


# Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

## Water-Resources Investigations Report 03-4188

Prepared in cooperation with the ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES



**Cover**: Photograph of damage to Ninilchik Village Road bridge over Ninilchik River (large photograph and top inset) and Sterling Highway bridge over Deep Creek (bottom inset), Alaska, incurred during an October 2002 flood with a recurrence interval greater than 100 years. The left bridge abutment was washed out at both bridges. (Photograph taken by David Meyer, USGS, on October 26, 2002.)

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

# Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

By Janet H. Curran, David F. Meyer, and Gary D. Tasker

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 03-4188

Prepared in cooperation with the ALASKA DEPARTMENT OF TRANSPORTATION AND PUBLIC FACILITIES

> Anchorage, Alaska 2003

### **U.S. DEPARTMENT OF THE INTERIOR**

GALE A. NORTON, Secretary

### **U.S. GEOLOGICAL SURVEY**

Charles G. Groat, *Director* 

Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

For additional information write to:

Chief, Water Resources Office U.S. Geological Survey Alaska Science Center 4230 University Drive, Suite 201 Anchorage, AK 99508-4664 http://alaska.usgs.gov Copies of this report can be obtained from:

U.S. Geological Survey Information Services Building 810 Box 25286, Federal Center Denver, CO 80225-0286

Suggested citation:

Curran, J.H., Meyer, D.F., and Tasker, G.D., 2003, Estimating the magnitude and frequency of peak streamflows for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4188, 101 p.

# CONTENTS

| Abstract                                                                    | 1  |
|-----------------------------------------------------------------------------|----|
| Introduction                                                                | 1  |
| Purpose and Scope                                                           | 2  |
| Previous Studies                                                            | 2  |
| Acknowledgments                                                             |    |
| Description of Study Area                                                   | 3  |
| Determination of Drainage-Basin Characteristics                             | 5  |
| Determination of Streamflow Analysis Regions                                | 5  |
| Estimating Peak Streamflows at Gaged Sites                                  | 7  |
| Data Collection                                                             | 8  |
| Data Adjustment                                                             | 8  |
| High Outliers and Historic Peak Discharges                                  |    |
| Low Outliers                                                                |    |
| Discharges Recorded as Less Than a Known Value                              |    |
| Data Not Correlated to Basin Characteristics                                |    |
| Generalized Skew Coefficients                                               | 10 |
| Regional Equations for Estimating Peak Streamflows                          |    |
| Regression Analysis                                                         |    |
| Accuracy and Limitations of Estimating Equations                            |    |
| Procedures for Estimating Peak Streamflow Magnitude and Frequency           | 15 |
| Example Applications                                                        | 17 |
| Computer Program                                                            | 19 |
| Summary                                                                     | 20 |
| References                                                                  | 20 |
| Appendixes                                                                  |    |
| Appendix A. Years of Record for Annual Peak Streamflows Used in This Report | 84 |
| Appendix B. Accuracy Of Estimating Equations                                | 93 |
| Site-Specific Standard Error of Prediction                                  |    |
| Average Standard Error of Prediction                                        |    |
| Equivalent Years of Record                                                  | 94 |
| Average Equivalent Years of Record                                          | 94 |
| Confidence Limits                                                           |    |
| Converting Errors from Log Units to Percentages                             | 95 |

## PLATE

[Plate is in pocket]

Plate 1. Map showing streamflow analysis regions and locations of streamflow-gaging and partial-record stations for which peak-streamflow statistics were computed, Alaska and conterminous basins in Canada.

## **FIGURES**

| Figure 1. | Map showing physical features and streamflow analysis regions of Alaska and            |    |
|-----------|----------------------------------------------------------------------------------------|----|
|           | conterminous basins in Canada                                                          | 4  |
| Figure 2. | Graph showing relation of discharge to drainage area for selected recurrence intervals |    |
|           | for the Yukon River, Alaska and Canada                                                 | 17 |
|           |                                                                                        |    |

## TABLES

| Table 1. | Description and methods of estimation of basin characteristics used in regression analysis | 6  |
|----------|--------------------------------------------------------------------------------------------|----|
| Table 2. | Generalized skew and summary statistics for Regions 1-7, Alaska and conterminous           |    |
|          | basins in Canada                                                                           | 11 |
| Table 3. | Regression equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year        |    |
|          | peak streamflows for unregulated streams in Regions 1-7, Alaska and conterminous           |    |
|          | basins in Canada                                                                           | 13 |
| Table 4. | Station information and peak-streamflow statistics for streamflow-gaging and               |    |
|          | partial-record stations in Alaska and conterminous basins in Canada                        | 22 |

## **CONVERSION FACTORS AND DATUMS**

#### **CONVERSION FACTORS**

| Multiply                                   | Ву      | To obtain                                  |
|--------------------------------------------|---------|--------------------------------------------|
| foot (ft)                                  | 0.3048  | meter (m)                                  |
| inch (in.)                                 | 25.4    | millimeter (mm)                            |
| mile (mi)                                  | 1.609   | kilometer (km)                             |
| square mile (mi <sup>2</sup> )             | 2.590   | square kilometer (km <sup>2</sup> )        |
| foot per mile (ft/mi)                      | 0.1894  | meter per kilometer (m/km)                 |
| cubic foot per second (ft <sup>3</sup> /s) | 0.02832 | cubic meter per second (m <sup>3</sup> /s) |

Temperature in degrees Fahrenheit (°F) may be converted to degrees Celsius (°C) as follows:

°C=(°F-32)/1.8.

#### DATUMS

**Vertical coordinate information** was referenced to the National Geodetic Vertical Datum of 1929 (NGVD 29).

**Horizontal coordinate information** was referenced to the North American Datum of 1927 (NAD 27).

## Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

By Janet H. Curran, David F. Meyer, and Gary D. Tasker

## ABSTRACT

Estimates of the magnitude and frequency of peak streamflow are needed across Alaska for floodplain management, cost-effective design of floodway structures such as bridges and culverts, and other water-resource management issues. Peak-streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrenceinterval flows were computed for 301 streamflowgaging and partial-record stations in Alaska and 60 stations in conterminous basins of Canada. Flows were analyzed from data through the 1999 water year using a log-Pearson Type III analysis. The State was divided into seven hydrologically distinct streamflow analysis regions for this analysis, in conjunction with a concurrent study of low and high flows. New generalized skew coefficients were developed for each region using station skew coefficients for stations with at least 25 years of systematic peak-streamflow data.

Equations for estimating peak streamflows at ungaged locations were developed for Alaska and conterminous basins in Canada using a generalized least-squares regression model. A set of predictive equations for estimating the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows was developed for each streamflow analysis region from peak-streamflow magnitudes and physical and climatic basin characteristics. These equations may be used for unregulated streams without flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics. Basin characteristics should be obtained using methods similar to those used in this report to preserve the statistical integrity of the equations.

## INTRODUCTION

Floods in Alaska have historically caused damage to towns and villages, highway infrastructure, and aquatic biota. To minimize this damage and protect the health and safety of humans and wildlife, estimates of flood frequency are incorporated in engineering design and land management. Estimates of peak streamflow (flood) magnitudes for specified frequencies at surface-water data-collection stations are compiled using standardized statistical procedures. These statistics can be coupled with physical and climatic characteristics of the drainage basins upstream from the data-collection stations to develop equations for estimating peak streamflows at sites where little or no data have been collected. Estimating equations are used across the State for critical applications including floodplain management and the cost-effective design of structures such as bridges and culverts that convey flood flows and accommodate fish passage.

Improving peak streamflow estimates requires updating the analysis as more stations become available and record lengths at existing stations increase, as improved estimates of basin characteristics become available, or as improved methods for developing the equations become available. Streamflow data for Alaska are collected by the USGS, under cooperative agreements with Federal, State, and local agencies, and by the Water Survey of Canada. This streamflow-gaging network is relatively sparse for the land area it covers, and all but seven of its stations have records shorter than 50 years. Many stations have records shorter than 10 years. The most recent floodfrequency analysis, completed for data through water year 1990 (Jones and Fahl, 1994), relaxed the record length criterion to 8 years from the more typical 10 years in order to include data for small streams-those with drainage areas less than 50 mi<sup>2</sup> (square miles) collected under a cooperative study begun in 1962. By the end of water year 1999, enough additional years of data were available at existing stations, and enough additional stations were available, to increase the record-length criterion to 10 years and update the analysis. For this reason, the U.S. Geological Survey (USGS), in cooperation with the Alaska Department of Transportation and Public Facilities, began a study to update the peak-streamflow frequency statistics for streamflow-gaging and partial-record stations in Alaska and conterminous basins in Canada and to update the regression equations for estimation of peakstreamflow frequency at ungaged sites. Although improved methods of estimating basin characteristics are also available, primarily by means of a Geographic Information System (GIS), existing digital data for Alaska and Canada are not yet extensive and these methods could not yet be implemented across the study area. GIS methods for determination of basin characteristics were implemented only for basins included in the analysis for the first time, all of which were in areas with available digital data. The results of a companion study of high-duration and low-duration flow statistics based on mean daily discharge are described in a separate report (Wiley and Curran, 2003).

#### **Purpose and Scope**

This report presents new peak-streamflow statistics for 361 streamflow-gaging stations and partial-record stations in Alaska and conterminous basins in Canada that have at least 10 years of maximum instantaneous discharge data through water year 1999 or that have 8 or 9 years of data and were used in the most recent USGS peak-streamflow analysis (Jones and Fahl, 1994). Generalized-skew coefficients developed using station skew coefficients from stations with at least 25 years of data and regression equations for estimating peak streamflow are presented for seven streamflow analysis regions spanning the State and conterminous Canadian basins. The estimating equations were developed using peakstreamflow magnitudes from 355 stations where streamflow regulation, streamflow diversion, urbanization, and natural damming and releasing of water do not affect the streamflow data. Data from Canada were included to improve the analysis of the eastern regions of Alaska. This report supersedes previous reports describing peak-streamflow frequency statistics and methods for Alaska.

#### **Previous Studies**

Five previous analyses of annual peak streamflow in Alaska are summarized in reports by Berwick and others (1964), Childers (1970), Lamke (1978), Parks and Madison (1985), and Jones and Fahl (1994). All but the earliest study used log-Pearson Type III analysis of annual peaks and multiple regression analysis with basin characteristics as independent variables. Each study subdivided the State into regions and provided a method to estimate streamflow frequency and magnitude in each region. A common region for most studies was the coastal area along the southern edge of the State (or sometimes just the southeastern portion of the coast); other regions varied.

In the most recent study of Alaska peakstreamflow frequency, Jones and Fahl (1994) followed methods recommended in Bulletin 17B of the Interagency Advisory Committee for Water Data (Interagency Advisory Committee on Water Data, 1982) for individual station and regional floodfrequency analysis. To account for the shorter records of most Alaska stations, especially those of small streams, Jones and Fahl relaxed criteria for minimum years of record from 10 to 8 years for regional regression analysis and from 25 to 22 years for generalized skew analysis. The benefit of relaxing the record-length criteria was to increase the number of stations eligible for analysis; no assessment of the gain or loss of accuracy in estimating equations was provided.

Regional regression equations were presented for each of five flood-frequency areas using data through the 1990 water year for Alaskan stations and through the 1984 calendar year for Canadian stations. Causes and characteristics of floods were described for various regions within the State and conterminous basins of Canada. Maximum known floods were both tabulated by station and plotted against drainage area to create an envelope curve for each flood-frequency area.

#### **Acknowledgments**

The assistance of Lynne Campo, Water Survey of Canada, in providing updates to Canadian streamflow data is gratefully acknowledged. USGS student employees Brent Voorhees and Brian Winnestaffer digitized drainage-basin outlines and developed methods to determine drainage-basin characteristics from Geographic Information System (GIS) coverages. Portions of the comparison of previously obtained basin characteristics with basin characteristics obtained using modified methods appear in Brian Winnestaffer's senior thesis for Alaska Pacific University.

### **DESCRIPTION OF STUDY AREA**

More than 586,000 mi<sup>2</sup> in area, Alaska encompasses geographical and climatic settings ranging from the moisture-laden, mountainous areas of the southeastern region to the dry, cold plains of the Arctic north. Alaska's streams drain the State and conterminous areas of Canada's Yukon and British Columbia provinces to the Arctic Ocean, Bering Sea, or Pacific Ocean (fig. 1). Drainage basins for stations used in regressions for this study ranged from less than 1 mi<sup>2</sup> to more than 300,000 mi<sup>2</sup>; the median drainage basin was 44 mi<sup>2</sup>.

Despite the relatively sparse network of datacollection sites in Alaska, broad patterns based on climate, geography, and geomorphology can be discerned that help explain Alaska hydrology. These patterns can largely be explained by the direction of dominant storm tracks, location of mountain ranges, and influence of coastal areas.

Most precipitation in Alaska results from storms that move northeastward from the Pacific Ocean (Lamke, 1991). Seasonal and geographic distribution of precipitation is affected by mountain ranges and variations in air temperature. The prolonged cold, dry Arctic airmass over interior Alaska in the winter decreases annual precipitation in this area of the State. Average annual precipitation ranges from more than 300 inches in southeastern Alaska, received mostly during fall and winter, to less than 10 inches in areas near the Arctic Ocean, received mostly in summer and fall, (Jones and Fahl, 1994, plate 1). Three major mountainous belts stretch across all or part of Alaska. Coastal mountains rise steeply from the southern coast; an extensive arc of high mountains consisting of the Aleutian Range, Alaska Range, and Coast Mountains spans the southern part of the State; and the Brooks Range extends across the northern part of the State near the Arctic Circle (fig. 1). Glaciers are most prevalent along the southern mountain ranges where precipitation is higher than in northern regions. Basins in coastal areas typically are small and receive large amounts of precipitation. Average basin elevations are low near the coast.

Climatic conditions that generate extended periods of high or low streamflow generally do not extend simultaneously across the State because of its size, so no statewide periods of floods or droughts have been documented. However, several regional floods have been identified since 1949, when widespread streamflow-gaging records became available. Major flooding occurred in interior Alaska in 1964, near Fairbanks in 1967 (Childers and others, 1972), in south-central Alaska in 1971 (Lamke, 1972) and 1986 (Lamke and Bigelow, 1988), along the Copper River in 1981, and in south-central Alaska and the Kenai Peninsula in 1995. Flood conditions persisted for at least 3 days during each of these major events. Maximum known floods for selected stations in Alaska through 1990 and in conterminous basins of Canada through 1984 are listed in table 6 of the report by Jones and Fahl (1994).

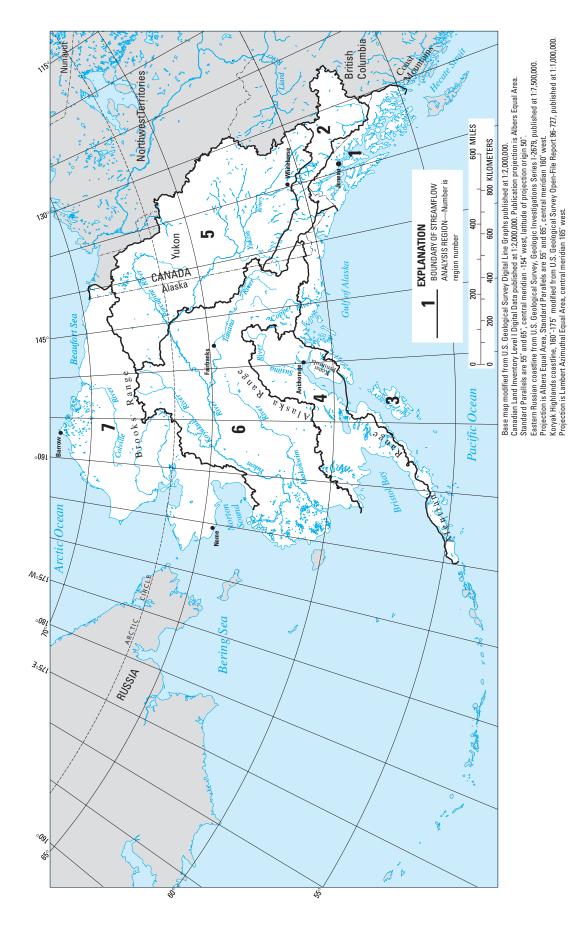



Figure 1. Physical features and streamflow analysis regions of Alaska and conterminous basins in Canada.

### DETERMINATION OF DRAINAGE-BASIN CHARACTERISTICS

Physical and climatic features of the watershed upstream of a given stream location, termed basin characteristics, can be used as independent variables to estimate streamflow statistics (Thomas and Benson, 1970). Nine basin characteristics used in the previous statewide flood-frequency analysis (Jones and Fahl, 1994) were available for all stations: drainage area, main channel slope, main channel length, mean basin elevation, area of lakes and ponds, area of forests, area of glaciers, mean annual precipitation, and mean minimum January temperature. Although all nine variables were included in the present analysis, only drainage area, mean basin elevation, area of lakes and ponds, area of forests, mean annual precipitation, and mean minimum January temperature were used in the final equations.

Previously determined basin characteristics were available for most of the stations used in the present analysis (Jones and Fahl, 1994). Definitions of the basin characteristics and the manual methods used to determine them are described by Jones and Fahl (1994) and the U.S. Geological Survey (1978) and are summarized in table 1. Basin characteristics for stations not in the Jones and Fahl (1994) report were obtained using modified methods, which are also summarized in table 1. Automated procedures for determining selected basin characteristics for new stations were created using the AML programming language with Arc/Info GIS software (Environmental Systems Research Institute, 1997). Only basin characteristics used in final equations are presented in this report; additional basin characteristics are available from the Alaska Science Center at the address shown in the front of this report.

For a statistical analysis such as the regressions performed for the present study, all data ideally should be collected in a similar manner to minimize error within individual variables. Although new methods of estimation or new sources of data for basin characteristics may produce values that more accurately represent the basin, it is best to avoid mixing such data with previously obtained data in the same analysis. However, in an effort to apply GIS technology to data-collection methods, some fundamental variations in methods and data sources were necessary. A comparison between the original and modified methods used in this and a companion study of flowduration statistics noted statistically significant differences in some basin characteristics (Wiley and Curran, 2003). Although the variability introduced into the regression analysis by using the modified methods for a few stations is small, the user should be aware that using modified methods for an individual site could introduce significant error. In general, methods used for determining basin characteristics at an ungaged site should be as consistent as possible with the methods described by Jones and Fahl (1994) and the U.S. Geological Survey (1978) and summarized in <u>table 1</u>.

## DETERMINATION OF STREAMFLOW ANALYSIS REGIONS

Dividing areas as large and geographically and climatically diverse as Alaska into smaller regions for analysis usually improves the accuracy of estimation equations. Stations within a region should have similar hydrologic characteristics, but a balance must be struck between isolating hydrologically similar regions and meeting minimum sample-size requirements for statistical analysis. Streamflow analysis regions were developed simultaneously for this study and for highduration and low-duration flow analyses (Wiley and Curran, 2003). Initial placement of stations into streamflow analysis regions was guided by hydrologic unit boundaries (U.S. Geological Survey, 1987) and regional boundaries used in previous reports, in particular the peak- flow analysis by Jones and Fahl (1994). Refinement of regional boundaries was based on the geographic distribution of basin characteristics and residuals from regression analysis of selected streamflow statistics against specific basin characteristics. Specifically, dependent variables Q<sub>100</sub> and other variables from high-duration and lowduration flow analysis (Wiley and Curran, 2003) were regressed against independent variables drainage area and mean annual precipitation. On the basis of these analyses, the State was divided into seven hydrologically distinct streamflow analysis regions (fig. 1, plate 1) for both this analysis and the flowduration analyses of Wiley and Curran. Stations physically located in one region but draining a large area in a neighboring region may be classified in the neighboring region if they are more hydrologically similar to that region.

| Basin characteristic<br>name and unit                         | Description                                                                                                                              | Estimating technique for stations included in Jones and Fahl (1994)                                                                                         | Estimating technique for stations<br>added to analysis since Jones and<br>Fahl (1994)                                                                                                                                                   |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drainage area, in square<br>miles                             | Area of the drainage basin upstream from the site                                                                                        | Basin outlined on topographic maps<br>of various scales; area determined<br>by planimeter                                                                   | Basin outlined on paper<br>topographic maps of various<br>scales; outline digitized; area<br>estimated using Arc/Info AML<br>application                                                                                                |
| Main channel length,<br>in miles                              | Length of the main channel between<br>the site and the basin divide<br>measured along the channel that<br>drains the largest basin       | Length measured manually along<br>topographic map blue lines and<br>extension to basin divide                                                               | Sum of lengths of line segments<br>representing stream on digital<br>hydrography data ( <u>http://agdc.</u><br><u>usgs.gov/data/usgs/to_geo.html</u> ),<br>plus length of line extended<br>digitally from stream end to<br>basin divide |
| Main channel slope,<br>in feet per mile                       | Average slope between points 10<br>percent and 85 percent of the<br>distance along the main channel<br>from the site to the basin divide | Main channel length measured from<br>topographic map as described<br>separately; elevation at specified<br>points estimated from topographic<br>contours    | Main channel length measured<br>from digital hydrography data as<br>described separately; elevation at<br>specified points estimated from<br>digital elevation data<br>( <u>http://agdc.usgs.gov/data/</u><br>usgs/to_geo.html)         |
| Mean basin elevation,<br>in feet                              | Mean elevation of the drainage<br>basin upstream from the site                                                                           | Grid sampling from topographic maps                                                                                                                         | Arc/Info AML application applied<br>to digital elevation data<br>( <u>http://agdc.usgs.gov/data/</u><br><u>usgs/to_geo.html</u> )                                                                                                       |
| Area of lakes and ponds,<br>in percent                        | Percentage of the total drainage area<br>shown as lakes and ponds on<br>topographic map                                                  | Planimeter measurement or grid<br>sampling of blue areas on<br>topographic map                                                                              | Sum of areas of lake and pond<br>polygons from digital<br>hydrography coverage<br>( <u>http://agdc.usgs.gov/data/</u><br><u>usgs/to_geo.html</u> )                                                                                      |
| Area of forests,<br>in percent                                | Percentage of total drainage area<br>shown as forested on topographic<br>map                                                             | Planimeter measurement or grid<br>sampling of green areas on<br>topographic map                                                                             | Digitized green areas on topographic map                                                                                                                                                                                                |
| Area of glaciers,<br>in percent                               | Percentage of total drainage area<br>shown as perennial snow or ice<br>on topographic map                                                | Planimeter measurement or grid<br>sampling of areas marked as snow<br>or ice on topographic map                                                             | Sum of areas of glacier or<br>permanent snowfield polygons<br>from digital hydrography<br>coverage ( <u>http://agdc.usgs.gov/</u><br><u>data/usgs/water/statewide.html</u> )                                                            |
| Mean annual<br>precipitation,<br>in inches                    | Mean annual precipitation averaged over drainage basin                                                                                   | Grid sampling from plate 2, Jones<br>and Fahl (1994) ( <u>http://ak.water.</u><br><u>usgs.gov/Publications/pdf.reps/</u><br><u>wrir93.4179.plate2.pdf</u> ) | Arc/Info AML application applied<br>to Arc/Info coverage of plate 2,<br>Jones and Fahl (1994)<br>( <u>http://agdc.usgs.gov/data/usgs/</u><br>water/statewide.html/)                                                                     |
| Mean minimum January<br>temperature, in<br>degrees Fahrenheit | Mean minimum January<br>temperature averaged over<br>drainage basin                                                                      | Grid sampling from plate 1, Jones<br>and Fahl (1994) ( <u>http://ak.water.</u><br><u>usgs.gov/Publications/pdf.reps/</u><br><u>wrir93.4179.plate1.pdf</u> ) | Visual estimation from plate 1,<br>Jones and Fahl (1994) for small<br>basins ( <u>http://ak.water.usgs.gov/</u><br><u>Publications/pdf.reps/</u><br><u>wrir93.4179.plate1.pdf</u> )                                                     |

 Table 1.
 Description and methods of estimation of basin characteristics used in regression analysis

Certain neighboring regions were hydrologically similar to one another for peak-flow analysis and highduration flow analysis but not for low-duration flow analysis. To avoid the confusion of multiple sets of regions, a single set of regions was used for all streamflow analyses. However, hydrologically similar regions were grouped together for development of regional equations. Grouping of regions was based on examination of regression residuals and on comparison of the standard error of the resulting equations. Specifically, Region 3 was grouped with Region 1 for peak flows and high-duration flows and with Region 4 for low-duration flows. Regions 2 and 7 each contain only 25 stations but could not logically be combined with adjoining regions.

# ESTIMATING PEAK STREAMFLOWS AT GAGED SITES

Peak-streamflow frequency estimates are computed from an annual series of peak-flow data and reported as T-year discharges, where T is a recurrence interval, or the number of years during which the discharge is expected to be exceeded once, on average. Peak-streamflow frequency is perhaps better understood as an exceedance probability, which is the reciprocal of the recurrence interval. In other words, the probability that the T-year flood will be exceeded is 1/T in every year. For example, every year the 50-year flood has a 1 in 50, or 2 percent, chance of being exceeded.

Estimates of peak-streamflow frequency are prepared by fitting the logarithms of the annual peak flows to a known statistical distribution, from which three statistics-the mean, standard deviation, and skew-are obtained. These statistics describe the midpoint, slope, and curvature of the peak-flow frequency curve, respectively. The skew coefficient measures the symmetry of the frequency distribution and is strongly influenced by the presence of one or more particularly high or low flows. The skew is positive when the mean exceeds the median, typically as a result of particularly high flows. The skew is negative when the mean is less than the median, typically as a result of particularly low flows. From the three statistics of the fitted frequency distribution, estimates of peak-streamflow magnitude for a given recurrence interval are computed using the equation:

$$\log Q_T = \overline{X} + KS , \qquad (1)$$

where

- $Q_T$  is the magnitude of the T-year recurrence interval discharge, in ft<sup>3</sup>/s;
- $\overline{X}$  is the mean of the logarithms of the annual peak streamflows;
- *K* is a factor based on the skew coefficient and the given recurrence interval; and
- *S* is the standard deviation of the logarithms of the annual peak streamflows

The Interagency Advisory Committee on Water Data (IACWD) reviewed several analysis methods and recommended a standard procedure, the log-Pearson Type III frequency distribution analysis, for federal studies of peak-streamflow frequency (Interagency Advisory Committee on Water Data, 1982). IACWD's Bulletin 17B summarizes the recommendations and discusses adjustments to the distribution that take advantage of additional information regarding the station record and the characteristics of nearby stations having long periods of record. The USGS computer program PEAKFQ automates many of the analysis procedures recommended in Bulletin 17B, including identifying high and low outliers, adjusting for historic periods and low outliers, weighting station skews with generalized skew, and fitting a log-Pearson Type III distribution to the streamflow data. PEAKFQ and the software used to load input data and display output data—IOWDM and ANNIE (Flynn and others, 1995)—are available at http://water.usgs.gov/software/ surface water.html.

PEAKFQ was used to compute streamflow magnitudes for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence intervals for 301 stations in Alaska and 60 stations in conterminous basins in Canada. These stations had at least 10 years of record, except for 22 stations that had 8 or 9 years of record but were included in the most recent statewide analysis (Jones and Fahl, 1994). Station locations are shown in plate 1 and station information and streamflow statistics are presented in table 4 (at back of report). The specific water years for peaks used in the analyses of this report are listed in Appendix A. The following sections discuss data collection; adjustment for historic peaks, low outliers, and conditions not correlated to basin characteristics; and development and application of generalized skew for the present study.

#### **Data Collection**

Streamflow data for Alaska were collected by the USGS in accordance with methods described by Rantz and others (1982). Streamflow data for Canada were collected by the Water Survey of Canada. Canadian data-collection methods are described in a series of internal manuals referred to collectively as the Hydrometric Data Computation Procedures Manual (Lynne Campo, Water Survey of Canada, written communication, 2002). These methods are similar or equivalent to USGS methods. Daily mean discharge and annual peak streamflows for USGS streamflow-gaging stations in Alaska are available at http://waterdata.usgs.gov/ak/nwis/ or by contacting the Alaska Science Center at the address listed at the front of this report. Canadian streamflow data are available from Environment Canada (Environment Canada, 2002).

Data were collected at two types of station streamflow-gaging stations and partial-record stations. At streamflow-gaging stations, stage (water-level) data are collected on a continuous basis or at time intervals short enough to determine daily mean discharge. At partial-record stations, also termed crest-stage partialrecord stations, stage data are collected as discrete measurements on an infrequent basis. At both types of stations, a rating curve developed from discharge measurements over a range of flows relates the stage data collected, regardless of frequency, to discharge. Annual peak discharge is determined from the maximum instantaneous stage recorded in a year.

For all Alaskan stations, data typically consisted of annual maximum instantaneous discharge for each water year (October 1 through September 30). Canadian data are collected on a calendar-year basis but were converted to a water-year basis to develop the annual series. For many or all years for 10 large Canadian rivers, maximum instantaneous discharge is not available. For these rivers, annual maximum daily mean discharge is within 5 to 10 percent of maximum instantaneous peak discharge, based on comparisons for years when both values were available, and was used as its surrogate. This bias toward smaller discharge for selected stations is expected to be minor relative to other errors in the analysis.

#### **Data Adjustment**

Data from stations having at least 10 years of systematic record, or 8 or 9 years of record for stations included in the most recent statewide analysis (Jones and Fahl, 1994), were carefully inspected for data quality and omitted if unsuitable. Preliminary plots of the fit of the log-Pearson Type III frequency distribution to the data then were visually inspected for outliers, non-homogeneities, and trends that would invalidate statistical procedures. Data adjustments included omission of selected peak flows, omission of entire stations, adjustments for historic peaks and high and low outliers, estimation of peaks noted as less than a known value, separation of parts of records affected by regulation or glacial phenomena, and weighting station and generalized skew as described in the following sections. Appendix A lists the water years for peaks used in the final analyses.

Station 15236900, Wolverine Creek near Lawing, Alaska, was included in a previous study (Jones and Fahl, 1994) but was omitted from the present study after a review indicated that streamflow data had a quality rating of "poor" because of changing streambed conditions. Nine Canadian stations from Jones and Fahl's (1994) study—stations 15305040, 15305380, 15305385, 15305405, 15305411, 15305545, 15305673, 15305692, and 15305693—were omitted because the streamflow data could not be verified.

Standard flood-frequency analyses assume that streamflow data are from a single statistical population. Floods in Alaska are most commonly caused by snowmelt or rainfall, but they also can be caused by glacier icemelt, rainfall on snow, rapid melting of snow and ice during volcanic eruptions, periodic release and damming of water behind glacial ice, and the sudden release of water from breached dams of glacial ice, river ice, avalanche debris, or rock and debris. A distinction between (1) snowmelt or icemelt and (2)rainfall or rain-on-snow floods has only been recorded since 1989, making an analysis of the extent of separation between these populations impractical. Visual inspection of frequency distributions for selected representative stations with both types of peaks did not show a break in the curve that would suggest the presence of a mixed population.

Peaks from volcanic eruptions have occurred but have not been captured in gaged records. Isolated natural dam breaks were omitted from the record unless they affected less than about 5 percent of the flow. Stations with repeated natural dam breaks, such as those with regular glacial outbursts, were few and were included in the flood-frequency analysis but were omitted from regional regressions as discussed in a following section.

#### High Outliers and Historic Peak Discharges

Large peak discharges that occur within the systematic record, defined as the period over which streamflow data are collected regularly without regard to streamflow conditions, are termed high outliers. Large peak discharges also can occur outside the systematic record but within the historical record, defined as the systematic record plus any period over which streamflow data are collected on a one-time basis for specific events. These isolated measurements are termed historic peaks. If it is known that a historic peak is the largest peak in a period extending beyond the length of the systematic record, the frequency distribution can be adjusted, resulting in an appropriately longer recurrence interval for the highest discharges. For the purposes of this historical adjustment, high outliers are treated as historic peaks, except that high outliers are also treated as part of the systematic record. For example, if it is known that the largest peak (either a historic peak or high outlier) at a station with 20 years of peak-streamflow data exceeded all other floods in the preceding 50 years, the historic period of 50 years will be used to lengthen the recurrence interval for that discharge, drawing down the frequency curve. Conversely, the estimate of the 100-year flood at that site will be decreased relative to that expected without the historic period information.

All Alaska stations with high outliers and historic peaks were reviewed and historic periods were assigned or revised wherever possible. Where flooding affected a widespread area, the historic period determined for one station was extended to others in the vicinity. Historic periods assigned to historic peaks and high outliers are shown in <u>Appendix A</u>. Canadian stations could not be adjusted for historic peaks and high outliers because no data regarding historic periods were available. Where no historic period could be established for a historic peak, or where historic peaks were smaller than peaks within the systematic record, the peak was dropped from analysis. Where no historic period could be established for a high outlier, the peak was retained in the systematic record but no adjustments were made.

#### Low Outliers

Peak discharges below a station-specific threshold value are termed low outliers. Low outliers can disproportionately influence the statistics of the frequency distribution by increasing standard deviation (slope) and decreasing skew coefficients (curvature). Bulletin 17B (Interagency Advisory Committee on Water Data, 1982) recommends censoring low outliers and applying a conditional-probability calculation to the remaining peaks. Low outliers were treated using the default options in PEAKFQ, which automatically screens for low outliers and applies the recommended adjustments.

#### Discharges Recorded as Less Than a Known Value

Selected peaks at stations 15283500, 15303010, and 15518100 were flagged as less than the indicated value, a condition that typically occurs when a minimum recordable value is not exceeded. Although these flagged peaks could be omitted, this results in a selective censoring of low discharges. Based on estimates of likely ranges of actual values, these peaks were reduced by 10 percent and kept in the systematic record. Sensitivity to this reduction was analyzed for each station involved. Lower Panguingue Creek near Lignite, Alaska, (station 15518100) was omitted from the final analysis because results were strongly affected by the reduction in peak magnitude.

#### Data Not Correlated to Basin Characteristics

Peaks regulated by dams or diversions, controlled by certain glacial phenomena, or in basins with indeterminate drainage areas cannot be correlated to basin characteristics. Flows at these stations can still be analyzed by fitting to a frequency distribution but cannot be related to adjacent stations or used to develop predictive equations based on physical and climatic characteristics of the basin. Stations subject to these conditions are footnoted in the "Station No." column of <u>table 4</u>. Station skew is not weighted with generalized skew to compute flood-frequency statistics for these stations. Equation-based or weighted estimates of peak streamflow statistics are not appropriate for these stations.

Specific treatment of regulated stations depended on the nature, length, and timing of regulation. If streamflow regulation or diversion affected low flows but not peak flows, regulated stations were included as if unregulated. For peak records affected by regulation, known dates of regulation were used to segregate the period of record. Any period, regulated or unregulated, with at least 10 years of record was analyzed separately. Unregulated periods were included in the regression analysis. Only one station, Kenai River (station 15258000), met the record-length requirement for both a regulated and unregulated period. Two entries are given for this station in <u>table 4</u>. Kenai River is also subject to glacial-outburst floods, so its unregulated period was not included in the regression analysis. All presently regulated stations are noted with an "R" in the "Station No." column of table 4, regardless of whether regulation was in effect during the period of record.

Glacier-related controls on streamflow include glacial-outburst floods, caused when ice dams ponding water suddenly burst, and periods of low flow caused as ice-dammed lakes fill. The effect of these phenomena depends on factors such as the location of bedrock constrictions and relative positions of main and tributary glaciers, which cannot be summarized by the available basin characteristic, the area of the basin covered by glaciers. As for streamflow regulation, known dates of glacier-controlled streamflow were used to segregate the period of record when possible. Glacier-controlled peaks were treated as for peaks from snowmelt or precipitation because a visual examination suggested that they fit a log-Pearson Type III distribution. Periods controlled by glaciers were analyzed, but because the peak streamflows lack correlation with basin characteristics, these periods were omitted from regression analysis. Uncontrolled periods were included in the regression analysis. Only one station, Knik River (station 15281000), met the record-length requirement for both a glacier-controlled and uncontrolled period. Two entries are given for this station in <u>table 4</u>.

#### **Generalized Skew Coefficients**

The skew coefficient for an individual station is sensitive to particularly high or low streamflows in the record, especially for stations with short periods of record. To improve the estimate of the skew coefficient for an individual station, the IACWD's Bulletin 17B recommends that a generalized skew computed from nearby long-term stations be used to weight individual station skews within that region (Interagency Advisory Committee on Water Data, 1982). Although generalized skew can be obtained from Bulletin 17B's national generalized skew coefficient map, improved estimates can be obtained by one of three methods recommended by the IACWD: (1) a more detailed map developed from study-specific station skews, (2) a prediction equation developed by regressing station skews against basin characteristics, and (3) an average of station skews within a region. As with the most recent Alaska peak-streamflow frequency analysis (Jones and Fahl, 1994), no contours could be developed from plotted station skews and adequate prediction equations could not be developed from regression. The third method, averaging station skews, was adopted for each region across the study area.

Station skews for stations with at least 25 years of systematic peak-streamflow data were averaged to obtain generalized skews within each of the seven streamflow analysis regions defined for this study. The IACWD recommends that at least 20 stations be used to develop generalized skew within a region. Because station skews from fewer than 20 stations were used for Regions 2 and 7, streamflow statistics for these sparsely represented regions should be interpreted cautiously.

Station skews used to compute regional averages reflect adjustments for historic peaks and high and low outliers, as described previously. Station skews also were adjusted for bias resulting from record length in accordance with procedures described by Tasker and Stedinger (1986). A nearly unbiased estimate of the population skew coefficient,  $G_g$ , can be obtained from the station skew, G, and the record length, n, using the following equation:

$$G_g = \left(1 + \frac{6}{n}\right)G\tag{2}$$

The standard error of the generalized skew was computed as the standard deviation of  $G_g$  for stations with at least 25 years of record within each region.

All stations shown in table 4 with 25 or more years of record, with the exception of station 15485500, which has an indeterminate drainage area, were included in the generalized skew analysis. Of the 134 stations meeting the criteria, 99 stations are located in Alaska and 35 are in Canada. The number of stations used in each region, the range of  $G_g$ , and the generalized skew and standard error of the generalized skew are summarized in table 2.

Weighted skew coefficients are computed by weighting the generalized skew coefficient and the station skew coefficient in inverse proportion to their mean square errors (Interagency Advisory Committee on Water Data, 1982). This provides a better estimate of the skew coefficient for basins that can be correlated to basin characteristics (that is, those not regulated or subject to glacier-affected flow phenomena). The station skew is not weighted for regulated or glaciercontrolled stations because the generalized skew is not representative of these sites. The generalized skew and standard error of the generalized skew shown in table 2 were used in the PEAKFQ program to weight skews automatically.

 Table 2.
 Generalized skew and summary statistics for Regions 1-7,

 Alaska and conterminous basins in Canada

| Streamflow<br>analysis<br>region | Number of<br>stations<br>with at<br>least 25<br>systematic<br>peaks | Minimum<br>unbiased<br>station<br>skew<br>( <i>Gg</i> ) | Maximum<br>unbiased<br>station<br>skew<br>( <i>Gg</i> ) | General<br>-ized<br>skew<br>( <del>G</del> ) | Standard<br>error of<br>the<br>general-<br>ized<br>skew<br>( <i>SE</i> G) |
|----------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------|
| 1 and 3                          | 23                                                                  | -0.646                                                  | 2.09                                                    | 0.16                                         | 0.62                                                                      |
| 2                                | 14                                                                  | -1.20                                                   | 2.62                                                    | .31                                          | .96                                                                       |
| 4                                | 26                                                                  | 905                                                     | 2.05                                                    | .60                                          | .81                                                                       |
| 5                                | 25                                                                  | 696                                                     | 1.22                                                    | .28                                          | .48                                                                       |
| 6                                | 39                                                                  | -1.41                                                   | 2.10                                                    | .13                                          | .76                                                                       |
| 7                                | 7                                                                   | -1.90                                                   | .336                                                    | 52                                           | .70                                                                       |

# REGIONAL EQUATIONS FOR ESTIMATING PEAK STREAMFLOWS

Estimated flow statistics are often needed for streams where no data have been collected. If sufficient records are available from a group of streamflowgaging stations within a region, a regression model can be developed from flow statistics and basin characteristics for the stations. Regression equations can then be used to estimate flow statistics at ungaged sites where basin characteristics can be measured.

#### **Regression Analysis**

Multiple-linear regression analysis is used to determine which of several basin characteristics (the independent variables) best explain, statistically, the variations in the flow statistic (the dependent variable). Regression analysis is also used to develop the final equations that relate the dependent and selected independent variables. Ordinary-least-squares regression (OLS), a common form of regression analysis, was used for preliminary analyses in this study. Generalized-least-squares regression (GLS), a more specialized method of regression that accounts for time-sampling error (a function of record length) and cross-correlation between stations close together, was used to develop final equations. GLS assigns different weights to each observation based on its contribution to total variance (Tasker and Stedinger, 1989).

Streamflow data and basin characteristics generally are log-normally distributed, so all data were log-transformed (base 10) before analysis. This required the addition of a constant value of 1 percent to all percentage data and 32 degrees (Fahrenheit) to temperature data because values equal to or less than 0 cannot be log-transformed. The commercial statistics and data-management software S-Plus (MathSoft, Inc., 1999) was used to perform a backward and forward stepwise multiple-linear regression of the 100-year flood,  $Q_{100}$ , against all available basin characteristics (table 1) to determine suitable independent variables for each streamflow analysis region. An independent analysis using an all-subsets regression in S-Plus produced the same suite of independent variables. Independent variables were further screened for statistical significance, logical relation to streamflow in that area, and correlation with other variables. Variables were dropped if the equation's standard error fell by less than 5 percent (arbitrarily chosen as the point of diminishing returns), or if the variable could not be correlated logically to streamflow in that particular area. Correlation with other variables was not a concern once the other two criteria were met.

GLS regression was used to evaluate the models suggested by the preliminary OLS regressions. The computer program GLSNET, available at <u>http://water.</u> <u>usgs.gov/software/surface\_water.html</u>, was used for all GLS regressions. Independent variables were dropped or retained on the basis of the results of GLS regression, with a bias toward dropping variables where improvement was marginal. Final equations were developed with GLS for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence-interval peak streamflow in each region using one to four independent variables (<u>table 3</u>). Ranges of variables used in the final equations are shown in <u>table 3</u>.

#### Accuracy and Limitations of Estimating Equations

The adequacy of the estimating equations can be evaluated by two measures, the average standard error of prediction and the equivalent years of record (table  $\underline{3}$ ). The standard error of prediction is a measure of the accuracy of a streamflow statistic for an ungaged site estimated from the regression equations. Errors in the estimates for about two-thirds of the ungaged sites will be within the given standard errors. The standard error of prediction is derived from the model error and sampling error as the square root of the sum of the mean-square error of the model and the mean-square sampling error. The model error is associated with the entire model and remains constant for each site. The sampling error results from estimating model parameters from samples of the population, and therefore varies from site to site. The standard error of prediction error for an ungaged site can be computed from the matrices and matrix algebra procedures described in <u>Appendix B</u> or from a computer program available at http://pubs.water.usgs.gov/wri034188. The average standard error of prediction for an equation can be computed by assuming that the gaged sites within a

region form a representative sample of all sites and then averaging their sampling error. The average standard error of prediction is computed in log units and converted to percent error for each equation in each region (table 3). Average standard errors of prediction for individual equations ranged from 27 to 66 percent. Maximum and minimum standard errors for each regression equation, in percent, can be computed from the following equations:

maximum average standard error of  
prediction = 
$$100(10^{ASEP} - 1)$$
 (3)

minimum average standard error of  
prediction = 
$$100(10^{-ASEP} - 1)$$
, (4)

where

ASEP is the average standard error of prediction, in log units.

A second measure of predictive ability of each equation is the equivalent years of record, or the number of years of systematic streamflow data that would have to be collected for a given site to estimate the streamflow statistic with accuracy equivalent to the estimate from the regression equation (see <u>Appendix</u> <u>B</u>). Average equivalent years of record for individual equations ranged from 0.35 to 7.4 years (table 3).

The adequacy of a prediction for an ungaged site can be evaluated by the site-specific standard error of prediction, equivalent years of record, and a third measure, the confidence limits of the prediction, or prediction interval (see <u>Appendix B</u>). Along with the first two site-specific values, the 5-percent and 95percent confidence limits (the 90-percent prediction interval) must be generated for a particular prediction. A computer program is provided at <u>http://</u> <u>pubs.water.usgs.gov/wri035188</u> to compute these values. **Table 3**.
 Regression equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows for unregulated streams in Regions 1-7, Alaska and conterminous basins in Canada

 $[Q_T, T$ -year peak streamflow, in cubic feet per second; A, drainage area, in square miles; ST, area of lakes and ponds (storage), in percent; P, mean annual precipitation, in inches; J, mean minimum January temperature, in degrees Fahrenheit; E, elevation, in feet; F, area of forest, in percent]

| Average<br>standard<br>error of<br>prediction<br>(log units) | Average<br>standard<br>error of<br>prediction<br>(percent)                                                                                                                                                                                                                         | Average<br>equivalent<br>years of<br>record                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.158                                                        | 38                                                                                                                                                                                                                                                                                 | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a tan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| .156                                                         |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mate man the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>5</sup> 3 6 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| .166                                                         | 40                                                                                                                                                                                                                                                                                 | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .171                                                         | 41                                                                                                                                                                                                                                                                                 | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .178                                                         | 43                                                                                                                                                                                                                                                                                 | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .188                                                         | 45                                                                                                                                                                                                                                                                                 | 3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .121                                                         | 28                                                                                                                                                                                                                                                                                 | .82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for many the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| .116                                                         | 27                                                                                                                                                                                                                                                                                 | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 mg my the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .119                                                         | 28                                                                                                                                                                                                                                                                                 | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .129                                                         | 30                                                                                                                                                                                                                                                                                 | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | for the second s |
| .141                                                         | 33                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the second of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .154                                                         | 37                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | They so the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| .168                                                         | 40                                                                                                                                                                                                                                                                                 | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .189                                                         | 46                                                                                                                                                                                                                                                                                 | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E and a second s |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                              |                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .177                                                         | 42                                                                                                                                                                                                                                                                                 | .98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | formany                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .162                                                         | 39                                                                                                                                                                                                                                                                                 | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 57 mg mg h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| .159                                                         | 38                                                                                                                                                                                                                                                                                 | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| .164                                                         | 39                                                                                                                                                                                                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A Company of the comp |
| .172                                                         | 41                                                                                                                                                                                                                                                                                 | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .183                                                         | 44                                                                                                                                                                                                                                                                                 | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .194                                                         | 47                                                                                                                                                                                                                                                                                 | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| .212                                                         | 52                                                                                                                                                                                                                                                                                 | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Et "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                              | standard<br>error of<br>prediction<br>(log units)<br>0.158<br>.156<br>.157<br>.161<br>.166<br>.171<br>.178<br>.188<br>.188<br>.121<br>.116<br>.119<br>.129<br>.141<br>.154<br>.168<br>.189<br>.141<br>.154<br>.168<br>.189<br>.177<br>.162<br>.159<br>.164<br>.172<br>.183<br>.194 | standard<br>error of<br>prediction<br>(log units)         standard<br>error of<br>prediction<br>(percent)           0.158         38           .156         37           .157         37           .161         38           .166         40           .171         41           .178         43           .188         45           .121         28           .116         27           .119         28           .129         30           .141         33           .154         37           .168         40           .189         46           .177         42           .162         39           .159         38           .164         39           .172         41           .183         44           .194         47 | standard<br>error of<br>prediction<br>(log units)standard<br>error of<br>prediction<br>(percent)Average<br>equivalent<br>years of<br>record0.158380.88.156371.3.157371.8.161382.4.166402.8.171413.1.178433.4.188453.6.12128.82.116271.5.119282.0.129302.5.141332.7.154372.7.168402.7.189462.6.17742.98.162392.2.159383.5.164395.0.172415.9.183446.6.194477.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

**Table 3**.
 Regression equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows for unregulated streams in Regions 1-7, Alaska and conterminous basins in Canada–*Continued*

 $[Q_T, T$ -year peak streamflow, in cubic feet per second; A, drainage area, in square miles; ST, area of lakes and ponds (storage), in percent; P, mean annual precipitation, in inches; J, mean minimum January temperature, in degrees Fahrenheit; E, elevation, in feet; F, area of forest, in percent]

| Regression equation for specified recurrence interval $a_T$                                                                                                                                                                                                                                                                                                                                                                      | Average<br>standard<br>error of<br>prediction<br>(log units) | Average<br>standard<br>error of<br>prediction<br>(percent) | Average<br>equivalent<br>years of<br>record |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Region 5 (44 gaging stations)                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              |                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Applicable range of variables:                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |                                                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A: 1.02–114,000; ST: 0–30; E: 1,200–4,540; F: 12–100                                                                                                                                                                                                                                                                                                                                                                             |                                                              |                                                            |                                             | . 🌣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Q_2 = 13,640 A^{1.032} (ST+1)^{-0.5391} E^{-0.5970} (F+1)^{-0.7154}$                                                                                                                                                                                                                                                                                                                                                            | 0.260                                                        | 66                                                         | 0.35                                        | and and a second |
| $Q_5 = 126,000 A^{0.9885} (ST+1)^{-0.5702} E^{-0.8275} (F+1)^{-0.6327}$                                                                                                                                                                                                                                                                                                                                                          | .234                                                         | 58                                                         | .67                                         | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Q_{10} = 395,300 A^{0.9641} (ST+1)^{-0.5856} E^{-0.9496} (F+1)^{-0.5769}$                                                                                                                                                                                                                                                                                                                                                       | .221                                                         | 54                                                         | 1.1                                         | 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Q_{25} = 1,256,000 A^{0.9384} (ST+1)^{-0.6004} E^{-1.075} (F+1)^{-0.5128}$                                                                                                                                                                                                                                                                                                                                                      | .210                                                         | 51                                                         | 1.7                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Q_{50} = 2,518,000 A^{0.9228} (ST+1)^{-0.6088} E^{-1.150} (F+1)^{-0.4708}$                                                                                                                                                                                                                                                                                                                                                      | .210                                                         | 51                                                         | 1.7                                         | the man and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Q_{100} = 4,532,000 A^{0.9095} (ST+1)^{-0.6158} E^{-1.215} (F+1)^{-0.4329}$                                                                                                                                                                                                                                                                                                                                                     | .202                                                         | 49                                                         | 2.8                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Q_{200} = 7,526,000 A^{0.8979} (ST+1)^{-0.6219} E^{-1.270} (F+1)^{-0.3981}$                                                                                                                                                                                                                                                                                                                                                     | .201                                                         | 49                                                         | 3.3                                         | Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Q_{500} = 13,440,000 A^{0.8846} (ST+1)^{-0.6292} E^{-1.335} (F+1)^{-0.3554}$                                                                                                                                                                                                                                                                                                                                                    | .203                                                         | 49                                                         | 4.0                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Region 6 (97 gaging stations)<br>Applicable range of variables:<br>A: 1.29-321,000; ST: 0-15; F: 0-100<br>$Q_2 = 52.87 A^{0.8929} (ST+1)^{-0.2676} (F+1)^{-0.3076}$<br>$Q_5 = 88.08 A^{0.8479} (ST+1)^{-0.2596} (F+1)^{-0.2648}$<br>$Q_{10} = 115.7 A^{0.8253} (ST+1)^{-0.2579} (F+1)^{-0.2443}$<br>$Q_{25} = 154.8 A^{0.8026} (ST+1)^{-0.2585} (F+1)^{-0.2243}$<br>$Q_{50} = 186.7 A^{0.7885} (ST+1)^{-0.2599} (F+1)^{-0.2124}$ | .172<br>.176<br>.185<br>.199<br>.211                         | 41<br>42<br>45<br>48<br>52                                 | 1.8<br>2.5<br>3.2<br>3.9<br>4.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Q_{100} = 220.6 A^{0.7764} (ST+1)^{-0.2616} (F+1)^{-0.2023}$                                                                                                                                                                                                                                                                                                                                                                    | .223                                                         | 55                                                         | 4.6                                         | A start 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $Q_{200} = 256.6 A^{0.7656} (ST+1)^{-0.2636} (F+1)^{-0.1935}$                                                                                                                                                                                                                                                                                                                                                                    | .235                                                         | 58                                                         | 4.8                                         | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Q_{500} = 307.7 A^{0.7530} (ST+1)^{-0.2662} (F+1)^{-0.1833}$                                                                                                                                                                                                                                                                                                                                                                    | .252                                                         | 63                                                         | 5.0                                         | Exercition and the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Region 7 (25 gaging stations)<br>Applicable range of variables:<br>A: 1.13-9,520<br>$Q_2 = 28.07 A^{0.8916}$                                                                                                                                                                                                                                                                                                                     | .212                                                         | 52                                                         | 1.3                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $Q_5 = 47.51 \ A^{0.8691}$                                                                                                                                                                                                                                                                                                                                                                                                       | .204                                                         | 50                                                         | 1.5                                         | 1 may like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $Q_{10} = 61.00 A^{0.8588}$                                                                                                                                                                                                                                                                                                                                                                                                      | .203                                                         | 49                                                         | 1.9                                         | 6 3 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Q_{25} = 78.33 A^{0.8486}$                                                                                                                                                                                                                                                                                                                                                                                                      | .205                                                         | 50                                                         | 2.5                                         | A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $Q_{50} = 91.29  A^{0.8424}$                                                                                                                                                                                                                                                                                                                                                                                                     | .208                                                         | 51                                                         | 3.0                                         | y ma and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Q_{100} = 104.2  A^{0.8370}$                                                                                                                                                                                                                                                                                                                                                                                                    | .211                                                         | 52                                                         | 3.3                                         | the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Q_{200} = 117.1 A^{0.8322}$                                                                                                                                                                                                                                                                                                                                                                                                     | .216                                                         | 53                                                         | 3.6                                         | A CALLER STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $Q_{500} = 134.2 \ A^{0.8266}$                                                                                                                                                                                                                                                                                                                                                                                                   | .223                                                         | 55                                                         | 3.9                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

These accuracies are applicable for use of the equations within the limitations of the causes of peak streamflows and the ranges of basin characteristics used for equation development. The estimating equations presented in <u>table 3</u> can be used for estimating flow in streams in Alaska and conterminous basins in Canada that are not affected by natural or anthropogenic streamflow regulation. Streamflow in basins with urbanization, flow diversions, dams, periodically releasing glacial impoundments, or other streamflow conditions not correlated to basin characteristics cannot be estimated accurately with these equations. The accuracy given for each equation is only valid when the equations are used for sites with values of independent variables that fall within the ranges in table 3.

