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1.0 INTRODUCTION

0il is a complex mixture of hydrocarbons and heterocyclic molecules
which, when introduced into the marine environment, undergoes differential
dissolution and evaporation, adsorption onto particulate material, photo-
oxidation and biological degradation., Additionally, oil as a bulk material is
subject to the combined processes of dispersion into the water column and the
formation of water-in-oil emulsions (mousse). The magnitude of these pro-
cesses and their varying rates are dependent upon the specific chemical mate-
rials involved and on such "“environmental" factors as turbulence, air and
water temperature, particulate type and concentration, oil composition, light
intensity, and microbial composition and abundance. The purpose of this pro-
gram has been to investigate the physical and chemical changes which occur to
spilled petroleum 1in the marine environment as a result of the combined
actions of these abiotic and biotic factors. Among the processes being
examined and quantified are: evaporation, dissolution, microbial oxidation,
photo-chemical oxidation, emulsification (mousse formation), adsorption onto
particulate material, and the influence of a commercial dispersant on these
processes,

Our investigations have been designed to provide qualitative and
quantitative information on the fates of specific compounds during oceanic
weathering. Ultimately, the goal of this program is to generate a combined
component-specific and pseudo-component (boiling point or distillation "cut")
model to simulate and predict spilled petroleum behavior as a result of
physical/chemical weathering. These models are being developed to encompass
specific compound partitioning as well as overall o0il mass balance considera-
tions, and they are being tested with observed chemical changes from labora-
tory and field experiments. The algorithms which make up the computerized
model can then be used in a predictive manner to determine the time-dependent
chemical compositions and properties of real or simulated oil spillis. When
coupled to trajectory models, such a physical-chemical weathering model should
allow environmental managers to better estimate the impacts from real and
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hypothetical oil spill situations. Furthermore, a thorough understanding of
the time-dependent compositions and concentrations of spilled petroleum mix-
tures (including their marine weathering products) will aid in extrapolating
the findings from biological effects experiments to real environmental situa-
tions.

While this study was initially designed to be an experimental and
modeling effort confined to SAI's La Jolla facilities, it was feasible to ex-
pand the program to include field studies in the Alaskan subarctic environment
of NOAA's Kasitsna Bay laboratory facilities near Homer. At this facility,
experiments designed to simulate and quantify open ocean evaporation, dissolu-
tion, and microbial and photochemical oxidation processes have been ongoing.
Also, in conjunction with other NOAA contractors (Drs. Griffiths and Morita;
RU190), experiments designed to evaluate the long-term chemical fate of fresh
and weathered oil in sub-tidal sediments have been conducted.* During the
most recent field studies at Kasitsna Bay (summer 1981) experiments to examine
the long-term chemical fate of fresh o0il and mousse in different intertidal

regimes were also begun.

As part of our ongoing research into the mechanisms of marine oil
weathering, SAI scientists and engineers have continued to participate in
several NOAA and BLM-sponsored reviews including: MARINE OIL POLLUTION:
FEDERAL PROGRAM REVIEW, conducted for the Inter-agency Committee on Ocean
Pollution Research, Development and Monitoring (COPRDM), held in Boulder,
Colorado, September 1980; the St. George Basin Synthesis meetings held 1in
Anchorage, Alaska, April 1981; and the National Academy of Sciences Review and
Update on the Fate of Petroleum in the Marine Environment, to be held 1in
November, 1981. Background papers were prepared for each of these sessions
and are available,

*Since the information on long-term fate of sedimented oil is pertinent to the
overall goals of this program, the results of our efforts with Griffiths and
Morita are included as Appendix C of this report.
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Many of the results from our multivariant petroleum weathering pro-
gram have been discussed in detail in interim and progress reports and, there-
fore, will be repeatad herein only as necessary to provide continuity among
the key topics being addressed. This report is intended to be an independent
document summarizing the program's activities to date, however, it relies in
part on the interested expert having access to the preceding progress reports,
which have been provided to NOAA's technical monitor. This "annual" report
consists of major sections which deal with the modeling and experimental activ-
ities as well as updates on our progress in understanding the separate and net
effects that the various weathering mechanisms have on spilled oil composition
and component distribution.
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2.0 TOPICAL SUMMARY OF PROGRAM ACTIVITIES

The following outline presents the major program segments and their
activities to date in order to provide an overview of the multivariant analy-
sis approach which has been used to generate physical properties data on oil
weathering and to formulate an 01l weathering simulation model. As mentioned
previously, detailed results from many of these activities have been presented
in several progress reports; these are contained, along with more recent ac-
complishments, in subsequent discussions herein in varying levels of detail as

needed to present the program's achievements to date.

