to 28.3 $\mu g/g$ dry sediment, or about 3 to 24% of the total vanadium present. The combined "available" fraction $(H_2O_2 + HC)$ leachable) ranged from 5 to 29% of the total vanadium in the sediment. No systematic geographical trends in the amounts of "available" vanadium were observed from region to region, but considerable differences in "available" vanadium (by factors of 2 to 3) were often observed within regions. This is not unexpected, however, since sediment types and textures vary considerably within each Alaskan shelf region.

The "available" manganese fractions, determined by the same technique, are presented in Table E.2. The total "available" manganese was much higher than for vanadium, and ranged from 21 to 82% of the total manganese present in the sediments. Usually, less than 1% of the manganese was leached by the H_2O_2 treatment; the 0.3M HCl treatment removed, by far, the majority of the "avail-able" manganese.

"Available" fractions of Fe, Co, and Sc were also determined and are shown in Table E.3. Peroxide exposure released very small fractions of these elements, well less than 1% in all cases, indicating minimal organic association in the sediments. However, differing behaviors are noticeable during the hydrochloric acid leaching. Only 1 to 10% of the scandium was available during hydrochloric acid leaching, in fact ranging from 1.63 to 4.97% in all cases except one where 9% was available. This indicates the weak acid exposure was minimally degrading the silicate minerals as should be the case. The Fe and Co fractions available via hydrochloric acid leaching ranged from 4.5 to 27.4%, and 10.6 to 59.1%, respectively.

The 'available" Fe, Co, and Sc in Cook Inlet and Shelikof Strait were relatively uniform averaging $15.4\% \pm 1.6\%$, $33.1\% \pm 2.3\%$ and $3.83\% \pm 0.79\%$ for the elements, respectively, where the \pm is one standard deviation. The variability in the available fraction of Fe, Co, and Sc in the Eastern Gulf, Bristol Bay,

and Western Gulf of Alaska areas was far higher; ranges to as much as approximately a factor of 4 within the study area for Fe, and to a factor of 5 for Sc were observed.

C. Suspended Particulate Matter

The suspended particulate matter in seawater sampled from the OCS study areas is composed of alluvial discharges from rivers, resuspended bottom sediments and planktonic matter or detritus. Thus, the relative trace metal composition of the suspended particulates, as well as the absolute amounts of particulate matter present in the seawater can vary substantially. Table F.1 contains Mn, Al, and V concentrations in $\mu g/\ell$ of seawater for samples from the Eastern Gulf, Western Gulf and the Bering Sea. Table F.2 contains concentrations of As, Ba, Co, Cs, Fe, Sb, Hg, Sc, Se, and Zn for these same locations.

Suspended matter concentrations for Cook Inlet sampled in May and August of 1978 and for the Shelikof Strait during 1978 are shown in Table F.3. The trace metal concentrations in suspended particulate matter ($\mu g/\ell$ of seawater) in Cook Inlet appeared similar on the two dates except for Station CB-1 where larger differences in Al and Mn concentrations are noted. The samples in Shelikof Strait were taken simultaneously with Dr. Feely during the August cruise in the near-bottom nepheloid layers. Dr. Feely had earlier reported anomalously high Mn concentrations in suspended particulate matter from the Shelikof Strait. We also observed elevated Mn concentrations (as well as Al and V) in suspended matter from these locations. There are noticeable differences in the Mn/Al ratios in the Cook Inlet and Shelikof Strait areas. The Cook Inlet averaged ratio of Al/Mn is 0.024:1 while in Shelikof Strait the ratio is 0.051/1, and at Stations SS-6 and SS-13 in the Shelikof Strait the suspended particulate samples show ratios as high as > 0.80/1.0. Thus it appears that the high Mn anomaly associated with the Shelikof Strait is a real phenomenon.

Suspended particulates were also analyzed at the time series station occupied at CB-10 in Cook Inlet during the August 1978 cruise leg. As shown in Table F.4, only slight variability during the tidal cycle occurred during the sampling interval from t = 0 hr through t = 48 hr. However, the lo statistical error associated with the elemental concentration for most elements is generally greater than the differences observed in concentrations over the 8-hr sampling intervals, indicating the variability may not be statistically valid. It should be pointed out that fault does not lie in the analytical method being imprecise, for the $l\sigma$ errors for aluminum, manganese, arsenic, lanthanium, and samarium are 5% or less. Thus, this indicates changes in the suspended particulate composition are approximately equal to or less than 5% over the sampling, intervals. The variability of the replicate samples at t = 0 hr. indicates that sample inhomogeneity is of similar magnitude to the water mass changes from sampling interval to sampling interval.

Table F.5 shows the type of variability in suspended matter concentrations which are encountered in Alaskan shelf waters. As can be seen variation of nearly two orders of magnitude occur indicating the shelf is a very dynamic and complex system with regard to suspended matter transport. Figure F.1, an Earth reconnaissance photograph of the Eastern Gulf of Alaska, gives further visual evidence of the extremely dynamic suspended matter system. The lightened areas represent fresh water plumes having high suspended sediment loads.

D. <u>Biological Specimens</u>

Intertidal and benthic biota, supplied by the principal investigators in the biological programs, have been analyzed for trace metal content. It was our objective to select "indicator" organisms which are ubiquitous in the shelf study areas and which might serve as early indicators of the impacts of potential oil pollution. To provide this baseline data for trace metals in the shelf biota, collections of the seaweed Fucus, unidentified seaweed samples, the bivalve Mytilus, the snail Neptunia, the finfish rock sole and pollock, and King crab specimens were analyzed for 16 trace elements by neutron activation analysis.

Table G.1 contains the resulting elemental concentrations for rock sole, Neptunia, pollock, crab, fucus, seaweed, and mytilus. Table G.3 shows the average concentrations and variance for some of the more toxic trace metals, including Ag, As, Cr, Hg, Se, and Zn. In general, the trace metal concentrations in the Alaskan shelf biota are very similar to the levels observed in organisms collected from lower latitudes and reflect a typically pristine environment. Several naturally high trace metal accumulation processes by certain animals are noteworthy. High Zn, Ag and As concentrations are found in King crab. Neptunia are remarkable concentrators of several heavy metals including As, Se, Zn, Hg, Fe, Sb, Co and V.

Because of their ubiquitous distribution throughout the Alaskan shelf, Mytilus are probably best suited as "indicator" organisms. Also, the fact that they are filter-feeders and would concentrate oil and other contaminants sorbed onto suspended particulate matter make them especially useful for this purpose. Fortunately, the variability in the trace metal concentrations in

Mytilus sampled over diverse areas does not appear to be too large to obviate their usefulness in establishing baseline values for assessing future potential perturbations. The variability of the truly assimilated trace metals, such as As, Hg, Se and Zn is indeed quite small. The large variability in the other elements appears to be due to the adsorption of suspended sediment particles on the Mytilus. This is easy to recognize because of the relatively high concentrations of trace elements which are rarely associated with biological tissues, such as Sc and Cr. This mineral contribution from sorbed sediment particles can be subtracted out of the truly biologically assimilated fraction, thus giving a more constant set of baseline data.

Vanadium concentrations were also determined by a chemical separation followed by neutron activation and are shown in Table G.2. The data are reported in nanograms per gram. The Pollock, Rock Sole and crab muscle tissue are less than 100 ng/g (0.1 ppm). However the Fucus, Mytilus and Neptunia are significantly higher. The Fucus ranging from 318 to 945 ng/g (0.3 to 0.8 ppm) and the Mytilus from 389 to 783 ng/g (0.39 to 0.78 ppm). The Neptunia are even higher; 2500 to 2700 ng/g or 2.5 to 2.7 ppm.

E. <u>Dissolved Trace Elements in Seawater</u>

The dissolved, or non-filterable fraction, of the following trace metals in Alaskan coastal waters have been determined by neutron activation analysis: V, Mn, Zn, Fe, Co, Sb, U, Cs, and Rb. With the possible exception of V, it is not anticipated that oil spills will directly alter the dissolved trace element concentrations in coastal waters. However, serious chronic or episodic releases of oil to coastal waters could possibly alter the chemical environment of the sediments by creating more reducing conditions at the sediment interface. Reducing sediments can release a number of dissolved trace elements to the water column causing significantly elevated concentrations.

Vanadium has been an element of focus in marine waters since there exists some slight potential for perturbation due to oil development. Therefore, dissolved vanadium concentrations were determined as a part of our baseline efforts. Table H.1 shows that the vanadium concentrations throughout the Alaskan shelf waters are quite uniform. Even in waters containing relatively large amounts of suspended matter, the filtered seawater does not show significantly elevated concentrations of dissolved vanadium. Table H.4 shows that the Bering Sea and the Eastern and Western Gulf of Alaska average for vanadium concentrations are not significantly different, nor are surface water concentrations significantly different from these in bottom waters. An overall water column average for Alaskan shelf waters appears to be $1.42 \pm 0.15 \mu g/\ell$. Vanadium concentrations in Cook Inlet appear to vary seasonally, being somewhat higher in spring, and lower during the high runoff period in August. This, coupled with the generally higher values observed in the Shelikof Strait in August, and the higher overall shelf average indicate that the riverine concentration of vanadium entering Cook Inlet may be lower than general shelf concentrations in Alaskan waters.

The natural conservative nature and uniform distribution of dissolved vanadium in Alaskan shelf waters should permit a rather sensitive assessment of vanadium contamination of seawater by large oil spills. A l μ g/ μ increase in dissolved vanadium concentration would be highly significant, and would only require the release of the vanadium contained in 0.1 ml of crude oil (assuming a vanadium concentration of 10 ppm in crude oil) to one liter of seawater to accomplish this increase.

Dissolved manganese concentrations were also determined in Cook Inlet and Shelikof Strait and are shown in Table H.3. Unlike vanadium, the dissolved manganese concentrations are elevated in waters with relatively high concentrations of suspended sediments. The manganese concentrations in these shelf waters are about 10 to 100-fold higher than in open ocean waters. Dissolved manganese in Cook Inlet waters is shown to be higher during the peak runoff period of August compared with earlier spring samples collected in May, 1978. The samples taken at depths in Shelikof Strait show extremely elevated dissolved Mn below a depth of 200 meters. This area has been shown to have anomalously high manganese concentrations associated with the particulate matter. Possible sources of the manganese could be releases from reducing sediments or effluents from hydrothermal vents.

The concentrations of Zn, Fe, Co, Sb, U, Rb and Cs in the shelf waters of the Eastern, Western and Southwestern Gulf of Alaska are presented in Table H.5. These data indicate baseline trace element levels in Alaskan shelf waters are similar to concentrations observed in coastal waters at lower latitudes. The concentrations of the conservative elements Sb, U, Rb and Cs are very uniform in the Alaskan coastal waters. However, the dissolved Zn, Fe and Co concentrations are highly dependent upon the levels of suspended particulate matter in the water column, and are about tenfold higher than observed in open ocean waters.

No systematic geographical or vertical gradients for the dissolved Zn, Fe and Co were observed in the Alaskan coastal waters. The large variations are undoubtedly due to the relative quantities of suspended matter in the water and the degree of fresh water input (river drainage).

A major discrepancy in Zn and Fe concentrations at Station 121 in the Southwest Gulf of Alaska was observed. Surface seawater collected in polyethylene bottles from a Zodiac rubber raft contained significantly lower Zn and Fe concentrations compared to seawater collected approximately 10 meters below the surface in Niskin bottles. It is not certain that this is due to a real difference in the small-scale vertical distribution of these elements or if the Niskin bottles resulted in contamination of the water.

V. CONCLUSIONS

With the completion of the analysis of all sediment, water and biota samples from the major study areas, a more comprehensive picture of the ambient trace metal concentrations and distributions in the Alaskan coastal environment has been achieved. As expected, the trace metal distributions in the shelf environment are quite typical of mid-latitude regions. Considerable variability in trace metal distributions in sediments, suspended matter, water and biota is evident. However, these variations fall within the expected range when compared with literature values for other mid-latitude locations. These baseline data will be of great value in assessing any future potential impacts from offshore oil recovery. However, based on the data at hand we cannot conceive of any activities related to offshore oil production that could <u>significantly</u> alter or provide a detrimental impact upon the trace metal distributions in the lease areas. Any impact from these activities would likely be so small as to be masked by the natural geographical and temporal variations in trace metal distributions in the sediments, suspended matter, water and biota.

The following conclusions have been reached regarding the natural distributions and ambient background concentrations of trace metals in sediments, suspended matter, seawater and biota of the Alaskan shelf environment.

Sediments

• The geographical distributions of major and trace elements in surface sediments from the Bering Sea, Western GOA, Eastern GOA, Norton Sound, the Chukchi Sea and the Beaufort Sea show significant regional variability. In going from the Bering Sea \rightarrow to the Western GOA \rightarrow to the Eastern GOA, the regional average concentrations of Fe, Mn, V, Cr, Co and Sc increase by nearly 2-fold. The Norton Sound and Beaufort Sea sediments were characterized by intermediate trace metal contents, whereas the sediments of the Chukchi Sea normally had relatively low trace metal concentrations except as noted below.

• Several anomalies were observed such as the relatively high Ba concentrations in Bering Sea Stations MB-59 and MB-64. Relatively high As concentrations were observed at several stations in each region, and the Beaufort Sea, Chukchi Sea and Norton Sound sediments consistently contained 3 to 8 times higher As concentrations compared to the Bering Sea and the Western and Eastern GOA. High Cr concentrations were observed in the Chukchi Sea sediments. Shelikof Strait sediments contained high Mn concentrations.

• No systematic concentration gradients of major and trace elements between near-shore and deep water stations were observed. However, large variations in elemental concentrations occurred in patchy distributions within each region. This was particularly true for Ca. When highly calcareous sediments were encountered, such as at Sta. 122 in the Western GOA, most of the other elemental concentrations were very low. This can be seen by the high negative correlation coefficients between Ca and most other elements.

• No <u>systematic</u> vertical variations in elemental concentrations were observed in HAPS sediment cores. Although significant variability with depth was noted for all of the elements, it appeared to be of a random nature.

• "Available" metal concentrations, as determined by a sequential leaching technique, indicated the following order of availability or leachability: Mn > Co > V > Fe > Sc. "Available" Mn, Co, V, Fe and Sc ranged from 21-82%, 11-59%, 5-29%, 5-27% and 1-10%, respectively, of their "total" concentration in the sediments. The low Sc leachability indicated that the crystalline structure of the sediments were not appreciably being attacked by the leachates. The H_2O_2 leaching removed very little (usually less than 1%) of the trace metals from the sediments, indicating little organically-bound metals associated with the sediments. The fraction leached by the 0.3M HCl is considered to be composed primarily of hydrous metal oxides.

Suspended Particulate Matter

• Suspended particulate trace metal concentrations in surface seawater from the Bering Sea, Western GOA and Eastern GOA generally show increasing concentrations in near-shore versus deep waters. The concentrations of these elements are usually much higher in near-bottom waters compared to surface waters, but significant, systematic exceptions have been noted. At Stations 44, 49, 50 and 59A in the Eastern GOA the particulate trace metal concentrations in surface waters are much higher than in nearbottom waters, indicating a surface plume of relatively high suspended sediment load or intense plankton blooms.

• Ranges in particulate trace metal concentrations in the Alaskan shelf waters are extremely variable and indicate a very dynamic shelf environment that reflects both fluvial input and transport of terrigenous materials, storm resuspension of sediments and biological processes. This extreme variability from station to station does not allow for meaningful comparison from one lease area to another.

• Elemental ratios in the particulate matter are very similar to those observed in surface sediments, especially in near-bottom samples where the ratios of Fe/Al and Fe/Mn appear identical for both suspended particulates and sediments. A notable exception are the Al/Mn ratios in the Shelikof Strait stations, which show substantial enrichments of Mn. It is likely that the excess Mn is derived from reducing sediments or submarine hydro-thermal activity in this region.

• Trace metal concentrations in suspended particulate matter collected at a time series station in Cook Inlet to determine short-term temporal variations over tidal cycles showed very small fluctuations.

Dissolved Trace Metals

• Concentrations of dissolved V, Sb, U, Cs and Rb in Alaskan coastal waters appear to be very uniform and characteristic of open ocean waters. Their concentrations are essentially independent of the amount of suspended particulate matter in the water.

• Vanadium is a trace metal of special interest in this study because of its potential toxicity and its relatively high abundance in crude oil. The soluble vanadium concentrations in the Bering Sea, Western GOA and Eastern GOA appear to be very homogeneous. The average concentration for surface and near-bottom waters was $1.42 \pm 0.15 \mu g/\ell$, and the total range in concentrations was from 1.0 to $1.7 \mu g/\ell$. The high concentrations of vanadium in suspended particulate matter in some of these waters had no effect or correlation with the soluble vanadium levels. The particulate vanadium concentrations ranged from 0.007 to 0.77 $\mu g/\ell$ but averaged about 0.05 $\mu g/\ell$ or approximately 3% of the total vanadium.

• The geographical and vertical distribution of Mn, Zn, Co and Fe in shelf waters is highly variable and greatly influenced by the amount of suspended matter. No systematic geographical or vertical concentration gradients were observed.

• Extremely high concentrations of dissolved Mn was observed in bottom waters at several stations in the Shelikof Strait. These elevated concentrations could be the result of either submarine hydrothermal venting or dissolution from reducing sediments. The former explanation appears most likely since: 1) high dissolved manganese concentrations are associated with hydrothermal effluents; 2) ferromanganese coatings containing up to 12% Mn were observed in rocks dredged from these areas; and 3) this area is highly volcanic and near recently erupted volcanoes.

<u>Biota</u>

• The trace element concentrations in Alaskan shelf biota are very typical of the ranges observed in similar species of mid-latitudes. No systematic regional variations for these metal contents of the organisms was observed. Thus, the baseline data generated here will be very useful for assessing any potential environmental impacts from any natural or manmade disturbances of the shelf areas.

• Because of their ubiquitous distribution and their inter-tidal habitat, which is an important repository of oil residues and other pollutants from oil impacted waters, and because of their filter feeding, the Mytilus are probably the best indicator organisms for the lease areas. The trace metal concentrations in the Mytilus from various locations show a rather good standard deviation around the average. This indicates that Mytilus can be used as an effective indicator organism. Several metals, notably chromium, showed a somewhat large standard deviation from the average concentration. However, by examining the concentrations of geochemical indicator elements, such as Sc and Fe, it is obvious that the Mytilus from Boswell Bay, Cape Pasashak, Port Dick and Katalla contained appreciable amounts of mineral matter (probably suspended sediments). This sediment contribution seriously contaminates the Mytilus with such metals as Cr, Sb and Co, but when the sediment contribution is assessed the standard deviation associated with the average concentration of these metals becomes much smaller.

• The mercury concentrations are the most intercomparable with other areas of the world because of the large amount of baseline data now available for this toxic heavy metal. The mercury concentrations in the Alaskan biota studied here are very typical of those found in any uncontaminated shelf areas of the world. None of the edible animals exhibited mercury concentrations which exceed the 0.5 ppm FDA limit, although the internal organs of the snail, Neptunia, contained mercury levels as high as 3.9 ppm.

• Several interesting distributions of trace metals in the biota were observed. Arsenic concentrations are relatively high in King crab muscle tissue and in the internal organs of the Neptunia. Extremely high concentrations of zinc (up to 0.79% in dry tissue) were observed in the internal organs of the Neptunia. However, this ability to highly concentrate zinc is well known and not unusual for these animals.

• Vanadium concentrations of selected Alaskan shelf biological materials ranged from several tens of ng/g for rock sole, pollock and Alaskan King crab. Intertidal organisms, Fucus and Mytilus, showed considerably higher vanadium levels. These ranged from approximately 0.3 to 0.8 μ g/g dry weight for Fucus and Mytilus. Neptunia (internal organs) showed much higher levels than either finfish or intertidal Fucus and Mytilus. The samples analyzed indicated levels of 2.5 μ g/g dry weight.

APPENDIX A

Sample Inventory and Disposition

SEDIMENT AND WATER SAMPLING STATIONS WESTERN GULF OF ALASKA - OSS DISCOVERER - OCTOBER 16, 1975

				WATER			PARTICULATE			SED IMENT			
STATION	LATITUDE	LONG ITUDE	DEPTH, m	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED	
GASW-156	54 ⁰ 29.2'	160 ⁰ 09.4	160	2	2	2	2	2	2				
GASW-157	54 ⁰ 17'	164 ⁰ 58.8'	67	2	2	2	2	2	2				
GASW-158	54 ⁰ 04.5	164 ⁰ 45.2	101	2	2	2	2	2	2				
GASW-159	53 ⁰ 51.9'	164 ⁰ 34'	10 0	2	2	2	2	2	2				
GASW-160	53 ⁰ 43.3'	164 ⁰ 25.6'	143	2	2	2	2	2	2				
GASW-145	55°03.1'	161 ⁰ 24,4'	71	2	2	2	2	2	2				
GASW-146	54 ⁰ 49.4'	161 ⁰ 12.5'	73	2	2	2	2	2	2				
GASW-147	54 ⁰ 36.2'	161°00.7'	104	2	1	2	2	2	2				
GASW-148	54 ⁰ 23.5'	160 ⁰ 49.1'	110	2	2	2	2	2	2				
GASW-137	54 ⁰ 54.3'	157 ⁰ 59'	9 9	2	2	2	2	2	2				
GASW-135	55 ⁰ 20.3'	158 ⁰ 25.1'	150	2	2	2	2	2	2	5	3	5	
GASW-134	55 ⁰ 33.4'	158 ⁰ 38.3'	154						-	9	5	9	
GASW-133	55 ⁰ 46.3'	158 ⁰ 51'	73	2	2	2	2	2	2	i	Ĩ	í	
GASW-124	56 ⁰ 07.1	154 ⁰ 39,4'	112	2	2	2	2	2	2	5	3	5	
GASW-122	56 ⁰ 31.3'	155 ⁰ 12'	45	2	1	2	2	2	2	2	2	2	
GASW-121	56 ⁰ 43.2'	155 ⁰ 27.9'	230	2	2	2	2	2	2	6	3	6	
GASW-120	56 ⁰ 55'	155 ⁰ 44.1'	29 0	2	2	2	2	2	2	10	4 .	10	
GASW-119	57 ⁰ 06.9'	156 ⁰ 00'	2 07	2	2	2	2	2	2	6	3	6	
GASW-110	59 ⁰ 19.8'	152 ⁰ 24.1'	8 9	2	2	2	2	2	2		-		
GASW-102	59 ⁰ 09.9'	152 ⁰ 04.1'	108	2	1	2	2	2	2				
GASW-103	59 ⁰ 00'	151 ⁰ 45.1'	135	2	2	2	2	2	2				
GASW-104	58 ⁰ 50'	151 ⁰ 26,4'	106	2	2	2	2	2	2	5	3	5	
GASW-105	58 ⁰ 59'	152 ⁰ 51.6'	168							2	2	2	

SEDIMENT AND WATER SAMPLING STATIONS EASTERN GULF OF ALASKA - OSS DISCOVERER - NOVEMBER 24-DECEMBER 2, 1975

															-	WA	TER		PARTICULA	IE		SEDIMENT	
STATION	LATITUDE	LONGITUDE	DEPTH, m	COLLECTED	ANALYZED	ARCHIVED		ANALYZED	ARCHIVED		ANALYZED	ARCHIVED											
EGA-29	59 ⁰ 34.6'	140 ⁰ 06'	76	1	1	1	- 1	1	1														
EGA-26	59 ⁰ 10,8'	140 ⁰ 38.9'	146	2	2	2	2	2	2	7	4	7											
EGA-24	58 ⁰ 54.3'	141 ⁰ 00.5'	420	2	2	2	2	2	2														
EGA-33	59 ⁰ 17.5'	141 ⁰ 54.8	215	2	2	2	2	2	2	6	3	6											
EGA-30	59 ⁰ 44, 1'	141 ⁰ 27.9'	52	1	1	1	1	1	1	1	1	1											
EGA-44	59 ⁰ 35'	143 ⁰ 54.2'	175	2	2	2	2	2	2	4	2	4											
EGA-15	58 ⁰ 18.1'	145 ⁰ 00.5'	3700	2	2	2	2	2	2														
EGA-48	59 ⁰ 27.5'	145 ⁰ 11.5'	4 57	2	2	2	2	2	2	6	3	6											
EGA-49	59 ⁰ 37.5'	145 ⁰ 10'	B 1	2	2	2	2	2	2	9	5	9											
EGA-50	59 ⁰ 47.7'	145 ⁰ 09'	177	2	2	2	2	2	2	11	5	11											
EGA-51	59 ⁰ 57.6'	145 ⁰ 07.8'	143	2	1	2	2	2	2	3	2	3											
EGA-52	60 ⁰ 07,6'	145 ⁰ 06.5'	84	1	1	1	1	1	1	9	5	9											
EGA-59A	59º17.1	146°14'	381	2	1	2	2	2	2	1	1	1											
EGA-58	59 ⁰ 36.2'	146 ⁰ 25.5'	92	1	1	1	1	1	1	5	3	5											
EGA-57	59 ⁰ 45.6'	146 ⁰ 31'	77	1	1	1	1	1	1	3	2	3											
EGA-56	59 ⁰ 55.2'	146 ⁰ 36.8'	6 8	1	1	1	1	1	1	4	4	4											
EGA-55	60 ⁰ 04.5 ¹	146°42.6'	120	2	2	2	2	2	2	8		8											
EGA-54	60 ⁰ 13.9'	146 ⁰ 48.6'	2 12	2	2	2	2	2	2	7		7											
EGA-53	60 ⁰ 23'	146 ⁰ 54'	294	2	2	2	2	2	2	5		5											
EGA-11	58 ⁰ 23.2'	148 ⁰ 04.8'	1385	2	1	2	2	2	2														
EGA-110	57 ⁰ 55.8'	149 ⁰ 143.4'	183	2	1	2	2	2	2														
EGA-108	58 ⁰ 09.1	150 ⁰ 09.1'	236	2	2	2	2	2	2														
EGA-106	58028.1	150 ⁰ 47.4'	91	1	1	1	1	1	1														
EGA-8	58 ⁰ 49.7'	148030	284	2	2	2	2	2	2	11		11											
EGA-5	59 ⁰ 16'	148056'	172	2	2	2	2	2	2	8	2	8											
EGA-2	59 ⁰ 41.5'	149 ⁰ 22'	188	2	2	2	2	2	2	10	5	10											