Additional data collection and careful interpretation may be required for use of the equations in sparsely represented regions. Equations for Region 7 (the Arctic north and northwest Alaska) must be used with particular caution because the equations were developed using a small number of stations over a very wide area, which limits their statistical validity. These equations most closely represent the hydrologic conditions that have occurred at existing gaging stations; however, gaging-station conditions may not be representative of ungaged sites in the region. Sites with a short period of record may be weighted with the regional estimating equations to provide an improved estimate. Equations for neighboring regions may be used to perform a sensitivity analysis for critical applications.

Estimates have been provided for long recurrence-interval peaks (that is, the 200-year and 500-year peak streamflow) to help users comply with design requirements. However, these values should be used with caution in all regions because record lengths may not be long enough to fully support extrapolation to this long a recurrence interval. Additional sitespecific studies, such as a survey of paleoflood indicators, may be required to support these estimates for critical applications.

## PROCEDURES FOR ESTIMATING PEAK STREAMFLOW MAGNITUDE AND FREQUENCY

Within the limitations previously described, the flow statistics and equations presented in this report can be used to estimate peak-streamflow magnitude for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flows for gaged and ungaged streams throughout the State. Procedures for using this report to estimate peak streamflow at streamflow-gaging or partial-record stations and several types of ungaged sites follow.

1. Gaged Sites. Estimates of peak-streamflow magnitude for a given recurrence interval T can be read directly from <u>table 4</u> for the streamflowgaging or partial-record stations. Three estimates are provided: the value obtained using observed station data with a weighted skew coefficient  $(Q_{Tsta})$ , the value obtained using the regional regression equations  $(Q_{Treg})$ , and a weighted value  $(Q_{Twtd})$ , where weights are based on the years of observed data at the station (*N*) and the equivalent years of record for the regional regression equation (EYR) based on the following formula:

$$\log Q_{Twtd} = \frac{\log Q_{Tsta} N + \log Q_{Treg} EYR}{N + EYR}$$
(5)

In general, the weighted value provides the best estimate of peak streamflow, especially for stations with a short period of record.

For gaged sites with at least 5 years of record, formula 5 may be used to weight the observed data with the regression equation. The equivalent years of record for a particular site can be computed from procedures and information in <u>Appendix B</u> or from the computer program available at <u>http://pubs.water.usgs.gov</u> /wri034188.

For gaged sites with less than 5 years of record, the site should be treated as an ungaged site (Jones and Fahl, 1994). The appropriate regression equations for the given streamflow analysis region should be applied using one of the methods below.

- 2. Ungaged sites. The regression equations developed for this study from many hydrologically similar stations over a range of years are recommended for estimating discharge at ungaged sites. The errors presented for these equations are valid only if the equations are used according to the procedures described in this report. For ungaged sites having a drainage area in only one region and that are not near a streamflow-gaging station on the same stream, basin characteristics can be determined from a topographic map (or from digital data, as described in <u>table 1</u>) and from the precipitation map on plate 2 of Jones and Fahl (1994), available at: <u>http://ak.water.usgs.gov/</u> Publications/pdf.reps/wrir93.4179.plate2.pdf in PDF form and at <a href="http://agdc.usgs.gov/data/usgs/">http://agdc.usgs.gov/data/usgs/</a> water/statewide.html as a GIS polygon coverage. If basin characteristics for the ungaged site are within the range of the basin characteristics shown in <u>table 3</u>, they can then be substituted into the equations from <u>table 3</u> for the appropriate region.
- 3. Ungaged sites in two regions. For ungaged sites having a drainage area that falls in two regions, basin characteristics for the entire basin can be determined as described in (2) and substituted into equations from <u>table 3</u> for each region. The two estimates then should be weighted by the respective drainage area in each region using the equation:

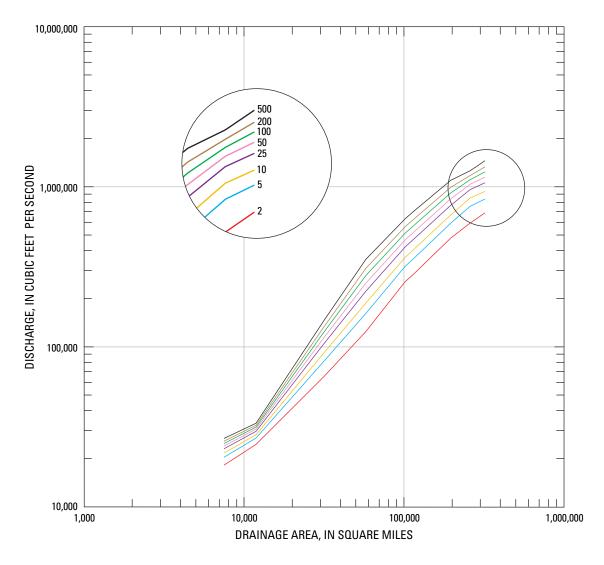
$$Q_T = \frac{Q_{T1}A_1 + Q_{T2}A_2}{A_1 + A_2} \tag{6}$$

where

 $Q_T$  is the area-weighted flow statistic;

- $Q_{T1}$  is the value for the flow statistic if the entire basin were located in Region 1;
- $A_1$  is the drainage area in Region 1;
- $Q_{T2}$  is the value for flow statistic if the entire basin were located in Region 2; and
- $A_2$  is the drainage area in Region 2.
- 4. Ungaged sites on gaged streams. For ungaged sites on a gaged stream having a drainage area between 50 and 150 percent of the drainage area of the streamflow-gaging station, the estimate from the streamflow-gaging station obtained as for (1) and the estimate for the ungaged site obtained as for (2)

or (3) can be weighted for an improved estimate (Guimaraes and Bohman, 1991; Stamey and Hess, 1993). The weighted estimate for the ungaged site is computed as:


$$Q_{T(u)wtd} = \frac{2\Delta A}{A_g} Q_{T(u)reg} + \left(1 - \frac{2\Delta A}{A_g}\right) \frac{A_u}{A_g} Q_{T(g)wtd}$$
(7)

where

- $Q_{T(u)wtd}$  is the weighted estimate of peakflow magnitude  $Q_T$  for recurrence interval T at the ungaged site;
  - $\Delta A$  is the absolute value of the difference between the drainage area for the gaged site ( $A_g$ ) and the drainage area for the ungaged site ( $A_u$ ),  $|A_g-A_u|$ ;
- $Q_{T(u)reg}$  is the estimate of  $Q_T$  for the ungaged site computed from the regression equations in <u>table 3</u> and methods 2 or 3 above for the appropriate streamflow analysis region(s); and
- $Q_{T(g)wtd}$  is the weighted estimate of  $Q_T$  for the gaged site, obtained from the "Wttd" row in table 4.

This procedure was adopted to remain consistent with methods used by the National Flood Frequency program (Ries and Crouse, 2002). It produces results similar to those obtained using the procedure in Jones and Fahl (1994).

5. Sites along the Yukon River. Although the regression equations are valid for sites along the Yukon River, determining the full suite of basin characteristics for an ungaged site with such a large drainage area requires considerable effort. In addition, the overwhelming influence of drainage area for basins this large limits the usefulness of other basin characteristics for predicting flood frequency. As an alternative, the graphical relation of peak streamflow to drainage area (fig. 2) may be used to estimate peak-streamflow statistics for sites along the Yukon River. These curves were developed from data for Yukon River streamflow-gaging stations with at least 20 years of record.



**Figure 2**. Relation of discharge to drainage area for selected recurrence intervals for the Yukon River, Alaska and Canada.

#### **Example Applications**

Examples of computation of peak-streamflow statistics for a selected recurrence interval are provided for a gaged site, an ungaged site, an ungaged site in two regions, and an ungaged site on a gaged stream. For each example, it is assumed that the user has determined that the hydrologic characteristics of the stream are within the limitations of the regional regression equations described in the "Accuracy and Limitations" section.

#### Example 1 - Gaged Site

Determine the peak discharge having a 50-year recurrence interval for the Nenana River near Healy, gaging station 15518000.

From <u>table 4</u>, the weighted 50-year peak discharge is:  $Q_{50wtd} = 41,800 \text{ ft}^3/\text{s}$ 

This value was computed from formula 5, which weights the 50-year peak discharge based on station observations (42,100 ft<sup>3</sup>/s) with the 50-year peak discharge based on the regional regression equations for Region 6 (37,800 ft<sup>3</sup>/s), in proportion to the 29 years of record at the station (from <u>table 4</u>) and the 1.9 equivalent years of record for the regression equation (from the computer program). Note that substituting the published  $Q_{50sta}$  and  $Q_{50reg}$  into formula 5 will result in a slightly different value than the published  $Q_{50wtd}$  because of differences in rounding.

#### Example 2 - Ungaged Site

Determine the 100-year peak discharge for the Tok River at the Alaska Highway bridge, which has the following basin characteristics:

Latitude  $63^{\circ}19'4''$ , longitude  $142^{\circ}50'0''$ Drainage area =  $912 \text{ mi}^2$ Area of lakes and ponds = 2 percent

Area of forests = 38 percent

From Plate 1 and the site's latitude and longitude, this site is in Streamflow Analysis Region 6. From <u>table</u> <u>3</u>, the basin characteristics for the Tok River are within the range of values used to develop equations for Region 6. The 100-year peak discharge is estimated by substituting the basin characteristics into the appropriate equation from <u>table 3</u>:

 $Q_{100} = 220.6 (912)^{0.7764} (2+1)^{-0.2616} (38+1)^{-0.2023}$ =15,700 ft<sup>3</sup>/s

#### Example 3 - Ungaged Site in Two Streamflow Analysis Regions

Determine the peak discharge having a 25-year recurrence interval for Quill Creek near Burwash Flats, an ungaged site with the following basin characteristics:

Latitude 61°30'10", longitude 139°19'27" Drainage area = 27.1 mi<sup>2</sup> Mean annual precipitation = 15 in. Area of lakes and ponds = 0 percent

Mean basin elevation = 4,000 ft

*Area of forest* = *34 percent* 

From Plate 1, the site's latitude and longitude, and an outline of the site's drainage basin, this site is in Streamflow Analysis Region 5 but has 77.1 percent of its drainage area in Streamflow Analysis Region 2. The discharge for the ungaged site is estimated as if it were entirely in first one basin, then the other, and weighting based on the respective drainage areas.

From <u>table 3</u>, the basin characteristics are within the range of values used to develop equations for Regions 2 and 5. If the basin were entirely within Region 2, the 25-year peak discharge estimate would be

 $Q_{25(2)} = 1.374 \ (27.1)^{0.9274} \ (0+1)^{-0.04074} \ (15)^{0.9713}$ = 407 ft<sup>3</sup>/s

If the basin were entirely within Region 5, the 25-year peak discharge estimate would be

$$Q_{25(5)} = 1,256,000 (27.1)^{0.9384} (0+1)^{-0.6004} (4,000)^{-1.075} (34+1)^{-0.5128} = 602 \text{ ft}^3/\text{s}$$

Weight the two estimates based on the respective drainage area within each basin using formula 6:

$$Q_{25} = \frac{Q_{25(2)}A_2 + Q_{25(5)}A_5}{(A_2 + A_5)}$$
  
=  $\frac{407(20.9) + 602(6.2)}{(20.9 + 6.2)}$   
=  $451 \text{ ft}^3/\text{s}$ 

#### Example 4 - Ungaged Site on a Gaged Stream

Determine the 50-year peak discharge for the Nenana River at Healy, which is a gaging station (station 15518040) but has fewer than 5 years of peakstreamflow record. The Nenana River is also gaged at another location, the Nenana River near Healy (gaging station 15518000), which has more than 10 years of record and is included in <u>table 4</u>. The Nenana River at Healy site (considered the ungaged site) has the following basin characteristics:

Latitude 63°51'55", longitude148°57'20"

Drainage area =  $2,100 \text{ mi}^2$ 

Area of lakes and ponds = 0 percent

Area of forests = 8 percent

From <u>table 4</u>, the gaged site has a drainage area of 1,910 mi<sup>2</sup>. The ungaged site's drainage area is 110 percent of the gaged site's drainage area, so formula 7 for an ungaged site on a gaged stream may be used. (If the ungaged site's drainage area was larger than 150 percent or smaller than 50 percent of the gaged site's drainage area, it should be treated simply as an ungaged site, as for Example 2.)

Determine  $Q_{50(u)reg}$ , the regression-based estimate for the ungaged site, from the appropriate equation from <u>table 3</u>. This step is the same procedure as for Example 2. From Plate 1 and the site's latitude and longitude, the ungaged site is in Streamflow Analysis Region 6. From <u>table 3</u>, the basin characteristics of the ungaged site are within the range of the variables used to develop equations for Region 6. The 50-year peak discharge is estimated for this ungaged site in region 6 as:

 $Q_{50(u)reg} = 186.7 \ (2100)^{0.7885} \ (0+1)^{-0.2599} \ (8+1)^{-0.2124}$ = 48,800 ft<sup>3</sup>/s

Next determine  $Q_{50(g)wtd}$ , the weighted estimate for the gaged site, from table 4 or from formula 5. From Example 1,  $Q_{50(g)wtd}$  for the Nenana River near Healy is 41,800 ft<sup>3</sup>/s.

The regression-based estimate for the ungaged site is weighted with the estimate for the gaged site using the sites' respective drainage areas in formula 7:

$$Q_{T(u)wtd} = \frac{2\Delta A}{A_g} Q_{T(u)reg} + \left(1 - \frac{2\Delta A}{A_g}\right) \frac{A_u}{A_g} Q_{T(g)wtd}$$
$$= \left(\frac{2|1910 - 2100|}{1910}\right) (48, 800)$$
$$+ \left(1 - \frac{2|1910 - 2100|}{1910}\right) \left(\frac{2100}{1910}\right) (41, 800)$$
$$= 46,500 \text{ ft}^3/\text{s}$$

#### **Computer Program**

For a particular site, estimates of standard error of prediction, confidence limits (prediction intervals) on the estimate of peak-streamflow magnitude, and equivalent years of record can be computed using the matrices and procedures in <u>Appendix B</u>. A computer program is available at <u>http://pubs.water.usgs.gov/</u> <u>wri034188</u> that automates the complex matrix computations required for these site-specific estimates of accuracy. The program first computes peakstreamflow frequencies for an ungaged site in one or two streamflow analysis regions using methods (2) or (3) described above, then provides positive and negative standard error of prediction, 5-percent and 95percent confidence limits, and equivalent years of record for each T-year streamflow estimate for that site.

#### SUMMARY

Estimates of the magnitude and frequency of peak streamflows generally can be improved as additional peak-streamflow data become available. To provide the most accurate information possible for engineering and water-resource management applications in Alaska, the U.S. Geological Survey, in cooperation with the Alaska Department of Transportation and Public Facilities, updated estimates of peak-streamflow magnitude and frequency for gaged sites in Alaska and conterminous basins in Canada and updated regression equations for estimating peakstreamflow magnitude and frequency at ungaged sites.

Estimates of peak-streamflow magnitude for selected frequencies were computed for 361 streamflow-gaging stations and partial-record stations in Alaska and conterminous basins in Canada using data through the 1999 water year. Stations presented have at least 10 years of systematic record, or 8 or 9 years of record for stations included in the most recent previous statewide analysis. Streamflow data were adjusted using additional information where available and were analyzed using log-Pearson Type III analysis as recommended in Bulletin 17B of the Interagency Committee on Water Data. Station skew coefficients for 134 stations with at least 25 years of systematic record were averaged within each of seven streamflow analysis regions to determine generalized skew coefficients. Streamflow analysis regions are hydrologically distinct regions that were defined in conjunction with an analysis of high and low flows that was concurrent with this study. For most stations, generalized skew coefficients were weighted with station skew coefficients to compute estimates of the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year peak streamflows. For stations where streamflow is not correlated to basin characteristics, station skew coefficients were used alone instead of in combination with generalized skew coefficients to estimate the peak-flow statistics.

Regional equations for estimating peak streamflows for the selected frequencies were developed from peak-streamflow estimates and physical and climatic basin characteristics at 355 stations. Basin characteristics were obtained from previous studies or by modified methods described in this report; users should obtain basin characteristics using similar methods. Ordinary-least-squares regression was used to establish a preliminary suite of basin characteristics as independent variables. Generalized-least-squares regression was used to refine this list of variables and develop final equations. Drainage area was used in final equations for all regions and all recurrence intervals; the other basin characteristics used in the final equations were mean annual precipitation, area of lakes and ponds, mean basin elevation, area of forests, and mean minimum January temperature. Average standard errors of prediction, a measure of the accuracy of the estimating equations, range from 27 to 66 percent. Procedures are provided for using the data and equations in this report to estimate peak streamflow at gaged and ungaged sites. Digital versions of data and a computer program for estimating peak streamflow and site-specific errors are provided at http://pubs.water.usgs.gov/wri034188.

### REFERENCES

- Berwick, V.K., Childers, J.M., and Kuentzel, M.A., 1964, Magnitude and frequency of floods in Alaska, south of the Yukon River: U.S. Geological Survey Circular 493, 15 p.
- Bobee, B., 1973, Sample error of T-year events computed by fitting a Pearson Type 3 distribution: Water Resources Research, v. 9, no. 5, p. 1264-1270.
- Childers, J.M., 1970, Flood frequency in Alaska: U.S. Geological Survey Open-File Report, 30 p.
- Childers, J.M., Meckel, J.P., and Anderson, G.S., 1972, Floods of August 1967 in east-central Alaska: U.S. Geological Survey Water-Supply Paper 1880-A, 77 p.
- Environmental Systems Research Institute, Inc., 1997, Understanding GIS, the ARC/INFO method: Redlands, Calif., 10 chaps., various pagination.
- Environment Canada, 2002, Hydat for Windows, Hydat CD version 2.01, Surface water and sediment data: Water Survey of Canada. CD-ROM.
- Flynn, K.M., Hummel, P.R., Lumb, A.M., and Kittle, J.L., Jr., 1995, User's manual for ANNIE, version 2, a computer program for interactive hydrologic data management: U.S. Geological Survey Water-Resources Investigations Report 95-4085, 211 p.
- Guimaraes, W.B., and Bohman, L.R., 1991, Techniques for estimating magnitude and frequency of floods in South Carolina, 1988: U.S. Geological Survey Water-Resources Investigations Report 91-4157, 174 p.
- Hardison, C.H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.

Interagency Advisory Committee on Water Data, 1982, Guidelines for determining flood flow frequency: Hydrology Subcommittee Bulletin 17B, 28 p., 14 appendixes.

Jones, S.H., and Fahl, C.B., 1994, Magnitude and frequency of floods in Alaska and conterminous basins of Canada: U.S. Geological Survey Water-Resources Investigations Report 93-4179, 122 p.

Lamke, R.D., 1972, Floods of the summer of 1971 in southcentral Alaska: U.S. Geological Survey Open-File Report 72-0215, 88 p.

—1978, Flood characteristics of Alaskan streams: U.S. Geological Survey Water-Resources Investigations Report 78-129, 61 p.

——1991, Alaska floods and droughts, in Paulson, R.W., and others, eds., National water summary, 1988-89— Hydrologic events and floods and droughts: U.S. Geological Survey Water-Supply Paper 2375, p. 171-180.

- Lamke, R.D., and Bigelow, B.B., [revised 1988], Floods of October 1986 in south central Alaska: U.S. Geological Survey Open-File Report 87-391, 31 p.
- MathSoft, Inc., 1999, S-Plus 2000 User's Guide: Seattle, Washington, 558 p.

Parks, B., and Madison, R.J., 1985, Estimation of selected flow and water-quality characteristics of Alaskan streams: U.S. Geological Survey Water-Resources Investigations Report 84-4247, 64 p.

Rantz, S.E., and others, 1982, Measurement and computation of streamflow: Volume 1, Measurement of stage and discharge; Volume 2, Computation of discharge: U.S. Geological Survey Water-Supply Paper 2175, 631 p. Ries, K.G., III, and Crouse, M.Y., 2002, The National Flood Frequency Program, Version 3: A computer program for estimating magnitude and frequency of floods for ungaged sites: U.S. Geological Survey Water-Resources Investigations Report 02-4168, 42 p.

Stamey, T.C., and Hess, G.W., 1993, Techniques for estimating magnitude and frequency of floods in rural basins of Georgia: U.S. Geological Survey Water-Resources Investigations Report 93-4016, 75 p.

Tasker, G.D., and Stedinger, J.R., 1986, Regional skew with weighted LS regression: Journal of Water Resources Planning and Management, American Society of Civil Engineers, v. 112, no. 2, p. 225-237.

- Thomas, D.M., and Benson, M.A., 1970, Generalization of streamflow characteristics from drainage-basin characteristics: U.S. Geological Survey Water-Supply Paper 1975, 55 p.
- U.S. Geological Survey, 1978, National handbook of recommended methods for water-data acquisition, Chap. 7: Physical basin characteristics for hydrologic analyses: Office of Water Data Coordination, p. 7-1 to 7-38.

——1995, Hydrologic unit codes map for the State of Alaska: U.S. Geological Survey map, 1 sheet, available online at <u>http://agdc.usgs.gov/data/usgs/water/</u> <u>statewide.html</u>.

Wiley, J.B., and Curran, J.H., 2003, Estimating annual highflow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p.

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                                 | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-----------------------|--------------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15008000 <sup>1</sup> | Salmon River near Hyder, AK                                  | 1      | 56 01 34 | 130 03 55 | 94.1                                   | 3,840                                   | 2                                                       | 15                             | 110                                           | 26                                                  |
| 15010000              | Davis River near Hyder, AK                                   | 1      | 55 45 00 | 130 12 00 | 80.0                                   | 3,400                                   | 0                                                       | 26                             | 175                                           | 27                                                  |
| 15011500              | Red River near Metlakatla, AK                                | 1      | 55 08 29 | 130 31 50 | 45.3                                   | 1,700                                   | 1                                                       | 64                             | 200                                           | 28                                                  |
| 15012000              | Winstanley Creek near Ketchikan, AK                          | 1      | 55 24 59 | 130 52 03 | 15.5                                   | 1,730                                   | 5                                                       | 84                             | 160                                           | 28                                                  |
| 15015590              | Unuk River near Stewart, BC                                  | 1      | 56 21 05 | 130 41 30 | 571                                    | 3,880                                   | 4                                                       | 28                             | 100                                           | 25                                                  |
| 15022000              | Harding River near Wrangell, AK                              | 1      | 56 12 48 | 131 38 12 | 67.4                                   | 2,400                                   | 1                                                       | 40                             | 175                                           | 26                                                  |
| 15024200              | Klappan River near Telegraph Creek,<br>BC                    | 2      | 57 54 00 | 129 42 14 | 1,370                                  | 4,800                                   | 0                                                       | 60                             | 25                                            | 4                                                   |
| 15024300              | Stikine River above Grand Canyon<br>near Telegraph Creek, BC | 2      | 58 02 38 | 129 56 45 | 7,260                                  | 4,300                                   | 0                                                       | 60                             | 20                                            | -6                                                  |
| 15024400              | Tanzilla River near Telegraph Creek,<br>BC                   | 2      | 58 17 37 | 130 30 44 | 618                                    | 3,900                                   | 1                                                       | 70                             | 12                                            | -6                                                  |
| 15024500              | Tuya River near Telegraph Creek, BC                          | 2      | 58 04 20 | 130 49 27 | 1,390                                  | 3,800                                   | 1                                                       | 83                             | 15                                            | -8                                                  |
| 15024600              | Stikine River at Telegraph Creek, BC                         | 2      | 57 54 03 | 131 09 16 | 11,300                                 | 4,200                                   | 1                                                       | 65                             | 15                                            | -6                                                  |
| 15024640              | Stikine River above Butterfly Creek,<br>BC                   | 2      | 57 29 10 | 131 45 00 | 13,900                                 | 4,250                                   | 1                                                       | 50                             | 22                                            | 8                                                   |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^{2}$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

 $^3$  Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See figure 1 for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

|                       | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic | feet per secor  | ıd, for given re | currence inter   | val, in years | in years         |  |  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|----------------|-----------------|------------------|------------------|---------------|------------------|--|--|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | <b>Q</b> 10    | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |  |  |
| 15008000 <sup>1</sup> | 10                             | -0.448                                   | Sta                                 | 34,100         | 109,000     | 189,000        | 325,000         | 450,000          | 595,000          | 758,000       | 1,000,000        |  |  |
| 15010000              | 10                             | .0668                                    | Sta                                 | 11,700         | 16,400      | 19,600         | 23,800          | 27,000           | 30,300           | 33,700        | 38,300           |  |  |
|                       |                                |                                          | Reg                                 | 14,000         | 18,500      | 21,400         | 25,100          | 27,700           | 30,300           | 32,800        | 36,000           |  |  |
|                       |                                |                                          | Wtd                                 | 11,800         | 16,600      | 19,900         | 24,100          | 27,200           | 30,300           | 33,500        | 37,700           |  |  |
| 15011500              | 15                             | 184                                      | Sta                                 | 8,280          | 10,400      | 11,600         | 13,000          | 14,000           | 15,000           | 15,900        | 17,000           |  |  |
|                       |                                |                                          | Reg                                 | 7,860          | 10,200      | 11,800         | 13,700          | 15,100           | 16,400           | 17,700        | 19,400           |  |  |
|                       |                                |                                          | Wtd                                 | 8,260          | 10,400      | 11,600         | 13,100          | 14,200           | 15,200           | 16,200        | 17,500           |  |  |
| 15012000              | 30                             | .669                                     | Sta                                 | 1,180          | 1,710       | 2,130          | 2,760           | 3,300            | 3,910            | 4,610         | 5,670            |  |  |
|                       |                                |                                          | Reg                                 | 1,760          | 2,340       | 2,720          | 3,190           | 3,540            | 3,890            | 4,230         | 4,690            |  |  |
|                       |                                |                                          | Wtd                                 | 1,190          | 1,730       | 2,160          | 2,790           | 3,320            | 3,910            | 4,570         | 5,550            |  |  |
| 15015590              | 21                             | .0881                                    | Sta                                 | 25,100         | 35,100      | 41,900         | 50,800          | 57,600           | 64,600           | 71,700        | 81,600           |  |  |
|                       |                                |                                          | Reg                                 | 23,000         | 31,500      | 37,300         | 44,700          | 50,300           | 56,000           | 61,700        | 69,400           |  |  |
|                       |                                |                                          | Wtd                                 | 25,000         | 34,900      | 41,600         | 50,200          | 56,800           | 63,500           | 70,400        | 79,900           |  |  |
| 15022000              | 48                             | .393                                     | Sta                                 | 6,590          | 8,780       | 10,300         | 12,400          | 14,000           | 15,800           | 17,600        | 20,100           |  |  |
|                       |                                |                                          | Reg                                 | 9,180          | 12,100      | 14,000         | 16,400          | 18,100           | 19,800           | 21,500        | 23,700           |  |  |
|                       |                                |                                          | Wtd                                 | 6,630          | 8,860       | 10,400         | 12,600          | 14,200           | 16,000           | 17,800        | 20,300           |  |  |
| 15024200              | 32                             | 0858                                     | Sta                                 | 14,700         | 17,000      | 18,200         | 19,700          | 20,600           | 21,600           | 22,400        | 23,500           |  |  |
|                       |                                |                                          | Reg                                 | 15,000         | 19,100      | 21,900         | 25,400          | 28,100           | 30,800           | 33,700        | 37,600           |  |  |
|                       |                                |                                          | Wtd                                 | 14,700         | 17,100      | 18,400         | 20,100          | 21,200           | 22,200           | 23,200        | 24,400           |  |  |
| 15024300              | 35                             | .244                                     | Sta                                 | 61,500         | 76,200      | 85,700         | 97,700          | 106,000          | 115,000          | 124,000       | 136,000          |  |  |
|                       |                                |                                          | Reg                                 | 60,300         | 75,000      | 84,400         | 96,000          | 105,000          | 113,000          | 122,000       | 133,000          |  |  |
|                       |                                |                                          | Wtd                                 | 61,500         | 76,200      | 85,700         | 97,600          | 106,000          | 115,000          | 124,000       | 136,000          |  |  |
| 15024400              | 8                              | .606                                     | Sta                                 | 4,310          | 5,560       | 6,460          | 7,700           | 8,680            | 9,730            | 10,800        | 12,400           |  |  |
|                       |                                |                                          | Reg                                 | 3,280          | 4,170       | 4,730          | 5,420           | 5,920            | 6,410            | 6,910         | 7,560            |  |  |
|                       |                                |                                          | Wtd                                 | 4,200          | 5,310       | 6,060          | 7,070           | 7,870            | 8,720            | 9,640         | 11,000           |  |  |
| 15024500              | 37                             | .0785                                    | Sta                                 | 12,200         | 16,400      | 19,200         | 22,700          | 25,400           | 28,100           | 30,800        | 34,400           |  |  |
|                       |                                |                                          | Reg                                 | 8,780          | 11,100      | 12,500         | 14,300          | 15,600           | 16,900           | 18,100        | 19,900           |  |  |
|                       |                                |                                          | Wtd                                 | 12,100         | 16,200      | 18,800         | 22,100          | 24,500           | 27,100           | 29,700        | 33,200           |  |  |
| 15024600              | 45                             | 0745                                     | Sta                                 | 82,500         | 100,000     | 111,000        | 123,000         | 132,000          | 140,000          | 148,000       | 158,000          |  |  |
|                       |                                |                                          | Reg                                 | 65,400         | 80,100      | 89,000         | 99,700          | 107,000          | 115,000          | 122,000       | 131,000          |  |  |
|                       |                                |                                          | Wtd                                 | 82,200         | 99,700      | 110,000        | 122,000         | 131,000          | 139,000          | 147,000       | 157,000          |  |  |
| 15024640              | 23                             | 0859                                     | Sta                                 | 113,000        | 135,000     | 148,000        | 163,000         | 174,000          | 183,000          | 193,000       | 205,000          |  |  |
|                       |                                |                                          | Reg                                 | 114,000        | 139,000     | 156,000        | 175,000         | 190,000          | 204,000          | 218,000       | 237,000          |  |  |
|                       |                                |                                          | Wtd                                 | 113,000        | 136,000     | 149,000        | 164,000         | 175,000          | 185,000          | 195,000       | 207,000          |  |  |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                  | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-----------------------|-----------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15024670              | Iskut River at outlet of Kinaskan Lake,<br>BC | 2      | 57 32 00 | 130 12 28 | 483                                    | 4,000                                   | 5                                                       | 50                             | 20                                            | 4                                                   |
| 15024684              | More Creek near mouth, BC                     | 2      | 57 02 27 | 130 24 05 | 326                                    | 4,270                                   | 1                                                       | 29                             | 70                                            | 20                                                  |
| 15024690              | Forrest Kerr Creek near Wrangell, BC          | 2      | 56 54 56 | 130 43 15 | 120                                    | 3,540                                   | 0                                                       | 19                             | 100                                           | 24                                                  |
| 15024695              | Iskut River above Snippaker Creek,<br>BC      | 2      | 56 41 55 | 130 52 23 | 2,790                                  | 3,500                                   | 1                                                       | 35                             | 60                                            | 16                                                  |
| 15024700              | Iskut River below Johnson River, BC           | 2      | 56 44 20 | 131 40 25 | 3,610                                  | 3,500                                   | 1                                                       | 35                             | 60                                            | 18                                                  |
| 15024750              | Goat Creek near Wrangell, AK                  | 1      | 56 39 40 | 131 58 14 | 17.3                                   | 2,560                                   | 6                                                       | 31                             | 175                                           | 25                                                  |
| 15024800              | Stikine River near Wrangell, AK               | 2      | 56 42 29 | 132 07 49 | 19,900                                 | 4,310                                   | 1                                                       | 42                             | 40                                            | 14                                                  |
| 15026000              | Cascade Creek near Petersburg, AK             | 1      | 57 00 21 | 132 46 45 | 23.0                                   | 3,160                                   | 4                                                       | 22                             | 175                                           | 24                                                  |
| 15028300              | Farragut River near Petersburg, AK            | 1      | 57 10 24 | 133 06 36 | 151                                    | 2,540                                   | 5                                                       | 37                             | 175                                           | 24                                                  |
| 15031000              | Long River above Long Lake near<br>Juneau, AK | 1      | 58 10 56 | 133 53 06 | 8.29                                   | 3,020                                   | 0                                                       | 3                              | 175                                           | 20                                                  |
| 15034000 <sup>R</sup> | Long River near Juneau, AK                    | 1      | 58 10 00 | 133 41 50 | 32.5                                   | 2,400                                   | 9                                                       | 15                             | 180                                           | 20                                                  |
| 15036000              | Speel River near Juneau, AK                   | 1      | 58 12 10 | 133 36 40 | 226                                    | 3,100                                   | 1                                                       | 5                              | 175                                           | 20                                                  |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|                       | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic  | feet per secor  | ıd, for given re | currence inter   | val, in years |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|-----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | Q5          | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15024670              | 30                             | 0.334                                    | Sta                                 | 2,300          | 2,920       | 3,280           | 3,690           | 3,960            | 4,220            | 4,460         | 4,750            |
|                       |                                |                                          | Reg                                 | 3,080          | 3,830       | 4,300           | 4,870           | 5,280            | 5,690            | 6,090         | 6,640            |
|                       |                                |                                          | Wtd                                 | 2,320          | 2,960       | 3,340           | 3,780           | 4,070            | 4,340            | 4,590         | 4,900            |
| 15024684              | 17                             | .992                                     | Sta                                 | 10,900         | 16,200      | 20,900          | 28,200          | 35,100           | 43,200           | 53,000        | 68,900           |
|                       |                                |                                          | Reg                                 | 9,150          | 11,900      | 13,900          | 16,600          | 18,800           | 21,100           | 23,600        | 27,400           |
|                       |                                |                                          | Wtd                                 | 10,800         | 15,800      | 19,900          | 26,300          | 32,000           | 38,900           | 47,100        | 60,400           |
| 15024690              | 18                             | 329                                      | Sta                                 | 5,640          | 6,470       | 6,910           | 7,390           | 7,710            | 7,990            | 8,240         | 8,560            |
|                       |                                |                                          | Reg                                 | 5,280          | 7,010       | 8,340           | 10,200          | 11,700           | 13,400           | 15,300        | 18,100           |
|                       |                                |                                          | Wtd                                 | 5,630          | 6,510       | 7,050           | 7,700           | 8,150            | 8,580            | 8,970         | 9,450            |
| 15024695              | 22                             | .832                                     | Sta                                 | 52,400         | 67,700      | 79,200          | 95,500          | 109,000          | 124,000          | 140,000       | 163,000          |
|                       |                                |                                          | Reg                                 | 62,000         | 78,200      | 89,600          | 105,000         | 116,000          | 129,000          | 142,000       | 161,000          |
|                       |                                |                                          | Wtd                                 | 52,700         | 68,200      | 79,900          | 96,300          | 110,000          | 124,000          | 140,000       | 163,000          |
| 15024700              | 33                             | 1.11                                     | Sta                                 | 80,300         | 115,000     | 145,000         | 193,000         | 237,000          | 290,000          | 353,000       | 456,000          |
|                       |                                |                                          | Reg                                 | 79,400         | 99,700      | 114,000         | 133,000         | 148,000          | 163,000          | 179,000       | 203,000          |
|                       |                                |                                          | Wtd                                 | 80,200         | 114,000     | 144,000         | 189,000         | 230000           | 279,000          | 338,000       | 433,000          |
| 15024750              | 10                             | .426                                     | Sta                                 | 1,560          | 2,840       | 3,990           | 5,880           | 7,640            | 9,750            | 12,300        | 16,400           |
|                       |                                |                                          | Reg                                 | 1,830          | 2,390       | 2,770           | 3,250           | 3,600            | 3,940            | 4,290         | 4,750            |
|                       |                                |                                          | Wtd                                 | 1,580          | 2,780       | 3,780           | 5,230           | 6,460            | 7,820            | 9,350         | 11,700           |
| 15024800              | 23                             | .666                                     | Sta                                 | 209,000        | 248,000     | 274,000         | 308,000         | 334,000          | 361,000          | 388,000       | 426,000          |
|                       |                                |                                          | Reg                                 | 280,000        | 343,000     | 385,000         | 437,000         | 477,000          | 517,000          | 558,000       | 616,000          |
|                       |                                |                                          | Wtd                                 | 211,000        | 251,000     | 279,000         | 315,000         | 343,000          | 370,000          | 399,000       | 438,000          |
| 15026000              | 35                             | .299                                     | Sta                                 | 1,610          | 2,080       | 2,390           | 2,800           | 3,110            | 3,420            | 3,750         | 4,190            |
|                       |                                |                                          | Reg                                 | 2,540          | 3,330       | 3,860           | 4,530           | 5,020            | 5,500            | 5,980         | 6,620            |
|                       |                                |                                          | Wtd                                 | 1,630          | 2,110       | 2,450           | 2,880           | 3,220            | 3,560            | 3,910         | 4,380            |
| 15028300              | 16                             | 382                                      | Sta                                 | 13,000         | 17,100      | 19,500          | 22,200          | 24,100           | 25,800           | 27,400        | 29,400           |
|                       |                                |                                          | Reg                                 | 11,500         | 14,900      | 17,200          | 20,200          | 22,300           | 24,400           | 26,600        | 29,400           |
|                       |                                |                                          | Wtd                                 | 12,900         | 16,900      | 19,200          | 21,900          | 23,800           | 25,600           | 27,300        | 29,400           |
| 15031000              | 10                             | .592                                     | Sta                                 | 1,600          | 2,120       | 2,510           | 3,050           | 3,480            | 3,950            | 4,450         | 5,180            |
|                       |                                |                                          | Reg                                 | 1,710          | 2,280       | 2,660           | 3,130           | 3,480            | 3,820            | 4,150         | 4,600            |
|                       |                                |                                          | Wtd                                 | 1,610          | 2,140       | 2,530           | 3,060           | 3,480            | 3,920            | 4,370         | 5,020            |
| 15034000 <sup>R</sup> | 29                             | .442                                     | Sta                                 | 3,080          | 4,140       | 4,910           | 5,940           | 6,770            | 7,640            | 8,570         | 9,890            |
|                       |                                |                                          | Reg                                 | 2,400          | 3,120       | 3,610           | 4,230           | 4,700            | 5,160            | 5,630         | 6,250            |
|                       |                                |                                          | Wtd                                 | 3,070          | 4,100       | 4,830           | 5,810           | 6,580            | 7,390            | 8,250         | 9,460            |
| 15036000              | 17                             | .503                                     | Sta                                 | 17,700         | 23,800      | 28,300          | 34,400          | 39,300           | 44,600           | 50,200        | 58,300           |
|                       |                                |                                          | Reg                                 | 21,100         | 27,700      | 32,100          | 37,600          | 41,600           | 45,700           | 49,700        | 55,000           |
|                       |                                |                                          | Wtd                                 | 17,900         | 24,100      | 28,600          | 34,800          | 39,600           | 44,700           | 50,100        | 57,800           |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                        | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|-------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15038000 <sup>R</sup> | Crater Creek near Juneau, AK        | 1      | 58 08 15 | 133 46 15 | 11.4                                   | 2,590                                   | 7                                                       | 4                              | 175                                           | 20                                                               |
| 15039900              | Dorothy Lake outlet near Juneau, AK | 1      | 58 14 56 | 133 58 54 | 11.0                                   | 3,450                                   | 13                                                      | 1                              | 160                                           | 20                                                               |
| 15040000              | Dorothy Creek near Juneau, AK       | 1      | 58 13 40 | 134 02 25 | 15.2                                   | 3,100                                   | 12                                                      | 13                             | 150                                           | 20                                                               |
| 15041000              | Sloko River near Atlin, BC          | 2      | 59 06 20 | 133 39 40 | 165                                    | 4,800                                   | 2                                                       | 3                              | 28                                            | 2                                                                |
| 15041100              | Taku River near Tulsequah, BC       | 2      | 58 38 20 | 133 32 25 | 6,000                                  | 3,800                                   | 1                                                       | 40                             | 24                                            | 5                                                                |
| 15041200 <sup>1</sup> | Taku River near Juneau, AK          | 1      | 58 32 19 | 133 42 00 | 6,600                                  | 3,790                                   | 1                                                       | 37                             | 35                                            | 6                                                                |
| 15044000              | Carlson Creek near Juneau, AK       | 1      | 58 19 00 | 134 10 15 | 24.3                                   | 2,200                                   | 0                                                       | 68                             | 200                                           | 22                                                               |
| 15048000              | Sheep Creek near Juneau, AK         | 1      | 58 16 30 | 134 18 50 | 4.57                                   | 1,900                                   | 0                                                       | 44                             | 150                                           | 22                                                               |
| 15049900 <sup>R</sup> | Gold Creek near Juneau, AK          | 1      | 58 18 26 | 134 23 12 | 8.41                                   | 2,280                                   | 0                                                       | 9                              | 140                                           | 22                                                               |
| 15050000 <sup>R</sup> | Gold Creek at Juneau, AK            | 1      | 58 18 25 | 134 24 05 | 9.76                                   | 2,400                                   | 0                                                       | 29                             | 150                                           | 22                                                               |
| 15052000              | Lemon Creek near Juneau, AK         | 1      | 58 23 30 | 134 25 15 | 12.1                                   | 3,430                                   | 0                                                       | 4                              | 180                                           | 22                                                               |
| 15052500              | Mendenhall River near Auke Bay, AK  | 1      | 58 25 47 | 134 34 22 | 85.1                                   | 3,260                                   | 3                                                       | 8                              | 180                                           | 22                                                               |
| 15052800              | Montana Creek near Auke Bay, AK     | 1      | 58 23 53 | 134 36 34 | 14.1                                   | 1,500                                   | 0                                                       | 64                             | 100                                           | 22                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^{2}$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

