

FINAL REPORT - 1995

COOK INLET ENVIRONMENTAL MONITORING PROGRAM

Prepared for:

910 Highland Avenue Kenai, Alaska 99611 (907) 283-7222 FAX 283-6102 e-mail: circac@corcom.com

815

Prepared by:

403 West 8th Avenue Anchorage, Alaska 99501-3515 (907) 276-6178 FAX 278-6881 e-mail: kinnetic@alaska.net

In association with:

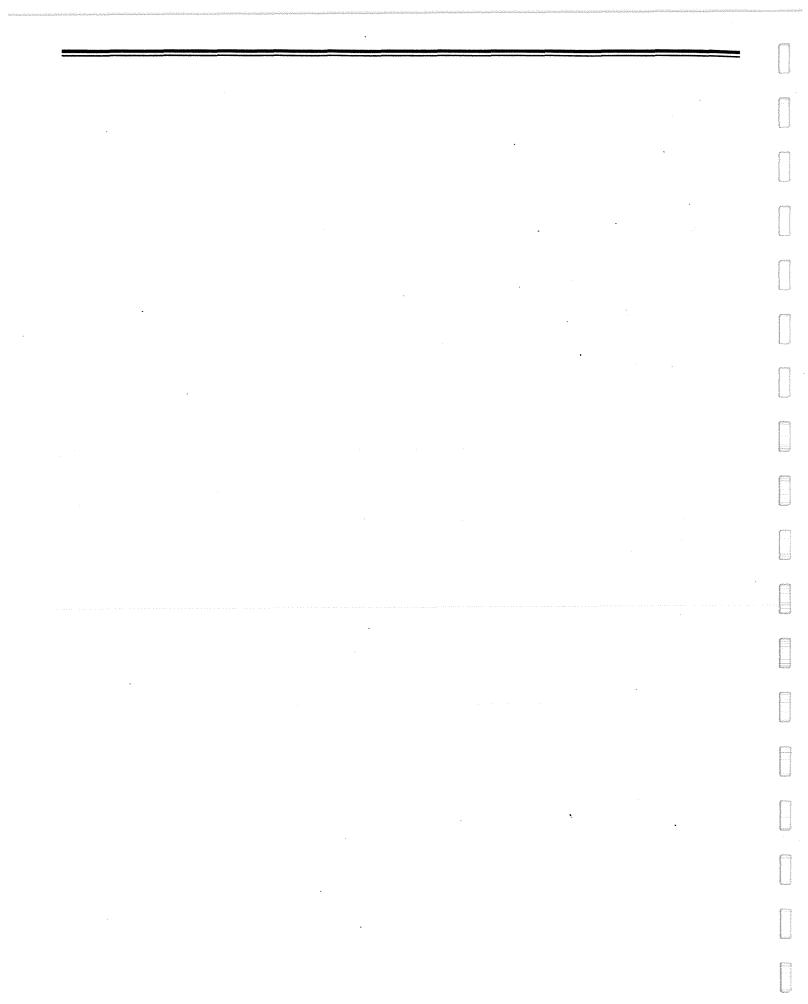
Cover: Sampling Photos from the 1995 EMP Upper Left: Cock Inlet Rig (e1995 KL) Upper Right: SPMD (e1995 CIRCAC) Lower Left: CTD Cast (e1995 Saan Reid) Lower Right: Mooring Deployment (e1995 CIRCAC)

JANUARY 1996

PRÉCIS

The Cook Inlet Regional Citizens Advisory Council's (CIRCAC) mission statement is to ensure the safe operation of the of the oil terminals, tankers, and facilities in Cook Inlet so that environmental impacts associated with the oil industry are minimized. To evaluate that the environmental impact portions of this statement are fulfilled, the Environmental Monitoring Committee (EMC) within CIRCAC has been conducting annual environmental monitoring. The Cook Inlet 1995 Environmental Monitoring Program (EMP) encompasses all of this monitoring for 1995 and is the continuation of a pilot program conducted during 1993 and 1994 with some minor modifications.

The 1995 EMP design focused on the chemical analysis of hydrocarbons in the sediment and water of Cook Inlet to help determine what the effects of those hydrocarbons might be on the fish and other animals in the region. Hydrocarbons were analyzed in subtidal sediments collected from the sea floor using a bottom grab. This provided information about what levels of hydrocarbons bottom-dwelling fish or shellfish might encounter in the sediments themselves. To help determine what levels of hydrocarbons might exist in the water, man-made sampling devices were used. These devices, called semi-permeable polymeric membrane devices (SPMDs), were designed to imitate animals by concentrating the available hydrocarbons from the water, just as a mussel or clarn might do when the water they live in contains hydrocarbons. The SPMDs were suspended in the water on moorings for about a month to allow the hydrocarbons to accumulate in the samplers before testing. In addition, the 1995 program included testing Pacific halibut to help determine if they were being exposed to hydrocarbons. This testing involved looking at specific compounds in the gall bladders of the fish and performing a separate test of the fish livers. The 1995 program also included toxicity testing to determine if the Cook Inlet sediments were potentially toxic to animals, with a type of bacteria used as the test animal.


Additional measurements collected during the program included looking at the grain size and organic carbon content of the sediments so that these data could be used when interpreting the hydrocarbon results. Temperature, salinity, and other standard water quality measurements were also collected. Once the data were collected, statistical testing was used to look at differences between the stations to see if they were significant or not. In addition, the hydrocarbon "fingerprints" from the sediment and SPMD samples were used to help determine what the source of the petroleum hydrocarbons might be. Different sources in the study area might include, for example, Cook Inlet crude oil from oil platforms or tanker operations, fuel from boats or ships, hydrocarbons from forest fires, or natural seeps of oil from the sea floor.

Sampling took place at six sites in Cook Inlet, some of which were also sampled during the pilot program in 1993 and/or 1994. The sites were chosen by CIRCAC to look at oil industry activities (potential impact sites) as well as areas away from these activities (reference sites). The 1995 field program consisted of two surveys, the first of which included sediment sampling using a grab, preliminary fish trawling, and deployment of SPMD moorings. The second survey involved recovery of SPMD moorings and collection of fish samples using long-lining and other fishing methods.

In general, results from the 1995 program indicate that low levels of hydrocarbons exist in sediments and animals at the study sites. Although some differences between stations were found to exist for some of the items studied, no clear trend between sites was evident. Hydrocarbon concentrations in sediments from all 1995 program stations are considerably lower than the amount expected to cause adverse effects in animals. Fingerprints of sediment hydrocarbon results indicate a number of possible sources, with no one clear source identified. The sediments tested did not demonstrate any toxicity. In addition, the halibut from the two study sites that were tested showed low levels of exposure to hydrocarbons (similar to other areas considered uncontaminated), which was supported by the sediment results showing low hydrocarbon levels.

Interpretation of the SPMD results was made difficult by the fact that these types of samplers are relatively new and are still undergoing development. Hydrocarbon levels in SPMDs were higher in 1995 as compared to 1994 data, but most likely this means that the SPMD techniques are improving rather than the fact that Cook Inlet water contains more hydrocarbons now than it did before. However, more hydrocarbons were present in the SPMDs at the Trading Bay site than the other two sites tested, and this is in agreement with 1994 program results.

Continued monitoring of the study area will allow the collection of a baseline data set that could be used to help identify any future impacts of oil industry activities, including inputs that take place over many years as well as more acute inputs that could take place in a short time period, such as an oil spill. Collection of these data will help fulfill CIRCAC's mission of minimizing oil industries' potential environmental impacts to Cook Inlet.

TABLE OF CONTENTS

P	RÉC	IS		•••••••••••••••••••••••••••••••••••••••	iii
L	IST	of fig	URES.		vii
L	IST	OF TAI	BLES .	· · · · · · · · · · · · · · · · · · ·	vii
E	XEC	CUTIVE	SUMM	ARY	ix
1.	.0	INTRO 1.1 1.2	Program	DN	. 1 . 1 . 2 . 6 . 7
2.		METHO 2.1		GY	
		2.1	Field M 2.1.1 -2.1.2	lethods	. 9
		2.2	2.1.3 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9	Fish Collection . Hydrographic Profiling Bivalve Condition Index Quality Control . Sample Documentation and Chain of Custody Navigation Permitting . YTICAL METHODS . Sample Preparation and Sediment Percent Moisture Determination Extraction Procedures for Hydrocarbon Determination Determination of Total Hydrocarbons Determination Determination of Polycyclic Aromatic Hydrocarbons Particle Grain Size Determination Total Organic Carbon Analysis . Microtox [®] Bioassay . Analysis of Bile Metabolites Cytochrome P4501A Induction . Biological Condition Index Quality Control .	11 12 12 13 13 14 14 15 15 16 16 16 16 18 18 18 18 19 19
		2.3		Quality Control MANAGEMENT AND ANALYSIS Data Management Data Handling Statistical Design Data Analysis	22 22 23 23
3.		RESUL 3.1		D DISCUSSION nts Sediment Chemistry and Particle Grain Size Microtox [®] Testing	27 27

TABLE OF CONTENTS (continued)

	3.2 3.3 3.4 3.5	Bioa 3.3.1 3.3.2 Hydr		39 39 42 42
4.0	SUMM	ARY		1 7
5.0	REFER	ENC	Ξδ4	19
6.0	ACKN	OWL	EDGMENTS	53
GLO	SSARY	AND	LIST OF ACRONYMS	55
APPE	ENDIX A		Campling Information .0 Sediment Stations 2.0 SPMD Moorings 5.0 Fish Collection Stations 4.0 Hydrographic Stations	
APPE	ENDIX F		 Bediment Results .0 PAH Data 2.0 PAH Data for Sediment Intercalibration 3.0 PAH Quality Control Data 3.0 PGS and TOC Data 3.0 Microtox[®] Data 	
APPE	ENDIX (SPMD Results .0 PAH Data 2.0 PAH Quality Control Data	
APPE	ENDIX I		Fish Results .0 Trawl Data 2.0 Bile Metabolite Data 3.0 Liver EROD and AHH Data	
APPE	ENDIX E		Hydrographic Results .0 CTD Data 2.0 CTD Profiles	
APPE	ENDIX F		Bivalve Condition Index Results .0 BCI Data	

LIST OF FIGURES

Figure 1.	General Study Area and Station Locations	5
Figure 2.	Mooring Design for Semi-Permeable Polymeric Membrane Devices.	10
Figure 3.	Data Handling and Statistical Flowchart	25
Figure 4.	Mean Sediment Total PAH by Station.	
Figure 5.	PAH Fingerprints for the 1995 EMP Sediment Stations.	29
Figure 6.	Fingerprint of Cook Inlet Crude (ADL, 1995b)	
Figure 7.	Mean Sediment THC by Station.	30
Figure 8.	Mean Sediment FFPI by Station.	32
Figure 9.	Mean PGS by Station.	32
Figure 10.	PAH Fingerprints from Interlaboratory Soxhlet and Sonication Extraction Evaluation.	34
Figure 11.	Total PAH in SPMDs.	36
Figure 12.	Distribution of PAH with Depth in SPMDs.	36
Figure 13.	PAH Fingerprints for SPMDs at East Forelands, Kachemak Bay, and Trading Bay	

LIST OF TABLES

Table 1. Sampling and Station Location Information for the CIRCAC 1995 EMP.	
Table 2. Analytical Strategy.	
Table 3. Analytical Standard Operating Procedures	
Table 4. List of Target Analytes for PAH Analysis	
Table 5. Qualifiers for Data Reporting	
Table 6. Schedule of Internal Quality Control (QC) Checks and Acceptance Criteria.	
Table 7. Tables in the Cook Inlet 1995 EMP Database.	23
Table 8. Hydrocarbon Parameters used in Hypothesis Testing.	
Summary of Sediment and Field-Collected Blank Results.	
Table 10. Results of One-Way ANOVA Hypothesis Testing on EMP Sediment Stations	
Table 11. Comparison of Total PAH Results from Different Extraction Procedures.	
Table 12. Summary of Semi-Permeable Polymeric Membrane Device (SPMD) Results with	h-Associated
Hydrographic Data.	
Table 13. Results of Two-Way ANOVA Hypothesis Testing on SPMD Mooring Stations.	
Fish Trawl Data.	40
Table 15. Results of Bile Metabolite and Liver Enzyme Induction Analyses on Pacific Hali	ibut
(Hippoglossus stenolepis).	41
Summary of Hydrographic Profile Data.	
Table 17. Bivalve Condition Index Results.	

.

.

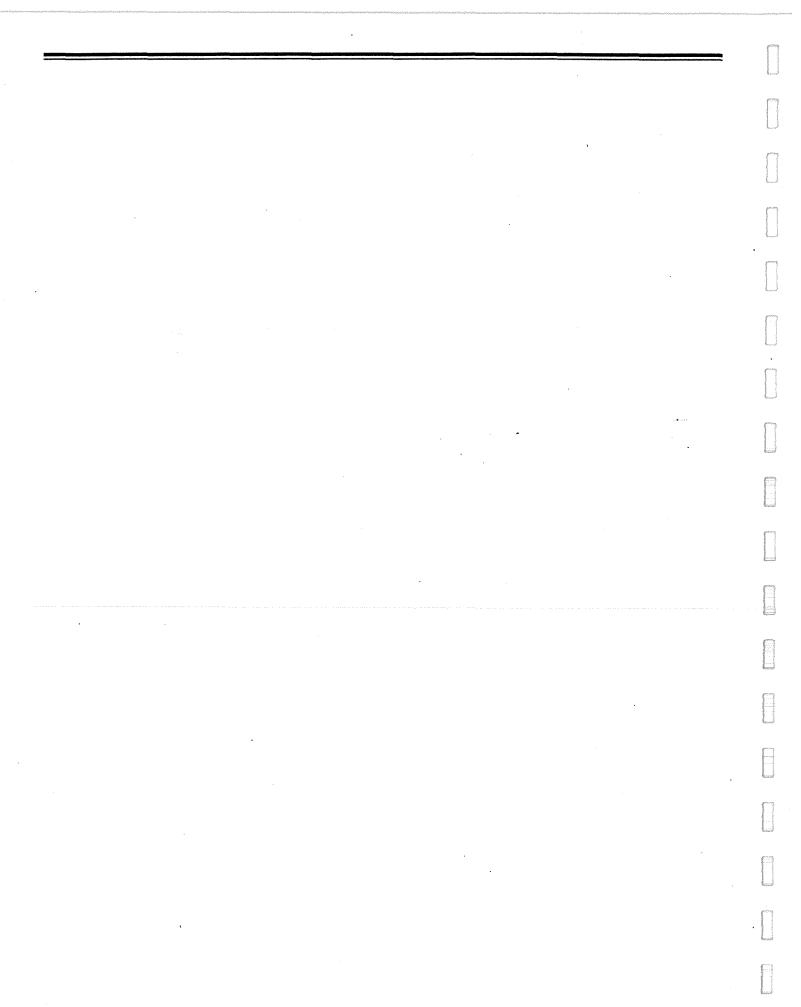
Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

EXECUTIVE SUMMARY

The Cook Inlet 1995 Environmental Monitoring Program (EMP) was designed to evaluate environmental trends associated with hydrocarbon inputs over time in Cook Inlet. The purpose of the monitoring program was to collect environmental data that could be used to: monitor for hydrocarbon accumulation in Cook Inlet; monitor for impacts of crude oil production and transportation in Cook Inlet; and establish baseline values for selected environmental variables that can be used in future studies. The EMP is administered under the auspices of the Environmental Monitoring Committee (EMC) within the Cook Inlet Regional Citizens Advisory Council (CIRCAC). This program is a continuation of a pilot program and was designed to provide continuity while employing a more comprehensive biological component.

The 1995 EMP design included providing synoptic measurements of sediment chemistry, toxicity, and bioaccumulation in resident organisms (fish). The program also included the use of passive sampling devices, semi-permeable polymeric membrane devices (SPMDs), to help assess the bioavailability of hydrocarbons in the water column. In addition, standard hydrographic measurements were collected. The program data were used to address the following null hypothesis:

H_o: No significant differences can be detected in biological, chemical, or physical parameters among monitoring sites.


Sampling occurred at five sites throughout Cook Inlet, some of which were also sampled during the pilot program. The 1995 field program consisted of two surveys, the first of which included sediment sampling using a grab, preliminary fish trawling, and deployment of SPMD moorings. The second survey involved recovery of SPMD moorings and collection of fish samples using long-lining and other fishing methods. Standard hydrographic measurements were collected *in-situ* during both surveys.

Hydrocarbon parameters (polycyclic aromatic hydrocarbons [PAH] and total hydrocarbons) were determined in sediments and SPMDs using gas chromatograph/mass spectrometry (GC/MS) methods. Particle grain size and total organic carbon content of sediments were also analyzed. Toxicity of sediments was determined using Microtox[®] bioassay methods. Hydrocarbon exposure in fish was determined through the analyses of biological markers, including PAH metabolites in fish bile and cytochrome P4501A induction in liver tissue.

In general, data from the 1995 EMP indicate that low levels of hydrocarbons exist in sediments and biota at the study sites. Differences between stations were found to exist for some parameters, particularly for total PAH in sediment at the Null Zone site. This may indicate a slight accumulation of hydrocarbons at this site and could warrant further study. Total PAH values in sediments from all 1995 EMP stations are considerably lower than the Effects Range-Low level associated with adverse biological effects as defined by Long and Morgan (1990). Fingerprints of sediment PAH results indicate a probable combination of petrogenic (fossil fuels) and pyrogenic (combustion sources) hydrocarbons, with petrogenic compounds being in higher abundance. No sediment toxicity was demonstrated at any of the 1995 EMP sites. In addition, low levels of exposure to hydrocarbons were seen in Pacific halibut at the two study sites where exposure was assessed; bile metabolites and liver P4501A induction data compared favorably with control site results from recent studies performed in Puget Sound (Collier et al., 1995) and Antarctica (McDonald et al., 1995).

Use of SPMDs as bio-surrogates to help assess the bioavailability of hydrocarbons in the water column again met with limited success and showed potential methodology problems. Hydrocarbons levels in SPMDs from TRADB were elevated compared to other sites. Increased hydrocarbon concentrations seen in 1995 data as compared to 1994 most likely reflect changes in SPMD technology as opposed to increases in ambient water concentrations. Hydrographic profiling performed during the 1995 EMP indicated that, in general, the waters of Cook Inlet are well-mixed. Observed differences in hydrographic parameters between stations can be attributed to the geographic location within this large body of water.

Continued monitoring of sediment chemistry and bioaccumulation parameters will allow the compiling of baseline data which can be used to identify future impacts in the study area, including both chronic long-term inputs and more acute inputs such as oil releases. The SPMD technology is still developing and studies such as this, in conjunction with laboratory studies, will potentially lead to more regular use of SPMDs for applied monitoring programs.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

1.0 INTRODUCTION

The Cook Inlet Regional Citizens Advisory Council (CIRCAC) was incorporated in 1990 to fulfill the mandates of the Oil Pollution Act of 1990 (OPA 90). This legislation, enacted in response to the 1989 T/V *Exxon Valdez* oil spill, called for the establishment of two demonstration programs designed to involve citizens in oversight of oil industry activities in Cook Inlet and Prince William Sound, Alaska. The legislation outlines the responsibilities of these groups, including the monitoring of environmental impacts of the operation of terminal facilities and crude oil tankers. To this end, the Environmental Monitoring Committee (EMC) was developed within the CIRCAC with an overall goal of monitoring and minimizing the environmental impacts associated with the oil industry.

This report documents the Cook Inlet 1995 Environmental Monitoring Program (EMP) performed for the CIRCAC by Kinnetic Laboratories, Inc. (KLI) of Anchorage, Alaska, in association with Texas A & M University's Geochemical and Environmental Research Group (GERG). This program is a continuation of monitoring performed since 1993 in Cook Inlet for the CIRCAC. The 1993 and 1994 programs, considered part of a pilot program, were designed to provide baseline information and early indication of potential environmental impacts. The 1995 program was designed to provide continuity with the pilot program while employing a more comprehensive biological component to enhance the search for potential oil industry impacts in Cook Inlet.

1.1 Program Objectives

The purpose of the monitoring program was to collect environmental data that can be used to:

- Monitor for hydrocarbon accumulation in Cook Inlet
- Monitor for impacts of crude oil production and transportation in Cook Inlet
- Establish baseline values for selected environmental variables that can be used in future studies.

The study was designed as a follow-on program to the pilot study. The pilot program involved the use of a "Sediment Quality Triad" approach that coupled sediment quality, including sediment chemistry and toxicity, with the biological condition of resident organisms (clams), including bioaccumulation of contaminants in those organisms. The pilot program also included the use of passive sampling devices, semi-permeable polymeric membrane devices (SPMDs), that help assess the bioavailablity of contaminants in the water column. The 1995 program incorporated several of these components, although the approach was somewhat different. The 1993 pilot program also included the use of transplanted mussels, but this portion of the program was unsuccessful and has been discontinued.

The 1995 program continued the design of providing synoptic measurements of sediment chemistry, toxicity, and bioaccumulation in resident organisms (using fish rather than clams and mussels to look at the latter component). Toxicity analyses included the use of a tiered approach, in which Microtox[®] testing results from the first survey were used to determine whether additional chemical and toxicological testing of sediments was required during the second survey. The sampling and statistical approach was appropriate to test the following null hypothesis:

H₀: No significant differences can be detected in biological, chemical, or physical parameters among monitoring sites.

1.2 Study Design

The 1995 field program consisted of two surveys and corresponded to the pilot program schedule with cruises in both June and July (Arthur D. Little [ADL], 1995a; 1995b). The first survey included sediment sampling, preliminary fish trawling, and deployment of SPMD moorings. The second survey involved recovery of SPMD moorings and collection of fish samples using long-lining and other fishing methods.

During the first survey, sediments were collected for toxicity testing using $Microtox^{•}$ (Tier 1). Results from these tests were used to determine whether additional toxicity testing in the form of bivalve larvae bioassays would be performed (Tier 2). The second survey was scheduled to include Tier 2 sediment sampling if warranted by the toxicity results from the first survey; this was not performed due to the low toxicity exhibited by survey one samples.

Sampling was completed at the six sites provided in Table 1. These include the pre-existing stations of Trading Bay, East Forelands, and Kamishak Bay, along with newly-established stations in Kachemak Bay near the tanker anchorage, in the Null Zone, and in southeastern Kamishak Bay (Figure 1). The Null Zone was included because it had been identified in earlier circulation studies as a region where little or no net circulation exists (i.e., when tidal currents were vector averaged, the net or residual circulation was very low [Burbank 1977]). This low net circulation identified this site as a potential depositional area for suspended sediments being swept down the Inlet. At each of the study sites, a variety of samples was collected.

Analytical strategy for the program is provided in Table 2, and analytical methods are described in Section 2.2. Hydrocarbon parameters were determined in sediments and SPMDs using state-of-the-art gas chromatograph/mass spectrometry (GC/MS) methods. Concomitant parameters of total organic carbon (TOC) and particle grain size (PGS) were determined using standardized techniques. Although body burdens of polynuclear aromatic hydrocarbons (PAH) were no longer analyzed in the bivalve *Macoma* spp. as part of the 1995 program, the Bivalve Condition Index was recorded.

In contrast to the pilot program, different bioassay techniques and two types of biological markers were used to provide further information on potential oil-industry effects on biota in the study area. The following provides a short discussion on each of the 1995 program components, with emphasis on those components that were new to the program this year.

1.2.1 Sediment Testing

The determination of PAH, total hydrocarbons (THC), and toxicity of sediments was used in this program to provide information concerning the potential accumulation of hydrocarbons in the marine environment. The analysis of PAH is useful for determining levels of hydrocarbon contamination, the likely sources of contamination, and the relative contribution of petrogenic, pyrogenic, or other sources (biogenic or diagenic). In addition, THC was analyzed as an indicator of hydrocarbon inputs to the system, although this measure is not useful in source identification. Each of these hydrocarbon parameters was used in the pilot program and have been extensively used on other environmental programs of this type. In addition, the concomitant parameters of PGS and TOC were determined in sediments. These parameters have been shown to correlate with hydrocarbon levels and are often used to standardize organics such as PAH and THC prior to hypothesis testing.

Toxicity testing was employed to help assess potential effects on the biota of petroleum hydrocarbon accumulation in marine sediments. For the 1995 program, a Microtox[®] bioassay (Beckman Instruments, 1982; Long and Markel, 1992) was used. This is a sensitive toxicity testing method based on emission of light by bacteria. This type of bioassay is advantageous in that it is rapid, is less expensive than other bioassay tests, and can be used with various types of sediments regardless of particle grain size or salinity of interstitial water contained in the sediments. This was a consideration because results of the pilot program's solid-phase toxicity test using the amphipod *Ampelisca abdita* performed in 1993 and 1994 showed elevated levels of toxicity that were not correlated to petroleum contamination in the sediments. Without multiple toxicity tests, Arthur D. Little was not able to arrive at any conclusions on the cause of this toxicity or to rule out sediment grain size as the causal factor (ADL, 1995a; 1995b).

To aid in the interpretation of the toxicity results and the overall assessment effort, a two-tiered approach to toxicity assessment was used during the 1995 program, as described in Section 1.2. In addition to the Microtox[®] bioassays, a suspended phase bivalve larvae bioassay was scheduled to be performed on sediments from stations showing toxicity. as previously mentioned, the advantage of the suspended-phase test over the solid-phase amphipod test is that fine-grained sediments could be ruled out as a possible factor influencing mortality. This testing would have utilized the blue mussel, *Mytilus edulis*. This species was selected because it is indigenous to parts of Cook Inlet, is commonly used in this type of testing, and a large body of literature exists for this specific species in terms of toxicity.

Sampling Location	Station Designation	Type of Samples Collected	Survey	Replicate	Latitude (N)	Longitude (W)	Depth [•] (m)
			1	N/A	60° 45' 36.7"	151° 17' 05.4"	7.5
	EFORE-H	Hydrographic	2	N/A	60° 46' 15.1"	151° 16' 44.0"	13.0
	EFORE-L	Longline	2	1	60° 45' 16.9"	151° 17' 17.2"	3.0
	EFORE-M	SPMD Mooring	1&2	N/A	60° 46' 16.3"	151° 16' 47.3"	10.9
			1	1	60° 45' 36.6"	151° 17' 06.6"	5.2
East	EFORE-S	Sediment	1	2	60° 45' 39.0"	151° 17' 11.3"	5.6
Forelands			1	3	60° 45' 36.8"	151° 17' 07.4"	6.1
			1	1	60° 45' 50.2"	151° 16' 48.5"	6.0
			1	2a	60° 45' 40.1"	151° 17' 10.4"	6.4
	EFORE-T	Trawl	1	2b	60° 45' 48.1"	151° 16' 39.2"	4.9
			1	3	60° 45' 41.9"	151° 17' 00.8"	4.9
	NULLZ-H	Hydrographic	1	N/A	59° 04' 58.9"	152° 48' 58.4"	143.5
	NULLZ-S		1	1	59° 04' 36.6"	152° 48' 39.0"	109.8
Null Zone		Sediment and Bivalve Condition Index	1	2	59° 05' 01.1"	152° 48' 46.9"	109.0
			1	3	59° 05' 02.3"	152° 48' 52.8"	110.2
			1	N/A	59° 37' 56.7"	151° 23' 47.4"	16.5
	КАСНВ-Н	Hydrographic	2	N/A	59° 38' 04.5"	151° 23' 57.8"	10.5
	ı		2	1	59° 38' 06.1"	151° 23' 50.2"	12.6
			2	2	59° 38' 02.0"	151° 23' 52.0"	13.3
		.	2	3	59° 38' 04.5"	151° 23' 50.2"	11.2
	KACHB-L	Longline	2	4	59° 38' 08.6"	151° 23' 44.6"	8.5
			2	5	59° 37' 58.8"	151° 23' 26.0"	18.1
Kachemak			2	6	59° 38' 15.0"	151° 23' 53.5"	10.7
Bay	KACHB-M	SPMD Mooring	1 & 2	N/A	59° 37' 58.3"	151° 23' 45.7"	15.2
		-	1	1	59° 37' 59.4"	151° 23' 48.3"	15.2
	KACHB-S	Sediment and Bivalve Condition Index	1	2	59° 37' 57.1"	151° 23' 47.4"	14.4
			1	3	59° 38' 00.6"	151° 23' 47.8"	14.2
			1	1	59° 38' 04.5"	151° 23' 32.9"	14.0
	KACHB-T	Trawl	1	2	59° 38' 21.0"	151° 22' 44.3"	20.0
			1	3	59° 38' 12.9"	151° 23' 29.6"	14.0

Sampling Location	Station Designation	Type of Samples Collected	Survey	Replicate	Latitude (N)	Longitude (W)	Depth [*] (m)
	KAMIB-F	Fishing (Rod and Reel)	2	1	59° 22' 34.6"	153° 46' 15.4"	17.7
			1	N/A	59° 22' 36.4"	153° 46' 00.6"	17.0
	KAMIB-H	Hydrographic	2	N/A	59° 22' 34.6"	153° 46' 15.4"	18.0
			2	1	59° 21' 05.2"	153° 34' 36.7"	7.4
			2	2	59° 21' 16.8"	153° 33' 29.8"	5.4
	KAMIB-L	Longline	2 ·	3	59° 21' 18.9"	153° 33' 17.5"	3.6
	•		2	4	59° 22' 35.4"	153° 46' 12.0"	17.1
Kamishak Bay			1	1	59° 22' 35.8"	153° 46' 02.3"	15.0
	KAMIB-S	Sediment and Bivalve Condition Index	1	2	59° 22' 39.4"	153° 46' 02.2"	15.1
			1	3	59° 22' 35.4"	153° 45' 56.7"	15.1
			1	la	59° 22' 13.3"	153° 46' 59.9"	11.6
,	KAMIB-T	Trawl	. 1	1b	59° 22' 13.0"	153° 47' 21.5"	12.3
			1	2	59° 23' 00.4"	153° 46' 48.2"	13.0
			1	3a	59° 22' 28.6"	153° 45' 17.6"	13.9
			1	3ъ	59° 22' 55.7"	153° 45' 46.1"	14.0
Southeast	SEKAM-H	Hydrographic	1	N/A	59° 04' 52.6"	153° 36' 53.3"	14.5
Kamishak			1	la	59° 04' 48.7"	· 153° 37' 19.3"	13.8
Bay	SEKAM-T	Trawl	1	1b	59° 04' 55.6"	153° 37' 41.4"	12.8
			1	N/A	60° 51' 38.1"	151° 41' 36.3"	13.5
	TRADB-H	Hydrographic	2	N/A	60° 48' 25.1"	151° 42' 33.8"	6.0
	TRADB-L	Longline	2	- 1	60° 48' 20.8"	151° 42' 43.5"	19.5
	TRADB-M	SPMD Mooring	1&2	N/A	60° 48' 35.8"	151° 42' 34.4"	7.0
			1	1	60° 51' 33.0"	151° 41' 42.9"	10.3
Trading Bay	TRADB-S	Sediment and Bivalve Condition Index	1.	2	60° 51' 27.3"	151° 41' 47.8"	10.3
			1	3	60° 51' 24.6"	151° 41' 50.9"	10.3
			1	1	60° 51' 49"	151° 42' 06"	11.0
	TRADB-T	Trawl	1	2	60° 51' 46.2"	151° 41' 16.9"	10.0
			1	3	60° 52' 03.8"	151° 40' 36.1"	12.2

Table 1.	Sampling and Station Location Information for the CIRCAC 1995 EMP.	(continued)
----------	--	-------------

Depths Adjusted to Mean Lower Low Water Not Applicable

Ń/A

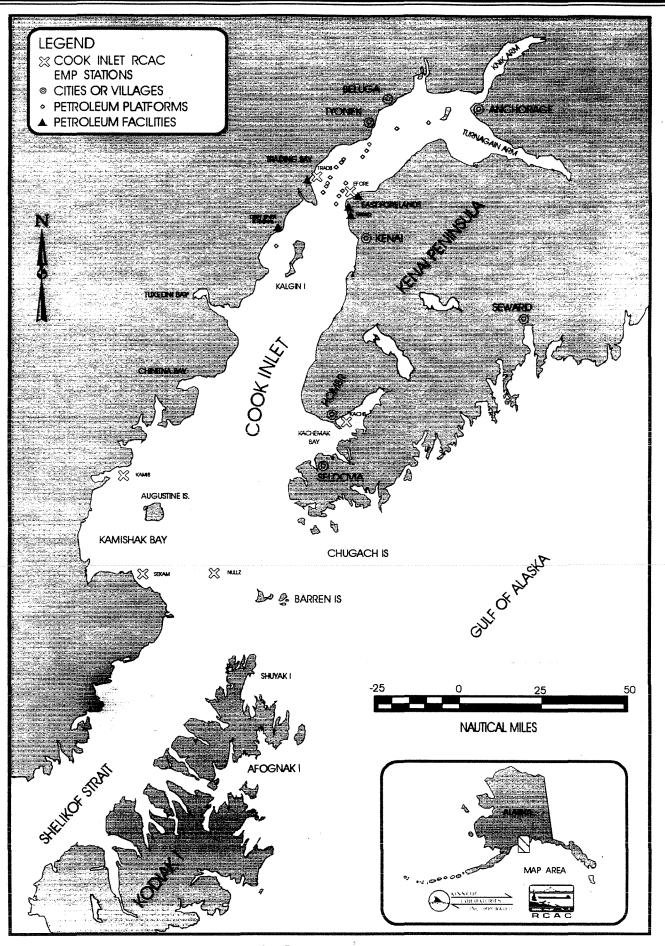


Figure 1. General Study Area and Station Locations.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Table 2.Analytical Strategy.

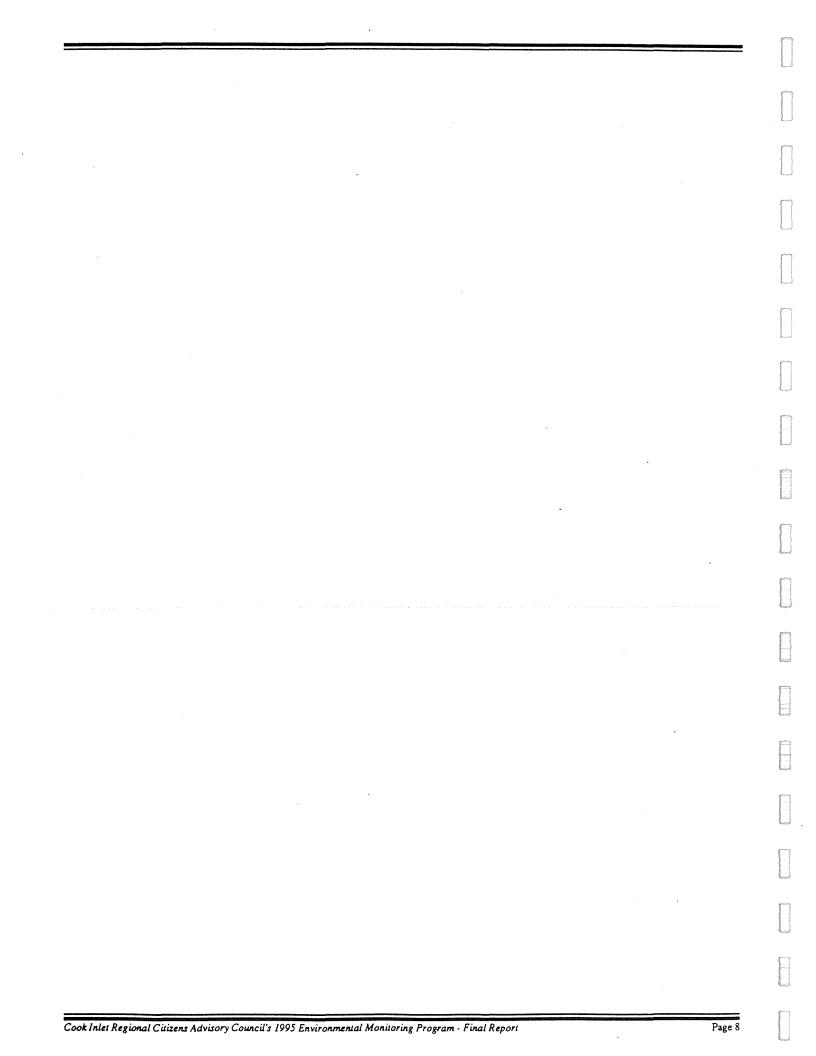
ANALYSIS	MATRIX	METHOD	Example SAMPLE ID
Polycyclic aromatic hydrocarbons (PAH)	Sediment, SPMDs, field- collected water	GC/MS in SIM mode with EPA Method 3540 and 3611 for Soxhlet extraction and fractionation, respectively (sediment).	CIR95PTT0001 (sediment), CIR95SPM0001 (SPMD), CIR95PTB0001 (blanks)
Total hydrocarbons (THC)	blanks	SPMDs were extracted using dialysis in hexane.	
Total organic carbon (TOC)	Sediment	Combustion/Infrared	CIR95PTT0001
Particle grain size (PGS)	Sediment	Dry sieving/Pipetting	CIR95PGS0001
Biological condition	<i>Macoma</i> spp. and other bivalves	Condition Index=100 * tissue weight/ shell volume	CIR95BCI0001
Toxicity testing	Sediment	Microtox [®] bioassay	CIR95MCT0001
Biomarkers in fish bile	Demersal fish	Bile metabolite determination	CIR95BIL0001
Biomarkers in fish liver	Demersal fish	Cytochrome P4501A induction	CIR95LIV0001
Hydrographic measurements (depth, conductivity, salinity, temperature, transmissivity, dissolved oxygen, and pH collected <i>in situ</i>)	Water	Conductivity, Temperature, and Depth (CTD) instrument (Seabird [®] SBE-19)	CIR95CTD0001
Dissolved Oxygen (DO); salinity; temperature; turbidity	Water (quality control samples)	Modified Winkler full-bottle test; electrical conductivity method; precision electronic thermometer; nephelometer	CIR95DOX0001; CIR95SAL0001; Not Applicable; CIR95NTU0001

1.2.2 Semi-Permeable Polymeric Membrane Devices

Semi-permeable polymeric membrane devices (SPMDs) are relatively new monitoring tools that are being developed to act as bioaccumulation surrogates. They consist of a low-density, semi-permeable polyethylene tubing containing lipid material that concentrates organics such as PAHs. When deployed in the marine environment, the lipid material performs similarly to lipid in living tissues, concentrating the contaminants, while the polyethylene (synthetic) membrane acts to mimic natural membranes which allow the transport of these contaminants from ambient waters into living tissues. After deployment, the lipid material and the tubing itself are extracted (or dialyzed) for hydrocarbon analysis. The SPMD approach has been used by the U.S. Fish and Wildlife Service's National Fisheries Contaminant Research Center and others (e.g., Huckins et al., 1990; Shigenaka and Henry, 1993) to help assess the bioavailability and bioconcentration of organic chemicals in organisms. It had also been used with some success on the pilot program. The SPMD method provides a potential alternative to bioaccumulation studies where living tissue cannot easily be collected, such as some areas of Cook Inlet, or to water quality programs where large volumes of water may need to be collected to obtain hydrocarbon signals above background. The SPMD technology is still developing and studies such as this, in conjunction with laboratory studies, will potentially lead to more regular use of SPMDs for applied monitoring programs.

1.2.3 Bioaccumulation in Fish

Historically, most environmental programs interested in the bioavailability of contaminants looked at the concentrations of these contaminants in the tissues of the organisms of interest. Because of metabolic processes, however, tissue PAH levels may not accurately reflect PAH exposure but often show only trace levels of PAH compounds. This is particularly true in fish due to the rapid conversion of hydrocarbon contaminants to metabolic products (Varanasi et al., 1989). In recent years, the use of biomarkers to evaluate exposure of organisms to contaminants has increased. Analyses of new types of biomarkers, including PAH metabolites from fish bile and cytochrome P4501A induction in fish livers, have increased over the last few years. For example, these two test methods indicated that PAH contamination is still affecting biota in the area of the wreck of the *Bahia Paraiso* which ran aground in Antarctica in 1989 (McDonald et al., 1995). Fish collected in the wreck area in 1993 exhibited elevated levels of these two types of biomarkers, indicating that PAH contamination was still occurring, while PAH concentrations determined in the liver tissue of these fish showed no significant difference from more remote sites.


To better assess the exposure of fish to PAHs, a technique was developed to estimate biliary levels of PAH metabolites (Krahn et al., 1984). Hepatic PAH and subsequent reaction metabolites are concentrated in the bile for elimination from the body (Varanasi et al., 1989). The levels of fluorescent aromatic metabolites in fish bile are correlated with PAH exposure (Collier and Varanasi, 1991; Krahn et al., 1984, 1992).

The use of cytochrome P4501A induction as a measure of contaminant exposure is based on the presence of the cytochrome P4501A in teleost (bony skeleton) fish. Cytochrome P450s are a large family of proteins which have a myriad of functions ranging from the hydroxylation of steroids, drugs, barbituates, and hydrocarbon contaminants. Hydroxylation of these types of foreign chemicals typically renders them more water soluble so they may be excreted. Cytochrome P4501A is a heme protein that is typically found in the smooth endoplastic reticulum of many tissues. It catalyzes reactions in which an organic substrate is hydroxylated using one atom of oxygen, with the other atom of oxygen being reduced to water.

Two enzyme activities catalyzed by this compound are aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin Odeethylase (EROD), both of which are typically low in animals unexposed to hydrocarbons. The concentrations of both AHH and EROD can be highly induced by exposure to selected hydrocarbons such as PAH, polychlorinated biphenyls (PCBs), dibenzofurans, and dibenzodioxins. Both AHH and EROD assays have been used successfully to assess hydrocarbon exposure in fish and, for most species, there is good accordance between the two assays (Collier et al., 1992, 1995). The method chosen for the CIRCAC program was the EROD assay, which was preferred because the substrate used for the test, ethoxyresorufin, is less toxic than the benzo(a)pyrene substrate used for the AHH assay. However, supplemental AHH analyses were performed on the same fish livers by Dr. Tracy Collier of the Northwest Fisheries Service Center, National Marine Fisheries Service (NMFS), NOAA, and these results have been included in the results section of this report.

1.2.4 Hydrographic Profiling

Hydrographic profiling was performed to help provide more information on the water column in the study area. Temperature, salinity, dissolved oxygen, transmissivity, and pH data were collected to help in the interpretation of the SPMD data.

2.0 METHODOLOGY

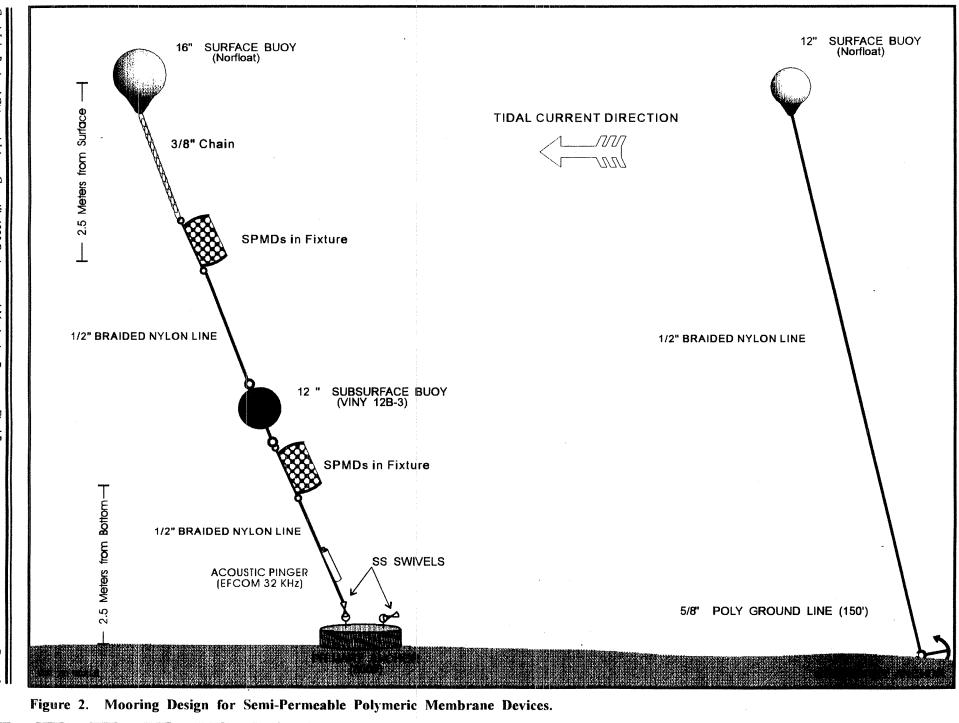
2.1 Field Methods

2.1.1 Sediment

Subtidal sediment sampling was performed using a Teflon[®]-coated modified Van Veen grab (0.1 m^2) . Three discrete replicate sediment samples were collected at each site, each involving a separate successful drop of the Van Veen grab. A grab was considered successful if the following criteria were met:

- The grab contained relatively undisturbed overlying water
- The sediment surface appeared largely undisturbed
- The grab contained sufficient sediment for the full suite of samples but had not over-penetrated the sediment.

After a successful grab, overlying water was decanted by slightly opening the grab jaws. Surficial sediment samples were collected from the top 0 - 2 centimeters (cm) of the sediment within the grab using a decontaminated custom-fabricated stainless steel scoop. The sides of the scoop were 2 cm high to allow easy depth determination. Chemistry samples were collected immediately upon grab retrieval, and sediment in contact with the grab's surface was not used. Sediment for the analysis of PAH, THC, and TOC was placed in a 250-milliliter (mL) labeled glass jar (pre-cleaned by the manufacturer, I-Chem[®]) equipped with a Teflon[®]-lined lid. A similar sample was collected for Microtox[®] and placed in a 125-mL pre-cleaned glass jar. Specimens of *Macoma* spp. or other bivalves were avoided during sampling or removed from these samples in such a way as to avoid contamination of the sediments. Sediment jars were filled, with minimal headspace remaining to allow expansion of the sample during freezing, and immediately frozen. Dry ice was used as needed to ensure rapid freezing. Sediment designated for PGS determination was placed in a labeled polyethylene Whirl-pak[®] bag and chilled until analysis by the laboratory.


The modified Van Veen grab and stainless steel utensils were decontaminated between each replicate or each failed replicate which brought up some sediment. Decontamination procedures used between replicates included the removal of residual sediment by rinsing with seawater, followed by rinsing with high-purity (high-performance liquid chromatography, HPLC) de-ionized water to remove traces of seawater. The gear was then rinsed with high-purity acetone, to remove residual water, and high-purity hexane, to remove hydrocarbons. The gear was allowed to briefly air dry before redeployment. Care was taken during the rinsing procedure to contact all interior surfaces of the grab and all surfaces of the utensil which could come into contact with the sediment. Between stations, an additional step of thoroughly washing the grab and utensils with Alconox[®] and rinsing with seawater was employed prior to following the decontamination procedure. Solvents and de-ionized water were dispensed from Teflon[®] squirt bottles. All solvent wastes were collected and returned to land for proper disposal. Quality control samples associated with grab sampling, field and equipment blanks, were collected as described in Section 2.1.6.

2.1.2 Semi-Permeable Polymeric Membrane Devices

Moorings custom designed for use in the extreme current and high-sediment loading conditions of Cook Inlet were used to deploy the SPMDs for approximately four weeks. The moorings (Figure 2) consisted of a single primary array equipped with an underwater pinger (Efcom[®]), which transmitted in the 30-40 kHz frequency range, and a primary anchor. Flotation for the mooring was provided through surface and subsurface floats, with the surface float serving to suspend the top SPMD at 2.5 meters (m) below the water surface. The pinger was a contingency to be used to locate the mooring in the event that the surface float was vandalized or inadvertently removed by vessel traffic. The moorings consisted of non-corrosive components (e.g., stainless steel thimbles and shackles) and were deployed and retrieved through the use of a polypropylene ground line attached to a smaller secondary anchor.

Two SPMDs consisting of four lipid-filled bags each were deployed on each mooring at depths of approximately 2.5 m below the surface and approximately 2.5 m above the bottom. Each SPMD was contained in a stainless steel cage that was mounted on stainless steel cable placed in-line with the mooring. The cages were highly-perforated to allow flow

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Frogram - Final Report

Page 10

of seawater over the SPMDs. Every effort was made during deployment and retrieval of the moorings to avoid potential contamination from vessel exhaust or other factors. This included the use of an electrical lifting system so that the vessel could be shut down during these activities. In addition, the vessel's diesel-burning galley stove was shut down during mooring activities. All SPMD samples were frozen on dry ice immediately after retrieval and remained frozen until processing at the laboratory. At each mooring station, an SPMD field blank was collected as described in Section 2.1.6.

2.1.3 Fish Collection

During the first survey, trawling for the collection of demersal fish was performed at each station. This provided a means of documenting the species found in each area so that subsequent sampling and chemical analyses of target species could be performed. A 25-foot (ft) Marinovich otter trawl with a stretch mesh of 1.5 inches and a cod end liner was used. The net was rigged with a 26-ft lead-rope and a 75-ft bridle and towed with a single line from the research vessel. Each tow was performed in daylight hours along a specific isobath at each of the stations into the prevailing current at approximately 2-2.5 nautical miles per hour speed over ground. Target bottom time (actual fishing time) of each tow was ten minutes, with tows terminated as needed due to obstructions on the bottom. When multiple trawls were performed at a site, each trawl was conducted so it would not overlap the previous trawl paths. After retrieval of the otter trawl, fish were immediately sorted and processed. Fish specimens were identified for species and sex, measured for standard length and wet weight, and visually examined for external tumors, parasites, or lesions. Fish were speciated and identifications confirmed, as needed, using a variety of references such as Kramer and O'Connell (1988), Kramer et al. (1995), Kessler (1985), Clemens and Wilby (1961), and Eschymeyer et al. (1983).

Due to the limited success of fish collection at some stations on the first survey using the trawl method, collection of fish specimens for biliary and liver analyses was carried out on the second survey using modified commercial longline gear. The longline gear consisted of a quarter-length self-weighted skate (400 ft) anchored at the terminal ends. The skate consisted of lead-core 5/16-inch braided nylon line with circle-hooks attached at approximately 15-ft intervals using commercial snap gangions. The hooks used were smaller (size 14) than standard halibut gear hooks (size 16) to facilitate catching the less mature of the target fish species. Hooks were baited prior to each set with either herring or squid. During the deployment, each baited hook was attached as the gear was sent over the side of the vessel. Deployment times for the longline gear were generally kept to a minimum (approximately 45 minutes) to minimize stressing the fish which could artificially induce enzyme production. At some stations, low fish densities required increased deployment time.

During the retrieval process, empty hooks were removed from the skate as the line was brought on board. If the hook had caught a species not intended for collection, that individual was released immediately and gear retrieval resumed. If the target species (Pacific halibut, *Hippoglossus stenolepis*) was encountered, retrieval was paused and the remaining length of skate still in the water was tied off so that immediate processing of the specimen could be performed. The target fish was brought on board, removed from the hook, weighed, and measured, and the necropsy was immediately performed.

The sample collection process was performed as quickly as possible, and the bile and liver tissue sampling for the majority of fish was completed within five minutes of collection. Dissection tools were thoroughly rinsed with methanol prior to use. After each fish had been sacrificed, the body cavity was opened. Bile was removed from the gall bladder without removing it from the body cavity by using a sterile Vacutainer[®] needle and vial. All bile samples were protected from light. Labeled bile samples were immediately frozen on dry ice and remained frozen until analysis.

Following the collection of the bile from each fish, a small sample (minimum of 1.0 g wet weight) of liver tissue was removed for cytochrome P4501A analysis. Visually obvious (gross) anomalies of each liver were recorded during the sampling process. Each liver sample was placed in a pre-labeled cryovial (Nalgene[®]) and chilled on gel ice for a short time (while other fish were being processed) and then placed in liquid nitrogen in a dewar for immediate freezing. Samples were shipped in liquid nitrogen to the laboratory using a specially-designed cryogenic sample shipper.

2.1.4 Hydrographic Profiling

Standard physical properties of water such as temperature, dissolved oxygen, pH, transmissivity, and salinity were collected *in situ* at each sampling station using a modified Seabird[®] SEACAT SBE-19 conductivity, temperature, and depth (CTD) instrument. Use of the CTD provided a continuous profile (surface to bottom) of water column measurements taken at 0.5 second intervals during the lowering and retrieving of the unit on a line. This unit was equipped with optional pH, dissolved oxygen (DO), and transmissivity sensors (25-cm transmissometer) along with a submersible profiling pump. The relatively shallow depths associated with nearshore stations necessitated the use of a pump to maintain adequate velocity across the sensors during low cast velocities. The pump facilitates equipment use in high suspended sediment locations and has been used successfully for many years by KLI in Cook Inlet. Quality control samples used to validate the CTD data were collected as described in Section 2.1.6.

Immediately following the CTD cast, the data were uploaded from the instrument memory to a field computer on board the survey vessel and verified. Data verification involved assessing that the profile data was complete and had not been corrupted. To ensure against data loss, a duplicate copy of the verified data was saved to a diskette.

Hydrographic data were compiled by averaging the time-collected (0.5 sec) samples to a given depth interval of every half meter. Use of depth-averaged data facilitates comparisons across stations, and these data are easier to read than time-series data. For most stations, the upcast was used for calculating depth averages to allow additional time for the CTD probes to equilibrate. Sequential sample identification numbers were then added to the post-processed data. The final data were then output as tables and plotted as standard hydrographic profiles (Appendix E).

2.1.5 Bivalve Condition Index

Following collection of the sediment samples from each grab, the grab contents were sieved through a 5-millimeter (mm) stainless steel mesh sieve. All visible specimens of bivalves, including *Macoma* spp., were removed from the sieve, enumerated, placed in labeled Whirlpak[®] bags, and frozen for later identification and processing.

2.1.6 Quality Control

Sampling procedures used on this program have a history of successful use on a large number of scientific programs. The use of documented and well-known procedures provided for greater likelihood of obtaining samples uncontaminated by procedures or apparatus. It also helped ensure that data collected over the course of the program were comparable and that the study results were representative of conditions existing at the sampling sites. In addition, use of sample documentation procedures and a chain of custody program, as described in Section 2.1.7, provided a paper trail to track each sample.

Quality control samples, equipment rinsate blanks and field blanks, were collected once during grab sampling. Equipment rinsate blanks used to verify grab decontamination procedures were collected by filling two pre-cleaned amber wide-mouth 950-mL glass jars with a high-purity de-ionized water rinse of the grab's inner surfaces. After the collection of the equipment blanks, the grab was re-cleaned prior to use. Field blanks consisted of high-purity de-ionized water poured into two amber glass 950-mL jars. Field and equipment blanks were preserved to a pH of <2 with 1:1 hydrochloric acid (HCl) immediately after collection. Samples were chilled at 4° C until extraction and analysis at the laboratory.

An SPMD field blank was collected at each station to help assess potential contamination of the SPMDs from airborne contaminants or other factors encountered in the field. Field blank SPMDs, consisting of four lipid-filled bags each, were exposed to field conditions during the deployment period when the moorings were being assembled and deployed. These labeled field blanks were placed in freezer storage during the four-week period when the moorings were deployed. Just prior to the retrieval of each mooring, the appropriate field blank SPMD for that station was removed from the freezer and allowed to thaw. The SPMD containers were opened during retrieval and disassembling of the mooring so that these blanks would be exposed to field conditions. Hence each SPMD field blank was exposed to environmental conditions encountered during both the deployment and retrieval process.

Samples for the determination of salinity, dissolved oxygen, turbidity, and temperature were collected using a Niskin[®] bottle at selected stations to validate CTD data. Salinity samples were shipped to the KLI Santa Cruz laboratory for analysis using an electronic probe method (Standard Method 2520B). Dissolved oxygen analysis was performed on board the sampling vessel using a modified Winkler full-bottle titration technique (Standard Method 4500-OC). Turbidity samples for qualitative comparison with transmissivity values from the CTD were also analyzed in the field using a Nephelometer. Water temperature was determined using a precision electronic thermometer immediately upon retrieval of the Niskin[®] bottle. Prior to use in the field, the CTD was calibrated at the factory for dissolved oxygen and pH.

2.1.7 Sample Documentation and Chain of Custody

Sample documentation was initiated in the field with the use of project-specific pre-printed forms such as sediment chemistry logs, grab and trawl effort logs, fish catch logs, sample identification/chain of custody forms, and sample labels. The Field Leader was responsible for review and approval of all field documentation.

Sediment logs provided information about the station, including project and survey designation, station designation, sample identification numbers, date, replicate depth and time, navigational information, observations of sediment characteristics, quality control sample collection, and names of recording personnel. Observations which may be recorded on this form include the appearance of the sediment and presence or characteristics of oiling, such as the presence or absence of sheening, as well as the recording of biological characteristics such as macroflora or macrofauna.

Sediment grab effort logs were used to record each drop of the grab and included station designation, date, time, and depth of drop, navigational information, and success or failure of each attempt. Trawl effort logs contained station designation, date, time, navigational information, length of tow, and bottom time. This type of information is generally intended for KLI's use and can be used to describe bottom type in specific areas, help determine sampling locations, and provide estimates of time needed to successfully sample in a given area as well as allowing the evaluation of equipment performance.

Sample identification and integrity was ensured by a chain of custody program. Sample Identification/Chain of Custody Forms (COCs) were used to provide specific information concerning the identification, handling, and shipment of all samples. Pertinent information from the sample label was transferred onto the COC, along with other information as required. COC forms were completed, signed by field personnel, and copied. The original of each form was packed with the samples for shipment to the laboratory. The Field Leader retained a copy of each form for the field records and for tracking purposes should a shipment become lost or delayed. Upon receipt of the samples at the analytical laboratory, the Laboratory Sample Custodian signed the samples in by checking all sample labels against the COC information and noting any discrepancies, as well as sample condition (e.g., samples broken during shipment). Internal sample tracking procedures at the laboratory were initiated immediately upon receipt of samples.

