HYDROLOGY, HYDRAULICS & FISH PASSAGE PERFORMANCE OF ARCTIC GRAYLING (Thymallus Arcticus) AT FISH CREEK, DENALI HIGHWAY NEAR CANTWELL ALASKA

Report No. FHWA-AK-RD-89-03

HYDROLOGY, HYDRAULICS AND FISH PASSAGE PERFORMANCE OF ARCTIC GRAYING (THYMALLUS ARCTICUS) AT FISH CREEK, DENALI HIGHWAY NEAR CANTWELL ALASKA

Final Report

By

Douglas L. Kane Charles E. Behlke, Daniel L. Basketfield, and Robert E. Gieck, Water Research Center Institute of Northern Engineering University of Alaska Fairbanks

Robert F. McLean Department of Fish and Game State of Alaska

and

Michael D. Travis Department of Transportation & Public Facilities State of Alaska

In cooperation with the:

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION

June 1989

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not reflect the official views or the policies of the Alaska Department of Transportation and Public Facilities, the Federal Highway Administration or of the Alaska Department of Fish and Game. This report does not constitute a standard, specification or regulation.

Report No. FHWA-AK-89-03

Technical Report Documentation Page

			.	
1. Report No.	2. Government Accession No.	3	. Recipient's Catalog No.	
FHWA-AK-RD-89-03				
· · · · · · · · · · · · · · · · · · ·			·	
4. Title and Subtitle		5	i. Report Date	
Hydrology, Hydraulics and H	(Isn Passage Periormance)		June 1989	
Creek Depali Highway Near	Capturell Alaska	6	. Performing Organization	Code
CLEER, Denalt Highway Near Cantwell Araska				
		- 8	. Performing Organization	Report No.
7. Author (s) Travis, ADOT&PF, MC	Lean, ADF&G			
Kane, Benike, Basketfield,	GIECK, INE			
9. Performing Organization Name and Address		10	Work Unit No. (TRAIS)	
Water Research Center				
Institute of Northern Engine	eering	11	. Contract or Grant No.	
University of Fairbanks, Ala	aska		63392	
		13	. Type of Report and Perio	d Covered
12. Sponsoring Agency Name and Address				
Dept of Transportation & Put	olic Facilities		Final	
2201 Deger Peed				
Fairbanke Alaeka 99709		14	 Sponsoring Agency Code 	•
			· · · · · · · · · · · · · · · · · · ·	
15. Supplementary Notes This is a da	ta report of fish passage	e per	formed during	the 1987-88
field seasons. The results	of this work will be in	corpc	rated into the	"Fish
Passage Design Manual".				
· · · · · · · · · · · · · · · · · · ·	·····		· · · · · · · · · · · · · · · · · · ·	
A two year study of rish passage through the rish creek clivert, located at Mile 132.2 of the Denali Highway, was carried out by an interdisciplinary task force. The purposes of this study were: monitor the interaction of the spawning Arctic grayling (<u>Thymallus Arcticus</u>) and the existing culvert, and document variables of watershed hydrology (primarily runoff) and hydraulic behavior of the culvert that may impact fish passage. In summary, Arctic grayling encountered minimal difficulty in passing upstream through the culvert. The major areas of difficulty for the fish were entering the slightly perched culvert and exiting where nonuniform flow rates of movement through the culvert barrel varied from less than a minute to over 80 minutes. Generally, larger fish moved through more rapidly than smaller fish. All fish stayed as close to the boundary of the culvert as possible, and they oriented themselves normal to this boundary; meaning that they were not alwasy swimming in a vertical position. Conducted in cooperation with the U.S. Department of Transportation, Federal Highways Administration.				
17. Key Words	18. Distributio	n Staten		
Fish passage culverts Arctic grayling highway	Informat civil er habitat	Information is applicable to hydrologists civil engineers, fishery biologists, and habitat biologists.		
1%. Security Classif. (of this report)	21. Security Classif. (of this page)	1	21. No. of Pages	22. Price N/A
Unclassified	Unclassified		180	

Form DOT F 1700.7 (8-72)

.

Reproduction of completed page authorized

ABSTRACT

A two year study of fish passage through the Fish Creek culvert, located at Mile 132.2 of the Denali Highway, was carried out by an interdisciplinary task force. The purposes of this study were multifaceted: study the behavior of spawning Arctic grayling (Thymallus arcticus) in this drainage, monitor the interaction of the spawning Arctic grayling and the existing culvert, and document variables of watershed hydrology (primarily runoff) and hydraulic behavior of the culvert that may impact fish passage. Weirs were placed across the stream to determine the temporal distribution of fish movement, to measure both fish length and weight, and to capture fish for tagging. Measurements of water temperature, water chemistry and discharge were made. Numerous velocity measurements at various cross-sections within the culvert and water surface slopes upstream, through the culvert and downstream were also made. The performance of fish passing through the culvert was visually observed at the inlet and outlet of the culvert in 1987 and at the inlet, outlet and through the barrel in 1988. Experimentation with radio-tagged fish was carried out both years. In summary, Arctic grayling (for the two years of the study) encountered minimal difficulty in passing upstream through the culvert. The major areas of difficulty for the fish were entering the slightly perched culvert and exiting where nonuniform flow existed. The peak runoff events were below the mean annual flood. Because the snowmelt floods were low, researchers were able to construct scaffolding in the culvert to visually evaluate fish performance. Rates of movement through the culvert barrel varied from less than a minute to over 80 minutes.

i

Generally, larger fish moved through more rapidly than smaller fish. In any case, all fish stayed as close to the boundary of the culvert as possible, and they orientated themselves normal to this boundary; meaning that they were not always swimming in a vertical position. The radio tagging experiment was only minimally successful the first year. During the second year, much better results were obtained.

TABLE OF CONTENTS

.

	PAGE
List of Figures	iv
List of Tables	ix
List of Appendices	xii
Acknowledgements	xiii
Introduction	1
Background	1
Objectives	3
Project Organization	4
Personnel and Agencies Project Planning	4 4
Site Description	4
Stream Basin Drainage Structure	4 6
Hydrology	9
Watershed Description Streamflow Hydrographs Flood Frequency Analysis Snow Hydrology Water Quality During Snowmelt Runoff	9 9 12 14 14
Hydraulics	15
Fish Behavior and Swimming Performance	49
Hydraulic Considerations Affecting Fish Passage (1987)	49
Fisheries (1987)	50
Upstream Spawning Migration Length, Weight and Condition Factor Relationships Fish Population Estimates and Sex Composition	50 51 51
Sport Fisheries Division Arctic Grayling Tagging Project (1987)	54
Visual Fish Passage Observations (1987) Miscellaneous Swimming Performance Observations Miscellaneous Round Whitefish Observations	56 69 73
Fish Radio Telemetry Tagging	74
References	76

.

LIST OF FIGURES

PAGE

Figure	1:	Delineation of Fish Creek watershed.	5
Figure	2:	Plan view of culvert crossing (not to scale).	7
Figure	3:	Invert elevation of culvert on Fish Creek, mile 132.2 Denali Highway.	8
Figure	4:	Snowmelt runoff hydrograph, Fish Creek, 1987.	10
Figure	5:	Snowmelt runoff hydrograph, Fish Creek, 1988.	11
Figure	6:	Flood estimates for Fish Creek based on method of Kane and Janowicz (1989).	13
Figure	7:	Water quality parameters, Fish Creek, 1987.	16
Figure	8:	Water temperatures, Fish Creek, 1987.	17
Figure	9:	Water quality parameters, Fish Creek, 1988.	18
Figure	10:	Water temperatures, Fish Creek, 1988.	19
Figure	11:	Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 15, 1987.	21
Figure	12:	Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 15, 1987.	22
Figure	13:	Velocity contours for Fish Creek culvert, 1 ft downstream of outlet, May 16, 1987.	23
Figure	14:	Velocity contours for Fish Creek culvert, 6 ft downstream of outlet, May 16, 1987.	24
Fig ure	15:	Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 18, 1987.	25
Figure	16:	Velocity contours for Fish Creek culvert, 1 ft downstream of outlet, May 19, 1987.	26

		· ·	
Figure	17:	Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 19, 1987.	27
Figure	18:	Velocity contours for Fish Creek culvert, 6 ft downstream of outlet, May 19, 1987.	28
Figure	19:	Velocity contours for Fish Creek culvert, 1 ft downstream of outlet, May 21, 1987.	29
Figure	20:	Velocity contours for Fish Creek culvert, 6 ft downstream of outlet, May 21, 1987.	30
Figure	21:	Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 21, 1987.	31
Figure	22:	Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 21, 1987.	32
Figure	23:	Velocity contours for Fish Creek culvert, 6 ft downstream of outlet, May 23, 1987.	33
Figure	24:	Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 23, 1987.	34
Figure	25:	Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 9, 1988.	35
Figure	26:	Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 9, 1988.	36
Figure	27:	Velocity contours for Fish Creek culvert, 30 ft upstream of outlet, May 9, 1988.	37
Figure	28:	Velocity contours for Fish Creek culvert, 1 ft downstream of outlet, May 10, 1988.	38
Figure	29:	Velocity contours for Fish Creek culvert, 6 ft downstream of outlet, May 10, 1988.	39
Figure	30:	Velocity contours for Fish Creek culvert, 30 ft upstream of outlet, May 10, 1988.	40
Figure	31:	Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 11, 1988.	41

•

.

•

.

Figure 32:	Velocity contours for Fish Creek culvert, 16.5 ft upstream of outlet, May 11, 1988.	42
Figure 33:	Velocity contours for Fish Creek culvert, 16.5 ft upstream of outlet, May 12, 1988.	43
Figure 34:	Velocity contours for Fish Creek culvert, 44 ft upstream of outlet, May 13, 1988.	44
Figure 35:	Velocity contours for Fish Creek culvert, 16.5 ft upstream of outlet, May 15, 1988.	45
Figure 36:	Mean length of Arctic grayling for Fish Creek (numbers, indicate the number of fish comprising the daily sample.)	52
Figure B1:	Plot of velocity profiles, 4 ft upstream of outlet, August 22, 1986.	111
Figure B2:	Plot of velocity profiles, 1 ft upstream of outlet, May 3, 1987.	112
Figure B3:	Plot of velocity profiles, 1 ft upstream of outlet, May 6, 1987.	113
Figure B4:	Plot of velocity profiles, 1 ft upstream of outlet, May 13, 1987.	114
Figure B5:	Plot of velocity profiles, outlet lip, May 17, 1987.	115
Figure B6:	Plot of velocity profiles, 1 ft upstream of outlet, May 17, 1987.	116
Figure B7:	Plot of velocity profiles, 6 ft upstream of outlet, May 17, 1987.	117
Figure B8:	Plot of velocity profiles, outlet lip, May 18, 1987.	118
Figure B9:	Plot of velocity profiles, 1 ft upstream of outlet, May 18, 1987.	119
Figure B10	: Plot of velocity profiles, 6 ft upstream of outlet, May 18, 1987.	120

vi

Figure Bll:	Plot of velocity profiles, 6 ft upstream of outlet, May 18, 1987.	121
Figure B12:	Plot of velocity profiles, 1 ft upstream of outlet, May 20, 1987.	122
Figure B13:	Plot of velocity profiles, 6 ft upstream of outlet, May 20, 1987.	123
Figure B14:	Plot of velocity profiles, 1 ft upstream of outlet, May 22, 1987.	124
Figure B15:	Plot of velocity profiles, 6 ft upstream of outlet, May 22, 1987.	125
Figure B16:	Plot of velocity profiles, 1 ft upstream of outlet, May 23, 1987.	126
Figure B17:	Plot of velocity profiles, 1 ft upstream of outlet, May 24, 1987.	127
Figure B18:	Plot of velocity profiles, 6 ft upstream of outlet, May 24, 1987.	128
Figure B19:	Plot of velocity profiles, 16 ft downstream of outlet, August 22, 1986.	129
Figure B20:	Plot of velocity profiles, 1 ft downstream of outlet, May 3, 1987.	130
Figure B21:	Plot of velocity profiles, 1 ft downstream of outlet, May 6, 1987.	131
Figure B22:	Plot of velocity profiles, 1 ft downstream of outlet, May 13, 1987.	132
Figure B23:	Plot of velocity profiles, 1 ft downstream of outlet, May 17, 1987.	133
Figure B24:	Plot of velocity profiles, 6 ft downstream of outlet, May 17, 1987.	134
Figure B25:	Plot of velocity profiles, 1 ft downstream of outlet, May 18, 1987.	135

-

.

.

Figure	B26:	Plot of velocity profiles, 6 ft downstream of outlet, May 18, 1987.	136
Figure	B27:	Plot of velocity profiles, 6 ft downstream of outlet, May 18, 1987.	137
Figure	B28:	Plot of velocity profiles, 1 ft downstream of outlet, May 20, 1987.	138
Figure	B29:	Plot of velocity profiles, 6 ft downstream of outlet, May 20, 1987.	139
Figure	B30:	Plot of velocity profiles, 1 ft downstream of outlet, May 22, 1987.	140
Figure	831:	Plot of velocity profiles, 6 ft downstream of outlet, May 22, 1987.	141
Figure	B32:	Plot of velocity profiles, 1 ft downstream of outlet, May 23, 1987.	1 42
Figure	833:	Plot of velocity profiles, 1 ft downstream of outlet, May 24, 1987.	143
Figure	B34:	Plot of velocity profiles, 6 ft downstream of outlet, May 24, 1987.	144
Figure	B35:	Description of culvert terminology.	145

.

· · ·

.

.

.

LIST OF TABLES

Table 1:	Summary of 1987 velocity cross-sections, Fish Creek near Cantwell, Alaska.	46
Table 2:	Summary of 1988 velocity cross-sections, Fish Creek near Cantwell, Alaska.	47
Table 3:	Comparisons of the mean culvert velocities with the left and right wall velocities (0.2 ft depth, 0.2 ft from wall) Fish Creek culvert, May 15-16, 1988.	48
Table 4:	Arctic grayling mean daily length frequency for successful culvert migrants based on fish recoveries at the upstream weir Fish Creek culvert, May 1987.	53
Table 5:	Proportional contribution of each age class, mean fork length (mm) at age and 95% confidence intervals for Arctic grayling in the weir sample from the Fish Creek (near Cantwell) spawning stock May 15-16, 1987.	55
Table 6:	Relative Stock Density (RSD) indices and 95% confidence intervals calculated from weir samples taken from the Fish Creek spawning stock, May 15-16, 1987.	55
Table 7:	Summary of visual fish passage observations through lower Fish Creek culvert, May 13-22, 1987.	62
Table 8:	Summary of visual fish passage and upper weir observations at the lower Fish Creek culvert, May 13-22, 1987.	66
Table 9:	Miscellaneous fish swimming performance observations, lower Fish Creek culvert, May 1987 and 1988.	70
Table 10:	Radio-tagging results for Fish Creek near Cantwell, Alaska, 1988.	75
Table A1:	Fish Creek near Cantwell, Alaska 1987 measured discharge data.	79

Table A2:	1987 computed discharge data Fish Creek near Cantwell, Alaska.	80
Table A3:	1988 measured discharge data for Fish Creek Thear Cantwell, Alaska.	81
Table A4:	1988 computed discharge for Fish Creek near Cantwell, Alaska.	82
Table A5:	1987 water quality data for Fish Creek near Cantwell, Alaska.	83
Table A6:	1988 water quality data for Fish Creek near Cantwell, Alaska.	84
Table A7:	1987 culvert inlet water temperature Fish Creek near Cantwell, Alaska.	85
Table A8:	1988 culvert inlet water temperatures, Fish Creek near Cantwell, Alaska.	89
Table B1:	1988 culvert invert elevation for lower Fish Creek near Cantwell, Alaska.	91
Table B2:	Summary of velocity cross-sectional data for Fish Creek near Cantwell, Alaska, 1987.	92
Table B3:	1987 cross-sectional field data of velocity of measurements at Fish Creek culvert.	93
Table B4:	Summary of velocity cross-sectional data for Fish Creek near Cantwell, Alaska 1987	98
Table B5:	1987 cross-sectional field data of velocity measurements at Fish Creek culvert.	99
Table B6:	Summary of velocity profiles along centerline of Fish Creek culvert, 1987.	104
Table B7:	Field data of velocity profiles, Fish Creek culvert at outlet, 1987.	105
Table B8:	Field data of velocity profiles, Fish Creek culvert at inlet.	106

x

Table	B9:	Twenty second mean velocity at 0.2 ft and 0.5 ft depths measured 0.2 ft out from culvert wall at Fish Creek near Cantwell, Alaska, 1988.	107
Table	B10:	1987 and 1988 water-surface profile leveling data for Fish Creek near Cantwell, Alaska.	108
Table	B11:	Centerline and lateral water surface elevations in the vicinity of Fish Creek culvert near Cantwell, Alaska 1987.	110
Table	C1:	Arctic grayling length frequency distributions for successful upstream migrants through the lower Fish Creek, May 14, 1987.	146
Table	C2:	Arctic grayling fork lengths, weight, sex and maturity for successful culvert migrants, Fish Creek fish passage study, May 14 to May 23, 1987.	157
Table	C3:	Arctic grayling fork lengths, age, sex, and maturity status, sport fish tagging project, Fish Creek, May 1987.	175
Table	C4:	May 1987, round whitefish fork lengths and weights at Fish Creek.	178

LIST OF APPENDICES

		PAGE
Appendix A:	Hydrologic data	79
Appendix B:	Hydraulic data	91
Appendix C:	Fish data	146

.

.

.

xii

.

ACKNOWLEDGEMENTS

Sincere appreciation is extended to the U.S. Federal Highway Administration (FHWA) for their encouragement and ultimate funding of this inter-agency investigation. In large part, the success of this joint inter-agency fish passage investigation and the open dialog it has fostered between agencies is due to the FHWA's encouragement.

Appreciation is also extended to the Alaska Department of Transportation and Public Facilities (ADOT&PF) and the Alaska Department of Fish and Game (ADF&G) for their personnel and fiscal support and their commitment to the successful resolution of long-standing inter-agency disagreements regarding fish passage design criteria. Particular appreciation is extended to Robert Clark of the ADF&G, Sport Fisheries Division, for providing field assistance and manpower and conducting the Arctic grayling tagging operations.

Further appreciation is extended to George Mueller and Duane Cook of the University of Alaska, Institute of Northern Engineering and to Dr. James Reynolds, Douglas Flemming and Ramona Salonka of the Alaska Cooperative Fisheries Research Unit for their assistance in the development of the study design, procurement of field supplies and equipment and hiring of field support personnel. Thanks also is extended to the following field support technicians: Cathy Egan, Linda Harris, and Larry Sweet of the University of Alaska, Institute of Northern Engineering, and Alan Burkholder, James Griswold, J.D. Johnson, Craig Monaco and Kathleen Roush of the Alaska Cooperative Fisheries Research Unit.

xiii

INTRODUCTION

An interdisciplinary fish passage study was conducted by the State Interagency Fish Passage Task Force in 1987 and 1988 at the existing highway culvert at Fish Creek located at Milepost 132.2 near Cantwell, Alaska. These studies were completed in direct response to the Alaska Department of Transportation and Public Facilities (ADOT&PF) proposal to rebuild the west end of the Denali Highway and to replace the existing lower Fish Creek culvert which has been deemed inadequate for fish passage by the Alaska Department of Fish and Game (ADF&G) and U.S. Fish and Wildlife Service (USFWS). The purpose of the investigation was to study, both analytically and in the field, the fish passage capabilities of the existing culvert and the swimming capabilities and requirements of Arctic grayling (Thymallus arcticus), which pass through the culvert on their spring upstream migration during breakup. Coupled with the results obtained by the State Fish Passage Task Force at Poplar Grove Creek in 1985 and 1986 (Tilsworth and Travis, 1987; Behlke et al., 1988; and Behlke et al., 1989), this study was intended to provide a basis for maximizing design economics of the new culvert.

BACKGROUND

A review of the literature relating to fish passage through drainage structures revealed that the engineering and, quite frequently, the biological community have erroneously accepted the concept that fish are capable of negotiating any man-made barriers to their passage so long as given swimming velocities can be maintained for defined, fixed time periods (Bell, 1986; Brett, 1963; Jones et al., 1974; and Beamish,

1978). Thus, engineers and biologists have recognized only the fish's profile drag as a deterrent to its passage through a hydraulic structure. However, Ziemer and Behlke (1966) showed that if horizontal pressure gradients exist in a fish passage structure, fish must also contend with an additional adverse force that may restrict or totally block fish passage, even in the presence of traditionally acceptable water velocities.

Behlke (1987) described the forces that a fish must be capable of overcoming when passing through pressure gradients having horizontal components and in passing through hydraulic structures exhibiting sloping hydraulic grade lines. Behlke also estimated, by integrating the forces acting on a swimming fish, the net energy and power levels necessary for fish to generate if they are to successfully negotiate uniform, steady flow in sloping open channels or steady flow in pipe type facilities.

Similar studies have been carried out at Poplar Grove Creek, both by researchers involved in this study and other researchers. In 1985, Tilsworth and Travis (1987) studied the interaction of the upstream migrating Arctic grayling at the culvert where the Richardson Highway crosses Poplar Grove Creek. It was fortuitous that they performed the study that year because of the high runoff peak and volume. Fish were delayed as much as eight days because of high velocities through the structure. The next year, Behlke et al. (1988) pursued a similar study; however, with more manpower to measure numerous hydrologic and hydraulic variables. The peak spring runoff that year was much lower and fish were only minimally delayed relative to the previous year.

OBJECTIVES

The primary purpose of this interdisciplinary study was to gather additional information on the effects of fish size, water temperature, measurable hydraulic conditions and their relationship to the passage rate of Arctic grayling through the lower Fish Creek culvert. Specific objectives included:

- further examination of a visual technique first utilized by Tilsworth and Travis (1987) and subsequently modified by Behlke et al. (1988) for the study of fish passage through existing culvert structures;
- (2) a comparison of observed swimming abilities of various size classes of Arctic grayling with the experimental results originally obtained by MacPhee and Watts (1976), Tilsworth and Travis (1987), and Behlke et al. (1988);
- (3) collection of more detailed data on culvert hydraulic and installation variables, including adverse horizontal pressure gradients and virtual mass forces, that may affect successful fish passage;
- (4) preliminary field assessment of the culvert velocity known as the "Velocity Occupied Zone" (V-occupied) referenced in the literature by Morsell et al. (1981) and Kane and Wellen (1985); and
- (5) further evaluation of the applicability and usefulness of radio telemetry for culvert/fish passage studies.

(6) Observations of where fish entered the outlet, traveled through the barrel and exited the culvert.

PROJECT ORGANIZATION

Personnel and Agencies

Project personnel came from the ADOT&PF, the ADF&G and the University of Alaska Fairbanks' (UAF) Institute of Northern Engineering's (INE) Water Research Center and the Alaska Cooperative Fishery Research Unit (ACRFU). The ADOT&PF and ADF&G provided professional resource personnel and overall project management. The UAF provided fishery, hydrology, and hydraulic engineering personnel, graduate students and technicians to assist in the field work and data analysis.

Project Planning

The interdisciplinary team met often during the initial phases of the project. These meetings provided the strategic and tactical directions for the project. Many of the interdisciplinary discussions resulted in a much better understanding by the entire team of the methods, problems, and expectations of the various disciplines involved.

SITE DESCRIPTION

Stream Basin

Fish Creek is a second-order tributary of the Jack River located in the Alaska Range near Cantwell, Alaska (Figure 1). The drainage area is approximately 100 km² (38.5 mi²) and contains extensive muskeg and marsh

Figure 1: Delineation of Fish Creek watershed.

ഗ

areas in the valley bottom. The elevations of the drainage basin vary from 670 m (2,200 ft) at the outlet to about 1,830 m (6,000 ft) at the headwaters. The stream supports an annual spring migration of Arctic grayling upstream from overwintering areas in the Jack and Nenana Rivers to spawning and summer rearing habitats in upper Fish Creek. Fish Creek offers a variety of habitats; its lower sections include a series of small shallow interconnected lakes, and its headwaters are comprised of two branches: a lake-fed branch and a mountain runoff branch. Above the culvert, the stream channel is narrow and deeply incised at low stream stages. On the mountain branch, the channel is much wider and the depth of flow much less, typical of braided streams.

Drainage Structure

The Fish Creek culvert is located at Mile 132.2 of the Denali Highway (Figure 1). The multiplate culvert is 18.1 m (-60 ft) long, 2.9 m (9.6 ft) in diameter, and is constructed of corrugated steel with 15.2 cm (6 in) between corrugations with a height of 3.5 cm (1.375 in.). A plan view of the culvert is presented in Figure 2. The invert elevations of the culvert are shown in Figure 3; at the upstream inlet, the slope is obviously steeper than the average slope and at the downstream outlet, an adverse slope exists for the last 2 m (6 ft). These conditions are typical of many culverts that have been in place for some time.

;

.

Figure 2: Plan view of culvert crossing (not to scale).

Figure 3: Invert elevation of culvert on Fish Creek, mile 132.2 Denali Highway.

ω

HYDROLOGY

Watershed Description

Fish Creek is a west-draining stream located between Reindeer Hills on the north with a maximum elevation of 1550 m (5100 ft): and the 1800 m (6000 ft) Talkeetna Mountains to the south. The main stem of Fish Creek flows along the base of Reindeer Hills, and about 1/2 of the distance up the basin from its mouth, a fork contributes water collected from the mountains to the south (see Figure 1). Two small lakes are located at the headwaters of the main stem of the creek, and numerous small ponds can be found along its lower two miles. A rather large lake, Drashner, is located in the lower portion of the watershed. However, hydrologically, this lake is only important during high flows and does not appear to play any role in the local fisheries.

Streamflow Hydrographs

Stage-discharge relationships were developed by measuring the stage continuously and the discharge daily. An Envirolabs PT105-V pressure transducer connected to an Omnidata CR-21X electronic data logger was used to record the change in stage, and a Montedoro-Whitney electromagnetic current meter to obtain flow velocities. Discharge measurements were made downstream of the lower culvert, and the quality of the measurements for both years was good.

The 1987 hydrograph (Figure 4) shows that the discharge increased steadily in early May to reach a peak of 153 cfs (4.3 m³/sec) on May 10. A typical recession followed the peak flow. The small blips evident on

Figure 4: Snowmelt runoff hydrograph, Fish Creek, 1987.

Figure 5: Snowmelt runoff hydrograph, Fish Creek, 1988.

the recession part of the curve were caused when the upstream weir, used to capture fish, was cleaned of debris. Similarly, the 1988 hydrograph (Figure 5) shows a relatively steady increase in discharge in early May leading to a peak of 110 cfs (3.1 m^3 /sec) on May 12, 1988. Since in 1988 the fish weir was located downstream of the water level measurements, the effects of weir cleaning events on the falling limb of the hydrograph were minimized.

Flood Frequency Analysis

Runoff data from small streams are very limited in Alaska. However, at or near this site several streams have been instrumented with crest gages. Slime Creek, with a drainage of 17.9 km² (6.9 mi²), was instrumented for 20 years and Lily Creek, with a drainage area of 14.5 km² (5.6 mi²), was instrumented for 15 years. These data were utilized to evaluate Kane and Janowicz's (1989) method of flood frequency estimation for this region. The results were compared with standard flood frequency analysis done by the two-parameter log-normal method for Lily and Slime Creeks. Estimates of floods for various return periods are shown in Figure 6 by Kane and Janowicz.

The mean annual flood for Fish Creek, with a drainage area 38.5 square miles, is about 400 cfs by the method of Kane and Janowicz. Since the mean annual flood has a return period of 2.33 years, the maximum flow of 153 cfs for the spring snowmelt of 1987, and 110 cfs for 1988 are both well below the mean annual flood.

