Expert's same: Kelly Heller i Suzy Mccaron Date: $4 \operatorname{Dec} 192$

PART A

Injured resource

Pre-spill population estimates for PWS (un-oiled)
Post-spill population estimates for PWS 30 F P lower survival (oiled)
[Metric used $=$]

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100% f full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) 100
Uncertainty (\%) Upper $\frac{100 \%}{\text { Lower }} \frac{70 \%}{}$
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) $13 \quad(2005)$
Uncertainty (yrs) Upper 19

Assumptions?
Habitat:

$$
\begin{aligned}
& \text { forage quality is gard. } \\
& \text { Nothing addrional happens to the habitat }
\end{aligned}
$$

Disturbance:

Harvest (mortality): Fishing level is constant at 10%

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in ___ years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill) \qquad
Green Island probably on decline due to aver frosting pre-spill Eshamy

PART B
option (suboption) under consideration Increase fisheries management
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 6 1998

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper $\quad \begin{aligned} & \text { Un } \\ & \\ & \\ & \text { Lower }-6\end{aligned}$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
determine maximum sustained yield
frshable areas, access etc...

Are any assumptions different from those we identified under natural recovery?
We are treating this now with the spot- Fishing closure. fruiter all stocks spawning in ald areas.

PART C
Do you belifeve that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenanio where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)
Upper \qquad
Lower

Assumptions:

summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...) With or without plan - ADF\&G will have dasare, may be more conservative inthaut plans..

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
option (suboption) under consideration Update canadramas catalogs. Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery (\%) 100%

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper 100%
Lower 80%

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?) Assumption - there will be ho further hat, deg. to importenthab.

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)
If the habitats are not currently limiting, gould you -imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty
(\%)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)
Assumptions?


```
Summary for Parts B-E:
```

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration fralection af private lands Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty
(\%)
Upper _100
Lower_ 80%

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
We are assuming no major impacts or development an private lands in Western PWS,

Are any assumptions different from those we identified under natural recovery?
$N a$.
marine conditions are probably mare inpertant (limiting)
PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No) Important maybe
If the habitats are not currently limiting, could you -imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) - 100

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad (50% certanty that loss)
assumptions: folly developed lands and increased access ar traffic we cold drive tel population to extraction.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? Note: repeat Hart B for other areas if necessary. Divisions Kenaj/Codk Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Overall, what do you think is the chance that pre-spill population levels will, be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

PART B
option (suboption) under consideration \qquad Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad 13

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

$$
\begin{aligned}
& \text { Uncertainty (yrs) Upper _19 } \\
& \text { Lower_C9 }
\end{aligned}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
would not be so restrictive as to prevent fishing
wall prevent further degradation
Are any assumptions different from those we identified under natural recovery?
There are little foreseeable impacts in morme waters
or public uplands.

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%) \qquad
Assumptions?

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

All three are added (except)
What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) 6
Uncertainty (yrs) Upper \qquad

Assumptions...

$$
\begin{aligned}
& \text { ppo tin p.g }
\end{aligned}
$$

$$
\begin{aligned}
& \text { shilet ypin sacosaft! ! }
\end{aligned}
$$

PART A
Injured resource Cuth hreat Treut
Pre-spill population estimates for PWS (un-oiled)

Post-spill population estimates for pWS (oiled)
[Metric used $=$]

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100\% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) \qquad
Uncertainty (\%) Upper Lower

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) \qquad
Uncertainty (yrs) Upper \qquad Lower

Assumptions?
Habitat:

Disturbance:

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in ___ years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Summary for parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

> Do you think that this option could be used to bring the population above pre-spill levels?

> Expected value (\%)_ Uncertainty (\%)

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART B

Option (suboption) under considaration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PARTE

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Bummary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. I in 10?, 8 in 10?, 99 in 100?...)

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please
provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%) \qquad
Assumptions?

Sumary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower

Assumptions...
expert's name: Brad Andes
part a
Injured resource Black Oystercatchers
Pre-spill population estimates for PWS \qquad 950 (84) (un-oiled)
Post-spill population estimates for PWS $800 \quad(89,90,91)$ (oiled)
[Metric used $=$ oil us uncoiled, significant dedire in. oiled areas pere port m 89 ± 90
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=10 c a l$ extinction.)
Expected recovery (percent) \qquad Birds aren't totally Uncertainty ion $\frac{\text { Der }}{} \frac{120}{80}$ abandrusing akedsit Any spill effects wild an' 1 show up fo 4 yes oft the spill
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

$$
\begin{aligned}
& \text { Expected time to recovery (yrs) } \\
& \text { Uncertainty (yrs) } \begin{array}{l}
\text { Upper } \frac{45}{15} \\
\text { Lower }
\end{array}
\end{aligned}
$$

\qquad 30 - (2qenaratincs)
(3. generation)
(1 gurenation)

Assumptions?
Habitat: No change
Disturbance: 92 levels of disturbance

1) Blows goneratim time 15 years, shenal maturate at 4 gear.

Harvest (mortality): Now

Are there any differences in the assumptions you are -making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 30 years (the number of years provided above as the expected recovery time)?

$$
\text { Expected status (\% of pre-spill) } 100
$$

We are near center of rang, populates: eben to he fairly stable.

PART B
Option (suboption) under consideration \qquad Mussel beds

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad No chang

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

- Dense beds are less mprotront than the ponallin aggregates of beys. If you cant clean the small areas it day lot be effective.
Are any assumptions different from those we identified under natural recovery?

PART B
Option (suboption) under consideration Accelerate rearm
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper
Lower
\qquad
\qquad No
change

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad No change

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Fucus may naturally recover wo nutervention

PART B
option (suboption) under consideration Purchase Dada
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper
Lower \qquad Nocharg

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad No charge

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad No charge

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Port chalmers

PART C

Do you believe that the habitat which prorotected by this option is limiting for the resource? (Yes or (No) Thales pretender or
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, pleaseprovide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate) no -not on prate land

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound? Yo, poswilk

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenal/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

- If large areas if cootie halite ane in prate k arid, le spoprak, poomity.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty
(\%)
Assumptions?

PART B

Option (suboption) under consideration \qquad Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper_ No charge

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad No

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes of No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad conturued
please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty
(\%)

Assumptions:
If them ans going to be mayon management Dis, is tribes hanvest norinach, powncilanhy around Gean + Mutzepe. acolenated tourions man Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

sane

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...
The options in eliminate nursed beds t accelerate upper to make a population aiffeen +oo

Expert's name: Mich ned Fry
Date: 16 Rex '92
PART A - Natural Recovery
Injured resource Black Oystercatcher

Pre-spill population estimates for PWS \qquad $688(1985)$ argent infect (un-oiled)

Post-spill population estimates for PWS (oiled)

survival of young
Degree of recovery without intervention:
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with -100\% = local extinction.)
Expected recovery (percent) 100.

recovery dispersal from uncoiled area

Recovery time needed without intervention:
\qquad

$$
\begin{array}{ll}
\text { Uncertainty (yrs) Upper: } 10 \\
& \text { Lower: } 5
\end{array}
$$

Assumptions?
Habitat: Assuming 40% of breeding po/ in arled area so their growth Disturbance: rate would be less than 10%
Harvest (mortality):

Assuming 300 breeding parr with 10% increase

Farce not in report showed highly significant ${ }^{\bar{x}}$ in of none breading pairs on ailed area Also shaved arrival rate of chicks vas sign. less.
449 F lords were in called areas in 1985 (D. Iron 3) 688 bird ir the
Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in \qquad years?
Expected status (\% of pre-spill) 700 fiend
in 1989 more were in unorled areas (130 vs 259 so $\sim 50 \%$
 aside explanations: if difference due to mu. the ix birds lost or could be shift in inover

Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population. levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration deaning outed mussels Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that

Outside of PWS - ingry shad be less a recovery efforts wait less effective (by $\frac{1}{2}$) in oflerareas

Are any assumptions different from those we identified under natural recovery?

PART B
Option (suboption) under consideration Upper idertidalzones
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad 6

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

$$
\begin{array}{ll}
\text { Uncertainty (yrs) } \left.\begin{array}{l}
\text { Upper } 10 \\
\text { Lower }
\end{array}\right]
\end{array}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Assume bereft is more than linear to proportion area treated by provided nude:, Need to apply to? 10% of area to imprace breeding by 20% in $z / 3^{n} y$.

- By covering some of forage area would reduce predation pressure and allow Er mere raprot limpet recuery

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration Special designation Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) $5 \frac{1}{2}$ in localized areas

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Closures around herring or salmon spanning areas. cold affect praductroty (doable it) by ptoriding rich food
during $P L$

Are any assumptions different from those we identified under natural recovery?

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty \qquad
Assumptions?

Summary for parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (eeg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please
provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

vary Approx to 10 , ill ind t (3 , , $]$
Expert's Name:

$$
\begin{aligned}
& \text { Appears to } 10 \text {, ill prob }<3, \\
& \text { +howard In sing }
\end{aligned}
$$

injured resource Black Oystercatchers
Bail Park
Pre-spill population estimates for PWS
(uncoiled)
Post-spill population estimates for PWS \qquad (oiled)
[Metric used $=$
Pop tins in $89 \& 90$, in the mil areas] but NOI in united, $q 1=\operatorname{Nos}$

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100\% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)
Expected recovery (percent) 100% Rebound to the level If
Natal Variant' n, but
Uncertainty (\%)
mossy vat.
var $\quad\left\{\begin{array}{l}\text { Upper } \frac{120}{80} \\ \text { Lower }\end{array}\right.$ noweure what that lend is.