 $^3$  Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|                       | Number                         | coeffi-<br>cient | Peak                                |                | Peak stream | ıd, for given re | given recurrence interval, in years |                 |                  |                  |                  |
|-----------------------|--------------------------------|------------------|-------------------------------------|----------------|-------------|------------------|-------------------------------------|-----------------|------------------|------------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks |                  | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | <b>Q</b> 10      | Q <sub>25</sub>                     | Q <sub>50</sub> | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15038000 <sup>R</sup> | 9                              | 0.153            | Sta                                 | 1,950          | 2,530       | 2,910            | 3,390                               | 3,750           | 4,120            | 4,480            | 4,980            |
|                       |                                |                  | Reg                                 | 1,060          | 1,390       | 1,610            | 1,890                               | 2,100           | 2,310            | 2,520            | 2,800            |
|                       |                                |                  | Wtd                                 | 1,860          | 2,340       | 2,640            | 3,000                               | 3,260           | 3,540            | 3,820            | 4,200            |
| 15039900              | 13                             | 0092             | Sta                                 | 692            | 847         | 941              | 1,050                               | 1,130           | 1,210            | 1,280            | 1,380            |
|                       |                                |                  | Reg                                 | 773            | 1,020       | 1,190            | 1,400                               | 1,560           | 1,720            | 1,880            | 2,110            |
|                       |                                |                  | Wtd                                 | 696            | 862         | 968              | 1,100                               | 1,200           | 1,290            | 1,390            | 1,510            |
| 15040000              | 37                             | .183             | Sta                                 | 840            | 1,170       | 1,410            | 1,720                               | 1,960           | 2,210            | 2,470            | 2,840            |
|                       |                                |                  | Reg                                 | 981            | 1,300       | 1,520            | 1,800                               | 2,010           | 2,220            | 2,430            | 2,720            |
|                       |                                |                  | Wtd                                 | 842            | 1,180       | 1,410            | 1,720                               | 1,960           | 2,210            | 2,470            | 2,830            |
| 15041000              | 22                             | .896             | Sta                                 | 1,860          | 2,470       | 2,960            | 3,660                               | 4,250           | 4,920            | 5,660            | 6,780            |
|                       |                                |                  | Reg                                 | 1,890          | 2,440       | 2,810            | 3,300                               | 3,680           | 4,060            | 4,470            | 5,040            |
|                       |                                |                  | Wtd                                 | 1,860          | 2,470       | 2,940            | 3,610                               | 4,170           | 4,790            | 5,480            | 6,520            |
| 15041100              | 32                             | .186             | Sta                                 | 48,600         | 59,300      | 66,200           | 74,500                              | 80,600          | 86,600           | 92,600           | 101,000          |
|                       |                                |                  | Reg                                 | 55,200         | 68,400      | 76,900           | 87,500                              | 95,300          | 103,000          | 111,000          | 122,000          |
|                       |                                |                  | Wtd                                 | 48,700         | 59,700      | 66,700           | 75,300                              | 81,600          | 87,700           | 93,800           | 102,000          |
| 15041200 <sup>1</sup> | 13                             | .482             | Sta                                 | 75,800         | 91,400      | 102,000          | 115,000                             | 125,000         | 135,000          | 146,000          | 160,000          |
| 15044000              | 10                             | .0878            | Sta                                 | 3,800          | 4,460       | 4,850            | 5,320                               | 5,650           | 5,960            | 6,270            | 6,660            |
|                       |                                |                  | Reg                                 | 5,040          | 6,620       | 7,650            | 8,930                               | 9,850           | 10,800           | 11,600           | 12,800           |
|                       |                                |                  | Wtd                                 | 3,900          | 4,660       | 5,190            | 5,860                               | 6,360           | 6,850            | 7,320            | 7,920            |
| 15048000              | 30                             | .237             | Sta                                 | 459            | 610         | 714              | 848                                 | 951             | 1,060            | 1,170            | 1,320            |
|                       |                                |                  | Reg                                 | 959            | 1,300       | 1,530            | 1,820                               | 2,030           | 2,230            | 2,440            | 2,710            |
|                       |                                |                  | Wtd                                 | 470            | 630         | 746              | 899                                 | 1,020           | 1,140            | 1,260            | 1,430            |
| 15049900 <sup>R</sup> | 13                             | 0088             | Sta                                 | 1,510          | 2,060       | 2,420            | 2,870                               | 3,210           | 3,550            | 3,890            | 4,340            |
|                       |                                |                  | Reg                                 | 1,500          | 2,050       | 2,410            | 2,870                               | 3,200           | 3,540            | 3,870            | 4,300            |
|                       |                                |                  | Wtd                                 | 1,510          | 2,060       | 2,420            | 2,870                               | 3,210           | 3,550            | 3,880            | 4,340            |
| 5050000 <sup>R</sup>  | 43                             | .338             | Sta                                 | 1,380          | 1,880       | 2,240            | 2,730                               | 3,120           | 3,520            | 3,950            | 4,560            |
|                       |                                |                  | Reg                                 | 1,810          | 2,450       | 2,880            | 3,410                               | 3,800           | 4,180            | 4,570            | 5,070            |
|                       |                                |                  | Wtd                                 | 1,390          | 1,900       | 2,270            | 2,760                               | 3,160           | 3,570            | 3,990            | 4,600            |
| 15052000              | 22                             | .915             | Sta                                 | 1,490          | 1,980       | 2,370            | 2,930                               | 3,410           | 3,950            | 4,550            | 5,460            |
|                       |                                |                  | Reg                                 | 2,560          | 3,400       | 3,950            | 4,640                               | 5,140           | 5,630            | 6,120            | 6,750            |
|                       |                                |                  | Wtd                                 | 1,520          | 2,030       | 2,450            | 3,050                               | 3,550           | 4,100            | 4,710            | 5,600            |
| 5052500               | 34                             | .0104            | Sta                                 | 8,400          | 10,800      | 12,400           | 14,300                              | 15,700          | 17,000           | 18,400           | 20,200           |
|                       |                                |                  | Reg                                 | 7,940          | 10,400      | 12,000           | 14,000                              | 15,500          | 17,000           | 18,500           | 20,500           |
|                       |                                |                  | Wtd                                 | 8,390          | 10,800      | 12,400           | 14,300                              | 15,700          | 17,000           | 18,400           | 20,200           |
| 15052800              | 18                             | .481             | Sta                                 | 1,380          | 1,990       | 2,460            | 3,120                               | 3,680           | 4,290            | 4,960            | 5,960            |
|                       |                                |                  | Reg                                 | 1,700          | 2,390       | 2,860            | 3,460                               | 3,900           | 4,350            | 4,800            | 5,400            |
|                       |                                |                  | Wtd                                 | 1,390          | 2,010       | 2,490            | 3,160                               | 3,710           | 4,300            | 4,940            | 5,860            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                    | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|-------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15053800    | Lake Creek at Auke Bay, AK                      | 1      | 58 23 40 | 134 37 50 | 2.50                                   | 1,170                                   | 0                                                       | 70                             | 80                                            | 22                                                               |
| 15054000    | Auke Creek at Auke Bay, AK                      | 1      | 58 22 56 | 134 38 10 | 3.96                                   | 1,160                                   | 8                                                       | 68                             | 80                                            | 22                                                               |
| 15054500    | Bessie Creek near Auke Bay, AK                  | 1      | 58 35 30 | 134 54 00 | 1.35                                   | 1,100                                   | 0                                                       | 99                             | 80                                            | 22                                                               |
| 15056100    | Skagway River at Skagway, AK                    | 1      | 59 28 02 | 135 17 00 | 145                                    | 3,900                                   | 0                                                       | 11                             | 100                                           | 0                                                                |
| 15056200    | West Creek near Skagway, AK                     | 1      | 59 31 35 | 135 21 10 | 43.2                                   | 3,400                                   | 0                                                       | 18                             | 100                                           | 0                                                                |
| 15056210    | Taiya River near Skagway, AK                    | 1      | 59 30 43 | 135 20 40 | 179                                    | 3,400                                   | 0                                                       | 20                             | 90                                            | 0                                                                |
| 15056560    | Klehini River near Klukwan, AK                  | 1      | 59 24 47 | 135 59 49 | 284                                    | 3,480                                   | 0                                                       | 24                             | 80                                            | 0                                                                |
| 15057500    | William Henry Creek near Auke Bay,<br>AK        | 1      | 58 44 46 | 135 14 25 | 1.58                                   | 1,720                                   | 0                                                       | 42                             | 110                                           | 21                                                               |
| 15058000    | Purple Lake outlet near Metlakatla,<br>AK       | 1      | 55 06 00 | 131 26 00 | 6.67                                   | 860                                     | 20                                                      | 62                             | 150                                           | 30                                                               |
| 15059500    | Whipple Creek near Ward Cove, AK                | 1      | 55 26 30 | 131 47 38 | 5.29                                   | 880                                     | 0                                                       | 99                             | 125                                           | 29                                                               |
| 15060000    | Perseverance Creek near Wacker, AK              | 1      | 55 24 40 | 131 40 05 | 2.81                                   | 1,340                                   | 11                                                      | 87                             | 190                                           | 29                                                               |
| 15067900    | Upper Mahoney Lake outlet near<br>Ketchikan, AK | 1      | 55 24 50 | 131 33 16 | 2.03                                   | 2,500                                   | 6                                                       | 0                              | 200                                           | 29                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         | coeffi-<br>cient | Peak                                | Peak streamflow, in cubic feet per second, for given recurrence interval, in years |            |                 |                        |                 |                  |                  |                  |  |  |
|-------------|--------------------------------|------------------|-------------------------------------|------------------------------------------------------------------------------------|------------|-----------------|------------------------|-----------------|------------------|------------------|------------------|--|--|
| Station No. | of<br>syste-<br>matic<br>peaks |                  | stream-<br>flow<br>analysis<br>type | 0 <sub>2</sub>                                                                     | <b>Q</b> 5 | Q <sub>10</sub> | <b>Q</b> <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |  |  |
| 15053800    | 10                             | 0.206            | Sta                                 | 446                                                                                | 665        | 828             | 1,050                  | 1,230           | 1,430            | 1,640            | 1,930            |  |  |
|             |                                |                  | Reg                                 | 327                                                                                | 473        | 574             | 702                    | 799             | 897              | 997              | 1,130            |  |  |
|             |                                |                  | Wtd                                 | 433                                                                                | 639        | 783             | 973                    | 1,120           | 1,280            | 1,440            | 1,670            |  |  |
| 15054000    | 16                             | 0166             | Sta                                 | 167                                                                                | 231        | 273             | 327                    | 368             | 408              | 449              | 503              |  |  |
|             |                                |                  | Reg                                 | 218                                                                                | 310        | 374             | 456                    | 520             | 585              | 651              | 743              |  |  |
|             |                                |                  | Wtd                                 | 169                                                                                | 236        | 282             | 341                    | 387             | 432              | 478              | 540              |  |  |
| 15054500    | 14                             | 246              | Sta                                 | 166                                                                                | 241        | 289             | 349                    | 393             | 435              | 477              | 532              |  |  |
| 1000 1000   |                                | .2.0             | Reg                                 | 195                                                                                | 283        | 344             | 421                    | 480             | 539              | 598              | 680              |  |  |
|             |                                |                  | Wtd                                 | 168                                                                                | 244        | 295             | 359                    | 406             | 453              | 499              | 560              |  |  |
| 15056100    | 23                             | .604             | Sta                                 | 4,790                                                                              | 7,310      | 9,390           | 12,500                 | 15,300          | 18,500           | 22,100           | 27,800           |  |  |
| 10000100    | 20                             |                  | Reg                                 | 5,070                                                                              | 7,060      | 8,490           | 10,400                 | 11,900          | 13,500           | 15,100           | 17,400           |  |  |
|             |                                |                  | Wtd                                 | 4,800                                                                              | 7,300      | 9,330           | 12,400                 | 15,000          | 17,900           | 21,200           | 26,300           |  |  |
| 15056200    | 16                             | .729             | Sta                                 | 2,590                                                                              | 3,690      | 4,560           | 5,870                  | 6,990           | 8,260            | 9,690            | 11,900           |  |  |
| 15050200    | 10                             | .722             | Reg                                 | 1,840                                                                              | 2,580      | 3,100           | 3,810                  | 4,370           | 4,940            | 5,550            | 6,390            |  |  |
|             |                                |                  | Wtd                                 | 2,540                                                                              | 3,600      | 4,410           | 5,590                  | 6,580           | 7,680            | 8,900            | 10,800           |  |  |
| 15056210    | 8                              | .695             | Sta                                 | 8,960                                                                              | 11,900     | 14,100          | 17,200                 | 19,800          | 22,600           | 25,600           | 30,100           |  |  |
| 10000210    | 0                              | 1070             | Reg                                 | 5,500                                                                              | 7,720      | 9,330           | 11,500                 | 13,200          | 15,000           | 16,800           | 19,500           |  |  |
|             |                                |                  | Wtd                                 | 8,630                                                                              | 11,400     | 13,400          | 16,200                 | 18,500          | 20,900           | 23,600           | 27,500           |  |  |
| 15056560    | 12                             | 374              | Sta                                 | 7,090                                                                              | 8,240      | 8,860           | 9,530                  | 9,960           | 10,300           | 10,700           | 11,100           |  |  |
| 10000000    |                                |                  | Reg                                 | 7,260                                                                              | 10,300     | 12,500          | 15,500                 | 17,800          | 20,300           | 22,900           | 26,600           |  |  |
|             |                                |                  | Wtd                                 | 7,110                                                                              | 8,390      | 9,190           | 10,200                 | 10,900          | 11,600           | 12,300           | 13,200           |  |  |
| 15057500    | 8                              | .249             | Sta                                 | 381                                                                                | 512        | 603             | 721                    | 813             | 908              | 1,010            | 1,140            |  |  |
|             |                                |                  | Reg                                 | 289                                                                                | 406        | 485             | 585                    | 660             | 735              | 810              | 910              |  |  |
|             |                                |                  | Wtd                                 | 370                                                                                | 495        | 579             | 687                    | 769             | 854              | 941              | 1,060            |  |  |
| 15058000    | 8                              | .170             | Sta                                 | 480                                                                                | 604        | 684             | 784                    | 857             | 931              | 1,000            | 1,100            |  |  |
|             |                                |                  | Reg                                 | 553                                                                                | 733        | 853             | 1,000                  | 1,120           | 1,230            | 1,340            | 1,490            |  |  |
|             |                                |                  | Wtd                                 | 485                                                                                | 621        | 712             | 829                    | 918             | 1,010            | 1,090            | 1,210            |  |  |
| 15059500    | 12                             | 0920             | Sta                                 | 1,030                                                                              | 1,690      | 2,170           | 2,840                  | 3,360           | 3,910            | 4,480            | 5,280            |  |  |
| 15059500    |                                |                  | Reg                                 | 1,120                                                                              | 1,550      | 1,830           | 2,180                  | 2,440           | 2,690            | 2,940            | 3,270            |  |  |
|             |                                |                  | Wtd                                 | 1,040                                                                              | 1,670      | 2,130           | 2,710                  | 3,160           | 3,610            | 4,070            | 4,710            |  |  |
| 15060000    | 23                             | 0752             | Sta                                 | 440                                                                                | 539        | 598             | 668                    | 717             | 763              | 808              | 866              |  |  |
|             |                                |                  | Reg                                 | 396                                                                                | 517        | 597             | 696                    | 769             | 841              | 912              | 1,010            |  |  |
|             |                                |                  | Wtd                                 | 439                                                                                | 538        | 598             | 671                    | 722             | 772              | 821              | 884              |  |  |
| 15067900    | 12                             | .0702            | Sta                                 | 609                                                                                | 816        | 953             | 1,130                  | 1,260           | 1,390            | 1,520            | 1,700            |  |  |
|             |                                |                  | Reg                                 | 384                                                                                | 501        | 578             | 673                    | 742             | 810              | 877              | 964              |  |  |
|             |                                |                  | Wtd                                 | 593                                                                                | 777        | 893             | 1,030                  | 1,140           | 1,240            | 1,340            | 1,480            |  |  |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                               | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|--------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15068000              | Mahoney Creek near Ketchikan, AK           | 1      | 55 25 34 | 131 30 40 | 5.70                                   | 1,680                                   | 8                                                       | 40                             | 200                                           | 29                                                               |
| 15070000 <sup>R</sup> | Swan Lake near Ketchikan, AK               | 1      | 55 36 54 | 131 20 14 | 36.5                                   | 1,800                                   | 5                                                       | 61                             | 200                                           | 28                                                               |
| 15072000              | Fish Creek near Ketchikan, AK              | 1      | 55 23 31 | 131 11 38 | 32.1                                   | 1,300                                   | 14                                                      | 72                             | 180                                           | 28                                                               |
| 15074000              | Ella Creek near Ketchikan, AK              | 1      | 55 30 20 | 131 01 25 | 19.7                                   | 900                                     | 16                                                      | 66                             | 175                                           | 28                                                               |
| 15076000              | Manzanita Creek near Ketchikan, AK         | 1      | 55 36 00 | 130 59 00 | 33.9                                   | 1,300                                   | 9                                                       | 68                             | 200                                           | 27                                                               |
| 15078000              | Grace Creek near Ketchikan, AK             | 1      | 55 39 28 | 130 58 14 | 30.2                                   | 1,500                                   | 9                                                       | 67                             | 200                                           | 27                                                               |
| 15080000              | Orchard Creek near Bell Island, AK         | 1      | 55 50 00 | 131 27 00 | 59.0                                   | 1,600                                   | 3                                                       | 68                             | 150                                           | 27                                                               |
| 15081490              | Yatuk Creek near Klawock, AK               | 1      | 55 53 57 | 133 08 42 | 5.80                                   | 390                                     | 2                                                       | 98                             | 100                                           | 29                                                               |
| 15081497              | Staney Creek near Klawock, AK              | 1      | 55 48 05 | 133 06 31 | 50.6                                   | 882                                     | 1                                                       | 94                             | 100                                           | 30                                                               |
| 15081500              | Staney Creek near Craig, AK                | 1      | 55 48 57 | 133 07 58 | 51.6                                   | 850                                     | 0                                                       | 95                             | 100                                           | 29                                                               |
| 15081580              | Black Bear Lake outlet near Klawock,<br>AK | 1      | 55 33 25 | 132 52 33 | 1.82                                   | 2,300                                   | 17                                                      | 0                              | 100                                           | 30                                                               |
| 15081890              | Natzuhini Creek near Hydaburg, AK          | 1      | 55 17 18 | 132 49 18 | 9.10                                   | 1,030                                   | 0                                                       | 84                             | 140                                           | 31                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic  | feet per secon  | d, for given rea | currence interv  | val, in years    |              |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|-----------------|-----------------|------------------|------------------|------------------|--------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | <b>Q</b> 500 |
| 15068000              | 25                             | -0.168                                   | Sta                                 | 1,180          | 1,720       | 2,080           | 2,540           | 2,870            | 3,210            | 3,540            | 3,990        |
|                       |                                |                                          | Reg                                 | 832            | 1,080       | 1,240           | 1,440           | 1,590            | 1,740            | 1,880            | 2,070        |
|                       |                                |                                          | Wtd                                 | 1,170          | 1,680       | 2,010           | 2,410           | 2,700            | 2,990            | 3,280            | 3,660        |
| 15070000 <sup>R</sup> | 28                             | .0945                                    | Sta                                 | 3,040          | 3,830       | 4,330           | 4,940           | 5,390            | 5,830            | 6,270            | 6,850        |
|                       |                                |                                          | Reg                                 | 4,420          | 5,720       | 6,570           | 7,620           | 8,390            | 9,150            | 9,890            | 10,900       |
|                       |                                |                                          | Wtd                                 | 3,070          | 3,900       | 4,440           | 5,110           | 5,610            | 6,100            | 6,590            | 7,230        |
| 15072000              | 80                             | .108                                     | Sta                                 | 2,850          | 3,540       | 3,970           | 4,500           | 4,890            | 5,270            | 5,640            | 6,140        |
|                       |                                |                                          | Reg                                 | 2,600          | 3,370       | 3,880           | 4,530           | 5,000            | 5,480            | 5,950            | 6,570        |
|                       |                                |                                          | Wtd                                 | 2,850          | 3,540       | 3,970           | 4,500           | 4,890            | 5,270            | 5,650            | 6,150        |
| 15074000              | 22                             | .172                                     | Sta                                 | 1,180          | 1,410       | 1,550           | 1,720           | 1,840            | 1,960            | 2,070            | 2,230        |
|                       |                                |                                          | Reg                                 | 1,610          | 2,090       | 2,420           | 2,830           | 3,130            | 3,430            | 3,720            | 4,120        |
|                       |                                |                                          | Wtd                                 | 1,190          | 1,440       | 1,600           | 1,800           | 1,950            | 2,100            | 2,240            | 2,430        |
| 15076000              | 30                             | 163                                      | Sta                                 | 2,780          | 3,520       | 3,970           | 4,490           | 4,860            | 5,210            | 5,550            | 5,980        |
|                       |                                |                                          | Reg                                 | 3,370          | 4,340       | 4,980           | 5,780           | 6,370            | 6,950            | 7,520            | 8,280        |
|                       |                                |                                          | Wtd                                 | 2,790          | 3,550       | 4,020           | 4,580           | 4,970            | 5,350            | 5,720            | 6,190        |
| 15078000              | 16                             | 0085                                     | Sta                                 | 2,770          | 3,370       | 3,730           | 4,150           | 4,450            | 4,740            | 5,010            | 5,370        |
|                       |                                |                                          | Reg                                 | 3,060          | 3,940       | 4,520           | 5,250           | 5,790            | 6,310            | 6,840            | 7,530        |
|                       |                                |                                          | Wtd                                 | 2,790          | 3,410       | 3,800           | 4,280           | 4,630            | 4,960            | 5,290            | 5,720        |
| 15080000              | 11                             | .205                                     | Sta                                 | 4,290          | 5,670       | 6,610           | 7,820           | 8,740            | 9670             | 10,600           | 11,900       |
|                       |                                |                                          | Reg                                 | 5,720          | 7,620       | 8,870           | 10,400          | 11,600           | 12,800           | 13,900           | 15,400       |
|                       |                                |                                          | Wtd                                 | 4,380          | 5,850       | 6,880           | 8,230           | 9,250            | 10,300           | 11,300           | 12,700       |
| 15081490              | 9                              | 211                                      | Sta                                 | 693            | 892         | 1,010           | 1,150           | 1,250            | 1,340            | 1,430            | 1,550        |
|                       |                                |                                          | Reg                                 | 666            | 933         | 1,110           | 1,340           | 1,510            | 1,680            | 1,840            | 2,070        |
|                       |                                |                                          | Wtd                                 | 690            | 897         | 1,030           | 1,190           | 1,310            | 1,420            | 1,540            | 1,690        |
| 15081497              | 10                             | .223                                     | Sta                                 | 11,100         | 15,100      | 17,900          | 21,500          | 24,300           | 27,200           | 30,300           | 34,500       |
|                       |                                |                                          | Reg                                 | 4,840          | 6,750       | 8,010           | 9,620           | 10,800           | 12,000           | 13,200           | 14,800       |
|                       |                                |                                          | Wtd                                 | 10,400         | 13,800      | 15,900          | 18,500          | 20,500           | 22,500           | 24,600           | 27,600       |
| 15081500              | 17                             | 278                                      | Sta                                 | 7,790          | 12,200      | 15,300          | 19,100          | 22,000           | 24,900           | 27,700           | 31,500       |
|                       |                                |                                          | Reg                                 | 6,140          | 8,610       | 10,200          | 12,300          | 13,800           | 15,300           | 16,900           | 18,900       |
|                       |                                |                                          | Wtd                                 | 7,690          | 11,900      | 14,700          | 18,200          | 20,700           | 23,100           | 25,600           | 28,900       |
| 15081580              | 11                             | .419                                     | Sta                                 | 225            | 298         | 350             | 419             | 474              | 532              | 593              | 679          |
|                       |                                |                                          | Reg                                 | 136            | 189         | 225             | 271             | 305              | 340              | 375              | 423          |
|                       |                                |                                          | Wtd                                 | 219            | 284         | 330             | 389             | 435              | 483              | 534              | 605          |
| 15081890              | 9                              | .0490                                    | Sta                                 | 1,710          | 2,270       | 2,640           | 3,100           | 3,440            | 3,780            | 4,120            | 4,580        |
|                       | -                              |                                          | Reg                                 | 2,060          | 2,820       | 3,310           | 3,910           | 4,350            | 4,780            | 5,200            | 5,740        |
|                       |                                |                                          | Wtd                                 | 1,740          | 2,330       | 2,740           | 3,250           | 3,640            | 4,020            | 4,400            | 4,900        |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                     | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-------------|--------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15083500    | Perkins Creek near Metlakatla, AK                | 1      | 54 56 48 | 132 10 15 | 3.38                                   | 730                                     | 0                                                       | 81                             | 150                                           | 32                                                  |
| 15085100    | Old Tom Creek near Kasaan, AK                    | 1      | 55 23 44 | 132 24 25 | 5.90                                   | 1,000                                   | 4                                                       | 85                             | 100                                           | 30                                                  |
| 15085600    | Indian Creek near Hollis, AK                     | 1      | 55 26 58 | 132 41 41 | 8.82                                   | 1,000                                   | 0                                                       | 77                             | 100                                           | 30                                                  |
| 15085700    | Harris River near Hollis, AK                     | 1      | 55 27 47 | 132 42 11 | 28.7                                   | 1,400                                   | 0                                                       | 84                             | 120                                           | 30                                                  |
| 15085800    | Maybeso Creek at Hollis, AK                      | 1      | 55 29 26 | 132 40 31 | 15.1                                   | 1,120                                   | 0                                                       | 88                             | 120                                           | 30                                                  |
| 15086600    | Big Creek near Point Baker, AK                   | 1      | 56 07 54 | 133 08 56 | 11.2                                   | 680                                     | 5                                                       | 90                             | 110                                           | 28                                                  |
| 15086900    | Red Creek near Point Baker, AK                   | 1      | 56 15 36 | 133 19 34 | 11.2                                   | 980                                     | 6                                                       | 88                             | 125                                           | 28                                                  |
| 15087250    | Twin Creek near Petersburg, AK                   | 1      | 56 43 13 | 132 55 33 | 3.01                                   | 1,110                                   | 0                                                       | 96                             | 100                                           | 25                                                  |
| 15087545    | Municipal Watershed Creek near<br>Petersburg, AK | 1      | 56 46 40 | 132 55 07 | 2.20                                   | 1,400                                   | 0                                                       | 97                             | 100                                           | 26                                                  |
| 15087570    | Hamilton Creek near Kake, AK                     | 1      | 56 52 21 | 133 40 30 | 65.0                                   | 493                                     | 0                                                       | 91                             | 70                                            | 26                                                  |
| 15087585    | Twelvemile Creek near Petersburg,<br>AK          | 1      | 56 58 07 | 133 04 05 | 9.39                                   | 960                                     | 1                                                       | 80                             | 120                                           | 25                                                  |
| 15087590    | Rocky Pass Creek near Point Baker,<br>AK         | 1      | 56 37 10 | 133 44 10 | 2.72                                   | 358                                     | 2                                                       | 98                             | 100                                           | 27                                                  |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic  | feet per secon  | d, for given rea | currence interv  | /al, in years    |              |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|-----------------|-----------------|------------------|------------------|------------------|--------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | 0 <sub>2</sub> | <b>Q</b> 5  | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | <b>Q</b> 500 |
| 15083500    | 17                             | -0.0410                                  | Sta                                 | 1,380          | 1,920       | 2,270           | 2,720           | 3,050            | 3,380            | 3,720            | 4,170        |
|             |                                |                                          | Reg                                 | 984            | 1,340       | 1,570           | 1,850           | 2,060            | 2,250            | 2,450            | 2,700        |
|             |                                |                                          | Wtd                                 | 1,360          | 1,870       | 2,190           | 2,590           | 2,880            | 3,170            | 3,460            | 3,850        |
| 15085100    | 49                             | 0577                                     | Sta                                 | 855            | 1,040       | 1,160           | 1,290           | 1,390            | 1,480            | 1,560            | 1,680        |
|             |                                |                                          | Reg                                 | 577            | 806         | 959             | 1,150           | 1,300            | 1,440            | 1,590            | 1,790        |
|             |                                |                                          | Wtd                                 | 850            | 1,040       | 1,150           | 1,290           | 1,380            | 1,470            | 1,570            | 1,680        |
| 15085600    | 13                             | .395                                     | Sta                                 | 2,170          | 3,390       | 4,370           | 5,810           | 7,050            | 8,440            | 9,990            | 12,300       |
|             |                                |                                          | Reg                                 | 1,440          | 2,030       | 2,430           | 2,920           | 3,280            | 3,640            | 4,000            | 4,480        |
|             |                                |                                          | Wtd                                 | 2,110          | 3,240       | 4,070           | 5,220           | 6,150            | 7,150            | 8,240            | 9,840        |
| 15085700    | 15                             | .202                                     | Sta                                 | 4,650          | 6,660       | 8,110           | 10,100          | 11,600           | 13,200           | 14,900           | 17,300       |
|             |                                |                                          | Reg                                 | 4,560          | 6,290       | 7,430           | 8,850           | 9,890            | 10,900           | 11,900           | 13,200       |
|             |                                |                                          | Wtd                                 | 4,650          | 6,630       | 8,030           | 9,880           | 11,300           | 12,800           | 14,300           | 16,400       |
| 15085800    | 14                             | .144                                     | Sta                                 | 2,200          | 2,920       | 3,410           | 4,020           | 4,490            | 4,960            | 5,440            | 6,090        |
|             |                                |                                          | Reg                                 | 2,670          | 3,690       | 4,360           | 5,200           | 5,810            | 6,410            | 7,000            | 7,790        |
|             |                                |                                          | Wtd                                 | 2,230          | 2,980       | 3,500           | 4,180           | 4,690            | 5,200            | 5,720            | 6,420        |
| 15086600    | 18                             | 296                                      | Sta                                 | 1,030          | 1,270       | 1,400           | 1,560           | 1,660            | 1,760            | 1,850            | 1,960        |
|             |                                |                                          | Reg                                 | 956            | 1,320       | 1,560           | 1,860           | 2,090            | 2,320            | 2,550            | 2,870        |
|             |                                |                                          | Wtd                                 | 1,020          | 1,270       | 1,420           | 1,590           | 1,710            | 1,830            | 1,950            | 2,090        |
| 15086900    | 10                             | .0736                                    | Sta                                 | 1,170          | 1,370       | 1,500           | 1,650           | 1,750            | 1,850            | 1,950            | 2,080        |
|             |                                |                                          | Reg                                 | 1,020          | 1,380       | 1,620           | 1,930           | 2,160            | 2,390            | 2,620            | 2,920        |
|             |                                |                                          | Wtd                                 | 1,160          | 1,380       | 1,520           | 1,700           | 1,840            | 1,970            | 2,100            | 2,280        |
| 15087250    | 13                             | .0536                                    | Sta                                 | 449            | 582         | 668             | 774             | 852              | 930              | 1,010            | 1,110        |
|             |                                |                                          | Reg                                 | 511            | 724         | 867             | 1,050           | 1,180            | 1,320            | 1,450            | 1,630        |
|             |                                |                                          | Wtd                                 | 453            | 594         | 690             | 813             | 905              | 997              | 1,090            | 1,210        |
| 15087545    | 10                             | 302                                      | Sta                                 | 648            | 943         | 1,130           | 1,370           | 1,530            | 1,690            | 1,850            | 2,060        |
|             |                                |                                          | Reg                                 | 404            | 574         | 687             | 830             | 936              | 1,040            | 1,150            | 1,290        |
|             |                                |                                          | Wtd                                 | 621            | 889         | 1,050           | 1,240           | 1,370            | 1,500            | 1,630            | 1,810        |
| 15087570    | 21                             | 379                                      | Sta                                 | 8,800          | 12,500      | 14,800          | 17,500          | 19,400           | 21,200           | 22,900           | 25,100       |
|             |                                |                                          | Reg                                 | 4,960          | 7,190       | 8,700           | 10,700          | 12,100           | 13,600           | 15,100           | 17,200       |
|             |                                |                                          | Wtd                                 | 8,570          | 12,100      | 14,200          | 16,700          | 18,400           | 20,100           | 21,700           | 23,800       |
| 15087585    | 9                              | .125                                     | Sta                                 | 1,040          | 1,240       | 1,360           | 1,510           | 1,620            | 1,720            | 1,820            | 1,950        |
|             |                                |                                          | Reg                                 | 1,220          | 1,680       | 1,980           | 2,370           | 2,660            | 2,950            | 3,230            | 3,610        |
|             |                                |                                          | Wtd                                 | 1,060          | 1,290       | 1,450           | 1,670           | 1,830            | 1,990            | 2,140            | 2,350        |
| 15087590    | 12                             | .410                                     | Sta                                 | 424            | 636         | 802             | 1,040           | 1,240            | 1,460            | 1,710            | 2,070        |
|             |                                |                                          | Reg                                 | 335            | 470         | 562             | 678             | 764              | 851              | 938              | 1,060        |
|             |                                |                                          | Wtd                                 | 417            | 617         | 765             | 967             | 1,130            | 1,300            | 1,490            | 1,760        |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                         | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|-----------------------|------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15087690              | Indian River near Sitka, AK                          | 1      | 57 04 01 | 135 17 42 | 10.1                                   | 1,340                                   | 0                                                       | 79                             | 140                                           | 28                                                  |
| 15088000 <sup>R</sup> | Sawmill Creek near Sitka, AK                         | 1      | 57 03 05 | 135 13 40 | 39.0                                   | 2,400                                   | 3                                                       | 23                             | 150                                           | 28                                                  |
| 15093400              | Sashin Creek near Big Port Walter, AK                | 1      | 56 22 32 | 134 39 40 | 3.72                                   | 1,130                                   | 7                                                       | 21                             | 300                                           | 30                                                  |
| 15094000              | Deer Lake outlet near Port Alexander,<br>AK          | 1      | 56 31 10 | 134 40 10 | 7.41                                   | 1,300                                   | 26                                                      | 38                             | 300                                           | 28                                                  |
| 15098000              | Baranof River at Baranof, AK                         | 1      | 57 05 15 | 134 50 30 | 32.0                                   | 2,000                                   | 9                                                       | 60                             | 180                                           | 27                                                  |
| 15100000              | Takatz Creek near Baranof, AK                        | 1      | 57 08 35 | 134 51 50 | 17.5                                   | 2,300                                   | 5                                                       | 43                             | 180                                           | 27                                                  |
| 15101490 <sup>R</sup> | Greens Creek at Greens Creek Mine<br>near Juneau, AK | 1      | 58 05 00 | 134 37 54 | 8.62                                   | 2,452                                   | 1                                                       | 42                             | 98                                            | 23                                                  |
| 15101500              | Greens Creek near Juneau, AK                         | 1      | 58 05 18 | 134 44 49 | 22.8                                   | 1,880                                   | 1                                                       | 64                             | 80                                            | 22                                                  |
| 15102000              | Hasselborg Creek near Angoon, AK                     | 1      | 57 39 40 | 134 14 55 | 56.2                                   | 1,200                                   | 11                                                      | 68                             | 100                                           | 24                                                  |
| 15106920              | Kadashan River above Hook Creek<br>near Tenakee, AK  | 1      | 57 39 46 | 135 11 06 | 10.2                                   | 1,020                                   | 0                                                       | 94                             | 100                                           | 26                                                  |
| 15106940              | Hook Creek above tributary near<br>Tenakee, AK       | 1      | 57 40 39 | 135 07 42 | 4.48                                   | 1,260                                   | 0                                                       | 99                             | 100                                           | 26                                                  |
| 15106960              | Hook Creek near Tenakee, AK                          | 1      | 57 40 22 | 135 10 40 | 8.00                                   | 1,160                                   | 0                                                       | 99                             | 100                                           | 26                                                  |
| 15106980              | Tonalite Creek near Tenakee, AK                      | 1      | 57 40 42 | 135 13 17 | 14.5                                   | 950                                     | 0                                                       | 88                             | 100                                           | 26                                                  |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                |                | Peak streamf | ow, in cubic f  | eet per second  | l, for given rec | urrence interv   | /al, in years    |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5   | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15087690              | 15                             | -0.148                                   | Sta                                 | 3,540          | 4,950        | 5,860           | 6,990           | 7,820            | 8,640            | 9,440            | 10,500           |
|                       |                                |                                          | Reg                                 | 2,080          | 2,830        | 3,330           | 3,950           | 4,390            | 4,830            | 5,270            | 5,840            |
|                       |                                |                                          | Wtd                                 | 3,420          | 4,730        | 5,520           | 6,460           | 7,130            | 7,800            | 8,460            | 9,340            |
| 15088000 <sup>R</sup> | 28                             | .0965                                    | Sta                                 | 3,390          | 4,860        | 5,890           | 7,250           | 8,300            | 9,390            | 10,500           | 12,100           |
|                       |                                |                                          | Reg                                 | 4,160          | 5,550        | 6,460           | 7,610           | 8,460            | 9,290            | 10,100           | 11,200           |
|                       |                                |                                          | Wtd                                 | 3,410          | 4,890        | 5,920           | 7,280           | 8,320            | 9,380            | 10,500           | 12,000           |
| 15093400              | 14                             | .297                                     | Sta                                 | 1,220          | 1,620        | 1,900           | 2,260           | 2,540            | 2,830            | 3,130            | 3,550            |
|                       |                                |                                          | Reg                                 | 902            | 1,130        | 1,270           | 1,450           | 1,580            | 1,700            | 1,820            | 1,970            |
|                       |                                |                                          | Wtd                                 | 1,210          | 1,570        | 1,820           | 2,120           | 2,350            | 2,580            | 2,820            | 3,150            |
| 15094000              | 16                             | .355                                     | Sta                                 | 580            | 765          | 893             | 1,060           | 1,200            | 1,330            | 1,480            | 1,680            |
|                       |                                |                                          | Reg                                 | 983            | 1,210        | 1,370           | 1,560           | 1,700            | 1,830            | 1,960            | 2,140            |
|                       |                                |                                          | Wtd                                 | 590            | 790          | 930             | 1,110           | 1,260            | 1,400            | 1,550            | 1,750            |
| 15098000              | 25                             | .766                                     | Sta                                 | 2,790          | 3,770        | 4,520           | 5,610           | 6,530            | 7,550            | 8,670            | 10,400           |
|                       |                                |                                          | Reg                                 | 2,920          | 3,790        | 4,380           | 5,110           | 5,650            | 6,180            | 6,710            | 7,410            |
|                       |                                |                                          | Wtd                                 | 2,790          | 3,770        | 4,510           | 5,570           | 6,440            | 7,380            | 8,410            | 9,920            |
| 15100000              | 18                             | 379                                      | Sta                                 | 1,540          | 1,670        | 1,730           | 1,800           | 1,840            | 1,880            | 1,920            | 1,960            |
|                       |                                |                                          | Reg                                 | 2,110          | 2,770        | 3,200           | 3,740           | 4,140            | 4,530            | 4,910            | 5,420            |
|                       |                                |                                          | Wtd                                 | 1,560          | 1,730        | 1,830           | 1,970           | 2,060            | 2,150            | 2,230            | 2,330            |
| 15101490 <sup>R</sup> | 10                             | 0174                                     | Sta                                 | 338            | 482          | 579             | 705             | 800              | 896              | 994              | 1,130            |
|                       |                                |                                          | Reg                                 | 889            | 1,250        | 1,490           | 1,810           | 2,040            | 2,280            | 2,510            | 2,830            |
|                       |                                |                                          | Wtd                                 | 367            | 539          | 671             | 850             | 988              | 1,130            | 1,270            | 1,460            |
| 15101500              | 14                             | 131                                      | Sta                                 | 1,390          | 2,130        | 2,650           | 3,320           | 3,840            | 4,360            | 4,900            | 5,630            |
|                       |                                |                                          | Reg                                 | 1,620          | 2,310        | 2,780           | 3,400           | 3,860            | 4,330            | 4,820            | 5,470            |
|                       |                                |                                          | Wtd                                 | 1,400          | 2,140        | 2,660           | 3,330           | 3,840            | 4,360            | 4,880            | 5,600            |
| 15102000              | 17                             | .528                                     | Sta                                 | 1,380          | 1,670        | 1,860           | 2,120           | 2,310            | 2,510            | 2,710            | 2,990            |
|                       |                                |                                          | Reg                                 | 2,350          | 3,230        | 3,830           | 4,600           | 5,190            | 5,790            | 6,400            | 7,230            |
|                       |                                |                                          | Wtd                                 | 1,400          | 1,740        | 1,990           | 2,320           | 2,580            | 2,840            | 3,110            | 3,480            |
| 15106920              | 29                             | .140                                     | Sta                                 | 1,010          | 1,350        | 1,580           | 1,880           | 2,110            | 2,330            | 2,570            | 2,890            |
|                       |                                |                                          | Reg                                 | 1,460          | 2,060        | 2,460           | 2,960           | 3,340            | 3,710            | 4,090            | 4,590            |
|                       |                                |                                          | Wtd                                 | 1,020          | 1,380        | 1,620           | 1,950           | 2,190            | 2,440            | 2,700            | 3,040            |
| 15106940              | 13                             | 144                                      | Sta                                 | 715            | 1,080        | 1,330           | 1,650           | 1,900            | 2,150            | 2,400            | 2,730            |
|                       |                                |                                          | Reg                                 | 733            | 1,040        | 1,240           | 1,500           | 1,690            | 1,880            | 2,070            | 2,320            |
|                       |                                |                                          | Wtd                                 | 716            | 1,080        | 1,320           | 1,630           | 1,860            | 2,090            | 2,320            | 2,630            |
| 15106960              | 13                             | 358                                      | Sta                                 | 980            | 1,470        | 1,800           | 2,190           | 2,470            | 2,740            | 3,010            | 3,360            |
|                       |                                |                                          | Reg                                 | 1,190          | 1,680        | 2,010           | 2,420           | 2,730            | 3,030            | 3,340            | 3,750            |
|                       |                                |                                          | Wtd                                 | 994            | 1,490        | 1,820           | 2,220           | 2,520            | 2,800            | 3,080            | 3,440            |
| 15106980              | 20                             | 365                                      | Sta                                 | 1,940          | 2,870        | 3,460           | 4,190           | 4,700            | 5,200            | 5,680            | 6,300            |
|                       |                                |                                          | Reg                                 | 1,960          | 2,760        | 3,290           | 3,970           | 4,470            | 4,970            | 5,470            | 6,130            |
|                       |                                |                                          | Wtd                                 | 1,940          | 2,860        | 3,450           | 4,160           | 4,670            | 5,170            | 5,650            | 6,280            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                              | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-----------------------|-----------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15107000              | Kadashan River near Tenakee, AK                           | 1      | 57 41 43 | 135 12 59 | 37.7                                   | 970                                     | 0                                                       | 93                             | 100                                           | 26                                                  |
| 15108000              | Pavlof River near Tenakee, AK                             | 1      | 57 50 30 | 135 02 09 | 24.3                                   | 920                                     | 1                                                       | 90                             | 100                                           | 24                                                  |
| 15108250              | Game Creek near Hoonah, AK                                | 1      | 58 03 02 | 135 29 21 | 42.8                                   | 1,100                                   | 0                                                       | 80                             | 80                                            | 24                                                  |
| 15109000              | Fish Creek near Auke Bay, AK                              | 1      | 58 19 50 | 134 35 20 | 13.6                                   | 1,600                                   | 0                                                       | 72                             | 80                                            | 24                                                  |
| 15120000              | Aishihik River near Whitehorse, YT                        | 5      | 60 51 40 | 137 03 40 | 1,660                                  | 4,190                                   | 7                                                       | 46                             | 12                                            | -3                                                  |
| 15120500 <sup>R</sup> | Dezadeash River at Haines<br>Junction,YT                  | 5      | 60 44 54 | 137 30 19 | 3,280                                  | 3,870                                   | 5                                                       | 50                             | 10                                            | -17                                                 |
| 15120600              | Alsek River above Bates River near<br>Haines Junction, YT | 2      | 60 07 09 | 137 58 27 | 6,250                                  | 4,630                                   | 3                                                       | 40                             | 16                                            | -12                                                 |
| 15120720              | Takhanne River near Haines Junction,<br>YT                | 2      | 60 05 50 | 136 55 00 | 147                                    | 4,430                                   | 1                                                       | 53                             | 20                                            | -6                                                  |
| 15129500              | Situk River near Yakutat, AK                              | 3      | 59 35 00 | 139 29 31 | 36.0                                   | 370                                     | 7                                                       | 74                             | 140                                           | 19                                                  |
| 15195000              | Dick Creek near Cordova, AK                               | 3      | 60 20 32 | 144 18 10 | 7.95                                   | 890                                     | 0                                                       | 63                             | 200                                           | 16                                                  |
| 15198500              | Station Creek near Mentasta, AK                           | 6      | 62 55 56 | 143 40 06 | 15.3                                   | 3,370                                   | 0                                                       | 29                             | 30                                            | -16                                                 |
| 15199000              | Copper River tributary near Slana, AK                     | 6      | 62 43 12 | 144 14 26 | 4.32                                   | 3,370                                   | 0                                                       | 29                             | 22                                            | -17                                                 |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^2$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                |        | Peak stream | flow, in cubic  | feet per secon  | d, for given rea | currence interv  | /al, in years    |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|--------|-------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q2     | Q5          | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15107000              | 16                             | 0.239                                    | Sta                                 | 4,760  | 5,910       | 6,650           | 7,590           | 8,280            | 8,970            | 9,660            | 10,600           |
|                       |                                |                                          | Reg                                 | 4,350  | 6,100       | 7,280           | 8,760           | 9,860            | 11,000           | 12,100           | 13,500           |
|                       |                                |                                          | Wtd                                 | 4,730  | 5,920       | 6,710           | 7,730           | 8,490            | 9,260            | 10,000           | 11,100           |
| 15108000              | 24                             | .235                                     | Sta                                 | 1,960  | 2,630       | 3,080           | 3,680           | 4,140            | 4,610            | 5,100            | 5,780            |
|                       |                                |                                          | Reg                                 | 2,220  | 3,100       | 3,690           | 4,450           | 5,020            | 5,590            | 6,170            | 6,940            |
|                       |                                |                                          | Wtd                                 | 1,970  | 2,650       | 3,120           | 3,740           | 4,230            | 4,720            | 5,230            | 5,920            |
| 15108250              | 10                             | .419                                     | Sta                                 | 8,150  | 11,800      | 14,600          | 18,500          | 21,700           | 25,300           | 29,100           | 34,800           |
|                       |                                |                                          | Reg                                 | 3,730  | 5,340       | 6,440           | 7,840           | 8,900            | 9,960            | 11,000           | 12,500           |
|                       |                                |                                          | Wtd                                 | 7,580  | 10,800      | 12,900          | 15,700          | 18,000           | 20,300           | 22,900           | 26,600           |
| 15109000              | 20                             | .131                                     | Sta                                 | 1,320  | 1,720       | 1,970           | 2,300           | 2,540            | 2,780            | 3,020            | 3,350            |
|                       |                                |                                          | Reg                                 | 1,430  | 2,060       | 2,480           | 3,030           | 3,440            | 3,860            | 4,280            | 4,840            |
|                       |                                |                                          | Wtd                                 | 1,330  | 1,740       | 2,010           | 2,360           | 2,630            | 2,900            | 3,180            | 3,540            |
| 15120000              | 17                             | 0572                                     | Sta                                 | 2,240  | 3,000       | 3,500           | 4,110           | 4,550            | 4,990            | 5,430            | 6,010            |
|                       |                                |                                          | Reg                                 | 4,100  | 5,160       | 5,860           | 6,740           | 7,390            | 8,040            | 8,690            | 9,550            |
|                       |                                |                                          | Wtd                                 | 2,260  | 3,060       | 3,600           | 4,280           | 4,800            | 5,320            | 5,840            | 6,530            |
| 15120500 <sup>R</sup> | 45                             | .673                                     | Sta                                 | 5,220  | 7,590       | 9,490           | 12,300          | 14,800           | 17,600           | 20,700           | 25,500           |
|                       |                                |                                          | Reg                                 | 9,560  | 12,100      | 13,800          | 15,800          | 17,400           | 19,000           | 20,500           | 22,600           |
|                       |                                |                                          | Wtd                                 | 5,240  | 7,630       | 9,560           | 12,400          | 14,900           | 17,600           | 20,700           | 25,300           |
| 15120600              | 23                             | .520                                     | Sta                                 | 34,500 | 41,500      | 46,200          | 52,200          | 56,700           | 61,400           | 66,100           | 72,700           |
|                       |                                |                                          | Reg                                 | 33,800 | 41,200      | 45,600          | 50,800          | 54,500           | 58,000           | 61,400           | 65,900           |
|                       |                                |                                          | Wtd                                 | 34,500 | 41,500      | 46,100          | 52,100          | 56,500           | 61,000           | 65,700           | 72,000           |
| 15120720              | 13                             | .658                                     | Sta                                 | 1,360  | 1,670       | 1,880           | 2,160           | 2,390            | 2,620            | 2,860            | 3,190            |
|                       |                                |                                          | Reg                                 | 1,330  | 1,730       | 2,000           | 2,350           | 2,610            | 2,890            | 3,170            | 3,560            |
|                       |                                |                                          | Wtd                                 | 1,360  | 1,680       | 1,900           | 2,200           | 2,430            | 2,670            | 2,920            | 3,260            |
| 15129500              | 11                             | .0462                                    | Sta                                 | 1,930  | 2,430       | 2,750           | 3,150           | 3,430            | 3,710            | 3,980            | 4,340            |
|                       |                                |                                          | Reg                                 | 2,180  | 2,920       | 3,410           | 4,050           | 4,540            | 5,020            | 5,520            | 6,180            |
|                       |                                |                                          | Wtd                                 | 1,940  | 2,480       | 2,840           | 3,290           | 3,630            | 3,960            | 4,300            | 4,740            |
| 15195000              | 11                             | .318                                     | Sta                                 | 1,960  | 2,180       | 2,320           | 2,480           | 2,590            | 2,700            | 2,800            | 2,940            |
|                       |                                |                                          | Reg                                 | 1,630  | 2,150       | 2,500           | 2,930           | 3,250            | 3,560            | 3,870            | 4,280            |
|                       |                                |                                          | Wtd                                 | 1,930  | 2,180       | 2,340           | 2,550           | 2,710            | 2,870            | 3,030            | 3,230            |
| 15198500              | 22                             | 414                                      | Sta                                 | 176    | 291         | 371             | 471             | 545              | 617              | 688              | 781              |
|                       |                                |                                          | Reg                                 | 212    | 362         | 479             | 645             | 779              | 921              | 1,070            | 1,290            |
|                       |                                |                                          | Wtd                                 | 179    | 300         | 386             | 499             | 585              | 672              | 759              | 876              |
| 15199000              | 28                             | 286                                      | Sta                                 | 58.3   | 122         | 176             | 255             | 321              | 392              | 469              | 578              |
|                       |                                |                                          | Reg                                 | 68.6   | 124         | 169             | 234             | 287              | 345              | 407              | 496              |
|                       |                                |                                          | Wtd                                 | 59.2   | 122         | 175             | 251             | 314              | 382              | 455              | 559              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                             | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|-----------------------|----------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15200000              | Gakona River at Gakona, AK                               | 6      | 62 18 06 | 145 18 20 | 620                                    | 3,030                                   | 8                                                       | 18                             | 25                                            | -9                                                  |
| 15200270              | Sourdough Creek at Sourdough, AK                         | 6      | 62 31 46 | 145 30 52 | 68.0                                   | 2,290                                   | 12                                                      | 26                             | 20                                            | -10                                                 |
| 15200280              | Gulkana River at Sourdough, AK                           | 6      | 62 31 15 | 145 31 51 | 1,770                                  | 2,780                                   | 15                                                      | 24                             | 18                                            | -6                                                  |
| 15201000              | Dry Creek near Glennallen, AK                            | 6      | 62 08 49 | 145 28 31 | 11.4                                   | 1,700                                   | 1                                                       | 81                             | 10                                            | -12                                                 |
| 15201100              | Little Nelchina River tributary near<br>Eureka Lodge, AK | 6      | 61 59 17 | 147 00 34 | 7.81                                   | 2,940                                   | 0                                                       | 99                             | 15                                            | 0                                                   |
| 15201900              | Moose Creek tributary at Glennallen,<br>AK               | 6      | 62 06 32 | 145 30 57 | 7.11                                   | 1,600                                   | 4                                                       | 49                             | 10                                            | -12                                                 |
| 15202000 <sup>1</sup> | Tazlina River near Glennallen, AK                        | 6      | 62 03 20 | 145 25 34 | 2,670                                  | 3,450                                   | 5                                                       | 30                             | 30                                            | 4                                                   |
| 15206000              | Klutina River at Copper Center, AK                       | 6      | 61 57 10 | 145 18 20 | 880                                    | 3,500                                   | 4                                                       | 36                             | 30                                            | -7                                                  |
| 15208000              | Tonsina River at Tonsina, AK                             | 6      | 61 39 41 | 145 11 02 | 420                                    | 3,600                                   | 4                                                       | 27                             | 30                                            | -2                                                  |
| 15208100              | Squirrel Creek at Tonsina, AK                            | 6      | 61 40 05 | 145 10 26 | 70.5                                   | 3,100                                   | 4                                                       | 58                             | 15                                            | -10                                                 |
| 15208200              | Rock Creek near Tonsina, AK                              | 6      | 61 45 32 | 145 09 14 | 14.3                                   | 2,680                                   | 1                                                       | 70                             | 15                                            | -10                                                 |
| 15209000              | Chititu Creek near May Creek, AK                         | 6      | 61 22 12 | 142 40 50 | 30.9                                   | 4,150                                   | 0                                                       | 28                             | 30                                            | 0                                                   |
| 15209100              | May Creek near May Creek, AK                             | 6      | 61 20 42 | 142 41 49 | 10.4                                   | 2,450                                   | 0                                                       | 92                             | 20                                            | 0                                                   |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^{2}$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