SEDIMENT AND WATER SAMPLING STATIONS COOK INLET AND SHELIKOF STRAIT - MAY 4-MAY 11, 1978 - AUGUST 25 - SEPTEMBER 5, 1978

	• <u> </u>	WATER			SEDIMENT	
STATION	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED
CB-1	2	2	2	2	1	2
CB-2	1	1	1	1		1
CB-3	1	1	1	2	1	2
CB-4	2	2	2	1		1
CB-5	2	2	2	1		1
CB-6	2	2	2	1	1	1
CB-7	2	2	2	2	1	2
CB-8	2	2	2	2	1	2
CB-9	1	1	1			
CB-10	1		1			
SS-1				1		1
SS-2	1		1	1	1	1
SS-3						
SS-4	1		1	1	1	1
SS-5				1	1	1
SS-6	1		1	1		1
SS-7						
SS-8				1	1	1
SS-9						
SS-10				1	1	1
SS-11	1		1	1		1
SS-12						
SS-13	1		1	1		1

SEDIMENT AND WATER SAMPLING STATIONS BERING SEA - OSS DISCOVERER - JUNE 2-19, 1975

						WATER				PARTICUL	ATE	SEDIMENT		
STATION L	LATITUDE	LONGITUDE	DEPTH, m	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED		
MB 53	56 ⁰ 29'	171 ⁰ 38'	139	2	2	2	2	2	2					
MB 48	56 ⁰ 19'	169 ⁰ 42'	155	2	2	2	2	2	2					
MB 34	55 ⁰ 53'	168 ⁰ 45'	255	2	2	2	2	2	2					
MB 14	54 ⁰ 39'	165 ⁰ 25'	162	2	2	2	2	2	2					
MB 02	55 ⁰ 51'	162 ⁰ 17'	45	2	2	2	2	2	2					
MB 08	58 ⁰ 17'	159032'	24	2	2	2	2	2	2	7	4	7		
MB 12	56 ⁰ 09'	162 ⁰ 56'	83			-			_	1	1	1		
MB 19	56040'	163 ⁰ 57'	77	1	1	1	1	1	1	2	1	2		
MB 24	58046'	162029'	48	1	ī	1	1	1	1	1	1	1		
MB 28	57°10'	165 ⁰ 04'	69		_					1	1	1		
MB 41	58047	164 ⁰ 15'	33	1	1	1	1	1	1	2	1	2		
MB 43	58 ⁰ 42'	166 ⁰ 17'	38	1	1	1	1	1	1	4	2	4		
MB 59	59 ⁰ 12'	167018'	38	1	1	1	1	1	1	3	2	3		
MB 64	58 ⁰ 01'	171007	85	ī	ī	ī	ī	1	1	10	6	10		
MB 56	58 ⁰ 06'	169 ⁰ 05'	71	ī	1	ī	ī	1	1	7	4	7		
MB 37	57006'	167 ⁰ 01'	75	1	1	1	1	1	1	5	3	5		
MB 30	55 ⁰ 59'	166053'	134	1	1	1	1	1	1	13	3	13		
MB 17	55 ⁰ 29'	165 ⁰ 50'	121	1	1	1	1	1	1	9		9		

SEDIMENT AND WATER SAMPLING STATIONS BERING SEA - NORTON SOUND - OSS DISCOVERER - SEPTEMBER 8-24, 1976

	W	ATER	SEDIMENT						
STATION	COLLECTED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED				
N-1			1	1	1				
N-4			1		1				
N-5	1	1	1	1	1				
N-6			1		1				
N-9			1	1	1				
N-12D			1		1				
N-13			1		1				
N-15			1	1	1				
N-17	1	1	1		1				
N-20	1	1	1	1	1				
N-21			1		1				
N-23			1		1				
N-25	1	1	1		1				
N-26			1	1	1				
N-28A			1		1				

SEDIMENT AND WATER SAMPLING STATIONS CHUCKCHI SEA - OSS DISCOVERER - SEPTEMBER 8-24, 1976

	<u> </u>	ATER	SEDIMENT						
STATION	COLLECTED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED				
C-3-S76			1	1	1				
C-5-S76	1	1	1		1				
C-6-S76			1		1				
C-7-S76			1	1	1				
C-7A-S76			1		1				
C-9-S76			1		1				
C-10-576			1	1	1				
C-12-S76			1		1				
C-13- S76	1	1	1		1				
C-14-S76			1	1	1				
C-15- S76	1	1	1		1				
C-16-S76			1		1				
C-19-576			1		1				
C-20- S76			1	1	1				
C-22-S76			1		1				
C-23- S76			1	1	1				
C-24- S76			1		1				
C-25-S76			1	1	1				
C-29-576			1		1				

SEDIMENT SAMPLING STATIONS BEAUFORT SEA - USCGC GLACIER - AUGUST 7-SEPTEMBER 4, 1976

STATION	LATITUDE	LONGITUDE	<u>DEPTH, m</u>	<u>SED</u>	COLLECTED	ANALYZED	ARCHIVED
B-1	71 ⁰ 11'	153 ⁰ 09'	25	1	1	1	1
B-3	70 ⁰ 36'	148 ⁰ 12'	16	1	1	1	1
B-4	70 ⁰ 32'	147 ⁰ 33'	25	1	1		1
B-5	70 ⁰ 39'	147 ⁰ 37'	25	1	1		1
B-6	70 ⁰ 57'	149 ⁰ 33'	30	1	1		1
B-7	71 ⁰ 08'	151 ⁰ 19'	34	1	1	1	ī
B-8	71 ⁰ 43'	151 ⁰ 47'	1700	1	1	1	ĩ
B-9	71 ⁰ 22'	152 ⁰ 20'	75	1	1	_	1
B-10	71019'	152 ⁰ 32'	52	1	ī		ī
B-11	71 ⁰ 08'	152 ⁰ 57'	22	1	Ī		1
B-12	71 ⁰ 23'	154 ⁰ 21'	30	1	ī	1	ī

BIOLOGICAL SAMPLING STATIONS FOR INTERTIDAL ORGANISMS ALASKA OCS STUDY AREA - MAY-JUNE, 1976

	ORGANISM								
		FUCUS		<u></u>	SEAWEED		MYTILUS		
LOCATION	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED
CAPE NUKSHAK	1	1	1	1	1	1	2	2	2
PORTDICK	1	1	1	1	1	1	1	1	1
SUNDSTROM I SLAND	1	1	1	1	1	1	2	2	2
LaTOUCHE	1	1	1	2	2	2			
UNIMACK ISLAND - CAPE LUPIN	1	1	1						
McLEOD HARBOR	1	1	1						
OTTER I SLAND	1	1	1				1	1	1
ANCHOR COVE	1	1	1	1	1	1			
UNALASKA ISLAND - EIDER POINT	1	1	1						
KAYAK I SLAND				1	1	1			
ZALKOF BAY	1	1	1						
SAINTS BAY	2	2	2				1	1	1
LaCOON POINT	1	1	1				1	1	1
CAPE PASSASHAK	1	1	1				1	1	1
UNIMACK ISLAND - SONNETT POINT	1	1	1						
KATALLA				1	1	1	1	1	1
CAPE HUP IT							1	1	1
SPECTACLE I SLAND				1	1	1			
MAKUSHIM BAY				1	1	1	1	1	1
PORT ETCHES							1	1	1
BOSWELL BAY							1	1	1
DAY HARBOR							1	1	1
SENNETT POINT							1	1	1
EIDER POINT							1	1	1
LaTOUCHE POINT							1	1	1

BIOLOGICAL SAMPLING STATIONS FOR BENTHIC ORGANISMS SOUTH BERING SEA - OSS MILLER FREEMAN - APRIL, 1976

		ROCK SOLE		NEPTUNIA			POLLOCK		CRAB			CRAB LEG						
STATION	LATITUDE	LONGITUDE	DEP TH,	m COLLECTED	ANALY ZED	ARCHIVED	COLLECTED	ANALYZED	ARCHIVED									
3	54 ⁰ 47.3'	165 ⁰ 18.3'	161.9										1	1				
5	54 ⁰ 43.6'	165°17.2	167.9	1	1	1				2	2	2	-	•	•			
7	54 ⁰ 40, 4'	165042	409.5	-	-	-				ī	i	ĩ						
18	55°09.8'	163°44, 1'	83.1							•	•	-	1	1	1			
25	54 ⁰ 50,4'	166 ⁰ 35. 8 '	183.8							1	1	1	i	i	i			
27	55°00'	166 ⁰ 15.2*	112.8	1	1	1	1	1	1	-	•	•	i	i	i			
29	55 ⁰ 09.3'	166 ⁰ 02'	134.6		-	-	i	i	i	1	1	1	•	•	•	1	1	1
30	55°20,1'	165 ⁰ 42.5'	104.6	1	1	1	ī	ī	i	i	i	i	1	1	1	-	•	•
31	55°32.1'	165 ⁰ 26'	114.3				-	•	-	i	i	i	i	1	i			
32	55°41'	165 ⁰ 09.8	119.9	1	1	1				i	i	i	i	i	i			
38	56 ⁰ 10.7'	166 ⁰ 08.6'	111				1	1	1	-	-	-	•	•	•			
39	56 ⁰ 01.6'	166 ⁰ 19.2"	124.2	1	1	1	-	-	-	1	1	1				1	1	1
48	55018.3'	167º28.9	151							i	i	i				i	i	1
49	55°15.4'	167 ⁰ 37.7'	178.3	1	1	1				i	ī	ī				i	i	i
56	55 ⁰ 35.7'	168 ⁰ 29.1'	167.4	1	i	1				ī	ī	i				•	•	•
57	55°31.2'	168 ⁰ 21.2	249.3	1	i	1				i	ī	i						
58	55°31.2'	168 ⁰ 26'	338.5							i	ī	i						
60	55 ⁰ 31.2'	168 ⁰ 17.6'	196.7	1	1	1				-	•	-						
64	55 ⁰ 48.2"	168 ⁰ 24.8"	143.7	-	-	-				1	1	1				1	,	,
80	54 ⁰ 59,8°	165 ⁰ 08, 9*	116.4				2	2	2	-	-	-				•	•	*

APPENDIX B

Sample Grids Utilized During Alaskan Shelf Studies

FIGURE B.1 Sampling Locations in the NW Gulf of Alaska

FIGURE B.2 Sampling Stations in the NE Gulf of Alaska

FIGURE B.3 Sampling Stations in Cook Inlet and Shelikof Strait Discoverer, August 1978

FIGURE B.4 Sampling Locations in the Bering Sea

FIGURE B.5 Sampling Stations in Norton Sound Discoverer, September 1976

FIGURE B.5 (continued)

NORTON SOUND (N. BERING SEA)

Discoverer Leg IV - September 8-24, 1976 Station localities and operations

. .

_

- -

Station No.	Depth	Latitude	Longitude	Sampling	Operations			
N 1	29 m	63*31.8	168-32.2	van Veen	Grab, HAPS, water			
N 2	29	63°30.6	167*29.0	van Veen	Grab, water			
N 3	26.5	63*29.9	166*29.7	van Veen	Grab, water			
N 4	21	63°19.7	165°29.9	van Veen	Grab, HAPS water			
N 5	22	63 ° 39.5	165°32.1	van Veen	Grab, HAPS water			
N 6	13	63 ° 38.4	164°31.0	van Veen	Grab, HAPS water			
N 7	15	63°38.2	163*30.3	van Veen	Grab, water			
N 8	15.5	63°42.0	162*28.5	van Veen	Grab			
N 9	15	63°41.5	161°31.1	van Veen	Grab, HAPS, water			
N10	37.5	64°01.0	168°26.0	van Veen	Grab			
NIL	40	64°00.4	167*32.1	van Veen	Grab			
N12	31	63°59.2	166*29.8	van Veen	Grab			
N12D	26	64°23,5	165°44.8	van Veen	Grab, HAPS, water			
N13	20	63°59.7	165°29.7	van Veen	Grab, HAPS			
N14	20	64°01.2	164°28.7	van Veen	Grab, water			
N15	20	64*00.3	163°30.5	van Veen	Grab, HAPS, water			
N16	19	64°00.0	162°30.0	van Veen	Grab			
N17	18.5	64*00.0	161°30.3	van Veen	Grab, HAPS, water			
N18	23	64*20.2	165°30.0	van Veen	Grab			
N19	15.5	64°19.4	164°30.4	van Veen	Grab			
N20	20	64°20.1	163°31.0	van Veen	Grab, HAPS, water			
N21	19	64°15.25	162°29.7	van Veen	Grab, HAPS, water			
N22	13	63 ° 30.3	162°00.5	van Veen	Grab, water			
N23	15	64*17.5	161°30. 7	van Veen	Grab, HAPS, water			
N24	40	64 [•] 29.7	168°28.3	van Veen	Grab. water			
N25	31	64 ° 29.6	167°29.6	van Veen	Grab, water			
N26	28	64°30.2	166°31.5	van Veen	Grab, HAPS, water			
N27	46.5	65°00.5	168°26.7	van Veen	Grab, water			
N28	30	65°00.1	167°31.5	van Veen	Grab			
N28A	24	64°44.6	167°01.0	van Veen	Grab, HAPS			
N29	14.5	65°17.8	167*00.4	van Veen	Grab			
N30		65*30.5	168°31.0	van Veen	Grab, water			

FIGURE B.6 Sampling Stations in the Chukchi Sea <u>Discoverer</u>, September 1976

FIGURE B.6 (continued)

S. CHUKCHI SEA

Discoverer Leg IV - September 8-24, 1976 Station localities and operations

Station No.	Depth	Latitude	Longitude	Sampling	Operations		
		_					
C 1	53	65°59.8	168°20.5	van Veen	Grab, water		
C 2	49	66°30.1	168°24.1	van Veen	Grab, water		
C 3	31	66°30.5	167°01.6	van Veen	Grab, HAPS, water		
C 4	15.5	66°30.0	165°39.2	van Veen	Grab		
C 5	14	66°18.1	163°13.5	van Veen	Grab, HAPS, water		
C 6	15	66 ° 23.3	162°14.4	van Veen	Grab, HAPS, water		
C 7	14	66*44.5	163°17.0	van Veen	Grab, HAPS, water		
C 7A	13.5	66*52.5	163°09.4	van Veen	Grab, HAPS, water		
C 8	35	67°00.3	168°26.2	van Veen	Grab, water		
C 9	42	67°00.2	167°01.9	van Veen	Grab, HAPS, water		
C10	24	66*58.0	165°46.9	van Veen	Grab, HAPS, water		
C11	26.5	67°00.0	164°20.0	van. Veen	Grab		
C12	48	67°31.6	168°20.0	van Veen	Grab, HAPS, water		
C13	46.5	67*30.3	167°02.5	van Veen	Grab, HAPS, water		
C14	38.5	67°28.9	165°39.5	van Veen	Grab, HAPS, water		
C15	17	67*26.2	164°18.2	van Veen	Grab, HAPS, water		
C16	59	68°01.2	168°28.6	van Veen	Grab, HAPS, water		
C17	52	67°58.8	167°01.5	van Veen	Grab, water		
C18	28	67*57.3	165°47.8	van Veen	Grab, water		
C19	52	68°30.0	168*22.0	van Veen	Grab, HAPS, water		
C20	31.5	68°28.1	167*03.0	van Veen	Grab, HAPS, water		
C21	51	69.00.3	168°29.3	van Veen	Grab		
C22	46	68°59.2	166*59.7	van Veen	Grab, HAPS		
C23	20	69*00.9	165°37.0	van Veen	Grab, HAPS		
C24	51	69°30.0	168°21.9	van Veen	Grab, HAPS		
C25	46	69°30.0	167°04.1	van Veen	Grab, HAPS		
C26	33	69°30.1	165°32.0	van Veen	Grab		
C27	22	69°29.5	164°11.2	van Veen	Grab		
C28	45	70°00.7	168*19.4	van Veen	Grab		
C29	46.5	70°00.0	167°01.2	van Veen	Grab, HAPS		
C30	40	69*58.5	165°33.4	van Veen	Grab		
C31	30	69°58.1	164°00.4	van Veen	Grab		

FIGURE B.7 Sampling Stations in the Beaufort Sea <u>Glacier</u>, August 1976

FIGURE B.8 Sampling Locations for Intertidal Biota

APPENDIX C

Elemental Composition of Alaska Shelf Surficial Sediments

.

TABLE C.1. Al, Ca, Mn, and V Concentrations in Bering Sea, Northwestern Gulf of Alaska, and Northeastern Gulf of Alaska Surficial Sediments.

Station	Depth Interval	A1(%)	Ca(%)	Mn (ppm)	V (ppm)
MB-8	0-2 cm 4-6 cm 8-10cm 12-14cm	$7.29 \pm 0.03 7.18 \pm 0.03 9.38 \pm 0.04 7.23 \pm 0.03$	3.69 ± 0.84 3.29 ± 0.65 3.22 ± 0.37 2.92 ± 0.64	720 ± 38 567 ± 36 715 ± 43 629 ± 37	126 ± 26 87 ± 25 165 ± 29 90 ± 25
MB-12	0-3 cm	6.66 ± 0.03	1.93 ± 0.80	573 ± 49	118 ± 25
MB-19	0-2 cm	7.94 ± 0.03	4.63 ± 0.70	628 ± 43	93 ± 27
MB-28	0-3 cm	6.05 ± 0.03	2.31 ± 1.03	524 ± 50	92 ± 25
MB-29	0-4 cm	5.91 ± 0.02	2.09 ± 0.33	572 ± 45	77 ± 23
MB-30	0-4 cm 4-8 cm 8-12cm	$\begin{array}{r} 6.10 \pm 0.03 \\ 6.26 \pm 0.03 \\ 6.09 \pm 0.04 \end{array}$	2.97 ± 1.34 1.86 ± 1.25 2.45 ± 1.63	571 ± 43 574 ± 38 574 ± 43	112 ± 24 114 ± 25 106 ± 27
MB-37	0-2 cm 4-6 cm 8-11cm	5.50 ± 0.03 5.75 ± 0.02 6.12 ± 0.06	2.32 ± 1.00 2.37 ± 0.70 1.85 ± 0.66	358 ± 42 360 ± 38 441 ± 17	85 ± 23 85 ± 21 82 ± 22
MB-41	0-2 cm	5.01 ± 0.05	<0.74	392 ± 15	79 ± 19
MB-43	0-2 cm 4-6 cm	5.05 ± 0.07 4.79 ± 0.04	1.70 ± 0.25 1.91 ± 0.35	400 ± 13 379 ± 8	90 ± 21 77 ± 12
MB-56	0-2 cm 4-6 cm 8-10cm 12-18cm	$5.01 \pm 0.10 \\ 5.23 \pm 0.03 \\ 5.42 \pm 0.03 \\ 5.60 \pm 0.03$	1.73 ± 0.50 2.82 ± 0.53 1.61 ± 1.13 2.55 ± 1.25	341 ± 7 425 ± 38 427 ± 45 427 ± 49	85 ± 17 83 ± 22 86 ± 23 98 ± 23
MB-59	0-2 cm 4-6 cm	5.10 ± 0.02 4.97 ± 0.02	2.08 ± 0.47 1.87 ± 0.69	366 ± 42 393 ± 40	77 ± 22 77 ± 20
MB-64	0-2 cm 4-6 cm 8-10cm 12-14cm 16-20cm 20-24cm	$5.10 \pm 0.03 \\ 5.44 \pm 0.16 \\ 5.49 \pm 0.03 \\ 5.81 \pm 0.03 \\ 5.64 \pm 0.03 \\ 5.89 \pm 0.02$	3.73 ± 1.25 2.20 ± 1.66 2.82 ± 1.02 2.52 ± 0.89 2.62 ± 0.89 1.96 ± 0.73	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	82 ± 24 87 ± 43 89 ± 23 96 ± 24 89 ± 23 89 ± 23

Station	Depth Interval	A1(%)	Ca(%)	Mn (ppm)	V (ppm)
GASSE-2	0-2 cm 6-8 cm 10-12cm 14-16cm 18-20cm	$7.11 \pm 0.04 7.91 \pm 0.04 7.73 \pm 0.03 7.85 \pm 0.03 7.86 \pm 0.04$	1.89 ± 0.82 2.47 ± 0.80 1.86 ± 0.76 2.44 ± 1.03 2.70 ± 0.73	738 ± 49 847 ± 48 845 ± 55 995 ± 48 817 ± 46	150 ± 29 190 ± 28 173 ± 29 185 ± 28 170 ± 28
GASSE-5	8-10cm 14-16cm	7.61 ± 0.04 7.24 ± 0.04	4.33 ± 1.37 2.51 ± 0.98	777 ± 48 774 ± 49	165 ± 29 181 ± 28
GASSE-26	0-2 cm 4-6 cm 8-10cm 12-14cm	$\begin{array}{r} 6.19 \pm 0.03 \\ 6.68 \pm 0.03 \\ 6.38 \pm 0.03 \\ 6.81 \pm 0.04 \end{array}$	5.29 ± 0.92 6.93 ± 1.03 5.52 ± 0.97 5.46 ± 1.25	924 ± 51 879 ± 48 836 ± 48 810 ± 53	92 ± 16 147 ± 25 141 ± 24 135 ± 30
GASSE-30	0-2 cm	6.70 ± 0.03	1.56 ± 1.27	600 ± 51	91 ± 26
GASSE-33	0-2 cm 4-6 cm 8-10cm	4.06 ± 0.03 4.17 ± 0.02 5.16 ± 0.02	9.62 ± 1.11 7.42 ± 1.20 12.65 ± 0.60	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	108 ± 24 75 ± 20 108 ± 20
GASSE-44	0-2 cm 4-6 cm	7.15 ± 0.03 7.32 ± 0.12	3.81 ± 0.68 2.45 ± 1.15	851 ± 43 786 ± 18	146 ± 26 174 ± 30
GASSE-48	0-2 cm 4-6 cm 8-10cm	7.63 ± 0.03 7.52 ± 0.03 7.72 ± 0.03	3.29 ± 1.06 4.24 ± 1.22 4.39 ± 0.74	799 ± 44 812 ± 46 756 ± 56	161 ± 27 143 ± 27 174 ± 28
GASSE-49	0-2 cm 4-6 cm 8-10cm 12-14cm 16-18cm	$7.07 \pm 0.03 7.78 \pm 0.03 8.29 \pm 0.04 7.77 \pm 0.03 7.76 \pm 0.03$	3.42 ± 1.32 3.07 ± 0.77 4.22 ± 0.69 3.98 ± 0.92 2.43 ± 0.99	$776 \pm 51 \\746 \pm 40 \\731 \pm 41 \\731 \pm 38 \\713 \pm 40$	157 ± 28 168 ± 27 165 ± 27 145 ± 25 166 ± 27
GASSE-50	0-2 cm 4-6 cm 8-10cm 12-14cm 18-20cm	$7.52 \pm 0.04 \\ 8.45 \pm 0.04 \\ 8.08 \pm 0.04 \\ 7.77 \pm 0.03 \\ 7.89 \pm 0.03$	3.34 ± 1.41 3.14 ± 0.97 2.61 ± 1.41 2.51 ± 1.21 2.16 ± 1.04	$776 \pm 40 \\812 \pm 43 \\782 \pm 45 \\740 \pm 39 \\763 \pm 40$	163 ± 27 183 ± 28 169 ± 29 169 ± 26 166 ± 27
GASSE-51	0-2 cm 4-6 cm	8.20 ± 0.04 7.10 ± 0.04	2.32 ± 1.15 2.46 ± 1.06	969 ± 50 912 ± 46	179 ± 30 177 ± 28

