RPWG ## BIOREMEDIATION MONITORING PROGRAM Roger C. Prince Exxon Research and Engineering Annandale, NJ 08801 James R. Clark USEPA Bioremediation Program Gulf Breeze, FL 32561 Jon E. Lindstrom Alaska Dept. Environmental Conservation Anchorage, AK 99503 December, 1990 Captain D.E. Bodron, Co-Chairman RRT Chief, Marine Safety Division 17th Coast Guard District P.O. Box 3-5000 Juneau, AK 99802-1217 Dear Captain Bodron: Enclosed are five copies of the final report on the Joint Bioremediation Monitoring Program conducted during the 1990 summer clean-up activities of the Exxon Valdez cil spill. We promised this report to Rear Admiral Ciancaglini, the FOSC, by 1 January, 1991, as a final analysis of the efficacy and ecological effects of bioremediation treatments used on shorelines in Prince William Sound in 1990. We ask that you forward the material, as necessary and appropriate, to Admiral Ciancaglini and other members of the RRT. This document serves as a follow-up to our September 10, 1990, interim report and as final assessment of the treatment technology as applied during the summer of 1990. It should replace all interim reports as a reference document. The document contains all of the previously reported information as well as additional data on changes in oil chemistry as part of the degradation process. We are available to answer any questions that may arise concerning this document. Sincerely, Roger C. Prince Exxon James R. Clark USEPA James C. Gibaut ADEC Enclosures Cardinal* - ### BIOREMEDIATION MONITORING PROGRAM Roger C. Prince Exxon Research and Engineering Annandale, NJ 08801 Telephone numbers: 201-730-2134 James R. Clark USEPA Bioremediation Program Gulf Breeze, FL 32561 904-934-9200 Jon E. Lindstrom* Alaska Dept. Environmental Conservation Anchorage, AK 99503 907-474-5442 December, 1990 * Present Address: Water Research Center University of Alaska Fairbanks, AK 99775 907-474-5442 ### EXECUTIVE SUMMARY The joint ADEC/USEPA/Exxon biodegradation monitoring team successfully organized and implemented a comprehensive program for assessing the utility of fertilizer amendments for enhancing the biodegradation of surface and subsurface oil, and for characterizing the associated ecological risks. Interim reports, with analyses of the data then available, were presented in July and September. This Final Report presents all the monitoring data, and reinforces the earlier conclusion that biodegradation is an important mechanism in the removal of oil from shorelines in Prince William Sound, and that the application of fertilizers is a safe and effective means to enhance this natural process. - Chemical analyses of the remaining oil on the beaches indicates that biodegradation has already removed 10-70% of the oil in individual samples. - By employing ratios of degradable and undegradable fractions of the oil components, we have derived an estimate of the baseline oil degradation rate. This is approximately - 2.2 g oil/Kg sediment/year on the surface - 1.1 g oil/Kg sediment/year in the subsurface. - The activity of oil-degrading bacteria in surface sediments and subsurface sediments sampled at a depth of 30 cm was enhanced three to four fold relative to the unfertilized sediments. This enhancement was sustained for 32 days after the initial fertilizer application. A second application replenished nutrients and stimulated relative microbial activities five to ten fold. - The microbial populations on the fertilized areas have consistently higher numbers of hydrocarbon degrading bacteria than the corresponding unfertilized areas. Adding fertilizer resulted in a five to ten-fold increase in hydrocarbon degraders. - Fertilizer application resulted in no adverse ecological effects. This report provides evidence that fertilizer application is an effective means to enhance the activity of oil-degrading bacteria in surface and subsurface sediments with minimal environmental impact. The elevated activity of hydrocarbon-degrading bacteria and the measured increase in their populations together provide convincing evidence that fertilizer application indeed enhances oil degradation. Reapplication of fertilizers is warranted every 3-5 weeks. ### TABLE OF CONTENTS | EXECUTIVE SUMMARY | 2 | |---|----------| | INTRODUCTION | 8 | | ORGANIZATION | 9 | | MONITORING SITES | 10 | | SAMPLING STRATEGY | | | FERTILIZER APPLICATION | | | METHODS | 24 | | INTERSTITIAL WATER | | | SEDIMENT SAMPLES | | | MICROBIAL ANALYSES | | | OIL ANALYSES | | | NEARSHORE WATER | | | TOXICITY TESTS | | | BUTOXY-ETHANOL ANALYSES | | | DUIOAI ETHANOL ANALISES | | | RESULTS AND DISCUSSION | 26 | | VISUAL OBSERVATIONS | 26 | | General Observations | <i>.</i> | | Fertilizer Pellets | | | Oil Penetration | | | FERTILIZER NUTRIENTS IN THE INTERSTITIAL WATER. | | | DISSOLVED OXYGEN, SALINITY, TEMPERATURE AND PH | | | IN INTERSTITIAL WATER | | | MICROBIOLOGY | | | Mineralization of Hexadecane and Phenanthr | | | Enumeration of Microbes | | | OIL ANALYSES | | | Gravimetric Analyses | | | Analysis of the Oil Composition | | | The Rate of Biodegradation | | | WATER QUALITY OF NEARSHORE WATER | | | Ammonia and Nitrate Concentrations | | | | | | Toxicity Tests | | | Chlorophyll Monitoring | | | Total Petroleum Hydrocarbons | | | BUTOXY-ETHANOL MONITORING | 83 | | SUMMARY AND CONCLUSIONS | 84 | | The Importance of Biodegradation in the Na | | | Cleansing Proces | | | The Rate of Biodegradation | | | Fertilizer Enhancements | | | Ecological Effects | | | Frequency of Application | | | riequency of Application | , , , OJ | ### LIST OF TABLES | TABLE | 1. | Sampling Schedule for Bioremediation Monitoring Program | 11 | |-------|-----|--|----| | TABLE | 2. | Relative Enhancement of Hydrocarbon Biomineralization
Activity Following First Fertilizer Application | 41 | | TABLE | 3. | Relative Enhancement of Hydrocarbon Biomineralization
Activity Following Second Fertilizer Application | 4] | | TABLE | 4. | Total Extractable Hydrocarbon in Oiled Sediments, KN-132B, Day O | 55 | | TABLE | 5. | Total Extractable Hydrocarbon in Sediments from KN-132B | 57 | | TABLE | 6. | Total Extractable Hydrocarbon in Sediments from KN-135B | 58 | | TABLE | 7. | Total Extractable Hydrocarbon in Sediments from KN-211E | 59 | | TABLE | 8. | Means and Confidence Intervals for the Total Extractable Hydrocarbon data | 60 | | TABLE | 9. | C18: Phytane Ratios of Oil from KN-132B | 62 | | TABLE | 10. | C18: Phytane Ratios of Oil from KN-135B | 63 | | TABLE | 11. | C18: Phytane Ratios of Oil from KN-211E | 64 | | TABLE | 12. | Estimated Amounts of Oil Biodegraded Since Beaching, KN-132B | 68 | | TABLE | 13. | Estimated Amounts of Oil Biodegraded Since Beaching, KN-135B | 69 | | TABLE | 14. | Estimated Amounts of Oil Biodegraded Since Beaching, KN-211E | 70 | | TABLE | 15. | Estimated Rate of Oil Biodegradation,
Summary of All Samples from All Beaches | 7: | | TABLE | 16. | Representative Chemical Components in Oil, KN-132B, Percent Depleted -v- 521 Oil | 72 | | TABLE | 17. | Representative Chemical Components in Oil, KN-135B, Percent Depleted -v- 521 Oil | 73 | | TABLE | 18. | Representative Chemical Components in Oil, KN-211E, Percent Depleted -v- 521 Oil | 74 | | TABLE | 19. | Summary of Ammonia and Nitrate Concentrations in Nearshore
Water after First Application of Fertilizers | 78 | | | utrient Concentrations in Nearshore Water after
the Second Fertilizer Applications | 79 | |-------------|---|------------| | TABLE 21. R | esults of Static, Acute Toxicity Tests with Mysids | 80 | | TABLE 22. B | utoxy-ethanol in Sample Wipes of Cobble Surfaces | 83 | | | | | | | LIST OF FIGURES | | | FIGURE 1. | Bioremediation Monitoring Sites | 12 | | FIGURE 2. | The Monitoring Site on KN-132B | 14 | | FIGURE 3. | The Monitoring Site on KN-135B | 15 | | FIGURE 4. | The Monitoring Site on KN-211E | 16 | | FIGURE 5. | Sampling Well being Readied for Installation | 1 7 | | FIGURE 6. | Site Schematic of KN-132B | 21 | | FIGURE 7. | Site Schematic of KN-135B | 22 | | FIGURE 8. | Site Schematic of KN-211E | 2 3 | | FIGURE 9. | Photograph Demonstrating Loss of Surface Oil at KN-135B | 28 | | FIGURE 10. | Nitrogenous Nutrients in Interstitial Water at KN-132B | 32 | | FIGURE 11. | Nitrogenous Nutrients in Interstitial Water at KN-135B | 33 | | FIGURE 12. | Nitrogenous Nutrients in Interstitial Water at KN-211E | 34 | | FIGURE 13. | Phosphate in Interstitial Water at KN-132B, KN-135B, and KN-211E | 3 5 | | FIGURE 14. | Dissolved Oxygen, Salinity and Temperature of Interstitial Water at KN-132B | 37 | | FIGURE 15. | Dissolved Oxygen, Salinity and Temperature of Interstitial Water at KN-135B | 38 | | FIGURE 16. | Dissolved Oxygen, Salinity and Temperature of Interstitial Water at KN-211E | 3 9 | | FIGURE 17. | Hexadecane and Phenanthrene Biomineralization
Activity: KN-132B | 42 | | FIGURE 18. | Hexadecane Biomineralization Activity: KN-135B | 43 | 44 FIGURE 19. Phenanthrene Biomineralization Activity: KN-135B | FIGURE | 20. Hexadec | ane Biomineralization Activity: KN-211E | 45 | |---------|--------------|---|--------| | FIGURE | 21. Phenant | hrene Biomineralization Activity: KN-211E | 46 | | FIGURE | | n of Samples Exhibiting High Rates
mineralization; KN-132B | 48 | | FIGURE | | n of Samples Exhibiting High Rates
mineralization; KN-135B | 49 | | FIGURE | | n of Samples Exhibiting High Rates
mineralization; KN-211E | 50 | | FIGURE | 25. Bacteria | al Populations on KN-132B | 52 | | FIGURE | 26. Bacteria | al Populations on KN-135B | 53 | | FIGURE | 27. Bacteria | al Populations on KN-211E | 54 | | FIGURE | 28.