0il Weathering Model Development

° Mechanisms for handling laboratory and field derived compound
specific data have been developed. Time-series reduced gas
chromatographic data on specific observed compound concentra-
tions in o0il and water have been compared directly to computer-
model predictions.

° A1l reduced gas chromatographic data from oil, water and SPM
samples analyzed in La Jolla and/or NOAA's laboratory facility
at Kasitsna Bay, Alaska, are now incorporated into SAI's DEC-10
computer which is being used for the oil weathering model,
Observed vs predicted component-specific weathering alterations
can be evaluated for a wide variety of field and laboratory
"environmental" conditions.

() It has become apparent that two submodels - one which is
component-specific and one which "weathers" o0il in pseudo-
components (distillation cuts) - are required to give adequate
mass/volume and viscosity/density predictions in addition to
providing component concentration information. Algorithms for
both approaches have been developed and are presented in this
report,

. Pertinent compound-specific and distillation-cut physical pro-
perty parameter requirements have been defined (Henry's law
constants, diffusivities and mass transfer coefficients), and
experiments have been conducted to provide needed data. _

. Algorithms have been developed to model the following oil
weathering processes:
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-~  Compound-specific evaporation and dissolution in labora-
tory stirred tanks.

- Pseudo-compound evaporation from ocean surface using vari-
ous literature sources for mass transfer coefficients.

- Compound-specific evaporation from a semi-infinite slick.
- Compound-specific evaporation from a finite slick.
- Compound-specific dissolution from a semi-infinite slick.
) Computer codes have been written for all the algorithms which
are currently in final form, These are being used to compare

experimental with theoretical projections, with refinement con-
tinuing as necessary.

011 Characterization

. Liquid-solid column chromatography (L/C) fractionation, capil-
lary gas chromatography (GC), capillary gas chromatography/mass
spectrometry (GC/MS), synchronous-scanning UV-fluorescence,.
distillation cut, viscosity and trace element data were obtained
on four selected crude oils (Murban, Cook Inlet, Prudhoe Bay,
and Wilmington Crude).

) Prudhoe Bay crude was selected for further analysis and oil
weathering studies.

Weathering Processes Investigated Using Prudhoe Bay Crude 0il

e  Experiments have been undertaken to obtain laboratory and field
rate data on the following oil weathering processes.

- Compound-specific evaporation/dissolution as a function of
temperature and the presence or absence of a commercial
dispersing agent (Corexit 9527).

- Microbial degradation as a function of nutrient concentra-
tions, the presence or absence of o0il, microbial popuiation
dynamics, and the source of water (La Jolla vs. Kasitsna
Bay) for continuous flow indoor and outdoor aquaria.

- Water-in-0il emulsion (mousse) formation as measured by
emulsion stability, kinematic viscosity and density in
mousse generated in an ambient-environment outdoor wave tank
constructed at Kasitsna Bay.
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] Static equilibrium experiments have been undertaken to determine:

- Liquid-liquid partition coefficients of individual compo-
nents between 01l and seawater as a function of temperature
(data required for dissolution algorithms of computer
model).

- Partition coefficients of individual o0il components between
seawater and five representative suspended particulate
material types isolated from selected Cook Inlet sediments
(required for 0il/SPM interaction algorithms).

- Effect of o0il on selected SPM sinking rates as a function of
particle type and seawater/oil temperature.

- lIdentification of microbial oxidation products by GC/MS
analyses (with and without prior derivatization). Rate data
on oxidation product formation are being obtained from flow-
through rate experiments referred to above.