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 30 (2) genenat'ns
Uncertainty (yrs) Upper _15 $\quad 1$ genenat'n
Assumptions?

Disturbance: $\mathrm{NO}_{A} \mathrm{Sig} \mathrm{As}_{\mathrm{s}}$ in dist.
\qquad

Harvest (mortality): None we kor of.

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 30 years (the number of years provided above as the expected recovery time)?
Expected status (\% of pre-spill)

PART B
option (suboption) under consideration Elia $\mathrm{O}_{i} \mid$ fro Mussel Bed
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100%
Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)
Upper
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery \qquad
No A

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% dance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)
Upper
Lower
\qquad No

Assumptions? (Are there assumptions implementation, duration or pung of projects that influence this estimate?)

Sone nat Recovery.

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty (\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower \qquad

Assumptions...
Andres - BLoy

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100%

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty
(\%)
Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs)

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat inch is protected by this option
is limiting for the resource? No No No No
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate) Not Neatly bros ursine of tat \Rightarrow (cu Area.

Estimated negative impact (\%)
please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sounds

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad

Assumptions...
Brian Andres - BLOY

PART B
option (suboption) under consideration

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in
 expected recovery, please try to quantify envisioning a 90% confidence interval.

Uncertainty
Upper
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-piled)?

Expected time to recovery (yrs) \qquad this assessment of this uncertainty by
(\%)
 α

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions?
(Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

$$
\begin{aligned}
& \text { Fucus will come lack } a \text { te our, } \\
& \text { \& this no effect on BLOY recon }
\end{aligned}
$$

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, pleaseprovide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower

Assumptions...
Brian
Andres-BLOY

PART B
option (suboption) under consideration sp les.
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100%

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Not whin PWS. 1
Mint Asp ar hen \& Montague hare

PART C

Do you believe that the habitat which is protected by this option is inditing for the resource? (Yes or No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, pleaseprovide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper 85% - whorl is Now

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)
Her See Carol.

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?
Expected value (\%)__ Uncertainty
\qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?
No.

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...
Optime seem

PART A
Injured resource Bald Eagles
pre-spill population estimates for pw 2,200 pairs (un-oiled)
[Metric used $=$ pre/post \quad] mortality of juveniles not $\begin{gathered}\text { accounted for.. Probably higher } \\ \text { juvenile }\end{gathered}$
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=10 c a l$ extinction.)
Expected recovery (percent) 100%
Uncertainty (\%) Upper $\frac{110 \text { Lower }}{90}$
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) Z From sill.
Uncertainty (yrs) Upper \quad Lower $\frac{1}{4}$
Assumptions?
Habitat: fink salmon have helped by providing andre food turing nesting

Disturbance:
limiting factor may be territory size
increacesed breeding over last 10 y ss, protected.
Breeomg porvaluen is at carrying capacity in PWS

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
Option (suboption) under consideration land aca,pistiven
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Assuming that nesting habitat remains castant at 1992 la

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact

please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)

Assumptions:
Decrease would not be linear. Potential nesting trees could be lest

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound
proportional to avcilabletrees

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) Uncertainty (\%) 10%
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)
chance of preventing decline is 60-70\%.

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration Special Designation
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad
please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Protection of herring spoon. Locally mpotant but leas than 5% effect on overall INS IP.

Are any assumptions different from those we identified under natural recovery?
Health of ppulation impraed. May have greater Fledging success and those jour. may leave the area.

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions: Existing conditions.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Diyisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

Greater imperfance in areas of greater logging ar greater
human drahurbance.

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)

Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower \qquad

Assumptions..
expert's name: Moke Fry
part a
Injured resource Bald Eagle
Pre-spill population estimates for PWS 4400 adult meederif binds (un-oiled)
Post-spill population estimates for PWS 4000 adult puadeng bids (oiled) (Mortality of puolviles may have been greater flam ad cults)
[Metric used = only counted
whit-headed burs
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range." (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) 100
Uncertainty

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) $\frac{3}{\mathbf{3}}$ yo from spile
Uncertainty (yrs) Upper $\frac{1}{4}$ yo from spile
Assumptions?
Habitat Mimic solver fishery has helped bald eagle, na no lack of food (2) increase in eagle pop in Disturbance: 10 years due to summers a feacial protection
(3) modern popmlatem in pus is at canning copocity
(4) After spaniel, poductinty \uparrow when complied to con-spile area., Population limited boding sucks peer to the spile, (5) Tentoris ox all accumed

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
option (suboption) under consideration Land Acquisition
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

$$
\text { Expected recovery (\%) } \frac{100}{1800}
$$

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

$$
\text { Uncertainty (\%) } \quad \begin{aligned}
& \text { Upper } \quad 110 \\
& \text { Lower } 90
\end{aligned} \text { No tracie }
$$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (Yrs) \qquad 3

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

$$
\text { Uncertainty (yrs) } \begin{aligned}
& \text { Upper } \quad 1 \\
& \text { Lower_ }
\end{aligned}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?
Available habitat unchanged and remains ot 92 levels

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes on No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)
contifued Estimated negative impact (\%) $\frac{(2200-1800)}{(22 \%}$ orel 40 yean Contidu ${ }^{\text {Logging will further limit wasting habitat }}$ please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)
 assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\} logging an Afoynak or other areas indy law se swindle
clianges.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?
Expected value (\%) Uncertainty (\%) 0
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

60 to 70% charne of preventing dedisi

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum $\#$ of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration Special Designations
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad 3

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

- Henri spawn used by eagles during egg formate
- Restrict housing spawn harvest
- Lither effect an eagles clue to urdempread desivitinti. twinghout the sound
Are any assumptions different from those we identified under natural recovery?
- May be an increase in productivity which nay help pap curation elaculev-
- No neal d wien pus

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) Uncertainty (\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be combined with another options) to accelerate the rate or degree of recovery even further?
unknown:

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (Years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

Expert's Name: Tim Bowman
Date: 9 Pec '92
PART A - Natural Recovery
Injured resource \qquad (Bald Eagle

Total
Pre-spill population estimates for pW \qquad 4439 ± 981 (un-oiled)
Post-apill population estimates for PHO 4125 ± 860 (1990)
(oiled)

Degree of recovery without intervention:
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with -100\% F local extinction.)

Expected recovery (percent) 100
Uncertainty (\%)

Recovery time needed without intervention:
Expected time to recovery (yrs) 4.
Uncertainty (yrs) Upper: $6 \rightarrow$ Uncertainty on variables Mat

Assumptions?
Habitat: Assuring the 1990 reproductive success. Breeding population ais at or near carrying capacity
Disturbance:
Harvest (mortality): Food availability
Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez oil Spill not occurred, where would you expect the population to be in 5 years?

Expected status (\% of pre-spill) \qquad

PART B
option (suboption) under consideration fratedren of prherate lands
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) $\begin{aligned} & \text { Upper } \quad 6 \\ & \text { Lower } \quad 3\end{aligned}$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes) or No)
If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper $100 \% \sim$ bagging would not sigasfreantly

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?
Expected value (\%) $1 / 0$ Uncertainty (\%) 10%
Assumptions?
bopilation was moreesing slightly pre-zill

Summary for Parts B-E:
 Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?)

100%

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad

Assumptions..

PART B

option (suboption) under consideration special designations Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper \qquad Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you -imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad
please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper 100

will not have mich effect
Assumptions:
on pule lands se this on purple la ads so the
refolds logging on pirate
lands.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spili population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

Feeding areas ore mast critical in late winter when there is little disturbance.

Expert's name:Tim Bourmon
Date: 9 Dec 1992
PART A - Natural Recovery
Injured resource \qquad Bald Eagle
Pre-spill population estimates for pus 4439 士 981 (un-oiled)
Post-spill population estimates for pus 4125 ± 860 (1990) (oiled)

Degree of recovery without intervention:
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) 100

Uncertainty (\%)

Recovery time needed without intervention:
Expected time to recovery (yrs) 4
Uncertainty (yrs) Upper: 6 Uncentanty an valuables Lower: $\quad 2 \quad$ used in population model Assumptions?

Habitat:

Disturbance:

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 5 years?

Expected status (\% of pre-spill) \qquad

Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery
(\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper 110
Lower 100

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs)
4

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Bald Eagles
part c Prunte Sand Acquisition
Do you believe that the habitat which is protected by this option is limiting for the resource? yes or Nopesing in at camump capacity
If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad 92.5

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)

$$
\begin{aligned}
& \text { Upper } 100 \\
& \text { Lower } 85
\end{aligned}
$$

 areas that mar (avisilueses.
Assumptions Logging would not significantly affect habitat
ParD
Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
AP, Kodiak - Cages nest in non-forested areas which are limiters as each y large scale forested andes furtua limits habitat and sacedbaties potential negate effect of logging. The lever
range of the uncertainty wormed be deciresed. The Kenai/c PART E Wowed DC intermediate between pUS + other areas. If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? Ned
Expected value (\%) 110 Uncertainty (\%) 10%
Assumptions?
Population is currently at a near carrysip capacity and may, under optimal conditions, increase by 10%.

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100.? ...)

19 vials 100%

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration Special Designation o Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper 110
Lower 100

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery
(yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No) Because Neituip area may be at concurs capacity
If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
Unsure, but not likely to be different

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) <20 yeans
ansuoulf, Uncertainty (yrs) Upper \qquad b^{*} Lower \qquad

Assumptions?
Habitat: No A .In portland
Disturbance: Nôt Torpor land

1. Dow't knew what: Raul, gowns on 2. Penal pop 3. Population intrude Populate $=$ dit tim ray.
ep os.
```
Harvest (mortality):N/A
```

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 20 years (the number of years provided above as the expected recovery time)?