Station	Depth Interval	A1(%)	Ca(%)	Mn (ppm)	V (ppm)
GASSE-52	0-2 cm 4-6 cm 8-10cm 12-14cm 14-16cm	$\begin{array}{r} 8.07 \pm 0.04 \\ 8.76 \pm 0.04 \\ 8.69 \pm 0.04 \\ 8.14 \pm 0.04 \\ 8.39 \pm 0.04 \end{array}$	3.79 ± 1.24 3.13 ± 0.69 3.38 ± 0.64 3.46 ± 1.23 3.18 ± 1.15	$\begin{array}{r} 936 \pm 41 \\ 889 \pm 46 \\ 825 \pm 45 \\ 816 \pm 40 \\ 852 \pm 44 \end{array}$	165 ± 27 183 ± 31 180 ± 30 166 ± 27 152 ± 29
GASSE-56	0-2 cm	6.73 ± 0.03	7.52 ± 1.08	734 ± 41	138 ± 25
	4-6 cm	8.25 ± 0.04	7.93 ± 1.20	621 ± 46	158 ± 27
	8-10cm	7.78 ± 0.03	3.33 ± 0.72	933 ± 43	151 ± 27
	12-14cm	8.10 ± 0.03	3.46 ± 1.16	886 ± 45	197 ± 26
GASSE-57	0-2 cm	7.06 ± 0.03	6.00 ± 1.07	878 ± 51	152 ± 26
	4-6 cm	7.41 ± 0.04	5.31 ± 0.84	747 ± 44	144 ± 27
GASSE-58	0-2 cm	8.52 ± 0.04	2.81 ± 1.32	951 ± 47	176 ± 29
	4-6 cm	7.81 ± 0.03	3.31 ± 0.89	789 ± 44	149 ± 27
	8-10cm	7.96 ± 0.04	2.72 ± 1.19	779 ± 49	167 ± 29
GASSE-59A	۷.۷.	7.92 ± 0.03	2.51 ± 0.83	858 ± 57	155 ± 30
GASSW-105	0-2 cm	5.57 ± 0.02	4.56 ± 0.51	386 ± 45	40 ± 23
	4-6 cm	6.09 ± 0.03	10.52 ± 0.35	651 ± 49	123 ± 24
GASSW-104	0-2 cm	2.40 ± 0.01	15.74 ± 0.79	846 ± 39	72 ± 19
	4-6 cm	6.21 ± 0.02	10.66 ± 1.10	546 ± 48	108 ± 24
	8-10cm	5.13 ± 0.02	11.40 ± 1.05	570 ± 42	94 ± 22
GASSW-119	0-2 cm	7.36 ± 0.04	2.54 ± 1.07	991 ± 48	130 ± 29
	4-6 cm	7.58 ± 0.03	2.53 ± 1.17	802 ± 45	137 ± 27
	8-10cm	7.66 ± 0.04	2.59 ± 0.75	724 ± 47	119 ± 28
GASSW-120	0-2 cm 4-6 cm 8-10cm 12-14cm 16-18cm	$7.57 \pm 0.04 7.06 \pm 0.04 7.48 \pm 0.04 7.64 \pm 0.04 7.24 \pm 0.04 $	1.16 ± 1.69 2.06 ± 1.22 1.94 ± 1.37 1.71 ± 0.95 1.42 ± 1.53	1066 ± 51 958 ± 47 997 ± 57 1074 ± 52 931 ± 49	164 ± 31 123 ± 28 167 ± 32 150 ± 30 144 ± 28
GASSW-121	0-2 cm	6.95 ± 0.03	1.9 ± 1.2	782 ± 53	118 ± 26
	4-6 cm	6.61 ± 0.04	<1.6%	690 ± 50	121 ± 29
	8-10cm	6.89 ± 0.04	1.97 ± 1.02	744 ± 44	114 ± 26
GASSW-122	0-2 ст	2.06 ± 0.02	26.9 ± 1.3	312 ± 31	27 ± 15
GASSW-124	0-2 cm	6.07 ± 0.03	1.8 ± 1.3	489 ± 47	83 ± 25
	4-6 cm	5.63 ± 0.03	2.2 ± 0.9	541 ± 45	88 ± 23
	8-10cm	5.55 ± 0.02	2.6 ± 0.7	464 ± 45	70 ± 22

÷.,

Station	Depth Interval	A1(%)	Ca(%)	Mn (ppm)	V (ppm)
GASSW-133	¥. V.	8.13 ± 0.04	7.7 ± 1.0	1170 ± 50	173 ± 28
GASSW-134	0-2 cm 4-6 cm 8-10cm 12-14cm 16-18cm	$\begin{array}{r} 6.69 \pm 0.03 \\ 5.98 \pm 0.03 \\ 7.36 \pm 0.03 \\ 7.05 \pm 0.04 \\ 6.75 \pm 0.04 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$711 \pm 54 \\ 651 \pm 52 \\ 844 \pm 56 \\ 804 \pm 46 \\ 742 \pm 51$	126 ± 27 124 ± 25 148 ± 28 147 ± 27 118 ± 30
GASSW-135	0-2 cm 4-6 cm 8-10cm	7.46 ± 0.03 7.46 ± 0.03 7.73 ± 0.03	3.6 ± 1.4 3.9 ± 0.9 3.9 ± 1.1	806 ± 56 900 ± 45 906 ± 45	129 ± 28 140 ± 27 132 ± 27
GASSE-48	4-6 cm 4-6 cm 4-6 cm 4-6 cm	$7.83 \pm 0.03 7.94 \pm 0.04 7.75 \pm 0.03 7.52 \pm 0.03$	4.63 ± 0.96 3.10 ± 1.21 4.36 ± 1.08 4.24 ± 1.22	726 ± 39 732 ± 44 720 ± 40 812 ± 46	150 ± 26 165 ± 28 159 ± 26 143 ± 27

TABLE C.2. As, Ba, Co, Cr, Fe, Sb, and Sc in Bering Sea, Northwestern Gulf of Alaska, and Northeastern Gulf of Alaska Surficial Sediments

		As	Ba	Со	Cr	Fe(%)	Sb	Sc
MB-8	0-2 4-6 8-10 12-14	4.1 ± 0.4 5.1 ± 0.3 4.1 ± 0.4 3.9 ± 0.4	370 ± 230 230 ± 210 310 ± 220 <210	13 10 14 7.2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3.87 2.87 4.21 2.11	0.46 ± 0.13 0.56 ± 0.22 0.68 ± 0.14 0.36 ± 0.08	13 11 14 8
MB-19	0-2	3.7 ± 0.4	440 ± 140	10	48 ± 4	2.49	0.63 ± 0.12	12
MB-30	0-4 4-8 8-12	3.4 ± 0.6 2.1 ± 0.5 1.5 ± 0.5	200 ± 190 <260 <370	10 11 10	38 ± 5 36 ± 5 46 ± 5	3.55 3.53 3.42	0.55 ± 0.13 0.50 ± 0.13 0.34 ± 0.13	15 15 14
MB-37	0-2 4-6 8-11	4.1 ± 0.6 3.1 ± 0.5 5.8 ± 0.4	430 ± 190 500 ± 150 750 ± 150	9.1 8.9 11	53 ± 4 59 ± 4 60 ± 5	2.53 2.44 2.73	0.61 ± 0.11 0.44 ± 0.11 0.79 ± 0.14	10 11 10
MB-41	0-2	3.0 ± 0.4	480 ± 140	8.9	64 ± 5	2.39	0.52 ± 0.12	10
MB-43	0-2	3.2 ± 0.5	<420	7.0	61 ± 5	2.06	0.57 ± 0.10	8
MB-56	0-2 4-6 8-10 12-18	0.7 ± 0.6 4.3 ± 0.6 2.8 ± 0.6 4.0 ± 0.7	<260 460 ± 280 570 ± 440 <500	9 8 10 9	86 73 95 79	2.59 2.24 2.87 2.47	0.63 ± 0.08 0.69 ± 0.08 0.74 ± 0.09 0.82 ± 0.14	10 9 11 10
MB-59	0-2 4-6	4.0 ± 0.4 3.8 ± 0.4	1070 ± 340 <350	9 8	107 115	2.52 2.20	0.73 ± 0.08 0.72 ± 0.09	10 9
MB-64	0-2 4-6 8-10 12-14 16-20 20-24	$\begin{array}{r} 2.7 \pm 0.8 \\ 3.6 \pm 0.6 \\ 2.9 \pm 0.6 \\ 3.6 \pm 0.6 \\ 4.6 \pm 0.5 \\ 6.5 \pm 0.4 \end{array}$	1030 ± 340 500 ± 270 <280 810 ± 300 400 ± 260 600 ± 240	9 9 10 8 11 11	93 85 102 76 101 ± 5 92 ± 5	2.68 2.81 3.07 2.47 3.36 3.27	$\begin{array}{r} 0.48 \pm 0.09 \\ 0.60 \pm 0.11 \\ 0.71 \pm 0.07 \\ 0.68 \pm 0.09 \\ 0.75 \pm 0.19 \\ 1.02 \pm 0.17 \end{array}$	10 11 11 10 13 13

		As	5	E	Ba	Со		Cr		Fe(%)		Sb	Sc
MB-12	0-3	4.3 ±	0.5	650 ±	± 170	11	48	± 5	5	3.42	0.86	± 0.17	13
MB-28	0-3	2.9 ±	0.5	490 :	± 170	9	63	± 4	4	2.67	0.56	± 0.14	12
MB-29	0-4	7.2 ±	0.5	530 :	± 220	14	58	± !	5	3.29	0.96	± 0.18	12
GASW-BNW	104 0-2 4-6 8-10	1.9 ± 1.8 ± 1.8 ±	0.5 0.4 0.5	260 : <22 340 :	± 170 20 ± 250	14 18 15	56 83 82	± 4 ± 4 ± 4	4 5 4	2.94 4.08 3.26	0.53 1.03 0.72	± 0.15 ± 0.19 ± 0.15	10 13 12
GASW-BNW	119 0-2 4-6 8-10	7.9 ± 7.7 ± 5.3 ±	0.6 0.6 0.6	360 : 520 : 470 :	± 200 ± 190 ± 180	21 18 18	82 92 69	± () ± ± !	6 6 5	5.36 4.67 4.64	1.56 1.15 1.50	± 0.24 ± 0.19 ± 0.19	18 17 15
GASW-BNW	120 0-2	5.2 ±	0.8	1080 :	± 230	18	100	±	4	4.45	1.46	± 0.17	16

IABLE C.2 (cont'd.)	cont'd.)
---------------------	----------

Station	Interval	As	Ba	Со	Cr	Fe(%)	Sb	Sc
120	4-6 8-10 12-14 16-18	2.9 2.6 5.2 2.6	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 17 16 15	97 102 100 89	3.85 4.18 3.96 3.63	0.49 ± 0.10 0.97 ± 0.12 0.96 ± 0.11 0.81 ± 0.09	14 15 14 13
121	0-2	5.4	760 ± 80	15	117	4.10	0.82 ± 0.12	15
	4-6	3.8	710 ± 80	15	106	3.93	0.73 ± 0.12	14
	8-10	5.6	670 ± 70	13	96	3.39	0.82 ± 0.09	13
122	0-2	2.9	260 ± 30	3	15	0.83	0.17 ± 0.06	3
124	0-2	2.8	630 ± 60	8	67	2.75	0.52 ± 0.10	10
	4-6	3.3	570 ± 70	9	61	2.73	0.43 ± 0.09	10
	8-10	3.7	460 ± 60	9	59	2.96	0.33 ± 0.09	9
133	Grab	3.8	400 ± 80	16	31	4.10	0.35 ± 0.10	14
134	0-2	6.6	670 ± 90	16	77	4.17	0.51 ± 0.12	16
	4-6	5.7	620 ± 100	15	75	4.08	0.64 ± 0.14	16
	8-10	7.3	820 ± 120	21	75	4.61	0.69 ± 0.14	18
	12-14	8.8	830 ± 110	18	75	4.73	0.73 ± 0.14	18
	16-18	5.1	490 ± 110	14	66	3.87	0.48 ± 0.10	15
135	0-2	4.3	710 ± 130	16	74	4.90	0.56 ± 0.15	18
	4-6	4.5	680 ± 110	15	54	4.49	0.50 ± 0.12	16
	8-10	5.1	250 ± 110	16	77	4.73	0.56 ± 0.13	17
2	0-2	5.3	700 ± 190	16	115	4.20	0.61 ± 0.19	14
	6-8	7.8	930 ± 140	22	166	5.91	0.90 ± 0.16	20
	10-12	7.7	710 ± 130	19	134	5.02	0.71 ± 0.13	17
	14-16	8.0	890 ± 140	22	156	5.64	0.74 ± 0.16	19
	18-20	6.3	770 ± 110	19	112	4.96	0.81 ± 0.13	17
5	8-10	2.2	500 ± 100	20	130	5.14	0.59 ± 0.10	18
	14-16	9.5	720 ± 140	23	119	5.14	0.90 ± 0.15	18
26	0-2	1.8	540 ± 120	20	124	4.95	0.43 ± 0.11	18
	4-6	<2.0	460 ± 130	16	88	4.14	0.49 ± 0.12	16
	8-10	3.5	490 ± 120	20	126	4.98	0.57 ± 0.10	19
	12-14	3.1	340 ± 140	17	98	4.27	0.58 ± 0.14	16
30	Top 2 cm	7.2	460 ± 110	12	112	3.10	0.16 ± 0.09	14
51	0-2	8.7	540 ± 100	27	162	6.84	0.44 ± 0.28	24
	4-6	7.9	530 ± 130	20	138	4.94	0.37 ± 0.10	17
105	0-2 4-6	4.7 1.8	460 ± 80 560 ± 120	5 16	192 82	1.32 3.72	0.26 ± 0.06 0.70 ± 0.08	

<u>Alaska Outer Continental Shelf Sediment Composition - Concentrations in ppm except where</u> noted (dry weight).

Station	Interval	As	Ba	Со	Cr	Fe(%)	Sb	Sc
EGA-BNW								
59A	v.v.	1.6 ± 0.6	570 ± 160	17	156	4.52	0.66 ± 25	19
58	0-2	2.7 ± 0.7	430 ± 160	18	145	4.80	0.35 ± 0.08	20
58	4-6	2.3 ± 0.6	250 ± 160	17	131	4.37	0.40 ± 0.07	15
58	8-10	2.3 ± 0.7	480 ± 170	18	153	5.19	0.45 ± 0.09	21
57	0-2	2.1 ± 0.6	350 ± 180	18	134	4.37	0.46 ± 0.16	16
57	4-6	1.9 ± 0.7	490 ± 170	15	79	3.79	0.43 ± 0.09	12
56	0-2	2.2 ± 0.5	620 ± 140	19	116	4.23	0.24 ± 0.07	20
56	4-6	1.9 ± 0.8	770 ± 180	12	88	2.99	0.30 ± 0.05	9
56	8-10	3.2 ± 0.6	740 ± 160	22	171	5.73	0.56 ± 0.09	24
56	12-14	2.7 ± 0.7	530 ± 170	18	142	4.68	0.47 ± 0.08	17
33	0-2	2.6 ± 0.6	450 ± 160	16	114	5.23	0.81 ± 0.07	16
33	4-6	1.5 ± 0.7	450 ± 140	11	79	3.33	0.63 ± 0.06	12
33	8-10	1.4 ± 0.6	350 ± 100	12	32	2.27	0.40 ± 0.05	10
48	0-2	2.5 ± 0.4	550 ± 130					. –
48	4-6	2.3 ± 0.7	500 ± 120	16	104	4.41	0.51 ± 0.09	17
48	8-10	2.1 ± 0.4	440 ± 140					••
44	0-2	2.7 ± 0.7	450 ± 120	15	112	4.36	0.42 ± 0.08	18
44	4-6	0.8 ± 0.4	400 ± 130	16	55	2.97	0.33 ± 0.05	16
49	0-2	4.4 ± 0.9	350 ± 150	18	129	4.86	0.41 ± 0.10	23
49	4-6	3.4 ± 0.4	540 ± 120	18	144	5.25	0.36 ± 0.08	22
49	8-10	3.4 ± 0.7	530 ± 140	19	66	3.46	0.35 ± 0.06	21
49	12-14	2.2 ± 0.3	670 ± 110	20	78	3.67	0.29 ± 0.04	25
49	16-18	2.6 ± 0.4	380 ± 60	17	58	3.04	0.39 ± 0.06	18
50	0-2	3.0 ± 0.2	500 ± 70	19	74	3.44	0.26 ± 0.05	21
50	8-10	2.4 ± 0.4	370 ± 130	12	98	2.84	<0.16	9
50	12-14	3.2 ± 0.4	410 ± 140	20	136	5.08	0.35 ± 0.08	20
50	18-20	2.3 ± 0.4	510 ± 110	16	110	3.76	0.28 ± 0.06	10
52	0-2	4.3 ± 0.5	770 ± 140	19	137	4.90	0.59 ± 0.09	14
52	4-6	2.9 ± 0.4	720 ± 120	21	142	5.44	0.57 ± 0.25	1/
52	8-10	2.5 ± 0.5	580 ± 140	20	.94	4.26	0.58 ± 0.05	14
52	12-14	2.9 ± 0.4	520 ± 120	17	122	4.12	0.51 ± 0.08	12
52	14-16	3.5 ± 0.5	690 ± 80	22	136	5.41	0.56 ± 0.09	10
48	4-6	1.8 ± 0.4	440 ± 110	20	146	5.15	0.55 ± 0.08	19
48	4-6	1.8 ± 0.3	600 ± 80	18	131	4.81	0.54 ± 0.09	10
48	4-6	1.4 ± 0.4	490 ± 30	19	137	4.77	0.50 ± 0.08	17

	A	1 (%)	Ti (%)	Mn	۷
BEAUFORT S	EA				
Station B-	1 8.0	0 <u>+</u> 0.28	0.56+0.14	506+37	176+32
В-	3 5.3	4±0.18	0.31±0.07	369±22	122±12
В-	7 6.5	9±0.22	0.51±0.10	444±25	150±14
B-	8 7.2	6±0.24	0.46±0.11	1008±49	163±15
B-	12 6.0	8±0.21	0.42±0.09	491±26	117±12
NORTON SOU	IND				
Station N-	1 5.3	5±0.18	0.45±0.09	344±21	82±10
N-	5 6.1	8±0.21	0.46±0.10	586± 30	113±12
N-	9 7.3	2±0.24	0.36±0.09	544±2 9	149±14
N-	15 5.8	8±0.20	0.45±0.09	458± 25	102±11
N-	20 5.5	7±0.19	0.46±0.09	396±2 3	73±10
N-	26 4.4	3±1.5	0.36±0.08	417:54	56±9
CHUKCHI SE	A				
Station C-	3 4.7	6±0.16	0.47+0.09	428±24	87±11
C-	4.3	1±0.15	0.32+0.08	405±23	91±10
C-	10 6.1	1+0.21	0.46±0.09	432+24	109±12
C-	20 3.3	6±0.12	0.22:0.06	243±16	66.t8
C	23 1.7	0:0.06	0.16±0.04	143±10	37±8
C-	25 5.1	5±0.17	0.42±0.09	359±21	106±11
SHELIKOF S	TRAIT				
Station SS	5-2 7.6	6 <u>+</u> 0.26	0.46 <u>+</u> 0.10	820+40	148+14
SS-2, sur	face	(0±0, 26	0 51+0 15	1910+00	142+10
۲۰۰۷ ۲۰۱۷> در	7.5 5-1 7.6	50 <u>-</u> 0.26	0.51 ± 0.15	966+46	142-19
	2 7 7.0 2 7 8 0	1+0.27	0.34 ± 0.10	867+43	1/2+15
		21+0.27	0.42+0.11	900+40	146-15
50	-0 0.2 -10 7 r			000 <u>1</u> 40 761±20	143110
53	5-10 7.5	JJTU.20	0.00-0.11	101-10	112-13

TABLE C.3. Al, Ti, Mn and V Concentrations in Cook Inlet, Shelikof Strait, Chukchi Sea, Norton Sound and Beaufort Sea Surficial Sediments.

.

TABLE C.3 (cont'd.)

COOK INL	ET	A1(%)	Ti(%)	Mn	V.
Station	CB-1	7.70 <u>+</u> 0.26	0.38 <u>+</u> 0.10	698 <u>+</u> 35	96 <u>+</u> 13
	CB-3	7.58 <u>+</u> 0.26	0.56 <u>+</u> 0.11	726 <u>+</u> 36	110 <u>+</u> 14
	CB-6	6.05 <u>+</u> 0.21	0.26 <u>+</u> 0.08	415 <u>+</u> 23	61 <u>+</u> 11
	CB-7	7.20 <u>+</u> 0.25	0.42 <u>+</u> 0.10	652 <u>+</u> 33	114 <u>+</u> 14
	CB-8	8.41 <u>+</u> 0.29	0.51 <u>+</u> 0.11	784 <u>+</u> 39	148 <u>+</u> 16
WESTERN	GULF				
Station	WG 105	5.48+0.19	0.29+0.08	672+34	89+11
	WG 120	7.31 <u>+</u> 0.25		989+43	140 <u>+</u> 14
	WG 133	8.46+0.29	0.74 <u>+</u> 0.16	1380 <u>+</u> 70	216 <u>+</u> 21
BRISTOL	BAY				
Station	MB-8	7.02 <u>+</u> 0.24	0.50 <u>+</u> 0.10	692 <u>+</u> 35	132 <u>+</u> 13
	MB-12	6.63 <u>+</u> 0.23	0.31 <u>+</u> 0.09	574 <u>+</u> 29	95 <u>+</u> 13
	MB-41	5.36 <u>+</u> 0.19	0.39 <u>+</u> 0.09	448 <u>+</u> 24	89 <u>+</u> 11
EASTERN	GULF				
	EG-33	5.76 <u>+</u> 0.20	0.31 <u>+</u> 0.09	567 <u>+</u> 28	120 <u>+</u> 13
	EG-44	7.45 <u>+</u> 0.26	0.58 <u>+</u> 0.11	777 <u>+</u> 38	132 <u>+</u> 15
	EG-58	8.36 <u>+</u> 0.29	0.46 <u>+</u> 0.11	837 <u>+</u> 40	174 <u>+</u> 17

	NORTON SOUND				
Station	Na (%)	K(%)	As	La	Sm
N-1	2.03+0.01	1.38 <u>+</u> 0.24	7.8 <u>+</u> 1.1	24.6 <u>+</u> 1.1	3.5 <u>+</u> 0.1
N-5	2.02+0.01	1.65 <u>+</u> 0.22	11.8 <u>+</u> 1.2	30.2 <u>+</u> 0.9	4.4 <u>+</u> 0.1
N-9	2.31+0.01	2.14+0.24	19.8 <u>+</u> 1.1	36.8 <u>+</u> 0.8	5.5 <u>+</u> 0.1
N-15	2.01 <u>+</u> 0.01	1.14 <u>+</u> 0.18	10.7 <u>+</u> 1.0	29.0 <u>+</u> 0.7	4.2 <u>+</u> 0.1
N-20	1.65+0.01	1.60 <u>+</u> 0.19	6.9+0.8	31.2 <u>+</u> 0.8	4.7 <u>+</u> 0.1
N-26	1.72 <u>+</u> 0.01	1.29 <u>+</u> 0.17	8.3 <u>+</u> 0.8	19.7 <u>+</u> 0.6	3.3 <u>+</u> 0.1
	CHUKCHI SEA				
<u>Station</u>	Na(%)	K(%)	As	La	Sm
C-3	1.38+0.01	1.05 <u>+</u> 0.14	9.3 <u>+</u> 0.9	28.0 <u>+</u> 0.9	4.3 <u>+</u> 0.1
C-7	1.12:0.01	0.97 <u>+</u> 0.12	8.4 <u>+</u> 0.9	33.3 <u>+</u> 0.9	4.7 <u>+</u> 0.1
C-10	1.23+0.01	0.62 <u>+</u> 0.11	6.9 <u>+</u> 0.7	22.5 <u>+</u> 0.7	3.6 <u>+</u> 0.1
C-14	2.42+0.01	1.45 <u>+</u> 0.16	11.7 <u>+</u> 1.0	30.6 <u>+</u> 0.9	4.7 <u>+</u> 0.1
C-20	1.20+0.01	0.59 <u>+</u> 0.10	13.5 <u>+</u> 0.7	17.6+0.6	2.8 <u>+</u> 0.1
C-23	0.53 <u>+</u> 0.01	0.32+0.07	23.3 <u>+</u> 0.6	13.8 <u>+</u> 0.5	2.1 <u>+</u> 0.1
C-25	1.66 <u>+</u> 0.01	1.61 <u>+</u> 0.15	13.9 <u>+</u> 0.9	27.1 <u>+</u> 0.5	4.4 <u>+</u> 0.1
	BEAUFORT SEA				
Station	Na(%)	K(%)	As	l_a	Sm
B-1	1.10 <u>+</u> 0.01	2.16 <u>+</u> 0.14	17.6 <u>+</u> 0.9	35.3 <u>+</u> 0.6	5.1 <u>+</u> 0.1
B-3	0.39+0.01	1.65 <u>+</u> 0.12	15.7 <u>+</u> 0.8	37.3 <u>+</u> 0.6	5.1 <u>+</u> 0.1
B-7	0.95 <u>+</u> 0.01	1.99 <u>+</u> 0.13	17.9 <u>+</u> 0.9	34.2 <u>+</u> 0.6	5.2 <u>+</u> 0.1
8-8	3.19 <u>+</u> 0.01	2.72 <u>+</u> 0.23	54.6+1.4	35.0 <u>+</u> 0.7	5.3 <u>+</u> 0.1
B-12	2.07 <u>+</u> 0.01	1.68 <u>+</u> 0.18	22.9 <u>+</u> 1.0	32.0+0.6	5.0 <u>+</u> 0.1

TABLE C.4. Na, K, As, La and Sm Concentrations in Cook Inlet, Shelikof Strait, Chukchi Sea, Norton Sound and Beaufort Sea Surficial Sediments.