(] Limited photochemical oxidation experiments have been conducted
using simulated irradiation of oil/seawater and oil/seawater/
dispersant mixtures in quartz tubes; numerious oxidation
products have been tentatively identified by GC/MS analysis.*

Kasitsna Bay lLaboratory

) To obtain more valid oil weathering process data representing
the subarctic marine environment, a certain amount of field
experimentation is necessary to evaluate the effects of specific
parameters such as microbial population densities, variable air/
water temperature gradients, ambient nutrient and SPM levels,
solar radiation input, rainfall, snowfall and other similar
factors which cannot be properly simulated in laboratory environ-
ments. Recognizing this, after the laboratory and modeling
activities had begun in La Jolla, NOAA and SAI investigators
designed a major project expansion which would utilize NOAA's
Kasitsna Bay, Alaska, facility. A geochemistry laboratory was
established there by SAI chemists and indoor and outdoor aquaria
and test tank facilities were constructed.

] Al1 necessary facilities improvements were completed in August
1980 and o0il weathering studies in the outdoor and indoor
aquaria were initiated in September 1980. Several outdoor tanks
were allowed to undergo long-term subarctic ambient weathering

*Due to Timitations in resources, further investigation of this area has been
postponed to subsequent periods of the program,
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from October 1980 through April 1981. Periodic samples from the
outdoor flow-through systems were collected; and the analyses of
these and the other samples collected during the Spring 1981
(April) field orogram are presented. An additional set of
outdoor experiments evaluating evaporation/dissolution and
microbial processes were initiated to evaluate seasonal (Spring/
Summer) perturbations to oil weathering behavior, and results
from these studies are also considered.

The Kasitsna Bay facility was re-occupied in August 1981 and
during the Summer/Fall 1981 program, further additions were
undertaken and completed, providing a 2,500 liter outdoor wave
tank to allow more realistic simulation of subarctic, open ocean
oil weathering in the presence of 6- to 10-inch standing- and
breaking-wave turbulence. Additional details on the wave tank
experiments, extensive summer/fall microbial degradation experi-
ments, oil/suspended particulate material interaction studies
and in situ chemical weathering studies of stranded oil in
selected intertidal regimes are presented herein,
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3.0 OTL CHARACTERIZATION

At the onset of the program, four crude oils (representative of a
wide variety of oil types) including two crudes produced in Alaska, were
selected for detailed chemical analyses. The ultimate purpose of this investi-
gation was to select one of the four crudes for additional detailed weathering
characterizations. Crude oils are a naturally occurring complex mixture of
organic and inorganic compounds, and the properties of a given crude are de-
pendent upon the original depositional environment, the hydrocarbon sources
and the degree of post-depositional maturation and migration. In general,
most crudes can be classified into three categories:

] paraffin-based, exemplified by the continental crudes of the
mid-United States,

® asphalt-based such as crudes produced in California and the Gulf
of Mexico coast of the United States, .

[ mixed-base crudes such as those from the Middle East and Alaska.

Since the objective of this program is to arrive at a computer model
which is applicable to a wide variety of crude petroleums it might be advanta-
geous to select at least one crude from each of the three classes (i.e., paraf-
fin, asphaltic and mixed base). However, the paraffin-based crudes of the
first cateqory are not as likely to be involved in contamination of the marine
environment, and these crudes have relatively low levels of aromatic com-
pounds, which include the most toxic constituents of crude oil. For these
reasons paraffin-based crudes were not included in this study.