Expected status ($\%$ of pro-spifl)
7

- Still insist, bite rn in bowen its.

PART B
option (suboption) under consideration Land Acquisition
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

$$
\text { Expected recovery }(\%) 10070-(N 0 \text { Ahem })
$$

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

$$
\begin{aligned}
& \text { Uncertainty (\%) }
\end{aligned}
$$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
part c Land Acquisition
Do you believe that the habitat which jorprotected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery Not ratistic Development over every inch of coastline.

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions: Gris See Carol G.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

$$
\begin{aligned}
& \text { No idea what's going } \\
& \text { outside of PWS. }
\end{aligned}
$$

$0 N$

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)

Uncertainty
(\%)
Assumptions?
summary for parts B-E: (fraud Acquiritum)
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potentidf rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (Years) \qquad
Uncertainty (yrs) Upper Lower \qquad

Assumptions...

PART B

Option (suboption) under consideration Special Désrgrationo
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad Woos't hud, but prob no
help,

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART c (Special Designators)

Do you believe that the habitat which is protected by this option is limiting for the resource? (yes or No, Ing. Manure Found it If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
No Info patrice DWS

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?
summary for parts $\mathrm{b-E}$: (Special Designations)
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be compined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?

Expected value (years) \qquad
Uncertainty (yrs)
Upper \qquad

Assumptions...

PART B

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) $>100 \%$

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) Effect but unsure horst much
please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper Lower \qquad
$\begin{array}{ll}\text { Assumptions? (Are there assumptions such as the level of } \\ & \text { implementation, duration or number of projects that }\end{array}$ implementation, duration or number of projects that

Are any assumptions different from those we identified under natural recovery?

PART c (Predate control)

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if tais option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula
and/or Prince William Sound\}

PART E

If the rate or degree of recovery can be benefited by implementing
the above option:
Do you think that this option could be used to bring the
population above pre-spill levels? Expected value (\%) \qquad Uncertainty (\%)
Assumptions?
summary for parts B-E: Predate Control
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with, another option (s) to accelerate the rate or degree of recovery ever further?

What is the maximum potenttaf rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...
To do: kop moutoriug

Expert's same: Karen Oakley
Date: $12 / 7192$
PART A
Injured resource Plgein Gullennots
Pre-spill population estimates for PWS \qquad (un-oiled)

Post-spill population estimates for aWS \qquad $3000-6500$ (oiled)

$$
\left[\text { Metric used }=\frac{\text { vEiled Vs. unoulded } 0.50 \%^{\circ}}{]}\right.
$$

population decline
(Dederi occurred mia to the sauce)
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100% full recovery to pre-spill baseline levels, $<100 \%$ means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=10 c a l$. extinction.)
ole

$$
\text { Uncertainty (\%) } \quad \text { Upper } \frac{100}{2 .}
$$

$$
\begin{aligned}
& \text { wo recerew } \\
& \text { wrinkle }
\end{aligned}
$$

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval. It dive factors orient

Assumptions?
Habitat:

Disturbance:
The efts, 6 act ur

(1) Effect a propulatun utud :re

(2) Whole
(3)

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 20 years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
option (suboption) under consideration fend Arquatition
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100 No charge - not wishing wolitat
Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad Y No charge

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad
Y No Unis

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
 ©,

part c (Land Acquisition)

Do you believe that the habitat which 15 protected by this option is limiting for the resource? (Yes on No

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) No we
Outhmine Develomend over the Leortaliver not necessarily realistic Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Lower_———Pugtsound scenario?"
Assumptions: 1-Nestive halital 6 not limited. Hal-tat is meant due to rower t 's of bides.

Is there reason to expect the effects of this option to be different outside of Prince William Sound? Un won- No cut at all If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
part e NJ f
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)_ Uncertainty (\%)
Assumptions?

summary for parts B-E: Special Desiguataino

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts $5-\mathrm{E}$ have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recquery?)

Assumptions...

PART B
option (suboption) under consideration Special Designations
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent), with the implementation of this option.

Expected recovery (\%). 100
l hay lek; min lond I
Acknowledging that there is uncertainty in this assessment or expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?
May be herofiel

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
1-Wend root, sinukar to lamed "requssimen .
2. Although then cover le time eriotraint witch aud neisimize impacts.

Are any assumptions different from those we identified under natural recovery?

$$
\begin{aligned}
& \text { to 1. bet } \\
& \text { (2. }+k+\cdots+\cdots
\end{aligned}
$$

part c (Special Designations)
Do you believe that the habitat which is protected by this option is limiting for the resource? (yes) or No) feediphabitat, stree uncourmin
If the habitats are not currently lifting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sounds \quad Outside Pus- Paxes -gnerallyrive maccosmble to
fox.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty
(\%) \qquad
Assumptions?
summary for Parts beE: (Special Designation is)
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

Add l options

- Continue to mucition :op
- Determine how imp Naked Ireland i, to the Sowed
- Writer hatat?
expert's name: Jan Rob
Date: 8 Dec '92
PART A
Injured resource Pigeon guillemots
Pre-spill population estimates for pWS (un-oiled)

Post-spill population estimates for pWS
 10-12,000 ins Kathy Rel (oiled)
[Metric used $=$

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.) we will likely bose the aggregation of
Expected recovery (percent) -50\% breeding pairs
Uncertainty (\%) $\begin{aligned} & \text { Upper } \\ & \text { Lower } \frac{50}{}-10 \Rightarrow \text { 为 }\end{aligned}$
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 20 yrs to stabilize at -50%
Uncertainty (yrs) $\begin{aligned} & \text { Upper } \infty \\ & \text { Lower } \frac{510 \text { yrs }}{}\end{aligned} \Rightarrow$ represents the potential that if will stabilize at more then -50

Assumptions?
Redine appears to be food supply related (sculpin of blenies seen to be primary Fad) Habitat: Nest 2-3 yrs hydrocarbavs nat a prothan.
Disturbance: Rate of predation doesn 't change.

Harvest (mortality) : Predalven rates remain constant

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty? Residual hydrocarbons may be contributing to the deduce because of fad contamination.

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 20 years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill) - 50
May make it more more likely that the population wald stabilize above the -50%.

PART B
Option (suboption) under consideration reduce predator access
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) - 50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)
Upper _-10
Lower _-50

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 昆esn't know $10-15$

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper_ wower_— would buy mace trine $10-20$ yrs Lower_ but there are other factors that are downy the system down.
Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Naked Is, has $\uparrow \%$ of pigu's pqulation.
monk population increasing and it doesn't take mary to cause an effect an pigu's

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

Trend in Nathern Gulf is the same, probably less in other regions but don't know.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) Uncertainty (\%)

Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (eeg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration protection of private
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%) -50%

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper

$$
\text { Lower }-75-802
$$

Assumptions:
Assuming fairly wide spread logging causing erosion of crevices

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

Don't vow. Ategnat - it colds be ever more imporaint because of the extent of harvest

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration Special Designations Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) -50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by
envisioning a 90\% confidence interval.
Uncertainty (\%) Upper - 10
Lower - 75\%

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) $>20 y \mathrm{ys}$
Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
minimize disturbance, dumping near local guillemot

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value. (\%) \qquad Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

forestalling decline is additive.
Assumptions...

Need to foes on what Factors are limiting. What this information, we acre guessing at other effects.

PART A
Injured resource \qquad Pigeon Gulleniots
Pre-spill population estimates for PWS (un-oiled)

Post-spill population estimates for PWS (oiled)
[Metric used =

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10 of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=10 c a l$
extinction.)

$$
-50 \%
$$

Expected recovery (percent) 2000 bind,
not - 100%
no good undication 7 where tend aril tale 4 . Believes that at least a low decline vil contour

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 20 yo to sAbbleyr (lo-15ypn I)

Assumptions? [Out surprint blennies b less dependence

Disturbance:
(4) Pisdarion Nates remain constant
(1) Population ivan decimuip before spiel
(2) Deific leluely tot supple related-

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty? Food supply utaradole is very unkenom

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 20 years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill) -SO
dee Mayhapsen sores a may equiberize at a lower \# cont mot eituly.

Populations in NO. GOA shaw a general decline as well.

Dan Rory
PART B
Reduce medaton access option (suboption) under consideration to seabird colonies

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) -57-30-40\%
Not going to clang end paint unless mine can be extirpated
Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 10-15yr
Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad 1 Moil time píar to
Lower \qquad packing satotilize.

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?
(1) Hivic may lx lxpandixp the er range
(2) Hent mar be an important fact in eq t chuck
(3) Monk control may be effective on a localized basis

Are any assumptions different from those we identified under natural recovery?
(4) It doenit take many nina to be a pooblern to the success of pigu aggregates.
(5) Mar be a wirtepredation postern a Naked Island
(4) Naked I is at risk of a move rapid decline

Can this option be combined with another options) to accelerate the rate or degree of recovery even further?

What is' the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad 30

Uncertainty (yrs) \qquad no change

Assumptions...

Forage fish are likely to be a liniterip factor but there is a real dearth of information on all the factor which may affect pormelation decline.

Guillemots
assumptions: Assumes fairly undispread logging

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

Culersion

PART E
Afograk could be more vulnerable to logion ar If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? N(
Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B

Option (suboption) under consideration Special Desrepuation
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) -50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or prince william Sounds be helpful in limited localyed
Same bevefits. May be aggregations.

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART B

Option (suboption) under consideration fond Acquisituri Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%)__ no change
Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty
Upper
no change

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?
Expected time to recovery (yrs) wo change

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper wo charge.