|                       | Number                         |                                          | Peak                                |        | Peak streamfl | ow, in cubic f  | eet per secon   | d, for given rea | currence inter   | val, in years    |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|--------|---------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | 02     | <b>Q</b> 5    | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15200000              | 25                             | 0.240                                    | Sta                                 | 4,800  | 6,840         | 8,300           | 10,300          | 11,900           | 13,500           | 15,300           | 17,800           |
|                       |                                |                                          | Reg                                 | 3,700  | 5,320         | 6,450           | 7,900           | 8,980            | 10,100           | 11,200           | 12,700           |
|                       |                                |                                          | Wtd                                 | 4,760  | 6,750         | 8,170           | 10,100          | 11,600           | 13,200           | 14,800           | 17,200           |
| 15200270              | 12                             | 0773                                     | Sta                                 | 308    | 679           | 1,020           | 1,570           | 2,060            | 2,640            | 3,290            | 4,300            |
|                       |                                |                                          | Reg                                 | 418    | 677           | 869             | 1,130           | 1,330            | 1,530            | 1,740            | 2,040            |
|                       |                                |                                          | Wtd                                 | 318    | 679           | 992             | 1,460           | 1,870            | 2,320            | 2,820            | 3,560            |
| 15200280              | 14                             | 399                                      | Sta                                 | 7,370  | 9,990         | 11,600          | 13,400          | 14,600           | 15,800           | 16,900           | 18,200           |
|                       |                                |                                          | Reg                                 | 7,430  | 10,400        | 12,400          | 14,900          | 16,700           | 18,500           | 20,300           | 22,700           |
|                       |                                |                                          | Wtd                                 | 7,370  | 10,000        | 11,600          | 13,500          | 14,800           | 16,100           | 17,300           | 18,700           |
| 15201000              | 36                             | 154                                      | Sta                                 | 97.6   | 190           | 266             | 378             | 472              | 575              | 687              | 849              |
|                       |                                |                                          | Reg                                 | 99.5   | 180           | 246             | 340             | 417              | 499              | 587              | 713              |
|                       |                                |                                          | Wtd                                 | 97.7   | 189           | 264             | 373             | 464              | 563              | 670              | 825              |
| 15201100              | 25                             | 476                                      | Sta                                 | 51.0   | 88.3          | 114             | 147             | 171              | 195              | 218              | 248              |
|                       |                                |                                          | Reg                                 | 80.4   | 149           | 205             | 287             | 355              | 429              | 508              | 622              |
|                       |                                |                                          | Wtd                                 | 53.3   | 94.3          | 125             | 166             | 197              | 229              | 262              | 305              |
| 15201900              | 12                             | 100                                      | Sta                                 | 34.1   | 101           | 175             | 312             | 452              | 628              | 847              | 1,210            |
|                       |                                |                                          | Reg                                 | 59.5   | 109           | 148             | 205             | 251              | 301              | 354              | 429              |
|                       |                                |                                          | Wtd                                 | 38.3   | 103           | 166             | 269             | 362              | 470              | 594              | 786              |
| 15202000 <sup>1</sup> | 22                             | .545                                     | Sta                                 | 24,600 | 37,400        | 47,800          | 63,300          | 76,700           | 91,900           | 109,000          | 135,000          |
| 15206000              | 17                             | .0131                                    | Sta                                 | 6,930  | 7,760         | 8,240           | 8,780           | 9,140            | 9,490            | 9,810            | 10,200           |
|                       |                                |                                          | Reg                                 | 4,820  | 6,990         | 8,520           | 10,500          | 12,000           | 13,500           | 15,000           | 17,000           |
|                       |                                |                                          | Wtd                                 | 6,810  | 7,710         | 8,260           | 8,930           | 9,420            | 9,880            | 10,300           | 10,900           |
| 15208000              | 32                             | 0034                                     | Sta                                 | 4,550  | 5,980         | 6,900           | 8,030           | 8,860            | 9,680            | 10,500           | 11,600           |
|                       |                                |                                          | Reg                                 | 2,710  | 4,020         | 4,950           | 6,160           | 7,090            | 8,030            | 8,980            | 10,300           |
|                       |                                |                                          | Wtd                                 | 4,480  | 5,880         | 6,770           | 7,890           | 8,720            | 9,540            | 10,400           | 11,500           |
| 15208100              | 19                             | .0008                                    | Sta                                 | 321    | 510           | 650             | 842             | 995              | 1,160            | 1,330            | 1,570            |
|                       |                                |                                          | Reg                                 | 438    | 727           | 946             | 1,250           | 1,480            | 1,730            | 1,980            | 2,340            |
|                       |                                |                                          | Wtd                                 | 329    | 530           | 682             | 894             | 1,060            | 1,240            | 1,430            | 1,690            |
| 15208200              | 27                             | .138                                     | Sta                                 | 55.4   | 94.8          | 127             | 173             | 213              | 257              | 306              | 379              |
|                       |                                |                                          | Reg                                 | 127    | 227           | 307             | 421             | 514              | 613              | 718              | 868              |
|                       |                                |                                          | Wtd                                 | 59.0   | 104           | 141             | 198             | 246              | 298              | 357              | 442              |
| 15209000              | 11                             | .646                                     | Sta                                 | 327    | 423           | 494             | 591             | 669              | 752              | 842              | 971              |
|                       |                                |                                          | Reg                                 | 402    | 662           | 863             | 1,140           | 1,370            | 1,600            | 1,850            | 2,200            |
|                       |                                |                                          | Wtd                                 | 337    | 463           | 565             | 710             | 829              | 955              | 1,090            | 1,280            |
| 15209100              | 11                             | 328                                      | Sta                                 | 51.5   | 79.6          | 98.4            | 122             | 139              | 156              | 172              | 194              |
|                       |                                |                                          | Reg                                 | 106    | 193           | 264             | 367             | 452              | 543              | 641              | 782              |
|                       |                                |                                          | Wtd                                 | 59     | 98.7          | 130             | 175             | 210              | 246              | 284              | 334              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                  | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-------------|-----------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15211700    | Streina Creek near Chititu, AK                | 6      | 61 30 40 | 144 04 00 | 23.8                                   | 3,350                                   | 0                                                       | 31                             | 25                                            | -8                                                  |
| 15211900    | O'Brien Creek near Chititu, AK                | 6      | 61 28 59 | 144 27 23 | 44.8                                   | 4,120                                   | 0                                                       | 18                             | 30                                            | -6                                                  |
| 15212000    | Copper River near Chitina, AK                 | 6      | 61 27 56 | 144 27 21 | 20,600                                 | 3,620                                   | 3                                                       | 22                             | 25                                            | -7                                                  |
| 15212500    | Boulder Creek near Tiekel, AK                 | 6      | 61 20 08 | 145 18 26 | 9.80                                   | 4,300                                   | 0                                                       | 3                              | 40                                            | 0                                                   |
| 15212800    | Ptarmigan Creek tributary near Valdez,<br>AK  | 3      | 61 08 12 | 145 44 32 | .720                                   | 3,290                                   | 0                                                       | 0                              | 100                                           | 4                                                   |
| 15213400    | Stuart Creek near Valdez, AK                  | 6      | 61 15 32 | 145 16 54 | 37.4                                   | 4,060                                   | 3                                                       | 13                             | 80                                            | 3                                                   |
| 15216000    | Power Creek near Cordova, AK                  | 3      | 60 35 14 | 145 37 05 | 20.5                                   | 2,000                                   | 0                                                       | 29                             | 160                                           | 16                                                  |
| 15219000    | West Fork Olsen Bay Creek near<br>Cordova, AK | 3      | 60 45 41 | 146 10 20 | 4.78                                   | 1,400                                   | 0                                                       | 43                             | 120                                           | 16                                                  |
| 15219100    | Control Creek near Cordova, AK                | 3      | 60 45 00 | 146 14 00 | 4.22                                   | 1,200                                   | 0                                                       | 48                             | 120                                           | 16                                                  |
| 15227500    | Mineral Creek near Valdez, AK                 | 3      | 61 08 30 | 146 21 42 | 44.0                                   | 3,270                                   | 0                                                       | 20                             | 100                                           | 6                                                   |
| 15236200    | Shakespeare Creek at Whittier, AK             | 3      | 60 46 35 | 148 43 35 | 1.61                                   | 1,580                                   | 0                                                       | 0                              | 180                                           | 13                                                  |
| 15237360    | San Juan River near Seward, AK                | 3      | 59 49 05 | 147 53 00 | 12.4                                   | 652                                     | 10                                                      | 47                             | 220                                           | 20                                                  |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                | Peak streamf | low, in cubic f | eet per secon   | d, for given re | currence inter   | val, in years    |              |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|-----------------|------------------|------------------|--------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | 0 <sub>2</sub> | <b>Q</b> 5   | <b>Q</b> 10     | 0 <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> | Q <sub>200</sub> | <b>Q</b> 500 |
| 15211700    | 26                             | -0.0046                                  | Sta                                 | 211            | 320          | 397             | 501             | 582             | 666              | 754              | 875          |
|             |                                |                                          | Reg                                 | 309            | 517          | 679             | 906             | 1,090           | 1,280            | 1,490            | 1,770        |
|             |                                |                                          | Wtd                                 | 217            | 336          | 425             | 547             | 644             | 746              | 851              | 998          |
| 15211900    | 24                             | .010                                     | Sta                                 | 763            | 1,230        | 1,570           | 2,050           | 2,440           | 2,850            | 3,280            | 3,900        |
|             |                                |                                          | Reg                                 | 637            | 1,010        | 1,300           | 1,690           | 2,000           | 2,330            | 2,670            | 3,140        |
|             |                                |                                          | Wtd                                 | 753            | 1,200        | 1,540           | 2,000           | 2,370           | 2,760            | 3,170            | 3,760        |
| 15212000    | 37                             | 1.06                                     | Sta                                 | 166,000        | 198,000      | 222,000         | 255,000         | 281,000         | 310,000          | 340,000          | 385,000      |
|             |                                |                                          | Reg                                 | 98,900         | 122,000      | 137,000         | 155,000         | 169,000         | 182,000          | 195,000          | 212,000      |
|             |                                |                                          | Wtd                                 | 165,000        | 197,000      | 220,000         | 252,000         | 277,000         | 305,000          | 335,000          | 377,000      |
| 15212500    | 36                             | .740                                     | Sta                                 | 228            | 349          | 452             | 612             | 756             | 925              | 1,120            | 1,440        |
|             |                                |                                          | Reg                                 | 265            | 423          | 543             | 709             | 841             | 980              | 1,130            | 1,330        |
|             |                                |                                          | Wtd                                 | 230            | 355          | 461             | 623             | 767             | 933              | 1,120            | 1,420        |
| 15212800    | 11                             | .272                                     | Sta                                 | 31.9           | 52.0         | 68.3            | 92.2            | 113             | 136              | 161              | 200          |
|             |                                |                                          | Reg                                 | 72.9           | 104          | 125             | 154             | 176             | 199              | 223              | 256          |
|             |                                |                                          | Wtd                                 | 33.9           | 55.7         | 73.8            | 100             | 122             | 147              | 173              | 211          |
| 15213400    | 10                             | .496                                     | Sta                                 | 1,110          | 1,620        | 2,020           | 2,590           | 3,070           | 3,600            | 4,190            | 5,080        |
|             |                                |                                          | Reg                                 | 411            | 659          | 844             | 1,100           | 1,290           | 1,500            | 1,710            | 2,000        |
|             |                                |                                          | Wtd                                 | 947            | 1,340        | 1,630           | 2,020           | 2,350           | 2,710            | 3,110            | 3,690        |
| 15216000    | 48                             | 221                                      | Sta                                 | 2,980          | 4,290        | 5,150           | 6,210           | 6,980           | 7,740            | 8,480            | 9,470        |
|             |                                |                                          | Reg                                 | 2,940          | 3,950        | 4,620           | 5,480           | 6,110           | 6,740            | 7,370            | 8,210        |
|             |                                |                                          | Wtd                                 | 2,980          | 4,280        | 5,130           | 6,170           | 6,930           | 7,670            | 8,410            | 9,370        |
| 15219000    | 16                             | 0554                                     | Sta                                 | 563            | 750          | 870             | 1,020           | 1,130           | 1,230            | 1,340            | 1,480        |
|             |                                |                                          | Reg                                 | 670            | 930          | 1,110           | 1,330           | 1,500           | 1,670            | 1,840            | 2,080        |
|             |                                |                                          | Wtd                                 | 569            | 763          | 892             | 1,060           | 1,180           | 1,300            | 1,420            | 1,580        |
| 15219100    | 11                             | .388                                     | Sta                                 | 552            | 787          | 962             | 1,210           | 1,410           | 1,620            | 1,850            | 2,190        |
|             |                                |                                          | Reg                                 | 604            | 839          | 998             | 1,200           | 1,350           | 1,510            | 1,660            | 1,870        |
|             |                                |                                          | Wtd                                 | 556            | 792          | 967             | 1,210           | 1,390           | 1,590            | 1,800            | 2,100        |
| 15227500    | 16                             | .159                                     | Sta                                 | 2,880          | 3,920        | 4,630           | 5,560           | 6,280           | 7,000            | 7,760            | 8,790        |
|             |                                |                                          | Reg                                 | 2,480          | 3,470        | 4,170           | 5,090           | 5,800           | 6,530            | 7,280            | 8,330        |
|             |                                |                                          | Wtd                                 | 2,850          | 3,890        | 4,590           | 5,500           | 6,210           | 6,930            | 7,670            | 8,710        |
| 15236200    | 27                             | 226                                      | Sta                                 | 439            | 533          | 587             | 648             | 690             | 728              | 765              | 810          |
|             |                                |                                          | Reg                                 | 351            | 470          | 551             | 652             | 728             | 803              | 878              | 978          |
|             |                                |                                          | Wtd                                 | 435            | 530          | 584             | 648             | 693             | 736              | 777              | 829          |
| 15237360    | 10                             | .171                                     | Sta                                 | 3,880          | 4,490        | 4,860           | 5,300           | 5,610           | 5,910            | 6,200            | 6,580        |
|             |                                |                                          | Reg                                 | 1,250          | 1,590        | 1,830           | 2,120           | 2,340           | 2,560            | 2,780            | 3,070        |
|             |                                |                                          | Wtd                                 | 3,610          | 3,990        | 4,200           | 4,450           | 4,640           | 4,840            | 5,060            | 5,360        |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                          | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|-------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15237400              | Chalmers River near Cordova, AK                       | 3      | 60 13 10 | 147 13 30 | 6.32                                   | 1,230                                   | 0                                                       | 11                             | 200                                           | 20                                                               |
| 15238000              | Lost Creek near Seward, AK                            | 3      | 60 11 54 | 149 22 42 | 8.42                                   | 2,210                                   | 7                                                       | 4                              | 100                                           | 12                                                               |
| 15238600              | Spruce Creek near Seward, AK                          | 3      | 60 04 10 | 149 27 08 | 9.26                                   | 1,990                                   | 0                                                       | 22                             | 120                                           | 12                                                               |
| 15238820              | Barabara Creek near Seldovia, AK                      | 3      | 59 28 50 | 151 38 42 | 20.7                                   | 1,610                                   | 0                                                       | 6                              | 70                                            | 20                                                               |
| 15239000 <sup>R</sup> | Bradley River near Homer, AK                          | 3      | 59 45 30 | 150 51 02 | 56.1                                   | 2,800                                   | 6                                                       | 7                              | 120                                           | 16                                                               |
| 15239050              | Middle Fork Bradley River tributary<br>near Homer, AK | 3      | 59 46 42 | 150 45 15 | 9.25                                   | 3,920                                   | 1                                                       | 0                              | 70                                            | 16                                                               |
| 15239500              | Fritz Creek near Homer, AK                            | 4      | 59 42 30 | 151 20 35 | 10.4                                   | 880                                     | 0                                                       | 68                             | 25                                            | 16                                                               |
| 15239800              | Diamond Creek near Homer, AK                          | 4      | 59 40 10 | 151 40 00 | 5.35                                   | 890                                     | 0                                                       | 37                             | 25                                            | 16                                                               |
| 15239900              | Anchor River near Anchor Point, AK                    | 4      | 59 44 50 | 151 45 11 | 137                                    | 1,120                                   | 0                                                       | 60                             | 25                                            | 14                                                               |
| 15240000              | Anchor River at Anchor Point, AK                      | 4      | 59 46 21 | 151 50 05 | 224                                    | 970                                     | 0                                                       | 53                             | 25                                            | 14                                                               |
| 15240500              | Cook Inlet tributary near Ninilchik,<br>AK            | 4      | 59 58 45 | 151 43 20 | 5.19                                   | 175                                     | 0                                                       | 60                             | 20                                            | 13                                                               |
| 15241600              | Ninilchik River at Ninilchik, AK                      | 4      | 60 02 56 | 151 39 48 | 131                                    | 670                                     | 1                                                       | 95                             | 20                                            | 11                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                | l              | Peak streamfle | ow, in cubic fe | et per second   | l, for given rec | urrence interv   | al, in years     |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | Q5             | <b>Q</b> 10     | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15237400              | 13                             | -0.367                                   | Sta                                 | 2,720          | 3,160          | 3,390           | 3,650           | 3,810            | 3,960            | 4,090            | 4,260            |
|                       |                                |                                          | Reg                                 | 1,540          | 2,030          | 2,350           | 2,750           | 3,040            | 3,330            | 3,610            | 3,980            |
|                       |                                |                                          | Wtd                                 | 2,610          | 3,030          | 3,250           | 3,490           | 3,660            | 3,830            | 3,990            | 4,190            |
| 15238000              | 11                             | .738                                     | Sta                                 | 341            | 597            | 838             | 1,250           | 1,650            | 2,150            | 2,770            | 3,840            |
|                       |                                |                                          | Reg                                 | 375            | 519            | 621             | 755             | 859              | 965              | 1,080            | 1,230            |
|                       |                                |                                          | Wtd                                 | 342            | 592            | 819             | 1,190           | 1,530            | 1,940            | 2,440            | 3,250            |
| 15238600              | 33                             | 305                                      | Sta                                 | 1,640          | 2,340          | 2,790           | 3,330           | 3,720            | 4,090            | 4,450            | 4,920            |
|                       |                                |                                          | Reg                                 | 1,010          | 1,400          | 1,670           | 2,010           | 2,270            | 2,530            | 2,800            | 3,160            |
|                       |                                |                                          | Wtd                                 | 1,620          | 2,300          | 2,720           | 3,220           | 3,580            | 3,930            | 4,270            | 4,710            |
| 15238820              | 20                             | .111                                     | Sta                                 | 757            | 1,180          | 1,490           | 1,920           | 2,270            | 2,640            | 3,040            | 3,600            |
|                       |                                |                                          | Reg                                 | 1,590          | 2,320          | 2,820           | 3,470           | 3,960            | 4,470            | 4,980            | 5,690            |
|                       |                                |                                          | Wtd                                 | 785            | 1,220          | 1,560           | 2,040           | 2,430            | 2,830            | 3,260            | 3,870            |
| 15239000 <sup>R</sup> | 31                             | .139                                     | Sta                                 | 2,950          | 4,430          | 5,510           | 6,990           | 8,180            | 9,430            | 10,800           | 12,700           |
|                       |                                |                                          | Reg                                 | 2,610          | 3,540          | 4,170           | 5,000           | 5,630            | 6,280            | 6,930            | 7,830            |
|                       |                                |                                          | Wtd                                 | 2,940          | 4,390          | 5,440           | 6,840           | 7,950            | 9,110            | 10,300           | 12,100           |
| 15239050              | 20                             | .355                                     | Sta                                 | 485            | 730            | 919             | 1,190           | 1,410            | 1,660            | 1,930            | 2,330            |
|                       |                                |                                          | Reg                                 | 556            | 806            | 982             | 1,210           | 1,390            | 1,570            | 1,760            | 2,020            |
|                       |                                |                                          | Wtd                                 | 488            | 734            | 923             | 1,190           | 1,410            | 1,650            | 1,900            | 2,280            |
| 15239500              | 37                             | .0123                                    | Sta                                 | 113            | 214            | 299             | 427             | 539              | 664              | 803              | 1,010            |
|                       |                                |                                          | Reg                                 | 111            | 183            | 240             | 318             | 381              | 447              | 518              | 620              |
|                       |                                |                                          | Wtd                                 | 113            | 211            | 291             | 407             | 505              | 613              | 732              | 909              |
| 15239800              | 19                             | .752                                     | Sta                                 | 64.0           | 106            | 145             | 208             | 268              | 342              | 431              | 581              |
|                       |                                |                                          | Reg                                 | 59.1           | 100            | 133             | 179             | 216              | 255              | 297              | 358              |
|                       |                                |                                          | Wtd                                 | 63.7           | 105            | 142             | 199             | 249              | 308              | 375              | 482              |
| 15239900              | 19                             | .995                                     | Sta                                 | 1,500          | 2,240          | 2,900           | 3,950           | 4,920            | 6,090            | 7,510            | 9,820            |
|                       |                                |                                          | Reg                                 | 1,270          | 1,900          | 2,370           | 2,990           | 3,460            | 3,960            | 4,480            | 5,210            |
|                       |                                |                                          | Wtd                                 | 1,490          | 2,210          | 2,820           | 3,760           | 4,580            | 5,540            | 6,650            | 8,410            |
| 15240000              | 22                             | 1.10                                     | Sta                                 | 2,170          | 3,200          | 4,120           | 5,600           | 6,990            | 8,670            | 10,700           | 14,100           |
|                       |                                |                                          | Reg                                 | 2,020          | 2,970          | 3,670           | 4,580           | 5,280            | 6,000            | 6,750            | 7,810            |
|                       |                                |                                          | Wtd                                 | 2,160          | 3,190          | 4,070           | 5,440           | 6,670            | 8,110            | 9,810            | 12,500           |
| 15240500              | 16                             | .378                                     | Sta                                 | 51.6           | 76.3           | 95.2            | 122             | 144              | 169              | 195              | 234              |
|                       |                                |                                          | Reg                                 | 43.9           | 75.1           | 100             | 135             | 164              | 194              | 227              | 274              |
|                       |                                |                                          | Wtd                                 | 50.9           | 76.1           | 96.4            | 126             | 151              | 178              | 208              | 251              |
| 15241600              | 24                             | .244                                     | Sta                                 | 568            | 839            | 1,040           | 1,320           | 1,540            | 1,780            | 2,040            | 2,410            |
|                       |                                |                                          | Reg                                 | 813            | 1,220          | 1,510           | 1,910           | 2,210            | 2,530            | 2,860            | 3,330            |
|                       |                                |                                          | Wtd                                 | 575            | 861            | 1,080           | 1,390           | 1,640            | 1,900            | 2,180            | 2,580            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.               | Station name                                       | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|---------------------------|----------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15242000                  | Kasilof River near Kasilof, AK                     | 4      | 60 19 05 | 151 15 35 | 738                                    | 1,810                                   | 15                                                      | 39                             | 50                                            | 10                                                  |
| 15243950                  | Porcupine Creek near Primrose, AK                  | 4      | 60 20 24 | 149 22 30 | 16.8                                   | 2,300                                   | 0                                                       | 34                             | 80                                            | 10                                                  |
| 15244000                  | Ptarmigan Creek at Lawing, AK                      | 4      | 60 24 20 | 149 21 45 | 32.6                                   | 2,800                                   | 6                                                       | 46                             | 90                                            | 10                                                  |
| 15246000                  | Grant Creek near Moose Pass, AK                    | 4      | 60 27 25 | 149 21 15 | 44.2                                   | 2,900                                   | 10                                                      | 20                             | 90                                            | 10                                                  |
| 15248000                  | Trail River near Lawing, AK                        | 4      | 60 26 01 | 149 22 19 | 181                                    | 2,470                                   | 2                                                       | 9                              | 90                                            | 10                                                  |
| 15250000                  | Falls Creek near Lawing, AK                        | 4      | 60 25 50 | 149 22 10 | 11.8                                   | 3,480                                   | 0                                                       | 19                             | 80                                            | 10                                                  |
| 15251800                  | Quartz Creek at Gilpatricks, AK                    | 4      | 60 35 45 | 49 32 35  | 9.41                                   | 3,260                                   | 0                                                       | 11                             | 60                                            | 10                                                  |
| 15254000                  | Crescent Creek near Cooper Landing,<br>AK          | 4      | 60 29 49 | 149 40 38 | 31.7                                   | 2,700                                   | 13                                                      | 38                             | 50                                            | 8                                                   |
| 15258000 <sup>1,R</sup>   | Kenai River at Cooper Landing, AK                  | 4      | 60 29 34 | 149 48 28 | 634                                    | 2,650                                   | 5                                                       | 13                             | 70                                            | 10                                                  |
| 15258000 <sup>1,2,R</sup> | Kenai River at Cooper Landing, AK, regulated years | 4      | 61 29 34 | 150 48 28 | 634                                    | 2,650                                   | 5                                                       | 13                             | 70                                            | 10                                                  |
| 15260000                  | Cooper Creek near Cooper Landing,<br>AK            | 4      | 60 26 00 | 149 49 15 | 31.8                                   | 2,400                                   | 16                                                      | 44                             | 60                                            | 8                                                   |
| 15266300                  | Kenai River at Soldotna, AK                        | 4      | 60 28 39 | 151 04 46 | 1,950                                  | 1,750                                   | 5                                                       | 29                             | 50                                            | 8                                                   |
| 15266500                  | Beaver Creek near Kenai, AK                        | 4      | 60 33 50 | 151 07 03 | 51.0                                   | 140                                     | 15                                                      | 67                             | 20                                            | 6                                                   |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                           | Number                         |                                          | Peak                                |                | Peak stream | low, in cubic   | feet per secon  | d, for given rea | currence interv  | val, in years    |                  |
|---------------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No.               | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15242000                  | 25                             | 0.158                                    | Sta                                 | 8,080          | 9,890       | 11,000          | 12,400          | 13,400           | 14,400           | 15,400           | 16,700           |
|                           |                                |                                          | Reg                                 | 8,300          | 10,900      | 12,700          | 15,000          | 16,800           | 18,500           | 20,300           | 22,700           |
|                           |                                |                                          | Wtd                                 | 8,080          | 9,930       | 11,100          | 12,700          | 13,800           | 14,900           | 16,000           | 17,500           |
| 15243950                  | 27                             | .939                                     | Sta                                 | 772            | 1,290       | 1,790           | 2,640           | 3,490            | 4,550            | 5,900            | 8,250            |
|                           |                                |                                          | Reg                                 | 706            | 1,090       | 1,390           | 1,800           | 2,110            | 2,440            | 2,780            | 3,270            |
|                           |                                |                                          | Wtd                                 | 769            | 1,270       | 1,730           | 2,460           | 3,140            | 3,960            | 4,940            | 6,580            |
| 15244000                  | 10                             | .380                                     | Sta                                 | 523            | 703         | 832             | 1,000           | 1,140            | 1,280            | 1,430            | 1,650            |
|                           |                                |                                          | Reg                                 | 1,040          | 1,510       | 1,870           | 2,350           | 2,710            | 3,080            | 3,470            | 4,010            |
|                           |                                |                                          | Wtd                                 | 558            | 815         | 1,040           | 1,350           | 1,590            | 1,830            | 2,080            | 2,430            |
| 15246000                  | 10                             | .962                                     | Sta                                 | 936            | 1,330       | 1,660           | 2,170           | 2,620            | 3,140            | 3,760            | 4,730            |
|                           |                                |                                          | Reg                                 | 1,260          | 1,810       | 2,220           | 2,760           | 3,170            | 3,590            | 4,020            | 4,620            |
|                           |                                |                                          | Wtd                                 | 961            | 1,410       | 1,790           | 2,350           | 2,810            | 3,310            | 3,860            | 4,690            |
| 15248000                  | 29                             | .609                                     | Sta                                 | 3,670          | 4,840       | 5,700           | 6,890           | 7,860            | 8,890            | 10,000           | 11,600           |
|                           |                                |                                          | Reg                                 | 6,200          | 8,600       | 10,400          | 12,600          | 14,300           | 16,000           | 17,800           | 20,300           |
|                           |                                |                                          | Wtd                                 | 3,720          | 4,990       | 5,980           | 7,370           | 8,490            | 9,660            | 10,900           | 12,700           |
| 15250000                  | 8                              | .349                                     | Sta                                 | 242            | 452         | 642             | 951             | 1,240            | 1,580            | 1,990            | 2,650            |
|                           |                                |                                          | Reg                                 | 505            | 793         | 1,020           | 1,320           | 1,560            | 1,810            | 2,070            | 2,440            |
|                           |                                |                                          | Wtd                                 | 266            | 519         | 749             | 1,090           | 1,380            | 1,690            | 2,030            | 2,540            |
| 15251800                  | 8                              | .867                                     | Sta                                 | 166            | 319         | 478             | 773             | 1,090            | 1,510            | 2,060            | 3,100            |
|                           |                                |                                          | Reg                                 | 289            | 462         | 599             | 785             | 932              | 1,090            | 1,250            | 1,480            |
|                           |                                |                                          | Wtd                                 | 176            | 343         | 508             | 777             | 1,020            | 1,310            | 1,660            | 2,240            |
| 15254000                  | 34                             | .750                                     | Sta                                 | 331            | 519         | 682             | 939             | 1,180            | 1,460            | 1,790            | 2,330            |
|                           |                                |                                          | Reg                                 | 434            | 643         | 799             | 1,010           | 1,170            | 1,330            | 1,510            | 1,750            |
|                           |                                |                                          | Wtd                                 | 334            | 526         | 692             | 948             | 1,170            | 1,430            | 1,730            | 2,210            |
| 15258000 <sup>1,R</sup>   | 13                             | 1.42                                     | Sta                                 | 9,960          | 12,900      | 15,400          | 19,200          | 22,600           | 26,500           | 31,000           | 38,000           |
| 15258000 <sup>1,2,R</sup> | 39                             | .372                                     | Sta                                 | 11,100         | 14,800      | 17,400          | 20,800          | 23,500           | 26,400           | 29,300           | 33,500           |
| 15260000                  | 10                             | .952                                     | Sta                                 | 294            | 413         | 512             | 662             | 796              | 950              | 1,130            | 1,410            |
|                           |                                |                                          | Reg                                 | 521            | 764         | 947             | 1,190           | 1,370            | 1,560            | 1,760            | 2,040            |
|                           |                                |                                          | Wtd                                 | 310            | 465         | 605             | 812             | 982              | 1,170            | 1,360            | 1,660            |
| 15266300                  | 35                             | .788                                     | Sta                                 | 18,900         | 24,000      | 27,700          | 32,800          | 37,000           | 41,400           | 46,300           | 53,200           |
|                           |                                |                                          | Reg                                 | 25,300         | 32,500      | 37,500          | 43,700          | 48,400           | 53,000           | 57,800           | 64,300           |
|                           |                                |                                          | Wtd                                 | 19,000         | 24,200      | 28,100          | 33,400          | 37,700           | 42,300           | 47,200           | 54,200           |
| 15266500                  | 25                             | .0559                                    | Sta                                 | 188            | 357         | 501             | 721             | 914              | 1,130            | 1,380            | 1,750            |
|                           |                                |                                          | Reg                                 | 221            | 332         | 414             | 524             | 610              | 699              | 793              | 925              |
|                           |                                |                                          | Wtd                                 | 189            | 355         | 490             | 685             | 849              | 1,030            | 1,230            | 1,530            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                                    | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-----------------------|-----------------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15267900              | Resurrection Creek near Hope, AK                                | 4      | 60 53 40 | 149 38 13 | 149                                    | 2,750                                   | 0                                                       | 24                             | 30                                            | 6                                                   |
| 15269500              | Granite Creek near Portage, AK                                  | 4      | 60 43 40 | 149 17 00 | 28.2                                   | 2,220                                   | 0                                                       | 36                             | 70                                            | 10                                                  |
| 15270400              | Donaldson Creek near Wibel, AK                                  | 4      | 60 45 40 | 149 27 20 | 4.07                                   | 2,580                                   | 0                                                       | 31                             | 40                                            | 10                                                  |
| 15271000              | Sixmile Creek near Hope, AK                                     | 4      | 60 49 15 | 149 25 31 | 234                                    | 2,460                                   | 1                                                       | 31                             | 60                                            | 8                                                   |
| 15271900              | Cub Creek near Hope, AK                                         | 4      | 60 52 12 | 149 26 02 | 1.80                                   | 2,670                                   | 0                                                       | 11                             | 40                                            | 8                                                   |
| 15272280              | Portage Creek at Portage Lake outlet<br>near Whittier, AK       | 4      | 60 47 07 | 148 50 20 | 40.5                                   | 2,172                                   | 5                                                       | 10                             | 158                                           | 12                                                  |
| 15272530              | California Creek at Girdwood, AK                                | 4      | 60 57 45 | 149 08 23 | 7.19                                   | 2,480                                   | 0                                                       | 36                             | 70                                            | 8                                                   |
| 15272550              | Glacier Creek at Girdwood, AK                                   | 4      | 60 56 29 | 149 09 44 | 58.2                                   | 2,610                                   | 0                                                       | 28                             | 70                                            | 10                                                  |
| 15273900              | South Fork Campbell Creek at canyon<br>mouth near Anchorage, AK | 4      | 61 08 52 | 149 43 12 | 25.2                                   | 2,760                                   | 1                                                       | 8                              | 25                                            | 6                                                   |
| 15274000              | South Fork Campbell Creek near<br>Anchorage, AK                 | 4      | 61 10 02 | 149 46 14 | 29.2                                   | 2,530                                   | 1                                                       | 26                             | 22                                            | 6                                                   |
| 15274300              | North Fork Campbell Creek near<br>Anchorage, AK                 | 4      | 61 10 10 | 149 45 43 | 13.4                                   | 2,670                                   | 2                                                       | 30                             | 22                                            | 6                                                   |
| 15276000 <sup>R</sup> | Ship Creek near Anchorage, AK                                   | 4      | 61 13 32 | 149 38 06 | 90.5                                   | 3,100                                   | 1                                                       | 13                             | 30                                            | 6                                                   |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                | I              | Peak streamfl | ow, in cubic f  | eet per second  | , for given rec | urrence interva | al, in years     |              |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|---------------|-----------------|-----------------|-----------------|-----------------|------------------|--------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5    | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub> | <b>Q</b> 100    | Q <sub>200</sub> | <b>Q</b> 500 |
| 15267900              | 18                             | 0.585                                    | Sta                                 | 1,230          | 1,870         | 2,390           | 3,180           | 3,880           | 4,670           | 5,570            | 6,970        |
|                       |                                |                                          | Reg                                 | 1,710          | 2,540         | 3,150           | 3,950           | 4,570           | 5,200           | 5,870            | 6,800        |
|                       |                                |                                          | Wtd                                 | 1,240          | 1,920         | 2,480           | 3,310           | 4,010           | 4,780           | 5,640            | 6,920        |
| 15269500              | 14                             | 0635                                     | Sta                                 | 1,010          | 1,530         | 1,890           | 2,360           | 2,720           | 3,090           | 3,480            | 4,000        |
|                       |                                |                                          | Reg                                 | 981            | 1,500         | 1,900           | 2,430           | 2,830           | 3,260           | 3,700            | 4,330        |
|                       |                                |                                          | Wtd                                 | 1,010          | 1,520         | 1,890           | 2,380           | 2,760           | 3,150           | 3,550            | 4,110        |
| 15270400              | 10                             | .0763                                    | Sta                                 | 67.0           | 108           | 140             | 185             | 221             | 260             | 302              | 363          |
|                       |                                |                                          | Reg                                 | 80.3           | 135           | 179             | 240             | 289             | 341             | 396              | 477          |
|                       |                                |                                          | Wtd                                 | 68.7           | 115           | 153             | 208             | 253             | 300             | 350              | 423          |
| 15271000              | 13                             | .588                                     | Sta                                 | 4,820          | 6,180         | 7,150           | 8,450           | 9,490           | 10,600          | 11,800           | 13,400       |
|                       |                                |                                          | Reg                                 | 5,260          | 7,390         | 8,940           | 10,900          | 12,400          | 14,000          | 15,600           | 17,800       |
|                       |                                |                                          | Wtd                                 | 4,840          | 6,290         | 7,400           | 8,930           | 10,100          | 11,400          | 12,700           | 14,500       |
| 15271900              | 15                             | .292                                     | Sta                                 | 28.6           | 38.8          | 46.0            | 55.5            | 62.9            | 70.7            | 78.8             | 90.1         |
|                       |                                |                                          | Reg                                 | 37.1           | 64.2          | 86.5            | 118             | 144             | 171             | 200              | 243          |
|                       |                                |                                          | Wtd                                 | 29.5           | 43.3          | 55.7            | 74.1            | 89.2            | 105             | 122              | 145          |
| 15272280              | 11                             | 1.03                                     | Sta                                 | 7,680          | 9,240         | 10,400          | 12,000          | 13,300          | 14,700          | 16,200           | 18,400       |
|                       |                                |                                          | Reg                                 | 2,580          | 3,660         | 4,480           | 5,550           | 6,350           | 7,170           | 8,010            | 9,190        |
|                       |                                |                                          | Wtd                                 | 7,100          | 8,060         | 8,710           | 9,720           | 10,600          | 11,600          | 12,700           | 14,400       |
| 15272530              | 26                             | .481                                     | Sta                                 | 202            | 340           | 459             | 645             | 815             | 1,010           | 1,240            | 1,610        |
|                       |                                |                                          | Reg                                 | 269            | 433           | 563             | 740             | 879             | 1,030           | 1,180            | 1,400        |
|                       |                                |                                          | Wtd                                 | 205            | 349           | 474             | 664             | 830             | 1,020           | 1,230            | 1,550        |
| 15272550              | 13                             | .266                                     | Sta                                 | 2,670          | 4,900         | 6,850           | 9,940           | 12,700          | 16,000          | 19,800           | 25,800       |
|                       |                                |                                          | Reg                                 | 1,950          | 2,890         | 3,610           | 4,550           | 5,270           | 6,010           | 6,790            | 7,870        |
|                       |                                |                                          | Wtd                                 | 2,620          | 4,570         | 6,060           | 8,150           | 9,890           | 11,800          | 14,000           | 17,400       |
| 15273900              | 14                             | .0255                                    | Sta                                 | 237            | 329           | 391             | 471             | 531             | 591             | 653              | 737          |
|                       |                                |                                          | Reg                                 | 223            | 353           | 452             | 586             | 692             | 804             | 921              | 1,090        |
|                       |                                |                                          | Wtd                                 | 236            | 332           | 404             | 501             | 578             | 658             | 740              | 853          |
| 15274000              | 26                             | 1.03                                     | Sta                                 | 204            | 312           | 409             | 567             | 718             | 902             | 1,130            | 1,500        |
|                       |                                |                                          | Reg                                 | 220            | 348           | 445             | 577             | 681             | 790             | 906              | 1,070        |
|                       |                                |                                          | Wtd                                 | 205            | 315           | 413             | 569             | 710             | 875             | 1,070            | 1,380        |
| 15274300              | 18                             | 208                                      | Sta                                 | 68.5           | 88.5          | 101             | 115             | 125             | 134             | 143              | 155          |
|                       |                                |                                          | Reg                                 | 97.3           | 157           | 204             | 267             | 318             | 372             | 429              | 510          |
|                       |                                |                                          | Wtd                                 | 70.1           | 96.0          | 116             | 145             | 166             | 188             | 210              | 238          |
| 15276000 <sup>R</sup> | 53                             | .0614                                    | Sta                                 | 851            | 1,110         | 1,290           | 1,500           | 1,660           | 1,810           | 1,970            | 2,180        |
|                       |                                |                                          | Reg                                 | 932            | 1,390         | 1,730           | 2,190           | 2,540           | 2,900           | 3,280            | 3,810        |
|                       |                                |                                          | Wtd                                 | 853            | 1,120         | 1,310           | 1,550           | 1,720           | 1,900           | 2,080            | 2,330        |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|---------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15277100              | Eagle River at Eagle River, AK              | 4      | 61 18 28 | 149 33 32 | 192                                    | 3,120                                   | 0.5                                                     | 15                             | 40                                            | 6                                                                |
| 15277200              | Meadow Creek at Eagle River, AK             | 4      | 61 19 14 | 149 32 11 | 7.43                                   | 2,980                                   | 0                                                       | 20                             | 20                                            | 6                                                                |
| 15277410              | Peters Creek near Birchwood, AK             | 4      | 61 25 08 | 149 29 20 | 87.8                                   | 3,150                                   | 0                                                       | 23                             | 35                                            | 6                                                                |
| 15280000 <sup>R</sup> | Eklutna Creek near Palmer, AK               | 4      | 61 24 15 | 149 08 30 | 119                                    | 3,700                                   | 3                                                       | 7                              | 50                                            | 7                                                                |
| 15281000              | Knik River near Palmer, AK                  | 4      | 61 30 18 | 149 01 50 | 1,180                                  | 4,000                                   | 4                                                       | 11                             | 100                                           | 9                                                                |
| 15281000 <sup>1</sup> | Knik River near Palmer, AK                  | 4      | 61 30 18 | 149 01 50 | 1,180                                  | 4,000                                   | 4                                                       | 11                             | 100                                           | 9                                                                |
| 15281500              | Camp Creek near Sheep Mountain<br>Lodge, AK | 4      | 61 50 20 | 147 24 31 | 1.07                                   | 4,780                                   | 0                                                       | 0                              | 25                                            | 2                                                                |
| 15282000              | Caribou Creek near Sutton, AK               | 4      | 61 48 12 | 147 40 57 | 289                                    | 4,190                                   | 0                                                       | 10                             | 25                                            | 2                                                                |
| 15282400              | Purinton Creek near Sutton, AK              | 4      | 61 48 42 | 148 08 01 | 8.51                                   | 3,000                                   | 1                                                       | 45                             | 25                                            | 3                                                                |
| 15283500              | Eska Creek near Sutton, AK                  | 4      | 61 43 44 | 148 54 31 | 13.4                                   | 2,560                                   | 0                                                       | 50                             | 30                                            | 4                                                                |
| 15284000              | Matanuska River at Palmer, AK               | 4      | 61 36 34 | 149 04 16 | 2,070                                  | 4,000                                   | 0                                                       | 14                             | 35                                            | 4                                                                |
| 15285000              | Wasilla Creek near Palmer, AK               | 4      | 61 38 47 | 149 11 45 | 16.8                                   | 1,530                                   | 0                                                       | 67                             | 25                                            | 6                                                                |
| 15290000              | Little Susitna River near Palmer, AK        | 4      | 61 42 37 | 149 13 47 | 61.9                                   | 3,700                                   | 0                                                       | 16                             | 50                                            | 4                                                                |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ :

 $^{2}$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

|                       | Number                         |                                          | Peak                                |                | Peak streamf | low, in cubic f | eet per secon   | d, for given rec | urrence inter    | val, in years |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | Q5           | <b>Q</b> 10     | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15277100              | 15                             | 1.36                                     | Sta                                 | 3,270          | 4,490        | 5,570           | 7,290           | 8,890            | 10,800           | 13,100        | 16,900           |
|                       |                                |                                          | Reg                                 | 2,840          | 4,100        | 5,020           | 6,210           | 7,130            | 8,060            | 9,040         | 10,400           |
|                       |                                |                                          | Wtd                                 | 3,250          | 4,460        | 5,500           | 7,090           | 8,510            | 10,200           | 12,100        | 15,100           |
| 15277200              | 10                             | 1.12                                     | Sta                                 | 24.3           | 47.3         | 72.9            | 124             | 182              | 264              | 380           | 612              |
|                       |                                |                                          | Reg                                 | 61.7           | 104          | 138             | 185             | 222              | 263              | 306           | 369              |
|                       |                                |                                          | Wtd                                 | 27.4           | 57.6         | 90.6            | 147             | 200              | 263              | 340           | 469              |
| 15277410              | 10                             | 1.08                                     | Sta                                 | 610            | 1,010        | 1,390           | 2,050           | 2,720            | 3,580            | 4,690         | 6,640            |
|                       |                                |                                          | Reg                                 | 1,250          | 1,880        | 2,350           | 2,970           | 3,450            | 3,950            | 4,470         | 5,200            |
|                       |                                |                                          | Wtd                                 | 635            | 1,080        | 1,520           | 2,240           | 2,900            | 3,680            | 4,620         | 6,150            |
| 15280000 <sup>R</sup> | 8                              | .776                                     | Sta                                 | 1,680          | 2,090        | 2,390           | 2,800           | 3,130            | 3,480            | 3,850         | 4,390            |
|                       |                                |                                          | Reg                                 | 1,940          | 2,790        | 3,410           | 4,220           | 4,840            | 5,480            | 6,130         | 7,050            |
|                       |                                |                                          | Wtd                                 | 1,690          | 2,170        | 2,560           | 3,110           | 3,540            | 4,000            | 4,480         | 5,140            |
| 15281000              | 23                             | 1.35                                     | Sta                                 | 34,800         | 48,800       | 61,300          | 81,600          | 101,000          | 124,000          | 152,000       | 199,000          |
|                       |                                |                                          | Reg                                 | 37,500         | 47,900       | 55,300          | 64,500          | 71,300           | 78,000           | 84,900        | 94,300           |
|                       |                                |                                          | Wtd                                 | 34,800         | 48,800       | 61,000          | 80,500          | 98,400           | 120,000          | 145,000       | 187,000          |
| 15281000 <sup>1</sup> | 41                             | .266                                     | Sta                                 | 77,200         | 182,000      | 293,000         | 494,000         | 701,000          | 967,000          | 1,310,000     | 1,900,000        |
| 15281500              | 14                             | 339                                      | Sta                                 | 17.9           | 32.5         | 43.4            | 58.0            | 69.4             | 81.1             | 93.0          | 109              |
|                       |                                |                                          | Reg                                 | 12.9           | 23.2         | 31.8            | 44.1            | 54.3             | 65.4             | 77.4          | 94.9             |
|                       |                                |                                          | Wtd                                 | 17.2           | 29.8         | 38.9            | 51.4            | 61.7             | 72.7             | 84.4          | 101              |
| 15282000              | 24                             | .0674                                    | Sta                                 | 4,510          | 6,060        | 7,090           | 8,390           | 9,360            | 10,300           | 11,300        | 12,700           |
|                       |                                |                                          | Reg                                 | 2,580          | 3,750        | 4,600           | 5,710           | 6,560            | 7,440            | 8,360         | 9,640            |
|                       |                                |                                          | Wtd                                 | 4,440          | 5,890        | 6,810           | 7,990           | 8,890            | 9,810            | 10,800        | 12,100           |
| 15282400              | 25                             | 343                                      | Sta                                 | 43.6           | 84.4         | 116             | 160             | 195              | 232              | 270           | 322              |
|                       |                                |                                          | Reg                                 | 80.0           | 132          | 172             | 228             | 273              | 321              | 372           | 445              |
|                       |                                |                                          | Wtd                                 | 45.1           | 88.8         | 124             | 174             | 213              | 254              | 297           | 356              |
| 15283500              | 25                             | 1.00                                     | Sta                                 | 158            | 272          | 384             | 583             | 786              | 1,050            | 1,390         | 2,000            |
|                       |                                |                                          | Reg                                 | 175            | 285          | 370             | 487             | 580              | 678              | 783           | 932              |
|                       |                                |                                          | Wtd                                 | 159            | 273          | 382             | 561             | 730              | 935              | 1,190         | 1,610            |
| 15284000              | 28                             | .104                                     | Sta                                 | 23,900         | 30,200       | 34,100          | 39,000          | 42,600           | 46,200           | 49,700        | 54,400           |
|                       |                                |                                          | Reg                                 | 24,900         | 33,200       | 38,900          | 46,200          | 51,600           | 57,100           | 62,800        | 70,600           |
|                       |                                |                                          | Wtd                                 | 23,900         | 30,200       | 34,300          | 39,500          | 43,300           | 47,000           | 50,700        | 55,700           |
| 15285000              | 24                             | .844                                     | Sta                                 | 108            | 168          | 220             | 304             | 383              | 476              | 589           | 773              |
|                       |                                |                                          | Reg                                 | 175            | 283          | 367             | 483             | 574              | 671              | 774           | 921              |
|                       |                                |                                          | Wtd                                 | 110            | 176          | 236             | 331             | 416              | 515              | 628           | 807              |
| 15290000              | 51                             | .437                                     | Sta                                 | 1,830          | 2,760        | 3,500           | 4,570           | 5,480            | 6,500            | 7,630         | 9,330            |
|                       |                                |                                          | Reg                                 | 1,380          | 2,070        | 2,590           | 3,280           | 3,810            | 4,360            | 4,940         | 5,740            |
|                       |                                |                                          | Wtd                                 | 1,820          | 2,730        | 3,430           | 4,440           | 5,290            | 6,220            | 7,250         | 8,790            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                              | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|-------------|-------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15290200    | Nancy Lake tributary near Willow, AK      | 4      | 61 41 17 | 149 57 58 | 8.00                                   | 550                                     | 2.3                                                     | 68                             | 20                                            | 2                                                   |
| 15291000    | Susitna River near Denali, AK             | 4      | 63 06 14 | 147 30 57 | 950                                    | 4,510                                   | 1                                                       | 1                              | 50                                            | -6                                                  |
| 15291100    | Raft Creek near Denali, AK                | 4      | 63 03 04 | 147 16 22 | 4.33                                   | 4,700                                   | 0                                                       | 12                             | 30                                            | -6                                                  |
| 15291200    | Maclaren River near Paxson, AK            | 4      | 63 07 10 | 146 31 45 | 280                                    | 4,520                                   | 1                                                       | 0                              | 50                                            | -6                                                  |
| 15291500    | Susitna River near Cantwell, AK           | 4      | 62 41 55 | 147 32 42 | 4,140                                  | 3,560                                   | 2                                                       | 5                              | 30                                            | -6                                                  |
| 15292000    | Susitna River at Gold Creek, AK           | 4      | 62 46 04 | 149 41 28 | 6,160                                  | 3,420                                   | 1                                                       | 7                              | 30                                            | -5                                                  |
| 15292392    | Byers Creek near Talkeetna, AK            | 4      | 62 42 33 | 150 11 30 | 50.2                                   | 1,830                                   | 3                                                       | 51                             | 38                                            | -4                                                  |
| 15292400    | Chulitna River near Talkeetna, AK         | 4      | 62 33 31 | 150 14 02 | 2,570                                  | 3,760                                   | 1                                                       | 22                             | 55                                            | -5                                                  |
| 15292700    | Talkeetna River near Talkeetna, AK        | 4      | 62 20 49 | 150 01 01 | 2,000                                  | 3,630                                   | 0                                                       | 25                             | 35                                            | -2                                                  |
| 15292800    | Montana Creek near Montana, AK            | 4      | 62 06 32 | 150 03 12 | 164                                    | 1,930                                   | 3                                                       | 54                             | 30                                            | 0                                                   |
| 15293000    | Caswell Creek near Caswell, AK            | 4      | 61 56 55 | 150 03 14 | 19.6                                   | 400                                     | 3                                                       | 72                             | 25                                            | 0                                                   |
| 15293700    | Little Willow Creek near Kashwitna,<br>AK | 4      | 61 48 37 | 150 05 42 | 155                                    | 1,840                                   | 1                                                       | 46                             | 30                                            | 2                                                   |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                | Peak streamfl | ow, in cubic    | feet per secon  | d, for given re | currence inter   | val, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|---------------|-----------------|-----------------|-----------------|------------------|---------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5    | Q <sub>10</sub> | Q <sub>25</sub> | 0 <sub>50</sub> | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15290200    | 16                             | 0.489                                    | Sta                                 | 99.2           | 177           | 247             | 361             | 469             | 598              | 753           | 1,010            |
|             |                                |                                          | Reg                                 | 52.2           | 86.3          | 113             | 150             | 180             | 211              | 245           | 294              |
|             |                                |                                          | Wtd                                 | 94.4           | 158           | 206             | 277             | 338             | 409              | 492           | 621              |
| 15291000    | 26                             | 1.27                                     | Sta                                 | 16,300         | 19,600        | 22,100          | 25,800          | 28,900          | 32,200           | 35,900        | 41,300           |
|             |                                |                                          | Reg                                 | 15,900         | 21,300        | 25,200          | 30,000          | 33,700          | 37,300           | 41,100        | 46,300           |
|             |                                |                                          | Wtd                                 | 16,200         | 19,600        | 22,300          | 26,200          | 29,300          | 32,800           | 36,500        | 42,000           |
| 15291100    | 37                             | 436                                      | Sta                                 | 94.2           | 120           | 135             | 151             | 162             | 172              | 181           | 192              |
|             |                                |                                          | Reg                                 | 60.2           | 102           | 136             | 183             | 221             | 261              | 304           | 367              |
|             |                                |                                          | Wtd                                 | 92.4           | 118           | 135             | 156             | 173             | 189              | 205           | 226              |
| 15291200    | 28                             | .550                                     | Sta                                 | 5,490          | 6,750         | 7,610           | 8,730           | 9,600           | 10,500           | 11,400        | 12,700           |
|             |                                |                                          | Reg                                 | 5,010          | 7,040         | 8,510           | 10,400          | 11,800          | 13,300           | 14,800        | 16,900           |
|             |                                |                                          | Wtd                                 | 5,480          | 6,760         | 7,680           | 8,910           | 9,870           | 10,900           | 11,900        | 13,300           |
| 15291500    | 18                             | .510                                     | Sta                                 | 30,400         | 39,800        | 46,500          | 55,600          | 62,800          | 70,400           | 78,400        | 89,900           |
|             |                                |                                          | Reg                                 | 32,000         | 41,200        | 47,400          | 55,200          | 61,000          | 66,900           | 72,900        | 81,100           |
|             |                                |                                          | Wtd                                 | 30,500         | 39,900        | 46,600          | 55,500          | 62,600          | 69,900           | 77,700        | 88,600           |
| 15292000    | 47                             | .445                                     | Sta                                 | 44,800         | 58,700        | 68,600          | 81,800          | 92,200          | 103,000          | 115,000       | 131,000          |
|             |                                |                                          | Reg                                 | 50,600         | 64,400        | 73,800          | 85,500          | 94,200          | 103,000          | 112,000       | 124,000          |
|             |                                |                                          | Wtd                                 | 44,800         | 58,800        | 68,700          | 82,000          | 92,300          | 103,000          | 115,000       | 131,000          |
| 15292392    | 10                             | .106                                     | Sta                                 | 478            | 919           | 1,300           | 1,900           | 2,440           | 3,060            | 3,760         | 4,850            |
|             |                                |                                          | Reg                                 | 618            | 926           | 1,160           | 1,460           | 1,700           | 1,950            | 2,200         | 2,570            |
|             |                                |                                          | Wtd                                 | 490            | 920           | 1,260           | 1,740           | 2,120           | 2,540            | 2,990         | 3,660            |
| 15292400    | 27                             | .958                                     | Sta                                 | 39,800         | 48,800        | 55,400          | 64,700          | 72,200          | 80,300           | 89,000        | 102,000          |
|             |                                |                                          | Reg                                 | 45,800         | 58,900        | 68,000          | 79,400          | 87,800          | 96,300           | 105,000       | 117,000          |
|             |                                |                                          | Wtd                                 | 39,900         | 49,100        | 56,000          | 65,700          | 73,500          | 81,700           | 90,500        | 103,000          |
| 15292700    | 36                             | .747                                     | Sta                                 | 25,800         | 36,800        | 45,600          | 58,800          | 70,200          | 83,100           | 97,800        | 120,000          |
|             |                                |                                          | Reg                                 | 24,000         | 32,100        | 37,700          | 44,800          | 50,100          | 55,400           | 60,900        | 68,500           |
|             |                                |                                          | Wtd                                 | 25,800         | 36,700        | 45,300          | 57,900          | 68,600          | 80,600           | 94,100        | 115,000          |
| 15292800    | 10                             | 1.13                                     | Sta                                 | 3,200          | 4,690         | 6,020           | 8,170           | 10,200          | 12,600           | 15,600        | 20,500           |
|             |                                |                                          | Reg                                 | 1,430          | 2,060         | 2,530           | 3,130           | 3,600           | 4,080            | 4,570         | 5,270            |
|             |                                |                                          | Wtd                                 | 3,080          | 4,320         | 5,280           | 6,710           | 7,990           | 9,480            | 11,300        | 14,100           |
| 15293000    | 25                             | .995                                     | Sta                                 | 89.1           | 153           | 215             | 325             | 437             | 581              | 768           | 1,100            |
|             |                                |                                          | Reg                                 | 153            | 242           | 310             | 403             | 476             | 552              | 633           | 749              |
|             |                                |                                          | Wtd                                 | 91.4           | 160           | 227             | 339             | 445             | 574              | 730           | 991              |
| 15293700    | 8                              | 1.19                                     | Sta                                 | 1,360          | 1,950         | 2,460           | 3,300           | 4,070           | 5,000            | 6,120         | 7,970            |
|             |                                |                                          | Reg                                 | 1,550          | 2,270         | 2,800           | 3,490           | 4,020           | 4,570            | 5,140         | 5,950            |
|             |                                |                                          | Wtd                                 | 1,380          | 2,000         | 2,550           | 3,360           | 4,050           | 4,820            | 5,690         | 7,010            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                                 | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|----------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15294005              | Willow Creek near Willow, AK                 | 4      | 61 46 51 | 149 53 04 | 166                                    | 2,890                                   | 1                                                       | 24                             | 30                                            | 2                                                                |
| 15294010              | Deception Creek near Willow, AK              | 4      | 61 44 52 | 149 56 14 | 48.0                                   | 1,310                                   | 2                                                       | 76                             | 30                                            | 2                                                                |
| 15294025              | Moose Creek near Talkeetna, AK               | 4      | 62 19 00 | 150 26 30 | 52.3                                   | 800                                     | 9                                                       | 77                             | 35                                            | -3                                                               |
| 15294100              | Deshka River near Willow, AK                 | 4      | 61 46 05 | 150 20 13 | 591                                    | 492                                     | 5                                                       | 56                             | 25                                            | -2                                                               |
| 15294300              | Skwentna River near Skwentna, AK             | 4      | 61 52 23 | 151 22 01 | 2,250                                  | 2,810                                   | 5                                                       | 34                             | 45                                            | -5                                                               |
| 15294350              | Susitna River at Susitna Station, AK         | 4      | 61 32 41 | 150 30 45 | 19,400                                 | 3,200                                   | 2                                                       | 21                             | 35                                            | 0                                                                |
| 15294450              | Chuitna River near Tyonek, AK                | 4      | 61 06 31 | 151 15 07 | 131                                    | 1,120                                   | 2                                                       | 44                             | 45                                            | 2                                                                |
| 15294500 <sup>1</sup> | Chakachatna River near Tyonek, AK            | 4      | 61 12 44 | 152 21 26 | 1,120                                  | 3,900                                   | 4                                                       | 17                             | 80                                            | 0                                                                |
| 15295600 <sup>R</sup> | Terror River near Kodiak, AK                 | 3      | 57 39 05 | 153 01 46 | 15.0                                   | 2,300                                   | 3                                                       | 8                              | 130                                           | 22                                                               |
| 15296000              | Uganik River near Kodiak, AK                 | 3      | 57 41 06 | 153 25 10 | 123                                    | 1,830                                   | 2                                                       | 13                             | 75                                            | 21                                                               |
| 15297200              | Myrtle Creek near Kodiak, AK                 | 3      | 57 36 12 | 152 24 12 | 4.74                                   | 700                                     | 0                                                       | 0                              | 130                                           | 24                                                               |
| 15297475              | Red Cloud Creek tributary near<br>Kodiak, AK | 3      | 57 49 00 | 152 37 20 | 1.51                                   | 720                                     | 0                                                       | 0                              | 120                                           | 24                                                               |
| 15297900              | Eskimo Creek at King Salmon, AK              | 4      | 58 41 08 | 156 40 08 | 16.1                                   | 140                                     | 5                                                       | 14                             | 20                                            | 8                                                                |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|                       | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic | feet per secor  | nd, for given re | currence inter   | val, in years |                  |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | 05          | <b>Q</b> 10    | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15294005              | 15                             | 0.793                                    | Sta                                 | 3,010          | 4,210       | 5,170          | 6,600           | 7,830            | 9,220            | 10,800        | 13,200           |
|                       |                                |                                          | Reg                                 | 1,650          | 2,420       | 2,970          | 3,710           | 4,270            | 4,840            | 5,450         | 6,290            |
|                       |                                |                                          | Wtd                                 | 2,920          | 3,970       | 4,740          | 5,830           | 6,750            | 7,780            | 8,920         | 10,700           |
| 15294010              | 8                              | 109                                      | Sta                                 | 520            | 674         | 770            | 885             | 966              | 1,050            | 1,120         | 1,220            |
|                       |                                |                                          | Reg                                 | 472            | 718         | 903            | 1,150           | 1,340            | 1,540            | 1,750         | 2,050            |
|                       |                                |                                          | Wtd                                 | 515            | 683         | 806            | 975             | 1,110            | 1,240            | 1,380         | 1,560            |
| 15294025              | 25                             | 1.17                                     | Sta                                 | 1,160          | 1,670       | 2,120          | 2,840           | 3,520            | 4,330            | 5,300         | 6,920            |
|                       |                                |                                          | Reg                                 | 485            | 719         | 892            | 1,120           | 1,300            | 1,480            | 1,680         | 1,950            |
|                       |                                |                                          | Wtd                                 | 1,130          | 1,560       | 1,910          | 2,430           | 2,900            | 3,450            | 4,110         | 5,160            |
| 15294100              | 10                             | 1.49                                     | Sta                                 | 6,130          | 8,940       | 11,600         | 16,100          | 20,600           | 26,300           | 33,500        | 46,100           |
|                       |                                |                                          | Reg                                 | 3,560          | 4,900       | 5,850          | 7,080           | 8,000            | 8,950            | 9,930         | 11,300           |
|                       |                                |                                          | Wtd                                 | 5,950          | 8,330       | 10,300         | 13,300          | 16,000           | 19,300           | 23,200        | 29,700           |
| 15294300              | 23                             | .605                                     | Sta                                 | 33,200         | 41,700      | 47,700         | 55,600          | 61,900           | 68,500           | 75,400        | 85,200           |
|                       |                                |                                          | Reg                                 | 25,500         | 32,700      | 37,700         | 43,900          | 48,600           | 53,200           | 58,000        | 64,500           |
|                       |                                |                                          | Wtd                                 | 33,100         | 41,300      | 47,000         | 54,600          | 60,500           | 66,700           | 73,200        | 82,400           |
| 15294350              | 18                             | .611                                     | Sta                                 | 187,000        | 223,000     | 247,000        | 279,000         | 303,000          | 328,000          | 353,000       | 388,000          |
|                       |                                |                                          | Reg                                 | 166,000        | 200,000     | 223,000        | 251,000         | 272,000          | 293,000          | 314,000       | 343,000          |
|                       |                                |                                          | Wtd                                 | 187,000        | 222,000     | 246,000        | 277,000         | 300,000          | 324,000          | 349,000       | 384,000          |
| 15294450              | 12                             | .364                                     | Sta                                 | 3,560          | 4,670       | 5,450          | 6,480           | 7,280            | 8,110            | 8,970         | 10,200           |
|                       |                                |                                          | Reg                                 | 1,990          | 2,860       | 3,510          | 4,350           | 4,990            | 5,650            | 6,340         | 7,300            |
|                       |                                |                                          | Wtd                                 | 3,430          | 4,370       | 4,990          | 5,830           | 6,500            | 7,220            | 7,980         | 9,060            |
| 15294500 <sup>1</sup> | 13                             | .430                                     | Sta                                 | 15,200         | 18,000      | 19,800         | 22,100          | 23,800           | 25,500           | 27,200        | 29,500           |
| 15295600 <sup>R</sup> | 10                             | .0791                                    | Sta                                 | 1,710          | 2,450       | 2,960          | 3,640           | 4,160            | 4,690            | 5,240         | 6,010            |
|                       |                                |                                          | Reg                                 | 1,380          | 1,880       | 2,210          | 2,630           | 2,950            | 3,260            | 3,580         | 4,010            |
|                       |                                |                                          | Wtd                                 | 1,690          | 2,390       | 2,860          | 3,460           | 3,920            | 4,380            | 4,860         | 5,510            |
| 15296000              | 27                             | .229                                     | Sta                                 | 5,530          | 8,130       | 10,000         | 12,700          | 14,800           | 17,000           | 19,500        | 22,900           |
|                       |                                |                                          | Reg                                 | 5,230          | 7,450       | 8,980          | 11,000          | 12,500           | 14,000           | 15,600        | 17,800           |
|                       |                                |                                          | Wtd                                 | 5,520          | 8,100       | 9,980          | 12,500          | 14,600           | 16,700           | 19,000        | 22,300           |
| 15297200              | 37                             | 190                                      | Sta                                 | 848            | 1,050       | 1,170          | 1,300           | 1,390            | 1,480            | 1,570         | 1,670            |
|                       |                                |                                          | Reg                                 | 921            | 1,270       | 1,500          | 1,790           | 2,000            | 2,210            | 2,420         | 2,700            |
|                       |                                |                                          | Wtd                                 | 850            | 1,060       | 1,180          | 1,330           | 1,430            | 1,530            | 1,630         | 1,750            |
| 15297475              | 28                             | 151                                      | Sta                                 | 393            | 539         | 632            | 746             | 828              | 909              | 988           | 1,090            |
|                       |                                |                                          | Reg                                 | 329            | 459         | 546            | 655             | 735              | 815              | 894           | 1,000            |
|                       |                                |                                          | Wtd                                 | 391            | 535         | 626            | 738             | 819              | 899              | 977           | 1,080            |
| 15297900              | 18                             | 159                                      | Sta                                 | 83.2           | 162         | 228            | 324             | 404              | 492              | 588           | 726              |
|                       |                                |                                          | Reg                                 | 89.9           | 143         | 184            | 240             | 285              | 332              | 382           | 453              |
|                       |                                |                                          | Wtd                                 | 83.6           | 160         | 219            | 300             | 365              | 435              | 510           | 618              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                               | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|--------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15300000    | Newhalen River near Iliamna, AK            | 4      | 59 51 34 | 154 52 24 | 3,480                                  | 2,160                                   | 6                                                       | 46                             | 40                                            | 8                                                                |
| 15300200    | Roadhouse Creek near Iliamna, AK           | 4      | 59 45 26 | 154 50 49 | 20.8                                   | 321                                     | 7                                                       | 69                             | 30                                            | 8                                                                |
| 15300500    | Kvichak River at Igiugig, AK               | 4      | 59 19 44 | 155 53 57 | 6,500                                  | 1,790                                   | 20                                                      | 64                             | 40                                            | 8                                                                |
| 15302000    | Nuyakuk River near Dillingham, AK          | 4      | 59 56 08 | 158 11 16 | 1,490                                  | 1,100                                   | 14                                                      | 14                             | 60                                            | 4                                                                |
| 15302500    | Nushagak River at Ekwok, AK                | 4      | 59 20 57 | 157 28 23 | 9,850                                  | 988                                     | 4                                                       | 36                             | 30                                            | 4                                                                |
| 15302900    | Moody Creek at Aleknagik, AK               | 4      | 59 16 34 | 158 35 42 | 1.28                                   | 480                                     | 3                                                       | 78                             | 40                                            | 8                                                                |
| 15303000    | Wood River near Aleknagik, AK              | 4      | 59 16 30 | 158 35 37 | 1,110                                  | 690                                     | 22                                                      | 26                             | 60                                            | 5                                                                |
| 15303010    | Silver Salmon Creek near Aleknagik,<br>AK  | 4      | 59 13 34 | 158 40 21 | 4.46                                   | 380                                     | 2                                                       | 78                             | 40                                            | 8                                                                |
| 15303011    | Wood River tributary near Aleknagik,<br>AK | 4      | 59 12 26 | 158 40 02 | 3.35                                   | 722                                     | 1                                                       | 66                             | 35                                            | 9                                                                |
| 15303150    | Snake River near Dillingham, AK            | 4      | 59 08 54 | 158 53 14 | 113                                    | 540                                     | 28                                                      | 40                             | 50                                            | 6                                                                |
| 15303600    | Kuskokwim River at McGrath, AK             | 6      | 62 57 10 | 155 35 11 | 11,700                                 | 1,850                                   | 4                                                       | 57                             | 23                                            | -12                                                              |
| 15303660    | Gold Creek at Takotna, AK                  | 6      | 62 59 20 | 156 04 08 | 6.31                                   | 999                                     | 0                                                       | 97                             | 40                                            | -12                                                              |
| 15303700    | Tatalina River near Takotna, AK            | 6      | 62 53 06 | 155 56 22 | 76.9                                   | 890                                     | 0                                                       | 96                             | 20                                            | -12                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