Hopane | | 61 | | FIGURE | 29. Ammonia | in Nearshore Water Off Fertilized Shorelines | 76 | | FIGURE | | + Nitrite in Nearshore Water
rtilized Shorelines | 77 | | FIGURE | 31. Relative | e Chlorophyll Concentrations in Offshore Water | 82 | | | | APPENDICES | | | APPEND: | IX SOP. Star | ndard Operating Procedures | | | Se | ection 1. | Protocol for collecting and processing samples for toxicity tests | | | Se | ection 2. | Analyses of inorganic nutrients in seawater | | | | ection 3. | Determination of Kjeldahl Nitrogen in seawater | | | | ection 4. | Microbial protocols | _ | | Se | ection 5. | Extraction of sediment samples for low level petro analysis | | | Se | ection 6. | Determination of low level Total Petroleum Hydroca
and individual saturated hydrocarbon concentration
environmental samples | | | Se | ection 7. | Determination of low-level Polynuclear Aromatic
Hydrocarbons (PAH) and selected heterocycles | | | Se | ection 8. | Determination of Total Petroleum Hydrocarbon in se | awater | | Se | ection 9. | Determination of 2-butoxy-ethanol in surface wipes | | | APPENDIX D1. Data | Tables from Interstitial Water Samples | |-------------------|--| | TABLE 1. | Fertilizer nutrients in interstitial water | | TABLE 2. | Nitrogenous nutrients in interstitial water | | TABLE 3. | Summary of fertilizer nutrients from KN-132B | | TABLE 4. | Summary of fertilizer nutrients from KN-135B | | TABLE 5. | Summary of fertilizer nutrients from KN-211E | | TABLE 6. | Dissolved oxygen, salinity and temperature of | | | interstitial water on KN-132B | | TABLE 7. | Dissolved oxygen, salinity and temperature of | | | interstitial water on KN-135B | | TABLE 8. | Dissolved oxygen, salinity and temperature of | | | interstitial water on KN-211E | | TABLE 9. | Summary of dissolved oxygen, salinity and | | | temperature of interstitial water on KN-132B | | TABLE 10. | Summary of dissolved oxygen, salinity and | | | temperature of interstitial water on KN-135B | | TABLE 11. | Summary of dissolved oxygen, salinity and | | | temperature of interstitial water on KN-211E | | TABLE 12. | Interstitial water pH values | | APPENDIX D2. Data | Tables from Microbial Analyses | | TABLE 1. | Percentage mineralization of hexadecane | | TABLE 2. | Percentage mineralization of phenanthrene | | TABLE 3. | Mineralization Ratios | | TABLE 4. | Mineralization Frequency Distribution | | TABLE 5. | Median MPN Values | | TABLE 6. | Biomineralization Data | | TABLE 7. | Microbial Enumeration Data | | APPENDIX D3. Data | Tables from Oil Analyses | | Section 1. | The need for filtration in estimating Total Extractable Hydrocarbon in sediments | | Section 2. | Total Extractable Hydrocarbon in sediment samples | | Section 3. | Distribution of Total Extractable Hydrocarbon in sediments | | Section 4. | Gas chromatography analyses | | | Hopane analyses | | APPENDIX D4. Data | Tables from Nearshore Water Analyses | | TABLE 1. | Total Petroleum Hydrocarbon in nearshore water | | TABLE 2. | Fertilizer nutrients in nearshore water | | Section 1. | Final laboratory report of the toxicity tests | | 0002011 21 | | #### INTRODUCTION The State of Alaska's approval for the widespread use of bioremediation as one of the cleanup tools for 1990 was contingent on a detailed monitoring program to show that the technique did indeed speed the biodegradation of oil, and without imposing a significant toxicological impact on the shoreline and nearshore biota. A team of scientists from the Alaska Department of Environmental Conservation, the United States Environmental Protection Agency and Exxon therefore designed and executed such a program. Preliminary reports, which provided evidence that bioremediation is a safe and effective tool in removing oil from the shorelines of Prince William Sound and the Gulf of Alaska, were provided to the Federal On Scene Coordinator on July 10 and September 11. This final report, which provides an analysis of all the data collected during the program, confirms that biodegradation is an important process in the natural cleansing of oiled beaches, and reinforces the earlier conclusions that the addition of fertilizers is a safe and effective way to stimulate the biodegradation and removal of oil from the shorelines of Prince William Sound and the Gulf of Alaska. Bioremediation in Prince William Sound in 1990 involved the addition of oleophilic and slow release fertilizers to speed the biodegradation of oil by the indigenous microbial flora. The initial design of the monitoring program was to quantify seven effects of these fertilizer applications; - the presence of fertilizer nutrients in the beach interstitial water. - the stimulation of biodegradation, achieved by the addition of fertilizers, at the surface and in subsurface sediments. - the changes in the amount and composition of oil in the sediments. - the toxicity to aquatic biota following application of fertilizers. - the nutrient loading in the water off the treated areas in order to address the potential for stimulating algal growth. - the amount of dissolved petroleum hydrocarbon in the water off the treated beaches in order to address the potential that enhanced microbial activity on the shorelines might cause the release of petroleum into the water column. - the rate of disappearance of 2-butoxy-ethanol from Inipol EAP22 treated shorelines. The results presented in the July 10 Interim Report provided strong evidence that bioremediation was indeed a safe and effective treatment for removing oil from shorelines in Prince William Sound. The program was thus continued with the goal of measuring the following additional effect: • the potential that additional applications of fertilizer would further stimulate biodegradation of oil. The program used a variety of field and laboratory techniques. The presence of fertilizer nutrients in the interstitial water was measured in samples collected from perforated stainless steel wells driven into the beach material. These wells were perforated throughout their length, and sampled water from just below the surface to approximately 50 cm into the substrate. Additional wells were sealed so that they only sampled subsurface water collected from a depth of approximately 40-50 cm. Interstitial water samples were analyzed for dissolved oxygen, salinity and temperature on the beach. Additional samples were returned to the ship; some were analyzed for pH, while others were filtered to remove bacteria, preserved, and shipped to analytical laboratories for analysis of ammonia/ammonium, nitrate, nitrite, total Kjeldahl nitrogen and phosphate. The stimulation of biodegradation achieved by the addition of fertilizers was assessed on both microbiological and chemical criteria. The numbers of heterotrophic and oil-degrading organisms were determined by "most probable number" techniques, and the ability of the oil-degrading organisms to mineralize (convert to carbon dioxide) hydrocarbons was assessed using laboratory assays with radiolabelled hexadecane and phenanthrene. The amount of oil in shoreline sediments was also determined, and the chemical composition of this oil was quantified with gas chromatographic techniques. The potential toxicity associated with fertilizer application was assessed by collecting samples of water as the tide receded from the treated area and sending the samples to a laboratory for toxicity tests. The toxicity tests followed standard methods employed for testing industrial effluents, and included standard dilution series. Samples were tested with Mysids, a shrimp-like crustacean that is the most sensitive of seven species tested when Inipol was screened in laboratory toxicity tests during the initial review in 1989. Toxicity was further assessed by quantifying ammonia and nitrate plus nitrite in nearshore waters for four days after application. The potential for stimulation of algal growth was assessed by monitoring the concentrations of chlorophyll in nearshore waters over the several weeks following treatment. Nearshore waters also were monitored for total hydrocarbon concentrations to characterize the amount of oil leaving the treated shoreline. Concerns had been raised about the potential hazard to wildlife exposed to the butoxy-ethanol present in Inipol EAP22. The rate of butoxy-ethanol disappearance from Inipol-treated shorelines was measured by collecting oil from the surface of cobbles with gauze swipes and quantifying butoxy-ethanol through GC/MS analyses. ### ORGANIZATION This program was a joint undertaking by USEPA, ADEC and Exxon, and as such was planned and directed by personnel from all three organizations. The responsibilities for the individual parts of the program were as follows. The field teams were primarily personnel from America North Inc. under contract to Exxon; they made measurements on the beaches, collected samples, and shipped them to the analytical laboratories. Water samples for toxicological analysis were sent to Marine Environmental Consultants, Inc., Tiburon, CA. Water samples for organic nitrogen and total petroleum hydrocarbon analyses were sent to Chemical and Geological Laboratories, Anchorage, AK; those for inorganic nutrients were sent to Dr E. Loder, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH. Sediment samples for microbiological analyses in the initial program were shipped to the laboratory of Dr. E. Brown, Water Research Center, University of Alaska, Fairbanks, AK. Subsequent microbiological analyses were performed in the Alaska Department of Environmental Conservation laboratory in Valdez, AK. Sediment samples for oil content and composition were sent to Battelle Ocean Sciences, Duxbury, MA. Time lapse photography was organized by Polar Alpine Inc., Berkeley, CA. These responsibilities are summarized in tabular form in Table 1. Exxon chartered
three vessels to support personnel at field sites. The 110 ft Jolly Roger served as the base vessel for housing field crews, their sampling gear and scientific equipment, and necessary laboratory space. A smaller vessel, The Three Bears, was used to house and transport field crews during the early part of the program when they were searching for appropriate sites, and when it was necessary to sample at more than one site on a single day. The Joint Operations Transport Command transported personnel to and from the sites, and transported samples to Anchorage for shipping to the analytical laboratories. A 36 ft fast-planing boat, the Inga Kristine, was used to transport samples from the field sites to Cordova for air shipment when air travel within the Sound was restricted. These arrangements ensured that the monitoring team continued operation despite adverse weather, and that all samples were collected and delivered on schedule. ### MONITORING SITES The first part of the program was to select representative shoreline segments that were suitable for monitoring. Key criteria in this selection process were the size of the segment, and the presence of two areas that appeared to be similar so that one could be treated with fertilizer while the other could be left as a reference. After extensive discussions with participants in the Interagency Technical Assessment Group, and examining more than thirty potential sites, three were selected as sites for monitoring; all are at the northern end of Knight Island, as shown in Figure 1. KN-132B, Herring Bay. A low energy site near an anadromous stream with surface oil. It had not received bioremediation treatment in 1989. KN-135B, Bay of Isles. A low energy site with surface and subsurface KN-135B, Bay of Isles. A low energy site with surface and subsurface oil. It had not received bioremediation treatment in 1989. KN-211E, Northeast coast of Knight Island. A high energy site with subsurface oil only. This site had received approximately 68 Kg of Inipol EAP22 and 8.3 Kg of Customblen on an area of 271 m² on September 15, 1989. This corresponds to an application of 251 g/m² of Inipol EAP22, and 31 g/m² of Customblen, but to only a portion of the beach. Although more heavily oiled than the majority of shorelines receiving bioremediation treatment in 1990, they provided the opportunity to assess bioremediation of surface and subsurface oil, alone and in combination. They were chosen because each had appropriate sediment (small gravel) beneath the surface armor, the appearance of reasonably uniform oiling throughout the oiled zone, an area large enough to be subdivided, and no substantial input of surface water from the supratidal zone. The experimental design focussed on assessing the benefits and risks associated with the addition of Inipol EAP22 and Customblen, so both portions of each site received similar manual treatment before fertilizer application. TABLE 1 SAMPLING SCHEDULE FOR BIOREMEDIATION MONITORING PROGRAM | SAMPLE TYPE | ANALYSIS | SAMPLING DAY First application ap | Second
plication | LABORATORY | |-----------------------|--|--|--|--| | Photography | time lapse video | 0-42 | - | PAI | | Visual
observation | Depth of oil
Surface oil
Fertilizer | 0,2,4,8,16,32
0,2,4,8,16,32
0,2,4,8,16,32 | 3,17,55
3,17,55
3,17,55 | Field
Field
Field | | Sediment | Microbial counts
Respirometry | 0,2,4,8,16,32
0,2,4,8,16,32 | 3,17,55
3,17,55 | UAF & ADEC
UAF & ADEC | | Sediment | petroleum
GC/MS | 0,32
0,32 | 3,17,55
3,17,55 | BOS
BOS | | Interstitial
water | dissolved oxygen
temperature
salinity
ammonia, nitrate
nitrite, phosphate
Kjeldahl nitrogen | 0,2,4,8,16,32
0,2,4,8,16,32
0,2,4,8,16,32
0,2,4,8,16,32
0,2,4,8,16,32
0,2,4,8,16,32 | 3,17,55
3,17,55
3,17,55
3,17,55
3,17,55
3,17,55 | Field
Field
Field
UNH
UNH
CGL | | Water above
beach | toxicology 0,1 ammonia, nitrate 0,1 | | | MEC
UNH | | Water above
beach | chlorophyll petroleum ammonia, nitrate, nitrite, phosphate | 0,2,4,8,16,32