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
 (2) If coastal hatital s not protected by prourdiup sons Sort if bugger than the dacture could increase ever more.)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \square

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) $\begin{aligned} & \text { Upper } 670-10 \\ & \text { Lower _-75 to -80 }\end{aligned}$
envisioning a 90\% confidence interval.
Uncertainty (\%) $\begin{aligned} & \text { Upper }-10 \\ & \text { Lower }-75 \%\end{aligned}$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)? >20 May forestall decline

Expected time to recovery (yrs) you may b er_ able to urease \# of years
please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Managers to nuinenize distorborce, uncriases in pollen a Musnesuzing impacts of comernoncial ooticty.

Are any assumptions different from those we identified under natural recovery?
If commercial fishing was severely restricted, it may furthe farstull the decline but it vel sill e deceive

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad
If the forage fish could be fixed, then habitat limitation herons more mupatont.

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? No
Expected value (\%)
Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Expert's Name: Kathy Kuletz
Date: December 8, 1992
PART A - Natural Recovery

Degree of recovery without intervention:
(Note: 100\% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) \qquad 80,000

Uncertainty (\%) Upper: \qquad
Lower: \qquad 50,000

Recovery time needed without intervention:
Expected time to recovery (yrs) \qquad 20

Uncertainty (yrs) Upper: \qquad 50
$\rightarrow 7$ post stich Lower: \qquad 10 avowal $15^{\circ} 20$

Assumptions? rpespile lebuly
Habitat: (1) Neg bet kob than nd be bisected lues acted

Disturbance: (2) Incuased boxtivp acuity lin the sound m the net 20 gran - $5 \mathrm{mp}_{\mathrm{m}}$ same at 12 levels
(3) Continued decive/ijeobem in forage Ash

Harvest (mortality): 4 low Revel polis med be mpaprain

Are there any differences in the assumptions gold are making touchdown arrive at the upper and lower bounds of your level of certaintyfuhe p pan
(6) Lints

Had the Exxon Valdez oil Spill not occurred, where would you expect 18%.
 the population to be in \qquad years?

There would fave
bracken
oroboblinder a
154 ab quest ada wed
Too many deriv
lora
朝

$$
p \cos ^{2}
$$

PART B
option (suboption) under consideration Incidental Take
Degree of recovery with implementation of this option:
 Uncertainty (\%)80-100
\qquad $50-80$ Lower $1 \% /$ year C wheezed ope Land recovery may be wereased by 17 per year 750,000

Estimated recovery time with implementation of this option:
Expected time to recovery (yrs) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad
Same os Ni.

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence this estimate?
This is assunimep that the the is between 112% and 1%

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? Cachervale + kodiak man wace mare setrecters, The level of wridentab may be variable due to dyperan fistum state gear

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty \qquad
Lower: \qquad

Assumptions:

Irportanet to

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how?

PART E - Enhancement potential

Do you think that this option could be used to bring the population above pre-spill levels?

NO
Expected value (\%) \qquad
Uncertainty (\%) Upper
Lower

Assumptions?

Summary for Parts B - E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)
PART F (To be completed after parts A-E have been addressed for all relevant restoration options)
Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?
What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?
Expected value (years) \qquad
Uncertainty (yrs) Upper: \qquad Lower: \qquad

Assumptions:

Katy kuluty - Mans

PART B
Option (suboption) under consideration Lond Acquisition
Degree of recovery with implementation of this option:

$$
\begin{array}{ll}
\text { Expected recovery }(\%) 50 \\
\text { Uncertainty (\%) } \quad & \text { Upper } 80 \\
& \text { Lower } 50
\end{array}
$$

Estimated recovery time with implementation of this option:

$$
\text { Expected time to recovery (yrs) }<20 \text { your }
$$

$$
\begin{array}{ll}
\text { Uncertainty (yrs) } & \text { Upper } \quad 10 \\
& \text { Lower }
\end{array}
$$

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence

(1) Nesting hartal not limit of tho adversely mas ed havel leap

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? South kenai nips et might be ever Kodiak Appall move severe. Neshrie wat. man la mar lerwetif
PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No) not cunenty
If the habitats are not currently limiting, could you imagine a. realistic scenario where they may become limiting? If so,... Yes - As logging couther

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%) Upper: \qquad
Lower: \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound? If so, how?

PART E - Enhancement potential
Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
NO

Assumptions?

Summary for Parts B - E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper: \qquad Lower: \qquad

Assumptions:

Kathy Kuletz

PART B
Option (suboption) under consideration \qquad
Special Designators
Degree of recovery with implementation of this option: -
Expected recovery (\%) 100 (to 100 k$)$.
Uncertainty (\%)

Estimated recovery time with implementation of this option:
Expected time to recovery (yrs) \qquad Now in

Uncertainty (yrs) Upper \qquad

$$
\begin{aligned}
& \text { Moue } \\
& \text { chinned }
\end{aligned}
$$ Lower \qquad

$$
n^{2}
$$

0

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence this estimate?)

- Set aside PUSS from curtain part os dave, intensive rec development, no marinara, tree enaion disturloures to the overall population, pollution Cover
- Marine worth based. If these chum nicias foin.

Is there reason to expect the effects of this option to be different f is outside of Prince William Sound?

If so, how?
Le lachomate by
PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound? If so, how?

PART E - Enhancement potential

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad
Uncertainty (\%) Upper

Assumptions?

Sumary for Parts B - E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs)

Assumptions:
where accelerate recrrary - Could increase beyond 100,000

- Include Marbled + Kittetig's munelet. Keltlyts are move affentel bu gilenaltion and ore more. rave than marbled. Jess unduly distributed. local areas are fickly moe important to Kittlity;s nunelets. Alpine areas auriuld. fouguinf areas may bees protector. Sea io collectors, rising, timers way be important formers.

Expert's Name: Kathy Kulety
part a - Natural Recovery Marbled Murselets Injured resource: Harlequin Ducts Pre-spill population estimates for PWS (un-oiled)
Post-spill population estimates for PWS (oiled)

Unit of Measure $=$ Pure Spill
Degree of recovery without intervention:

| Date: | December | 15,1992 | |
| :---: | :---: | :---: | :---: | :---: |
| July | July | March | Marc |
| 1972 | $89-a 1$ | $72-73$ | $90-a$ |
| 158,000 | 60,000 | 20,300 | 16,50 |
| 119,000 | 39,000 | 25,000 | 8,200 |
| pill $(72$ data) | | | |

(Note: 100% full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)
20 ys . Expected recovery (percent) 80,000 Expect to dec line slight
Uncertainty (\%) Upper: $\frac{\sim 100,000}{50,000}$ (Pw)
Lower: 50,000
Recovery time needed without intervention:
Expected time to recovery (yrs) 20 years $1^{10 \mathrm{ym}}$
Uncertainty (yrs) Upper: $\begin{aligned} & \text { Lower } 10 \\ & \end{aligned}$
Assumptions? Takins into acct low level d lessing
Habitat: at this pt resting habitat Not. Hd, but
losing taut would be fefrimontal \& could be (td in font

\rightarrow Low level of gill not take \& boat activity Harvest (mistily):

Same as at 192 levels. Could $\leftarrow \dot{p}_{i}$

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty, dit See are, F Cement take Not, wake mike il a Had the Exxon valdez oil Split not, occurred, where would you expect of the population to be in g ex years? wad deere \& given Expected status (\% of pre-spill)
low level parlat'ricoull be a purblen. option (suboption) under consideration Minimize n fran Command $\mathcal{L X}^{\circ}$ Degree of recovery with implementation of this option: Expected recovery (z) $\frac{80,000}{2}$ Not pick up in Maj trends

 Estimated recovery time with
Expected time to recover
Uncertainty (yrs) Upper \qquad

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how?
Moe set-net activity in Kodiak \& Kachomn
 is limiting for the resource? (Yes or No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%)

Assumptions:
s there reason to expect the effects of this option to be different outside of Prince William Sourus If so, how?

PART E - Enhancement potential
Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad 10
Uncertainty (\%) Upper
Lower

Assumptions?

Summary for parts B - E:
Overall, what do you think is the chance that pre-spill population levels will be reached ar exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years)
Uncertainty (yrs) Upper:
Lower: \qquad

Assumptions:

PART B
Option (suboption) under consideration $437-14 a b$ A q.
Degree of recovery with implementation of this option: ff don foul buy Expected recovery (\%) \qquad
Uncertainty (\%) Upper \qquad
Lower \qquad land:

$$
\frac{\frac{90,000}{50,800}}{}
$$

Estimated recovery time with implementation of this option:

$$
\begin{aligned}
& \text { Expected time to recovery (yrs) } \\
& \text { Uncertainty (yrs) Upper } \\
& \text { Lower }
\end{aligned}
$$

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence this estimate?)
(1) There may be some High Uol/High stand Clara area that asen't jive fo Mark.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how?
Areas \& S kerri, on Afograk tab bee even mine revere (td).

Do you believe that the habitat which is protected by this option is limiting fey the resource? (Yes or (NO) Cowed he hemp

count be fy in arise fire fine
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%) Upper: \qquad
Lower: \qquad

Assumptions:

Is there reason to expact the effects of this option to be different outside of Prince William Sound? If so, how?

PART E - Enhancement potential
Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad
Uncertainty (\%) Upper

Assumptions?