### 54 Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

|             | Number                         |                                          | Peak                                |            | Peak streamf | low, in cubic f | eet per secon   | d, for given rec | urrence interv   | al, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|------------|--------------|-----------------|-----------------|------------------|------------------|--------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | <b>Q</b> 2 | <b>Q</b> 5   | <b>Q</b> 10     | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200 | Q <sub>500</sub> |
| 15300000    | 31                             | 0.357                                    | Sta                                 | 25,300     | 30,500       | 33,900          | 38,100          | 41,200           | 44,400           | 47,500       | 51,800           |
|             |                                |                                          | Reg                                 | 32,400     | 41,000       | 46,900          | 54,200          | 59,600           | 65,100           | 70,700       | 78,300           |
|             |                                |                                          | Wtd                                 | 25,400     | 30,800       | 34,400          | 39,000          | 42,400           | 45,800           | 49,200       | 53,800           |
| 15300200    | 10                             | .568                                     | Sta                                 | 106        | 173          | 231             | 321             | 404              | 500              | 613          | 793              |
|             |                                |                                          | Reg                                 | 176        | 273          | 346             | 445             | 523              | 604              | 690          | 811              |
|             |                                |                                          | Wtd                                 | 112        | 191          | 260             | 364             | 450              | 544              | 647          | 802              |
| 15300500    | 21                             | 0657                                     | Sta                                 | 32,500     | 40,300       | 45,100          | 50,700          | 54,700           | 58,500           | 62,100       | 66,900           |
|             |                                |                                          | Reg                                 | 47,200     | 57,300       | 64,100          | 72,700          | 79,000           | 85,400           | 91,800       | 101,000          |
|             |                                |                                          | Wtd                                 | 32,700     | 40,800       | 45,900          | 52,100          | 56,500           | 60,700           | 64,700       | 69,900           |
| 15302000    | 43                             | 168                                      | Sta                                 | 19,600     | 23,800       | 26,200          | 28,900          | 30,800           | 32,600           | 34,200       | 36,400           |
|             |                                |                                          | Reg                                 | 20,400     | 25,900       | 29,700          | 34,500          | 38,100           | 41,700           | 45,300       | 50,300           |
|             |                                |                                          | Wtd                                 | 19,600     | 23,800       | 26,300          | 29,200          | 31,200           | 33,100           | 35,000       | 37,300           |
| 15302500    | 16                             | .234                                     | Sta                                 | 71,000     | 91,300       | 105,000         | 122,000         | 135,000          | 148,000          | 161,000      | 180,000          |
|             |                                |                                          | Reg                                 | 65,700     | 81,200       | 91,500          | 104,000         | 114,000          | 123,000          | 133,000      | 147,000          |
|             |                                |                                          | Wtd                                 | 70,900     | 90,800       | 104,000         | 120,000         | 133,000          | 145,000          | 158,000      | 175,000          |
| 15302900    | 28                             | .727                                     | Sta                                 | 26.0       | 32.9         | 37.9            | 44.8            | 50.3             | 56.2             | 62.6         | 71.7             |
|             |                                |                                          | Reg                                 | 20.4       | 35.1         | 47.1            | 64.0            | 77.8             | 92.5             | 108          | 131              |
|             |                                |                                          | Wtd                                 | 25.6       | 33.2         | 39.7            | 49.4            | 57.6             | 66.3             | 75.7         | 89.0             |
| 15303000    | 13                             | .636                                     | Sta                                 | 13,500     | 18,000       | 21,300          | 26,000          | 29,800           | 33,900           | 38,300       | 44,800           |
|             |                                |                                          | Reg                                 | 14,200     | 18,100       | 20,800          | 24,300          | 26,800           | 29,400           | 32,000       | 35,600           |
|             |                                |                                          | Wtd                                 | 13,500     | 18,000       | 21,300          | 25,700          | 29,200           | 33,000           | 37,000       | 42,700           |
| 15303010    | 27                             | 0200                                     | Sta                                 | 109        | 175          | 224             | 291             | 345              | 401              | 461          | 546              |
|             |                                |                                          | Reg                                 | 70.4       | 116          | 152             | 202             | 242              | 284              | 330          | 394              |
|             |                                |                                          | Wtd                                 | 106        | 166          | 209             | 267             | 313              | 363              | 416          | 492              |
| 15303011    | 14                             | .333                                     | Sta                                 | 113        | 181          | 237             | 320             | 391              | 471              | 561          | 697              |
|             |                                |                                          | Reg                                 | 49.6       | 83.4         | 111             | 149             | 179              | 212              | 247          | 297              |
|             |                                |                                          | Wtd                                 | 103        | 153          | 187             | 237             | 279              | 327              | 380          | 460              |
| 15303150    | 10                             | .402                                     | Sta                                 | 1,590      | 2,040        | 2,350           | 2,750           | 3,070            | 3,390            | 3,730        | 4,200            |
|             |                                |                                          | Reg                                 | 1,250      | 1,750        | 2,110           | 2,570           | 2,930            | 3,290            | 3,670        | 4,190            |
|             |                                |                                          | Wtd                                 | 1,560      | 1,990        | 2,290           | 2,700           | 3,020            | 3,360            | 3,710        | 4,190            |
| 15303600    | 11                             | 171                                      | Sta                                 | 51,600     | 66,900       | 76,300          | 87,400          | 95,200           | 103,000          | 110,000      | 119,000          |
|             |                                |                                          | Reg                                 | 42,300     | 55,700       | 64,600          | 75,600          | 83,700           | 91,700           | 99,600       | 110,000          |
|             |                                |                                          | Wtd                                 | 51,200     | 66,200       | 75,300          | 86,200          | 94,000           | 101,000          | 109,000      | 118,000          |
| 15303660    | 13                             | .661                                     | Sta                                 | 53.2       | 72.6         | 87.4            | 108             | 126              | 145              | 166          | 198              |
|             |                                |                                          | Reg                                 | 66.8       | 125          | 173             | 243             | 301              | 365              | 433          | 532              |
|             |                                |                                          | Wtd                                 | 55.4       | 82.3         | 105             | 140             | 169              | 201              | 236          | 287              |
| 15303700    | 12                             | 330                                      | Sta                                 | 695        | 952          | 1,110           | 1,290           | 1,420            | 1,550            | 1,660        | 1,810            |
|             |                                |                                          | Reg                                 | 625        | 1,040        | 1,360           | 1,810           | 2,170            | 2,550            | 2,940        | 3,500            |
|             |                                |                                          | Wtd                                 | 687        | 966          | 1,150           | 1,400           | 1,580            | 1,760            | 1,940        | 2,170            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                            | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|---------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15304000    | Kuskokwim River at Crooked Creek,<br>AK                 | 6      | 61 52 16 | 158 06 03 | 31,100                                 | 1,480                                   | 3                                                       | 44                             | 22                                            | -12                                                              |
| 15304200    | Kisarlik River near Akiak, AK                           | 6      | 60 21 10 | 159 55 00 | 265                                    | 2,130                                   | 5                                                       | 0                              | 50                                            | 2                                                                |
| 15304293    | Browns Creek near Bethel, AK                            | 6      | 60 48 20 | 161 49 22 | 4.79                                   | 82                                      | 7                                                       | 1                              | 17                                            | -2                                                               |
| 15304298    | Browns Creek at Bethel, AK                              | 6      | 60 47 56 | 161 46 25 | 10.5                                   | 66                                      | 9                                                       | 1                              | 17                                            | -2                                                               |
| 15304520    | Lubbock River near Atlin, BC                            | 5      | 60 04 52 | 133 51 30 | 683                                    | 4,190                                   | 6                                                       | 84                             | 11                                            | -14                                                              |
| 15304600    | Atlin River near Atlin, BC                              | 2      | 59 35 57 | 133 48 48 | 2,630                                  | 3,500                                   | 9                                                       | 62                             | 12                                            | -8                                                               |
| 15304650    | Wann River near Atlin, BC                               | 2      | 59 25 55 | 134 12 20 | 104                                    | 5,310                                   | 4                                                       | 31                             | 32                                            | 0                                                                |
| 15304700    | Fantail River at outlet of Fantail Lake near Atlin, BC  | 2      | 59 35 40 | 134 23 26 | 277                                    | 5,030                                   | 2                                                       | 21                             | 32                                            | -6                                                               |
| 15304750    | Tutshi River at outlet of Tutshi Lake<br>near Atlin, BC | 2      | 59 56 48 | 134 19 29 | 320                                    | 4,290                                   | 7                                                       | 43                             | 24                                            | -9                                                               |
| 15304800    | Lindeman River near Bennett, BC                         | 2      | 59 50 12 | 135 00 44 | 92.7                                   | 4,840                                   | 2                                                       | 22                             | 52                                            | -5                                                               |
| 15304850    | Wheaton River near Carcross, YT                         | 2      | 60 08 05 | 134 53 45 | 338                                    | 4,620                                   | 2                                                       | 27                             | 12                                            | -10                                                              |
| 15304855    | Watson River near Carcross, YT                          | 2      | 60 13 00 | 134 43 50 | 444                                    | 4,000                                   | 2                                                       | 60                             | 12                                            | -12                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^2$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                       | Peak streamf | low, in cubic   | feet per seco   | nd, for given re | currence inter   | val, in years           |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|-----------------------|--------------|-----------------|-----------------|------------------|------------------|-------------------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | <b>Q</b> <sub>2</sub> | Q5           | Q <sub>10</sub> | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | <b>Q</b> <sub>200</sub> | Q <sub>500</sub> |
| 15304000    | 47                             | -0.148                                   | Sta                                 | 163,000               | 217,000      | 250,000         | 291,000         | 321,000          | 349,000          | 377,000                 | 413,000          |
|             |                                |                                          | Reg                                 | 116,000               | 145,000      | 163,000         | 186,000         | 202,000          | 219,000          | 235,000                 | 256,000          |
|             |                                |                                          | Wtd                                 | 162,000               | 216,000      | 249,000         | 289,000         | 318,000          | 345,000          | 372,000                 | 408,000          |
| 15304200    | 8                              | 366                                      | Sta                                 | 4,280                 | 5,030        | 5,430           | 5,870           | 6,160            | 6,410            | 6,650                   | 6,940            |
|             |                                |                                          | Reg                                 | 4,770                 | 6,270        | 7,290           | 8,580           | 9,540            | 10,500           | 11,500                  | 12,800           |
|             |                                |                                          | Wtd                                 | 4,340                 | 5,210        | 5,750           | 6,400           | 6,860            | 7,290            | 7,700                   | 8,220            |
| 15304293    | 10                             | 257                                      | Sta                                 | 60.9                  | 98.0         | 124             | 158             | 183              | 209              | 235                     | 270              |
|             |                                |                                          | Reg                                 | 99.2                  | 161          | 208             | 272             | 323              | 375              | 430                     | 507              |
|             |                                |                                          | Wtd                                 | 67.6                  | 112          | 146             | 192             | 227              | 264              | 301                     | 352              |
| 15304298    | 10                             | .234                                     | Sta                                 | 176                   | 246          | 296             | 362             | 415              | 469              | 527                     | 607              |
|             |                                |                                          | Reg                                 | 188                   | 296          | 376             | 482             | 566              | 651              | 740                     | 862              |
|             |                                |                                          | Wtd                                 | 178                   | 257          | 316             | 397             | 461              | 527              | 597                     | 693              |
| 15304520    | 29                             | .0229                                    | Sta                                 | 348                   | 479          | 567             | 678             | 762              | 846              | 931                     | 1,050            |
|             |                                |                                          | Reg                                 | 1,150                 | 1,590        | 1,910           | 2,340           | 2,670            | 3,010            | 3,360                   | 3,840            |
|             |                                |                                          | Wtd                                 | 353                   | 493          | 593             | 728             | 837              | 950              | 1,070                   | 1,230            |
| 15304600    | 50                             | 111                                      | Sta                                 | 7,970                 | 9,210        | 9,920           | 10,700          | 11,300           | 11,800           | 12,200                  | 12,800           |
|             |                                |                                          | Reg                                 | 7,170                 | 8,440        | 9,110           | 9,800           | 10,200           | 10,600           | 11,000                  | 11,400           |
|             |                                |                                          | Wtd                                 | 7,960                 | 9,190        | 9,890           | 10,700          | 11,200           | 11,700           | 12,200                  | 12,800           |
| 15304650    | 35                             | .349                                     | Sta                                 | 1,250                 | 1,540        | 1,730           | 1,970           | 2,150            | 2,330            | 2,520                   | 2,770            |
|             |                                |                                          | Reg                                 | 1,180                 | 1,510        | 1,740           | 2,030           | 2,250            | 2,480            | 2,720                   | 3,060            |
|             |                                |                                          | Wtd                                 | 1,250                 | 1,540        | 1,730           | 1,980           | 2,160            | 2,350            | 2,530                   | 2,790            |
| 15304700    | 35                             | .828                                     | Sta                                 | 3,780                 | 4,720        | 5,410           | 6,350           | 7,120            | 7,940            | 8,820                   | 10,100           |
|             |                                |                                          | Reg                                 | 3,510                 | 4,510        | 5,190           | 6,080           | 6,760            | 7,460            | 8,200                   | 9,250            |
|             |                                |                                          | Wtd                                 | 3,780                 | 4,710        | 5,390           | 6,330           | 7,090            | 7,890            | 8,760                   | 10,000           |
| 15304750    | 39                             | .172                                     | Sta                                 | 2,250                 | 2,760        | 3,080           | 3,470           | 3,760            | 4,040            | 4,320                   | 4,690            |
|             |                                |                                          | Reg                                 | 2,110                 | 2,610        | 2,910           | 3,290           | 3,560            | 3,820            | 4,080                   | 4,440            |
|             |                                |                                          | Wtd                                 | 2,250                 | 2,750        | 3,070           | 3,460           | 3,740            | 4,020            | 4,300                   | 4,670            |
| 15304800    | 37                             | 1.42                                     | Sta                                 | 1,810                 | 2,550        | 3,220           | 4,320           | 5,360            | 6,650            | 8,220                   | 10,900           |
|             |                                |                                          | Reg                                 | 1,930                 | 2,520        | 2,950           | 3,530           | 3,990            | 4,470            | 5,000                   | 5,760            |
|             |                                |                                          | Wtd                                 | 1,820                 | 2,550        | 3,200           | 4,250           | 5,240            | 6,430            | 7,890                   | 10,300           |
| 15304850    | 39                             | .0866                                    | Sta                                 | 1,950                 | 2,430        | 2,740           | 3,110           | 3,390            | 3,650            | 3,920                   | 4,260            |
|             |                                |                                          | Reg                                 | 1,710                 | 2,170        | 2,460           | 2,820           | 3,080            | 3,330            | 3,590                   | 3,930            |
|             |                                |                                          | Wtd                                 | 1,940                 | 2,420        | 2,720           | 3,090           | 3,360            | 3,630            | 3,890                   | 4,240            |
| 15304855    | 14                             | 124                                      | Sta                                 | 871                   | 1,270        | 1,540           | 1,890           | 2,150            | 2,410            | 2,670                   | 3,020            |
|             |                                |                                          | Reg                                 | 2,220                 | 2,810        | 3,180           | 3,630           | 3,960            | 4,280            | 4,600                   | 5,020            |
|             |                                |                                          | Wtd                                 | 921                   | 1,380        | 1,700           | 2,100           | 2,390            | 2,660            | 2,940                   | 3,290            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                            | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|---------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15304950    | Maclintock River near Whitehorse, YT                    | 5      | 60 36 45 | 134 27 27 | 656                                    | 3,560                                   | 1                                                       | 81                             | 12                                            | -17                                                              |
| 15305000    | Yukon River at Whitehorse, YT                           | 5      | 60 42 50 | 135 02 35 | 7,490                                  | 3,680                                   | 8                                                       | 57                             | 15                                            | -10                                                              |
| 15305030    | Takhini River at Kusawa Lake at<br>Whitehorse, YT       | 5      | 60 36 46 | 136 07 26 | 1,570                                  | 4,540                                   | 5                                                       | 23                             | 16                                            | -11                                                              |
| 15305050    | Takhini River near Whitehorse, YT                       | 5      | 60 51 08 | 135 44 21 | 2,700                                  | 4,270                                   | 4                                                       | 36                             | 14                                            | -13                                                              |
| 15305100    | Yukon River above Frank Creek, YT                       | 5      | 61 26 04 | 135 11 18 | 11,900                                 | 3,800                                   | 6                                                       | 57                             | 14                                            | -12                                                              |
| 15305150    | Swift River near Swift River, BC                        | 5      | 59 55 50 | 131 46 04 | 1,280                                  | 4,230                                   | 1                                                       | 49                             | 18                                            | -16                                                              |
| 15305200    | Gladys River at outlet of Gladys Lake<br>near Atlin, BC | 5      | 59 54 20 | 132 54 50 | 737                                    | 4,000                                   | 5                                                       | 57                             | 12                                            | -12                                                              |
| 15305250    | Teslin River near Teslin, YT                            | 5      | 60 29 07 | 133 18 04 | 11,700                                 | 3,920                                   | 3                                                       | 69                             | 13                                            | -16                                                              |
| 15305260    | Teslin River near Whitehorse, YT                        | 5      | 61 29 25 | 134 46 35 | 14,100                                 | 3,880                                   | 3                                                       | 70                             | 12                                            | -17                                                              |
| 15305300    | Big Salmon River near Carmacks, YT                      | 5      | 61 52 22 | 134 50 00 | 2,610                                  | 4,140                                   | 1                                                       | 73                             | 13                                            | -20                                                              |
| 15305350    | Yukon River at Carmacks, YT                             | 5      | 62 05 45 | 136 16 18 | 31,600                                 | 4,000                                   | 4                                                       | 57                             | 12                                            | -16                                                              |
| 15305360    | Big Creek near mouth near Minto, YT                     | 5      | 62 34 07 | 137 00 58 | 676                                    | 3,340                                   | 0                                                       | 88                             | 12                                            | -12                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic | feet per secor  | ıd, for given re | currence inter   | val, in years    |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | <b>Q</b> 10    | Q <sub>25</sub> | 0 <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15304950    | 39                             | 0.243                                    | Sta                                 | 1,790          | 2,430       | 2,880          | 3,470           | 3,930            | 4,410            | 4,900            | 5,590            |
|             |                                |                                          | Reg                                 | 2,460          | 3,660       | 4,570          | 5,800           | 6,770            | 7,770            | 8,810            | 10,300           |
|             |                                |                                          | Wtd                                 | 1,790          | 2,450       | 2,920          | 3,560           | 4,070            | 4,610            | 5,170            | 5,970            |
| 15305000    | 53                             | 0464                                     | Sta                                 | 18,200         | 20,400      | 21,600         | 23,000          | 24,000           | 24,800           | 25,700           | 26,700           |
|             |                                |                                          | Reg                                 | 16,900         | 20,900      | 23,400         | 26,600          | 29,000           | 31,500           | 33,900           | 37,100           |
|             |                                |                                          | Wtd                                 | 18,200         | 20,400      | 21,600         | 23,100          | 24,100           | 25,100           | 26,000           | 27,200           |
| 15305030    | 30                             | .0125                                    | Sta                                 | 6,970          | 8,370       | 9,210          | 10,200          | 10,900           | 11,600           | 12,200           | 13,100           |
|             |                                |                                          | Reg                                 | 6,970          | 8,250       | 8,980          | 9,840           | 10,500           | 11,100           | 11,700           | 12,400           |
|             |                                |                                          | Wtd                                 | 6,970          | 8,360       | 9,200          | 10,200          | 10,900           | 11,500           | 12,200           | 13,000           |
| 15305050    | 51                             | .494                                     | Sta                                 | 7,600          | 9,360       | 10,600         | 12,100          | 13,300           | 14,500           | 15,800           | 17,600           |
|             |                                |                                          | Reg                                 | 10,200         | 12,500      | 13,900         | 15,600          | 16,900           | 18,100           | 19,300           | 21,000           |
|             |                                |                                          | Wtd                                 | 7,610          | 9,390       | 10,600         | 12,200          | 13,400           | 14,700           | 16,000           | 17,800           |
| 15305100    | 42                             | 0680                                     | Sta                                 | 24,600         | 26,900      | 28,200         | 29,600          | 30,600           | 31,500           | 32,300           | 33,300           |
|             |                                |                                          | Reg                                 | 30,700         | 37,100      | 41,100         | 46,200          | 50,000           | 53,800           | 57,600           | 62,700           |
|             |                                |                                          | Wtd                                 | 24,600         | 27,000      | 28,400         | 30,000          | 31,100           | 32,200           | 33,200           | 34,600           |
| 15305150    | 39                             | .244                                     | Sta                                 | 8,850          | 11,200      | 12,700         | 14,600          | 16,000           | 17,400           | 18,900           | 20,900           |
|             |                                |                                          | Reg                                 | 6,300          | 8,400       | 9,820          | 11,600          | 13,000           | 14,300           | 15,700           | 17,500           |
|             |                                |                                          | Wtd                                 | 8,820          | 11,100      | 12,600         | 14,400          | 15,800           | 17,200           | 18,600           | 20,500           |
| 15305200    | 35                             | .0088                                    | Sta                                 | 2,060          | 2,650       | 3,020          | 3,470           | 3,790            | 4,110            | 4,430            | 4,850            |
|             |                                |                                          | Reg                                 | 1,830          | 2,480       | 2,940          | 3,530           | 3,980            | 4,430            | 4,890            | 5,510            |
|             |                                |                                          | Wtd                                 | 2,060          | 2,640       | 3,010          | 3,470           | 3,810            | 4,140            | 4,470            | 4,920            |
| 15305250    | 48                             | .240                                     | Sta                                 | 36,900         | 45,800      | 51,700         | 59,000          | 64,400           | 69,800           | 75,300           | 82,700           |
|             |                                |                                          | Reg                                 | 35,000         | 43,400      | 48,900         | 5,5900          | 61,100           | 66,400           | 71,700           | 78,900           |
|             |                                |                                          | Wtd                                 | 36,800         | 45,800      | 51,600         | 58,900          | 64,300           | 69,700           | 75,100           | 82,500           |
| 15305260    | 18                             | .199                                     | Sta                                 | 40,800         | 51,600      | 58,600         | 67,400          | 73,900           | 80,400           | 87,000           | 95,900           |
|             |                                |                                          | Reg                                 | 42,200         | 52,200      | 58,700         | 66,900          | 73,000           | 79,200           | 85,400           | 93,800           |
|             |                                |                                          | Wtd                                 | 40,800         | 51,600      | 58,600         | 67,300          | 73,800           | 80,300           | 86,800           | 95,600           |
| 15305300    | 38                             | .335                                     | Sta                                 | 11,500         | 14,700      | 16,900         | 19,800          | 21,900           | 24,200           | 26,500           | 29,600           |
|             |                                |                                          | Reg                                 | 10,100         | 13,500      | 15,900         | 19,000          | 21,400           | 23,700           | 26,200           | 29,500           |
|             |                                |                                          | Wtd                                 | 11,500         | 14,700      | 16,900         | 19,700          | 21,900           | 24,100           | 26,400           | 29,600           |
| 15305350    | 44                             | .194                                     | Sta                                 | 65,200         | 81,300      | 91,700         | 105,000         | 114,000          | 124,000          | 133,000          | 146,000          |
|             |                                |                                          | Reg                                 | 97,700         | 113,000     | 122,000        | 134,000         | 143,000          | 151,000          | 160,000          | 172,000          |
|             |                                |                                          | Wtd                                 | 65,300         | 81,500      | 92,100         | 105,000         | 115,000          | 125,000          | 134,000          | 147,000          |
| 15305360    | 24                             | 169                                      | Sta                                 | 3,430          | 5,330       | 6,660          | 8,390           | 9,700            | 11,000           | 12,400           | 14,200           |
|             |                                |                                          | Reg                                 | 3,610          | 5,600       | 7,150          | 9,290           | 11,000           | 12,800           | 14,600           | 17,200           |
|             |                                |                                          | Wtd                                 | 3,440          | 5,340       | 6,680          | 8,450           | 9,820            | 11,200           | 12,700           | 14,700           |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                               | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|------------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15305390    | Ross River at Ross River, YT                               | 5      | 61 59 40 | 132 22 40 | 2,800                                  | 3,590                                   | 3                                                       | 89                             | 12                                            | -30                                                              |
| 15305400    | Pelly River at Ross River, YT                              | 5      | 61 59 12 | 132 26 54 | 7,100                                  | 3,870                                   | 2                                                       | 83                             | 12                                            | -26                                                              |
| 15305406    | Pelly River at Faro, YT                                    | 5      | 62 13 20 | 133 22 40 | 8,530                                  | 3,780                                   | 1                                                       | 79                             | 12                                            | -24                                                              |
| 15305412    | South MacMillan River at Canol Road<br>near Ross River, YT | 5      | 62 55 20 | 130 32 00 | 385                                    | 4,540                                   | 1                                                       | 57                             | 24                                            | -21                                                              |
| 15305420    | Pelly River at Pelly Crossing, YT                          | 5      | 62 49 47 | 136 34 50 | 18,900                                 | 3,660                                   | 2                                                       | 82                             | 20                                            | -20                                                              |
| 15305450    | Yukon River above White River near<br>Dawson, YT           | 5      | 63 05 02 | 139 29 40 | 57,900                                 | 3,770                                   | 4                                                       | 67                             | 10                                            | -18                                                              |
| 15305500    | Kluane River at outlet of Kluane Lake,<br>YT               | 2      | 61 25 37 | 139 02 56 | 1,910                                  | 4,390                                   | 8                                                       | 35                             | 20                                            | -20                                                              |
| 15305540    | White River at Alaska Highway near<br>Koidern, BC          | 2      | 61 58 41 | 140 33 10 | 2,410                                  | 6,180                                   | 0                                                       | 19                             | 22                                            | -18                                                              |
| 15305582    | Stewart River above Fraser Falls near<br>Mayo,YT           | 5      | 63 29 17 | 135 08 06 | 11,800                                 | 3,800                                   | 2                                                       | 74                             | 14                                            | -10                                                              |
| 15305590    | Stewart River at Mayo, YT                                  | 5      | 63 35 26 | 135 53 48 | 12,200                                 | 3,780                                   | 2                                                       | 74                             | 15                                            | -12                                                              |
| 15305620    | Stewart River at Stewart Crossing, YT                      | 5      | 63 22 56 | 136 40 59 | 13,500                                 | 3,660                                   | 2                                                       | 73                             | 15                                            | -12                                                              |
| 15305650    | Stewart River at mouth, YT                                 | 5      | 63 16 55 | 139 14 56 | 19,700                                 | 3,600                                   | 1                                                       | 73                             | 12                                            | -13                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^2$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic | feet per secor  | ıd, for given re | currence inter   | val, in years    |              |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|----------------|-----------------|------------------|------------------|------------------|--------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | 0 <sub>2</sub> | Q5          | <b>Q</b> 10    | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | <b>Q</b> 500 |
| 15305390    | 37                             | 0.295                                    | Sta                                 | 14,100         | 18,100      | 20,700         | 24,100          | 26,700           | 29,300           | 32,000           | 35,700       |
|             |                                |                                          | Reg                                 | 7,040          | 9,690       | 11,600         | 14,100          | 16,100           | 18,000           | 20,100           | 22,900       |
|             |                                |                                          | Wtd                                 | 14,100         | 17,900      | 20,400         | 23,600          | 26,000           | 28,400           | 30,900           | 34,300       |
| 15305400    | 19                             | .277                                     | Sta                                 | 37,700         | 49,600      | 57,700         | 68,300          | 76,400           | 84,800           | 93,400           | 105,000      |
|             |                                |                                          | Reg                                 | 21,600         | 28,100      | 32,600         | 38,400          | 42,800           | 47,200           | 51,800           | 57,900       |
|             |                                |                                          | Wtd                                 | 37,400         | 48,900      | 56,400         | 65,900          | 72,900           | 79,900           | 87,100           | 97,000       |
| 15305406    | 26                             | .253                                     | Sta                                 | 35,800         | 43,300      | 48,100         | 54,000          | 58,400           | 62,700           | 67,000           | 72,800       |
|             |                                |                                          | Reg                                 | 34,100         | 44,700      | 51,900         | 61,200          | 68,200           | 75,300           | 82,500           | 92,300       |
|             |                                |                                          | Wtd                                 | 35,800         | 43,300      | 48,200         | 54,300          | 58,900           | 63,500           | 68,200           | 74,500       |
| 15305412    | 22                             | .558                                     | Sta                                 | 4,430          | 5,290       | 5,860          | 6,600           | 7,170            | 7,740            | 8,330            | 9,140        |
|             |                                |                                          | Reg                                 | 1,570          | 2,200       | 2,650          | 3,240           | 3,690            | 4,140            | 4,600            | 5,230        |
|             |                                |                                          | Wtd                                 | 4,340          | 5,110       | 5,600          | 6,190           | 6,630            | 7,090            | 7,560            | 8,220        |
| 15305420    | 46                             | .441                                     | Sta                                 | 66,500         | 88,600      | 104,000        | 126,000         | 143,000          | 161,000          | 180,000          | 207,000      |
|             |                                |                                          | Reg                                 | 61,800         | 78,100      | 89,000         | 103,000         | 113,000          | 124,000          | 134,000          | 149,000      |
|             |                                |                                          | Wtd                                 | 66,500         | 88,500      | 104,000        | 125,000         | 142,000          | 159,000          | 178,000          | 203,000      |
| 15305450    | 42                             | .500                                     | Sta                                 | 125,000        | 162,000     | 188,000        | 223,000         | 251,000          | 280,000          | 310,000          | 354,000      |
|             |                                |                                          | Reg                                 | 169,000        | 195,000     | 212,000        | 232,000         | 247,000          | 263,000          | 279,000          | 300,000      |
|             |                                |                                          | Wtd                                 | 125,000        | 162,000     | 188,000        | 223,000         | 251,000          | 279,000          | 309,000          | 351,000      |
| 15305500    | 43                             | 777                                      | Sta                                 | 10,200         | 11,900      | 12,800         | 13,600          | 14,100           | 14,500           | 14,800           | 15,200       |
|             |                                |                                          | Reg                                 | 9,150          | 10,900      | 12,000         | 13,100          | 13,900           | 14,700           | 15,400           | 16,400       |
|             |                                |                                          | Wtd                                 | 10,200         | 11,900      | 12,700         | 13,600          | 14,100           | 14,500           | 14,900           | 15,300       |
| 15305540    | 22                             | .0837                                    | Sta                                 | 29,000         | 36,400      | 41,000         | 46,600          | 50,700           | 54,700           | 58,700           | 64,000       |
|             |                                |                                          | Reg                                 | 22,900         | 28,900      | 32,900         | 37,900          | 41,600           | 45,400           | 49,300           | 54,700       |
|             |                                |                                          | Wtd                                 | 28,800         | 35,800      | 40,200         | 45,700          | 49,700           | 53,600           | 57,600           | 62,900       |
| 15305582    | 13                             | .247                                     | Sta                                 | 75,000         | 98,300      | 114,000        | 134,000         | 150,000          | 166,000          | 182,000          | 204,000      |
|             |                                |                                          | Reg                                 | 40,000         | 50,700      | 57,800         | 66,900          | 73,700           | 80,600           | 87,500           | 96,900       |
|             |                                |                                          | Wtd                                 | 74,200         | 96,100      | 110,000        | 127,000         | 139,000          | 151,000          | 163,000          | 179,000      |
| 15305590    | 30                             | .314                                     | Sta                                 | 79,800         | 101,000     | 115,000        | 133,000         | 147,000          | 161,000          | 175,000          | 194,000      |
|             |                                |                                          | Reg                                 | 41,500         | 52,600      | 60,000         | 69,400          | 76,400           | 83,500           | 90,700           | 100,000      |
|             |                                |                                          | Wtd                                 | 79,400         | 99,900      | 113,000        | 130,000         | 142,000          | 154,000          | 167,000          | 184,000      |
| 15305620    | 13                             | .394                                     | Sta                                 | 88,500         | 112,000     | 127,000        | 148,000         | 163,000          | 179,000          | 196,000          | 218,000      |
|             |                                |                                          | Reg                                 | 47,400         | 60,200      | 68,700         | 79,500          | 87,600           | 95,800           | 104,000          | 115,000      |
|             |                                |                                          | Wtd                                 | 87,600         | 109,000     | 123,000        | 141,000         | 153,000          | 166,000          | 178,000          | 196,000      |
| 15305650    | 36                             | .524                                     | Sta                                 | 83,900         | 111,000     | 131,000        | 158,000         | 179,000          | 202,000          | 226,000          | 261,000      |
|             |                                |                                          | Reg                                 | 88,000         | 112,000     | 127,000        | 147,000         | 162,000          | 177,000          | 192,000          | 212,000      |
|             |                                |                                          | Wtd                                 | 83,900         | 111,000     | 131,000        | 157,000         | 178,000          | 201,000          | 224,000          | 258,000      |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                          | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|-------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15305670    | Yukon River at Stewart, YT                            | 5      | 63 18 42 | 139 25 43 | 96,900                                 | 3,640                                   | 3                                                       | 72                             | 12                                            | -18                                                              |
| 15305695    | North Klondike River near mouth near<br>Dawson, YT    | 5      | 64 01 16 | 138 34 58 | 425                                    | 3,730                                   | 0                                                       | 34                             | 16                                            | -22                                                              |
| 15305698    | Klondike River above Bonanza Creek<br>near Dawson, YT | 5      | 64 02 34 | 139 24 28 | 3,010                                  | 3,230                                   | 0                                                       | 62                             | 16                                            | -24                                                              |
| 15305700    | Yukon River at Dawson, YT                             | 5      | 64 04 12 | 139 25 30 | 102,000                                | 3,590                                   | 3                                                       | 72                             | 10                                            | -18                                                              |
| 15305900    | Dennison Fork near Tetlin Junction,<br>AK             | 5      | 63 25 24 | 142 29 00 | 2.93                                   | 3,000                                   | 0                                                       | 97                             | 10                                            | -22                                                              |
| 15305920    | West Fork tributary near Tetlin<br>Junction, AK       | 5      | 63 40 03 | 142 16 00 | 1.02                                   | 4,240                                   | 0                                                       | 12                             | 15                                            | -22                                                              |
| 15305950    | Taylor Creek near Chicken, AK                         | 5      | 63 54 27 | 142 12 58 | 38.4                                   | 2,500                                   | 0                                                       | 99                             | 15                                            | -22                                                              |
| 15344000    | King Creek near Dome Creek, AK                        | 5      | 64 23 38 | 141 24 43 | 5.87                                   | 2,391                                   | 0                                                       | 94                             | 15                                            | -22                                                              |
| 15348000    | Fortymile River near Steele Creek, AK                 | 5      | 64 18 33 | 141 24 08 | 5,880                                  | 2,940                                   | 4                                                       | 77                             | 15                                            | -22                                                              |
| 15355000    | Fortymile River near mouth near<br>Eagle, YT          | 5      | 64 23 50 | 140 36 40 | 6,410                                  | 2,900                                   | 3                                                       | 77                             | 15                                            | -24                                                              |
| 15356000    | Yukon River at Eagle, AK                              | 5      | 64 47 22 | 141 11 52 | 114,000                                | 3,340                                   | 1                                                       | 78                             | 12                                            | -19                                                              |
| 15365000    | Discovery Fork of American Creek<br>near Eagle, AK    | 5      | 64 39 40 | 141 18 00 | 5.53                                   | 2,930                                   | 0                                                       | 75                             | 15                                            | -22                                                              |
| 15367500    | Bluff Creek near Eagle, AK                            | 5      | 64 45 08 | 141 13 41 | 3.38                                   | 2,260                                   | 0                                                       | 100                            | 15                                            | -21                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

### 62 Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

|             | Number                         |                                          | Peak                                |                | Peak streamf | low, in cubic f | eet per secon   | l, for given rec | urrence interv   | al, in years     |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5   | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15305670    | 9                              | 0.248                                    | Sta                                 | 265,000        | 357,000      | 421,000         | 504,000         | 568,000          | 635,000          | 704,000          | 799,000          |
|             |                                |                                          | Reg                                 | 314,000        | 363,000      | 393,000         | 431,000         | 459,000          | 488,000          | 517,000          | 557,000          |
|             |                                |                                          | Wtd                                 | 266,000        | 357,000      | 419,000         | 498,000         | 556,000          | 615,000          | 674,000          | 753,000          |
| 15305695    | 24                             | 0068                                     | Sta                                 | 3,530          | 4,810        | 5,640           | 6,700           | 7,480            | 8,260            | 9,050            | 10,100           |
|             |                                |                                          | Reg                                 | 4,080          | 5,830        | 7,050           | 8,620           | 9,790            | 11,000           | 12,100           | 13,700           |
|             |                                |                                          | Wtd                                 | 3,540          | 4,830        | 5,710           | 6,830           | 7,680            | 8,550            | 9,430            | 10,600           |
| 15305698    | 33                             | .0121                                    | Sta                                 | 14,300         | 18,000       | 20,300          | 23,200          | 25,200           | 27,200           | 29,100           | 31,700           |
|             |                                |                                          | Reg                                 | 22,000         | 31,400       | 38,000          | 46,700          | 53,300           | 60,100           | 66,900           | 76,300           |
|             |                                |                                          | Wtd                                 | 14,300         | 18,200       | 20,700          | 23,800          | 26,200           | 28,600           | 31,000           | 34,300           |
| 15305700    | 33                             | .583                                     | Sta                                 | 256,000        | 319,000      | 363,000         | 422,000         | 467,000          | 515,000          | 565,000          | 635,000          |
|             |                                |                                          | Reg                                 | 334,000        | 387,000      | 419,000         | 459,000         | 489,000          | 520,000          | 551,000          | 593,000          |
|             |                                |                                          | Wtd                                 | 257,000        | 320,000      | 364,000         | 423,000         | 468,000          | 515,000          | 564,000          | 633,000          |
| 15305900    | 36                             | .311                                     | Sta                                 | 29.3           | 49.1         | 65.5            | 90.3            | 112              | 137              | 164              | 207              |
|             |                                |                                          | Reg                                 | 13.1           | 26.6         | 39.5            | 60.2            | 78.4             | 99.0             | 122              | 156              |
|             |                                |                                          | Wtd                                 | 28.6           | 47.5         | 62.9            | 86.0            | 106              | 129              | 155              | 194              |
| 15305920    | 26                             | .0339                                    | Sta                                 | 32.6           | 54.2         | 70.9            | 94.5            | 114              | 135              | 157              | 189              |
|             |                                |                                          | Reg                                 | 15.2           | 25.2         | 33.0            | 43.4            | 51.5             | 59.7             | 68.0             | 79.2             |
|             |                                |                                          | Wtd                                 | 31.7           | 51.5         | 65.5            | 83.7            | 97.6             | 112              | 126              | 147              |
| 15305950    | 25                             | .352                                     | Sta                                 | 139            | 294          | 449             | 721             | 991              | 1,330            | 1,760            | 2,490            |
|             |                                |                                          | Reg                                 | 205            | 388          | 554             | 810             | 1,030            | 1,270            | 1,540            | 1,920            |
|             |                                |                                          | Wtd                                 | 140            | 298          | 456             | 730             | 997              | 1,320            | 1,710            | 2,350            |
| 15344000    | 24                             | .135                                     | Sta                                 | 50.5           | 93.4         | 130             | 186             | 236              | 293              | 357              | 456              |
|             |                                |                                          | Reg                                 | 31.4           | 65.0         | 97.4            | 150             | 196              | 249              | 307              | 395              |
|             |                                |                                          | Wtd                                 | 49.6           | 91.2         | 126             | 180             | 228              | 282              | 344              | 438              |
| 15348000    | 9                              | .687                                     | Sta                                 | 36,200         | 48,500       | 57,900          | 71,100          | 82,000           | 93,800           | 107,000          | 126,000          |
|             |                                |                                          | Reg                                 | 16,800         | 22,900       | 27,300          | 33,000          | 37,400           | 41,900           | 46,400           | 52,700           |
|             |                                |                                          | Wtd                                 | 35,800         | 47,400       | 55,800          | 67,000          | 75,900           | 85,200           | 95,100           | 109,000          |
| 15355000    | 11                             | .428                                     | Sta                                 | 37,200         | 48,400       | 56,300          | 66,800          | 75,000           | 83,500           | 92,500           | 105,000          |
|             |                                |                                          | Reg                                 | 20,800         | 28,700       | 34,300          | 41,600          | 47,200           | 52,900           | 58,700           | 66,600           |
|             |                                |                                          | Wtd                                 | 36,700         | 47,300       | 54,400          | 63,500          | 70,400           | 77,400           | 84,800           | 95,000           |
| 15356000    | 52                             | .520                                     | Sta                                 | 281,000        | 352,000      | 401,000         | 465,000         | 515,000          | 567,000          | 620,000          | 696,000          |
|             |                                |                                          | Reg                                 | 535,000        | 644,000      | 713,000         | 798,000         | 862,000          | 926,000          | 991,000          | 1080,000         |
|             |                                |                                          | Wtd                                 | 282,000        | 353,000      | 403,000         | 468,000         | 520,000          | 573,000          | 628,000          | 705,000          |
| 15365000    | 10                             | .440                                     | Sta                                 | 7.36           | 16.7         | 26.8            | 45.5            | 65.4             | 91.6             | 126              | 188              |
|             |                                |                                          | Reg                                 | 30.6           | 59.6         | 86.2            | 128             | 163              | 203              | 246              | 309              |
|             |                                |                                          | Wtd                                 | 8.33           | 20.3         | 34.7            | 62.7            | 91.6             | 128              | 171              | 241              |
| 15367500    | 10                             | .452                                     | Sta                                 | 5.94           | 15.3         | 26.3            | 48.6            | 73.8             | 109              | 158              | 251              |
|             |                                |                                          | Reg                                 | 17.6           | 38.0         | 58.3            | 91.8            | 122              | 157              | 196              | 256              |
|             |                                |                                          | Wtd                                 | 6.54           | 17.6         | 31.4            | 59.3            | 89.0             | 127              | 174              | 253              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                               | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|------------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15388944    | Porcupine River below Bell River, YT                       | 5      | 67 26 25 | 137 47 01 | 13,900                                 | 1,900                                   | 3                                                       | 55                             | 10                                            | -30                                                              |
| 15388948    | Old Crow River near mouth near Old<br>Crow, YT             | 5      | 67 38 04 | 139 41 47 | 5,370                                  | 1,200                                   | 30                                                      | 30                             | 10                                            | -21                                                              |
| 15388950    | Porcupine River at Old Crow, YT                            | 5      | 67 33 50 | 139 53 00 | 21,400                                 | 1,810                                   | 3                                                       | 55                             | 10                                            | -30                                                              |
| 15388960    | Porcupine River near International<br>Boundary, YT         | 5      | 67 25 27 | 140 53 28 | 23,100                                 | 1,800                                   | 3                                                       | 57                             | 10                                            | -30                                                              |
| 15389000    | Porcupine River near Fort Yukon, AK                        | 5      | 66 59 26 | 143 08 16 | 29,500                                 | 1,800                                   | 2                                                       | 65                             | 10                                            | -29                                                              |
| 15389500    | Chandalar River near Venetie, AK                           | 5      | 67 05 49 | 147 11 04 | 9,330                                  | 3,160                                   | 2                                                       | 17                             | 10                                            | -18                                                              |
| 15438500    | Bedrock Creek near Central, AK                             | 6      | 65 33 28 | 145 05 26 | 9.94                                   | 2,910                                   | 0                                                       | 50                             | 15                                            | -24                                                              |
| 15439800    | Boulder Creek near Central, AK                             | 6      | 65 34 05 | 144 53 13 | 31.3                                   | 2,570                                   | 0                                                       | 73                             | 15                                            | -24                                                              |
| 15442500    | Quartz Creek near Central, AK                              | 6      | 65 37 09 | 144 28 55 | 17.2                                   | 1,270                                   | 0                                                       | 98                             | 15                                            | -24                                                              |
| 15453481    | West Fork Dall River tributary near<br>Stevens Village, AK | 6      | 66 17 53 | 150 23 10 | 4.18                                   | 1,968                                   | 0                                                       | 73                             | 15                                            | -16                                                              |
| 15453500    | Yukon River near Stevens Village, AK                       | 6      | 65 52 32 | 149 43 04 | 196,000                                | 2,830                                   | 3                                                       | 70                             | 15                                            | -21                                                              |
| 15453610    | Ray River tributary near Stevens<br>Village, AK            | 6      | 65 56 57 | 150 55 00 | 8.00                                   | 1,500                                   | 0                                                       | 88                             | 10                                            | -16                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