COOK INLET

<u>Station</u>	Na(%)	K(%)	As	La	Sm
CB-1	2.60 <u>+</u> 0.01	1.28 <u>+</u> 0.19	8.07 <u>+</u> 0.9	22.4 <u>+</u> 0.6	3.8 <u>+</u> 0.1
CB-3	2.55 <u>+</u> 0.01	1.50 <u>+</u> 0.18	6.1 <u>+</u> 0.9	22.2 <u>+</u> 0.6	3.9 <u>+</u> 0.1
CB-6	2.13 <u>+</u> 0.01	1.49 <u>+</u> 0.15	7.3 <u>+</u> 0.8	11.7 <u>+</u> 0.5	2.0 <u>+</u> 0.1
CB-7	2.61 <u>+</u> 0.01	1.34 <u>+</u> 0.19	7.7 <u>+</u> 0.9	16.2 <u>+</u> 0.6	3.0 <u>+</u> 0.1
CB-8	2.46 <u>+</u> 0.01	1.24 <u>+</u> 0.20	12.4 <u>+</u> 1.0	23.6 <u>+</u> 0.6	4,3 <u>+</u> 0.1

SHELIKOF STRAIT

Statior	<u>Na(%)</u>	K(%)	As	La	Sm
SS-2 S	ur- 3.82 <u>+</u> 0.01	1.71 <u>+</u> 0.27	11.4 <u>+</u> 1.1	18.7 <u>+</u> 0.7	3.8 <u>+</u> 0.1
SS-2	3.10 <u>+</u> 0.01	1.39 <u>+</u> 0.25	9.6 <u>+</u> 1.2	20.0 <u>+</u> 0.6	4.1 <u>+</u> 0.1
55-4	3.00 <u>+</u> 0.01	1.56 <u>+</u> 0.21	10.7 <u>+</u> 1.1	15.1 <u>+</u> 0.6	3.3 <u>+</u> 0.1
SS-5	3.55 <u>+</u> 0.01	1.56+0.24	10.8 <u>+</u> 1.1	23.1 <u>+</u> 0.6	4.4 <u>+</u> 0.1
55-8	3.25 <u>+</u> 0.01	1.85 <u>+</u> 0.22	14.1+1.1	22.2 <u>+</u> 0.7	4.4 <u>+</u> 0.1
SS-10	3.30±0.01	1.45+0.24	8.5 <u>+</u> 1.4	20.7+0.7	4.2+0.1

TABLE C.5 Sc, Cr, Fe, Co, Sb, Ba, Cs, Eu, Tb, Ta and Th Concentrations in Cook Inlet,

Shelikof Strait, Chukchi Sea, Norton Sound and Beaufort Sea Surficial Sediments.

		(ppm EXCEPT WHERE NOTED)									
	Sc	Cr	Fe(%)	Co	Sb	Ba	Cs	Eu	Tb	Ta	Th
NORTON SOUND											
STATION N-	$1 9.40 \pm 0.08$	96 ± 2	2.34 ± 0.07	8 49 + 0 05	0.68 + 0.06	700 + 30	1 85 + 0.00	0.02 + 0.02		0.49 0.00	5 40 4 0 07
N-	$5 11.52 \pm 0.08$	83 ± 1	3.16 ± 0.08	1253 ± 0.07	0.00 ± 0.00	730 ± 20	1.60 ± 0.07	0.92 ± 0.03	0.26 ± 0.05	0.08 ± 0.09	5.48 ± 0.0/
N-	9 16.98 ± 0.08	114 ± 2	4.92 ± 0.09	19.05 ± 0.10	179+0.08	970 ± 20	5.61 ± 0.07	1.06 ± 0.02 1.36 ± 0.02	0.76 ± 0.00	0.75 ± 0.08	7.30 ± 0.00
N-	$15 10.49 \pm 0.08$	71 ± 1	2.76 ± 0.05	11.27 ± 0.23	1.77 ± 0.00 1.03 ± 0.07	620 + 30	2.01 ± 0.17 2.42 ± 0.10	1.00 ± 0.02 1.03 ± 0.03	0.64 ± 0.00	0.95 ± 0.09	11.0 ± 0.1
N-2	8.00 ± 0.06	67 ± 1	2.10 ± 0.04	9.31 ± 0.06	0.76 ± 0.04	670 ± 20	2.42 ± 0.10 2.44 ± 0.08	1.09 ± 0.09	0.09 ± 0.00	0.00 ± 0.07	0.02 ± 0.07
N-3	26 8.80 ± 0.09	47 ± 1	2.49 ± 0.05	7.29 ± 0.08	0.84 ± 0.06	520 ± 30	2.14 ± 0.03 2.18 ± 0.09	0.87 ± 0.02	0.04 ± 0.05 0.62 ± 0.05	1.32 ± 0.07	0.92 ± 0.00 4.75 ± 0.06
CHUKCHI SEA											4.77 ± 0.00
STATION C-	8.62 ± 0.04	229 ± 3	2.26 ± 0.01	8.48 ± 0.05	073+004	540 + 20	1 97 + 0.05	0 02 + 0 01	0.42 ± 0.01	0.65 ± 0.04	6 46 + 0 07
C-7	8.29 ± 0.03	333 ± 4	2.47 ± 0.02	11.46 ± 0.08	0.69 ± 0.04	480 + 20	1.77 ± 0.05 2.08 ± 0.08	0.92 ± 0.01	0.42 ± 0.01	0.02 ± 0.04	0.40 ± 0.07
C -1	6.81 ± 0.04	247 ± 3	1.91 ± 0.01	7.24 + 0.07	0.07 ± 0.03	430 ± 20	1.27 ± 0.03	0.70 ± 0.02	0.41 ± 0.02 0.35 ± 0.01	0.02 ± 0.05	0.79 ± 0.08
C-]	12.46 ± 0.04	93 ± 1	3.37 ± 0.01	11.68 ± 0.24	0.98 ± 0.07	730 ± 20	3.61 ± 0.04	111 + 0.02	0.57 ± 0.01	0.76 ± 0.05	
C-2	20 4.67 ± 0.03	80 ± 1	1.80 ± 0.01	7.31 ± 0.12	0.58 ± 0.07	650 ± 30	1.01 ± 0.10 1.06 ± 0.03	1.11 ± 0.02 0.65 + 0.01	0.34 ± 0.02	0.01 ± 0.00	0.12 ± 0.10
C-2	3 3.31 ± 0.01	150 ± 2	1.89 ± 0.01	5.57 ± 0.03	0.50 ± 0.03	660 ± 20	0.87 ± 0.03	0.09 ± 0.01	0.24 ± 0.01	0.34 ± 0.02	3.61 ± 0.44
C-2	4.74 ± 0.02	41 ± 2	1.42 ± 0.01	4.98 ± 0.02	0.40 ± 0.02		1.47 ± 0.04	0.49 ± 0.01 0.48 ± 0.01	0.29 ± 0.01 0.24 ± 0.02	0.17 ± 0.02 0.33 ± 0.03	2.50 ± 0.05 3.43 ± 0.06
BEAUFORT SEA										0.00 - 0.00	5.45 ± 0.00
STATION B-1	12.79 ± 0.02	82 ± 3	3.53 ± 0.02	13.93 ± 0.07	0.88 ± 0.04		7 28 + 0 11	1 01 + 0 02	0.49 + 0.04	0.81 ± 0.07	101+02
B-3	10.16 ± 0.04	85 ± 3	2.97 ± 0.03	11.76 ± 0.07	0.70 ± 0.04		5.48 ± 0.09	1.01 ± 0.02	0.47 ± 0.04	0.01 ± 0.07	10.1 ± 0.2 0.12 ± 0.15
B-7	12.96 ± 0.02	95 ± 4	3.81 ± 0.03	15.03 ± 0.10	0.72 ± 0.06		6.46 ± 0.07	1.01 ± 0.02 1.13 ± 0.03	0.47 ± 0.04	0.70 ± 0.07	9.13 ± 0.13
B-8	15.77 ± 0.02	97 ± 4	5.48 ± 0.06	17.05 ± 0.09	1.20 ± 0.06		7.92 ± 0.12	1.19 ± 0.03 1.19 ± 0.03	0.52 ± 0.04	0.81 ± 0.08	7.74 ± 0.10
B-1	2 12.21 ± 0.06	89±4	3.72 ± 0.04	12.93 ± 0.07	0.74 ± 0.05		5.93 ± 0.10	1.06 ± 0.02	0.51 ± 0.04	0.84 ± 0.08 0.81 ± 0.07	9.29 ± 0.16
COOK INLET											//= / = 0110
STATION CB	$1 13.23 \pm 0.02$	65 ± 2	3.52 ± 0.01	12.82 ± 0.06	0.72 ± 0.04		2 38 + 0.05	0 72 + 0 01	0 33 + 0 02	0.45 ± 0.03	5 22 + 0 07
CB	-3 7.39 ± 0.05	35 ± 1	2.04 ± 0.01	8.23 ± 0.04	0.48 ± 0.03		1.33 ± 0.03	0.72 ± 0.01	0.02 ± 0.02 0.28 ± 0.02	0.47 ± 0.03	7.22 ± 0.07
CB·	7 12.77 ± 0.03	69 ± 2	3.33 ± 0.02	14.68 ± 0.12	0.63 ± 0.07		233 ± 0.07	0.84 ± 0.01	0.25 ± 0.02 0.35 + 0.02	0.53 ± 0.05	2.47 ± 0.07
CB	8 18.97 ± 0.16	108±3	5.15 ± 0.02	20.80 ± 0.11	2.15 ± 0.10		4.85 ± 0.11	1.11 ± 0.02	0.45 ± 0.02	0.70 ± 0.00	4.51 ± 0.10 5.84 ± 0.12
SHELIKOF STRAI	T										
STATION SS-	2 16.80 ± 0.03	82 ± 2	4.94 ± 0.02	20.04 ± 0.11	1.23 ± 0.09		4.19 ± 0.09	0.94 ± 0.02	0.41 ± 0.04	0.62 ± 0.07	5 50 + 0 11
(SU	RFACE)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
SS-	2 17.26 ± 0.03	85 ± 2	4.82 ± 0.02	19.63 ± 0.11	1.27 ± 0.08		4.45 ± 0.10	1.00 ± 0.02	0.51 ± 0.04	0.84 + 0.08	580 ± 013
SS-	4 16.74 ± 0.04	47 ± 2	4.62 ± 0.03	17.84 ± 0.19	0.77 ± 0.11		2.17 ± 0.15	0.91 ± 0.03	0.35 ± 0.04	0.30 ± 0.06	3.50 ± 0.19
SS-	5 17.55 ± 0.03	98±3	4.95 ± 0.02	19.61 ± 0.27	1.22 ± 0.09		4.76 ± 0.11	1.02 ± 0.02	0.46 ± 0.04	0.75 ± 0.08	6.60 ± 0.15
SS-	8 18.45 ± 0.03	101 ± 3	5.22 ± 0.02	21.00 ± 0.28	1.17 ± 0.08		5.02 ± 0.10	1.05 ± 0.02	0.53 ± 0.04	0.72 ± 0.08	6.64 ± 0.14
SS-	10 16.2 ± 0.03	73 ± 2	4.29 ± 0.02	15.98 ± 0.33	0.93 ± 0.08		3.34 ± 0.10	0.97 ± 0.02	0.42 ± 0.04	0.54 ± 0.07	5.66 ± 0.14

•

TABLE C.6 Regional Average Concentrations of Major and Trace Metals

	Eastern Bering Sea (12 samples)	Northwest <u>Gulf of Alaska</u> (10 samples)	Northeast <u>Gulf of Alaska</u> (15 samples)
Al (%)	6.09 <u>+</u> 0.96	6.02 <u>+</u> 2.13	7.24 <u>+</u> 0.85
Ca(%)	2.86 <u>+</u> 0.90	6.91 <u>+</u> 8.24	4.10 <u>+</u> 2.20
Fe(%)	2.84 <u>+</u> 0.55	3.25 <u>+</u> 1.47	4.64+0.88
Ba (ppm)	531 <u>+</u> 269	558 <u>+</u> 188	503 <u>+</u> 118
Mn (ppm)	494 <u>+</u> 119	756 <u>+</u> 287	813 <u>+</u> 111
V(ppm)	93 <u>+</u> 17	106 <u>+</u> 49	147 <u>+</u> 28
Cr(ppm)	64 <u>+</u> 21	84 <u>+</u> 55	126 <u>+</u> 22
Co (ppm)	9.9 <u>+</u> 1.9	12 <u>+</u> 5.6	18 <u>+</u> 3.4
Sc (ppm)	11 <u>+</u> 1.9	13 <u>+</u> 4.7	18 <u>+</u> 3.2
As (ppm)	3.6 <u>+</u> 1.5	4.8 <u>+</u> 1.7	3.6 <u>+</u> 2.1
Sb(ppm)	0.63+0.15	0.47+0.21	0.46+0.18

TABLE C.6 (cont'd.)

	Norton Sound (6 samples)	<u>Chukchi Sea</u> (7 samples)	<u>Beaufort Sea</u> (5 samples)
Al (%)	5.79 ± 0.96	4.23 ± 1.53	6.65 ± 1.03
Fe (%)	2.96 ± 1.03	2.16 ± 0.63	3.90 ± 0.94
Ba (ppm)	720 ± 150	580 ± 120	
Mn (ppm)	458 ± 92	335 ± 117	564 ± 254
V (ppm)	96 ± 33	83 ± 27	146 ± 26
Cr (ppm)	80 ± 23	168 ± 106	90 ± 6
Co (ppm)	11.3 ± 4.2	8.10 ± 2.64	14.1 ± 2.0
Sc (ppm)	10.9 ± 3.2	6.99 ± 3.12	12.78± 2.01
As (ppm)	10.9 ± 4.7	12.4 ± 5.5	25.7 ± 16.4
Sb (ppm)	1.01 ± 0.40	0.62 ± 0.19	0.85 ± 0.21
Eu (ppm)	1.05 ± 0.17	0.76 ± 0.24	1.08 ± 0.08
Th (ppm)	7.12 ± 2.40	5.04 ± 2.11	9.83 ± 0.64

TABLE C.7 Western Gulf of Alaska Surficial Sediment Elemental Correlation Matrix

	As	Ba	ç	Cr	Fe	Sb	Sc	Al	Ca	Mn	V
As	1	.285	.707 ^x	.534	•713 ^x	.661	.716 ^x	.466	338	.642	.582
Ba		l	.334	.734 ^x	.444	.436	.521	.493	550	.487	.582
ŝ			1	.596	.950 ^{xx}	.706 ^x	•921 ^{xx}	• 863 ^{xx}	738 [×]	.629	.745 ^x
Cr				l	.648	.679 [×]	•688 ^x	.570	774×	.337	.435
Fe					1	.658	•991 ^{xx}	.915××	782 ^x	.715 ^x	.811×
Sb						l	.613	.500	544	.495	.474
Sc							l	•906 ^{xx}	793×	•704 [×]	.814 ^{xx}
Al								1	847 ^{xx}	•733 ^x	•880 ^{xx}
Ca									1	361	569
Mn										1	•948 ^{x>}
v											1
				······································							

x Significant at 0.5

XX Significant at 0.1

TABLE C.8 Eastern Gulf of Alaska Surficial Sediment Elemental Correlation Matrix

	As	Ba	Co	Cr	Fe	Sb	Sc	Al	Ca	Mn	v
As	1	.131	.252	.184	.280	209	.077	.236	534	091	.111
Ba		1	.166	.063	.068	.231	348	.212	141	.134	.109
ŝ			1	.433	.801 ^{xx}	.019	.652 [×]	. 350	002	.663 ^x	.501
¢				l	•704 ^{xx}	.312	.202	.403	192	• 590×	.343
Fe					1	.400	.475	.136	.087	.604 ^x	.371
Sb						l	278	343	.325	.060	.039
Sc							1	.317	089	.351	.472
Al								1	744 ^{xx}	•650 ^x	.762 ^{x2*}
Ca									1	242	356
Mn										1	.581 ^x
v											1
					<u></u>					<u>,</u>	

X Significant at .05

XX Significant at .01

TABLE C.9 Bering Sea - Bristol Bay Surficial Sediment Elemental Correlation Matrix

	As	Ba	<u>م</u>	Cr	Fe	So	Sc	Al	Ca	Mn	v
As	1	127	•794 [×]	174	.306	.797 ^x	.059	.018	385	.212	199
Ba		1	335	•934 ^{>}	cx470	.142	721 ^x	227	157	622	535
ŝ			1	412	.724 [×]	.433	.406	253	041	.678 ^x	.305
Cr				1	549	002	752 ^x	182	157	691 ^x	653
Fe					l	.045	•765 ^x	319	503	.704 ^x	.774 ^x
Sb						ŗ	009	091	600	019	274
Sc							l	393	.088	.762 [×]	.755 ^x
Al								1	183	453	187
Ca									1	.391	.188
Mn										1	.713 ^x
v											1
<u> </u>									<u></u>		. <u>.</u>

X Significant at .05

XX Significant at .01

TABLE C.10 Silver Concentrations in Selected Alaskan Shelf Surficial Sediments

Bristol Bay

MB-12	0-3cm	0.072	±	0.015
MB-28	0-3cm	0.075	±	0.014
MB-29	0-4cm	0.054	±	0.014
MB-37	0-2cm	0.088	±	0.010
MB-41	0-2cm	0.042	±	0.010
MB-43	0-2cm	0.089	±	0.012
MB-56	0-2cm	0.091	±	0.014
MB-59	0-2cm	0.074	±	0.013
MB-64	0-2cm	0.102	Ŧ	0.013
	Mean	0.076	±	0.019

GASSW-105	0-2cm	0.072	±	0.015
119	0-2cm	0.065	±	0.015
120	0-2cm	0.091	±	0.016
121	0-2cm	0.131	±	0.021
122	0-2cm	0.088	±	0.022
124	0-2cm	0.168	±	0.021
133	Grab	0.299	±	0.020
134	0-2cm	0.058	±	0.018
135	0-2cm	0.036	±	0.019
	Mean	0.112	±	0.081

<u>Western Gulf of Alaska</u>

Eastern Gulf of Alaska

GASSE	-	2	0-2cm	0.047 ±	: 0.018
		26	0-2cm	0.057 ±	: 0.020
		33	0-2cm	0.071 ±	: 0.019
		44	0-2cm	0.083 ±	: 0.018
		48	0-2cm	0.077 ±	: 0.017
		49	0-2cm	0.126 ±	£ 0.023
		50	0-2cm	0.066 ±	£ 0.016
		51	0-2cm	0.102 ±	£ 0.020
		52	0-2cm	0.131 ±	£ 0.024
		56	0-2cm	0.135 ±	£ 0.019
		57	0-2cm	0.078 :	± 0.020
		58	0-2cm	0.071 :	± 0.014
		59A	Van Veen	0.104 :	± 0.022
			Mean	0.088 :	± 0.029

Concentrations in ppm dry weight

TABLE C.11 Silver Concentrations in Two Sediment Cores from the Alaskan Shelf.

Bristol Bay

Eastern Gulf of Alaska

GASSE	-	49	0-2cm	0.126	±	0.023
			4-6cm	0.080	±	0.018
			8-10cm	0.071	±	0.019
			12-14cm	0.051	±	0.014
			16-18cm	0.175	±	0.020

APPENDIX D

Display of Surficial Sediment Composition

FIGURE D.1 Al Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.2 Fe Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.3 Ca Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.5 V Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.6 Ba Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.7 Cr Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.8 Co Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.9 Sc Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.10 As Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.11 Sb Concentrations in N. W. Gulf of Alaska Sediments

FIGURE D.12 Al Concentrations in N.E. Gulf of Alaska Sediments

FIGURE D.13 Fe Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.14 Ca Concentrations in N. E. Gulf of Alaska Sediments

FIGRUE D.15 Mn Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.16 V Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.17 Ba Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.18 Cr Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.19 Co Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.20 Sc Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.21 As Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.22 Sb Concentrations in N. E. Gulf of Alaska Sediments

FIGURE D.23 Al Concentrations in Bering Sea Sediments

FIGURE D.24 Fe Concentrations in Bering Sea Sediments

FIGURE D.27 V Concentrations in Bering Sea Sediments

FIGURE D.28 Ba Concentrations in Bering Sea Sediments

FIGURE D.29 Cr Concentrations in Bering Sea Sediments

FIGURE D.30 Co Concentrations in Bering Sea Sediments

FIGURE D.31 Sc Concentrations in Bering Sea Sediments

FIGURE D.32 As Concentrations in Bering Sea Sediments

FIGURE D.33 Sb Concentrations in Bering Sea Sediments

FIGURE D.34 Al Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.36 Mn Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.37 V Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.40 Co Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.41 Sc Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.42 As Concentrations in Shelik Strait and Cook Inlet Sediments

FIGURE D.44 Al Concentration in Norton Sound Sediments

FIGURE D.45 Fe Concentration in Norton Sound Secdiments

FIGURE D.46 Mn Concentration in Norton Sound Sediments

FIGURE D.47 V Concentration in Norton Sound Sediments

FIGURE D.48 K Concentration in Norton Sound Sediments

FIGURE D.49 Cr Concentration in Norton Sound Sediments

FIGURE D.50 Co Concentration in Norton Sound Sediments

FIGURE D.51 Sc Concentration in Norton Sound Sediments

FIGURE D.52 As Concentration in Norton Sound Sediments

FIGURE D.53 Sb Concentration in Norton Sound Sediments

FIGURE D.54 Eu Concentrations in Norton Sound Sediments

FIGURE D.55 Th Concentrations in Norton Sound Sediments

FIGURE D.56 Al Concentration in Chukchi Sea Sediments

FIGURE D.57 Fe Concentration in Chukchi Sea Sediments

FIGURE D.58 Mn Concentration in Chukchi Sea Sediments

FIGURE D.60 K Concentration in Chukchi Sea Sediments

FIGURE D.61 Cr Concentration in Chukchi Sea Sediments

FIGURE D.62 Co Concentration in Chukchi Sea Sediments

FIGURE D.63 Sc Concentration in Chukchi Sea Sediments

FIGURE D.64 As Concentration in Chukchi Sea Sediments

FIGURE D.65 Sb Concentration in Chukchi Sea Sediments

FIGURE D.66 Al Concentrations in Beaufort Sea Sediments

FIGURE D.67 Fe Concentrations in Beaufort Sea Sediments

FIGURE D.68 Mn Concentrations in Beaufort Sea Sediments

FIGURE D.69 V Concentrations in Beaufort Sea Sediments

FIGURE D.70 K Concentrations in Beaufort Sea Sediments

FIGURE D.71 Cr Concentrations in Beaufort Sea Sediments

FIGURE D.72 Co Concentrations in Beaufort Sea Sediments

FIGURE D.73 Sc Concentrations in Beaufort Sea Sediments

FIGURE D.74 As Concentrations in Beaufort Sea Sediments

FIGURE D.75 Sb Concentrations in Beaufort Sea Sediments

APPENDIX E

"Available" Metals in Alaskan Shelf Sediments

		DETERMINED BY A SEQUENTIAL HYDROGEN PEROXIDE AND 0.3 M HC1 LEACHING TECHNIQUE*						
		<u>H₂O₂ Leachable</u>	0.3M HCl Leachable	<u>Total "Available" Vanadium</u>	(%)**			
COOK IN	LET							
Station	CB-1	4.52±0.17	23.4±1.9	27.9±1.9 (29%)				
	CB-3	1.17±0.06	10.0±1.1	11.2±1.1 (10%)				
	CB-6	1.63±0.07	4.21±0.44	5.84±0.45 (10%)				
	CB-7	2.77±0.11	11.4±1.0	14.2±1.0 (12%)				
	CB-8	11.8±0.4	26.8±1.9	38.6±1.9 (26%)				
SHEL I KO	F STRAI	<u>T</u>						
Station	SS-2	4.68±0.17	16.2±1.2	20.9±1.2 (14%)				
	SS-5	1.17±0.05	12.6±1.3	13.8±1.2 (10%)				
	SS-8	4.06±0.15	11.0±0.7	15.1±0.7 (10%)				
	SS-10	2.14±0.08	9.3±0.6	11.4±0.6 (10%)				
BRISTOL	BAY							
Station	MB-8	6.84±0.26	28.3±2.2	35.1±2.2 (27%)				
	MB-12	4.17±0.16	16.1±1.4	20.3±1.4 (21%)				
	MB-41	5.91±0.23	24.8±2.0	30.7±2.0 (34%)				
EASTERN	GULF OF	ALASKA						
Station	EG-33	7.63±0.28	20.7±1.7	28.3±1.7 (24%)				
	EG-44	2.73±0.10	13.2±1.1	15.9±1.1 (12%)				
	EG-58	2.53±0.10	26.1±2.0	28.6±2.0 (16%)				
WESTERN	GULF OF	ALASKA						
Station	WG-105	2.18±0.09	11.2±1.0	13.4±1.0 (15%)				
	WG-120	2.81±0.10	11.9±0.8	14.7±0.8 (11%)				
	WG-133	3.36±0.13	7.7±0.9	11.1±0.9 (5%)				
	BLANK	<0.055 <0.053 <0.024	0.063±0.011 0.080±0.013					

TABLE E.1 "AVAILABLE" VANADIUM IN ALASKAN OCS SEDIMENTS (µg/g DRY WT SEDIMENT)

*Malo, Environ, Sci. Technol. V.11, pp. 277, 1977. **Percent of total vanadium in sediments

.