Pre-printed labels included project identification, analysis type, date of collection, and a unique pre-assigned sample identification number used to identify each sample. Sample numbers included a project designation, year, analysis type, and a sequential number (e.g., CIR95PTT0001, see Table 2). For the Vacutainer[®] and cryovials, sample identification numbers and sampling dates were recorded directly on the containers using low temperature-resistant markers.

2.1.8 Navigation

Navigation and station location included the use of nautical and topographic charts, radar, and a Global positioning system (GPS), a satellite-based system that is more accurate than Loran-C. A Trimble Ensign-XL[®] GPS was used for general navigation and to obtain the coordinates of all sampling, trawling, and mooring locations. Station locations (GPS longitude and latitude) were recorded on the appropriate logs.

2.1.9 Permitting

Invertebrate infauna and demersal fish collections were carried out under the auspices of KLI's 1995 Fish Resource Permit for Scientific, Educational, or Exhibitive Collections (Permit #DFG-95-8-SE-SC). This collection permit, issued by the Alaska Department of Fish and Game (ADF&G), authorizes KLI personnel to collect, analyze, and/or archive the marine fauna required by this program. In accordance with this permit, KLI notified ADF&G regional biologists prior to collection activities.

Additionally, the mooring deployment was carried out under a U.S. Army Corps of Engineers (COE) general nation-wide permit for scientific measurement devices (33 CFR Part 330, Appendix A, Subtitle B(5)). This permit allows for short duration deployments of scientific instruments, including oceanographic and/or water quality measuring devices, in the navigable waters of the United States without going through the formal permitting process required for permanent moorings. Prior to mooring deployment, KLI notified the U.S. Coast Guard (USCG) and COE, providing a description of each mooring and the proposed sampling locations. Authorization to proceed was received from both the COE and USCG, and the USCG published appropriate information in the *Notice to Mariners*. In addition, both agencies were notified by KLI after retrieval of the moorings.

2.2 ANALYTICAL METHODS

Sediment chemistry (PAH and THC), PGS, and TOC analyses, along with fish bile metabolites and liver tissue cytochrome P4501A induction analyses, were performed by the Geochemical and Environmental Research Group (GERG) Laboratory of Texas A & M University in College Station, Texas. Preparation and extraction of SPMDs were performed by Environmental Sampling Technologies (EST) in association with Dr. Harry Prest of Long Marine Laboratory, University of California at Santa Cruz. Determination of PAH and THC in SPMD extracts was performed by GERG. Microtox[®] testing was performed by KLI's bioassay laboratory in Watsonville, California. Determination of condition index of bivalves was performed at KLI in Santa Cruz, California.

Samples were analyzed following Standard Operating Procedures (SOPs) such as those listed in Table 3.

Table 3. Analytical Standard Operating Procedures.

PROCEDURE	SOP NO.
Sample receipt/sample preparation	GERG SOP-9225
Percent moisture determination (sediment)	GERG SOP-8902
Sediment extraction (sonication method)	GERG SOP-9318
Sediment extraction (soxhlet method)	GERG SOP-8902
Polycyclic aromatic hydrocarbon determination	GERG SOP-8905
Aromatic hydrocarbon metabolites in bile	GERG SOP-9009
Total hydrocarbon determination	GERG SOP-9219
Particle grain size analysis	GERG SOP-8908
Total organic carbon analysis	GERG SOP-8907
SPMD extraction (dialysis)	EST SOP E-15
SPMD extract cleanup	GERG SOP-8903

Upon receipt at the laboratory, samples were checked in and shipping containers inspected for damage and to ensure accuracy of sample documentation. Laboratory personnel inspected each shipment to ensure that:

- Each sample was clearly marked and dated
- Each sample was collected in an appropriate container
- Each sample was properly preserved and temperature controlled, if necessary
- There was sufficient volume to perform the analyses
- The sample was in good condition
- Chain of custody form information matched the sample description and the label information.

Chain of custody forms were completed, and internal laboratory tracking procedures were initiated immediately upon receipt of samples. Unique laboratory identification numbers were assigned to each sample prior to storage or further processing. Sediment chemistry, SPMD, and bile samples were stored at -20°C until analysis. Liver samples for cytochrome P4501A induction analysis were stored in liquid nitrogen until analysis. Samples designated for PGS analysis were kept at 4°C. Water samples (blanks) were stored in the dark at or below 4°C.

2.2.1 Sample Preparation and Sediment Percent Moisture Determination

Sediment samples for PAH/THC/TOC were homogenized by stirring with a clean stainless steel or Teflon[®] utensil and subsampled as required for the individual analyses. An aliquot (approximately 1 g wet weight) for dry weight determination was removed, weighed, freeze-dried, and reweighed to determine percent moisture (GERG SOP-8902). A 30-g (approximately) wet weight aliquot for PAH/THC analysis was placed in a labeled pre-combusted jar for chemical drying with sodium sulfate until the sample was dry, free-flowing, and homogeneous. Remaining sediment was also dried for archival.

Sediment samples designated for PGS analysis were homogenized and subsampled prior to analysis (GERG SOP-8908). Excess PGS sediment was archived at 4°C. Water samples (field blanks) were stored in the dark at or below 4°C until extraction. No further processing was required for these samples.

Just prior to extraction, all sediment hydrocarbon samples and quality control samples were spiked with deuterated surrogate solutions. The PAH surrogate solution contained naphthalene- d_8 , acenaphthene- d_{10} , phenanthrene- d_{10} , chrysene- d_{12} , and perylene- d_{12} . Sufficient surrogate solution was added to each sample to provide a final concentration (of extract volume) of 20 and 40 ng/mL for sediment and water, respectively.

The SPMDs were prepared using 3-mil thick polyethylene tubing that had been pre-extracted. Lipid material used in the bags consisted of triolein lipid with a purity of 95 percent. A permeations standard which allowed for approximate corrections for temperature and biofouling effects was used. As in the pilot program, SPMDs were prepared and extracted under the direction of Dr. Harry Prest of the Long Marine Laboratory, University of California at Santa Cruz. Instrumental PAH analysis was performed at GERG by Dr. Thomas McDonald and his staff.

2.2.2 Extraction Procedures for Hydrocarbon Determination

Sediment extraction procedures followed those described by EPA Method 3540 (US EPA, 1986) and GERG SOP-8902, which includes a soxhlet procedure to ensure full contact of the extraction solvent with the sediments. Thirty g (wet weight) of sediment were chemically dried and extracted using acetone and dichloromethane (methylene chloride). The extract was concentrated and then treated using alumina column purification to remove matrix interferences.

For three select samples collected during the pilot program, a comparison of the soxhlet and sonication extraction procedure was performed by GERG to evaluate extraction efficiency. Samples splits from the pilot program were provided to GERG for this comparison. The sonication procedure used was based on EPA Method 3550 as described in GERG SOP-9318.

Fractionation of the sediment extracts was accomplished following EPA Method 3611 which includes specific guidance for separation of petroleum wastes into distinct fractions containing aliphatics, aromatics, and polar compounds. All extracts were stored at or below 4°C prior to and after analysis.

Extraction of SPMDs was performed by dialysis in hexane in an incubator at 18° C for 48 hours. Following incubation, the dialysate was subject to gas chromatographic (GC) column and High Pressure Liquid Chromatograph (HPLC) cleanup and fractionation using the same procedures used for tissue extracts (GERG SOP-8903).

Extraction of water samples (field-collected blanks) was performed using serial methylene chloride. All extracts were stored at or below 4°C until analysis.

2.2.3 Determination of Total Hydrocarbons

Total hydrocarbons (THC) were determined after extraction and prior to fractionation by measuring the weight of the sample extract as described by GERG SOP-9219. This method provided a measure of the total extractable material in a sample minus the polar-type compounds. Results were reported in $\mu g/g$ dry weight for sediment and water blanks and mg/SPMD for SPMDs.

2.2.4 Determination of Polycyclic Aromatic Hydrocarbons

Polycyclic aromatic hydrocarbons and their alkylated homologues as provided in Table 4 were determined using a GC/MS technique in the selected ion monitoring (SIM) mode as described by GERG SOP-8905. Gas chromatographic (GC) separation was accomplished on a fused-silica capillary column with a DB-5 bond phase. The GC column fed directly into the ion source of the mass spectrometer (MS) operating in the SIM and electron-impact ionization mode. A computer system interfaced with the MS continuously acquired and stored all mass-spectral data during the analysis. This system also allowed display of a GC/MS data file for ions of specific mass and plotting ion abundances versus time or scan number.

Extracts were spiked with internal standard solutions prior to analysis. Internal standards of fluorene- d_{10} and benzo(a)pyrene- d_{12} were used. In addition, matrix spike standard solutions consisting of 2 to 5-ring PAHs were used for quality control matrix spike samples as described in Section 2.2.11.

Results for each sediment and field-collected blank PAH analyte were reported in ng/g in dry weight. Results for SPMDs were reported in ng/SPMD. Method detection limits (MDLs) for each sediment PAH analyte, defined as the lowest concentration of analyte that a method can reliably detect, were calculated by performing analyses on pre-extracted sediment following procedures outlined in the Federal Register 40 CFR Part 136, Appendix B (1986). MDLs were estimated for analytes not available in the spike solution or in the actual matrix by using the closest related compound. Since no MDLs exist for SPMDs, MDLs determined for tissue matrices were applied to the SPMD data. This was appropriate because the SPMDs are composed of lipids, as are tissues, and they behave like tissues in terms of possible matrix interferences and other analytical factors. Tissue MDLs were determined following the same procedure on clean tissue material.

2.2.5 Particle Grain Size Determination

The determination of PGS was performed using a method adapted from Folk (1974) as described by GERG SOP-8908. Sediment samples were homogenized and a subsample of 15 - 20 g was removed for analysis. The subsample was treated and washed to oxidize organic matter and remove soluble salts prior to the addition of dispersant. After agitation, the sediment solution was sieved to separate the gravel/sand fraction from the silt/clay fraction. Dry-sieve techniques were then used to determine the sand and gravel fractions. Silt and clay fractions were determined by pipetting. Results were reported in percent gravel, sand, silt, and clay on a dry weight basis. Duplicate samples were analyzed for quality control purposes as described in Section 2.2.11.

Polycyclic Aromatic Hydrocarbons (PAH)						
Compound	Internal Standard Reference	Surrogate Reference				
Naphthalene	· A	1				
C ₁ -Naphthalenes	A	1				
	A . A	2				
C ₂ -Naphthalenes		2				
C ₃ -Naphthalenes	A	2				
C ₄ -Naphthalenes	A	2				
Biphenyl	A	2				
Acenaphthylene	A	2				
Acenaphthene	A	2				
Fluorene	A	.2				
C ₁ -Fluorenes	Α	2				
C ₂ -Fluorenes	А	2				
C ₃ -Fluorenes	Α	2				
Phenanthrene	Α	3				
Anthracene	Α	3				
C ₁ -Phenanthrenes/Anthracenes	А	3				
C2-Phenanthrenes/Anthracenes	А	3				
C3-Phenanthrenes/Anthracenes	A	3				
C4-Phenanthrenes/Anthracenes	Α	3				
Dibenzothiophene	Α	3				
C ₁ -Dibenzothiophenes	Α	3				
C ₂ -Dibenzothiophenes	А	3				
C ₃ -Dibenzothiophenes	А	3				
Fluoranthene	B	3				
Pyrene	B	0				
C ₁ -Fluoranenes/Pyrenes	B	. 3 ^{restr} ing				
Benzo(a)anthracene	B	4				
Chrysene	B	4				
	B	4				
C ₁ -Chrysenes	B	4				
C ₂ -Chrysenes						
C ₃ -Chrysenes	В	4				
C ₄ -Chrysenes	. B	4				
Benzo(b)fluoranthene	В	4				
Benzo(k)fluoranthene	В	4				
Benzo(e)pyrene	В	4				
Benzo(a)pyrene	В	4				
Perylene	В	5				
Indeno(1,2,3-c,d)pyrene	В	4				
Dibenzo(a,h)anthracene	В	4				
Benzo(g,h,i)pervlene	B	4				
Specific Isomers						
1-methylnaphthalene	А	1				
2-methylnaphthalene	· A	1				
2,6-dimethylnaphthalene	Α	2				
1,6,7-trimethylnaphthalene	Α	2				
1-methylphenanthrene	А	3				
Internal Standards						
Fluorene-d ₁₀	A					
Benzo(a)pyrene-d ₁₂	B					
Surrogates						
Naphthalene-dg		1				
Acenaphthene-d ₁₀		2				
Phenanthrene-d ₁₀		3				
Chrysene-d ₁₂		4				
Perylene-d ₁₂		5				

Table 4. List of Target Analytes for PAH Analysis.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

adia to a la

Page 17

2.2.6 Total Organic Carbon Analysis

Total organic carbon analysis was performed as described by GERG SOP-8907 using a 500-mg aliquot of freeze-dried sediment. The sediment was placed in an induction furnace designed to burn samples in an oxygen atmosphere. Gases produced by the combustion were processed and put through an infrared detector for quantification of carbon dioxide. Total organic carbon was determined after sample acidification. Carbonate carbon (inorganic carbon) was determined as the difference between total carbon and TOC. Results were reported in percent TOC and percent total inorganic carbon (TIC, or carbonate carbon) on a dry weight basis. Duplicate and reference standard samples were analyzed for quality control purposes as described in Section 2.2.11.

2.2.7 Microtox[®] Bioassay

Microtox[®] testing was performed following procedures described in the Microtox[®] Operating Manual (Beckman Instruments, 1982) and by Bulich et al. (1981). The Microtox[®] method depends on a bioluminescent bacterium (*Photobacterium phosphoreum*) which produces light from its electron transport system. This natural luminescence indicates the metabolic state of the bacteria. When the bacteria are dosed with a chemical contaminant, decreased bioluminescence is indicative of toxicity, and measurement of the amount of decrease over time is used as a quantitative measure of toxicity.

The bioassay included the use of a chemical extraction procedure specific for neutral compounds such as aromatic and chlorinated hydrocarbons. It is not specific for metals or other types of contaminants such as acidic and basic organic compounds. Extraction procedures followed those provided in *Recommended Protocols for Conducting Laboratory Bioassays on Puget Sound Sediments* (TetraTech, Inc. and E.V.S. Consultants, 1986). Organic extraction of 3.3 g subsamples of sediment was accomplished using spectral-grade dichloromethane as the extraction solvent and sodium sulfate as a drying agent. Samples were centrifuged during the triple-extraction procedure to increase extraction efficiency. The extract was concentrated and volume-adjusted through boiling (60°C water bath), use of a tube heater, and the addition of dichloromethane, hexane, and ethanol. Extraction blanks were prepared for quality control purposes by following an identical procedure without the sediment.

Freeze-dried bacteria were prepared for testing by reconstituting with distilled charcoal-filtered water and placed in Microtox[®] cuvettes. A stock test solution of each sediment extract and Microtox[®] diluent was prepared. Five dilutions (100, 50, 25, 12.5, and 0 percent) of this stock test solution were prepared for each sample and adjusted to 2 percent sodium chloride (NaCl) using a NaCl solution. The 0 percent dilution was a reagent blank that was used to measure the natural decrease of light production which occurs in the bacteria independent of treatment.

Five Microtox[•] cuvettes were prepared with a 20 μ L aliquot of the bacterial suspension and 500 μ L of the Microtox[•] diluent. After incubation of each cuvette for 15 minutes (min) to ensure temperature equilibration, light emission was measured to obtain initial levels prior to addition of the extract. The extract dilutions were added to the cuvettes at regular time intervals to ensure measurement prior to the gradual natural decrease in bioluminescence. Each dilution of every sample, including the 0 percent dilution (reagent blank), was tested in duplicate for a total of ten cuvettes per sample.

Light emission was measured exactly 5 min after the addition of the extract dilutions and again at 15 min after extract addition. Linear regression analyses were used to estimate the 15-min EC_{50} , which was defined as the concentration of extract required to cause a 50-percent reduction in bioluminescence. These analyses took into effect the percent decrease of bioluminescence recorded at each test concentration (100, 50, 25, and 12.5 percent) over the period of the test normalized for the natural decrease in light production over time (from the reagent blank at 0 percent). An additional statistical procedure was used where appropriate to calculate a 95-percent confidence interval for the EC_{50} .

2.2.8 Analysis of Bile Metabolites

Metabolite concentrations were determined using an HPLC system with fluorescence detection as described in GERG SOP-9009. Aromatic compounds that fluoresce at excitation/emission wavelengths of benzo(a)pyrene, naphthalene, and phenanthrene were analyzed. This method followed that of Dr. Margaret Krahn of NOAA (Krahn et al., 1984; 1986a;

1986b; 1992). For each sample, a small subsample of bile was thawed and injected directly onto the HPLC system. Fluorescence detector response was recorded with a computer for 35 minutes at three different excitation/emission wavelengths for benzo(a)pyrene (380/430 nm), phenanthrene (257/380 nm), and naphthalene (292/335 nm). Aromatic compounds fluorescing at naphthalene, phenanthrene, and benzo[a]pyrene wavelengths were analyzed. Metabolites eluting from the column within specific retention times were summed to yield total fluorescence based on equivalents of known amounts of napthalene, phenanthrene, and benzo[a]pyrene standards. Bile metabolites were reported in ng/g wet weight. Quality control associated with this type of analysis is described in Section 2.2.11.

2.2.9 Cytochrome P4501A Induction

Enzyme activity for ethoxyresorufin O-deethylase (EROD) was measured on microsomal preparations using a fluorometric procedure modified from that of Pohl and Fouts (1980). Microsomes may be defined as ultra-microscopic bodies present in cell cytoplasm that are rich in ribonucleic acid (RNA) and that function in protein synthesis. Microsomal preparations were made following modifications of an ultra-centrifugation procedure described by Stegeman et al. (1987). Fish liver samples were removed from liquid nitrogen, weighed, homogenized, and differentially centrifuged in a buffer solution. After centrifuging, microsomes were stored in a buffer containing glycerol in liquid nitrogen until analysis. A split of each microsomal preparation was forwarded to Dr. Tracy Collier of the Northwest Fisheries Service Center, NOAA, where AHH analysis was performed.

At GERG, each sample was analyzed in triplicate to obtain the EROD value. A reaction mixture was prepared using 250 μ g of the thawed microsomal protein in a pH buffer (HEPES), along with bovine serum albumin (BSA) and several enzyme co-factors (magnesium chloride, NADH, and NADPH) that supplied energy and were necessary for the reaction to proceed. Samples were placed in a temperature-controlled water bath at 25 or 30°C for two minutes, after which 50 μ L of the EROD substrate was added. The reaction was allowed to proceed for 10 minutes and terminated by the addition of 2.5 mL methanol. After centrifuging, each supernatant was read on a spectrofluorometer at 550 nm excitation and 585 nm emission wavelength settings. Enzyme concentrations based on the fluorometric units were derived using calibration curves based on resorufin. The protein precipitate from each sample was also measured by the method of Bradford (1976), and sample results were reported in picomole per minute per milligram (pmol/min/mg) of microsomal protein for each of the two temperatures run. For quality control purposes, duplicate microsomal preparations were made from selected liver samples (see Section 2.2.11).

2.2.10 Biological Condition Index

Biological condition index of *Macoma* spp. and other bivalve individuals were determined by measuring the dry weight (g) of the bivalve tissue, dividing it by the shell volume (cc), and multiplying by 100. This followed the formula developed by Haven (1962) and that used on the pilot program.

2.2.11 Quality Control

Analytical quality control for this program included the following:

- Adherence to documented procedures, particularly SOPs
- Calibration of analytical instruments
- Determination of method detection limits
- Use of quality control samples, internal standards, and surrogate solutions.

The analytical laboratories involved with this program operate under internal quality assurance (QA) programs described in their QA management plans. These programs involve the participation of qualified and trained personnel; the use of standard operating procedures for analytical methodology and procedures; a rigorous system of documenting and validating measurements; maintenance and calibration of instruments; and the analysis of quality control samples for precision and accuracy tracking. Documentation in the laboratory included finalizing the original chain of custody forms and generating the internal documents that track samples through the laboratory. Any deviations from analytical SOPs were documented in the project files. Data affected by such deviations were appropriately qualified using the codes provided in Table 5. The analytical SOPs are comprehensive and provide information concerning proper sample collection, storage, and preservation; required apparatus and materials; analytical procedures; standardization techniques; quality control samples required; methods of calculating values and assessing data quality; the calibration of instruments; and reporting and performance criteria.

Data Code	Description
В	Analyte reported in blank
D	Sample diluted in order to analyze, therefore surrogate is diluted
J	Quantity below the estimated MDL
ND	Not detected (not measured above zero)
NA	Not applicable
М	Matrix interference
N	Values identified as not within QC criteria
Q	Does not meet QA criteria
Y	Values within QC criteria

Table 5.Qualifiers for Data Reporting.

The method detection limits (MDLs) for the sediment PAH analysis were determined following the method detailed in 40 CFR Part 136, Appendix B. The MDL is defined as the lowest concentration of analyte that a method can reliably detect. The MDLs were determined by calculating results of seven replicate measurements of one low-level or spiked sample. The results of a Student's t-test at the 99 percent confidence level was multiplied by the standard deviation of the seven replicates to obtain the lowest possible concentration that is quantifiable at this 99 percent confidence limit (i.e., that is not considered an estimate). The MDL was adjusted for sample size for each individual sample for reporting purposes. Analyte concentrations falling below the calculated MDL but above zero (0) were considered estimates and were qualified with the "J" qualifier. Concentrations equal to zero (0) were not measured and were qualified with the "ND" code for non-detect.

Internal laboratory quality control checks included the use of surrogate solutions, internal and calibration standards, and quality control samples such as blanks (procedural, reagent, or extraction), matrix spike/spike duplicates, standard reference materials (SRMs), reference samples, and duplicates. In addition, for Microtox[®] only, a reference toxicant (phenol) and negative controls were used. A summary of these internal quality control checks and the acceptable results criteria is provided in Table 6.

Surrogate compounds were spiked into PAH/THC sediment samples prior to extraction to measure individual sample matrix effects which are associated with sample preparation and analysis. Similarly, spike compounds were added to the SPMD extracts prior to instrumental analysis. This included QC samples such as field-collected blanks, procedural blanks, and matrix spike samples as appropriate. Surrogate compound analyses were reported in percent recovery. Analyte results were not corrected when surrogate recoveries fell outside the 40 to 120 percent limits, but the affected values were qualified using the appropriate qualifier.

Table 6. Schedule of Internal Quality Control (QC) Checks and Acceptance Criteria.

	Type of Analysis								
Type of QC	РАН	тнс	PGS	тос	MICROTOX•	BILE METABOLITES	P4501A (EROD)		
Surrogate Spike Solution	Sediment & SPMD: all samples and QC samples; 40 - 120 %								
Procedural Blank	Sediment & SPMD: 1 in 20 samples or 1 per batch; < 3x MDL	Sediment & SPMD: 1 in 20 samples or 1 per batch		1 in 20 samples or 1 per batch; < 3x MDL	Extraction blank; 1 per batch	1 in 10 samples or 1 per batch	1 in 10 samples or 1 per batch		
Matrix Spike/Matrix Spike Duplicate (or Blank Spike/Spike Duplicate)	Sediment only: 1 in 20 samples or 1 per batch; average of all compounds 40 - 120 %. See also duplicate (below).								
Standard Reference Material (SRM)	Sediment only: 1 in 20 samples or 1 per batch for sediment PAH only; average values should be within ±30 % of certified values; no single value should deviate more than ±35 % from certified value			Reference material used as calibration standard; values must fall within laboratory's calibration curve					
Reference Material (Check Standard or Reference Oil)	Sediment & SPMD: 1 in 20 samples or 1 per batch; averages, standard deviations, and ranges are calculated to provide an estimate of precision				Phenol tested as a reference toxicant with each batch; EC ₂₀ typically 13 - 26 mg/L	Analyzed with each sample batch and must have an RSD of less than ±15% of the previous value and ±25% for each batch	-		
Duplicate	Sediment only: 1 in 20 samples or 1 per batch	Sediment only: 1 in 20 samples or 1 per batch	1 in 20 samples or 1 per batch; used for qualitative assessment of homogeneity of sediment	1 in 20 samples or 1 per batch; ±20 % for low level (<1.0%) carbon samples and ±10% for normal/high carbon (>1.0 % carbon)	Each dilution of each sample is run in duplicate	1 in 10 samples	l in 10 samples (for microsomal preparation); each EROD value is the result of triplicate analyses		

Internal standards and calibration standards were used as required by the analytical SOPs as described in the appropriate analytical method section. For example, internal standard solutions were spiked into each PAH extract prior to analysis. Three calibration standards were analyzed at the beginning of each sample run of bile metabolites.

A procedural blank, typically consisting of HPLC water, was run with each batch of field-collected QC blanks for PAH and THC. For Microtox[®] testing, an extraction blank consisting of a centrifuge tube subject to the entire extraction procedure was run with each batch of sediment. For Microtox[®] testing, a reagent blank (with 0 percent sediment extract) was performed in duplicate for every sample tested, as described in Section 2.2.7. Procedural blanks were also analyzed with bile metabolites and cytochrome P4501A induction analyses. Procedural blanks were subject to the entire procedure as though they were normal samples.

Matrix spike and matrix spike duplicates were run with every each batch or for every 20 PAH/THC sediment samples, whichever was more frequent. For this type of quality control analysis, a sample was randomly chosen and split into three subsamples. Two of these subsamples were fortified with the matrix spike solutions. All three subsamples were analyzed following routine procedure and reported in percent recovery of the matrix spike solution. Relative percent differences between matrix spikes and their duplicates were computed.

The SRMs that were used for the program in conjunction with sediment PAH were obtained from the National Institute of Standards and Technology (NIST SRM 1941). In addition, laboratory reference oils consisting of laboratory-prepared crude oil standards were analyzed with each batch of PAH and THC sediment samples. Results of the reference oil analyses were used to provide an estimate of precision over the course of the analysis. Reference bile material was also analyzed and results compared against laboratory control charts. Descriptive statistics calculated from these results may include averages, standard deviations, and ranges. For the analysis of TOC, SRMs were also analyzed.

Duplicate samples were analyzed for a number of parameters by splitting samples into two subsamples and analyzing following normal protocols. For Microtox[®] testing, each dilution of each sample extract was run in duplicate.

For Microtox[®] testing, two additional types of QC were involved. Phenol was used as the reference toxicant as recommended by the Microbics Corporation. Phenol assays (a total of six) were performed concurrently with each set of sediment extracts and the results were compared to a typical phenol EC_{50} of between 13 and 26 mg/L. This provided a means of assessing the sensitivity of the test bacteria. In addition, the reagent blank performed in duplicate for each sediment sample acted as a negative control to help evaluate test results.

2.3 DATA MANAGEMENT AND ANALYSIS

2.3.1 Data Management

Analytical data were generally obtained from the laboratories on 3.5 inch diskettes in DBASE[®] format. These raw data included sample identification numbers and results only since the samples were sent to the laboratory blind (without station and sampling information). Field sampling and other information was entered into Microsoft Excel[®] for Windows[®] spreadsheets and visually checked against field records. Raw data files were processed and entered into a relational database in Visual FoxPro[®] (Version 3) consisting of nine tables (Table 7).

This database was used for all aspects of data storage, error checking, and reporting. Error checking involved the use of "clean sweep" type programs written in FoxPro[®] along with visual checking of softcopy data stored in the database against hardcopy reports provided by the analytical laboratories or other pertinent records (e.g., field logs). Data reports provided in the appendix of this report were generating using the report writing functions in Visual FoxPro[®]. Data on which statistical analyses were performed were transferred directly from the database to Microsoft Excel[®] spreadsheets for processing. Statistical analyses were performed using either SYSTAT for Windows[®] Version 5.05 or PRODAS[®] Version 3.2A.

 Table 7.
 Tables in the Cook Inlet 1995 EMP Database.

TABLE	CONTENTS
STATION	field sampling information on a by-station basis
SAMPLE	field sampling and sample shipment information on a by-sample basis
ANALYSIS	analytical method and handling data on a by-sample and analysis basis, for field-collected samples
RESULT	analytical results on a by-sample, analysis type, and individual analyte basis, for field-collected samples
QCANAL	analytical method and handling data on a by-sample and analysis basis, for quality control samples originating in the laboratory
QCRESULT	analytical results on a by-sample, analysis type, and individual analyte basis, for quality control samples originating in the laboratory
сос	chain of custody (COC) data on a COC basis
COC_XFER	COC information on a COC, relinquish date, and time basis
VALIDVAL	provides valid values that may be found for different types of fields in the other tables (a look-up table)

2.3.2 Data Handling

Certain conventions were used in preparing the data for statistical analysis. This approach is often used to help eliminate the bias in estimating population parameters in environmental data sets that are "censored to the left" due to zeros or values below the limit of detection for some of the analytes (Gilbert, 1987). When calculating summed or ratio parameters, all values and estimated values were used. This includes those values that were below the MDL, as indicated with a "J" qualifier. Within the scientific community, there is a great deal of debate concerning this practice. However, use of data below the MDL is considered valid and useful, particularly when assessing low-level environmental contamination (EPA, 1993). In addition, due to the rigorously-defined statistically-based concept of the MDL as defined by GERG, the data below the MDL are more likely to contain false negatives (reporting non-detects when concentrations actually do exist) than false positives (reporting erroneous values above non-detect when no such concentrations exist). It should be remembered, however, that there is a lower statistical confidence associated with these below-MDL values than those values reported as above the MDL.

For parameters where individual analytes were used for calculating statistical values (e.g., means) or indices, non-detect concentrations represented with a zero (0) value and/or the "ND" qualifier were assigned a value of 0.05 ng/g, which is less than one-half the lowest reported concentration in the data set. This method has been shown to cause less bias in estimating population parameters than several alternative methods (Gilbert, 1987).

2.3.3 Statistical Design

This program was designed to provide sufficient data to test the null hypothesis as stated in Section 1.2. The sediment and SPMD hydrocarbon parameters subject to statistical hypothesis testing included Total PAH, THC, and the fossil fuel pollution index (FFPI; Boehm and Farrington, 1984), as described in Table 8.

Total PAH and THC indicate the total level of hydrocarbon input at a site but provide no information on the possible sources (i.e., contamination of petrogenic, biogenic, pyrogenic, or diagenic origin; see glossary). The FFPI is the ratio of fossil fuel-derived PAH to TPAH (fossil + pyrogenic + diagenic). A high FFPI is indicative of fossil fuel (petrogenic) input, and a low FFPI is indicative of pyrogenic (combusted) and diagenic inputs. The use of ratios such as the FFPI is useful for determining potential sources of petroleum in sediments but may be less so in SPMD analyses because of potential preferential uptake of PAHs due to environmental factors, such as water temperature or membrane permeability.

 Table 8.
 Hydrocarbon Parameters used in Hypothesis Testing.

PARAMETER	RELEVANCE
Total PAH	As determined by high resolution GC/MS with quantification by selected ion monitoring. Defined as the sum of 2 to 5-ring polycyclic aromatic hydrocarbons: naphthalene + fluorene + dibenzothiophene + phenanthrene + chrysene, and their alkyl homologues + other PAHs (excluding perylene, a compound which often occurs naturally). Useful for determining levels of PAH contamination.
THC	Total hydrocarbons defined as the weight of the sample extract following extraction but prior to fractionation. This method provides a measure of the total extractable material in a sample minus the polar-type compounds.
FFPI	The fossil fuel pollution index is the ratio of fossil-derived PAHs to TPAH and is defined as follows: FFPI = $(N + F + P + D)/TPAH \times 100$, where: N (Naphthalene series) = $C_0 - N + C_1 - N + C_2 - N + C_3 - N + C_4 - N$ F (Fluorene series) = $C_0 - F + C_1 - F + C_2 - F + C_3 - F$ P (Phenanthrene/Anthracene series) = $C_0 - A + C_0 - P + C_1 - P + C_2 - P + C_3 - P + C_4 - P$ D (Dibenzothiophene series) = $C_0 - D + C_1 - D + C_2 - D + C_3 - D$ FFPI is near 100 for petrogenic PAH; FFPI for pyrogenic PAH is near 0 (Boehm and Farrington, 1984).

Other parameters used for hypothesis testing included the biliary metabolites, liver P4501A enzyme induction analyses, and bivalve condition index. Toxicity and hydrography data were not examined using statistical methods.

2.3.4 Data Analysis

The data analyses performed for this program fell into three main categories:

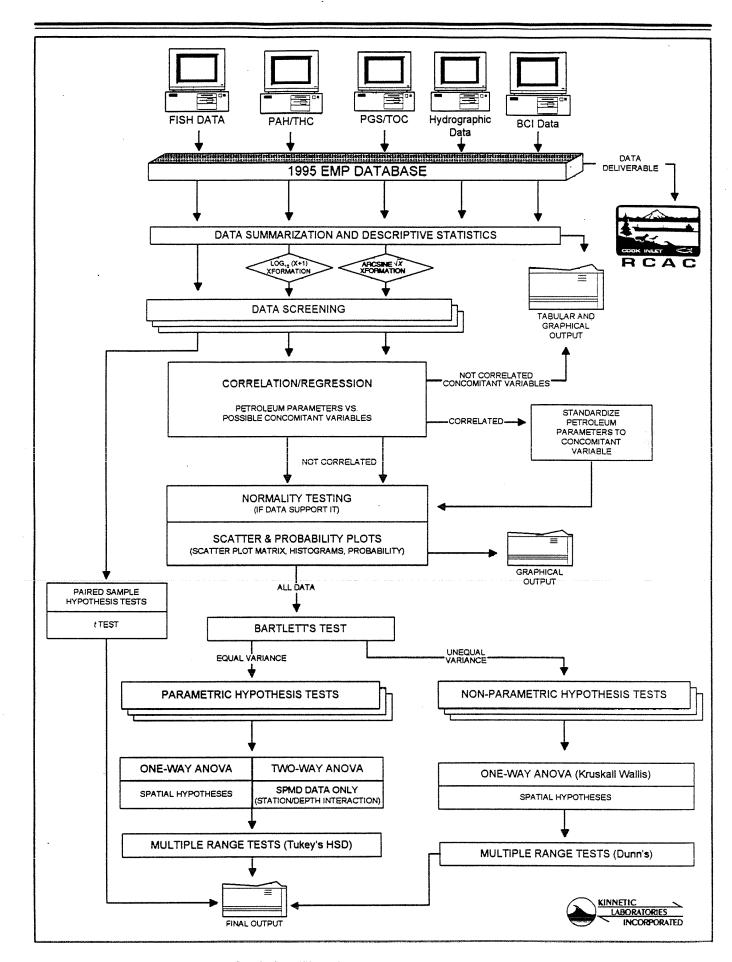

- Data summary, graphical presentation, and descriptive statistics
- Data screening and transformation, including variance testing and testing of correlation of concomitant variables
- Hypothesis testing.

Figure 3 depicts the flow of data as they were analyzed for this program.

Data summary and descriptive statistics included measures of dispersion, such as mean and standard deviation. Graphical presentations of the data were used to allow visual interpretation of the data set such as scatter of the data points.

Concentration data for PAH and THC were transformed prior to statistical analysis using a logarithmic transformation $(\log_{10} (x+1))$. Non-linear transformations such as the $\log_{10} (x+1)$ are commonly used with environmental data sets since these types of data tend to be skewed and transformations can satisfy the assumptions for normality without seriously violating the integrity of the data (Gilbert, 1987). In addition, this transformation is routinely used for data that are not normally distributed or where the variance is dependent on the mean (Zar, 1984). Proportional data (TOC and PGS) were processed using an arcsine transformation ($\arcsin\sqrt{x}$) prior to data analysis (Zar, 1984). These transformations were employed when these parameters were used for correlation, regression, and hypothesis testing. In calculating relatively simple descriptive statistics such as mean and standard deviation, the raw data (non-transformed values) were used for all parameters.

Total organic carbon and PGS samples were collected in the field as paired concomitant replicates with the sediment PAH and THC hydrocarbon samples. To evaluate the potential correlation of TOC and PGS with the hydrocarbon data,

Figure 3. Data Handling and Statistical Flowchart.

Pearson's Correlation and Spearman's Rank Correlation Coefficient were computed (Sokal and Rohlf, 1995). In addition, scatter plot matrices which included a best-fit line and 95% confidence limits were used for visual evaluation of these variables' potential effects on the hydrocarbon parameters.

Proper use of parametric testing requires that two basic assumptions be met by the data. The first of these requires that the data set have a normal distribution. This assumption is routinely tested using statistical methods such as the Lilliefor's modification of the Kolmogorov-Smirnov test (Zar, 1984). This statistic, however, is inappropriate for data sets with a small sample size, because it can only detect grossly non-normal data. The use of log transformation, as described above, is often used to ensure that this assumption is met. The second assumption concerns the homogeneity (or homoscedasticity) of the variances of the data. Parametric hypothesis testing is only appropriate for data sets where common variances exist (Sokal and Rohlf, 1995). Bartlett's test for variance homogeneity (Sokal and Rohlf, 1995) was applied to the data to test this second assumption. This test is appropriate for smaller sample sizes and is also quite sensitive to departures from normality. This same method of data screening was used during the pilot program (ADL, 1995a). Parameters that exhibited common variances (known as homogeneity or homoscedasticity) were subject to hypothesis testing using parametric methods. Those which exhibited a lack of common variances (i.e., heteroscedastic) were analyzed using non-parametric methods.

For hypothesis testing, all probability tests assumed an $\alpha = 0.05$ Type I error probability and incorporated a one-way design to address spatial differences among sites. When possible, results from the variance testing, as described above, were used to determine the appropriate statistical test used for each data set, as follows:

• Parametric ANOVA

One-way parametric ANOVA was performed on appropriate parameters for all stations within a survey. When ANOVA results indicated significant differences between stations, the data were further examined using the Tukey's Honestly Significant Difference (HSD) multiple range test to differentiate between stations based on the station means.

Two-way parametric ANOVA was performed on SPMD data. This test was appropriate because of the non-replicated sample design of the SPMD moorings and the station/depth interaction. The Tukey's HSD test was used to show the statistical differences between the different cells of the test. Although a non-parametric ANOVA (Friedman's; Zar, 1984) could also have been performed, there is no readily-available multiple range test that could have been used to identify the differences between stations and depths.

• Non-parametric ANOVA

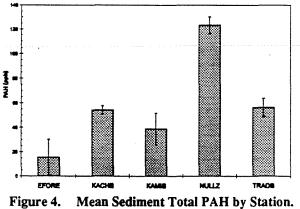
One-way non-parametric ANOVA was performed on appropriate parameters for all stations within a survey using a Kruskal-Wallis test. Significant results from this test were further evaluated with Dunn's test, which utilizes Wilcoxon rank sums rather than means to determine significant differences between stations.

• Two-sample t-test

In cases where a paired-sample hypothesis was tested by comparing replicated data from two station, the twosample (or paired) *t*-test was used. For example, this commonly-used test was appropriate when comparing bile metabolite data collected at each of two stations.

3.0 **RESULTS AND DISCUSSION**

This section presents an overview of the analytical results. Sample collection and analytical data results may be found in the appendices of this report. All hydrocarbon parameters include actual values as well as those that fall below MDLs. That is, results and discussion presented in this report are based on data that have not been censored by removing concentrations below the MDL. As noted in Section 2.3.3, total PAH is the sum of the target PAHs, excluding perylene.


3.1 Sediments

3.1.1 Sediment Chemistry and Particle Grain Size

Fifteen sediment replicates were collected during the 1995 EMP for the analysis of sediment chemistry (PAH, THC, and TOC), PGS, and Microtox[®]. At each of five stations, three discrete replicates were collected.

Particle grain size and TOC were collected as concomitant samples and were evaluated in conjunction with hydrocarbon parameters using correlation and regression. Results of these statistical tests did not show a strong correlation between the parameters, indicating that normalization of hydrocarbon data based on PGS (silt plus clay) or TOC was not strictly necessary. However, because of the *a priori* reason to suspect that these parameters may affect hydrocarbon levels in sediments and because of the small sample size in this study, hypothesis testing was performed both with and without normalization. Results summarized in this section include hypothesis testing on the following:

- Total PAH
- Total PAH normalized to silt plus clay
- Total PAH normalized to TOC
- THC
- THC normalized to silt plus clay
- THC normalized to TOC
- FFPI.

Total PAH in individual sediment replicates ranged from 5.9 ng/g (parts per billion [ppb]) at EFORE to 129.8 ppb at NULLZ (Table 9). Total PAH values at NULLZ were the highest encountered in the study, with a station mean of 123.3 ppb (Figure 4). It is possible that sediments at the NULLZ station are accumulating hydrocarbons. Individual replicate values at all other stations fell below 64.4 ppb. Ranked by total PAH station means, the five stations were ordered NULLZ, TRADB, KACHB, KAMIB, and EFORE (highest to lowest).

Individual PAH analytes were generally quite low and many were below their MDLs (Appendix B). Most values were below 10 ppb, with only 4 percent of the total falling above this level. Of these,

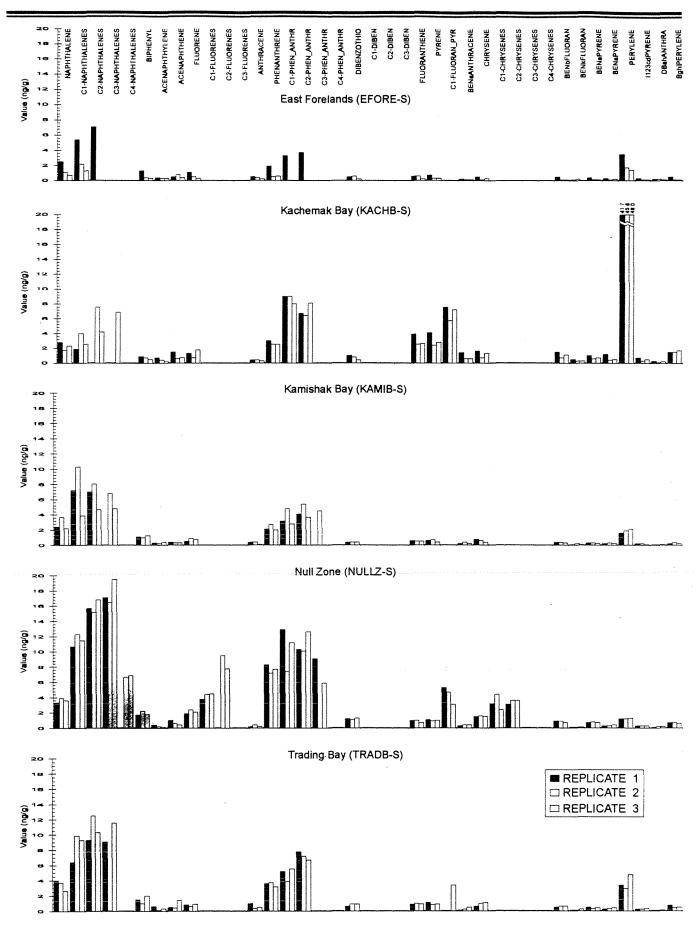
three high values at KACHB were for the analyte of perylene, which is known to be non-petrogenic in nature. Other values greater than 10 ppb were exhibited for the naphthalene homologues (C_1 Naphthalene, C_2 Naphthalene, and/or C_3 Naphthalene), at KAMIB, NULLZ, and TRADB. The NULLZ station also exhibited slightly elevated values (>10 ppb) for the homologues of phenanthrene/anthracene (C_1 , C_2 , and/or C_3 Phenanthrene/Anthracene).

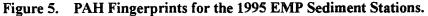
Individual fingerprints of the sediment PAH results indicated a probable combination of hydrocarbon sources. Fairly normal distributions of 2-, 3-, and 4-ring PAHs with the parent at lower concentrations than their alkylated homologues were more obvious at the KAMIB and TRADB stations, and to a lesser extent at the NULLZ, than at KACHB and EFORE (Figure 5). This type of distribution is characteristic of petrogenic input. However, the dibenzothiophene homologues are absent from all stations, indicating that the higher ends of the petrogenic assemblage are lacking. This

Station	Rep.	Sample Number	Date	Time	THC	Total PAH	FFPI	Sand (%)	Silt & Clay (%)	TOC (%)
					(µg/g)	(ng/g)				
	1	CIR95PTT0010		11:34	4.0	32.3	82.04	63.4	36.7	0.41
EFORE-S	2	CIR95PTT0011	6/23/95	11:51	1.9	8.8	67.61	39.4	60.7	0.22
	3	CIR95PTT0012		12:03	3.6	5.9	66.95	92.3	7.8	0.13
	1	CIR95PTT0007		09:09	50.8	54.4	48.99	33.5	66.4	1.59
	1	CIR95PTT0007D ^a		09:09	53.3	47.9	59.92	N/A	N/A	1.50
KACHB-S	2	CIR95PTT0008	6/22/95	10:04	24.4	50.6	66.40	29.3	70.7	1.50
	2	CIR95PTT0008D ^a		10:04	N/A	N/A	N/A	30.5	69.5	N/A
	3	CIR95PTT0009		10:19	12.4	57.7	64.90	37.0	63.0	1.36
	1	CIR95PTT0004		11:32	2.1	32.7	85.02	74.1	26.0	1.48
KAMIB-S	. 2	CIR95PTT0005	6/21/95	11:58	4.1	53.7	90.50	74.1	25.8	0.39
	3	CIR95PTT0006		12:12	9.4	30.1	85.88	62.7	37.4	0.35
	1	CIR95PTT0001		10:23	2.2	116.1	81.70	87.8	12.2	0.43
NULLZ-S	2	CIR95PTT0002	6/20/95	11:02	4.7	123.9	81.96	86.2	13.8	0.43
	3	CIR95PTT0003		11:21	7.6	129.8	86.17	84.2	15.8	0.48
	1	CIR95PTT0013		19:46	4.5	55.3	87.25	16.1	83.9	0.50
	2	CIR95PTT0014		19:58	2.3	49.2	87.80	21.1	78.9	0.50
	3	CIR95PTT0015		20:09	2.5	64.4	80.67	9.4	90.6	0.53
	3	CIR95PTT0015D ^a	(102.105	20:09	N/A	N/A	N/A	10	90.1	N/A
TRADB-S	FB	CIR95PTB0001	6/23/95	20:29	<1.0	5.1	85.29	N/A	N/A	N/A
	FB	CIR95PTB0001D ^a		20:29	<1.0	5.2	79.81	N/A	N/A	N/A
	EB	CIR95PTB0002		20:21	<1.0	4.7	81.71	N/A	, N/A	N/A
	EB	CIR95PTB0002D ^a		20:21	<1.0	4.1	86.17	N/A	N/A	N/A

Table 9. Summary of Sediment and Field-Collected Blank Results.

N/A Not Applicable

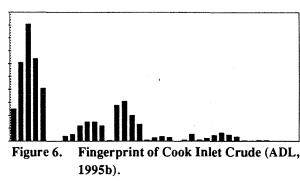

FB Field Blank


EB Equipment Blank

Lab Duplicate

Sample numbers for Sand and Silt & Clay results have PGS in place of PTT.

Page 28



Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Page 29

is typical of Cook Inlet (Figure 6) and Katalla seep source inputs. In addition, the 4-, 5-, and 6-ring PAHs indicative of pyrogenic inputs (from combustion sources) are present at most stations, although in low concentrations compared to the petrogenic PAHs. These higher molecular weight PAHs are entirely absent at KAMIB. In addition, the alkylated chrysenes are largely absent except at the NULLZ. These analytes are typically associated with diesel fuel as the source. Perylene was present in all samples, ranging from 1.2 ppb (below MDL) at NULLZ to 48 ppb at KACHB.

The ratio of certain alkylated PAHs to one another is often used as

a diagnostic tool for source identification. This includes such ratios as C_2 Dibenzothiophene/C Phenanthrene, C_3 Dibenzothiophene/C_3Phenanthrene, C_2 Chrysene/C_2Phenanthrene, and C_3 Chrysene/C_3Phenanthrene. However, because of the absence of many of these PAHs in this sample set, especially the alkyl dibenzothiophenes, use of these ratios is not considered useful here. The alkyl chrysenes were also largely lacking from the data set.

Results of the one-way non-parametric ANOVA performed on log transformed total PAH results indicated significant differences between stations at the α =0.05 level (ρ =0.020; Table 10). Multiple range testing (Dunn's) indicated that NULLZ, which showed the highest total PAH concentration, was significantly different from EFORE, which had the lowest concentrations. The fact that the NULLZ samples exhibited elevated hydrocarbon levels may indicate that these compounds are accumulating at this location. Non-parametric ANOVA of total PAH normalized to silt plus clay showed significant differences between stations (ρ =0.029). Dunn's test results of this parameter showed that NULLZ, which exhibited the highest total PAH and the lowest silt plus clay in terms of station means, was significantly different from TRADB, which had the highest silt plus clay values. It is questionable whether this significance is meaningful, however, because high PAHs are typically associated with higher silt plus clay values as the PAHs more readily adsorb onto finer particles. When normalized to TOC, total PAH also showed significant differences between stations when tested non-parametrically (ρ =0.034). Multiple range testing indicated that the NULLZ and KACHB stations were significantly different from one another.

Individual replicate THC ranged from 1.9 μ g/g (parts per million [ppm]) at EFORE to 53.3 ppm at KACHB (Table 9). Station means ranged from 3.1 ppm at TRADB to 29.2 ppm at KACHB (Figure 7). The elevated levels of THC at KACHB compared to all other stations is not suprising considering the large amount of pervlene seen at this station. Parametric one-way ANOVA of log transformed THC indicated a significant 2 difference between stations ($\rho=0.005$), and the Tukey's HSD test indicated that KACHB was significantly different from all other stations. Differences between stations were not significant when THC levels were normalized to either silt plus clay or TOC ($\rho=0.154$ and 0.554, respectively). This showed that, although correlation and regression analyses did not indicate a relationship between these parameters and THC levels, they may in actuality have an effect on THC.

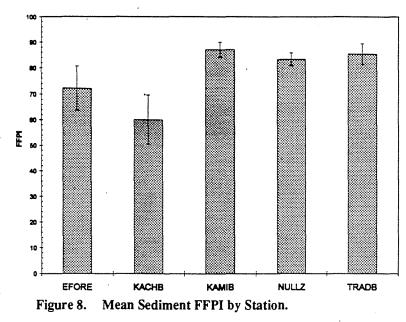
Table 10. Results of One-Way ANOVA Hypothesis Testing on EMP Sediment Stations. Bold probability (ρ) values represent significance at the predetermined level (α =0.05) for Type I errors. Stations joined by solid line were not significantly different in Tukey's or Dunn's multiple comparison. Values in parentheses are untransformed station means (n=3). Values are reported in parts per billion (ng/g) dry weight for PAH and μ g/g for THC.

VARIABLE " '	ANOVA '	PROBABILITY (ρ)	LOW		STATION '		HIGH
Total PAH	NP	0.020	(15.7) EFORE	(38.8) KAMIB	(54.2) KACHB	(56.3) TRADB	(123.3) NULLZ
Total PAH (Normalized to Silt+Clay)	NP	0.029	(0.7) TRADB	(0.6) EFORE	(0.8) KACHB	(1.4) KAMIB	(8.9) NULLZ
Total PAH (Nomalized to TOC)	NP	0.034	(36.8) KACHB	(54.7) EFORE	(81.9) KAMIB	(110.2) TRADB	(276.2) NULLZ
THC	Р	0.005	(3.1) TRADB	(3.2) EFORE	(4.8) NULLZ	(5.2) KAMIB	(29.2) KACHB
THC (Normalized to Silt+Clay)	Р	0.154	(0.04) TRADB	(0.16) KAMIB	(0.20) EFORE	(0.33) NULLZ	(0.44) KACHB
THC (Normalized to TOC)	Р	0.554	(6.1) TRADB	(12.9) KAMIB	(10.6) NULLZ	(15.4) EFORE	(19.1) KACHB
FFPI	Ρ	0.002	(60.1) KACHB	(72.2) EFORE	(83.3) NULLZ	(85.2) TRADB	(89.4) KAMIB

PAH and THC values were log transformed $[Log_{10}(X+1)]$ prior to running hypothesis tests.

NP = Non-parametric One-Way ANOVA (Kruskal-Wallis)

P = Parametric One-Way ANOVA

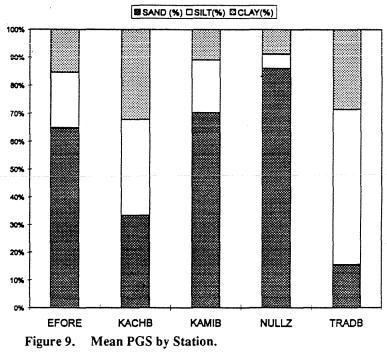

Variables failing Bartlett's test for homogeneity were run non-parametrically

Stations are ranked from lowest to highest mean value for parametric tests and by Wilcoxon rank sums for non-parametric tests. (Wilcoxon scores not included in table).

а

b

С



Individual FFPI ratios computed for all replicates ranged from 49.0 to 90.5 with station means ranging from 60.1 (KACHB) to 87.1 (KAMIB). As noted in Section 2.3.3, FFPI ratios close to 100 indicate petrogenic hydrocarbons, while a ratio near 0 indicates pyrogenic and diagenic sources (Boehm and Farrington, 1984). As expected from the fingerprints, KAMIB and TRADB hydrocarbons appear to be the result of petrogenic inputs with mean FFPIs of 87.1 and 85.2, respectively (Figure 8). The NULLZ station showed a mean of 83.3 for FFPI. Lower FFPI ratios were encountered at EFORE (72.2) and KACHB (60.1). Hydrocarbons at all stations tended to be more petrogenic than pyrogenic in nature based on FFPI values, which is substantiated by the lower relative levels of the higher molecular weight PAHs. Parametric one-

way ANOVA indicated that significant differences existed for FFPI between stations (ρ =0.002). Tukey's HSD indicated that KAMIB, TRADB, and NULLZ were significantly different as a group from KACHB.

Percent silt plus clay station means ranged from 13.9 at NULLZ, a very sandy station, to 84.5 at TRADB (Figure 9). On the basis of both means and medians, stations were ranked from high to low as TRADB, KACHB, EFORE, KAMIB, and NULLZ. Percent TOC station means ranged from 0.25 at EFORE to 1.48 at KACHB, with individual values ranging from 0.13 to 1.59 with the same stations at the extremes.

Results of the analyses performed to provide an evaluation of extraction efficiency are provided in Table 11. Three samples collected during the pilot program in 1994 were provided to GERG for analysis, and extractions were performed using two different methods as described in Section 2.2.2. In all three samples, soxhlet extraction resulted in higher extraction efficiency (based on higher total PAH values) than the sonication procedure performed by GERG. As anticipated, the sonication extraction performed by GERG

apparently failed to extract some of the more highly-alkylated homologues, particularly the naphthalene and fluorene series. This is why the more efficient soxhlet extraction procedure was proposed by GERG at the beginning of the 1995 EMP. All three samples subject to sonication at GERG showed lower total PAH than those extracted by sonication at ADL (electronic data provided by CIRCAC). Without more closely examining each laboratory's sonication procedures, and possibly analyzing more samples, it is impossible to determine why sonication extraction efficiencies differ so much between the two laboratories.

When comparing ADL's sonication procedure results with 1995 soxhlet extraction analyses of splits of the same samples at GERG, the total PAH results seem comparable. Two of the soxhlet procedure samples analyzed at GERG resulted in higher total PAH (113.8 and 117.3 ppb) as compared to ADL results (92.8 and 113.5 ppb). One sample, from Trading Bay, showed a lower total PAH for GERG's soxhlet procedure (110.4 ppb) as compared to ADL's sonication (114.9 ppb).

Sample	GERG Sonication Total PAH (ng/g)	GERG Soxhlet Total PAH (ng/g)	ADL Sonication Total PAH (ng/g)	Average RPD for All Analytes (GERG Soxhlet/ADL Sonication)
Trading Bay (RCAC940500OR)	89.0	117.3	113.5	7.0
Trading Bay (RCAC940600OR)	74.5	110.4	114.9	9.8
East Forelands (RCAC941700OR)	88.1	113.8	92.8	20.3

Table 11. Comparison of Total PAH Results from Different Extraction Procedures.

The differences in reported total PAH concentrations by the two different extraction methods are minimal, particularly since analyses were run on sample splits. In fact, average relative percent differences (RPDs) comparing the two laboratories' results were 7.0, 9.8, and 20.3, well within the expected range for sample splits. In addition, the fingerprints of GERG's soxhlet extraction results and ADL's sonication results are comparable, particularly with respect to the more alkylated homologues (Figure 10).

Laboratory quality control objectives for PAH sediment and water blank analyses were met as specified in the SOPs, with any individual data points failing to meet specific criteria appropriately qualified as described in Section 2.2.11. Procedural blank values all fell below three times the MDL. Total PAH in field-collected water blanks was low, ranging from 4.1 to 5.2 ppb, also less than three times the MDL. Surrogate recoveries for samples and QC samples fell within acceptance criteria of 40 to 120 percent. Matrix spike/matrix spike duplicate average recovery of all analytes fell between 40 and 120 percent. Check standards and SRMs (NIST 1941) results were within expected laboratory performance standards.

Quality control objectives for TOC were met as specified in the SOP. The procedural blank showed a TOC concentration of less than three times the MDL. One sample in the TOC batch was duplicated, and duplicate values were within 20 percent. Analysis of an NIST SRM (1941) fell within the acceptance range for the laboratory.

3.1.2 Microtox[®] Testing

Microtox[•] testing indicated no toxicity in any of the sediments sampled (Appendix B). For each sample, the maximum amount of sediment that could be tested following this procedure (1.63 mg of sediment/mL of extract) failed to produce sufficient light inhibition to allow the calculation of an EC_{50} value. Due to the lack of toxicity demonstrated by samples collected during the first survey (Tier 1), no further toxicity testing was performed. Quality control performed in conjunction with toxicity testing included an extraction blank which exhibited negative or low gamma readings, indicating no toxicity. In addition, six phenol reference toxicant assays were performed. The EC_{50} for phenol ranged from 20.36 to 24.71 mg/L, well within the expected range of 13 to 26 mg/L. Mean EC_{50} for phenol was 22.38 ±1.73 mg/L.