Summary for Parts B - E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (eeg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)
can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper: \qquad Lower: \qquad

Assumptions:

This one in some fashion fete ot prey bare (forage quest (r). cont deal on bay-ley-bay basie.
PART B
option (suboption) under consideration $S P$ Does
Degree of recovery with implementation of this option:

$$
\begin{array}{ll}
\text { Expected recovery }(\%) \quad 100,000 \\
\text { Uncertainty (\%) } & \text { Upper } 100,000 \\
& \text { Lower } 80,000
\end{array}
$$

Estimated recovery time with implementation of this option:

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence this estimate?)
(1) See. Above. Ven Ger kuod-base. can Reatrièl Dup activities, Monte \& K ley precut u ctrol.
(2) 11 there ad t phage fit or abhor them Munctain bays,

Is there reason to expect the effects of this option to be different outside of Prince William Sound? If so, how?
(5) More inum impact? than As in logging a Comm. Do

PART C
\rightarrow with some artumpex, (large area) = Yer (save)

Do you believe that the habitat in is protected by this option is limiting for the resource? (Yes or No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%) Upper: \qquad
Lower: \qquad

Assumptions:

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further? Yes. Carbunir' N is better then any alive.

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) 0

$$
2100-
$$

Uncertainty (yrs) Upper: 10

$$
\begin{aligned}
& \text { upper } \\
& \text { Lower }
\end{aligned}
$$

\qquad

Assumptions:
Frap atoll be begat this. to $>100,000$.

Impent to ind both Murrelet spacer.
Kittlets are s affected ky Conn. NA
than Meme.
Rare, endemic to AK
Not 'au cindel deil than wa Mares.
Unakwik Inlet is very imp to kittlets.
At r paid te Al sere Areas $10^{\circ} \circ$ mining, \& mining
\& Ser Ice) This nay be a tinny thing.
If Hear $\downarrow^{\text {Du pt }} \rightarrow P d$ Dogs, Ravers, etc then Record pedat'r.

PART A
Injured resource \qquad
Marbforctoriet
Pre-spili population estimates for PWS 300,000 (1972) (un-oiled)

Post-spill population'estimates for PWS 100,000 (oiled)
morgue counts - need to have with me for info.
without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10 of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) م_ stabilize Uncertainty (\%) -25 to +25

- worse
- best

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 25 _ Uncertainty (yrs) 15-35

Assumptions?

> Habitat: still have forage fish; nesting habitat not limiting and no further loss of nesting habitat in the absence of fmplementation of any option
> Disturbance: probably not a problem

Harvest (mortality)s.incidental take accounts for a few percentages of decline

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Higher value - worst case scenario represents the time to stabilization, ultimate worst case is continued decline with no upper bound in years

Had the Exxon Valdez oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)? Note: This question does not always seem to apply.

Expected status (\% of pre-spill) diminished rate of decrease

PART B
Option (suboption) under consideration minimizing incidental
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) $0 \%=$ stabilization

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantily this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) -15 to ± 25

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 20

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) 10-35

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence this estimate?)

Assuming geographic correspondence between bird concentration and fishing

Are any assumptions different from those we identified under natural recovery?

Fishing is not randomly distributed so impacts vary between areas

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how?
No. The more localized the distribution outside of PWS, the importance PART CGuld be increased

Option (suboption) under consideration habitat degradation
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 0

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) -10 to $\$ 25$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 20

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) 15-35

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence. this estimate?)

No loss of high quality nesting habitat
(Also there is no high quality habitat not in use)

Are any assumptions different from those.we identified under natural recovery?

```
chainsaws stopped tomorrow.
```


PART C

Do you believe that the habitat which is protected by this optionti is limiting for the resource? (Yes or"No) in use but not at caryygg cep
If the habitats are not currently limiting, could you imagine $\cdot \mathrm{a}$ realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent). Of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)_continued decline to low level

Please try to quantify your uncertainty such that there is only a for chance that the actual impact will fall outside of this range.

Uncertainty (\%) \qquad

Assumptions:

Assume that cutting occurs in one decade then 1 to 1 correspondence in decrease in population

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how?
same as for incidental

PART E
If the rate or degree of recovery can be benefited by. implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)

Assumptions?

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

Solely with this option; 2 or 3 out of 10

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum (of years to recovery?)

Expected value (years)___ Uncertainty (\%) \qquad

Assumptions...

Expert's Name: lithe Date:
PART A
Injured resource \qquad
arose murrelet
Pre-spill population estimates for PWS : 20001972 (un-oiled)

N 125°
Post-spill population estimates for PWS \qquad (oiled)
[Metric used $=$

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10 of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) \qquad
Uncertainty (\%)
Upper Lower \qquad
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 10 wis. \because,
Uncertainty (yrs) Upper $\underset{\text { Lower }}{x}$

Assumptions?

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?
No. Natant

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)?

$$
\begin{aligned}
& \text { Expected status (\% of pre-spill) - } \%
\end{aligned}
$$

$$
x^{x}(1,: x+\cdots \cdot \operatorname{tu}
$$

PART B
Option (suboption) under consideration \qquad
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) \quad Upper \quad Lower $-7,7$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper :2
\qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)
Probative: of heifer os ante

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the
minimum \# of years to recovery?)
Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad

Assumptions...

PART B

Option (suboption) under consideration \qquad
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%) -50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty
(\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of
implementation, duration or number of projects that
influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or Not likely wat cuncwily due ti precopitons decline owe the las 20 years
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) $\quad \begin{aligned} & \text { Upper } 0 \\ & \text { Lower }-100\end{aligned}$

Assumptions: We cony mealy kilN what erititintes. maul habitat so tues nike, vileserel

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
Hay be mon critical in the Aternak ales it loggup
 outride PWS. Oovend nesting maris ane a cerfournding faciol to undelstamelimptic.
PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)
 5 (i) 10

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further? Yes! Inc $16,1 \% 2$
chariot sire, 8 a 9 in 10
What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

PART B

Option (suboption) under consideration $?, \quad y$
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

```
Are any assumptions different from those we identified under natural recovery?
```


PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}
Hatcheylsalncm nitenctems withage Sigh ontinde ? semen
 sui, an attu: wa:

 If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)

$$
3 \mathrm{~m} 10
$$

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further? If we 2 pennate if it

What is the maximum potential rate of recovery? (or. . What is the minimum \# of years to recovery?) - σD

Expected value (years)
Uncertainty (yrs) Upper $\frac{15}{\text { Lower_ }}$

Assumptions...
Forage Thin Philem:

PART A

Injured resource

\qquad
Pre-spill population estimates for PWS $\frac{2300,000(1972)}{120,000(1986 \text { estimate }}$
(un-oiled) Post-spill population estimates for PWS $89,-10 \%, 000(1991)$ (oiled)
[Metric used $=$

```
]
```

Without intervention, to what percent of the pre-spill population estimate (or unsoiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: 100\% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) -50°
Uncertainty (\%)

Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.
50% dedine
Expected time to recovery (yrs) 10
Uncertainty (yrs)

Assumptions?
salmon landing? increased 10 Fold since 1980 so competition with forage fish
(not expecting merseasei to continue) Habitat: (not expecting merrasei to continue) old growth logging armand PIUS will increase.
Disturbance: minor

Harvest (mortality): Gill net losses mantamed at couple thausand/yr.

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Too Few population points to make project

Had the Exxon Valdez oil Spill not occurred, where would you expect the population to be in \qquad years (the number of years provided above as the expected recovery time)?
\qquad
Expected status (\% of pre-spill) -50%
15 years to reach 50%

Stamen

PART B
Option (suboption) under consideration minimizing incidental catch
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) -50\%

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 25

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

$$
\begin{array}{ll}
\text { Uncertainty (yrs) } & \begin{array}{l}
\text { Upper } \quad 12 \\
\\
\\
\text { Lower } 50 \\
\hline
\end{array} .
\end{array}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?
Targeting concentration areas may eliminate 80% of mortality at a 10% cost
to fishing to Fishing

Are any assumptions different from those we identified under natural recovery?

1) Goograplieal dist' \& distance From shore if Foraging murrelet

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)
please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William sounds $\begin{aligned} & \text { Would be as beneficial outside at PWS, bot doesn't believe }\end{aligned}$ that the murrelet

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)
F out of 10 chance of benefiting the population

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

PART B
option (suboption) under consideration land acquisition
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) -50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or uncoiled)?

Expected time to recovery (yrs) 15

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

$$
\begin{array}{ll}
\text { Uncertainty (yrs) } & \text { Upper }-8 \\
\text { Lower }-30
\end{array}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
50% at potential habitat protection

Are any assumptions different from those we identified under natural recovery?
50\% of the marbled murrelet nesting habitat is an selected lands (bused on hemlock)

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions: less intense salmon hatchery interaction

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\} more beneficial - could change hypothetreal decrease from 15 yrs in Could patentrally increase locally.

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

3 out as 10.

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) -50%, $20 y r s$
Uncertainty (yrs) Upper 16

Assumptions...
Forage fish problem: restore salmon catch to 1980 level we could increase the pap From 100,00 to 200,000 (populates of salmon reduced)

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 103, 99 in 100? ...) $50: 50$ (only option done)
80 or 90% it at her options applied.

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
option (suboption) under consideration Special designations
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) $=50$

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)
Upper $\frac{0}{\text { Lower }-80 \%}$

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 15

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that nestryinfluence this estimate?)
50% of land in public lands

Are any assumptions different from those we identified under natural recovery?
Designation of marie areas - closure areas of herring praide extra
forage of herring roe for murrelets. -remade release of salmon prohibited

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No) Unknown, but it is unlikely to be limiting right now because of
If the habitats are not currently limiting, could you"imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate) loss of 508

Estimated negative impact
(\%) -50

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper 0

Assumptions: if the mortality worked on but $\frac{1}{2}$ nesting is lost then the population want be confined to 50,0 ad

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

He May be mare critical on AFegnat. remenber that nesting can occur without traces.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)_ Uncertainty (\%)
Assumptions?
expert's Name: John Ford
Date: 10 Dec 92
PART A - Natural Recovery
Injured resource Ho Her whats Resident ods
Pre-spill population estimates for PWS $\frac{A B \quad 35(1984)}{36(1986)}$ believe 8 were (un-oiled)
Post-apill population estimates for PWS belseve \& were wast naturally
(oiled)
If is the only resident pad that has dedmed in PWS
Degree of recovery without intervention:
(Note: 100% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) 100
Uncertainty (\%) Upper: \qquad

Recovery time needed without intervention:
Expected time to recovery (yrs) Esharsumedr)
Uncertainty (yrs) $\begin{aligned} & \text { Upper: } \\ & \text { Lower: } 20\end{aligned}$

Assumptions? Habitat: Agsulation has not reached social structure Disturbance: no more shooting by frohernan.