Table 3-1 presents qgross characterization parameters of the four se-
lected crude oils examined in this study. These include: 1) a relatively
high APl gravity (lower specific gravity) Murban crude which is designated as
an intermediate type or mixed-base crude - this particular crude oil has less
sulfur and asphaltic material than most other Middle-East crudes (Evaluation
of the World's Important Crudes, 1973); 2) a slightly lower API gravity crude
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TABLE 3-1. GROSS CHARACTERIZATIONS OF FOUR SELECTED WHOLL CRUDE OILS.

o
e o]
Specific Viscosity(100°F)*
API* Gravity Kinematic Saybolt Pour Pt** Ni v S N ok

Crude Qi1 Gravity g/ml cST SUS °F % Asphalt*** ppm ppm % %
Murban, Aba Dhabi  40.5% 0.829 2.8 35.9 -20 7 3.0 9.9 3.96 .10
Cook Inlet, Alaska 35.4 0.848 17 85 -15 12 1.3 0.47 0.09 0.1
Prudhoe Bay, Alaska 27.0 0.893 19 84 -10 23 13.5 28.3 0.98 0.27
Wilmington, Calif. 19.4 0.938 100 470 <5* 24 100 80.6 1.8 0.83
Sources:

* Coleman, et al. 1978
**  Evaluation of Worlds Important Crudes, 1973

***  Calculated from Conradson carbon value, Coleman et al., 1978
*hkkk My, ¥, S, and N: this study




from Cook Inlet, Alaska, which is representative of o0ils produced in the sub-
arctic environment and which by nature of its production and transport might
be expected to be released at sea; 3) a lower API gravity Prudhoe Bay crude
0il which would have a high probability of release in arctic regimes during
production and in sub-arctic environments during transport and storage; and 4)
a low APl gravity crude from Wilmington, CA. The data in Table 3-1 illustrate
that as the API gravity decreases (density increases) the viscosities of the
whole crudes generally increase and the pour points are observed to rise.
Percent asphalt content is also observed to increase in going from the higher
to lower API gravity crudes selected. Nickel, vanadium, sulfur and nitrogen
contents are more variable among the crudes (data generated as part of this
study); however, general increases in trace element concentrations are also
observed in the trend from higher to lower API gravities. These considera-
tions are important in that asphalts and the presence of trace elements such
as nickel, vanadium and sulfur have been implicated in stabilization of water-
in-0il emulsions (PAYNE, 1981) and as such, their presence or absence might
also be a factor in selecting one representative crude for additional oil
weathering studies.

In addition to the whole-crude physical property characterizations
and trace element data presented in Table 3-1, each of these four oils was fur-
ther characterized by separation into aliphatic, aromatic and polar fractions
by liquid-solid (silica gel) column chromatography (see Methods, Appendix B),
and each fraction was then examined by fused silica capillary column gas chro-
matography (flame ionization detector) and capillary column gas chromatograph/
mass spectrometry (GC/MS).  Figures 3-1 through 3-4 present the capillary
column gas chromatograms obtained on the fractionated Murban, Cook Inlet,
Prudhoe Bay and Wilmington Crude Oils, respectively. As the figures illus-
trate, the first three crudes are characterized by a regularly repeating
series of n-alkanes and branched and cyclic hydrocarbons in the aliphatic
fraction, whereas the Wilmington crude is characterized only by a large
Unresolved Complex Mixture (UCM). Likewise, the aromatic fractions from
Murban, Cook Inlet, and Prudhoe Bay crudes are very similar (Figures 3-1B

29




o= = (=] [—-] (=]
=9 (=] (== = (=] oy
g han = @ - S ®
) : y 2
i ki H L 3
" 1f s
(=]
o
o (=]
. 2
7]
N o
=)
. ~
L " H i ]
" Al Ak iy P :
: Wik N ERE 1k E L, ¢y
g b L g .58 1.3 =y # A% £ ¥
I ol s A [} G ] ¥ 4
d A Fid g DALEN 1 I S 1R P_L.rfs 10 ety LT S .
FonTE il BN G i et ok R E R ST
Vigs & — e
®
[=2)
Tr) o
2 S B 2
. o -— -
1 t — f s —
,'i ! - :
: 8 iy
3 : [
! 3 ERN 2
b v : "3‘:"‘3;?
L | AP | ¥ 5
sdad oy 1 ! i "
H % £l 4 I‘, Ht: ﬁ;g’ ¥
EIEL ] .: '-‘&:'LEQE"‘,': RG] 3;“::;
LT A - PR =1 ] e
te g';-i- ILIE 2% | Lt AN £i4f A
”\u ik » ———
©
[
oo
[
o