"AVAILABLE" MANGANESE IN ALASKAN OCS SEDIMENTS (µg/g DRY WT SEDIMENT) DETERMINED BY A SEQUENTIAL HYDROGEN PEROXIDE AND 0.3 M HC1 LEACHING TECHNIQUE*

		H ₂ O ₂ Leachable	0.3M HCl Leachable	<u>Total "Available"</u>	Manganese (%)**
COOK IN	LET				
Station	CB-1	8.86±0.62	515±26	524±26	75%
	CB-3	2.54±0.43	353±18	356±18	49%
	CB-6	0.40±0.17	166±12	166±12	40%
	CB-7	5.51±0.45	242±17	248±17	38%
	CB-8	4.57±0.47	439±31	444±31	57%
SHELIKO	F STRAIT				
Station	SS-2	7.06±0.79	306±22	313±22	51%
	S S-5	6.50±0.71	295±21	302±21	49%
	SS-8	7.54±1.11	293±21	301±21	
	SS-10	13.0 ±1.3	241±17	254±17	37%
EASTERN	GULF OF	ALASKA			
Station	EG-33	3.29±0.47	464±24	467±24	82%
	EG-44	2.80+0.31	374±19	377±19	49%
	EG-58	1.54+0.43	510±26	512±26	61%
WESTERN	GULF OF	ALASKA			
Station	WG-105		714±37	714±37	106%
	WG-120	6.03±0.31	350±18	356±18	40%
	WG-133	10.1 ±0.8	280±14	290±14	21%
BRISTOL	BAY				
Station	MB-8	12.1 ±1.0	385±20	397±20	57%
	MB-12	5./2±0.61	123±6	129±6	22%
	MB-41	6.39±0.51	185±9	191±9	43%
	B1.ANK				

*Malo, Environ. Sci. Technol. V.11, p 277
**Percentage of total manganese in sediments

TABLE E.3

"AVAILABLE" Fe, Co, Sc IN ALASKAN OCS SURFICIAL SEDIMENTS DETERMINED BY SEQUENTIAL LEACHING WITH $\rm H_{2}O_{2}$ and 0.1 n HCI

		H ₂ O ₂					0.1 N HCI					
	Fe		Co		Sc		Fe		Co		Sc	
STATION	_µg/g	% AVAILABLE	Ng/g	% AVAILABLE	Ng/g	% AVAILABLE	µg/g	% AVAILABLE	Ng/g	% AVAILABLE	Ng/g	% AVAILABLE
EG-33	3.09 ± 0.30	0 .01	16.0 ± 0.6	0.10	0.57 ± 0.03	0.004	3180 ± 10	6.1	1.80 ± 0.01	11.3	0.283 ± 0.001	1.77
EG-44	6.72 ± 0.37	0.02	10.0 ± 0.6	0.07	0.87 ± 0.04	0.005	4 510 ± 20	10.4	3.24 ± 0.28	21.6	0.553 ± 0.002	3.07
EG-58	5.35 ± 0.61	0.01	7.8±0.7	0.04	1.14 ± 0.07	0.006	11870 ± 40	24.7	7. 13 ± 0.04	39.6	1.800 ± 0.004	9.00
MB-8	19.9 ± 0.6	0.05	23.6 ± 0.7	0.18	4.49 ± 0.71	0.03	3490 ± 10	9 .0	1.75 ± 0.01	13.4	0.277 ± 0.002	2.15
MB-12	43.9±1.0	0.13	1.03 ±2	0.94	5.04 ± 0.08	0.04	1540 ± 10	4.5	1.17 ± 0.01	10.6	0.212 ± 0.002	1.63
MB-41	24.2 ± 0.8	0.10	29.5 ± 0.8	0.33	2.74 ± 0.06	0.03	3105 ± 10	15.1	1.83 ± 0.01	20.6	0.328 ± 0.003	3.28
WG-105	3.97 ± 0.31	0 .01	12.8 ± 0.1	0. 08	0.94 ± 0.05	0.008	1680 ± 10		1.87 ± 0.02		0.178 ± 0.002	
WG-120	4.98 ± 0.62	0.01	6.2 ± 1.4	0.03	0.69 ± 0.07	0.004	12180 ± 40	27.4	10.64 ± 0.03	59.1	0.687 ± 0.003	4.29
WG-133	6.27 ± 0.37	0.02	4.2 ± 0.7	0.03	3.24 ± 0.05	0.023	2581 ± 10	6.3	3.26 ± 0.03	20.4	0.3 66 ± 0.0 03	2.61
CB-1	7.31 ± 0.59	0.02	19.3 ± 0.9	0.15	0.99 ± 0.06	0.008	5870 ± 20	16.7	4.45 ± 0.03	34.7	0.564 ± 0.003	4.26
CB-3	6.28 ± 0.43	0.03	12.9 ± 0.5	0.16	1.26 ± 0.05	0.017	2850 ± 10	14.0	2.74±0.03	33.3	0.328 ± 0.003	4.44
ÇB-6	5.93 ± 0.48		5.5 ± 0.5		0.65 ± 0.05		1210 ± 10		2.45 ± 0.03		0.190 ± 0.001	
CB-7	3.08 ± 0.38	0.009	51 ±1	0.35	0.48 ± 0.03	0.004	5310 ± 20	15.9	4.79 ± 0.03	32.6	0.438 ± 0.003	3.43
CB-8	28.0 ± 0.8	0.054	44 ± 1	0.21	7.6 ± 0.12	0.040	6910 ± 30	13.4	7.14 ± 0.04	34.3	0.942 ± 0.004	4.97
SS-2	9.24 ± 0.66	0.019	44 ± 1	0.22	1.6 ± 0.1	0.009	7380 ± 30	15.3	5.99±0.04	30.5	0.701 ± 0.004	4.06
SS-5	5.52 ± 0.39	0.011	27 ± 1	0.14	0.75 ± 0.03	0.004	8490 ± 40	17.2	7.05 ± 0.03	35.9	0.600 ± 0.003	3.42
SS-8	9.22 ± 0.50	0.018	44 ± 1	0.21	2.1 ± 0.4	0.0011	8810 ± 40	16.9	7.12 ± 0.04	33.9	0.682 ± 0.004	3.70
S S-10	3.25 ± 0.24	0.008	7.2 ± 0.3	0.045	0.43 ± 0.02	0.003	5800 ± 30	13.5	4.66 ± 0.03	29.2	0.386 ± 0.003	2.38

APPENDIX F

Suspended Particulate Composition in Alaskan Shelf Waters
Elemental Concentrations* of Suspended Particulate Material	(>0.4µ)
from Alaska Outer Continental Shelf	•

	Station	Depth	Mn	Al	٧
Western GO/	<u>a</u> 102	-] 98	0.22 ± 0.02 0.27 ± 0.02	10.03 ± 0.15 9.56 ± 0.08	.019 ± 0.011 0.018 ± 0.009
	103	1 125	0.13 ± 0.04 0.26 ± 0.02	3.79 ± 0.43 7.40 ± 0.19	<0.020 0.021 ± 0.012
	104	1 96	0.061± 0.010 0.67 ± 0.03	2.46 ± 0.08 27.38 ± 0.13	<0.0056 0.059 ± 0.014
	106	81	0.54 ± 0.12	26.3 ± 1.0	<0.057
	108	10 226	0.19 ± 0.12 0.33 ± 0.13	4.53 ± 0.86 30.1 ± 0.8	<0.052 <0.055
	110	10 173	0.17 ± 0.10 0.27 ± 0.20	4.42 ± 0.82 17.1 ± 1.5	<0.046 <0.080
	179	1 204	0.68 ± 0.09 6.48 ± 0.08	32.4 ± 1.0 35.3 ± 0.8	0.070 ± 0.051 0.094 ± 0.045
	120	1 281	0.38 ± 0.07 7.10 ± 0.09	16.5 ± 0.6 103 ± 1	<0.036 0.224 ± 0.063
	121	1 220	0.26 ± 0.04 2.64 ± 0.08	15.0 ± 0.6 69.9 ± 0.8	<0.025 0.148 ± 0.051
	122	1 35	0.24 ± 0.04 0.34 ± 0.04	15.1 ± 1.0 28.3 ± 0.5	<0.036 0.053 ± 0.024
	124	1 105	0.28 ± 0.03 0.30 ± 0.04	14.6 ± 0.4 25.5 ± 0.6	0.028 ± 0.020 0.030 ± 0.029
	133	1 68	0.11 ± 0.04 0.44 ± 0.04	5.00 ± 0.58 18.3 ± 0.5	<0.025 <0.026
	135	1 141	0.066± 0.043 0.36 ± 0.06	2.04 ± 0.65 24.8 ± 2.1	<0.028 <0.066
	137	1 95	0.21 ± 0.05 0.57 ± 0.06	3.73 ± 1.15 20.6 ± 1.0	<0.040 <0.044
	145	1 63	0.33 ± 0.12 0.23 ± 0.05	7.68 ± 2.19 4.88 ± 0.70	<0.090 <0.029

* µg/l of seawater

.

Elemental Concentrations* of Suspended Particulate Material (>0.4 μ) from Alaska Outer Continental Shelf

	Station	Depth	Mn	Al	v
Western GOA	146	1 63	0.23 ± 0.04 0.35 ± 0.07	3.63 ± 0.54 6.79 ± 0.75	<0.023 <0.036
	147	1 94	0.090± 0.064 0.38 ± 0.04	<2.25 11.0 ± 0.5	<0.069 0.026 ± 0.023
	148	1 100	0.15 ± 0.04 0.26 ± 0.04	4.30 ± 0.60 15.5 ± 0.6	<0.028 0.030 ± 0.026
	156	1 150	0.29 ± 0.05 0.94 ± 0.15	11.0 ± 0.9 56.4 ± 2.1	<0.036 0.120 ± 0.099
	157	1 59	0.16 ± 0.01 0.22 ± 0.04	5.65 ± 0.16 17.1 ± 1.1	0.021 ± 0.008 <0.040
	158	1 92	0.31 ± 0.11 0.44 ± 0.11	4.95 ± 2.28 12.2 ± 2.0	<0.093 <0.081
	159	1 96	0.28 ± 0.06	9.25 ± 0.94	<0.038
	160	1 132	0.073± 0.034 0.43 ± 0.03	1.30 ± 0.46 10.3 ± 0.6	<0.020 <0.024
	EGA-2	10 178	0.59 ± 0.12 0.82 ± 0.13	18.7 ± 0.8 32.2 ± 1.0	<0.051 0.063 ± 0.061
	EGA-5	10 162	0.47 ± 0.14 0.72 ± 0.19	26.9 ± 1.2 40.6 ± 1.8	<0.070 <0.091
	EGA-8	10 274	0.27 ± 0.11 0.79 ± 0.21	16.8 ± 0.9 81.5 ± 1.4	0.080 ± 0.051 0.16 ± 0.09
	EGA-11	10 1350	<0.12 <0.11	5.7 ± 1.2 7.0 ± 1.1	<0.061 <0.056
Eastern GOA	EGA-15	10 1500	<0.12 <0.11	8.4 ± 1.1 3.9 ± 1.1	<0.058 <0.055
	EGA-24	10 410	0.10 ± 0.10 <0.11	1.3 ± 0.8 5.4 ± 0.9	<0.044 <0.047
	EGA-26	10 136	0.15 ± 0.12 0.63 ± 0.09	8.9 ± 1.0 34.9 ± 0.7	<0.057 0.095 ± 0.045
	EGA-29	71	0.47 ± 0.11	43.9 ± 0.8	0.11 ± 0.05

.

Elemental Concentrations* of Suspended Particulate Material (>0.4 μ) from Alaska Outer Continental Shelf

			••••	·····	
	Station	υερτη	Mn	AI	V
Eastern GOA	EGA - 30	42	0.39 ± 0.35	395. ± 4	0.77 ± 0.23
	EGA-33	10 205	<0.084 0.24 ± 0.11	0.91 ± 0.66 9.0 ± 1.1	<0.035 <0.060
	EGA-44	10 165	1.02 ± 0.20 0.63 ± 0.12	107 ± 1 46.2 ± 1.2	0.20 ± 0.09 0.11 ± 0.07
	EGA-48	10 447	0.11 ± 0.10 0.33 ± 0.12	3.4 ± 1.1 26.0 ± 1.1	<0.053 0.067 ± 0.061
	EGA-49	10 120	1.59 ± 0.21 0.97 ± 0.23	141 ± 2 84.9 ± 1.7	0.29 ± 0.10 0.16 ± 0.10
	EGA-50	10 161	0.81 ± 0.18 0.60 ± 0.09	74.6 ± 1.7 58.6 ± 0.5	0.12 ± 0.09 0.14 ± 0.04
	EGA-51	10 133	0.59 ± 0.13 1.21 ± 0.21	42.6 ± 1.1 83.1 ± 1.1	0.090 ± 0.065 0.15 ± 0.08
	EGA-52	74	0.62 ± 0.12	38.0 ± 0.9	<0.058
	EGA-53	10 284	0.78 ± 0.12 3.79 ± 0.25	35.9 ± 1.2 222 ± 3	0.067 ± 0.065 0.42 ± 0.14
	EGA- 54	10 212	0.96 ± 0.22 1.03 ± 0.19	57.3 ± 1.6 66.2 ± 1.5	0.11 ± 0.09 0.11 ± 0.09
	EGA-55	10 110	0.97 ± 0.21 1.13 ± 0.20	83.1 ± 1.1 87.8 ± 1.9	0.19 ± 0.07 0.15 ± 0.10
	EGA- 56	58	0.86 ± 0.12	63.9 ± 1.0	0.16 ± 0.06
	EGA-57	67	0.56 ± 0.12	44.7 ± 1.8	0.13 ± 0.08
	EGA-58	82	0.74 ± 0.19	76.7 ± 1.3	0.21 ± 0.08
	EGA-59A	10 370	1.02 ± 0.20 <0.18	97.3 ± 1.3 17.6 ± 1.5	0.18 ± 0.08 <0.076
<u>Bering Sea</u>	MB-8	S B	1.41 ± 0.02 2.22 ± 0.60	64.4 ± 0.2 68.0 ± 0.4	0.072 ± 0.016 0.12 ± 0.03
	MB - 2	S B	0.56 ± 0.03 0.50 ± 0.04	9.4 \pm 0.2 20.6 \pm 0.2	0.019 ± 0.014 0.051 ± 0.016

	Station	Depth	Mn	۲A	٧
<u>Bering Sea</u>	MB-14	S B	0.096 ± 0.064 0.17 ± 0.02	10.1 ± 0.6 24.1 ± 0.2	<0.017 <0.007
	MB-17	В	0.51 ± 0.02	72.2 ± 0.2	0.085 ± 0.016
	MB-19	В	1.45 ± 0.13	114 ± 1	0.31 ± 0.06
	MB-24	В	2.80 ± 0.03	77.4 ± 0.6	0.12 ± 0.02
	MB-31	S B	0.040 ± 0.014 0.13 ± 0.01	6.32± 0.20 18.3 ± 0.2	<0.007 0.019 ± 0.008
	MB-30	В	0.89 ± 0.05	102 ± 1	0.18 ± 0.04
	MB-34	S B	0.054 ± 0.014 0.12 ± 0.01	12.0 ± 0.2 18.4 ± 0.1	<0.008 0.016 ± 0.008
	MB-37	В	0. <u>5</u> 1 ± 0.02	28.8 ± 0.2	0.030 ± 0.010
	MB-41	В	0.93 ± 0.02	21.0 ± 0.2	0.034 ± 0.010
	MB-43	В	0.60 ± 0.02	23.0 ± 0.2	0.028 ± 0.010
	MB-48	S B	0.082 ± 0.012 0.14 ± 0.03	15.4 ± 0.1 14.4 ± 0.1	0.014 ± 0.007 0.019 ± 0.014
	MB-53	S B	0.046 ± 0.028 0.15 ± 0.03	7.34± 0.14 14.0 ± 0.1	<0.012 0.044 ± 0.014
	MB-56	В	1.48 ± 0.04	13.8 ± 0.1	0.044 ± 0.014
	MB-59	В	0.51 ± 0.04	17.2 ± 0.2	0.021 ± 0.019
	MB-64	В	1.00 ± 0.03	16.0 ± 0.1	0.049 ± 0.014

Elemental Concentrations* of Suspended Particulate Material (>0.4 $_{\mu})$ from Alaska Outer Continental Shelf

TABLE F.2

ELEMENTAL COMPOSITION OF SUSPENDED PARTICULATE MATERIAL (>0.4 µ) IN ALASKAN SHELF WATER	RS
(ng/I EXCEPT WHERE NOTED)	