RETURN PERIOD (years)

Figure 6: Flood estimates for Fish Creek based on method of Kane and Janowicz (1989).

ы

Snow Hydrology

Because of the variability in elevation within the watershed (4,000 ft, 1,200 m), there is substantial variation in the water content of the snow on the ground. We did not make any field measurements, however the USDA Soil Conservation Service operates two stations nearby at elevations similar to the outlet of the basin. At Fog Lakes, elevation 650 m (2,120 ft), the maximum water content of the snowpack was 10.7 cm (4.2 in) in 1987, and was 12.0 cm (4.7 in) in 1988. At Monohan Flat, elevation 830 m (2,710 ft), the maximum 1987 water content was estimated from aerial markers as 18.5 cm (7.3 in). The 1988 maximum water content at Fog Lakes was 20.6 cm (8.1 in). These values are probably fair indicators of the water content in the Fish Creek basin, although much higher values can be found at the upper elevations.

Water Quality During Snowmelt Runoff.

Dissolved oxygen, turbidity, and color were measured daily from the 14th to the 24th of May, 1987, and from the 10th to the 17th of May, 1988. Dissolved oxygen and apparent color were measured using a Hach DL-ER/4 water testing kit. A Hach 16800 portable turbidimeter was used for turbidity. Although water temperature was measured at the same time with a hand-held thermometer, it was also recorded continuously during both years with measurements taken every minute using a YSI thermistor that was connected to a Campbell CR-21X programmable electronic data logger.

Dissolved oxygen and turbidity levels were basically constant throughout the 1987 study period (Figure 7): oxygen levels averaged about 8.2 ppm and turbidity averaged around 2.2 NTU. However, color showed considerable variation (Figure 7) with the shape of the plot similar to the 1987 hydrograph, except the peak of 140 UNITS lags the hydrograph peak by 6 days. The water temperature was monitored continuously for 15 days in 1987 (Figure 8). Minimum daily water temperatures for the 1987 study period occurred between 6 to 8 am AST and ranged from 0.0 to 3.3°C. The 14-day mean minimum water temperature was 1.8°C at 0712 AST. Maximum daily water temperatures occurred between 5 to 9 pm AST and ranged from 3.2 to 7.3°C. The 14-day mean maximum water temperature was 5.5°C, occurring at 1912 AST.

Dissolved oxygen levels for the 1988 study period were also approximately constant, with a mean value of 7.6 ppm (Figure 9). Turbidity dropped from an initial high of 8.2 NTU on May 10, 1988, and decreased slowly to level off at a mean value of 3.6 NTU thereafter. Color displayed considerable variation, as in 1987, with the peak of 110 UNITS occurring the same day as the peak discharge for the study period. Water temperatures for 1988 were quite similar to 1987 (Figure 10).

Data are presented in Appendix A for measured discharge, computed discharge, water chemistry and temperature.

HYDRAULICS

Our previous observations of fish swimming in and around culverts have lead us to believe that fish understand the hydraulic conditions which

Figure 7: Water quality parameters, Fish Creek, 1987.

1987 Water Temperature

Figure 8: Water temperatures, Fish Creek, 1987.

Figure 9: Water quality parameters, Fish Creek, 1988.

Figure 10: Water temperatures, Fish Creek, 1988.

make it difficult or easy for them to swim. It is well known that profile drag, which for a specific fish is dependent on its velocity with respect to the surrounding water, is an important force which hinders forward progress. In addition, the "gradient force," which is the resultant of buoyant and weight forces, hinders forward progress. Finally, the virtual mass force, which results from the relative acceleration of the fish in relation to the surrounding water, usually hinders forward progress.

In order to determine the magnitude of these forces, it is necessary to know: (1) the hydraulic conditions where the fish swim, and (2) the velocity of the fish with respect to a fixed reference system. The hydraulic conditions consist of velocity, acceleration, and pressure gradients in the water where the fish swim.

This section presents the 1987 and 1988 hydraulic data which were obtained in and nearby the existing Fish Creek culvert. Of great importance to the studies are the velocity profiles which were obtained at several cross-sections (summarized in Tables 1 and 2) and at selected points in the culvert on different days and at various discharges (Figures 11 to 35 and Appendix B). Water surface profile data (see Appendix B) are important for a determination of mean velocities within the culvert and the gradient forces on the fish, and the calculation of water acceleration at the inlet and outlet of the culvert since they relate to virtual mass forces on swimming fish.

Water velocity data were also taken at locations near the water surface close to the perimeter of the culvert, an action prompted by

Figure 11: Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 15, 1987.

Figure 12: Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, Hay 15, 1987.

Figure 13: Velocity contours for Fish Creek culvert, 1 ft downstream of inlet, May 16, 1987.

Figure 14: Velocity contours for Fish Creek culvert, 6 ft downstream of inlet, May 16, 1987.

Figure 15: Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, May 18, 1987.

N 5

Figure 16: Velocity contours for Fish Creek culvert, 1 ft downstream of inlet, Hay 19, 1987.

Velocity Cross-Section

Feet per Second

Figure 17: Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 19, 1987.

Figure 18: Velocity contours for Fish Creek culvert, 6 ft downstream of inlet, May 19, 1987.

Velocity Cross-Section

Feet per Second

د د

Figure 22: Velocity contours for Fish Creek culvert, 1 ft upstream of outlet, May 21, 1987.

Figure 23: Velocity contours for Fish Creek culvert, 6 ft downstream of inlet, May 23, 1987.

ω

Figure 25: Velocity contours for Fish Creek culvert, 6 ft upstream of outlet, Hay 9, 1988.

Velocity Cross-Section Feet per Second

Figure 27: Velocity contours for Fish Creek culvert, 30 ft upstream of outlet, Hay 9, 1988.

Figure 28: Velocity contours for Fish Creek culvert, 1 ft downstream of inlet, May 10, 1988.

Figure 29: Velocity contours for Fish Creek culvert, 6 ft downstream of inlet, May 10, 1988.

Figure 30: Velocity contours for Fish Creek culvert, 30 ft upstream of outlet, May 10, 1988.

Velocity Cross-Section Feet per Second

Velocity Cross-Section

Feet per Second

Figure 33: Velocity contours for Fish Creek culvert, 16.5 ft upstream of outlet, May 12, 1988.

Figure 35: Velocity contours for Fish Creek culvert, 16.5 ft upstream of outlet, May 15, 1988.

observations made in the 1987 studies of fish swimming in this region in preference to all other regions of the culvert. Burbot (*Lota lota*), grayling (*Thymallus arcticus*), dolly varden (*Salvelinus malma*), round whitefish (*Prosopium cylindraceum*) and slimy sculpen (*Cottus cognatus*) all preferred to swim and to rest in this area. These data, which are guite revealing, are also presented in Table 3.

Much of these data require little comment. Many who study it will find their previous beliefs altered regarding where the water goes and at what speed. As we observed fish swimming and compared that with the detailed culvert hydraulics, we realized that they would swim where it was easiest, unless the conditions elsewhere were clearly not a challenge to an individual fish. For example, large round whitefish could easily swim in locations where smaller grayling did not even try to swim. Further, the reader who understands the various hydraulic

Table 1: Summary of 1987 velocity cross-sections, Fish Creek near Cantwell, Alaska

Date, AST	Station	Figure #	Discharge (CFS)
15 May, 1000	Outlet, 1 foot upstream		110
15 May, 0730	Outlet, 6 feet upstream	12	114
16 May, 1115	Inlet, 1 foot downstream	13	101
16 May, 0900	Inlet, 6 feet downstream	14	102
18 May, 1625	Outlet, 6 feet upstream	15	77
19 May, 1100	Inlet 1 foot downstream	16	72
19 May, 0730	Outlet, 1 foot upstream	17	72 '
19 May, 0925	Inlet, 6 feet downstream	18	73
21 May, 1630	Inlet, 1 foot downstream	19	64
21 May, 1430	Inlet 6 feet downstream	20	64
21 May, 1030	Outlet 6 feet upstream	21	66
21 May, 0830	Outlet 1 foot upstream	22	64
23 May. 0050	Inlet 6 feet downstream	23	61
23 May, 1030	Outlet, 6 feet upstream	24	62

Date, AST	Station	Figure #	Discharge (CFS)
9 May, 1355	Outlet, 6 feet upstream	25	98
9 May, 1635	Outlet, 1 foot upstream	26	99
9 May, 2000	Outlet, 30 feet upstream	27	102
10 May, 0855	Inlet, I foot downstream	28	108
10 May, 1236	Inlet, 6 feet downstream	29	108
10 May, 1400	Outlet, 30 feet upstream	30	109
11 May, 1645	Outlet, 1 foot upstream	31	110
11 May 1425	Outlet, 16.5 feet upstream	32	110
12 May, 1030	Outlet, 16.5 feet upstream	33	110
13 May, 1310	Outlet, 44 feet upstream	34	105
15 May, 1330	Outlet, 16.5 feet upstream	35	89

Table 2: Summary of 1988 velocity cross-sections, Fish Creek near Cantwell, Alaska

implications to the fish will be able to predict from these data just where the fish could be found swimming successfully in the culvert and where attempts at swimming will not be successful.

In addition to the hydraulic data, observations of fish swimming locations and swimming velocities were made when and where possible. These data in combination with the hydraulic data can be used to estimate the fish-delivered power at various locations in the culvert, and the energy expended in passing through the culvert. The methods for performing such calculations are explained in detail in Behlke et al, 1988 report entitled "Fish Passage Through Poplar Grove Creek Culvert," and were used as guidelines for the design replacement culverts at this location.

The collection of the hydraulic data of this report represents a great deal of time spent by the collectors in a cold, often windy, culvert during spring runoff in May near the divide of the Alaska Range. These

Distance	Mean		RIGHT WAL	L		LEFT WAL	.L
of Outlet	(fps)	May 15	May 16	Average	May 15	May 16	Average
.0	7.42	4.17	4.67	4.42	3.93	3.48	3.71
1.0	0.04	7 /0		7 /0	7 76		7 74
2.0	5 02	3.40	2 42	2 / 2	5.70	2 80	2 80
4.0	3,74	2.54	2.76	2 54	2 55	2.07	2.07
4.5			2.38	2.38	2.22	1.93	1.93
6.0	4.88	2.19		2,19	2.02		2.02
7.0			1.66	1.66		1.58	1.58
8.0		1.77		1.77	1.60		1.60
10.0	4.88		1.34	1.34	•	1.14	1.14
11.0		1.63		1.63	1.08		1.08
13.0		1.74	2.17	1.96	.98	.99	.99
15.0	6 68	1.53		1.53	.96		.96
16.5	4.99		1.62	1.62		.70	.70
17.0	6 22	5.11	4 50	3.11	.85	70	.85
20.0	5.22	1 20	1.00	1.50	53	./8	./8
21.0		1.09		1.09	.52		.32
24.0		2 22		2 22			.21
25.0		6 • E E	1.08	1 08		61	
26.0		1.91	1.00	1.91	.36		.36
28.0		2.10		2.10	.61		.61
30.0	5.92	2.51	1.14	1.83	.67	. 99	.83
32.0		1.85		1.85	.60	•••	.60
33.0		1.86		1.86			
34.0		1.86		1.86	.31		.31
35.0			1.28	1.28		.32	.32
36.0	6.23	1.48		1.48	.23		.23
38.0		3.00	.	3.00	.94		.94
39.0		• • • •	2.46	2.46		.90	.90
40.5		2.02		2.02	2.25		2.25
42.5	7.05	5.04	2 25	3.04	3.01	2.00	3.01
44.0	(.95	3.04	2.27	2.25	2 51	2.91	2.91
43.0		2.94	2 07	2.74	2.31	1 97	1 82
50.0			2 90	2.97		5 08	5 08
54.0		4 46	5 12	4 79	4 88	6 21	5 55
56.0	8.28	5.93	2	5.93	4.11	0.21	4.11
. 57.5			6.22	6.22		3.24	3.24
58.0		7.45		7.45	4,61		4.61
60.0	6.11	6.43	6.13	6.28	4.12	3.18	3.65

Table 3. Comparison of the mean culvert velocities with the left and right culvert wall velocities (0.2 ft depth, 0.2 ft. from wall) Fish Creek Culvert, May 15-16, 1988.

.

•

÷

data were the most tedious and bone chilling of the data collected for this report, and our appreciation is extended to all who worked carefully and did the job.

FISH BEHAVIOR AND SWIMMING PERFORMANCE

In this section, fish population, history and behavioral patterns of Arctic grayling in this watershed are examined. More importantly, passage rates of Arctic grayling through the culvert drainage structure during the spawning migration are studied.

Hydraulic Considerations Affecting Fish Passage (1987)

Arctic grayling visually observed entering the culvert outlet predominantly swam close to the left side of the culvert (oriented facing downstream) approximately 0.09 to 0.15 m (0.3 to 0.5 ft) below the water surface and within 6 to 9 cm (0.2 to 0.3 ft) of the culvert wall. Most of the grayling exhibited relative difficulty in the immediate vicinity of the culvert outlet, swimming with a short, rapid body flutter until they had passed a point between 1 and 1.5 m (3 to 5 ft) upstream from the culvert outlet lip. Fish which were able to get to that point generally appeared to begin to swim more easily (less vigorous body movement) as they passed further upstream. Culvert outlet mean velocities decreased during the fish migration period (May 13[']to 22, 1987); ranging from 2.93 to 1.68 m/s (9.61 to 5.51 fps).

Water velocities were much slower in the barrel of the culvert (not including the culvert inlet) than they were at the location of the fish's entrance to the culvert. Mean culvert barrel velocities during

the fish migration period (May 13 to 22, 1987) ranged from 2.13 to 1.7 m/s (6.99 to 5.6 fps). A survey of the culvert barrel indicated no abrupt depressions or other places where fish could stop swimming to rest in the culvert. However, the culvert was constructed of bolted corrugated metal plates with the nut end of the bolts projecting inside the culvert. Some fish were observed to swim very close to the line of protruding nuts and bolts, suggesting that the protruding nuts and bolts may have created a localized zone of reduced water velocities.

It is not conclusively known whether the fish maintained a virtually constant forward movement with respect to the ground or, at times, just maintained their positions in the culvert barrel. Nonetheless, numerous (30-50) small Arctic grayling (75 to 150 mm) were observed on May 15, 1988 ascending the left wall of the culvert 3.4 to 8.2 m (11 to 27 feet) upstream of the culvert outlet. At periodic intervals, most of these fish were observed swimming into and holding stationary (resting) without fin movement within the corrugation itself; suggesting that a backwater eddy had formed within the corrugation. Whether these observations suggest an intentional attempt by the fish to reduce its profile drag, rest, and recharge their anaerobic white muscles (utilized for higher velocity burst speeds) or whether it simply reflects an attempt by the fish to minimize its energy expenditures is not presently known.

Fisheries (1987)

Upstream Spawning Migration: Arctic grayling were observed migrating up Fish Creek between May 13th and May 22, 1987. Observations were

terminated on May 22nd when the spawning migration and data collection efforts were completed. Arctic grayling first were observed in Fish Creek approximately 0.5 km (0.31 miles) below the culvert outlet on the afternoon of May 13th. The water temperature in Fish Creek reached a maximum of 3.01°C (minimum 0.3°C). Although several attempts were made to dipnet fish along the cut banks of the creek, no fish were captured. By the afternoon of May 14th maximum stream water temperature had risen to 3.17°C and the spawning migration appeared to begin in earnest. Three fish were recovered in the weir holding pen, located approximately 110 m (350 ft) upstream from the culvert inlet, the morning of May 14th.

Length, Weight and Condition Factor Relationships: Length frequency distributions by day for Arctic grayling captured in the weir holding pen are depicted in Figure 36 and Table 4 (also see Table C1 in Appendix).

Fish Population Estimates and Sex Composition: A total of 1,267 grayling were visually counted as they passed through the culvert between May 13th and May 22, 1987. 1,074 Arctic grayling were subsequently recovered at the upstream weir. The discrepancy between these two values is attributed to fish possibly bypassing the weir and to an unknown number of small fish passing through the 2.5 cm (1 in) wire mesh panel of the weir livebox. The livebox meshed panel was replaced with plywood on May 20 after a large number of grayling, approximately fork length of 210 mm (8 in), were observed caught in the wire mesh. Of the Arctic grayling recovered at the upstream weir, 295 were ripe males, 515 ripe females, 220 immatures, and 44 unknown sex (Table C2 in Appendix).

Arctic grayling mean daily length cy for successful culvert migrants based on coveries at the upstream weir, Fish Creek May 1987.

2		Mean Length	Std. Dev.
	Number	(mm)	(mm)
	232	279.7	26.5
	124	272.0	33.1
	68	249.4	23.8
	80	255.0	37.6
	136	260.5	30.6
	122	240.7	44.4
	81	212.7	59.7
	111	252.4	32.9
	99	229.4	50.0
	16	242.0	27.1
	5	242.4	54.0

74

fish movement, including observed passage y through the culvert, primarily occurred 1500 hrs and 2400 hrs ADT. Since the ir and livebox were located approximately 350 stream of the culvert, a variable delay was ced between observed culvert passage and ent recovery at the livebox. Visual tion and radio telemetry data indicated ccessful migrants through the culvert from vious evening remained in the sluggish, backwater cated between the culvert and the weir for 2 to s before resuming their upstream migration and ent capture at the upstream weir. Similarly, sh were first observed beginning to move through vert in mid-afternoon, the first recoveries at tream weir were delayed by several hours. The d movement pattern clearly suggested that fish ed at the upstream weir after 1500 hrs ADT were day culvert migrants while fish recovered 1500 hrs ADT were most likely successful culvert s from the previous evening.

ngly, fish recovered at the upper weir between s ADT on the date of passage and 1500 hrs ADT following day were recorded as a successful migrant on the initial day.

Sport Fisheries Division Arctic Grayling Tagging Project (1987)

PROBIT analysis of the frequency of mature samples at age and length categories suggest that the Fish Creek Arctic grayling stock is typical of other fish stocks found within the Tanana River drainage. The preliminary estimate of mean age at maturity (AM_{50}) was 6.1 years and the mean length at maturity (LM_{50}) was 293 mm. Fiducial limits for these estimates were not calculated because of the small sample size. Males tended to mature earlier than females, but no significant differences were detected among the two maturity sample groups. Seventy-five percent of the sampled fish were mature at age 8. Twenty-nine percent of the 136 fish sampled in 1987 were mature fish. Within this sample, the male-female ratio was 1.44.

The age composition and mean length at age of Arctic grayling tagged in 1987 were similar to various stocks within the Tanana River drainage (e.g., Chatanika River). The predominant age class was 4 year old fish, comprising 41% of the 112 fish that had legible scales (Table 5). The mean fork length of the 112 Arctic grayling sampled was 258 mm. Relative Stock Density (RSD) indices tended to support the general hypothesis that Arctic grayling in the Fish Creek drainage begin to spawn at a fork length of 270 mm (Table 6). Twenty-nine percent of the sample were of "Quality Category" or greater size, while 29 percent of the sample were mature. The discrepancy between the LM50 estimate of 293 mm and these two percentages suggest that these percentages were not derived from the same fish.

Table 5. Proportional contribution of each age class, mean fork length (mm) at age, and 95% confidence intervals for Arctic grayling in the weir sample from the Fish Creek (near Cantwell) spawning stock, 15 and 16 May, 1987.

	Age Composition			Fork Length (mm)		
Age	n ¹	p ²	+/-CI ³	Mean	SE ⁴	+/-CI ⁵
3	6	0.05	0.04	213	2	5
4	46	0.41	0.09	243	3	6
5	38	0.34	0.09	263	2	5
6	13	0.12	0.06	281	4	9
7	8	0.07	0.05	318	6	15
8	ĩ	0.01	0.02	331		
Total	112	1.00		258	3	5

1 n = sample size

2 p = proportion of sample

3 95% Confidence interval based on normal theory approximation to the binomial distribution

- 4 SE = standard error of mean fork length (mm)
- 5 Confidence interval based on t-distribution with n-1 degrees of freedom
- Table 6. Relative Stock Density (RSD) indices and 95% confidence intervals calculated from weir samples taken from the Fish Creek spawning stock, 15 and 16 May, 1987.

	Minimum	<u>length</u>			_
Category	(mm)	inches	RSD1	+/-CI2	
Stock	150	5.9	71	8	
Quality	270	10.6	29	8	
Preferred	340	13.4	0		
Memorable	450	17.7	0		
Trophy	560	22.0	0		1
Sample Size		<u> </u>	136	<u> </u>	

1 RSD = Relative Stock Density expressed as a percentage.

2 +/-CI = 95% confidence interval calculated from the normal theory approximation to the bionomial distribution A total of 112 fish were tagged with white Floy internal anchor tags and released (Table C3). Between May and September 1987, 4 tags were returned by anglers. Two of the recaptured fish were angled from the Nenana River in September, indicating the use of this river for overwintering or as a migration corridor to overwintering areas. The remaining two tags were angled from Fish Creek.

Visual Fish Passage Observations (1987): Arctic grayling were first observed attempting to transit through the lower Fish Creek culvert on May 13, 1987. A total of 90 attempts by Arctic grayling to enter the Fish Creek culvert and 43 successes were observed between 1521 hours and 2130 hours ADT. Inlet observations were made for only two hours from 1930 to 2130 hours, 10 attempts to exit the culvert with three successes were observed. Hourly percent success for fish entering the culvert outlet ranged from 20 to 58 percent. Mean water temperature was 3.13°C during the period of fish passage (0.3 to 4.3°C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 2.93 m/s (9.61 fps); and weighted mean culvert barrel water velocity was 2.13 m/s (6.99 fps).

On May 14th, active fish movement was again first observed in midafternoon (1500 hrs ADT). A total of 513 attempts by Arctic grayling to enter the Fish Creek culvert outlet and 437 successes were observed between 1500 hours and 2040 hours ADT. A total of 221 fish were observed trying to exit the upstream end of the culvert with 175 successes. The total success, expressed as the percent of total successes to total attempts each day, was 85 percent for fish entering the culvert outlet and 79 percent for fish exiting the culvert inlet.
Compared to the previous day, the success rate for passage through the culvert outlet significantly increased, suggesting that the outlet velocity and/or adverse hydraulic gradients at the culvert outlet may have dropped below some critical level during that 24 hour interval. Mean water temperature was 4.06° C during the period of fish passage (1.6 to 5.1° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 2.6 m/s (8.52 fps); and the weighted mean culvert barrel water velocity was 2.02 m/s (6.62 fps) with considerable variation along the culvert.

On May 15th, active fish movement was first observed at 1400 hrs ADT. A total of 618 attempts by Arctic grayling to enter the Fish Creek culvert outlet and 557 successes were observed between 1400 hours and 2340 hours ADT. A total of 157 fish were observed trying to exit the upstream end of the culvert with 99 successes. Therefore, 90 percent of the fish were successful at entering the culvert outlet and 63 percent were successful at exiting the upstream end of the culvert inlet. While the percentage of fish successfully entering the culvert outlet increased from the previous day, the percentage that successfully exited the culvert decreased. Mean water temperature was 4.49° C during the period of fish passage (1.6 to 5.7° C was temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 2.4 m/s (7.87 fps)'; and the weighted mean culvert barrel water velocity was 1.95 m/s (6.4 fps).

On May 16th, active fish movement was first observed at 1400 hrs ADT. A total of 295 attempts by Arctic grayling to enter the Fish Creek culvert outlet and 272 successes were observed between 1400 hours and 2323 hours

ADT. The 133 fish were observed exiting the culvert with 72 succeeding. So, 92 percent of the migratory fish entered the culvert outlet successfully and 54 percent successfully exited the inlet end. We continued to see an increase in success for fish entering the culvert, but a decrease in success for those fish trying to exit the culvert inlet end. Mean water temperature was 5.01° C during the period of fish passage (1.8 to 5.7° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 2.29 m/s (7.5 fps); and the weighted mean culvert barrel water velocity was 1.91 m/s (6.28 fps).

On May 17th, active fish movement was first observed at 1500 hrs ADT. A total of 653 attempts by Arctic grayling to enter the Fish Creek culvert outlet and 576 successes were observed between 1300 hours and 2334 hours ADT. A total of 109 fish were observed attempting to exit the upstream end of the culvert, 74 fish were successful. So, 88 percent of the fish successfully entered the culvert outlet and 68 percent successfully exited the inlet end of the culvert. Mean water temperature was 4.54° C during the period of fish passage (1.9 to 5.2° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 2.13 m/s (7 fps); and the weighted average culvert barrel water velocity was 1.86 m/s (6.11 fps). Mean fork length of successful migrants recovered at the upstream weir was 249 mm (9.8 in), which was 11 and 8 percent respectively smaller than the successful migrants on May 15th.

Visual observations on May 18th commenced at the culvert outlet at 1535 hours ADT (1600 hours ADT at culvert inlet) and continued until 2300 hours ADT. A daily total of 208 attempts and 193 successes were

observed at the culvert outlet. A total of 130 fish were observed trying to exit the upstream end of the culvert with 103 successes. So, 93 percent of the fish successfully entered the culvert outlet and 79 percent successfully exited at the inlet end of the culvert. Mean water temperature was 5.67° C during the period of fish passage (2.5 to 6.3° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 1.91 m/s (6.27 fps); and the weighted mean culvert barrel water velocity was 1.79 m/s (5.86 fps).

The initial period of fish activity on May 19th was similar to that observed on the 18th. Visual observations commenced at the culvert outlet at 1521 hours ADT (1445 hours ADT at culvert inlet) and continued until 2300 hours ADT. A daily total of 557 attempts and 542 successes was observed at the culvert outlet. A total of 261 fish were observed attempting to leave the culvert with 174 successfully exiting the upstream end of the culvert. On this date, 97 percent of the fish successfully entered the culvert outlet and 67 percent successfully exited the culvert inlet. Mean water temperature was 5.41° C during the period of fish passage (2.6 to 6.0° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 1.78 m/s (5.83 fps); and the weighted mean culvert barrel water velocity was 1.74 m/s (5.71 fps).

Visual observations were conducted on May 20th between 1630 hours ADT and 2300 hours ADT. A daily total of 788 attempts and 722 successes were observed at culvert outlet. Approximately 40 percent of the fish observed were 140 mm or less in length. Although the mean fork length of successful migrants was 12 percent smaller than the previous day's

migrants, the success rate at the culvert outlet was 92 percent and at the culvert inlet was 68 percent. This reflected a 5 percent drop at the culvert outlet and a 1 percent increase at the culvert inlet when compared to the previous day. Mean water temperature was 6.72° C during the period of fish passage (3 to 7.3° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 1.71 m/s (5.61 fps); and the weighted mean culvert barrel water velocity was 1.72 m/s (5.64 fps).

Visual observations on May 21st commenced at the culvert inlet and outlet at 2000 hours ADT and continued until 2300 hours ADT. Virtually no fish were observed prior to 2000 hrs ADT attempting to transit the culvert. A daily total of 186 attempts and 183 successes were observed at culvert outlet for a success rate of 98 percent. This time, 92 fish were observed attempting to exit the culvert with 85 percent or 77 fish being successful. Mean water temperature was 5.5° C during the period of fish passage (2.6 to 5.6° C was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 1.69 m/s (5.55 fps); and the weighted mean culvert barrel water velocity was 1.72 m/s (5.63 fps).

Visual observations on May 22nd commenced at the culvert at 1620 hours ADT and continued until 2200 hours ADT. Virtually no fish were observed prior to 1620 hrs ADT attempting to transit the culvert. A daily total of 232 attempts and 232 successes were observed at the culvert outlet. So the success rate was 100 percent. At the culvert inlet, 20 fish of a total of 147 failed, giving a success rate of 82 percent. Mean water temperature was 6.29° C during the period of fish passage (3 to 6.9° C

was the temperature range throughout the day); mean culvert outlet water velocity (Q/A) was 1.68 m/s (5.51 fps); and the weighted mean culvert barrel water velocity was 1.71 m/s (5.6 fps).