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in \qquad years?
Expected status (\% of pre-spill) 39 or 40

PART B

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) bo

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement; how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper 20

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
no endonce that disturbance by boat traffic effects reproduchre rates. "sited eudence from BC where granth $=2-3 \% / y$ wo spite" if magretude increase in boat hate

Are any assumptions different from those we identified under natural recovery?

PART B

- Education
option (suboption) under consideration foffoccement of MMPA during
Expected recovery (\%) \qquad at least 6 of the 8 missmg animals should have been From shooting
1.82 martaldyy yr is natural

Expected time to recovery (yrs) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, or number of projects that influence
AN pod may also be vulrierable

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so,...

Estimated negative impact (\%) if option is not implemented:

Uncertainty (\%) Upper: \qquad
Lower:

Assumptions:

[^0]PART B
Option (suboption) under*ensidäration \qquad
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad Lower \qquad

With implementation of this option, in your best judgement; how many years would you estimate the time required to reach pre-spill population levels (or uncoiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this othon is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower_

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1. in 10?, 8 in 10?, 99 in 100?....)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

Expert's name: Evelyn big gs
part a
Date: $12-10-92$

Injured resource \qquad Tout Herring.

Pre-spill population estimates for PWS (un-oiled)

Post-spill population estimates for PWS \qquad (oiled)
[Metric used $=$

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100% full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.) poteltron reproduction
Expected recovery (percent) -25% of 1988 y doss
which dries population so
Uncertainty (\%) \quad Upper -100
this could represent the -25\% population effect.
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 8
Uncertainty (yrs) Upper ∞ who knows.
Lower \qquad

Assumptions?
Habitat: No change
Disturbance:
*. 1988 Assume damage and reproductive capability is reduced 50%

- 1989 year class $\mathrm{Fall}_{\mathrm{l}}$ s in the middle of the production. Believes that 5% of population was affected.

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill) equal hatching rates

PART B
Option (suboption) under consideration Increase Fisheries Management
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option. Assuming there was a 50% of Expected recovery (\%) - $12 \%_{0}$ populational

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Increased precision will allow for fine tuned harvest stock assessment improved
need detailed Ipulation inf. (bor mach \& pop is danaqued) so yo con canter indre by redwing harvest rates.

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could yoūimagine a realistic scenario where they may become limiting? If.so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...
scratch this.
PART B
Option (suboption) under consideration supplemental substrates:
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (Yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that
 Sop own my substrates ore nod 1.mAting
Are any assumptions different from those we identified under natural recovery?
 any of the kelp in sparing areas were injured.

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%) \qquad
Assumptions?
Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another options) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. . What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower

Assumptions...

PART B
Option (suboption) under consideration special degignajons best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Prevent up land deudopmest, reduce bact traffic

Are any assumptions different from those we identified under natural recovery?

On a scale of $1: 10$

- sparo Mpajio vo buparaj amem

 ssop-, sok ssot, pronsom 2661 fu, ssop - 8861 buesul 3121 som ssames iptoy ny ysy pol60) (ssop wh hosi) ssop burumods buyourwop 14 pansoam bsbl ur -hipqodios aupnpordry

 -ay sudrop pamgung yorym saysojod yo porao eospo anoy buandas posopoyjodassy umays bazo paplo ui ysy stinpy
coynquasip jo and yam paddopano

 Cocuryds fo oph onguas so proy try ssop uogh bsbi-

Expert's Name: 覀 Sam PattoN
Date: $12 / 16 / 92$ a 2 a 10
PART A
Injured resource Harlequin Duck s

Pre-spill population estimates for PWS 6,000 , (un-oiled)

Post-spill population estimates for PWS $5,-\operatorname{Pros}(191)$ (oiled)
[Metric used $=$ Po phil port]
No Wicod: an an
Without intervention, to what percent of the pre-spill population broods estimate (or un-oiled estimate) will the population recover? Please iN ot provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90% confidence interval)
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can observ be used to represent continuing decline, with $-100 \%=10 c a l$ Not extinction.)
$\begin{array}{ll}\text { Expected recovery } & \text { (percent) } 100 \% \\ \text { Uncertainty }(\%) & \text { Upper } \frac{100 \%}{70 \%}\end{array}$
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) $70 \% 0$ our e

$$
\text { Uncertainty (yrs) Upper } \frac{10}{\text { Lower } 30}
$$

Assumptions?

 Disturbance:
Nobueding win of spall ain, o...

Harvest (mortality): Same ar current. Haurrect wot subatartibl pe.aruel. (Not roper, it kill ar o
Now Closed ar sumner. Winter ok cums its mani Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 20 years (the number of years provided above as the expected recovery time)?

$$
\text { Expected status (\% of pre-spill) she } 100 \%_{0} \text { (sane ac p.e-spell, }
$$

 trod

Option (suboption) under consideration

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option. Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad

Assumptions:

Lower

Summary for Parts $B-E$:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all
relevant restoration options)
Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration 13 fin
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.
Expected recovery (\%)

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval

Uncertainty (\%)
Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad 10

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)
Upper \qquad
Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, pleaseprovide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper
Lower

Assumptions...

PART B
Option (suboption) under consideration Specemat Nesicmat Ns
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)
Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (Yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

$$
\begin{aligned}
& \text { Not as her in } \\
& \text { Assist, bot Not } \\
& \text { Manturabet }
\end{aligned}
$$

ant

PART C
Do you believe that the habitat which Is Protected by this option is limiting for the resource? (Yes of No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please ${ }^{-}$ provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Assumptions...

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

$$
\begin{aligned}
& \text { T/fall Motion } \\
& \text { Lats loypat whin } \\
& \text { is gao. }
\end{aligned}
$$

Expert's Name: Bot Jancei

PART A
Injured resource Harloquin Duck S
Pre-spill population estimates for pW $v_{0}+\omega$ (un-oiled)

Post-spill population estimates for PWS (oiled)

$$
\mathrm{N}_{0}+\mathrm{m}_{1} \text { able wily re, }
$$

\qquad Moyle \quad outs as spar: 10 L .
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: $100 \%=$ full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)
Expected recovery (percent) \qquad 100% Sc\%

Uncertainty (\%) Upper \qquad ifloy eraki will forcer.
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) 50 frt

$$
\begin{array}{ll}
\text { Uncertainty (yrs) Upper } 100 \\
& \text { Lower } 25
\end{array}
$$

Assumptions?
Habitat: NoploggiNs
Aec.

Harvest (mortality): Heweect stays dived (ar pour)

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in 50 years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill) Stable (or \%

PART B
Option (suboption) under consideration

Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs)

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad Op $\therefore \quad t^{2}$
. 19

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions? Slight Chance, 1 in 10 a. 1- Gs

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower

Assumptions...

PART B
Option (suboption) under consideration
Que faust
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%)

50

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)_Uncertajnty (\%)
Assumptions?
\qquad

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts $A-E$ have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions...

PART B
Option (suboption) under consideration
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs)

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad Lower \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) Uncertainty (\%)

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART P (To be completed after parts $A-E$ have been addressed for all
relevant restoration options)
Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad Lower

Assumptions...

PART B
Option (suboption) under consideration tin $\operatorname{tim} 0,1$ fm
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90% confidence interval.

Uncertainty
(\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad 50\% Inmprave-

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \qquad

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

$$
H\left(()^{\text {veg further? }}\right.
$$

What is the maximum potential rate of recovery? (or. . What is the minimum \# of years to recovery?)

Expected value (years) OOGNR

Assumptions...

tot Jowver: Harl Ducks.

PART B
Option (suboption) under consideration flab. Ac q.
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

$$
\pm 1 /\left(\begin{array}{l}
\text { recover } \\
\text { an }
\end{array}\right.
$$

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

$$
\text { Expected time to recovery (yrs) } 50 \text { pw }+20 \%=60 \mathrm{go}
$$

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

$$
\begin{array}{ll}
\text { Uncertainty (yrs) } & \text { Upper } \frac{120}{30} \\
& \text { Lower- }
\end{array}
$$

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat wick is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \qquad

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper	
	Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty
(\%)
Assumptions?