|             | Number                         |                                          | Peak                                |            | Peak streamf | low, in cubic   | feet per secor  | ıd, for given re | currence inter   | val, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|------------|--------------|-----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | <b>Q</b> 2 | Q5           | Q <sub>10</sub> | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15388944    | 20                             | 0.154                                    | Sta                                 | 111,000    | 141,000      | 160,000         | 185,000         | 203,000          | 221,000          | 239,000       | 263,000          |
|             |                                |                                          | Reg                                 | 75,500     | 108,000      | 131,000         | 160,000         | 183,000          | 206,000          | 230,000       | 261,000          |
|             |                                |                                          | Wtd                                 | 110,000    | 140,000      | 159,000         | 184,000         | 202,000          | 220,000          | 238,000       | 263,000          |
| 15388948    | 22                             | 156                                      | Sta                                 | 25,100     | 36,800       | 44,600          | 54,600          | 62,000           | 69,400           | 76,800        | 86,700           |
|             |                                |                                          | Reg                                 | 18,800     | 27,900       | 34,300          | 42,700          | 49,100           | 55,500           | 62,000        | 70,800           |
|             |                                |                                          | Wtd                                 | 25,000     | 36,600       | 44,300          | 54,000          | 61,200           | 68,400           | 75,600        | 85,200           |
| 15388950    | 34                             | 188                                      | Sta                                 | 139,000    | 188,000      | 219,000         | 256,000         | 282,000          | 308,000          | 333,000       | 365,000          |
|             |                                |                                          | Reg                                 | 121,000    | 172,000      | 207,000         | 253,000         | 288,000          | 324,000          | 360,000       | 409,000          |
|             |                                |                                          | Wtd                                 | 139,000    | 188,000      | 219,000         | 256,000         | 283,000          | 309,000          | 334,000       | 368,000          |
| 15388960    | 13                             | .380                                     | Sta                                 | 125,000    | 168,000      | 198,000         | 238,000         | 270,000          | 303,000          | 338,000       | 388,000          |
|             |                                |                                          | Reg                                 | 129,000    | 182,000      | 220,000         | 269,000         | 306,000          | 344,000          | 383,000       | 435,000          |
|             |                                |                                          | Wtd                                 | 125,000    | 168,000      | 199,000         | 240,000         | 273,000          | 307,000          | 343,000       | 394,000          |
| 15389000    | 15                             | .0426                                    | Sta                                 | 158,000    | 230,000      | 280,000         | 346,000         | 396,000          | 449,000          | 503,000       | 578,000          |
|             |                                |                                          | Reg                                 | 176,000    | 252,000      | 306,000         | 377,000         | 430,000          | 485,000          | 541,000       | 618,000          |
|             |                                |                                          | Wtd                                 | 158,000    | 230,000      | 281,000         | 347,000         | 399,000          | 452,000          | 507,000       | 582,000          |
| 15389500    | 11                             | 112                                      | Sta                                 | 44,400     | 58,200       | 66,800          | 77,100          | 84,600           | 91,800           | 98,800        | 108,000          |
|             |                                |                                          | Reg                                 | 97,200     | 115,000      | 125,000         | 136,000         | 144,000          | 151,000          | 158,000       | 167,000          |
|             |                                |                                          | Wtd                                 | 45,100     | 59,600       | 69,000          | 80,800          | 89,400           | 97,800           | 106,000       | 117,000          |
| 15438500    | 11                             | 277                                      | Sta                                 | 119        | 250          | 360             | 521             | 656              | 802              | 959           | 1,180            |
|             |                                |                                          | Reg                                 | 123        | 218          | 295             | 405             | 495              | 592              | 696           | 844              |
|             |                                |                                          | Wtd                                 | 120        | 244          | 344             | 488             | 607              | 735              | 871           | 1,070            |
| 15439800    | 36                             | .156                                     | Sta                                 | 278        | 524          | 738             | 1,070           | 1,370            | 1,720            | 2,120         | 2,730            |
|             |                                |                                          | Reg                                 | 305        | 522          | 694             | 935             | 1,130            | 1,340            | 1,560         | 1,870            |
|             |                                |                                          | Wtd                                 | 279        | 524          | 734             | 1,060           | 1,340            | 1,670            | 2,030         | 2,600            |
| 15442500    | 20                             | .280                                     | Sta                                 | 147        | 270          | 377             | 548             | 703              | 884              | 1,100         | 1,430            |
|             |                                |                                          | Reg                                 | 163        | 291          | 394             | 542             | 663              | 793              | 931           | 1,130            |
|             |                                |                                          | Wtd                                 | 149        | 272          | 380             | 547             | 695              | 865              | 1,060         | 1,360            |
| 15453481    | 13                             | .294                                     | Sta                                 | 76.4       | 118          | 150             | 197             | 235              | 278              | 325           | 394              |
|             |                                |                                          | Reg                                 | 50.4       | 94.8         | 132             | 186             | 231              | 280              | 334           | 410              |
|             |                                |                                          | Wtd                                 | 70.6       | 112          | 145             | 193             | 234              | 279              | 328           | 400              |
| 15453500    | 23                             | .402                                     | Sta                                 | 479,000    | 593,000      | 669,000         | 767,000         | 841,000          | 917,000          | 994,000       | 1,100,000        |
|             |                                |                                          | Reg                                 | 523,000    | 611,000      | 667,000         | 736,000         | 785,000          | 833,000          | 880,000       | 942,000          |
|             |                                |                                          | Wtd                                 | 479,000    | 593,000      | 669,000         | 766,000         | 840,000          | 915,000          | 991,000       | 1,100,000        |
| 15453610    | 23                             | .0198                                    | Sta                                 | 62.3       | 115          | 159             | 224             | 280              | 342              | 411           | 514              |
|             |                                |                                          | Reg                                 | 85.1       | 156          | 215             | 300             | 371              | 447              | 529           | 647              |
|             |                                |                                          | Wtd                                 | 64.3       | 120          | 167             | 237             | 297              | 363              | 436           | 544              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                       | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|-------------|----------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15457700    | Erickson Creek near Livengood, AK                  | 6      | 65 34 30 | 148 56 18 | 26.3                                   | 1,500                                   | 0                                                       | 99                             | 15                                            | -16                                                 |
| 15457800    | Hess Creek near Livengood, AK                      | 6      | 65 39 55 | 149 05 47 | 662                                    | 1,400                                   | 0                                                       | 49                             | 15                                            | -16                                                 |
| 15468000    | Yukon River at Rampart, AK                         | 6      | 65 30 25 | 150 10 15 | 199,000                                | 2,810                                   | 3                                                       | 69                             | 15                                            | -21                                                 |
| 15469900    | Silver Creek near Northway Junction,<br>AK         | 6      | 62 59 01 | 141 40 07 | 11.7                                   | 2,400                                   | 1                                                       | 98                             | 10                                            | -24                                                 |
| 15470000    | Chisana River at Northway Junction,<br>AK          | 6      | 63 00 23 | 141 48 17 | 3,280                                  | 3,730                                   | 2                                                       | 50                             | 20                                            | -23                                                 |
| 15470300    | Little Jack Creek near Nabesna, AK                 | 6      | 62 32 39 | 143 19 22 | 6.73                                   | 4,677                                   | 1                                                       | 30                             | 30                                            | -20                                                 |
| 15470330    | Chalk Creek near Nabesna, AK                       | 6      | 62 30 19 | 143 09 24 | 14.8                                   | 3,964                                   | 3                                                       | 73                             | 30                                            | -20                                                 |
| 15470340    | Jack Creek near Nabesna, AK                        | 6      | 62 27 49 | 143 05 59 | 115                                    | 4,345                                   | 1                                                       | 41                             | 30                                            | -20                                                 |
| 15471000    | Bitters Creek near Northway Junction,<br>AK        | 6      | 63 09 38 | 142 05 20 | 15.4                                   | 2,430                                   | 0                                                       | 99                             | 10                                            | -24                                                 |
| 15471500    | Tanana River tributary near Tetlin<br>Junction, AK | 6      | 63 16 45 | 142 30 27 | 2.43                                   | 2,600                                   | 0                                                       | 100                            | 10                                            | -24                                                 |
| 15473600    | Log Cabin Creek near Log Cabin Inn,<br>AK          | 6      | 63 01 48 | 143 20 36 | 10.7                                   | 3,730                                   | 0                                                       | 58                             | 20                                            | -16                                                 |
| 15473950    | Clearwater Creek near Tok, AK                      | 6      | 63 10 19 | 143 12 03 | 36.4                                   | 4,300                                   | 0                                                       | 31                             | 20                                            | -20                                                 |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^2$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |                | Peak streamf | low, in cubic f | eet per secon   | d, for given rec | urrence interv   | al, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|------------------|------------------|--------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | Q5           | <b>Q</b> 10     | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200 | Q <sub>500</sub> |
| 15457700    | 25                             | -0.122                                   | Sta                                 | 281            | 431          | 537             | 675             | 781              | 888              | 999          | 1,150            |
|             |                                |                                          | Reg                                 | 238            | 416          | 558             | 760             | 925              | 1,100            | 1,290        | 1,550            |
|             |                                |                                          | Wtd                                 | 277            | 430          | 539             | 687             | 802              | 922              | 1,050        | 1,210            |
| 15457800    | 12                             | .425                                     | Sta                                 | 5,110          | 6,830        | 8,060           | 9,730           | 11,000           | 12,400           | 13,900       | 16,000           |
|             |                                |                                          | Reg                                 | 5,240          | 7,700        | 9,480           | 11,800          | 13,600           | 15,500           | 17,400       | 20,000           |
|             |                                |                                          | Wtd                                 | 5,120          | 6,920        | 8,230           | 10,000          | 11,400           | 12,900           | 14,500       | 16,700           |
| 15468000    | 12                             | 195                                      | Sta                                 | 523,000        | 653,000      | 730,000         | 819,000         | 880,000          | 938,000          | 993,000      | 1,060,000        |
|             |                                |                                          | Reg                                 | 533,000        | 622,000      | 678,000         | 748,000         | 797,000          | 846,000          | 893,000      | 955,000          |
|             |                                |                                          | Wtd                                 | 524,000        | 652,000      | 728,000         | 815,000         | 875,000          | 932,000          | 987,000      | 1,060,000        |
| 15469900    | 10                             | .436                                     | Sta                                 | 32.3           | 91.5         | 166             | 325             | 514              | 787              | 1,180        | 1,950            |
|             |                                |                                          | Reg                                 | 96.1           | 175          | 240             | 332             | 409              | 490              | 578          | 702              |
|             |                                |                                          | Wtd                                 | 40.1           | 108          | 185             | 328             | 473              | 657              | 890          | 1,290            |
| 15470000    | 22                             | .958                                     | Sta                                 | 7,660          | 8,900        | 9,770           | 10,900          | 11,900           | 12,800           | 13,800       | 15,300           |
|             |                                |                                          | Reg                                 | 16,200         | 22,400       | 26,600          | 32,000          | 36,000           | 40,100           | 44,100       | 49,600           |
|             |                                |                                          | Wtd                                 | 7,810          | 9,190        | 10,200          | 11,600          | 12,700           | 13,800           | 14,900       | 16,500           |
| 15470300    | 25                             | .105                                     | Sta                                 | 87.5           | 139          | 178             | 232             | 277              | 324              | 375          | 449              |
|             |                                |                                          | Reg                                 | 83.8           | 149          | 202             | 277             | 338              | 404              | 473          | 573              |
|             |                                |                                          | Wtd                                 | 87.1           | 140          | 181             | 240             | 288              | 340              | 396          | 476              |
| 15470330    | 18                             | .264                                     | Sta                                 | 128            | 206          | 267             | 357             | 434              | 518              | 612          | 753              |
|             |                                |                                          | Reg                                 | 108            | 193          | 261             | 358             | 437              | 521              | 609          | 735              |
|             |                                |                                          | Wtd                                 | 125            | 204          | 266             | 358             | 435              | 519              | 612          | 748              |
| 15470340    | 11                             | 105                                      | Sta                                 | 821            | 1,420        | 1,880           | 2,520           | 3,040            | 3,590            | 4,170        | 5,000            |
|             |                                |                                          | Reg                                 | 962            | 1,530        | 1,950           | 2,520           | 2,970            | 3,440            | 3,920        | 4,590            |
|             |                                |                                          | Wtd                                 | 837            | 1,440        | 1,890           | 2,520           | 3,020            | 3,550            | 4,100        | 4,880            |
| 15471000    | 25                             | .429                                     | Sta                                 | 109            | 203          | 289             | 433             | 568              | 733              | 932          | 1,260            |
|             |                                |                                          | Reg                                 | 147            | 264          | 359             | 495             | 606              | 726              | 854          | 1,040            |
|             |                                |                                          | Wtd                                 | 112            | 209          | 298             | 442             | 575              | 731              | 916          | 1,210            |
| 15471500    | 26                             | .294                                     | Sta                                 | 15.0           | 26.3         | 36.0            | 51.0            | 64.3             | 79.7             | 97.4         | 125              |
|             |                                |                                          | Reg                                 | 28.2           | 55.1         | 78.0            | 112             | 141              | 173              | 207          | 258              |
|             |                                |                                          | Wtd                                 | 16.2           | 29.5         | 41.6            | 60.6            | 77.4             | 96.7             | 118          | 152              |
| 15473600    | 26                             | 368                                      | Sta                                 | 140            | 259          | 348             | 469             | 562              | 658              | 756          | 888              |
|             |                                |                                          | Reg                                 | 125            | 223          | 302             | 416             | 509              | 609              | 716          | 868              |
|             |                                |                                          | Wtd                                 | 139            | 254          | 341             | 459             | 552              | 648              | 747          | 884              |
| 15473950    | 17                             | 111                                      | Sta                                 | 309            | 625          | 895             | 1,310           | 1,660            | 2,050            | 2,490        | 3,140            |
|             |                                |                                          | Reg                                 | 451            | 741          | 964             | 1,270           | 1,520            | 1,780            | 2,060        | 2,440            |
|             |                                |                                          | Wtd                                 | 321            | 639          | 906             | 1,300           | 1,630            | 1,990            | 2,390        | 2,960            |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                             | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|----------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15476000    | Tanana River near Tanacross, AK                          | 6      | 63 23 18 | 143 44 47 | 8,550                                  | 3,860                                   | 2                                                       | 45                             | 18                                            | -22                                                              |
| 15476049    | Tanana River tributary near Cathedral<br>Rapids, AK      | 6      | 63 24 24 | 143 48 28 | 3.09                                   | 3,400                                   | 0                                                       | 62                             | 15                                            | -15                                                              |
| 15476050    | Tanana River tributary near Tanacross,<br>AK             | 6      | 63 24 27 | 143 47 54 | 3.32                                   | 3,300                                   | 0                                                       | 63                             | 15                                            | -15                                                              |
| 15476200    | Tanana River tributary near Dot Lake,<br>AK              | 6      | 63 41 40 | 144 17 40 | 11.0                                   | 2,000                                   | 1                                                       | 82                             | 15                                            | -15                                                              |
| 15476300    | Berry Creek near Dot Lake, AK                            | 6      | 63 41 23 | 144 21 47 | 65.1                                   | 3,200                                   | 1                                                       | 40                             | 18                                            | -14                                                              |
| 15476400    | Dry Creek near Dot Lake, AK                              | 6      | 63 41 32 | 144 34 16 | 57.6                                   | 3,100                                   | 1                                                       | 35                             | 18                                            | -13                                                              |
| 15478000    | Tanana River at Big Delta, AK                            | 6      | 64 09 20 | 145 51 00 | 13,500                                 | 3,440                                   | 2                                                       | 50                             | 22                                            | -14                                                              |
| 15478010    | Rock Creek near Paxson, AK                               | 6      | 63 04 16 | 146 06 17 | 50.3                                   | 4,200                                   | 7                                                       | 0                              | 30                                            | -6                                                               |
| 15478040    | Phelan Creek near Paxson, AK                             | 6      | 63 14 27 | 145 28 03 | 12.2                                   | 5,800                                   | 0                                                       | 0                              | 80                                            | -7                                                               |
| 15478050    | McCallum Creek near Paxson, AK                           | 6      | 63 13 27 | 145 38 56 | 15.5                                   | 4,880                                   | 0                                                       | 0                              | 60                                            | -7                                                               |
| 15478093    | Suzy Q Creek near Pump Station 10,<br>AK                 | 6      | 63 29 43 | 145 51 27 | 1.29                                   | 4,191                                   | 0                                                       | 0                              | 40                                            | -6                                                               |
| 15478499    | Ruby Creek above Richardson<br>Highway near Donnelly, AK | 6      | 63 37 54 | 145 52 14 | 4.89                                   | 3,447                                   | 1                                                       | 14                             | 25                                            | -7                                                               |
| 15478500    | Ruby Creek near Donnelly, AK                             | 6      | 63 37 52 | 145 53 03 | 5.32                                   | 3,300                                   | 0                                                       | 12                             | 30                                            | -8                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^3$  Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |                | Peak streamfl | ow, in cubic    | feet per secor  | ıd, for given re | currence inter   | val, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|---------------|-----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | 05            | Q <sub>10</sub> | Q <sub>25</sub> | <b>Q</b> 50      | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15476000    | 38                             | 0.583                                    | Sta                                 | 30,500         | 34,700        | 37,400          | 40,900          | 43,400           | 45,900           | 48,500        | 51,900           |
|             |                                |                                          | Reg                                 | 39,400         | 51,800        | 60,200          | 70,700          | 78,400           | 86,100           | 93,800        | 104,000          |
|             |                                |                                          | Wtd                                 | 30,600         | 35,000        | 37,900          | 41,600          | 44,300           | 47,000           | 49,800        | 53,400           |
| 15476049    | 25                             | 644                                      | Sta                                 | 46.1           | 117           | 177             | 264             | 332              | 403              | 474           | 568              |
|             |                                |                                          | Reg                                 | 40.5           | 76.5          | 107             | 151             | 188              | 229              | 273           | 337              |
|             |                                |                                          | Wtd                                 | 45.4           | 109           | 161             | 232             | 289              | 348              | 409           | 492              |
| 15476050    | 8                              | 478                                      | Sta                                 | 99.9           | 219           | 317             | 456             | 567              | 683              | 802           | 965              |
|             |                                |                                          | Reg                                 | 42.9           | 81.0          | 113             | 160             | 199              | 241              | 288           | 354              |
|             |                                |                                          | Wtd                                 | 78.3           | 153           | 207             | 281             | 340              | 403              | 471           | 567              |
| 15476200    | 17                             | 128                                      | Sta                                 | 66.6           | 99.2          | 121             | 150             | 172              | 194              | 216           | 245              |
|             |                                |                                          | Reg                                 | 96.0           | 174           | 238             | 329             | 404              | 484              | 570           | 692              |
|             |                                |                                          | Wtd                                 | 69.8           | 109           | 139             | 181             | 214              | 248              | 283           | 331              |
| 15476300    | 36                             | .267                                     | Sta                                 | 673            | 1,120         | 1,480           | 2,030           | 2,490            | 3,020            | 3,610         | 4,500            |
|             |                                |                                          | Reg                                 | 583            | 949           | 1,230           | 1,610           | 1,910            | 2,220            | 2,550         | 3,010            |
|             |                                |                                          | Wtd                                 | 669            | 1,110         | 1,460           | 1,980           | 2,430            | 2,920            | 3,470         | 4,290            |
| 15476400    | 26                             | 426                                      | Sta                                 | 841            | 1,400         | 1,790           | 2,270           | 2,630            | 2,980            | 3,330         | 3,780            |
|             |                                |                                          | Reg                                 | 544            | 886           | 1,140           | 1,500           | 1,780            | 2,070            | 2,380         | 2,810            |
|             |                                |                                          | Wtd                                 | 818            | 1,350         | 1,710           | 2,160           | 2,490            | 2,830            | 3,160         | 3,600            |
| 15478000    | 8                              | .0584                                    | Sta                                 | 48,800         | 55,800        | 59,800          | 64,600          | 67,800           | 70,900           | 73,900        | 77,600           |
|             |                                |                                          | Reg                                 | 57,300         | 74,300        | 85,500          | 99,600          | 110,000          | 120,000          | 130,000       | 144,000          |
|             |                                |                                          | Wtd                                 | 49,300         | 57,100        | 62,000          | 68,000          | 72,200           | 76,300           | 80,200        | 85,200           |
| 15478010    | 25                             | 374                                      | Sta                                 | 719            | 1,140         | 1,420           | 1,770           | 2,030            | 2,280            | 2,530         | 2,850            |
|             |                                |                                          | Reg                                 | 1,000          | 1,420         | 1,720           | 2,100           | 2,390            | 2,680            | 2,980         | 3,380            |
|             |                                |                                          | Wtd                                 | 733            | 1,160         | 1,450           | 1,810           | 2,070            | 2,330            | 2,590         | 2,920            |
| 15478040    | 23                             | .396                                     | Sta                                 | 902            | 1,260         | 1,520           | 1,880           | 2,170            | 2,480            | 2,810         | 3,290            |
|             |                                |                                          | Reg                                 | 493            | 734           | 912             | 1,150           | 1,340            | 1,540            | 1,740         | 2,020            |
|             |                                |                                          | Wtd                                 | 854            | 1,180         | 1,410           | 1,730           | 1,990            | 2,260            | 2,550         | 2,970            |
| 15478050    | 25                             | .242                                     | Sta                                 | 462            | 646           | 777             | 952             | 1,090            | 1,240            | 1,390         | 1,600            |
|             |                                |                                          | Reg                                 | 611            | 900           | 1,110           | 1,400           | 1,620            | 1,850            | 2,090         | 2,420            |
|             |                                |                                          | Wtd                                 | 472            | 669           | 813             | 1,010           | 1,160            | 1,320            | 1,490         | 1,730            |
| 15478093    | 11                             | 269                                      | Sta                                 | 98.5           | 247           | 389             | 618             | 824              | 1,060            | 1,330         | 1,730            |
|             |                                |                                          | Reg                                 | 66.4           | 109           | 143             | 190             | 228              | 269              | 312           | 373              |
|             |                                |                                          | Wtd                                 | 91.5           | 203           | 293             | 422             | 529              | 645              | 773           | 959              |
| 15478499    | 13                             | .992                                     | Sta                                 | 292            | 429           | 548             | 737             | 911              | 1,120            | 1,360         | 1,760            |
|             | -                              |                                          | Reg                                 | 78.8           | 138           | 185             | 252             | 307              | 365              | 427           | 515              |
|             |                                |                                          | Wtd                                 | 228            | 326           | 402             | 519             | 622              | 741              | 878           | 1,090            |
| 15478500    | 17                             | 477                                      | Sta                                 | 133            | 275           | 387             | 540             | 661              | 784              | 909           | 1,080            |
|             | 1,                             | ,                                        | Reg                                 | 107            | 184           | 246             | 333             | 404              | 481              | 562           | 677              |
|             |                                |                                          | Wtd                                 | 129            | 256           | 350             | 477             | 577              | 680              | 786           | 933              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No.           | Station name                               | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-----------------------|--------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15480000              | Banner Creek at Richardson, AK             | 6      | 64 17 24 | 146 20 56 | 20.2                                   | 1,730                                   | 0                                                       | 95                             | 10                                            | -16                                                              |
| 15484000              | Salcha River near Salchaket, AK            | 6      | 64 28 22 | 146 55 26 | 2,170                                  | 2,520                                   | 0                                                       | 59                             | 15                                            | -19                                                              |
| 15485500 <sup>3</sup> | Tanana River at Fairbanks, AK              | 6      | 64 47 34 | 147 50 20 | _                                      | _                                       | _                                                       | _                              | _                                             | _                                                                |
| 15490000              | Monument Creek at Chena Hot<br>Springs, AK | 6      | 65 03 17 | 146 03 05 | 26.7                                   | 2,660                                   | 0                                                       | 44                             | 16                                            | -20                                                              |
| 15493000              | Chena River near Two Rivers, AK            | 6      | 64 54 10 | 146 21 25 | 937                                    | 2,270                                   | 0                                                       | 58                             | 16                                            | -19                                                              |
| 15493500 <sup>R</sup> | Chena River near North Pole, AK            | 6      | 64 47 47 | 147 11 56 | 1,440                                  | 1,930                                   | 0                                                       | 58                             | 15                                            | -20                                                              |
| 15511000              | Little Chena River near Fairbanks, AK      | 6      | 64 53 10 | 147 14 50 | 372                                    | 1,480                                   | 0                                                       | 94                             | 15                                            | -18                                                              |
| 15514000 <sup>R</sup> | Chena River at Fairbanks, AK               | 6      | 64 50 45 | 147 42 04 | 2,000                                  | 1,770                                   | 2                                                       | 80                             | 15                                            | -18                                                              |
| 15514500              | Wood River near Fairbanks, AK              | 6      | 64 26 06 | 148 12 46 | 855                                    | 2,720                                   | 0                                                       | 28                             | 15                                            | -12                                                              |
| 15515500              | Tanana River at Nenana, AK                 | 6      | 64 33 55 | 149 05 30 | 25,600                                 | 3,920                                   | 4                                                       | 56                             | 16                                            | -15                                                              |
| 15515800              | Seattle Creek near Cantwell, AK            | 6      | 63 19 32 | 148 14 49 | 36.2                                   | 3,400                                   | 2                                                       | 6                              | 20                                            | -6                                                               |
| 15515900              | Lily Creek near Cantwell, AK               | 6      | 63 19 54 | 148 16 16 | 5.63                                   | 3,590                                   | 0                                                       | 13                             | 20                                            | -6                                                               |
| 15516000              | Nenana River near Windy, AK                | 6      | 63 27 28 | 148 48 11 | 710                                    | 3,470                                   | 2                                                       | 5                              | 30                                            | -7                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^{2}$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

 $^3$  Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow streamflow and recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|                       | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic  | feet per secor | ıd, for given re | currence inter   | val, in years    |              |
|-----------------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|-----------------|----------------|------------------|------------------|------------------|--------------|
| Station No.           | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | 05          | Q <sub>10</sub> | <b>Q</b> 25    | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | <b>Q</b> 500 |
| 15480000              | 36                             | -0.103                                   | Sta                                 | 200            | 431         | 638             | 964            | 1,250            | 1,580            | 1,960            | 2,530        |
|                       |                                |                                          | Reg                                 | 190            | 336         | 453             | 621            | 757              | 904              | 1,060            | 1,280        |
|                       |                                |                                          | Wtd                                 | 199            | 422         | 618             | 917            | 1,180            | 1,470            | 1,800            | 2,290        |
| 15484000              | 49                             | .128                                     | Sta                                 | 15,600         | 25,500      | 33,200          | 44,300         | 53,500           | 63,600           | 74,600           | 90,600       |
|                       |                                |                                          | Reg                                 | 14,300         | 20,100      | 24,100          | 29,400         | 33,400           | 37,500           | 41,600           | 47,200       |
|                       |                                |                                          | Wtd                                 | 15,500         | 25,400      | 32,900          | 43,700         | 52,700           | 62,300           | 72,900           | 88,200       |
| 15485500 <sup>3</sup> | 27                             | .523                                     | Sta                                 | 69,800         | 81,900      | 89,900          | 100,000        | 108,000          | 115,000          | 123,000          | 133,000      |
| 15490000              | 25                             | 302                                      | Sta                                 | 381            | 676         | 896             | 1,190          | 1,420            | 1,660            | 1,900            | 2,230        |
|                       |                                |                                          | Reg                                 | 308            | 521         | 687             | 920            | 1,110            | 1,310            | 1,520            | 1,820        |
|                       |                                |                                          | Wtd                                 | 375            | 659         | 867             | 1,150          | 1,370            | 1,590            | 1,830            | 2,150        |
| 15493000              | 32                             | 174                                      | Sta                                 | 7,270          | 11,900      | 15,300          | 19,800         | 23,300           | 27,000           | 30,700           | 35,800       |
|                       |                                |                                          | Reg                                 | 6,790          | 9,900       | 12,100          | 15,100         | 17,300           | 19,600           | 22,000           | 25,200       |
|                       |                                |                                          | Wtd                                 | 7,260          | 11,800      | 15,100          | 19,500         | 22,900           | 26,400           | 30,000           | 34,900       |
| 15493500 <sup>R</sup> | 9                              | 189                                      | Sta                                 | 5,630          | 9,210       | 11,800          | 15,200         | 17,900           | 20,600           | 23,400           | 27,300       |
|                       |                                |                                          | Reg                                 | 10,000         | 14,300      | 17,300          | 21,300         | 24,400           | 27,400           | 30,600           | 34,900       |
|                       |                                |                                          | Wtd                                 | 5,910          | 9,690       | 12,400          | 16,100         | 18,900           | 21,800           | 24,700           | 28,700       |
| 15511000              | 33                             | .708                                     | Sta                                 | 1,620          | 2,440       | 3,120           | 4,180          | 5,110            | 6,200            | 7,450            | 9,430        |
|                       |                                |                                          | Reg                                 | 2,570          | 3,990       | 5,030           | 6,450          | 7,550            | 8,690            | 9,880            | 11,500       |
|                       |                                |                                          | Wtd                                 | 1,640          | 2,490       | 3,210           | 4,300          | 5,260            | 6,370            | 7,630            | 9,590        |
| 15514000 <sup>R</sup> | 33                             | .156                                     | Sta                                 | 9,300          | 14,700      | 18,800          | 24,700         | 29,500           | 34,700           | 40,300           | 48,400       |
|                       |                                |                                          | Reg                                 | 9,020          | 13,000      | 15,800          | 19,400         | 22,100           | 24,800           | 27,600           | 31,300       |
|                       |                                |                                          | Wtd                                 | 9,300          | 14,700      | 18,700          | 24,500         | 29,200           | 34,200           | 39,700           | 47,600       |
| 15514500              | 10                             | .296                                     | Sta                                 | 4,030          | 4,740       | 5,190           | 5,740          | 6,140            | 6,530            | 6,920            | 7,430        |
|                       |                                |                                          | Reg                                 | 7,790          | 11,100      | 13,400          | 16,400         | 18,700           | 21,100           | 23,500           | 26,800       |
|                       |                                |                                          | Wtd                                 | 4,270          | 5,230       | 5,930           | 6,840          | 7,510            | 8,180            | 8,840            | 9,700        |
| 15515500              | 38                             | .866                                     | Sta                                 | 79,400         | 95,800      | 108,000         | 123,000        | 136,000          | 150,000          | 164,000          | 184,000      |
|                       |                                |                                          | Reg                                 | 85,600         | 109,000     | 124,000         | 142,000        | 156,000          | 169,000          | 182,000          | 199,000      |
|                       |                                |                                          | Wtd                                 | 79,500         | 95,900      | 108,000         | 124,000        | 137,000          | 150,000          | 164,000          | 184,000      |
| 15515800              | 25                             | .874                                     | Sta                                 | 488            | 839         | 1,170           | 1,750          | 2,330            | 3,060            | 3,980            | 5,590        |
|                       |                                |                                          | Reg                                 | 534            | 829         | 1,050           | 1,340          | 1,570            | 1,810            | 2,060            | 2,400        |
|                       |                                |                                          | Wtd                                 | 491            | 838         | 1,160           | 1,690          | 2,190            | 2,810            | 3,560            | 4,820        |
| 15515900              | 15                             | 408                                      | Sta                                 | 87.5           | 147         | 188             | 241            | 280              | 318              | 356              | 406          |
|                       |                                |                                          | Reg                                 | 110            | 190         | 253             | 343            | 416              | 495              | 578              | 697          |
|                       |                                |                                          | Wtd                                 | 90.8           | 155         | 203             | 267            | 317              | 368              | 420              | 490          |
| 15516000              | 28                             | .216                                     | Sta                                 | 6,670          | 8,320       | 9,390           | 10,700         | 11,700           | 12,700           | 13,700           | 15,000       |
|                       |                                |                                          | Reg                                 | 7,980          | 10,800      | 12,700          | 15,100         | 17,000           | 18,800           | 20,700           | 23,200       |
|                       |                                |                                          | Wtd                                 | 6,710          | 8,420       | 9,560           | 11,000         | 12,100           | 13,100           | 14,200           | 15,600       |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                 | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (°F) |
|-------------|----------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15516050    | Jack River near Cantwell, AK                 | 6      | 63 23 41 | 148 55 13 | 325                                    | 3,670                                   | 1                                                       | 18                             | 30                                            | -5                                                  |
| 15516200    | Slime Creek near Cantwell, AK                | 6      | 63 30 34 | 148 48 39 | 6.90                                   | 3,950                                   | 0                                                       | 4                              | 30                                            | -8                                                  |
| 15518000    | Nenana River near Healy, AK                  | 6      | 63 50 43 | 148 56 37 | 1,910                                  | 3,500                                   | 1                                                       | 8                              | 25                                            | -8                                                  |
| 15518080    | Lignite Creek above mouth near<br>Healy, AK  | 6      | 63 54 17 | 148 59 01 | 48.1                                   | 2,460                                   | 0                                                       | 84                             | 25                                            | -10                                                 |
| 15518200    | Rock Creek near Ferry, AK                    | 6      | 64 01 56 | 149 08 40 | 8.17                                   | 2,450                                   | 0                                                       | 40                             | 25                                            | -12                                                 |
| 15518250    | Birch Creek near Rex, AK                     | 6      | 64 10 35 | 149 17 26 | 4.10                                   | 1,490                                   | 0                                                       | 100                            | 20                                            | -14                                                 |
| 15518350    | Teklanika River near Lignite, AK             | 6      | 63 55 14 | 149 29 51 | 490                                    | 3,420                                   | 0                                                       | 65                             | 25                                            | -8                                                  |
| 15519000    | Bridge Creek near Livengood, AK              | 6      | 65 27 52 | 148 15 13 | 12.6                                   | 1,000                                   | 0                                                       | 14                             | 15                                            | -16                                                 |
| 15519200    | Brooks Creek tributary near<br>Livengood, AK | 6      | 65 23 02 | 148 56 12 | 7.81                                   | 1,410                                   | 0                                                       | 98                             | 10                                            | -16                                                 |
| 15520000    | Idaho Creek near Miller House, AK            | 6      | 65 21 13 | 146 09 33 | 5.31                                   | 2,920                                   | 0                                                       | 28                             | 18                                            | -20                                                 |
| 15530000    | Faith Creek near Chena Hot Springs,<br>AK    | 6      | 65 17 32 | 146 22 48 | 61.1                                   | 2,800                                   | 0                                                       | 48                             | 18                                            | -20                                                 |
| 15535000    | Caribou Creek near Chatanika, AK             | 6      | 65 09 00 | 147 33 05 | 9.19                                   | 1,640                                   | 0                                                       | 97                             | 15                                            | -18                                                 |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |        | Peak streamfl | ow, in cubic    | feet per secon  | d, for given rea | urrence interv   | /al, in years    |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|--------|---------------|-----------------|-----------------|------------------|------------------|------------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q2     | Q5            | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | Q <sub>200</sub> | Q <sub>500</sub> |
| 15516050    | 9                              | 0.226                                    | Sta                                 | 2,550  | 3,490         | 4,130           | 4,990           | 5,650            | 6,330            | 7,040            | 8,030            |
|             |                                |                                          | Reg                                 | 3,110  | 4,550         | 5,580           | 6,940           | 7,980            | 9,040            | 10,100           | 11,600           |
|             |                                |                                          | Wtd                                 | 2,610  | 3,630         | 4,370           | 5,360           | 6,130            | 6,930            | 7,750            | 8,880            |
| 15516200    | 33                             | .732                                     | Sta                                 | 161    | 247           | 320             | 433             | 536              | 656              | 797              | 1,020            |
|             |                                |                                          | Reg                                 | 181    | 296           | 385             | 509             | 608              | 713              | 825              | 981              |
|             |                                |                                          | Wtd                                 | 162    | 251           | 327             | 444             | 547              | 666              | 802              | 1,010            |
| 15518000    | 29                             | .105                                     | Sta                                 | 20,700 | 27,500        | 32,000          | 37,800          | 42,100           | 46,400           | 50,700           | 56,700           |
|             |                                |                                          | Reg                                 | 19,000 | 24,900        | 28,900          | 34,000          | 37,800           | 41,600           | 45,400           | 50,500           |
|             |                                |                                          | Wtd                                 | 20,700 | 27,400        | 31,900          | 37,600          | 41,800           | 46,000           | 50,400           | 56,200           |
| 15518080    | 14                             | .0117                                    | Sta                                 | 608    | 1,090         | 1,470           | 2,040           | 2,510            | 3,030            | 3,610            | 4,450            |
|             |                                |                                          | Reg                                 | 428    | 725           | 956             | 1,280           | 1,540            | 1,820            | 2,110            | 2,520            |
|             |                                |                                          | Wtd                                 | 584    | 1,020         | 1,360           | 1,840           | 2,240            | 2,670            | 3,140            | 3,830            |
| 15518200    | 10                             | .207                                     | Sta                                 | 159    | 425           | 729             | 1,320           | 1,950            | 2,790            | 3,890            | 5,880            |
|             |                                |                                          | Reg                                 | 110    | 196           | 264             | 363             | 444              | 531              | 625              | 757              |
|             |                                |                                          | Wtd                                 | 148    | 354           | 548             | 869             | 1,170            | 1,530            | 1,970            | 2,680            |
| 15518250    | 26                             | 255                                      | Sta                                 | 93.7   | 184           | 258             | 363             | 450              | 542              | 641              | 781              |
|             |                                |                                          | Reg                                 | 45.1   | 85.8          | 120             | 171             | 213              | 259              | 309              | 382              |
|             |                                |                                          | Wtd                                 | 86.7   | 166           | 226             | 312             | 382              | 458              | 539              | 654              |
| 15518350    | 10                             | 1.03                                     | Sta                                 | 4,830  | 8,100         | 11,300          | 16,800          | 22,400           | 29,500           | 38,700           | 55,000           |
|             |                                |                                          | Reg                                 | 3,680  | 5,550         | 6,910           | 8,730           | 10,100           | 11,600           | 13,100           | 15,100           |
|             |                                |                                          | Wtd                                 | 4,710  | 7,710         | 10,400          | 14,900          | 19,100           | 24,200           | 30,400           | 40,800           |
| 15519000    | 10                             | .410                                     | Sta                                 | 191    | 438           | 702             | 1,190           | 1,710            | 2,390            | 3,290            | 4,880            |
|             |                                |                                          | Reg                                 | 221    | 368           | 483             | 644             | 774              | 912              | 1,060            | 1,260            |
|             |                                |                                          | Wtd                                 | 197    | 419           | 628             | 968             | 1,280            | 1,660            | 2,100            | 2,830            |
| 15519200    | 25                             | 0631                                     | Sta                                 | 61.7   | 98.5          | 126             | 162             | 191              | 221              | 252              | 296              |
|             |                                |                                          | Reg                                 | 80.6   | 149           | 205             | 288             | 356              | 429              | 509              | 623              |
|             |                                |                                          | Wtd                                 | 63.3   | 104           | 135             | 180             | 215              | 253              | 293              | 350              |
| 15520000    | 27                             | .624                                     | Sta                                 | 108    | 214           | 320             | 510             | 705              | 956              | 1,280            | 1,850            |
|             |                                |                                          | Reg                                 | 83.3   | 149           | 202             | 278             | 341              | 408              | 480              | 583              |
|             |                                |                                          | Wtd                                 | 106    | 204           | 298             | 457             | 610              | 799              | 1,030            | 1,430            |
| 15530000    | 10                             | .808                                     | Sta                                 | 1,210  | 1,840         | 2,380           | 3,220           | 3,990            | 4,890            | 5,960            | 7,670            |
|             |                                |                                          | Reg                                 | 628    | 1,030         | 1,330           | 1,750           | 2,090            | 2,440            | 2,820            | 3,340            |
|             |                                |                                          | Wtd                                 | 1,100  | 1,640         | 2,080           | 2,740           | 3,310            | 3,960            | 4,710            | 5,850            |
| 15535000    | 17                             | 130                                      | Sta                                 | 78.1   | 132           | 172             | 228             | 272              | 318              | 366              | 434              |
|             |                                |                                          | Reg                                 | 93.5   | 172           | 236             | 328             | 405              | 488              | 577              | 705              |
|             |                                |                                          | Wtd                                 | 80.0   | 138           | 184             | 249             | 302              | 358              | 418              | 501              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                      | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|---------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15541600    | Globe Creek near Livengood, AK                    | 6      | 65 17 08 | 148 07 56 | 23.0                                   | 1,590                                   | 0                                                       | 90                             | 15                                            | -16                                                              |
| 15541650    | Globe Creek tributary near Livengood,<br>AK       | 6      | 65 16 31 | 148 06 58 | 9.01                                   | 1,710                                   | 0                                                       | 100                            | 15                                            | -16                                                              |
| 15541800    | Washington Creek near Fox, AK                     | 6      | 65 09 04 | 147 55 22 | 46.7                                   | 1,500                                   | 0                                                       | 94                             | 15                                            | -16                                                              |
| 15564600    | Melozitna River near Ruby, AK                     | 6      | 64 47 34 | 155 33 39 | 2,690                                  | 1,410                                   | 2                                                       | 57                             | 15                                            | -17                                                              |
| 15564800    | Yukon River at Ruby, AK                           | 6      | 64 44 28 | 155 29 22 | 259,000                                | 2,640                                   | 4                                                       | 62                             | 15                                            | -19                                                              |
| 15564868    | Snowden Creek near Wiseman, AK                    | 6      | 67 44 20 | 149 44 24 | 16.7                                   | 3,620                                   | 0                                                       | 4                              | 28                                            | -18                                                              |
| 15564872    | Nugget Creek near Wiseman, AK                     | 6      | 67 29 25 | 149 52 20 | 9.47                                   | 3,036                                   | 0                                                       | 16                             | 25                                            | -18                                                              |
| 15564875    | Middle Fork Koyukuk River near<br>Wiseman, AK     | 6      | 67 26 18 | 150 04 30 | 1,200                                  | 3,390                                   | 0.6                                                     | 4                              | 25                                            | -16                                                              |
| 15564877    | Wiseman Creek at Wiseman, AK                      | 6      | 67 24 38 | 150 06 21 | 49.2                                   | 2,930                                   | 0                                                       | 3                              | 25                                            | -17                                                              |
| 15564879    | Slate Creek at Coldfoot, AK                       | 6      | 67 15 17 | 150 10 24 | 73.4                                   | 2,204                                   | 0                                                       | 51                             | 20                                            | -18                                                              |
| 15564884    | Prospect Creek near Prospect Camp,<br>AK          | 6      | 66 46 56 | 150 41 06 | 110                                    | 1,780                                   | 0                                                       | 48                             | 18                                            | -18                                                              |
| 15564885    | Jim River near Bettles, AK                        | 6      | 66 47 10 | 150 52 23 | 465                                    | 2,080                                   | 0                                                       | 10                             | 18                                            | -16                                                              |
| 15564887    | Bonanza Creek tributary near Prospect<br>Camp, AK | 6      | 66 36 52 | 150 41 24 | 11.7                                   | 1,674                                   | 0                                                       | 89                             | 20                                            | -18                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^2$  Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

#### 74 Estimating the Magnitude and Frequency of Peak Streamflows for Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |                       | Peak stream | flow, in cubic  | feet per seco | nd, for given r | ecurrence inte   | rval, in years   |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|-----------------------|-------------|-----------------|---------------|-----------------|------------------|------------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | <b>Q</b> <sub>2</sub> | Q5          | Q <sub>10</sub> | <b>Q</b> 25   | Q <sub>50</sub> | Q <sub>100</sub> | 0 <sub>200</sub> | Q <sub>500</sub> |
| 15541600    | 35                             | 0.0068                                   | Sta                                 | 294                   | 552         | 767             | 1,090         | 1,370           | 1,680            | 2,020            | 2,540            |
|             |                                |                                          | Reg                                 | 217                   | 381         | 511             | 697           | 849             | 1,010            | 1,180            | 1,430            |
|             |                                |                                          | Wtd                                 | 289                   | 537         | 739             | 1,040         | 1,290           | 1,570            | 1,880            | 2,340            |
| 15541650    | 9                              | .397                                     | Sta                                 | 136                   | 244         | 340             | 494           | 636             | 804              | 1,000            | 1,330            |
|             |                                |                                          | Reg                                 | 91.0                  | 167         | 230             | 321           | 396             | 478              | 565              | 691              |
|             |                                |                                          | Wtd                                 | 125                   | 221         | 301             | 424           | 531             | 654              | 794              | 1,010            |
| 15541800    | 10                             | .138                                     | Sta                                 | 623                   | 1,310       | 1,940           | 3,000         | 3,980           | 5,160            | 6,560            | 8,800            |
|             |                                |                                          | Reg                                 | 403                   | 686         | 908             | 1,220         | 1,470           | 1,740            | 2,020            | 2,410            |
|             |                                |                                          | Wtd                                 | 583                   | 1,150       | 1,620           | 2,330         | 2,950           | 3,660            | 4,460            | 5,700            |
| 15564600    | 12                             | 600                                      | Sta                                 | 21,500                | 27,600      | 31,000          | 34,500        | 36,800          | 38,900           | 40,700           | 42,800           |
|             |                                |                                          | Reg                                 | 13,100                | 18,300      | 21,900          | 26,500        | 30,000          | 33,500           | 37,000           | 41,800           |
|             |                                |                                          | Wtd                                 | 20,900                | 26,700      | 29,900          | 33,500        | 35,900          | 38,100           | 40,100           | 42,700           |
| 15564800    | 22                             | 264                                      | Sta                                 | 593,000               | 755,000     | 851,000         | 961,000       | 1,040,000       | 1,110,000        | 1,180,000        | 1,260,000        |
|             |                                |                                          | Reg                                 | 655,000               | 753,000     | 816,000         | 891,000       | 946,000         | 999,000          | 1,050,000        | 1,120,000        |
|             |                                |                                          | Wtd                                 | 594,000               | 755,000     | 850,000         | 960,000       | 1,030,000       | 1,110,000        | 1,170,000        | 1,260,000        |
| 15564868    | 23                             | 232                                      | Sta                                 | 365                   | 500         | 584             | 686           | 759             | 829              | 897              | 985              |
|             |                                |                                          | Reg                                 | 398                   | 626         | 798             | 1,030         | 1,220           | 1,420            | 1,620            | 1,910            |
|             |                                |                                          | Wtd                                 | 367                   | 513         | 610             | 734           | 826             | 917              | 1,010            | 1,130            |
| 15564872    | 24                             | .460                                     | Sta                                 | 164                   | 271         | 361             | 501           | 626             | 771              | 940              | 1,200            |
|             |                                |                                          | Reg                                 | 165                   | 280         | 370             | 498           | 602             | 712              | 829              | 995              |
|             |                                |                                          | Wtd                                 | 164                   | 272         | 363             | 501           | 621             | 758              | 914              | 1,150            |
| 15564875    | 14                             | .111                                     | Sta                                 | 11,800                | 17,000      | 20,700          | 25,600        | 29,500          | 33,500           | 37,600           | 43,400           |
|             |                                |                                          | Reg                                 | 16,000                | 20,800      | 24,100          | 28,300        | 31,400          | 34,600           | 37,800           | 42,100           |
|             |                                |                                          | Wtd                                 | 11,900                | 17,200      | 20,900          | 25,900        | 29,700          | 33,600           | 37,700           | 43,300           |
| 15564877    | 9                              | .471                                     | Sta                                 | 447                   | 709         | 925             | 1,250         | 1,540           | 1,860            | 2,240            | 2,810            |
|             |                                |                                          | Reg                                 | 1,120                 | 1,660       | 2,050           | 2,590         | 3,000           | 3,430            | 3,870            | 4,480            |
|             |                                |                                          | Wtd                                 | 492                   | 798         | 1,060           | 1,440         | 1,770           | 2,140            | 2,540            | 3,150            |
| 15564879    | 19                             | .361                                     | Sta                                 | 1,260                 | 2,560       | 3,830           | 6,000         | 8,130           | 10,800           | 14,000           | 19,500           |
|             |                                |                                          | Reg                                 | 727                   | 1,180       | 1,530           | 2,010         | 2,390           | 2,790            | 3,200            | 3,790            |
|             |                                |                                          | Wtd                                 | 1,200                 | 2,360       | 3,390           | 5,060         | 6,600           | 8,440            | 10,600           | 14,200           |
| 15564884    | 25                             | 194                                      | Sta                                 | 1,530                 | 2,300       | 2,830           | 3,500         | 4,000           | 4,500            | 5,000            | 5,670            |
|             |                                |                                          | Reg                                 | 1,060                 | 1,690       | 2,160           | 2,810         | 3,320           | 3,860            | 4,420            | 5,190            |
|             |                                |                                          | Wtd                                 | 1,500                 | 2,250       | 2,760           | 3,410         | 3,910           | 4,410            | 4,920            | 5,600            |
| 15564885    | 7                              | .718                                     | Sta                                 | 9,010                 | 12,100      | 14,400          | 17,800        | 20,600          | 23,600           | 27,000           | 32,000           |
|             |                                |                                          | Reg                                 | 6,090                 | 8,530       | 10,200          | 12,500        | 14,200          | 16,000           | 17,800           | 20,200           |
|             |                                |                                          | Wtd                                 | 8,640                 | 11,500      | 13,600          | 16,600        | 19,000          | 21,600           | 24,400           | 28,500           |
| 15564887    | 25                             | 274                                      | Sta                                 | 158                   | 221         | 260             | 308           | 341             | 374              | 405              | 446              |
|             |                                |                                          | Reg                                 | 119                   | 215         | 294             | 406           | 499             | 599              | 706              | 859              |
|             |                                |                                          | Wtd                                 | 154                   | 220         | 265             | 323           | 367             | 411              | 455              | 514              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  form analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; °F, degree Fahrenheit]

| Station No. | Station name                                  | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|-----------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15564900    | Koyukuk River at Hughes, AK                   | 6      | 66 02 51 | 154 15 30 | 18,400                                 | 2,200                                   | 1                                                       | 36                             | 16                                            | -17                                                              |
| 15565200    | Yukon River near Kaltag, AK                   | 6      | 64 19 40 | 158 43 10 | 296,000                                | 2,490                                   | 4                                                       | 59                             | 15                                            | -18                                                              |
| 15565447    | Yukon River at Pilot Station, AK              | 6      | 61 56 04 | 162 52 50 | 321,000                                | 2,337                                   | 4                                                       | 57                             | 16                                            | -17                                                              |
| 15585000    | Goldengate Creek near Nome, AK                | 7      | 64 26 03 | 165 02 46 | 1.55                                   | 300                                     | 0                                                       | 0                              | 15                                            | -2                                                               |
| 15619000    | Dexter Creek near Nome, AK                    | 7      | 64 35 11 | 165 16 39 | 2.99                                   | 512                                     | 0                                                       | 0                              | 22                                            | -2                                                               |
| 15621000    | Snake River near Nome, AK                     | 7      | 64 33 51 | 165 30 26 | 85.7                                   | 632                                     | 0                                                       | 4                              | 30                                            | -2                                                               |
| 15624998    | Arctic Creek above tributary near<br>Nome, AK | 7      | 64 38 16 | 165 42 42 | 1.13                                   | 784                                     | 0                                                       | 0                              | 25                                            | -3                                                               |
| 15625000    | Arctic Creek near Nome, AK                    | 7      | 64 38 15 | 165 42 46 | 1.76                                   | 820                                     | 0                                                       | 2                              | 25                                            | -3                                                               |
| 15633000    | Washington Creek near Nome, AK                | 7      | 64 42 52 | 165 49 13 | 6.34                                   | 860                                     | 0                                                       | 3                              | 25                                            | -3                                                               |
| 15635000    | Eldorado Creek near Teller, AK                | 7      | 64 57 38 | 166 11 59 | 5.83                                   | 1,310                                   | 0                                                       | 0                              | 18                                            | -3                                                               |
| 15637000    | Gold Run Creek near Teller, AK                | 7      | 65 02 30 | 166 10 06 | 24.2                                   | 783                                     | 0                                                       | 0                              | 18                                            | -3                                                               |
| 15668100    | Star Creek near Nome, AK                      | 7      | 64 55 40 | 164 57 39 | 3.78                                   | 1,500                                   | 0                                                       | 1                              | 30                                            | -4                                                               |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow streamflow and recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |                | Peak stream | flow, in cubic | feet per secor  | ıd, for given re | currence inter   | val, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|-------------|----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | <b>Q</b> 5  | <b>Q</b> 10    | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15564900    | 22                             | 0.235                                    | Sta                                 | 122,000        | 171,000     | 206,000        | 252,000         | 289,000          | 328,000          | 368,000       | 426,000          |
|             |                                |                                          | Reg                                 | 93,000         | 117,000     | 133,000        | 152,000         | 167,000          | 181,000          | 196,000       | 215,000          |
|             |                                |                                          | Wtd                                 | 121,000        | 169,000     | 203,000        | 248,000         | 283,000          | 320,000          | 359,000       | 413,000          |
| 15565200    | 10                             | 108                                      | Sta                                 | 747,000        | 921,000     | 1,020,000      | 1,150,000       | 1,230,000        | 1,310,000        | 1,390,000     | 1,490,000        |
|             |                                |                                          | Reg                                 | 749,000        | 854,000     | 921,000        | 1,000,000       | 1,060,000        | 1,120,000        | 1,170,000     | 1,250,000        |
|             |                                |                                          | Wtd                                 | 747,000        | 918,000     | 1,020,000      | 1,140,000       | 1,220,000        | 1,300,000        | 1,370,000     | 1,470,000        |
| 15565447    | 21                             | .307                                     | Sta                                 | 688,000        | 839,000     | 937,000        | 1,060,000       | 1,150,000        | 1,240,000        | 1,330,000     | 1,460,000        |
|             |                                |                                          | Reg                                 | 814,000        | 923,000     | 993,000        | 1,080,000       | 1,140,000        | 1,200,000        | 1,260,000     | 1,330,000        |
|             |                                |                                          | Wtd                                 | 689,000        | 840,000     | 938,000        | 1,060,000       | 1,150,000        | 1,240,000        | 1,330,000     | 1,450,000        |
| 15585000    | 22                             | 850                                      | Sta                                 | 35.5           | 51.7        | 60.7           | 70.2            | 76.1             | 81.3             | 85.7          | 90.7             |
|             |                                |                                          | Reg                                 | 41.5           | 69.5        | 88.9           | 114             | 132              | 150              | 169           | 193              |
|             |                                |                                          | Wtd                                 | 35.8           | 52.9        | 63.0           | 74.5            | 82.3             | 89.4             | 95.9          | 104              |
| 15619000    | 10                             | 372                                      | Sta                                 | 88.4           | 116         | 132            | 150             | 163              | 174              | 185           | 199              |
|             |                                |                                          | Reg                                 | 74.5           | 123         | 156            | 198             | 230              | 261              | 291           | 332              |
|             |                                |                                          | Wtd                                 | 86.3           | 117         | 137            | 161             | 179              | 197              | 214           | 237              |
| 15621000    | 27                             | 544                                      | Sta                                 | 2,710          | 3,430       | 3,820          | 4,250           | 4,520            | 4,770            | 4,990         | 5,260            |
|             |                                |                                          | Reg                                 | 1,490          | 2,270       | 2,790          | 3,420           | 3,880            | 4,320            | 4,760         | 5,320            |
|             |                                |                                          | Wtd                                 | 2,640          | 3,360       | 3,750          | 4,180           | 4,460            | 4,720            | 4,970         | 5,260            |
| 15624998    | 21                             | 270                                      | Sta                                 | 51.9           | 95.2        | 128            | 174             | 211              | 249              | 289           | 343              |
|             |                                |                                          | Reg                                 | 31.3           | 52.8        | 67.8           | 86.9            | 101              | 115              | 130           | 148              |
|             |                                |                                          | Wtd                                 | 49.9           | 90.3        | 120            | 158             | 187              | 217              | 248           | 290              |
| 15625000    | 10                             | 184                                      | Sta                                 | 63.1           | 111         | 148            | 198             | 238              | 281              | 325           | 388              |
|             |                                |                                          | Reg                                 | 46.5           | 77.6        | 99.1           | 127             | 147              | 167              | 187           | 214              |
|             |                                |                                          | Wtd                                 | 60.3           | 104         | 136            | 176             | 207              | 239              | 271           | 315              |
| 15633000    | 36                             | 412                                      | Sta                                 | 72.9           | 155         | 223            | 319             | 397              | 479              | 565           | 683              |
|             |                                |                                          | Reg                                 | 146            | 236         | 298            | 375             | 433              | 489              | 545           | 618              |
|             |                                |                                          | Wtd                                 | 75.0           | 159         | 227            | 323             | 400              | 480              | 562           | 675              |
| 15635000    | 14                             | 0798                                     | Sta                                 | 239            | 373         | 468            | 594             | 693              | 794              | 899           | 1,040            |
|             |                                |                                          | Reg                                 | 135            | 220         | 277            | 350             | 403              | 456              | 508           | 576              |
|             |                                |                                          | Wtd                                 | 226            | 350         | 433            | 539             | 619              | 700              | 782           | 895              |
| 15637000    | 10                             | 258                                      | Sta                                 | 774            | 1,210       | 1,510          | 1,890           | 2,180            | 2,470            | 2,750         | 3,140            |
|             |                                |                                          | Reg                                 | 481            | 757         | 941            | 1,170           | 1,340            | 1,500            | 1,660         | 1,870            |
|             |                                |                                          | Wtd                                 | 731            | 1,130       | 1,390          | 1,710           | 1,940            | 2,160            | 2,390         | 2,680            |
| 15668100    | 24                             | 507                                      | Sta                                 | 71.1           | 111         | 137            | 169             | 191              | 212              | 231           | 256              |
|             |                                |                                          | Reg                                 | 91.9           | 151         | 191            | 242             | 280              | 317              | 354           | 403              |
|             |                                |                                          | Wtd                                 | 72.2           | 114         | 141            | 176             | 200              | 224              | 247           | 276              |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

| Station No. | Station name                                             | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature ( <sup>o</sup> F) |
|-------------|----------------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------------------------------------|
| 15668200    | Crater Creek near Nome, AK                               | 7      | 64 55 48 | 164 52 12 | 21.9                                   | 1,620                                   | 1                                                       | 3                              | 35                                            | -4                                                               |
| 15712000    | Kuzitrin River near Nome, AK                             | 7      | 65 13 17 | 164 37 15 | 1,720                                  | 700                                     | 1                                                       | 2                              | 15                                            | -8                                                               |
| 15743850    | Dahl Creek near Kobuk, AK                                | 7      | 66 56 46 | 156 54 32 | 11.0                                   | 1,500                                   | 0                                                       | 55                             | 18                                            | -15                                                              |
| 15744000    | Kobuk River at Ambler, AK                                | 7      | 67 05 13 | 157 50 51 | 6,570                                  | 1,610                                   | 1                                                       | 34                             | 25                                            | -16                                                              |
| 15744500    | Kobuk River near Kiana, AK                               | 7      | 66 58 25 | 160 07 51 | 9,520                                  | 1,450                                   | 1                                                       | 32                             | 25                                            | -16                                                              |
| 15747000    | Wulik River below Tutak Creek near<br>Kivalina, AK       | 7      | 67 52 34 | 163 40 28 | 705                                    | 830                                     | 0                                                       | 1                              | 15                                            | -14                                                              |
| 15798700    | Nunavak Creek near Barrow, AK                            | 7      | 71 15 35 | 156 46 57 | 2.79                                   | 40                                      | 22                                                      | 0                              | 8                                             | -23                                                              |
| 15896000    | Kuparuk River near Deadhorse, AK                         | 7      | 70 16 54 | 148 57 35 | 3,130                                  | 900                                     | 2                                                       | 0                              | 9                                             | -18                                                              |
| 15896700    | Putuligayuk River near Deadhorse,<br>AK                  | 7      | 70 16 03 | 148 37 41 | 176                                    | 135                                     | 8                                                       | 0                              | 8                                             | -18                                                              |
| 15904900    | Atigun River tributary near Pump<br>Station 4, AK        | 7      | 68 22 25 | 149 18 48 | 32.6                                   | 5,100                                   | 0                                                       | 0                              | 25                                            | -16                                                              |
| 15906000    | Sagavanirktok River tributary near<br>Pump Station 3, AK | 7      | 68 41 13 | 149 05 42 | 28.4                                   | 2,869                                   | 4                                                       | 0                              | 18                                            | -16                                                              |
| 15908000    | Sagavanirktok River near Pump<br>Station 3, AK           | 7      | 69 00 54 | 148 49 02 | 1,860                                  | 3,580                                   | 1                                                       | 0                              | 18                                            | -16                                                              |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