3.2 Semi-Permeable Polymeric Membrane Devices

Moorings supporting surface and bottom SPMDs were deployed at three stations: EFORE, KACHB, and TRADB. Individual SPMD results can be found in Appendix C. Exposure time of the moorings ranged from approximately 32 to 35 days (Table 12). The SPMDs accumulated varying levels of PAHs, with TRADB showing the highest total PAH

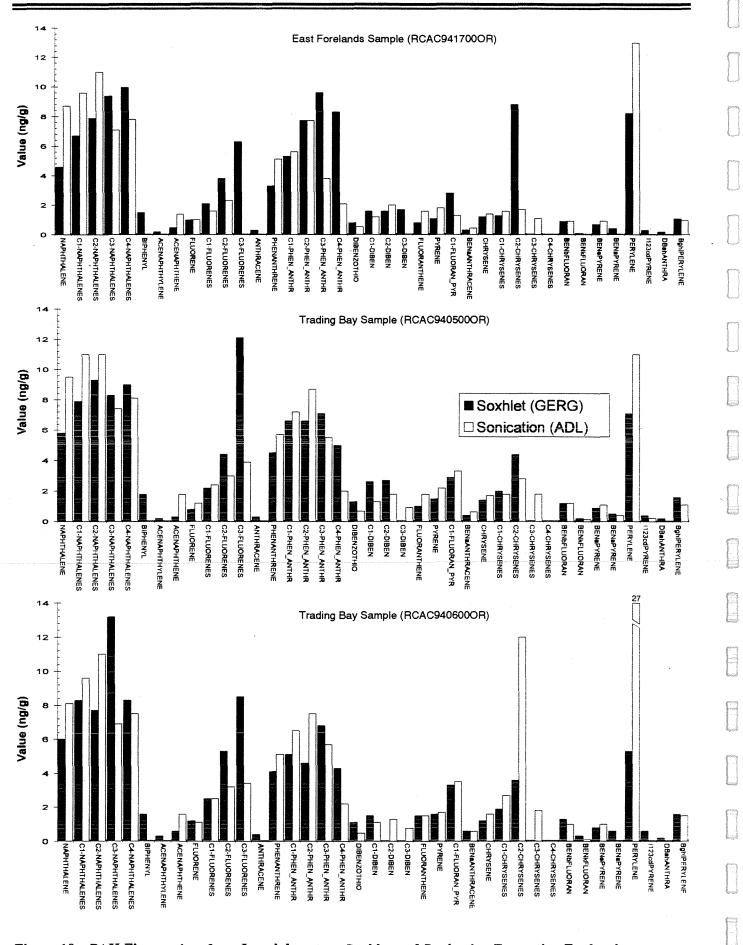


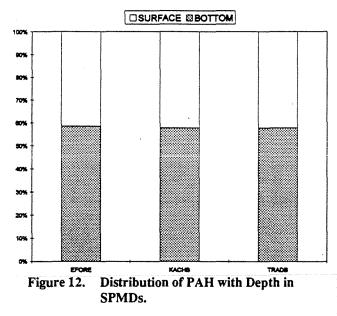
Figure 10. PAH Fingerprints from Interlaboratory Soxhlet and Sonication Extraction Evaluation.

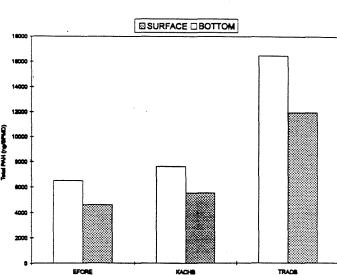
Station	Sample Number	Action	Date	Time	Exposure Time	Total PAH (ng/SPMD)	THC (mg/SPMD)	FFPI	Temp. (°C)	Salinity (‰)	DO (mg/L)	pH (units)
EFORE-M	CIR95SPM0003	DEPLOY	N/A	N/A	10 MIN	2,403.8	0.37	N/A	N/A	N/A	N/A	N/A
(FB)	CIK955F 100005	RETRIEVE	N/A	N/A	13 MIN	2,403.8	0.37	IN/A	N/A	N/A	N/A	N/A
EFORE-M	CIR95SPM0004	DEPLOY '	6/24/95	01:33	31.9 DAYS	4,605.6	0.65	89.0	10.6	23.0	9.6	7.9
(SFC)		RETRIEVE	7/25/95	23:20	51.9 DA 13	4,005.0	0.05	89.0	13.7	20.1	8.5	8.0
EFORE-M	CIR95SPM0005	DEPLOY	6/24/95	01:32	31.9 DAYS	6,494.7	0.47	94.0	10.6	23.0	9.6	7.9
(BOT)		RETRIEVE	7/25/95	23:20	51.9 DA 13	0,494.7	0,47	94.0	13.4	20.5	8.6	8.0
КАСНВ-М	CIR95SPM0001	DEPLOY	N/A	N/A	8 MIN	2,513.9	0.20	N/A	N/A	N/A	N/A	N/A
(FB)		RETRIEVE	N/A	N/A	6 MIN	2,515.9	0.20	МЛ	N/A	N/A	N/A	N/A
КАСНВ-М	CIR95SPM0008	DEPLOY	6/22/95	14:36	34.8 DAYS	5,545.4	0.54	88.7	7.8	30.6	11.1	8.2
(SFC)		RETRIEVE	7/27/95	09:15	54.0 DA15	5,545.4	0.54	00.7	9.8	28.1	9.5	8.1
KACHB-M	CIR95SPM0009	DEPLOY	6/22/95	14:34	34.8 DAYS	7,635.9	0.37	91.3	6.2	31.3	10.0	8.1
(BOT)		RETRIEVE	7/27/95	09:39	54.0 DA15	1,055.7	0.57	71.5	8.8	30.0	9.4	8.1
TRADB-M	CIR95SPM0002	DEPLOY	N/A	N/A	11 MIN	2,443.4	0.36	N/A	N/A	N/A	N/A	N/A
(FB)		RETRIEVE	N/A	N/A	12 MIN	2,113.1	0.50	1	N/A	N/A	N/A	N/A
TRADB-M	CIR95SPM0006	DEPLOY	6/23/95	23:31	32.5 DAYS	11,949.6	0.63	94.2	9.3	23.1	10.0	7.9
(SFC)		RETRIEVE	7/26/95	11:45	52.5 5415	11,747.0	0.05	27.6	12.3	21.0	9.3	7.9
TRADB-M	CIR95SPM0007	DEPLOY	6/23/95	23:30	32.5 DAYS	16,458.9	0.54	94.5	9.0	24.5	10.0	8.0
(BOT)		RETRIEVE	7/26/95	11:46			0.0 .		12.3	21.1	9.3	7.9

 Table 12.
 Summary of Semi-Permeable Polymeric Membrane Device (SPMD) Results with Associated Hydrographic Data.

FB Field Blank

SFC 2.5 Meters Below Water Surface


BOT 2.5 Meters Above Bottom


N/A Not Applicable

Page 35

concentrations followed by KACHB and EFORE (Figure 11). During the 1994 program, the highest SPMD PAH concentrations were also seen at the TRADB site. Total PAH concentrations at TRADB were 11,950 and 16,459 ng/SPMD for the top and bottom SPMDs, respectively. At each station, the bottom SPMD accumulated more PAHs than the surface SPMD. As shown in Figure 12, the distribution of PAHs found at the bottom of each mooring accounted for about 58 percent of the whole.

The PAH fingerprints exhibited a number of interesting features. Relatively high levels of naphthalene and alkyl naphthalenes were seen in all samples including the field blanks, which probably indicates air contamination rather than actual accumulation of naphthalenes in the water

column (Figure 13). High levels of the naphthalenes were also seen in the two laboratory blanks which may indicate contamination in the preparation, extraction, or processing of the SPMDs in the laboratory rather than a field methodology problem (refer to Appendix C). However, even taking methodology problems into account, naphthalenes at TRADB were considerably elevated as compared to all other samples. There were also relatively high levels of the alkyl fluorene analytes in a number of samples, with the highest concentrations of alkyl fluorenes in the bottom SPMDs at all three mooring sites. Much lower concentrations were seen in the near surface and field blank samples. Relatively high levels of the alkyl fluorenes, however, were also seen in one of the two laboratory method blanks, which may indicate a problem with SPMD preparation, storage, or analytical The ratio of dibenzothiophenes to methodology. phenanthrenes was similar for EFORE and KACHB, whereas the TRADB site had much higher concentrations of

phenanthrenes relative to the dibenzothiophenes, which is typical of Cook Inlet crude oil. Visual comparison of the fingerprints in Figures 6 and 13 also indicates similaries between Cook Inlet crude oil and the TRADB SPMD results. However, source identification of the hydrocarbons in the TRADB SPMD is difficult because of the methodology problems as discussed above and the fact that chrysene concentrations were lower than expected in the SPMDs.

At TRADB, the surface and bottom fingerprints were similar with slightly higher PAH concentrations at the bottom (Figure 13). Except for the fluorenes, it appears that the same suite of hydrocarbons was sampled by the top and bottom SPMDs at EFORE and KACHB, with similar abundances of individual PAH analytes. It is inferred that in general, more hydrocarbons were available for accumulation at the bottom locations, closer to the sediment-water interface where the bulk of sediment resuspension and sediment transport occurs.

Results of the two-way parametric ANOVA performed on the SPMD data indicated significant differences between stations (ρ =0.0002) and depths (ρ =0.0006) for log transformed total PAH (Table 13). Results of the Tukey's HSD test indicated that each station was significantly different than the others when looked at in terms of the station mean (mean total PAH of the top and bottom SPMDs). In terms of depth, the top and bottom SPMDs (averaged across stations) were also shown to be significantly different by the Tukey's HSD test. However, the two-way ANOVA also indicated a significant interaction (ρ =0.0002) of station and depth. This lack of independence between the two test factors makes interpretation unreliable.

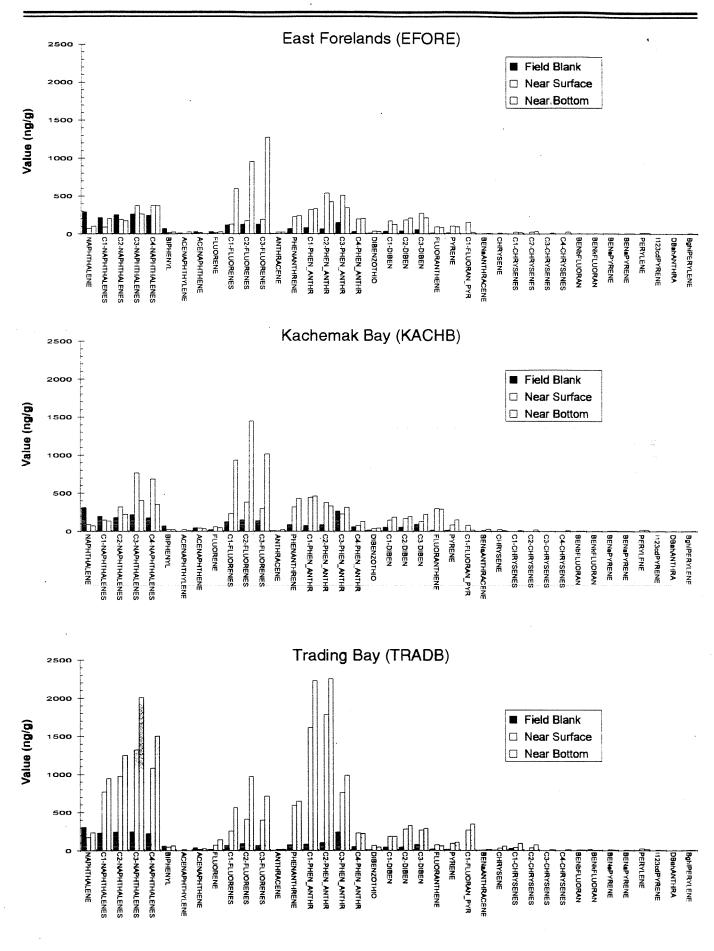


Figure 13. PAH Fingerprints for SPMDs at East Forelands, Kachemak Bay, and Trading Bay.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Table 13.Results of Two-Way ANOVA Hypothesis Testing on SPMD Mooring Stations. Bold probability
(ρ) values represent significance at the predetermined level (α =0.05) for Type I errors. Stations or
depths joined by solid line were not significantly different in Tukey's multiple comparison. Values in
parentheses are untransformed means in (n=3 for station, and n=2 for depth).

VARIABLE "	STATION PROBABILITY	LOW	STATION	HIGH	DEPTH PROBABILITY	DEF	TH HIGH	STN*DEPTH PROBABILITY
Total PAH [*]	0.0002	(5,550) EFORE	(6,590) KACHB	(14,204) TRADB	0.0006	(7,366) SFC	(10,196) BOT	0.0002
THC ^b	0.122	(0.46) KACHB	(0.56) EFORE	(0.59) TRADB	0.040	(0.46) BOT	(0.61) SFC	0.074
FFPI	0.225	(90.00) KACHB	(91.48) EFORE	(94.34) TRADB	0.195	(90.63) SFC	(93.25) BOT	0.229
								267

a PAH and THC values were log transformed [Log₁₀ (X+1)] prior to running hypothesis tests.

b Values in parentheses show results for PAH (ng/SPMD) and THC (mg/SPMD).

Concentrations of THC found in surface SPMDs at all three stations were higher than those in bottom SPMDs (Table 12). The surface THC at EFORE was 0.65 mg/SPMD, slightly higher than that at TRADB (0.63 mg/SPMD) and KACHB (0.54 mg/SPMD). Bottom THC levels ranged from 0.37 mg/SPMD at KACHB to 0.54 mg/SPMD at TRADB.

Concentrations of THC in the field blanks ranged from 0.2 to 0.37 mg/SPMD. The analysis of THC in SPMDs is confounded by the lipid material that concentrates the organics in the SPMDs which makes interpretation of THC data unreliable. In general, however, there appeared to be a trend of the least amount of THC in the field blanks, followed by greater concentrations in the bottom samples, and the highest concentrations at the surface.

Results of a parametric two-way ANOVA performed on log transformed THC data did not indicate a significant difference between stations, but did show a significant difference between depths (ρ =0.040; Table 13). Surface SPMDs had significantly higher THC concentrations than those at the bottom. The test results for the interaction term was non-significant (ρ =0.074).

The calculated FFPIs for SPMDs were high and ranged from 88.7 at KACHB surface to 94.5 at TRADB bottom. This seems to be in agreement with the petrogenic signatures exhibited by the SPMD samples. However, as noted in Section 2.3.3, use of FFPI as a source identifier of hydrocarbons in SPMDs is likely confounded by preferential uptake of hydrocarbons and other factors that may influence the individual PAH concentrations, such as membrane permeability. Results of a parametric two-way ANOVA failed to show significant differences in FFPI between stations or depths (Table 13).

Quality control samples for the SPMDs consisted of field blanks, laboratory blanks, and solvent blanks as described in Sections 2.1.2 and 2.2.11. Results of total PAH from the field blanks were all substantially lower than their associated samples and were, in general, less than half of the sample value. With the exception of naphthalenes, individual PAH analytes were also lower in the field blanks than in their associated field samples. Naphthalene and C_1 and C_2 -naphthalene values were as high or higher in the field blanks than in the field samples. This probably reflects differences in exposures of the blank and field samples, the high solubility of naphthalene, and the greater likelihood of air contamination from these extremely volatile compounds. The low field blank values demonstrated that field methods were for the most part successful in minimizing hydrocarbon exposure to the SPMDs during the deployment and retrieval process. Reducing field contamination was of primary importance given the problems encountered during the pilot program. The total PAH field blank values from all three stations were very similar indicating that possible exposure due to field sampling was the same for each site. Comparisons of these field blanks to the laboratory blanks also indicates that field exposure was very low. Of the two laboratory blanks that were run, total PAH for one was slightly higher than the associated field blanks and one was substantially lower. One of the laboratory blanks was considered to be anomalously high due to a probable storage problem in the laboratory. This blank showed high levels of alkyl fluorenes, which accounted for almost half of the total PAHs. These potentially elevated levels of alkyl fluorenes were also noted on two of the bottom SPMDs (at EFORE and KACHB) and may indicate a problem with the methodology.

The laboratory QC for the PAH analysis of the SPMDs were all within the specified limits with the following exceptions. A matrix interference was encountered with the surrogate d_{10} -Phenanthrene where an unidentified compound co-eluted with the analyte and precluded using this surrogate for quantification. The surrogate d_{10} -Acenaphthene was substituted for quantifying the analytes normally covered by d_{10} -Phenanthrene. In addition, the surrogate d_{12} -Perylene was outside the internal QC limits for several samples and was qualified as such in the results. These QC variances did not affect the overall quality of the data set.

3.3 Bioaccumulation in Fish

A summary of trawl catch data collected during the first survey is provided in Table 14 and Appendix D. Although trawling was attempted at all sites, it was reasonably successful only at KACHB and KAMIB. It had been anticipated that it would be difficult, if not impossible, to select a target species that was available at all study locations, and results of the trawling indicated that this was correct. During survey two, long-lining and rod and reel fishing methods were used to collect Pacific halibut, *Hippoglossus stenolepis*, from these two sites. Although these fishing methods were also attempted at some of the other locations, the fishing was successful only at KACHB and KAMIB.

Seven fish from each of the two sites were sampled for bile metabolites and cytochrome P4501A. In addition, length, weight, anomalies, and gender (where possible) were recorded for each specimen. Halibut length ranged from 50 to 100 cm at KACHB with a mean of 72 cm; lengths at KAMIB were comparable, ranging from 60 to 90 cm with a mean of 77 cm. Halibut weight ranged from 1.4 to 13.8 kg at KACHB, with a mean of 5.8 kg, and from 2.4 to 9.8 kg at KAMIB, with a mean of 5.4 kg. Most fish remained unidentified in terms of gender. Two-sample *t*-tests of both length and weight data did not show significant differences between stations.

3.3.1 Bile Metabolites

Bile metabolites in Pacific halibut collected at both stations were low or below detection limits. Naphthalene levels in fish from KACHB ranged from 7,000 to 24,000 ppb (wet weight), with a station average of 13,100 ppb (Table 15). Fish collected at KAMIB showed naphthalene levels which ranged from 7,600 to 14,000 ppb, with a station mean of 10,100 ppb. Phenanthrenes were lower, ranging from 1,100 to 6,600 ppb at KACHB and from 990 to 2,700 ppb at KAMIB. Station means for phenanthrene were 2,500 and 1,530 ppb for KACHB and KAMIB, respectively. Benzo(a)pyrene levels for all samples were below MDL (<100 ng/g wet weight). Results of a two-sample *t*-test performed on log transformed data showed no significant difference (α =0.05) between the two stations tested in terms of either naphthalene (ρ =0.319) or phenanthrene (ρ =0.253). All of the fish sampled exhibited low levels of bile metabolites, indicating exposure to hydrocarbons was low.

Quality control for bile metabolites included the analyses of reference bile that were compared to laboratory control charts to verify instrument performance. Reference bile analyses performed in conjunction with this study fell within acceptable ranges. In addition, three procedural blanks performed with the bile metabolite analyses all fell below MDLs. Duplicate analyses performed for three biliary samples, all showing good agreement with their respective samples, are shown in Table 15.

Station	Trawl No.	Date	Time	Common Name	Taxon	Total # Fish	Comments
				Armorhead Sculpin	Gymnocanthus galeatus	4	
				Fantail Sole	Xystreurys liolepis	3	
				Pacific Cod	Gadus macrocephalus	4	
				Pacific Halibut	Hippoglossus stenolepis	11	
				Pacific Spiny Lumpsucker	Eumicrotremus orbis	1	
	1b *	6/20/95	20:21	Ribbed Sculpin	Triglops pingeli	6	
				Rock Sole	Pleuronectes bilineatus	8	many parasites
				Threaded Sculpin	Gymnocanthus pistilliger	37	
				Whitespotted Greenling	Hexagrammos stelleri	3	
KAMIB-T				Yellow Irish Lord	Hemilepidotus jordani	4	
KAMIB-I				Armorhead Sculpin	Gymnocanthus galeatus	13	
				Fantail Sole	Xystreurys liolepis	3	
				Pacific Cod	Gadus macrocephalus	6	
				Pacific Halibut	Hippoglossus stenolepis	17	
	2	6/20/95	21:16	Red Irish Lord	Hemilepidotus hemilepidotus	2	
				Ribbed Sculpin	Triglops pingeli	3	
				Rock Sole	Pleuronectes bilineatus	16	
				Whitespotted Greenling	Hexagrammos stelleri	6	
•	3b⁵	(pope	00.17	Armorhead Sculpin	Gymnocanthus galeatus	3	
	30'	6/20/95	22:17	Rock Sole	Pleuronectes bilineatus	7	
				Alaskan Plaice	Pleuronectes quadrituberculatus	1	
	1	6/22/95	11:06	Flathead Sole	Hippoglossoides elassodon	3	
				Rock Sole	Pleuronectes bilineatus	2	
KACHB-T	2	6/22/95	11:41	Rock Sole	Pleuronectes bilineatus	2	
				Armorhead Sculpin	Gymnocanthus galeatus	1	
	3	6/22/95	12:02	Fantail Sole	Xystreurys liolepis	2	
				Flathead Sole	Hippoglossoides elassodon	2	
EFORE-T	3	6/23/95	13:22	Hooligan	Thaleichthys pacificus	1	No fish in trawls 1 or 2
	1	6/23/95	20:48	Hooligan	Thaleichthys pacificus	2	
TRADB-T	2	6/23/95	21:07	Wattled Eelpout	Lycodes palearis	1	No fish in trawl 3

Table 14.Fish Trawl Data.

Trawl 1a empty except for some jellyfish.

Trawl 3a hung up on rocky area. Trawl 3b lost some of catch due to torn mesh upon retrieval.

Two attempts were made to trawl at Southeast Kamishak Bay. Trawling was discontinued due to rocky bottom.

Page 40

Station	Sample Number	Date	Time	Length (cm)	Weight (kg)	Gender	Naphthalene (ng/g) wet weight	Phenanthrene (ng/g) wet weight	Benzo(a)pyrene (ng/g) wet weight	1	NMFS Protein (mg)	EROD 25°C	GERG EROD 30° C (pmol/min/mg
KACHB-L	CIR95FIS0001		11:30	50	1.4	U	24,000	6,600	<100	26.3	29.9	55	76
KACHB-L	CIR95FIS0002		11:38	58	1.8	U	15,000	2,900	<100	25.6	25.6	70	93
KACHB-L	CIR95FIS0003		11:49	61	2.5	U	15,000	2,400	<100	29.0	26.6	41	60
KACHB-L	CIR95FIS0004	7/27/95	13:41	100	13.8	М	7,000	990	<100	29.1	24.1	76	114
KACHB-L	CIR95FIS0005		13:46	75	5.4	М	9,000	1,300	<100	27.5	25.5	57	89
KACHB-L	CIR95FIS0006		13:53	100	13.2	M	14,000	2,200	<100	23.1	20.3	43	51
KACHB-L	CIR95FIS0006D*		13:53	100	13.2	м	14,000	2,300	<100	N/A	N/A	N/A	N/A
KACHB-L	CIR95FIS0007		23:40	60	2.5	M .	7,600	1,100	<100	24.9	28.4	58	91
KAMIB-L	CIR95FIS0008		13:43	94	9.8	U	14,000	2,700	<100	22.9	24.3	13	19
KAMIB-L	CIR95FIS0008D ^a		13:43	94	9.8	U	N/A	N/A	N/A	26.1	25.7	53	81
KAMIB-F	CIR95FIS0009		18:32	60	2.4	U	9,700	1,400	<100	23.9	21.0	49	64
KAMIB-L	CIR95FIS0011		19:17	90	7.2	U	9,300	1,200	<100	24.1	20.8	30	32
KAMIB-L	CIR95FIS0012	7/29/95	19:30	82	5.8	U	8,600	1,300	<100	29.9	26.4	34	56
KAMIB-L	CIR95FIS0013		19:45	59	2.4	U	12,000	1,800	<100	30.9	30.2	40	64
KAMIB-L	CIR95FIS0013D ^a		19:45	59	2.4	U	12,000	1,700	<100	24.9	29.7	53	85
KAMIB-L	CIR95FIS0014		19:51	82	6	U	9,500	1,300	<100	25.4	24.3	40	52
KAMIB-L	CIR95FIS0015		19:59	72	4	U	7,600	990	<100	25.1	24.1	29	34
KAMIB-L	CIR95FIS0015D*		19:59	72	4	U	7,700	1,100	<100	N/A	N/A	N/A	N/A

Table 15. Results of Bile Metabolite and Liver Enzyme Induction Analyses on Pacific Halibut (Hippoglossus stenolepis).

NMFS

AHH 25°C

(pmol/min/mg)

85

88

86

92

100

42

N/A

117

35

65

56

28

52

88

107

64

25

N/A

GERG Geochemical and Environmental Research Group, Texas A&M University

.

NMFS National Marine Fisheries Service

Undetermined U

М Male

Not Applicable N/A

Sample numbers for Naphthalene, Phenanthrene, and Benzo(a)pyrene results have BIL in place of FIS. Sample numbers for Protein, EROD, and AHH results have LIV in place of FIS. a

Lab Duplicate

3.3.2 Cytochrome P4501A Induction

Liver tissue of the same 14 Pacific halibut in which bile metabolite levels were documented were also subject to cytochrome P4501A analysis using the EROD assay, at GERG, and the AHH assay, at NMFS (Table 15). The EROD assay was performed at both 25°C (EROD_25) and 30°C (EROD_30). Maximum EROD activity was measured at 30°C, where values ranged from 51 to 114 pmol/min/mg for KACHB and 19 to 64 pmol/min/mg for KAMIB. Station means for EROD_30 were 82 and 46 pmol/min/mg for KACHB and KAMIB, respectively. Results of the AHH analyses, measured at 25°C, were comparable with the EROD_30, with station means of 87 and 50 pmol/min/mg for KACHB and a mean of 57 pmol/min/mg. The EROD_25 at KAMIB ranged from 13 to 49 pmol/min/mg with a mean of 34 pmol/min/mg.

A two-sample *t*-test performed on log transformed EROD results indicated significant differences between the stations for all three parameters. Halibut collected at KACHB showed significantly more induction of P4501A compared to those collected at KAMIB, indicating that KACHB specimens had more exposure to anthropogenic hydrocarbons. However, the EROD and AHH data were low at both sites, which was in agreement with other parameters such as sediment PAH and bile metabolite data.

Procedural blanks analyzed with the EROD analyses at GERG all fell below MDLs. Of the two duplicate microsomal preparations analyzed in conjunction with EROD analyses, one (CIR95LIV00008) showed a significant difference. No corrective action was taken for this sample as this difference was not considered to significantly impact the data. The other duplicate (CIR95LIV0013) showed an acceptable RPD. Duplicate results are provided in Table 15.

3.4 Hydrographic Profiling

Hydrographic profile data were collected at each site occupied during both surveys as outlined in Section 2.1.4. Ten profiles were collected at six different stations as shown in Table 16. The waters of Cook Inlet are vertically well-mixed, as indicated by the hydrographic profiles and data in Appendix E. All of the observed differences in hydrographic parameters between stations can be attributed to geographic location within the Inlet. That is, the stations toward the mouth of the Inlet have, in general, higher salinities and percent transmittance due to the lack of influence from glacial freshwater sources. Therefore, the hydrographic data for this program will be discussed as a whole.

Temperatures among all stations and for both surveys ranged from a minimum of $5.9^{\circ}C$ (NULLZ) to a maximum of $13.9^{\circ}C$ (EFORE survey 2). A slight thermocline was observed at KACHB during both surveys but otherwise all stations were fairly isothermal. Salinities were found to vary from 19.9 ppt (EFORE survey 2) to 32.3 ppt (NULLZ survey 1). Dissolved oxygen (DO) values ranged from 8.5 to 11.6 mg/L. The DO percent saturation (UNESCO, 1973) for all stations and depths averaged 96.97 (n=571) with a standard deviation of 5.04. The average saturated value is well within the range expected for a body of water that undergoes such constant mixing. Values for pH ranged from 7.9 to 8.2 with little or no vertical stratification. Transmissivity values ranged from 0.0 percent transmittance at the upper stations (EFORE, TRADB) to a high of 86.8 percent transmittance at the mouth of the Inlet (NULLZ).

Quality control samples for hydrographic data included the collection of grab samples using a Niskin^{\bullet} bottle as described in Section 2.1.4. A summary of results is provided in Appendix E. Grab samples were analyzed for DO, salinity, temperature, and turbidity. Quality control results were used to validate the CTD probe performance and apply postprocessing corrections to the CTD data if necessary. No corrections were applied to the raw CTD based on the QC results from both surveys. Winkler DO QC results agreed well with the CTD probe, and RPDs for DO were all below 7. Similarly, the RPDs for the other QC parameters all demonstrated good correlation with the CTD probe values.

3.5 Bivalve Condition Index

Bivalve densities at all stations were quite variable and, in general, quite low (Appendix F). The highest density of individuals from all taxa, combining all replicates, was observed at KAMIB (n=24), with the lowest density at EFORE where no individuals were recovered. A summary of the BCI results is presented in Table 17. Given the low numbers

Station	Survey	Date	Time	Sample Number	Water Column Level	Depth . (m)	Temp (°C)	Salinity (‰)	pH (units)	DO (mg/L)	Transmissivity (%)
				CIR95CTD0001	surface	1.0	10.6	22.9	7.9	9.1	0.0
	1	6/23/95	11:13	CIR95CTD0007	mid	4.0	10.6	23.0	7.9	9.6	0.0
EFORE-H				CIR95CTD0014	bottom	7.5	10.6	23.0	7.9	9.6	0.0
LI ORD-II				CIR95CTD0424	surface	1.0	13.8	20.0	8.1	8.7	0.0
	2	7/25/95	21:34	CIR95CTD0434	mid	6.0	13.5	20.3	8.0	8.6	0.0
	ŕ			CIR95CTD0448	bottom	13.0	13.4	20.6	8.0	9.0	0.0
				CIR95CTD0017	surface	1.0	8.8	30.0	8.2	11.4	67.9
	1	6/22/95	8:47	CIR95CTD0030	mid	7.5	6.3	31.2	8.1	10.1	66.3
КАСНВ-Н				CIR95CTD0048	bottom	16.5	6.2	31.3	8.1	10.1	58.5
				CIR95CTD0450	surface	1.0	10.5	25.7	8.1	9.6	43.6
	2	7/27/95	10:13	CIR95CTD0458	mid	5.0	9.1	29.6	8.1	9.3	47.6
				CIR95CTD0469	bottom	10.5	8.5	30.5	8.1	9.3	42.5
				CIR95CTD0051	surface	1.0	9.9	29.4	8.2	9.9	67.4
	1	6/21/95	11:11	CIR95CTD0065	mid	8.0	8.8	29.9	8.1	9.6	68.1
KAMIB-H				CIR95CTD0083	bottom	17.0	7.9	30.4	8.1	9.5	59.3
				CIR95CTD0471	surface	1.0	11.1	29.9	8.2	9.4	63.4
	2	7/29/95	17:04	CIR95CTD0486	mid	8.5	11.0	30.0	8.2	9.4	64.8
· · · ·				CIR95CTD0505	bottom	18.0	11.0	30.0	8.2	9.8	
Ŧ				CIR95CTD0085	surface	1.0	7.1	31.7	8.1	9.7	49.7
NULLZ-H	1	6/20/95	11:41	CIR95CTD0225	mid	71.0	6.3	32.2	8.1	9.5	86.8
				CIR95CTD0370	bottom	143.5	5.9	32.2	8.0	9.2	83.9
				CIR95CTD0371	surface	1.5	8.5	29.0	8.1	10.3	63.0
SEKAM-H	1	6/20/95	17:41	CIR95CTD0381	mid	6.5	8.2	29.5	8.1	10.1	66.4
				CIR95CTD0397	bottom	14.5	7.7	30.2	8.1	9.8	68.1
· · · · · · · · · · · · · · · · · · ·				CIR95CTD0398	surface	1.5	9.7	21.0	8.0	10.0	0.0
	1	6/23/95	19:28	CIR95CTD0408	mid	6.5	9.1	24.0	8.0	10.0	0.0
				CIR95CTD0422	bottom	13.5	9.0	24.5	8.0	10.0	0.0
TRADB-H				CIR95CTD0507	surface	1.0	12.4	20.3	8.0	9.4	0.0
	2	7/26/95	10:49	CIR95CTD0511	mid	3.0	12.3	21.0	7.9	9.4	0.0
				CIR95CTD0517	bottom	6.0	12.3	21.2	7.9	9.3	0.0

Table 16. Summary of Hydrographic Profile Data.

THORE IT. DIVING CONDITION AND A RESULTS	Table 17.	Condition Index Results	Bivalve	ilts".
--	-----------	--------------------------------	---------	--------

Station	Date	Rep.	Sample Number	Taxon	BCI	Shell Volume (cc)	Tissue Weight (g) dry
			CIR95BCI0001	Astarte montagui	16.67	0.30	0.05
		1	CIR95BCI0002	Astarte alaskensis	12.00	0.25	0.03
			CIR95BCI0003	Astarte montagui	21.43	0.14	0.03
NULLZ-S	6/20/95		CIR95BCI0004	Astarte alaskensis	15.38	0.39	0.06
:		2	CIR95BC10005	Astarte montagui	10.71	0.28	0.03
			CIR95BC10006	Astarte montagui	10.00	0.20	0.02
			CIR95BCI0007	Macoma spp.	16.90	0.71	0.12
1		1	CIR95BCI0008	Portlandia intermedia	20.00	0.15	0.03
			CIR95BCI0009	Portlandia intermedia	23.53	0.34	0.08
	.		CIR95BCI0011	Portlandia intermedia	17.86	0.28	0.05
			CIR95BCI0012	Portlandia intermedia	20.00	0.25	0.05
			CIR95BCI0013	Macoma spp.	14.00	0.50	0.07
			CIR95BCI0014	Macoma spp.	12.50	0.48	0.06
			CIR95BCI0015	Portlandia intermedia	25.00	0.36	0.09
			CIR95BCI0016	Macoma spp.	13.79	1.16	0.16
		2	CIR95BCI0017	Portlandia intermedia	20.51	0.39	0.08
			CIR95BCI0018	Astarte alaskensis	7.14	0.28	0.02
KAMIB-S	(1) 05		CIR95BCI0020	Macoma spp.	6.87	2.91	0.20
VYWIR-2	6/21/95		CIR95BCI0021	Macoma spp.	9.58	1.67	0.16
			CIR95BCI0022	Macoma spp.	14.43	0.97	0.14
			CIR95BCI0023	Macoma spp.	18.28	0.93	0.17
			CIR95BCI0024	Macoma spp.	8.39	1.55	0.13
			CIR95BCI0025	Macoma spp.	18.67	1.50	0.28
			CIR95BCI0026	Macoma spp.	12.39	2.26	0.28
			CIR95BCI0027	Macoma spp.	14.49	2.14	0.31
			CIR95BCI0029	Astarte montagui	10.29	0.68	0.07
		3	CIR95BCI0030	Macoma spp.	13.41	1.79	0.24
			CIR95BCI0031	Macoma spp.	11.36	0.44	0.05
			CIR95BCI0032	Macoma spp.	7.05	2.41	0.17
			CIR95BCI0033	Clinocardium ciliatum	9.68	2.48	0.24
			CIR95BCI0035	Macoma spp.	18.52	0.27	0.05
			CIR95BC10036	Clinocardium ciliatum	16.00	0.25	0.04
			CIR95BCI0037	Nuculana radiata	12.50	0.08	0.01
		1	CIR95BCI0038	Nuculana radiata	33.33	0.06	0.02
			CIR95BCI0039	Nuculana radiata	16.67	0.12	0.02
			CIR95BCI0040	Nuculana radiata	20.00	0.10	0.02
KACHB-S	6/22/95		CIR95BCI0041	Nuculana radiata	16.67	0.12	0.02
			CIR95BCI0042	Macoma spp.	28.57	0.63	0.18
		2	CIR95BC10044	Macoma spp.	14.29	0.21	0.03
			CIR95BCI0045	Nuculana radiata	25.00	0.08	0.02
			CIR95BC10049	Nuculana radiata	14.29	0.14	0.02
		3	CIR95BCI0050	Nuculana radiata	18.18	0.11	0.02
			CIR95BCI0051	Nuculana radiata	12.50	0.08	0.01
		1	CIR95BCI0052	Yoldia amygdalea	21.15	0.52	0.11
TRADB-S	6/23/95	2	CIR95BCI0053	Macoma spp.	10.71	0.28	0.03
*14.100-0		3			8.70	0.23	0.02
	re from liv		CIR95BCI0054	Macoma spp.	0.70	0.23	0.02

•

of bivalves recovered, the BCI results were calculated for all species and not just for *Macoma* spp. as proposed. These low numbers, however, precluded performing statistical analyses on the correlation of hydrocarbon parameters to the BCI of *Macoma* spp., since these individuals were only encountered at three of the five stations sampled (KACHB, KAMIB, TRADB). Individual BCI values ranged from a high of 33.33 for a *Nuculana radiata* at KACHB to a low of 6.87 for a *Macoma* spp. at KAMIB.

The BCI values for just the *Macoma* spp. individuals collected ranged from a low of 6.87 (KAMIB) to a high of 28.57 (KACHB). The mean BCI for *Macoma* spp. was 13.65 (n=20) with a standard deviation of 5.0. The range for mean BCI by station observed during the 1995 EMP (10 to 20) was very similar to the range observed on the pilot program (12 to 23; ADL, 1995a) and probably reflects the normal range of this parameter.

4.0 SUMMARY

In general, data from the 1995 EMP indicated that low levels of hydrocarbons exist in sediments and biota at the study sites. Total PAH concentrations in the 15 sediment samples collected were less than 130 ppb, with all but three replicates (from NULLZ) less than 65 ppb. All of the total PAH values are considerably lower than the Effects Range-Low (ER-L) of 4,000 ppb associated with adverse biological effects as defined by Long and Morgan (1990). However, levels of hydrocarbons at the NULLZ site appear to be twice as high as all those at all other sites. Fingerprints of sediment PAH results indicated a probable combination of petrogenic and pyrogenic sources, with petrogenic compounds being in higher abundance. In addition, no toxicity was demonstrated at any of the 1995 EMP sites. Continued monitoring of these parameters will allow the compiling of baseline data which can be used to identify future impacts in the study area, including both chronic, long-term inputs and more acute inputs such as oil releases.

Analyses of bile metabolites in Pacific halibut from two of the study sites also indicated low levels of hydrocarbons. Naphthalene and phenanthrene levels in fish bile were low, with maximum values of 24,000 and 6,000 ppb, respectively. Benzo(a)pyrene levels for all samples were below detection limits. These values compare favorably with other data reported from areas relatively unaffected by petroleum. For example, fish collected from remote sites (on the Antarctic Peninsula away from Palmer Station) demonstrated mean values of 33,000 ppb for naphthalene and 5,100 ppb for phenanthrene (McDonald et al., 1995). Samples from this area that were known to be in contaminated locations (near Arthur Harbor or the wreck of the *Bahia Paraiso*) showed much higher levels of these components. This type of biomarker analysis is becoming more prevalent, and continued study in this area, particularly with a species indigenous to Cook Inlet, should provide solid information on hydrocarbon exposure in commercially important species.

Liver P4501A induction also indicated low contaminant exposure. The mean EROD_25 value for KACHB was 57 pmol/min/mg, while KAMIB exhibited a mean of 34 pmol/min/mg. These values compare favorably with results from a recent study performed in Puget Sound which suggests that for English sole (*Pleuronectes vetulus*), EROD results (25°C) on composited fish liver samples from an uncontaminated area were quite low (<50 pmol/min/mg), while those from a more contaminated area were significantly different, with values as high as approximately 900 pmol/min/mg (Collier et al., 1995). While the results from the EMP are showing statistical significance between stations, clearly the magnitude of the difference between sites is minimal compared to that found in the Puget Sound study. The 1995 EMP results indicate that this biomarker measurement is a useful tool for assessing potential contaminants in fish in the study area, but it should be noted that more critical studies may be needed to evaluate this because of factors such as the age, sexual maturity, and gender of the fish that may affect these data. This is particularly important because of the low exposure levels and the small sample size of the data set. In addition, as suggested in the Puget Sound study, the use of composite samples (combining liver tissue from different specimens of the same species) and a larger sample size may be effective when comparing contaminated sites to less contaminated areas.

Bivalve densities at all sediment stations were quite variable and low. The range for mean BCI by station observed during the 1995 EMP was very similar to the range observed on the pilot program and probably reflects the normal range of this parameter. This parameter appears to be of limited value because of the low number of individuals encountered in the study area and the lack of bioaccumulation data with which to compare these values.

Hydrographic profiling performed during the 1995 EMP indicated that, in general, the waters of Cook Inlet are wellmixed. Observed differences in hydrographic parameters between stations can be attributed to the geographic location of the stations within this large body of water.

Use of SPMDs as bio-surrogates to help assess the bioavailability of hydrocarbons in the water column again met with some success but showed potential methodology problems. Hydrocarbons levels in SPMDs from TRADB were elevated compared to other sites. Increased hydrocarbon concentrations seen in 1995 data as compared to 1994 most likely reflect changes in SPMD technology as opposed to increases in ambient water concentrations. Before the method can be used in an applied sense, further research will be needed to address rates of uptake, use in high turbidity environments, and the influence on sequestering rates of the alkylation of parent PAHs. It is recommended that continued use of SPMDs include laboratory studies involving controlled testing of SPMD uptake of Cook Inlet crude or other hydrocarbons of interest.

5.0 **REFERENCES**

- Arthur D. Little. 1995a. Cook Inlet pilot monitoring study final report: phase I of an overall program entitled, "Design and Implementation of a Prototype Environmental Sampling Program for Cook Inlet, Alaska". Prepared for Cook Inlet Regional Citizens Advisory Council, Kenai, Alaska. Various pagings + appendix.
- Arthur D. Little. 1995b. Cook Inlet pilot monitoring study final report: phase II of an overall program entitled, "Design and Implementation of a Prototype Environmental Sampling Program for Cook Inlet, Alaska". Prepared for Cook Inlet Regional Citizens Advisory Council, Kenai, Alaska. Various pagings + appendix.

Beckman Instruments. 1982. Microtox[®] system operating manual. Beckman Instruments, Inc., Carlsbad, CA.

- Boehm, P.D. and J.W. Farrington. 1984. Aspects of the polycyclic aromatic hydrocarbon geochemistry of recent sediments in the Georges Bank Region. *Environmental Science and Technology*, 18:840-845.
- Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein using the principle of protein-dye binding. *Anal Biochem.* 72:248-254.
- Bulich, A.A., M.W. Greene, and D.L. Isenberg. 1981. Reliability of the bacterial luminescence assay for determination of the toxicity of pure compounds and complex effluent. In: D.R. Branson and K.L Dickson (Eds.), Aquatic Toxicology and Hazard Assessment: Proceedings of the Fourth Annual Symposium. ASTM STP 737. American Society for Testing and Materials, Philadelphia, PA. pp.338-347.
- Burbank, D.C. 1977. Circulation studies in Kachemak Bay and Lower Cook Inlet. In: Environmental Studies of Kachemak Bay and Lower Cook Inlet. L.L. Trasky, L.B. Flagg, and D.C. Burbank, eds. Alaska Department of Fish and Game, Marine/Coastal Habitat Management. Volume III. 207 pp.
- Clemens, W.A. and G.V. Wilby. 1961. Fishes of the Pacific Coast of Canada. Fisheries Research Board of Canada Bulletin No. 68 (2nd Ed.). Ottawa, Canada.
- Collier, T.K., B.F. Anulacion, J.E. Stein, A. Goksoyr, and U. Varanasi. 1995. A field evaluation of cytochrome P4501A as a biomarker of contaminant exposure in three species of flatfish. *Environ. Toxicol. Chem.* 14:43-152.
- Collier, T.K., S.D. Conner, B.F. Anulacion, B.T. Le Eberhart, A. Goksoyr, and U. Varanasi. 1992. Using cytochrome P450 to monitor the aquatic environment: initial results from regional and national surveys. *Mar. Environ. Res.* 34:95-199.
- Collier, T.K. and U.Varanasi. 1991. Hepatic Activities of Xenobiotic Metabolizing Enzymes and Biliary Levels of Xenobiotics in English Sole (*Parophrys vetulus*) Exposed to Environmental Contaminants Arch. Environ. Contam. Toxicol. 20:462-473
- Columbia Aquatic Sciences. 1993. Analysis of flatfish bile for metabolites of aromatic compounds. Prepared for Alyeska Pipeline Service Company, Anchorage, Alaska. Project M05-01-03. 24 pp.
- Federal Register. 1992. Code of Federal Regulations, Title 33, Part 330, Navigation and Navigable Waters (33 CFR 330) Appendix A Subtitle B(5). U.S. Government Printing Office, Washington, D.C.
- Federal Register. 1986. Code of Federal Regulations, Title 40, Part 136, Protection of the Environment. (33 CFR 136). U.S. Government Printing Office, Washington, D.C.
- Folk, R.L. 1974. Petrology of Sedimentary Rocks. Hemphill Publishing Co., Austin, TX. 184 pp.

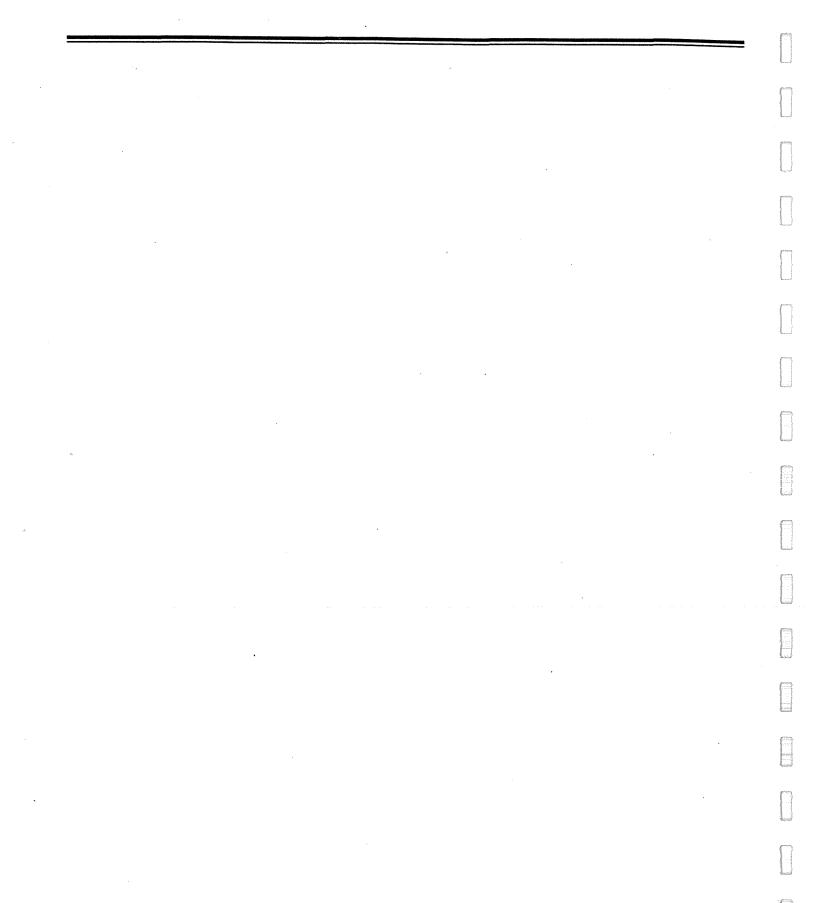
- Gilbert, R.O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold Publishing Haven, D. 1962. Seasonal cycle of condition index of oysters in the York and Rappahannock Rivers. Nat. Shellfisheries Huckins, J.N., M.W. Tubregen, and G.K. Manuweera. 1990. Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration Kessler, D.W. 1985. Alaska's Saltwater Fishes and Other Sea Life. Alaska Northwest Publishing Company, Krahn, M.M., M.S. Meyers, D.G. Burrows, and D.C. Malins. 1984. Determination of metabolites and xenobiotics in the bile of fish from polluted waterways. Xenobiotica. 14:633-646. Krahn, M.M., L.K. Moore, W.D. MacLeod, Jr. 1986a. Standard analytical procedures of the NOAA National Analytical Facility, 1986: metabolites of aromatic compounds in fish bile. NOAA Technical Memorandum NMFS F/NWC-Krahn, M.M., L.D. Rhodes, M.S. Myers, L.K. Moore, W.D MacLeod, Jr., and D.C. Malins. 1986b. Associations between metabolites of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophyrys vetulus) from Puget Sound, Washington. Arch. Env. Contam. Toxicol. 15:67-67.
- Krahn, M.M., D.G. Burrows, G.M. Ylitalo, D.W. Brown, C.A. Wigren, T.K. Collier, S. Chan, and U. Varanasi. 1992. Mass spectometric analysis for aromatic compounds in bile of fish sampled after the EXXON Valdez oil spill. Env. Sci. Tech. 26(1):116-126.
- Kramer, D.E. and V. M. O'Connell. 1988. Guide to Northeast Pacific Rockfishes Genera Sebastes and Sebastolobus. Marine Advisory Bulletin #25. Funded by the Alaska Sea Grant College Program under grant number NA86AA-D-SG041. Fourth printing. 78 pp.
- Kramer, D.E., W.H. Barss, B.C. Paust, and D.E. Bracken. 1995. Guide to Northeast Pacific Flatfishes. Marine Advisory Bulletin No. 47. Funded by the Alaska Sea Grant College Program under grant number NA46RG0104. 104 pp.
- Long, E.R. and R. Markel. 1992. An evaluation of the extent and magnitude of biological effects associated with chemical contamination in San Francisco Bay, California NOAA Technical Memorandum NOS ORCA 64.
- Long, E.R. and L.G. Morgan. 1990. The potential for biological effects of sediment-sorbed contaminants tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52.
- McDonald, S.J., M.C. Kennicutt II, H. Liu, and S.H. Safe. 1995. Assessing aromatic hydrocarbon exposure in antarctic fish captured near Palmer and McMurdo Stations, Antarctica. Arch. Environ. Contam. Toxicol. 29:232-240.
- Pohl, R.J. and J.R. Fouts. 1980. A rapid method for assaying the metabolism of 7-ethoxyressorufin by microsomal subcellular fractions. Anal. Biochem. 107:150-155.
- Shigenaka, G. and C.B. Henry, Jr. 1993. Bioavailability of residual PAHs from the Exxon Valdez oil spill. Exxon Valdez Oil Spill Symposium Abstracts pp. 163-65, Exxon Valdez Oil Spill Symposium February 2-5, 1993.
- Sokal, R.R. and F.J. Rohlf. 1995. Biometry. Third Edition. W.H. Freeman and Company, New York, NY. 850 pp.

Co. New York, NY. 313 pp.

Anchorage, Alaska. 358 pp.

102.

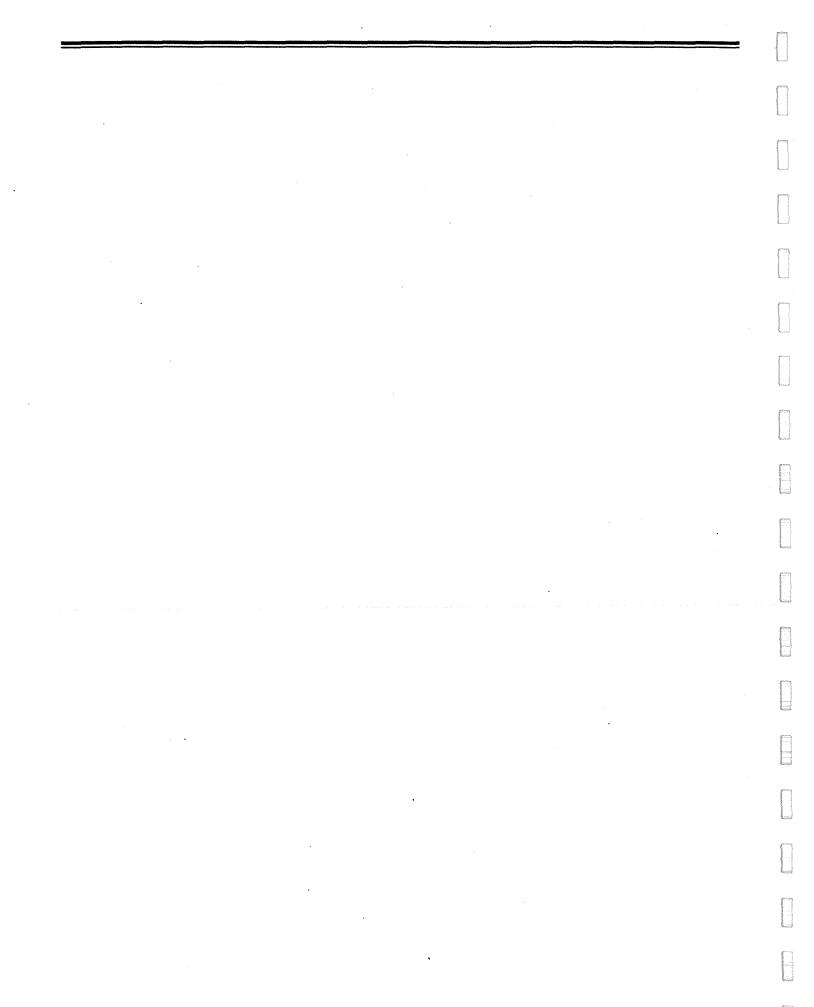
potential. Chemosphere. 20:533-552.


Ass., Proc. 51:42-66.

- Stegeman, J.J., F.X. Teng, and E.A. Snowberger. 1987. Induced cytochrome P450 in winter flounder (Pseudopleuronectes americanus) from coastal Massachusetts evaluated by catalytic assay and monoclonal antibody probes. *Can. U. Fish. Aquat. Sci.* 44:1270-1277.
- Tetra Tech, Inc. and E.V.S. Consultants. 1986. Recommended protocols for conducting laboratory bioassays on Puget Sound sediments. Prepared for U.S. Environmental Protection Agency Puget Sound Estuary Program. Final Report TC-3991-04. pp. 40-48.
- U.S. Environmental Protection Agency. 1986. Test methods for evaluating solid waste. SW-846, Third Edition. Volumes I IV.

UNESCO and National Institute of Great Britain. 1973. International Oceanographic Tables, Volume 2. 82 pp.

Varanasi U., J.E. Stein, and M. Nishimoto. 1989. Biotransformation and Deposition of Polycyclic Aromatic Hydrocarbons (PAH) in Fish. In: Varanasi U., (ed) Metabolism of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment, CRC Uniscience Series, CRC Press Inc. Boca Raton, FL. pp. 93-150.


Zar, J.H. 1984. Biostatistical Analysis. Second Edition. Prentice-Hall, Inc., Englewood Cliffs, NJ. 718 pp.

6.0 ACKNOWLEDGMENTS

Supplemental funding for this program was provided to CIRCAC by the Minerals Management Service, Alaska OCS Region.

Kinnetic Laboratories would like to thank Dr. Tracy Collier of NMFS for his input regarding biological markers in fish. Also, thanks to Mr. Pat Burden, owner/skipper of the F/V *Cutwater*, for his support and local knowledge. Special thanks are also due to all the program participants, particularly Drs. Susan McDonald and Thomas McDonald of Texas A&M GERG, and Dr. Harry Prest, of University of California at Santa Cruz, for his assistance with SPMDs.

GLOSSARY AND LIST OF ACRONYMS

A

ADF&G - Alaska Department of Fish and Game

ADL - Arthur D. Little

Aliphatic hydrocarbons - Fully saturated normal alkanes (paraffins) and branched alkanes, $n-C_{10}$ to $n-C_{34}$; includes the isoprenoid compounds pristane (C_{19}) and phytane (C_{20}) which are often the most abundant isoprenoids in petroleum hydrocarbons.

AMP - Ampoule

Analysis of variance (ANOVA) - A large group of statistical methods under which null hypotheses can be tested by evaluating the equality of means.

ANOVA - Analysis of variance

Anthropogenic - Resulting from the influence of human activities (Refers to hydrocarbon input)

B

Bartlett's test of variance homogeneity - A statistical test used to determine whether the variances of sets of three or more samples are equal.

Biogenic - Synthesized by plants and animals, including microbiota (Refers to hydrocarbon input)

Bovine serum albumen (BSA) - A protein source used in the process of cytochrome P4501A induction.

Bray-Curtis similarity index - A measure of how similar all pair-wise station or analyte combinations are to one another. From a matrix of transformed raw data a new matrix containing the percentage of similarity between pairs of stations or analytes is constructed. This index is sensitive to the presence or absence of analytes as well as their relative concentration when present.

BSA - Bovine serum albumin

С

°C - Degrees Celsius

cc - Cubic centimeter

CIRCAC - Cook Inlet Regional Citizens Advisory Council

cm - Centimeter

COC - Chain of custody

COE - U.S. Army Corps of Engineers

CTD Meter - Conductivity, temperature, and depth instrument

- Cytochrome P4501A A subgroup of compounds in the large cytochrome P450 heme protein family which includes the enzymes ethoxyresorufin O-deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH). The function of these enzymes includes the hydroxilation of steroids, barbiturates, and hydrocarbon contaminants to render them more water soluble so they may be excreted.
- Cytochrome P4501A induction The cytochrome P4501A induction method provides a measurement of contaminant exposure in teleost (bony) fish. Exposure to contaminants is indicated by elevated concentrations of the cytochrome P4501A enzymes EROD and AHH in liver tissue samples. EROD and AHH concentrations are typically low in animals unexposed to hydrocarbons.