Table 7 presents a summary of the total culvert fish passage attempts, failures, and success by hourly period for May 13th through May 22th. Only summaries of fish performance are presented in Table 8. Appendix Table C.2 presents the total culvert fish passage attempts, failures, and success by hourly period for each individual day between May 13th through May 22th, including the temperature and hydraulic conditions.

During the study, observers were placed both at the upstream inlet of the culvert and the downstream outlet. At the outlet, the observers were supposed to count each attempt at entering the culvert and also count each failure at entering the culvert. An attempt was defined as any fish getting within 0.6m (2 ft) of the culvert entrance. A failure was determined to be any fish attempting to enter the culvert, but one that did not make it more than 0.6m (2 ft into the culvert). In reality, this was the field of view of the observer. The observer at the outlet noted one other statistic, the number of washouts coming down through the barrel of the culvert. These were fish that had ascended out of the field of view of the observer, but subsequently failed either in the barrel or at the culvert inlet. At the inlet of the culvert, the observer noted the number of fish that successfully exited the culvert and the number of failures.

Ideally, one should be able to divide the number of attempts by the fish to enter the culvert by the number of successes exiting the culvert to

		Water	Mean	Centerline Outlet	Nean		outl Perfor	ET MANCE		BARREL FAILURES		IN PERFO	LET RMANCE	
Bate	Hourly Period ADT	Water Temp	Velocity (Q/A)	Velocity (.60)	Barrel Velocity (fos)	Hourly Attempts	Hourly Failures	Hourly Successes No.	Hourly Success	Washout Observed	Hourly Attempts	Hourly Failures No	Hourly Successes	Hourly Success
0010	ND I	(0)	(162)	(153)	(162)	NO .			~			NO.	NO.	~
Hay 13	1521-1600	3.01	9.79	9.52	7.05	5	4	1	20%	0	n/o	n/o	n/o	n/o
	1600-1700	3.17	9.70	9.47	7.02	15	8	7	. 47%	0	n/o	n/o	n/o	n/o
	17 00 - 1800	3.17	9.63	9.42	7	23	13	10	43X	· 1	n/o	n/o	n/o	n/o
	18 00-1900	3.17	9.59	9.40	6.99	18	9	9	50X	7	n/o	n/o	n/o	n/o
	1900-2000	3.17	9.59	9.40	6.99	19	8	11	58%	1	n/a	n/o	n/o	n/
	2000-2100	3.25	9.48	9.33	6.95	9	4	5	56%	0	n/o	n/o	n/o	n/
	21 00-2130	2.97	9.48	9.33	6.95	1	1	0	0%	. 0	n/o	n/a	n/o	n/
May 14	1500-1600	3.81	8.62	8.80	6.66	263	53	210	80%	5	72	13	59	82%
	1600-1700	4.11	8.60	8.79	6.65	177	. 10	167	94%	0	124	19	105	85%
	1700-1800	4.2	8.50	8.73	6.62	48	7	41	85X	6	18	8	10	56%
	1800-1900	4.26	8.49	8.72	6.61	23	4	19	83%	2	6	6	0	0%
	1900-2000	4.14	8.45	8.69	6.6	n/o	n/o	n/o	n/o	n/o	1	0	1	100%
	2000-2040	3.87	8.44	8.69	6.59	2	2	0	0%	1	0	0	0	n/a
May 15	1400-1500	3.36	8.06	8.45	6.47	4	1	3	75%	0	1	1	0	07
	1500-1600	3.83	7.98	8.40	6.44	20	4	16	80%	0	9	2	7	78%
	1600-1700	4.33	7.96	8.39	6.43	168	18	150	89%	0	58	12	46	79%
	1700-1800	4.74	7.88	8.34	6.4	22	0	22	100%	1	25	9	16	64%
	1800-1900	5	7.86	8.33	6.4	43	3	40	93%	2	20	6	14	70%
	1900-2000	5.11	7.85	8.33	6.4	99	11	88	89%	1	15	11	4	27%
	2000-2100	4.97	7.96	8.39	6.43	78	2	76	97%	4	17	13	4	247
	2100-2200	4.76	7.78	8.28	6.37	19	0	19	100%	1	4	3	1	257
	2200-2300	4.59	7.72	8.24	6.35	97	18	79	81%	0	1	0	1	1007
	2300-2340	4.25	7.65	8.20	6.33	68	4	64	94%	4	7	1	6	867

TABLE 7. Summary of Visual Fish Passage Observations through Lower Fish Creek Culvert, May 13-22, 1987.

Note: Velocities within the boundary (V-occupied) zone where Arctic grayling were observed ranged between 20% to 40% of the mean culvert barrel velocities (May 15-16, 1988 measurements).

-

TABLE 7. Continued

	Hourly U		Hean	Centerline			OUTL	ET		BARREL FAILURES		PER	INLET FORMANCE	
Date	Hourly Period ADT	Water Temp (C)	Velocity (Q/A) (fps)	Velocīty (.60) (fps)	Barrel Velocity (fps)	Hourly Attempts No.	Hourly Failures No.	Hourly Successes No.	Hourly Success X	Washout Observed No.	Hourly Attempts No.	Hourly Failures No.	Hourty Successes No.	Hourly Success X
May 16	1400-1500	3.56	7.63	8.19	6.32	19	3	16	84%	2	0	0	0	n/a
	1500-1 600	4.11	7.61	8.17	6.31	47	5	42	89%	2	14	2	12	86%
	1600-1700	4.65	7.58	8.16	6.31	107	3	104	97%	0	39	18	21	54%
	1700-1800	5.09	7.58	8.15	6.3	51	3	48	94%	5	35	20	15	43%
	180 0-1900	5.43	7.53	8.13	6.29	11	2	9	82%	0	5	1	4	80%
	1900 -2000	5.68	7.48	8.10	6.27	2	0	2	100%	0	0	0	Û	n/a
	2000-2100	5.68	7.40	8.04	6.24	15	3	12	80%	0	7	1	6	86%
	2100-2200	5.58	7.39	8.04	6.24	19	3	16	84%	0	13	3	10	77%
	2200-2300	5.33	7.39	8.04	6.24	11	1	10	91%	0	10	6	4	40%
	2300-2323	4.97	7.39	8.04	6.24	13	0	13	100%	1	0	0	0	n/a
Hay 17	1300 · 1340	3.03	7.26	7.96	6.2	0	0	0	n/a	0	n/o	n/o	n/o	n/o
	1400-1500	3.62	7.26	7.96	6.2	n/o	n/o	n/o	n/o	n/o	n/o	n/o	n/o	n/o
	1500-1600	3.89	7.19	7.91	6.17	3	0	3	100%	0	0,	· 0	• 0•	n/a
	1600-1700	4.33	7.11	7.87	6.15	16	2	14	88%	0	3	1	2	67%
	1700-1800	4.71	7.02	7.81	6.11	37	1	36	97%	4	4	3	1	25%
	1800-1900	5.06	6.97	7.78	6.1	51	1	50	98 %	0	15	8	7	47%
	1900-2000	5.19	6.92	7.75	6.08	76	7	69	91%	2	17	8	9	53%
	2000-2100	5.24	6.86	7.71	6.06	135	23	112	83%	0	16	2	14	88%
	2100-2200	5.19	6.84	7.70	6.05	141	15	126	89%	0	36	3	33	92%
	2200-2300	5.03	6.81	7.68	6.04	176	24	152	8 6 X	0	12	7	5	42%
	2300-2334	4.7	6.76	7.65	6.03	18	4	14	78%	0	6	3	3	50%

Note: Velocities within the boundary (V-occupied) zone where Arctic grayling were observed ranged between 20% to 40% of the mean culvert barrel velocities (May 15-16, 1988 measurements).

T	AB	LE	7.	Continued
---	----	----	----	-----------

			Hean Outlet ter Velocity	Hean Outlet Velocity	Centerline Outlet	Nean		OUTL PERFOR	ET HANCE		BARREL FAILURES		IN PERFO	ILET DRMANCE	
	Hourly Period	Water Temp	Velocity (Q/A)	Velocity (.6D)	Barrel Velocity	Hourly Attempts	Hourly Failures	Hourly Successes	Hourly Success	Washout Observed	Hourly Attempts	Hourly Failures	Hourly Successes	Hourly Success	
Date	ADT	(C)	(fps)	(fps)	(fps)	No.	No.	No.	X	No.	No.	No.	No.	X	
May 18	1535 - 1600	4.48	6.40	7.43	5.9	5	0	5	100%	0	n/o	n/o	n/o	n/o	
	1600-1700	5.24	6.35	7.39	5.89	30	3	27	90%	2	20	3	17	85%	
	1700-1800	5.37	6.29	7.36	5.87	26	2	24	92%	2	15	2	13	87%	
	1800-1900	5.73	6.26	7.34	5.86	46	3	43	93%	1	28	4	24	86%	
	1900-2000	6.1	6.25	7.33	5.85	55	3	52	95%	0	34	7	27	79%	
	2000-2100	6.28	6.21	7.31	5.84	23	0	23	100%	2	27	10	17	63%	
	2100-2200	6.25	6.19	7.30	5.83	18	4	14	78%	1	2	0	2	100%	
	2200-2300	5.94	6.18	7.29	5.83	5	0	5	100%	0	4	1	3	75%	
May 19	1521-1600	4.26	5.96	7.16	5.76	19	2	17	89%	0	9	. 1	8	89%	
	1600-1700	4.62	5.94	7.14	5.75	34	5	29	85%	0	16	2	14	88%	
	1700-1800	5.06	5.92	7.13	5.74	17	1	16	94%	1	17	1	16	94%	
	1800-1900	5.46	5.82	7.07	5.71	33	2	31	94%	0	25	5	20	80%	
	1900-2000	5.78	5.81	7.06	5.7	24	2	22	92%	0	12	2	10	837	
	2000-2100	5.98	5.81	7.06	5.7	86	3	83	97%	2	64	14	50	78%	
	2100-2200	6.05	5.81	7.06	5.7	136	0	136	100%	10	61	34	27	44%	
	2200-2300	6.06	5.61	6.94	5.64	208	0	208	100%	40	55	28	27	49%	
May 20	1630-1700	5.55	5.59	6.93	5.63	110	10	100	91%	0	53	13	40	75%	
	1700-1800	6.13	5.60	6.93	5.63	198	22	176	89%	16	96	36	60	63%	
	1800-1900	6.61	5.60	6.94	5.63	44	2	42	95%	3	64	23	41	64%	
	1900-2000	7.02	5.61	6.94	5.64	84	6	78	93%	4	76	29	47	62%	
	2000-2100	7.18	5.61	6.94	5.64	104	10	94	90%	8	79	30	49	62%	
	2100-2200	7.34	5.62	6.95	5.64	107	9	98	92%	4	82	16	66	80%	
	2200-2300	7.21	5.60	6.94	5.64	141	7	134	95%	24	100	28	72	72%	

Note: Velocities within the boundary (V-occupied) zone where Arctic grayling were observed ranged between 20% to 40% of the mean culvert barrel velocities (May 15-76, 1988 measurements).

.

TABLE 7. Continued

	Hourly Period Date ADT			Mean Outlet		Centerline Outlet	Nean		outl Perfor	ET MANCE		BARREL FAILURES		IN Perfo	ILET RHANCE	
Date		Water Temp (C)	Velocity (Q/A) (fps)	Velocity (.6D) (fps)	Barrel Velocîty (fps)	Hourly Attempts No.	Hourly Failures No.	Hourly Successes No.	Hourly Success X	Washout Observed No.	Hourly Attempts No.	Hourly Failures No.	Hourly Successes No.	Hourly Success X		
Hay 21	2000-2100	5.42	5.59	6.93	5.63	22	0	22	100%	5	10	1	9	90%		
	21 00-2200	5.56	5.57	6.91	5.63	37	0	. 37	100%	8	34	2	32	94%		
	2200-2300	5.51	Ś.50	6.87	5.62	127	3	124	98X	26	57	11	46	81%		
May 22	1620-1700	5.35	5.50	6.87	5.6	117	0	117	100X	5	72	10	62	86%		
	1700-1800	5.91	5.51	6.88	5.6	59	0	59	100%	2	42	5	37	88 X		
	1800-1900	6.25	5.51	6.88	5.6	n/o	n/o	n/o	n/o	n/o	n/o	n/a	. n/o	n/o		
	1900-2000	6.58	5.53	6.89	5.6	0	0	0	n/a	0	0	0	0	n/a		
	2000-2100	6.79	5.54	6.90	5.61	22	0	22	100%	1	20	9	11	55%		
	2100-2200	6.86	5.44	6.90	5.61	34	0	34	100%	3	13	2	11	85 %		

Note: Velocities within the boundary (V-occupied) zone where Arctic grayling were observed ranged between 20% to 40% of the mean culvert barrel velocities (May 15-16, 1988 measurements).

		OUT PERFOR	LET MANCE		BARREL FAILURES		i PERF		UPPER WE IR		
	Daily Attempts	Daily Failures	Daily Successes	Daily Success	Washout Observed	Daily Attempts	Daily Failures	Daily Successes	Daily Success	Fish Count	Mean Fish Length
Date	No.	No.	No.	x	No.	No.	No.	No.	x	No.	(ma)
May 13	90	47	43	48%	9	10	7	3	30%	n/o	n/c
May 14	513	76	437	85%	14	221	46	175	79 X	232	279.7
Hay 15	616	. 61	555	90%	13	157	58	99	63%	124	272.0
Hay 16	295	23	272	92%	10	133	61	72	54 X	68	249.4
May 17	653	77	576	88%	6	109	35	74	68%	80	255.0
May 18	208	15	193	93%	8	130	27	103	79%	136	260.5
May 19	557	15	542	97%	43	261	87	174	67%	122	240.7
May 20	788	66	722	92%	59	550	175	375	68%	81	212.7
May 21	186	3	183	98%	39	91	14	77	85 X	111	252.4
May 22	232	0	232	100X	11	147	26	121	82%	99	229.4
May 23	n/o	n/o	n/o	n/o	n/o	· n/o	n/o	n/o	n/o	16	242.0
May 24	n/o	n/o	n/o	n/o	n/o	n/0	n/o	n/o	n/o	5	242.4
TOTAL	4138	383	3755		212	1809	536	1273		1074	
AVERAG	E			91%					70%		254.9

TABLE 8. Summary of Visual Fish Passage and Upper Weir Observations at the Lower Fish Creek Culvert, May 13-22, 1987.

.

-

,

.

get an indication of the percentage that successfully passed through the culvert for the given hydraulic conditions in the culvert at that time. This statistic would account for fish that failed at the entrance, barrel and exit of the culvert. However, one point should be made: an individual fish could be responsible for numerous failures because of multiple attempts at getting through the culvert.

When we perform a count balance on our observations, we see that on certain days we have a large number of fish that cannot be accounted. If we accurately counted the number of fish successfully entering the culvert and those exiting the culvert, the difference should be the number of washouts, plus the number of fish still in transit in the culvert.

The data implies that a large number of fish were not accounted for either entering or exiting the culvert. Reflecting back on the conditions that existed at the time of the observations, several possible explanations can be conjectured. First, it is generally agreed by the observers that lighting conditions were much better at the outlet end of the culvert than at the inlet end. This means that the absolute number of fish entering the culvert, the number of fish failing to get into the culvert, and the number of washouts should have been counted with greater confidence than fish at the upstream end of the culvert. It should be noted that washouts were difficult to count, even under good lighting conditions, because of the high exit velocities. At the culvert outlet, the observers could stand outside the culvert and therefore had a much wider field of view without having to move their eyes.

At the culvert inlet, lighting was poor and to improve visibility, the observers positioned themselves within the culvert. This had the effect of reducing the field of view, so that the observer essentially had to scan back and forth across the culvert. At both ends of the culvert, a corrugated section of culvert that was painted white was put in place on the culvert insert to enhance visibility. At the inlet end, this corrugated section did not extend sufficiently up the sidewall. It was readily apparent that fish were passing along the rusty left side just below the water surface. Without the white background, it was very difficult to see these fish. A large number of fish passed through the culvert late in the evening when lighting conditions were very poor at the inlet. This could have accounted for a large number of uncounted fish.

For 1987, the number of fish successfully passing the culvert was compared with the number of fish captured in the upstream weir. For most of the days, the data indicate that many more fish got through the culvert than were observed at the culvert inlet. On May 20, significantly more fish were observed than captured. On this day, the average size of the fish was abnormally low; it is believed that they may have escaped through the wire mesh on the weir livebox. The integrity of the weir was generally good, however, there were times when some fish probably slipped through, particularly when the weir was cleaned each morning.

It should be pointed out that the performance of fish at the culvert inlet was based on what was observed in the first 1.2 m (4 ft) or so of the culvert at the outlet. In fact, as the fish moved upstream and

approached the inlet of the culvert, they encountered difficulty, because of steep culvert slope, about 3 to 3.7 m (10 to 12 ft) from the culvert inlet. Some of the fish may have failed in their attempts to exit the inlet end of the culvert but not while in the field of view of the observers and were, therefore, not counted as failed attempts.

In Tables 7 and 8, the number of washouts are indicated. Often these failures originated in the culvert barrel. However, occasionally fish swam back into the culvert from the upstream pool and were swept down through the culvert and counted as washouts.

It is obvious from the data that there are problems with the visual counting procedure used. Far more fish were counted entering the culvert than exiting. Some of the possible reasons have been presented here. However, we believe that the percentages for successes, both at the outlet and the inlet of the culvert, are approximately correct, and these data can be used to further our understanding of fish performance.

Miscellaneous Swimming Performance Observations: Several miscellaneous measurements of swimming performance of Arctic grayling were obtained in both 1987 and 1988 (Table 9). "Burst Speed" (Watts, 1974) swimming performance observations were made at the culvert outlet by timing the observed forward progression of three Arctic grayling fish for known distances across the white culvert outlet corrugated insert. Estimated burst swimming velocities with respect to the water (V_{fw}) were then calculated by adding the observed forward velocity of the fish with respect to a fixed reference to the known culvert water velocities where fish swam at the time of observation. These ranged between 1.62 to 2.13

TABLE 9. Miscellaneous fish swimming performance observations, lower Fish Creek culvert, May 1987 and 1988.

<u>May 14, 1987 (1500-1600 hours ADT).</u> An isolated pulse of Arctic grayling entering the culvert (18.3 m) at 1500 hours remained in the culvert for approximately 40 minutes before exiting the inlet.

<u>May 18, 1987 (1715 hours ADT).</u> One medium (<254 mm) grayling leaped out of the water at the culvert outlet (west side) and landed 0.3 m up on the adjacent bank. Fish slid back into the water.

<u>May 18, 1987 (1950 hours ADT).</u> One small (~150 mm) grayling ascended 0.61 m past the culvert outlet lip in 2 seconds. Relative velocity with respect to the culvert = 0.3 m/s (1 fps). Approximate water velocity in the zone used by the fish = 1.3 m/s (4.3 fps).

<u>May 18, 1987 (1950 hours ADT).</u> One medium (180-200 mm) grayling ascended 0.61 m past the culvert outlet lip in 1.5 seconds. Relative velocity with respect to the culvert = 0.41 m/s (1.33 fps). Approximate water velocity in the zone used by the fish = 1.3 m/s (4.3 fps).

<u>May 18, 1987 (2000 hours ADT)</u>. One medium (-254 mm) grayling ascended 0.61 m past the culvert outlet lip in 0.74 seconds. Relative velocity with respect to the culvert = 0.82 m/s (2.7 fps). Approximate water velocity in the zone used by the fish = 1.3 m/s (4.3 fps).

<u>May 21, 1987 (2100-2300 hours ADT)</u>. Passage times through culvert (18.3 m) were measured for the following fish. (NOTE: Lengths are visual estimates.)

		Transit Time	Forward Vel. (fps)	Mean Water Vel. (fps)
300	mm grayling	5 min 44 sec	0.17	3.7
300	mm grayling	6 min 3 sec	0.16	3.7
300	mm grayling	1 min 50 sec	0.54	3.7
250	mm grayling	5 min 10 sec	0.19	3.7
230	mm grayling	2 min 40 sec	0.33	3.7
410	mm round WF	55 sec	1.09	3.7
410	mm round WF	1 min 48 sec	0.55	3.7
380	mm round WF	43 sec	1.39	3.7
380	mm round WF	3 min 25 sec	0.29	3.7
380	mm round WF	2 min 25 sec	0.41	3.7
300	mm round WF	44 sec	1.36	3.7
300	mm round WF	2 min 58 sec	0.34	3.7

(continued)

TABLE 9. Miscellaneous fish swimming performance observations (Continued).

<u>May 22. 1987.</u> Passage times through culvert (18.3 m) were measured for the following fish. (NOTE: Lengths are visual estimates.)

		Transit Time	Forward • Vel. (fps)	Mean Water Vel. (fps)
380 mm rou	ind WF	49 sec	1.22	3.7
300 mm rou	ind WF	1 min 23 sec	0.72	3.7
250 mm gra	yling	3 min 19 sec	0.30	3.7
200 mm ara	yling	4 min 24 sec	0.23	3.7
380 mm rou	ind WF	1 min 40 sec	0.60	3.7

<u>May 12, 1988.</u> One medium (267 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.2 to 0.3 feet away from the culvert wall from a point 17 feet upstream of the culvert outlet to a point 45 feet upstream in 19 minutes and 34 seconds. Mean culvert water velocity in this region was 2.5 feet per second. Relative velocity of the fish with respect to the culvert = 0.73 cm/sec (0.024 fps).

<u>May 12, 1988.</u> One small (178 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.2 to 0.3 feet away from the culvert wall from a point 17 feet upstream of the culvert outlet to a point 32 feet upstream in 29 minutes and 15 seconds. Mean culvert water velocity in this region was 1.36 feet per second. Relative velocity of the fish with respect to the culvert = 0.26 cm/sec (0.00854 fps).

<u>May 15, 1988.</u> One medium-large (305 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.2 to 0.3 feet away from the culvert wall from a point 10 feet upstream of the culvert outlet to a point 39 feet upstream in 2 minutes and 3 seconds. Mean culvert water velocity in this region was 2.1 feet per second. Relative velocity of the fish with respect to the culvert = 4.71 cm/sec(0.1544 fps).

<u>May 15, 1988.</u> One medium-small (203 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.2 to 0.3 feet away from the culvert wall from a point 20 feet upstream of the culvert outlet to a point 30 feet upstream in 2 minutes and 24 seconds. Mean culvert water velocity in this region was 1.36 feet per second. Relative velocity of the fish with respect to the culvert = 2.11 cm/sec (0.0694 fps).

TABLE 9. Miscellaneous fish swimming performance observations (Continued).

<u>May 15, 1988.</u> One small (114 mm) grayling ascended along the left culvert wall approximately 0.3 feet below the surface and 0.2 feet away from the culvert wall from a point 11 feet upstream of the culvert outlet to a point 27 feet upstream in 5 minutes and 12 seconds. Mean culvert water velocity in this region was 1.64 feet per second. Relative velocity of the fish with respect to the culvert = 1.56 cm/sec (0.0513 fps).

<u>May 15, 1988.</u> One medium (229 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.2 feet away from the culvert wall from a point 7 feet upstream of the culvert outlet to a point 25 feet upstream in 2 minutes and 9 seconds. Mean culvert water velocity in this region was 1.7 feet per second. Relative velocity of the fish with respect to the culvert = 4.25 cm/sec (0.1395 fps).

<u>May 15, 1988.</u> One medium-large (279 mm) grayling ascended along the left culvert wall approximately 0.5 feet below the surface and 0.3 feet away from the culvert wall from a point 7 feet upstream of the culvert outlet to a point 42 feet upstream in 2 minutes and 1 seconds. Mean culvert water velocity in this region was 2.98 feet per second. Relative velocity of the fish with respect to the culvert = 8.81 cm/sec (0.289 fps).

m/s (5.3 to 7.0 fps) for fish ranging between 150 and 254 mm in fork length (Table 9). Since it is not known whether these fish were unable to maintain this level of energy expenditure or whether they simply gave up and washed back downstream, the calculated burst speeds should be considered strictly an approximation of the obtainable burst speed velocity for Arctic grayling of this size range.

"Sustained Speed" (Watts, 1974) swimming performance observations were made for 24 Arctic grayling (114 to 305 mm in fork length) within the culvert barrel by timing the observed forward progression of the fish for known distances along the culvert barrel. Estimated sustained swimming velocities with respect to the water ($*_{Vfw}$) were then calculated by adding the observed forward velocity of the fish with respect to the ground to the known culvert water velocities at the time of observation. These ranged between 0.42 to 1.25 m/s (1.38 to 5.13 fps) (Table 9).

Miscellaneous Round Whitefish Observations: Fork lengths (mm) were measured and recorded for 257 round whitefish collected in the 1987 weir livebox (upstream of the lower Fish Creek culvert) between May 14 and May 25, 1987. Weights (gm) were taken for 34 round whitefish on May 20 and 22, 1987. These data are presented in Table C4. The average condition factor for the 34 weighed fish was 0.845 (Condition Factor = 100*Weight (grams)/(length (cm)³).

Fish Radio Telemetry Tagging

During this study, one of the objectives was to insert transmitters into captured grayling downstream of the culvert to monitor their upstream migrational performance through the culvert. Two 15-channel tracking receivers (Smith-Root, Inc.) were used; one each at the outlet and inlet of the culvert. If we could record the time of passage at culvert outlet and inlet, then we would be able to determine the residence time in the culvert barrel.

This experiment is much easier to visualize than to perform. It was obvious that the handling and insertion of the transmitter stressed the fish. Once released, the tagged fish stopped all upstream movement for at least 24 hours. In some cases, the fish actually retreated downstream some distance. Also, the performance of the radio tags was inconsistent, although our effort was much more successful the second year. The radio tags were intentionally made as small as possible (2 grams) to reduce injury to the fish, however this limits the size of the battery for transmitting. When many of the transmitters were placed in the fish and immersed, the signal became very weak or not detectable.

The performance of the receiver was not at the level hoped. Possibly, local fields from power lines interfered with the transmitted signals. Before each transmitter was placed in a fish it was tested by activating it and taping it to a pole that could be inserted in the stream. There were positions in the stream in front of the culvert where the receiver did not pick up the transmitted signal, even though the distance between transmitter and antennae was only 2.4 m (8 ft) and with nothing but

water between the two. The receiver was connected to a data logger and programmed so that all of the channels were scanned once every second. We used 30 transmitters, divided into two sets with each transmitter set having its own frequency between 40.604 and 40.744 MHz.

It is possible, although unlikely, that fish moved past the antennae without its detecting at least one signal. The antennae were stationed directly over the culvert entrance and exit. To determine the travel time through the culvert, the last downstream signal and the first upstream signal were used. From Table 10, it can be seen that residence time in the culvert ranged from 0.83 minutes to 80.4 minutes.

Table 10:	Radio-tagging	results	for	Fish	Creek	near	Cantwell,	Alaska,
	1988.							