0,2,4,8,16,32
- | 3,17
3,17
3,17 | Field
CGL
UNH
UNH | | Cobble surface | butoxy-ethanol | 1,8,21,46 hr | | ERE | This chart indicates the planned sampling schedule; samples were collected as indicated, with some minor variations at the different locations due to tidal or weather constraints. The exact timing of the samplings is included in Appendices D1,2,3 and 4. The second fertilizer application was made on days 40 for KN-132B, 53 for KN-135B and 44 for KN-211E. - indicates samples not taken. | KEY | | | |-------|---|--| | Field | Field measurements by America North personnel | | | PAI | Polar Alpine Inc., Berkeley, CA | | | UAF | University of Alaska, Fairbanks, AK | | | ADEC | Alaska Department of Environmental Conservation, Valdez, AK | | | BOS | Battelle Ocean Sciences, Duxbury, MA | | | CGL | Chemical and Geological Laboratories, Anchorage, AK | | | UNH | University of New Hampshire, Durham, NH | | | MEC | Marine Environmental Consultants, Inc., Tiburon, CA | | | ERE | Exxon Research and Engineering, Annandale, NJ | | FIGURE 1 BIOREMEDIATION MONITORING SITES As part of the selection procedure for the sites, a large number of exploratory pits were dug on shorelines to assess the degree of oiling, and to delineate areas that seemed sufficiently similar and homogeneous to allow the comparison of fertilized to unfertilized areas. For sediment sampling, the surface was defined as the beginning of fine-grained sediment, and any overlying larger material, whether pebbles or cobbles, was removed prior to sampling. On KN-132B the fine-grained sediment was overlain with scattered angular cobbles, as shown in Figure 2, and there was substantial surface oil penetrating to 2-5 cm throughout the sampling area in May, 1990. Surface samples were taken after mixing the top 5 cm of sediment, and no subsurface sediment samples were taken. On KN-135B the fine sediment was typically overlain by 10 cm of mixed pebble and cobble, as shown in Figure 3. There was substantial surface and subsurface oiling, and while the extent of oiling and depth of penetration was very variable within the segment, the areas chosen for sampling had heavy oiling to a depth of about 40 cm. Surface samples were taken after clearing away the pebble and cobble, and mixing the top 2-5 cm of fine sediment. Subsurface samples, again of fine sediment, were taken 30cm deeper. KN-211E had no oil within the 15-25 cm of the well rounded surface armor (Figure 4), but substantial subsurface oil extended from immediately below this cobble for 20-50 cm. Surface samples were taken after clearing away the pebble and cobble, and mixing the top 2-5 cm of fine sediment. Subsurface samples were taken 30cm deeper unless this was below the oil horizon, in which case the samples were taken from a few centimeters above the bottom of the oil layer. ### SAMPLING STRATEGY Three undisturbed but apparently similar sampling areas were selected on the fertilized and unfertilized portion of each shoreline, and a perforated pipe (5 cm diameter, 70 cm long, see Figure 5) was driven into the beach material at each sampling location; this allowed the gathering of interstitial water, and served as the center of the sediment sampling area. The wells on the area to receive fertilizer were designated A, B and C, while those on the area to remain unfertilized were designated D, E and F. The experimental design focussed on assessing the benefits and risks associated with the addition of fertilizers, so both portions of each site received similar manual treatment before fertilizer application. Samples of interstitial water were planned to be taken before and at 2, 4, 8, 16 and 32 days after the first fertilizer application, and at 3, 17 and 55 days after the second application. These were analyzed for the presence of nitrogen and phosphorus nutrients, dissolved oxygen, salinity and temperature. With the same frequency, surface and subsurface samples of sediment (approximately 200g) were taken near each well, in triplicate, for analysis of microbial populations and activity. Additional samples (500g) taken before and at 32 days after the first application, and at 17 and 55 days after the second application, were analyzed for oil loading and oil chemistry. Each sample came from previously undisturbed sediment. FIGURE 2 THE MONITORING SITE ON KN-132B This photograph, taken on June 6, 1990, shows the time lapse camera in the background. The nearer "pom-pom" boom divides the fertilized (near) from the unfertilized portion of the beach. A balloon wild-life deterrent is also visible in the photograph. FIGURE 3 THE MONITORING SITE ON KN-135B This photograph, taken on July 17, 1990, is a view over the unfertilized portion of the site toward the fertilized portion. The boundary between the two areas lies approximately half-way down the measuring tape being used by the monitoring personnel. FIGURE 4 THE MONITORING SITE ON KN-211E This photograph, taken on June 30, 1990, is a view of the unfertilized portion of the site, showing the three sampling wells. ## SYMPLING WELL BEING READIED FOR INSTALLION FIGURE 5 - 11 - As the sampling holes were dug, the beach material was placed in a large bucket so that it did not contaminate the surrounding area. After samples had been collected, the bucket was emptied into the hole, and the sampling location marked with a piece of surveyor's tape to exclude this area from subsequent sampling. Additional wells were added to the fertilized side of each
site to sample only subsurface interstitial water, one (Z) at KN-135B and two (Y and Z) at KN-132B and KN-211E. These wells were coated with silicone sealant so that only the bottom 10-15 cm remained permeable. Water samples were collected from these with the same frequency as from the fully perforated wells. Toxicity issues were addressed during the first application of fertilizer only, using an accelerated sampling schedule. Samples were collected in the fertilized area of the site and at a reference site (control) uninfluenced by the fertilizer applications. The strategy (detailed in Appendix SOP, Section 1) was designed to obtain worst-case representations of fertilizer entering the nearshore environment by sampling at a place along the shoreline where there was minimal dilution, and at a time during the tide that allowed the maximum opportunity for fertilizer release into overlying water. Water samples were collected at 0.5 m depth in an area of the shoreline covered by overlying water to a depth of 1 m. Samples were collected 1 hour after fertilizer application and then at the mid-point of an outgoing tide, after the area had been flooded during high tide. The schedule of sampling at the fertilized site consisted of: Pre-application sampling (1 to 2 hr before treatment) (Fertilizer was applied at low tide) 1 hr post application 1st mid-tide outgoing (7-hr post application) 2nd mid-tide outgoing (19-hr post application) 3rd mid-tide outgoing (32-hr post application) 5th mid-tide outgoing (57-hr post application) 7th mid-tide outgoing (82-hr post application) Water samples were collected at an untreated reference site nearby to minimize logistical problems. The reference site was out of the influence of the fertilizer applications and not immediately influenced by nearshore water flowing from the treated site. Samples from the reference site were collected on the following schedule: Pre-application 2nd mid-tide outgoing (19-hr post application) 5th mid-tide outgoing (57-hr post application) All samples were collected as scheduled, kept on ice, and shipped via air express to a testing laboratory in California. Testing began the day samples were received by the laboratory; this was one, two, or three days after collection in the field, depending on the collection schedule, weather conditions for transporting, and weekend shipping schedules. As will be discussed below, no toxicity was detected after the first application of fertilizer, despite over-application of fertilizer at KN-132B and KN-135B. Therefore toxicity testing was not continued when the monitoring program was extended to study a second fertilizer application at each site. Nearshore water samples for ammonia and nitrate analyses were collected concurrently with the toxicity samples, using the same collection protocol and schedule, but with replicate samples. As with the toxicology assessment, this strategy was designed to characterize the exposures of nearshore biota to toxic components of the fertilizer nutrients under worst-case conditions. Water samples for the analysis of chlorophyll and total petroleum hydrocarbons were collected concurrently following the first application of fertilizer. Water samples were collected in the nearshore zone of fertilized and unfertilized areas of the monitoring sites as well as in the nearshore zone of the reference site, which was remote from the fertilizer applications. Sampling occurred on the same schedule as the on-shore monitoring parameters. Water was collected at 0.5 m depth at a point over the shoreline where the total depth at the time of sampling was 1 m, following the generalized shoreline sampling scheme for locating sampling sites described in Appendix SOP, section 1. Three samples were taken offshore of the fertilized area, three offshore of the unfertilized area, and three at the reference site. Since no significant levels of petroleum hydrocarbons were detected in the nearshore water, this analysis was not continued after the second application of fertilizer. Analyses of chlorophyll were continued to monitor for the potential stimulation of algal growth. Sampling for butoxy-ethanol residues on Inipol EAP22 treated surfaces was implemented after the initial monitoring program began, due to delays in method development. Samples were collected by Exxon's operational monitoring team at KN-134A, just south of KN-135B, following treatment on 6/23/90. Two areas were sampled, one in the mid-intertidal zone and one in the upper-intertidal zone. The mid-intertidal area was covered with seawater at each high tide, the upper-intertidal area was not. Several Inipol-treated cobble surfaces were wiped with gauze sponges to collect a minimum of 100 mg of oil, which was used as the basis of the analytical technique. This required wiping approximately 0.25 m² of surface. Samples were collected in each area approximately 1 hr after Inipol application and then after the first, second, and fourth high tides. Schematic maps of the three monitoring beaches, showing the approximate locations of the sampling stations, are presented as Figures 6-8. ### FERTILIZER APPLICATION Two fertilizers were used in the 1990 bioremediation program in Prince William Sound. Customblen (TM) 28-8-0 (Sierra Chemicals, Milpitas, CA 95035) is a slow release formulation of soluble nutrients encased in a polymerized vegetable oil; it contains ammonium nitrate, calcium phosphate and ammonium phosphates with a nitrogen to phosphorus ratio of 28:8. Customblen was applied to all bioremediation sites, with the application rate reduced when it was applied in conjunction with Inipol EAP22. Inipol EAP22 (TM) (CECA S.A., 92062 Paris La Defense, France) is an oleophilic fertilizer designed to adhere to oil. It is a microemulsion of a saturated solution of urea in oleic acid, containing tri(laureth-4)-phosphate and butoxy-ethanol. It was applied only where there was surface oil. Exxon Operations Bioremediation teams applied fertilizers as follows: - KN-132B was treated on June 2, 1990. After manual cleaning and rock-turning, it received 34 g/m² Customblen and 302 g/m² of Inipol EAP22. A second application, of 17 g/m² of Customblen and 302 g/m² of Inipol EAP22, was made on July 12. At the request of the Alaska Department of Fish and Game, there was no final application at the end of the monitoring program. - KN-135B was treated on May 21, 1990. After manual cleaning and rock-turning, it received 103 g/m² of Customblen and 361 g/m² of Inipol EAP22. A second application, of 17 g/m² of Customblen and 303 g/m² of Inipol EAP22, was made on July 13. The entire segment was treated with Customblen at an application rate of 91 g/m² on August 1, 1990. A final application of Inipol at 361 g/m² and Customblen at 17 g/m² was applied to the entire segment on September 5, 1990. - KN-211E was treated on May 30, 1990. It had no surface oil, and received no manual treatment before fertilizer application; it received only Customblen, at a rate of 95 g/m². A second application, at a similar rate, was made on July 13. Finally, the entire segment was treated, on an experimental basis, with Inipol EAP22 at 361 g/m² on September 8, 1990 The applications were intended to follow the application guidelines being used for the 1990 cleanup program, but in fact the initial application of Customblen on KN-132B was double the recommended amount, while that on KN-135B was six-fold higher. In terms of available nitrogenous nutrients, KN-132B thus received approximately 115% of the recommended amount, and KN-135B received 200%. All other applications conformed to the application guidelines. FIGURE 6 SITE MAP OF KN-132B FIGURE 7 SITE MAP OF KN-135B FIGURE 8 SITE MAP OF KN-211E ### METHODS INTERSTITIAL WATER: Interstitial water samples were collected from the surface and the bottom of the wells with a peristaltic pump. Temperature and salinity were determined with a YSI 33 portable meter on the beach, as soon as the samples were collected. Dissolved oxygen was measured with CHEMetrics K-7512 ampules. pH was measured with a portable Hach pH meter on board the support ship. Samples for nutrient analysis were returned to the ship, filtered to remove bacteria, and preserved prior to shipment. They were analyzed using the established protocol attached [Appendix SOP, Section 2]. Detection limits for ammonia and nitrate+nitrite were 0.02 micromolar (μM) nitrogen. Kjeldahl Nitrogen was measured using the established protocol [Appendix SOP, Section 3]. Kjeldahl Nitrogen includes organic nitrogen plus ammonia; the concentration of ammonia determined in the inorganic analyses was thus subtracted from the Kjeldahl Nitrogen to yield the concentration of organic nitrogen. The data following the first application of fertilizer indicated no differences in water samples collected from the surface and the bottom of the wells, so sampling of the surface water was discontinued following the second application of fertilizer. SEDIMENT SAMPLES: Sediment samples of relatively homogeneous small gravel, with dimensions in the 2-5 mm range, were collected with a clean stainless steel spoon and placed into I-CHEM jars for oil analysis, and into sterile whirlpacks for microbial analyses. Samples for oil analysis were frozen prior to shipment. The microbial samples were shipped in coolers with chilled ice to the University of Alaska at Fairbanks, or the Alaska Department of Environmental Conservation laboratory in Valdez, so that they arrived within 12 hours of collection. MICROBIAL ANALYSES: A weighed portion of each sediment sample was mixed with sterile seawater to extract the microorganisms into the aqueous phase. The number of heterotrophic and oil-degrading microorganisms was determined with most-probable-number techniques as outlined in the attached protocol [Appendix SOP, Section 4]. Hydrocarbon oxidation potentials were determined with radiolabelled hexadecane and phenanthrene by trapping and quantifying