D

Diagenic - Resulting from alteration by microbial or chemical processes (Refers to hydrocarbon input) **DO** - Dissolved oxygen

Dunn's test - A multiple comparison statistical test used in conjunction with a non-parametric ANOVA on ranked data. It is used to determine which mean ranks from a set of samples are significantly different from one another.

E

Electron-impacted ionization mode - An ionization method that utilizes electrons to impact the analyte mixture to facilitate ionization.

EFORE - East Forelands

EMP - Environmental Monitoring Program

EPA - U. S. Environmental Protection Agency

EPIRB - Emergency position indicating radio beacon

EROD - Ethoxyresorufin O-deethylase

Ethoxyresorufin O-deethylase (EROD) - See Cytochrome P4501A

EVOS - Exxon Valdez oil spill

\mathbf{F}

FFPI - Fossil fuel pollution index

Fossil fuel pollution index (FFPI) - The fossil fuel pollution index is the ratio of fossil-derived PAHs to total PAHs calculated as $FFPI = (N + F + P + D)/TPAH \times 100$, where:

N (Naphthalene series) = C_0 -N + C_1 -N + C_2 -N + C_3 -N + C_4 -N F (Fluorene series) = C_0 -F + C_1 -F + C_2 -F + C_3 -F P (Phenanthrene/Anthracene series) = C_0 -A + C_0 -P + C_1 -P + C_2 -P + C_3 -P + C_4 -P

D (Dibenzothiophene series) = C_0 -D + C_1 -D + C_2 -D + C_3 -D.

An FFPI is near 100 for petrogenic PAH; FFPI for pyrogenic PAH is near 0 (Boehm and Farrington, 1984).

G

g - Gram

Gas chromatography with mass spectrometry detection (GC/MS) - The process in which the components of a mixture are separated from one another according to their mass.

GC/MS - Gas chromatography with mass spectrometry detection.

GERG - Geochemical and Environmental Research Group of Texas A&M University

Global positioning system (GPS) - A satellite-based navigation system

GPS - Global positioning system

Η

HEPES - A pH buffer used in cytochrome P4501A enzyme induction analysis.

Heteroscedastic - The inequality or heterogeneity of variances

High-performance liquid chromatography (HPLC) - An analytical method based on separation of the components of a mixture in solution by selective adsorption.

Homogeneous - Uniform in structure or composition

Homoscedastic - The equality or homogeneity of variances

HPLC -High performance liquid chromatography

HSD - Honestly significant difference; See multiple range test (Tukey's HSD)

Ŀ

Indigenous - Native or naturally occurring In situ - In the normal or natural position

Κ

KACHB - Kachemak Bay
KAMIB - Kamishak Bay
KLI - Kinnetic Laboratories, Inc.
Kruskal-Wallis test - A non-parametric analog of ANOVA that tests for differences in ranked data grouped by a single classification variable.

L

L - Liter

Μ

m - Meter

min - Minutes

Macoma spp. - Clam species of the genus Macoma.

MDL - Method detection limit

Mean lower low water (MLLW) - The average height of the daily lower low waters occurring over a 19 year period. Method detection limit (MDL) - The lowest concentration of an analyte that a method can reliably detect.

Microtox[®] sediment bioassay - A toxicity testing method based on emission of light by the bacterium, *Photobacterium phosphoreum*. A measured decrease of luminescence in a population dosed with an organic extraction of sediment is used as a quantitative measure of toxicity.

mg/L - Milligrams per liter (parts per million)

mg/mL - Milligrams per milliliter

mg/SPMD - Milligrams per semi-permeable polymeric membrane device

mL - Milliliter

MLLW - Mean lower low water

Multiple range test (Tukey's HSD) - A multiple comparison statistical test used in conjunction with parametric ANOVA. It is used to determine which means from a set of samples are significantly different from one another. "HSD" is the acronym for "honestly significant difference." This test requires equal sample sizes.

Mytilus edulis - Blue mussel

Ν

ND - Non-detect

NTU - Nephelometric turbidity units

ng/amp - Nanograms per ampoule

ng/g - Nanograms per gram (parts per billion)

ng/SPMD - Nanograms per semi-permeable polymeric membrane device

NIST - National Institute of Standards and Technology

NOAA - National Oceanic and Atmospheric Administration

Non-parametric - A body of statistical testing methods not requiring the estimation of population variance or mean and not stating hypotheses about parameters.

Null - A database value description which means "not applicable"

NULLZ - Null Zone sampling site.

Ρ

PAH - Polycyclic aromatic hydrocarbons

Particle grain size (PGS) - Percent gravel, sand, silt, and clay

Pearson's Correlation - A parametric statistic that reflects the degree of association between two sets of paired data. This is the statistic commonly referred to as the "correlation coefficient".

Percent lipid - Concentration of lipid as a fraction of the total tissue weight; Lipid material in mussel tissue is the primary storage area for hydrocarbons; gametes are mostly comprised of lipids.

Petrogenic - Resulting from natural geologic processes which originally form petrochemicals (refers to petroleum hydrocarbon input)

PGS - Particle grain size (percent gravel, sand, silt, and clay)

pH - A symbol for expressing the concentration of hydrogen or hydroxyl ions. In a scale ranging from 0 to 14 which represents the acidity or alkalinity of a solution. A neutral solution, such as water, has a pH of 7; whereas acid solutions have a pH less than 7 and alkaline solutions have a pH more than 7.

pmol/min/mg - Picomoles per minute per milligram

Polycyclic aromatic hydrocarbons (PAH) - 2- to 6-ring polycyclic aromatic hydrocarbon compounds; includes homologous series of aromatic hydrocarbons consisting of unsubstituted (parent) compounds, such as naphthalene, and substituted compounds, which are similar structures with alkyl side chains that replace hydrogen ions, such as C_1 -naphthalene.

PPB - Parts per billion

PPM - Parts per million

PPT - Parts per thousand (‰)

Pyrogenic - Resulting from the activity of fire or very high temperature (Refers to hydrocarbon input from high temperature, incomplete combustion of fossil fuels, or creosote)

Q

QA - Quality assurance

QC - Quality control

Qualifier code - Character used to qualify data based on method detection limits, matrix interference, or other performance parameters.

R

Relative percent difference (RPD) - A measure of precision calculated by dividing the difference between duplicate measurements by the mean of the duplicate measurements and multiplying by 100%.

RPD - Relative percent difference

S

SEKAM - Southeast Kamishak Bay

Selected ion monitoring (SIM) - A gas chromatograph operating mode in which the detection range is limited to include only the masses of the desired analytes.

SIM - Selected ion monitoring

SOP - Standard operating procedure

Soxhlet extractor - A laboratory apparatus consisting of a glass flask and condensing unit used for continuous reflux extraction of alcohol- or ether-soluble components.

Spearman's Rank Correlation Coefficients - A non-parametric statistic that reflects the degree of association between two sets of paired ranked data.

SPMD - Semi-permeable membrane device

SRM - Standard reference material

Standard reference material (SRM) - A certified known concentration of a compound that is analyzed in conjunction with samples for Quality Assurance/Quality Control (QA/QC) purposes.

Т

TAHC - Total aliphatic hydrocarbons

THC - Total hydrocarbons

TIC - Total inorganic carbon

TOC - Total organic carbon

Total aliphatic hydrocarbons (TAHC) - See aliphatic hydrocarbons

Total hydrocarbons (THC) - Total extractable hydrocarbon material minus polar-type compounds.

Total inorganic carbon (TIC) - The percent by dry weight of carbonate (inorganic) carbon, determined as the difference between total carbon and total organic carbon (TOC).

Total organic carbon (TOC) - The percentage by dry weight of organic carbon in a sediment sample.

Total polycyclic aromatic hydrocarbons (TPAH) - See polycyclic aromatic hydrocarbons

TPAH - Total polycyclic aromatic hydrocarbons

TRADB - Trading Bay

U μ g/g - Micrograms per gram USCG - U.S. Coast Guard USGS - U.S. Geological Survey

 \mathbf{V}

Van Veen grab - Device used for collection of subtidal marine sediments.

APPENDIX A

Sampling Information

1.0 Sediment Stations

	O	<u></u>		.				(A. 1)	<u>.</u>	•• •	(145			
Sample ID	Station	Survey	Rep	Туре	Matrix		titude			gitude		Date	Time (ADT)	Depth (N
CAC941700OR	EFORE-S	.NULL.	.NULL.	SAMP SONICATE	SEDIMENT	60 60	45 45	42.4 42.4	151 151	19	26.3	7/04/94	21:45	-8.5
CAC941700ORs	EFORE-S	.NULL.	.NULL.	SAMP	SEDIMENT	60		-	151	19	26.3	7/04/94	21:45	-8.5
IR95MCT0010	EFORE-S	1	1	SAMP			45	36.6		17	6.6	6/23/95	11:34	-5.173
CIR95MCT0011	EFORE-S	1 -	2		SEDIMENT	60	45	39	151	17	11.3	6/23/95	11:51	-5.607
CIR95MCT0012	EFORE-S	1	3	SAMP	SEDIMENT	60	45	36.8	151	17	7.4	6/23/95	12:03	-6.107
1R95PGS0010	EFORE-S	1	1	SAMP	SEDIMENT	60	45	36.6	151	17	6.6	6/23/95	11:34	-5.173
CIR95PGS0011	EFORE-S	1	2	SAMP	SEDIMENT	60	45	39	151	17	11.3	6/23/95	11:51	-5.607
IR95PGS0012	EFORE-S	1	3	SAMP	SEDIMENT	60	45	36.8	151	17	7.4	6/23/95	12:03	-6.107
CIR95PTT0010	EFORE-S	1	1	SAMP	SEDIMENT	60	45	36.6	151	17	6.6	6/23/95	11:34	-5.173
CIR95PTT0011	EFORE-S	1	2	SAMP	SEDIMENT	60	45	39	151	17	11.3	6/23/95	11:51	-5.607
CIR95PTT0012	EFORE-S	1	3	SAMP	SEDIMENT	60	45	36.8	151	17	7.4	6/23/95	12:03	-6.107
CIR95BC10034	KACHB-S	1 .	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR958C10035	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95BC10036	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR958C10037	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR958C10038	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95BC10039	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95BC10040	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95BC/0041	KACHB-S	1	1	SAMP	BIVALVE	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95BC10042	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95BC10043	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95BC10044	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95BC10045	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95BC10046	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR958C10047	KACHB-S	1	2	SAMP	BIVALVE	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95BC10048	KACHB-S	1	3	SAMP	BIVALVE	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
CIR95BC10049	KACHB-S	1	з	SAMP	BIVALVE	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
CIR95BC10050	KACHB-S	1	3	SAMP	BIVALVE	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
CIR958C10051	KACHB-S	1	3	SAMP	BIVALVE	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
IR95MCT0007	KACHB-S	1	1	SAMP	SEDIMENT	59	37	59.4	451	23	48.3	6/22/95	9:09	-15.17
IR95MCT0008	KACHB-S	1	2	SAMP	SEDIMENT	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
IR95MCT0009	KACHB-S	1	3	SAMP	SEDIMENT	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
IR95PGS0007	KACHB-S	1	1	SAMP	SEDIMENT	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
IR95PGS0008	KACHB-S	1	2	SAMP	SEDIMENT	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
IR95PGS0009	KACHB-S	1	3	SAMP	SEDIMENT	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
CIR95PTT0007	KACHB-S	1	1	SAMP	SEDIMENT	59	37	59.4	151	23	48.3	6/22/95	9:09	-15.17
CIR95PTT0008	KACHB-S	1	2	SAMP	SEDIMENT	59	37	57.1	151	23	47.4	6/22/95	10:04	-14.42
CIR95PTT0009	KACHB-S	1	3	SAMP	SEDIMENT	59	38	0.6	151	23	47.8	6/22/95	10:19	-14.17
								35.8	153	46		6/21/95	11:32	-14.97
CIR95BC10007	KAMIB-S	1	1	SAMP	BIVALVE	59	22				2.3			
CIR95BC10008	KAMIB-S	. 1	1	SAMP	BIVALVE	59	22	35.8	153	46	2.3	6/21/95	11:32	-14.97
CIR95BC10009	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR958C10010	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BC10011	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BCI0012	KAMIB-S	. 1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR958C10013	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BC10014	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BC10015														-15.09
	KAMIB-S	1	2	SAMP	BIVALVE	59 -	22	39.4	153	46	2.2	6/21/95	11:58	
CIR95BC10016	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10017	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10018	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BC10019	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10020	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BCI0021	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10022	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10023	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
1R95BC10024	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95BC10025	KAMIB-S	1	2	SAMP	BIVALVE	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95BC10026	KAMIB-S	1	3	SAMP	BIVALVE	- 59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
IR95BC10027	KAMIB-S	1	з	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
IR95BC10028	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
IR95BC10029	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	-45	56.7	6/21/95	12:12	-15.09
IR95BC10030	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
														-15.09
CIR95BC10031	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	
CIR95BC10032	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
CIR95BC10033	KAMIB-S	1	3	SAMP	BIVALVE	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
IR95MCT0004	KAMIB-S	1	1	SAMP	SEDIMENT	59	22	35.8	153	46	2.3	6/21/95	11:32	-14.97
IR95MCT0005	KAMIB-S	1	2	SAMP	SEDIMENT	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
IR95MCT0006	KAMIB-S	1	3	SAMP	SEDIMENT	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
1R95PGS0004	KAMIB-S	1	1	SAMP	SEDIMENT	59	22	35.8	153	46	2.3	6/21/95	11:32	-14.97
IR95PGS0005	KAMIB-S	1	2	SAMP	SEDIMENT	59	22	39.4 35.4	153	46	2.2 56.7	6/21/95	11:58	-15.09
			3	SAMP								6/21/95	12:12	-15 09

		Statio	n and	Sample	Collectio	n Dat	ta foi	Cook	Inlet	1995	EMP	•		
Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lon	gitude	(W)	Date	Time (ADT)	Depth (M
CIR95PTT0005	KAMIB-S	1	2	SAMP	SEDIMENT	59	22	39.4	153	46	2.2	6/21/95	11:58	-15.09
CIR95PTT0006	KAMIB-S	1	3	SAMP	SEDIMENT	59	22	35.4	153	45	56.7	6/21/95	12:12	-15.09
CIR958C10001	NULLZ-S	1	1	SAMP	BIVALVE	59	4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR95BC10002	NULLZ-S	1 '	1	SAMP	BIVALVE	59	'4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR95BC10003	NULLZ-S	1	1	SAMP	BIVALVE	59	4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR958CI0004	NULLZ-S	1	2	SAMP	BIVALVE	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
CIR958C10005	NULLZ-S	1	2	SAMP	BIVALVE	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
C1R95BC10006	NULLZ-S	1	2	SAMP	BIVALVE	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
CIR95MCT0001	NULLZ-S	1	1	SAMP	SEDIMENT	59	4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR95MCT0002	NULLZ-S	1	2	SAMP	SEDIMENT	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
CIR95MCT0003	NULLZ-S	1	3	SAMP	SEDIMENT	59	5	2.3	152	48	52.8	6/20/95	11:21	-110.2
CIR95PGS0001	NULLZ-S	1	1	SAMP	SEDIMENT	59	4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR95PGS0002	NULLZ-S	1	2	SAMP	SEDIMENT	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
CIR95PGS0003	NULLZ-S	1	3	SAMP	SEDIMENT	59	5	2.3	152	48	52.8	6/20/95	11:21	-110.2
CIR95PTT0001	NULLZ-S	1	1	SAMP	SEDIMENT	59	4	36.6	152	48	39	6/20/95	10:23	-109.8
CIR95PTT0002	NULLZ-S	1	2	SAMP	SEDIMENT	59	5	1.1	152	48	46.9	6/20/95	11:02	-109.0
CIR95PTT0003	NULLZ-S	1	3	SAMP	SEDIMENT	59	5	2.3	152	48	52.8	6/20/95	11:21	-110.2
RCAC940500OR	TRADB-S	.NULL.	.NULL.	SAMP	SEDIMENT	60	49	41	151	42	35.7	7/01/94	16:55	-13
RCAC940500ORs	TRADB-S	.NULL.	.NULL.	SONICATE	SEDIMENT	60	49	41	151	42	35.7	7/01/94	16:55	-13
RCAC9406000R	TRADB-S	.NULL.	.NULL.	SAMP	SEDIMENT	60	51	31.1	151	42	3.42	7/01/94	17:20	-14
RCAC9406000Rs	TRADB-S	.NULL.	.NULL.	SONICATE	SEDIMENT	60	51	31.1	151	42	3.42	7/01/94	17:20	-14
CIR95BC10052	TRADB-S	1	1	SAMP	BIVALVE	60	51	33	151	41	42.9	6/23/95	19:46	-10.30
CIR95BC10053	TRADB-S	1	2	SAMP	BIVALVE	60	51	27.3	151	41	47.8	6/23/95	19:58	-10.30
CIR95BCI0054	TRADB-S	1	3	SAMP	BIVALVE	60	51	24.6	151	41	50.9	6/23/95	20:09	-10.30
CIR95MCT0013	TRADB-S	1	1	SAMP	SEDIMENT	60	51	33	151	41	42.9	6/23/95	19:46	-10.30
CIR95MCT0014	TRADB-S	1	2	SAMP	SEDIMENT	60	51	27.3	151	41	47.8	6/23/95	19:58	-10.30
CIR95MCT0015	TRADB-S	1	3	SAMP	SEDIMENT	60	51	24.6	151	41	50.9	6/23/95	20:09	-10.30
CIR95PGS0013	TRADB-S	1	1	SAMP	SEDIMENT	60	51	33	151	41	42.9	6/23/95	19:46	-10.30
CIR95PGS0014	TRADB-S	1	2	SAMP	SEDIMENT	60	51	27.3	151	41	47.8	6/23/95	19:58	-10.30
CIR95PGS0015	TRADB-S	1	3	SAMP	SEDIMENT	60	51	24.6	151	41	50.9	6/23/95	20:09	-10.30
CIR95PTB0001	TRADB-S	1	.NULL.	FB	WATER	60	51	24.6	151	41	50.9	6/23/95	20:29	.NULL.
CIR95PTB0002	TRADB-S	1	.NULL.	EB	WATER	60	51	24.6	151	41	50.9	6/23/95	20:21	NULL.
CIR95PTT0013	TRADB-S	1	1	SAMP	SEDIMENT	60	51	33	151	41	42.9	6/23/95	19:46	-10.30
CIR95PTT0014	TRADB-S	1	2	SAMP	SEDIMENT	60	51	27.3	151	41	47.8	6/23/95	19:58	-10.30
CIR95PTT0015	TRADB-S	1	3	SAMP	SEDIMENT	60	51	24.6	151	41	50.9	6/23/95	20:09	-10.30

.

APPENDIX A

Sampling Information

2.0 SPMD Moorings

Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lon	gitude	(W)	Date	Time (ADT)	Depth (M)
CIR95SPM0003	EFORE-M	1	.NULL.	FB	LIPID	60	46	16.3	151	16	47.3	6/24/95	1:34	NULL.
CIR95SPM0004	EFORE-M	2	.NULL.	SAMP	LIPID	60	46	16.3	151	16	47.3	7/25/95	23:28	-2.5
CIR95SPM0005	EFORE-M	2	.NULL.	SAMP	LIPID	60	46	16.3	151	16	47.3	7/25/95	23:25	-8.373
CIR95SPM0001	KACHB-M	1_	.NULL.	F8	LIPID	59	37	58.3	151	23	45.7	6/22/95	14:36	.NULL.
CIR95SPM0008	KACHB-M	2	.NULL.	SAMP	LIPID	59	37	58.3	151	23	45.7	7/27/95	9:15	-2.5
CIR95SPM0009	KACHB-M	. 2	.NULL.	SAMP	LIPID	59	37	58.3	151	23	45.7	7/27/95	9:39	-12.71
CIR95SPM0002	TRADB-M	1	.NULL.	FB	LIPID	60	48	35.8	151	42	34.4	6/23/95	23:31	.NULL.
CIR95SPM0006	TRADB-M	2	.NULL.	SAMP	LIPID	60	48	35.8	151	42	34.4	7/26/95	11:45	-2.5
CIR95SPM0007	TRADB-M	2	.NULL.	SAMP	LIPID	60	48	35.8	151	42	34.4	7/26/95	11:46	-4.476

APPENDIX A

artication and the second of the

Sampling Information

3.0 Fish Collection Stations

Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude (N)	Lon	gitude	(W)	Date	Time (ADT)	Depth (N
CIR95BIL0001	KACHB-L	2	2	SAMP	BILE	59	38	2.0	151	23	52.0	7/27/95	11:30	-13.33
CIR9581L0002	KACHB-L	2	2	SAMP	BILE	59	38	2.0	151	23	52.0	7/27/95	11:38	-13.33
CIR95BIL0003	KACHB-L	2	2	SAMP	BILE	59	38	2.0	151	23	52.0	7/27/95	11:49	-13.33
CIR95BIL0004	KACHB-L	2	3	SAMP	BILE	59	38	4.5	151	23	50.2	7/27/95	13:41	-11.21
CIR9581L0005	KACHB-L	2	3	SAMP	BILE	59	38	4.5	151	23	50.2	7/27/95	13:46	-11.21
CIR95BIL0006	KACHB-L	2	3	SAMP	BILE	59	38	4.5	151	23	50.2	7/27/95	13:53	-11.21
CIR95BIL0007	KACHB-L	2	6	SAMP	BILE	59	38	15.0	151	23	53.5	7/27/95	23:40	-10.67
CIR95BIL0010	KACHB-L	2	1	SAMP	BILE	59	38	6.1	151	23	50.2	7/26/95	20:35	-12.63
CIR95FIS0001	KACHB-L	2	2	SAMP	FISH	59	38	2.0	151	23	52.0	7/27/95	11:30	-13.33
CIR95FIS0002	KACHB-L	2	2	SAMP	FISH	59	38	2.0	151	23	52.0	7/27/95	11:38	-13.33
CIR95FIS0003	KACHB-L	2	2	SAMP	FISH	59	38	2.0	151	23	52.0	7/27/95	11:49	-13.33
CIR95FIS0004	KACHB-L	2	3	SAMP	FISH	59	38	4.5	151	23	50.2	7/27/95	13:41	-11.21
CIR95FIS0005	KACHB-L	2	3	SAMP	FISH	59	38	4.5	151	23	50.2	7/27/95	13:46	-11.21
CIR95FIS0006	KACHB-L	2	3	SAMP	FISH	59	38	4.5	151	23	50.2	7/27/95	13:53	-11.21
CIR95FIS0007	KACHB-L	2	6	SAMP	FISH	59	38	15.0	151	23	53.5	7/27/95	23:40	-10.67
CIR95FIS0010	KACHB-L	2	1	SAMP	FISH	59	38	6.1	151	23	50.2	7/26/95	20:35	-12.63
CIR95LIV0001	KACHB-L	2	2	SAMP	LIVER	59	38	2.0	151	23	52.0	7/27/95	11:30	-13.33
CIR95LIV0002	KACHB-L	2	2	SAMP	LNER	59	38	2.0	151	23	52.0	7/27/95	11:38	-13.33
CIR95LIV0003	KACHB-L	2	2	SAMP	LIVER	59	38	2.0	151	23	52.0	7/27/95	11:49	-13.33
CIR95LIV0004	KACHB-L	2	3	SAMP	LIVER	59	38	4.5	151	23	50.2	7/27/95	13:41	-11.21
CIR95LIV0005	KACHB-L	2	3	SAMP	LIVER	59	38	4.5	151	23	50.2	7/27/95	13:46	-11.21
CIR95LIV0006	KACHB-L	2	3	SAMP	LIVER	59	38	4.5	151	23	50.2	7/27/95	13:53	-11.21
CIR95LIV0007	KACHB-L	2	6	SAMP	LIVER	59	38	15.0	151	23	53.5	7/27/95	23:40	-10.67
CIR95LIV0010	KACHB-L	2	1	SAMP	LIVER	59	38	6.1	151	23	50.2	7/26/95	20:35	-12.63
CIR9581L0009	KAMIB-F	2	1	SAMP	BILE	59	22	34.6	153	46	15.4	7/29/95	18:32	-17.73
CIR95FIS0009	KAMIB-F	2	1	SAMP	FISH	59	22	34.6	153	46	15.4	7/29/95	18:32	-17.73
CIR95LIV0009	KAMIB-F	2	1	SAMP	LIVER	59	22	34.6	153	46	15.4	7/29/95	18:32	-17.73
CIR95BIL0008	KAMIB-L	2	1	SAMP	BILE	59	21	5.2	153	34	36.7	7/29/95	13:43	-7.35
CIR95BIL0011	KAMIB-L	2	4	SAMP	BILE	59	22	35.4	153	46	12.0	7/29/95	19:17	-17.12
CIR95BIL0012	KAMIB-L	2	4	SAMP	BILE	59	22	35.4	153	46	12.0	7/29/95	19:30	-17.12
CIR9581L0013	KAMIB-L	2	4	SAMP	BILE	59	22	35.4	153	46	12.0	7/29/95	19:45	-17.12
CIR95BIL0014	KAMIB-L	2	4	SAMP	BILE	59	22	35.4	153	46	12.0	7/29/95	19:51	-17.12
CIR95BIL0015	KAMIB-L	2	4	SAMP	BILE	59	22	35.4	153	46	12.0	7/29/95	19:59	-17.12
CIR95FIS0008	KAMIB-L	2	1	SAMP	FISH	59	21	5.2	153	34	36.7	7/29/95	13:43	-7.35
CIR95FIS0011	KAMIB-L	2	4	SAMP	FISH	59	22	35.4	153	46	12.0	7/29/95	19:17	-17.12
CIR95FIS0012	KAMIB-L	2	4	SAMP	FISH	59	22	35.4	153	46	12.0	7/29/95	19:30	-17.12
CIR95FIS0013	KAMIB-L	2	4	SAMP	FISH	59	22	35.4	153	46	12.0	7/29/95	19:45	-17.12
CIR95FIS0014	KAMIB-L	2	4	SAMP	FISH	59	22	35.4	153	46	12.0	7/29/95	19:51	-17.12
CIR95FIS0015	KAMIB-L	2	4	SAMP	FISH	59	22	35.4	153	46	12.0	7/29/95	19:59	-17.12
CIR95LIV0008	KAMIB-L	2	1	SAMP	LIVER	59	21	5.2	153	34	36.7	7/29/95	13:43	-7.35
CIR95LIV0011	KAMIB-L	2	4	SAMP	LIVER	59	22	35.4	153	46	12.0	7/29/95	19:17	-17.12
CIR95LIV0012	KAMIB-L	2	4	SAMP	LIVER	59	22	35.4	153	46	12.0	7/29/95	19:30	-17.12
CIR95LIV0013	KAMIB-L	2	4	SAMP	LIVER	59	22	35.4	153	46	12.0	7/29/95	19:45	-17.12
CIR95LIV0014	KAMIB-L	2	4	SAMP	LIVER	59	22	35.4	153	46	12.0	7/29/95	19:51	-17.12
CIR95LIV0015	KAMIB-L	2	4	SAMP	LIVER	59	22	35.4	153	46	12.0	7/29/95	19:59	-17.12

1000

APPENDIX A

the States

and the second

Sampling Information

4.0 Hydrographic Stations

				Sumpie	Collectio			0000		1//0	LIVEL			
Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lon	gitude	(W) .	Date	Time (ADT)	Depth (N
CIR95CTD0001	EFORE-H	1	.NULL.	SAMP SAMP	WATER WATER	60 60	45 45	36.7	151	17	5.4	6/23/95	11:13	-1.00
CIR95CTD0002	EFORE-H	1	.NULL.	SAMP	WATER	60 60	45 45	36.7 36.7	151	17	5.4	6/23/95	11:13	-1.50
CIR95CTD0003	EFORE-H	1	.NULL.	SAMP	WATER	60 60	45 45	36.7	151	17 17	5.4	6/23/95	11:13	-2.00
IR95CTD0004	EFORE-H	1 -	.NULL.		WATER	60 60	45	36.7	151 151		5.4	6/23/95	11:13	-2.50
IR95CTD0005	EFORE-H EFORE-H	1	.NULL.	SAMP SAMP	WATER	60 60	45	36.7	151	17 17	5.4	6/23/95	11:13	-3.00
IR95CTD0007	EFORE-H	1	.NULL. .NULL.	SAMP	WATER	60 60	45	36.7	151	17	5.4 5.4	6/23/95 6/23/95	11:13	-3.50
IR95CTD0007	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4 5.4	6/23/95	11:13 11:13	-4.00 -4.50
IR95CTD0009	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4	6/23/95	11:13	-4.50 -5.00
IR95CTD0010	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4	6/23/95	11:13	-5.50
IR95CTD0010	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4	6/23/95	11:13	-5.50 -6.00
IR95CTD0012	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4	6/23/95	11:13	-6.50
IR95CTD0012	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4	6/23/95	11:13	-7.00
IR95CTD0014	EFORE-H	1	.NULL.	SAMP	WATER	60	45	36.7	151	17	5.4 5.4	6/23/95	11:13	-7.50
IR95CTD0423	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-7.50
IR95CTD0423	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-0.50
IR95CTD0425	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-1.50
IR95CTD0426	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-2.00
IR95CTD0427	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-2.50
IR95CTD0427	EFORE-H	2	.NULL.	SAMP	WATER	60	40	15.1	151	16	44	7/25/95	21:34	-2.50 -3.00
IR95CTD0428	EFORE-H	2	.NULL.	SAMP	WATER	60 60	46	15.1	151	16	44	7/25/95	21:34	-3.50 -3.50
IR95CTD0429	EFORE-H	2	.NULL.	SAMP	WATER	60 60	40 46	15.1	151	16	44 44	7/25/95	21:34	-3.50 -4.00
IR95CTD0430	EFORE-H	2	.NULL.	SAMP	WATER	60 60	46 46	15.1	151	16	44 44	7/25/95	21:34	
	EFORE-H				WATER						44			-4.50
IR95CTD0432 IR95CTD0433		2	NULL.	SAMP		60 60	46	15.1	151	16		7/25/95	21:34	-5.00
	EFORE-H EFORE-H	2 2	.NULL. .NULL.	SAMP SAMP	WATER WATER	60 60	46 46	15.1	151	16	44 44	7/25/95 7/25/95	21:34	-5.50
IR95CTD0434								15.1	151	16			21:34	-6.00
IR95CTD0435	EFORE-H	2	.NULL.	SAMP	WATER	60	46	. 15.1	151	16	44	7/25/95	21:34	-6.50
IR95CTD0436	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-7.00
IR95CTD0437	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-7.50
IR95CTD0438	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-8.00
IR95CTD0439	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-8.50
IR95CTD0440	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-9.00
IR95CTD0441	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-9.50
IR95CTD0442	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-10.00
IR95CTD0443	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-10.50
IR95CTD0444	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-11.00
IR95CTD0445	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-11.50
IR95CTD0446	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-12.00
IR95CTD0447	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-12,50
IR95CTD0448	EFORE-H	2	.NULL.	SAMP	WATER	60	46	15.1	151	16	44	7/25/95	21:34	-13.00
IR95CTD0015	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	0.00
IR95CTD0016	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-0.50
IR95CTD0017	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.00
IR95CTD0018	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50
IR95CTD0019	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-2.00
IR95CTD0020	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-2.50
IR95CTD0021	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-3.00
IR95CTD0022	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-3.50
IR95CTD0023	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-4.00
IR95CTD0024	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-4.50
IR95CTD0025	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-5.00
R95CTD0026	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-5.50
R95CTD0027	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-6.00
R95CTD0028	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-6.50
R95CTD0029	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-7.00
R95CTD0030	KACHB-H	1	NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-7.50
R95CTD0031	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-8.00
IR95CTD0032	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-8.50
R95CTD0033	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-9.00
R95CTD0034	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-9.50
IR95CTD0035	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-10.00
R95CTD0036	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-10.50
R95CTD0036														
	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-11.00
IR95CTD0038	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-11.50
IR95CTD0039	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-12.00
IR95CTD0040	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-12.50
IR95CTD0041	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-13.00
IR95CTD0042	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-13.50
IR95CTD0043	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-14.00
IR95CTD0044	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-14.50
IR95CTD0045	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-15.00
IR95CTD0046	KACHB-H	1	NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-15.50

. ·

Constanting

Station and Sample Collection Data for Cook Inlet 1995 EMP

Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lor	gitude	(W)	Date	Time (ADT)	Depth (M)
CIR95CTD0047	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-16.00
CIR95CTD0048	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-16.50
CIR95DOX0001	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50
CIR95DOX0002	KACHB-H	1.	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50
CIR95NTU0001	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50
CIR95SAL0001	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:48	-1.5
CIR95SAL0002	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:48	-1.5
CIR95TMP0001	KACHB-H	1	.NULL.	SAMP	WATER	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50
CIR95CTD0449	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-0.50
CIR95CTD0450	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-1.00
CIR95CTD0451	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-1.50
CIR95CTD0452	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-2.00
CIR95CTD0453	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-2.50
CIR95CTD0454	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-3.00
CIR95CTD0455	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-3.50
CIR95CTD0456	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-4.00
CIR95CTD0457	KACHB-H	2	NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-4.50
CIR95CTD0458	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-5.00
CIR95CTD0459	KACHB-H	2		SAMP	WATER	59	38	4.5	151	23	57.8 57.8	7/27/95	10:13	
CIR95CTD0459	KACHB-H	2	.NULL. .NULL.	SAMP	WATER	59 59	38	4.5	151	23	57.8 57.8	7/27/95	10:13	-5.50 -6.00
	KACHB-H	2			WATER	59 59	38 38		151	23		7/27/95		
CIR95CTD0461 CIR95CTD0462	KACHB-H KACHB-H	2	.NULL. .NULL.	SAMP	WATER	59 59	38 38	4.5 4.5	151	23 23	57.8 57.8	7/27/95	10:13 10:13	-6.50 -7.00
		2		SAMP	WATER		38 38		151					
CIR95CTD0463 CIR95CTD0464	KACHB-H		.NULL.	SAMP		59 50		4.5		23	57.8 57.9	7/27/95	10:13	-7.50
	KACHB-H	2	.NULL.	SAMP	WATER	59 50	38	4.5	151	23	57.8	7/27/95	10:13	-8.00
CIR95CTD0465	KACHB-H	2	.NULL.	SAMP	WATER	. 59	38	4.5	151	23	57.8	7/27/95	10:13	-8.50
CIR95CTD0466	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-9.00
CIR95CTD0467	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-9.50
CIR95CTD0468	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-10.00
CIR95CTD0469	KACHB-H	2	.NULL.	SAMP	WATER	59	38	4.5	151	23	57.8	7/27/95	10:13	-10.50
CIR95CTD0049	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	0.00
CIR95CTD0050	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-0.50
CIR95CTD0051	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-1.00
CIR95CTD0052	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-1.50
CIR95CTD0053	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-2.00
CIR95CTD0054	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-2.50
CIR95CTD0055	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-3.00
CIR95CTD0056	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-3.50
CIR95CTD0057	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-4.00
CIR95CTD0058	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-4.50
CIR95CTD0059	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-5.00
CIR95CTD0060	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-5.50
CIR95CTD0061	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-6.00
CIR95CTD0062	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-6.50
CIR95CTD0063	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-7.00
CIR95CTD0064	KAMIB-H	1	NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-7.50
CIR95CTD0065	KAMIB-H	1	NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-8.00
CIR95CTD0066	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-8.50
CIR95CTD0067	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-8.50
CIR95CTD0068	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4 36.4	153	46	0.6	6/21/95	11:11	-9.50
CIR95CTD0069	KAMIB-H	1	.NULL.	SAMP	WATER	59 59	22	36.4 36.4	153			6/21/95		-9.50 -10.00
CIR95CTD0070	камів-н камів-н	1	.NULL.		WATER		22			46	0.6		11:11	
CIR95CTD0070				SAMP		59 50		36.4	153	46	0.6	6/21/95	11:11	-10.50
	KAMIB-H	1 -	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-11.00
CIR95CTD0072	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-11.50
CIR95CTD0073	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-12.00
CIR95CTD0074	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-12.50
CIR95CTD0075	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-13.00
CIR95CTD0076	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-13.50
CIR95CTD0077	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-14.00
CIR95CTD0078	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-14.50
CIR95CTD0079	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-15.00
CIR95CTD0080	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-15.50
CIR95CTD0081	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-16.00
CIR95CTD0082	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-16.50
CIR95CTD0083	KAMIB-H	1	.NULL.	SAMP	WATER	59	22	36.4	153	46	0.6	6/21/95	11:11	-17.00
CIR95CTD0470	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-0.50
CIR95CTD0471	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00
CIR95CTD0472	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.50
CIR95CTD0473	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-2.00
CIR95CTD0474	KAMIB-H	2	.NULL.	SAMP	WATER	59 59	22			46				
CIR95CTD0475								34.6	153		15.4	7/29/95	17:04	-2.50
	KAMIB-H	2	NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-3.00
CIR95CTD0476 CIR95CTD0477	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-3.50
	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-4.00

Sample ID	Station	Survey	Rep	Туре	Matrix	1.2	titude	(NI)	1	gitude	/\\\\	Date	T	Denth /
													Time (ADT)	Depth (I
CIR95CTD0478 CIR95CTD0479	KAMIB-H KAMIB-H	2 2	.NULL. .NULL.	SAMP SAMP	WATER WATER	59 59	22 22	34.6 34.6	153 153	46 46	15.4 15.4	7/29/95	17:04	-4.50
IR95CTD0480	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6 34.6	153	46	15.4	7/29/95 7/29/95	17:04 17:04	-5.00 -5.50
IR95CTD0481	KAMIB-H	2.	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-5.50 -6.00
IR95CTD0482	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-6.50
IR95CTD0483	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-7.00
:IR95CTD0484	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-7.50
IR95CTD0485	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-8.00
CIR95CTD0486	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-8.50
IR95CTD0487	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-9.00
IR95CTD0488	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-9.50
IR95CTD0489	KAMIB-H	2	NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-10.00
CIR95CTD0490	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-10.50
IR95CTD0491	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-11.00
CIR95CTD0492	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-11.50
CIR95CTD0493	КАМІВ-Н	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-12.00
CIR95CTD0494	`KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-12.50
IR95CTD0495	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-13.00
CIR95CTD0496	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-13.50
CIR95CTD0497	KAMIB-H	2	NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-14.00
CIR95CTD0498	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-14.50
CIR95CTD0499	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-15.00
CIR95CTD0500	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-15.50
CIR95CTD0501	KAMIB-H	2	NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-16.00
CIR95CTD0502	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-16.50
IR95CTD0503	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-17.00
IR95CTD0504	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-17.50
IR95CTD0505	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-18.00
IR95DOX0005	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00
IR95DO X0006	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00
IR95SAL0005	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	33.6	153	46	13.9	7/29/95	17:09	-1
R95SAL0006	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	33.6	153	46	13.9	7/29/95	17:09	-1
IR95TMP0003	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00
CIR95TMP0004	KAMIB-H	2	.NULL.	SAMP	WATER	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00
CIR95CTD0084	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-0.50
CIR95CTD0085	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-1.00
IR95CTD0086	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-1.50
CIR95CTD0087	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-2.00
CIR95CTD0088	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-2.50
CIR95CTD0089	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-3.00
CIR95CTD0090	NULLZ-H		.NULL.	SAMP	WATER	59	4	58.9	152	48	-58.4	6/20/95	- 11:41	-3.50
CIR95CTD0091	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-4.00
CIR95CTD0092	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-4.50
CIR95CTD0093	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-5.00
CIR95CTD0094	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-5.50
CIR95CTD0095	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-6.00
IR95CTD0096	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-6.50
IR95CTD0097	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-7.00
CIR95CTD0098	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-7.50
IR95CTD0099	NULLZ-H	1	.NULL.	SAMP	WATER	59	- 4	58.9	152	48	58.4	6/20/95	11:41	-8.00
CIR95CTD0100	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-8.50
IR95CTD0101	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-9.00
IR95CTD0102	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-9.50
CIR95CTD0103	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-10.00
CIR95CTD0104	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-10.50
IR95CTD0105	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11;41	-11.00
IR95CTD0106	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-11.50
IR95CTD0107	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-12.00
IR95CTD0108	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-12.50
IR95CTD0109	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-13.00
IR95CTD0110	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-13.50
IR95CTD0111	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-14.00
R95CTD0112	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-14.50
CIR95CTD0113	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-15.00
CIR95CTD0114	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-15.50
CIR95CTD0115	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-16.00
CIR95CTD0116	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-16.50
CIR95CTD0117	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-17.00
CIR95CTD0118	NULLZ-H	1	.NULL,	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11;41	-17.50
CIR95CTD0119	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-18.00
CIR95CTD0120	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-18.50
CIR95CTD0121	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-19.00

. ·

Station and Sample Collection Data for Cook Inlet 1995 EMP

Sample ID	Station	Survey	Rep	Туре	Matrix	Lat	litude	(N)	Lon	gitude	(W)	Date	Time	Depth (N
CIR95CTD0122	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	(ADT) 11:41	-19.50
CIR95CTD0123	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-20.00
CIR95CTD0124	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-20.50
CIR95CTD0125	NULLZ-H	1 .	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-21.00
					WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-21.50
CIR95CTD0126	NULLZ-H	1	.NULL.	SAMP										
CIR95CTD0127	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-22.00
CIR95CTD0128	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-22.50
CIR95CTD0129	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-23.00
CIR95CTD0130	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-23.50
CIR95CTD0131	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-24.00
CIR95CTD0132	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-24.50
CIR95CTD0133	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-25.00
CIR95CTD0134	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-25.50
	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-26.00
CIR95CTD0135														
CIR95CTD0136	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-26.50
IR95CTD0137	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-27.00
IR95CTD0138	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-27.50
IR95CTD0139	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-28.00
IR95CTD0140	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-28.50
CIR95CTD0141	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-29.00
IR95CTD0142	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-29.50
IR95CTD0143	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-30.00
IR95CTD0144	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-30.50
IR95CTD0145	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-31.00
IR95CTD0146	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-31.50
CIR95CTD0147	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-32.00
CIR95CTD0148	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-32.50
IR95CTD0149	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-33.00
IR95CTD0150	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41 '	-33.50
IR95CTD0151	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-34.00
IR95CTD0152	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-34.50
IR95CTD0153	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-35.00
IR95CTD0154	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-35.50
IR95CTD0155	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-36.00
IR95CTD0156	NULLZ-H	1	.NULL.	SAMP	WATER	59	<u> 4 </u>	58.9	152	48	58.4	6/20/95	11:41	-36.50
CIR95CTD0157	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-37.00
CIR95CTD0158	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-37.50
CIR95CTD0159	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-38.00
CIR95CTD0160	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-38.50
CIR95CTD0161	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-39.00
CIR95CTD0162	NULLZ-H		.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-39.50
CIR95CTD0163	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-40.00
CIR95CTD0164	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-40.50
		1			WATER									
CIR95CTD0165	NULLZ-H		.NULL.	SAMP		59		58.9	152	48	58.4	6/20/95	11:41	-41.00
CIR95CTD0166	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-41.50
IR95CTD0167	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-42.00
IR95CTD0168	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-42.50
IR95CTD0169	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-43.00
IR95CTD0170	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-43.50
R95CTD0171	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-44.00
IR95CTD0172	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-44.50
IR95CTD0173	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95 ·	11:41	-45.00
IR95CTD0174	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-45.50 .
IR95CTD0175	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-46.00
IR95CTD0176	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-46.50
IR95CTD0177	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-47.00
IR95CTD0178	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-47,50
IR95CTD0179	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-48.00
IR95CTD0180	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-48.50
IR95CTD0181	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-49.00
IR95CTD0182	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-49.50
IR95CTD0183	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-50.00
IR95CTD0184	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-50.50
IR95CTD0185	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-51.00
IR95CTD0186	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-51.50
IR95CTD0187	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-52.00
IR95CTD0188	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-52.50
IR95CTD0189	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-53.00
IR95CTD0190	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-53.50
IR95CTD0191	NULLZ-H	1			WATER								11:41	-54.00
			.NULL.	SAMP		59	4	58.9	152	48	58.4	6/20/95		
IR95CTD0192	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-54.50
IR95CTD0193	NULLZ-H	1	.NULL.	SAMP	WATER	59		58.9	152	48	58.4	6/20/95	11:41	-55.00

		Statio	n and	Sample	Collectio	on Dal	a fo	r Cook	Inlet	1995	EMP			
Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lon	gitude	(W)	Date	Time (ADT)	Depth (I
CIR95CTD0194	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-55.50
CIR95CTD0195	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-56.00
CIR95CTD0196	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-56.50
CIR95CTD0197	NULLZ-H	1_	.NULL.	SAMP	WATER	59	• 4	58.9	152	48	58.4	6/20/95	11:41	-57.00
CIR95CTD0198	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-57.50
CIR95CTD0199	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-58.00
CIR95CTD0200	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-58.50
CIR95CTD0201	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-59.00
CIR95CTD0202	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-59.50
CIR95CTD0203	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-60.00
CIR95CTD0204	NULLZ-H	. 1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-60.50
CIR95CTD0205	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-61.00
CIR95CTD0206	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-61.50
CIR95CTD0207	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-62.00
CIR95CTD0208	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-62.50
CIR95CTD0209	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-63.00
CIR95CTD0210	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-63.50
CIR95CTD0211	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-64.00
CIR95CTD0212	NULLZ-H	.1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-64.50
CIR95CTD0212	NULLZ-H	1	.NULL.	SAMP	WATER	59 59	4	58.9 58.9	152	48 48	58.4	6/20/95	11:41	-64.50
	NULLZ-H	1			WATER	59 59	4	58.9 58.9		48 48	58.4 58.4	6/20/95		-65.00 -65.50
CIR95CTD0214			.NULL.	SAMP					152				11:41	
CIR95CTD0215	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-66.00
CIR95CTD0216	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-66.50
CIR95CTD0217	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-67.00
CIR95CTD0218	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11;41	-67.50
CIR95CTD0219	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-68.00
CIR95CTD0220	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-68.50
CIR95CTD0221	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-69.00
CIR95CTD0222	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-69.50
CIR95CTD0223	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-70.00
CIR95CTD0224	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-70.50
CIR95CTD0225	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-71.00
CIR95CTD0226	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-71.50
CIR95CTD0227	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-72.00
CIR95CTD0228	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-72.50
CIR95CTD0229	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-73.00
CIR95CTD0230	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-73.50
CIR95CTD0231	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-74.00
CIR95CTD0232	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-74.50
CIR95CTD0233	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-75.00
CIR95CTD0234	NULLZ-H	1	.NULL.	SAMP	WATER	59	· 🖌	58.9	152	48	58.4	6/20/95	11:41	-75.50
CIR95CTD0235	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-76.00
CIR95CTD0236	NULLZ-H	, 1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-76.50
CIR95CTD0237							4				58.4	6/20/95	11:41	-77.00
	NULLZ-H	1	.NULL.	SAMP	WATER	59		58.9	152	48				
CIR95CTD0238	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-77.50
CIR95CTD0239	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-78.00
CIR95CTD0240	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-78.50
CIR95CTD0241	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-79.00
CIR95CTD0242	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-79.50
CIR95CTD0243	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-80.00
CIR95CTD0244	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-80.50
CIR95CTD0245	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-81.00
CIR95CTD0246	NULLZ-H	<u>,</u> 1	.NULL.	SAMP	WATER	. 59	4	58.9	152	48	58.4	6/20/95	11:41	-81.50
CIR95CTD0247	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-82.00
CIR95CTD0248	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-82.50
CIR95CTD0249	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-83.00
CIR95CTD0250	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-83.50
CIR95CTD0251	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-84.00
CIR95CTD0252	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-84,50
CIR95CTD0253	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-85.00
CIR95CTD0254	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-85.50
							4			48	58.4	6/20/95	11:41	-85.50
CIR95CTD0255	NULLZ-H	1	.NULL.	SAMP	WATER	59		58.9	152					
CIR95CTD0256	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-86.50
CIR95CTD0257	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-87.00
CIR95CTD0258	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-87.50
CIR95CTD0259	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-88.00
CIR95CTD0260	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-88.50
CIR95CTD0261	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-89.00
CIR95CTD0262	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-89.50
CIR95CTD0263	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-90.00
CIR95CTD0264	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-90.50
	NULLZ-H	1		SAMP	WATER	59				-	58.4			

-

Station and Sample Collection Data for Cook Inlet 1995 EMP

Sample ID	Station	Survey	Rep	Туре	Matrix	Lai	itude	(N)	Lor	ngitude	(W)	Date	Time (ADT)	Depth (N
CIR95CTD0266	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-91.50
CIR95CTD0267	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-92.00
CIR95CTD0268	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-92.50
CIR95CTD0269	NULLZ-H	1 -	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-93.00
CIR95CTD0270	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-93.50
CIR95CTD0271	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-94.00
CIR95CTD0272	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-94.50
CIR95CTD0273	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-95.00
CIR95CTD0274	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-95.50
CIR95CTD0275	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-96.00
CIR95CTD0276	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-96.50
CIR95CTD0277	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-97.00
CIR95CTD0278	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-97.50
CIR95CTD0279	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-98.00
CIR95CTD0280	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-98.50
CIR95CTD0281	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-99.00
CIR95CTD0282	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-99.50
CIR95CTD0283	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-100.0
CIR95CTD0284	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-100.5
CIR95CTD0285	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-101.0
CIR95CTD0286	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-101.5
CIR95CTD0287	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-102.0
CIR95CTD0288	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-102.5
CIR95CTD0289	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-103.0
CIR95CTD0290	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-103.5
IR95CTD0291	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-104.0
IR95CTD0292	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-104.5
R95CTD0292	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9 58.9	152	48 48	58.4 58.4	6/20/95	11:41	-104.5
IR95CTD0293	NULLZ-H				WATER									
		1	.NULL.	SAMP		59	4	58.9	152	48	58.4	6/20/95	11:41	-105.5
IR95CTD0295	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-106.0
IR95CTD0296	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-106.5
IR95CTD0297	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-107.0
IR95CTD0298	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-107.5
IR95CTD0299	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-108.0
IR95CTD0300	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-108.5
IR95CTD0301	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-109.0
IR95CTD0302	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-109.5
CIR95CTD0303	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-110.0
CIR95CTD0304	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-110.5
CIR95CTD0305	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-111.0
CIR95CTD0306	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-111.5
CIR95CTD0307	NULLZ-H	1					4							
			.NULL.	SAMP	WATER	59		58.9	152	48	58.4	6/20/95	11:41	-112.0
CIR95CTD0308	NULLZ-H	•	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-112.5
CIR95CTD0309	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-113.0
CIR95CTD0310	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-113.5
CIR95CTD0311	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-114.0
IR95CTD0312	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-114.5
IR95CTD0313	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-115.0
IR95CTD0314	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-115.5
IR95CTD0315	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-116.0
IR95CTD0316	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-116.5
IR95CTD0317	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-117.0
IR95CTD0318	NULLZ-H	1	.NULL.	SAMP	WATER		4			48			11:41	-117.5
IR95CTD0319						59		58.9	152		58.4	6/20/95		
	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-118.0
IR95CTD0320	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-118.5
IR95CTD0321	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-119.0
IR95CTD0322	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-119.5
IR95CTD0323	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-120.0
IR95CTD0324	NULLZ-H	1 -	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-120.5
IR95CTD0325	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-121.0
IR95CTD0326	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-121.5
R95CTD0327	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-122.0
R95CTD0328	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-122.5
IR95CTD0329	NULLZ-H													
		1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-123.0
IR95CTD0330	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-123.5
IR95CTD0331	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-124.0
IR95CTD0332	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-124.5
IR95CTD0333	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-125.0
IR95CTD0334	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-125.5
IR95CTD0335	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-126.0
IR95CTD0336	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-126.5
IR95CTD0337	NULLZ-H	1	.NULL.	SAMP	WATER	59		58.9	152	48	58.4	6/20/95	11:41	-127.0
		1	JULL.	JAMP	****EK	22	4	20.9	152	40	38.4	0/20/95	11:41	-121.0

		Statio	n and	Sample	Collectio	on Dat	ta foi	r Cook	Inlet	1995	EMP			
Sample ID	Station	Survey	Rep	Туре	a Matrix	× La	titude	(N)	Lon	gitude	(W)	Date		Depth (I
CIR95CTD0338	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-127.5
CIR95CTD0339	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-128.0
IR95CTD0340	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-128.5
IR95CTD0341	NULLZ-H	1	.NULL.	SAMP	WATER	59	· 4	58.9	152	48	58.4	6/20/95	11:41	-129.0
CIR95CTD0342	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-129.5
CIR95CTD0343	NULLZ-H	. 1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-130.0
CIR95CTD0344	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-130.5
CIR95CTD0345	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-131.0
CIR95CTD0346	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-131.5
CIR95CTD0347	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-132.0
CIR95CTD0348	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-132.5
CIR95CTD0349	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-133.0
CIR95CTD0350	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-133.5
CIR95CTD0351	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-134.0
CIR95CTD0352	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-134.5
CIR95CTD0353	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-134.5
		1		SAMP	WATER		4	58.9	152	48	58.4	6/20/95	11:41	
CIR95CTD0354	NULLZ-H		.NULL.			59								-135.5
DIR95CTD0355	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-136.0
CIR95CTD0356	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-136.5
CIR95CTD0357	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-137.0
CIR95CTD0358	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-137.5
CIR95CTD0359	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-138.0
CIR95CTD0360	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-138.5
CIR95CTD0361	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-139.0
CIR95CTD0362	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-139.5
CIR95CTD0363	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-140.0
CIR95CTD0364	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-140.5
CIR95CTD0365	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-141.0
CIR95CTD0366	NULLZ-H	. 1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-141.5
CIR95CTD0367	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-142.0
CIR95CTD0368	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-142.5
CIR95CTD0369	NULLZ-H	1	NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-143.0
CIR95CTD0370	NULLZ-H	1	.NULL.	SAMP	WATER	59	4	58.9	152	48	58.4	6/20/95	11:41	-143.5
CIR95CTD0371	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-1.50
CIR95CTD0372	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-2.00
CIR95CTD0373						59	4	52.6	153	36	53.3	6/20/95	17:41	-2.50
	SEKAM-H	1	.NULL.	SAMP	WATER									
CIR95CTD0374	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36 [.]	53.3	6/20/95	17:41	-3.00
CIR95CTD0375	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-3.50
CIR95CTD0376	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-4.00
CIR95CTD0377	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-4.50
CIR95CTD0378	SEKAM-H	1	.NULL.	SAMP	WATER	59	. 4	52.6	153	36	53.3	6/20/95	17:41	-5.00
CIR95CTD0379	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-5.50
CIR95CTD0380	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-6.00
CIR95CTD0381	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-6.50
CIR95CTD0382	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-7.00
CIR95CTD0383	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-7.50
CIR95CTD0384	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-8.00
CIR95CTD0385	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-8.50
CIR95CTD0386	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-9.00
CIR95CTD0387	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-9.50
CIR95CTD0388	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-10.00
CIR95CTD0389	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-10.50
CIR95CTD0390	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6 52.6	153	36	53.3 53.3	6/20/95	17:41	-11.00
												6/20/95 6/20/95		
CIR95CTD0391	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3 53.3		17:41	-11.50
CIR95CTD0392	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-12.00
CIR95CTD0393	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-12.50
CIR95CTD0394	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-13.00
CIR95CTD0395	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-13.50
CIR95CTD0396	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-14.00
CIR95CTD0397	SEKAM-H	1	.NULL.	SAMP	WATER	59	4	52.6	153	36	53.3	6/20/95	17:41	-14.50
CIR95CTD0398	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50
CIR95CTD0399	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-2.00
CIR95CTD0400	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-2.50
CIR95CTD0401	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-3.00
CIR95CTD0402												6/23/95		
	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3		19:28	-3.50
CIR95CTD0403	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	4.00
CIR95CTD0404	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-4.50
CIR95CTD0405	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-5.00
CIR95CTD0406	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-5.50
CIR95CTD0407	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-6.00
CIR95CTD0408	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-6.50
CIR95CTD0409	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3			-7.00

1000

Station and Sample Collection Data for Cook Inlet 1995 EMP

Sample ID	Station	Survey	Rep	Туре	Matrix	La	titude	(N)	Lon	gitude	(W)	Date	Time (ADT)	Depth (M
CIR95CTD0410	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-7.50
CIR95CTD0411	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-8.00
CIR95CTD0412	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-8.50
CIR95CTD0413	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-9.00
CIR95CTD0414	TRADB-H	1	,NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-9.50
CIR95CTD0415	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-10.00
CIR95CTD0416	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-10.50
CIR95CTD0417	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-11.00
CIR95CTD0418	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-11.50
CIR95CTD0419	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-12.00
CIR95CTD0420	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-12.50
CIR95CTD0421	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-13.00
CIR95CTD0422	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1 ,	151	41	36.3	6/23/95	19:28	-13.50
CIR95DO X0003	TRADB-H	1	NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50
CIR95DO X0004	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50
CIR95NTU0002	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50
CIR95SAL0003	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-0.5
CIR95SAL0004	TRADB-H	• 1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-0.5
CIR95TMP0002	TRADB-H	1	.NULL.	SAMP	WATER	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50
CIR95CTD0506	TRAD8-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-0.50
CIR95CTD0507	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-1.00
CIR95CTD0508	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-1.50
CIR95CTD0509	TRAD8-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-2.00
CIR95CTD0510	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-2.50
CIR95CTD0511	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-3.00
CIR95CTD0512	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-3.50
CIR95CTD0513	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-4.00
CIR95CTD0514	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-4.50
CIR95CTD0515	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-5.00
CIR95CTD0516	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-5.50
CIR95CTD0517	TRADB-H	2	.NULL.	SAMP	WATER	60	48	25.1	151	42	33.8	7/26/95	10:49	-6.00