Fish Radio Tag #	Date	Length cm	Weight gm	Entrance Time 24 hr	Exit Time 24 hr	Time in Culvert (min)	Relative velocity (fps)
12 7	12 May 13 May	295 296	248 340	2012.61 1881.94	2022.89	10.28	0.10 0.08
3	13 May 14 May	272	216	1969.33	1977.33	8.00	0.13
10	14 May	297	260	1980.22	1983.22	3.00	0.33
11 14	15 May 15 May	280	144	1513.33	1519.61	0.83	1.20
4 5	15 May 15 May	282 244	242 160	1741.17 1800.72	1743.22 1809.56	2.06 8.83	0.49 0.11
15	15 May	247	145	1851.78	1932.17	80.39	0.01

- Behlke, C.E. 1987. Hydraulic relationships between swimming fish and water flowing in culverts. Pages 112-132 in Proc. 2nd International Conf. on Cold Regions Env. Engr. CSCE-ASCE, Univ. of Alberta, Edmonton, Alberta.
- Behlke, C.E., D.L. Kane, R.F. McLean, J.B. Reynolds, and M.D. Travis. 1988. Spawning migration of Arctic grayling through Poplar Grove Creek culvert, Glennallen, Alaska, 1986. State of Alaska, Dept. of Transportation and Public Facilities, Report No. FHWA-AK-RD-88-09, 103 pp.
- Behlke, C.E., D.L. Kane, R.F. McLean, and M.D. Travis. 1989. Design report for Fish Creek Highway crossing, Mile 132.2 Denali Highway. State of Alaska, Department of Transportation and Public Facilities. 28 pp.
- Bell, Milo C. 1986. Fisheries handbook of engineering requirements and biological criteria. Fish. Engr. Res. Proj., U.S. Army Corps of Engineers, No. Pacific Div., Portland, Oregon.
- Beamish, F.W.H. 1978. Swimming capacity. In: Fish Physiology. Vol. VII. Locomotion. Hoar, W.S., and D.J. Randall (eds). Academic Press, New York. pp. 101-187.
- Jones, D.R., J.W. Kiceniuk, and O.S. Sanford. 1974. Evaluation of the swimming performance of several fish species from the MacKenzie River, Journal. of Fish. Res. Bd. Can. 31:1641-1647.

- Brett, J.R.. 1963. The energy required for swimming by young Sockeye salmon with a comparison of the drag force. Transactions of the Royal Society of Canada, Vol. 1, Series IV, June 1963, p. 441-457.
- Kane, D.L. and J.R. Janowicz. 1989. Flood frequency estimation for Alaska. State of Alaska, Dept. of Natural Resources, Division of Geological and Geophysical Surveys. Report of Investigations 88-17, 22 pp.
- Kane, D.L. and P.M. Wellen. 1985. Fish passage design criteria for culverts. University of Alaska Fairbanks, Institute of Northern Engineering. Prepared under contract to the Alaska Department of Transportation and Public Facilities, Fairbanks.
- MacPhee, C. and F.J. Watts. 1976. Swimming performance of Arctic grayling in highway culverts. College of Forestry, Wildlife and Range Sciences, University of Idaho, Moscow. Bulletin No. 13. 41 pp.
- Morsell, J., J. Houghton, M. Bell, and R. Castello. 1981. Fish protection strategies for the design and construction of the Alaska segment of the natural gas transportation system. Report prepared by Dames and Moore Consulting Engineers, Inc. for Northwest Alaskan Pipeline Company, Anchorage. 63 pp.
- Tilsworth, T. and M.D. Travis. 1987. Fish passage through Poplar Grove Creek. Report No. FHWA-AK-87-15. Prepared by the University of Alaska Fairbanks, Institute of Northern Engineering under contract to the Alaska Department of Transportation and Public Facilities. 107 pp.

- Watts, F.J. 1974. Design of highway culverts. Prepared under contract to the U.S. Dept. of Interior, Office of Water Resources Research Project No. A-027-IDA. Water Research Institute, University of Idaho, Moscow. 62pp.
- Ziemer, G.L., and C.E. Behlke. 1966. Analysis of salmon capabilities in steep fish ladders. Proceedings of 2nd Annual American Water Resources Conference, 1966, pp. 328-339.

APPENDIX A

.

.

.

HYDROLOGIC DATA

			Observed
	Julian	Discharge,	stage,
Date	time	cfs	ft.
5-3	123.67	64.8	
5-6	126.58	70.8	
5-8	128.5	122.6	
5-9	129.72	143.6	
5-10	130.64	153.1	2.11
5-11	131.92	142.5	
5-12	132.63		2.14
	132.83	144.8	
5-13	133.79	143.8	
5-14	134.48	117.6	
	134.62		1.69
5-15	135.45		1.54
•	135.52	104.5	
5-16	136.31		1.43
	136.39	100.7	
5-17	137.39		1.34
	137.42	96.8	
5-18	138.35		1.15
	138.43	83.7	
5-19	139.33		1.01
	139.35	79.5	
5-20	140.33		.88
	140.39	64.2	
5-21	141.33		.85
	141.39	67.2	
5-22	142.43	58	
	142.84		.72
5-23	143.35		.62
	143.43	62.1	
5-24	144.38		.52
	144.46	55.8	

Table A1: 1987 measured discharge data for Fish Creek near Cantwell, Alaska. Table A2: 1987 computed discharge data Fish Creek near Cantwell, Alaska.

	Julian	Q,		Julian	Q,		Julian	۹,		Julian	Q,		Julian.	٩,
Date	time	cfs	Date	time	cfs	Date	time	cfs	Date	time	cfs	Date	time	cfs
3 May	123.67	64.8	15 May	135.05	113.2	17 May	137.31	96.3	19 May	139.04	72.2	22 May	142.05	60.2
6 Мау	126.58	70.8		135.15	112.0	-	137.32	100.9	•	139.30	72.4	•	142.33	59.9
8 May	128.50	122.6		135.25	110.1		137.35	99.7		139.31	83.2		142.34	64.7
9 May	129.72	143.6		135.27	116.0		137.36	97.1		139.33	74.5		142.36	61.3
10 May	130.62	144.0		135.32	112.8		137.39	96.5		139.35	73.8		142.40	58.5
	130.64	146.3		135.35	112.2		137.42	95.8		139.40	72.4		142.43	58.4
	130.92	147.9		135.38	110.9		137.43	95.8		139.51	71.1		142.55	59.1
11 May	131.07	149.9		135.45	109.6		137.50	94.4		139.60	69.0		142.56	59.1
	131.28	148.8		135.47	109.6		137.52	93.7		139.62	69.0		142.60	59.3
	131.36	147.0		135.50	108.9		137.54	96.3		139.75	67.7		142.62	59.3
	131.62	148.5		135.51	112.1		137.59	92.9		139.80	65.6		142.68	59.6
	131.92	148.2		135.52	111.4		137.61	92.9	20 May	140.33	65.6		142.77	59.9
12 May	132.62	148.2		135.58	108.7		137.66	91.5		140.37	65.6		142.82	60.0
	132.63	148.2		135.62	107.9		137.70	90.1		140.38	69.0		142.84	60.1
	132.75	146.8		135.68	106.5		137.77	88.0		140.39	67.7		142.86	60.2
	132.83	146.0		135.77	104.3		137.85	85.9		140.40	66.3		142.99	60.6
	132.87	144.7		135.85	104.1		137.97	84.4		140.47	64.9	23 May	143.35	61.8
13 May	133.44	142.5		135.86	106.1	18 May	138.09	82.9		140.61	63.6	•	143.37	61.9
	133.62	140.9		135.91	102.7		138.29	82.6		140.62	62.9		143.38	61.9
	133.70	138.9	- 16 May	136.08	100.3		138.30	85.3		140.74	61.5		143.39	62.0
	133.79	136.8		136.22	100.0		138.33	83.2	21 May	141.29	62.9		143.41	62.0
	133.80	136.8		136.23	103.3		138.35	83.9		141.33	63.6		143.43	62.1
	133.90	134.7		136.28	101.2		138.36	82.5		141.35	63.6		143.45	62.0
	133.96	132.7		136.30	101.1		138.43	81.3		141.37	68.3		143.54	4.0
14 May	134.05	131.3		136.31	102.4		138.44	81.3		141.39	66.9		143.55	61.4
	134.11	129.2		136.32	103.1		138.47	81.3		141.40	66.3		143.56	61.3
	134.18	127.2		136.39	102.0		138_48	84.0		141.50	64.8		143.59	61.1
	134.24	125.2		136.52	100.3		138.50	83.3		141.60	64.0		143.62	60.9
	134.30	123.1		136.55	99.7		138.55	80.0		141.62	66.7		143.70	60.5
	134.31	125.7		136.56	101.7		138.62	78.7		141.66	64.0		143.79	59.9
	134.38	124.3		136.59	99.8		138.67	76.7		141.78	62.5		143.96	58.9
	134.42	122.9		136.62	99.9		138.75	74.7		141.79	61.8	24 May	144.35	56.5
	134.45	120.9		136.74	98.9	•	138.85	73.5		141.80	65.9	•	144.36	56.4
	134.48	120.9		136.82	97.1					141.82	63.8		144.38	56.3
	134.57	119.5		136.90	95.3					141.90	61.7		144.42	56.0
	134.62	119.4											144.46	55.8
	134.75	118.2												-
	134.81	116.3												
	134.92	115.1												

80

.

.

Date	Julian time	Discharge, cfs	Observed stage, ft.
*5-12	133.44	107.8	
	133.46		1.72
5-13	134.37		1.65
	134.38	93.5	
	134.60	2010	1.61
5-14	135.38	102.3	
	135.42		1.52
	135.63	99.0	
5-15	136.33	95.2	1.38
5-16	137.28	74.4	
	137.42	,	1.08
5-17	138.33		. 82
÷ 1,	138.44	56.4	
	138.64		. 73
5-20	141.43	51.1	• • • 5
0 10	141.73		. 60
5-21	142.43	52 3	.00
5-22	1/3 57	51.5	00
5-22	140.07	51.2	.09

Table A3: 1988 measured discharge data for Fish Creek near Cantwell, Alaska.

* measurements prior affected by variable backwater, not shown.

Dato	Julian	Q,	Data	Julian	Q,	Data	Julian	Q,		Julian	Q,
Date	CIME	CLS	Date	LIME	CIS	Date	time	CIS	Date	time	cfs
7 Mars	100 50		2.0. 35		201.0						
/ Мау	128.59	75.5	10 May	131.02	104.8	14 May	135.07	102.1	16 May	137.13	80.6
0 May	128.64	75.5		131.13	106.6		135.18	101.1		137.20	79.1
o may	129.03	70.0		131.25	107.8		135.33	100.5		137.28	78.1
	129.13	77.0		131.31	108.5		135.38	99.9		137.37	77.1
	129.23	78.9		131.34	107.7		135.42	99.5		137.42	75.5
	129.34	80.6		131.41	108.5	•	135.52	98.9		137.51	73.5
	129.33	80.6	11 Mare	131.64	108.7		135.60	98.3		137.59	71.6
	129.38	80.0	тт мау	132.64	109.5		135.63	98.0		137.64	69.6
	129.50	81.8	10 14	132.82	109.6		135.64	98.0		137.74	67.6
	129.64	82.4	12 May	133.02	109.8		135.72	97.4		137.88	64.5
	129.78	83.7		133.30	110.0		135.79	96.8	17 May	138.13	62.5
	129.91	85.5		133.36	110.0		135.88	95.8		138.33	60.4
O Mass	129.98	86.8		133.39	110.0		135.96	95.2		138.44	58.0
э мау	130.08	88.6		133.44	110.0	15 May	136.07	94.6		138.64	55.0
	130.13	90.4		133.46	110.0		136.17	93.6		138.64	55.0
	130.20	91.7		133.53	109.3		136.28	93.0	18 May	139.57	52.7
	130.27	93.5		133.64	108.6		136.33	92.1		139.64	50.4
	130.32	94.7		133.95	107.8		136.34	92.1		139.81	48.1
	130.35	95.3	13 May	134.19	107.1		136.40	91.1		139.96	44.6
	130.40	95.8		134.37	106.4		136.48	90.1	19 May	140.64	42.2
	130.42	95.8		134.38	106.4		136.54	88.6		140.83	44.6
	130.43	95.8		134.39	106.4		136.59	87.6		140.94	48.1
	130.48	96.4		134.56	104.8		136.64	86.6	20 May	141.13	50.4
	130,56	98.0		134.60	104.3		136.72	85.6		141.43	49.3
	130.64	98.5		134.64	104.0		136.78	84.1			
	130.72	100.1		134.81	103.3		136.89	83.1			
	130.73	100.1		134.96	102.7		136.98	81.6			
	130.83	101.7									
	130.83	101.7									
	130.89	103.5									

Table A4: 1988 computed discharge data for Fish Creek near Cantwell, Alaska.

		d	issolved			
Date	time, AST	temp, C	oxygen, ppm	turbidity, NTU	color, UNITS	
14 May	900	1.5	8.3	2.2	75	
15 May	1000	2	8.9	1.9	68	
16 May	1230	2	8.1	2.55	140	
17 May	1030	1	8.4	2.35	100	
18 May	1015	2	8.5	2.25	90	
19 May	1000	2	8.2	3.15	95	
20 May	1000	2.25	7.3	2.5	45	
21 May	1030	2	7.9	2.75	50	
22 May	1315	3.25	8.2	1.69	70	
23 May	1200	3	8.1	1.9	50	
24 May	1015	2	8.6	2.3	40	

Table A5: 1987 water quality data for Fish Creek near Cantwell, Alaska.

.

	dissolved												
Date	time, AST	temp, C	oxygen, ppm	turbidity, NTU	color, UNITS								
10 May	1230	2	8.05	8.2	98								
11 May	800	3	7.9	4.4	80								
12 May	700	4	7.6	4.8	110								
13 May	1140	4	7.25	3.4	55								
14 May	1415	4	6.9	3	55								
15 May	1405	4.5	8	3	80								
17 May	922	3	7.8	3.2									

Table A6: 1988 water quality data for Fish Creek near Cantwell, Alaska.

		Water			Water			Water			Water
•	Julian	temp,		Julian	temp,		Julian	temp,		Julian	temp,
Date	time	С									
10 May	130.63	2.5	11 May	131.00	1.2	12 May	132.00	1.9	13 May	133.00	2.0
•	130.64	2.5	-	131.04	.6	-	132.04	1.6	-	133.04	1.6
	130.64	2.5		131.08	.4		132.08	1.0		133.08	1.4
	130.67	2.7		131.13	.6		132.13	.9		133.13	1.6
	130.71	3.1		131.17	.4		132.17	1.4		133.17	1.4
	130.75	2.9		131.21	.6		132.21	1.3		133.21	1.3
	130.79	2.7		131.25	.0		132.25	1.1		133.25	.6
	130.83	2.4		131.29	.2		132.29	1.3		133.29	1.0
	130.88	1.6		131.33	1.0		132.33	.8		133.33	1.2
	130.92	1.8		131.38	.8		132.38	1.4		133.38	1.4
	130.96	1.4		131.42	1.6		132.42	1.6		133.42	1.3
				131.46	2.0		132.46	1.8		133.46	1.9
				131.50	2.1		132.50	2.0		133.50	2.4
				131.54	2.5		132.54	2.9		133.54	2.5
				131.58	3.0		132.58	3.4		133.58	3.0
				131.63	3.3		132.63	3.4		133.63	3.2
				131.67	3.4		132.67	4.1		133.67	3.2
				131.71	3.5		132.71	4.2		133.71	3.2
				131.75	4.0		132.75	4.1		133.75	3.2
				131.79	3.8		132.79	4.1		133.79	3.2
				131.83	3.5		132.83	3.6		133.83	3.0
				131.88	2.9		132.88	3.0		133.88	2.6
				131.92	2.3		132.92	2.6		133.92	2.4
				131.96	2.0		132.96	2.5		133.96	1.7

.

Table A7: 1987 culvert inlet water temperatures, Fish Creek near Cantwell, Alaska.

ထ ပာ

		Water			Water			Water		Water	
	Julian	temp,									
Date	time	C	Date	time	C	Date	time	C	Date	time	Ċ
14 May	134.00	1.6	15 May	135.00	2.6	16 May	136.00	3.4	17 May	137.00	4.1
-	134.04	1.6	-	135.04	2.2	-	136.04	3.0	-	137.04	3.6
	134.08	1.4		135.08	2.0		136.08	2.6		137.08	3.1
	134.13	1.0		135.13	1.8		136.13	2.3		137.13	2.7
	134.17	.4		135.17	1.7		136.17	2.0		137.17	2.3
	134.21	1.0		135.21	1.6		136.21	1.8		137.21	2.0
	134.25	1.1		135.25	1.6		136.25	1.6		137.25	1.8
	134.29	.3		135.29	1.6		136.29	1.5		137.29	1.7
	134.33	.8		135.33	1.6		136.33	1.6		137.33	1.7
	134.38	1.2		135.38	1.9		136.38	1.9		137.38	2.0
	134.42	1.6		135.42	2.2		136.42	2.3		137.42	2.3
	134.46	2.2		135.46	2.6		136.46	2.6		137.46	2.6
	134.50	2.8		135.50	2.9		136.50	3.1		137.50	3.0
	134.54	3.3		135.54	3.4		136.54	3.6		137.54	3.6
	134.58	3.8		135.58	3.8		136.58	4.1		137.58	3.9
	134.67	4.1		135.63	4.3		136.63	4.7		137.63	4.3
	134.71	4.2		135.67	4.7		136.67	5.1		137.67	4.7
	134.75	4.3		135.71	5.0		136.71	5.4		137.71	5.1
	134.79	4.1		135.75	5.1		136.75	5.7		137.75	5.2
	134.83	3.9		135.79	5.0		136.79	5.7		137.79	5.2
	134.88	3.6		135.83	4.8		136.83	5.6		137.83	5.2
	134.92	3.3		135.88	4.6		136.88	5.3		137.88	5.0
	134.96	2.9		135.92	4.2		136.92	5.0	,	137.92	4.7
				135.96	3.8		136.96	4.5		137.96	4.4

Table A7: Continued.

Table	A7:	Continued.	

			Water			Water			Water			Water
		Julian	temp,		Julian	temp,		Julian	temp,		Julian	temp,
Γ	Date	time	C	Date	time	C	Date	time	C	Date	time	Ċ
18	Mav	138.00	4.04	19 May	139.00	4.48	20 May	140.00	5.00	21 Mav	141.00	6.06
	1	138.04	3.58	15 maj	139.04	4.01	20 1101	140.04	4.43		141.04	5 51
		138.08	3,11		139.08	3.56		140.08	3.99		141.08	4.84
		138.13	2.74		139.13	3.21		140.13	3.61		141.13	4.28
		138.17	2.38		139.17	2.91		140.17	3.26		141.17	3.87
		138.21	2.08		139.21	2.69		140.21	2,96		141.21	3.56
		138.25	1.94		139.25	2.56		140.25	2.77		141.25	3.28
		138.29	1.87		139.29	2.51		140.29	2.67		141.29	3,11
		138.33	1.98		139.33	2.53		140.33	2.66		141.33	3.05
		138.38	2.26		139.38	2.63		140.38	2.81		141.38	3.07
		138.42	2.63		139.42	2.73		140.42	3.04		141.42	3.10
		138.46	3,10		139.46	2.96		140.46	3.37		141.46	3.20
		138.50	3.40		139.50	3 41		140.50	3.86		141.50	3.31
		138.54	3.87		139.54	3.86		140.54	4,43		141.54	3.52
		138.58	4.48		139.58	4.26		140.58	4.90		141.58	3.80
		138.63	5.24		139.63	4.62		140.63	5.55		141.63	4.17
		138.67	5.37		139 67	5 06		140.67	6.13		141.67	4.70
		138.71	5.73		139 71	5 46		140.71	6.61		141.71	5.05
		138.75	6.10		139.75	5.78		140.75	7.02		141.75	5.25
		138.79	6.28		139.79	5.98	•	140.79	7.18		141.79	5.42
		138.83	6.25		139.83	6.05		140.83	7.34		141.83	5.56
		138.88	5.94		139.88	6.06		140.88	7.21		141.88	5.51
		138.92	5.48		139.92	5.93		140.92	6.84		141.92	5.38
		138.96	4.97		139.96	5.55		140.96	6.45		141.96	5.14

			Water			Water			Water			Water
		Julian	temp,		Julian	temp,		Julian	temp,		Julian	temp,
]	Date	time	C	Date	time	C	Date	time	Ċ	Date	time	Ċ
22	May	142.00	4.8	23 Mav	143.00	5.9	24 May	144.00	5 1	25 May	145 00	 6 1
	1101	142.04	4.4	23 maj	143.04	5.4	L4 Haj	144.00	4 7	25 May	145.00	5 0
		142.08	4.1		143.08	4.9		144.04			145.04	5.0
		142.00	37		143.00	4 5		144.00	1 1		145.00	1 0
		142.13	2.7		1/3 17	1.5		144.13	3 0		145.13	4.9
		142.17	3.0		143.17	4.0		144.1/	2.0 2 E		145.17	4.4
		142.21	2.0		143.21	2.2		144.21	2.0		145.21	3.9
		142.20	2.1		143.25	2.2		144.20	3.3		145.25	3.5
		142.29	2.0		143.23	2.4		144.29	3.3		145.29	3.2
		142.33	2.0		143.33	2.1		144.33	3.2		145.33	3.1
		142.30	2.0		143.38	3.2		144.38	3.1		145.38	3.1
		142.42	3.0		143.42	3.5		144.42	3.2			
		142.46	3.4		143.46	3.6		144.46	3.3			
		142.50	3.8		143.50	3.8		144.50	3.6			
		142.54	4.2		143.54	4.3	•	144.54	4.2			
		142.58	4.7		143.58	4.8		144.58	4.7			
		142.63	5.4		143.63	5.2		144.63	5.2			
		142.67	5.9		143.67	5.6		144.67	5.3			
		142.71	6.2		143.71	6.0		144.71	5.4			
		142.75	6.6		143.75	6.2		144.75	5.7			
		142.79	6.8		143.79	6.3		144.79	6.0			
		142.83	6.9		143.83	6.4		144.83	6.3			
		142.88	6.8		143.88	6.3		144.88	6.5			
		142.92	6.6		143.92	6.0		144.92	6.5			
		142.96	6.3		143.96	5.6		144.96	6.3			

.

Table A7: Continued.

.

88

.

		Water		•	Water			Water			Water
	Julian	temp,		Julian	temp,		Julian	temp,		Julian	temp,
Date	time	С	Date	time	С	Date	time	с	Date	time	С
			· · · · · · · · · · · · · · · · · · ·						· · · · · · · · ·		
10 May	131.58	2.0	11 May	132.00	1.7	12 May	133.00	4.3	13 May	134.00	3.71
_	131.63	2.1	_	132.04	1.6	-	133.04	3.9	-	134.04	3.41
	131.67	2.3		132.08	1.4		133.08	3.6		134.08	3.09
	131.71	2.4		132.13	1.2		133.13	3.2		134.13	2.75
	131.75	2.3		132.17	1.0		133.17	2.9		134.17	2.4
	131.79	2.3		132.21	. 8		133.21	2.7		134.21	2.07
	131.83	2.2		132.25	.7		133.25	2.5		134.25	1.79
	131.88	2.2		132.29	.6		133.29	2.3		134.29	1.57
	131.96	2.0		132.33	.7		133.33	2.3		134.33	1.44
				132.38	.9		133.38	2.3		134.38	1.52
				132.42	1.3		133.42	2.3		134.42	1.82
				132.46	1.6		133.46	2.5		134.46	2.1
				132.50	2.2		133.50	2.8		134.75	5.27
				132.54	2.8		133.54	3.2		134.83	5.81
				132.58	3.4		133.58	3.4		134.88	5.78
				132.63	3.9		133.63	3.6		134.92	5.62
				132.67	4.4		133.67	3.9		134.96	5.35
				132.71	4.7		133.71	4.2			
				132.75	5.0		133.75	4.3			
				132.79	5.1		133.79	4.3			
				132.83	5.1		133.83	4.3			
				132.88	5.0		133.88	4.3			
				132.92	4.9		133.92	4.2			
				132.96	4.6		133.96	4.0			

Table A8: 1988 culvert inlet water temperatures, Fish Creek near Cantwell, Alaska.

Table A8: Continued.

	Date	Julian time	Water temp, C	Date	Julian time	Water temp, C	Date	Julian time	Water temp, C
							<u>.</u>		
14	May	135.00	5.1	15 May	136.33	1.7	16 May	137.00	4.7
		135.04	4.8	-	136.38	2.1	-	137.04	4.4
		135.08	4.5		136.42	2.3			
		135.13	4.2		136.46	2.5			
		135.17	3.9		136.50	2.9			
		135.21	3.6		136.54	3.4			
		135.25	3.4		136.58	3.9			
		135.29	3.2		136.63	4.4			
		135.33	3.0		136.67	4.9			
		135.38	3.0		136.71	5.1			
		135.42	3.0		136.75	5.5			
		135.46	3.0		136.79	5.6			
		135.50	3.1		136.83	5.6			
		135.54	3.2		136.88	5.6			
		135.58	3.4		136.92	5.5			
					136.96	5.1			

,

APPENDIX B

HYDRAULIC DATA
Table B1: 19 fo Ca	88 culvert invert r lower Fish Cree ntwell, Alaska.	elevation (near
Distance from culvert outle ft.	t Elevation ft.	Slope
$\begin{array}{c} .5\\ 1.0\\ 2.0\\ 3.0\\ 4.0\\ 6.0\\ 10.0\\ 15.0\\ 16.5\\ 20.0\\ 25.0\\ 30.0\\ 39.0\\ 40.5\\ 44.0\\ 45.0\\ 45.0\\ 47.0\\ 50.0\\ 51.0\\ 54.5\\ 55.5\\ 56.0\\ 57.5\\ 59.5\end{array}$	95.95 95.88 95.85 95.80 95.60 95.64 95.69 95.72 95.80 95.72 95.95 96.04 96.14 96.14 96.14 96.21 96.25 96.28 96.31 96.36 96.31 96.36 96.34 96.34 96.60 96.62 96.62 96.76	$\begin{array}{c}140 \\030 \\050 \\ .040 \\120 \\ .010 \\ .010 \\ .020 \\ .023 \\ .014 \\ .016 \\ .015 \\ .033 \\ .000 \\ .020 \\ .040 \\ .015 \\ .010 \\ .050 \\010 \\ .020 \\ .260 \\ .040 \\ .000 \\ .070 \end{array}$
	Mean slope:	.0142

. . ----_ د ـ Table B2: Summary of velocity cross-sectional data for Fish Creek near Cantwell, Alaska, 1987.

Dati	e, Time AST	Station
15 H 15 H 16 H 16 H 18 H 19 H 19 H 21 H 21 H 21 H 21 H	May, 1000 May, 0730 May, 1115 May, 0900 May, 1625 May, 1100 May, 0730 May, 0730 May, 0925 May, 1630 May, 1630 May, 1030 May, 0830	<pre>outlet,1'u.s. outlet,6'u.s. inlet,1'd.s. inlet,6'd.s. outlet,6'u.s. inlet,1'd.s. outlet,1'u.s. inlet,6'd.s. inlet,6'd.s. inlet, 6'd.s. outlet,6'u.s. outlet,1'u.s.</pre>
23 N 23 N	May, 1030	outlet, 6'u.s.

.