STATION IDENTIFI	CATION		As	Ba (µg/l)	Co	Cs	Fetµg/l)	Hg	Rb	Sþ	Sc	Se	Sr
WESTERN GULF	101	SURFACE	Q51 ± Q11	<0.76	3.16 ± 0.08	Q.42 ±0.06	5.31 ± 0.14	2.8 ± 0.6	50 ± 30	A26 ± 0.10	174 = 0.01	<0.38	60 ± 40
OF ALASKA		BOTTOM	3.4 ± 0.5	<0.67	5.30 ± 0.06	Q73 ± Q.05	8.71 ± 0.09	26 ± 03	<20	0.49 ± 0.11	3,20 ± 0,01	Q5 ± Q2	860 ± 40
	104	SURFACE	4.7 ± 0.5	<0.64	1.74 ± 0.08	Q12 ± Q03	1.58 ± 0.05	5.5 ± 0.2	<10	<0.73	0.59 ± 0.002	L0 ± Q1	400 ± 20
		BOTTOM	23 ± 04	<0,56	7.85 ± 0.09	L1 ± Q1	142 ± 0.1	7.4 ± 0.8	<40	Q.48 ± Q.12	5.17 ± 0.01	15 ± 05	140 ± 50
	108	SURFACE	<l8< th=""><th><0.84</th><th>166 ± 0,13</th><th>Q23 ± Q.03</th><th>3,16 ± 0,01</th><th>19 ± 02</th><th><20</th><th>Q 19 ± Q.05</th><th>120 ± 0.01</th><th>Q.46 ± Q.12</th><th>540 ± 10</th></l8<>	<0.84	166 ± 0,13	Q23 ± Q.03	3,16 ± 0,01	19 ± 02	<20	Q 19 ± Q.05	120 ± 0.01	Q.46 ± Q.12	540 ± 10
		BOTTOM	<l5< th=""><th><0.69</th><th>7.18 ± 0.06</th><th>13 × 01</th><th>168 ± 0.1</th><th>83 ± 07</th><th>70 ± 40</th><th>Q29 ± Q 11</th><th>6.30 ± 0.01</th><th>L2 ± Q4</th><th>560 ± 50</th></l5<>	<0.69	7.18 ± 0.06	13 × 01	168 ± 0.1	83 ± 07	70 ± 40	Q29 ± Q 11	6.30 ± 0.01	L2 ± Q4	560 ± 50
	119	SURFACE	7.5 ± 1.3	24 ± L0	103 ± 01	22 ± Q1	22.0 ± 0.1	38 ± 1	50 ± 10	12 ± 0,1	8,77 ± 0,01	Q91 ± Q28	300 ± 30
		BOTTOM	13 ± 1	<10	18.8 ± 0.1	26 ± Q1	26.5 ± 0.2	16 ± 1	70 ± 40	Q94 ± Q15	8.07 ± 0.02	14 ± 0,5	310 ± 60
	121	SURFACE	&3 ± L3	<11	5.27 ± 0.01	10 ± Q1	9.76 ± 0.06	M ± 1	30 ± 10	47 ± 01	3.94 ± 0.01	14 ± 0.2	250 ± 20
	122	MOTTOM	<0,53	<0.69	6,31 ± 0,05	15 ± Q1	16.8 ± 0,2	12 ± Q8	80 ± 40	Q81 ± Q13	6.18 ± 0.02	10 ± Q5	210 ± 50
	124	SURFAC E	5.0 ± 1.4	<l?< th=""><th>6.14 ± 0.04</th><th>Q.91 ± 0.05</th><th>9.17 ± 0.06</th><th>36 ± 1</th><th>30 ± 10</th><th>10 ± Q1</th><th>3.91 ± 0.01</th><th>10 ± 02</th><th>200 ± 20</th></l?<>	6.14 ± 0.04	Q.91 ± 0.05	9.17 ± 0.06	36 ± 1	30 ± 10	10 ± Q1	3.91 ± 0.01	10 ± 02	200 ± 20
		BOTTOM	<0.52	<8.86	5.73 ± 0.07	15 × 01	1.33 ± 0.01	9.4 ± 0.7	<40	Q37 ± Q12	4,82 ± 0,01	Q99 ± 41	280 ± 40
	133	SURFACE	<3.3	ŝ	1.64 ± 0.09	Q21 ± Q.CB	2,53 ± 0,08	20 ± 1	30	Q.42 ± Q.09	Q.82 ± Q.06	L2 ± Q2	150 ± 20
		BOTTOM	<1.5	<10	463 ± 0.05	1.1 ± 0.1	10.0 ± 0.1	11 ± 1	60 ± 20	10 ± 01	3.64 ± 0.01	<0,58	140 ± 30
	135	SURFACE	5.6 ± 3.3	<l3< th=""><th>2.07 ± 0.08</th><th><4.05</th><th>Q.85 ± Q.07</th><th>17 ± 1</th><th><20</th><th>Q.56 ± Q.08</th><th>Q30 ± Q05</th><th>17 ± 02</th><th>200 ± 20</th></l3<>	2.07 ± 0.08	<4.05	Q.85 ± Q.07	17 ± 1	<20	Q.56 ± Q.08	Q30 ± Q05	17 ± 02	200 ± 20
		BOTTOM	<2.5	<l1< th=""><th>1.68 ± 0.06</th><th>L3 ± Q1</th><th>15.1 ± 0.1</th><th>10 ± 1</th><th>50 ± 20</th><th>1.7 ± 0.2</th><th>5.34 ± 0.01</th><th><0.52</th><th>360 ± 30</th></l1<>	1.68 ± 0.06	L3 ± Q1	15.1 ± 0.1	10 ± 1	50 ± 20	1.7 ± 0.2	5.34 ± 0.01	<0.52	360 ± 30
1	107	SURFACE	<3.6	<14	155 ± Q.08	Q.14 ± Q.08	L89 ± 0.07	B = 1	<20	Q.57 ± Q.08	8.66 ± 0.05	<0,30	200 ± 20
		BOTTOM	<2,5	<l1< th=""><th>613 ± 0.06</th><th>L0 ± Q1</th><th>11.7 ± 0.1</th><th>12 ± 0,5</th><th>50 ± 20</th><th>2,7 ± 0,2</th><th>4, 13 ± 0.01</th><th>Q85 ± Q33</th><th>270 ± 30</th></l1<>	613 ± 0.06	L0 ± Q1	11.7 ± 0.1	1 2 ± 0,5	50 ± 20	2,7 ± 0,2	4, 13 ± 0.01	Q85 ± Q33	270 ± 30
	14 5	SURFACE	<4.5	<18	2,57 ± 0,01	Q2) ± Q.04	3,65 ± 0,09	21 ± 1	<30	0.58 ± 0.10	1.27 ± 0.01	Q73 ± Q23	760 ± 20
		BOTTOM	< 2,2	<0.95	3,44 ± 0,01	Q 18 ± Q.04	290 ± Q B	12 ± 1	<20	15 ± Q1	1.05 ± 0.01	Q 77 ± Q.21	23 0 ± 20
	148	SURFACE	<3,4	<13	120 ± 0.08	Q.12 ± Q.02	1.40 ± 0.07	17 ± 1	<20	2,2 ± Q.1	Q.48 ± Q.05	Q.64 ± Q.10	170 ± 20
		BOTTOM	3.0 ± 1.5	<l2< th=""><th>5,33 ± 0,05</th><th>Q71 ± Q05</th><th>8.00 ± 0,10</th><th>B ± 1</th><th><30</th><th>Q.77 ± Q.14</th><th>2,86 ± 0,01</th><th>Q.92 ± Q.28</th><th>)80 ± 30</th></l2<>	5,33 ± 0,05	Q71 ± Q05	8.00 ± 0,10	B ± 1	<30	Q.77 ± Q.14	2,86 ± 0,01	Q.92 ± Q.28)80 ± 30
	157	SURFACE	<1'5	<0,51	3,60 ± 8,04	Q18 ± QCB	3.66 ± 0.09	M = 1	<30	Q98 ± Q11	1.19 ± 0.01	<0.46	100 ± 20
l		BOTTOM	<1.2	<l1< th=""><th>427 ± 0.05</th><th>Q24 ± Q.05</th><th>6,59 ± 0,89</th><th>N ± 1</th><th><30</th><th>13 ± 0.01</th><th>2,40 ± 0,01</th><th>Q.59 ± Q.20</th><th>210 ± 20</th></l1<>	427 ± 0.05	Q24 ± Q.05	6,59 ± 0,89	N ± 1	<30	13 ± 0.01	2,40 ± 0,01	Q.59 ± Q.20	210 ± 20
Y	160	SURFACE	< 8,0	<3.4	1.79 ± 0.06	Q.089 ± Q.049	L49 ± 0.17	34 ± 1	<10	12 + 01		15 ¥ 03	350 ± 30
		BOTTOM	< 2,8	<2,3	3.66 ± 0.04	Q.44 ± Q.01	5.82 ± 0.12	14 ± 1	50 ± 40	Q52 ± Q 16	2,03 ± 0,01	Q73 ± Q09	120 ± 30
BERING SEA	MB-2	SURFACE	7.4 ± 2.3	<l1< th=""><th>2,63 ± 0,06</th><th>Q13 ± Q.06</th><th>6.06 ± 0.17</th><th>2.6 ± 0.7</th><th></th><th>Q53 ± Q 16</th><th>1.82 ± 0.01</th><th>Q.82 ± Q.35</th><th><100</th></l1<>	2,63 ± 0,06	Q13 ± Q.06	6.06 ± 0.17	2.6 ± 0.7		Q53 ± Q 16	1.82 ± 0.01	Q.82 ± Q.35	<100
		BOTTOM	6,3 ± 1,6	<12	3.27 ± 0.06	Q30 ± Q.07	1Q1 ± Q2	24 ± Q9	90 ± 50	L3 ± Q2	3.81 ± 0.01	Q.93 ± Q.45	180 ± 50
	MB-8	SURFACE	23 ± 2	19 ± 09	8,57 ± 0,09	1.29 ± 0.10	2,52 ± Q.B	<13		Q61 ± Q26	8.46 ± 0.02	25 ± 0.6	340 ± 70
		BOTTOM	16 ± 2	<l2< th=""><th>9.49 ± 0.09</th><th>L33 ± Q11</th><th>27,3 ± 0,2</th><th>3.8 ± 1.4</th><th><10</th><th>Q 89 ± Q 35</th><th>NQ.2 ± Q.1</th><th>Q8) ± Q.68</th><th>330 ± 79</th></l2<>	9.49 ± 0.09	L33 ± Q11	27,3 ± 0,2	3.8 ± 1.4	<10	Q 8 9 ± Q 3 5	NQ.2 ± Q.1	Q8) ± Q.68	330 ± 79
	MB-]4	SURFACE	<1.5	<2.9	2,43 ± 0,10	0.40 ± 0.08	3,65 ± 0,27	69 ± 1.1		20 ± Q2	122 ± Q.@	14 ± Q6	23 0 ± 60
		NOTTON	2,7 ± 0,6	<14	1.06 ± 0.04	Q.27 ± Q.01	235 ± 0,12	14 ± 86		8,78 ± 0,17	L06 ± 0,01	Q.58 ± Q.30	
	MB-17	BOTTOM	13 ± 2	<14	9.53 ± 0.1 0	16 ± Q1	32,21 ± 0,33	23 ± 15		6,87 ± 0,29	12.3 ± 0.1	2.1 ± 0.7	350 ± 80
	MB-24	BOTTOM	24 ± 2	<75	M.6 ± Q.1	1.8 ± 0.1	36.1 ± 0.3	<18		1.4 ± 0.4	13,2 ± 0,1	2,2 ± Q.8	250 ± 90
	MB-37	BOTTOM	13 ± 2	<0.77	1,78 ± 0,07	0,95 ± 0,08	12.9 ± 2	2,8 ± 1,0		Q.64 ± Q.19	4.30 ± 0.01	17 ± Q5	160 ± 50
	MB -41	BOTTOM	£7 ± 12	<0.80	1.52 ± 0.07	19 ± Q1	9.86 ± 0.17	28 ± Q9	70 ± 50	Q84 ± Q.26	3,17 ± 0,01	12 ± 0.4	90 ± 50
	MB-43	NOTTOM	11 ± 2	< <u>11</u>	33±01	Q.49 ± Q.06	£1 ± 62	35 ± Q9	< 79	Q96 ± Q31	29 ± 01	10 ± 03	< 480
	MB -53	SURF ACE	6,4 ± 1,2	<1.1	12 ± Q1	Q21 ± Q05	4,3 ± 0,2	34 ± 97	<গ	16 ± Q2	Q73 ± Q68	19 ± 83	670 ± 350
		BOTTOM	11 ± 2	<18	22 ± 0.1	Q40 ± Q.07	12 ± 1	19 ± Q8	< 52	Q.80 ± Q.24	2,3 ± Q1	11 ± 04	< 420
ŧ	MB -59	BOTTOM	13 ± 2	<u< th=""><th>3.0 ± 0.1</th><th>Q.58 ± Q.07</th><th>9.0 ± Q.2</th><th>2,5 ± 0,8</th><th>< 98</th><th>Q.42 ± 0.28</th><th>29 ± Q1</th><th>2,1 ± 0,4</th><th>150 ± 50</th></u<>	3.0 ± 0.1	Q.58 ± Q.07	9.0 ± Q.2	2,5 ± 0,8	< 98	Q.42 ± 0.28	29 ± Q1	2,1 ± 0,4	150 ± 50

TABLE F.2 (contd)

ELEMENTAL COMPOSITION OF SUSPENDED PARTICULATES (>0.4 μ) IN ALASKAN SHELF WATERS (ng/I EXCEPT WHERE NOTED) (CONTINUED)

EAS	TERN GULF	•	-					•			
10	ALASKA		<u>Cs</u>	retug /11	Hg	Rb	<u>Sb</u>	<u>Sc</u>	Se	<u> </u>	Zn
EGA-2	SURFACE	8.1 ± Q.1	Q.98 ± Q.09	B ± 1	10 ± 1	<170	4,2 ± 0,4	4.2 ± 0.1	<0.6	430 ± 70	0.09 ± 0.01
	BOTTOM	10 ± 1	16 ± Q1	24 ± 1	5.2 ± 1.0	<120	0.74 ± 0.28	60 ± Q1	0,71 ± 0,42	270 ± 50	Q11 ± Q01
EGA-5	SURFACE	8,8 ± 0,1	13 ± Q1	20 ± 1	9.6 ± 0.9	<200	Q% ± Q25	6,2 ± 0,1	Q64 ± Q39	610 ± 50	Q 19 ± Q 01
	BOTTOM	13 ± 1	l8 ± Q1	12 ± 1	43 ± 1.0	620 ± 120	0.82 ± 0.28	7.4 ± 0.1	Q63 ± Q45	630 ± 60	Q 19 ± Q 01
EGA-8	SURFACE	5.0 ± 0.1	Q.71 ± Q.08	11 ± 1	<1.3	<160	Q.54 ± Q.35	3.6 ± Q.1	10 ± 05	390 ± 60	0.08 ± 0.01
	BOTTOM	22 ± 1	2.8 ± 0.1	54 ± 1	32 ± 1	280 ± 140	Q.73 ± Q.36	15 ± 1	<2,3	460 ± 80	Q 17 ± Q 01
EGA-15	SURFACE	7.4 ± 0.1	Q33 ± Q.09	6,2 ± 0,2	3.1 ± 1.1	<120	3.6 ± 0.2	2.0 ± Q.1	Q93 ± Q44	650 ± 50	4.74 ± 0.01
	BOTTOM	1.7 ± 0.1	0,25 ± 0,08	3.8 ± 0.1	7.9 ± 0,5	<100	Q43 ± Q13	0,93 ± 0,01	Q34 ± Q21	460 ± 20	Q.14 ± Q.01
EGA -26	SURFACE	3.8 ± 0.1	0,12 ± 0,08	3.4 ± 0.1	2.0 ± 0.5	<64	Q49 ± Q12	Q95 ± Q01	0.94 ± 0.20	340 ± 20	Q10 ± Q01
	BOTTOM	7.1 ± Q.1	5.4 ± 0.5	15 ± 1	<0.91	<100	Q30 ± Q25	4.9 ± 0.1	0.68 ± 0.40	230 ± 50	0.22 ± 0.01
EGA-29	BOTTOM	15 ± 1	L5 ± Q1	33 ± 1	8.5 ± 1.2	<150	0.83 ± 0.32	11 ± 1	L3 ± Q5	570 ± 60	Q61 ± Q01
EGA-30	BOTTOM	93 ± 1	14 ± 1	220 ± 10	<3.0	<350	1.8 ± 0.8	57 ± 1	2.1 ± 1.2	1380 ± 150	Q91 ± Q01
EGA-33	SURFACE	1.1 ± 0.1	0.12 ± 0.04	Q9 ± Q1	2,3 ± 0,2	<97	0,50 ± 0,18	Q30 ± Q01	<0.3	300 ± 30	0.09 ± 0.01
	BOTTOM	3.2 ± 0.1	0.26 ± 0.08	69 ± 0,1	<0.66	<80	Q26 ± Q16	2.3 ± 0.1	Q.63 ± Q.22	400 ± 30	Q12 ± Q01
EG A -44	SURFACE	36 ± 1	5.4 ± 0.1	86 ± 1	4.1 ± 1.9	<300	16 ± Q5	29 ± 1	< 0.98	680 ± 100	0.34 ± 0.01
	BOTTOM	13 ± 1	L2 ± Q1	33 ± 1	<1.8	<260	<0,49	11 ± 1	16 ± Q7	510 ± 100	0,20 ± 0,01
EGA -48	SURFACE	16 ± Q1	Q. 16 ± Q.CB	2.4 ± 0.1	2,4 ± 0,5	<72	0.60 ± 0.14	Q.79 ± Q.01	Q86 ± Q 18	330 ± 20	Q12 ± Q01
	BOTTOM	9.1 ± 0.1	Q83 ± Q03	21 ± 1	3.6 ± Q.5	<210	<0.44	7.5 ± Q I	<0,62	440 ± 30	Q15 ± Q01
EGA - 52	BOTTOM	11 ± 1	L1 ± Q1	25 ± 1	1.3 ± 0.9	<130	<0,25	8.5 ± 0.1	Q44 ± Q37	200 ± 30	0.12 ± 0.01
EGA-53	SURFACE	13 ± 1	2.1 ± 0.1	24 ± 1	<1.1	<180	<0.29	7.8 ± 0.1	1.0 ± 0.4	320 ± 50	Q 12 ± Q 01
•	BOTTOM	51 ± 1	5.3 ± 0.1	120 ± 10	<2.8	< 450	1.4 ± 0.4	39 ± 1	2.9 ± 0.5	920 ± 70	0.44 ± 0.01
EGA -55	SURFACE	32 ± 1	47 ± Q1	69 ± 1	87 ± 16	<260	2.0 ± 0.4	23 ± 1	L1 ± Q6	750 ± 80	Q37 ± Q01
	BOTTOM	27 ± 1	2,5 ± Q I	63 ± 1	6.7 ± 1.4	<300	L1 ± 0.4	21 ± 1	Q.78 ± Q.57	540 ± 80	Q24 ± Q01
EG A - 58	BOTTOM	27 ± 1	2.6 ± Q.1	59 ± 1	4,5 ± 1,5	<250	L2 ± Q4	20 ± 1	Q83 ± 0.59	490 ± 80	Q23 ± Q.01
10 & BLA	NK (144 mm)	Q. 19	<0.013	0.24	0.90	<2	Q.20	0,04	<0.13	ឋ	Q.03
10 & BLA	NK (144 mm)	0,23	<0,012	0,29	6.9	<2	Q.53	0,02	<0.09	<10	0.007
10 & BLA	NK (144 mm)	0.19	<0.017	Q.21	1.4	<2	0,29	0,08	<0.13	14	0,054
10 & BLA	NK (144 mm)	0,14	<0.013	Q.12	0,40	<2	Q 13	0,005	<0.12	<10	Q.037
10 & BLA	NK (144 mm)	Q.17	<0.012	0,23		<2	Q.39	0.008		24	0.08

TABLE F.3

ELEMENTAL CONCENTRATIONS (>0.4 μm) IN COOK INLET AND SHELIKOF STRAIT SUSPENDED PARTICULATES ($\mu g/\ell$ OF SEAWATER)

<u>COOK IN</u>	ET	Date	Depth	Al	Ti	Na	Mn	· V
Station	CB-1	5/78	Sfc.	235 <u>+</u> 9	10.3 <u>+</u> 6.0	440 <u>+</u> 30	3.05 <u>+</u> 0.13	0.56+0.12
	CB-1	8/78	15M	13.5 <u>+</u> 4.9	8.8 <u>+</u> 5.6	650 <u>+</u> 40	0.39 <u>+</u> 0.06	<0.18
	CB-2	5/78	Sfc.	192 <u>+</u> 5	11.4 <u>+</u> 4.5	380 <u>+</u> 30	2.10 <u>+</u> 0.10	0.25<u>+</u>0. 07
	CB-2	8/78	20 M	185 <u>+</u> 5	9.5 <u>+</u> 4.8	570 <u>+</u> 40	2.39 <u>+</u> 0.11	0.40<u>+</u>0. 09
	CB-3	8/78	20M	16.7 <u>+</u> 2.0	<4.8	230 <u>+</u> 20	0.18 <u>+</u> 0.03	<0.08
	CB-4	8/78	15M	41.6 <u>+</u> 1.6	4.6 <u>+</u> 2.1	210 <u>+</u> 10	0.52 <u>+</u> 0.03	<0.06
	CB-5	8/78	30M	10.3 <u>+</u> 2.8	7.7 <u>+</u> 4.3	570 <u>+</u> 40	0.54 <u>+</u> 0.07	<0.14
	CB-6	5/78	Sfc	19.2 <u>+</u> 1.7	5.7 <u>+</u> 3.3	260 <u>+</u> 20	0.40 <u>+</u> 0.05	<0.09
	CB-6	8/78	20M	9.0 <u>+</u> 2.2	<8.4	410 <u>+</u> 30	0.34+0.06	<0.12
	CB-7	5/78	Sfc	29.6 <u>+</u> 3.5	<11,4	670 <u>+</u> 50	0.73 <u>+</u> 0.07	<0.17
	CB-7	8/78	15M	23.2 <u>+</u> 3.4	10.4 <u>+</u> 5.1	660 <u>+</u> 70	0.69 <u>+</u> 0.07	<0.15
	CB-8	5/78	Sfc	119 <u>+</u> 5	9.1 <u>+</u> 5.7	520 <u>+</u> 40	3.46 <u>+</u> 0.14	0.31<u>+</u>0. 08
	CB-8	8/78	1 5M	153 <u>+</u> 5	10.7 <u>+</u> 4.2	280 <u>+</u> 20	3.85 <u>+</u> 0.15	0.36 <u>+</u> 0.07
SHELIK	OF STRAIT	<u>[</u>						
Statio	n SS-2	8/78	267M	411 <u>+</u> 11	24.2 <u>+</u> 9.0	680 <u>+</u> 50	14.6 <u>+</u> 0.5	0.66<u>+</u>0. 14
	SS-4	8/78	131M	37.7 <u>+</u> 1.7	<4.0	170 <u>+</u> 10	0.93 <u>+</u> 0.04	0.11 <u>+</u> 0.03
	SS-6	8/78	203M	142 <u>+</u> 6	<12	510 <u>+</u> 30	11.4 <u>+</u> 0.4	0.27<u>+</u>0. 09
	SS-11	8/78	130M	21.2 <u>+</u> 1.5	3.3 <u>+</u> 1.6	150 <u>+</u> 10	0.59 <u>+</u> 0.03	<0.06
	SS-13	8/78	147M	74 <u>+</u> 3	<6.2	260 <u>+</u> 20	6.5+0.2	0.15 <u>+</u> 0.05

TABLE F.4

соок	INLET	-TIME	SERIES -	SUSPENDED	PARTICULA	FE MATTER	>0.4 µm.	STATION	CB-10
				Discovere	er, August	1978			×

	A1(%)	Ti(%)	Mn (ppm)) V (ppm)
t = 0 hr	8.57 <u>+</u> 0.29	0.73 <u>+</u> 0.13	1139 <u>+</u> 53	168 <u>+</u> 16
t = 0 hr	8.16 <u>+</u> 0.28	0.49 <u>+</u> 0.11	1098 <u>+</u> 51	177 <u>+</u> 16
t = 0 hr	8.24 <u>+</u> 0.28	0.44 <u>+</u> 0.10	1081 <u>+</u> 50	151 <u>+</u> 15
t = 8 hr	9.79 <u>+</u> 0.33	0.32 <u>+</u> 0.11	1090 <u>+</u> 51	158 <u>+</u> 17
t = 8 hr	8.25 <u>+</u> 0.29	0.55 <u>+</u> 0.12	1133 <u>+</u> 54	154 <u>+</u> 18
t = 16 hr	8.08 <u>+</u> 0.29	0.48 <u>+</u> 0.11	1023 <u>+</u> 48	142 <u>+</u> 15
t = 24 hr	7.70 <u>+</u> 0.27	0.52 <u>+</u> 0.12	927 <u>+</u> 44	136 <u>+</u> 15
t = 32 hr	7.68 <u>+</u> 0.26	0.46 <u>+</u> 0.11	986 <u>+</u> 46	141 <u>+</u> 15
t = 40 hr	6.64 <u>+</u> 0.23	0.36 <u>+</u> 0.09	1009 <u>+</u> 47	127 <u>+</u> 14
t = 40 hr	8.52 <u>+</u> 0.28	0.36 <u>+</u> 0.09	1064 <u>+</u> 49	151 <u>+</u> 16
t = 40 hr	8.31 <u>+</u> 0.29	0.52 <u>+</u> 0.09	1006 <u>+</u> 48	140 <u>+</u> 16
t = 48 hr	7.89 <u>+</u> 0.27	0.56 <u>+</u> 0.12	994 <u>+</u> 47	143 <u>+</u> 16

Station	<u>Na(%)</u>	K(%)	As(ppm)	La(ppm)	<u>Sm(ppm)</u>
t = 0 hr	3.43 ± 0.01	2.86 \pm 0.36	26.1±1.4	27.9±0.8	5.1±0.1
t = 0 hr	3.27 ± 0.01	2.60 \pm 0.32	21.9±1.3	25.6±0.7	4.6±0.1
t = 8 hr	3.61 ± 0.01	2.97 \pm 0.39	22.4±1.5	26.6±0.8	5.1±0.1
t = 16 hr	3.20 ± 0.01	2.68 \pm 0.39	19.1±1.4	23.3±0.7	4.2±0.1
t = 24 hr	4.57 ± 0.01	2.52 \pm 0.44	19.3±1.6	26.3±0.8	4.9±0.1
t = 32 hr	3.50 ± 0.01	2.51 \pm 0.41	20.5±1.4	25.1±0.8	4.6±0.1
t = 40 hr	2.70 ± 0.01	1.48 \pm 0.20	17.8±1.0	23.5±0.6	4.4±0.1

TABLE F.4 (contd)

VARIATION OF ELEMENTAL COMPOSITION IN SUSPENDED PARTICULATES (>0.4 μ) with time

		(ppm EXCEPT WHERE NOTED)											
	Sc	Cr	Fe(%)	Co	Sb	Cs	Eu	Tb	Та	Th			
COOK INLET													
TIME SERIES CB-10													
t = 0 hr	21.52 ± 0.07	122 ± 4	6.40 ± 0.03	25.92 ± 0.23	1.91 ± 0.08	7.04 ± 0.10	1.19±0.02	0.67 ± 0.04	0.92 ± 0.07	8.92 ± 0.15			
t = 0 h r	20.84 ± 0.06	120 ± 4	6.14±0.04	24.77 ± 0.25	1.75 ± 0.08	6.77 ± 0.10	1.20 ± 0.02	0.70 ± 0.04	0.91 ± 0.07	8.67 ± 0.15			
t = 8 hr	19.17 ± 0.05	109±4	5.68±0.02	23.17 ± 0.18	1.54±0.07	6.47 ± 0.09	1.09±0.01	0.59 ± 0.04	0.86 ± 0.07	7.66 ± 0.14			
t = 16 h r	17.23 ± 0.06	98±4	4.97 ± 0.04	19.55 ± 0.21	1.41 ± 0.09	5.29 ± 0.11	1.01 ± 0.02	0.54 ± 0.04	0.76 ± 0.05	6.81 ± 0.19			
t = 24 hr	21.07 ± 0.03	123 ± 4	6.14 ± 0.03	24.44 ± 0.11	1.71 ± 0.11	6.75 ± 0.14	1.21 ± 0.02	0.75 ± 0.05	0.93 ± 0.09	8.55 ± 0.20			
t = 32 hr	19.21 ± 0.02	114±4	5.68 ± 0.05	23.25 ± 0.31	1.56 ± 0.10	6.28 ± 0.12	1.10 ± 0.02	0.63 ± 0.04	0.93 ± 0.09	7.60 ± 0.21			
t = 40 hr	16.08 ± 0.08	88 ± 2	4.65 ± 0.02	19.56 ± 0.10	1.43 ± 0.08	4.88 ± 0.09	0.96 ± 0.02	0.46 ± 0.03	0.74 ± 0.07	6.77 ± 0.12			

TABLE F.5

ELEMENTAL CONCENTRATION RANGES* IN SUSPENDED PARTICULATE MATERIAL (> 0.4 um) FROM THE ALASKA OUTER CONTINENTAL SHELF STUDY AREAS

	NUMBER OF SAMPLES	Mn	V	Al
WESTERN GULF OF ALASKA	44	0.061 - 7.1	<0.006 - 0.224	1.3 - 103
EASTERN GULF OF ALASKA	40	<0.084 - 1.59	<0.035 - 0.77	0.91 - 222
BERING SEA - BRISTOL BAY	24	0.040 - 2.8	<0.007 - 0.31	6.3 - 114

*CONCENTRATION RANGES IN µg/L OF SEAWATER

.