the amount of radiolabelled CO2 evolved [Appendix SOP, Section 4]. OIL ANALYSES: The gravimetric estimation of oil in the sediment samples was planned to be determined after extraction with methylene chloride and acetone, using the protocol of Appendix SOP, Section 5. As discussed in this report, this procedure neglected to filter the extracts adequately to remove silts and fine particles. An additional filtration step, using a Gelman A/E glass fiber filter, was added to section 5.1.6 of the protocol. Gas chromatographic analyses for alkanes, polyaromatic hydrocarbons and hopanes followed the established protocols attached [Sections 6 and 7 in Appendix SOP]. The concentrations of individual chemical species were corrected for surrogate recovery before the calculations reported in the Tables in this report. NEARSHORE WATER: Samples were collected into I-CHEM bottles and returned to the boat. Chlorophyll was assayed fluorometrically (excitation at 430 nm, emission at 670 nm) with a Turner 10-05 fluorometer. Reference samples were filtered and the filter extracted for quantitative standards. Total petroleum hydrocarbons were estimated after freon extraction by infra-red spectroscopy using the established protocol included as Section 8 of Appendix SOP. Results are reported as mg total petroleum hydrocarbon/liter of water with a detection limit of 0.20 mg/l. Samples for the assessment of ammonia and nitrate plus nitrite were filtered aboard ship, frozen and shipped to the University of New Hampshire for analysis as above. For toxicity assessments, the ammonia reported by the laboratory as μM concentrations of nitrogen have been converted to ppm concentrations of ammonia. For the combined nitrate plus nitrite results, μM concentrations were converted as if all nitrogen was in the nitrate form. The conversion to mg/l allows for direct comparison with published data on the toxicity of ammonia and nitrate to marine biota. TOXICITY TESTS: The protocol for toxicity testing is attached as Section 1 of Appendix D4. All samples were tested with juvenile (5 to 12 day old) mysids (Mysidopsis bahia), a shrimp-like crustacean that is a standard organism for marine toxicity tests. Mysids are the most sensitive of 7 marine invertebrate and fish species previously tested with Inipol EAP22, and thus were selected as a sensitive surrogate for indigenous biota. The testing protocol followed ASTM guidelines for conducting static, acute toxicity tests (96-hr) with crustaceans and fishes. Three groups of 10 animals (3 replicates) were tested for each of the test concentrations, which were 100% field sample, 50% field sample, 25% field sample, 12.5% field sample, 6.25% field sample, and a control using only the dilution water from the testing laboratory. This dilution schedule was selected to allow calculations of the degree of dilution necessary to determine non-toxic concentrations, based on tests conducted during the 1989 bioremediation research/demonstration program. BUTOXY-ETHANOL ANALYSES: Gauze samples were placed in I-CHEM jars, sealed with tape, stored in a cooler, and shipped to Exxon Research and Engineering laboratories for quantification. Samples were extracted with a solvent and quantified by GC/MS techniques, as outlined in Section 9 of Appendix SOP. Results are expressed per gram of oil in the sample. #### RESULTS AND DISCUSSION ### VISUAL OBSERVATIONS General Observations KN-132B had substantial oiling on upper intertidal boulders (20 to 50 cm), and fairly continuous surface oiling on the middle intertidal zone. By day 30 following the first application of fertilizer, the surface of the middle intertidal zone appeared substantially cleaner. This was true for both the fertilized and unfertilized portions of the beach, with subtly more improvement on the fertilized side. By the end of August the surfaces of the intertidal zone of both fertilized and unfertilized portions of the site were substantially cleaner than they had been in May, but the large angular cobbles and boulders near the high tide mark on the fertilized area still retained an obvious coating of oil. A time-lapse camera taking pictures once every six minutes detected no wildlife on the beach during the time when the wildlife deterrents were in place following the first application. The camera was not installed for the second application of fertilizer. KN-135B had substantial oiling on upper intertidal boulders (20 to 50 cm), and continuous surface and subsurface oiling on the middle intertidal zone. The surface of the fertilized portion of the beach was substantially cleaner 32 days after application, as shown in Figure 9. The field of view of this figure precludes a comparison of the fertilized and unfertilized portions of the beach, but there was widespread agreement amongst site visitors that this improvement was more extensive than that seen on the unfertilized portion. This difference was still apparent by the end of August, although the surface of both portions of the shoreline was substantially improved from their appearance in May. Two time-lapse cameras taking pictures once every six minutes detected no wildlife on the beach during the period when the wildlife deterrents were in place following the first application of fertilizer. The cameras were not in place for the second fertilizer application. KN-211E had clean surface cobble armor, but was heavily oiled below this. No visual change occurred during the monitoring period. ### Fertilizer Pellets Customblen pellets were consistently visible through the last day of sampling on the fertilized portions of all three beaches, although there was an apparent decrease in their abundance through time. Thirty days after the first application, none were observed on the unfertilized sections. Forty days after the second application of fertilizer, a few Customblen granules were found on the unfertilized portion of KN-132B, but none were found on the unfertilized portion of KN-211E at this time. No pellets were noted on the unfertilized portion of KN-135B following either the first or second application. As the time since application increased, the fertilizer pellets became less obvious. Nevertheless, careful inspection invariably found them. At KN-21lE, for example, pellets appeared sparse in the vicinity of the well heads as early as Day 8 (6/7/90), but pellets were noted during the sediment sampling on this and all other dates. It is likely that some pellets washed away from the more open areas surrounding the well heads, particularly on high energy sites such as KN-21lE. Nevertheless, pellets often were found # FIGURE 9 (Following Page) PHOTOGRAPH DEMONSTRATING LOSS OF SURFACE OIL AT KN-135B The top photograph was taken at 1424 on 21 May, 1990, 54 minutes before the application of fertilizer. The bottom photograph was taken at 1136 on 22 June, 1990, 764 hours and 18 minutes after the application of fertilizer. under the large cobble armor when it was removed for sediment sampling. Pellets were noted in high concentrations in the upper intertidal areas of KN-132B and KN-135B, particularly at KN-135B on Day 32. Fertilizer pellets appeared to remain on the surface of the beach; at no time was it noted that they were found at depth. As discussed above, pellets were frequently found beneath the larger cobbles on the beach. However, they did not appear to mix into the surface sediments subject to wave action on the beach. They were also noted adhering to the surfaces of large oiled cobble, particularly the sides of rocks with surface oiling. They apparently stuck to the overturned rocks which initially had soft oil on their lower surfaces. The Inipol EAP22 coating may have softened the oil, and further cemented the Customblen granules to the large cobble. ### Oil Penetration KN-132B was selected as a surface-oil only site since reconnaissance indicated oil penetration of 2 to 5 cm. For this reason, only surface samples of the top 0 to 5 cm were collected here. In fact, sample collection over the monitoring period showed occasional oil penetration of up to 10 cm. The degree of oiling varied a great deal at this site. In addition, it was noted that although the oiling appeared to be limited to the surface (0 to 5 cm), the actual surface of the fine-grained sediment was not always oiled. In a few cases, oiling began just below (2 cm) this surface. In other instances the overlying armor (larger pebbles and cobble) exhibited oiling, but there was little evidence of oiling in the sediment just below. KN-135B had both surface and subsurface oiling. Oil penetration appeared to be greater than 50 cm during the initial site reconnaissance. Excavations at the end of the monitoring program indicated penetration into the fine grained sediment to a depth of 43 to 47 cm, although the transition from oiled to clean sediments was not very distinct. Subsurface samples were collected from this site at depths ranging from 26 to 36 cm, with most collected in the 28 to 30 cm range. All of these samples were collected within the depth of oil penetration on the beach. KN-211E was selected as a high energy site with only subsurface oiling. The site has a large cobble armor that is uniform over the entire site. Reconnaissance showed oil penetration of approximately 40 cm from just below the armor. Sample collection at this site during the monitoring program revealed oil penetration to a maximum of 47 cm. Documented oil penetration actually varied from 20 to 47 cm, with sample collection occurring at depths of 17 to 35 cm. Oiling was usually apparent in the fine grained sediment immediately beneath the armor. The degree of oiling varied with depth, with some subsurface samples noted as having minimal, and others very heavy oiling. ### FERTILIZER NUTRIENTS IN THE INTERSTITIAL WATER Customblen contains ammonium nitrate and ammonium phosphate, while Inipol EAP22 contains urea and tri(laureth-4)phosphate, so the nutrients of
interest were phosphate, ammonium, nitrate and urea. Ammonium was assayed as ammonia, and the amount of urea was calculated as Kjeldahl Nitrogen minus the ammonia measured in the inorganic assays. Nitrate was measured with nitrite, and the latter was then estimated individually, and the nitrate level determined by subtraction. Since the nitrite levels were very low in the initial samples (always $<2~\mu\text{M}$), this additional assay was eliminated; the nitrate plus nitrite measurements presented here are essentially nitrate alone. The addition of fertilizer substantially increased the concentrations of available nitrogen in the interstitial water at all three sites. The data are presented in Tables 1 and 2 of Appendix Dl, and are summarized in Tables 3-5 of Appendix Dl. Microorganisms can utilize ammonium, nitrate, nitrite and urea as nitrogen sources; the total of these nutrients, and the contributions from the individual species, are plotted in Figures 10 to 12. Measurements after the first application indicated similar nutrient levels in samples from the surface and from the bottom of the wells, and in wells sealed except for the lowest 10 cm. Subsequent measurements were therefore made only on samples from the bottoms of the wells. On KN-132B the total nitrogenous nutrients peaked at 340 μ M on the second day after application of fertilizer in June (Figure 10). Approximately half of this was organic nitrogen, presumed to be urea from the Inipol EAP22; ammonia peaked at 103 μ M and nitrate at 79 μ M. Organic nitrogen dropped to zero for days 4 and 8, and then increased to $30-40~\mu\mathrm{M}$ on the entire site until late July. This may have been due to the substantial tilling that occurred on approximately Day 15 upstream of the monitoring area, which may have liberated significant amounts of organic material into the nearshore water. These may then have become incorporated into the sediment throughout the segment. The second application used the same amount of Inipol EAP22 as the first, but only half as much Customblen. Because of the difference in compositions and application rates of Inipol EAP22 and Customblen, total nitrogenous nutrients applied to the site were thus only 86% of those