Table 83: 1987 cross-sectional field data of velocity measurements at Fish Creek culvert. 15 May 1987, outlet, 1¹u.s., Q = 110 cfs. 1000 AST Velocity in fps total Depth,ft.: depth .1 .2 Station, ft. .3 .5 .75 1 1.3 1.7 2 ft. left 4 lb=4.0' 3.77 4.40 4.78 5.12 5.51 5.36 6.00 5.09 4.63 5.50 5.57 6.50 6.81 6.58 6.29 7.07 * left 3 .80 * left 2 7.07 4.84 1.95 2,97 5,56 6,05 7,56 7,42 7,56 7,77 7.94 6.57 2.30 * left 1 * CL 5.18 5.90 6.51 8.03 8.75 8.50 8.53 8.65 7.24 2.45 4.81 6.49 7.57 9.05 9.50 9.14 8.17 8.29 * right 1 8,49 2.40 3.96 6.79 7.97 8.28 8.38 8.89 8.64 4.68 * right 2 7.01 2.15 * right 3 3.98 5.42 6.16 6.69 7.34 7.44 6.59 5.08 1.50 3.65 4.67 4.43 4.76 . 55 * right 4 15 May 1987, outlet, 6^{1} u.s., Q = 114 cfs. 0730 AST Velocity in fps total Depth,ft.: depth .1 .2 .3 .5 .75 1 1.3 1.7 2 2.5 ft. Station, ft. (b=4.41 * left 4 1.97 1.25 2.34 2.45 2.38 1.30 1.79 3.00 3.66 4.25 .80 * left 3 4.25 4.33 3.87 3.62 1.80 2.21 3.29 3.71 * left 2 3.85 5.00 5.45 5.55 5.66 4.84 2.50 .76 3.54 4.19 5.42 6.48 6.83 7.39 6.55 6.14 5.16 2.90 .53 2.30 4.81 5.94 7.18 8.12 8.33 8.08 7.82 6.95 3.05 * left 1 * CL 3.74 4.51 5.00 6.27 7.59 8.17 7.73 8.84 8.19 7.93 2.80 1.46 2.79 4.72 6.19 7.36 7.64 7.47 7.97 7.32 6.45 2.50 * right 1 * right 2 3.21 3.24 4.33 4.89 5.48 5.79 6.52 5.08 2.13 2.79 2.68 3.20 2.32 1.90 * right 3 * right 4 .85 rb=4.5! 16 May 1987, inlet, 1' d.s., Q = 101 cfs. 1115 AST Velocity in fps total Depth,ft.: depth .1 .2 .3 .5 .75 1 1.3 1.7 2 2.5 3 ft. Station, ft. lb=4.3' * left 4 3.28 .25 * left 3 .29 1.39 4.66 6.15 6.23 6.31 5.79 5.32 1.75 * left 2 .71 2.13 4.24 5.08 5.94 6.00 5.93 5.99 5.81 3.83 2.50 * left 1 2.53 3.09 4.49 5.25 5.65 5.77 6.13 5.77 5.90 5.67 2.80
 6.10
 5.93
 5.92
 5.83
 5.78
 5.26
 2.55

 5.11
 5.38
 5.79
 5.94
 5.86
 5.70
 5.35
 3.10

 5.09
 4.81
 4.90
 4.79
 4.71
 2.20
 * CL 4.81 5.13 5.79 5.85 * right 1 .61 1.24 3.93 4.29 2.97 4.28 4.94 5.14 * right 2 4.27 5.41 5.39 5.85 5.84 5.47 5.22 4.83 4.60 3.52 4.02 3.99 3.94 3.15 * right 3 2.10 * right 4 .85

Table B3: Continued.

16 May 1987, inlet, 6 ft. d.s., Q = 102 cfs 0900 AST Velocity in fps total death Depth,ft.: .3 .5 .75 1 1.3 1.7 1.8 .1 .2 2 ft. Station, ft. lb=4.5' left 4 3.64 3.74 3.96 .45 * left 3 3.66 4.82 5.43 6.50 7.91 8.70 1.30 2.25 5.07 5.69 7.93 8.72 8.88 8.98 8.67 * left 2 1.95
 2.20
 4.36
 7.22
 7.73
 8.76
 9.10
 9.21
 8.80

 2.22
 2.25
 3.03
 4.48
 6.22
 8.32
 9.02
 8.93
 8.98 2.20 8.98 2.30 * left 1 * CL 3.73 4.94 5.66 7.23 7.94 8.87 8.83 8.92 9.30 * right 1 2.10 3.31 4.51 8.26 8.60 8.86 8.95 8.77 3.92 4.60 6.07 6.16 8.31 8.36 * right 2 1.70 * right 3 1.25 rb=4.0' * right 4 18 May 1987, outlet, 6' u.s., Q = 77 cfs. 1625 AST Velocity in fps total Depth,ft.: depth .3 .5 .75 1 1.3 1.7 2 2.5 ft. Station, ft. .1 .2 lb=4.15' * left 4 1.35 1.66 .30 2.06 2.90 3.47 3.55 3.42 3.17 2.68 2.58 3.13 3.66 3.91 4.41 4.48 4.30 4.26 * left 3 1.35 * left 2 2.00 * left 1 5.54 5.02 4.69 5.03 5.24 2.64 3.25 4.17 5.62 2.45 * CL 3.06 4.42 5.24 5.60 6.09 6.88 7.29 7.29 6.82 6.38 2.75
 2.98
 4.48
 5.50
 6.32
 6.91
 7.48
 7.69
 7.60
 7.28
 6.84
 2.70

 3.79
 4.25
 4.77
 5.39
 6.23
 6.90
 7.23
 6.19
 5.21
 2.20
 * right 1 * right 2 * right 3 3.33 3.37 3.83 4.38 4.64 4.79 4.05 1.70 * right 4 1.87 . 15 rb=4.1' 19 May 1987, inlet, 1' d.s., Q = 72 cfs. 1100 AST Velocity in fps total Depth,ft.: depth .3 .5 .75 1 1.3 1.7 2 2.5 ft. Station, ft. .15 .2 lb=4.01 left 4 2.39 2.69 3.71 5.67 2.35 5.35 5.63 5.95 5.81 6.23 6.33 * left 3 .75 * left 2 1.85 * left 1 3.60 5.02 5.62 6.05 6.28 6.34 6.34 6.23 6.12 2.40 * CL 1.95 3.35 5.34 6.33 6.39 6.37 6.30 5.79 2.55 . 69 .05 .05 .01 .06 5.50 6.33 6.44 6.66 6.40 6.18 .09 .30 .59 2.80 6.11 6.43 6.55 6.33 6.09 * right 1 .06 5.50 6.33 6.44 6.66 6.40 6.18 2.40 2.10 * right 2 * right 3 .63 1.99 4.86 6.68 5.49 1.25 * right 4 rb=4.0'

Table B3: Continued.

19 May 1987, outlet, 1' u.s., Q = 72 cfs. 0730 AST total Velocity in fps Depth,ft.: depth .1 .2 .3 .5 .75 1 1.3 1.7 ft. Station, ft. * left 4 lb=3.91 * 3.39 4.18 4.27 4.23 3.18 4.17 4.71 5.43 5.79 5.82 •.80 left 3 5.52 4.29 6.04 * 1.50 left 2 6.75 6.72 7.25 7.74 7.73 7.35 8.09 7.87 6.59 * left 1 4.66 5.17 6.04 6.46 6.57 1.90 4.05 4.82 5.54 6.84 4.42 4.78 5.63 7.06 7.73 * CL 2.00 * right 1 1.95 4.42 6.11 6.61 7.14 7.64 4.26 5.34 5.77 6.23 6.08 * right 2 7.54 7.56 1.75 * right 3 1.10 * right 4 2.13 .20 rb=4.1' .

19 May 1987, inlet 6' d.s., Q = 73 cfs. 0925 AST

	Velocí Depth,	ty in ft.:	fps						total depth	
Station, ft.	. 15	.2	.3	.5	.75	1	1.3	1.7	ft.	
* left 4	lb=4.0	1				•••••			•••••	•••••
* left 3	2.35	4.81	5.13	6.04	7.14				1.00	
* left 2	5.11	5.12	5.63	7.31	7.80	8.18	7.94	7.93	1.80	
* left 1	2.49	6.28	6.75	7.80	8.33	8.30	8.44	8.46	2.00	
* CL	3.43	3.42	2.76	4.52	5.99	7.90	8.60	8.60	2.00	
* right 1	2.59	5.67	6.70	7.42	7.95	8.49	8.58	8.43	1.80	
* right 2	3.97	7.16	7.51	8.29	8.47	8.67	6.80		1.55	
* right 3	.91	5.05	7.28	5.69					.75	
* right 4	rb=3.7	51								

21 May 1987, inlet, 1' d.s., Q = 64 cfs. 1630 AST

Station,ft.	Veloci Depth, .15	ty in ft.: .2	fps .3	.5	.75	1	1.3	1.7	2	2.25	total depth ft.
* left 4	ib=4.0		*****		• • • • • •	** • • • •			••••	•••••	
* left 3	3.77	5.01	5.21	5.60	6.46	6.81					1.20
* left 2	4.05	5.33	5.57	5.90	6.26	6.31	6.14	6.02			1.90
* left 1	4.19	4.36	5.39	5.86	6.15	6.09	5.91	5.99	6.01	5.81	2.35
* CL	10	.43	1.46	5.16	6.24	6.36	6.20	6.10	6.14	5.72	2.40
* right 1	.06	.05	.46	5.70	5.79	6.65	6.58	6.25	5.95	5.73	2.30
* right 2	.02 -	.69	.48	2.16	6.24	6.48	6.35	5.99			2.05
* right 3	4.10	4.89	4.99	5.66	6.59						1.20
* right 4	rb=4.0	1									

Table B3: Continued.

21 May 1987, inlet, 6' d.s., Q = 64 cfs. 1430 AST Velocity in fps total depth Depth,ft.: .5 .75 1 1.3 1.5 1.7 ft. .15 .2 .3 Station, ft. * left 4 lb=4.11 $\begin{array}{c} (b=4,1)^{\prime} \\ \hline 3.39 & 4.67 & 5.73 & 6.57 & 5.13 \\ 2.48 & 5.57 & 6.14 & 7.74 & 8.16 & 8.10 & 7.95 \\ 4.12 & 5.38 & 6.53 & 7.56 & 8.07 & 8.55 & 8.34 \\ .14 & 3.24 & 3.52 & 3.68 & 6.40 & 8.21 & 8.66 \\ \hline 3.67 & 4.02 & 5.46 & 6.79 & 7.83 & 8.40 & 8.75 \\ 5.71 & 6.39 & 7.45 & 8.24 & 8.46 & 8.68 & 8.26 \\ \hline 5.28 & 6.44 & 6.32 & 3.73 \\ \hline \end{array}$.90 left 3 8.16 8.10 7.95 7.98 ٠ left 2 1.75 8.40 1.80 * left 1 * CL 1.85 6.29 8.76 * right 1 1.75 * right 2 1.45 * right 3 .70 * right 4 rb=3.6' _____

21 May 1987, outlet, 6' u.s., Q = 66 cfs. 1030 AST Velocity in fps

.3	.5	.75	İ	4 7	4 5	4 7	-		
					1.2	1.7	2	Z.25	2.5
2.09	2.82	2.88	2.78	2.57					
2.93	3.32	3.64	4.13	4.14		3.96	3.38		
3.77	3.93	4.64	4.78	4.82		5.40	5.21	4.80	
4.18	4.82	5.18	6.08	6.32		6.68	6.52	6.18	5.56
4.45	5.90	6.47	6.80	7.14		7.39	6.84	6.77	
4.14	5.27	5.82	6.56	6.66		6.03	5.08		
1.56	3.54	4.09	4.84	4.13	3.26				
	2.09 2.93 3.77 4.18 4.45 4.14 1.56	2.09 2.82 2.93 3.32 3.77 3.93 4.18 4.82 4.45 5.90 4.14 5.27 1.56 3.54	2.09 2.82 2.88 2.93 3.32 3.64 3.77 3.93 4.64 4.18 4.82 5.18 4.45 5.90 6.47 4.14 5.27 5.82 1.56 3.54 4.09	2.09 2.82 2.88 2.78 2.93 3.32 3.64 4.13 3.77 3.93 4.64 4.78 4.18 4.82 5.18 6.08 4.45 5.90 6.47 6.80 4.14 5.27 5.82 6.56 1.56 3.54 4.09 4.84	2.09 2.82 2.88 2.78 2.57 2.93 3.32 3.64 4.13 4.14 3.77 3.93 4.64 4.78 4.82 4.18 4.82 5.18 6.08 6.32 4.45 5.90 6.47 6.80 7.14 4.14 5.27 5.82 6.56 6.66 1.56 3.54 4.09 4.84 4.13	2.09 2.82 2.88 2.78 2.57 2.93 3.32 3.64 4.13 4.14 3.77 3.93 4.64 4.78 4.82 4.18 4.82 5.18 6.08 6.32 4.45 5.90 6.47 6.80 7.14 4.14 5.27 5.82 6.56 6.66 1.56 3.54 4.09 4.84 4.13 3.26	2.09 2.82 2.88 2.78 2.57 2.93 3.32 3.64 4.13 4.14 3.96 3.77 3.93 4.64 4.78 4.82 5.40 4.18 4.82 5.18 6.08 6.32 6.68 4.45 5.90 6.47 6.80 7.14 7.39 4.14 5.27 5.82 6.56 6.66 6.03 1.56 3.54 4.09 4.84 4.13 3.26	2.09 2.82 2.88 2.78 2.57 2.93 3.32 3.64 4.13 4.14 3.96 3.38 3.77 3.93 4.64 4.78 4.82 5.40 5.21 4.18 4.82 5.18 6.08 6.32 6.68 6.52 4.45 5.90 6.47 6.80 7.14 7.39 6.84 4.14 5.27 5.82 6.56 6.66 6.03 5.08 1.56 3.54 4.09 4.84 4.13 3.26	2.09 2.82 2.88 2.78 2.57 2.93 3.32 3.64 4.13 4.14 3.96 3.38 3.77 3.93 4.64 4.78 4.82 5.40 5.21 4.80 4.18 4.82 5.18 6.08 6.32 6.68 6.52 6.18 4.45 5.90 6.47 6.80 7.14 7.39 6.84 6.77 4.14 5.27 5.82 6.56 6.66 6.03 5.08 1.56 3.54 4.09 4.84 4.13 3.26

21 May 1987, outlet, 1' u.s., Q = 64 cfs. 0830 AST

	Veloci Depth,	ty in ft.:	fps							total depth	
Station, ft.	.15	.2	.3	.5	.75	1	1.3	1.7	2	ft.	
* left 4	lb=4.0	 I								••••	
* left 3	2.24	2.78	3.96	4.12	4.02					.95	
* left 2	3.23	4.53	5.00	5,09	5.22	5.36	4.96			1.75	
* left 1	3.23	4.13	4.68	5.42	5.83	5.85	5.98	5.59		1.90	
* CL	1.31	2.06	4.50	5.53	6.68	6.99	7.77	6.50	5.58	2.10	
* right 1	1.78	5.35	5.81	5.88	7.92	8.12	7.89	6.34		2.00	
* right 2	3.21	5.93	6.99	7.28	7.78	7.86	7.16	6.19		1.95	
* right 3	3.56	4.84	4.71	5.86	6.14	5.66				1.30	
* right 4	rb=4.0	ı									

Table 83: Continued.

.

	Veloci Depth,	ity in	f ps							totai depth	
Station, ft.	.15	.2	.3	.5	.75	1	1.25	1.3	1.5	ft.	
* left 4	lb=3.8	;					•••••	•••••			• • • • • • • • • • • • • • • • •
* left 3	2.09	3.35	4.45	5.47	4.95	•				.85	
* left 2	.21	3.93	5.91	7.43	7.82	7.65		7.67		1.50	
* left 1	.62	4.14	5.55	6.83	8.08	8.09		8.12	8.34	1.65	
* CL	.46	2.52	2.57	6.00	7.30	8.31		8.42		1.70	
* right 1	1.97	3.52	4.86	6.45	6.81	8.18		8.52	8.35	1.55	
* right 2	4.61	6.59	6.72	7.60	8.21	8.44	7.08			1.35	
* right 3	2.33	5.96	5.32	4.95						2.00	
* right 4	гb=3.6	, i									

23 May 1987, outlet, 6^{1} u.s., Q = 62 cfs. 1030 AST

s	tation,ft.	Veloci Depth, .15	ty in ft.: .2	fps .3	.5	.75	1	1.3	1.7	2	2.25	total depth ft.	
*	left 4	lb=4.0	1										
*	left 3		.76	1.84	2.45	2.59	2.40	2.41				1.45	
*	left 2	1,19	2.92	3.27	3.78	3.72	3.93	3.52	3.28			2.00	
*	left 1	2.06	2.66	3.37	4.12	4.10	4.57	5.14	4.97	4.87	4.28	2.35	
*	CL	.58	2.86	3.27	4.20	4.99	5.09	5.76	6.10	6.25	6.13	2.50	
*	right 1	1.22	3.04	4.09	5.30	6.09	6.28	6.74	6.57	6.15	2.95	2.40	
*	right 2	1.15	1.14	3.48	4.70	5.15	5.69	5.38	4.91			2.00	
*	right 3	1.55	1.66	2.80	2.92	2.87	2.79					1.30	
*	right 4	rb=4.0	۱ 										

Table B4: Summary of velocity cross-sectional data for Fish Creek near Cantwell, Alaska, 1988.

Date, Time AST

Date, T.	ime AST	Station
9 May, 9 May, 9 May, 9 May,	1355 1635 2000	outlet,6'u.s. outlet,1'u.s outlet,30'u.s.
10 May, 10 May, 10 May, 11 May,	1236 1400 1645	inlet, 1'd.s. inlet, 6'd.s. outlet, 30'u.s. outlet, 1'u.s.
11 May, 12 May, 13 May,	1425 1030 1310	outlet,16.5'u.s. outlet,16.5'u.s. outlet,44'u.s.
15 May, 16 May, 16 May,	1330 1205 1245	outlet,16.5'u.s. outlet,44'u.s. outlet,30'u.s.

1	Fish Creek	cuive	ert.									
9 May 1988, 1355 AST	outlet, ó	'u.s.,	Q = 9	8 cfs.								
Station, ft.	Velocit Depth,f	y in f t: .2	ps .3	.5	.75	1	1.3	1.7	2	2.5	W.S.	total depth ft.
<pre>* left 4 * left 3 * left 2 * left 1 * CL * right 1 * right 2 * right 3 * right 4</pre>	(b=4.3) 2.62 2.97 3.30 3.86 3.56 2.30 2.27 rb=4.5'	2.77 3.34 3.97 4.80 4.74 4.28 3.32	3.18 3.56 4.28 5.16 5.43 5.26 4.21	3.27 3.88 4.75 6.07 6.54 5.78	3.31 4.35 5.01 6.44 6.94 6.49	4.41 5.53 7.16 7.53 6.73	4.29 5.78 7.27 7.82 7.21	4.11 5.63 6.74 7.50 7.48	5.40 6.37 7.12	4.57 6.03 6.90	2.18 3.27 3.60 4.80 5.99 7.11 6.17 4.37 2.08	1.70 2.30 2.70 2.95 2.80 2.60 1.90

Table 85: 1988 cross-sectional field data of velocity measurements at

9 May 1988, outlet, 1'u.s., Q = 99 cfs. 1635 AST

.

		Velocity in fps Depth,ft:											
S	tation, ft.	.1	.2	.3	.5	.75	1	1.3	1.7	2	W.S.	ft.	
*	left 4	الb=4.1								•••••		•••••	
*	left 3	3.83	4.74	4.93	5.28	5.47	5.59				5.41	1.35	
*	left 2	4.90	5.72	5.76	6.17	6.45	6.34	6.13	6.06		5.96	1.90	
*	left 1	5.07	5.87	6.34	7.01	7.50	7.37	7.22	6.85	6.93	6.05	2.10	
*	CL	4.88	5.25	7.34	8.34	8.61	8.39	8.49	7.79	6.63	6.41	2.30	
*	right 1	5.66	6.32	7.30	7.59	9.02	8.91	8.75	8.14	8.05	8.07	2.30	
*	right 2	6.05	6.65	7.17	7.91	7,92	8.52	8.37	7.42		5.84	1.85	
*	right 3	4.05	5.33	5.43	6.99	7.01	6.27				6.22	1.20	
*	right 4	rb=4 '											

9 May 1988, outlet, 30^{1} u.s., Q = 102 cfs. 2000 AST

	Velocity in fps Depth,ft:											
Station, ft.	.1	.2	.3	.5	.75	1	1.3	1.7	2	w.s.	ft.	
*	lb=4.75	1										
* left 4	.88	1.42	1.03	.98						.91	.70	
* left 3	3.17	3.92	3.64	4.56	4.27	4.04	3.27	2.88		2.88	1.80	
* left 2	2.66	3.05	3.03	4.20	4.48	5.49	6.05	5.28	4.52	4.96	2.35	
* left 1	4.76	5.29	5.50	6.52	6.53	6.65	6.48	7.40	7.72	6.85	2.50	
* CL	5.37	5.83	5.86	7.48	8.15	8.37	8.37	8.67	8.37	8.09	2.45	
* right 1	4.98	5.92	7.03	7.87	7.53	8.00	8.74	8.38	8.90	7.82	2.25	
* right 2	2.36	4.61	6.25	7.50	7.58	8.20	8.41	6.87		6.01	1.95	
* right 3	4.48	5.26	5.26	6.43	6.66	6.51	3.79			3.79	1.40	
* right 4	1.83											
•	rb=4.24	1 										

Table 85: Continued.

10 May 1988, inlet, 1'd.s., Q = 108 cfs. 0855 AST Velocity in fps total depth Depth,ft: .5 .75 1 1.3 1.7 2 2.5 w.s. ft. .1 .2 .3 Station, ft. * left 4 lb=4.0' 2.37 1.30 4.47 5.04 6.30 6.27 5.99 .97 1.60 * left 3 4.75 5.14 5.39 6.10 6.21 6.02 6.17 5.88 5.54 5.50 5.50 2.65 2.99 5.70 6.04 6.37 6.45 6.53 6.37 6.37 6.08 5.35 5.44 2.85 left 2 * left 1 2.03 1.31 .83 2.75 6.57 6.48 6.40 5.97 5.76 5.39 5.36 2.95 * CL
 2.91
 1.82
 5.04
 5.90
 6.29
 6.45
 6.38
 5.94
 5.59
 5.56
 5.56
 2.65

 .83
 4.42
 2.25
 5.42
 6.94
 6.78
 6.27
 5.75
 5.37
 5.37
 2.40

 .26
 5.85
 7.08
 7.06
 6.74
 6.27
 6.04
 5.69
 2.37
 2.37
 2.10
 * right 1 * right 2 * right 3 3.91 * right 4 .15 .65 rb=4.5* 10 May 1988, inlet, 6'd.s., Q = 108 cfs. 1236 AST Velocity in fps total Depth,ft: depth .2 .3 .5 .75 1 1.3 1.7 Station.ft. .1 2 w.s. ft. lb=4.3' * left 4 4.44 2.91 2.91 .30 6.58 1.50 * left 3 4.95 5.96 6.87 7.81 8.04 8.06 5.41
 4.75
 5.68
 6.98
 8.26
 8.77
 8.68
 9.14
 8.96
 8.96
 2.00

 6.61
 7.47
 7.79
 8.28
 9.16
 9.24
 9.31
 9.35
 9.39
 9.39
 2.20

 3.00
 4.16
 5.27
 6.14
 8.16
 8.78
 9.22
 9.19
 7.48
 8.01
 2.35
 * left 2 8.96 2.00 * left 1 * CL 6.76 7.00 7.47 7.68 8.13 8.62 9.01 8.73 * right 1 9.41 1.85 7.96 8.55 8.54 8.89 9.26 9.40 9.44 6.43 6.17 6.06 7.16 8.78 * right 2 9.33 1.70 * right 3 ? 1.00 rb=4.0' * right 4 10 May 1988, outlet, 30'u.s., Q = 109 cfs. 1400 AST Velocity in fps total Depth, ft: depth .1 .2 .3 .5 .75 1 1.3 1.7 2 2.5 w.s. ft. Station, ft. lb=4.5' 1.24 1.42 1.07 1.38 2.45 3.03 3.45 3.91 1.26 3.83 4.49 5.03 * left 4 1.38 .60 3.91 4.23 3.90 2.81 5.03 5.09 6.04 6.03 5.46 4.22 2.96 1.50 4.86 2.30 * left 3 left 2 3.08 4.35 5.17 5.68 6.47 7.07 7.65 7.84 7.34 5.54 5.54 2.60 3.17 5.73 6.41 7.55 8.17 8.57 8.42 9.21 8.81 8.33 8.33 2.65 5.07 6.25 6.72 7.63 8.78 9.04 9.19 9.01 9.17 7.46 8.71 2.50 * left 1 * CL * right 1 1.36 5.10 6.56 7.42 8.55 9.07 9.33 8.76 7.62 6.88 1.70 * right 2 1.29 3.22 5.25 6.32 7.17 5.93 4.85 * right 3 4.11 .40 * right 4 1.44 rb=4.51

Table B5: Continued.