APPENDIX B

Sediment Results

1.0 PAH Data

Station Survey	Replica		Station Survey	2		Station Survey I	3	
	b Complet							ļ
KLI Sample ID La	C21151			Sample I C21152			Sample IC) - 1
	EDIMENT		Matrix: SEC Sample Type: SAM			Matrix: SED Sample Type: SAM	MENT	
	AMP 2338		Batch: M2			Batch: M23		
			······································					
Wet weight (g)	30.06		0, 107	30.06			0.07	
Dry weight (g) Solids (%)	20.80 69.2		Dry weight (g) 2 Solids (%)	21.45 71.4			3.61 78.5	
					<u> </u>			
IALYTE (ng/g) Naphthalene	Value 2.5	e Qual	ANALYTE (ng/g) Naphthalene	Value 1.1	Qual			Quai
C1-Naphthalenes	2.5 5.4		C1-Naphthalenes	2.2		Naphthaiene C1-Naphthaienes	0.7 1.3	J
C2-Naphthalenes	7.1		C2-Naphthalenes	0	ND	C2-Naphthalenes		ND
C3-Naphthalenes	0	ND	C3-Naphthalenes	0	ND	C3-Naphthalenes		ND
C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND	C4-Naphthalones		ND
Biphenyl	1.3		Biphenyl	0.4	-	Biphenyl	0.3	
Acenaphthylene	0.4		Acenaphthylene	0.3	J	Acenaphthylene	0.3	J
Acenaphthene	0.5		Acenaphthene	0.8		Acenaphthene	0.4	
Fluorene	1.1		Fluorene	0.5		Fluorene	0.3	J
C1-Fluorenes	0	ND	C1-Fluorenes	0	ND .	C1-Fluorenes		ND
C2-Fluorenes	0	ND	C2-Fluorenes	0	ND	C2-Fluorenes		ND
C3-Fluorenes	0	ND	C3-Fluorenes	0	ND	C3-Fluorenes		ND
Phenanthrene	1.9		Phenanthrene	0.5		Phenanthrene	0.6	
Anthracene	0.5		Anthracene	0.4		Anthracene	0.2	J
C1-Phen/Anthracenes	3.3		C1-Phen/Anthracenes	0	ND	C1-Phen/Anthracenes		ND
C2-Phen/Anthracenes	3.7		C2-Phen/Anthracenes	0	ND	C2-Phen/Anthracenes		ND
C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	-	ND
C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	õ	ND	C4-Phen/Anthracenes		ND
Dibenzothiophene	0.5		Dibenzothiophene	0.6		Dibenzothiophane	0.2	J
C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophanes	0	ND	C1-Dibenzothiophenes		ND
C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	o	ND	C2-Dibenzothiophenes		ND
C3-Dibenzothiophenes	õ	ND	C3-Dibenzothiophenes	o	ND	C3-Dibenzothiophenes		ND
Fluoranthene	0.6		Fluoranthene	0.6		Fluoranthene	0.2	J
Pyrene	0.7		Pyrene	0.3		Pyrene	0.3	•
C1-Fluoranthene/Pyrenes	0	ND	C1-Fluoranthene/Pyrenes	0	ND	C1-Fluoranthene/Pyrenes		ND
Benzo(a)anthracene	0.2	J	Benzo(a)anthracene	0.1	J	Benzo(a)anthracene	0.1	J
Chrysene	0.5		Chrysene	0.1	J	Chrysene	0.3	
C1-Chrysenes	0	ND	C1-Chrysenes	0	ND	C1-Chrysenes		ND
C2-Chrysenes	0	ND	C2-Chrysenes	0	ND	C2-Chrysenes		ND
C3-Chrysenes	õ	ND	C3-Chrysenes	0	ND	C3-Chrysenes		ND
C4-Chrysenes	o	ND	C4-Chrysenes	o	ND	C4-Chrysenes		ND
Benzo(b)fluoranthene	0.5		Benzo(b)fluoranthene	0.1	J	Benzo(b)fluoranthene	0.1	J
Benzo(k)fluoranthene	0.5	J	Benzo(k)fluoranthene	0.2	-	Benzo(k)fluoranthene	0.0	J
Benzo(e)pyrene	0.4	-	Benzo(e)pyrene	0.1	j	Benzo(e)pyrene	0.1	1
Benzo(a)pyrene	0.3		Benzo(a)pyrene	0.1	J	Benzo(a)pyrene	0.2	•
Perylene	3.5		Perylene	1.7	J	Perylene	1.4	J
Indeno(1,2,3-c,d)pyrene	0.3		Indeno(1,2,3-c,d)pyrene	0.1	J	Indeno(1,2,3-c,d)pyrene	0.1	J
Dibenzo(a,h)anthracene	0.2	J	Dibenzo(a,h)anthracene	0.1	J	Dibenzo(a,h)anthracene	0.1	1
Benzo(g,h,i)perviene	0.2		Benzo(g,h,i)perylene	0.2	J	Benzo(g,h,i)perylene	0.1	J
				-				
TOTAL PAH (ng/g) (Excluding Perylene) cific Isomers (ng/g)	37	2.3	TOTAL PAH (ng/g) (Excluding Perylene) Specific Isomers (ng/g)		.8	TOTAL PAH (ng/g) (Excluding Perylene) Specific Isomers (ng/g)	5.	9
1-Methylnaphthalene	2.6		1-Methyinaphthalene	0.8		1-Methylnaphthalene		J
2-Methylnaphthalene 2.6-Dimethylnaphthalene	2.8 1.5		2-Methyinaphthalene 2,6-Dimethyinaphthalene	1.4 0.6		2-Methylnaphthalene 2,6-Dimethylnaphthalene	0.9 0.8	
1,6,7-Trimethylnaphthaler	ne 1.6		1.6.7-Trimethylnaphthalene			1,6,7-Trimethyinaphthalene	0.4	J
1-Methylphenanthrene	1.0		1-Methylphenanthrene	0.6		1-Methylphenanthrene	0.5	
ogate Recoveries (%) Naphthalene-d8	100 0		Surrogate Recoveries (%)	99.4		Surrogate Recoveries (%) Naphthalene-d8	94.2	
Naphthalene-d8 Acenapthene-d10	106.6 91.1		Naphthalene-d8 Acenapthene-d10	99.4 118.3		Naphthalene-d8 Acenapthene-d10	94.2 109.1	
Phenanthrene-d10 Chrysene-d12	119.1		Phenanthrene-d10 Chovene-d12	100.9		Phenanthrene-d10 Chrysene-d12	91.2 83.6	
Perviene-d12	118.2 99.1		Chrysene-d12 Perylene-d12	111.0 95.1		Perviene-d12	83.6 80.5	

P

Station Survey	Replicat	е •	Station Survey R	leplica	te =	Station Survey	Replica	ite
KACHB-S 1	1		KACHB-S 1	2		KACHB-S 1	3	
KLI Sample ID Lab	Sample II	- >	KLI Sample ID Lab S	ample I	D	KLI Sample ID Lab	Sample	D
CIR95PTT0007	C21148		CIR95PTT0008 C	21149		CIR95PTT0009	C21150	
Matrix: SE	DIMENT		Matrix: SEDI	MENT		Matrix: SE	DIMENT	
Sample Type: SA	MP		Sample Type: SAMF			Sample Type: SA	ИP	
Batch: M2	338		Batch: M233	18		Batch: M2	338	
Wet weight (g)	30.08		Wet weight (g) 30).17		Wet weight (g)	30.03	
	15.78		•	5.22		Dry weight (g)	17.13	
Solids (%)	52.5		Solids (%) 5	53.8		Solids (%)	57.0	
NALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)	Valu	e Qual
Naphthalene	2.8		Naphthalene	1.7		Naphthalene	2.3	
C1-Naphthalenes	1.9	J	C1-Naphthalenes	4.0		C1-Naphthaienes	2.5	
C2-Naphthalenes	0	ND	C2-Naphthalenes	7.6		C2-Naphthalenes	4.2	
C3-Naphthalenes	0	ND	C3-Naphthalenes	0	ND	C3-Naphthalenes	6.9	
C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND
Biphenyl	0.9		Biphenyl	0.7		Biphenyl	0.5	
Acenaphthylene	0.7		Acenaphthylene	0.4	J	Acenaphthylene	0.2	J
Acenaphthene	1.5		Acenaphthene	0.6		Acenaphthene	0.7	
Fluorene	1.3		Fluorene	0.7		Fluorene	1. B	
C1-Fluorenes	0	ND	C1-Fluorenes	0	ND	C1-Fluorenes	0	ND
C2-Fluorenes	0	ND	C2-Fluorenes	0	ND	C2-Fluorenes	0	ND
C3-Fluorenes	0	ND	Ċ3-Fluorenes	0	ND	C3-Fluorenes	0	ND
Phenanthrene	3.0		Phenanthrene	2.5		Phenanthrene	2.5	
Anthracene	0.4	J	Anthracene	0.4	J	Anthracene	0.3	J
C1-Phen/Anthracenes	9.0		C1-Phen/Anthracenes	9.0		C1-Phen/Anthracenes	8.0	
C2-Phen/Anthracenes	6.7		C2-Phen/Anthracenes	6.4		C2-Phen/Anthracenes	8.1	
C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	0	ND
C4-Phen/Anthracenes	٥	ND	C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND
Dibenzothiophene	1.0		Dibenzothiophene	0.8		Dibenzothiophene	0.4	J
C1-Dibenzothiophenes	o	ND	C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	o	ND	C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	3.9		Fluoranthene	2.5		Fluoranthene	2.6	
Pyrene	4.1		Pyrene	2.4		Pyrene	2.8	
C1-Fluoranthene/Pyrenes	7.5		C1-Fluoranthene/Pyrenes	5.7		C1-Fluoranthene/Pyrenes	7.2	
Benzo(a)anthracene	1.4		Benzo(a)anthracene	0.6		Benzo(a)anthracene	0.6	
Chrysene	1.6		Chrysene	0.7		Chrysene	1.3	
C1-Chrysenes	0	ND	C1-Chrysenes	0	ND	C1-Chrysenes	0	ND
C2-Chrysenes	õ	ND	C2-Chrysenes	0	ND	C2-Chrysenes	0	ND
C3-Chrysenes	0	ND	C3-Chrysenes	0	ND	C3-Chrysenes	0	ND
C4-Chrysenes	0	ND	C4-Chrysenes	0	ND	C4-Chrysenes	0	ND
Benzo(b)fluoranthene	0 1.5		Benzo(b)fluoranthene	0.7		Benzo(b)fluoranthene	1.1	
Benzo(b)fluoranthene	0.5		Benzo(b)fluoranthene	0.7		Benzo(k)fluoranthene	0.3	J
Benzo(e)pyrene	1.0		Benzo(e)pyrene	0.3		Benzo(e)pyrene	0.3	•
Benzo(a)pyrene Benzo(a)pyrene	1.0		Benzo(a)pyrene Benzo(a)pyrene	0.6		Benzo(e)pyrene Benzo(a)pyrene	0.7	
Perviene	1.2 41.7		Perviene	0.4 45.6		Perviene		
Indeno(1,2,3-c,d)pyrene			Indeno(1,2,3-c,d)pyrene			indeno(1,2,3-c,d)pyrene	48.0	
Dibenzo(a,h)anthracene	0.7		Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	0.3		Dibenzo(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	0.5	
Benzo(g,h,i)perylene	0.3	J	Benzo(g,h,i)perviene	0.1	J	Benzo(g,h,i)perviene	0.2	J
	-1.5			1.5			1.7	
TOTAL PAH (ng/g) (Excluding Perylene) ecific Isomers (ng/g)	54		TOTAL PAH (ng/g) (Excluding Perylene)	5	0.6	TOTAL PAH (ng/g) (Excluding Perviene)	5	7.7
ecific Isomers (ng/g) 1-Methyinaphthalene	0.0	j	Specific isomers (ng/g)			Specific Isomers (ng/g)	10	J
2-Methyinaphthalene	0.9 1.1	J	1-Methyinaphthalene 2-Methyinaphthalene	1.7 2.3		1-Methylnaphthalene 2-Methylnaphthalene	1.0 1.6	J
2.6-Dimethylnaphthalene	1.4		2,6-Dimethylnaphthalene	2.4		2,6-Dimethylnaphthalene	1.8	
1,6,7-Trimethylnaphthalen 1-Methylphenanthrane	e 1.4 3.9		1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	1.3 2.3		1,6,7-Trimethylnaphthalen 1-Methylphenanthrene	9 1.4 3.0	,
progate Recoveries (%)	3.8		Surrogate Recoveries (%)	2.3		Surrogate Recoveries (%)	3.0	
Naphthalene-d8	102.9		Naphthalene-d8	108.3		Naphthalene-d8	114.7	
Acenapthene-d10	98.3		Acenapthene-d10	108.5		Acenapthene-d10	109.6	
Phenanthrene-d10 Chrysene-d12	107.4 110.3		Phenanthrene-d10 Chrysene-d12	101.0 107.2		Phenanthrene-d10 Chrysene-d12	107.0 107.9	
Perviene-d12	115.6		Perviane-d12	102.9		Parylena-d12	107.8	

				1.1				
KAMIB-S 1	1		KAMIB-S 1	2		KAMIB-S 1	3	l
KLI Sample ID Lab S	Sample II	C	KLI Sample ID Lab	Sample i	D	KLI Sample ID Lai	b Sample II	5
CIR95PTT0004 C	21145		CIR95PTT0005	C21146		CIR95PTT0006	C21147	
Matrix: SEDI	MENT		Matrix: SE	DIMENT		Matrix: SE	DIMENT	
Sample Type: SAM	P	•	Sample Type: SA	MP		Sample Type: SA	MP	
Batch: M233	38		Batch: M2	338		Batch: M	2338	
Wet weight (g) 30	0.04		Wet weight (g)	30.09		Wet weight (g)	30.18	
Dry weight (g) 20	0.65		Dry weight (g)	21.30		Dry weight (g)	22.46	
Solids (%)	58.8		Solids (%)	70.8		Solids (%)	74.4	
NALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)	Valu	e Qual	ANALYTE (ng/g)	Value	Qual
Naphthalene	2.4		Naphthalene	3.7		Naphthalene	2.2	
C1-Naphthalenes	7.2		C1-Naphthalenes	10.3		C1-Naphthalenes	3.9	
C2-Naphthalenes	7.0		C2-Naphthalenes	8.1		C2-Naphthalenes	4.7	
C3-Naphthalenes	0	ND	C3-Naphthalenes	7.0		C3-Naphthalenes	4.8	
C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND	C4-Naphthaienes	0	ND
Biphenyl	1,1		Biphenyl	1.0		Biphenyl	1.3	
Acenaphthylene	0.3	J	Acenaphthylene	0.2	J	Acenaphthylene	0.4	
Acenaphthene	0.4	J	Acenaphthene	0.3	L	Acenaphthene	0.3	J
Fluorene	0.5		Fluorene	0.9		Fluorene	0.8	
C1-Fluorenes	0	ND	C1-Fluorenes	0	ND	C1-Fluorenes	0	ND
C2-Fluorenes	0	ND	C2-Fluorenes	0	ND	C2-Fluorenes	0	ND
C3-Fluorenes	0	ND	C3-Fluorenes	0	ND	C3-Fluorenes	0	ND
Phenanthrene	2.1	ND	Phenanthrene	2.7	ND	Phenanthrene		NU
Anthracene			Anthracene			Anthracene	2.0	
	0.4			0.4				J
C1-Phen/Anthracenes	3.2		C1-Phen/Anthracenes	4.8		C1-Phen/Anthracenes	2.8	
C2-Phen/Anthracenes	4.1		C2-Phen/Anthracenes	5.4		C2-Phen/Anthracenes	3.7	
C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	4.5		C3-Phen/Anthracenes	0	ND
C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND
Dibenzothiophene	0.4		Dibenzothiophene	0.4		Dibenzothiophene	0.4	
C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	0.6		Fluoranthene	0.5		Fluoranthene	0.5	
Pyrene	0.6		Pyrene	0.7		Pyrene	0.4	
C1-Fluoranthene/Pyrenes	0.0	ND	C1-Fluoranthene/Pyrenes	0	ND	C1-Fluoranthene/Pyrenes	0	ND
-		J	Benzo(a)anthracene			_		J
Benzo(a)anthracene	0.2	5		0.4		Benzo(a)anthracene	0.2	5
Chrysene	0.8		Chrysene	0.6		Chrysene	0.4	
C1-Chrysenes	0	ND	C1-Chrysenes	0	ND	C1-Chrysenes	0	ND
C2-Chrysenes	0	ND	C2-Chrysenes	0	ND	C2-Chrysenes	0	ND
C3-Chrysenes	0	ND	C3-Chrysenes	0	ND	C3-Chrysenes	0	ND
C4-Chrysenes	0	ND	C4-Chrysenes	0	ND	C4-Chrysenes	0	ND
Benzo(b)fluoranthene	0.4		Benzo(b)fluoranthene	0.4		Benzo(b)fluoranthene	0.3	
Benzo(k)fluoranthene	0.1	J	Benzo(k)fluoranthene	0.2	J	Benzo(k)fluoranthene	0.1	J
Benzo(e)pyrene	0.3		Benzo(e)pyrene	0.3		Benzo(e)pyrene	0.2	
Benzo(a)pyrene	0.2	J	Benzo(a)pyrene	0.3		Benzo(a)pyrene	0.2	J
Perylene	1.6	J	Perylene	1.9	J	Perviene	2.1	-
Indeno(1,2,3-c,d)pyrene		J	indeno(1,2,3-c,d)pyrene		J	Indeno(1,2,3-c,d)pyrene	0.1	j
Dibenzo(a,h)anthracene	0.2		Dibenzo(a,h)anthracene	0.2		Dibenzo(a,h)anthracene		
	0.1	J	-	0.1	J		0.1	J
Benzo(g,h,i)perylene	0.2		Benzo(g,h,i)perylene	0.4		Benzo(g,h,i)perylene	0.2	
TOTAL PAH (ng/g) (Excluding Perylene)	3	2.7	TOTAL PAH (ng/g) (Excluding Perylene)	5	3.7	TOTAL PAH (ng/g) (Excluding Perylene)	30).1
ecific Isomers (ng/g)			Specific Isomers (ng/g)			Specific Isomers (ng/g)		
1-Methylnaphthalene	3.4		1-Methylnaphthalene	5.3		1-Methylnaphthalene	1.3	
2-Methylnaphthalene 2.6-Dimethylnaphthalene	3.9 2.7		2-Methyinaphthalene 2,6-Dimethyinaphthalene	5.0 3.6		2-Methylnaphthalene 2,6-Dimethylnaphthalene	2.6 2.2	
1,6,7-Trimethylnaphthalene	1.2		1,6.7-Trimethylnaphthalen	e 1.3		1,6,7-Trimethyinaphthaler	ne 0.7	
1-Methylphenanthrene	0.8		1-Methylphenanthrene	1.8		1-Methylphenanthrene	0.7	
rrogate Recoveries (%)			Surrogate Recoveries (%)			Surrogate Recoveries (%)		
Naphthalene-d8 Acenapthene-d10	72.0 78.0		Naphthalene-d8 Acenapthene-d10	109.0 99.9		Naphthai one- d8 Acenapthene-d10	112.3 101.1	
Phenanthrene-d10	88.9		Phenanthrene-d10	99.9 96.1		Phonanthrone-d10	109.3	
Chrysene-d12				90.0		Chrysene-d12	100.7	

Station Survey F	eplicat	le	Station Survey i	Replicat	te
NULLZ-S 1	1		NULLZ-S 1	2	
	ample I			Sample II	
	21142			Sample II	- -
					<u> </u>
Matrix: SEDI Sample Type: SAMI	MENT		Matrix: SED Sample Type: SAM	IMENT IP	
Batch: M233			Batch: M23		
			·····		
	0.15		U (0)	0.05	
	9.63			0.11	
	5.1			66.9	
ANALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)	Value	Qual
Naphthalene	3.3		Naphthalene	3.9	
C1-Naphthalenes	10.7		C1-Naphthalenes	12.3	
C2-Naphthalenes	15.7		C2-Naphthalenes	15.2	
C3-Naphthalenes	17.1 0	ND	C3-Naphthalenes	16.5 6.7	
C4-Naphthalenes	1.7		C4-Naphthalenes	6.7 2.2	
Biphenyl Acenaphthylene	0.4		Biphenyl Acenaphthylene	0.2	J
Acenaphthene	1.0		Acenaphthene	0.2	-
Fluorene	1.9		Fluorene	2.4	
C1-Fluorenes	3.8		C1-Fluorenes	4.4	
C2-Fluorenes	0	ND	C2-Fluorenes	9.5	
C3-Fluorenes	0	ND	C3-Fluorenes	0	ND
Phenanthrene	8.3		Phenanthrene	7.2	
Anthracene	0.2	J	Anthracene	0.4	
C1-Phen/Anthracenes	12.9		C1-Phen/Anthracenes	7.4	
C2-Phen/Anthracenes	10.3		C2-Phen/Anthracenes	10.1	
C3-Phen/Anthracenes	9.1		C3-Phen/Anthracenes	4.2	
C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND
Dibenzothiophene	1.2		Dibenzothiophene	1.1	
C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	1.0		Fluoranthene	1.0	
Pyrene C1-Fluoranthene/Pyrenes	1.1 5.3		Pyrene C1-Fluoranthene/Pyrenes	0.9	
Benzo(a)anthracene	5.3 0.3	J	Benzo(a)anthracene	4.7 0.4	
Chrysene	1.5	*	Chrysene	1.6	
C1-Chrysenes	3.2		C1-Chrysenes	4.4	
C2-Chrysenes	3.1		C2-Chrysenes	3.6	
C3-Chrysenes	0	ND	C3-Chrysenes	0	ND
C4-Chrysenes	0	ND	C4-Chrysenes	0	ND
Benzo(b)fluoranthene	0.9		Benzo(b)fluoranthene	0.9	
Benzo(k)fluoranthene	0.1	J	Benzo(k)fluoranthene	0.1	J ·
Benzo(e)pyrene	0.7		Benzo(e)pyrene	0.8	
Benzo(a)pyrene	0.3		Benzo(a)pyrene	0.3	
Perylene	1.2	J	Perylene	1.2	J
indeno(1,2,3-c,d)pyrene	0.3		Indeno(1,2,3-c,d)pyrene	0.3	
Dibenzo(a,h)anthracene	0.1	J	Dibenzo(a,h)anthracene	0.2	J
Benzo(g,h,i)perylene	0.7		Benzo(g,h,i)perylene	0.7	
TOTAL PAH (ng/g) (Excluding Perylene)	11	6.1	TOTAL PAH (ng/g) (Exducing Perylene)	12	3.9
pecific Isomers (ng/g)			Specific Isomers (ng/g)		
1-Methylnaphthalene 2-Methylnaphthalene	4.8 5.9		1-Methylnaphthalene 2-Methylnaphthalene	4.9 7.4	2
2,6-Dimethylnaphthalene	6.2		2,6-DimethyInaphthalene	5.7	
1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	2.3 2.3		1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	4.3 2.5	
urrogate Recoveries (%)	د.2		Surrogate Recoveries (%)	2.3	
Naphthalene-d8	71.2		Naphthalene-d8	94.0	
Acenapthene-d10 Phenanthrene-d10	81.3 69.6		Acenapthene-d10 Phenanthrene-d10	115.7 107.7	
Chrysene-d12	80.0		Chrysene-d12	106.0	
Perylene-d12	86.8		Perviene-d12	91.6	

NULLZ-S 1	3
	Sample ID
CIR95PTT0003	21144
,Matrix: SED	IMENT
Sample Type: SAM	P
Batch: M23	38
Wet weight (g) 3	0.05
• •	0.07
	66.8
	Value Qual
Naphthalene	3.6 11.5
C1-Naphthalenes C2-Naphthalenes	16.8
C3-Naphthalenes	19.5
C4-Naphthalenes	6.9
Biphenyl	1.8
Acenaphthylene	0.1 J
Acenaphthene	0.4 J
Fluorene	2.1
C1-Fluorenes	4.5
C2-Fluorenes	7.8
C3-Fluorenes	0 ND
Phenanthrene	7.7
Anthracene	0.2 J
C1-Phen/Anthracenes	11.2
C2-Phen/Anthracenes	12.6
C3-Phen/Anthracenes	5.9
C4-Phen/Anthracenes	0 ND
Dibenzothiophene	1.3
C1-Dibenzothiophenes	0 ND
C2-Dibenzothiophenes	0 ND
C3-Dibenzothiophenes	0 ND
Fluoranthene	0.7
Pyrene	1.0
C1-Fluoranthene/Pyrenes	3.1
Benzo(a)anthracene	0.4
Chrysene	1.5
C1-Chrysenes	2.4
C2-Chrysenes	3.6
C3-Chrysenes C4-Chrysenes	0 ND
	0 ND
Benzo(b)fluoranthene	0.7
Benzo(k)fluoranthene	0.1 J
Benzo(e)pyrene	0.7
Benzo(a)pyrene Perylene	0.4
Perylene Indeno(1,2,3-c,d)pyrene	1.3 J
Dibenzo(a,h)anthracene	0.3
Benzo(g,h,i)perviene	0.2 J
	0.6
TOTAL PAH (ng/g) (Excluding Perylene)	129.8
pecific Isomers (ng/g)	
1-Methyinaphthalene	5.0
2-Methylnaphthalene 2,6-Dimethylnaphthalene	6.5 6.2
1,6,7-Trimethylnaphthalene	2.1
1-Methylphenanthrene	2.8
iurrogate Recoveries (%) Naphthalene-d8	54.2
Acenapthene-d10	65.0
Phenanthrene-d10 Chrysene-d12	60.2 67.2

Station Survey F	Replicate	Station Survey I	Replicate	Station Survey F	leplicate	
TRADB-S 1 1		TRADB-S 1	2	TRADB-S 1	3	
KLI Sample ID Lab S	Sample ID	KLI Sample ID Lab	Sample ID	KLI Sample ID Lab Sample ID		
	21154		21155	,	21156	
	MENT	Matrix: SED	IMENT		IMENT	
Matrix: SEDI Sample Type: SAM	-	Sample Type: SAM		Matrix: SED Sample Type: SAM		
Batch: M233	•	Batch: M23		Batch: M23		
	~				~	
- 14	0.53	0	0.28	U (U)	0.25	
	7.88	,	8.14		7.76	
	58.6		59.9		58.7	
ANALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Q	
Naphthalene	4.0	Naphthalene	3.7	Naphthalene	2.6	
C1-Naphthalenes	6.4	C1-Naphthalenes	9.9	C1-Naphthalenes	9.3	
C2-Naphthalenes	9.3	C2-Naphthalenes	12.5	C2-Naphthalenes	10.3	
C3-Naphthalenes	9.1	C3-Naphthalenes	0 ND	C3-Naphthalenes	11.6	
C4-Naphthalenes	0 ND	C4-Naphthalenes	0 ND	C4-Naphthalenes	0 ND	
Biphenyl	1.5	Biphenyl	1.0	Biphenyl	2.0	
Acenaphthylene	0.6	Acenaphthylene	0.1 J	Acenaphthylene	0.3 J	
Acenaphthene	0.5 J	Acenaphthene	0.4 J	Acenaphthene	1.4	
Fluorene	0.8	Fluorene	0.6	Fluorene	0.9	
C1-Fluorenes	0 ND	C1-Fluorenes	0 ND	C1-Fluorenes	0 ND	
C2-Fluorenes	0 ND	C2-Fluorenes	0 ND	C2-Fluorenes	0 ND	
C3-Fluorenes	0 ND	C3-Fluorenes	0 ND	C3-Fluorenes	0 ND	
Phenanthrene	3.6	Phenanthrene	3.7	Phenanthrene	3.2	
Anthracene	1.0	Anthracene	0.3 J	Anthracene	0.5	
C1-Phen/Anthracenes	5.2	C1-Phen/Anthracenes	3.9	C1-Phen/Anthracenes	5.5	
C2-Phen/Anthracenes	7.8	C2-Phen/Anthracenes	7.2	C2-Phen/Anthracenes	6.7	
C3-Phen/Anthracenes	O ND	C3-Phen/Anthracenes	0 ND	C3-Phen/Anthracenes	0 ND	
C4-Phen/Anthracenes	0 ND	C4-Phen/Anthracenes	0 ND	C4-Phen/Anthracenes	0 ND	
Dibenzothiophene	0.6	Dibenzothiophene	0.9	Dibenzothiophene	0.9	
C1-Dibenzothiophenes	0 ND	C1-Dibenzothiophenes	0 ND	C1-Dibenzothiophenes	0 ND	
C2-Dibenzothiophenes	0 ND	C2-Dibenzothiophenes	0 ND	C2-Dibenzothiophenes	0 ND	
C3-Dibenzothiophenes	0 ND	C3-Dibenzothiophenes	0 ND	C3-Dibenzothiophenes	0 ND	
Fluoranthene	0.9	Fluoranthene	1.0	Fluoranthene	0.9	
Pyrene	1.1	Pyrene	0.8	Pyrene	0.9	
C1-Fluoranthene/Pyrenes	0 ND	C1-Fluoranthene/Pyrenes	0 ND	C1-Fluoranthene/Pyrenes	3.4	
Benzo(a)anthracene	0.1 J	Benzo(a)anthracene	0.2 J	Benzo(a)anthracene	0.5	
Chrysene	0.6	Chrysene	1.0	Chrysene	1.1	
C1-Chrysenes	0 ND	C1-Chrysenes	0 ND	C1-Chrysenes	0 ND	
C2-Chrysenes	0 ND	C2-Chrysenes	0 ND	C2-Chrysenes	0 ND	
C3-Chrysenes	0 ND	C3-Chrysenes	0 ND	C3-Chrysenes	0 ND	
C4-Chrysenes	0 ND	C4-Chrysenes	0 ND	C4-Chrysenes	0 ND	
Benzo(b)fluoranthene	0.5	Benzo(b)fluoranthene	0.6	Benzo(b)fluoranthene	0.6	
Benzo(k)fluoranthene	0.1 J	Benzo(k)fluoranthene	0.1 J	Benzo(k)fluoranthene	0.2 J	
Benzo(e)pyrene	0.5	Benzo(e)pyrene	0.3	Benzo(e)pyrene	0.4	
Benzo(a)pyrene	0.2 J	Benzo(a)pyrene	0.3	Benzo(a)pyrene	0.4	
Perylene	3.4	Perylene	2.9	Perylene	4.8	
Indano(1,2,3-c,d)pyrana	0.2 J	Indeno(1,2,3-c,d)pyrene	0.2 J	Indeno(1,2,3-c,d)pyrene	0.3 J	
Dibenzo(a,h)anthracene	0.1 J	Dibenzo(a,h)anthracene	0.1 J	Dibenzo(a,h)anthracene	0.1 J	
Benzo(g,h,i)perylene	0.7	Benzo(g,h,i)perylene	0.4	Benzo(g,h,i)perylene	0.5	
TOTAL PAH (ng/g) (Excluding Perylene)	55.3	TOTAL PAH (ng/g) (Excluding Peryiene)	49.2	TOTAL PAH (ng/g) (Excluding Perylene)	64.4	
pecific Isomers (ng/g)		Specific Isomers (ng/g)		Specific Isomers .(ng/g)		
1-Methylnaphthalene 2-Methylnaphthalene	3.4 3.0	1-Methylnaphthalene 2-Methylnaphthalene	4.7 5.2	1-Methylnaphthalene 2-Methylnaphthalene	4.9 4.4	
2,6-Dimethylnaphthalene	1.3	2,6-Dimethylnaphthalene	1.5	2.6-Dimethylnaphthalene	3.1	
1,6,7-Trimethylnaphthalene	1.0	1,6,7-Trimethylnaphthalene	0.9	1.6.7-Trimethylnaphthalene	1.6	
1-Methylphenanthrene urrogate Recoveries (%)	1.5	1-Methylphenanthrene Surrogate Recoveries (%)	1.3	1-Methylphenanthrene . Surrogate Recoveries (%)	1.2	
Naphthalene-d8	95.0	Naphthalene-d8	47.8	Naphthalene-d8	80.1	
Acenapthene-d10 Phenanthrene-d10	113.5 90.5	Acenapthene-d10	81.2	Acenapthene-d10 Phenanthrene-d10	66.5 84.1	
Chrysene-d12	113.0	Phenanthrene-d10 Chrysene-d12	58.1 68.4	Chrysene-d12	70.4	
Perviene-d12	110.3	Perviene-d12	103.3	Perviene-d12	78.1	

APPENDIX B

Sediment Results

2.0 PAH Data for Sediment Intercalibration

Station Survey F	· ·	2	Station Survey F	N/A	
	N/A				
	Sample ID	, -		Sample II 20988s	- -
			••••••••••••••••••••••••••••••••••••••		
	MENT	•		MENT	
Sample Type: SAM Batch: M23					
Batch: M233			Batch: M233		
Wet weight (g) 1	5.09		Wet weight (g) 1	5.12	
Dry weight (g) 11	0.44		Dry weight (g) 11	0.51	
Solids (%)	59.2		Solids (%)	69.5 	
ANALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)	Value	Qual
Naphthalene	4.6		Naphthalene	4.6	
C1-Naphthalenes	6.7		C1-Naphthalenes	8.9	
C2-Naphthalenes	7.9		C2-Naphthalenes	7.8	
C3-Naphthalenes	9.4		C3-Naphthalenes	9.2	ND
C4-Naphthalenes	10.0		C4-Naphthalenes	0	ND
Biphenyl	1.5		Biphenyl	2.1	
Acenaphthylene	0.2	J	Acenaphthylene	0.5	J
Acenaphthene	0.5	J	Acenaphthene	1.0	
Fluorene	1.0		Fluorene	1.8	ND
C1-Fluorenes	2.1		C1-Fluorenes	0	ND
C2-Fluorenes C3-Fluorenes	3.8		C2-Fluorenes C3-Fluorenes	0	ND
C3-Fluorenes Phenanthrene	6.3		C3-Huorenes Phenanthrene	0.	ND
Anthracene	3.3	1	Anthracene	7.5	
Anthracene C1-Phen/Anthracenes	0.3	J	Anthracene C1-Phen/Anthracenes	1.0	
C1-Phen/Anthracenes	5.3		C2-Phen/Anthracenes	10.1	
	7.7			13.3	
C3-Phen/Anthracenes	9.6		C3-Phen/Anthracenes	0	ND
C4-Phen/Anthracenes	.8.3		C4-Phen/Anthracenes	0	ND
Dibenzothiophene	0.8		Dibenzothiophene	2.3	ND
C1-Dibenzothiophenes	1.6		C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	1.6		C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	1.7		C3-Dibenzothiophenes	0	ND
Fluoranthene	0.8		Fluoranthene	1.8	
Pyrene	1.1		Pyrene Of Electronic Directory	2.8	
C1-Fluoranthene/Pyrenes	2.8	,	C1-Fluoranthene/Pyrenes	4.1	
Benzo(a)anthracene	0.3	J	Benzo(a)anthracene	2.7	
Chrysene C1-Chrysenes	1.2		Chrysene C1-Chargener	1.4	ND
C1-Chrysenes	1.3		C1-Chrysenes	0	ND
C2-Chrysenes	8.8		C2-Chrysenes	0	ND
C3-Chrysenes C4-Chrysenes		ND	C3-Chrysenes	0	ND
·		ND	C4-Chrysenes	0	ND
Benzo(b)fluoranthene	0.9	1	Benzo(b)fluoranthene	1.3	
Benzo(k)fluoranthene	0.1	J	Benzo(k)fluoranthene	0.2	J
Benzo(e)pyrene	0.7		Benzo(e)pyrene	1.0	
Benzo(a)pyrene	0.4	J	Benzo(a)pyrene	0.5	
Perylene	8.2		Perylene	16.1	
Indeno(1,2,3-c,d)pyrene	0.3	J	indeno(1,2,3-c,d)pyrene	0.4	J
Dibenzo(a,h)anthracene	0.2	J	Dibenzo(a,h)anthracene	0.4	J
Benzo(g,h,i)perylene	1.1		Benzo(g,h,i)peryiene	1.2	
TOTAL PAH (ng/g) (Excluding Perviewe)	118	.8	TOTAL PAH (ng/g) (Excluding Perylene)	88	
pecific Isomers (ng/g)			Specific Isomers (ng/g)		
1-Methyinaphthalene 2-Methyinaphthalene	2.8 3.9		1-Methylnaphthalene 2-Methylnaphthalene	4.8 4.2	
2,6-Dimethylnaphthalene	2.6		2,6-Dimethylnaphthalene	3.9	
1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	1.2		1,6,7-Trimethylnaphthalene	2.6	
urrogate Recoveries (%)	1.2		1-Methylphenanthrene Surrogate Recoveries (%)	3.0	
Naphthalene-d8	95.3		Naphthalene-d8	107.1	
Acenapthene-d10	95.1		Acenapthene-d10	91.5	
Phenanthrene-d10 Chrysene-d12	93.9 100.8		Phenanthrene-d10 Chrysene-d12	87.5 114.8	
Perviene-d12	74.0		Perviene-d12	76.2	

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Station Survey Replicate TRADB-S ADL N/A		N17 A	
			TRADB-S ADL	N/A	
	Sample ID			Sample II C20989s	
	IMENT				
Sample Type: SAM Batch: M23			Sample Type: SO Batch: M2:		
Balch. M23					
Wet weight (g) 1	5.14		e (0)	15.12	
- , , , , , , , , , , , , , , , , , , ,	8.87		Dry weight (g)	8.66	
	58.6		Solids (%)	57.3	
LYTE (ng/g)	Value	Qual	ANALYTE (ng/g)		Qual
Naphthalene	5.8 7.9		Naphthalene	6.8 11.7	
C1-Naphthaienes	7.9 9.3		C1-Naphthalenes	16.0	
C2-Naphthalenes	9.3 8.3		C2-Naphthalenes	0	ND
C3-Naphthalenes C4-Naphthalenes	9.0		C3-Naphthalenes C4-Naphthalenes	0	ND
Biphenyi	9.0 1.8		Biphenyl	1.8	
Acenaphthylene	0.2	J	Acenaphthylene	0.6	J
Acenaphthene	0.3	J	Acenaphthene	0.7	J
Fluorene	0.8	J	Fluorene	1.0	J
C1-Fluorenes	2.2		C1-Fluorenes	0	ND
C2-Fluorenes	4.4		C2-Fluorenes	o	ND
C3-Fluorenes	12.1		C3-Fluorenes	0	ND
Phenanthrene	4.5		Phenanthrene	7.0	
Anthracene	0.3	J	Anthracene	1.1	
C1-Phen/Anthracenes	6.6		C1-Phen/Anthracenes	9.9	
C2-Phen/Anthracenes	6.6		C2-Phen/Anthracenes	10.9	
C3-Phen/Anthracenes	7.1		C3-Phen/Anthracenes	9.7	
C4-Phen/Anthracenes	5.0		C4-Phen/Anthracenes	0	ND
Dibenzothiophene	1.3		. Dibenzothiophene	1.1	
C1-Dibenzothiophenes	2.6		C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	2.7		C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes		ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	1.0		Fluoranthene	1.7	
Pyrene C1-Fluoranthene/Pyrenes	1.5 2.9		Pyrene C1-Fluoranthene/Pyrenes	2.1 0	ND
Benzo(a)anthracene	0.4	 J	Benzo(a)anthracene	0.9	
Chrysene	1.4	-	Chrysene	1.3	
C1-Chrysenes	2.0		C1-Chrysenes	0	ND
C2-Chrysenes	4.4		C2-Chrysenes	0	ND
C3-Chrysenes		ND	C3-Chrysenes	o	ND
C4-Chrysenes	o	ND	C4-Chrysenes	o	ND
Benzo(b)fluoranthene	1.2		Benzo(b)fluoranthene	1.1	-
Benzo(k)fluoranthene	0.2	J	Benzo(k)fluoranthene	0.2	J
Benzo(e)pyrene	0.9		Benzo(e)pyrene	0.9	•
Benzo(a)pyrene	0.5	J	Benzo(a)pyrene	0.5	J
Perylene	7.1		Perylene	12.4	
Indeno(1,2,3-c,d)pyrene	0.4	J	indeno(1,2,3-c,d)pyrene	0.4	J
Dibenzo(a,h)anthracene	0.2	J	Dibenzo(a,h)anthracene	0.2	J
Benzo(g,h,i)perylene	1.6		Benzo(g,h,i)perylene	1.5	
TOTAL PAH (ng/g) (Excluding Perylene)	117	.3	TOTAL PAH (ng/g) (Excluding Perviene)	89	.0
ic isomers (ng/g)			Specific Isomers (ng/g)		
1-Methylnaphthalene	3.2		1-Methylnaphthalene	6.5	
2-Methylnaphthalene 2,6-Dimethylnaphthalene	4.7 3.8		2-Methylnaphthalene 2,6-Dimethylnaphthalene	5.3 4.4	
1,6,7-Trimethylnaphthalene	2.9		1,6,7-Trimethylnaphthalene	1.9	
1-Methylphenanthrene jate Recoveries (%)	1.6		1-Methylphenanthrene Surrogate Recoveries (%)	3.2	
Naphthalene-d8	104.5		Naphthalene-d8	81.3	
Acenapthene-d10 Phenanthrene-d10	104.9		Acenapthene-d10	107.5	
Chrysene-d12 Perglane-d12	95.2 97.0		Phenanthrene-d10 Chrysene-d12	95.4 103.2	

Clation Cumieu F	Panlicate	Station Survey F	Penlicate
Station Survey F	N/A	Station Survey F	
	Sample ID 20990		Sample ID 20990s
	MENT .		MENT
Sample Type: SAM		-	
Batch: M23		Batch: M233	37
Wet weight (g) 1	5.11	Wet weight (g) 15	5.21
Dry weight (g)	7.91	Dry weight (g) 8	3.08
Solids (%)	52.3	Solids (%)	53.1
NALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual
Naphthalene	6.0	Naphthalene	4.4
C1-Naphthalenes	8.3	C1-Naphthalenes	9.8
C2-Naphthalenes	7.7	C2-Naphthalenes	18.3
C3-Naphthalenes	13.2	C3-Naphthalenes	0 ND
C4-Naphthalenes	8.3	C4-Naphthalenes	0 ND
Biphenyl	1.6	Biphenyl	1.7
Acenaphthylene · Acenaphthene	0.3 J 0.6 J	Acenaphthylene Acenaphthene	1.0 L 0.1
- Acenaphthene Fluorene	0.6 J 1.2	Fluorene	0.9 J 2.4
C1-Fluorenes	2.5	C1-Fluorenes	2.4 0 ND
C2-Fluorenes	5.3	C2-Fluorenes	0 ND
C3-Fluorenes	8.5	C3-Fluorenes	0 ND
Phenanthrene	4.1	Phenanthrene	5.7
Anthracene	0.4 J	Anthracene	0.6 J
C1-Phen/Anthracenes	5.1	C1-Phen/Anthracenes	8.1
C2-Phen/Anthracenes	4.6	C2-Phen/Anthracenes	10.4
C3-Phen/Anthracenes	6.8	C3-Phen/Anthracenes	0 ND
C4-Phen/Anthracenes	4.3	C4-Phen/Anthracenes	0 ND
Dibenzothiophene	1.1	Dibenzothiophene	0.9 J
C1-Dibenzothiophenes	1.5 J	C1-Dibenzothiophenes	0 ND
C2-Dibenzothiophenes	0 ND	C2-Dibenzothiophenes	0 ND
C3-Dibenzothiophenes	0 ND	C3-Dibenzothiophenes	0 ND
Fluoranthene	1.5	Fluoranthene	1.0
Pyrene	1.6	Pyrene	2.3
C1-Fluoranthene/Pyrenes	3.3	C1-Fluoranthene/Pyrenes	0 ND
Benzo(a)anthracene	0.6 J	Benzo(a)anthracene	0.8
Chrysene	1.2	Chrysene	1.5
C1-Chrysenes	1.9	C1-Chrysenes	0 ND
C2-Chrysenes C3-Chrysenes	3.6	C2-Chrysenes	0 ND
C3-Chrysenes C4-Chrysenes	0 ND	C3-Chrysenes C4-Chrysenes	0 ND
-	0 ND	·	0 ND
Benzo(b)fluoranthene Benzo(k)fluoranthene	1.3 0.3 J	Benzo(b)fluoranthene Benzo(k)fluoranthene	1.1 0.2 J
Benzo(k)nuoraninene Benzo(e)pyrene	0.3 J	Benzo(k)nuorantnene Benzo(e)pyrene	0.2 J 1.2
Benzo(a)pyrene	0.6	Benzo(a)pyrene	0.5 J
Perviene	5.3	Perylene	9.3
Indeno(1,2,3-c,d)pyrene	0.6	indeno(1,2,3-c,d)pyrene	9.5 0.4 J
Dibenzo(a,h)anthracene	0.2 J	Dibenzo(a,h)anthracene	0.5 ∕ J
Benzo(g,h,i)perylene	1.6	Benzo(g.h.i)perylene	1.1
TOTAL PAH (ng/g) (Excluding Perylene)	110.4	TOTAL PAH (ng/g) (Excluding Perylene)	74.5
pecific Isomers (ng/g)		Specific Isomers (ng/g)	
1-Methylnaphthalene	3.5	1-Methylnaphthalene	4.3
2-Methylnaphthalene 2,6-Dimethylnaphthalene	4.8 4.1	2-Methylnaphthalene 2,6-Dimethylnaphthalene	5.5 6.6
1,6,7-Trimethyinaphthalene	1.7	1,6,7-Trimethylnaphthalene	3.7
1-Methylphenanthrene urrogate Recoveries (%)	1.2	1-Methylphenanthrene Surmaste Recoverier (%)	2.0
Naphthalene-d8	99.0	Surrogate Recoveries (%) Naphthalene-d8	76.5
Acenapthene-d10	100.4	Acenapthene-d10	76.6
Phenanthrene-d10 Chrysene-d12	103.6 103.4	Phenanthrene-d10 Chrysene-d12	86.4 89.3
Perviene-d12	74.3	Perylene-d12	92.0
Total Hydrocarbon (THC in µg/g)	N/A	Total Hydrocarbon (THC in µg/g)	N/A

APPENDIX B

Sediment Results

3.0 PAH Quality Control Data

	Replicat	σ 	Station Survey	_		
TRADB-S 1	EB		TRADB-S 1	EB		
	Sample IC	<u> </u>		Sample II	2	
CIR95PTB0002	C21159		CIR95PTB0002	C21160		_
Matrix: WA	TER		Matrix: WA	TER		-
Sample Type: EQL	JIP. BLANK	-	Sample Type: EQI	JIP. BLANK	(
Batch: M23	36		Batch: M23	336		
Wet weight (g)	N/A		Wet weight (g)	N/A		-
Dry weight (g)	N/A		Dry weight (g)	N/A		
Solids (%)	N/A		Solids (%)	N/A		
ANALYTE (ng/g)		Our	ANALYTE (ng/g)		0	-
Naphthalene	value 1.2	Qual J	Naphthalene	1.5	Qual J	
C1-Naphthalenes	• 0.5	J	C1-Naphthalenes	0.7	J	
C2-Naphthalenes		ND	C2-Naphthalenes	0	ND	
C3-Naphthalenes	0	ND	C3-Naphthalenes	0	ND	
C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND	
Biphenyi	0.2	J	Biphenyl	0.3	J	
Acenaphthylene	0.2	J	Acenaphthylene	0.3	ND	
	0.3	J	Acenaphthylene	0.3	J	
Fluorene	0.3	J	Fluorene	0.3	J	
C1-Fluorenes	0.2	ND	C1-Fluorenes	. 0	ND	
C2-Fluorenes	0	ND	C2-Fluorenes	. 0	ND	
C3-Fluorenes	· 0	ND	C3-Fluorenes	0	ND	
Phenanthrene	0.3	J	Phenanthrene	0.4	J	
Anthracene	0.2	1	Anthracene	0.4	J	
C1-Phen/Anthracenes		ND	C1-Phen/Anthracenes	0.2	ND	
C2-Phen/Anthracenes	0	ND	C2-Phen/Anthracenes	0		
	-				ND	
C3-Phen/Anthracenes	0	ND ND	C3-Phen/Anthracenes	0	ND	
C4-Phen/Anthracenes			C4-Phen/Anthracenes	0	ND	
Dibenzothiophene	0.3	J	Dibenzothiophene	0.4	J	
C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND	
C2-Dibenzothiophenes		ND	C2-Dibenzothiophenes	0	ND	
C3-Dibenzothiophenes		ND	C3-Dibenzothiophenes	0	ND	
Fluoranthene	0.1	L	Fluoranthene	0.2	J	
Pyrene	0.2	1	Pyrene	0.2	J	
C1-Fluoranthene/Pyrenes		ND	C1-Fluoranthene/Pyrenes	0	ND	
Benzo(a)anthracene	0.1	J	Benzo(a)anthracene	0	ND	
Chrysene C1 Changener	0.1	J	Chrysene	0.1	J	
C1-Chrysenes		ND	C1-Chrysenes	0	ND	
C2-Chrysenes C3-Chrysenes		ND	C2-Chrysenes	0	ND	
C3-Chrysenes C4-Chrysenes		ND	C3-Chrysenes	0	ND	
-		ND	C4-Chrysenes	0	ND .	
Benzo(b)fluoranthene		ND	Benzo(b)fluoranthene	0.1	J	
Benzo(k)fluoranthene		ND	Benzo(k)fluoranthene	, 0	ND	
Benzo(e)pyrene		ND	Benzo(e)pyrene	0.1	J	
Benzo(a)pyrene	0.1	J	Benzo(a)pyrene	0	ND	
Perylene	0	ND	Perylene	0.1	J	
Indeno(1,2,3-c,d)pyrene	0.1	J	Indeno(1,2,3-c,d)pyrene	0	ND	
Dibenzo(a,h)anthracene	0	ND	Dibenzo(a,h)anthracene	0	ND	
Benzo(g,h,i)perylene	0.1	J	Benzo(g,h,i)perylene	0.1	J	
TOTAL PAH (ng/g)	4.	1	TOTAL PAH (ng/g)	4.	7	
(Excluding Perylene)			(Excluding Perylene)			
Specific Isomers (ng/g)			Specific Isomers (ng/g)			-
1-Methylnaphthalene 2-Methylnaphthalene		J.	1-Methyinaphthalene 2-Methyinaphthalene	0.3 0.4	J J	
2.6-Dimethyinaphthalene	0.3	J	2,6-Dimethylnaphthalene	0.1	J	
1,6,7-Trimethylnaphthalene 1-Methylphenanthrene		J	1,6,7-Trimethylnaphthalene	0.6 0.1	J J	
Surrogate Recoveries (%)	0.1	•	1-Methylphenanthrene Surrogate Recoveries (%)	0.1		
Naphthalene-d8	102.1		Naphthalene-d8	86.8		
Acenapthene-d10 Phenanthrene-d10	96.1 96.5		Acenapthene-d10	89.6		
Chrysene-d12	86.5 85.3		Phenanthrene-d10 Chrysene-d1?	89.1 77.5		
Perylene-d12	94.0		Perviene-d12	82.5		

		PAH Data for Cool	k Inlet 1995 El	MP
Station Survey R	eplicate	Station Survey I	Replicate	
TRADB-S 1	FB	TRADB-S 1	FB	
KLI Sample ID Lab S	ample ID	KLI Sample ID Lab	Sample ID	
	21157		21158	
Matrix: WATI	E8	Matrix: WAT	ER	
	BLANK		D BLANK	
Batch: M233		Batch: M23		
a (a)	N/A	Wet weight (g)	N/A	
	N/A	Dry weight (g)	N/A	
······································	N/A	Solids (%)	N/A	
ANALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual	
Naphthalene	1.7 J	Naphthalene	1.7 J	
C1-Naphthalenes	0.7 J 0 ND	C1-Naphthalenes	0.6 J 0 ND	
C2-Naphthalenes	0 ND	C2-Naphthalenes		
C3-Naphthalenes C4-Naphthalenes	0 ND	C3-Naphthalenes C4-Naphthalenes		
Biphenyl	0.3 J	Biphenyi	0.3 J	
Acenaphthylene	0.1 J	Acenaphthylene	0.1 J	
Acenaphthene	0.2 J	Acenaphthene	0.5 J	
Fluorene	0.3 J	Fluorene	0.2 J	
C1-Fluorenes	0 ND	C1-Fluorenes	0 ND	
C2-Fluorenes	0 ND	C2-Fluorenes	0 ND	
C3-Fluorenes	0 ND	C3-Fluorenes	0 ND	
Phenanthrene	0.4 J	Phenanthrene	0.5 J	
Anthracene	0.2 J	Anthracene	0.2 J	
C1-Phen/Anthracenes	0 ND	C1-Phen/Anthracenes	0 ND	
C2-Phen/Anthracenes	0 ND	C2-Phen/Anthracenes	0 ND	
C3-Phen/Anthracenes	0 ND	C3-Phen/Anthracenes	0 ND	
C4-Phen/Anthracenes	0 ND	C4-Phen/Anthracenes	0 ND	
Dibenzothiophene	0.4 J	Dibenzothiophene	0.3 J	
C1-Dibenzothiophenes	0 ND	C1-Dibenzothiophenes	0 ND	
C2-Dibenzothiophenes	0 ND	C2-Dibenzothiophenes	0 ND	
C3-Dibenzothiophenes	0 ND	C3-Dibenzothiophenes	0 ND	
Fluoranthene	0.2 J	Fluoranthene	0.2 J	
Pyrene Of Elements of December 1	0.2 J	Pyrene	0.1 J	
C1-Fluoranthene/Pyrenes	0.1 J	C1-Fluoranthene/Pyrenes	0 ND	
Benzo(a)anthracene Chrysene	0.1 J	Benzo(a)anthracene Chrysene	0.1 J 0.1 J	
C1-Chrysenes	0.1 J 0 ND	C1-Chrysenes	0.1 J 0 ND	
C2-Chrysenes		C2-Chrysenes		
C3-Chrysenes		C3-Chrysenes		
C4-Chrysenes	0 ND	C4-Chrysenes	0 ND	
Benzo(b)fluoranthene		Benzo(b)fluoranthene		
Benzo(k)fluoranthene	0.1 J	Benzo(k)fluoranthene	0.1 J	
Benzo(e)pyrene	0 ND	Benzo(e)pyrene	0 ND	
Benzo(a)pyrene	0 ND	Benzo(a)pyrene	0.2 J	
Perylene	0.1 J	Perylene	0 ND	
indeno(1,2,3-c,d)pyrene	0.1 J	Indeno(1,2,3-c,d)pyrene	0 ND	
Dibenzo(a,h)anthracene	0.1 J	Dibenzo(a,h)anthracene	0 ND	
Benzo(g,h,i)perylene	0 ND	Benzo(g,h,i)perylene	0.1 J	
TOTAL PAH (ng/g)	5.1	TOTAL PAH (ng/g)	5.2	
(Excluding Perylene) pecific Isomers (ng/g)		(Excluding Perylene) Specific Isomers (ng/g)		
pecific Isomers (ng/g) 1-Methylnaphthalene	0.3 J	Specific Isomers (ng/g) 1-Methylnaphthalene	0.4 J	
2-Methylnaphthalene	0.4 J	2-Methylnaphthalene	0.2 J	
2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	0.2 J 0.3 J	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	0.2 J 0.2 J	
1-Methylphenanthrene	0.1 J	1-Methylphenanthrene	0.1 J	
urrogate Recoveries (%) Naphthalene-d8	90.9	Surrogate Recoveries (%)	95.9	
Acenapthene-d10	90.9 88.4	Naphthalene-d8 Acenapthene-d10	102.4	
Phenanthrene-d10	84.1 84.6	Phonanthrone-d10 Chrysene-d12	96.0 90.7	
Chrysene-d12				
Chrysene-d12 Perylene-d12	85.7	Perylene-d12	88.2	

```
Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report
```