applied in the first application. Nevertheless, total nitrogenous nutrient levels on the fourth day after the second application were similar to those measured four days after the first application, particularly after subtracting the 41 μM background organic nitrogen found after the second application. Levels of nitrogenous nutrient on the fertilized portion of the beach remained substantially above those on the unfertilized portion of the beach throughout the monitoring period, indicating that the fertilizer application had an effect for at least 30 days. Figure 11 presents the nitrogenous nutrient data obtained from KN-135B. The total peaked at 383 μM on the second day after the first application, and declined to 50 μ M by approximately Day 20. The application of Inipol EAP22 was at the same rate as that used on KN-132B, but the application of Customblen was three fold greater. This is reflected in the relative contributions of the different nutrients to the total; on KN-135B the inorganic nutrients are the predominant species on Day 2, together accounting for 76% of the nitrogenous nutrients. The second application used one-sixth the initial rate of Customblen, and the same amount of Inipol EAP22. This was the same as that used for the second application on KN-132B, and the measured nutrients were very similar at the two sites. Customblen was applied to the entire site on August 1 at a rate equivalent to that used on the fertilized portion of the beach in the first application, and inorganic nutrient levels on the fertilized portion of the beach 8 days after this third application were very similar to those measured 8 days after the first. Nutrient levels did not increase to this extent on what previously had been the unfertilized portion of the beach, suggesting that the application was not as effective in the area of these sampling wells, but the application still raised the total available nitrogen to this portion of the site at least ten-fold. Figure 12 shows that nutrient levels in the interstitial water of KN-211E following the first application of fertilizer were only 12% of those measured on KN-135B, despite the application of similar rates of Customblen. This was most probably due to the rather densely packed beach matrix beneath the cobble armor at KN-211E, which was not disturbed during the pre-application preparation as had been done at KN-132B and KN-135B. Some evidence in favor of this notion is provided by the rather low dissolved oxygen levels in this beach (Figure 16). The much more effective second application of fertilizer, at the same application rate as the first, may perhaps be attributable to the increased permeability of the 18 disturbed areas in the vicinity of the sampling wells where sediment samples had been taken. Nevertheless, the first application of fertilizer did increase the levels of inorganic nutrients some 15-fold to at least Day 8, and following the second application this increase was some 44-fold on Day 3. A substantially increased level of nitrogenous nutrient on the fertilized portion of the beach was maintained for 45 days after this second application. The entire segment of KN-211E received an application of Inipol EAP22 on September 8, 1990, but due to weather and tidal constraints, water samples could not be drawn from the sampling wells until 3 days later. The results of the analyses of this interstitial water are reported in Appendix D1, Table 5. In line with the findings on KN-132B and KN-135B, no organic nitrogen attributable to urea was present at this time. Figures 10-12 indicate that the fertilizers behaved very much as predicted. Inipol EAP 22 provided a pulse of urea into the interstitial water for a few days after application, while Customblen provided a pulse of inorganic nutrients, followed by a continued slow release. Inipol EAP22 is formulated to provide nutrients at the oil:water interface by associating with the oil; as such it should release only a small portion of its nutrients into the interstitial water. While we did not measure nutrients immediately after application, the data suggest that this was indeed the case. Those nutrients that were released were distributed to at least 50 cm into the sediment. Customblen is formulated to provide a slow and continued release of nutrients; the data suggest that this was indeed achieved. The additional pulse of nutrient soon after application perhaps was due to damaged fertilizer beads, or beads with very thin coatings or pinholes. Analysis of Customblen beads collected 52 days after application indicated that they had lost approximately 80% of their nutrients by that time. Clearly the fertilizer applications were successful in providing substantial nitrogenous nutrients to at least 50 cm into the shoreline sediment at significantly elevated concentrations for at least 30 days. It is perhaps noteworthy that there was a substantial increase in soluble organic nitrogen in mid June to early July on both fertilized and unfertilized portions of both KN-132B and KN-211E. As will be discussed below, this organic nitrogen did not stimulate microbial activity, and its source and nature is obscure. As we discussed above, the effect on KN-132B may have been correlated with upstream tilling, but no activity of this nature occurred on KN-211E. FIGURE 10 NITROGENOUS NUTRIENTS IN INTERSTITIAL WATER KN-132B FIGURE 11 NITROGENOUS NUTRIENTS IN INTERSTITIAL WATER KN-135B FIGURE 12 NITROGENOUS NUTRIENTS IN INTERSTITIAL WATER KN-211E FIGURE 13 PHOSPHATE IN INTERSTITIAL WATER KN-132B, KN-135B AND KN-211E In contrast to the behavior of the nitrogenous components of the fertilizer, the levels of phosphate in the interstitial water only marginally increased after fertilizer application (Figure 13). This is not surprising, given the relative insolubility of phosphates in seawater due to the presence of divalent cations such as Ca²⁺. Inorganic phosphate in Customblen probably precipitates once it leaves the Customblen vesicle, since the analysis of pellets collected 52 days after application revealed a very similar N:P ratio to that of fresh material. Nevertheless, the phosphate would be available if microorganisms depleted the soluble phosphate in the interstitial water. The phosphate in Inipol EAP22 is present as tri(laureth-4) phosphate, an organic form that may be taken up by microorganisms before release of the phosphate moiety. DISSOLVED OXYGEN, SALINITY, TEMPERATURE AND pH IN INTERSTITIAL WATER Tables 6-8 of Appendix Dl list the measured values of dissolved oxygen, salinity and temperature for the three sites monitored in this program, and Tables 9-11 of Appendix Dl provide average values for each site. The data are presented graphically in Figures 14-16. The complexity of the physical and biological processes occurring in the beach suggest that conclusions based on measurements of dissolved oxygen, salinity and temperature should be tempered with caution. For example, dissolved oxygen concentrations are affected by temperature and salinity, which affect saturation capabilities. Furthermore, interstitial oxygen concentrations depend not only on the consumption of oxygen by biological processes, but also on the rate of replenishment of the interstitial water by aerated water from the Sound, from surface streams, and from other groundwater. An indication of the relative importance of freshwater sources can be seen in the dynamic range of the salinity measurements. KN-132B in particular, but all three sites to some extent, received substantial inputs of fresh water which diluted the salinity of the shoreline interstitial water. KN-132B has an obvious source, since the study site is at the mouth of a
salmon stream, but all three sites receive groundwater input, especially after rain. None of the sites showed evidence of being anaerobic before or after fertilizer application, and the measured levels were always adequate for substantial microbial respiration. Indeed, compared to water in the unfertilized portion of the beach, the dissolved oxygen on the fertilized parts of KN-132B and KN-135B were lower for several days after both the first and second application of fertilizer, suggestive of increased microbial activity following fertilizer application. This trend was not seen on KN-211E, although the dissolved oxygen measured in the fertilized portion of the beach did drop proportionally more than the drop on the unfertilized portion following each application. Taken together, the dissolved oxygen measurements provide strong, albeit indirect, evidence that microbial respiration is stimulated at depth by fertilizer application at the surface. FIGURE 14 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ## KN-132 MEAN VALUES ALL WELLS FIGURE 15 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ## **KN-135 MEAN VALUES ALL WELLS** - FERTILIZED - UNFERTILIZED FIGURE 16 DISSOLVED OXYGEN. SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ## **KN-211 MEAN VALUES ALL WELLS** 10- 12 The temperature of the interstitial water ranged from 8 to 18°C, with most values close to 15°C. As these measurements were taken during a falling tide, the range does not include potentially higher temperatures during low tides on warm, sunny days. The warmest site was KN-132B, followed by KN-211E and then KN-135B. Interpretation of the temperature changes is just as complex an issue as the salinity dynamics, and the two are interrelated. The temperatures observed in the field provide a justification for the use of 15°C as an appropriate laboratory temperature for mimicking field conditions. Measurement of the pH of the interstitial water was begun on the last scheduled day of sampling at each site before the second application of fertilizer, and continued as a monitoring parameter through the end of the program whenever interstitial water was analyzed. The data are presented in Table 12 of Appendix D1. There were no consistent differences between samples collected on fertilized and unfertilized portions of the sites. The values range from 6.9 to 7.9, in the range expected for marine systems with some freshwater input. Measurements of offshore water varied from pH 8.0 to 8.4, as expected for seawater, while the pH of a small stream discharging onto KN-211E was 7.3. There is no evidence that fertilizer additions or enhanced microbial activity changed the pH of interstitial water. #### MICROBIOLOGY The rationale of the fertilizer applications in Prince William Sound and the Gulf of Alaska was that they would stimulate the metabolism of the indigenous oil-degrading microorganisms. This would be reflected by changes in the rate of hydrocarbon degradation, and perhaps by an increase in the number of microbes. Microbial oil degradation activity was measured by radiorespirometry. The microbes were provided with a ^{14}C -radiolabelled hydrocarbon, and microbial metabolic activity was assessed by measuring the amount of ^{14}C -radiolabelled carbon dioxide that was produced. This is thus an assay of the mineralization of the substrate. Since the various components of crude oil are biodegraded at different rates by the microbial population, hexadecane was used as a representative paraffin, and phenanthrene was used as a representative polynuclear aromatic compound. Microbial populations were enumerated by standard Most Probable Number (MPN) techniques; these are repetitive serial dilutions of a sample until no organisms can be detected. The total aerobic heterotrophic microbial population was estimated using a marine broth as the growth substrate. To assess that portion of this population that could degrade hydrocarbons, the assay was repeated using weathered crude oil as the growth substrate. #### Mineralization of Hexadecane and Phenanthrene. The results of the biomineralization assays are presented in Appendix D2 Tables 1,2 and 3. As discussed in the Introduction, this program was designed to assess the efficacy of bioremediation by comparing treated areas that differed only in that one received fertilizer while the other did not. The mineralization data are presented in Figures 17-21 as mean percentage CO2 produced by the fertilized and unfertilized samples in the assay (i.e. mineralization activities). To allow comparison of the relative activities of hydrocarbon mineralization between fertilized and unfertilized areas, the data are also expressed as the ratio of activities on the fertilized versus unfertilized plots. Within two weeks of the initial application, at every site, both at the surface and at the subsurface, and with hexadecane and with phenanthrene, the mineralization activity in samples from the fertilized portion was substantially increased over that in samples from the unfertilized area. The figures show elevated activity ratios generally increasing with time, with high values sustained over several weeks. The following table (Table 2) provides an estimate of the approximate relative enhancement of mineralization activity achieved and sustained from two weeks following the initial fertilizer application until the last sample taken before the second application. TABLE 2 RELATIVE ENHANCEMENT OF HYDROCARBON BIOMINERALIZATION ACTIVITY FOLLOWING FIRST FERTILIZER APPLICATION | | Hexade | ecane | Phenanthrene | | | |---------|----------|------------|--------------|------------|--| | | Surface | Subsurface | Surface | Subsurface | | | KN-132B | 3-fold | • | 3-fold | - | | | KN-135B | 4-fold | 5-fold | 4.5-fold | 4-fold | | | KN-211E | 1.3-fold | 3-fold | 1.5-fold | 1.3-fold | | Reapplication of fertilizer to the test plots caused a further increase in the mineralization activities measured in sediments from the fertilized area on KN-135B, and sustained the activity in sediments from the fertilized areas of KN-132B and