 $^{3}$  Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_{T}$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number                         |                                          | Peak                                |                | Peak streamf | low, in cubic   | feet per secor  | ıd, for given re | currence inter   | val, in years |                  |
|-------------|--------------------------------|------------------------------------------|-------------------------------------|----------------|--------------|-----------------|-----------------|------------------|------------------|---------------|------------------|
| Station No. | of<br>syste-<br>matic<br>peaks | coeffi-<br>cient<br>used for<br>analysis | stream-<br>flow<br>analysis<br>type | Q <sub>2</sub> | Q5           | Q <sub>10</sub> | Q <sub>25</sub> | Q <sub>50</sub>  | Q <sub>100</sub> | <b>Q</b> 200  | Q <sub>500</sub> |
| 15668200    | 25                             | -0.261                                   | Sta                                 | 872            | 1,360        | 1,690           | 2,120           | 2,440            | 2,750            | 3,070         | 3,490            |
|             |                                |                                          | Reg                                 | 440            | 694          | 864             | 1,070           | 1,230            | 1,380            | 1,530         | 1,720            |
|             |                                |                                          | Wtd                                 | 843            | 1,310        | 1,610           | 1,980           | 2,260            | 2,530            | 2,800         | 3,150            |
| 15712000    | 10                             | 465                                      | Sta                                 | 19,800         | 30,500       | 37,400          | 45,600          | 51,500           | 57,100           | 62,400        | 69,200           |
|             |                                |                                          | Reg                                 | 21,500         | 30,800       | 36,600          | 43,600          | 48,500           | 53,200           | 57,700        | 63,500           |
|             |                                |                                          | Wtd                                 | 19,900         | 30,500       | 37,300          | 45,300          | 51,000           | 56,400           | 61,500        | 68,000           |
| 15743850    | 14                             | 546                                      | Sta                                 | 352            | 698          | 957             | 1,300           | 1,560            | 1,820            | 2,070         | 2,410            |
|             |                                |                                          | Reg                                 | 238            | 382          | 478             | 599             | 688              | 775              | 862           | 974              |
|             |                                |                                          | Wtd                                 | 339            | 652          | 868             | 1,130           | 1,320            | 1,510            | 1,690         | 1,920            |
| 15744000    | 13                             | 489                                      | Sta                                 | 62,500         | 86,100       | 100,000         | 116,000         | 127,000          | 137,000          | 146,000       | 157,000          |
|             |                                |                                          | Reg                                 | 71,100         | 98,700       | 116,000         | 136,000         | 150,000          | 163,000          | 176,000       | 192,000          |
|             |                                |                                          | Wtd                                 | 62,800         | 86,800       | 101,000         | 118,000         | 129,000          | 140,000          | 149,000       | 162,000          |
| 5744500     | 23                             | 609                                      | Sta                                 | 105,000        | 139,000      | 158,000         | 178,000         | 192,000          | 204,000          | 214,000       | 227,000          |
|             |                                |                                          | Reg                                 | 99,000         | 136,000      | 159,000         | 186,000         | 205,000          | 223,000          | 240,000       | 261,00           |
|             |                                |                                          | Wtd                                 | 104,000        | 139,000      | 158,000         | 179,000         | 192,000          | 205,000          | 216,000       | 229,000          |
| 5747000     | 15                             | 0612                                     | Sta                                 | 17,700         | 25,800       | 31,300          | 38,400          | 43,800           | 49,200           | 54,700        | 62,200           |
|             |                                |                                          | Reg                                 | 9,720          | 14,200       | 17,000          | 20,500          | 22,900           | 25,200           | 27,500        | 30,400           |
|             |                                |                                          | Wtd                                 | 17,100         | 24,800       | 29,700          | 35,800          | 40,300           | 44,800           | 49,400        | 55,500           |
| 5798700     | 28                             | .0449                                    | Sta                                 | 39.7           | 74.1         | 103             | 146             | 184              | 227              | 274           | 340              |
|             |                                |                                          | Reg                                 | 70.1           | 116          | 147             | 187             | 217              | 246              | 275           | 31.              |
|             |                                |                                          | Wtd                                 | 41.0           | 76.3         | 106             | 150             | 188              | 229              | 274           | 340              |
| 15896000    | 29                             | 223                                      | Sta                                 | 45,100         | 68,600       | 84,500          | 105,000         | 120,000          | 135,000          | 150,000       | 170,000          |
|             |                                |                                          | Reg                                 | 36,700         | 51,800       | 61,300          | 72,500          | 80,300           | 87,800           | 95,000        | 104,000          |
|             |                                |                                          | Wtd                                 | 44,900         | 68,000       | 83,500          | 103,000         | 117,000          | 131,000          | 145,000       | 164,000          |
| 5896700     | 25                             | 497                                      | Sta                                 | 3,160          | 4,530        | 5,350           | 6,310           | 6,960            | 7,570            | 8,140         | 8,840            |
|             |                                |                                          | Reg                                 | 2,820          | 4,250        | 5,170           | 6,300           | 7,110            | 7,900            | 8,660         | 9,640            |
|             |                                |                                          | Wtd                                 | 3,140          | 4,510        | 5,340           | 6,310           | 6,980            | 7,600            | 8,200         | 8,940            |
| 5904900     | 24                             | .108                                     | Sta                                 | 637            | 866          | 1,020           | 1,220           | 1,370            | 1,520            | 1,680         | 1,90             |
|             |                                |                                          | Reg                                 | 627            | 981          | 1,220           | 1,510           | 1,720            | 1,930            | 2,130         | 2,39             |
|             |                                |                                          | Wtd                                 | 637            | 873          | 1,040           | 1,250           | 1,410            | 1,570            | 1,740         | 1,96             |
| 5906000     | 21                             | 577                                      | Sta                                 | 331            | 574          | 738             | 941             | 1,090            | 1,220            | 1,360         | 1,520            |
|             |                                |                                          | Reg                                 | 555            | 871          | 1,080           | 1,340           | 1,530            | 1,720            | 1,900         | 2,13             |
|             |                                |                                          | Wtd                                 | 342            | 591          | 764             | 980             | 1,140            | 1,290            | 1,430         | 1,61             |
| 15908000    | 17                             | .0880                                    | Sta                                 | 17,300         | 25,300       | 30,900          | 38,400          | 44,300           | 50,400           | 56,700        | 65,50            |
|             |                                |                                          | Reg                                 | 23,100         | 33,000       | 39,200          | 46,600          | 51,800           | 56,800           | 61,600        | 67,700           |
|             |                                |                                          | Wtd                                 | 17,600         | 25,700       | 31,400          | 39,100          | 45,000           | 51,000           | 57,300        | 65,800           |

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at http://pubs.water.usgs.gov/wri034188. Station No.: R, presently regulated. Station name: AK, Alaska; BC, British Columbia; YT, Yukon. Region: See figure 1 for location of regions. Latitude and Longitude are given in degrees, minutes, and seconds. Mean basin elevation: Elevations are given in feet above NGVD of 1929. Skew coefficient used for analysis: weighted skew except where noted in footnote. Peak streamflow analysis type: Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (table 3); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. Peak streamflow:  $Q_T$ , peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

| Station No. | Station name                                        | Region | Latitude | Longitude | Drainage<br>area<br>(mi <sup>2</sup> ) | Mean<br>basin<br>eleva-<br>tion<br>(ft) | Area of<br>lakes and<br>ponds<br>(storage)<br>(percent) | Area of<br>forest<br>(percent) | Mean<br>annual<br>precipi-<br>tation<br>(in.) | Mean<br>minimum<br>January<br>temper-<br>ature (ºF) |
|-------------|-----------------------------------------------------|--------|----------|-----------|----------------------------------------|-----------------------------------------|---------------------------------------------------------|--------------------------------|-----------------------------------------------|-----------------------------------------------------|
| 15910000    | Sagavanirktok River near Sagwon, AK                 | 7      | 69 05 24 | 148 45 34 | 2,200                                  | 3,220                                   | 0                                                       | 0                              | 18                                            | -16                                                 |
| 15910200    | Happy Creek at Happy Valley Camp<br>near Sagwon, AK | 7      | 69 08 50 | 148 49 50 | 34.5                                   | 1,510                                   | 2                                                       | 0                              | 10                                            | -16                                                 |
| 15918200    | Sagavanirktok River tributary near<br>Deadhorse, AK | 7      | 69 57 14 | 148 43 48 | 12.0                                   | 223                                     | 5                                                       | 0                              | 8                                             | -20                                                 |
| 15999900    | Firth River near mouth near Herschel,<br>YT         | 7      | 69 19 00 | 139 34 00 | 2,200                                  | 2,630                                   | 0                                                       | 0                              | 18                                            | -22                                                 |

<sup>1</sup> Record includes glacial outbursts. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>2</sup> Record includes regulated years. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

<sup>3</sup> Drainage area is indeterminate. Station not included in regression analysis. Station skew coefficient used to calculate  $Q_T$ .

[Rounding differences may cause values in this table to vary by less than 1 percent from those computed using equations in table 3 or by the computer program available at <u>http://pubs.water.usgs.gov/wri034188</u>. **Station No.:** R, presently regulated. **Station name:** AK, Alaska; BC, British Columbia; YT, Yukon. **Region:** See <u>figure 1</u> for location of regions. **Latitude and Longitude** are given in degrees, minutes, and seconds. **Mean basin elevation:** Elevations are given in feet above NGVD of 1929. **Skew coefficient used for analysis:** weighted skew except where noted in footnote. **Peak streamflow analysis type:** Sta, value of  $Q_T$  from analysis of observed station data using weighted skew coefficient; Reg, value of  $Q_T$  estimated from regression equation (<u>table 3</u>); Wtd, value of  $Q_T$  estimated by weighting Sta and Reg based on the years of record for station data and equivalent years of record for the equation. **Peak streamflow:**  $Q_T$  peak streamflow having a recurrence interval of T years. –, not available; ft, foot; mi<sup>2</sup>, square mile; in., inch; <sup>o</sup>F, degree Fahrenheit]

|             | Number<br>of             | Skew<br>coeffi-               | Peak<br>stream-          | Peak streamflow, in cubic feet per second, for given recurrence interval, in years |            |                 |                        |                 |                  |              |                  |
|-------------|--------------------------|-------------------------------|--------------------------|------------------------------------------------------------------------------------|------------|-----------------|------------------------|-----------------|------------------|--------------|------------------|
| Station No. | syste-<br>matic<br>peaks | cient<br>used for<br>analysis | flow<br>analysis<br>type | Q <sub>2</sub>                                                                     | <b>Q</b> 5 | Q <sub>10</sub> | <b>Q</b> <sub>25</sub> | Q <sub>50</sub> | Q <sub>100</sub> | <b>Q</b> 200 | Q <sub>500</sub> |
| 15910000    | 11                       | -0.639                        | Sta                      | 20,500                                                                             | 28,300     | 32,800          | 37,700                 | 40,900          | 43,700           | 46,300       | 49,400           |
|             |                          |                               | Reg                      | 26,900                                                                             | 38,300     | 45,400          | 53,900                 | 59,900          | 65,600           | 71,100       | 78,000           |
|             |                          |                               | Wtd                      | 20,800                                                                             | 29,000     | 33,900          | 39,400                 | 43,200          | 46,600           | 49,800       | 53,600           |
| 15910200    | 26                       | -1.02                         | Sta                      | 832                                                                                | 1,220      | 1,420           | 1,620                  | 1,740           | 1,840            | 1,920        | 2,010            |
|             |                          |                               | Reg                      | 660                                                                                | 1,030      | 1,280           | 1,580                  | 1,800           | 2,020            | 2,230        | 2,510            |
|             |                          |                               | Wtd                      | 823                                                                                | 1,210      | 1,410           | 1,620                  | 1,750           | 1,860            | 1,960        | 2,070            |
| 15918200    | 12                       | 268                           | Sta                      | 73.7                                                                               | 112        | 138             | 171                    | 195             | 219              | 243          | 274              |
|             |                          |                               | Reg                      | 257                                                                                | 412        | 515             | 645                    | 740             | 834              | 926          | 1,050            |
|             |                          |                               | Wtd                      | 83.7                                                                               | 131        | 168             | 219                    | 258             | 298              | 337          | 389              |
| 15999900    | 21                       | 210                           | Sta                      | 18,000                                                                             | 26,500     | 32,000          | 39,000                 | 44,100          | 49,200           | 54,200       | 60,900           |
|             |                          |                               | Reg                      | 26,800                                                                             | 38,200     | 45,300          | 53,700                 | 59,700          | 65,400           | 70,800       | 77,800           |
|             |                          |                               | Wtd                      | 18,300                                                                             | 26,900     | 32,600          | 39,900                 | 45,200          | 50,500           | 55,700       | 62,500           |

This page was intentionally left blank.

**APPENDIXES** 

# APPENDIX A. YEARS OF RECORD FOR ANNUAL PEAK STREAMFLOWS USED IN THIS REPORT

[Refer to table 4 for number of systematic peaks used; AK, Alaska; BC, British Columbia; YT, Yukon]

| Station No. | Station name                                                 | Water years for peak streamflows<br>(systematic and historic) used in this<br>report        | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15008000    | Salmon River near Hyder, AK                                  | 1964-73                                                                                     | _                                                                 | _                                          |
| 15010000    | Davis River near Hyder, AK                                   | 1931-40                                                                                     | -                                                                 | -                                          |
| 15011500    | Red River near Metlakatla, AK                                | 1964-78                                                                                     | -                                                                 | -                                          |
| 15012000    | Winstanley Creek near Ketchikan, AK                          | 1937-38, 1948-75                                                                            | -                                                                 | _                                          |
| 15015590    | Unuk River near Stewart, BC                                  | 1961, 1967-68, 1970, 1972, 1973,<br>1975-76, 1978-81, 1983, 1985,<br>1987-90, 1992, 1994-95 | _                                                                 | _                                          |
| 15022000    | Harding River near Wrangell, AK                              | 1952-99                                                                                     | _                                                                 | _                                          |
| 15024200    | Klappan River near Telegraph Creek, BC                       | 1963-77, 1979-95                                                                            | -                                                                 | _                                          |
| 15024300    | Stikine River above Grand Canyon near Telegraph Creek,<br>BC | 1959, 1961-94                                                                               | -                                                                 | _                                          |
| 15024400    | Tanzilla River near Telegraph Creek, BC                      | 1959-66                                                                                     | _                                                                 | _                                          |
| 15024500    | Tuya River near Telegraph Creek, BC                          | 1962-85, 1987-99                                                                            | -                                                                 | -                                          |
| 15024600    | Stikine River at Telegraph Creek, BC                         | 1955-99                                                                                     | _                                                                 | _                                          |
| 15024640    | Stikine River above Butterfly Creek, BC                      | 1972-94                                                                                     | -                                                                 | -                                          |
| 15024670    | Iskut River at outlet of Kinaskan Lake, BC                   | 1965-73, 1975-95                                                                            | -                                                                 | _                                          |
| 15024684    | More Creek near mouth, BC                                    | 1973, 1975, 1977, 1979-85, 1987-92,<br>1994                                                 | -                                                                 | _                                          |
| 15024690    | Forrest Kerr Creek near Wrangell, BC                         | 1973, 1975-77, 1979-85, 1987-92,<br>1994                                                    | -                                                                 | _                                          |
| 15024695    | Iskut River above Snippaker Creek, BC                        | 1967-71, 1973, 1975-77, 1979, 1981-<br>85, 1987-92, 1994                                    | -                                                                 | -                                          |
| 15024700    | Iskut River below Johnson River,, BC                         | 1959-60, 1962-68, 1970-73, 1975,<br>1977, 1979-81, 1983-85, 1987-92,<br>1994-99             | _                                                                 | _                                          |
| 15024750    | Goat Creek near Wrangell, AK                                 | 1977-86                                                                                     | _                                                                 | _                                          |
| 15024800    | Stikine River near Wrangell, AK                              | 1977-99                                                                                     | -                                                                 | -                                          |
| 15026000    | Cascade Creek near Petersburg, AK                            | 1918-20, 1923-24, 1926-28, 1947-73                                                          | _                                                                 | _                                          |
| 15028300    | Farragut River near Petersburg, AK                           | 1978-93                                                                                     | _                                                                 | _                                          |
| 15031000    | Long River above Long Lake near Juneau, AK                   | 1966-75                                                                                     | _                                                                 | _                                          |
| 15034000    | Long River near Juneau, AK                                   | 1916-18, 1920-22, 1927-32, 1952-68                                                          | _                                                                 | _                                          |
| 15036000    | Speel River near Juneau, AK                                  | 1917-18, 1961-75                                                                            | _                                                                 | _                                          |
| 15038000    | Crater Creek near Juneau, AK                                 | 1915, 1917, 1918, 1920, 1927-30,<br>1932                                                    | -                                                                 | _                                          |
| 15039900    | Dorothy Lake outlet near Juneau, AK                          | 1987-99                                                                                     | _                                                                 | _                                          |
| 15040000    | Dorothy Creek near Juneau, AK                                | 1930-41, 1943-67                                                                            | _                                                                 | _                                          |
| 15041000    | Sloko River near Atlin, BC                                   | 1954, 1955, 1959-62, 1964-79                                                                | _                                                                 | _                                          |
| 15041100    | Taku River near Tulsequah, BC                                | 1953-73, 1975-77, 1979-82, 1984-87                                                          | _                                                                 | _                                          |
| 15041200    | Taku River near Juneau, AK                                   | 1987-99                                                                                     | _                                                                 | _                                          |
| 15044000    | Carlson Creek near Juneau, AK                                | 1952-61                                                                                     | _                                                                 | _                                          |
| 15048000    | Sheep Creek near Juneau, AK                                  | 1918-20, 1947-73                                                                            |                                                                   |                                            |

| Station No. | Station name                                  | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|-----------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15049900    | Gold Creek near Juneau, AK                    | 1985-97                                                                              | _                                                                 | _                                          |
| 15050000    | Gold Creek at Juneau, AK                      | 1917-20, 1947-48, 1950-82, 1991,<br>1994, 1996, 1998, 1999                           | 1996                                                              | 50                                         |
| 15052000    | Lemon Creek near Juneau, AK                   | 1952-73, 1999                                                                        | 1999                                                              | 48                                         |
| 15052500    | Mendenhall River near Auke Bay, AK            | 1966-99                                                                              | _                                                                 | -                                          |
| 15052800    | Montana Creek near Auke Bay, AK               | 1966-75, 1984-87, 1996-99                                                            | _                                                                 | -                                          |
| 15053800    | Lake Creek at Auke Bay, AK                    | 1964-73                                                                              | _                                                                 | -                                          |
| 15054000    | Auke Creek at Auke Bay, AK                    | 1948-50, 1963-75                                                                     | _                                                                 | _                                          |
| 15054500    | Bessie Creek near Auke Bay, AK                | 1967-80                                                                              | _                                                                 | _                                          |
| 15056100    | Skagway River at Skagway, AK                  | 1964-86                                                                              | _                                                                 | _                                          |
| 15056200    | West Creek near Skagway, AK                   | 1962-77                                                                              | _                                                                 | 19                                         |
| 15056210    | Taiya River near Skagway, AK                  | 1967, 1970-77                                                                        | 1967                                                              | 19                                         |
| 15056560    | Klehini River near Klukwan, AK                | 1982-93                                                                              | _                                                                 | _                                          |
| 15057500    | William Henry Creek near Auke Bay, AK         | 1967-70, 1972, 1974-76                                                               | _                                                                 | _                                          |
| 15058000    | Purple Lake outlet near Metlakatla, AK        | 1948-52, 1954-56                                                                     | _                                                                 | _                                          |
| 15059500    | Whipple Creek near Ward Cove, AK              | 1969-80                                                                              | _                                                                 | _                                          |
| 15060000    | Perseverance Creek near Wacker, AK            | 1947-69                                                                              | _                                                                 | _                                          |
| 15067900    | Upper Mahoney Lake outlet near Ketchikan, AK  | 1978-89                                                                              | _                                                                 | _                                          |
| 15068000    | Mahoney Creek near Ketchikan, AK              | 1922-25, 1928-33, 1948-58, 1978-81                                                   | _                                                                 | _                                          |
| 15070000    | Swan Lake near Ketchikan, AK                  | 1917-25, 1928-33, 1947-59                                                            | _                                                                 | _                                          |
| 15070000    | Fish Creek near Ketchikan, AK                 | 1916-24, 1926-35, 1939-99                                                            |                                                                   |                                            |
| 15072000    | Ella Creek near Ketchikan, AK                 | 1928-38, 1948-58                                                                     | _                                                                 | _                                          |
| 15076000    | Manzanita Creek near Ketchikan, AK            | 1928-37, 1948-67                                                                     | _                                                                 | 40                                         |
| 15078000    | Grace Creek near Ketchikan, AK                | 1928-37, 1964-69                                                                     |                                                                   | 40                                         |
| 15078000    | Orchard Creek near Bell Island, AK            | 1916-26                                                                              | —                                                                 | —                                          |
| 15080000    | Yatuk Creek near Klawock, AK                  | 1972-80                                                                              | —                                                                 | _                                          |
| 15081490    | Staney Creek near Klawock, AK                 | 1972-80                                                                              | —                                                                 | -                                          |
|             | Staney Creek near Craig, AK                   | 1990-99                                                                              | _                                                                 | _                                          |
| 15081500    | Black Bear Lake outlet near Klawock, AK       | 1905-81<br>1981-91                                                                   | _                                                                 | _                                          |
| 15081580    |                                               |                                                                                      | _                                                                 | _                                          |
| 15081890    | Natzuhini Creek near Hydaburg, AK             | 1971-74, 1976-80                                                                     | _                                                                 | _                                          |
| 15083500    | Perkins Creek near Metlakatla, AK             | 1977-93                                                                              | -                                                                 | -                                          |
| 15085100    | Old Tom Creek near Kasaan, AK                 | 1950, 1952-99                                                                        | -                                                                 | -                                          |
| 15085600    | Indian Creek near Hollis, AK                  | 1950-53, 1955-63                                                                     | _                                                                 | -                                          |
| 15085700    | Harris River near Hollis, AK                  | 1950-64                                                                              | -                                                                 | _                                          |
| 15085800    | Maybeso Creek at Hollis, AK                   | 1950-63                                                                              | _                                                                 | _                                          |
| 15086600    | Big Creek near Point Baker, AK                | 1964-81                                                                              | -                                                                 | -                                          |
| 15086900    | Red Creek near Point Baker, AK                | 1972-81                                                                              | _                                                                 | _                                          |
| 15087250    | Twin Creek near Petersburg, AK                | 1967-77, 1979-80                                                                     | -                                                                 | -                                          |
| 15087545    | Municipal Watershed Creek near Petersburg, AK | 1979-88                                                                              | —                                                                 | -                                          |
| 15087570    | Hamilton Creek near Kake, AK                  | 1972-73, 1975-86, 1989-95                                                            | -                                                                 | -                                          |
| 15087585    | Twelvemile Creek near Petersburg, AK          | 1973-77, 1979-82                                                                     | —                                                                 | -                                          |
| 15087590    | Rocky Pass Creek near Point Baker, AK         | 1977-88                                                                              | -                                                                 | -                                          |
| 15087690    | Indian River near Sitka, AK                   | 1981-94, 1999                                                                        | -                                                                 | -                                          |

**Appendix A**. Years of record for annual peak streamflows used in this report—*Continued* [Refer to <u>table 4</u> for number of systematic peaks used; AK, Alaska; BC, British Columbia; YT, Yukon]

| Station No. | Station name                                           | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15088000    | Sawmill Creek near Sitka, AK                           | 1921-22, 1929-42, 1946-57                                                            | _                                                                 | _                                          |
| 15093400    | Sashin Creek near Big Port Walter, AK                  | 1966-73, 1975-80                                                                     | _                                                                 | _                                          |
| 15094000    | Deer Lake outlet near Port Alexander, AK               | 1952-67                                                                              | _                                                                 | _                                          |
| 15098000    | Baranof River at Baranof, AK                           | 1915-22, 1926-27, 1959, 1961-74                                                      | _                                                                 | _                                          |
| 15100000    | Takatz Creek near Baranof, AK                          | 1952-69                                                                              | _                                                                 | _                                          |
| 15101490    | Greens Creek at Greens Creek Mine near Juneau, AK      | 1990-99                                                                              | _                                                                 | _                                          |
| 15101500    | Greens Creek near Juneau, AK                           | 1979-92                                                                              | _                                                                 | _                                          |
| 15102000    | Hasselborg Creek near Angoon, AK                       | 1952-68                                                                              | _                                                                 | _                                          |
| 15106920    | Kadashan River above Hook Creek near Tenakee, AK       | 1969-78, 1981-99                                                                     | _                                                                 | _                                          |
| 15106940    | Hook Creek above tributary near Tenakee, AK            | 1968-80                                                                              | _                                                                 | _                                          |
| 15106960    | Hook Creek near Tenakee, AK                            | 1968-80                                                                              | _                                                                 | _                                          |
| 15106980    | Tonalite Creek near Tenakee, AK                        | 1969-88                                                                              | _                                                                 | _                                          |
| 15107000    | Kadashan River near Tenakee, AK                        | 1965-80                                                                              | _                                                                 | _                                          |
| 15108000    | Pavlof River near Tenakee, AK                          | 1958-81                                                                              | _                                                                 | _                                          |
| 15108250    | Game Creek near Hoonah, AK                             | 1970-77, 1979-80                                                                     | _                                                                 | _                                          |
| 15109000    | Fish Creek near Auke Bay, AK                           | 1959-78                                                                              | _                                                                 | _                                          |
| 15120000    | Aishihik River near Whitehorse, YT                     | 1969-85                                                                              | _                                                                 | _                                          |
| 15120500    | Dezadeash River at Haines Junction, YT                 | 1953-74, 1976-96, 1998-99                                                            | _                                                                 | _                                          |
| 15120600    | Alsek River above Bates River near Haines Junction, YT | 1975, 1977-82, 1984-99                                                               | _                                                                 | _                                          |
| 15120720    | Takhanne River near Haines Junction, YT                | 1984, 1987-93, 1995-99                                                               | _                                                                 | _                                          |
| 15129500    | Situk River near Yakutat, AK                           | 1989-99                                                                              | _                                                                 | _                                          |
| 15195000    | Dick Creek near Cordova, AK                            | 1971-81                                                                              | _                                                                 | _                                          |
| 15198500    | Station Creek near Mentasta, AK                        | 1970-77, 1979-80, 1982, 1984-90,<br>1992-94, 1997                                    | _                                                                 | 27                                         |
| 15199000    | Copper River tributary near Slana, AK                  | 1963-90                                                                              | _                                                                 | -                                          |
| 15200000    | Gakona River at Gakona, AK                             | 1950-74                                                                              | _                                                                 | -                                          |
| 15200270    | Sourdough Creek at Sourdough, AK                       | 1970-81                                                                              | _                                                                 | _                                          |
| 15200280    | Gulkana River at Sourdough, AK                         | 1973-78, 1989-93, 1997-99                                                            | _                                                                 | _                                          |
| 15201000    | Dry Creek near Glennallen, AK                          | 1963-76, 1978-99                                                                     | _                                                                 | -                                          |
| 15201100    | Little Nelchina River tributary near Eureka Lodge, AK  | 1965-89                                                                              | _                                                                 | -                                          |
| 15201900    | Moose Creek tributary at Glennallen, AK                | 1963-74                                                                              | _                                                                 | -                                          |
| 15202000    | Tazlina River near Glennallen, AK                      | 1950, 1952-72                                                                        | _                                                                 | _                                          |
| 15206000    | Klutina River at Copper Center, AK                     | 1950-66                                                                              | _                                                                 | _                                          |
| 15208000    | Tonsina River at Tonsina, AK                           | 1950-54, 1956-82                                                                     | _                                                                 | _                                          |
| 15208100    | Squirrel Creek at Tonsina, AK                          | 1964-82                                                                              | _                                                                 | _                                          |
| 15208200    | Rock Creek near Tonsina, AK                            | 1966-92                                                                              | _                                                                 | _                                          |
| 15209000    | Chititu Creek near May Creek, AK                       | 1973-83                                                                              | _                                                                 | 45                                         |
| 15209100    | May Creek near May Creek, AK                           | 1973-83                                                                              | _                                                                 | 45                                         |
| 15211700    | Strelna Creek near Chitina, AK                         | 1971-96                                                                              | _                                                                 | _                                          |
| 15211900    | O'Brien Creek near Chitina, AK                         | 1970-77, 1979-82, 1984-90, 1992-96                                                   | _                                                                 | _                                          |
| 15212000    | Copper River near Chitina, AK                          | 1951-52, 1956-90                                                                     | _                                                                 | 45                                         |
| 15212500    | Boulder Creek near Tiekel, AK                          | 1964-99                                                                              | _                                                                 | 49                                         |
| 15212800    | Ptarmigan Creek tributary near Valdez, AK              | 1965-70, 1995-99                                                                     | _                                                                 | _                                          |
|             | Stuart Creek near Valdez, AK                           | 1972-81                                                                              |                                                                   |                                            |

| Station No. | Station name                                                    | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15216000    | Power Creek near Cordova, AK                                    | 1948-95                                                                              | _                                                                 | _                                          |
| 15219000    | West Fork Olsen Bay Creek near Cordova, AK                      | 1965-80                                                                              | _                                                                 | _                                          |
| 15219100    | Control Creek near Cordova, AK                                  | 1964-74                                                                              | _                                                                 | _                                          |
| 15227500    | Mineral Creek near Valdez, AK                                   | 1976-81, 1990-99                                                                     | _                                                                 | _                                          |
| 15236200    | Shakespeare Creek at Whittier, AK                               | 1970-80, 1984-99                                                                     | _                                                                 | _                                          |
| 15237360    | San Juan River near Seward, AK                                  | 1987-96                                                                              | _                                                                 | _                                          |
| 15237400    | Chalmers River near Cordova, AK                                 | 1967-73, 1975-80                                                                     | _                                                                 | _                                          |
| 15238000    | Lost Creek near Seward, AK                                      | 1949, 1963-72, 1976, 1987                                                            | 1976,<br>1987                                                     | 51                                         |
| 15238600    | Spruce Creek near Seward, AK                                    | 1966-86, 1988-99                                                                     | _                                                                 | -                                          |
| 15238820    | Barabara Creek near Seldovia, AK                                | 1973-92                                                                              | _                                                                 | -                                          |
| 15239000    | Bradley River near Homer, AK                                    | 1958-88                                                                              | _                                                                 | _                                          |
| 15239050    | Middle Fork Bradley River tributary near Homer, AK              | 1980-99                                                                              | _                                                                 | _                                          |
| 15239500    | Fritz Creek near Homer, AK                                      | 1963-99                                                                              | _                                                                 | _                                          |
| 15239800    | Diamond Creek near Homer, AK                                    | 1963-81                                                                              | _                                                                 | _                                          |
| 15239900    | Anchor River near Anchor Point, AK                              | 1966-74, 1979-87, 1992                                                               | _                                                                 | 48                                         |
| 15240000    | Anchor River at Anchor Point, AK                                | 1954-66, 1984-92                                                                     | _                                                                 | 48                                         |
| 15240500    | Cook Inlet tributary near Ninilchik, AK                         | 1966-81                                                                              | _                                                                 | _                                          |
| 15241600    | Ninilchik River at Ninilchik, AK                                | 1963-85, 1999                                                                        | _                                                                 | _                                          |
| 15242000    | Kasilof River near Kasilof, AK                                  | 1950-74, 1977                                                                        | 1977                                                              | 28                                         |
| 15243950    | Porcupine Creek near Primrose, AK                               | 1963-89                                                                              | _                                                                 | _                                          |
| 15244000    | Ptarmigan Creek at Lawing, AK                                   | 1948-50, 1952-58                                                                     | _                                                                 | _                                          |
| 15246000    | Grant Creek near Moose Pass, AK                                 | 1948-50, 1952-58                                                                     | _                                                                 | _                                          |
| 15248000    | Trail River near Lawing, AK                                     | 1948-50, 1952-77                                                                     | _                                                                 | _                                          |
| 15250000    | Falls Creek near Lawing, AK                                     | 1963-70                                                                              | _                                                                 | _                                          |
| 15251800    | Quartz Creek at Gilpatricks, AK                                 | 1963-70, 1987                                                                        | 1987                                                              | 25                                         |
| 15254000    | Crescent Creek near Cooper Landing, AK                          | 1950-83                                                                              | _                                                                 | _                                          |
| 15258000    | Kenai River at Cooper Landing, AK                               | 1948-60                                                                              | _                                                                 | _                                          |
| 15258000    | Kenai River at Cooper Landing, AK, regulated years              | 1961-99                                                                              | _                                                                 | _                                          |
| 15260000    | Cooper Creek near Cooper Landing, AK                            | 1950-59                                                                              | _                                                                 | _                                          |
| 15266300    | Kenai River at Soldotna, AK                                     | 1965-99                                                                              | _                                                                 | 47                                         |
| 15266500    | Beaver Creek near Kenai, AK                                     | 1968-78, 1980-83, 1985-94                                                            | _                                                                 | _                                          |
| 15267900    | Resurrection Creek near Hope, AK                                | 1968-85                                                                              | _                                                                 | _                                          |
| 15269500    | Granite Creek near Portage, AK                                  | 1967-80                                                                              | _                                                                 | _                                          |
| 15270400    | Donaldson Creek near Wibel, AK                                  | 1963-72                                                                              | _                                                                 | _                                          |
| 15271000    | Sixmile Creek near Hope, AK                                     | 1980-90, 1998-99                                                                     | _                                                                 | _                                          |
| 15271900    | Cub Creek near Hope, AK                                         | 1965-79                                                                              | _                                                                 | _                                          |
| 15272280    | Portage Creek at Portage Lake outlet near Whittier, AK          | 1989-99                                                                              | _                                                                 | _                                          |
| 15272530    | California Creek at Girdwood, AK                                | 1967-84, 1986-93, 1995                                                               | 1995                                                              | 28                                         |
| 15272550    | Glacier Creek at Girdwood, AK                                   | 1966-78                                                                              |                                                                   | -                                          |
| 15273900    | South Fork Campbell Creek at canyon mouth near<br>Anchorage, AK | 1967-79, 1981                                                                        | _                                                                 | -                                          |
| 15274000    | South Fork Campbell Creek near Anchorage, AK                    | 1948-72, 1999                                                                        | _                                                                 | _                                          |
| 15274300    | North Fork Campbell Creek near Anchorage, AK                    | 1967-84                                                                              | _                                                                 | _                                          |

| Station No. | Station name                                       | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15276000    | Ship Creek near Anchorage, AK                      | 1947-99                                                                              | _                                                                 | _                                          |
| 15277100    | Eagle River at Eagle River, AK                     | 1966-80, 1995                                                                        | 1995                                                              | 35                                         |
| 15277200    | Meadow Creek at Eagle River, AK                    | 1965-74                                                                              | _                                                                 | _                                          |
| 15277410    | Peters Creek near Birchwood, AK                    | 1974-83, 1995                                                                        | 1995                                                              | 35                                         |
| 15280000    | Eklutna Creek near Palmer, AK                      | 1947-54                                                                              | _                                                                 | _                                          |
| 15281000    | Knik River near Palmer, AK                         | 1963, 1967-87, 1989, 1992, 1995                                                      | 1989,<br>1995                                                     | 33                                         |
| 15281000    | Knik River near Palmer, AK, with glacial outbursts | 1948-87, 1992                                                                        | _                                                                 | _                                          |
| 15281500    | Camp Creek near Sheep Mountain Lodge, AK           | 1968-69, 1971, 1989-99                                                               | _                                                                 | _                                          |
| 15282000    | Caribou Creek near Sutton, AK                      | 1955-78                                                                              | _                                                                 | _                                          |
| 15282400    | Purinton Creek near Sutton, AK                     | 1963-66, 1968-81, 1988-94                                                            | _                                                                 | _                                          |
| 15283500    | Eska Creek near Sutton, AK                         | 1966, 1971-94                                                                        | _                                                                 | 46                                         |
| 15284000    | Matanuska River at Palmer, AK                      | 1949-70, 1972-74, 1985-86, 1992,<br>1995                                             | 1995                                                              | 51                                         |
| 15285000    | Wasilla Creek near Palmer, AK                      | 1971, 1976-99                                                                        | 1971                                                              | 51                                         |
| 15290000    | Little Susitna River near Palmer, AK               | 1949-99                                                                              | _                                                                 | _                                          |
| 15290200    | Nancy Lake tributary near Willow, AK               | 1983-87, 1989-99                                                                     | _                                                                 | _                                          |
| 15291000    | Susitna River near Denali, AK                      | 1957-65, 1969-85                                                                     | _                                                                 | 51                                         |
| 15291100    | Raft Creek near Denali, AK                         | 1963-99                                                                              | _                                                                 | _                                          |
| 15291200    | Maclaren River near Paxson, AK                     | 1958-85                                                                              | _                                                                 | _                                          |
| 15291500    | Susitna River near Cantwell, AK                    | 1961-72, 1980-85                                                                     | _                                                                 | _                                          |
| 15292000    | Susitna River at Gold Creek, AK                    | 1950-96                                                                              | _                                                                 | _                                          |
| 15292392    | Byers Creek near Talkeetna, AK                     | 1972-81                                                                              | _                                                                 | _                                          |
| 15292400    | Chulitna River near Talkeetna, AK                  | 1958-62, 1965-77, 1979-87                                                            | _                                                                 | _                                          |
| 15292700    | Talkeetna River near Talkeetna, AK                 | 1964-99                                                                              | _                                                                 | _                                          |
| 15292800    | Montana Creek near Montana, AK                     | 1963-72, 1987                                                                        | 1987                                                              | 40                                         |
| 15293000    | Caswell Creek near Caswell, AK                     | 1963-87                                                                              | _                                                                 | 40                                         |
| 15293700    | Little Willow Creek near Kashwitna, AK             | 1980-87                                                                              | _                                                                 | 40                                         |
| 15294005    | Willow Creek near Willow, AK                       | 1979-93                                                                              | _                                                                 | 40                                         |
| 15294010    | Deception Creek near Willow, AK                    | 1978-85                                                                              | _                                                                 |                                            |
| 15294025    | Moose Creek near Talkeetna, AK                     | 1972-96                                                                              | -                                                                 | 40                                         |
| 15294100    | Deshka River near Willow, AK                       | 1979-87, 1999                                                                        | -                                                                 | 40                                         |
| 15294300    | Skwentna River near Skwentna, AK                   | 1960-82, 1987                                                                        | 1987                                                              | 35                                         |
| 15294350    | Susitna River at Susitna Station, AK               | 1975-92                                                                              | _                                                                 | _                                          |
| 15294450    | Chuitna River near Tyonek, AK                      | 1976-87                                                                              | _                                                                 | 35                                         |
| 15294500    | Chakachatna River near Tyonek, AK                  | 1959-70, 1972                                                                        | -                                                                 | _                                          |
| 15295600    | Terror River near Kodiak, AK                       | 1963-68, 1979-82                                                                     | -                                                                 | _                                          |
| 15296000    | Uganik River near Kodiak, AK                       | 1952-78                                                                              | -                                                                 | _                                          |
| 15297200    | Myrtle Creek near Kodiak, AK                       | 1963-99                                                                              | -                                                                 | _                                          |
| 15297475    | Red Cloud Creek tributary near Kodiak, AK          | 1963-90                                                                              | -                                                                 | _                                          |
| 15297900    | Eskimo Creek at King Salmon, AK                    | 1965-67, 1969-76, 1978-84                                                            | -                                                                 | _                                          |
| 15300000    | Newhalen River near Iliamna, AK                    | 1951-67, 1969-77, 1982-86                                                            | -                                                                 | -                                          |
| 15300200    | Roadhouse Creek near Iliamna, AK                   | 1973-76, 1978-83                                                                     | -                                                                 | _                                          |
| 15300500    | Kvichak River at Igiugig, AK                       | 1967-87                                                                              | _                                                                 | _                                          |

| Station No. | Station name                                            | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15302000    | Nuyakuk River near Dillingham, AK                       | 1954-96                                                                              | _                                                                 | _                                          |
| 15302500    | Nushagak River at Ekwok, AK                             | 1978-93                                                                              | _                                                                 | _                                          |
| 15302900    | Moody Creek at Aleknagik, AK                            | 1969-73, 1975-85, 1988-99                                                            | _                                                                 | _                                          |
| 15303000    | Wood River near Aleknagik, AK                           | 1958-70, 1972                                                                        | 1972                                                              | 15                                         |
| 15303010    | Silver Salmon Creek near Aleknagik, AK                  | 1965-67, 1969-88, 1991-94                                                            | _                                                                 | _                                          |
| 15303011    | Wood River tributary near Aleknagik, AK                 | 1985-98                                                                              | _                                                                 | _                                          |
| 15303150    | Snake River near Dillingham, AK                         | 1974-83                                                                              | _                                                                 | _                                          |
| 15303600    | Kuskokwim River at McGrath, AK                          | 1963-73                                                                              | _                                                                 | _                                          |
| 15303660    | Gold Creek at Takotna, AK                               | 1987-99                                                                              | _                                                                 | _                                          |
| 15303700    | Tatalina River near Takotna, AK                         | 1987-88, 1990-99                                                                     | _                                                                 | _                                          |
| 15304000    | Kuskokwim River at Crooked Creek, AK                    | 1952-94, 1996-99                                                                     | _                                                                 | _                                          |
| 15304200    | Kisarlik River near, AKiak, AK                          | 1980-87                                                                              | _                                                                 | _                                          |
| 15304293    | Browns Creek near Bethel, AK                            | 1985-94                                                                              | _                                                                 | _                                          |
| 15304298    | Browns Creek at Bethel, AK                              | 1985-94                                                                              | _                                                                 | _                                          |
| 15304520    | Lubbock River near Atlin, BC                            | 1960-61, 1964-81, 1983-85, 1987-90,<br>1992-93                                       | _                                                                 | _                                          |
| 15304600    | Atlin River near Atlin, BC                              | 1950-99                                                                              | _                                                                 | _                                          |
| 15304650    | Wann River near Atlin, BC                               | 1958-73, 1975-93                                                                     | _                                                                 | _                                          |
| 15304700    | Fantail River at outlet of Fantail Lake near Atlin, BC  | 1958-77, 1979-93                                                                     | _                                                                 | _                                          |
| 15304750    | Tutshi River at outlet of Tutshi Lake near Atlin, BC    | 1958-61, 1963-97                                                                     | _                                                                 | _                                          |
| 15304800    | Lindeman River near Bennett, BC                         | 1955-77, 1979-86, 1988-93                                                            | _                                                                 | _                                          |
| 15304850    | Wheaton River near Carcross, YT                         | 1958-76, 1978-96, 1999                                                               | _                                                                 | _                                          |
| 15304855    | Watson River near Carcross, YT                          | 1956-61, 1966-73                                                                     | _                                                                 | _                                          |
| 15304950    | Maclintock River near Whitehorse, YT                    | 1956-60, 1962-95                                                                     | _                                                                 | _                                          |
| 15305000    | Yukon River at Whitehorse, YT                           | 1944-93, 1995-96, 1998                                                               | _                                                                 | _                                          |
| 15305030    | Takhini River at Kusawa Lake at Whitehorse, YT          | 1953-54, 1956, 1958-60, 1962-67,<br>1969-86                                          | -                                                                 | _                                          |
| 15305050    | Takhini River near Whitehorse, YT                       | 1949-99                                                                              | _                                                                 | _                                          |
| 15305100    | Yukon River above Frank Creek, YT                       | 1953-94                                                                              | _                                                                 | _                                          |
| 15305150    | Swift River near Swift River, BC                        | 1958-69, 1971-94, 1996, 1998-99                                                      | _                                                                 | _                                          |
| 15305200    | Gladys River at outlet of Gladys Lake near Atlin, BC    | 1958-61, 1963-93                                                                     | _                                                                 | _                                          |
| 15305250    | Teslin River near Teslin, YT                            | 1944, 1948-94                                                                        | _                                                                 | _                                          |
| 15305260    | Teslin River near Whitehorse, YT                        | 1956-73                                                                              | _                                                                 | _                                          |
| 15305300    | Big Salmon River near Carmacks, YT                      | 1953, 1955-57, 1962, 1964-96                                                         | _                                                                 | _                                          |
| 15305350    | Yukon River at Carmacks, YT                             | 1952-95                                                                              | _                                                                 | _                                          |
| 15305360    | Big Creek near mouth near Minto, YT                     | 1975-94, 1996-99                                                                     | _                                                                 | _                                          |
| 15305390    | Ross River at Ross River, YT                            | 1962-63, 1965-99                                                                     | _                                                                 | _                                          |
| 15305400    | Pelly River at Ross River, YT                           | 1955-58, 1960-74                                                                     | _                                                                 | _                                          |
| 15305406    | Pelly River at Faro, YT                                 | 1973-98                                                                              | _                                                                 | _                                          |
| 15305412    | South MacMillan River at Canol Road near Ross River, YT | 1975-96                                                                              | _                                                                 | _                                          |
| 15305420    | Pelly River at Pelly Crossing, YT                       | 1953-58, 1960-99                                                                     | _                                                                 | _                                          |
| 15305450    | Yukon River above White River near Dawson, YT           | 1957-64, 1966-99                                                                     | _                                                                 | _                                          |
| 15305500    | Kluane River at outlet of Kluane Lake, YT               | 1953-95                                                                              | _                                                                 | _                                          |
| 15305540    | White River at Alaska Highway near Koidern, BC          | 1975-79, 1981-93, 1995-96, 1998-99                                                   | _                                                                 | _                                          |