Summary for Parts B-E:

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. I in 10?, 8 in 10?, 99 in 100? ...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...
expert's Name: Kathy Frost
Date: 14 Dec '92
PART A
Injured resource Harbor Seals (un-oiled)
Post-spill population estimates for PWS $1992 \quad 778(274)(2$ ort of 24 (oiled)
[Metric used $=25 \%$ declined ${ }^{\text {dindudes cited foiled areas }}$
Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100% f full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) \qquad
Uncertainty (\%) Upper
Lower \qquad
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) \qquad
Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions?
Habitat:

Disturbance:

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in \qquad years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
Option (suboption) under consideration Establish buffer zones
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
All haulart sites should be in a management plan which prohibits any development withe $\frac{12}{2}$ merle or mite. Aquaculture, fishing (seato), lagging
Are any assumptions different from those we identified under natural recovery?
Donit know why declining
export's name: beet Stewart
Date: 14 Pec 192
PART A
Injured resource Harbor Seals
Pre-spill population estimates for PWS Indices 19881036 (uncoiled)
Post-spill population estimates for PWS \qquad (oiled)
[Metric used $=$

Without intervention, to what percent of the pre-spill population estimate (or un-oiled estimate) will the population recover? Please provide a single estimate and then try to quantify your uncertainty by providing a range in percentages such that no more than 10% of the actual degree of recovery falls outside of that range. (essentially, we are asking you to construct a 90\% confidence interval)
(Note: 100% = full recovery to pre-spill baseline levels, $<100 \%$ means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) \qquad
Uncertainty (\%) Upper \qquad
Lower \qquad
Without intervention, how many years will it take for the population to recover to the degree identified above? (If the degree of recovery described above is negative, this estimate will represent the amount of time for the population to decline.) Again, please provide single estimate in years, and envision a 90% confidence interval.

Expected time to recovery (yrs) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions?
85\% dedme From '76 to '88 (continued now)

Habitat:

Disturbance:
Determine what Foraging areas are important and. The heinlrt is healthy . whetter the seals ingrate.

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valder Oil Spill not occurred, where would you expect the population to be in years (the number of years provided above as the expected recovery time)?

Expected status (\% of pre-spill)

PART B
option (suboption) under consideration reduce disturbance
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
Call be seasonal t bret during pyping
$10-20$ monte separate will hake it Mealy for the pup to die.
Are any assumptions different from those we identified under natural recovery?
fairy y Element oxecpt for staple on share so the fo y pups are separated

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \qquad Uncertainty (\%) \qquad
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration Information /Edveatron Subsistena frshiry
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \qquad

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \qquad
Lower \qquad

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \qquad

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\%. chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper
Lower \qquad

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
If "take" is ouilts, the repraduch the pryulolron is retued a.jd
dedine conturued.

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part B for other areas if necessary. Divisions $=$ Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. . What is the minimum \# of years to recovery?)

Expected value (years) \qquad
Uncertainty (yrs) Upper \qquad
Lower \qquad

Assumptions...
Education 1 grograms probably most effecture
We can't judge the desturnace due vail we know the effects of dioluclene or haw widely they riggs.

PART A - Natural Recovery

Injured resource Pally Warden Trout
Pre-spill population estimates for PWS (un-oiled)
Post-spill population estimates for PW 20-30\% laver survival (oiled)

Degree of recovery without intervention:
(Note: 100% f full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with $-100 \%=$ local extinction.)

Expected recovery (percent) 100
Uncertainty (\%) Upper: \qquad Lower: 80

Recovery time needed without intervention:
Expected time to recovery (yrs) 13
Uncertainty (yrs) Upper: $\frac{19}{\text { Lower: }} \frac{9}{}$

Assumptions?

Disturbance:
Harvest (mortality): 10\% harvest

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in \qquad years?
Expected status (\% of pre-spill) stable po q

PART B
Option (suboption) under consideration Increase foheries manageinest Based on your scientific understanding, please provide a single; best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper 100
Lower $8 \mathbf{0} 20$

```
With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?
Expected time to recovery (yrs)
``` \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
shot term fredictabiligy

Are any assumptions different from those we identified under natural recovery?

\section*{PART C}

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you -imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
(\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

\section*{Uncertainty (\%)}

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat part \(B\) for other areas if necessary. Divisions \(=\) Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

\section*{PART E}

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be. used to bring the population above pre-spill levels?
Expected value (\%) 10 Uncertainty (\%) \(\qquad\)
Assumptions?
\[
\text { Some as } \delta \text { cuts. }
\]

\section*{Summary for Parts B-E:}

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99' in 100? ...)

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. . What is the minimum \# of years to recovery?)

Expected value (years) \(\qquad\)
Uncertainty (yrs) Upper \(\qquad\) Lower \(\qquad\)

Assumptions...

PART B
Option (suboption) under considerationlldote anadromous catalog Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) r100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 13

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate? Assumption - no further habitat degradation

Are any assumptions different from those we identified under natural recovery?

PART C
Do you believe that the habitat whichis protected by this option is initing for the resource? (Yes*of No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \(\qquad\)
Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part \(B\) for other areas if necessary. Divisions = Kenai/Cook Iniet; Kodiak/Alaska Peninsula andor Prince William soundtf there slreains are less docunated.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above 'pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%)
```

(%)

```
\(\qquad\)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded. as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART \(F\) (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum 㫷 of years to recovery?)

Expected value (years) \(\qquad\)
Uncertainty (yrs) Upper \(\qquad\) Lower \(\qquad\)

Assumptions...

3-4 years from pit when condrtvens became ideal.

PART B.
Option (suboption) under consideration protection af prate lands Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty (\%) Upper \(\qquad\) 100
Lower

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 13

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Assumptions? (Are there assumptions such as the level: of implementation, duration or number of projects that influence this estimate?)
Assuming no major impacts or

Are any assumptions different from those we identified under natural. recovery?

\section*{PART C}

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yesior-No)

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting?. If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%)

Assumptions:
Assuming

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part B for other areas if necessary. Divisions = Kenal/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

Equal impolance properfromal to anoint of logging.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty
(\%) \(\qquad\)
Assumptions?

Summary for Parts B-E:
overall, what do you thinik is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART \(F\) (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (Years) \(\qquad\)
Uncertainty (yrs) Upper \(\qquad\)

Assumptions...

PART B
Option (suboption) under consideration' Special Designation Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) withthe implementation of this option.

Expected recovery (\%) 100.

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper 100
Lower \(\quad 85-809_{0}\)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a 10\% chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) \(\qquad\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

\section*{PART C}

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)

If the habitats are not currently limiting, could you -imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \(\qquad\)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? (Note: repeat Part \(B\) for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

About the sane

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%)

Assumptions?

\section*{PART A - Natural Recovery}

Injured resource Common murre
Barren Islands
130,000
Pre-spill population estimates for WWS (un-oiled)

Barren Islands
Post-spill population estimates for PW s (oiled)
\[
\frac{5}{(50-50,00}
\]

Degree of recovery without intervention:
(Note: \(100 \%\) full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with \(-100 \%=\) local extinction.)
Expected recovery (percent) +100
Uncertainty (\%)
Upper: \(\frac{110}{75}\)

Recovery time needed without intervention:
Expected time to recovery (yrs) 85
Uncertainty (yrs) Upper: \(\qquad\)
Lower: 50

Assumptions?

Disturbance: Wo dter"cnerne" o. Spills in area

Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill not occurred, where would you expect the population to be in Now years?

Expected status (\% of pre-spill) \(130,0 \mathrm{CO}\)

\section*{PART B}

Option (suboption) under consideration reduce in
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty (\%) \(\quad \begin{aligned} & \text { Upper } 116 \\ & \text { Lower }\end{aligned}\)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (Yrs) Upper \(\frac{120}{\text { Lower_50 }}\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%)

Assumptions?

Summary for Parts B-E:
1. E. Shod

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

\[
60-70 \%
\]
\[
\begin{aligned}
& \text { Paul: Bay - rulusente cowmeren Fisturg }
\end{aligned}
\]
\[
\begin{aligned}
& \text { less pere hermes y a }
\end{aligned}
\]

PART B
Option (suboption) under consideration flection reduce disturbance
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty
(\%)
Upper \(\frac{110}{75}\)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 85
please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper 120
Lower

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) Uncertainty (\%)
Assumptions?

\section*{No}

\section*{Summary for Parts B-E:}

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
Option (suboption) under consideration share social sting le
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery
(\%) \(\qquad\)

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty (\%)
Upper _110

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
\(\begin{array}{ll}\therefore & \cdots \\ \therefore & \ddots\end{array}\)

Are any assumptions different from those we identified under natural recovery?
 the: ingesta! (:

\section*{PART E}

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. l in 10?, 8 in 10?, 99 in 100?...)

PART B

Option (suboption) under consideration \(\qquad\)
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.
Uncertainty (\%) \begin{tabular}{l}
Upper 110 \\
\\
Lower_ \(\quad 15\)
\end{tabular}

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \(\qquad\)
Lower

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

c) in,

Are any assumptions different from those we identified under natural recovery?
before

ceric ;

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)
Uncertainty
(\%)
Assumptions?

\(\because{ }^{\circ}\) of
\(v\)

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

\section*{PART B}

Option (suboption) under consideration Neh,
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \(\qquad\)

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty
(\%)
Upper 110
Lower_ 75

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) fall ito place.
Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \(\frac{120}{\text { Lower }} \frac{50}{}\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%) \(\qquad\)
Assumptions? No

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

Pon't know applicability an otter istands - related to whatever Factors are causing, att ion loss.

\section*{PART B}

Option (suboption) under consideration furchask fris :
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \(\quad 110\)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)
please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
 the threat exits.
Are any assumptions different from those we identified under natural recovery?

\section*{PART C}

Do you believe that the habitat which ic protected by this option is limiting for the resource? (Yes or

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate) No

Estimated negative impact (\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \(\qquad\) Lower

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part \(B\) for other areas if necessary. Divisions \(=\) Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

\section*{PART E}

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%)_ Uncertainty (\%)
Assumptions?

PART B
 Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery (\%) \(\qquad\)

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) Upper \(\qquad\) Lower \(\qquad\)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\)

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.

Uncertainty (yrs) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

\begin{abstract}
PART C
Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or (N))

If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)
\end{abstract}

Estimated negative impact
(\%)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper
Lower \(\qquad\)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part \(B\) for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound)

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty (\%)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART F (TO be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or. What is the minimum \# of years to recovery?)