	РАН	Quality Control Data	for Cook Inle	t 1995 EM
QC Sample Type		QC Sample Type	Lab Sample ID	
MATRIX SPIKE	Q12323	MATRIX SPIKE DUP	Q12324]
ASSOCIATED SAMPL		ASSOCIATED SAMPLE		-
Station Survey Re		Station Survey Rep		7
EFORE-S .NULLNU	LL. RCAC941700OR	EFORE-S .NULLNUL	L. RCAC941700OR	
Matrix: SED	DIMENT	Matrix: SEDI	MENT	_
Sample Type: SAN	AP	Sample Type: SAM	Р	
Batch: M2	328	Batch: M23	328	_
Wet weight (g)	15	Wet weight (g) 15	5.02	
Dry weight (g) 1	10.22	Dry weight (g)	10.3	
Solids (%)	68.1	Solids (%)	68.5	
ANALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual	-
Naphthalene	76.6	Naphthalene	88.6	
C1-Naphthalenes	.NULL.	C1-Naphthalenes	.NULL.	
C2-Naphthalenes	.NULL. .NULL.	C2-Naphthalenes	.NULL. .NULL.	
C3-Naphthalenes C4-Naphthalenes	.NULL.	C3-Naphthalenes	.NULL.	
C4-Maphinalenes Biphenyl	100.8	C4-Naphthaienes Biphenyl	101	
Acenaphthylene	99.7	Acenaphthylene	104.4	
Acenaphthene	103.1	Acenaphthene	103.2	
Fluorene	98.5	Fluorene	100.9	
C1-Fluorenes	.NULL.	C1-Fluorenes	NULL.	
C2-Fluorenes	.NULL.	C2-Fluorenes	.NULL.	
C3-Fluorenes	.NULL.	C3-Fluorenes	.NULL.	
Phenanthrene	106.7	Phenanthrene	106.9	
Anthracene Of Rhan (Anthrony)	87.3	Anthracene	90.3	
C1-Phen/Anthracenes C2-Phen/Anthracenes	.NULL.	C1-Phen/Anthracenes C2-Phen/Anthracenes	.NULL.	
C3-Phen/Anthracenes	.NULL.	C3-Phen/Anthracenes	.NULL.	
C4-Phen/Anthracenes	.NULL. .NULL.	C4-Phen/Anthracenes	.NULL. .NULL.	
Dibenzothiophene	101.5	Dibenzothiophene	97.1	
C1-Dibenzothiophenes	.NULL.	C1-Dibenzothiophenes	.NULL.	
C2-Dibenzothiophenes	.NULL.	C2-Dibenzothiophenes	.NULL.	
C3-Dibenzothiophenes	.NULL.	C3-Dibenzothiophenes	.NULL.	
Fluoranthene	88.5	Fluoranthene	89.6	
Pyrene	77.1	Pyrene	81.8	
C1-Fluoranthene/Pyrenes	.NULL.	C1-Fluoranthene/Pyrenes	.NULL.	
Benzo(a)anthracene	98.4	Benzo(a)anthracene	107	
Chrysen e C1-Chrysen es	97.6	Chrysene C1-Chrysen e s	97.9	
C2-Chrysenes	.NULL.	C2-Chrysenes	.NULL.	
C3-Chrysenes	.NULL.	C3-Chrysenes	.NULL.	
C4-Chrysenes	.NULL. .NULL.	C4-Chrysenes	.NULL. .NULL.	
Benzo(b)fluoranthene	.NOLL. 116.8	Benzo(b)fluoranthene	.NULL. 134 Q	
Benzo(k)fluoranthene	112.4	Benzo(k)fluoranthene	111.7	
Benzo(e)pyrene	106.9	Benzo(e)pyrene	114.3	
Benzo(a)pyrene	108.5	Benzo(a)pyrene	121.9 Q	
Perviene	85	Perylene	89.1	
Indeno(1,2,3-c,d)pyrene	112.3	Indeno(1,2,3-c,d)pyrene	111.2	
Dibenzo(a,h)anthracene	106.8	Dibenzo(a,h)anthracene	109.6	
Benzo(g,h,i)perytene	112.7	Benzo(g,h,i)perylene	109.9	
TOTAL PAH (ng/g)	98.5	TOTAL PAH (ng/g)	102.4	
(Excluding Perviewe)		(Excluding Perylene)		
pecific Isomers (ng/g) 1-Methylnaphthalene	99.1	Specific Isomers (ng/g) 1-Methylnaphthalene	94.7	
2-Methylnaphthalene	88.5	2-Methylnaphthalene	84.7	
2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	100.1 84.2	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	106.5 107.5	
1-Methylphenanthrene	94.2	1-Methylphenanthrene	96.5	
rrogate Recoveries (%)	105.2	Surrogate Recoveries (%) Naphthalene-d8	100.5	
Naphthalene-d8 Acenapthene-d10	105.3 100.9	Acenapthene-d10	95.1	
Phenanthrene-d10 Chrysene-d12	100.9 97.4	Phenanthrene-d10 Chrysene-d12	97.1 94.7	
Perviene-d12	92.6	Perylene-d12	88.4	
Fotal Hydrocarbon (THC. In µg/g)	N/A	Total Hydrocarbon (THCin µg/g)		

Appendix B

QC Sample Type MATRIX SPIKE ASSOCIATED SAMPLE II Station Survey Rep TRADB-S .NULL .NULL	Lab Sample ID 012406	QC Sample Type MATRIX SPIKE DUPE	Lab Sample ID		
ASSOCIATED SAMPLE II Station Survey Rep		MATRIX SPIKE DUPE			
Station Survey Rep	NEORMATION		Q12409		
Station Survey Rep		ASSOCIATED SAMPLE			
	KLI Sample ID	Station Survey Rep			
INULL NULL	RCAC940600ORs		L. RCAC940600ORs		
Matrix: SEDIMI			MENT	2	
Sample Type: SONIC/			CATE		
Batch: M233		Batch: M23			
M233	/	W23		-	
Wet weight (g) 15.0	8	Wet weight (g) 15	5.14		
Dry weight (g) 7.9	8	Dry weight (g) 7	7.86		
Solids (%) 52.	9	Solids (%) 5	51.9		
ANALYTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual	•	
Naphthalene	80.7	Naphthalene	75.5		
C1-Naphthalenes	.NULL.	C1-Naphthalenes	.NULL.		
C2-Naphthalenes	.NULL.	C2-Naphthaienes	.NULL.		
C3-Naphthalenes	.NULL.	C3-Naphthalenes	NULL.		
C4-Naphthalenes	NULL.	C4-Naphthalenes	.NULL.		
Biphenyl	115.3	Biphenyl	107.1		
· •	96.8		79.2		
Acenaphthylene Acenaphthene		Acenaphthylene			•
	112.8	Acenaphthene	90.1		
Fluorene	121.5 Q	Fluorene	105.6		
C1-Fluorenes	.NULL.	C1-Fluorenes	.NULL.		
C2-Fluorenes	.NULL.	C2-Fluorenes	.NULL.		
C3-Fluorenes	.NULL.	C3-Fluorenes	.NULL.		
Phenanthrene	113.3	Phenanthrene	118.8		
Anthracene	104	Anthracene	119		
C1-Phen/Anthracenes	.NULL.	C1-Phen/Anthracenes	.NULL.		
C2-Phen/Anthracenes	.NULL.	C2-Phen/Anthracenes	.NULL.		
C3-Phen/Anthracenes	.NULL.	C3-Phen/Anthracenes	.NULL.		
C4-Phen/Anthracenes	.NULL.	C4-Phen/Anthracenes	.NULL.		
Dibenzothiophene	112.7	Dibenzothiophene	116.9		
C1-Dibenzothiophenes	.NULL.	C1-Dibenzothiophenes	NULL.		
C2-Dibenzothiophenes	.NULL.	C2-Dibenzothiophenes	NULL.		
C3-Dibenzothiophenes	.NULL.	C3-Dibenzothiophenes	NULL.		
Fluoranthene	98.4	Fluoranthene	105.4		
Pyrene	93.7	Pyrene	99.5		
C1-Fluoranthene/Pyrenes	.NULL.	C1-Fluoranthene/Pyrenes	.NULL.		
Benzo(a)anthracene		Benzo(a)anthracene			
Chrysene	108.8	Chrysene	100.1		
C1-Chrysenes	105.5	C1-Chrysenes	101.8		
C2-Chrysenes	.NULL.	C2-Chrysenes	.NULL.		
C3-Chrysenes	.NULL.	C3-Chrysenes	.NULL.		
C4-Chrysenes	.NULL.	C3-Chrysenes C4-Chrysenes	.NULL.		
Cre Chily Montos	.NULL.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.NULL.		
Benzo(b)fluoranthene	106.9	Benzo(b)fluoranthene	108.2	*	
Benzo(k)fluoranthene	109.8	Benzo(k)fluoranthene	94.3		
Benzo(e)pyrane	110.9	Benzo(e)pyrene	103.9		
Benzo(a)pyrene	104.7	Benzo(a)pyrene	100.6		
Parylana	104.1	Perylene	94.1		
indeno(1,2,3-c,d)pyrene	97.3	Indeno(1,2,3-c,d)pyrene	88.8		
Dibenzo(a,h)anthracene	96.7	Dibenzo(a,h)anthracene	87.9		
Benzo(g,h,i)perylene	105.5	Benzo(g,h,i)perylene	99		
TOTAL PAH (ng/g)	102.3	TOTAL PAH (ng/g)	98.2		
(Excluding Perylene) ecific Isomers (ng/g)		(Excluding Perylene) Specific Isomers (ng/g)			
1-Methyinaphthalene	94.2	1-Methylnaphthalene	85		
2-Methylnaphthalene	71.2	2-Methylnaphthalene	80.9		
2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	78.4 112.7	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	85.3 101.9		
1-Methylphenanthrene	102	1,6,7-Trimetnyinaphinalene 1-Methylphenanthrene	101.9		
rogate Recoveries (%)		Surrogate Recoveries (%)			
Naphthalene-d8	111.6	Naphthalene-d8	100.9		
Acenapthene-d10 Phenanthrene-d10	100.5 104.5	Acenapthene-d10 Phenanthrene-d10	96.7 92		-
Chrysene-d12	93.6	Chrysene-d12	90.2		
Perylene-d12	91	Perylene-d12	86.5		
Fotal Hydrocarbon (THC in µg/g)	N/A	Total Hydrocarbon (THC in µg/g)	NA		· · · · · · · · · · · · · · · · · · ·

Appendix B

QC Sample Type	Lab Sample ID	QC Sample Type	Lab Sample
MATRIX SPIKE	Q12414	MATRIX SPIKE DUP	Q12415
ASSOCIATED SAMPL		ASSOCIATED SAMPLE	
ation Survey Re		Station Survey Rep	KLI Sample ID
ACHB-S 1 1	CIR95PTT0007	KACHB-S 1 1	CIR95PTT000
	DIMENT		MENT
Sample Type: SAI	WP	Sample Type: SAM	
Batch: M2	338	Batch: M23	338
Wet weight (g)	30.44	Wet weight (g) 30	0.17
Dry weight (g)	16.07	Dry weight (g) 15	5.93
Solids (%)	52.4	Solids (%)	52.4
YTE (ng/g)	Value Qual	ANALYTE (ng/g)	Value Qual
Naphthalene	72.6	Naphthalene	70.4
C1-Naphthalenes	.NULL.	C1-Naphthalenes	.NULL.
C2-Naphthalenes	.NULL.	C2-Naphthalenes	.NULL.
C3-Naphthalenes	.NULL.	C3-Naphthalenes	.NULL.
C4-Naphthalenes	.NULL.	C4-Naphthalenes	.NULL.
Biphenyl	83.6	Biphenyi	85
Acenaphthylene	80.1	Acenaphthylene	74.5
Acenaphthene	71.1	Acenaphthene	75.3
Fluorene C1-Fluorenes	92.7 .NULL.	Fluorene C1-Fluorenes	92.5 .NULL.
22-Fluorenes	.NULL.	C1-Fluorenes	.NULL.
C3-Fluorenes	.NULL.	C3-Fluorenes	.NULL.
^o henanthrene	111.9	Phenanthrene	
Anthracene	113.2	Anthracene	104.9
21-Phen/Anthracenes	.NULL.	C1-Phen/Anthracenes	.NULL.
2-Phen/Anthracenes	.NULL.	C2-Phen/Anthracenes	.NULL.
C3-Phen/Anthracenes	.NULL.	C3-Phen/Anthracenes	NULL.
C4-Phen/Anthracenes	.NULL.	C4-Phen/Anthracenes	.NULL.
Dibenzothiophene	105.7	Dibenzothiophene	102.2
C1-Dibenzothiophenes	.NULL.	C1-Dibenzothiophenes	.NULL.
C2-Dibenzothiophenes	.NULL.	C2-Dibenzothiophenes	.NULL.
C3-Dibenzothiophenes	.NULL.	C3-Dibenzothiophenes	.NULL.
Fluoranthene	97.9	Fluoranthene	78.5
Pyrene C1-Fluoranthene/Pyrenes	91.1	Pyrene C1-Fluoranthene/Pyrenes	73.5
Benzo(a)anthracene	.NULL.	Benzo(a)anthracene	.NULL.
Chrysene	85.3	Chrysene	88.2
C1-Chrysenes	92	C1-Chrysenes	82.4
C2-Chrysenes	.NULL.	C2-Chrysenes	.NULL.
C3-Chrysenes	.NULL.	C3-Chrysenes	NULL.
C4-Chrysenes	.NULL. .NULL.	C4-Chrysenes	.NULL. .NULL.
Benzo(b)fluoranthene	100.9	Benzo(b)fluoranthene	.NULL. 82.2
Benzo(k)fluoranthene	66.5	Benzo(k)fluoranthene	70.6
Benzo(e)pyrene	90.5	Benzo(e)pyrene	92
Benzo(a)pyrene	90	Benzo(a)pyrene	86.9
Perylene	128.7 M	Perylene	262.2 M
ndeno(1,2,3-c.d)pyrene	79	Indeno(1,2,3-c,d)pyrene	77.7
Dibenzo(a,h)anthracene	85.4	Dibenzo(a,h)anthracene	80.9
Benzo(g,h,i)perylene	79.1	Benzo(g,h,i)perviene	83.7
TOTAL PAH (ng/g)	92.6	TOTAL PAH (ng/g)	92.7
(Excluding Perviene)		(Excluding Perviewe)	5/2.1
c isomers (ng/g)		Specific Isomers (ng/g)	
I-Methylnaphthalene 2-Methylnaphthalene	108 112.5	1-Methyinaphthalene 2-Methyinaphthalene	111.8 105.9
2,6-Dimethylnaphthalene	77.1	2,6-Dimethylnaphthalene	65.8
I.6.7-Trimethylnaphthalene I-Methylphenanthrene	95.9 104.8	1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	94.8 82.2
ate Recoveries (%)	10710	Surrogate Recoveries (%)	VUL
Naphthalene-d8	80.5	Naphthalene-d8	85.7
Acenapthene-d10 Phenanthrene-d10	104.8 93.5	Acenapthene-d10 Phenanthrene-d10	103.7 96.3
Chrysono-d12 Perylene-d12	103.7 105.9	Chrysene-d12 Perviene-d12	96.2 89.3
THE REPORT OF A DEC	10 M M	COLORD - CIZ	

QC Sample Type	La	ab Sample ID	QC Sample Type	1	ab Sample ID	QC Sample Type) L	.ab Sample ID
DUPE		Q12325	DUPE	Γ	Q12410	DUPE		Q12416
ASSOCIATED SAMPLE	INFORM		ASSOCIATED SAMPLE			ASSOCIATED SAMPI	E INFOF	MATION
Station Survey Rep	_	Sample ID	Station Survey Rep		Sample ID			Sample ID
EFORE-S .NULL .NULL	L. RCA	C941700OR	TRADB-S .NULLNUL	L. RCA	C940600ORs	KACHB-S 1	1 CI	R95PTT0007
Matrix: SEDM	MENT		Matrix: SED	IMENT		Matrix: SE	DIMENT	
Sample Type: SAMF		•	,	ICATE		Sample Type: SA		
Batch: M23			Batch: M2				2338	
Wet weight (g) 15	.02		Wet weight (g) 1	5.32		Wet weight (g)	30.11	
Dry weight (g) 10	.18		Dry weight (g)	8.27		Dry weight (g)	15.77	
Solids (%) 6	7.8		Solids (%)	54		Solids (%)	52.4	
NALYTE (ng/g)	Value	Quai	ANALYTE (ng/g)	Valu	e Qual	ANALYTE (ng/g)	Valu	e Qual
Naphthalene	4.3		Naphthalene	6		Naphthalene	3.2	
C1-Naphthalenes	5.8		C1-Naphthalenes	8.3		C1-Naphthalenes	4	
C2-Naphthalenes	7.9		C2-Naphthalenes	o	ND	C2-Naphthalenes	13.7	
C3-Naphthalenes	8.1		C3-Naphthalenes	o	ND	C3-Naphthalenes	0	ND .
C4-Naphthaienes	10.2		C4-Naphthalenes	0	ND	C4-Naphthaienes	0	ND
·	1		·	2.9			0.5	
Biphenyl		,	Biphenyl			Biphenyl		
Acenaphthylene	0.4	J	Acenaphthylene	1.5		Acenaphthylene	0.3	J
Acenaphthene	0.4	J	Acenaphthene	2.3		Acenaphthene	0.7	
Fluorene	1.1		Fluorene	2.2		Fluorene	0.7	
C1-Fluorenes	1.6	J	C1-Fluorenes	0	ND	C1-Fluorenes	2.2	
C2-Fluorenes	3		C2-Fluorenes	0	ND	C2-Fluorenes	0	ND
C3-Fluorenes	4.8		C3-Fluorenes	0	ND	C3-Fluorenes	0	ND
Phenanthrene	3.2		Phenanthrene	6.5		Phenanthrene	3.3	
Anthracene	0.4	J	Anthracene	0.5	J	Anthracene	0.2	J
C1-Phen/Anthracenes	4.9		C1-Phen/Anthracenes	8.5		C1-Phen/Anthracenes	0	ND
C2-Phen/Anthracenes	5.6		C2-Phen/Anthracenes	9.4		C2-Phen/Anthracenes	0	ND
C3-Phen/Anthracenes	5.6 7.9		C3-Phen/Anthracenes	9.4 0	ND	C3-Phen/Anthracenes	0. 0	ND
C4-Phen/Anthracenes	7.9 8		C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND
Dibenzothiophene		,	Dibenzothiophene			Dibenzothiophene	-	nu
	0.7	J		1.1			1.4	
C1-Dibenzothiophenes	1.1	ſ	C1-Dibenzothiophenes	0	ND	C1-Dibenzothiophenes	0	ND
C2-Dibenzothiophenes	2.1		C2-Dibenzothiophenes	0	ND	C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	1.9		C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	0.7		Fluoranthene	2.7		Fluoranthene	2.8	
Pyrene	1		Pyrene	3.3		Pyrene	2.7	
C1-Fluoranthene/Pyrenes	2.4		C1-Fluoranthene/Pyrenes	4.3		C1-Eluoranthene/Pyrenes	7.1	
Benzo(a)anthracene	0.4	J	Benzo(a)anthracene	1.7		Benzo(a)anthracene	0.5	
Chrysene	1.2		Chrysene	2.3		Chrysene	0.8	
C1-Chrysenes	1.3		C1-Chrysenes	2.3 0	ND	C1-Chrysenes	0.8	ND
C2-Chrysenes			C2-Chrysenes			C2-Chrysenes		
C3-Chrysenes	2.3		C3-Chrysenes	0	ND ·	C3-Chrysenes	0	ND
C4-Chrysenes	0	ND	C4-Chrysenes	0	ND	C4-Chrysenes	0	ND
	0	ND	-	0	ND	·	0	ND
Benzo(b)fluoranthene	0.9		Benzo(b)fluoranthene	2.3		Benzo(b)fluoranthene	0.8	
Benzo(k)fluoranthene	0.2	J	Benzo(k)fluoranthene	0.2	J	Benzo(k)fluoranthene	0.1	J
Benzo(e)pyrene	0.7		Benzo(e)pyrene	1.4		Benzo(e)pyrene	0.5	
Benzo(a)pyrene	0.4	J	Benzo(a)pyrene	0.9		Benzo(a)pyrene	0.3	J
Perylene	6.1		Perylene	10.5		Perylene	50.7	
Indeno(1.2,3-c,d)pyrene	0.2	J	Indeno(1,2,3-c,d)pyrene	0.7		indeno(1,2,3-c,d)pyrene	0.4	
Dibenzo(a,h)anthracene	0.1	1	Dibenzo(a,h)anthracene	0.4	L	Dibenzo(a,h)anthracene	0.4	J
Benzo(g,h,i)perylene	1	-	Benzo(g,h,i)perylene		-	Benzo(g,h,i)perylene		•
and a support of the second se	I			1.8			1.2	
TOTAL PAH (ng/g)	97	2	TOTAL PAH (ng/g)	7	0.9	TOTAL PAH (ng/g)	4	7.9
(Excluding Perylene)			(Excluding Perylene)			(Excluding Perylene)		······
ecific isomers (ng/g)	~ ~		Specific Isomers (ng/g)			Specific Isomers (ng/g)		
1-Methylnaphthalene 2-Methylnaphthalene	2.3 3.6		1-Methylnaphthalene 2-Methylnaphthalene	3.7 4.6		1-Methylnaphthalene 2-Methylnaphthalene	1.6 2.4	
2.6-Dimethylnaphthalene	3.1		2,6-Dimethylnaphthalene	4.1		2,6-DimethyInaphthalene	1	
1,6,7-Trimethylnaphthalene	1.2		1,6,7-Trimethylnaphthalene	4.8		1,6.7-Trimethylnaphthalene		
1-Methylphenanthrene	1.3		1-Methylphenanthrene	2.4		1-Methylphenanthrene	2.9	
irrogate Recoveries (%) Naphthalene-d8	103.3		Surrogate Recoveries (%) Naphthalene-d8	104		Surrogate Recoveries (%) Naphthalene-d8	55.8	
Acenapthene-d10	91.5		Naphinaiene-d8 Acenapthene-d10	104		Naphinalene-de Acenapthene-d10	55.8 90.5	
Phenanthrene-d10	95.5 89.5		Phenanthrene-d10	109.7		Phenanthrene-d10	75.6	
Chrysone-d12			Chrysene-d12	106.8		Chrysene-d12	85.3	

QC Sample Ty SRM	pe Lat	Q12413	QC Samp LAB BLAN		Q2402		Sample Type BS DUPE		ample
ASSOCIATED SAM Station Survey	and the second		Station Sur		IFORMATION KLI Sample ID	Station	CIATED SAMPLE Survey Rep		
00.00	•	ATCH INFO			USE BATCH INFO			USE BAT	
Matrix:	SEDIMENT		Matrix	: WATER			Matrix: WA1		
Sample Type:			Sample T	-			ample Type:	2	
	M2338		Batch				Batch: M2	336	
	412000		•••••	INIZOCC	, 				
Wet weight (g)	.NULL.		Wet weight (g)	N/	N	Wet we	ight (g)	N/A	
Dry weight (g)	1.04		Dry weight (g)	N/4	N	Dry we	ight (g)	N/A	
Solids (%)	N/A		Solids (%)	N//	<u> </u>	Solid	; (%)	N/A	
ALYTE (ng/g)	Value	Qual	ANALYTE (ng/g)		Value Qual	ANALYTE	(ng/g)	Value Qu	ual
Naphthalene	713.5	Y	Naphthalene		100.2	Naphthal	ene	95.6	
C1-Naphthalenes	398.5		C1-Naphthaienes	i	.NULL.	C1-Naphi	halenes	.NULL.	
C2-Naphthalenes	291		C2-Naphthalenes	5	.NULL.	C2-Napht	halenes	.NULL.	
C3-Naphthalenes	314		C3-Naphthalenes	5	.NULL.	C3-Naphi	halenes	NULL.	
C4-Naphthalenes	229.8		C4-Naphthalenes	•	.NULL.	C4-Naphi	halenes	.NULL.	
Biphenyl	98.3		Biphenyl		104	Biphenyl		104.1	
Acenaphthylene	72		Acenaphthylene		105.4	Acenapht	hylene	98.7	
Acenaphthene	39.6		Acenaphthene		108.1	Acenaphi	hene	113.5	
Fluorene	91.6	Y	Fluorene		102.5	Fluorene		99.5	
C1-Fluorenes	97.1		C1-Fluorenes		.NULL.	C1-Fluore	ines	.NULL.	
C2-Fluorenes	252.6		C2-Fluorenes		.NULL.	C2-Fluore	ines	.NULL.	
C3-Fluorenes	402.7		C3-Fluorenes		.NULL.	C3-Fluore	ines	.NULL.	
Phenanthrene	445.6	Y	Phenanthrene		105.5	Phenanth	rene	100	
Anthracene	183.3	Y	Anthracene		80.5	Anthrace	ne	76.6	
C1-Phen/Anthracenes	362.4		C1-Phen/Anthrac	ænes	.NULL.	C1-Phen/	Anthracenes	.NULL.	
C2-Phen/Anthracenes	381.8		C2-Phen/Anthrac	anes	.NULL.	C2-Phen/	Anthracenes	.NULL.	
C3-Phen/Anthracenes	316		C3-Phen/Anthrac	zanas	.NULL.	C3-Pherv	Anthracenes	.NULL.	
C4-Phen/Anthracenes	190.1		C4-Phen/Anthrac	cenes	.NULL.	C4-Phen	Anthracenes	.NULL.	
Dibenzothiophene	58.8		Dibenzothiophen	0	104.8	Dibenzot	niophene	102	
C1-Dibenzothiophenes	105.7		C1-Dibenzothiop	henes	.NULL.	C1-Diber	zothiophenes	.NULL.	
C2-Dibenzothiophenes	196.3		C2-Dibenzothiop	henes	.NULL.	C2-Diber	zothiophenes	.NULL.	
C3-Dibenzothiophenes	268.2		C3-Dibenzothiop	henes	NULL.	C3-Diben	zothiophenes	NULL.	
Fluoranthene		Y	Fluoranthene		92.2	Fluoranth	ene	89.8	
Pyrene		Y	Pyrene		87.8	Pyrene		85.2	
C1-Fluoranthene/Pyrene			C1-Fluoranthene	/Pyrenes	NULL.	C1-Fluora	anthene/Pyrenes	NULL.	
Benzo(a)anthracene		Y	Benzo(a)anthrac	ene	93.6	Benzo(a)	anthracene	93.9	
Chrysene	623.7	N	Chrysene		104.2	Chrysene	,	115.9	
C1-Chrysenes	394.6		C1-Chrysenes		.NULL.	C1-Chrys	enes	.NULL.	
C2-Chrysenes	250		C2-Chrysenes		.NULL.	C2-Chrys	anes	.NULL.	
C3-Chrysenes	31.1		C3-Chrysenes		.NULL.	C3-Chrys	enes	.NULL.	
C4-Chrysenes			C4-Chrysenes		.NULL.	C4-Chrys	an as	.NULL.	
Renze/h)fluemathers	117.9	N	Danza/bill.	hene	103.7	8	fluoranthene	95.3	
Benzo(b)fluoranthene	1113.2	N Y	Benzo(b)fluorant		85.4	• •	fluoranthene	95.3 102.6	
Benzo(k)fluoranthene			Benzo(k)fluorant						
Benzo(e)pyrene		Y	Benzo(e)pyrene		94.2	Benzo(e) Benzo(a)		103.2	
Benzo(a)pyrene		Y	Benzo(a)pyrene Pervlene		85.6			87.7	
Perviene		Y	•	0//000	86.1	Perylene	.2.3-c.d)pyrene	76.2	
Indeno(1,2,3-c,d)pyrene		Y	Indeno(1,2,3-c,d) Dibenzo(a,h)anti		88.2		a,h)anthracene	89.6	
Dibenzo(a,h)anthracene Benzo(a,h)inerviene		N .			76.1		a,n)anthracene h,i)perylene	74.6	
Benzo(g,h,i)perylene	549.8	Y	Benzo(g,h,i)pery	010	86.9	⇔enzo(g,	when here	87.8	
TOTAL PAH (ng/g) (Excluding Perylene)	13,244	.1	TOTAL PAH (Excluding Pe		95.3		luding Perylene)	94.8	
ific Isomers (ng/g)				g/g)	102 P	Specific Isomer		99.4	
1-Methylnaphthalene 2-Methylnaphthalene	140.1 258.4		1-Methyinaphtha 2-Methyinaphtha		103.8 97.3		naphthaiene naphthaiene	91.9	
2,6-Dimethylnaphthalen	e 120.7		2.6-Dimethylnap	hthalene	100.3	2,6-Dime	thyinaphthalene	100.3	
1,6,7-Trimethylnaphthale 1-Methylphenanthrene	ene 70.4 82.2		1,6,7-Trimethyln: 1-Methylphenant		86.9 98.2		nethylnaphthalene phenanthrene	88.4 97.8	
vgate Recoveries (%)			Surrogate Recoveries (-	Surrogate Reco			
Naphthalene-d8	81.7		Naphthalene-d8		87.3	Naphthal	ene-d8	94.7	
Acenapthene-d10 Phenanthrene-d10	85.3 91.6		Acenapthene-d1 Phenanthrene-d		97 89.7	Acenapth Phenanth	nene-d10 hrene-d10	102.6 96.3	
·			Chrysene-d12		94.3	Chrysene		92.1	
Chrysene-d12	79.9		Perviene-d12		80.8	Perviene	110	84.9	

Res : [1]

HOUND CONTRACT

and a second

			Quality Control Data					
QC Sample Typ	be r	.ab Sample ID	QC Sample Type	t t	ab Sample ID	QC Sample Typ	e l	Lab Sample ID
PROC BLANK		Q12322	PROC BLANK		Q12407	PROC BLANK		Q12412
ASSOCIATED SAM			ASSOCIATED SAMPLI		Sample ID	ASSOCIATED SAMP		
Station Survey F		Sample ID	Station Survey Re			Station Survey R		I Sample ID
	USE	BATCH INFO		USE	BATCH INFO		USE	BATCH INFO
Matrix: S	EDIMENT		Matrix: SED	DIMENT		Matrix: SE	DIMENT	
Sample Type:		•	Sample Type:			Sample Type:		
	12328		Batch: M2	337			2338	
	12320							
Wet weight (g)	.NULL.		Wet weight (g) .N	IULL.		Wet weight (g)	NULL.	
Dry weight (g)	10		Dry weight (g)	10		Dry weight (g)	10	
	N/A		Soiids (%)	N/A		Solids (%)	N/A	
Solids (%)								
ANALYTE (ng/g)	Valu	e Qual	ANALYTE (ng/g)	Valu	e Qual	ANALYTE (ng/g)	Valu	le Qual
Naphthalene	2.3		Naphthalene	1.7		Naphthalene	1.6	J
C1-Naphthalenes	1.3	J	C1-Naphthalenes	1.5	j .	C1-Naphthalenes	2.2	J
C2-Naphthalenes	0	ND	C2-Naphthalenes	0	ND	C2-Naphthalenes	0	ND
	0	ND	· · · · · · · · · · · · · · · · · · ·	0	ND		0	ND
C3-Naphthalenes			C3-Naphthalenes			C3-Naphthaienes		
C4-Naphthalenes	0	ND	C4-Naphthalenes	0	ND	C4-Naphthaienes	0	ND
Biphenyi	0.6		Biphenyl	0.9		Biphenyi	1.3	
Acenaphthylene	0.2	J	Acenaphthylene	0.5	J	Acenaphthylene	0.8	
Acenaphthene	0.2	J	Acenaphthene	1.6		Acenaphthene	0.8	J
Fluorene	0.3	J	Fluorene	0.7	J	Fluorene	0.3	J
C1-Fluorenes	0	ND	C1-Fluorenes	0	ND	C1-Fluorenes	0	ND
C2-Fluorenes	0	ND	C2-Fluorenes	0	ND	C2-Fluorenes	0	ND
C3-Fluorenes	0	ND	C3-Fluorenes	0	ND	C3-Fluorenes	0	ND
Phenanthrene	0.6	J	Phenanthrene	0.8	J	Phenanthrene	0.6	L
Anthracene	0.2	J	Anthracene	0.3	J	Anthracene	0.4	j
C1-Phen/Anthracenes	0	ND	C1-Phen/Anthracenes	0	ND	C1-Phen/Anthracenes	0	ND
	-			-			-	
C2-Phen/Anthracenes	0	ND	C2-Phen/Anthracenes	0	ND	C2-Phen/Anthracenes	0	ND
C3-Phen/Anthracenes	٥	ND	C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	0	ND
C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	• 0	ND	C4-Phen/Anthracenes	Ó O	ND
Dibenzothiophene	0.4	J	Dibenzothiophene	0.7	J	Dibenzothiophene	0.5	J
C1-Dibenzothiophenes	0.4	ND	C1-Dibenzothiophenes	0.7	ND	C1-Dibenzothiophenes	0.5	ND
C2-Dibenzothiophenes			C2-Dibanzothiophanes	-		C2-Dibenzothiophenes		
	0	ND		0	ND	· · · · · · · · · · · · · · · · · · ·	0	ND
C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND	C3-Dibenzothiophenes	0	ND
Fluoranthene	0.3	J	Fluoranthene	0.1	J	Fluoranthene	0.4	J
Pyrene	0.3	J	Pyrene	0.7		Pyrene	0.4	J
C1-Fluoranthene/Pyrene:	·	ND	C1-Fluoranthene/Pyrenes		ND	C1-Fluoranthene/Pyrenes	0	ND
Benzo(a)anthracene	-		Benzo(a)anthracene			Benzo(a)anthracene	-	
Chrysene	0	J	Chrysene	1		Chrysene	0.1	J
•	0.1	J	•	0.4	L	1 x	0.2	J
C1-Chrysenes	0	ND .	C1-Chrysenes	0	ND	C1-Chrysenes	0	ND
C2-Chrysenes	0	ND	C2-Chrysenes	0	ND	C2-Chrysenes	0	ND
C3-Chrysenes	0	ND	C3-Chrysenes	0	ND	C3-Chrysenes	0	ND
C4-Chrysenes			C4-Chrysenes	-		C4-Chrysenes	•	
•	0	ND	-	0	ND	-	0	ND
Benzo(b)fluoranthene	0.1	J	Benzo(b)fluoranthene	0.1	J	Benzo(b)fluoranthene	0.2	J
Benzo(k)fluoranthene	0	J	Benzo(k)fluoranthene	0.1	J	Benzo(k)fluoranthene	0.1	J
Benzo(e)pyrene	0.1	J	Benzo(e)pyrene	0.4		Benzo(e)pyrene	0.1	J
Benzo(a)pyrene	0.2	J .	Benzo(a)pyrene	0.3	.1	Benzo(a)pyrene	0.1	J
· · · · -					-			•
Perylene	0.2	J	Perylene	0.1	J	Perylene	0.4	J
Indeno(1,2,3-c,d)pyrene	0.1	J	indeno(1,2,3-c,d)pyrene	0	J	Indeno(1,2,3-c,d)pyrene	0.2	J ·
Dibenzo(a,h)anthracene	0.1	J	Dibenzo(a,h)anthracene	0.1	J	Dibenzo(a,h)anthracene	0.2	j
Benzo(g,h,i)perylene	0.1	J	Benzo(g,h,i)perylene	0.2	J	Benzo(g,h,i)perylene	0.3	J
		-				· · ·	C	-
TOTAL PAH (ng/g)	7	7.4	TOTAL PAH (ng/g)	1	2.1	TOTAL PAH (ng/g)	1	0.7
(Excluding Perylene)		-	(Excluding Perylene)			(Excluding Perylens)		
ecific Isomers (ng/g)			Specific Isomers (ng/g)			Specific Isomers (ng/g)		
1-Methylnaphthalene	0.3	J	1-Methylnaphthalene	0.8	Ļ	1-Methylnaphthalene	1.4	J
2-Methylnaphthalene 2,6-Dimethylnaphthalene	0.9 0.5	J	2-Methylnaphthalene 2,6-Dimethylnaphthalene	0.7 1.9	J	2-Methylnaphthalene 2,6-Dimethylnaphthalene	0.9	J
1,6,7-Trimethyinaphthale		J	1,6,7-Trimethylnaphthalene	1.9		1,6,7-Trimethylnaphthalen		J
1-Methylphenanthrene	0.1	J _	1-Methylphenanthrene	0.7	J	1-Methylphenanthrene	0.3	J
rrogate Recoveries (%)			Surrogate Recoveries (%)			Surrogate Recoveries (%)		
Naphthalene-d8	103.8		Naphthalene-d8	87		Naphthalene-d8	116.6	i.
Acenapthene-d10	90.7		Acenapthene-d10	106.4		Acenapthene-d10	103.4	
Phenanthrene-d10	95.2		Phenanthrene-d10	80		Phenanthrene-d10	109.2	
Chrysene-d12	89.1		Chrysene-d12 Perylene-d12	72.6 90.3		Chrysene-d12 Perylene-d12	104.5 46.1	1
	74.7							
Perviene-d12	74.3					_		

.

		PA	
QC Sample Typ	ю	Lab Sample	9
PROC BLANK		Q2401	_
ASSOCIATED SAMP	LE INFO	RMATION	
		LI Sample ID	1
	US	E BATCH IN	١F
Matrix: W	ATER		
Sample Type:		-	
_	10000		
N	12336		
Wet weight (g)	N/A		
Dry weight (g)	N/A		
Solids (%)	N/A		
ANALYTE (ng/g)	Val	ue Quai	
Naphthalene	1.5		
	0.8	J	
C1-Naphthalenes	0.0	ND	
C2-Naphthalenes			
C3-Naphthalenes	0	ND	
C4-Naphthalenes	0	ND	
Biphenyl	0.4	J	
Acenaphthylene	0.3	J	
Acenaphthene	0.6	J	
Fluorene	0.4	J	
C1-Fluorenes	٥	ND	
C2-Fluorenes	0	ND	
C3-Fluorenes	0	ND	
Phenanthrene	1.2	J	
Anthracene	0.5	J	
C1-Phen/Anthracenes			
C2-Phen/Anthracenes	0	ND	
	0	ND	
C3-Phen/Anthracenes	0	ND	
C4-Phen/Anthracenes	0	ND	
Dibenzothiophene	0.4	J	
C1-Dibenzothiophenes	0	ND	
C2-Dibenzothiophenes	0	ND	
C3-Dibenzothiophenes	0	ND	
Fluoranthene	0.6	j	
Pyrene	0.5	J	
C1-Fluoranthene/Pyrenes	. 0	ND	
Benzo(a)anthracene	0.1	J	
Chrysene			
C1-Chrysenes	0.1	J	
C2-Chrysenes	0	ND	
C3-Chrysenes	0	ND	
C4-Chrysenes	0	ND	
CA-Chiysenes	0	ND	
Benzo(b)fluoranthene	0.1	J	
Benzo(k)fluoranthene	0	ND	
Benzo(e)pyrene	0.1	J	
Benzo(a)pyrene	0.1	J	
Perylene	0.1	J	
Indeno(1,2,3-c,d)pyrane	0.1		
Dibenzo(a,h)anthracene		ND	
Benzo(g,h,i)perviene	0.1	J	
on rolling house	0.2	J	
TOTAL PAH (ng/g)		8.0	
(Excluding Perylene)			
Specific Isomers (ng/g)	~ ~		
1-Methylnaphthalene 2-Methylnaphthalene	0.3 0.5	L L	
2,6-Dimethylnaphthalene	0.4	J	
1.6,7-Trimethylnaphthalen		J	
1-Methylphenanthrene	0.2	J	
Surrogate Recoveries (%) Naphthalene-d8	81.1		
Acenapthene-d10	87		
Phenanthrene-d10 Charcene d12	87.2		
Chrysene-d12	84.5 89.4		
Perviene-d12			

PAH Quality Control Data for Cook Inlet 1995 EMP Lab Sample ID

Q2401

USE BATCH INFO

C1-Fluorenes	0 1	ND	
C2-Fluorenes	4 0	ND	
C3-Fluorenes	0 1	DI	· · ·
Phenanthrene	1.2	J	
Anthracene	0.5	J	
C1-Phen/Anthracenes	0 1	ND	
C2-Phen/Anthracenes		ND	
C3-Phen/Anthracenes		D	
C4-Phen/Anthracenes		ND	
Dibenzothiophene		J	
C1-Dibenzothiophenes		- ND	
C2-Dibenzothiophenes		ND	
C3-Dibenzothiophenes		ND	
Fluoranthene		J	
Pyrene		J	
C1-Fluoranthene/Pyrenes		4D -	
Benzo(a)anthracene		J	
Chrysene		J	
C1-Chrysenes		ND 2	
C2-Chrysenes			
C3-Chrysenes		1D	
C4-Chrysenes		ID ID	
Benzo(b)fluoranthene		i J	
Benzo(k)fluoranthene		ID	
Benzo(e)pyrene		J	
Benzo(a)pyrene		1	
Perylene			
Indeno(1,2,3-c,d)pyrana	0.1 J 0 N		
Dibenzo(a,h)anthracene		ID 1	
Benzo(g,h,i)perviene	0.1 J 0.2 J		
TOTAL PAH (ng/g) (Excluding Perylene)	8.0		
ecific Isomers (ng/g)			
1-Methylnaphthalene	0.3 J		
2-Methylnaphthalene 2.6-Dimethylnaphthalene	0.5 J		
2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	0.4 J 0.1 J		
1-Methylphenanthrene	0.2 J		
rrogate Recoveries (%)	2.		
Naphthalene-d8 Acenapthene-d10	81.1 87		
Phenanthrene-d10	87.2		
Chrysene-d12 Peryiene-d12	84.5 89.4		
. or promoter a	03.4		
Total Hydrocarbon (THC in µg/g)		N/A	

QC Sample Type	Lab Sample ID	Quality Control Data QC Sample Type	Lab Sample ID	QC Sample Type	Lab Sample ID
					· · · · ·
REFERENCE OIL	W3840	REFERENCE OIL	W3890	REFERENCE OIL	W3917
ASSOCIATED SAMPLE	INFORMATION	ASSOCIATED SAMPLE	E INFORMATION	ASSOCIATED SAMPLE	
Station Survey Rep	KLI Sample ID	Station Survey Rep		Station Survey Rep	
	USE BATCH INFO		USE BATCH INFO		USE BATCH INFO
Matrix: OIL		Matrix: OIL		Matrix: OL	
		Sample Type:		Sample Type:	
Sample Type:	~~				
Batch: M23	30	Batch: M23	337	Batch: M23	-38
Wet weight (g)	VA AV	Wet weight (g)	N/A	Wet weight (g)	N/A
	√/A	Dry weight (g)	N/A		N/A
	√A.	Solids (%)	N/A		N/A
		······	· · · · · · · · · · · · · · · · · · ·		
NALYTE	Value Qual	ANALYTE	Vaļue Qual	ANALYTE	Value Qual
Naphthalene	439.3 Y	Naphthalene	394 Y	Naphthalene	445.6 Y
C1-Naphthalenes	1910.9 Y	C1-Naphthalenes	1846.4 Y	C1-Naphthaienes	2044.5 Y
C2-Naphthalenes	1756.8 Y	C2-Naphthalenes	1620.8 Y	C2-Naphthaienes	1714.4 Y
C3-Naphthalenes	-1646.7 Y	C3-Naphthalenes	1343.4 Y	C3-Naphthaienes	1560.4 Y
C4-Naphthaienes	803.7 Y	C4-Naphthalenes	788.4 Y	C4-Naphthalenes	673.8 Y
Biphenyl	204.8 Y	Biphenyl	193.9 Y	Biphenyl	184.7 Y
Acenaphthylene	1.8 J	Acenaphthylene	3.9 J	Acenaphthylene	4.9 J
Acenaphthene	11 J	Acenaphthene	17.5 J	Acenaphthene	20 Y
Fluorene	90.5 Y	Fluorene	93.5 Y	Fluorene	93.5 Y
C1-Fluorenes				C1-Fluorenes	
	323.5 N	C1-Fluorenes	269.8 Y	-	216.5 Y
C2-Fluorenes	404.2 Y	C2-Fluorenes	437.1 Y	C2-Fluorenes	397.5 Y
C3-Fluorenes	536.2 Y	C3-Fluorenes	463.6 Y	C3-Fluorenes	307.4 Y
Phenanthrene	266.7 Y	Phenanthrene	281.9 Y	Phenanthrene	300.8 Y
Anthracene	4.8 J	Anthracene	5.4 J	Anthracene	2.3 J
C1-Phen/Anthracenes	600.2 Y	C1-Phen/Anthracenes	630.3 Y	C1-Phen/Anthracenes	686 Y
C2-Phen/Anthracenes	770.2 Y	C2-Phen/Anthracenes	666.5 Y	C2-Phen/Anthracenes	754.8 Y
C3-Phen/Anthracenes	708.6 Y	C3-Phen/Anthracenes	597 Y	C3-Phen/Anthracenes	532.8 Y
C4-Phen/Anthracenes	310.2 Y	C4-Phen/Anthracenes	213.1 Y	C4-Phen/Anthracenes	210.9 Y
Dibenzothiophene		Dibenzothiophene		Dibenzothiophene	
C1-Dibenzothiophenes	226.4 Y	C1-Dibenzothiophenes	236.9 Y	C1-Dibenzothiophenes	
	431.6 Y		454.5 Y		468.9 Y
C2-Dibenzothiophenes	665.6 Y	C2-Dibenzothiophenes	615.3 Y	C2-Dibenzothiophenes	599.2 Y
C3-Dibenzothiophenes	625.2 Y	C3-Dibenzothiophenes	622.6 Y	C3-Dibenzothiophenes	498.7 Y
Fluoranthene	2.5 J	Fluoranthene	4 J	Fluoranthene	5.6 J
Pyrene	13.8 J	Pyrene	10.9 J	Pyrene	12.1 J
C1-Fluoranthene/Pyrenes	91.2 Y	C1-Fluoranthene/Pyrenes	67.1 Y	C1-Fluoranthene/Pyrenes	81.8 Y
Benzo(a)anthracene	2.9 J	 Benzo(a)anthracene 	10.2 J	Benzo(a)anthracene	4.2 J
Chrysene	47 Y	Chrysene	41.6 Y	Chrysene	44.7 Y
C1-Chrysenes		C1-Chrysenes		C1-Chrysenes	
C2-Chrysenes		C2-Chrysenes		C2-Chrysenes	5.3 J
C3-Chrysenes	137.1 Y	C3-Chrysenes	114.7 Y	C3-Chrysenes	7.1 J
C4-Chrysenes	22.2 Y	C4-Chrysenes	20.8 Y	C4-Chrysenes	1.1 J
	24.4 Y	CHI YSOHOS	20.9 Y	Cill ysolids	0.9 J
Benzo(b)fluoranthene	5.2 J	Benzo(b)fluoranthene	6.1 J	Benzo(b)fluoranthene	6.5 J
Benzo(k)fluoranthene	0.9 J	Benzo(k)fluoranthene	0.5 J	Benzo(k)fluoranthene	0.6 J
Benzo(e)pyrene	11.9 J	Benzo(e)pyrene	10 J	Benzo(e)pyrene	13.1 J
Benzo(a)pyrene	7 J	Benzo(a)pyrene	2.1 J	Benzo(a)pyrene	2.5 J
Perviene	1.7 J	Perviene	0.5 J	Perylene	0.6 J
•		-			
Indeno(1,2,3-c,d)pyrene	1.2 J	Indeno(1,2,3-c,d)pyrene	0.9 J	Indeno(1,2,3-c,d)pyrene	1.6 J
Dibenzo(a,h)anthracene	1.5 J	Dibenzo(a,h)anthracene	1.9 J	Dibenzo(a,h)anthracene	2.2 J
Benzo(g,h,i)perylene	3.4 J	Benzo(g,h,i)perylene	4.7 J	Benzo(g,h,i)perylene	4.3 J
TOTAL PAH (ng/g) (Excluding Perylene)	13,156.0	TOTAL PAH (ng/g) (Excluding Perylene)	12,204.1	TOTAL PAH (ng/g) (Excluding Perylene)	12,178.1
ecific Isomers (ng/g)	······································	Specific Isomers (ng/g)		Specific Isomers (ng/g)	
1-Methylnaphthalene	854.2 Y	1-Methylnaphthalene	808.7	1-Methylnaphthalene	889.7 Y
2-Methylnaphthalene	1056.7 Y	2-Methyinaphthalene	1037.8	2-Methylnaphthalene	1154.8 Y
2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	809.9 Y 428 Y	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	700.8 377.9	2.6-Dimethylnaphthalene 1,6.7-Trimethylnaphthalene	655.2 Y 376.5 Y
1-Methylphenanthrene	151.4 Y	1-Methylphenanthrene	163.8	1-Methylphenanthrene	190.2 Y
rrogate Recoveries (%)		Surrogate Recoveries (%)		Surrogate Recoveries (%)	
Naphthalene-d8	.NULL.	Naphthalene-d8	.NULL.	Naphthalene-d8	.NULL.
Acanapthene-d10 Phenanthrene-d10	.NULL. .NULL.	Acenapthene-d10 Phenanthrene-d10	.NULL. .NULL.	Acenapthene-d10 Phenanthrene-d10	.NULL. .NULL.
	.NULL.	Chrysene-d12	.NULL.	Chrysene-d12	.NULL.
Chrysene-d12				Perviene-d12	.NULL.

APPENDIX B

Sediment Results

4.0 PGS and TOC Data

	raruci	e Grain Size and Total Organic Car for Cook Inlet 1995 EMP	Dun Data
· · · · · · · · · · · · · · · · · · ·		Station Survey Replicate	
• • • • • • •		EFORE-S 1 1	
Sand (%)	63.4		Total Organic Carbon (%)
Silt (%)	20.4	PGS Sample ID PGS Labsamp ID CIR95PGS0010 C21136	0.41
Clay (%)	. 16.3		Total Inorganic Carbon (%)
Silt + Clay (%)	36.7	TOC Sample ID TOC Labsamp ID	0.09
		CIR95PTT0010 C21151	······································
		Station Survey Replicate	
Sand (%)	39.4	EFORE-S 1 2	
Silt (%)	33.1	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%) 0.22
Clay (%)	27.6	CIR95PGS0011 C21137	
a X		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%) < 0.02
Silt + Clay (%)	60.7	CIR95PTT0011 C21152	< 0.02
		Station Survey Replicate	·
	92.3	EFORE-S 1 3	······································
Sand (%)			Total Organic Carbon (%)
Silt (%)	5.4	PGS Sample ID PGS Labsamp ID CIR95PGS0012 C21138	0.13
Clay (%)	2.4		Total Inorganic Carbon (%)
Silt + Clay (%)	7.8	TOC Sample ID TOC Labsamp ID CIR95PTT0012 C21153	0.02
		CIR95PTT0012 C21153	
		Station Survey Replicate	
Sand (%)	33.5	KACHB-S 1 1	
Silt (%)	35.0	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%)
Clay (%)	31.4	CIR95PGS0007 C21133	1.59
Cidy (76)	31.4	TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	66.4	CIR95PTT0007 C21148	0.19
	•	Station Survey Replicate	
Sand (%)	29.3	KACHB-S 1 2	Total Organic Carbon (%)
Silt (%)	35.2	PGS Sample ID PGS Labsamp ID	1.50
Clay (%)	35.5	CIR95PGS0008 C21134	Total Inorganic Carbon (%)
-		TOC Sample ID TOC Labsamp ID	lotal inorganic Carbon (%) 0.09
Silt + Clay (%)	70.7	CIR95PTT0008 C21149	
		Station Survey Replicate	
Sand (%)	37.0	KACHB-S 1 3	
Silt (%)	33.7	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%)
Clay (%)	29.3	CIR95PGS0009 C21135	1.36
Ulay (/0)	23.0	TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
	i		. 0.17

-

	Particl	e Grain Size and Total Organic Car for Cook Inlet 1995 EMP	bon Data
		Station Survey Replicate	
Sand (%)	74.1	KAMIB-S 1 1	
Silt (%)	16.1	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%)
Clay (%)	9.9	CIR95PGS0004 C21130	1.48
Ciay (%)	9.9	TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	26.0	CIR95PTT0004 C21145	2.96
		Station Survey Replicate	
Sand (%)	74.1	KAMIB-S 1 2	
Silt (%)	16.8	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%)
Clay (%)	9.0	CIR95PGS0005 C21131	0.39
		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	25.8	CIR95PTT0005 C21146	3.20
	· · · · · · · · · · · · · · · · · · ·	Station Survey Replicate	
Sand (%)	62.7	KAMIB-S 1 3	·
Silt (%)	23.3	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%)
Clay (%)	14.1	CIR95PGS0006 C21132	0.35
		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	37.4	CIR95PTT0006 C21147	2.08
		Station Survey Replicate	
Sand (%)	87.8	NULLZ-S 1 1	
Silt (%)	4.1	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%) 0.43
Clay (%)	8.1	CIR95PGS0001 C21127	
		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	12.2	CIR95PTT0001 C21142	0.60
		Station Survey Replicate	
Sand (%)	86.2	NULLZ-S 1 2	
Silt (%)	4.7	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%) 0.43
Clay (%)	9.1	CIR95PGS0002 C21128	
		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%) 0.77
Silt + Clay (%)	13.8	CIR95PTT0002 C21143	0.77
		Station Survey Replicate	
Sand (%)	84.2	NULLZ-S 1 3	
Silt (%)	6.4	PGS Sample ID PGS Labsamp ID	Total Organic Carbon (%) 0.48
Clay (%)	9.4	CIR95PGS0003 C21129	
		TOC Sample ID TOC Labsamp ID	Total Inorganic Carbon (%)
Silt + Clay (%)	15.8	CIR95PTT0003 C21144	0.66

	· 计提升部分算法计划部件 计符号字单子	

Sand (%) 16.1 Silt (%) 52.1 Clay (%) 31.8 Silt + Clay (%) 83.9 CIR95PGS0013 C21139 TOC Sample ID TOC Labsamp ID CIR95PTT0013 C21154 Solut + Clay (%) 83.9 Station Survey Replicate TADB-S TRADB-S 1 Silt (%) 52.1 Clay (%) 21.1 Silt (%) 52.1 Clay (%) 26.8 Silt + Clay (%) 78.9 Silt + Clay (%) 78.9 Tock Sample ID PGS Labsamp ID CIR95PTT0014 C21155 Clay (%) 78.9 Silt + Clay (%) 78.9 Station Survey Replicate Total Organic Carbon (%) 0.12 0.12 Silt + Clay (%) 78.9 Silt (%) 63.8 Clay (%) 9.4 Silt (%) 63.8 Clay (%) 26.8 Clay (%) 26.8 <			Station Survey Replicate	
Silt (%) 52.1 Clay (%) 31.8 Silt + Clay (%) 83.9 TOC Sample ID TOC Labsamp ID TOC Sample ID TOC Labsamp ID CIR95PTT0013 C21139 Total Inorganic Carbon (%) .0.13 Silt + Clay (%) 21.1 Silt (%) 52.1 Clay (%) 26.8 Silt + Clay (%) 78.9 Station Survey Replicate Total Organic Carbon (%) 0.12 0.50 Total Inorganic Carbon (%) 0.50 Clay (%) 26.8 Silt + Clay (%) 78.9 Station Survey Replicate Total Organic Carbon (%) 0.12 0.12 Station Survey Replicate Total Inorganic Carbon (%) 0.12 0.12 Station Survey Replicate Total Organic Carbon (%) 0.12 0.12 Station Survey PGS Sample ID PGS Labsamp ID Olare 0.53	Sand (%)	16.1	TRADB-S 1 1	
Clay (%) 31.8 Silt + Clay (%) 83.9 TOC Sample ID TOC Labsamp ID CIR95PTT0013 C21139 TOC Sample ID TOC Labsamp ID CIR95PTT0013 C21154 Station Survey RADB-S 1 Silt + Clay (%) 21.1 Silt (%) 52.1 Clay (%) 26.8 Silt + Clay (%) 78.9 CIR95PTT0014 C21155 Toct Labsamp ID 0.50 Total Inorganic Carbon (%) 0.12 Silt + Clay (%) 78.9 Station Survey Replicate Total Inorganic Carbon (%) 0.12 0.12 Station Survey Replicate Total Organic Carbon (%) 0.12 0.12 Station Survey PGS Sample ID PGS Labsamp ID Olay (%) 9.4 Silt (%) 63.8	Silt (%)	52.1	PGS Sample ID PGS Labsamp ID	• • • •
Silt + Clay (%) 83.9 TOC Sample ID TOC Labsamp ID Toc Labsamp ID CIR95PTT0013 C21154 * 0.13 Sand (%) 21.1 Station Survey Replicate ThADB-S 1 2 Total Organic Carbon (%) Silt (%) 52.1 PGS Sample ID PGS Labsamp ID 0.50 Clay (%) 26.8 Total Organic Carbon (%) 0.12 0.12 Silt + Clay (%) 78.9 Total Survey Replicate Total Inorganic Carbon (%) Silt + Clay (%) 78.9 Station Survey Replicate Total Inorganic Carbon (%) Silt (%) 63.8 Station Survey Replicate Total Organic Carbon (%) Silt (%) 63.8 Clay (%) 9.4 Station Survey Replicate THADB-S 1 3 Total Organic Carbon (%) 0.53 Clay (%) 9.4 PGS Sample ID PGS Labsamp ID Total Organic Carbon (%) 0.53	Clay (%)	31.8	CIR95PGS0013 C21139	
Silt + Clay (%) 83.9 CIR95PTT0013 C21154 Sand (%) 21.1 Station Survey Replicate Sand (%) 21.1 PGS Sample ID PGS Labsamp ID 0.50 Clay (%) 26.8 TOC Sample ID TOC Labsamp ID 0.50 Silt + Clay (%) 78.9 TOC Sample ID TOC Labsamp ID 0.12 Station Survey Replicate Total Inorganic Carbon (%) 0.12 Silt + Clay (%) 78.9 Station Survey Replicate Sand (%) 9.4 Station Survey Replicate Sand (%) 9.4 PGS Sample ID PGS Labsamp ID 0.12 Station Survey Replicate Total Organic Carbon (%) 0.12 Station Survey Replicate Total Organic Carbon (%) 0.53 Silt (%) 63.8 Clay (%) 26.8 Total Organic Carbon (%) 0.53			TOC Sample ID TOC Labsamp ID	- · ·
Sand (%) 21.1 Silt (%) 52.1 Clay (%) 26.8 Silt + Clay (%) 78.9 Station Survey Replicate Stati (%) 9.4 Silt (%) 63.8 Clay (%) 26.8 Silt (%) 78.9	Silt + Clay (%)	83.9	CIR95PTT0013 C21154	e 0.13
Station Survey Replicate Sand (%) 9.4 TRADB-S 1 3 Silt (%) 63.8 PGS Sample ID PGS Labsamp ID Total Organic Carbon (%) Clay (%) 26.8 ClR95PGS0015 C21141 0.53	Silt (%) Clay (%)	52.1 26.8	TRADB-S12PGS Sample IDPGS Labsamp IDCIR95PGS0014C21140TOC Sample IDTOC Labsamp ID	0.50 Total Inorganic Carbon (%)
Silt (%) 63.8 PGS Sample ID PGS Labsamp ID Total Organic Carbon (%) Clay (%) 26.8 CIR95PGS0015 C21141 0.53			Station Survey Replicate	
Silt (%) 63.8 PGS Sample ID PGS Labsamp ID 0.53 Clay (%) 26.8 CIR95PGS0015 C21141 0.53	Sand (%)	9.4	TRADB-S 1 3	Total Organic Carbon (%)
Clay (%) 26.8 CIR95PGS0015 C21141	Silt (%)	63.8		
	Clay (%)	26.8	CIR95PGS0015 C21141	Total Inorganic Carbon (%)