	Velocit Depth,f	y in f t:	ps									total depth
Station, ft.	.15	.2	.3	.5	.75	1	1.3	1.7	2	2.5	W.S.	ft.
	(b=4.5)											
* left 4	3.36	3.69	4.47	4.64								.70
* left 3	3.75	4.18	4.99	5.13	5.44	5.68	5.30				5.30	1,50
* left 2	5.58	5.65	6.00	6.41	6.52	6.59	6.41	6.23			6.36	2.00
* left 1	4.65	5.36	6.35	6.60	7.53	7.52	7.44	7.18	7.17		6.99	2.30
* CL	2.54	4.41	4.19	6.22	8.70	8.74	8.60	8.13	7.60		6.98	2.40
* right 1	1.48	5.77	7.11	8.37	9.10	9.38	9.19	8.72	8.46	5.39	5.39	2.40
* right 2	.45	6.02	5.97	7.83	8.20	8.31	8.37	7.86			4.23	2.00
* right 3	3.69	3.82	5.77	6.23	6.11	6.53	5.96				5.09	1.55
* right 4	rb=4.0"											

11 May 1988, outlet, 16.5'u.s., Q = 110 cfs. 1425 AST

Velocit Depth,f	ity in fps lift:										total depth
.15	.2	.3	.5	.75	1	1.3	1.7	2	2.5	W.S.	ft.
lb=4.5'	•••••										
1.18	1.34	1.71	1.67							1.57	.70
1.71	1.25	2.49	2.23	2.36	3.32	2.94				2.39	1.70
	.73	2.55	3.52	4.01	3.87	4.05	3.39	3.22		2.95	2.50
2.17	2.11	3.01	5.35	5.54	5.97	6.04	.5.89	5.76	5.26	4.41	2.80
2.30	4.61	5.09	6.18	7.07	7,89	8.02	7.90	7.48	6.73	6.47	3.00
5.32	5.65	6.28	7.50	7.93	8.85	8.89	8,76	8.22	7.91	8.04	2.90
	4.81	5.56	6.85	7.38	7.70	7.76	6.80	5.91		5.61	2.50
	2.91	4.45	5.01	6.34	6.46	6.19	5.54			3.65	2.00
	2.53	3.20	2.49	2.60							1.00
rb=4.71											
	Velocit Depth, f .15 lb=4.5' 1.18 1.71 2.17 2.30 5.32	Velocity in 1 Depth,ft: .15 .2 lb=4.5' 1.18 1.34 1.71 1.25 .73 2.17 2.11 2.30 4.61 5.32 5.65 4.81 2.91 2.53 rb=4.7'	Velocity in fps Depth,ft: .15 .2 .3 lb=4.5' 1.18 1.34 1.71 1.71 1.25 2.49 .73 2.55 2.17 2.11 3.01 2.30 4.61 5.09 5.32 5.65 6.28 4.81 5.56 2.91 4.45 2.53 3.20 rb=4.7'	Velocity in fps Depth,ft: .15 .2 .3 .5 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 .73 2.55 3.52 2.17 2.11 3.01 5.35 2.30 4.61 5.09 6.18 5.32 5.65 6.28 7.50 4.81 5.56 6.88 2.91 4.45 5.01 2.53 3.20 2.49 rb=4.7'	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 .73 2.55 3.52 4.01 2.17 2.11 3.01 5.35 5.54 2.30 4.61 5.09 6.18 7.07 5.32 5.65 6.28 7.50 7.93 4.81 5.56 6.85 7.38 2.91 4.45 5.01 6.34 2.53 3.20 2.49 2.60 rb=4.7'	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 .18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 3.32 .73 2.55 3.52 4.01 3.87 2.17 2.11 3.01 5.35 5.54 5.97 2.30 4.61 5.09 6.18 7.07 7.89 5.32 5.65 6.28 7.50 7.93 8.85 4.81 5.56 6.85 7.38 7.70 2.91 4.45 5.01 6.34 6.46 2.53 3.20 2.49 2.60	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 1.3 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 3.32 2.94 .73 2.55 3.52 4.01 3.87 4.05 2.17 2.11 3.01 5.35 5.54 5.97 6.04 2.30 4.61 5.09 6.18 7.07 7.89 8.02 5.32 5.65 6.28 7.50 7.93 8.85 8.89 4.81 5.56 6.85 7.38 7.70 7.76 2.91 4.45 5.01 6.34 6.46 6.19 2.53 3.20 2.49 2.60	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 1.3 1.7 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 3.32 2.94 .73 2.55 3.52 4.01 3.87 4.05 3.39 2.17 2.11 3.01 5.35 5.54 5.97 6.04 5.89 2.30 4.61 5.09 6.18 7.07 7.89 8.02 7.90 5.32 5.65 6.28 7.50 7.93 8.85 8.89 8.76 4.81 5.56 6.85 7.38 7.70 7.76 6.80 2.91 4.45 5.01 6.34 6.46 6.19 5.54 2.53 3.20 2.49 2.60	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 1.3 1.7 2 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 3.32 2.94 .73 2.55 3.52 4.01 3.87 4.05 3.39 3.22 2.17 2.11 3.01 5.35 5.54 5.97 6.04 5.89 5.76 2.30 4.61 5.09 6.18 7.07 7.89 8.02 7.90 7.48 5.32 5.65 6.28 7.50 7.93 8.85 8.89 8.76 8.22 4.81 5.56 6.85 7.38 7.70 7.76 6.80 5.91 2.91 4.45 5.01 6.34 6.46 6.19 5.54 2.53 3.20 2.49 2.60	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 1.3 1.7 2 2.5 lb=4.5' 1.18 1.34 1.71 1.67 1.71 1.25 2.49 2.23 2.36 3.32 2.94 .73 2.55 3.52 4.01 3.87 4.05 3.39 3.22 2.17 2.11 3.01 5.35 5.54 5.97 6.04 5.89 5.76 5.26 2.30 4.61 5.09 6.18 7.07 7.89 8.02 7.90 7.48 6.73 5.32 5.65 6.28 7.50 7.93 8.85 8.89 8.76 8.22 7.91 4.81 5.56 6.85 7.38 7.70 7.76 6.80 5.91 2.91 4.45 5.01 6.34 6.46 6.19 5.54 2.53 3.20 2.49 2.60	Velocity in fps Depth,ft: .15 .2 .3 .5 .75 1 1.3 1.7 2 2.5 w.s. lb=4.5' 1.18 1.34 1.71 1.67 1.57 1.71 1.25 2.49 2.23 2.36 3.32 2.94 2.39 .73 2.55 3.52 4.01 3.87 4.05 3.39 3.22 2.95 2.17 2.11 3.01 5.35 5.54 5.97 6.04 5.89 5.76 5.26 4.41 2.30 4.61 5.09 6.18 7.07 7.89 8.02 7.90 7.48 6.73 6.47 5.32 5.65 6.28 7.50 7.93 8.85 8.89 8.76 8.22 7.91 8.04 4.81 5.56 6.85 7.38 7.70 7.76 6.80 5.91 5.61 2.91 4.45 5.01 6.34 6.46 6.19 5.54 3.65 2.53 3.20 2.49 2.60

12 May 1988, outlet, 16.5'u.s., Q = 110 cfs. 1030 AST

s.	Velocit Depth,f	y in f	ps									total depth
Station,ft.	.2	.3	.4	.6	.8	1.1	1.4	1.8	2.1	2.6	W.S.	ft.
	נb=4.5י											•••••
* left 4	1.24	1.44	1.80	1.57	1.35						1.35	.90
* left 3	1.40	1.91	2.44	2.76	2.91	3.40	3.48	2.92			2.92	1.90
* left 2	.91	3.89	3.84	4.20	4.60	4.69	4.42	4.04	4.05		3.20	2.50
* left 1	.16	:08	.03	.10	5.38	6.24	6.12	6.23	6.13	5.01	5.01	2.65
* CL	5.60	6.17	6.64	7.20	7.63	7.94	7.80	7.82	7.09	6.40	6.40	2.95
* right 1	5.75	6.30	7.02	7.90	8.58	8.75	8.62	8.11	7.94	7.77	7.61	2.90
* right 2	4.53	5.90	5.85	7.45	8.17	8.58	7.83	7.42	6.61		5.79	2.50
* right 3	3.15	4.70	5.40	6.41	6.72	6.72	6.29	5.20			4.57	2.05
* right 4	2.00	2.93	3.51	3.38	3.48	2.71					2.71	1.15
r.												

Table 85: Continued.

13 May 1988, outlet, $44^{1}u.s.$, q = 105 cfs. 1310 AST total Velocity in fps Depth,ft: depth .2 .3 .4 .6 .8 1.1 1.4 1.8 2.1 w.s. ft. Station, ft. lb=4.0* left 4 3.20 4.35 4.44 4.92 4.53 2.85 2.85 1.20 * left 3 5.94 6.55 7.17 7.05 6.11 7.34 7.70 6.43 1.75 * left 2 7.95 8.90 8.95 8.34 7.82 7.49 2.30 * left 1 4.85 6.21 6.77 7.37 * CL 5.70 6.36 6.28 7.13 7.61 7.94 8.81 9.34 8.96 8.96 2.20

 5.70
 6.08
 7.72
 8.45
 8.94
 8.98
 9.12
 9.31
 9.48
 9.48
 2.20

 6.02
 6.34
 7.48
 8.52
 8.95
 9.30
 8.97
 9.17
 7.35
 2.10

 4.80
 6.23
 7.27
 8.35
 7.66
 7.81
 5.16
 5.18
 1.60

 * right 1 6.02 6.34 7.48 8.52 8.95 9.30 8.97 9.17 4.80 6.23 7.27 8.35 7.66 7.81 5.16 1.68 1.59 1.57 .80 * right 2 * right 3 .80 * right 4 .70 rb=4.2' 15 May 1988, outlet, 16.5'u.s., Q = 89 cfs. 1330 AST Velocity in fps total Depth,ft: depth .2 .3 .4 .6 .8 1.1 1.4 1.8 2.1 w.s. ft. Station, ft. 1b=4.0 * left 4 1.02 1.43 1.15 1.36 .95 .99 2.23 2.60 2.39 2.28 2.14 1.80 * left 3.5 * left 3 .95 .90 1.80 1.50 * left 2 2.85 3.34 3.20 4.07 3.73 4.10 3.28 3.10 3.05 2.10

 1.66
 2.80
 3.59
 3.49
 4.40
 4.79
 5.23
 5.10
 4.78
 4.59
 2.45

 3.85
 4.43
 5.00
 5.32
 5.55
 6.04
 6.65
 6.96
 6.65
 6.46
 2.55

 2.87
 5.08
 5.75
 6.04
 6.65
 6.96
 6.65
 6.46
 2.55

 2.87
 5.08
 5.75
 6.51
 6.87
 7.14
 7.24
 7.19
 7.20
 6.87
 2.55

 2.53
 4.52
 4.95
 5.83
 6.62
 6.94
 6.82
 6.02
 5.44
 5.44
 2.15

 .48
 3.01
 4.19
 4.49
 4.96
 5.20
 3.71
 3.71
 1.50

 1.90
 2.20
 1.81
 .86
 .70

 * left 1 * CL * right 1 * right 2 * right 3 * right 4 rb=4.51 16 May 1988, outlet, 44'u.s., Q = 74 cfs. 1205 AST Velocity in fps total Depth, ft: Depth,ft: depth .2 .3 .4 w.s. ft. depth Station, ft. lb=3.75+ * left 4
 2.50
 3.27
 3.13
 3.03
 .65

 3.67
 4.32
 4.39
 6.02
 1.2

 5.91
 4.00
 7.36
 7.66
 1.55

 3.00
 4.60
 4.75
 8.38
 1.85
 * left 3 * left 2 * left 1 * CL 3.24 5.76 5.74 7.87 1.85 5.97 5.82 6.43 7.56 1.55 3.50 4.38 6.37 3.64 1.1 * right 1 * right 2 * right 3 3.48 3.82 3.62 2.64 * right 4 . 85 rb=4.0'

Table 85: Continued.

	Velocit Depth,f	y in f t:	ps		totai depth	
Station,ft.	.2	.3	.4	W.S.	ft.	
	۱b=4.0۱					
* left 3.5	.68	.70	.97	1.15	.75	
* left 3	1.35	1.46	1.49	1.89	1.15	
* left 2	2.18	4.59	4.60	3.82	1.80	
* left 1	3.99	4.80	5.40	5.82	2.05	
* CL	3.61	4.32	4.68	7.20	2.05	
* right 1	4.82	5.61	6.10	7.29	2.10	
* right 2	4.37	5.44	5.96	4.87	1.80	
* right 3	2.88	3.78	3.75	3.32	1.25	
* right 3.5	2.77 rb=4.0'	2.65	2.43	1.94	.70	

Table B6: Summary of velocity profiles along centerline of Fish Creek culvert, 1987.

OUTLET:

Date	time, AST	feet u.s. of outlet	discharge CFS
22 Aug (1986) 3 May 6 May 13 May 17 May 17 May 17 May 17 May 18 May 18 May 18 May 18 May 18 May 20 May 20 May 20 May 22 May 22 May 23 May 24 May	1800 1135 1945 815 815 950 950 830 1430 1430 1430 1000 1000 1015 1100 1100	4 1 1 1 1 1 6 1 6 1 6 1 6	50 64.8 70.8 136.8 99.7 99.7 99.7 81.3 81.3 81.3 83.9 63.6 63.6 58.4 58.4 58.4 55.8 55.8
-			•

INLET:

Date	time, AST	feet d.s. of inlet	CFS
22 Aug			
(1986)		16	50
3 May	1800	1	64.8
6 May	1115	1	70.8
13 May	1600	1	139.7
17 May	900	1	96.5
17 May	900	6	96.5
18 May	1035	1	81.3
18 May	1035	6	81.3
20 May	1505	1	62.9
20 May	1505	6	62.9
22 May	1330	1	59.1
22 May	1330	• 6	59.1
23 May	1250	1	61.4
24 May	1100	1	55.8
24 May	1100	б	55.8

Table B7: Field data of velocity profiles, Fish Creek culvert at outlet, 1987.

OUTLET:

** Date: 22 Aug 3 May 6 May 13 May 17 May 17 May 17 May 18 May 18 May 18 May 18 May 20 May 20 May 22 May 22 May 23 May 24 May 24 May 24 May Time, AST: 1800 1135 1945 815 815 815 950 950 830 830 1430 1430 1000 1000 1015 1100 1100 lip 1'u.s. 6'u.s. Site: 4'u.s. 1'u.s. 1'u.s. 1'u.s. lip 1'u.s. 6'u.s. 6'u.s. 1'u.s. 6'u.s. 1'u.s. 6'u.s. 1'u.s. 1'u.s. 6'u.s. Flow, cfs: 50 64.8 70.8 136.8 99.7 99.7 99.7 81.3 81.3 83.9 83.9 63.6 63.6 58.4 58.4 62.1 55.8 55.8 2.00 2.80 3.00 2.10 2.00 2.45 2.10 2.30 2.95 1.90 2.80 2.05 2.60 1.90 2.50 Total depth, ft: 1.95 1.95 2.40 Depth (ft): .10 4.29 3.54 4.88 3.99 3.21 2.83 2.91 2.98 2.92 4.13 1.58 1.70 .01 .90 .15 3.31 .07 .20 1.93 4.89 3.63 5.30 4.24 4.87 5.39 4.13 3.64 3.89 4.20 3.72 .48 3.25 1.40 .32 2.22 5.19 7.02 6.18 5.82 5.35 6.04 4.49 4.55 3.32 .30 2.03 5.30 4.66 4.31 4.46 4.39 2.98 2.81 .40 2.61 5.86 5.74 5.22 5.32 .50 2.80 9.34 5.45 5.64 7.53 7.13 7.20 6.82 5.28 5.21 5.57 4.74 4.02 5.64 4.57 4.69 .60 2.80 6.25 6.10 .70 .75 8.83 8.22 8.34 6.67 7.62 6.00 6.67 6.48 5.99 6.30 5.16 6.07 5.79 4.74 .80 2.74 6.46 6.38 .90 1.00 6.85 7.36 10.39 8.85 8.23 7.33 8.09 7.97 6.38 7.26 6.63 6.34 6.73 5.64 6.33 6.13 5.12 1.10 3.26 6.38 1.20 7.01 1.25 6.36 7.18 1.30 6.53 6.47 8.18 7.42 7.85 7.60 5.73 8.66 6.82 6.48 6.78 6.46 6.28 5.77 1.40 3.34 9.24 1.50 6.66 7.18 6.70 6.83 6.55 5.87 5.78 6.58 1.60 6.35 1.70 7.91 7.62 7.24 6.32 6.46 6.57 6.60 6.19 5.37 5.69 6.75 1.75 6.73 6.67 6.50 3.49 1.80 1.90 4.81 5.14 4.74 2.00 4.83 8.88 4.57 6.49 7.20 5.40 6.96 7.11 5.73 6.61 6.21 5.30 2.10 2.20 3.34 2.25 6.43 5.88 5.02 6.75 6.81 2.40 4.45 2.50 6.72 6.25 6.81 4.60 2.60 3.10 3.00 3.50

* 1986

** Cup-type current meter; all others electromagnetic current meter.

Table B8: Field data of velocity profiles, Fish Creek culvert at inlet.

INLET:

*

** Date: 22 Aug 3 Hay 6 Hay 13 Hay 17 Hay 17 Hay 18 Hay 18 Hay 18 Hay 20 Hay 20 Hay 22 Hay 22 Hay 23 Hay 24 Hay 24 Hay 900 1035 1035 1035 1505 1505 1330 1330 1250 1100 1100 Time, AST: 1800 1115 1600 900 site: 16'd.s. 1'd.s. 1'd.s. 1'd.s. 1'd.s. 6'd.s. 1'd.s. 6'd.s. 1'd.s. 6'd.s. 1'd.s. 6'd.s. 1'd.s. 6'd.s. 1'd.s. 6'd.s. Flow, cfs: 50 64.8 70.8 139.7 96.5 96.5 81.3 81.3 81.3 62.9 62.9 59.1 59.1 61.4 55.8 55.8 Total depth, ft: 2.5 2.3 2.2 3.8 2.4 2.2 2.2 2 2 2.3 1.85 2.3 1.8 2.2 2.1 1.65 Depth (ft): .10 3.89 4.27 4.81 2.06 4.49 2.76 3.16 .15 2.42 .22 1.33 2.01 .03 .80 .20 .95 2.47 .79 2.17 3.83 5.01 4.40 5.14 3.39 5.09 3.83 4.55 1.17 .31 2.66 5.46 .30 3.98 4.49 5.80 4.06 5.34 3.94 2.02 3.29 1.65 2.19 1.84 2.27 2.68 .40 4.28 5.11 5.11 .50 4.20 3.75 5.71 3.89 3.70 .65 5.84 5.42 5.56 5.29 5.68 2.62 3.76 6.31 .60 4.96 5.27 5.38 .70 5.82 .75 6.77 5.70 6.76 6.81 6.34 6.68 6.09 6.69 5.42 5.88 6.88 .80 5.20 5.39 5.81 .90 1.00 8.25 8.22 5.43 6.20 4.85 5.89 8.58 5.73 6.44 8.18 6.42 7.61 6.18 6.04 7.89 5.33 1.10 1.20 6.51 8.62 1.25 1.30 5.61 5.97 5.87 8.86 5.59 8.79 9.26 6.40 8.75 6.35 8.47 6.07 5.96 7.67 5.45 1.40 1.50 6.06 6.22 8.77 5.98 5.70 5.33 1.60 5.31 5.77 1.70 5.20 5.78 9.07 5.39 8.81 9.26 6.07 8.11 5.95 5.69 1.75 8.46 6.18 1.80 1.90 5.00 1.90 8.67 2.00 5.87 6.19 5.72 9.05 5.31 5.80 5.30 2.10 3.80 6.23 2.20 4.99 2.25 5.68 2.40 2.50 5.97 2.60 3.00 5.69 3.50 5.40

* 1986

** Cup-type current meter; all others electromagnetic current meter.

----0 δ

15 May, 1630 # Q = 86 cfs	AST												
outlet lip			Velocity in fps										
Feet u.s. of I	lip	0	2	4	6	8	11	13	15	36	38	40.5	42.5
depth left: 0.2 ft. 0.5 ft.		3.93	3.76	2.55	2.02	1.60	1.08	.98	.96	.23	.94	2.25	3.01
depth right: 0.2 ft. 0.5 ft.		4.17 4.36	3.40 3.82	2.54 3.89	2.19 3.16	1.77	1.63 2.95	1.74	1.53 2.94	1.48 4.31	3.00 4.99	2.02 5.46	3.04 5.96

Table B9: 20-second mean velocity at 0.2 ft. and 0.5 ft. depths measured 0.2 ft. out from culvert wall at Fish Creek near Cantwell, Alaska, 1988.

16 May, 1630 AST Q = 69 cfs

		Velocity in fps							i					inlet Lin				
Feet u.s. of li	p Ö	3	4.5	7	10	13	16.5	20	25	30	35	39	44	46	50	54	57.5	59.5
depth left: 0.2 ft. 0.5 ft.	3.48 4.19	2.89 2.37	1.93 2.46	1.58 1.75	1.14 1.52	.99 1.47	.70 1.00	.78 .91	.60 .90	.99 1.34	.32 1.91	.90 2.27	2.91 3.61	1.82 3.44	5.08 5.05	6.21 5.91	3.24 6.22	3.18 3.67
depth right: 0.2 ft. 0.5 ft.	4.67 4.69	2.42 4.18	2.38 3.07	1.66 2.53	1.34 2.74	2.17 2.55	1.62 2.80	1.58 2.47	1.00 3.10	1.14 3.24	1.28 3.27	2.46 4.58	2.25 4.51	2.97 5.46	2.90 5.17	5.12 5.61	6.22 7.71	6.13 6.50

.

Table 10: 1987 and 1988 water-surface profile leveling data for Fish Creek near Cantwell, Alaska.

Centerline elevation with respect to BH #2:

INLET:	1987									
Date	time AST	discharge cfs	200 ft. u.s. of inlet	inlet pool	inlet lip	0.5 ft. d.s.	1 ft. d.s.	2 ft. d.s.	4 ft. d.s.	6 ft. d.s.
6 May	1530	77	99.74	99.56	99.13					
14 May	900	123	100.68	100.53	100.05	100.05		98.80	99.33	98.84
15 May	740	108	100.46	100.34			99.83			98.79
16 May	1350	98	100.34	100.11	99.70					98.70
17 May		92	100.14	99.89	99.51					98.51
18 May	1100	81	99.94	99.68	99.33					98.49
19 Hay	1300	73	99.81	99.64	99.25					98.35
21 May	730	69	99.65	99.48	99.14					98.24
23 May		59	99.46	99.30	99.01					97.99

OUTLET: 1987

	time	6 ft.	3 ft.	1 ft.	outlet	outlet	200 ft.	
Date	AST	u.s.	u.s.	u.s.	lip	pool	d.s.	
6 May	1530				98.00	97.92	96.86	
14 May	900	98.80	98.71	98.55	98.42	98.12	96.84	
15 May	740	98.69		98.42		98.08	96.76	
16 May	1350	98.54			98.32	98.11	96.58	
17 May		98.35			98.22	97.97	96.57	
18 May	1100	98.36			98.14	97.95	96.54	
19 May	1300	98.30						
21 May	730	98.25						
23 May		98.01			97.89	97.85	96.57	

Table B10: Continued.

INLET: 198	38									
Date	time AST	discharge cfs	200 ft. u.s. of inlet	inlet pool	1 ft. u.s.	inlet lip	1 ft. d.s.	3 ft. d.s.	6 ft. d.s.	
7 May		60 5	00 82	FA 00		99 12	00 N7		QR 17	•••••
8 May	1340	70.9	99.92	99.73		99.23	99.21		98.31	
9 May	817	81.7	100.11	99.97		99.43	99.44		98.43	
10 May	1535	88.1	100.32	100.19		99.88	99.72		98.68	
11 May	1316	104.0	100.41	100.26	99.59	99.82	99.71	99.34	98.70	
12 May	752	93.5	100.38	100.23	99.80	99.75	99.61	99.27	98.64	
13 May	910	99.9	100.07	100.61	100.14	99.59	99.51	99.19	99.53	
14 May	826	95.2	100.04	99.90	99.50	99.42	99.32	99.02	98.40	
15 May	824	74.6	99.80	99.65	99.26	99.19	99.07	98.74	98.24	
16 May	1520	65.0	99.43	99.29	99.01	98.86	98.82	98.44	98.01	
17 May	1300	51.0		99.15		98.66				
18 May		51.4								
20 May		50.8					58.50			

Centerline elevation with respect to BM #2:

OUTLET: 1988

	time	44 ft.	30 ft.	20 ft. '	16.5 ft.	6 ft.	1 ft.		1 ft.	
Date	AST	u.s.	u.s.	u.s.	u.s.	u.s.	u.s.	lip	d.s.	pool
7 May						98.26	••••	98	99.07	97.94
8 May	1340					98.36	98.09	97.99		97.97
9 Hay	817		98.49			98.47	98.19			98.01
10 May	1535		98.67	98.82		98.72	98.43	98.22		98.11
11 May	1316		98.59	98.84	98.71	98.71	98.39	98.25	98.1	
12 May	752		98.61	98.78	98.66	98.65	98.37	98.21	98.06	98.05
13 May	910	98.4	98.56		98.61	98.57	99.69	99.59	98.09	98.01
14 May	826	98.3	98.55	98.4	98.55	98.46	98.17	98.09	97.95	97.99
15 May	824	98.1	98.39	98.37	98.29	98.27	98.06	97.97	97.86	97.94
16 May	1520	98.1	98.07	98.03	98.15	98.05	97.82	97.82	97.77	97.86
17 May	1300							97.84		97.81

ι

Elevation with respect to BM #2: INLET 200 ft. u.s. of inlet inlet inlet pool lip 0.5 ft. d.s. 1 ft. d.s. 2 ft. d.s. time discharge LEW REW ί3 12 R1 R2 **R**3 LEW REW AST CL L1 CL CL Date cfs 14 May 900 123 100.68 100.53 100.05 99.97 100.05 99.99 99.12 98.80 99.13 15 May 740 108 100.46 100.34 99.80 99.77 99.81 99.83 99.86 99.86 99.87 INLET (continued) 4 ft. d.s. 6 ft. d.s. time LEW CL REW LEW Date AST L3 12 11 CL R1 **R2** R3 REW 14 May 900 99.19 99.33 99.13 99.05 98.84 99.04 98.92 98.78 98.81 15 May 740 98.79 98.69 98.71 98.95 OUTLET 3 ft. outlet outlet 200 ft. 6 ft. u.s. u.s. 1 ft. u.s. lip pool d.s. time L2 Date AST 13 L1 CL R1 R2 **R**3 CL 13 L2 CL R1 R2 **R**3 R4 14 May 900 98.80 98.71 98.55 98.49 98.12 96.84 15 May 740 98.64 98.60 98.63 98.69 98.61 98.62 98.65 98.32 98.34 98.42 98.44 98.44 98.43 98.42 98.08 96.76

Table B11: Centerline and lateral water surface elevations in the vicinity of Fish Creek culvert near Cantwell, Alaska, 1987.

LEW = left edge of water, REW = right edge of water

110

.

Figure B1: Plot of velocity profiles, 4 ft. upstream of outlet, August 22, 1986.

Figure B2: Plot of velocity profiles, 1 ft. upstream of outlet, May 3, 1987.

Figure B3: Plot of velocity profiles, 1 ft. upstream of outlet, May 6, 1987.

Figure B4: Plot of velocity profiles, 1 ft. upstream of outlet, May 13, 1987.

Figure B5: Plot of velocity profiles, outlet lip, May 17, 1987.

Figure B6: Plot of velocity profiles, 1 ft. upstream of outlet, May 17, 1987.

Figure B7: Plot of velocity profiles, 6 ft. upstream of outlet, May 17, 1987.

Figure B8: Plot of velocity profiles, outlet lip, May 18, 1987.

Figure B9: Plot of velocity profiles, 1 ft. upstream of outlet, May 18, 1987.

Figure B10: Plot of velocity profiles, 6 ft. upstream of outlet, Hay 18, 1987.

Figure B11: Plot of velocity profiles, 6 ft. upstream of outlet, May 18, 1987.

Figure B12: Plot of velocity profiles, 1 ft. upstream of outlet, May 20, 1987.

Figure B13: Plot of velocity profiles, 6 ft. upstream of outlet, May 20, 1987.

Figure B14: Plot of velocity profiles, 1 ft. upstream of outlet, May 22, 1987.

Figure B15: Plot of velocity profiles, 6 ft. upstream of outlet, May 22, 1987.

Figure B16: Plot of velocity profiles, 1 ft. upstream of outlet, May 23, 1987.

Figure B17: Plot of velocity profiles, 1 ft. upstream of outlet, May 24, 1987.

Figure B18: Plot of velocity profiles, 6 ft. upstream of outlet, May 24, 1987.

Figure B19: Plot of velocity profiles, 16 ft. downstream of inlet, August 22, 1986.

Figure B21: Plot of velocity profiles, 1 ft. downstream of inlet, Hay 6, 1987.

Figure B22: Plot of velocity profiles, 1 ft. downstream of inlet, May 13, 1987.

Figure B23: Plot of velocity profiles, 1 ft. downstream of inlet, May 17, 1987.

Figure B25: Plot of velocity profiles, 1 ft. downstream of inlet, May 18, 1987.

1 3 5

Figure B26: Plot of velocity profiles, 6 ft. downstream of inlet, May 18, 1987.

Figure B27: Plot of velocity profiles, 6 ft. downstream of inlet, Hay 18, 1987.

Figure B28: Plot of velocity profiles, 1 ft. downstream of inlet, May 20, 1987.

Figure B29: Plot of velocity profiles, 6 ft. downstream of inlet, May 20, 1987.

Figure B30: Plot of velocity profiles, 1 ft. downstream of inlet, May 22, 1987.

Figure B31: Plot of velocity profiles, 6 ft. downstream of inlet, May 22, 1987.

Figure B33: Plot of velocity profiles, 1 ft. downstream of inlet, May 24, 1987.

Figure B34: Plot of velocity profiles, 6 ft. downstream of inlet, May 24, 1987.

APPENDIX C

FISH DATA

Table	C1.	Arctic grayling length frequency distributions
		for successful upstream migrants through the
		lower Fish Creek Culvert, May 14, 1987. *

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	0	0.0%
140-159	0	0.0%
160-179	Ó	0.0%
180-199	0	0.0%
200-219	1	0.4%
220-239	7	3.0%
240-259	46	19.8%
260-279	66	28.4%
280-299	72	31.0%
300-319	21	9.1%
320-339	11	4.7%
340-359	5	2.2%
360-379	2	0.9%
380-399	1	0.4%
Totals	232	100.0%
Average Length (mm) Std. Deviation	= 279.7 = 26.54	

Table C1. Continued. May 15, 1987. *

•

.

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	l	0.8%
140-159	0	0.0%
160-179	0	0.0%
180-199	0	0.0%
200-219	4	3.2%
220-239	13	10.5%
240-259	21	16.9%
260-279	38	30.6%
280-299	24	19.4%
300-319	12	9.7%
320-339	10	8.1%
340-359	1	0.8%
360-379	0	0.0%
380-399	0	0.0%
Totals	124	100.0%
Average Length (mm) Std. Deviation	= 272.0 = 33.06	

* See footnote on table 4.