APPENDIX G

Elemental Composition of Alaskan OCS Biological Materials

TABLE G.1

ELEMENTAL COMPOSITION OF BIOLOGICAL MATERIALS FROM ALASKA CONTINENTAL SHELF STUDY AREAS (ppm DRY WEIGHT EXCEPT WHERE NOTED)

	SPECIMEN	LOCATION	Ag	As	Br	Co	Cr	Cs	Fe	Hg	K (%)	Na(%)	Rb	Sb	Sc	<u>Se</u>	Sr	Žn
1	ROCK SOLE	MF 34	< 0.038	14 ± 1	31 ± 1	0.014 ± 0.002	2.0 ± 0.1	0,065 ± 0,004	14±3	0.37 ± 0.10	1.86 ± 0.09	0.53 ± 0.07	3.7 ± 0.1	<0.004	0.009 ± 0.001	1.5 ± 0.1	11 ± 2	38
2		MF 5	< 0.034	21 ± 1	47 ± 1	0.018 ± 0.005	5.6 ± 0.2	0.084 ± 0.005	19 ± 5	0.47 ± 0.10	2.54 ± 0.13	0.85 ± 0.11	4,9 ± 0.2	0.010 ± 0.007	<0.005	3.4 ± 0.1	20 ± 3	36
3		MF 13	<0.014	39 ± 1	22 ± 1	0.111 ± 0.002	1.2 ± 0.1	0.078 ± 0.002	14 ± 2	0.28 ± 0.03	1.98 ± 0.08	0.52 ± 0.06	3.7 ± 0.1	0.008 ± 0.001	< 0.0002	1.7 ± 0.1	5 ± 1	27
4		MF 27	< 0.011	19 ± 1	30±1	0.021 ± 0.001	0.30 ± 0.05	0.068 ± 0.002	15 ± 2	0.27 ± 0.08	1.68 ± 0.08	0.57 ± 0.07	2.9 ± 0.1	0.030 ± 0.001	0.0021 ± 0.0003	1.7 ± 0.1	7 ± 1	30
5		MF 23	<0.061	18 ± 1	33 ± 1	0.026 ± 0.003	0.75 ± 0.02	0.069 ± 0.004	43 ± 3	0.19 ± 0.06	1.72 ± 0.09	0.57 ± 0.07	3.4 ± 0.1	0.011 ± 0.004	0.0110 ± 0.0002	1.8 ± 0.1	14 ± 2	38
6		MF 41	<0.012	23 ± 1	30 ± 1	0.012 ± 0.001	0.15 ± 0.05	0.044 ± 0.002	6 ± 2	0.27 ± 0.08	1.62 ± 0.09	0.54 ± 0.07	3.6 ± 0.1	< 0.002	0.0004 ± 0.0002	2.7 ± 0.1	13 ± 1	33
1		MF 43	< 0.015	10 ± 1	27 ± 1	0.013 ± 0.002	0.12 ± 0.07	0.042 ± 0.002	13 ± 2	0.28 ± 0.03	1.81 ± 0.08	0.46 ± 0.07	3.9 ± 0.1	< 0.003	0.0013 ± 0.0004	2.3 ± 0.1	11 ± 1	31
8		MF 44	<0.010	6.5 ± 0.3	24 ± 1	0.008 ± 0,001	0.13 ± 0.04	0.043 ± 0.001	10 ± 1	0.13 ± 0.03.	1.52 ± 0.07	0.43 ± 0.06	3.4 ± 0.1	<0.002	0.0004 ± 0.0002	1.4 ± 0.1	7 ± 1	27
9	+	ME 47	< 0.030	8.6 ± 0.4	27 ± 1	0.015 ± 0.004	< 0.01	0.046 ± 0.004	33 ± 4	0.18 ± 0.06	1.56 ± 0.09	0.43 ± 0.07	3.6 ± 0.1	0.011 ± 0.004	0.0085 ± 0.0004	1.4 ± 0.1	12 ± 3	26
10	NEP TUNI A	MF 15	85	93 ± 1	173 ± 1	4.9	1.8 ± 0.1	0.011 ± 0.009	1620 ± 10	3.4 ± 0.1	0.68 ± 0.10	1.25 ± 0.10	5.4 ± 0.6	0.078 ± 0.008	0.018 ± 0.001	119	150 ± 5	2260
n		MF 19	40	98 ± 1	363 ± 1	4.4	1.0 ± 0.2	< 0.013	2080 ± 30	0.19 ± 0.07	0.82 ± 0.16	1.89 ± 0.16	4.5 ± 0.6	0.110 ± 0.010	0.067 ± 0.002	B	250 ± 5	2520
12		MF 22	15	36 ± 1	83 ± 1	4.0	1.8 ± 0.4	< 0,035	2640 ± 30	3.9 ± 0.2	0.14 ± 0.04	0.40 ± 0.03	4.6 ± 1.8	0.088 ± 0.022	0.104 ± 0.004	19	2600 ± 60	7890
B		MF 31	8.6	10 ± 1	87 ± 1	1.2	0.69 ± 0.06	< 0.005	1130 ± 10	0.61 ± 0.03	0.40 ± 0.03	0.60 ± 0.08	2.8 ± 0.3	0.110 ± 0.005	0.052 ± 0.001	3.7 ± 0.1	103 ± 2	870
14		MF 50A	3.4	140 ± 1	400 ± 10	1.3	0.62 ± 0.10	0.012 ± 0.006	950 ± 10	2.6 ± 0.1	< 0. 12	2.32 ± 0.27	5.9 ± 0.6	0.033 ± 0.006	0.036 ± 0.001	2.7 ± 0.1	43 ± 3	160
15	+	MF 508	57	49 ± 1	91 ± 1	7.6	0.56 ± 0.05	< 0.020	1190 ± 10	1.2 ± 0.1	0,44 ± 0,06	0,50 ± 0.04	4.7 ± 0.8	0.034 ± 0.011	0.133 ± 0.001	8.4 ± 0.1	58 ± 5	2760
16	POLLOCK	MF 4	0.022 ± 0.009	9 3.4 ± 0.3	39 ± 1	0.016 ± 0.001	0.34 ± 0.05	0.058 ± 0.001	11 ± 1	0.07 ± 0.03	1.72 ± 0.05	0.59 ± 0.04	4.6 ± 0.1	0.008 ± 0.001	<0.0 002	0.87 ± 0.02	10 ± 1	22
17	1	MF 4	< 0.012	3.5 ± 0.3	39 ± 1	0.015 ± 0.002	<0.4	0.091 ± 0.002	B±l	0.6 ± 0.08	1.84 ± 0.05	0.59 ± 0.05	4.1 ± 0.1	0.009 ± 0.002	0.0005 ± 0.0002	0.82 ± 0.03	5±1	22
18		MF 6	< 0.017	2.0 ± 0.3	29 ± 1	0.014 ± 0.003	0.46 ± 0.10	0.107 ± 0.002	12 ± 3	0.10 ± 0.05	1.63 ± 0.05	0.46 ± 0.04	4.8 ± 0.2	0.015 ± 0.004	0.0011 ± 0.0003	0.71 ± 0.05	6 ± 2	18
19		MF 11	< 0.027	3.1 ± 0.3	36 ± 1	0.010 ± 0.002	0.40 ± 0.06	0.095 ± 0.002	10 ± 2	0.11 ± 0.08	1.91 ± 0.05	0.52 ± 0.05	3.9 ± 0.1	0.010 ± 0.001	0.0005 ± 0.0002	1.04 ± 0.08	19 ± 1	22
20		NF 17	< 0.014	4.0 ± 0,3	34 ± 1	0.034 ± 0.001	0.15 ± 0.05	0.086 ± 0.001	30 ± 1	0.04 ± 0.02	1.77 ± 0.04	0.43 ± 0.04	4.7 ± 0.1	0.009 ± 0.002	0.0070 ± 0.0002	0.78 ± 0.02	4±1	19
21		MF 21	< 0.022	5.6 ± 0.3	37 ± 1	0.017 ± 0.003	0.29 ± 0.11	0.111 ± 0.004	15 ± 3	0.09 ± 0.06	2.00 ± 0.06	0.56 ± 0.04	4.3 ± 0.1	0.011 ± 0.006	0.0013 ± 0.0004	0,92 ± 0,06	5 ± 2	23
22		MF 25	< 0.015	11 ± 1	30 ± 1	0.058 ± 0.021	0.24 ± 0.08	0.091 ± 0.002	6 ± 2	0.15 ± 0.04	1.70 ± 0.04	0.43 ± 0.04	4.5 ± 0.1	0.019 ± 0.002	< 0.0008	0.97 ± 0.01	6 ± l	18
В		MF 28	< 0.015	5.3 ± 0.3	37 ± 1	0.017 ± 0.002	0.22 ± 0.06	0.161 ± 0.002	20 ± 2	0.16 ± 0.01	1.84 ± 0.05	0.54 ± 0.03	4.5 ± 0.1	0.019 ± 0.002	0.0016 ± 0.0002	1.05 ± 0.03	10 ± 1	29
24		MF 36	< 0.009	2.4 ± 0.3	35 ± 1	0.014 ± 0.001	0.17 ± 0.10	0.075 ± 0.001	13 ± 2	0,34 ± 0.02	1.87 ± 0.05	0.52 ± 0.05	4.3 ± 0.1	0.010 ± 0.002	0.0025 ± 0.0002	0.78 ± 0.02	8 ± 1	В
25		MF 39	0.032 ± 0.010	0 4.6 ± 0.2	38 ± 1	0.017 ± 0.001	<0.6	0.105 ± 0.002	8 ± 2	0.04 ± 0.03	1.65 ± 0.04	0.58 ± 0.04	4.5 ± 0.1	0.012 ± 0.002	< 0.0008	1.15 ± 0.08	20 ± 1	31
26		MF 42	<0.015	6.9 ± 0.2	32 ± 1	0.0077 ± 0.0018	0.22 ± 0.09	0.105 ± 0.002	14 ± 3	< 0.02	1,86 ± 0.08	0,53 ± 0,08	5.7 ± 0.1	0.018 ± 0.005	< 0.0001	4.7 ± 0.2	9 ± 2	22
27		MF 45	< 0.006	3.5 ± 0.1	31 ± 1	0.0075 ± 0.0008	0.21 ± 0.04	0.082 ± 0.001	5±1	0.12 ± 0.01	1.45 ± 0.03	0.46 ± 0.03	3.9 ± 0.1	0.051 ± 0.002	< 0.0003	0.91 ± 0.02	5±1	17
28		MF 46	< 0.011	2.5 ± 0.2	39±1	0.018 ± 0.001	0.17±0.03	0.083 ± 0.001	39 ± 2	0.05 ± 0.01	1.36 ± 0.04	0.68 ± 0.07	5.2 ± 0.1	0.020 ± 0.002	0.0070 ± 0.0002	3.5 ± 0.1	8±1	В
29	•	MF 49	< 0.025	7.3 ± 0.2	41 ± 1	0.021 ± 0.002	<0.10	0.114 ± 0.009	14 ± 2	0,16 ± 0.04	1.53 ± 0.04	0.66 ± 0.07	4.5 ± 0.2	0.008 ± 0.005	0.0007 ± 0.0003	1.5 ± 0.1	9±1	21
30	CRAB	3	0.82 ± 0.03	<0. 25	< 0.34	1.32 ± 0.01	< 0.10	0.019 ± 0.004	17 ± 8	0.31 ± 0.02	< 0.04	-	7.4 ± 1.0	0.028 ± 0.006	0.0017 ± 0.0008	10.7 ± 0.2	48 ± 2	134
31		7	0.86 ± 0.01	23 ± 1	80 ± 1	0.40	< 0.08	0.011 ± 0.002	7 ± 2	0.21 ± 0.02	1.54 ± 0.19	1.54 ± 0.12	5.4 ± 0.2	0.010 ± 0.002	< 0.0003	2.9 ± 0.1	18 ± 1	127
32		MF 12	1.71 ± 0.01	53 ± 1	120 ± 10	0.74	< 0.05	0.00 80 ± 0.002	5±4	0.20 ± 0.01	1.64 ± 0.16	1.96 ± 0.12	6.6 ± 0.4	0.038 ± 0.003	< 0, 0007	41 ± 1	46 ± 1	129
33		MF 14	0.95 ± 0.02	41 ± 1	130 ± 10	0.42	< 0.08	0.012 ± 0.004	8 ± 4	0.29 ± 0.03	1.25 ± 0.24	2.23 ± 0.12	4.5 ± 0.4	0.039 ± 0.004	0.0017 ± 0.0005	2.7 ± 0.1	38 ± 2	124
34		MF 20	1.52 ± 0.01	49 ± 1	130 ± 10	0.64	< 0.06	0.012 ± 0.002	9±3	0.17 ± 0.01	1.57 ± 0.16	2.14 ± 0.12	6.7 ± 0.4	0.025 ± 0.002	0.0016 ± 0.0003	11 ± 1	44 ± 2	119
35		MF 26	2.22 ± 0.01	45 ± 1	102 ± 10	0.74	< 0.05	0.010 ± 0.002	4 ± 3	0.43±0.02	1.22 ± 0,23	1.85 ± 0.12	6.2 ± 0.3	0.034 ± 0.003	< 0,0006	7±1	58 ± 1	133
36	+	MF 29	0.93 ± 0.01	34 ± 1	106 ± 10	0.57	0.44 ± 0.05	0.012 ± 0.002	26 ± 3	0.20 ± 0.01	1.44 ± 0.16	1.87 ± 0,12	6.5 ± 0.4	0.009 ± 0.008	0.0041 ± 0.0004	13 ± 1	43 ± 1	136

MF = MILLER FREEMAN STATION NUMBER

TABLE G.1 (contd)

ELEMENTAL COMPOSITION OF BIOLOGICAL MATERIALS FROM ALASKA CONTINENTAL SHELF STUDY AREAS (ppm DRY WEIGHT EXCEPT WHERE NOTED)

				A 9	As	Br	Co	Cr	Cs	Fe	Hig	K(%)	Nat%)	Rb	Sa	Sc	Se	Sr	Zn
37	CRA	B LEG	MF 48	1.20 ± 0.02	57 ± 1	80 ± 10	0.31 ± 0.01	< 0.067	0.0099 ± 0.0033	<7.5	0.39 ± 0.03	L49 ± 0.21	1.37 ± 0.01	5.8 ± 0.8	0.087 ± 0.004	0.0007 ± 0.001	445±0/3	32 + 2	8
38			MF 16	0.80 ± 0.62	43 ± 1	140 ± 10	0.33 ± 0.01	<0.070	0.011 ± 0.004	32 : 5	0.30 ± 0.04	1.69 ± 0.42	2.18 ± 0.01	3.6 ± 0.7	0.011 ± 0.004	0.007 ± 0.001	135±0.02	32+2	124
39			MF 40	0.65 ± 0.01	38 ± 1	79 ± 10	0.19 ± 0.01	<0.045	0.0097 ± 0.0018	6.0 ± 2.1	0.32±0.02	1.32 ± 0.28	L40±0.01	7.1 ± 0.4	0.042 ± 0.002	< 0.0013	3.76 ± 0.01	19 + 1	6
40			MF 33	0.81 ± 0.01	29 ± 1	140 ± 10	0.47 ± 0.01	0.010 ± 004	0.012 ± 0.002	15 ± 3	0.64 ± 0.02	1.06 ± 0.38	1.92 ± 0.01	3.8 ± 0.4	0.009 ± 0.002	0.0033 ± 0.0006	2.53 ± 0.01	24 + 1	106
41	1	•	ME 37	1.53 ± 0.02	35 ± 1	130 ± 30	0.32 ± 0.01	0.20 ± 0.07	0.011 ± 0.004	14 ± 5	0.49 ± 0.04	1.15 ± 0.41	2.13 ± 0.01	7.3 ± 0.9	0.046 ± 0.004	0.0020 ± 0.004	2.55 ± 0.03	44 + 7	96
Q	FUCL	is	CAPE NUKSHAK	0.27 ± 0.01	20 ± 1	240 x 30	1.35 ± 0.03	<0.094	0.023 ± 0.003	63 1 5	<0.026	1.79 ± 0.38	2.43 ± 0.01	9.11 ± 0.7	0.085 ± 0.004	0.034 ± 0.003	0.069 ± 0.017	500 ± 10	19
Ð		ł	PORT DICK	0.15 = 0.01	9.0 ± 0.6	150 ± 10	1.11 ± 0.01	6.55 ± 0.03	0.02) ± 0.002	29 ± 3	0.055 ± 0.014	2.04 ± 0.43	3.05 ± 0.01	16 ± 1	0.023 ± 0.003	0.013 ± 0.001	0.017 + 0.013	570 + 10	14
- 44			SUNDSTROM I SLAND	0.13 ± 0.01	28 ± 1	260 ± 10	0.76 ± 0.01	3.53 ± 0.04	0.025 ± 0.002	36 ± 3	<0.018	4.85 ± 0.56	3.72 ± 0.01	B±1	0.023 ± 0.003	0.010 ± 0.001	0.021 + 0.011	460 + 10	16
6			LaTQUCHE	0.15 ± 0.02	16 ± 1	160 ± 10	2.05 ± 0.01	8.062 ± 0.055	0.019 ± 0.003	33 ± 6	0.045 ± 0.02	1.70 ± 0.37	2.56 ± 0.01	16 ± 1	0.023 ± 0.005	0.012 ± 0.001	0.032 ± 0.018	470 + 10	18
46			UNIMACK ISLAND - CAPE LUPIN	0.063 ± 0.015	22 ± 1	190±10	0.74 ± 0.01	0.38 ± 0.07	0.023 ± 0.003	48 ± 6	Q.055 ± Q.03	2.29 ± 0.55	3.06 ± 0.01	9.4 ± 0.8	0.028 ± 0.005	0.025 ± 0.001	0.048 ± 0.020	420 + 10	12
47			MCLEOD HARBOR	Q.17 ± Q.01	20 ± ì	130 ± 10	1.18 ± 0.01	1.24 ± 0.04	0.023 ± 0.002	146 ± 4	0.030 ± 0.018	1.79 ± 0.47	2.80 ± 0.0	13±1	0.0)4 ± 0.003	0.055 ± 0.001	0.025 + 0.013	450 + 10	16
4			OFTER I SLAND	0.066 ± 0.007	3.0 ± 1.0	320 ± 10	0.42 ± 0.01	8.84 ± 0.04	0.032 ± 0.001	26 ± 3	0.086 ± 0.017	2.38 ± 0.58	3.18 ± 0.01	10 ± 1	0.045 ± 0.003	0.0079 ± 0.003	0.043 + 0.011	710 + 20	
49			ANCHOR COVE	6.15 ± 0.01	18 ± 1	200 ± 10	1.68 ± 0.14	0.02 ± 0.01	0.021 ± 0.002	32 ± 4	0.054 ± 0.019	2.48 ± 0.38	4.40 ± 0.01	7.1 ± 0.6	0.034 ± 0.003	0.027 ± 0.001	0.040 + 0.01	490 + 10	12
50	1		UNALASKA ISLAND - EIDER POINT	8.077 ± 0.006	13 ± 1	260 ± 10	0.30 ± 0.01	2.88 ± 0.04	0.032 ± 0.002	17 ± 2	0.032 ± 0.019	4.02 ± 0.54	3.19 ± 0.01	11 ± 1	0.018 ± 0.002	0.0082 ± 0.0001	0 (74 + 0 0)5	490 + 10	33
51	SEAV	EE D	KAYAK ISLAND	0.080 ± 0.016	20 ± 1	140 ± 10	2.77 ± 0.16	L#7 ± 0.04	8.027 ± 8.002	89±5	<0.022	1.40 ± 0.25	1.94 ± 0.01	5.6 ± 0.8	0.036 ± 0.004	0.050 ± 0.001	0.051 + 0.014	570 + 10	n
52	FUCU	S	ZALKOF BAY	0.14 ± 0.01	14 ± 1	180 ± 10	1.41 ± 0.05	8.92 ± 0.07	Q.Q21 ± 0.004	4B±7	< 0.036	2.96 ± 0.44	2.62 ± 0.01	6 ±]	0.025 ± 0.007	0.018 ± 0.001	<0.028	A50 + 10	12
53			SAINTS BAY	Q.13 ± 0.01	25 ± 1	Z30 ± 10	0.85 ± 0.04	5.37 ± 0.04	0.021 ± 0.002	32 ± 4	< 0.022	3.26 ± 0.49	4.73 ± 0.01	11 ± 1	0.025 ± 0.003	0.011 ± 0.001	0.063 + 0.013	510 + 10	15
54			SAINTS BAY	Q.16 ± Q.01	14 ± 1	270 ± 10	0.96 ± 0.04	0.78 ± 0.04	0.029 ± 0.002	37 ± 3	0.095 ± 0.020	3.77 ± 0.47	2.69 ± 0.01	10±1	0.032 ± 0.003	0.011 ± 0.001	0.066 ± 0.016	530 + 10	15
55			LaCOON POINT	0.079 ± 0.015	23 ± 1	170 ± 10	Q.57 ± Q.03	5.25 ± 0.07	0.027 ± 0.003	48±6	< 0.055	3.35 ± 0.55	4.96 ± 0.01	9 ± 1	0.026 ± 0.005	Q.016 ± 0.001	< 0.035	460 + 10	n
56			CAPE PASSASHAK	0.11 ± 0.01	11 ± 1	210 ± 10	0.75 ± 0.03	0.35 ± 0.05	0.028 ± 0.003	42 ± 5	0.11 ± 0.03	3.08 ± 0.43	2.77 ± 0.01	#1±09	0.015 ± 0.005	0.0089 ± 0.0004	<0.25	340 + 10	14
57	1	ŧ	UNIMACK ISLAND - SONNETT POINT	Q.11 ± Q.01	21 ± 1	190 ± 10	0.47 ± 0.02	3.30 ± 0.04	0.023 ± 0.002	42 ± 3	0.052 ± 0.020	3.13 ± 0.56	5.51 ± 0.01	9.8 ± 0.5	0.019 ± 0.003	0.020 ± 0.001	0.062 + 0.012	350 + 10	
58	SEAM	ÆED	KATALLA	0.064 ± 0.013	11 ± 1	340 ± 10	2.71 ± 0.12	4.26 ± 0.06	0.041 ± 0.004	101 ± 6	0.056 ± 0.030	3.82 ± 0.48	2.52 ± 0.01	10 ± 1	0.027 ± 0.005	A 076 ± 0.001	0 020 + 0 021	120 + 20	
54		ŧ	ANCHOR COVE	0.15 ± 0.03	20 ± 1	510 ± 10	2.22 ± 0.11	255 ± 0.11	0.19 ± 0.01	780 ± 10	0.11 ± 0.06	2.96 ± 0.53	4.77 ± 0.01	11 ± 2	0.087 ± 0.010	0.26 ± 0.03	0.22 + 0.03	590 + 10	17
60			SPECTACLE ISLAND	8.058 ± 0.006	6.1 ± 0.3	160 ± 10	0.64 ± 0.03	0.27 ± 0.04	0.039 ± 0.002	52 ± 3	0.034 ± 0.018	2.84 ± 0.36	1.60 ± 0.0)	42±05	0.026 ± 0.003	0.0042 ± 0.004	<0.018	620 + 20	10
61			PORT DECK	0.073 ± 0.07	12 ± 1	220 ± 10	0.093 ± 0.02	1.51 ± 0.55	0.032 ± 0.002	149 ± 10	0.029 ± 0.015	1.72 ± 0.04	2.17 ± 0.01	81±08	0.045 ± 0.001	0.0563 ± 0.003	0.086 + 0.011	120 + 10	7.2
62			MAKUSHIN BAY	0.019 ± 0.007	17 ± 1	170 ± 10	0.96 ± 0.04	0.30 ± 0.01	0.023 ± 0.001	68 ± 3	0.020 ± 0,014	1.39 ± 0.43	2.10 ± 0.01	7.2 ± 0.5	0.019 ± 0.003	0.0263 ± 0.0002	0.013 + 0.039	400 + 10	6.7
63			CAPE NUKSHAK	0.070 ± 0.009	10 ± 1	290 ± 10	0.92 ± 0.02	0.38 ± 0.07	0.014 ± 0.002	21 ± 6	< 0.022	4.90 ± 0.48	2.73 ± 0.01	7.6±1.1	0.024 ± 0.005	0.0169 ± 0.002	0.021 + 0.01	150 + 10	6.4
64			SUNDSTROM I SLAND	0.046 ± 0.006	7.5 ± 0.7	230 ± 10	0.45 ± 0.0)	13±0.1	0.025 ± 0.001	36 ± 3	0.028 ± 0.013	1.46 ± 0.46	2.56 ± 0.0)	7.5 ± 0.6	0.081 ± 0.002	0.0097 ± 0.0002	0.008 + 0.009	530 + 10	6.4
65			LaTOUCHE	0.029 ± 0.006	7.9 ± 0.4	130 ± 10	1.02 ± 0.01	3.2 ± 0.1	0.018 ± 0.001	58 ± 4	< 0.014	1.25 ± 0.3	1.95 ± 0.01	59±08	0.028 ± 0.003	0.0131 ± 0.0003	0.032 + 0.009	210 + 10	63
66	1)	LaTOUCHE	0.033 ± 0.012	11 ± 1	130 ± 10	0.79 ± 0.01	15±01	0.020 ± 0.002	R±1	<0.025	1.13 ± 0.46	2.37 ± 0.01	65±14	0.015 ± 0.006	0.0082 ± 0.0003	0.048 + 0.036	500 + 10	57
67	MYTI	LUS	SAINTS BAY	0.11 ± 0.02	5.5 ± 0.6	190 ± 10	0.49 ± 0.01	13±01	0.026 ± 0.004	310 ± 10	0.24 ± 0.04	0.56 ± 0.43	2.61 ± 0.01	5.4±1.5	0.013 ± 0.007	6.106 ± 0.001	30+01	21 + 3	*
68		I I	KATALLA	<0.033	5.3 ± 0.9	290 ± 10	2.9 ± 0.1	9.9 ± 0.2	0.195 ± 0.006	430 0 ± 10	0.23 ± 0.06	1.20 ± 0.55	3.02 ± 0.03	12 ± 3	0.057 ± 0.013	1.60 ± 0.01	25+01	120 + 10	ĸ
69			PORTETCHES	8.029 ± 0.017	4.8 ± 0.6	200 ± 10	0.82 ± 0.01	22±01	0.048 ± 0.003	97C ± 10	0.20 ± 0.02	<0.49	3.05 ± 0.01	5.5 ± 1.2	0.009 ± 0.004	0.335 ± 0.001	28±01	27 + 1	51
70			OTTER ISLAND	0.12 ± 0.02	6.2 ± 0.7	300 ± 10	0.28 ± 0.01	16 ± 0.1	0.018 ± 0.003	230 ± 10	Q 12 ± 0.09	1.23 ± 0.38	1.69 ± 0.01	5.4 ± 1.3	0.008 ± 0.005	0.066 ± 0.001	23±03	40+1	<i>n</i>
71			MAKUSHIN BAY	0.075 ± 0.090	4.4 ± 1.0	320 ± 10	0.38 ± 0.01	47 ± 0.2	0.015 ± 0.006	530 ± 10	Q.31 ± 0.05	< 0.72	3.96 ± 0.01	7.0 ± 2.2	0.064 ± 0.01	0.145 ± 0.001	25±01	38 + 1	<i>n</i>
72	1	•	CAPE NUKSHAK	0.10 ± 0.02	7.4 ± 0.8	220 ± 10	0.66 ± 0.01	13 ± 0.1	0.041 ± 0.003	560 ± 10	0,23 ± 0,03	1.52 ± 0.62	3.37 ± 0.04	3.8 ± 1.2	0.015 ± 0.005	0.184 ± 0.001	3,9 ± 0.1	67 ± 3	81