KN-211E. While the mineralization activities (as measured by %CO2 evolved) in sediments from the fertilized areas increased slightly, or remained at a steady level after reapplication of fertilizer, the activity ratios (F/U in Figures 17-21) at some sites showed a more marked change. This is illustrated in the following table (Table 3). TABLE 3 RELATIVE ENHANCEMENT OF HYDROCARBON BIOMINERALIZATION ACTIVITY FOLLOWING SECOND FERTILIZER APPLICATION | | Hexade | ecane | Phenanthrene | | | |---------|----------|------------|--------------|------------|--| | | Surface | Subsurface | Surface | Subsurface | | | KN-132B | 4.5-fold | • | · 2-fold | - | | | KN-135B | 10-fold | 15-fold | 4-fold | 4.5-fold | | | KN-211E | 4-fold | 5-fold | 10-fold | 3-fold | | Figures 18 and 19 include data from six days after the third application at KN-135B, which was of Customblen to the entire site, both the previously fertilized and previously unfertilized portions. While the sediments from the original fertilized plot showed little change in activity (i.e. %CO2 evolved), the previously unfertilized area exhibited increased mineralization activity. Thus, with the activities becoming more similar, the activity ratio (F/U) decreased. FIGURE 17 HEXADECANE AND PHENANTHRENE BIOMINERALIZATION ACTIVITY: KN-132B ### KN132B HEXADECANE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ### KN132B PHENANTHRENE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ### KN132B HEXADECANE MINERALIZATION SURFACE SEDIMENTS ## KN132B PHENANTHRENE MINERALIZATION SURFACE SEDIMENTS FIGURE 18 HEXADECANE BIOMINERALIZATION ACTIVITY: KN-135B ### KN135B HEXADECANE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ### KN135B HEXADECANE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SUBSURFACE ### KN135B HEXADECANE MINERALIZATION SURFACE SEDIMENTS ## KN135B HEXADECANE MINERALIZATION SUBSURFACE SEDIMENTS ## FIGURE 19 PHENANTHRENE BIOMINERALIZATION ACTIVITY: KN-135B ### KN135B PHENANTHRENE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ### KN135B PHENANTHRENE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SUBSURFACE ### KN135B PHENANTHRENE MINERALIZATION SURFACE SEDIMENTS ### KN135B PHENANTHRENE MINERALIZATION SUBSURFACE SEDIMENTS FIGURE 20 HEXADECANE BIOMINERALIZATION ACTIVITY; KN-211E ### KN211E HEXADECANE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ## KN211E HEXADECANE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SUBSURFACE ### KN211E HEXADECANE MINERALIZATION SURFACE SEDIMENTS ## KN211E HEXADECANE MINERALIZATION SUBSURFACE SEDIMENTS ## FIGURE 21 PHENANTHRENE BIOMINERALIZATION ACTIVITY: KN-211E ## KN211E PHENANTHRENE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SURFACE ### KN211E PHENANTHRENE MINERALIZATION RATIO FERTILIZED/UNFERTILIZED SUBSURFACE ### KN211E PHENANTHRENE MINERALIZATION SURFACE SEDIMENTS ## KN211E PHENANTHRENE MINERALIZATION SUBSURFACE SEDIMENTS A similar response was seen on KN-211E; reapplication of fertilizer to the fertilized area on Day 44 caused a marked increase in nitrogenous nutrients (Figure 12) and a marked increase in the microbial activity ratio (Figures 20 and 21). Application of fertilizer to the entire beach several weeks later decreased the difference in measured activities, resulting in a decrease in the activity ratios. The marked change in ratios of mineralization activity illustrates both the benefits and drawbacks of relying exclusively on the ratio of activities as the primary metric of success of bioremediation. The dramatic increases of 10-15 fold at some of the sites is as much due to decreased activity in sediments from the unfertilized areas as it is to increases in sediments from the fertilized areas. The decrease in mineralization activity on unfertilized areas might be due to increased predation on the microbial population, or perhaps to increased competition for
the low levels of indigenous nitrogenous nutrients, as the summer proceeds. In any case it highlights the complexity of the microbial ecosystem dynamics in the intertidal zone, and cautions of the danger of reading too much into the mineralization ratio. Nevertheless, it is clear that the application of fertilizer stimulates mineralization activity compared to that seen in the unfertilized area. The variability inherent in the data precludes the generation of a precise figure for the level of enhanced microbial mineralization over background levels. The elements of the ratio each have substantial associated variances, giving the ratio a high standard error. Averaging all samples from a given time and treatment, as presented in Figures 17-21, yields the high standard deviations expected from the heterogeneous environment samples. An alternative approach is presented in Figures 22-24, which show the fraction of all samples collected from the fertilized and unfertilized portions of each site which exhibit a certain amount of mineralization activity. Thus, even though the range of activities for a given site and treatment may be large, the data are still comparable among sediments from fertilized and unfertilized areas without the attendant uncertainties generated by high standard deviations. Hexadecane mineralization activities were generally higher than those for phenanthrene, and this fact determined the threshold values for mineralization used in the figures. Table 4 in Appendix D2 contains the data on the fractions of all samples showing greater than 2%, 5%, 10% and 15% mineralization, the percentages used varying with the hydrocarbon substrate. Figure 22 shows that very few of the samples collected from the unfertilized portion of KN-132B showed the degree of mineralization activity exhibited on the fertilized portion of the site. Overall, 40% of all samples collected following the first fertilizer application showed >10% hexadecane mineralization, compared with only 2% from the unfertilized area. For phenanthrene mineralization activity, 29% of samples from the fertilized area showed substantial activity compared to 1% from the unfertilized area. Figures 23 and 24 show similar data for KN-135B and KN-211E; by two weeks into the study, the fertilized area samples showed much more hydrocarbon biodegradation activity than those from the unfertilized areas. Overall, 65% of surface and 52% of subsurface samples from the fertilized portion of KN-135B showed high hexadecane mineralization activities, compared to 11% and 8% for corresponding FIGURE 22 FRACTION OF SAMPLES EXHIBITING HIGH RATES OF BIOMINERALIZATION: KN-132B # KN132B HEXADECANE MINERALIZATION SURFACE SAMPLES GREATER THAN 10% CO2 # KN132B PHENANTHRENE MINERALIZATION SURFACE SAMPLES GREATER THAN 5% CO2 ## FIGURE 23 FRACTION OF SAMPLES EXHIBITING HIGH RATES OF BIOMINERALIZATION; KN-135B ## KN135B HEXADECANE MINERALIZATION SUBSURFACE SAMPLES GREATER THAN 10% CO2 KN135B PHENANTHRENE MINERALIZATION SURFACE SAMPLES GREATER THAN 5% CO2 ## KN135B PHENANTHRENE MINERALIZATION SUBSURFACE SAMPLES GREATER THAN 5% CO2 ## FIGURE 24 FRACTION OF SAMPLES EXHIBITING HIGH RATES OF BIOMINERALIZATION; KN-211E KN211E HEXADECANE MINERALIZATION SURFACE SAMPLES GREATER THAN 10% CO2 ## KN211E HEXADECANE MINERALIZATION SUBSURFACE SAMPLES GREATER THAN 10% CO2 KN211E PHENANTHRENE MINERALIZATION SURFACE SAMPLES GREATER THAN 5% CO2 KN211E PHENANTHRENE MINERALIZATION SUBSURFACE SAMPLES GREATER THAN 5% CO2 samples from the unfertilized portion. While 29% of the subsurface samples from the fertilized portion of KN-211E showed >10% hexadecane mineralization in our assays, none of those collected from the subsurface of the unfertilized area showed such high activity. #### Enumeration of Microbes The most probable numbers (MPN) of heterotrophic and oil-degrading microbes are presented in Appendix D2, Table 5. As with the mineralization assay, the numbers generated from the enumeration assay reflect the variability of the environment sampled. Since the range of numbers from a given site and treatment is so large, the median of all MPN values generated for each set of samples is presented in Figures 25-27. The initial populations of heterotrophic and oil-degrading microorganisms within the two areas of each site were similar, and both populations changed by approximately an order of magnitude during the study, which is close to the resolution of the technique. Of course the size of the microbial populations depends on more than nutrient levels, and comparisons between sites are complicated by the lack of knowledge of the abundance of predatory organisms that consume the bacteria, and are themselves consumed by ever higher trophic levels. Nevertheless, there is a general trend that the fertilized portions of the sites had more oil-degrading and heterotrophic bacteria than the unfertilized portions, especially on the surface at KN-132B and in the subsurface of KN-135B. Little change was seen on KN-211E. #### OIL ANALYSES #### Gravimetric Analyses Oil was extracted from the sediments using a methylene chloride: acetone mix as outlined in Section 5 of Appendix SOP. An unexpected problem arose in subsequent analyses, however, when it was discovered that silt, probably glacial flour in the micron range, was being entrained in the solvents, and was contributing to gravimetrically determined oil weights. An additional filtration step, using a glass fiber filter with a 99.98% efficiency of filtering 0.3 $\mu \rm m$ particles, was therefore introduced. Table 4 demonstrates the effect of this additional filtration for the Day 0 samples from KN-132B. Control experiments with standard oils indicated that the filtration did not remove any oil components. The different samples had different amounts of filterable material; in this case an average of 45% of the unfiltered weight being sediment. Results of similar analyses on sediments from KN-135B and KN-21lE are presented in Section 1 of Appendix D3. Filtration was included in the processing of all the samples discussed below. Tables 5, 6 and 7 list the Total Extractable Hydrocarbon concentrations in individual sediment samples from KN-132B, KN-135B and KN-21lE for initial sampling dates (Day 0) and for dates before (Day 29-32) and after (Day 60 and beyond) the second fertilizer application. Neither the means nor the medians demonstrate a clear trend with time, and indeed the standard deviations are so large that they indicate that the data do not follow a normal distribution, and must be analyzed using different statistical approaches. #### FIGURE 25 BACTERIAL POPULATIONS ON KN-132B #### KN132B OIL DEGRADERS SURFACE SEDIMENTS #### KN132B HETEROTROPHS SURFACE SEDIMENTS -SECOND FERTILIZER APPLICATION DAY 40 ## FIGURE 26 BACTERIAL POPULATIONS ON KN-135B #### KN135B OIL DEGRADERS SUBSURFACE SEDIMENTS #### KN135B HETEROTROPHS SURFACE SEDIMENTS #### KN135B HETEROTROPHS SUBSURFACE SEDIMENTS ## FIGURE 27 BACTERIAL POPULATIONS ON KN-211E #### KN211E OIL DEGRADERS SUBSURFACE SEDIMENTS #### KN211E HETEROTROPHS SURFACE SEDIMENTS #### KN211E HETEROTROPHS SUBSURFACE SEDIMENTS TABLE 4 TOTAL EXTRACTABLE HYDROCARBON IN OILED SEDIMENTS KN-132B, DAY 0 | Sample | Unfiltered | Filtered | Ratio | |--------------------|------------|----------|-------| | As | 14380 | 8762 | 1.6 | | As | 11320 | 3383 | 3.4 | | As | 720 | 399 | 1.8 | | Bs | 6910 | 3747 | 1.8 | | Bs | 3710 | 1917 | 1.9 | | Bs | 7650 | 2322 | 3.3 | | Cs | 2180 | 1492 | 1.5 | | Cs | 13140 | 1685 | 7.8 | | Cs | 1880 | 1345 | 1.4 | | Ds | 19480 | 16554 | 1.2 | | Ds | 23910 | 15982 | 1.5 | | Ds | 24550 | 14086 | 1.7 | | Es | 12080 | 2742 | 4.4 | | Es | 5250 | 3838 | 1.4 | | Es | 7550 | 4747 | 1.6 | | Fs | 1210 | 1280 | 0.9 | | Fs | 2650 | 2073 | 1.3 | | Fs | 1660 | 1436 | 1.2 | | | | | | | mea | n 8900 | 4880 | 1.8 | | standard deviation | n 7690 | 5260 | | | standard erro | r 1810 | 1240 | | | | | | | An analysis of the data using D'Agostino's D parameter suggests that in fact the weights of Total Extractable Hydrocarbon in the sediment sample more closely follow a lognormal distribution. In other words, when the data are transformed by taking their logarithms, the distribution of these logarithms more closely follows a normal distribution. This is shown graphically in Section 2 of Appendix D3. Assuming that the data do indeed follow a lognormal distribution allows the calculation of the confidence intervals around the mean values of Tables 5-7, and these are shown in Table 8. The range of oil loadings measured on each beach is so great that it is almost meaningless to talk of an "average" loading in quantitative terms. For example, on Day 0 at KN-132B the mean loading on the unfertilized portion of the beach is 2.1 g oil / Kg sediment dry weight, but the 95% confidence limit ranges from 0.3 to 12.9 g. Similarly broad ranges are seen on the other sites. An alternative view of such wide ranges within the 95% confidence limits is that there is less than 50% confidence that the true mean value lies within a factor of two, in either direction, of the measured mean. Taken together, Tables 5-8 reveal that it is essentially impossible to estimate the amount of oil in a section of shoreline with the necessary sensitivity that biodegradation could be quantitatively assessed in three months. As discussed in the Introduction, much effort went into finding the sites for this monitoring program, and seasoned observers from Exxon, ADEC, EPA, NOAA and Battelle Ocean Sciences all thought that the amount of oil in the sediments appeared homogeneous and similar in the two areas per site. Nevertheless, it is apparent that at least an order of magnitude more samples would have been needed in our data set to have reasonable confidence that the average of all the samples from a site was close to the true value, and at least an order of magnitude more if the oil residues at individual sampling times were to be compared with confidence.