Expected value (years) \(\qquad\)
\[
10 \% / 1 /
\]

Uncertainty (yrs) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions...
Try combinatuer of saciaistin it aol reduced preatators.
```

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

```

PART F (To be completed after parts A-E have been addressed for all relevant restoration options)

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

Assumptions...

Expert's Name: Dan holy
Date: 12/8/92
PART A - Natural Recovery
Injured resource Conn mon Numze
\[
\begin{aligned}
& \text { Pre-spill population estimates for Banwnjlands } 130,000 \\
& \text { (uncoiled) } 1,121,500 \text { - A } \\
& \text { Post-spill population estimates for Bane gland }
\end{aligned}
\]

Post-spill population estimates for BWS \(\qquad\) (oiled)

Degree of recovery without intervention:
(Note: 100\% = full recovery to pre-spill baseline levels, <100\% means that the population is not expected to naturally return to pre-spill status in the next 50 years. A negative value can be used to represent continuing decline, with \(-100 \%=10 c a l\) extinction.)

Expected recovery (percent) +100
Uncertainty (\%) \(\quad\) Upper: \(\frac{+100}{+75}\)
Recovery time needed without intervention:
Expected time to recovery (yrs) 85
Uncertainty (yrs) \(\begin{aligned} & \text { Upper: } \\ & \text { Lower: } \\ & \end{aligned}\)
Assumptions?
Habitat: No additional ail spills
Disturbance: No whtusitied comm fishing whin foraging distance of the colones. This recorren assumes the ford sitpsey obsoinit Harvest (mortality):

Are there any differences in the assumptions you are making to arrive at the upper and lower bounds of your level of certainty?

Had the Exxon Valdez Oil Spill occurred, where would you expect the population to be in \(\qquad\) years?

Expected status (\% of pre-spill) \(\qquad\)
option (suboption) under consideration colones due to human activities
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \(\qquad\) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\) 75 will reduce the recovery tire

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) Upper } \frac{120}{\text { Lower }-50}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Although the disturbance isn'z major, overall it wold br kelpque
Pale bay may be more vederevile to comm fishing Chiswitles ane probably kabitinated

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? NO
Expected value (\%) \(\qquad\) Uncertainty (\%) \(\qquad\)
Assumptions?

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (egg. 1 in 10?, 8 in 10?, 99 in 100?...)
\[
\begin{aligned}
& 60-70 \% \\
& \text { Cevtemily won } \$ \text { hurt }
\end{aligned}
\]

PART B
option (suboption) under consideration_ in disturbance at ceilovier
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \(\qquad\) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\) 85 on population recorry

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) Upper } \frac{120}{\text { Lower }-50}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Pale Bay may bx mare virinerable to comm fishifeani ios Quswelles ave protavly havituater int main benefit would be in perverting uncrementiol disturtavce. fothere were an increase, int om boat operation, there may bit an addtivach lon of young.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? NO

Expected value (\%) \(\qquad\) Uncertainty
(\%)
Assumptions?

\section*{Summary for Parts B-E:}

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)
option (suboption) under consideration \(\qquad\) conjured mure colonies
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) 100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty (\%) \(\quad\) Upper 110

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\) Very uncertain

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) } \begin{aligned}
& \text { Upper } \frac{120}{\text { Lower } 50}
\end{aligned}
\]

Cant see lucwithes coiled be applied extensevely evowojh on the Boners to gigmithcenity unouax recovery rote
Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)
of the teclinipie wows you could lover the uncertionty

Are any assumptions different from those we identified under natural recovery?

This could be affective in smaller colonies, but the uncertainty is great. It wowed have to be dove on such an exkusize scale.
```

PART E
If the rate or degree of recovery can be benefited by implementing
the above option:
Do you think that this option could be used to bring the
population above pre-spill levels? NO
Expected value (%)
Uncertainty
Assumptions?
Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

```

PART B
Improve plupieal chanacteristre
option (suboption) under consideration \(\qquad\)
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) +100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.
\[
\begin{array}{ll}
\text { Uncertainty }(\%) & \text { Upper } 110 \\
& \text { Lower }-75
\end{array}
\]

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) \(\qquad\) Unbiely to significantly enhance reconvey rates

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) } \begin{aligned}
& \text { Upper } \frac{120}{\text { Lower } \frac{50}{}} .0
\end{aligned}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?

Could be effective eveder the right curcioms tances, largely dependent on level of predation.
Need to increase on colony ware to fegque net fuetios which are limiting recovery.

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? N
Expected value (\%) Uncertainty
(\%)
Assumptions?

\section*{Summary for Parts B-E:}

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in l00?...)

PART B
Reduce predator access to
option (suboption) under consideration seabird colone
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with the implementation of this option.

Expected recovery (\%) \(\pm 100\)

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a \(90 \%\) confidence interval.

Uncertainty (\%)

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Assuming that sipncroruy
Expected time to recovery (yrs) bs - 70 would ta lie cove.
\(\qquad\) Possublety that it wild \& chancre of cutin uncle.
Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) Upper } \frac{120}{\text { Lower } 50}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
-We don't know what predation Revels are applicable.
- In sone colonies, gull predation corild take up to \(50 \%\)
- Maximum recovery rote \(10 \%\) (year assuming low predators. abundant ford, non-einiting liaitat.

\section*{PART E}

If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels? NO

Expected value (\%) Uncertainty
(\%)
Assumptions?

\section*{Summary for Parts B-E:}

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

PART B
option (suboption) under consideration Puchax private laud,
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery (\%) +100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.
\[
\text { Uncertainty (\%) } \quad \begin{aligned}
& \text { Upper }+110 \\
& \\
& \text { Lower } \not+75 \\
& \hline
\end{aligned}
\]

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?

Expected time to recovery (yrs) 85 pate a dragnet Please try to quantify the your uncertainty by providing a range in
years such that there is only a lo\% chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) } \begin{aligned}
& \text { Upper } \\
& \text { Lower } \\
& \hline
\end{aligned}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Guise Rock-wathwhile path to take fo Hull Rock, altror. no otrions threats are perceived to stull Rock. However, considering proximity to Homes, public expoocue it should be in public ownership. However, there worked not lebely be a tangible recovery benet.

Do you believe that the habitat which is protected by this option is limiting for the resource? (Yes or No)
If the habitats are not currently limiting, could you-imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact
```

no

```
(\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part \(B\) for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty
(\%)
Assumptions?
```

Gummary for Parts B-E:

```

Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100? ...)

\section*{PART \(F\) (To be completed after parts A-E have been addressed for all relevant restoration options)}

Can this option be combined with another option(s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \(\qquad\)
Uncertainty (yrs) Upper \(\qquad\)
Lower

Assumptions...

PART B
option (suboption) under consideration Special Designations
Based on your scientific understanding, please provide a single, best-judgement estimate of the expected recovery (in percent) with. the implementation of this option.

Expected recovery (\%) +100

Acknowledging that there is uncertainty in this assessment of expected recovery, please try to quantify this uncertainty by envisioning a 90\% confidence interval.

Uncertainty
\[
\begin{aligned}
& \text { Upper }+110 \\
& \text { Lower }+75
\end{aligned}
\]

With implementation of this option, in your best judgement, how many years would you estimate the time required to reach pre-spill population levels (or un-oiled)?
\[
\text { Expected time to recovery (yrs) } 85
\]

Please try to quantify the your uncertainty by providing a range in years such that there is only a \(10 \%\) chance that the actual recovery time required will fall outside of this range.
\[
\text { Uncertainty (yrs) } \begin{aligned}
& \text { Upper } \frac{120}{50}
\end{aligned}
\]

Assumptions? (Are there assumptions such as the level of implementation, duration or number of projects that influence this estimate?)

Are any assumptions different from those we identified under natural recovery?
Unless we are talking about oil explanation a development adjacent to breeding areas. Need to better understand Eu effects of sir development on LI Cook. Inlet colonies (2) (Duck Island)

PART C
Do you believe that the habitat which is limiting for the resource? (Yes of No)
If the habitats are not currently limiting, could you imagine a realistic scenario where they may become limiting? If so, please provide your single best-judgement estimate (in percent) of the potential impact on the resource if this option is not implemented. (Consider the assumptions used to estimate the natural recovery rate)

Estimated negative impact (\%) \(\qquad\)

Please try to quantify your uncertainty such that there is only a 10 percent chance that the actual impact will fall outside of this range.

Uncertainty (\%) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions:

Is there reason to expect the effects of this option to be different outside of Prince William Sound?

If so, how? \{Note: repeat Part \(B\) for other areas if necessary. Divisions = Kenai/Cook Inlet; Kodiak/Alaska Peninsula and/or Prince William Sound\}

PART E
If the rate or degree of recovery can be benefited by implementing the above option:

Do you think that this option could be used to bring the population above pre-spill levels?

Expected value (\%) \(\qquad\) Uncertainty

Summary for Parts B-E:
Overall, what do you think is the chance that pre-spill population levels will be reached or exceeded as a consequence of the proposed restoration option. (e.g. 1 in 10?, 8 in 10?, 99 in 100?...)

PART \(F\) (To be completed after parts \(A-E\) have been addressed for all relevant restoration options)

Can this option be combined with another option (s) to accelerate the rate or degree of recovery even further?

What is the maximum potential rate of recovery? (or.. What is the minimum \# of years to recovery?)

Expected value (years) \(\qquad\)
Uncertainty (yrs) Upper \(\qquad\)
Lower \(\qquad\)

Assumptions...
- Entrance social stimuli, reduction of predator corse s```

[^0]: Is there reason to expect the effects of this option to be different outside of Prince William Sound?

 If so, how?