FIGURE 3-1.
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FLAME IONIZATION DETECTOR CAPILLARY GAS CHROMATOGRAMS OBTAINED
ON L/C FRACTIONATED MURBAN CRUDE OIL: (A) ALIPHATIC FRACTION
(F1); (B) AROMATIC FRACTION (F2); (C) POLAR FRACTION (F3).
(KOVAT RETENTION INDICES ARE SHOWN ABOVE SELECTED PEAKS).
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FIGURE 3-2. FLAME IONIZATION DETECTOR CAPILLARY GAS CHROMATOGRAMS OBTAINED

ON L/C FRACTIONATED COOK INLET CRUDE OIL: (A) ALIPHATIC FRACTION
(F1); (B) AROMATIC FRACTION (F2); (C) POLAR FRACTION (F3).
(KOVAT RETENTION INDICES ARE SHOWN ABOVE SELECTED PEAKS). 31
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FIGURE 3-3.

FLAME IONIZATION DETECTOR CAPILLARY GAS CHROMATOGRAMS OBTAINED

ON L/C FRACTIONATED PRUDHOE BAY CRUDE OIL: (A) ALIPHATIC FRACTION
(F1)5 (B) AROMATIC FRACTION (F2); (C) POLAR FRACTION (F3)
(KOVAT RETENTION INDICES ARE SHOWN ABOVE SELECTED PEAKS)
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FLAME IONIZATION DETECTOR CAPILLARY GAS CHROMATOGRAMS OBTAINED

ON L/C FRACTIONATED WILMINGTON CRUDE OIL:

(A) ALIPHATIC FRACTION

(F1)5 (B) AROMATIC FRACTION (F2); (C) POLAR FRACTION (F3).
(KOVAT RETENTION INDICES ARE SHOWN ABOVE SELECTED PEAKS).
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through 3-3B). The Wilmington crude oil aromatic distribution, however, is
skewed to the higher molecular weight compounds. Polar components 1in the
third fraction are observed to be limited in all four of these o0ils.

Gravimetric data obtained on the aliphatic and aromatic fractions and
computer reduced compound-specific concentrations (organized by Kovat reten-
tion ‘indices, Kovat 1958) are presented in Tables 3-2 and 3-3 for Murban
crude; Tables 3-4 and 3-5 for Cook Inlet crude; Tables 3-6 and 3-7 for Prudhoe
Bay crude and. Tables 3-8 and 3-9 for Wilmington crude. Compound concentra-
tions for the limited number of components present in the polar (F3) fractions
from each o0il are shown in Table 3-10. These data were generated on SAI's
DEC-10 computer using our compound-specific data reduction program, and such
data provide the basis for additional compound-specific weathering phenomena

as will be discussed in detail in the next section "0il1 Weathering Processes”.

Figure 3-5 presents the reconstructed ion GC/MS chromatogram obtained
on the aromatic fraction from Prudhoe Bay crude o0il, and the individual aro-
matic components tentatively identified in this fraction are numbered on the
chromatogram and listed in Table 3-11. Similar GC/MS data were obtained on
the other crudes, however, comparative differences among the crudes can be
better illustrated by graphic output such as that shown in Figures 3-6 through
3-8, rather than by tabulated compound identifications and concentrations.

Figure 3-6 presents the individual n-alkane concentrations for Murban
crude, Cook Inlet crude and Prudhoe Bay crude, with the inset showing the
relative concentrations of isoprenoid compounds 1in each of these oils. In
that the Wilmington crude was not represented by an evenly repeating series of
n-alkanes, aliphatic concentrations for that crude are not presented in Figqure
3-6. The Cook Inlet crude and Prudhoe Bay crude show very similar trends.
whereas the Murban crude is clearly characterized by relatively higher concen-
trations of the lower molecular weight hydrocarbons,

34




TABLE 3-2. MURBAN CRUDE OIL CONCENTRATIONS FOR ALIPHATIC FRACTION.
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TABLF 3-3. MURBAN CRUDE OIL CONCENTRATIONS FOR AROMATIC FRACTION.
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