.

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	0	0.0%
140-159	0	0.0%
160-179	0	0.0%
180-199	0	0.0%
200-219	8	11.8%
220-239	14	20.6%
240-259	29	42.6%
260-279	10	14.7%
280-299	4	5.9%
300-319	2	2.9%
320-339	1	1.5%
340-359	0	0.0%
360-379	0	0.0%
380-399	0	0.0%
Totals	68	100.0%
Average Length (mm) Std. Deviation	= 249.4 = 23.8	

Table C1. Continued. May 16, 1987. *

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	o ·	0.0%
140-159	Ō	0.0%
160-179	i	1.3%
180-199	5	6.3%
200-219	9	11.3%
220-239	13	16.3%
240-259	14	17.5%
260-279	13	16.3%
280-299	16	20.0%
300-319	6	7.5%
320-339	1	1.3%
340-359	2	2.5%
360-379	0	0.0%
380-399	0	0.0%
Totals	80	100.0%
Average Length (mm) Std. Deviation	= 255.0 1 = 37.6	

Table C1. Continued. May 17, 1987. *

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	0	0.0%
140-159	0	0.0%
160 - 179	0	0.0%
180-199	2	1.5%
200-219	10	7.4%
220-239	23	16.9%
240-259	30	22.1%
260 - 279	30	22.1%
280-299	34	25.0%
300-319	4	2.9%
320-339	2	1.5%
340-359	0	0.0%
360-379	1	0.7%
380-399	0	0.0%
Totals	136	100.0%
Average Length (mm) Std. Deviation	= 260.5 = 30.6	

Table C1. Continued. May 18, 1987. *

•

Length Range (mm)	Number	Percent of Total	
100-119	1	0.8%	
120-139	2	1.6%	
140-159	8	6.6%	
160-179	2	1.6%	
180-199	2	1.6%	
200-219	14	11.5%	
220-239	29	23.8%	
240-259	20	16.4%	
260-279	23	18.9%	
280-299	12	9.8%	
300-319	7	5.7%	
320-339	1	0.8%	
340-359	1	0.8%	
360-379	0	0.0%	
380-399	0	0.0%	
Totals	122	100.0%	
Average Length (mm) Std. Deviatior	= 240.7 n = 44.4		

Table C1. Continued. May 19, 1987. *

.

* See footnote on table 4.

.

.

Length Range (mm)	Number	Percent of Total
100-119	2	2.5%
120-139	9	11.1%
140-159	10	12.3%
160-179	7	8.6%
180-199	6	7.4%
200-219	11	13.6%
220-239	6	7.4%
240-259	5	6.2%
260-279	11	13.6%
280-299	11	13.6%
300-319	1	1.2%
320-339	1	1.2%
340-359	· 1	1.2%
360-379	0	0.0%
380-399	0	0.0%
Totals	81	100.0%
Average Length (mm) Std. Deviation	= 212.7 = 59.7	

Table C1. Continued. May 20, 1987. *

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	1	0.9%
140-159	2	1.8%
160-179	l	0.9%
180-199	3	2.7%
200-219	6	5.4%
220-239	16	14.4%
240-259	32	28.8%
260-279	33	29.7%
280-299	13	11.7%
300-319	2	1.8%
320-339	1	0.9%
340-359	· 1	0.9%
360-379	0	0.0%
380-399	0	0.0%
Totals	111	100.0%
Average Length (mm Std. Deviatio) = 252.4 n = 32.9	

.

Table C1. Continued. May 21, 1987. *

* See footnote on table 4.

Table (Cont	inued. May	22,	1987.	*
---------	------	------------	-----	-------	---

Length Range (mm)	Number	Percent of Total
100-119	1	1.0%
120-139	5	5.1%
140-159	7	7.1%
160-179	7	7.1%
180-199	4	4.0%
200-219	9	9.1%
220-239	18	18.2%
240-259	17	17.2%
260-279	18	18.2%
280-299	10	10.1%
300-319	1	1.0%
320-339	0	0.0%
340-359	1	1.0%
360-379	1	1.0%
380-399	0	0.0%
Totals	99	100.0%
Average Length (mm) Std. Deviation	= 229.4 = 50.0	

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	0	0.0%
140-159	0	0.0%
160-179	0	0.0%
180-199	2	12.5%
200-219	1	6.3%
220-239	3	18.8%
240-259	4	25.0%
260-279	51	31.3%
280-299	1	6.3%
300-319	0	0.0%
320-339	0	0.0%
340-359	0	0.0%
360-379	0	0.0%
380-399	0	0.0%
Totals	16	100.0%
Average Length (mm) Std. Deviation	= 242.0 = 27.1	

Table C1. Continued. May 23, 1987. *

	Table	C1.	Continued.	May	24,	1987.	*
--	-------	-----	------------	-----	-----	-------	---

Length Range (mm)	Number	Percent of Total
100-119	0	0.0%
120-139	1	20.0%
140-159	ō	0.0%
160-179	Ō	0.0%
180-199	· 0	0.0%
200-219	Ō	0.0%
220-239	Ō	0.08
240-259	ī	20.0%
260-279	2	40.0%
280-299	ī	20.0%
300-319	ō	0.0%
320-339	0	0.0%
340-359	0	0.0%
360-379	0	0.0%
380-399	0	0.0%
Totals	5	100.0%
Average Length (mm) Std. Deviation	= 242.0 = 54.0	

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Sex Factor (M/F/I)	Release Status	Comments
May 14	1711	304		F		
May 14	1711	327		M		
May 14	1711	283		M		Ripe
May 14	1711	269		M		
May 14	1/11	2/4				
May 14	1711	278		, 14		
May 14	1711	286		F		
May 14	1711	277		M		
May 14	1711	269		М		
May 14	1711	289		М		
May 14	1711	283		F		
May 14	1/11	228		M		
May 14	1711	230		F		
May 14 May 14	1711	255		M		
May 14	1711	241		M		
May 14	1711	294		F		
May 14	1711 -	383		M		
May 14	1711	310		M		Ripe
May 14	1722	274		M		
May 14	1722	263		M U		
May 14	1722	201		r. 5		
May 14	1722	263		M		
May 14	1722	265		F		
May 14	1722	289		М		
May 14	1722	258		м		
May 14	1722	278		F		
May 14	1722	285		M		•:
May 14	1722	318		M		Ripe
May 14	1722	209		AL M		
May 14	1722	257		M		
May 14	1722	225		M		
May 14	1722	293		F		
May 14	1722	284		M		Ripe
May 14	1722	290		F		
May 14	1722	275		M		
May 14	1722	202		M		
May 14	1735	281		r F		
May 14	1735	254		M		
May 14	1735	256		M		
May 14	1735	278		M		
May 14	1735	279		м		
May 14	· 1735	329		· F		
May 14	1735	295		M		
May 14	1735	299		M		
May 14	1775	210		en e		
May 14 May 14	1735	200		M		
Mav 14	1735	292		M		
May 14	1735	279		M		
May 14	1735	291		м		
May 14	1735	244		М		
May 14	1735	260		M		
May 14	1735	297		M		
May 14	1735	256		M		
May 14	1/50	247		n F		
rtay i4 Mav 14	1750	207		г М		
may 14	0,11	270		**		

Table C2. Arctic grayling fork lengths, weight, sex and maturity for successful culvert migrants, Fish Creek Fish Passage Study, May 14 to May 23, 1987.

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 14 May 14 May 14	1750 1750 1750	252 297 247			FM		Ripe
May 14 May 14	1750	259			M		
May 14	1750	267			M		
May 14 May 14	1750	260			M		
May 14	1750	284			М		Ripe
May 14	1750	232			F		
May 14 May 14	1750	215			F F		
May 14 May 14	1750	235			M		
May 14	1750	327			F		
May 14	1750	265			M		Ripe
May 14 May 14	1750	297			M		
May 14	1750	275		·	F		
May 14	1757	254			M		
May 14 May 14	1757	274			M		
May 14	1757	307			M		
May 14	1757	307			M		
May 14 May 14	1757	299			M		
May 14	1757	310			M		Ripe
May 14	1757	279			F		
May 14	1757	258			M M		
May 14 May 14	1757	254			M		
May 14	1757	282			M		
May 14	1757	292			M		
May 14 May 14	1757	255			M		
May 14	1757	263			M		
May 14	1757	268			M		
May 14 May 14	1757	264			F M		
May 14	2110	278			F		
May 14	2110	293			M		Ripe
May 14 May 14	2110	285			M		
May 14	2110	262			M		
May 14	2110	254			F		
May 14	2110	259			M M		
May 14 May 14	2110	312			M		
May 14	2110	299			M		
May 14	2110	255			M		
May 14 May 14	2110	293			M		
May 14	2110	257			F		
May 14	2110	275	•		F		
May 14 May 14	2110	209			F		
May 14	2110	258			M		
May 14	2110	280			F		
May 14 May 14	2110	528 283			⊢ F		
May 14	2110	317			M		
May 14	2110	254			F		
May 14	2110	304			M		
May 14 May 14	2110	263			F		
May 14	2110	253			F		

158

.

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Sex Factor (M/F/I)	Release Status	Comments
May 14	2110	275		F		
May 14	2110	253		F		
May 14	2110	328		F		
May 14 May 14	2110	258		r M		
May 14 May 14	2110	252		M		
May 14	2110	269		M		
May 14	2110	247		м		
May 14	2110	267		F		
May 14	2110	262		M E		
May 14 May 14	2110	320		F		Ripe
May 14	2110	267		F		
May 14	2110	268		F		
May 14	2140	247		м		
May 14	2140	294		M		
May 14	2140	288		M		
May 14	2140	200		r Ni		
May 14	2140	248		F		
May 14	2140	287		M		
May 14	2140	298		F.		
May 14	2140	280		F		
May 14	2140	274		M		
May 14 May 14	2140	245		F 5		
May 14 May 14	2140	203		F		
May 14	2140	287		F		
May 14	2140	231		M		
May 14	2140	345		м		
May 14	2140	295		F		
May 14	2140	300		M c		
May 14 Mey 14	2140	265		, M		
May 14	2140	280		F		
May 14	2140	310		М		Ripe
May 14	2140	265		M		
May 14	2140	260		M		
May 14	2140	2/5		r M		
May 14 Nov 14	2230	205		M.		Ripe
May 14	2230	245		M		
May 14	2230	360		М		
May 14	2230	285		м		Ripe
May 14	2230	285		F		
May 14	2230	280		M		Dine
May 14 May 14	2230	333		F		Ripe
May 14 May 14	2230	290		F		
May 14	2230	260		F		
May 14	2230	250		м		
May 14	2230	255		M		
May 14	2230	285		M		
May 14	2230	285		M 14		
May 14 May 14	2230	270		лт М		
May 14	2230	295				
May 14	2230	280	•	M		
May 14	2230	320		F		
May 14	2230	285		F		
May 14	2230	340		F		
1189 14 May 14	2220	202		r M		
May 14	2230	310		M		

.

,

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 14	2230	275			M		
May 14	2230	265			۴		
May 14	2230	275			F		
May 14	2230	300			м		Ripe
May 14	2230	290			F		
May 14	2230	280			F		
May 14	2230	280			- F		
May 14	2230	260			M		
May 14	2230	245			M r		
May 14	2230	200			г 4		Dina
May 14	2230	293			м м		Kipe
May 14	2230	270					
May 14	2230	250			м.		
May 14	2230	275			M		
May 14	1030	255	170	1.03	F	N	
May 15	1030	299	295	1.10	F	N	
May 15	1030	319	334	1.03	F	N	
May 15	1030	295	244	.95	M	N	
May 15	1030	310	324	1.09	F	N	
May 15	1030	295	260	1.01	F	N	
May 15	1030	298	240	.91	M	N	
May 15	1030	280	220	1.00	M	N	
May 15	1030	275	20 0	.96	F	N	
May 15	1030	245	136	.92	F	N	
May 15	1030	255	160	.96	F	N	
May 15	1030	295	244	.95	F	N	
May 15	1030	320	355	1.08	F	N	
May 15	1030	268	190	.99	F	- Ni	
May 15	1030	555	320	- 45	M	N	
May 15	1030	200	100	1.01	г е	N	
May 15	1030	27.2	220	1 13	r E	а Ы	
May 15	1030	290	260	1 07	F	N	
May 15	1030	315	296	.95	, M	N	
May 15	1030	273	198	.97	M	Ň	
May 15	1030	274	206	1.00	F	N ·	
May 15	1030	252	150	.94	۶	N	
May 15	1030	270	204	1.04	F	N	
May 15	1030	268	18 8	.98	M	N	
May 15	1030	366	440	.90	N/A		
May 15	1030	340	320	.81	N/A		
May 15	1820	332			F		
May 15	1820	254			F		
May 15	1820	247			F		
May 15	1820	282			F		
May 15	1820	289			M -		
May 15	1820	200 242			r M		
May 15	1020	202			M M		
May 12	1020	201			M		
May 15	1820	200			F		
May 15	1820	275			M		
May 15	1820	274			F		
May 15	1820	303			F		
May 15	1820	271			F		
May 15	1820	288			F		
May 15	1820	273			F		
May 15	1820	290			M		
May 15	1820	279			M		
May 15	1820	292			M		Ripe
May 15	1820	268			м		
May 15	1820	253			F		
May 15	1820	279			F		

•

.

.

Date	Tîme (ADT)	Length (mm)	Weight (grams)	Condition Sex Factor (M/F/I)	Release Status	Comments	
May 15	1820	281		F			
May 15	1820	307		M		Ripe	
May 15	1820	334		F			
May 15	1820	258		F			
May 15	1820	289		F			
May 15	1920	276		ст. М		Rine	
May 15	1820	275		F		n pe	
May 15	1820	334		F			
May 15	1820	287		F			
May 15	1820	343		F			
May 15	1820	322		M			
May 15	1820	245		F			
May 15	1820	289		F			
May 15	1820	267		F			
May 15	1820	202		۲ بر			
May 15	1820	2/3					
May 15	1920	201		F			
May 15	1820	267		ç			
May 15	1820	289		Ň			
May 15	1820	274		F			
May 15	1820	302		F			
May 15	1820	317		F			
May 15	1820	302		F			
May 15	1820	242		F			
May 15	1820	252		F			
May 15	1820	248		F			
May 15	1820	233		· P		Pipe	
May 15	1820	277				x i pe	
May 15 May 15	1820	230		F			
May 15	1820	251		F			
May 15	1820	241		M			
May 16	925	249		I			
May 16	925	255		I			
May 16	925	302		F			
May 16	1000	127		1			
May 16	1000	290		r M			
May IO	1000	302		· F			
May 16	1000	274		r I			
May 16	1000	265		Ī			
May 16	1000	290		F			
May 16	1000	286		F			
May 16	1000	303		М			
May 16	1000	270		1			
May 16	1000	284		M			
May 16	1000	281		F N/A			
May 10	1000	2/4		N/A N/A		÷	
May 10	1000	203		N/A			
May 16	1000	224		N/A			
May 16	1000	220		N/A			
May 16	1000	239		N/A			
May 16	1000	223		N/A			
May 16	1000	208		N/A			
May 16	1000	229		N/A			
May 16	1000	267		F			
May 16	1000	269		۲ س			
May 10	1000	200		r F			
May 16	1000	270		N/A			
May 16	1000	267		F			
Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
-------------------	---------------	----------------	-------------------	---------------------	----------------	-------------------	----------
May 16	1000	265			м		·
May 16	1000	331			F		
May 16	1000	336			F		
May 16	1015	250			1		
May 10 May 16	1015	219			Г M		
May 10	1015	277			F		
May 16	1015	313			F		
May 16	1015	278			М		
May 16	1015	314			F		
May 16	1015	249			N/A		
May 16	1015	200			1		
May 10 May 16	1015	294			r		
May 16	1015	334			M		
May 16	1015	261			I		
May 16	1015	276			F		
May 16	1015	296			F		
May 16	1015	262			I		
May 16	1015	249			I		
May 16	1015	202			N/A T		
May Io	1015	222			1		
May 10 May 16	1015	228			Ī		
May 16	1015	212			ī		
May 16	1015	220			1 -		
May 16	1015	215			I		
May 16	1015	275			M		
May 16	1015	268			F		
May 16	1015	255			L T		
May 16 May 16	1015	244			i T		
May 16	1015	224			I		
May 16	1500	286			M		
May 16	1500	258			I		
May 16	1500	270			I		
May 16	1500	264			I		
May 16	1500	218			1		
May 10 May 14	1700	252			ι Ν/Δ		
May 10 May 16	1700	268			N/A	•	
May 16	1700	254			1		
May 16	1700	260			1		
May 16	1700	214			I		
May 16	1800	255			1		
May 16	1800	237			I		
May 16	1800	235			1		
May 16	1200	241			1		
May 10	1800	264			1		
May 16	1800	244			i		
May 16	1800	243			1 .		
May 16	1800	255			1		
May 16	1800	289			N/A		
May 16	1800	259			N/A		
May 16	1800	283			N/A		
May 16	1800	329			N/A M	14	
May 10 Nov 14	1200	210			M	m M	
inay io Mav 14	1800	213			F	M	
May 10	1900	245			ī	••	
May 16	1900	238			Í		
May 16	1900	231			I		
May 16	1000	253			T		

	Time	Length	Weight	Condition	Sex	Release	
Date	(ADT)	(mm)	(grams)	Factor	(M/F/I)	Status	Comments
May 16	1900	265			I		
May 16	1900	266	•		N/A		
May 16	1900	234			1/M	M	
May 16	1900	259			1		
May 10	2000	230			1		
May 10	2000	255			Ť		
May 10	2000	318			Ē		
May 10	2000	257			1		
May 16	2200	245			ī		
May 16	2200	242			I		
May 16	2200	245			I		
May 16	2200	265			I		
May 16	2200	280			N/A		
May 16	2200	255			1		
May 16	2200	258			I		
May 16	2200	258			I		
May 16	2200	262			I		
May 16	2200	259			I		
May 16	2200	271			I		
May 16	2200	258			I		
May 10	2200	240			1		
May 10	2200	233			1		
May IO	2200	224			1 T		-
May ID	2200	220			1 N/A		
May 10	2200	244			1		
May 10	2200	201			. 4 T		
May 10 May 16	2200	234			Ť		
May 10	2200	216			r T		
May 16	2200	211			Ť		
May 16	2200	219			1/M	м	
May 16	2200	205			M	M	
May 17	900	246			Ĩ		
May 17	900	223			1		
May 17	900	240			1		
May 17	900	220			I		
May 17	900	261			N/A		
May 17	900	302			M		
May 17	900	270			F		
May 17	900	254			N/A		
May 17	900	257			I		
May 17	1715	216			F		
May 17	1715	514			M		Dian
May 17	1/15	282					Ripe
May 17	1713	209			, L		Qina
May 17	1715	272			N / A		k the
May 17	1715	302			M		Rine
Hav 17	2000	267			F		Tag #34713
May 17	2000	296			F		
May 17	2000	251		*	F		
May 17	2000	280			м	N	
May 17	2000	341			F	N	
May 17	2000	228			F		
May 17	2222	288			F		Y-tag 18
May 17	2222	216			I		
May 17	2222	297			М		Ripe
May 17	2222	197			I		
May 17	2222	223			F		
May 17	2222	280			F		
May 17	2222	225			F		
May 17	2222	186			1		
May 17	2222	215			F		

-

.

	Time	Length	Weight	Condition	Sex	Release	•
Date	e (ADT)	(mm)	(grams)	Factor	(M/F/I)	Status	Connents
	<u> </u>						<u>. </u>
May 17	7 2222	195			1		
May 17	7 2222	181			I		
May 1	7 2222	172			I		
May 17	7 2222	289			N/A		
May 17	7 2222	275			1		
May 17	7 2220	200			r 5		
May 17	7 2229	182			F		
May 17	7 2229	245			F		
May 17	7 2229	282			F		
May 17	7 2229	240			F	м	
May 17	7 2229	297			M		Ripe
May 17	7 2229	241			M		0-tag 138
May 17	2229	250			F		
May 17	7 2229	235			F		
May 17	7 2229	249			F		
May 1/	2229	294			r 5		
May 17	7 2227	240			F F		
May 17	7 2229	221			r t		
May 17	7 2220	212			i	м	
May 17	2229	220			F	M	
May 17	2229	245			F		
May 17	2229	235			F		
May 17	7 2229	241			F		
May 17	2229	234			F		
May 17	2229	291			N.		
May 17	2229	261			F		
May 17	2229	242			1 e		
May 17	× 4449	242			r		
May 18	8 818	268			F	м	
May 18	8 818	265			F	••	
May 18	818	269			F	N	
May. 18	818	249			F		
May 18	8 818	262			F		
May 18	8 818	289			M	N	
May 18	8 818	244			F	N	
May 18	8 818	545			r F	N	
May 18	3 818	212			с с	N M	
May 10	a a a a a a a a a a a a a a a a a a a	212			Г N/Д	M N	
May 12	8 818	270			F F	1.1	
May 18	8 818	210			F		
May 18	8 818	263			F		Y-tag 118
May 18	3 1125	240			N/A	м	-
May 18	3 1125	322			M	N	
May 18	3 1125	293			M		
May 18	3 1125	308			M	N	
May 18	3 1125	285			F	N .	
May 12	S 1125	211			r 5	N N	
May 10	3 100/ 3 1507	400 201			M	N	
May 10 May 12	3 1507	278			F	N	
May 18	3 1507	280			F	N	
May 18	1507	217			F		
May 18	3 1507	264			F	N	
May 18	3 1507	218			F	N	
May 18	3 1706	285			М	N	
May 18	3 1706	254	•		F		
May 18	3 1706	334			F	N	
May 18	3 1706	297			F	N	
May 18	s 1706	312			F	N	
- May 18	a 1706	215			r	N	

164

	Time	Length	Weight	Condition	Sex	Release	
Date	(ADT)	(mm)	(grams)	Factor	(M/F/I)	Status	Comments
		<u> </u>	···				
May 18	1706	296			м	N	Ripe
May 18	1706	243			M		·
May 18	2012	292			F	N	
May 18	2012	243			F	N	
May 18	2012	214			F		
May 18	2012	290			м	N	
May 18	2012	281			7	N	
May 18	2012	214			г с		
May 10	2012	244			F		
May 13	2012	285			F	м	
May 18	2012	286			F	N	Ripe
May 18	2012	247			N/A		
May 18	2012	245			F		
May 18	2012	280			N/A		
May 18	2012	295			F	N	
May 18	2012	275			F	N	
May 18	2012	291			F	N	
May 18	2012	287			F	N	Dina
May 18	2012	243			4	N	Ripe
May 18	2012	214			F E	м	
May 10	2012	219			F E		
May 10	2012	265			NZA		
May 10	2213	218			N/A	м	
May 18	2213	218			F	M	
May 18	2213	266			F	N	
May 18	2213	273			M	N	Ripe
May 18	2213	242			м		
May 18	2213	240			F		
May 18	2213	224			F		
May 18	2213	182			N/A		
May 18	2213	215			F	M	
May 18	2213	205			r 5	m M	
May 19 May 19	909	293			F	N	Tag #34778
May 17 May 19	909	271			ŕ	N	
May 19	909	271			Ň	N	
May 19	909	298			F		Y-tag 12B
May 19	909	207			F		
May 19	90 9	259			F	N	
May 19	909	230			F		
May 19	909	204			F		
May 19	909	244			N/A		
May 19 May 10	909	270			F	N	
May 19	000	252			F	N	
May 19	909	248			F		
May 19	909	268			۶	N	
May 19	90 9	252			F	N	
May 19	909	281			F		
May 19	909	302			F	N	
May 19	909	261			F		
May 19	909	235			F		
May 19	909	236			F	N	
May 19	909	313			r f	N	
May 19 May 10	000	270			F	N	
may 17 Mav 10	000	316			F	N	Ripe
May 19	909	234			F	.*	
May 19	909	229			F		
May 19	909	275			М	N	Ripe
May 19	909	242			F	N	
May 19	909	295			F	N	

Table C2.	Continued.
-----------	------------

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 19	. 909	297			M	N	
May 19	909	365			M	N	Ripe
May 19	909	267			۶	N	
May 19	909	261			F	N	
May 19	90 9	285			M	N	Ripe
May 19	909	243		•	F		
May 19	909	253			F		0-tag 12A
May 19	1130	286			۴	N	Dina
May 19	1130	2/9			M	N	k i pe
May 19	1150	202			Ē	N	
May 19	1130	243			r s	N L	
May 19	1130	267			F	N.	
May 17	1130	230			F		
May 17	1130	220			, F		
May 10	1130	185			N/A		
May 19	1130	288			F	N	
May 19	1130	244			F	N	
May 19	1130	288			M	N	Ripe
May 19	1130	283			М	N	Ripe
May 19	1130	221			F		
May 19	1130	262			F	N	
May 19	1130	297			H		
May 19	1130	280			М	N	Ripe
May 19	1130	249			F	N	
May 19	1130	269			F	N	
May 19	1130	239			F		
May 19	1130	253			F	N	
May 19	1130	230			F		
May 19	1130	273			F	N	
May 19	1130	295			F	N	
May 19	1130	283			F 5	N	
May 19	1150	250			г 5	N	
May 19	1130	299			м	л. Ч	Pine
May 19	1130	200					Kipe
May 19	1130	259			5	ы	
May 17	1130	226			F	м	
May 17	1130	234			F	M	
May 19	1130	225			F	M	
May 19	1130	232			F	H	
May 19	1130	252			F	M	
May 19	1130	261			F	к	
May 19	1130	273			F		
May 19	1130	230	106	.87	F		
May 19	1130	273			F	N	
May 19	1130	219			F	N	
May 19	1430	338			м	N	Ripe
May 19	1430	255			F	N	
May 19	1430	283			м	N	Ripe
May 19	1430	283			F	N	
May 19	1130	245			F		04
May 19	1130	2/2			M	N	ктре
May 19	1120	213			5	א ע	
May 19	1430	274			5	N	
19 Hav 10	1430	211			F	N	
Hay 19 May 10	1430	2/3			F	M	
Hav 10	1430	247			M		
May 10	1430	218			F		
May 19	1430	228		. •	F		
May 19	1430	231			M		
May 19	1445	234			F		
May 19	1445	284			F	N	

166

·

.

.

Da	ate	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Connents
May	19	1445	225			۶		
May	19	1445	252			M		
May	19	1700	278			F		
May	19	1700	231			F 6		•
May	19	2020	278	,		F	u	
May	19	2020	235			F		
Mav	19	2020	152			I		
May	19	2020	230			F	м	
May	19	2020	236			F	M	
May	19	2215	278			F		
May	19	2215	242			-		
May	10	2215	161			ŕ		
May	10	2215	163			I		
May	19	2215	158			Ī		
May	19	2215	292			F		
May	19	2215	239			F		
May	19	2215	254			M	N	Ripe
May	19	2215	231			F		
May	19	2215	145			1		
May	19	2215	133			I		
May	19	2215	151			i		
Mav	19	2215	142			Ī		
May	19	2215	124			I		
May	19	2215	150			I		
May	19	2215	240			F		
May	19	2215	277			F		
May	19	2215	266			F 6		
May	19	2215	211			F		
May	10	2215	233			F		
Mav	19	2215	228			F		
May	19	2215	228			N/A		
May	19	2215	227			F		
May	19	2215	237			F		
May	19	2215	185			I		
May	19	2215	200			1		
May	19	2213	118			Ť		
May	10	2215	252			NZA		
Mav	19	2215	153			I		
May	20	930	338			M		Ripe
May	20	930	271			F		
May	20	930	294			M		Ripe
May	20	930	317			F		
May	20	930	546			r 5		Tag 3/711
May	20	02V 07D	200			г М		Rine
may Mav	20	930 930	248			M		Albe
Mav	20	930	220			F		
May	20	930	240			F		
May	20	930	2 92			F		
May	20	930	271			F		_ ·
May	20	930	275			M	N	Ripe
May	20	930	273			F	N	
May	20	930	207			ri M		
May	20	020 730	252			-1 F		•
Mav	20	930	273			F	N	
May	20	930	235			F		
May	20	930	223	117	1.06	F		
May	20	930	313			M	N	Ripe

٠

Table C2. Continued.