Fortunately, the chemical analysis of oil from sediment samples provides an alternative approach for quantifying the extent of biodegradation. #### Analysis of the Oil Composition Before chromatographic analysis of the extracted oil, the three samples taken around each well were pooled, and passed through an alumina column to remove polar components. The samples were then analyzed by flame ionization detection gas chromatography (GCFID), which resolves the paraffinic components [Section 6 of Appendix SOP], and gas chromatography/mass spectrometry (GC/MS) with selected ion monitoring (SIM) to resolve aromatic and multi-ring compounds [Section 7 of Appendix SOP]. The latter analysis was extended to include the detection of hopanes (m/e 191), since these are proving helpful in providing a quantitative assessment of biodegradation. The data are collected in Appendix D3, Section 4. Many processes contribute to the disappearance of oil from a shoreline, including evaporation, dissolution, physical removal while adsorbed to particles, and biodegradation. The focus of this monitoring program was to assess the contribution from biodegradation, and this can be quantified from the chemistry of the oil. Crude oil contains innumerable molecular species, which vary in their ease of biodegradation. For example, it is well known that TABLE 5 TOTAL EXTRACTABLE HYDROCARBON IN SEDIMENTS FROM KN-132B The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | DAY 0 | DAY 29 | DAY 60 | DAY 95 | | DAY 0 | DAY 29 | DAY 60 | DAY 95 | |--------------------|-------|--------|--------|--------|----------------------|-------|--------|--------|--------| | | mg/Kg | mg/Kg | mg/Kg | mg/Kg | • | mg/Kg | mg/Kg | mg/Kg | mg/Kg | | FERTILIZED-SURFACE | | | | | UNFERTILIZED-SURFACE | | | | | | | 399 | 1378 | 973 | 831 | | 1280 | 903 | 1011 | 388 | | | 1345 | 1444 | 1204 | 1330 | | 1436 | 1297 | 1062 | 442 | | | 1492 | 2269 | 1370 | 1511 | | 2073 | 1511 | 1325 | 959 | | | 1685 | 6783 | 1438 | 1579 | | 2742 | 3919 | 2061 | 1048 | | | 1917 | 7451 | 1837 | 1650 | | 3838 | 5198 | 3239 | 2128 | | | 2322 | 7946 | 2738 | 2483 | | 4747 | 5230 | 4669 | 2375 | | | 3383 | 11203 | 5948 | 12051 | | 14086 | 5757 | 11758 | 5205 | | | 3747 | 16620 | 9271 | 14519 | | 15982 | 12384 | 12506 | 10779 | | | 8762 | 20026 | 22844 | 21269 | | 16554 | 18794 | 13056 | 14909 | | MEAN | 2784 | 8347 | 5291 | 6358 | HEAN | 6971 | 6110 | 5632 | 4248 | | SD | 2324 | 6232 | 6736 | 7155 | SO | 6176 | 5560 | 4945 | 4895 | | SE | 775 | 2077 | 2245 | 2385 | SE | 2059 | 1853 | 1648 | 1632 | | MEDIAN - | 1917 | 7946 | 1837 | 1650 | MEDIAN | 3838 | 5198 | 3239 | 2128 | TABLE 6 TOTAL EXTRACTABLE HYDROCARBON IN SEDIMENTS FROM KN-135B The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | DAY 0 | DAY 32 | DAY 70 | DAY 109 | | DAY 0 | DAY 32 | DAY 70 | DAY 109 | | |-----------------------|--------|--------|--------|---------|-----------------------|-------|--------|--------|-----------|--| | | mg/Kg | mg/Kg | mg/Kg | mg/Kg | | mg/Kg | mg/Kg | mg/Kg | mg/Kg | | | FERTILIZED-SURFACE | | | | | UNFERTILIZED-SURFACE | | | | • • | | | | 1373 | 1173 | 1137 | 873 | | 1394 | 2944 | 2188 | 1807 | | | | 1661 | 1567 | 1885 | 1191 | | 3274 | 3566 | 2501 | 3502 | | | | 1814 | 2680 | 2428 | 1819 | | 3389 | 5426 | 8545 | 5135 | | | | 2242 | 2688 | 2455 | 5678 | | 4126 | 10158 | 9371 | 5330 | | | | 2471 | 3097 | 2510 | 6451 | | 4516 | 10583 | 9623 | 6928 | | | | 5501 | 4090 | 5999 | 7545 | | 6018 | 11850 | 15012 | 9524 | | | | 8454 | 9542 | 9105 | 9657 | | 7678 | 14570 | 16168 | 12159 | | | | 8958 | 20917 | 10820 | 15372 | | 21219 | 19233 | 16864 | 21297 | | | • | 20386 | 60799 | 12223 | 18484 | | 27812 | 23753 | 24531 | 24697 | | | • | | | | | | | | | | | | MEAN | 5873 | 11839 | 5396 | 7452 | MEAN | 8825 | 11343 | 11645 | 10042 | | | SD | 5833 | 18282 | 4033 | 5847 | SD | 8689 | 6624 | 6807 | 7548 | | | SE | 1944 | 6094 | 1344 | 1949 | SE | 2896 | 2208 | 2269 | 2516 | | | MEDIAN | . 2471 | 3097 | 2510 | 6451 | HEDTAN | 4516 | 10583 | 9623 | 6928 | | | FERTILIZED-SUBSURFACE | | | | | UNFERTILIZED-SUBSURFA | CF | | | | | | | 555 | 940 | 375 | 113 | | 1418 | 340 | 133 | 652 | | | | 950 | 1069 | 750 | 495 | | 2654 | 1012 | 714 | 2169 | | | | 2755 | 1477 | 767 | 503 | | 3051 | 1775 | 896 | 2333 | | | | 3877 | 1561 | 1310 | 571 | | 6404 | 1938 | 1383 | 2454 | | | | 4840 | 1798 | 1737 | 904 | | 8793 | 2157 | 1502 | 4082 | | | | 5766 | 3523 | 2759 | 966 | | 8838 | 3154 | 1740 | 4118 | | | | 7135 | 5538 | 5378 | 1038 | | 9448 | 3306 | 7661 | 4158 | | | | 10410 | 10863 | 5599 | 2065 | | 10601 | 11708 | 15521 | 9188 | | | | 10440 | 14611 | 8375 | 2566 | | 29162 | 26456 | 24490 | 17274 | | | | | | | | | | | | | | | MEAN | 5192 | 4598 | 3006 | 1025 | MEAN | 8930 | 5761 | 6004 | 5159 | | | 20 | 3435 | 4645 | 2640 | 750 | SD | 7812 | 7972 | 8051 | 4840 | | | SE | 1145 | 1548 | 880 | 250 | SE | 2604 | 2657 | 2684 | 1613 | | | MEDIAN | 4840 | 1798 | 1737 | 904 | MEDIAN | 8793 | 2157 | 1502 | 4082 | | | | | | | | | | | | 4 0 0 0 0 | | TABLE 7 TOTAL EXTRACTABLE HYDROCARBON IN SEDIMENTS FROM KN-211E The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | DAY 0 | DAY 31 | DAY 61 | DAY 97 | DAY | 0 DAY 31 | DAY 61 | DAY 97 | |-----------------------|-------|--------|------------------|---------------|-------------------------|----------|--------|--------| | | mg/Kg | mg/Kg | mg/Kg | mg/Kg | mg/K | g mg/Kg | mg/Kg | mg/Kg | | FERTILIZED-SURFACE | | | | | UNFERTILIZED-SURFACE | | | | | | 114 | 210 | 13 | 179 | 24 | 9 220 | 204 | 322 | | | 115 | 243 | 169 | 205 | 85 | 8 2030 | 228 | 401 | | | 148 | 282 | 367 | 288 | 87 | 1 3407 | 528 | 1033 | | | 156 | 368 | 469 | 498 | 213 | 6 3418 | 793 | 2162 | | | 169 | 591 | 733 | 788 | 252 | 8 4216 | 1013 | 2688 | | | 297 | 1154 | 1052 | 1198 | 472 | 7 5706 | 1363 | 4268 | | | 317 | 9351 | 2049 | 2386 | 504 | 9 6224 | 2064 | 7954 | | | 380 | 11183 | 2985 | 4331 | 989 | 3 9619 | 3708 | 11736 | | | 413 | 19234 | 10057 | 8022 | 1295 | 3 19813 | 5835 | 12301 | | MEAN | 234 | 4735 | 1988 | 1988 | MEAN 436 | 3 6073 | 1748 | 4763 | | SO | 111 | 6521 | 2995 | 2487 | SD 414 | | 1777 | 4467 | | SE | 37 | 2174 | 998 | 829 | SE 138 | | 592 | 1489 | | 36 | 3, | 2114 | 770 | OL7 | 3.0 | E IGES | 372 | 1407 | | MEDIAN | 169 | 591 | 733 _. | 788 | MEDIAN 252 | 8 4216 | . 1013 | 2688 | | FERTILIZED-SUBSURFACE | | | | | UNFERTILIZED-SUBSURFACE | | | | | | 141 | 228 | 165 | 47 | 410 | 1 6335 | 9218 | 6693 | | | 1204 | 303 | 1359 | 401 | 443 | 6 7097 | 9611 | 12042 | | | 4436 | 2378 | 3477 | 3374 | 830 | 4 14249 | 14553 | 13158 | | | 10753 | 6442 | 7916 | 11982 | 1687 | 9 16196 | 14992 | 15193 | | | 17614 | 12353 | 10792 | 15439 | 1747 | 6 18013 | 16017 | 15309 | | | 19233 | 15879 | 10811 | 1987 8 | 1761 | 4 19177 | 16385 | 16821 | | | 19443 | 18808 | 17486 | 20735 | 1944 | 3 21015 | 16578 | 17968 | | | 19861 | 20546 | 18738 | 21055 | 2000 | 0 21028 | 17256 | 21220 | | | 21262 | 26854 | 23997 | 22099 | 2155 | 5 23685 | 18525 | 23895 | | MEAN | 12661 | 11532 | 10527 | 12779 | MEAN 1442 | 3 16311 | 14326 | 14801 | | SD | 8157 | 9141 | 7784 | 8696 | SD 646 | | 2949 | 4059 | | SE | 2719 | 3047 | 2595 | 2899 | SE 215 | | 983 | 1353 | | MEDIAN | 17614 | 12353 | 10792 | 15439 | MEDIAN 1747 | 6 18013 | 16017 | 15309 | TABLE 8 MEANS AND CONFIDENCE INTERVALS FOR THE TOTAL EXTRACTABLE HYDROCARBON DATA The data are in mg/Kg sediment dry weight | | | | | 25 | | |---------------------------------------|--------------|-----|-------|----------------|--------| | vov. 100p vv. 11 | C D | ^ | | 95% Confidence | | | KN-132B Wells A-C, sur | | | 2060 | 328 | 12927 | | | Day | | 5740 | 2217 | 14858 | | | - | 60 | 2902 | 1047 | 8047 | | | Day | 95 | 3248 | 1034 | 10199 | | KN-132B Wells D-F, sur | cface Day | 0 | 4467 | 1704 | 11716 | | | Day | 29 | 3984 | 1518 | 10453 | | | Day | 60 | 3530 | 1291 | 9649 | | | Day | 95 | 2080 | 605 | 7154 | | KN-135B Wells A-C, sur | rface Day | 0 | 3870 | 1596 | 9384 | | | | 32 | 5023 | 1496 | 16861 | | | | 70 | 3945 | 1752 | 8884 | | | | 109 | 4831 | 1704 | 13695 | | KN-135B Wells D-F, sur | rface Day | 0 | 5836 | 2409 | 14139 | | | | 32 | 9223 | 4649 | 18298 | | | | 70 | 9089 | 4115 | 20077 | | | | 109 | 7478 | 3381 | 16540 | | | · | | , | 3301 | 103 10 | | KN-135B Wells A-C, sub | - | 0 | 3674 | 1399 | 9644 | | | | 32 | 2862 | 1105 | 7412 | | | | 70 | 1912 | 701 | 5214 | | | Day | 109 | 752 | 317 | 1786 | | KN-135B Wells D-F, sub | osurface Day | 0 | 6346 | 2712 | 14850 | | | Day | 32 | 2724 | 406 | 4502 | | | Day | 70 | 2128 | 453 | 9995 | | | Day | 109 | 3551 | 1429 | 8525 | | KN-211E Wells A-C, sur | face Dav | 0 | 209 | 129 | 338 | | · · · · · · · · · · · · · · · · · · · | | 31 | 1246 | 224 | 6926 | | | | 61 | 642 | 108 | 3825 | | | | 97 | 906 | 252 | 3260 | | KN-211E Wells D-F, sur | cface Day | 0 | 2441 | 731 | 8153 | | Tay ZIII WOIIS S I, Sai | Day | | 3755 | 1153 | 12226 | | | | 61 | 1021 | 344 | 3024 | | | | 97 | 2499 | 690 | 9053 | | KN-211E Wells A-C, sub | osurface Day | 0 | 6561 | 1284 | 33518 | | M-ZIIE WEIIS A-O, SUL | | 31 | 5055 | 902 | 28334 | | | Day
Day | | 5629 | 1245 | 25456 | | | | 97 | 5081 | 642 | 40237 | | | Day | 71 | 2001 | U42 | +0237 | | KN-211E Wells D-F, sub | | | 12328 | 6600 | 23029 | | | | | 14959 | 9516 | 23517 | | | | | 13971 | 11058 | 17651 | | | Day | 97 | 14122 | 10186 | 19580 | the straight chain alkanes are more readily metabolized by microbes than their branched chain analogs, and this is the basis of the well known n-octadecane (C18): phytane ratio. The C18: phytane ratios of samples collected from the three monitoring sites are presented in Tables 9-11. All of the values are substantially lower than the values determined for Prudhoe Bay crude oil that has been artificially weathered by evaporating 30% by weight. Evaporation of crude oil following an oil spill is generally