MF . MILLER FREEMAN STATION NUMBER

TABLE G.1 (contd)

ELEMENTAL COMPOSITION OF BIOLOGICAL MATERIAL FROM ALASKA OCS STUDY AREAS ppm DRY WEIGHT (Except where noted)

SPECI	MEN LOC	ATION	As	<u>Br</u>	Co	<u>r</u>	<u>Cs</u>	<u> </u>	Hg	Na (%)	K (%)	Rb	Sb	Sc	Se	Sr	Zn
73 MYTH	LUS SUNDS	TROM ISL.	11 ± 1	340 ± 10	0.97 ± 0.01	47 ± 03	0,046 ± 0,009	1840 ± 130	Q.32 ± Q.08	3.38 ± 0.15	2.10 ± 0.68	13 ± 3	0.084 ± 0.029	Q.69 ± Q.01	27 ± 01	200 ± 10	110
74	SUNDS	TROM ISL.	B ± 1	420 ± 10	Q 65 ± Q,01	20 ± 01	Q.081 ± Q.04	490 ± 50	0,46 ± 0,08	4.08 ± 0.23	1,73 ± 0,66	46 ± 1.3	0.045 ± 0.007	0.17 ± 0.01	29 ± 01]4 0 ± 10	100
75	CAPE N	UKSHAK I	8.4 ± 0.8	310 ± 10	2.1 ± 0.1	16 ± Q2	Q21 ± 0.01	228 0 ± 50	0,22 ± 0,06	2,40 ± 0,11	<122	22 ± 2	Q10 ± QQ2	0.97 ± 0.01	29 ± 01	150 ± 10	72
76	DAY H/	ARBOR	7.1 ± 0.4	160 ± 10	11 ± 01	L2 ± Q1	0,028 ± 0,002	240 ± 10	0.13 ± 0.02	1.66 ± 0.09	Q.74 ± Q.33	2.8 ± 0.9	0.016 ± 0.004	0.070 ± 0.001	21 ± 01	100 ± 10	50
Π	BOSWE	11. BAY	8.0 ± 0.5	140 ± 10	3.0 ± Q1	11_6 ± Q,2	Q.26 ± Q.01	6000 ± 140	Q12 ± Q06	122 ± 0.05	0.90 ± 0.31	12 ± 2	Q12 ± Q.02	25 ± 0,1	19 ± 0.1	160 ± 10	72
78	CAPE P	ASASHAK a	8,7 ± 0,5	190 ± 10	12 ± 01	8,5 ± 0,2	0,095 ± 0,006	396 0 ± 110	Q.19 ± Q.05	2.42 ± 0.14	1.53 ± 0.50	87 ± 2.1	Q.044 ± Q.015	14 ± 01	22 ± 01	51 ± 3	80
79	SENNET	T POINT	10 ± 1	330 ± 10	0,55 ± 0,01	Q90±Q13	0.027 ± 0.004	920 ± 40	0,37 ± 0,004	105 ± 0.15	<l6< th=""><th>2.9 ± 1.4</th><th><0.013</th><th>Q37 ± Q.01</th><th>24 ± 01</th><th>61 ± 3</th><th>110</th></l6<>	2.9 ± 1.4	<0.013	Q37 ± Q.01	24 ± 01	61 ± 3	110
80	CAPE H	NPIT	7.0 ± Q.6	23 0 ± 10	Q37 ± Q.01	15 ± 01 -	0.015 ± 0.008	540 ± 20	Q. 16 ± Q.CB	2.96 ± 0.17	1.88 ± 0.59	52 ± 1.1	0.018 ± 0.006	0.18 ± 0.01	19 ± 01	49 ± 2	97
81	EIDER	POINT	10 ± 1	290 ± 10	Q30 ± Q.01	15 = 01	0,015 ± 0,004	150 ± 10	0,19 ± 0,04	2,64 ± 0,12	<1.48	5.3 ± 1.1	<0,009	0.051 ± 0.002	25 ± 01	47 ± 2	170
82	LaTOUC	HE POINT	&6 ± Q6	29 0 ± 10	13 ± Q1	L1 ± Q1	0,016 ± 0,003	280 ± 10	0,12 ± 0,08	231 ± 0,13	< 1.09	<15	0.021 ± 0.007	0.067 ± 0.001	26 ± 01	62 ± 2	63
83	PORT	DICK	9.4 ± 0.7	290 ± 10	2.6 ± 0.1	12 ± 1	Q39 ± Q.01	5740 ± 160	0.31 ± 0.04	2.91 ± 0.13	<l15< th=""><th>14 ± 2</th><th>0,22 ± 0,02</th><th>21 ± 01</th><th>32 ± 01</th><th>210 ± 10</th><th>130</th></l15<>	14 ± 2	0,22 ± 0,02	21 ± 01	32 ± 01	210 ± 10	130
84	LaCOOP	N POINT	89 ± 05	220 ± 10	Q.54 ± 0.01	12 ± 0.1	0.029 ± 0.003	360 ± 10	0.28 ± 0.08	273 ± 0.15	1.28 ± 0.56	48 ± 1.1	0.013 ± 0.005	0.13 ± 0.01	27 ± 01	62 ± 2	93

TABLE G.2

VANADIUM CONCENTRATIONS IN SELECTED ALASKAN OCS BIOLOGICAL MATERIALS

ROCK SOLE	Ng V/g Tissue (Dry Weight)
Miller Freeman Station	
#34	55 ± 19
#13	<10
#27	20 ± 16
#43	29 ± 13
#44	69 ± 18
POLLOCK	
Miller Freeman Station	
#1]	97 ± 20

#17	44 ± 16
#36	23 ± 13
#39	<16
#42	<14
#45	<19

CRAB

Miller Freeman Station

#12	<14
#26	<18
#48	23 ± 11
#40	24 ± 16
#37	44 ± 14

FUCUS

Cape Nukshak	830 ± 24
Sundstrom Isl.	483 ± 13
Otter Isl.	945 ± 14
Anchor Cove	319 ± 16
Unalaska Isl.	318 ± 48

MYTILUS

<u>Ng V/g Tissue (Dry Weight)</u>

Otter Isl.	783 ± 13
Cape Nukshak	226 ± 33
Sundstrom Isl.	501 ± 20
Cape Nukshak	389 ± 18
Unalaska Isl.	520 ± 53

NEPTUNIA

Miller Freeman Station	
#15	2670 ± 110
#19	2470 ± 100

TABLE G.3

2	Number of Samples	Ag	As	Cr	Hg	Se	Zn
Crab	12	1.17 <u>+</u> 0.48	41 <u>+</u> 10	< 0.50	0.33 <u>+</u> 0.14	5.6 <u>+</u> 4.2	117 <u>+</u> 18
Rock Sol	e 9	< 0.038	18 <u>+</u> 9	1.3 <u>+</u> 1.9	0.27 <u>+</u> 0.10	2.0 <u>+</u> 0.7	32 <u>+</u> 5
Pollock	14	< 0.035	4.7 <u>+</u> 2.4	0.26 <u>+</u> 0.10	0.12 <u>+</u> 0.08	1.4 <u>+</u> 1.2	23 <u>+</u> 4
Neptunia	ı 5	35 <u>+</u> 32	71 <u>+</u> 48	1.1 <u>+</u> 0.6	2.0 <u>+</u> 1.5	33 <u>+</u> 48	3260<u>+</u>269 0
Mytilus	18	0.087 <u>+</u> .036	7.5 <u>+</u> 2.8	3.9 <u>+</u> 3.9	0.23 <u>+</u> 0.09	2.6 <u>+</u> 0.5	88 <u>+</u> 29
Fucus	15	0.13 <u>+</u> 0.04	17 <u>+</u> 7	1.9 <u>+</u> 1.8	0.056 <u>+</u> 0.026	0.049 <u>+</u> 0.022	14 <u>+</u> 3
Seaweed	10	0.062 <u>+</u> 0.037	11 <u>+</u> 5	1.7 <u>+</u> 1.3	0.046 <u>+</u> 0.034	0.064 <u>+</u> 0.063	8.6 <u>+</u> 3.9

MEAN CONCENTRATIONS OF SELECTED ELEMENTS IN ALASKA OCS BIOTA (ppm dry weight)

410

APPENDIX H

Dissolved Trace Element Concentrations in Alaskan Shelf Waters

TABLE H.1	
-----------	--

Station	Vanadium Surface	(µg/l) Bottom
MB-17		1.0
24		1.3
34		1.3
37	1.3	
41	1.3	
43	1.5	
56	1.4	
59 64	1.3	1.5, 1.4
EGA-2		1.6
5	1.0	1./
8	1.3	1.0
15	1.4	1.0
20	1.0	1.0
30		1.5
30	1 1	1.5
44	1 2	1 4
48	1 3	1.6
52		1.3
53	1.3	1.4
55	1.3	1.2
58		1.4
GASW-101	1.2	1.4
104	1.0	1.4
110	1.5	1.0
121	13	1.5
124	1.5	1.7
133	1.0	1.3
135	1.4	1.3
137	1.3	1.6
145	1.4	1.5
148	1.3	1.3
157	1.4	1.2
160	1.5	1.6

Vanadium Concentration in Alaska Coastal Waters

DISSOLVED (<0.4 μm) VANADIUM CONCENTRATIONS ($\mu g/ \pounds$) in IN COOK INLET AND SHELIKOF STRAIT WATERS

	<u>Cook Inlet</u>	<u> May 1978 - (Depth)</u>	August 1978 - (Depth)
Station -	CB-1	1.54±0.11 (sfc)	1.15±0.10 (15 M)
	CB-2		
	CB-3		1.14 <u>+</u> 0.10
	CB-4	1.49±0.10 (sfc)	1.19±0.10 (15 M)
	CB-5		1.11±0.18 (30 M)
	CB-6	1.53±0.11 (sfc)	1.36±0.09 (20 M)
	CB-7	1.99±0.13 (sfc)	1.26±0.09 (15 M)
	CB-8	1.51±0.10 (sfc)	1.26±0.09 (15 M)
	CB-9	1.44±0.10 (sfc)	
	Time Series Station	<u>CB-10</u> - August 1978 1	Depth = 15M
	t = 0 hr	1.12±0.08	
	t = 8 hr	1.25±0.09	
	t = 16 hr	1.22±0.09	
	t = 40 hr	1.17±0.09	
	t = 48 hr	1.07±0.08	
	Shelikof Strait	August 1978 - (Depth)	
Station	- SS-2	1.28±0.14 (273 M)	
	SS-4	1.44±0.15 (131 M)	
	SS-6	1.41±0.15 (201 M)	
	SS-11	1.42±0.12 (145 M)	
	SS-13	0.62±0.05 (147 M)	,

DISSOLVED (<0.4 μm) MANGANESE CONCENTRATIONS ($\mu g/ \imath$) IN COOK INLET AND SHELIKOF STRAIT WATERS

	Cook Inlet	<u> May 1978 -</u>	(Depth)	August 1978	-(Depth)
Station -	CB-1	0.48±0.06	(sfc)	1.85±0.20	(15 M)
	CB-2			1.23±0.13	(20 M)
	CB-3			0.29±0.04	(20 M)
	CB-4	0.25±0.04	(sfc)	0.79±0.09	(15 M)
	CB-5	<0.2	(sfc)	0.34±0.04	(30 M)
	CB-6	0.29±0.04	(sfc)	0.31±0.04	(20 M)
	CB-7	0.11±0.02	(sfc)	0.95±0.11	(15 M)
	CB-8	0.16±0.03	(sfc)	0.82±0.09	(15 M)
	CB-9	0.64±0.07	(sfc)		
	Shelikof Strait	August 197	8 - (Dept	<u>:h)</u>	
Station -	SS-2	7.28±0.74	(273	M)	
	SS-4	0.55±0.07	(131	M)	
	SS-6	6.8±0.7	(201	M)	
	SS-13	0.03±0.01	(147	M)	

VANADIUM CONCENTRATIONS IN ALASKA SHELF WATERS (ug/I)

	SURFACE	BOTTOM	WATER COLUMN
BERING SEA	1.38 ± 0.09 (6)*	1.34 ± 0.23 (4)*	1.37 ± 0.15
EASTERN GULF OF ALASKA	1.33 ± 0.14 (9)	1.48 ± 0.15 (14)	1.42 ± 0.16
WESTERN GULF OF ALASKA	1.40 ± 0.12 (12)	1.47 ± 0.17 (13)	1.43 ± 0.15
ALASKA SHELF AVERAGES	1.37 ± 0.12 (27)	1.46 ± 0.17 (31)	1.42 ± 0.15

*NUMBER OF SAMPLES

.

DISSOLVED TRACE ELEMENTS IN OCS SEA WATER, 1976

WESTERN GULF OF ALASKA

STATION			micrograms / liter						
IDENTIFY	STATION	DEPTH	U	Rb	Fe	Zn	Co	Sb	Cs
4-30	WGA-101	SURFACE	3.21	105	9.75	26,6	1.97	0,184	0,253
5-35	WGA-101	BOTTOM	3.40	116	5,95	3.37	0.0488	0,223	0,292
10-71	WGA-135	SURFACE	2.96	111	22,6	3.31	0,04 69	0,277	0.281
10-72	WGA-135	BOTTOM	3.48	121	5,59	2,63	0,0226	0, 195	0,291
4-25	WGA-148	SURFACE	3.09	115	5.9 0	1.09	0,0417	0.181	0,269
4-26	WGA-148	BOTTOM	3.26	114	2,84	0,521	Q 01 80	0,170	0,261
4-28	WGA-157	SURFACE	3.68	119	11.9	Q .863	0,0234	0,211	0,267
4-27	WGA-157	BOTTOM	3.26	115	6,12	1.58	0,0261	Q.16 6	0,260
8-53	WGA-160	SURFACE	3.57	77	<4.83	0,9 68	0.0241	0,240	0,275
8-54	WGA-160	BOTTOM	3.84	113	5.07	Q.59 6	Q 0192	0,268	0,290
		10112	SOUTH	WEST GUL	F OF ALASK	(A		<u></u>	
5-37	GASW-104	SURFACE	3,12	121	12,5	0.714	Q 0189	Q ,156	0,273
5-31	GASW-104	BOTTOM	2,99	104	14.1	Q.617	0.0277	0,200	0,287
9-63	GASW-119	SURFACE	3.18	105	3,54	Q,73 6	0,0462	0,200	0,262
9-64	GASW-119	BOTTOM	3.75	119	9.87	Q.551	0,0201	0,209	0,296
4-29	GASW-121	SURFACE	3.17	110	17.0	1.07	Q ,0332	0.179	0,254
6-38	GASW-121	ZODIAC A SURF.	3.26	114	9,90	Q 268	0,0472	0, 187	0,305
5-33	GASW-121	ZODIAC B SURF.	3.28	114	8.22	Q.38 6	0.0417	Q ,170	0,282
5-34	GASW-121	BOTTOM	3,55	121	6.82	Q.69 8	0.0154	0,245	0,308
10-66	GASW-124	SURFACE	3.32	104	8.47	4.60	Q (CB 19	0,245	0,268
9-65	GASW-124	BOTTOM	3.99	124	5,91	0,770	0,0210	0,200	0,308
10-69	GASW-133	SURFACE	3.04	107	7.80	2,21	LB33	0,171	Q.275
10-70	GASW-133	BOTTOM	3,00	110	17.5	2,68	0,0300	0.261	0,286
11-78	GASW-137	SURFACE	2,99	106	5.80	8.56	0.0290	Q.27 0	Q ,260
11-77	GASW-137	BOTTOM	3.56	122	3,58	Q.671	0,0211	0,228	0,306
11-73	GASW-145	SURFACE	3.56	118	3.23	1.54	0,0304	0,205	0,300
11-74	GASW-145	BOTTOM	3.72	125	<2,90	53.5	0.0524	0,226	0,312

TABLE H.5 (contd)

DISSOLVED TRACE ELEMENTS IN OCS SEA WATER, 1976

BERING SEA

SAMPLE					micro	grams /liter			
IDENTIFY	STATION	<u>DEPTH</u>	U	Rb	Fe	Zn	Co	Sb	Cs
2-16	MB 2	SURFACE	2,82	92	11.9	5,70	0,0569	0,164	0,250
3-18	MB 2	SURFACE	3.79	108	8.49	0,934	0.0268	0,148	0,256
8-56	MB 8	SURFACE	2,96	102	6,11	2,93	0.0497	0,236	0,243
3-17	MB 8	BOTTOM	3.48	103	17.4	2,01	0.0451	0, 155	0,235
2-12	MB 14	SURFACE	2,92	102	9.87	10,5	0.0431	0,158	0.264
2-13	MB 14	BOTTOM	3.02	106	4.78	l.76	0,0150	0,181	0,299
1-6	MB 17	BOTTOM	3.37	104	9.61	1.08	0,0240	0,181	0,261
3-21	MB 19	BOTTOM	3.75	115	16,6	L01	0.0310	0,176	0,268
1-5	MB 24	BOTTOM	3.49	111	11.0	5.36	0,0420	0,172	0,255
4-24	MB 30	BOTTOM	3.59	121	7.92	0,859	0.0259	0,176	0,273
3-19	MB 31	SURFACE	3.92	122	60,0	<u>136</u>	0.0201	0,178	0,301
3-20	MB 31	BOTTOM	3.07	107	35.9	1.42	0,0181	0,170	0,283
8-55	MB 34	SURFACE	2.88	118	5,66	1, 18	Q.0195	0,190	0,293
2-10	MB 34	BOTTOM	2.36	109	16.4	Q.959	0.0179	0,170	0.274
2-14	MB 37	BOTTOM	2,90	95	7.34	1,24	0,0287	Q 177	0,254
2-11	MB 41	BOTTOM	3.07	105	8,04	1,39	0,0388	0,175	0,272
1-7	MB 43	BOTTOM	3.35	102	11.5	1.08	0.0294	0,152	0,264
3-22	MB 48	SURFACE	2,59	122	12,5	2,79	0.0247	0, 188	0,281
3-23	MB 48	BOTTOM	3,50	122	12.7	L81	0,0256	0, 187	0,281
1-4	MB 56	BOTTOM	3,30	112	12 .9	L32	0.0364	0,171	0,272
2-8	MB 59	BOTTOM	2.98	104	15.2	1.29	0,0390	0,170	0,271
1-3	MB 64	SURFACE	3.63	110	11.6	6,28	0.0214	0,172	0,247
1-1	MB 64	BOTTOM A	3.55	112	24.3	16.1	0,0259	0,163	0.238
1-2	MB 64	BOTTOM B	2,92	102	16,7	1,21	0,0291	0,158	0,232

TAELE H.5 (contd)

DISSOLVED TRACE ELEMENTS IN OCS SEA WATER, 1976

			EAS	TERN GUL	F OF ALASK	(A			
SAMPLE					micro	grams/liter			
IDENTIFY	STATION	DEPTH	U	Rb	<u> </u>	Zn	Co	Sb	Cs
8-5 2	EGA-2	BOTTOM	2.92	110	<5.30	Q 752	0,0236	0, 189	0,273
7-48	EGA-5	SURFACE	2.94	109	3.48	2.11	0.0401	0,171	0,248
7-49	EGA-5	BOTTOM	3.71	129	<2,50	0.684	0.0158	0,229	0,280
7-47	EGA-8	SURFACE	3,52	120	7.74	0,672	0,0090	0,235	0.264
7-51	EGA-8	BOTTOM	3,53	127	11.1	1.10	0.0182	0,238	0,256
11-76	EGA-15	SURFACE	3.35	120	7.89	10,3	0.0152	0, 197	0,298
11-75	EGA-15	BOTTOM	3,13	111	5.49	1.69	0.0372	0,212	0,272
9-61	EGA-26	SURFACE	3.40	119	5.09	3.80	0.0176	0, 197	0,305
9-62	EGA-26	BOTTOM	3.43	120	5.08	0,814	0.0139	0,219	0,294
8-58	EGA-29	71 m	3,55	118	<3.90	1, 18	0.0167	0, 183	0.317
9-60	EGA-30	BOTTOM	3.29	112	5.07	1,50	0,0272	0,205	0,283
8-57	EGA-33	SURFACE	3,56	114	21.7	0.815	0,0115	0.174	0.293
9-59	EGA -33	BOTTOM	3.66	116	10,5	1.28	0,0347	0,236	0,306
6-39	EGA-44	SURFACE	3.15	114	8.67	1.50	0,298	0,100	0,0642
7-46	EG A - 44	BOTTOM	2,95	105	4.24	0,985	0.0114	0,266	0,257
6-41	EGA-48	SURFACE	3.17	112	5.51	0,822	0,0103	0, 196	0.275
7-45	EGA -48	BOTTOM	3,25	111	2,55	1.34	0,0100	0,180	0,276
6-40	EGA -52	BOTTOM	3.31	114	<2.57	0,932	0,0827	0,262	0,294
6-44	EGA-53	SURFACE	2,81	102	5,01	21.4	0.276	0,301	0,244
5-36	EGA-53	BOTTOM	3.33	B 1	9,52	1.10			
6-43	EGA-55	SURFACE	3.06	110	3.05	1.15	0,0300	0,184	0,255
5-32	EGA-55	BOTTOM	3.12	103	10,1	0.594	0,0285	0,173	0,293
6-42	EG A - 58	BOTTOM	2.72	111	10.7	2,54	0.0281	0, 189	0.251
10-67	EGA-108	SURFACE	3.64	117	14.8	3.52	0,0181	0.194	0,274
10-68	EGA-108	BOTTOM	3.57	120	7.02	2,22	0,0226	0,263	0,310
11-79	EGA-110	SURFACE	3.39	117	12,4	L 18	0.0217	0,211	0,297

.

U.S. DEPARTMENT OF COMMERCE

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL OCEAN SERVICE

Alaska Office Federal Bldg., U.S. Courthouse, Room A13 222 W. Eighth Ave., #56 Anchorage, Alaska 99513-7543

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 FOURTH-CLASS MAIL POSTAGE AND FEES PAID U.S. Department of Commerce Permit Number G-19

SPECIAL FOURTH CLASS

CLASS OF POSTAL SERVICE

UNIV OF ALASKA/INFO SERVICES ARCTIC ENV INFO AND DATA CTR 707 A STREET ANCHORAGE, AK 99501