**Appendix A**. Years of record for annual peak streamflows used in this report—*Continued* [Refer to <u>table 4</u> for number of systematic peaks used; AK, Alaska; BC, British Columbia; YT, Yukon]

| Station No. | Station name                                            | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|---------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15305582    | Stewart River above Fraser Falls near Mayo, YT          | 1981-84, 1986-87, 1989-95                                                            | _                                                                 | _                                          |
| 15305590    | Stewart River at Mayo, YT                               | 1949-51, 1953-79                                                                     | _                                                                 | _                                          |
| 15305620    | Stewart River at Stewart Crossing, YT                   | 1961-73                                                                              | _                                                                 | _                                          |
| 15305650    | Stewart River at mouth, YT                              | 1964-99                                                                              | _                                                                 | _                                          |
| 15305670    | Yukon River at Stewart, YT                              | 1957-65                                                                              | _                                                                 | _                                          |
| 15305695    | North Klondike River near mouth near Dawson, YT         | 1975-97, 1999                                                                        | _                                                                 | _                                          |
| 15305698    | Klondike River above Bonanza Creek near Dawson, YT      | 1966-72, 1974-99                                                                     | _                                                                 | _                                          |
| 15305700    | Yukon River at Dawson, YT                               | 1945-52, 1956-80                                                                     | _                                                                 | _                                          |
| 15305900    | Dennison Fork near Tetlin Junction, AK                  | 1964-99                                                                              | _                                                                 | _                                          |
| 15305920    | West Fork tributary near Tetlin Junction, AK            | 1967-84, 1990-97                                                                     | _                                                                 | _                                          |
| 15305950    | Taylor Creek near Chicken, AK                           | 1967-91                                                                              | _                                                                 | _                                          |
| 15344000    | King Creek near Dome Creek, AK                          | 1975-96, 1998-99                                                                     | _                                                                 | _                                          |
| 15348000    | Fortymile River near Steele Creek, AK                   | 1911-12, 1964, 1976-82                                                               | 1964                                                              | 50                                         |
| 15355000    | Fortymile River near mouth near Eagle, YT               | 1982-85, 1987-89, 1993-96                                                            | _                                                                 | _                                          |
| 15356000    | Yukon River at Eagle, AK                                | 1911-12, 1950-99                                                                     | _                                                                 | _                                          |
| 15365000    | Discovery Fork of American Creek near Eagle, AK         | 1963, 1965-73                                                                        | _                                                                 | _                                          |
| 15367500    | Bluff Creek near Eagle, AK                              | 1963-72                                                                              | _                                                                 | _                                          |
| 15388944    | Porcupine River below Bell River, YT                    | 1975, 1977-95                                                                        | _                                                                 | _                                          |
| 15388948    | Old Crow River near mouth near Old Crow, YT             | 1976-81, 1983-91, 1993-99                                                            | _                                                                 | _                                          |
| 15388950    | Porcupine River at Old Crow, YT                         | 1962-95                                                                              | _                                                                 | _                                          |
| 15388960    | Porcupine River near International Boundary, YT         | 1987-99                                                                              | _                                                                 | _                                          |
| 15389000    | Porcupine River near Fort Yukon, AK                     | 1965-79                                                                              | _                                                                 | _                                          |
| 15389500    | Chandalar River near Venetie, AK                        | 1964-74                                                                              | _                                                                 | _                                          |
| 15438500    | Bedrock Creek near Central, AK                          | 1964-74, 1989                                                                        | 1989                                                              | 36                                         |
| 15439800    | Boulder Creek near Central, AK                          | 1964-99                                                                              | _                                                                 | _                                          |
| 15442500    | Quartz Creek near Central, AK                           | 1969-73, 1975-77, 1979, 1989-99                                                      | _                                                                 | _                                          |
| 15453481    | West Fork Dall River tributary near Stevens Village, AK | 1982-94                                                                              | _                                                                 | _                                          |
| 15453500    | Yukon River near Stevens Village, AK                    | 1964, 1977-99                                                                        | 1964                                                              | 50                                         |
| 15453610    | Ray River tributary near Stevens Village, AK            | 1977-99                                                                              | _                                                                 | _                                          |
| 15457700    | Erickson Creek near Livengood, AK                       | 1973-97                                                                              | _                                                                 | _                                          |
| 15457800    | Hess Creek near Livengood, AK                           | 1971-78, 1983-86                                                                     | _                                                                 | _                                          |
| 15468000    | Yukon River at Rampart, AK                              | 1956-67                                                                              | _                                                                 | 50                                         |
| 15469900    | Silver Creek near Northway Junction, AK                 | 1963-72                                                                              | _                                                                 | _                                          |
| 15470000    | Chisana River at Northway Junction, AK                  | 1950-71, 1997                                                                        | 1997                                                              | 50                                         |
| 15470300    | Little Jack Creek near Nabesna, AK                      | 1975-99                                                                              | _                                                                 | _                                          |
| 15470330    | Chalk Creek near Nabesna, AK                            | 1975-92                                                                              | _                                                                 | _                                          |
| 15470340    | Jack Creek near Nabesna, AK                             | 1975-83, 1992-93                                                                     | _                                                                 | _                                          |
| 15471000    | Bitters Creek near Northway Junction, AK                | 1964-86, 1989-90                                                                     | _                                                                 | 46                                         |
| 15471500    | Tanana River tributary near Tetlin Junction, AK         | 1965-90                                                                              | _                                                                 | _                                          |
| 15473600    | Log Cabin Creek near Log Cabin Inn, AK                  | 1966-91                                                                              | _                                                                 | _                                          |
| 15473950    | Clearwater Creek near Tok, AK                           | 1964-80                                                                              | _                                                                 | _                                          |
| 15476000    | Tanana River near Tanacross, AK                         | 1953-90                                                                              | _                                                                 | _                                          |
| 15476049    | Tanana River tributary near Cathedral Rapids, AK        | 1973-97                                                                              | _                                                                 | _                                          |
|             | Tanana River tributary near Tanacross, AK               | 1964-68, 1970-72                                                                     |                                                                   |                                            |

| Station No. | Station name                                          | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |
|-------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|
| 15476200    | Tanana River tributary near Dot Lake, AK              | 1964-80                                                                              | _                                                                 | _                                          |
| 15476300    | Berry Creek near Dot Lake, AK                         | 1964-99                                                                              | _                                                                 | _                                          |
| 15476400    | Dry Creek near Dot Lake, AK                           | 1964-87, 1989-90                                                                     | _                                                                 | _                                          |
| 15478000    | Tanana River at Big Delta, AK                         | 1949-52, 1954-57                                                                     | _                                                                 | _                                          |
| 15478010    | Rock Creek near Paxson, AK                            | 1963-87                                                                              | _                                                                 | _                                          |
| 15478040    | Phelan Creek near Paxson, AK                          | 1967-78, 1984-85, 1990-93, 1995-99                                                   | _                                                                 | _                                          |
| 15478050    | McCallum Creek near Paxson, AK                        | 1967-91                                                                              | _                                                                 | -                                          |
| 15478093    | Suzy Q Creek near Pump Station 10, AK                 | 1987, 1989-99                                                                        | 1987                                                              | 37                                         |
| 15478499    | Ruby Creek above Richardson Highway near Donnelly, AK | 1987-99                                                                              | _                                                                 | 37                                         |
| 15478500    | Ruby Creek near Donnelly, AK                          | 1963-79                                                                              | _                                                                 | _                                          |
| 15480000    | Banner Creek at Richardson, AK                        | 1964-99                                                                              | _                                                                 | -                                          |
| 15484000    | Salcha River near Salchaket, AK                       | 1949-51, 1953-59, 1961-99                                                            | _                                                                 | _                                          |
| 15485500    | Tanana River at Fairbanks, AK                         | 1967, 1973-99                                                                        | 1967                                                              | 62                                         |
| 15490000    | Monument Creek at Chena Hot Springs, AK               | 1970-77, 1979-95                                                                     | _                                                                 | -                                          |
| 15493000    | Chena River near Two Rivers, AK                       | 1968-99                                                                              | _                                                                 | _                                          |
| 15493500    | Chena River near North Pole, AK                       | 1972-80                                                                              | _                                                                 | _                                          |
| 15511000    | Little Chena River near Fairbanks, AK                 | 1967-99                                                                              | _                                                                 | 100                                        |
| 15514000    | Chena River at Fairbanks, AK                          | 1948-80                                                                              | _                                                                 | 100                                        |
| 15514500    | Wood River near Fairbanks, AK                         | 1969-78                                                                              | _                                                                 | _                                          |
| 15515500    | Tanana River at Nenana, AK                            | 1948, 1962-99                                                                        | 1948                                                              | 62                                         |
| 15515800    | Seattle Creek near Cantwell, AK                       | 1964-77, 1979-89                                                                     | _                                                                 | -                                          |
| 15515900    | Lily Creek near Cantwell, AK                          | 1966-77, 1979-81                                                                     | _                                                                 | _                                          |
| 15516000    | Nenana River near Windy, AK                           | 1951-56, 1959-77, 1979-81                                                            | _                                                                 | -                                          |
| 15516050    | Jack River near Cantwell, AK                          | 1973-81                                                                              | _                                                                 | _                                          |
| 15516200    | Slime Creek near Cantwell, AK                         | 1966-91, 1993-99                                                                     | _                                                                 | _                                          |
| 15518000    | Nenana River near Healy, AK                           | 1951-79                                                                              | _                                                                 | -                                          |
| 15518080    | Lignite Creek above mouth near Healy, AK              | 1986-99                                                                              | _                                                                 | _                                          |
| 15518200    | Rock Creek near Ferry, AK                             | 1970-75, 1977-80                                                                     | _                                                                 | _                                          |
| 15518250    | Birch Creek near Rex, AK                              | 1965-67, 1969-91                                                                     | _                                                                 | -                                          |
| 15518350    | Teklanika River near Lignite, AK                      | 1965-74                                                                              | _                                                                 | 35                                         |
| 15519000    | Bridge Creek near Livengood, AK                       | 1963-72                                                                              | _                                                                 | _                                          |
| 15519200    | Brooks Creek tributary near Livengood, AK             | 1964-81, 1983-88, 1990                                                               | _                                                                 | -                                          |
| 15520000    | Idaho Creek near Miller House, AK                     | 1963-77, 1979-90                                                                     | _                                                                 | _                                          |
| 15530000    | Faith Creek near Chena Hot Springs, AK                | 1963-72                                                                              | _                                                                 | 21                                         |
| 15535000    | Caribou Creek near Chatanika, AK                      | 1970-86                                                                              | _                                                                 | _                                          |
| 15541600    | Globe Creek near Livengood, AK                        | 1964-67, 1969-99                                                                     | _                                                                 | _                                          |
| 15541650    | Globe Creek tributary near Livengood, AK              | 1963-67, 1969-72                                                                     | _                                                                 | _                                          |
| 15541800    | Washington Creek near Fox, AK                         | 1963-72                                                                              | -                                                                 | _                                          |
| 15564600    | Melozitna River near Ruby, AK                         | 1962-73                                                                              | _                                                                 | _                                          |
| 15564800    | Yukon River at Ruby, AK                               | 1957-78                                                                              | _                                                                 | _                                          |
| 15564868    | Snowden Creek near Wiseman, AK                        | 1977-99                                                                              | _                                                                 | _                                          |
| 15564872    | Nugget Creek near Wiseman, AK                         | 1975-88, 1990-99                                                                     | _                                                                 | _                                          |
| 15564875    | Middle Fork Koyukuk River near Wiseman, AK            | 1971-80, 1984-87, 1994                                                               | 1994                                                              | 42                                         |
| 15564877    | Wiseman Creek at Wiseman, AK                          | 1971-79, 1994                                                                        | 1994                                                              | 33                                         |

**Appendix A**. Years of record for annual peak streamflows used in this report—*Continued* [Refer to <u>table 4</u> for number of systematic peaks used; AK, Alaska; BC, British Columbia; YT, Yukon]

| Station No. | Station name                                          | Water years for peak streamflows<br>(systematic and historic) used in this<br>report | Water<br>years for<br>historic<br>peaks used<br>in this<br>report | Length of<br>historic<br>period<br>(years) |  |
|-------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|--|
| 15564879    | Slate Creek at Coldfoot, AK                           | 1981-99                                                                              | _                                                                 | _                                          |  |
| 15564884    | Prospect Creek near Prospect Camp, AK                 | 1975-99                                                                              | _                                                                 | _                                          |  |
| 15564885    | Jim River near Bettles, AK                            | 1967, 1971-77                                                                        | 1967                                                              | 12                                         |  |
| 15564887    | Bonanza Creek tributary near Prospect Camp, AK        | 1975-99                                                                              | _                                                                 | _                                          |  |
| 15564900    | Koyukuk River at Hughes, AK                           | 1961-82, 1994                                                                        | 1994                                                              | 63                                         |  |
| 15565200    | Yukon River near Kaltag, AK                           | 1957-66                                                                              | _                                                                 | _                                          |  |
| 15565447    | Yukon River at Pilot Station, AK                      | 1976-96                                                                              | _                                                                 | _                                          |  |
| 15585000    | Goldengate Creek near Nome, AK                        | 1965, 1977-84, 1986-99                                                               | 1965                                                              | 35                                         |  |
| 15619000    | Dexter Creek near Nome, AK                            | 1978, 1981-89                                                                        | _                                                                 | _                                          |  |
| 15621000    | Snake River near Nome, AK                             | 1965-91                                                                              | _                                                                 | _                                          |  |
| 15624998    | Arctic Creek above tributary near Nome, AK            | 1979-99                                                                              | _                                                                 | _                                          |  |
| 15625000    | Arctic Creek near Nome, AK                            | 1969-78                                                                              | _                                                                 | _                                          |  |
| 15633000    | Washington Creek near Nome, AK                        | 1964-99                                                                              | _                                                                 | _                                          |  |
| 15635000    | Eldorado Creek near Teller, AK                        | 1986-99                                                                              | _                                                                 | _                                          |  |
| 15637000    | Gold Run Creek near Teller, AK                        | 1986-95                                                                              | _                                                                 | _                                          |  |
| 15668100    | Star Creek near Nome, AK                              | 1964-69, 1972-89                                                                     | _                                                                 | _                                          |  |
| 15668200    | Crater Creek near Nome, AK                            | 1964, 1966-89                                                                        | _                                                                 | _                                          |  |
| 15712000    | Kuzitrin River near Nome, AK                          | 1910, 1963, 1966-73                                                                  | _                                                                 | _                                          |  |
| 15743850    | Dahl Creek near Kobuk, AK                             | 1986-99                                                                              | _                                                                 | _                                          |  |
| 15744000    | Kobuk River at Ambler, AK                             | 1966-78                                                                              | _                                                                 | _                                          |  |
| 15744500    | Kobuk River near Kiana, AK                            | 1977-99                                                                              | _                                                                 | _                                          |  |
| 15747000    | Wulik River below Tutak Creek near Kivalina, AK       | 1985-99                                                                              | _                                                                 | _                                          |  |
| 15798700    | Nunavak Creek near Barrow, AK                         | 1972-99                                                                              | _                                                                 | _                                          |  |
| 15896000    | Kuparuk River near Deadhorse, AK                      | 1971-99                                                                              | _                                                                 | _                                          |  |
| 15896700    | Putuligayuk River near Deadhorse, AK                  | 1970-80, 1982-95                                                                     | _                                                                 | _                                          |  |
| 15904900    | Atigun River tributary near Pump Station 4, AK        | 1976-99                                                                              | _                                                                 | _                                          |  |
| 15906000    | Sagavanirktok River tributary near Pump Station 3, AK | 1979-99                                                                              | _                                                                 | _                                          |  |
| 15908000    | Sagavanirktok River near Pump Station 3, AK           | 1983-99                                                                              | _                                                                 | _                                          |  |
| 15910000    | Sagavanirktok River near Sagwon, AK                   | 1969-79                                                                              | _                                                                 | _                                          |  |
| 15910200    | Happy Creek at Happy Valley Camp near Sagwon, AK      | 1972-97                                                                              | _                                                                 | _                                          |  |
| 15918200    | Sagavanirktok River tributary near Deadhorse, AK      | 1988-99                                                                              | _                                                                 | _                                          |  |
| 15999900    | Firth River near mouth near Herschel, YT              | 1972-73, 1975-80, 1982-94                                                            | _                                                                 | _                                          |  |

## APPENDIX B. ACCURACY OF ESTIMATING EQUATIONS

#### **Site-Specific Standard Error of Prediction**

The uncertainty in a prediction of streamflow at a site can be expressed by the standard error of prediction. Actual peak streamflows for about two-thirds of the ungaged sites with basin characteristics identical to those for the specified site will be within the noted standard error of prediction. The standard error of prediction, may be estimated from the mean square error of the model,  $\gamma^2$ , and the mean square sampling error,  $MSE_s$  (Tasker and Stedinger, 1989). The mean square error of prediction, in square log (base 10) units, at a specific ungaged site can be estimated as

$$MSE_p = \gamma^2 + MSE_s \tag{1}$$

The mean square error of the model,  $\gamma^2$ , is constant for all sites for a given region and given recurrence interval (<u>table B1</u> at end of <u>Appendix B</u>). It is large relative to the mean square sampling error for the sites in this study.

The mean square sampling error at an individual site can be estimated using the covariance matrix for the corresponding estimating equation (table B1) and the following procedures. Let Y be a column vector of n logarithms of observed peak-streamflow statistics at n sites in a streamflow analysis region. For example,

where

 $Q_{50,i}$  is the observed peak with a recurrence interval of 50 years at the *i*th streamflow-gaging station in the region.

Let X be an n by p matrix of p-1 basin characteristics and a column of ones at n streamflowgaging stations. For example,

$$X = \begin{bmatrix} 1 & \log A_1 & \log ST_1 & \log P_1 \\ 1 & \log A_2 & \log ST_2 & \log P_2 \\ \dots & \dots & \dots & \dots \\ 1 & \log A_n & \log ST_n & \log P_n \end{bmatrix}$$
(3)

where A (drainage area), ST (area of lakes and ponds), and P (mean annual precipitaiton) are the basin characteristics used in the regression equation for the subject region. Let B be a column vector of pregression coefficients.

$$\boldsymbol{B} = \begin{bmatrix} a \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} \tag{4}$$

The linear model can be written in matrix notation as Y = XB.

Next, let  $x_0$  be a row vector of basin characteristics for an ungaged site. For the example region, the row vector is of the form  $x_0 = [1 \ \log(A_0) \ \log(ST_0) \ \log(P_0)]$ . The mean square sampling error for the ungaged site,  $MSE_s$ , is calculated as

$$MSE_s = \boldsymbol{x}_0 \left\{ \boldsymbol{X}^T \boldsymbol{\Lambda}^{-1} \boldsymbol{X} \right\}^{-1} \boldsymbol{x}_0^T$$
(5)

where

 $\Lambda$  is the *n* by *n* covariance matrix for *Y*.

The diagonal elements of  $\Lambda$  are model error variance,  $\gamma^2$ , plus the time sampling error for each site *i*, (*i* = 1, 2, 3, ..., *n*), which is estimated as a function of a regional estimate of the standard deviation of annual peaks at site *i*, the recurrence interval of the dependent variable, and the number of years of record at site *i*. The offdiagonal elements of  $\Lambda$  are the sample covariance of the estimated T-year peaks at sites *i* and *j*. These offdiagonal elements are estimated as a function of a regional estimate of the standard deviation of annual peaks at sites *i* and *j*, the recurrence interval of the dependent variable, and the number of concurrent years of record at sites *i* and *j* (Tasker and Stedinger, 1989). The *p* by *p* matrix  $[X^T\Lambda^{-1}X]^{-1}$  and along with the values of  $\gamma^2$  for each equation in table 3 are shown in table B1.

#### **Average Standard Error of Prediction**

The average standard error of prediction (ASEP) for a region is estimated by computing the site-specific  $MSE_p$  for each gaged site in the region, then averaging these values and taking the square root of the result. The ASEP is computed in log (base 10) units and converted to percentages. The average standard error of prediction for each of the estimating equations is presented in table 3.

#### **Equivalent Years of Record**

The uncertainty in a prediction of peak streamflow at an ungaged site can also be expressed as the number of years of record needed at the site to achieve an estimate of equal accuracy. The equivalent years of record (Hardison, 1971) can be calculated at an ungaged site by equating the variance of prediction,  $V_p$ , to the variance of the Pearson III quantile estimated from a sample of annual peaks, Var(y). According to Hardison (1971), the variance of a predicted response at ungaged site k with basin characteristics  $\mathbf{x}_k = (1, x_{k,1}, x_{k,2}, ..., x_{k,p})$  is

$$V_p = \hat{\gamma}^2 + \boldsymbol{x}_k \boldsymbol{X}' \boldsymbol{\Lambda}^{-1} \boldsymbol{X}^{-1} \boldsymbol{x}'_k \ . \tag{6}$$

Note that equation B6 is the combination of equations B1 and B5.

The variance of the Pearson III quantile, Var(y), is approximated by

$$Var(y) = \frac{\sigma^2}{N} \left\{ 1 + \frac{k^2}{2} (1 + 0.75g^2) + kg \right\} , \quad (7)$$

where

- $\sigma$  is the standard deviation of logs of annual peaks;
- *k* is the Pearson III standard deviate for the recurrence interval *T*; and
- *g* is the skew coefficient for logs of annual peaks (Bobee, 1973).

Substituting regional skew for g and a regional estimate of  $\sigma$  into the above equation, equating it to  $V_p$ , and solving for N provides for an equivalent years of record as a measure of accuracy. The computer program available at <u>http://pubs.water.usgs.gov/wri034188</u> computes  $V_p$ , uses the regional skew coefficient for g, and computes a regional estimate for  $\sigma$  from a regression of sample standard deviation at gaged sites on basin characteristics.

#### Average Equivalent Years of Record

The average equivalent years of record (AEYR) can be computed for a particular equation in a particular region. The equivalent years of record are first computed for all gaged sites within a region as if they were ungaged sites. The average of these site-specific values is the average equivalent of years of record for the regression equation for that region. Average equivalent years of record are presented in table 3.

#### **Confidence Limits**

The average standard error of prediction provides a measure of the accuracy of the overall analysis, but is not a measure of the error at a particular site. A measure of the error in a particular prediction is the confidence limits of a prediction. This can also be expressed as the range between the confidence limits, or prediction interval. The prediction interval can be computed from the row vector of basin characteristics,  $x_0$ , and the predicted value,  $\hat{y}_0 = x_0 B$ . The 100 (1- $\alpha$ ) prediction interval would be

$$\hat{y}_0 - T \le y_0 \le \hat{y}_0 + T$$
, (8)

where

$$T = t_{\frac{\alpha}{2}, n-p'} \sqrt{(\hat{\gamma}_0^2 + \boldsymbol{x}_0 (\boldsymbol{X}' \hat{\Lambda}^{-1} \boldsymbol{X})^{-1} \boldsymbol{x}'_0)}, \qquad (9)$$

where

$$t_{\frac{\alpha}{2},n-p'}$$
 is the critical value from a t-distribution  
for *n*-*p'* degrees of freedom.

If a log transform is made so that  $y_0 = \log_{10}(q_0)$ , then the prediction interval is

$$10^{\hat{y}_0 - T} \le q_0 \le 10^{\hat{y}_0 + T} . \tag{10}$$

The computer program available at <u>http://</u> <u>pubs.water.usgs.gov/wri034188</u> automates computations for the 5-percent and 95-percent confidence limits (the 90-percent prediction interval) for a particular site.

#### **Converting Errors from Log Units to Percentages**

Using the assumption that the errors computed in log (base 10) units follow a normal distribution, the error may be expressed in percent of the predicted value. The error in log units may be converted to percentages as

$$error_{percent} = 100 \sqrt{(e^{5.3019 \sigma^2} - 1)}$$
, (11)

where  $\sigma^2$  is the mean square error in log (base 10) units.

Sometimes it is said in ordinary-least-squares regression that two-thirds of the points lie within one standard error of the regression function. This is true for the error as expressed in log units because the errors in log space are symmetrically distributed, but not for *error*<sub>percent</sub> because the errors in percentage space are skewed. The positive and negative percent errors may be calculated as:

Positive 
$$error_{percent} = 100(10^{\circ} - 1)$$
 (12)

Negative 
$$error_{percent} = 100(10^{-\sigma} - 1).$$
 (13)

For example, the average standard error of prediction (ASEP) for the 2-year recurrence interval for Region 1 and Region 3 is 0.158 in log (base 10) units (table 3). This can be expressed as 38 percent, or plus 44 percent and minus 30 percent.

|               | Region 1 and 3 |                |                              |             |             | Region 1 and 3—Continued |             |              |                            |             |             |  |
|---------------|----------------|----------------|------------------------------|-------------|-------------|--------------------------|-------------|--------------|----------------------------|-------------|-------------|--|
|               | 2-year         | r recurrence i | interval; γ <sup>2</sup> = 2 | .3519E-02   |             |                          | 50-yea      | r recurrence | interval; $\gamma^2 = 2$   | 2.5427E-02  |             |  |
|               | Constant       | Α              | ST                           | Р           | J           |                          | Constant    | Α            | ST                         | Р           | J           |  |
| Constant      | 2.7768E-01     | -4.7425E-03    | 7.9807E-03                   | -2.4493E-02 | -1.2887E-01 | Constant                 | 3.8092E-01  | -5.9502E-03  | 9.1226E-03                 | -2.9879E-02 | -1.8122E-01 |  |
| Α             | -4.7425E-03    | 8.9854E-04     | -1.7202E-04                  | 1.0338E-04  | 2.0427E-03  | Α                        | -5.9502E-03 | 1.0952E-03   | -2.2217E-04                | 1.9541E-04  | 2.4992E-03  |  |
| ST            | 7.9807E-03     | -1.7202E-04    | 1.7719E-03                   | -1.9553E-03 | -2.5456E-03 | ST                       | 9.1226E-03  | -2.2217E-04  | 2.1822E-03                 | -2.2960E-03 | -2.8391E-03 |  |
| Р             | -2.4493E-02    | 1.0338E-04     | -1.9553E-03                  | 1.6404E-02  | -5.5337E-03 | Р                        | -2.9879E-02 | 1.9541E-04   | -2.2960E-03                | 2.0139E-02  | -6.9779E-03 |  |
| J             | -1.2887E-01    | 2.0427E-03     | -2.5456E-03                  | -5.5337E-03 | 8.0433E-02  | J                        | -1.8122E-01 | 2.4992E-03   | -2.8391E-03                | -6.9779E-03 | 1.1219E-01  |  |
|               | 5-yeai         | r recurrence i | interval; γ <sup>2</sup> = 2 | .2760E-02   |             |                          | 100-yea     | r recurrence | interval; γ <sup>2</sup> = | 2.7161E-02  |             |  |
|               | Constant       | Α              | ST                           | Р           | J           |                          | Constant    | Α            | ST                         | Р           | J           |  |
| Constant      | 2.8307E-01     | -4.7569E-03    | 7.7244E-03                   | -2.4510E-02 | -1.3186E-01 | Constant                 | 4.2335E-01  | -6.4992E-03  | 9.8921E-03                 | -3.2533E-02 | -2.0224E-01 |  |
| Α             | -4.7569E-03    | 8.9280E-04     | -1.7631E-04                  | 1.2303E-04  | 2.0296E-03  | Α                        | -6.4992E-03 | 1.1937E-03   | -2.4414E-04                | 2.2330E-04  | 2.7192E-03  |  |
| ST            | 7.7244E-03     | -1.7631E-04    | 1.7658E-03                   | -1.9304E-03 | -2.4087E-03 | ST                       | 9.8921E-03  | -2.4414E-04  | 2.3831E-03                 | -2.4915E-03 | -3.0774E-03 |  |
| Р             | -2.4510E-02    | 1.2303E-04     | -1.9304E-03                  | 1.6297E-02  | -5.4072E-03 | Р                        | -3.2533E-02 | 2.2330E-04   | -2.4915E-03                | 2.1997E-02  | -7.6916E-03 |  |
| J             | -1.3186E-01    | 2.0296E-03     | -2.4087E-03                  | -5.4072E-03 | 8.1970E-02  | J                        | -2.0224E-01 | 2.7192E-03   | -3.0774E-03                | -7.6916E-03 | 1.2511E-01  |  |
|               | 10-yea         | r recurrence   | interval; $\gamma^2 = 2$     | 2.2997E-02  |             |                          | 200-yea     | r recurrence | interval; γ <sup>2</sup> = | 2.9258E-02  |             |  |
|               | Constant       | Α              | ST                           | Р           | J           |                          | Constant    | Α            | ST                         | Р           | J           |  |
| Constant      | 3.0423E-01     | -4.9977E-03    | 7.9269E-03                   | -2.5488E-02 | -1.4274E-01 | Constant                 | 4.7065E-01  | -7.1213E-03  | 1.0793E-02                 | -3.5590E-02 | -2.2556E-01 |  |
| Α             | -4.9977E-03    | 9.3011E-04     | -1.8511E-04                  | 1.4074E-04  | 2.1225E-03  | Α                        | -7.1213E-03 | 1.3065E-03   | -2.6929E-04                | 2.5348E-04  | 2.9696E-03  |  |
| ST            | 7.9269E-03     | -1.8511E-04    | 1.8437E-03                   | -1.9878E-03 | -2.4691E-03 | ST                       | 1.0793E-02  | -2.6929E-04  | 2.6128E-03                 | -2.7200E-03 | -3.3560E-03 |  |
| Р             | -2.5488E-02    | 1.4074E-04     | -1.9878E-03                  | 1.7010E-02  | -5.7167E-03 | Р                        | -3.5590E-02 | 2.5348E-04   | -2.7200E-03                | 2.4118E-02  | -8.4897E-03 |  |
| J             | -1.4274E-01    | 2.1225E-03     | -2.4691E-03                  | -5.7167E-03 | 8.8583E-02  | J                        | -2.2556E-01 | 2.9696E-03   | -3.3560E-03                | -8.4897E-03 | 1.3945E-01  |  |
|               | 25-yea         | r recurrence   | interval; $\gamma^2 = 1$     | 1.3939E-02  |             |                          | 500-yea     | r recurrence | interval; γ <sup>2</sup> = | 3.2547E-02  |             |  |
|               | Constant       | Α              | ST                           | Р           | J           |                          | Constant    | Α            | ST                         | Р           | J           |  |
|               | 3.4383E-01     | -5.4806E-03    | 8.4980E-03                   | -2.7663E-02 | -1.6272E-01 | Constant                 | 5.4013E-01  | -8.0479E-03  | 1.2171E-02                 | -4.0206E-02 | -2.5966E-01 |  |
| Constant      | -5 4806E-03    | 1.0123E-03     | -2.0365E-04                  | 1.6998E-04  | 2.3124E-03  | А                        | -8.0479E-03 | 1.4759E-03   | -3.0712E-04                | 2.9672E-04  | 3.3441E-03  |  |
| Constant<br>A | 5.1000L 05     |                |                              |             |             |                          | 1 2171E 02  | 2 0712E 04   | 2.05795.02                 |             | 2 70105 02  |  |
|               |                | -2.0365E-04    | 2.0127E-03                   | -2.1364E-03 | -2.6455E-03 | ST                       | 1.21/1E-02  | -3.0712E-04  | 2.95/8E-03                 | -3.0689E-03 | -3./810E-03 |  |
| Α             | 8.4980E-03     |                | 2.0127E-03<br>-2.1364E-03    |             |             | ST<br>P                  | -4.0206E-02 |              |                            |             |             |  |

|          |              | Region 2         |                               |             |                                                      | Re           | gion 2 <i>—Cont</i> | inued                         |             |  |  |
|----------|--------------|------------------|-------------------------------|-------------|------------------------------------------------------|--------------|---------------------|-------------------------------|-------------|--|--|
|          | 2-year recu  | rrence interval; | γ <sup>2</sup> = 1.2543E-02   |             | 50-year recurrence interval; $\gamma^2 = 1.6380E-02$ |              |                     |                               |             |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 4.2134E-02   | -4.9437E-03      | -8.7010E-04                   | -1.7493E-02 | Constant                                             | 6.6439E-02   | -7.7881E-03         | -1.2735E-03                   | -2.7798E-02 |  |  |
| Α        | -4.9437E-03  | 1.1455E-03       | 6.2703E-05                    | 9.3291E-04  | Α                                                    | -7.7881E-03  | 1.7511E-03          | 9.0527E-05                    | 1.5421E-03  |  |  |
| ST       | -8.7010E-04  | 6.2703E-05       | 9.8829E-05                    | 3.2504E-04  | ST                                                   | -1.2735E-03  | 9.0527E-05          | 1.3611E-04                    | 4.8352E-04  |  |  |
| Р        | -1.7493E-02  | 9.3291E-04       | 3.2504E-04                    | 9.9407E-03  | Р                                                    | -2.7798E-02  | 1.5421E-03          | 4.8352E-04                    | 1.5918E-02  |  |  |
|          | 5-year recu  | rrence interval; | γ <sup>2</sup> = 1.1327E-02   |             |                                                      | 100-year rec | urrence interval    | ; γ <sup>2</sup> = 1.9532E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 4.0671E-02   | -4.7689E-03      | -8.1557E-04                   | -1.6924E-02 | Constant                                             | 8.0060E-02   | -9.3894E-03         | -1.5296E-03                   | -3.3518E-02 |  |  |
| Α        | -4.7689E-03  | 1.0896E-03       | 5.7959E-05                    | 9.2358E-04  | Α                                                    | -9.3894E-03  | 2.1102E-03          | 1.0920E-04                    | 1.8581E-03  |  |  |
| ST       | -8.1557E-04  | 5.7959E-05       | 9.0885E-05                    | 3.0700E-04  | ST                                                   | -1.5296E-03  | 1.0920E-04          | 1.6259E-04                    | 5.8081E-04  |  |  |
| Р        | -1.6924E-02  | 9.2358E-04       | 3.0700E-04                    | 9.6240E-03  | Р                                                    | -3.3518E-02  | 1.8581E-03          | 5.8081E-04                    | 1.9219E-02  |  |  |
|          | 10-year recu | rrence interval; | ; γ <sup>2</sup> = 1.1873E-02 |             |                                                      | 200-year rec | urrence interval    | ; γ <sup>2</sup> = 2.3384E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 4.4934E-02   | -5.2657E-03      | -8.8276E-04                   | -1.8739E-02 | Constant                                             | 9.6209E-02   | -1.1290E-02         | -1.8366E-03                   | -4.0291E-02 |  |  |
| Α        | -5.2657E-03  | 1.1933E-03       | 6.2450E-05                    | 1.0330E-03  | Α                                                    | -1.1290E-02  | 2.5384E-03          | 1.3169E-04                    | 2.2304E-03  |  |  |
| ST       | -8.8276E-04  | 6.2450E-05       | 9.6788E-05                    | 3.3381E-04  | ST                                                   | -1.8366E-03  | 1.3169E-04          | 1.9458E-04                    | 6.9716E-04  |  |  |
| Р        | -1.8739E-02  | 1.0330E-03       | 3.3381E-04                    | 1.0679E-02  | Р                                                    | -4.0291E-02  | 2.2304E-03          | 6.9716E-04                    | 2.3125E-02  |  |  |
|          | 25-year recu | rrence interval; | γ <sup>2</sup> = 1.3939E-02   |             |                                                      | 500-year rec | urrence interval    | ; γ <sup>2</sup> = 2.9561E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 5.5381E-02   | -6.4897E-03      | -1.0690E-03                   | -2.3147E-02 | Constant                                             | 1.2145E-01   | -1.4264E-02         | -2.3211E-03                   | -5.0866E-02 |  |  |
| Α        | -6.4897E-03  | 1.4618E-03       | 7.5717E-05                    | 1.2831E-03  | Α                                                    | -1.4264E-02  | 3.2109E-03          | 1.6732E-04                    | 2.8088E-03  |  |  |
| ST       | -1.0690E-03  | 7.5717E-05       | 1.1524E-04                    | 4.0552E-04  | ST                                                   | -2.3211E-03  | 1.6732E-04          | 2.4537E-04                    | 8.8035E-04  |  |  |
| Р        | -2.3147E-02  | 1.2831E-03       | 4.0552E-04                    | 1.3231E-02  | Р                                                    | -5.0866E-02  | 2.8088E-03          | 8.8035E-04                    | 2.9221E-02  |  |  |

[These matrices and  $\gamma^2$  can be used to compute the standard error of prediction and prediction intervals for estimates from regression equations (<u>table 3</u>), as explained in the text. *A*, drainage area, in square miles; *ST*, area of lakes and ponds (storage), in percent; *P*, mean annual precipitation, in inches; *J*, mean minimum January temperature, in degrees Fahrenheit; *F*, area of forest, in percent; *E*, mean basin elevation, in feet. Numbers are given in scientific notation: for example, 0.27192E-02 = 0.0027192]

|          |              | <b>Region 4</b>  |                               |             |                                                      | Re           | gion 4— <i>Cont</i> | inued                         |             |  |  |
|----------|--------------|------------------|-------------------------------|-------------|------------------------------------------------------|--------------|---------------------|-------------------------------|-------------|--|--|
|          | 2-year recu  | rrence interval; | γ <sup>2</sup> = 2.9348E-02   |             | 50-year recurrence interval; $\gamma^2$ = 2.6755E-02 |              |                     |                               |             |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 3.0627E-02   | -5.1602E-04      | 1.0701E-03                    | -1.8486E-02 | Constant                                             | 3.9842E-02   | -2.6387E-04         | 8.2449E-04                    | -2.4371E-02 |  |  |
| Α        | -5.1602E-04  | 4.9703E-04       | -3.3418E-04                   | -2.2531E-04 | Α                                                    | -2.6387E-04  | 5.7796E-04          | -3.6355E-04                   | -5.5543E-04 |  |  |
| ST       | 1.0701E-03   | -3.3418E-04      | 3.0252E-03                    | -1.1428E-03 | ST                                                   | 8.2449E-04   | -3.6355E-04         | 3.6939E-03                    | -1.2141E-03 |  |  |
| Р        | -1.8486E-02  | -2.2531E-04      | -1.1428E-03                   | 1.2247E-02  | Р                                                    | -2.4371E-02  | -5.5543E-04         | -1.2141E-03                   | 1.6609E-02  |  |  |
|          | 5-year recu  | rrence interval; | γ <sup>2</sup> = 2.4193E-02   |             |                                                      | 100-year rec | urrence interval    | ; γ <sup>2</sup> = 2.9957E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 2.8203E-02   | -3.8176E-04      | 7.9076E-04                    | -1.7014E-02 | Constant                                             | 4.6215E-02   | -2.5480E-04         | 9.3063E-04                    | -2.8380E-02 |  |  |
| Α        | -3.8176E-04  | 4.4139E-04       | -2.8632E-04                   | -2.7320E-04 | А                                                    | -2.5480E-04  | 6.6244E-04          | -4.1836E-04                   | -6.7010E-04 |  |  |
| ST       | 7.9076E-04   | -2.8632E-04      | 2.7474E-03                    | -9.7060E-04 | ST                                                   | 9.3063E-04   | -4.1836E-04         | 4.2498E-03                    | -1.3871E-03 |  |  |
| Р        | -1.7014E-02  | -2.7320E-04      | -9.7060E-04                   | 1.1368E-02  | Р                                                    | -2.8380E-02  | -6.7010E-04         | -1.3871E-03                   | 1.9398E-02  |  |  |
|          | 10-year recu | ırrence interva; | γ <sup>2</sup> = 2.3181E-02   |             |                                                      | 200-year rec | urrence interval    | ; γ <sup>2</sup> = 3.3919E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 2.9726E-02   | -3.2273E-04      | 7.2146E-04                    | -1.7990E-02 | Constant                                             | 5.3587E-02   | -2.5040E-04         | 1.0607E-03                    | -3.3015E-02 |  |  |
| Α        | -3.2273E-04  | 4.5159E-04       | -2.8719E-04                   | -3.4015E-04 | Α                                                    | -2.5040E-04  | 7.6127E-04          | -4.8381E-04                   | -7.9732E-04 |  |  |
| ST       | 7.2146E-04   | -2.8719E-04      | 2.8448E-03                    | -9.6869E-04 | ST                                                   | 1.0607E-03   | -4.8381E-04         | 4.8988E-03                    | -1.5897E-03 |  |  |
| Р        | -1.7990E-02  | -3.4015E-04      | -9.6869E-04                   | 1.2110E-02  | Р                                                    | -3.3015E-02  | -7.9732E-04         | -1.5897E-03                   | 2.2611E-02  |  |  |
|          | 25-year recu | rrence interval; | ; γ <sup>2</sup> = 2.4439E-02 |             |                                                      | 500-year rec | urrence interval    | ; γ <sup>2</sup> = 4.0221E-02 | 2           |  |  |
|          | Constant     | Α                | ST                            | Р           |                                                      | Constant     | Α                   | ST                            | Р           |  |  |
| Constant | 3.4580E-02   | -2.8040E-04      | 7.4910E-04                    | -2.1057E-02 | Constant                                             | 6.4772E-02   | -2.4938E-04         | 1.2639E-03                    | -4.0046E-02 |  |  |
| Α        | -2.8040E-04  | 5.0978E-04       | -3.2070E-04                   | -4.5361E-04 | Α                                                    | -2.4938E-04  | 9.1238E-04          | -5.8576E-04                   | -9.8463E-04 |  |  |
| ST       | 7.4910E-04   | -3.2070E-04      | 3.2424E-03                    | -1.0764E-03 | ST                                                   | 1.2639E-03   | -5.8576E-04         | 5.8908E-03                    | -1.8979E-03 |  |  |
| Р        | -2.1057E-02  | -4.5361E-04      | -1.0764E-03                   | 1.4290E-02  | Р                                                    | -4.0046E-02  | -9.8463E-04         | -1.8979E-03                   | 2.7472E-02  |  |  |

|          |             | Re           | gion 5                      |             |             |          |             | Region 5      | —Continued                 | 1           |             |
|----------|-------------|--------------|-----------------------------|-------------|-------------|----------|-------------|---------------|----------------------------|-------------|-------------|
|          | 2-year      | recurrence i | nterval; γ <sup>2</sup> = 6 | 6.0539E-02  |             |          | 50-yea      | r recurrence  | interval; $\gamma^2 = 3$   | 3.6463E-02  |             |
|          | Constant    | Α            | ST                          | F           | E           |          | Constant    | Α             | ST                         | F           | E           |
| Constant | 1.3848E+00  | 4.6255E-03   | -4.5679E-02                 | -1.0564E-01 | -3.3768E-01 | Constant | 9.6557E-01  | 1.5376E-03    | -3.3930E-02                | -6.8185E-02 | -2.3615E-01 |
| Α        | 4.6255E-03  | 1.4659E-03   | -3.3640E-03                 | -2.0076E-03 | -1.2690E-03 | А        | 1.5376E-03  | 1.0873E-03    | -2.0253E-03                | -1.4660E-03 | -5.2212E-04 |
| ST       | -4.5679E-02 | -3.3640E-03  | 2.2719E-02                  | 1.0514E-02  | 7.7761E-03  | ST       | -3.3930E-02 | -2.0253E-03   | 1.4936E-02                 | 6.7820E-03  | 6.0760E-03  |
| F        | -1.0564E-01 | -2.0076E-03  | 1.0514E-02                  | 4.5321E-02  | 7.4793E-03  | F        | -6.8185E-02 | -1.4660E-03   | 6.7820E-03                 | 3.0116E-02  | 4.6295E-03  |
| E        | -3.3768E-01 | -1.2690E-03  | 7.7761E-03                  | 7.4793E-03  | 9.2360E-02  | E        | -2.3615E-01 | -5.2212E-04   | 6.0760E-03                 | 4.6295E-03  | 6.4436E-02  |
|          | 5-year      | recurrence i | nterval; γ <sup>2</sup> = 2 | .4193E-02   |             |          | 100-yea     | ir recurrence | interval; γ <sup>2</sup> = | 3.5354E-02  |             |
|          | Constant    | Α            | ST                          | F           | E           |          | Constant    | Α             | ST                         | F           | E           |
| Constant | 1.1461E+00  | 3.3535E-03   | -3.8393E-02                 | -8.5841E-02 | -2.7967E-01 | Constant | 9.7016E-01  | 1.2448E-03    | -3.4465E-02                | -6.7502E-02 | -2.3743E-01 |
| Α        | 3.3535E-03  | 1.2316E-03   | -2.6992E-03                 | -1.6867E-03 | -9.4401E-04 | Α        | 1.2448E-03  | 1.1045E-03    | -1.9708E-03                | -1.4807E-03 | -4.6438E-04 |
| ST       | -3.8393E-02 | -2.6992E-03  | 1.8573E-02                  | 8.5506E-03  | 6.6198E-03  | ST       | -3.4465E-02 | -1.9708E-03   | 1.4805E-02                 | 6.7019E-03  | 6.2288E-03  |
| F        | -8.5841E-02 | -1.6867E-03  | 8.5506E-03                  | 3.7112E-02  | 6.0076E-03  | F        | -6.7502E-02 | -1.4807E-03   | 6.7019E-03                 | 2.9945E-02  | 4.5642E-03  |
| E        | -2.7967E-01 | -9.4401E-04  | 6.6198E-03                  | 6.0076E-03  | 7.6454E-02  | E        | -2.3743E-01 | -4.6438E-04   | 6.2288E-03                 | 4.5642E-03  | 6.4759E-02  |
|          | 10-yea      | r recurrence | interval; $\gamma^2 = c$    | 4.3116E-02  |             |          | 200-yea     | ar recurrence | interval; $\gamma^2 =$     | 3.4936E-02  |             |
|          | Constant    | Α            | ST                          | F           | E           |          | Constant    | Α             | ST                         | F           | E           |
| Constant | 1.0475E+00  | 2.6278E-03   | -3.5623E-02                 | -7.7067E-02 | -2.5578E-01 | Constant | 9.9042E-01  | 1.0195E-03    | -3.5497E-02                | -6.8041E-02 | -2.4254E-01 |
| Α        | 2.6278E-03  | 1.1424E-03   | -2.3868E-03                 | -1.5601E-03 | -7.6737E-04 | Α        | 1.0195E-03  | 1.1381E-03    | -1.9559E-03                | -1.5182E-03 | -4.2469E-04 |
| ST       | -3.5623E-02 | -2.3868E-03  | 1.6756E-02                  | 7.6799E-03  | 6.2153E-03  | ST       | -3.5497E-02 | -1.9559E-03   | 1.4931E-02                 | 6.7415E-03  | 6.4653E-03  |
| F        | -7.7067E-02 | -1.5601E-03  | 7.6799E-03                  | 3.3561E-02  | 5.3326E-03  | F        | -6.8041E-02 | -1.5182E-03   | 6.7415E-03                 | 3.0292E-02  | 4.5886E-03  |
| E        | -2.5578E-01 | -7.6737E-04  | 6.2153E-03                  | 5.3326E-03  | 6.9884E-02  | E        | -2.4254E-01 | -4.2469E-04   | 6.4653E-03                 | 4.5886E-03  | 6.6133E-02  |
|          | 25-yea      | r recurrence | interval; $\gamma^2 = 3$    | 3.8484E-02  |             |          | 500-yea     | r recurrence  | interval; $\gamma^2$ =     | 3.5204E-02  |             |
|          | Constant    | Α            | ST                          | F           | E           |          | Constant    | Α             | ST                         | F           | E           |
| Constant | 9.8160E-01  | 1.9228E-03   | -3.4046E-02                 | -7.0492E-02 | -2.3991E-01 | Constant | 1.0359E+00  | 7.9563E-04    | -3.7457E-02                | -7.0188E-02 | -2.5388E-01 |
| Α        | 1.9228E-03  | 1.0913E-03   | -2.1324E-03                 | -1.4803E-03 | -6.0471E-04 | Α        | 7.9563E-04  | 1.2025E-03    | -1.9831E-03                | -1.5961E-03 | -3.9189E-04 |
| ST       | -3.4046E-02 | -2.1324E-03  | 1.5404E-02                  | 7.0207E-03  | 6.0329E-03  | ST       | -3.7457E-02 | -1.9831E-03   | 1.5401E-02                 | 6.9352E-03  | 6.8798E-03  |
| F        | -7.0492E-02 | -1.4803E-03  | 7.0207E-03                  | 3.0968E-02  | 4.8169E-03  | F        | -7.0188E-02 | -1.5961E-03   | 6.9352E-03                 | 3.1371E-02  | 4.7223E-03  |
| E        | -2.3991E-01 | -6.0471E-04  | 6.0329E-03                  | 4.8169E-03  | 6.5495E-02  | E        | -2.5388E-01 | -3.9189E-04   | 6.8798E-03                 | 4.7223E-03  | 6.9206E-02  |
|          |             |              |                             |             |             |          |             |               |                            |             |             |

|          |              | Region 6          |                             |             |                                                      | Re           | gion 6 <i>—Conti</i> | nued                          |             |  |  |  |
|----------|--------------|-------------------|-----------------------------|-------------|------------------------------------------------------|--------------|----------------------|-------------------------------|-------------|--|--|--|
|          | 2-year recu  | rrence interval;  | γ <sup>2</sup> = 2.7981E-02 |             | 50-year recurrence interval; $\gamma^2 = 4.1393E-02$ |              |                      |                               |             |  |  |  |
|          | Constant     | Α                 | ST                          | F           |                                                      | Constant     | Α                    | ST                            | F           |  |  |  |
| Constant | 4.3415E-03   | -2.9401E-04       | -9.4147E-04                 | -1.8094E-03 | Constant                                             | 7.9411E-03   | -4.9144E-04          | -1.6211E-03                   | -3.3137E-03 |  |  |  |
| Α        | -2.9401E-04  | 2.9302E-04        | -6.3723E-04                 | -1.5684E-04 | Α                                                    | -4.9144E-04  | 4.8473E-04           | -1.1342E-03                   | -2.5527E-04 |  |  |  |
| ST       | -9.4147E-04  | -6.3723E-04       | 4.8646E-03                  | 6.6586E-04  | ST                                                   | -1.6211E-03  | -1.1342E-03          | 8.5696E-03                    | 1.1271E-03  |  |  |  |
| F        | -1.8094E-03  | -1.5684E-04       | 6.6586E-04                  | 1.3279E-03  | F                                                    | -3.3137E-03  | -2.5527E-04          | 1.1271E-03                    | 2.3579E-03  |  |  |  |
|          | 5-year recu  | rrence interval;  | γ <sup>2</sup> = 2.9151E-02 |             |                                                      | 100-year rec | urrence interval     | ; γ <sup>2</sup> = 4.6269E-02 |             |  |  |  |
|          | Constant     | Α                 | ST                          | F           |                                                      | Constant     | Α                    | ST                            | F           |  |  |  |
| Constant | 4.8885E-03   | -3.2277E-04       | -1.0440E-03                 | -2.0177E-03 | Constant                                             | 9.0513E-03   | -5.5083E-04          | -1.8431E-03                   | -3.7947E-03 |  |  |  |
| Α        | -3.2277E-04  | 3.1501E-04        | -6.9969E-04                 | -1.6551E-04 | А                                                    | -5.5083E-04  | 5.4879E-04           | -1.2962E-03                   | -2.9039E-04 |  |  |  |
| ST       | -1.0440E-03  | -6.9969E-04       | 5.3494E-03                  | 7.1975E-04  | ST                                                   | -1.8431E-03  | -1.2962E-03          | 9.7664E-03                    | 1.2861E-03  |  |  |  |
| F        | -2.0177E-03  | -1.6551E-04       | 7.1975E-04                  | 1.4581E-03  | F                                                    | -3.7947E-03  | -2.9039E-04          | 1.2861E-03                    | 2.6946E-03  |  |  |  |
|          | 10-year recu | ırrence interval; | $\gamma^2 = 3.2018E-02$     |             |                                                      | 200-year rec | urrence interval     | ; γ <sup>2</sup> = 5.1585E-02 |             |  |  |  |
|          | Constant     | Α                 | ST                          | F           |                                                      | Constant     | Α                    | ST                            | F           |  |  |  |
| Constant | 5.6697E-03   | -3.6658E-04       | -1.1866E-03                 | -2.3433E-03 | Constant                                             | 1.0227E-02   | -6.1266E-04          | -2.0841E-03                   | -4.3076E-03 |  |  |  |
| Α        | -3.6658E-04  | 3.5669E-04        | -8.0792E-04                 | -1.8669E-04 | Α                                                    | -6.1266E-04  | 6.1728E-04           | -1.4689E-03                   | -3.2826E-04 |  |  |  |
| ST       | -1.1866E-03  | -8.0792E-04       | 6.1555E-03                  | 8.1755E-04  | ST                                                   | -2.0841E-03  | -1.4689E-03          | 1.1042E-02                    | 1.4584E-03  |  |  |  |
| F        | -2.3433E-03  | -1.8669E-04       | 8.1755E-04                  | 1.6815E-03  | F                                                    | -4.3076E-03  | -3.2826E-04          | 1.4584E-03                    | 3.0540E-03  |  |  |  |
|          | 25-year recu | ırrence interval; | $\gamma^2 = 3.6987E-02$     |             |                                                      | 500-year rec | urrence interval     | ; γ <sup>2</sup> = 5.9264E-02 |             |  |  |  |
|          | Constant     | Α                 | ST                          | F           |                                                      | Constant     | Α                    | ST                            | F           |  |  |  |
| Constant | 6.9036E-03   | -4.3498E-04       | -1.4191E-03                 | -2.8677E-03 | Constant                                             | 1.1878E-02   | -6.9773E-04          | -2.4309E-03                   | -5.0325E-03 |  |  |  |
| Α        | -4.3498E-04  | 4.2557E-04        | -9.8406E-04                 | -2.2322E-04 | Α                                                    | -6.9773E-04  | 7.1425E-04           | -1.7128E-03                   | -3.8231E-04 |  |  |  |
| ST       | -1.4191E-03  | -9.8406E-04       | 7.4597E-03                  | 9.8254E-04  | ST                                                   | -2.4309E-03  | -1.7128E-03          | 1.2845E-02                    | 1.7056E-03  |  |  |  |
| F        | -2.8677E-03  | -2.2322E-04       | 9.8254E-04                  | 2.0462E-03  | F                                                    | -5.0325E-03  | -3.8231E-04          | 1.7056E-03                    | 3.5621E-03  |  |  |  |
|          |              |                   |                             |             |                                                      |              |                      |                               |             |  |  |  |

|         | Region 7                          |                            |          | Region 7— <i>Contin</i>                              | nued                        |  |  |
|---------|-----------------------------------|----------------------------|----------|------------------------------------------------------|-----------------------------|--|--|
| 2-year  | recurrence interval; $\gamma$     | <sup>2</sup> = 4.1007E-02  | 50-year  | 50-year recurrence interval; $\gamma^2$ = 3.8863E-02 |                             |  |  |
|         | Constant                          | Α                          |          | Constant                                             | Α                           |  |  |
| onstant | 6.2090E-03                        | -2.2143E-03                | Constant | 6.9639E-03                                           | -2.4400E-0                  |  |  |
| Α       | -2.2143E-03                       | 1.1777E-03                 | Α        | -2.4400E-03                                          | 1.2528E-(                   |  |  |
| 5-year  | recurrence interval; $\gamma$     | <sup>2</sup> = 3.7861E-02  | 100-year | recurrence interval;                                 | $\gamma^2 = 4.0211E-02$     |  |  |
|         | Constant                          | Α                          |          | Constant                                             | Α                           |  |  |
| onstant | 5.8639E-03                        | -2.0905E-03                | Constant | 7.4462E-03                                           | -2.5990E-0                  |  |  |
| Α       | -2.0905E-03                       | 1.1067E-03                 | А        | -2.5990E-03                                          | 1.3258E-0                   |  |  |
| 10-year | recurrence interval; <sub>1</sub> | <sup>2</sup> = 3.7420E-02  | 200-year | recurrence interval;                                 | γ <sup>2</sup> = 4.1910E-02 |  |  |
|         | Constant                          | Α                          |          | Constant                                             | Α                           |  |  |
| onstant | 6.0660E-03                        | -2.1512E-03                | Constant | 7.9675E-03                                           | -2.7728E-0                  |  |  |
| Α       | -2.1512E-03                       | 1.1276E-03                 | А        | -2.7728E-03                                          | 1.4072E-0                   |  |  |
| 25-year | recurrence interval; <sub>7</sub> | <sup>/2</sup> = 3.7916E-02 | 500-year | recurrence interval;                                 | γ <sup>2</sup> = 4.4635E-02 |  |  |
|         | Constant                          | Α                          |          | Constant                                             | Α                           |  |  |
| onstant | 6.5303E-03                        | -2.2990E-03                | Constant | 8.7068E-03                                           | -3.0218E-0                  |  |  |
| Α       | -2.2990E-03                       | 1.1899E-03                 | Α        | -3.0218E-03                                          | 1.5262E-0                   |  |  |