.

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 20	930	229			F		
May 20	930	265			F		Dine
May 20	930	300			н Ц	N N	Ripe
May 20	920	200			M	N	Ripe
May 20 May 20	930	228			NZA		Q-tag 48
May 20	930	300			F	N	Ripe
May 20	930	262			F	N	
May 20	930	256			F	N	
May 20	930	232			F		
May 20	930	257			M		04-0-0
May 20	930	286			E N	N	Ripe
May 20	930	240			r c		
May 20	930	202			F		
May 20	930	252			F		
May 20	930	248			F		
May 20	930	242			F		
May 20	930	190	52	.76	I		
May 20	1043	269			M		Ripe
May 20.	1043	270			F	N	•
May 20	1043	280			M	N	Ripe
May 20	1043	308				N	kipe
May 20	1043	207			F	N	
May 20	1043	265			F		
May 20	1043	246			F		
May 20	1043	259			F		
May 20	1043	260			M		
May 20	1043	263			F	N	
May 20	1043	257	407		F		
May 20	1043	225	103	.90	۲ ۱۱/۱		
May 20	1043	240			N/A M	N	Ripe
May 20	1043	2/3			F	1	K i þe
May 20	1043	216	98	.97	F		
May 20	1043	292	278	1.12	F	N	
May 20	1043	210	98	1.06	I		
May 20	1043	225	100	.88	F		
May 20	1043	223	100	.90	l r		
May 20	1338	284			г м	N N	Pine
May 20	1778	253			F	N	Kipe
May 20 May 20	1338	227	118	1.01	F	м	
May 20	1338	209	100	1.10	I	м	
May 20	1338	228	124	1.05	F	M	
May 20	1338	222	118	1.08	F	M	
May 20	1338	214	100	1.02	F	м	
May 20	1338	238	132	.98	+	M.	
May 20	1558	207	120	1.10	1	M	
May 20	1338	213	100	1.03	F	M	
May 20	1338	210	105	1.13	F	M	
May 20	1338	234	120	.94	N/A	M	
May 20	1338	233	124	.98	F	м	
May 20	1338	217	108	1.06	F	M	
May 20	1348	211	101	1.08	F	M	
May 20	1348	215	104	1.05	F	M	
May 20	1548	211	102	1.12	r 5	M.	
May 20	1340	212	100	1.13	er Mi	PI	
May 20	2045	243			F		
May 20	2045	269			F	N	
May 20	2045	265			F	N	

.

Date	Tim e (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 20	2045	213			F		
May 20	2045	235			F		
May 20	2045	205		07	F		
May 20 May 20	2045	205	50	.75 80	I		
May 20 May 20	2045	192	71	1.00	i		
May 20	2045	140	28	1.02	I		
May 20	2045	184	59	.95	I		
May 20	2045	204	80	.94	1		
May 20	2045	132	28	.00	I		
May 20	2045	196	76	1.01	1		
May 20	2045	207	92	1.04	I		
May 20	2045	108	40 57	1.01	L T		
May 20	2043	103	74	1 03	I T		
May 20 May 20	2045	135	22	.89	i		
May 20	2045	128	20	.95	Ī		
May 20	2045	134	22	.91	I		
May 20	2045	131	25	1.11	I		
May 20	2045	160	39	.95	I		
May 20	2045	141	28	1.00	I		
May 20	2045	144	54	1.14	I		
May 20 May 20	2045	140	CC 07	1 12	1		
May 20	2045	115	15		î		
May 20 May 20	2045	147	28	.88	i		
May 20	2045	127			t		
May 20	2045	270			M		
May 20	2045	284			м		
May 20	2045	272			M	N	Ripe
May 20	2045	205	80	.93	1		
May 20	2045	202	80	.97	I •		
May 20	2045	150	30 45	1.13	L t		
May 20	2045	178	4J 52	1.03	r t		
May 20	2045	155	44	1.18	i		
May 20	2045	121	20	1.13	Ĩ		
May 21	1000	229			N/A		
May 21	1000	298	275	1.04	M		
May 21	1000	288			F		
May 21	1000	344			F M	N	
May 21	1000	200				N	
May 21	1000	290			F	N	
May 21	1000	290			Ň	N	Ripe
May 21	1000	273			F		•
May 21	1000	273			M	N	Ripe
May 21	1000	270			F		
May 21	1000	218			I		
May 21	1000	225			I T		
May 21 May 21	1000	210			1		
inay ⊆i Mav 21	1000	145			i		
May 21	1000	117			ī		
May 21	1000	147			1		
May 21	1000	135			I		
May 21	1000	305			F	N	
May 21	1000	333			M	N	Ripe
May 21	1000	298			M	N	0:
May 21	1000	289			m 5	N	KIPe
May 21 May 24	1000	204			ç		
May 21 May 21	1000	222			F		Tag 34774
May 21	1000	282			F	N	

169

.

•

Dat	a	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 2	1	1000	269			F	N	
May 2	1	1000	261			۶		
May 2	1	1000	223			F		
May 2	1	1000	213			F,		
May 2		1000	181			1 T	м	
May 2	i i Ht	1000	227			ī	M	
May 2		1052	285			Ň	N	
May 2	1	1052	290			F	N	
May 2	1	1052	275			F	N	
May 2	1	1052	258			M	N	Ripe
May 2	1	1052	205			I		
May 2	1	1052	161			I	м	Pine
May 2		1040	202				N	. Kipe
May 2	11 11	1645	264			r F	N	
May 2	1	1645	227			Ē		
May 2	1	1645	285			M	N	Ripe
May 2	1	1645	281			M	N	Ripe
May 2	1	1645	243			N/A		
May 2	1	1645	292			M	N	Ripe
May 2	1	1645	279			۶	N	
May 2	1	1645	269	190	.98	F	N	
May 2	1	1645	252			F .		
May 2	1	1645	240			1		
May 2	11. 141	1642	140	435	1 10	1	ы	
May 2	. 1 11	1045	320	433	1.10	F	N	Ripe
May 2	1	1956	259			M		
May 2	1	1956	305			M	N	Ripe
May 2	1	1956	266			M		
May 2	1	1956	192			I		
May 2	1	1956	244			I		
May 2	1	1956	245			I		
May 2	2	915	290			r	n	
May 2	2	915	260			F		
May 2	2	915	258			ť		
May 2	2	915	279			F	N	
May 2	2	915	277			M	N	Ripe
May 2	2	915	212			I		·
May 2	2	915	268			۶	N	
May 2	2	915	224			1		
May 2	2	915	248			I		
May 2	2	915	258			L T		
May 2	2	915	424			F		
May 2	2	913	248			i I		
May 2	2	915	262			ī		
May 2	2	915	128			1		
May 2	2	915	280			F		Y-tag 108
May 2	2	915	258			I		Tag 34793
May 2	2	915	290			F		
May 2	2	915	274			F		
May 2	Z	915	252			I M	N	Dine
May 2	2	915	280			ल र	N	Ripe
May 2	2	915	247			.⊾ T		
May 2	2	015	257			·		
May 2	2	915	208			Ī		
May 2	2	915	277			F	N	Ripe
May 2	2	915	290			F	N	Ripe
May 2	2	915	258			I		•

Table C2. Continued.

Date	Time (ADT)	Length	Weight (grams)	Condition Eactor	Sex (M/F/L)	Release Status	Comments
	(AB1)	(11011)	(9. 0				
May 22	915	2 92			M	N	Ripe
May 22	915	260			F		
May 22	915	238			1		
May 22	915	277			I .		
May 22	915	238			l T		
May 22	915	200			5	ม	
May 22	015	207			r Ma	N	
May 22	015	276			F	N	
May 22	015	228			t		
May 22	915	260			Ī		
May 22	915	195			I		
May 22	915	222			I		
May 22	915	252			I		
May 22	915	275			Me i	N	Ripe
May 22	915	276			F		
May 22	915	205			I		
May 22	915	270			I.		
May 22	915	255					
May 22	915	220			L T		
May 22	1400	274	205	1.00	1		
May 22	1400	275	202		M	N	Ripe
May 22	1400	247			M	N	Ripe
May 22	1400	265			F		•
May 22	1400	251			F		
May 22	1400	300			F 1		
May 22	1400	232			F		
May 22	1400	241			F		
May 22	1400	218			I		
May 22	1400	149			1	м	
May 22	1400	202			5	N	
May 22	1400	2/4			Mi		
May 22	1400	257			M		
May 22	1400	254			F		
May 22	1400	284			F	N	
May 22	1400	265			М	N	Ripe
May 22	1400	296			M	N	
May 22	1400	251			F		
May 22	1400	222			М		
May 22	1400	244			M		
May 22	1400	198			1		Dine
May 22	1400	289			r .	M	Ripe
May 22	1400	220			r F		
May 22	1400	200			Ň	N	Ripe
May 22	1400	236			F		
May 22	1400	267			F	N	
May 22	1400	261			м		
May 22	1400	266			F	N	
May 22	1400	248			F		
May 22	1400	248			м		
May 22	1400	257			F		
May 22	1400	240			۲ ۲		
May 22	1400	200			1. 34	ч	Pine
May 22	1400	210			M	a	K i þe
May 22	1400	200			F		
May 22	1400	232			M	N	Ripe
May 22	1400	204			I		
May 22	1945	187	,		I		
May 22	1945	251			F	N	
May 22	1945	256			F		
May 22	1945	267			F		

.

Date	Time (ADT)	Length (mm)	Weight (grams)	Condition Factor	Sex (M/F/I)	Release Status	Comments
May 22	1945	236				_	
May 22	1945	274			F	N	
May 22	1945	241			F	N	
May 22	1945	263			F	N	
May 22	1945	243			F		
May 22	1945	200			I		
May 22	1945	225			۲ ۲		
May 22	1945	1/0			L T		
May 22	1945	148			1 T		
May 22	1945	160			i I		
May 22	1945	158			ī		
May 22	1945	128			I		
May 22	1945	146			I		
May 22	1945	137			I		
May 22	1945	267			F	N	
May 22	1945	217			F		
May 22	1945	282			M	N	Ripe
May 22	1945	252			F		
May 22	1945	268			M		
May 22	1945	231			F		
May 22	1945	227			M		
May 22	1945	240			F		
May 22	1945	237			r E		
May 22	1943	219			F M		
May 22	10/5	240			5		
May 22 May 22	1945	226			, F		
May 22	1945	212			F		
May 22	1945	204			I		
May 22	1945	213			I		
May 22	1945	134			I		
May 22	1945	169			I		
May 22	1945	170			1		
May 22	1945	265			м	N	Ripe
May 22	1945	286			F	N	
May 22	1945	283			F	N	
May 22	1945	204			г с		
May 22	1942	210			r s		
May 22	1045	106			t		
May 22	1945	222			F		
May 22	1945	227			F		
May 22	1945	231			F		
May 22	1945	230			F		
May 22	1945	265			I		
May 22	1945	1 57			I		
May 23	1025	367			F	N	Ripe
May 23	1025	348			۴	N	Ripe
May 23	1025	246			F		• •
May 23	1025	280			M	N	, kipe
May 23	1025	265			F	N	
May 23	1025	277			F F	N	
May 22	1025	100			r t	a	
May 23	1025	145			i		
May 23	1025	128			Ī		
May 23	1025	145			1		
May 23	1025	302			M	N	
May 23	1025	280			M	N	
May 23	1025	291			F	N	
May 23	1025	257			F		
May 23	1025	264			F		
May 23	1025	245			M		

		Time	Length	Weight	Condition	Sex	Release	
Da	ate	(ADT)	(mn)	(grams)	Factor	(M/F/I)	Status	Connents
May	23	1025	228			F		
May	23	1025	193			I		
May	23	1025	204			F		
May	23	1025	117			M		
May	23	1025	141			I		
May	23	1025	178			I		
May	23	1025	283			F	N	
May	23	1025	256			F		
May	23	1025	270			F	N	
May	23	1025	295			F	N	
May	23	1025	254			F		
May	23	1025	275			M	N	
May	23	1025	277			M	N	Ripe
May	23	1025	251			M		
May	23	1025	257			F		
May	23	1025	280			F	N	
May	23	1025	258			F,		
May	23	1025	265			M	N	Ripe
May	23	1025	234			M		
May	23	1025	272			M	N	Ripe
May	23	1025	238			F		
May	23	1025	261			M		
May	23	1025	224			F		
May	23	1025	263			M		
May	23	1025	252			F		
May	23	1025	260			F	N .	
May	23	1025	225			F		
May	23	1025	225			F		
May	23	1025	205			1		
May	23	1025	160			1		
May	23	1025	121			1		
May	23	1540	240			F		
May	25	1540	240			r e	м	
May	23	1540	200			Ţ.	N	
May	23	1540	191			1		
May	23	1540	200					
May	23	1540	200					
May	23	1540	249			F		
may	23	1540	222			r t		
may	22	1540	204			1	м	
May	24	1000	2/3			м	N	
may	24	1000	234					
may	24	1000	263			г с		
пау	24	1000	203			Ē	N	
may	24	1000	100			г t	i T	
мау	24	1000	2/2			È		
Max	24	010	246			Г 34	N	
Mese	23	010	2/0			- F	N	
May	25	010	2691			, M		
лау Мем	25	010	240			M -		
May	25	910	138			I		

Total Number of Grayling = 1,074 Average Length (mm) of Grayling = 255 mm

Total Number of Males = 295 Average Length (mm) of Males = 277.7 mm (117 to 383 mm)

Total Number of Females = 515 Average Length (mm) of Females = 262.9 mm (162 to 367 mm)

Total Number of Immatures = 220 Average Length of Immatures = 206.4 mm (115 to 277 mm) Total Number of Unknown Sex = 44 Average Length of Unknown Sex = 254.6 mm (182 to 366 mm) Total Number of Grayling Released Back to System = 803 (75% See Note) Total Number of Grayling Released to ACFRU = 228 Average Length of Grayling Released to ACFRU = 280.9 mm (218 to 367 mm) Total Number of Mortalities = 42 (3.9%) Average Length (mm) of Mortalities = 220.9 mm (196 to 252 mm)

NOTES: Condition Factor (K) = 100*Weight (gm)/(Length (cm)^3)

Sex Codes: F = Female I = Immature N/A = Unknown Release Codes: Blank = upstream release N = transferred to ACFRU for spawning migration delay study; fish scheduled for eventual release M = mortality

Tag	Tag	Tagging	Time (ADT)	Length	Sex	Status	Comments
NUMBER	COLOF	Jace		(1111)			
11/0	Ubita	Nav 16	025	249	T		
1140	White	May 16	925	255	Ī		
1144	White	May 16	925	302	F		
34700	White	May 16	1000	127	I		
34701	White	May 16	1000	296	F		
34702	White	May 16	1000	329	м		
34703	White	May 16	1000	302	F		
34704	White	May 16	1000	2/4	L T		
34703	White Ubite	May 10	1000	200	F		
34700	White White	May 10	1000	286	F		
34708	White	May 16	1000	303	M		
34709	White	May 16	1000	270	I		
34710	White	May 16	1000	284	M		
34711	White	May 16	1000	281	F		
34712	White	May 16	1000	274	N/A		
34713	White	May 16	1000	265	N/A		
34714	White	May 16	1000	201	N/A		
34713	White	May 10	1000	224	N/A		
34710	White	May 16	1000	239	N/A		•
34718	White	May 16	1000	223	N/A		
34719	White	May 16	1000	208	N/A		
34720	White	May 16	1000	229	N/A		
34721	White	May 16	1000	267	F		
34722	White	May 16	1000	269	F		
34723	White	May 16	1000	200	M F		
34724	White	May 10	1000	290	N/A		
34725	White	May 10	1000	267	F		
34727	White	May 16	1000	265	M		
34728	White	May 16	1000	331	F		
34729	White	May 16	1000	336	F		
34730	White	May 16	1015	250	I		
34731	White	May 16	1015	279	F		
34732	White	May 16	1015	295	M 6		
34733	White	May 10 May 16	1015	313	F		
34735	Uhite	May 10	1015	278	M		
34736	White	May 16	1015	314	F		
34737	White	May 16	1015	249	N/A		
34738	White	May 16	1015	253	I		
34739	White	May 16	1015	294	F		
34740	White	May 16	1015	253	1		
34741	White	May 10	1015	224	רי ז		
34142	Uhita	May 10 May 16	1015	276	F		
34744	White	May 16	1015	296	F		
34745	White	May 16	1015	262	1		
34746	White	May 16	1015	249	' I		
34747	White	May 16	1015	265	N/A		
34748	White	May 16	1015	232	I		
54749	White	May 16 May 14	1015	229	↓ ▼		
34750	White Uhite	May 16	1015	220	r t		
34752	White White	May 16	1015	220	·		
34753	White	May 16	1015	215	Ī		· ·
34754	White	May 16	1015	275	м		
34755	White	May 16	1015	268	F		
34756	White	May 16	1015	255	I		
34757	White	May 16	1015	244	I		
34758	White	May 16	1015	257	L T		
34734	wnite	мау ю	1015	624	ł		

Table C3. Arctic grayling fork lengths, age, sex, and maturity status, Sport Fish Tagging Project, Fish Creek, May 1987.

Tag	Tag	Tagging	Time	Length	Sea	x		
Number	Color	Date	(ADT)	(mm)	Age (M/F)	/1) Status	Comments
34760	White	May 16	1500	286	M			
34761	White	May 16 May 16	1500	200	L T			
34762	White	May 10	1500	264	i			
34764	White	May 16	1500	218	I			
34765	White	May 16	1600	252	1			
34766	White	May 16	1700	284	N//	A A		
54/6/	White	May 16 May 16	1700	268	N// T	A		
34769	White	May 10 May 16	1700	260	Ì			
34770	White	May 16	1700	214	I			
34771	White	May 16	1800	255	I			
34772	White	May 16	1800	237	I			
34775	Uhite Uhite	May 10	1800	233	1			
34775	White	May 16	1800	224	i			
34776	White	May 16	1800	246	· 1			
34777	White	May 16	1800	244	Í I			
34778	White	May 16	1800	243	I			
347790	White Ubite	May 10	1800	255	N 77			
34781	White	May 16	1800	259	N//	A		
34782	White	May 16	1800	283	N//	A		
34783	White	May 16	1800	329	N//	A.		
		May 16	1800	218	M		Mortality	
		May IO May 16	1800	215	л 		Mortality	
34784	White	May 16	1900	245	Í			
34785	White	May 16	1900	238	I			
34786	White	May 16	1900	231	I			
34787	White	May 16	1900	253	I			
34780 37780	Ubite Ubite	May 16	1900	203	1 N / I	۵		
34/07	MILLE	May 16	1900	234	1/1	M	Mortality	
34790	White	May 16	1900	259	Ĭ		•	
34791	White	May 16	2000	236	I			
34792	White	May 16	2000	255	I			
34793	Uhite	May 10 May 16	2000	220	F			
34795	White	May 16	2000	257	i			
34796	White	May 16	2200	245	1			
34797	White	May 16	2200	242	1			
34798	White	May 16	2200	245	I			
34799	White	May 10 May 16	2200	265	N 74	A		
34801	White	May 16	2200	255	I I	•		
34802	White	May 16	2200	258	I			
34803	White	May 16	2200	258	I			
34804	White	May 16	2200	262	I		Dev	5/26 Tuin lk outlet
34805	White Ubite	May 16	2200	239	ı t		KCV.	5725 C.TWIN EX.OUTLET
34807	White	May 10	2200	258	I			
34808	White	May 16	2200	246	I			
34809	White	May 16	2200	255	1			
34810	White	May 16	2200	224	1			
34811	White Ubite	May 16	2200	220	L 1	4		
34012	white Uhite	may io May 16	2200	261	77 I			,
34814	White	May 16	2200	237	I			
34815	White	May 16	2200	234	I			
34816	White	May 16	2200	216	1			
34817	White	May 16	2200	211	I 1 /1	4	Noctality	
		May 10 May 16	2200	205		7	Mortality	

Tag Number	Tag Color	Tagging Date	Time (ADT)	Length (mm)	Sex Age (M/F/I)	Status	Comments
34818	White	May 17	900	246	I		
34819	White	May 17	900	223	I		
34820	White	May 17	900	240	I		
34821	White	May 17	900	220	I		
34822	White	May 17	900	261	N/A		
34823	White	May 17	900	302	M		
34824	White	May 17	900	270	۶		
34825	White	May 17	900	254	N/A		
34826	White	May 17	900	257	1	`	

Total Number of Arctic Grayling = 136 Total Number of Arctic Grayling Tagged = 130

..

Date	Time (ADT)	Length (mm)	Weight (gm) Da	te	Tim e (ADT)	Length (mm)	Weight (gm)
	2230	365	May	18	2012	247	
May 14	1820	318	May	18	2012	250	
May 15	1820	375	May	18	2012	309	
May 15	1820	252	May	18	2012	241	
May 15	1820	320	May	18	2012	344	
May 15	2055	388	May	18	2012	247	
May 16	1030	353	Мау	18	2012	345	
May 16	1030	370	May	18	2012	299	
May 16	1030	359	May	18	2012	322	
May 16	1030	325	May	18	2012	343	
May 16	1030	336	May	18	2213	352	
May 16	1030	379	May	19	909	321	
May 16	1500	357	May	19	909	352	
May 16	1700	313	May	19	909	217	
May 16	1800	349	May	10	909	313	
May 10	1800	340	мау	10	000	315	
May 10	1800	32/	May	10	000	347	
May 10	2000	317	May	10	909	313	
May 10	2000	337 .	Mav	19	1130	245	
May 10 May 16	2200	345	Mav	19	1130	319	
May 16	2200	349	May	19	1130	324	
Nev 16	2200	330	Mav	19	1130	312	
May 16	2200	333	May	19	1130	301	
May 16	2200	347	May	19	1130	353	
May 16	2200	366	May	19	1130	352	
May 16	2200	321	May	19	1130	348	
May 16	2200	342	May	19	1130	329	
May 16	2200	350	May	19	1430	340	
May 17	900	338	Мау	1 9 '	1430	338	
May 17	900	364	May	19	1430	318	
May 17	900	358	May	19	1430	353	
May 17	900	322	May	19	1445	320	
May 17	900	358	May	19	1700	328	
May 17	1715	354	May	10	1700	270	
May 17	1715	332	мау	19	1700	204	
May 17	1715	319	мау	10	1700	290	
May 17	1713	246	мау Мау	10	1700	300	
May 17	1715	202	May May	10	1700	287	
May 17	1715	270	Hay	19	1700	288	
May 17	1715	329	Mav	19	1800	361	
May 17	2000	361	May	19	1800	364	
May 17	2000	368	May	19	1800	332	
May 17	2000	338	May	19	2020	345	
May 17	2000	308	May	19	2020	352	
May 17	2222	362	May	19	2020	354	
May 17	2229	310	May	19	2020	379	
May 18	818	371	May	19	2020	306	
May 18	818	383	May	19	2020	280	
May 18	1125	370	May	19	2215	357	
May 18	1125	350	May	19	2215	368	
May 18	1125	356	May	19	2215	364	
May 18	1125	330	May	19	2213	203 747	
May 18	1507	550	May	19	2213	201 7/ 2	
May 18	1700	512	may	17	2213	346 75%	
May 18	1700	5/U 771	May	10	2213	コンチ ママプ	
may io. Max 10	1704	291	May	19	2215	772 272	
may 10. May 10.	1704	719	ndy Mav	20	070	345	
May 19	1705	310	may Mav	20	930	322	
1107 10	1700	J. 4 6.	and A		/		

TABLE C4. May 1987, round whitefish fork lengths and weights at Fish Creek.

TABLE	Ç4.	Conti	inued.
-------	-----	-------	--------

Date	Time (ADT)	Length (mm)	Weight (gm)	Date	Time (ADT)	Length (mm)	Weight (gm)
May 20	930	353		May 21	1956	303	<u> </u>
May 20	930	371		May 22	915	315	
May 20	930	353		May 22	915	335	
May 20	930	360		May 22	915	302	
May 20	930	370	405	May 22	915	413	
May 20	930	378	330	May 22	915	222 75/	
May 20	930	374	302	May 22 Mary 22	1400	334 75/	410
May 20	930	319	210	May 22 May 22	1400	224	318
May 20	930	779	357	May 22 May 22	1400	331	290
May 20	930	346	345	May 22	1400	305	2/0
May 20	950	346	340	May 22	1400	357	
May 20	930	349	374	May 22	1400	291	
May 20	930	337	320	May 22	1945	338	
May 20	930	344	312	May 22	1945	383	
May 20	930	395	505	May 22	1945	320	
May 20	930	273	178	May 22	1945	302	
May 20	1043	351	358	May 22	1945	323	
May 20	1043	357	382	May 22	1945	294	
May 20	1043	363	395	May 23	1025	378	
May 20	1043	350	345	May 23	1025	350	
May 20	1043	330	392	May 23	1025	355	
May 20	1043	325	310	May 23	1025	354	
May 20	1043	334	307	May 23	1025	335	
May 20	1043	332	302	May 23	1025	315	
May 20	1043	340	324	May 23	1025	304	
May 20	1043	348	375	May 23	1025	309	
May 20	1043	346	354	May 23	1025	380	
May 20	1043	337	310	May 23	1025	201	
May 20	1043	281	175	May 25	1540	343	
May 20	1558	373	200	May 24 May 24	1000	320	
May 20	1779	224	416	May 24 May 24	1000	341	
May 20	1330	775	320	May 24 May 26	1000	357	
May 20	1330	316	206	May 24	1000	312	
May 20	2045	357	2,0	May 24	1000	342	
May 20	2045	337		May 24	1000	348	
May 20	2045	310		May 24	1000	330	
May 20	2045	312		May 24	1000	310	
May 20	2045	331		May 24	1000	334	
May 20	2045	350		May 24	1000	366	
May 20	2045	378		May 24	1000	330	•
May 20	2045	335		May 24	1000	395	
May 20	2045	364		May 24	1000	377	
May 20	2045	328		May 24	1000	335	
May 20	2045.	318		May 24	1000	321	
May 20	2045	328		May 25	910	350	
May 20	2045	340		May 25	910	356	
May 21	1000	353		May 25	910	350	
May 21	1000	349		May 25	910	342	
May 21	1000	355		May 25	910	304 775	
May 21	1000	377		May 25	910	222	
May 21	1000	555		May 25	910	321	
May 21	1000	343		May 23 May 25	910 010	242 720	
May 21	1000	200		May 22 May 25	010	755	
May 21	1002	270		May 23	910	333	
may 21	1043	247		May 25	010	283	
may 21 May 21	1043	345		May 25	910	286	
may 21 May 21	1043	244		May 25	910	356	
Hay 21	1643	297		May 25	910	361	
May 21	1056	305		May 25	910	335	
ener sel		777		How 25	010	725	

TABLE C4.	Continued.
-----------	------------

Da	te	Time (ADT)	Length (mm)	Weight (gm)	Date	Time (ADT)	Length (mm)	Weight (gm)
May	25	910	380	<u></u>			<u> </u>	
Mav	25	910	350					
May	25	910	338					
May	25	910	342					
May	25	910	304					
May	25	910	316					
May	25	910	267					