APPENDIX B

Sediment Results

5.0 Microtox® Data

	Microtox Data for	Cook Inlet 1995 EM	P	· ·
STATION ID: EFO	RE-S SURVEY :	1	REP :	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0010	CIR95MCT0010-A	> 1.63		> 1.63
STATION ID: EFO	RE-S SURVEY :	1	REP:	1
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0010	CIR95MCT0010-B	> 1.63		> 1.63
STATION ID: EFO	RE-States SURVEY :	1	REP :	2
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0011	CIR95MCT0011-A	> 1.63		> 1.63
STATION ID:	RE-S SURVEY :	1	REP :	2
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0011	CIR95MCT0011-B	> 1.63		> 1.63
STATION ID: EFO	RE-S SURVEY :	1	REP :	3
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute
CIR95MCT0012	CIR95MCT0012-A	> 1.63		(mg/mL) > 1.63
STATION ID: EFO	RE-S SURVEY :	1	REP :	3
Sample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
CIR95MCT0012	CIR95MCT0012-B	(mg/mL) > 1.63		(mg/mL) > 1.63
STATION ID: KAC	HB-S SURVEY :		REP:	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0007	CIR95MCT0007-A	> 1.63		> 1.63
STATION ID: KAC	HB-S SURVEY :	1	REP:	
Sample ID	Labsamp ID	EC50 5 Minute	1	EC50 15 Minute
CIR95MCT0007	CIR95MCT0007-B	(mg/mL) > 1.63	<u></u>	(mg/mL) > 1.63
STATION ID: KAC	HB-S SURVEY :	1	REP :	2
Sample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
CIR95MCT0008	CIR95MCT0008-A	(mg/mL) > 1.63		(mg/mL) > 1.63
	HB-S SURVEY :	1	REP :	2
Sample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
CIR95MCT0008	CIR95MCT0008-B	(mg/mL) > 1.63		(mg/mL) > 1.63
	HB-S SURVEY :		REP :	3
Sample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
CIR95MCT0009	CIR95MCT0009-A	(mg/mL) > 1.63		(mg/mL) > 1.63
		ÉC50 5 Minute		Solution EC50 15 Minute
Sample ID	Labsamp ID	(mg/mL)		(mg/mL) > 1.63
CIR95MCT0009	CIR95MCT0009-B	> 1.63		COL 4

TATION ID: KAM	B-S SURVEY :	1	REP :	1
ample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
21.910 12 21.95MCT0004	CIR95MCT0004-A	(mg/mL) > 1.63		(mg/mL) > 1.63
		> 1.05		> 1.05
TATION ID: KAM	IB-S SURVEY :		REP :	
ample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
IR95MCT0004	CIR95MCT0004-B	> 1.63		> 1.63
TATION ID: KAM	IB-S SURVEY :	set. 1. sec	REP :	an 2
ample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
CIR95MCT0005	CIR95MCT0005-A	(mg/mL) > 1.63		(mg/mL) > 1.63
TATION ID: KAM	IB-S SURVEY :	1	REP :	2
		EC50 5 Minute		EC50 15 Minute
ample ID	Labsamp ID	(mg/mL)		(mg/mL)
SIR95MCT0005	СІК95МСТ0005-В	> 1.63		> 1.63
TATION ID: KAM	IB-S SURVEY :		REP :	3
ample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)
CIR95MCT0006	CIR95MCT0006-A	> 1.63		> 1.63
TATION ID: KAM	IB-S SURVEY :	1	REP :	3
ample ID	Labsamp ID	EC50 5 Minute	·····	EC50 15 Minute
IR95MCT0006	CIR95MCT0006-B	(mg/mL) > 1.63		(mg/mL) > 1.63
TATION ID: NUL	Z-S SURVEY :		REP :	
ample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
ZIR95MCT0001	CIR95MCT0001-A	(mg/mL) > 1.63		(mg/mL) > 1.63
TATION ID:			REP :	
		EC50 5 Minute		EC50 15 Minute
ample ID	Labsamp ID	(mg/mL)		(mg/mL)
CIR95MCT0001	CIR95MCT0001-B	> 1.63		> 1.63
TATION ID: NUL	Z-S SURVEY :	1	REP:	2
ample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute (mg/mL)
IR95MCT0002	CIR95MCT0002-A	(mg/mL) > 1.63		> 1.63
TATION ID: NUL		1	REP :	2
ample ID	Labsamp ID	EC50 5 Minute		EC50 15 Minute
2IR95MCT0002	- 	(mg/mL)		(mg/mL) > 1.63
	CIR95MCT0002-B	> 1.63	n en	
TATION ID: NULL		EC50 5 Minute	REP :	EC50 15 Minute
ample ID	Labsamp ID	(mg/mL)		(mg/mL)
IR95MCT0003	CIR95MCT0003-A	> 1.63		> 1.63
TATION ID: NUL	Z-S SURVEY :		REP :	
ample ID	Labsamp ID	EC50 5 Minute (mg/mL)		EC50 15 Minute (mg/mL)

and a second second

	Microtox Data for	Cook Inlet 1995 EMP		
STATION ID: TRADB-S	SURVEY :		REP: 1	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	ie
CIR95MCT0013	CIR95MCT0013-A	> 1.63	> 1.63	
STATION ID: TRADB-S	SURVEY :		REP: 1	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	ic
CIR95MCT0013	CIR95MCT0013-B	> 1.63	> 1.63	
STATION ID: TRADB-S	SURVEY :		REP : 2	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	te
CIR95MCT0014	CIR95MCT0014-A	> 1.63	> 1.63	
STATION ID: TRADB-S	SURVEY :	1	REP : 2	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	te
CIR95MCT0014	CIR95MCT0014-B	> 1.63	> 1.63	
STATION ID: TRADB-S	SURVEY :	1	REP : 3	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	ie
CIR95MCT0015	CIR95MCT0015-A	> 1.63	> 1.63	
STATION ID: TRADB-S	SURVEY :	1	REP: 3	
Sample ID	Labsamp ID	EC50 5 Minute (mg/mL)	EC50 15 Minu (mg/mL)	te
CIR95MCT0015	CIR95MCT0015-B	> 1.63	> 1.63	

APPENDIX C

SPMD Results

1.0 PAH Data

Station Survey F	FB	Station Survey EFORE-M 2	Replicate	Station Survey	
					BOT
	Sample ID 21918		C21919		Sample ID C21920
Matrix: SPM	-	Matrix: SPi		, Matrix: SPM	
Sample Type: FIEL Batch: M160		Sample Type: SAI Batch: M1	MP 609	Sample Type: SAN Batch: M16	
· · · · · · · · · · · · · · · · · · ·					
0 (3)	N/A	Wet weight (g)	N/A	Wet weight (g)	N/A
	N/A N/A	Dry wei ght (g) Solids (%)	N/A N/A	Dry weight (g)	N/A N/A
			·····	Solids (%)	
NALYTE (ng/SPMD)	Value Qual	ANALYTE (ng/SPMD)	Value Quai	ANALYTE (ng/SPMD)	Value Qual
Naphthalene	292.1 216.3	Naphthalene	72.4 92.8	Naphthalene	101.5 202.2
C1-Naphthalenes C2-Naphthalenes	256.3	C1-Naphthalenes C2-Naphthalenes	193.3	C1-Naphthalenes C2-Naphthalenes	175.4
C3-Naphthalenes	264.6	C2-Naphthalenes	373,4	C2-Naphthalenes	264.7
C4-Naphthalenes	246.4	C4-Naphthalenes	378.5	C4-Naphthalenes	372.3
Biphenyl	72.1	Biphenyl	17.7	Biphenyl	26.5
Acenaphthylene	16.7	Acenaphthylene	0 ND	Acenaphthylene	25.6
Acenaphthene	32.9	Acenaphthene	17.9	Acenaphthene	0 ND
Fluorene	30.0	Fluorene	18.7	Fluorene	29.3
C1-Fluorenes	120.7	C1-Fluorenes	130.8	C1-Fluorenes	599.2
C2-Fluorenes	126.1	C2-Fluorenes	174.2	C2-Fluorenes	953.4
C3-Fluorenes	129.3	C3-Fluorenes	194.1	C3-Fluorenes	1269.6
Phenanthrene	68.6	Phenanthrene	225.5	Phenanthrene	236.5
Anthracene	7.9	Anthracene	21.4	Anthracene	21.0
C1-Phen/Anthracenes	80.9	C1-Phen/Anthracenes	320.2	C1-Phen/Anthracenes	331.2
C2-Phen/Anthracenes	67.5	C2-Phen/Anthracenes	538.2	C2-Phen/Anthracenes	422.4
C3-Phen/Anthracenes	148.4	C3-Phen/Anthracenes	507.7	C3-Phen/Anthracenes	345.2
C4-Phen/Anthracenes	30.1	C4-Phen/Anthracenes	197.1	C4-Phen/Anthracenes	203.9
Dibenzothiophene	9.7	Dibenzothiophene	35.2	Dibenzothiophene	30.6
C1-Dibenzothiophenes	35.7	C1-Dibenzothiophenes	170.4	C1-Dibenzothiophenes	123.7
C2-Dibenzothiophenes	42.2	C2-Dibenzothiophenes	182.3	C2-Dibenzothiophenes	210.4
C3-Dibenzothiophenes	55.2	C3-Dibenzothiophenes	271.5	C3-Dibenzothiophenes	211.9
Fluoranthene	15.9	Fluoranthene	96.1	Fluoranthene	80.7
Pyrene	15.6	Pyrene	100.7	Pyrene	96.2
C1-Fluoranthene/Pyrenes	0 ND	C1-Eluoranthene/Pyrenes	154.4	C1-Fluoranthene/Pyrenes	21.5
Benzo(a)anthracene	3.9 J	Benzo(a)anthracene	7.7	Benzo(a)anthracene	11.5
Chrysene	2.7 J	Chrysene	12.6	Chrysene	7.0 J
01-Ohrysenes	0 ND	C1-Chrysenes	28.3	C1-Chrysenes	18.0 J
C2-Chrysenes	0 ND	C2-Chrysenes	28.5	C2-Chrysenes	36.1
C3-Chrysenes	0 ND	C3-Chrysenes	0 ND	C3-Chrysenes	13.9 J
C4-Chrysenes	0 ND	C4-Chrysenes	0 ND	C4-Chrysenes	26.2
Benzo(b)fluoranthene	2.8 J	Benzo(b)fluoranthene	7.7	Benzo(b)fluoranthene	4.3
Benzo(k)fluoranthene	0.5 J	Benzo(k)fluoranthene	7.7	Benzo(k)fluoranthene	1.3 J
Benzo(a)pyrane	5.0	Benzo(e)pyrene	5.2	Benzo(e)pyrene	5.1
Benzo(a)pyrene Bendene	3.3 J	Benzo(a)pyrene Bendene	6.9	Benzo(a)pyrene Bendene	4.6 J
Perylene Indeno(1,2,3-c,d)pyrene	0 ND	Perylene indeno(1,2,3-c.d)pyrene	15.2	Perviene	12.5
Dibenzo(a,h)anthracene		Dibenzo(a,h)anthracene	3.9 J 2.6 J	Indeno(1,2,3-c,d)pyrene Dibenzo(a,h)anthracene	3.3 J 2.9
Benzo(g,h,i)perylene	0 ND	Benzo(g,h,i)perviene	2.6 J 10.0	Benzo(g,h,i)perylene	2.9 5.6
	4.4	· · · ·			
TOTAL PAH (ng/SPMD) (Excluding Perylene) ecific Isomers (ng/SPMD)	2,403.8	TOTAL PAH (ng/SPMD) (Excluding Perylene) Specific Isomers (ng/SPMD)	4,605.6	TOTAL PAH (ng/SPMD) (Excluding Perylene) Specific Isomers (ng/SPMD)	6,494.7
1-Methylnaphthalene	84.1	1-Methyinaphthalene	50.3	1-Methylnaphthalene	113.6
2-Methylnaphthalene	132.2	2-Methylnaphthalene	42.5	2-Methyinaphthalene	88.6
2.6-Dimethylnaphthalene 1.6.7-Trimethylnaphthalene	77.1 36.2	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	36.0 9 61.0	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	58.3 44.9
1-Methylphenanthrene	18.8	1-Methylphenanthrene	76.0	1-Methylphenanthrene	51.1
rrogate Recoveries (%)		Surrogate Recoveries (%)	65 C	Surrogate Recoveries (%)	63.0
Naphthalene-d8 Acenapthene-d10	55.0 55.6	Naphthalene-d8 Acenapthene-d10	65.6 76.1	Naphthalene-d8 Acenapthene-d10	70.4
Phenanthrene-d10	91.3	Phenanthrene-d10 Chrysene-d12	34.2 M 72.1	Phenanthrene-d10 Chrysene-d12	168.9 M 62.3
Chrysene-d12 Perviene-d12	53.5 49.9	Perviene-d12	37.8 M	Perviene-d12	45.5

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Station Survey R	eplica	le	Station Survey R	eplica	le	Station Survey	leplicate	
KACHB-M 1	FB			SFC			BOT	
	ampie 21916			ample 21923			Sample ID	
							21924	
Matrix: SPM			Matrix: SPM			Matrix: SPM		
	BLANK		Sample Type: SAMF			Sample Type: SAM		
Batch: M160	9		Batch: M160	9		Batch: M16	9	
Wet weight (g)	٧/A		Wet weight (g)	N/A		Wet weight (g)	N/A	
	√A			N/A			N/A	
Solids (%)	VA		Solids (%)	N/A		Solids (%)	N/A	
ANALYTE (ng/SPMD)	Value	Qual	ANALYTE (ng/SPMD)	Value	Qual	ANALYTE (ng/SPMD)	Value Qual	
Naphthalene	311.2		Naphthalene	88.7		Naphthalene	74.0	
C1-Naphthalenes	199.9		C1-Naphthalenes	147.2		C1-Naphthalenes	133.3	
C2-Naphthalenes	182.6	;	C2-Naphthalenes	321.1		C2-Naphthalenes	221.5	
C3-Naphthaienes	219.0	1	C3-Naphthalenes	764.9		C3-Naphthalones	405.0	
C4-Naphthalenes	179.0		C4-Naphthalenes	684.4		C4-Naphthalenes	356.3	
Biphenyl	71.6		Biphenyl	22.0		Biphenyl	21.8	
Acenaphthylene	0	ND	Acenaphthylene	19.3		Acenaphthylene	11.1	
Acenaphthene	45.2		Acenaphthene	43.2		Acenaphthene	32.9	
Fluorene	22.6		Fluorane	58.0		Fluorene	47.B	
C1-Fluorenes	128.8	ļ	C1-Fluorenes	235.4		C1-Fluorenes	936.2	
C2-Fluorenes	154.1		C2-Fluorenes	382.0		C2-Fluorenes	1449.1	
C3-Fluorenes	139.4		C3-Fluorenes	298.7		C3-Fluorenes	1016.4	
Phenanthrene	89.0		Phenanthrene	320.6		Phenanthrene	430.3	
Anthracene	9.3		Anthracene	6.0		Anthracene	19.0	
C1-Phen/Anthracenes	78.4		C1-Phen/Anthracenes	444.1		C1-Phen/Anthracenes	461.2	
C2-Phen/Anthracenes	91.0		C2-Phen/Anthracenes	377.3		C2-Phen/Anthracenes	332.9	
C3-Phen/Anthracenes	265.3	1		229.8			313.8	
	57.7	, ,	C3-Phen/Anthracenes	76.2		C3-Phen/Anthracenes	129.6	
C4-Phen/Anthracenes	15.8		C4-Phen/Anthracenes	36.9		C4-Phen/Anthracenes	42.2	
Dibenzothiophene	54.2		Dibenzothiophene	146.0		Dibenzothiophene	185.4	
C1-Dibenzothiophenes	55.7		C1-Dibenzothiophenes	140.0		C1-Dibenzothiophenes	193.2	
C2-Dibenzothiophenes C3-Dibenzothiophenes	91.4		C2-Dibenzöthiophenes C3-Dibenzöthiophenes	131.1		C2-Dibenzothiophenes C3-Dibenzothiophenes	224.7	
Fluoranthene	17.9		· · · · · · · · · · · · · · · · · · ·	298.0		C3-Dibenzotniophenes	288.9	
Pyrene	17.3		Fluoranthene	85.3			152.2	
C1-Fluoranthene/Pyrenes	0	ND	Pyrene C1-Fluoranthene/Pyrenes	80.0		Pyrene C1-Fluoranthene/Pyrenes	18.2	
Benzo(a)anthracene	4.0	J	Benzo(a)anthracene	12.3		Benzo(a)anthracene	29.1	
Chrysene	4.8	-						
C1-Chrysenes		J	Chrysene C1-Chrysenes	26.0		Chrysene C1-Chrysenes	12.7	
C2-Chrysenes	0	ND		0	ND	-	12.2 J	
-	0	ND	C2-Chrysenes	0	ND	C2-Chrysenes	22.5	
C3-Chrysenes C4-Chrysenes	0	ND	C3-Chrysenes	0	ND	C3-Chrysenes	4.9 J	
•	0	ND	C4-Chrysenes	0	ND	C4-Chrysenes	15.1 J	
Benzo(b)fluoranthene	0	ND	Benzo(b)fluoranthene	10.5		Benzo(b)fluoranthene	8.7	
Benzo(k)fluoranthene	0	ND	Benzo(k)fluoranthene	4.3		Benzo(k)fluoranthene	4.7	
Benzo(e)pyrene	1.9	J	Benzo(e)pyrene	7.5		Benzo(e)pyrene	7.9	
Benzo(a)pyrene	2.8	J	Benzo(a)pyrene	4.6	J	Benzo(a)pyrene	5.8	
Perylene	2.5	J	Perylene	20.7		Perylene	21.3	
Indeno(1,2,3-c,d)pyrene	0	ND	Indeno(1,2,3-c,d)pyrene	4.4	J	indeno(1,2,3-c,d)pyrene	4.4 J	
Dibenzo(a,h)anthracene	0	ND	Dibenzo(a,h)anthracene	3.1		Dibenzo(a,h)anthracene	1.3 J	
Benzo(g,h,i)peryiene	4.0		Benzo(g.h.i)perylene	6.1		Benzo(g,h,i)perylene	9.6	
TOTAL PAH (ng/SPMD) (Excluding Perviene)	2,5	13.9	TOTAL PAH (ng/SPMD) (Excluding Perylene)	5,54	15.4	TOTAL PAH (ng/SPMD) (Excluding Perviene)	7,635.9	
ecific Isomers (ng/SPMD)			Specific Isomers (ng/SPMD)			Specific Isomers (ng/SPMD)		
1-Methylnaphthalene 2-Methylnaphthalene	79.4 120.5		1-Methylnaphthalene 2-Methylnaphthalene	46.5 100.7		1-Methylnaphthalene 2-Methylnaphthalene	74.5 58.8	
2.6-Dimethylnaphthalene	66.8		2,6-DimethyInaphthalene	78.1		2.6-Dimethylnaphthalene	54.8	
1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	39.0 17.7		1,6,7-Trimethylnaphthalene 1-Methylphenanthrene	105.9		1.6,7-Trimethylnaphthalene 1-Methylphenanthrene	82.2 105.8	
rrogate Recoveries (%)	(1.1		3-Melnyiphenanthrene Surrogate Recoveries (%)	115.6		3-metnyiphenanthrene Surrogate Recoveries (%)	103.6	
Naphthaiene-d8	59.3		Naphthalene-d8	59.9		Naphthalene-d8	60.2	
Acenapthene-d10	54.3		Acenapthene-d10	87.2		Acenapthene-d10	68.5	
Phenanthrene-d10 Chrysene-d12	65.3 62.7		Phenanthrene-d10 Chrysene-d12	75.1 65.3		Phenanthrene-d10 Chrysene-d12	195.1 M 67.5	
Perviene-d12	46.0		Perviene-d12	33.8	м	Perylene-d12	46.5	

Station Survey	Replicate	Station Survey	Replicate	Station Survey	Replicate
TRADB-M 1	FB	TRADB-M 2	SFC	TRADB-M 2	BOT
KLI Sample ID Lab	Sample ID	KLI Sample ID Lab	Sample ID	KLI Sample ID Lab	Sample ID
CIR95SPM0002	C21917		C21921		C21922
		Matrix: SPM			10
Matrix: SP		Sample Type: SAM		, Matrix: SPN Sample Type: SAN	
	609	Batch: M16		Batch: M16	
Batch: M1		Batch. Mit	×/9	Balch, Mit	
Wet weight (g)	N/A	Wet weight (g)	N/A	Wet weight (g)	N/A
Dry weight (g)	N/A	Dry weight (g)	N/A	Dry weight (g)	N/A
Solids (%)	N/A	Solids (%)	N/A	Solids (%)	N/A
IALYTE (ng/SPMD)	Value Quai	ANALYTE (ng/SPMD)	Value Qual	ANALYTE (ng/SPMD)	Value Qual
Naphthalene	306.1	Naphthalene	170.7	Naphthalene	235.7
C1-Naphthalenes	228.8	C1-Naphthalenes	770.1	C1-Naphthalenes	949.2
C2-Naphthalenes	243.7	C2-Naphthalenes	976.8	C2-Naphthalenes	1249.9
C3-Naphthalenes	246.1	C3-Naphthaienes	1322.7	C3-Naphthalenes	2006.5
C4-Naphthalenes	220.3	C4-Naphthalenes	1081.8	C4-Naphthalenes	1504.8
Biphenyl	58.3	Biphenyl	44.8	Biphenyl	63.0
Acenaphthylene	0 ND	Acenaphthylene	10.1	Acenaphthylene	0 ND
Acenaphthene	39.9	Acenaphthene	15.5	Acenaphthene	23.3
Fluorene	18.0	Fluorene	70.1	Fluorene	142.2
C1-Fluorenes	69.2	C1-Fluorenes	255.0	C1-Fluorenes	563.5
C2-Fluorenes	94.7	C2-Fluorenes	410.2	C2-Fluorenes	971.5
C3-Fluorenes	66.0	C3-Fluorenes	397.6	C3-Fluorenes	717.2
Phenanthrene	75.2	Phenanthrene	592.4	Phenanthrene	647.4
Anthracene	4.5	Anthracene	15.7	Anthracene	16.7
C1-Phen/Anthracenes	83.7	C1-Phen/Anthracenes	1616.8	C1-Phen/Anthracenes	2230.2
C2-Phen/Anthracenes	102.7	C2-Phen/Anthracenes	1785.9	C2-Phen/Anthracenes	2254.8
00.01	244.9		760.6		990.0
C3-Phen/Anthracenes	50.7	C3-Phen/Anthracenes	230.0	C3-Phen/Anthracenes	222.2
C4-Phen/Anthracenes	13.1	C4-Phen/Anthracenes	65.8	C4-Phen/Anthracenes	45.4
Dibenzothiophene	47.8	Dibenzothiophene	186.8	Dibenzothiophene	185.0
C1-Dibenzothiophenes		C1-Dibenzathiophenes		C1-Dibenzothiophenes	326.8
C2-Dibenzothiophenes	46.3	C2-Dibenzothiophenes	279.4	C2-Dibenzothiophenes	
C3-Dibenzothiophenes	80.6	C3-Dibenzothiophenes	268.5	C3-Dibenzothiophenes	289.6
Fluoranthene	19.6	Fluoranthene	74.4	Fluoranthene	61.5
Pyrene	18.0	Pyrane	95.3	Pyrene Ot 51 June 10 June 10	109.8
C1-Fluoranthene/Pyrenes	0 ND	C1-Fluoranthene/Pyrenes	269.9	C1-Fluoranthene/Pyrenes	347.4
Benzo(a)anthracene	3.1 J	Benzo(a)anthracene	8.8	Benzo(a)anthracene	14.3
Chrysene	6.3 J	Chrysene	35.2	Chrysene	59.6
C1-Chrysenes	29.6	C1-Chrysenes	44.2	C1-Chrysenes	95.5
C2-Chrysenes	0 ND	C2-Chrysenes	40.3	C2-Chrysenes	76.9
C3-Chrysenes	0 ND	C3-Chrysenes	0 ND	C3-Chrysenes	12.3 J
C4-Chrysenes	0 ND	C4-Chrysenes	0 ND	C4-Chrysenes	12.8 J
Benzo(b)fluoranthene	2.0 J	Benzo(b)fluoranthene	9.5	Benzo(b)fluoranthene	8.2
Benzo(k)fluoranthene	15.1	Benzo(k)fluoranthene	4.2	Benzo(k)fluoranthene	3.4 J
Benzo(e)pyrene	2.0 J	Benzo(e)pyrene	11.1	Benzo(e)pyrene	5.9
Benzo(a)pyrene	1.5 J	Benzo(a)pyrene	7.7	Benzo(a)pyrene	4.0 J
Perylene	3.4 J	Perylana	24.0	Perylene	14.6
Indeno(1,2,3-c,d)pyrene	2.4 j	Indeno(1,2,3-c,d)pyrene	7.3	Indeno(1,2,3-c,d)pyrene	3.4 J
Dibenzo(a,h)anthracene	0 ND	Dibenzo(a,h)anthracene	4.4	Dibenzo(a,h)anthracene	1.8 J
Benzo(g.h.i)perylene	3.2	Benzo(g,h,i)perylene	9.9	Benzo(g,h,i)perylene	7.2
TOTAL PAH (ng/SPMD		TOTAL PAH (ng/SPMD)	11 040 5	TOTAL PAH (ng/SPMD)	16 450 0
(Excluding Perylene) (Excluding Perylene) (filic Isomers (ng/SPMD)	2,443.4	(Excluding Perylene) Specific Isomers (ng/SPMD)	11,949.6	(Excluding Perylene) Specific Isomers (ng/SPMD)	16,458.9
1-Methyinaphthaiene	94.3	1-Methyinaphthalene	374.3	1-Methylnaphthalene	464.3
2-Methylnaphthalene	134.5	2-Methyinaphthalene	395.8	2-Methylnaphthalene	484.9
2.6-Dimethylnaphthalene 1.6.7-Trimethylnaphthalene	75.4 23.8	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	305.0 254.4	2,6-Dimethylnaphthalene 1,6,7-Trimethylnaphthalene	503.9 488.0
1-Methylphenanthrene	15.6	1-Methylphenanthrene	420.1	1-Methylphenanthrene	584.4
ogate Recoveries (%)		Surrogate Recoveries (%)		Surrogate Recoveries (%)	
Naphthalene-d8	60.0 73.8	Naphthaiene-d8	58.1 79.9	Naphthalene-d8 Acenapthene-d10	81.4 83.4
Acenapthene-d10 Phenanthrene-d10	73.8 67.4	Acenapthene-d10 Phenanthrene-d10	78.9 30.8 M	Acenapthene-d10 Phenanthrene-d10	61.9
Chrysene-d12 Perylene-d12	59.7 51.0	Chrysene-d12 Parylene-d12	63.3 39.5 M	Chrysene-d12 Perylene-d12	79.2 48.5
			144 m M		

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

No. of Concession, Name

APPENDIX C

SPMD Results

2.0 PAH Quality Control Data

QC Sample Type	L	PAH C ab Sample ID	QC Sample Type	i L	ab Sample ID	QC Sample Type	L	.ab Sample
							_	•
LAB BLANK		C21925	LAB BLANK		C21926	SOLVENT BLANK		C21927
ASSOCIATED SAMPLE	INFOR	MATION	ASSOCIATED SAMPL	E INFOR	MATION	ASSOCIATED SAMPLE	INFOR	MATION
Station Survey Rep	KLI	Sampie ID	Station Survey Re	p KLI	Sample ID	Station Survey Rep	KLI	Sample ID
	USE	BATCH INFO		USE	BATCH INFO		USE	BATCH IN
Matrix: SPM	<u></u>		Matrix: SPN	4D		Matrix: SPMI	<u></u>	
	0	-	Sample Type:				/	
Sample Type:						Sample Type:		
Batch: M16	509		Batch: M1	609		Batch: M16	09	
Wet weight (g)	N/A		Wet weight (g)	N/A		Wet weight (g)	N/A	-
0 .0	N/A		Dry weight (g)	N/A		5 .5,	N/A	
						• • •		
Solids (%)	N/A		Solids (%)	N/A		Solids (%)	N/A	
NALYTE (ng/SPMD)	Value	Qual	ANALYTE (ng/SPMD)	Value	e Qual	ANALYTE (ng/SPMD)	Vaiuo	e Qual
Naphthalene	183.7		Naphthalene	146.6	5	Naphthalene	31.9	
C1-Naphthalenes	145.7		C1-Naphthalenes	90.6		C1-Naphthalenes	0	ND
C2-Naphthalenes	97.3		C2-Naphthalenes	141.6	i	C2-Naphthalenes	0	ND
C3-Naphthalenes	o	ND	C3-Naphthalenes	109.6	i	C3-Naphthalenes	0	ND
		ND	•	107		,	0	ND
C4-Naphthalenes	0		C4-Naphthalenes			C4-Naphthalenes		
Biphenyl	29.9		Biphenyl	30.6		Biphenyl	0	ND
Acenaphthylene	0	ND	Acenaphthylene	6.3	J	Acenaphthylene	0	ND
Acenaphthene	15.8		Acenaphthene	31.7		Acenaphthene	0	ND
Fluorene	4.5	J	Fluorene	13.9		Fluorene	0	ND
C1-Fluorenes	38.3		C1-Fluorenes	290.5	i	C1-Fluoranes	0	ND
C2-Fluorenes	0	ND	C2-Fluorenes	485.7		C2-Fluorenes	0	ND
C3-Fluorenes	0	ND	C3-Fluorenes	563.8		C3-Fluorenes	0	ND
						Phenanthrene		NU
Phenanthrene	20.9		Phenanthrene	143.5)		11.3	
Anthracene	3		Anthracene	7.6		Anthracene	2.7	
C1-Phen/Anthracenes	27.2	J	C1-Phen/Anthracenes	106		C1-Phen/Anthracenes	0	ND
C2-Phen/Anthracenes	35.4		C2-Phen/Anthracenes	138.4	l .	C2-Phen/Anthracenes	0	ND
C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	0	ND	C3-Phen/Anthracenes	o	ND
C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND	C4-Phen/Anthracenes	0	ND
Dibenzothiophene			Dibenzothiophene	-		Dibenzothiophene		
C1-Dibenzothiophenes	3.7		C1-Dibenzothiophenes	18.8		C1-Dibenzothiophenes	0	ND
	16.5		,	64.9			0	ND
C2-Dibenzothiophenes	24		C2-Dibenzothiophenes	95.3		C2-Dibenzothiophenes	0	ND
C3-Dibenzothiophenes	38.8		C3-Dibenzothiophenes	131.3	3	C3-Dibenzothiophenes	0	ND
Fluoranthene	4.2		Fluoranthene	20.3		Fluoranthene	5.3	
Pyrene	8.4		Pyrene	32.4		Pyrene	21.1	
C1-Fluoranthene/Pyrenes	0	ND	C1-Fluoranthene/Pyrenes	0	ND	C1-Fluoranthene/Pyrenes	0	ND
Benzo(a)anthracene	0.8	J	Benzo(a)anthracene	22.8		Benzo(a)anthracene	0.1	J
Chrysene			Chrysene			Chrysene		
C1-Chrysenes	2.9	J	C1-Chrysenes	2.6	J	C1-Chrysenes	1.3	J
•	0	ND	•	0	ND	·	0	ND
C2-Chrysenes	0	ND	C2-Chrysenes	0	ND	C2-Chrysenes	0	ND
C3-Chrysenes	0	ND	C3-Chrysenes	0	ND	C3-Chrysenes	0	ND
C4-Chrysenes	0	ND	C4-Chrysenes	o	ND	C4-Chrysenes	0	ND
Banzo/hilliomathana	2	1	Banzahilluszaihaan			Benzo(b)iluoranthene	0	ND
Benzo(b)fluoranthene		•	Benzo(b)fluoranthene	4.6	,			
Benzo(k)fluoranthene	1.5	J.	Benzo(k)fluoranthene	3.4	J	Benzo(k)fluoranthene	0	ND
Benzo(e)pyrene	4.5		Benzo(e)pyrene	3.6		Benzo(e)pyrene	0	ND
Benzo(a)pyrene	3.9	J	Benzo(a)pyrene	4.3	L	Benzo(a)pyrene	0	ND
Perylene	4.6	J	Perylene	4.5	J	Perylene	0	ND
indeno(1,2,3-c,d)pyrane	2.3	t	Indeno(1,2,3-c,d)pyrene	0	ND	indeno(1,2,3-c,d)pyrene	0	ND
Dibenzo(a,h)anthracene	0	ND	Dibenzo(a,h)anthracene	0	ND	Dibenzo(a,h)anthracene	0	ND
Benzo(g,h,i)perylene			Benzo(g,h,i)perviene			Benzo(g,h,i)perylene	o	ND
benzo(g.n.i)peryiene	3.1		Delizo(g,II,I)Delylerie	5.5		Deuro(3tuthberheue	0	NU
TOTAL PAH (ng/SPMD) (Excluding Perviene)	71	5.3	TOTAL PAH (ng/SPMD) (Excluding Perylene)	2,8	23.2	TOTAL PAH (ng/SPMD) (Excluding Perylene)	- 7	3.7
ecific Isomers (ng/SPMD)			Specific Isomers (ng/SPMD)			Specific Isomers (ng/SPMD)		
1-Methyinaphthalene	67.4		1-Methyinaphthalene	39.6		1-Methylnaphthalene	0	ND
2-Methylnaphthalene 2,6-Dimethylnaphthalene	78.3 30.1		2-Methyinaphthalene 2,6-Dimethyinaphthalene	51 53.2		2-Methyinaphthalene 2,6-Dimethylnaphthalene	0	ND ND
1,6,7-Trimethylnaphthalene	26.9		1,6,7-Trimethylnaphthalene			1,6,7-Trimethylnaphthalene	ŏ	ND
1-Methylphenanthrene	2.8	J	1-Methylphenanthrene	15.2		1-Methylphenanthrene	Ó	ND
rrogate Recoveries (%)			Surrogate Recoveries (%)			Surrogate Recoveries (%)		
Naphthaiene-d8	54.1		Naphthalene-d8	73.4		Naphthalene-d8	115.8	
Acenapthene-d10	62 05 6		Acenapthene-d10	60.8 147.5	м	Acenapthene-d10 Phenanthrene-d10	107.3 6.8	M
Phenanthrene-d10 Chrysene-d12	95.6 51.4		Phenanthrene-d10 Chrysene-d12	147.5	191	Chrysene-d12	91.6	
Perviene-d12	43.4		Perviene-d12	32.2	м	Perylene-d12	136.8	м
1 or yield=012								

QC Sample Typ
REFERENCE O
ASSOCIATED SAM
Station Survey I
Matrix: C
Sample Type:
Batch:
Wet weight (g)
Dry weight (g)
Solids (%)
ANALYTE Naphthalene
C1-Naphthaienes
C2-Naphthalenes
C3-Naphthalenes
C4-Naphthalenes
Biphenyl
Acenaphthylene Acenaphthene
Fluorene
C1-Fluorenes
C2-Fluorenes
C3-Fluorenes Phenanthrene
Anthracene
C1-Phen/Anthracenes
C2-Phen/Anthracenes
C3-Phen/Anthracenes
C4-Phen/Anthracenes
Dibenzothiophene C1-Dibenzothiophenes
C2-Dibenzothiophenes
C3-Dibenzothiophenes
Fluoranthene
Pyrene C1 Elugranthana/Burgana
C1-Fluoranthene/Pyrene: Benzo(a)anthracene
Benzo(a)anthracene Chrysene
C1-Chrysenes
C2-Chrysenes
C3-Chrysenes
C4-Chrysenes
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(e)pyrene Benzo(a)pyrene
Benzo(a)pyrene Perylene
Indeno(1,2,3-c,d)pyrene
Dibenzo(a,h)anthracene
Benzo(g,h,i)perylene
TOTAL PAH (ng/g)
(Excluding Perylene)
Specific Isomers (ng/g) 1-Methylnaphthalene
2-Methylnaphthalene 2,6-Dimethylnaphthalene
1,6,7-Trimethylnaphthale
1-Methylphenanthrene Surrogate Recoveries (%)
Surrogate Recoveries (%) Naphthalene-d8
Acenapthene-d10 Phenanthrene-d10
Chrysene-d12
Perylene-d12
g)

APPENDIX D

Fish Results

1.0 Trawl Data

Station	Trawl No.	Date	Time	Common Name	Taxon	Total # Fish	Comments				
				Armorhead Sculpin	Gymnocanthus galeatus	4					
				Fantail Sole	Xystreurys liolepis	3					
				Pacific Cod	Gadus macrocephalus	4					
				Pacific Halibut	Hippoglossus stenolepis	11					
				Pacific Spiny Lumpsucker	Eumicrotremus orbis	1					
	1b*	6/20/95	20:21	Ribbed Sculpin	Triglops pingeli	6					
				Rock Sole	Pleuronectes bilineatus	8	many parasites				
				Threaded Sculpin	Gymnocanthus pistilliger	37					
				Whitespotted Greenling	Hexagrammos stelleri	3					
KAMIB-T				Yellow Irish Lord	Hemilepidotus jordani	4					
KAMIB-I				Armorhead Sculpin	Gymnocanthus galeatus	13					
				Fantail Sole	Xystreurys liolepis	3					
				Pacific Cod	Gadus macrocephalus	6					
				Pacific Halibut	Hippoglossus stenolepis	17					
	2	6/20/95	21:16	Red Irish Lord	Hemilepidotus hemilepidotus	2					
				Ribbed Sculpin	Triglops pingeli	3					
		6/20/95						Rock Sole	Pleuronectes bilineatus	16	
*				Whitespotted Greenling	Hexagrammos stelleri	6					
	3b⁵		6/20/95	00.17	Armorhead Sculpin	Gymnocanthus galeatus	3				
	30'			6/20/95	22:17	Rock Sole	Pleuronectes bilineatus	7			
				Alaskan Plaice	Pleuronectes quadrituberculatus	1					
	1	6/22/95	11:06	Flathead Sole	Hippoglossoides elassodon	3					
KACHB-T 2					Rock Sole	Pleuronectes bilineatus	2				
	2	6/22/95	11:41	Rock Sole	Pleuronectes bilineatus	2					
	-	6/22/95	/95 12:02	Armorhead Sculpin	Gy n mocanthus galeatus	1					
	3			Fantail Sole	Xystreurys liolepis	2					
				Flathead Sole	Hippoglossoides elassodon	2					
EFORE-T	3	6/23/95	13:22	Hooligan	Thaleichthys pacificus	1	No fish in trawls 1 or 2				
	1	6/23/95	20:48	Hooligan	Thaleichthys pacificus	2					
TRADB-T	2	6/23/95	21:07	Wattled Eelpout	Lvcodes palearis	1	No fish in trawl 3				

Fish Trawl Data for Cook Inlet 1995 EMP

Trawl 1a empty except for some jellyfish.

b

Trawl 3a hung up on rocky area. Trawl 3b lost some of catch due to torn mesh upon retrieval.

Two attempts were made to trawl at Southeast Kamishak Bay. Trawling was discontinued due to rocky bottom.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

APPENDIX D

Fish Results

1840

2.0 Bile Metabolite Data

Stradt Collog Si Alograda

APPENDIX D

and the solution of the second

Fish Results

3.0 Liver EROD and AHH Data

· · ·		Bile Metab	olite Da	ta for Cook In	let 1995 EMP	
STATION ID: K	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus st	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0001	C21677		2	24000	6600	< 100
STATION ID: K	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus st	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0002	C21678		1	5000	2900	< 100
STATION ID: K	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus st	enolepis
Sample ID	Labsamp I	D	/ -	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0003	C21679	١]	.5000	2400	< 100
STATION ID:	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus st	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0004	C21680		7	7000	990	< 100
STATION ID: K	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0005	C21681		ç	2000	1300	< 100
STATION ID: K	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyreno (ng/g)
CIR95BIL0006	C21682]	4000	2200	< 100
STATION ID:	ACHB-L	SURVEY:	2	TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp I	D	-	hthalene ng/g)	Phenanthrene (ng/g)	Benzo(a)pyren (ng/g)
CIR95BIL0007	C21683			7600	1100	< 100

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

P.C.

(COTT)

in the second

	Bile Meta	bolite Data for Cook In	let 1995 EMP	
STATION ID: K	AMIB-F SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0009	C21685	9700	1400	< 100
STATION ID: K	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID .	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0008	C21684	14000	2700	< 100
STATION ID:	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0011	C21686	9300	1200	< 100
STATION ID: K	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0012	C21687	8600	1300	< 100
STATION ID:	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0013	C21688	12000	1800	< 100
STATION ID: K	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0014	C21689	9500	1300	< 100
STATION ID: K	AMIB-L SURVEY:	2 TAXON:	Hippoglossus ste	enolepis
Sample ID	Labsamp ID	Naphthalene (ng/g)	Phenanthrene (ng/g)	Benzo(a)pyrene (ng/g)
CIR95BIL0015	C21690	7600	990	< 100

	Cytochrome P	4501A Induction Dat	a for Cook Inlet 19	95 EMP
STATION ID: K/	ACHB-L SURV	EY: 2 TAXON:	Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0001	C21663	55	76	85
STATION ID: K/	ACHB-L SURV	EY: 2 TAXON:	Hippog	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0002	C21664	70	93	88 、
STATION ID: K/	ACHB-L SURV	EY: 2 TAXON:	Нірро	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0003	C21665	41	60	86
STATION ID: K	ACHB-L SURV	EY: 2 TAXON:	Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0004	C21666	76	114	92
STATION ID: K/	ACHB-L SURV	EY: 2 TAXON:	Hippog	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0005	C21667	57	89	100
STATION ID: K/	ACHB-L SURV	EY: 2 TAXON:	Hippog	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0006	C21668	43	51	42
STATION ID: K	ACHB-L SURV	EY: 2 TAXON:	Нірро	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0007	C21669	58	91	117

.

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

STATION ID: K	AMIB-F SURV	EY: 2 TAXON	Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0009	C21671	49	64	56
TATION ID: K	AMIB-L SURV	YEY: 2 TAXON	Нірро	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0008	C21670	13	19	35
STATION ID: K	AMIB-L SURV	'EY: 2 TAXON	: Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0011	C21672	30	32	28
STATION ID: K	AMIB-L SURV	EY: 2 TAXON	: Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0012	C21673	34	56	52
STATION ID: K	AMIB-L SURV	YEY: 2 TAXON	Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0013	C21674	40	64	88
STATION ID: K	AMIB-L SURV	YEY: 2 TAXON	Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0014	C21675	40	52	64
STATION ID: K	AMIB-L SURV	'EY: 2 TAXON	: Hippo	glossus stenolepis
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0015	C21677	29	34	25

	Cytochron	ne P4501A Induction Dat	a for Cook Inlet 19	95 EMP
STATION ID:	KACHB-L SU	RVEY: 2 TAXON:	Pleur	onectes bilineatus
Sample ID	Labsamp ID	EROD at 25° C (pmol/min/mg)	EROD at 30° C (pmol/min/mg)	AHH at 25° C (pmol/min/mg)
CIR95LIV0010	C22131	. 25	27	.NULL.

APPENDIX E

Line - 15 Mile - 1990 Mile - 16 - 16 Mile - 19

Hydrographic Results

1.0 CTD Data

	Hyd	lrographic Prof	ile Data for	Cook Inlet	1995 EMP	
STATION ID:	EFORE-H	SURVEY:	1 CAS	T DATE: 6/2	3/95 CAST TIME	E (ADT):11:13
STATION LOC	ATION Latitu	de (N) 60 [°] 45'	36.70	Longitude (W)	151 [°] 17 [′] 5.40 [″]	
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0001	1.00	10.6	22.9	7.9	9.1	0.0
CIR95CTD0002	1.50	10.6	22.9	7.9	9.2	0.0
CIR95CTD0003	2.00	10.6	23.0	7.9	9.6	0.0
CIR95CTD0004	2.50	10.6	23.0	7.9	9.6	0.0
CIR95CTD0005	3.00	10.6	23.0	7.9	9.6	0.0
CIR95CTD0006	3.50	10.6	23.0	7.9	9.6	0.0
CIR95CTD0007	4.00	10.6	23.0	7.9	9.6	0.0
CIR95CTD0008	4.50	10.6	23.0	7.9	9.6	0.0
CIR95CTD0009	5.00	10.6	23.0 ·	7.9	9.6	0.0
CIR95CTD0010	5.50	10.6	23.0	7.9	9.6	0.0
CIR95CTD0011	6.00	10.6	23.0	7.9	9.6	0.0
CIR95CTD0012	6.50	10.6	23.0	7.9	9.6	0.0
CIR95CTD0013	7.00	10.6	23.0	7.9	9.6	0.0
CIR95CTD0014	7.50	10.6	23.0	7.9	9.6	0.0

No. of Concession, Name

or water and the second second

Specificants

L FRANK BAR

Service Se

	Hydı	rographic Prof	ile Data for	Cook Inlet	1995 EMP	
STATION ID:	EFORE-H	SURVEY:	2 CAS	T DATE: 7/2	5/95 CAST TIME	E (ADT):21:34
STATION LOC	CATION Latitud	e (N) 60 [°] 46'	15.10	Longitude (W)	151 [°] 16 [°] 44.00 [°]	
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0423	0.50	13.9	19.9	8.1	8.5	0.0
CIR95CTD0424	1.00	13.8	20.0	8.1	8.7	0.0
CIR95CTD0425	1.50	13.8	20.0	8.0	8.7	0.0
CIR95CTD0426	2.00	13.7	20.1	8.0	8.5	0.0
CIR95CTD0427	2.50	13.7	20.1	8.0	8.5	0.0
CIR95CTD0428	3.00	13.8	20.0	8.1	8.5	0.0
CIR95CTD0429	3.50	13.8	20.0	8.1	8.5	0.0
CIR95CTD0430	4.00	13.8	20.0	8.1	8.5	0.0
CIR95CTD0431	4.50	13.6	20.2	8.1	8.5	0.0
CIR95CTD0432	5.00	13.5	20.4	8.1	8.6	0.0
CIR95CTD0433	5.50	13.5	20.3	8.1	8.6	0.0
CIR95CTD0434	6.00	13.5	20.3	8.0	8.6	0.0
CIR95CTD0435	6.50	13.4	20.4	8.1	8.6	0.0
CIR95CTD0436	7.00	13.4	20.5	8.0	8.5	0.0
CIR95CTD0437	7.50	13.4	20.5	8.0	8.6	0.0
CIR95CTD0438	8.00	13.4	20.5	8.1	8.6	0.0
CIR95CTD0439	8.50	13.4	20.5	8.0	8.6	0.0
CIR95CTD0440	9.00	13.4	20.5	8.0	8.6	0.0
CIR95CTD0441	9.50	13.4	20.5	8.0	8.5	0.0
CIR95CTD0442	10.00	13.4	20.5	8.0	8.6	0.0
CIR95CTD0443	10.50	13.4	20.5	8.0	8.6	0.0
CIR95CTD0444	11.00	13.4	20.5	8.0	8.6	0.0
CIR95CTD0445	11.50	13.4	20.5	8.0	8.7	0.0
CIR95CTD0446	12.00	13.4	20.6	8.0	8.7	0.0
CIR95CTD0447	12.50	13.4	20,6	8.0	8.9	0.0
CIR95CTD0448	13.00	13.4	20.6	8.0	9.0	0.0

	Hyd	lrographic Prof	file Data for	Cook Inlet	1995 EMP	
STATION ID:	KAMIB-H	SURVEY:	1 CAS	T DATE: 6/2	1/95 CAST TIM	E (ADT):11:11
STATION LOC	CATION Latitu	de (N) 59 [°] 22'	36.40	Longitude (W)	153 [°] 46 [°] 0.60	
	Depth	Temperature	Salinity,	Ph	Dissolved	Transmissivity
Sample ID	(Meters)	(°C)	(ppt)	(units)	Oxygen (mg/L)	(%)
CIR95CTD0049	0.00	10.1	29.7	8.2	9.4	76.5
CIR95CTD0050	0.50	10.0	29.5	8.2	9.7	72.3
CIR95CTD0051	1.00	9.9	29.4	8.2	9.9	67.4
CIR95CTD0052	1.50	9.7	29.6	8.2	9.9	68.3
CIR95CTD0053	2.00	9.6	29.6	8.2	9.9	67.3
CIR95CTD0054	2.50	9.5	29.6	8.2	9.9	66.2
CIR95CTD0055	3.00	9.4	29.6	8.2	10.0	65.2
CIR95CTD0056	3.50	9.3	29.6	8.2	9.9	64.6
CIR95CTD0057	4.00	9.3	29.7	8.1	9.9	63.9
CIR95CTD0058	4.50	9.1	29.8	8.1	9.8	64.6
CIR95CTD0059	5.00	9.0	29.8	8.1	9.7	64.4
CIR95CTD0060	5.50	9.0	29.8	8.1	9.7	63.9
CIR95CTD0061	6.00	8.9	29.9	8.1	9.7	65.2
CIR95CTD0062	6.50	8.9	29.9	8.1	9.6	66.4
CIR95CTD0063	7.00	8.9	29.9	8.1	9.6	66.9
CIR95CTD0064	7.50	8.9	29.9	8.1	9.6	67.5
CIR95CTD0065	8.00	8.8	29.9	8.1	9.6	68.1
CIR95CTD0066	8.50	8.8	29.9	8.1	9.7	68.2
CIR95CTD0067	9.00	8.7	30.0	8.1	9.5	68.1
CIR95CTD0068	9.50	8.6	30.0	8.1	9.6	68.1
CIR95CTD0069	10.00	8.5	30.1	8.1	9.6	67.8
CIR95CTD0070	10.50	8.4	30.1	8.1	9.6	67.4
CIR95CTD0071	11.00	8.4	30.1	8.1	9.5	67.1
CIR95CTD0072	11.50	8.3	30.2	8.1	9.6	66.6
CIR95CTD0073	12.00	8.2	30.2	8.1	9.5	66.2
CIR95CTD0074	12.50	8.1	30.3	8.1	9.6	65.7
CIR95CTD0075	13.00	8.0	30.3	8.1	9.5	64.7
CIR95CTD0076	13.50	8.0	30.3	8.1	9.6	64.3
CIR95CTD0077	13.50	8.0	30.3	8.1	9.5	63.4
					9.5	61.4
CIR95CTD0078	14.50	7.9	30.4	8.1 8.1	9.5	60.4
CIR95CTD0079	15.00	7.9	30.4			
CIR95CTD0080	15.50	7.9	30.4	8.1	9.5	58.4
CIR95CTD0081	16.00	7.9	30.4	8.1	9.5	58.3
CIR95CTD0082	16.50	7.9	30.4	8.1	9.5	58.8
CIR95CTD0083	17.00	7.9	30.4	8.1	9.5	59.3

Strate of the second

Support Statements

Colored Street S

(DOCLED-FEMILIES)

And the second s

din papersono

STATION ID:	KAMIB-H	SURVEY:	2 CAS	T DATE: 7/2	9/95 CAST TIME	E (ADT):17:04
STATION LOC	ATION Latit	ide (N) 59 [°] 22'	34.60 "	Longitude (W)	153 [°] 46 [°] 15.40 [°]	
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0470	0.50	11.1	29.9	8.2	9.4	63.5
CIR95CTD0471	1.00	11.1	29.9	8.2	9.4	63.4
CIR95CTD0472	1.50	11.1	29.9	8.2	9.4	63.4
CIR95CTD0473	2.00	11.1	29.9	8.2	9.3	63.8
CIR95CTD0474	2.50	11.1	29.9	8.2	9.4	63.8
CIR95CTD0475	3.00	11.1	29.9	8.2	9.3	63.9
CIR95CTD0476	3.50	11.1	30.0	8.2	9.4	64.3
CIR95CTD0477	4.00	11.1	30.0	8.2	9.4	64.5
CIR95CTD0478	4.50	11.1	30.0	8.2	9.4	64.6
CIR95CTD0479	5.00	11.1	30.0	8.2	9.4	64.5
CIR95CTD0480	5.50	11.1	30.0	8.2	9.5	64.7
CIR95CTD0481	6.00	11.1	30.0	8.2	9.5	64.7
CIR95CTD0482	6.50	11.0	30.0	8.2	9.5	64.4
CIR95CTD0483	7.00	11.0	30.0	8.2	9.5	64.3
CIR95CTD0484	7.50	11.0	30.0	8.2	9.5	64.5
CIR95CTD0485	8.00	11.0	30.0	8.2	9.5	64.9
CIR95CTD0486	8.50	11.0	30.0	8.2	9.4	64.8
CIR95CTD0487	9.00	11.0	30.0	8.2	9.5	64.5
CIR95CTD0488	9.50	11.0	30.0	8.2	9.5	64.5
CIR95CTD0489	10.00	11.0	30.0	8.2	9.5	64.4
CIR95CTD0490	10.50	11.0	30.0	8.2	9.5	64.4
CIR95CTD0491	11.00	11.0	30.0	8.2	9.6	64.3
CIR95CTD0492	11.50	11.0	30.0	8.2	9.6	64.2
CIR95CTD0493	12.00	11.0	30.0	8.2	9.5	64.4
CIR95CTD0494	12.50	11.0	29.9	8.2	9.4	65.0
CIR95CTD0495	13.00	11.0	30.0	8.2	9.7	64.2
CIR95CTD0496	13.50	11.0	30.0	8.2	9.7	64.3
CIR95CTD0497	14.00	11.0	30.0	8.2	9.7	64.7
CIR95CTD0498	14.50	11.0	30.0	8.2	9.7	64.6
CIR95CTD0499	15.00	11.0	30.0	8.2	9.6	64.4
CIR95CTD0500	15.50	11.0	30.0	8.2	9.7	64.3
CIR95CTD0501	16.00	11.0	30.0	8.2	9.7	64.7
CIR95CTD0502	16.50	11.0	30.0	8.2	9.7	64.6
CIR95CTD0503	17.00	11.0	30.0	8.2	9.7	64.6
CIR95CTD0504	17.50	11.0	30.0	8.2	9.8	64.3
CIR95CTD0505	18.00	11.0	30.0	8.2	9.8	64.0

STATION ID:	- -	Irographic Prof		T DATE: 6/2		E (ADT):8:47
STATION LOC		de (N) 59° 37'	56.70	Longitude (W		
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0015	0.00	9.0	29.4	8.2	11.6	76.2
CIR95CTD0016	0.50	. 8.9	29.9	8.2	11.5	71.8
CIR95CTD0017	1.00	8.8	30.0	8.2	11.4	67.9
CIR95CTD0018	1.50	8.2	30.4	8.2	11.3	64.3
CIR95CTD0019	2.00	8.1	30.4	8.2	11.2	64.8
CIR95CTD0020	2.50	7.8	30.6	8.2	11.1	65.7
CIR95CTD0021	3.00	7.6	30.8	8.2	11.0	65.5
CIR95CTD0022	3.50	7.5	30.7	8.2	10.7	65.3
CIR95CTD0023	4.00	7.2	30.9	8.1	10.6	63.7
CIR95CTD0024	4.50	7.0	30.9	8.1	10.4	60.4
CIR95CTD0025	5.00	6.7	31.1	8.1	10.2	60.1
CIR95CTD0026	5.50	6.6	31.1	8.1	10.1	59.1
CIR95CTD0027	6.00	6.5	31.2	8.1	10.1	64.7
CIR95CTD0028	6.50	6.4	31.2	8.1	10.1	66.9
CIR95CTD0029	7.00	6.3	31.2	8.1	10.0	65.9
CIR95CTD0030	7.50	6.3	31.2	8.1	10.1	66.3
CIR95CTD0031	8.00	6.3	31.2	8.1	10.1	66.1
CIR95CTD0032	8.50	6.3	31.2	8.1	10.1	65.8
CIR95CTD0033	9.00	6.3	31.2	8.1	10.1	65.5
CIR95CTD0034	9.50	6.3	31.3	8.1	10.1	63.8
CIR95CTD0035	10.00	6.3	31.2	8.1	10.0	63.5
CIR95CTD0036	10.50	6.3	31.3	8.1	10.0	63.7
CIR95CTD0037	11.00	6.3	31.3	8.1	10.0	62.6
CIR95CTD0038	11.50	6.3	31.3	8.1	10.1	61.3
CIR95CTD0039	12.00	6.3	31.3	8.1	10.0	60.5
CIR95CTD0040	12.50	6.3	31.3	8.1	10.1	60.9
CIR95CTD0041	13.00	6.3	31.3	8.1	10.1	60.5
CIR95CTD0042	13.50	6.3	31.3	8.1	10.0	60.6
CIR95CTD0043	14.00	6.2	31.3	8.1	10.0	60.4
CIR95CTD0044	14.50	6.2	31.3	8.1	10.1	60.1
CIR95CTD0045	15.00	6.2	31.3	8.1	10.1	59.8
CIR95CTD0046	15.50	6.2	31.3	8.1	10.1	59.3
CIR95CTD0047	16.00	6.2	31.3	8.1	10.0	58.7
CIR95CTD0048	16.50	6.2	31.3	8.1	10.1	58.5

instal

allaskuurd.

	Hyd	rographic Prof	ile Data for	Cook Inlet	1995 EMP	
STATION ID:	KACHB-H	SURVEY:	2 CAS	T DATE: 7/2	27/95 CAST TIME	E (ADT):10:13
STATION LOC	CATION Latitu	de (N) 59 [°] 38'	4.50 "	Longitude (W) 151 [°] 23 [′] 57.80 [″]	
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0449	0.50	10.6	24.3	8.1	9.6	45.8
CIR95CTD0450	1.00	10.5	25.7	8.1	9.6	43.6
CIR95CTD0451	1.50	10.3	26.6	8.1	9.4	37.8
CIR95CTD0452	2.00	10.1	27.6	8.1	9.5	34.0
CIR95CTD0453	2.50	9.8	28.1	8.1	9.5	38.4
CIR95CTD0454	3.00	9.4	29.0	8.1	9.4	46.5
CIR95CTD0455	3.50	9.2	29.4	8.1	9.5	47.4
CIR95CTD0456	4.00	9.2	29.4	8.1	9.5	47.6
CIR95CTD0457	4.50	9.2	29.5	8.1	9.5	47.6
CIR95CTD0458	5.00	9.1	29.6	8.1	9.3	47.6
CIR95CTD0459	5.50	9.0	29.7	8.1	9.6	47.5
CIR95CTD0460	6.00	9.0	29.8	8.1	9.5	47.2
CIR95CTD0461	6.50	9.0	29.8	8.1	9.5	47.3
CIR95CTD0462	7.00	9.0	29.8	8.1	9.5	47.1
CIR95CTD0463	7.50	8.9	29.8	8.1	9.4	47.1
CIR95CTD0464	8.00	8.8	30.0	8.1	9.4	46.5
CIR95CTD0465	8.50	8.6	30.3	8.1	9.3	47.4
CIR95CTD0466	9.00	8.6	30.4	8.1	9.4	48.2
CIR95CTD0467	9.50	8.5	30.4	8.1	9.3	43.8
CIR95CTD0468	10.00	8.5	30.5	8.1	9.3	42.7
CIR95CTD0469	10.50	8.5	30.5	8.1	9.3	42.5

80003) 809409

Sample ID (Me CIR95CTD0084 0. CIR95CTD0085 1. CIR95CTD0086 1. CIR95CTD0087 2. CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110	Epith Temper 50 7.1 00 7.1 50 7.0 <th>(pp 1 31. 1 31. 1 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. <th>(unit) .5 8.1 .7 8.1 <tr td=""></tr></th><th>Dissolv s) Oxygen (1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7</th><th></th></th>	(pp 1 31. 1 31. 1 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. <th>(unit) .5 8.1 .7 8.1 <tr td=""></tr></th> <th>Dissolv s) Oxygen (1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7</th> <th></th>	(unit) .5 8.1 .7 8.1 <tr td=""></tr>	Dissolv s) Oxygen (1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	
Sample ID (Me CIR95CTD0084 0. CIR95CTD0085 1. CIR95CTD0086 1. CIR95CTD0087 2. CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0098 7. CIR95CTD0109 8. CIR95CTD0109 8. CIR95CTD0100 8. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109	eters) (°C 50 7.1 50 7.1 50 7.1 50 7.0	(pp 1 31. 1 31. 1 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. <th>(unit) .5 8.1 .7 8.1 <tr td=""></tr></th> <th>s) Oxygen (1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7</th> <th>ng/L) (%) 15.2 49.7 75.2 83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.4 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.3 84.3 84.0 84.3 84.0 84.3 84.5 84.4 84.2 84.3 84.2 84.3 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.3 84.2 84.4 84.2 84.3 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.6 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3</th>	(unit) .5 8.1 .7 8.1 <tr td=""></tr>	s) Oxygen (1 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	ng/L) (%) 15.2 49.7 75.2 83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.4 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.3 84.3 84.0 84.3 84.0 84.3 84.5 84.4 84.2 84.3 84.2 84.3 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.3 84.2 84.4 84.2 84.3 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.6 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.2 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3 84.0 84.3
CIR95CTD0085 1. CIR95CTD0086 1. CIR95CTD0087 2. CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0111 14 CIR95CTD0112	00 7.1 50 7.0 00 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .00 7.0	1 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 2 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31. 3 31.	.7 8.1 .7 8.1 <td< th=""><th>9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7</th><th>49.7 75.2 83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.4 84.4 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.3 84.0 84.3</th></td<>	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	49.7 75.2 83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.4 84.4 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0086 1. CIR95CTD0087 2. CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0098 7. CIR95CTD0098 7. CIR95CTD0109 8. CIR95CTD0109 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 111 CIR95CTD0107 122 CIR95CTD0108 122 CIR95CTD0109 133 CIR95CTD01010 133 CIR95CTD0111 144 CIR95CTD0113	50 7.0 00 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .00 7.0	D 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	75.2 83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0087 2. CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0098 7. CIR95CTD0098 7. CIR95CTD0109 8. CIR95CTD0109 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD01010 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113	00 7.0 50 7.0 00 7.0 50 7.0 .00 7.0 .50 7.0 .00 7.0	0 31. 0 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	83.7 84.0 84.2 84.3 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0088 2. CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0109 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113 15 CIR95CTD0114	50 7.0 00 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .00 7.0	0 31. 0 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.0 84.2 84.3 84.5 84.5 84.5 84.4 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0089 3. CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113 15 CIR95CTD0114 15	00 7.0 50 7.0	0 31. 0 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.2 84.3 84.5 84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0090 3. CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0100 8. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .00 7.0	D 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.3 84.5 84.5 84.4 84.4 84.2 84.4 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0091 4. CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113 15 CIR95CTD0114 15	00 7.0 50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .00 7.0	0 31. 0 31.	.7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.5 84.5 84.4 84.2 84.4 84.2 84.4 84.2 84.0 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0092 4. CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 111 CIR95CTD0107 122 CIR95CTD0108 122 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 00 7.0 50 7.0	D 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.5 84.5 84.4 84.2 84.4 84.4 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0093 5. CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0103 10 CIR95CTD0104 13 CIR95CTD0105 11 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0114 15	00 7.0 50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0	0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.5 84.4 84.2 84.4 84.2 84.2 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0094 5. CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0113 15 CIR95CTD0113 15	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .00 7.0	0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.4 84.2 84.4 84.2 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0100 9. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 111 CIR95CTD0107 122 CIR95CTD0108 122 CIR95CTD0109 133 CIR95CTD0101 133 CIR95CTD0110 133 CIR95CTD0111 144 CIR95CTD0113 155 CIR95CTD0113 155 CIR95CTD0114 155	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .00 7.0	0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.4 84.2 84.4 84.2 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0095 6. CIR95CTD0096 6. CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0100 9. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 111 CIR95CTD0107 122 CIR95CTD0108 122 CIR95CTD0109 133 CIR95CTD0101 133 CIR95CTD0110 133 CIR95CTD0111 144 CIR95CTD0113 155 CIR95CTD0113 155 CIR95CTD0114 155	00 7.0 50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .50 7.0 .50 7.0 .00 7.0	0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.2 84.4 84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0097 7. CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 100 CIR95CTD0104 100 CIR95CTD0105 111 CIR95CTD0106 111 CIR95CTD0107 122 CIR95CTD0108 122 CIR95CTD0109 133 CIR95CTD0101 133 CIR95CTD0102 14 CIR95CTD0113 155 CIR95CTD0114 155	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .50 7.0 .50 7.0 .00 7.0	D 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7	84.4 84.2 84.0 84.2 84.3 84.3 84.3
CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 100 CIR95CTD0105 11 CIR95CTD0106 111 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .50 7.0	D 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7	84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0098 7. CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 100 CIR95CTD0105 11 CIR95CTD0106 111 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .50 7.0	D 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7 9.7	84.2 84.0 84.2 84.3 84.0 84.3
CIR95CTD0099 8. CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	00 7.0 50 7.0 00 7.0 50 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .50 7.0 .00 7.0	D 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7 9.7	84.0 84.2 84.3 84.0 84.3
CIR95CTD0100 8. CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 00 7.0 50 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .50 7.0 .00 7.0	0 31. 0 31. 0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7 9.7	84.2 84.3 84.0 84.3
CIR95CTD0101 9. CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0101 13 CIR95CTD0102 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	00 7.0 50 7.0 .00 7.0 .50 7.0 .50 7.0 .50 7.0 .00 7.0	0 31. 0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1 .7 8.1	9.7 9.7 9.7	84.3 84.0 84.3
CIR95CTD0102 9. CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	50 7.0 .00 7.0 .50 7.0 .00 7.0 .00 7.0	0 31. 0 31. 0 31.	.7 8.1 .7 8.1 .7 8.1	9.7 9.7	84.0 84.3
CIR95CTD0103 10 CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	.00 7.0 .50 7.0 .00 7.0	0 31. 0 31.	.7 8.1 .7 8.1	9.7	84.3
CIR95CTD0104 10 CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	.50 7.0 .00 7.0	31.	.7 8.1		
CIR95CTD0105 11 CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	.00 7.0				
CIR95CTD0106 11 CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15		0 31.	/ 81		84.1
CIR95CTD0107 12 CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15	.50 6.9				84.0
CIR95CTD0108 12 CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15					84.6
CIR95CTD0109 13 CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15					84.7
CIR95CTD0110 13 CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15					84.6
CIR95CTD0111 14 CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15					84.3
CIR95CTD0112 14 CIR95CTD0113 15 CIR95CTD0114 15					84.3 84.7
CIR95CTD0113 15 CIR95CTD0114 15					
CIR95CTD0114 15					84.9
					85.2
					85.1
	.00 6.9				85.3
	.50 6.9				85.2
	.00 6.9				85.3
	.50 6.9				85.3
	.00 6.9				85.5
	.50 6.9				84.6
CIR95CTD0121 19	.00 6.9				85.5
	.50 6.9				85.5
CIR95CTD0123 20	.00 6.9				85.5
CIR95CTD0124 20	.50 6.9	9 31.			85.4
CIR95CTD0125 21	.00 6.9) 31.	.8 8.1	9,7	85.5
CIR95CTD0126 21	.50 6.9	9 31.	.8 8.1	9.6	85.5
CIR95CTD0127 22	.00 6.9	9 31.	.8 8.1	9.6	85.6
CIR95CTD0128 22	.50 6.9	9 31.	.8 8.1	9.7	85.6
CIR95CTD0129 23	0.0		.8 8.1	9.6	85.6

Cook Inles Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

O Distance and

Control Annalysis and a second

Witnessource

themaster

alles and a

STATION ID:	NULLZ-H	SURVEY:	1 CAS	T DATE: 6/2	20/95 CAST TIME	E (ADT):11:41
STATION LOC	ATION Latitu	de (N) 59 [°] 4'	58.90 "	Longitude (W) 152 [°] 48 [°] 58.40 ["]	
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0132	24.50	6.9	31.8	8.1	9.7	85.6
CIR95CTD0133	25.00	6.9	31.8	8.1	9.7	85.5
CIR95CTD0134	25.50	6.9	31.8	8.1	9.7	85.6
CIR95CTD0135	26.00	6.9	31.8	8.1	9.7	85.6
CIR95CTD0136	26.50	6.9	31.8	8.1	9.7	85.6
CIR95CTD0137	27.00	6.9	31.8	8.1	9.6	85.6
CIR95CTD0138	27.50	6.9	31.8	8.1	9.7	85.6
CIR95CTD0139	28.00	6.9	31.8	8.1	9.7	85.7
CIR95CTD0140	28.50	6.8	31.8	8.1	9.6	85.7
CIR95CTD0141	29.00	6.8	31.8	8.1	9.7	85.7
CIR95CTD0142	29.50	6.8	31.8	8.1	9.6	85.8
CIR95CTD0143	30.00	6.8	31.8	8.1	9.6	85.9
CIR95CTD0144	30.50	6.8	31.8	8.1	9.7	85.7
CIR95CTD0145	31.00	6.8	31.8	8.1	9.7	85.9
CIR95CTD0146	31.50	6.8	31.8	8.1	9.7	85.9
CIR95CTD0147	32.00	6.8	31.8	8.1	9.7	86.0
CIR95CTD0148	32.50	6.8	31.8	8.1	9.7	85.9
CIR95CTD0149	33.00	6.8	31.8	8.1	9.7	85.9
CIR95CTD0150	33.50	6.8	31.8	8.1	9.7 9.7	86.0
CIR95CTD0151	33.50 34.00	6.8	31.8	8.1	9.6	86.0
CIR95CTD0151	34.00 34.50	6.8	31.8	8.1	9.6	86.0
CIR95CTD0152	34.50	6.8 6.8	31.8	8.1 8.1	9.6	86.1
CIR95CTD0153	35.50	6.8 6.8	31.8	8.1 8.1	9.6	86.2
CIR95CTD0154	35.50 36.00	6.7		8.1 8.1	9.6 9.6	86.2 86.2
CIR95CTD0155	36.00	6.7	31.8		9.6 9.6	
			31.8	8.1		86.3
CIR95CTD0157	37.00	6.7	31.9	8.1	9.6	86.3
CIR95CTD0158	37.50	6.7	31.9	8.1	9.6	86.3
CIR95CTD0159	38.00	6.7	31.9	8.1	9.6	86.3
CIR95CTD0160	38.50	6.7	31.9	8.1	9.6	86.4
CIR95CTD0161	39.00	6.7	31.9	8.1	9.6	86.3
CIR95CTD0162	39.50	6.7	31.9	8.1	9.6	86.4
CIR95CTD0163	40.00	6.7	31.9	8.1	9.6	86.4
CIR95CTD0164	40.50	6.6	31.9	8.1	9.6	86.3
CIR95CTD0165	41.00	6.6	31.9	8.1	9.6	86.3
CIR95CTD0166	41.50	6.6	31.9	8.1	9.6	86.5
CIR95CTD0167	42.00	6.6	31.9	8.1	9.6	86.5
CIR95CTD0168	42.50	6.6	31.9	8.1	9.6	86.5
CIR95CTD0169	43.00	6.6	31.9	8.1	9.6	86.5
CIR95CTD0170	43.50	6.6	31.9	8.1	9.6	86.5
CIR95CTD0171	44.00	6.6	31.9	8.1	9.6	86.5
CIR95CTD0172	44.50	6.6	31.9	8.1	9.6	86.6
CIR95CTD0173	45.00	6.6	31.9	8.1	9.6	86.6
CIR95CTD0174	45.50	6.6	31.9	8.1	9.6	86.6
CIR95CTD0175	46.00	6.6	31.9	8.1	9.5	86.6
CIR95CTD0176	46.50	6.6	31.9	8.1	9.5	86.6
CIR95CTD0177	47.00	6.6	31.9	8.1	9.5	86.6
CIR95CTD0178	47.50	6.5	31.9	8.1	9.5	86.7
CIR95CTD0179	48.00	6.5	32.0	8.1	9.6	86.7

STATION ID: NULLZ-H SURVEY: 1 CAST DATE: 6/20/95 CAST TIME (ADT):11:41							
STATION LOC	ATION Latitu	ide (N) 59 [°] 4'	58.90 "	Longitude (W)	152 [°] 48 [°] 58.40		
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)	
CIR95CTD0180	48.50	6.5	32.0	8.1	9.5	86.7	
CIR95CTD0181	49.00	6.5	32.0	8.1	9.6	86.7	
CIR95CTD0182	49.50	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0183	50.00	6.6	32.0	8.1	9.5	86.7	
CIR95CTD0184	50.50	6.6	32.0	8.1	9.5	86.7	
CIR95CTD0185	51.00	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0186	51.50	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0187	52.00	6.6	32.0	8.1	9.5	86.7	
CIR95CTD0188	52.50	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0189	53.00	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0190	53.50	6.6	32.0	8.1	9.5	86.7	
CIR95CTD0191	54.00	6.6	32.0	8.1	9.5	86.7	
CIR95CTD0192	54.50	6.6	32.0	8.1	9.6	86.8	
CIR95CTD0193	55.00	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0194	55.50	6.6	32.0	8.1	9.6	86.8	
CIR95CTD0195	56.00	6.6	32.0	8.1	9.6	86.7	
CIR95CTD0196	56.50	6.6	32.0	8.1	9.6	86.8	
CIR95CTD0197	57.00	6.6	32.0	8.1	9.6	86.8	
CIR95CTD0198	57.50	6.6	32.0	8.1	9.6	86.8	
CIR95CTD0199	58.00	6.6	32.1	8.1	9.6	86.8	
CIR95CTD0200	58.50	6.6	32.1	8.1	9.6	86.8	
CIR95CTD0201	59.00	6.6	32.1	8.1	9.6	86.8	
CIR95CTD0202	59.50	6.5	32.1	8.1	9.6	86.8	
CIR95CTD0203	60.00	6.5	32.1	8.1	9.6	86.8	
CIR95CTD0204	60.50	6.5	32.1	8.1	9.6	86.2	
CIR95CTD0205	61.00	6.5	32.1	8.1	9.5	86.8	
CIR95CTD0206	61.50	6.5	32.1	8.1	9.6	86.8	
CIR95CTD0207	62.00	6.5	32.1	8.1	9.6	86.7	
CIR95CTD0208	62.50	6.5	32.1	8.1	9.6	86.7	
CIR95CTD0209	63.00	6.5	32.1	8.1	9.6	86.8	
CIR95CTD0210	63.50	6.5	32.1	8.1	9.6	86.7	
CIR95CTD0211	64.00	6.5	32.1	8.1	9.6	86.7	
CIR95CTD0212	64.50	6.5	32.1	8.1	9.5	86.8	
CIR95CTD0213	65.00	6.4	32.1	8.1	9.5	86.8	
CIR95CTD0214	65.50	6.4	32.1	8.1	9.5	86.8	
CIR95CTD0215	66.00	6.4	32.1	8.1	9.5	86.8	
CIR95CTD0216	66.50	6.4	32.2	8.1	9.5	86.8	
CIR95CTD0217	67.00	6.4	32.2	8.1	9.5	86.8	
CIR95CTD0218	67.50	6.4	32.2	8.1	9.5	86.6	
CIR95CTD0219	68.00	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0220	68.50	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0221	69.00	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0222	69.50	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0223	70.00	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0224	70.50	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0225	71.00	6.3	32.2	8.1	9.5	86.8	
CIR95CTD0226	71.50	6.3	32.2	8.1	9.5	86.8	

All and the second seco

adamin

STATION LOCA Sample ID DIR95CTD0228 DIR95CTD0229 DIR95CTD0230 DIR95CTD0231 DIR95CTD0232 DIR95CTD0233	Depth (Meters) 72.50 73.00 73.50 74.00	tde (N) 59° 4' Temperature (°C) 6.3 6.3	58.90 " Salinity (ppt) 32.2	Longitude (W Ph (units)) 152 [°] 48 ['] 58.40 ^{''} Dissolved Oxygen (mg/L)	Transmissivity
DIR95CTD0228 DIR95CTD0229 DIR95CTD0230 DIR95CTD0231 DIR95CTD0232 DIR95CTD0233	(Meters) 72.50 73.00 73.50	(°C) 6.3	(ppt)			•
CIR95CTD0229 CIR95CTD0230 CIR95CTD0231 CIR95CTD0232 CIR95CTD0233	73.00 73.50		32.2			(%)
CIR95CTD0230 CIR95CTD0231 CIR95CTD0232 CIR95CTD0233	73.50	6.3		8.1	9.5	86.6
CIR95CTD0231 CIR95CTD0232 CIR95CTD0233			32.2	8.1	9.5	86.8
CIR95CTD0232 CIR95CTD0233	74.00	6.3	32.2	8.1	9.5	86.8
CIR95CTD0233		6.3	32.2	8.1	9.5	86.7
	74.50	6.3	32.2	8.0	[^] 9.5	86.7
	75.00	6.3	32.2	8.0	9.5	86.7
CIR95CTD0234	75.50	6.3	32.2	8.0	9.4	86.7
IR95CTD0235	76.00	6.3	32.2	8.0	9.4	86.7
CIR95CTD0236	76.50	6.2	32.2	8.0	9.4	86.7
IR95CTD0237	77.00	6.2	32.2	8.0	9.4	86.7
IR95CTD0238	77.50	6.2	32.2	8.0	9.4	86.6
CIR95CTD0239	78.00	6.2	32.2	8.0	9.4	86.6
CIR95CTD0240	78.50	6.2	32.2	8.0	9.4	86.6
R95CTD0241	79.00	6.2	32.2	8.0	9.4	86.6
CIR95CTD0242	79.50	6.2	32.2	8.0	9.3	86.6
IR95CTD0243	80.00	6.1	32.2	8.0	9.3	86.5
IR95CTD0244	80.50	6.1	32.2	8.0	9.3	86.5
IR95CTD0245	81.00	6.1	32.2	8.0	9.3	86.5
IR95CTD0246	81.50	6.1	32.2	8.0	9.3	86.5
IR95CTD0247	82.00	6.1	32.2	8.0	9.3	86.4
IR95CTD0248	82.50	6.1	32.2	8.0	9.2	86.2
IR95CTD0249	83.00	6.1	32.2	8.0	9.2	86.3
IR95CTD0250	83.50	6.1	32.2	8.0	9.2	86.4
IR95CTD0251	84.00	6.1	32.2	8.0	9.3	86.4
R95CTD0252	84.50	6.1	32.2	8.0	9.3	86.3
R95CTD0253	85.00	6.1	32.2	8.0	9.3	86.2
CIR95CTD0254	85.50	6.1	32.2	. 8.0	9.2	86.2
R95CTD0255	86.00	6.1	32.2	8.0	9.3	86.2
XIR95CTD0256	86.50	6.1	32.2		9.2	86.1
IR95CTD0257	87.00			8.0		
		6.1	32.2	8.0	9.3	86.1
IR95CTD0258	87.50 88.00	6.1	32.2	8.0	9.2	86.2
IR95CTD0259	88.00	6.0	32.2	8.0	9.2	86.2
IR95CTD0260	88.50	6.1	32.2	8.0	9.2	86.2
IR95CTD0261	89.00	6.0	32.2	8.0	9.2	86.1
IR95CTD0262	89.50	6.0	32.2	8.0	9.2	86.2
IR95CTD0263	90.00	6.0	32.2	8.0	9.2	85.8
IR95CTD0264	90.50	6.0	32.2	8.0	9.2	86.2
IR95CTD0265	91.00	6.0	32.2	8.0	9.3	86.1
IR95CTD0266	91.50	6.0	32.2	8.0	9.3	86.1
IR95CTD0267	92.00	6.0	32.2	8.0	9.2	86.1
IR95CTD0268	92.50	6.0	32.2	8.0	9.3	86.1
IR95CTD0269	93.00	6.0	32.2	8.0	9.3	86.1
IR95CTD0270	93.50	6.0	32.2	8.0	9.2	86.1
IR95CTD0271	94.00	6.0	32.2	8.0	9.2	86.1
IR95CTD0272	94.50	6.0	32.2	8.0	9.2	86.1
IR95CTD0273	95.00	6.0	32.2	8.0	9.2	85.9

STATION LOCA Sample ID CIR95CTD0276 CIR95CTD0277	ATION Latitu Depth (Meters)	de (N) 59° 4'	58.90 "	Longitude (W)	152 [°] 48 [°] 58.40 ["]	
CIR95CTD0276	•		-		102 40 00.40	
		(°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0277	96.50	6.0	32.2	8.0	9.2	86.1
	97.00	6.0	32.2	8.0	9.2	85.9
CIR95CTD0278	97.50	6.0	32.2	8.0	9.2	86.1
CIR95CTD0279	98.00	6.0	32.2	8.0	9.3	86.0
CIR95CTD0280	98.50	6.0	32.2	8.0	9.2	86.0
CIR95CTD0281	99.00	6.0	32.2	8.0	9.2	86.0
CIR95CTD0282	99.50	6.0	32.2	8.0	9.2	85.8
CIR95CTD0283	100.00	6.0	32.2	8.0	9.2	85.9
CIR95CTD0284	100.50	6.0	32.2	8.0	9.2	85.9
CIR95CTD0285	101.00	6.0	32.2	8.0	9.2	85.8
CIR95CTD0286	101.50	6.0	32.2	8.0	9.2	85.7
CIR95CTD0287	102.00	6.0	32.2	8.0	9.2	85.8
CIR95CTD0288	102.50	6.0	32.2	8.0	9.2	85.7
CIR95CTD0289	103.00	6.0	32.2	8.0	9.2	85.6
CIR95CTD0290	103.50	6.0	32.2	8.0	9.2	85.6
CIR95CTD0291	104.00	6.0	32.2	8.0	9.2	85.6
CIR95CTD0292	104.50	6.0	32.2	8.0	9.2	85.7
CIR95CTD0293	105.00	6.0	32.2	8.0	9.2	85.6
CIR95CTD0294	105.50	6.0	32.2	8.0	9.2	85.4
CIR95CTD0295	106.00	6.0	32.2	8.0	9.2	85.4
CIR95CTD0296	106.50	6.0	32.2	8.0	9.1	85.3
CIR95CTD0297	107.00	6.0	32.2	8.0	9.1	85.3
CIR95CTD0298	107.50	6.0	32.2	8.0	9.2	85.3
CIR95CTD0299	108.00	6.0	32.2	8.0	9.1	84.9
CIR95CTD0300	108.50	6.0	32.2	8.0	9.2	85.2
CIR95CTD0301	109.00	6.0	32.2	8.0	9.2	84.9
CIR95CTD0302	109.50	6.0	32.2	8.0	9.2	84.8
CIR95CTD0303	110.00	6.0	32.2	8.0	9.2	84.6
CIR95CTD0304	110.50	6.0	32.2	8.0	9.1	84.6
CIR95CTD0305	111.00	6.0	32.2	8.0	9.2	84.5
CIR95CTD0306	111.50	6.0	32.2	8.0	9.2	84.5
CIR95CTD0307	112.00	6.0	32.2	8.0	9.2	84.5
CIR95CTD0308	112.50	6.0	32.2	8.0	9.2	84.6
CIR95CTD0309	113.00	6.0	32.2	8.0	9.2	84.6
CIR95CTD0310	113.50	6.0	32.2	8.0	9.1	84.6
CIR95CTD0311	114.00	5.9	32.2	8.0	9.1	84.6
CIR95CTD0312	114.50	6.0	32.2	8.0	9.2	84.5
CIR95CTD0313	115.00	6.0	32.2	8.0	9.2	84.6
CIR95CTD0314	115.50	5.9	32.2	8.0	9.2	84.5
CIR95CTD0315	116.00	6.0	32.2	8.0	9.2	84.5
CIR95CTD0316	116.50	5.9	32.2	8.0	9.1	84.4
CIR95CTD0317	117.00	5.9	32.2	8.0	9.1	84.5
CIR95CTD0318	117.50	5.9	32.2	8.0	9.2	84.3
CIR95CTD0319	118.00	5.9	32.2	8.0	9.2	84.5
CIR95CTD0320	118.50	5.9	32.2	8.0	9.2	84.4
CIR95CTD0320	119.00	5.9	32.2	8.0	9.2	84.4
CIR95CTD0321	119.50	5.9 5.9	32.2	8.0	9.2	84.5

Approximation and stable

STATION ID: NULLZ-H SURVEY: 1 CAST DATE: 6/20/95 CAST TIME (ADT):11:41								
STATION LOC	ATION Latin	ude (N) 59 [°] 4'	Longitude (W)	Longitude (W) 152 [°] 48 [′] 58.40 ^{″′}				
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)		
CIR95CTD0324	120.50	5.9	32.3	8.0	9.2	77.3		
CIR95CTD0325	121.00	5.9	32.2	8.0	9.2	78.8		
IR95CTD0326	121.50	5.9	32.2	8.0	9.2	84.2		
R95CTD0327	122.00	5.9	32.2	8.0	9.2	84.1		
IR95CTD0328	122.50	5.9	32.2	8.0	9.1	84.2		
CIR95CTD0329	123.00	5.9	32.2	8.0	9.2	84.2		
CIR95CTD0330	123.50	5.9	32.2	8.0	9.2	84.2		
CIR95CTD0331	124.00	5.9	32.2	8.0	9.2	84.3		
CIR95CTD0332	124.50	5.9	32.2	8.0	9.1	84.3		
CIR95CTD0333	125.00	5.9	32.2	8.0	9.2	84.2		
CIR95CTD0334	125.50	5.9	32.2	8.0	9.1	84.3		
CIR95CTD0335	126.00	5.9	32.2	8.0	9.2	84.2		
CIR95CTD0336	126.50	5.9	32.2	8.0	9.2	84.2		
R95CTD0337	127.00	5.9	32.2	8.0	9.2	84.3		
IR95CTD0338	127.50	5.9	32.2	8.0	9.2	84.2		
R95CTD0339	128.00	5.9	32.2	8.0	9.2	84.3		
IR95CTD0340	128.50	5.9	32.2	8.0	9.1	84.2		
CIR95CTD0341	129.00	5.9	32.2	8.0	9.1	84.1		
R95CTD0342	129.50	5.9	32.2	8.0	9.2	83.5		
IR95CTD0343	130.00	5.9	32.2	8.0	9.1	84.2		
R95CTD0344	130.50	5.9	32.2	8.0	9.2	84.1		
IR95CTD0345	131.00	5.9	32.2	8.0	9.1	83.6		
IR95CTD0346	131.50	5.9	32.2	8.0	9.2	83.4		
IR95CTD0347	132.00	5.9	32.2	8.0	9.2	83.5		
CIR95CTD0348	132.50	5.9	32.2	8.0	9.2	83.0		
IR95CTD0349	133.00	5.9	32.2	8.0	9.2	83.8		
IR95CTD0350	133.50	5.9	32.2	8.0	9.2	83.8		
IR95CTD0351	134.00	5.9	32.2	8.0	9.2	83.7		
IR95CTD0352	134.50	5.9	32.3	8.0	9.2	83.7		
IR95CTD0353	135.00	5.9	32.2	8.0	9.2	83.7		
IR95CTD0354	135.50	5.9	32.2	8.0	9.2	84.0		
IR95CTD0355	136.00	5.9	32.2	8.0	9.2	84.1		
IR95CTD0356	136.50	5.9	32.2	8.0	9.1	84.1		
IR95CTD0357	137.00	5.9	32.2	8.0	9.2	. 84.1		
IR95CTD0358	137.50	5.9	32.2	8.0	9.1	84.2		
IR95CTD0359	138.00	5.9	32.2	8.0	9.1	84.1		
IR95CTD0360	138.50	5.9	32.2	8.0	9.1	84.1		
IR95CTD0361	139.00	5.9	32.2	8.0	9.2	84.1		
IR95CTD0362	139.50	5.9	32.2	8.0	9.2	84.1		
IR95CTD0363	140.00	5.9	32.2	8.0	9.2	84.1		
IR95CTD0364	140.50	5.9	32.2	8.0	9.2	84.1		
IR95CTD0365	141.00	5.9	32.2	8.0	9.2	84.1		
IR95CTD0366	141.50	5.9	32.2	8.0	9.2	84.1		
IR95CTD0367	142.00	5.9	32.2	8.0	9.2	84.0		
IR95CTD0368	142.50	5.9	32.2	8.0	9.2	83.9		
IR95CTD0369	143.00	5.9	32.2	8.0	9.2	83.9		

STATION ID:	SEKAM-H	SURVEY:	1 CAS	T DATE: 6/2	0/95 CAST TIME	E (ADT):17:41
STATION LOC	ATION Latitu	de (N) 59 [°] 4'	52.60 "	Longitude (W)	153 [°] 36 [°] 53.30 [°]	·
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)
CIR95CTD0371	1.50	8.5	29.0	8.1	10.3	63.0
CIR95CTD0372	2.00	8.5	29.0	8.1	10.3	63.1
CIR95CTD0373	2.50	8.5	29.0	8.1	10.3	63.2
CIR95CTD0374	3.00	8.5	29.0	8.1	10.3	63.4
CIR95CTD0375	3.50	8.5	29.0	8.1	10.3	63.5
CIR95CTD0376	4.00	8.4	29.0	8.1	10.3	64.2
CIR95CTD0377	4.50	8.3	29.1	8.1	10.3	64.3
CIR95CTD0378	5.00	8.3	29.4	8.1	10.3	66.2
CIR95CTD0379	5.50	8.2	29.5	8.1	10.3	65.8
CIR95CTD0380	6.00	8.2	29.4	8.1	10.3	66.2
CIR95CTD0381	6.50	8.2	29.5	8.1	10.1	66.4
CIR95CTD0382	7.00	8.2	29.5	8.1	10.0	66.6
CIR95CTD0383	7.50	8.2	29.6	8.1	10.1	67.0
CIR95CTD0384	8.00	8.1	29.7	8.1	10.1	67.8
CIR95CTD0385	8.50	8.1	29.8	8.1	10.0	67.7
CIR95CTD0386	9.00	8.1	29.8	8.1	10.1	68.2
CIR95CTD0387	9.50	8.0	29.9	8.1	10.0	69.1
CIR95CTD0388	10.00	7.9	29.9	8.1	10.0	69.4
CIR95CTD0389	10.50	7.9	29.9	8.1	10.0	69.5
CIR95CTD0390	11.00	7.9	30.0	8.1	9.9	69.5
CIR95CTD0391	11.50	7.8	30.0	8.1	9.9	69.3
CIR95CTD0392	12.00	7.8	30.1	8.1	10.1	69.6
CIR95CTD0393	12.50	7.7	30.1	8.1	10.0	69.7
CIR95CTD0394	13.00	7.7	30.1	8.1	9.9	69.5
CIR95CTD0395	13.50	7.7	30.1	8.1	9.9	69.6
CIR95CTD0396	14.00	7.7	30.2	8.1	9.9	69.5
CIR95CTD0397	14.50	7.7	30.2	8,1	9.8	68.1

Appendix E

Hydrographic Profile Data for Cook Inlet 1995 EMP STATION ID: TRADB-H SURVEY: 1 CAST DATE: 6/23/95 CAST TIME (ADT): 19:28									
STATION LOC			38.10 "	Longitude (W	.	. ,			
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)			
CIR95CTD0398	1.50	9.7	21.0	8.0	10.0	0.0			
CIR95CTD0399	2.00	9.5	22.7	. 8.0	9.9	0.0			
CIR95CTD0400	2.50	9.3	23.1	7.9	10.0	0.0			
CIR95CTD0401	3.00	9.2	23.4	7.9	10.0	0.0			
CIR95CTD0402	3.50	9.2	23.5	8.0	10.0	0.0			
CIR95CTD0403	4.00	9.2	23.6	7.9	10.0	0.0			
CIR95CTD0404	4.50	9.2	23.7	8.0	10.0	0.0			
CIR95CTD0405	5.00	9.1	23.8	8.0	10.0	0.0			
CIR95CTD0406	5.50	9.1	23.8	8.0	10.0	0.0			
CIR95CTD0407	6.00	9.1	23.9	8.0	10.0	0.0			
CIR95CTD0408	6.50	9.1	24.0	8.0	10.0	0.0			
CIR95CTD0409	7.00	9.1	24.0	8.0	10.0	0.0			
CIR95CTD0410	7.50	9.1	24.1	8.0	10.0	0.0			
CIR95CTD0411	8.00	9.0	24.1	8.0	10.0	0.0			
CIR95CTD0412	8.50	9.0	24.1	8.0	10.0	0.0			
CIR95CTD0413	9.00	9.0	24.1	8.0	10.0	0.0			
CIR95CTD0414	9.50	9.0	24.2	8.0	10.0	0.0			
CIR95CTD0415	10.00	9.0	24.2	8.0	10.0	0.0			
CIR95CTD0416	10.50	9.0	24.4	8.0	10.0	0.0			
CIR95CTD0417	11.00	9.0	24.5	8.0	10.0	0.0			
CIR95CTD0418	11.50	9.0	24.5	8.0	10.0	0.0			
CIR95CTD0419	12.00	9.0	24.5	8.0	10.0	0.0			
CIR95CTD0420	12.50	9.0	24.5	8.0	10.0	0.0			
CIR95CTD0421	13.00	9.0	24.5	8.0	10.0	0.0			
CIR95CTD0422	13.50	9.0	24.5	8.0	10.0	0.0			

Hydrographic Profile Data for Cook Inlet 1995 EMP									
STATION ID: TRADB-H SURVEY: 2 CAST DATE: 7/26/95 CAST TIME (ADT):10:49									
STATION LOC	ATION Latitu	de (N) 60 [°] 48 '	25.10	Longitude (W)	151 [°] 42 33.80	•			
Sample ID	Depth (Meters)	Temperature (°C)	Salinity (ppt)	Ph (units)	Dissolved Oxygen (mg/L)	Transmissivity (%)			
CIR95CTD0506	0.50	12.4	20.2	8.0	9.4	0.0			
CIR95CTD0507	1.00	12.4	20.3	8.0	9.4	0.0			
CIR95CTD0508	1.50	12.4	20.8	8.0	9.3	0.0			
CIR95CTD0509	2.00	12.3	20.9	8.0	9.4	0.0			
CIR95CTD0510	2.50	12.3	21.0	7.9	9.3	0.0			
CIR95CTD0511	3.00	12.3	21.0	7.9	9.4	0.0			
CIR95CTD0512	3.50	12.3	21.1	7.9	9.3	0.0			
CIR95CTD0513	4.00	12.3	21.1	7.9	9.3	0.0			
CIR95CTD0514	4.50	12.3	21.2	7.9	9.4	0.0			
CIR95CTD0515	5.00	12.3	21.2	7.9	9.4	0.0			
CIR95CTD0516	5.50	12.3	21.2	7.9	9.3	0.0			
CIR95CTD0517	6.00	12.3	21.2	7.9	9.3	0.0			

CIRCAC 1995 EMP CTD QC DATA

samp_id	stn_id	survey_no	rep_lat_dg	rep_lat_mn	rep_lat_sc	rep_lon_dg	rep_lon_mn	rep_lon_sc	coll_date	coll_time	depth (m)	anal_ty	analyte	value	value_un
CIR95DOX0001	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50	DOX	DISSOLVED OXYGEN	10.89	MG/L
CIR95DOX0002	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50	DOX	DISSOLVED OXYGEN	10.81	MG/L
CIR95DOX0003	TRADB-H	1	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50	DOX	DISSOLVED OXYGEN	10.39	MG/L
CIR95DOX0004	TRADB-H	1	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50	DOX	DISSOLVED OXYGEN	10.48	MG/L
CIR95DOX0005	KAMIB-H	2	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00	DOX	DISSOLVED OXYGEN	8.81	MG/L
CIR95DOX0006	KAMIB-H	2	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00	DOX	DISSOLVED OXYGEN	9.15	MG/L
CIR95NTU0001	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50	NTU	NTU	1.00	NTU
CIR95NTU0002	TRADB-H	1	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50	NTU	NTU	29.9	NTU
CIR95SAL0001	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:48	-1.5	SAL	SALINITY	29.715	PPT
CIR95SAL0002	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:48	-1.5	SAL	SALINITY	29.667	РРТ
CIR95SAL0003	TRADB-H	1	60	51	38.1	151	41	36.3	6/23/95	19:28	-0.5	SAL	SALINITY	15.214	PPT
CIR95SAL0004	TRADB-H	1	60	51	38,1	151	41	36.3	6/23/95	19:28	-0.5	SAL	SALINITY	15.216	РРТ
CIR95SAL0005	KAMIB-H	2	59	22	33.6	153	46	13.9	7/29/95	17:09	-1	SAL	SALINITY	29.95	РРТ
CIR95SAL0006	KAMIB-H	2	59	22	33.6	153	46	13.9	7/29/95	17:09	-1	SAL	SALINITY	29.97	РРТ
CIR95TMP0001	КАСНВ-Н	1	59	37	56.7	151	23	47.4	6/22/95	8:47	-1.50	TMP	TEMPERATURE	9.8	CELSIUS
CIR95TMP0002	TRADB-H	1	60	51	38.1	151	41	36.3	6/23/95	19:28	-1.50	TMP	TEMPERATURE	8.6	CELSIUS
CIR95TMP0003	KAMIB-H	2	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00	TMP	TEMPERATURE	11.8	CELSIUS
CIR95TMP0004	KAMIB-H	2	59	22	34.6	153	46	15.4	7/29/95	17:04	-1.00	TMP	TEMPERATURE	11.8	CELSIUS

(internet of the second second

Cook Inint Presional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Annendix E

(.....

. ("tenstudiation")

APPENDIX E

An International Manager and Man

Hydrographic Results

2.0 CTD Profiles

HYDROGRAPHIC PROFILE (SURVEY 1) HYDROGRAPHIC PROFILE (SURVEY 2) Station: EFORE-H Date: 6/23/95 Time: 11:13 Station: EFORE-H Date: 7/25/95 Time: 21:34 Transmissivily (%) Transmissivity (%) 0.00 15.00 30.00 45.00 60.00 75.00 90.00 0.00 15.00 30.00 45.00 60.00 ____ Dissolved Oxygen (mg/i) Dissolved Oxygen (mg/l) 6.00 7.00 8.00 10.00 11.00 12.00 6.00 7.00 8.00 10.00 9.00 9.00 1 1 _ 1 1 , pH pH 6.00 7.00 7.50 8.00 8.50 6.00 6.50 7.00 7.50 8.00 5.50 9.00 1 _1_ 1 - 1 1 Salinity (p.p.t.) Salinity (p.p.t.) 18.00 20.50 23.00 25.50 28.00 30.50 33.00 18.00 20.50 23.00 25.50 28.00 1 Temperature (deg. C.) Temperature (deg. C.) 6.50 8.00 11.00 12.50 14.00 6.50 8.00 9.50 11.00 5.00 9.50 5.00 8+ 8+ 2.0 5 8.0 Depth (m) 4.0 Depth (m)

> Temperature Salinity pH D.O. Trans.

75.00

11.00

8.50

30.50

12.50

90.00

12.00

9.00

1

33.00

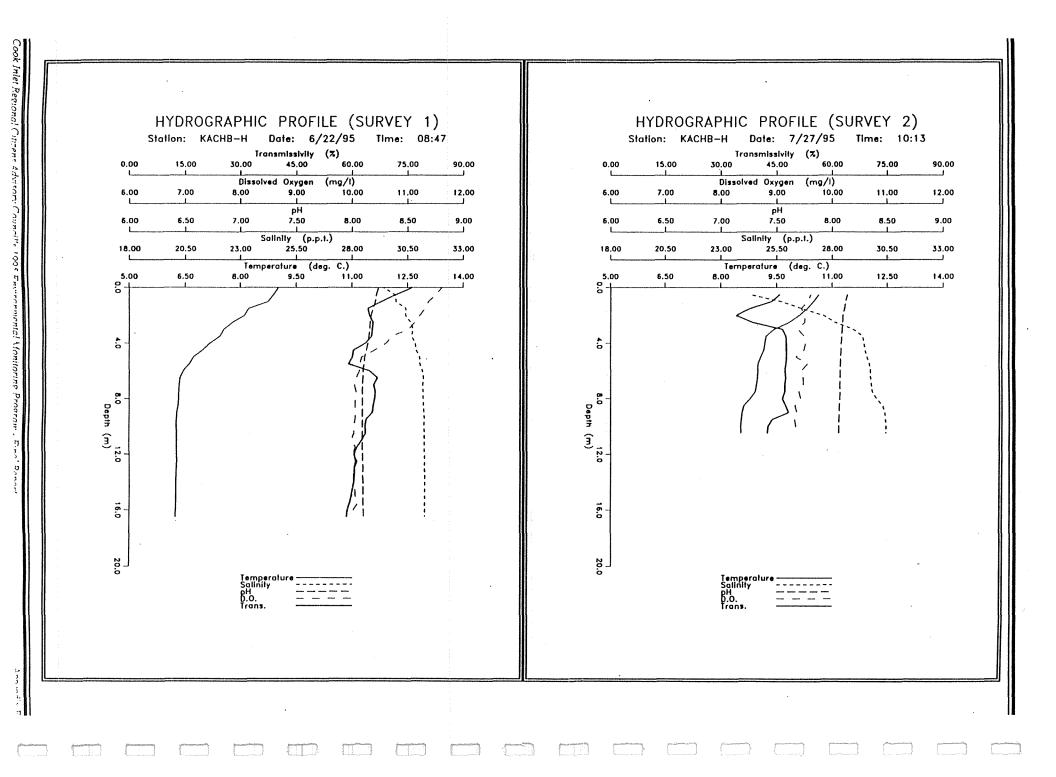
1

14.00

_

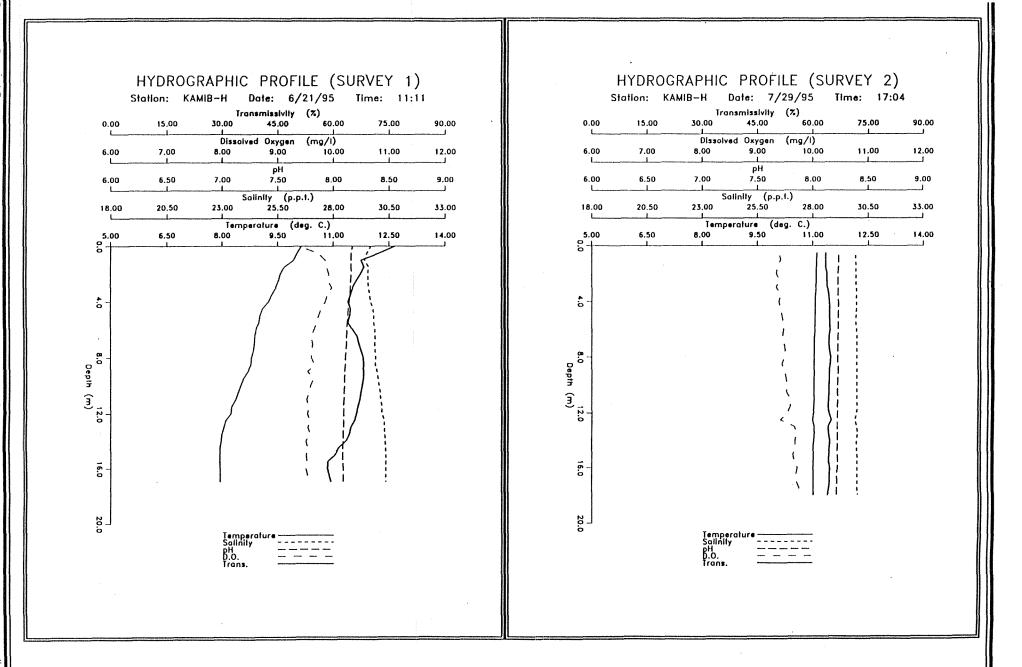
Temperatur Salinity pH D.O. Tran**s**.

12.0

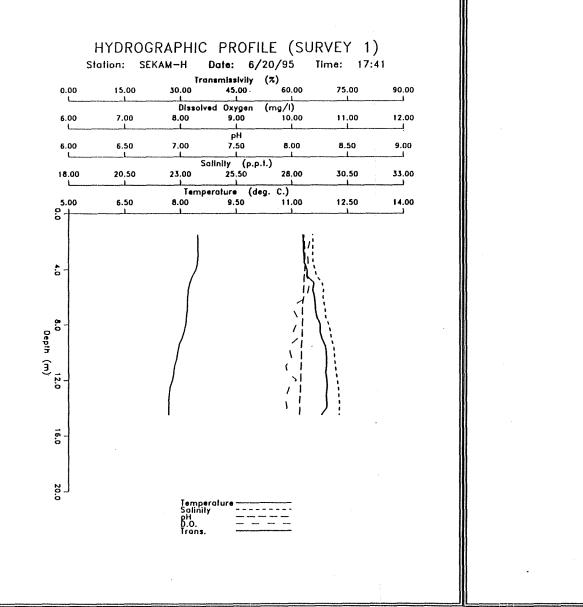

16.0

20.0

6.0


8.0

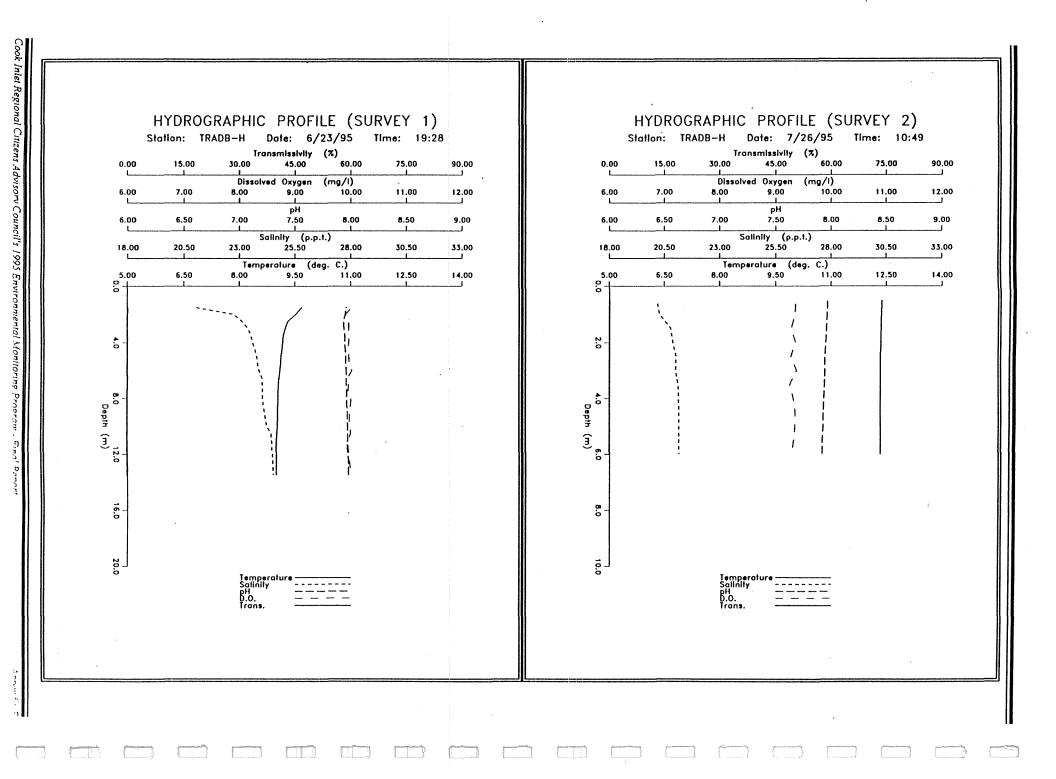
. 0.


Renderman

. .

Inlet Regi ional Citizen. Advi n iental Monitori Bu Program Final ä

Cook Inlet Regional Citizens Advisory HYDROGRAPHIC DATA (SURVEY 1) Station: NULLZ-H Date: 6/20/95 Time: 11:41 Transmissivily (%) 15.00 30.00 45.00 60.00 75.00 90.00 0.00 Dissolved Oxygen (mg/l) 11.00 12.00 6.00 7.00 8.00 9.00 10.00 pH Council's 7.00 8.00 8.50 9.00 6.00 6.50 7.50 _____. 1 1 1 Salinity (p.p.t.) 30.50 18.00 20.50 23.00 25.50 28.00 33.00 Temperature (deg. C.) 5.00 6.50 9.50 11.00 12.50 14.00 8.00 Env 8-40.0 NO CAST DURING Monitoring SURVEY 2 80.0 120.0 Depth (m) Final 160.0 200.0 Temperature Salinity pH D.O. Trans,



Record of Lot of

lines of a second

NO CAST DURING SURVEY 2

3 mm

APPENDIX F

Bivalve Condition Index Results

1.0 BCI Data

STATION ID: KA	CHB-S	SURVEY:	1	REP #:	1
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0035	Macoma spp.		0.27	0.05	18.52
STATION ID: KA	CHB-S	SURVEY:	1	REP #:	1
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0036	Clinocardium cil	iatum	0.25	0.04	16.00
STATION ID: KA	CHB-S	SURVEY:	1	REP #:	
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0037	Nuculana radiate	2	0.08	0.01	12.50
STATION ID: KA	CHB-S	SURVEY:		REP #:	1
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0038	Nuculana radiate	2	0.06	0.02	33.33
STATION ID: K	CHB-S	SURVEY:		REP #:	
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0039	Nuculana radiate	2	0.12	0.02	16.67
STATION ID: KA	ACHB-S	SURVEY:	1	REP #:	1
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0040	Nuculana radiate	2	0.10	0.02	20.00
STATION ID: KA	ACHB-S	SURVEY:	1	REP #:	
Sample ID	Taxon	******	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0041	Nuculana radiate	2	0.12	0.02	16.67
STATION ID: KA	CHB-S	SURVEY:		REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0042	Macoma spp.		0.63	0.18	28.57

Sound Providence

Responses

Supplement of

	Bivalve Condition Index Data for Cook Inlet 1995 EMP									
STATION ID: KA	CHB-S	SURVEY:	1	REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0044	Macoma spp.		0.21	0.03	14.29					
STATION ID: KA	CHB-S	SURVEY:	1	REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0045	Nuculana radiata		0.08	0.02	25.00					
STATION ID: KA	CHB-S	SURVEY:		REP #:	3					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BC10049	Nuculana radiata		0.14	0.02	14.29					
STATION ID: KA	CHB-S	SURVEY:		REP #:	3					
Sample ID	Taxon	*****	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BC10050	Nuculana radiata	<u>er gegenen er son er</u>	0.11	0.02	18.18					
STATION ID: KA	CHB-S	SURVEY:		REP #:	3					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0051	Nuculana radiata		0.08	0.01	12.50					

STATION ID: KA	MIB-S	SURVEY:	1	REP #:	
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Conditior Index
CIR95BCI0007	Macoma spp.		0.71	0.12	16.90
STATION ID: KA	AMIB-S	SURVEY:	1	REP #:	1
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0008	Portlandia inter	rmedia	0.15	0.03	20.00
STATION ID: KA	AMIB-S	SURVEY:	1	REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0009	Portlandia inte	rmedia	0.34	0.08	23.53
STATION ID: KA	MIB-S	SURVEY:	1	REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Conditior Index
CIR95BCI0011	Portlandia inter	rmedia	0.28	0.05	17.86
STATION ID: KA	MIB-S	SURVEY:		REP #:	2
Sample ID	Taxon	******	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0012	Portlandia inte	rmedia	0.25	0.05	20.00
STATION ID: KA	AMIB-S	SURVEY:	1	REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0013	Macoma spp.		0.50	0.07	14.00
STATION ID: KA	MIB-S	SURVEY:	1	REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Conditior Index
CIR95BCI0014	Macoma spp.		0.48	0.06	12.50
STATION ID: KA	MIB-S	SURVEY:		REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0015	Portlandia inter	rmedia	0.36	0.09	25.00

outpose of

And a state of the state of the

Contraction of the second

ACCOUNT:

A CONTRACTOR OF A CONTRACTOR O

	Bivalve Condition Index Data for Cook Inlet 1995 EMP									
STATION ID: K	AMIB-S	SURVEY:	1	REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0016	Macoma spp.		1.16	0.16	13.79					
STATION ID: K	AMIB-S	SURVEY:	1	REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0017	Portlandia interr	nedia	0.39	0.08	20.51					
STATION ID: KA	AMIB-S	SURVEY:		REP #:	2					
Sample ID	Taxon	99999, 1999 - 1 999, ₁₉₉ 9, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1999, 1	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0018	Astarte alaskens.	is	0.28	0.02	7.14					
STATION ID: K	AMIB-S	SURVEY:		REP #:						
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0020	Macoma spp.		2.91	0.20	6.87					
STATION ID: K	AMIB-S	SURVEY:		REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0021	Macoma spp.		1.67	0.16	9.58					
STATION ID: K	AMIB-S	SURVEY:		REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0022	Macoma spp.	99999999999999999999999999999999999999	0.97	0.14	14.43					
STATION ID: K	AMIB-S	SURVEY:	1	REP #:	2					
Sample ID	Taxon	<u></u>	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0023	Macoma spp.		0.93	0.17	18.28					
STATION ID: K	AMIB-S	SURVEY:		REP #:	2					
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index					
CIR95BCI0024	Macoma spp.		1.55	0.13	8.39					

STATION ID: KA	MIB-S	SURVEY:	1	REP #:	2
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0025	Macoma spp.		i.50	0.28	18.67
STATION ID: KA	MIB-S	SURVEY:	1	REP #:	3
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0026	Macoma spp.		2.26	0.28	12.39
STATION ID: KA	MIB-S	SURVEY:		REP #:	3
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0027	Macoma spp.		2.14	. 0.31	14.49
STATION ID: KA	MIB-S	SURVEY:		REP #:	3
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0029	Astarte montagu	i	0.68	0.07	10.29
STATION ID: K	MIB-S	SURVEY:		REP #:	3
Sample ID	Taxon	99999999999999999999999999999999999999	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0030	Macoma spp.		1.79	0.24	13.41
STATION ID: KA	MIB-S	SURVEY:	1	REP #:	3
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0031	Macoma spp.		0.44	0.05	11.36
STATION ID: KA	MIB-S	SURVEY:	1	REP #:	3
Sample ID	Taxon	****	Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0032	Macoma spp.		2.41	0.17	7.05
STATION ID: KA	MIB-S	SURVEY:		REP #:	3
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index
CIR95BCI0033	Clinocardium cil	liatum	2.48	0.24	9.68

ANADOLOGOGOGOGO

Construction of the second

anaooni a

unition(htm

ounté de

in the second second

Bivalve Condition Index Data for Cook Inlet 1995 EMP								
STATION ID: NU	JLLZ-S	SURVEY:	1	REP #:	-1			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0001	Astarte montagui		0.30	0.05	16.67			
STATION ID: N	JLLZ-S	SURVEY:		REP #:	1			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0002	Astarte alaskensis		0.25	0.03	12.00			
STATION ID: N	JLLZ-S	SURVEY:		REP #:	1			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0003	Astarte montagui		0.14	0.03	21.43			
STATION ID: N	JLLZ-S	SURVEY:		REP #:	2			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0004	Astarte alaskensis		0.39	0.06	15.38			
STATION ID: N	JLLZ-S	SURVEY:		REP #:	2			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0005	Astarte montagui		0.28	0.03	10.71			
STATION ID: NU	JLLZ-S	SURVEY:		REP #:	2			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0006	Astarte montagui		0.20	0.02	10.00			

Cook Inlet Regional Citizens Advisory Council's 1995 Environmental Monitoring Program - Final Report

Bivalve Condition Index Data for Cook Inlet 1995 EMP								
STATION ID:	ADB-S	SURVEY:	1	REP #:				
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0052	Yoldia amygdale	a	0.52	0.11	21.15			
STATION ID:	ADB-S	SURVEY:		REP #:	2			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0053	Macoma spp.		0.28	0.03	10.71			
STATION ID:	ADB-S	SURVEY:	1	REP #:	3			
Sample ID	Taxon		Shell Volume (cc)	Tissue Weight (g)	Bivalve Condition Index			
CIR95BCI0054	Macoma spp.		0.23	0.02	8.70			

-