assumed to remove 30% of the initial weight, so 30% evaporated oil is used as an approximate indicator of the composition of the oil when it arrived at the shoreline. This evaporation is done at reduced pressure at 521 F; the oil is thus called 521 oil. As the indigenous microbes consume the more readily degradable straight chain paraffins, the C18: phytane ratio declines. We can thus conclude that all the oil samples listed in Tables 9-11 show evidence of substantial biodegradation, with surface samples being more degraded than those collected from the subsurface. Furthermore, in general the samples collected later in the program were more biodegraded than those collected earlier. #### The Rate of Biodegradation Unfortunately the ratios discussed above do not provide information that can lead to a quantitative assessment of how much oil has been degraded. Changes in the Cl8: phytane ratio are dependent on the amount of oil present in a sample, for biodegradation mainly occurs at the oil-water interface. Thick layers of oil in the sediment tend to mask biodegradation in the surface layer most available to the microbes. Nevertheless, if phytane was essentially non-biodegradable, the amount of oil consumed could be determined by reference to the amount of phytane in the sample and in a reference oil. Phytane is, however, biodegraded quite readily. What is needed is a less degradable internal marker than phytane, and there is reason to believe that hopanes fulfill this role. Hopanes are pentacyclic molecules initially in the bacteria that were the original source of the crude oil. Diagenesis of the kerogen (conversion of the oil precursor to oil) removes some of the substituents on the bacterial molecules, and the major hopane found in oil is $17\alpha,21\beta$ -hopane; this is shown in Figure 23. ## FIGURE 28 HOPANE TABLE 9 C18: PHYTANE RATIOS OF OIL FROM KN-132B | WELL | 0 | DAY
29 | 60 | 95 | |------|------|-----------|------|------| | As | 0.54 | 0.57 | 0.74 | 0.59 | | Bs | 0.35 | 0.43 | NA | 0.17 | | Cs | 0.53 | 0.49 | 0.71 | 0.71 | | Ds | 0.60 | 0.41 | NA | 0.57 | | Es | 0.30 | 0.39 | NA | 0.26 | | Fs | 0.33 | 0.33 | 0.33 | NA | Prudhoe Bay Crude 2.16 30% weathered Prudhoe Bay Crude 1.83 Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. Only surface (s) samples were collected at this site. NA indicates Not Appropriate, in that one or both of the analytes was non-detectable. TABLE 10 C18: PHYTANE RATIOS OF OIL FROM KN-135B | WELL | 0 | DAY
32 | 70 | 109 | |------|------|-----------|------|------| | WELL | · · | 32 | 70 | 109 | | As | 1.05 | 0.32 | 0.29 | NA | | Ass | 0.93 | 0.48 | 0.34 | 0.31 | | Bs | 0.34 | 0.54 | 0.42 | 0.22 | | Bss | 1.23 | 1.09 | 0.49 | 0.27 | | Cs | 0.55 | 1.34 | 0.42 | 0.28 | | Css | 0.75 | 1.10 | 0.52 | NA | | Ds | 1.09 | 0.88 | 0.89 | NA | | Dss | 1.10 | 1.39 | 0.94 | 1.10 | | Es | 1.00 | 0.76 | 0.79 | 0.34 | | Ess | 1.50 | 1.40 | 1.37 | 0.85 | | Fs | 0.45 | 0.81 | 0.65 | NA | | Fss | 1.30 | 1.14 | 1.20 | 1.09 | | | | | | | Prudhoe Bay Crude 2.16 30% weathered Prudhoe Bay Crude 1.83 Well designations include s for surface and ss for subsurface. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion, although the entire beach was fertilized just after Day 70. NA indicates Not Appropriate, in that one or both of the analytes was non-detectable. TABLE 11 C18: PHYTANE RATIOS OF OIL FROM KN-211E | WELL | 0 | DAY
31 | 61 | 98 | |------|------|-----------|------|------| | As | 0.23 | 0.33 | NA | NA | | Ass | 1.35 | 0.93 | 0.28 | 0.82 | | Bs | 0.91 | 0.76 | 0.26 | 0.45 | | Bss | 1.42 | 1.34 | 1.26 | 1.33 | | Cs | 0.60 | 0.35 | 0.95 | 0.28 | | Css | 1.23 | 1.11 | 1.32 | 0.92 | | Ds | 0.60 | 0.57 | 0.23 | 0.80 | | Dss | 1.28 | 1.45 | 1.22 | 1.41 | | Es | 0.39 | 0.09 | NA | 0.29 | | Ess | 1.59 | 1.36 | 1.14 | 1.36 | | Fs | 1.18 | 0.70 | NA | NA | | Fss | 1.47 | 1.44 | 1.31 | 1.37 | Prudhoe Bay Crude 2.16 30% weathered Prudhoe Bay Crude 1.83 Well designations include s for surface and ss for subsurface. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. NA indicates Not Appropriate, in that one or both of the analytes was non-detectable. Hopane analyses were not a routine part of oil analyses, and the analytical laboratories at Battelle Ocean Sciences and at Exxon Research and Engineering undertook a substantial research project to develop a quantitative assay for this compound. As illustrated in Appendix D3, Section 5, the quantitative method is now reliable. If indeed hopane is an almost completely non-degradable component in crude oil, knowing the amount of hopane in a sample allows a calculation of how much oil was originally in that sample, and thus how much has been biodegraded. As discussed above, it is generally assumed that approximately 30% of the volume of oil spilled from the tanker evaporated before the oil arrived at the shoreline. Oil that has been evaporated to lose 30% of its initial weight (521 oil) is therefore used as a standard in these calculations. ## ILLUSTRATIVE CALCULATION BASED ON HOPANE Gravimetric weight 521 oil has A mg hopane / Kg oil Sample has a mg hopane and B Kg of oil / Kg sediment dry weight Assuming that hopane is indeed a truly conserved species, the sample originally had a/A Kg oil / Kg sediment dry weight Therefore the amount biodegraded = (a/A) - B Kg oil / Kg sediment Tables 12-14 present the results of such calculations for the samples collected from the three monitoring sites. The estimate for any one batch of samples has a large uncertainty, but almost all the samples show evidence of substantial biodegradation. Note that the standard deviations of the estimates in Tables 12-14 are substantially smaller than the standard deviations reported in Tables 5-7 for the amount of oil in the sediment. This provides evidence that the biodegradation of oil is nutrient, not carbon limited, and so the amount of oil biodegraded is independent of the oil load above a threshold of several g oil / Kg sediment. Although the range of values in Tables 12-14 precludes a comparison of fertilized with unfertilized areas on the timescale of this program, they can provide an overall estimate of the rate of biodegradation at each site. To arrive at this estimate, we have first eliminated all those samples with <2g oil/ Kg sediment, since initial inspection indicates that the rate of biodegradation is probably more than 2 g oil / Kg sediment per year, so that averaging samples with less oil than this will result in an underestimate of the actual rate. Averaging all of the data from all the batches (53 surface and 40 subsurface) provides an estimate (Table 15) of Approximately 2.2 g oil biodegraded / Kg sediment / year at the surface Approximately 1.1 g oil biodegraded / Kg sediment / year in the subsurface Note that the amount of oil lost in any process which removes hopane, such as physical removal, will not be included in this estimate, and that if the oil was initially less weathered than 521 oil, these values will be an underestimate. They will also be an underestimate if hopane is being biodegraded at an appreciable rate, or if the physical properties of well weathered oil allow easier removal by tidal action. An alternative approach to estimating the amount of oil that has been biodegraded is to determine the amount of each individual chemical species that has been degraded. Again this relies on the assumption that hopane acts as an internal marker that is not biodegraded, but it is independent of the gravimetric estimate used above since all the quantitative estimates are obtained by Gas Chromatography. ## ILLUSTRATIVE CALCULATION BASED ON HOPANE Individual chemical components 521 oil has A mg hopane / Kg oil, B mg Cl8, C mg phytane, etc. Sample has a mg hopane / Kg sediment, b mg Cl8, c mg phytane, etc. Assuming that hopane is indeed a truly conserved species, the sample originally had a/A Kg oil / Kg sediment dry weight and (a/A)B mg Cl8 / Kg sediment dry weight, (a/A)C mg phytane, etc. Therefore the amount consumed: of C18 = [(a/A)B] - b mg / Kg sediment phytane = [(a/A)C] - c mg / Kg sediment etc. The Percent Depleted of C18 = $\{[(a/A)B] - b\} / (a/A)B\} * 100%$ phytane = $\{[(a/A)C] - c\} / (a/A)B\} * 100%$ etc. ----- Tables 15-17 illustrate the results of such calculations for n-octadecane (C18), phytane, phenanthrene, chrysenes with two carbon substituents (C-2 chrysenes), total alkanes (C10 to C34 plus pristane and phytane) and total resolvable hydrocarbon (Total HC). These components were chosen as representatives of a readily degradable alkane (n-octadecane), a less readily degradable alkane (phytane), a soluble and biodegradable aromatic species (phenanthrene), insoluble and relatively slowly degradable aromatic compounds (the C-2 chrysenes), the bulk of the most degradable fraction of the oil (the total alkanes, which make up approximately 4.3% of 521 oil), and the maximal amount detectable with GC chromatography (Total HC, which is approximately 56% of 521 oil). The tables also include the percent depleted based on the gravimetric analyses of Tables 12-14. Tables 16-18 demonstrate how effective biodegradation has been at reducing oil contamination on the beaches of Prince William Sound. These tables are of the percent depletion with respect to 521 oil, so a value of 90% indicates that 90% of the component that landed on the beach has disappeared. For n-octadecane, phytane and the C-2 chrysenes, this disappearance is most likely to be exclusively by biodegradation, since they are very insoluble in seawater. The majority of the surface samples are already more than 50% depleted in n-octadecane and total alkanes, and the depletion of the branched, and hence less readily degraded, phytane is not far behind. Typically subsurface samples show only a third to a half as much depletion of these components,
in line with the difference in rates shown in Table 15, but still substantial biodegradation. An obvious corollary is that the C18: phytane ratios of Tables 9-11 are a substantial under-reflection of the amount of biodegradation that has taken place. The polyaromatic compounds have also undergone substantial biodegradation. Phenanthrene is both biodegradable and soluble, and almost all the samples are >90% depleted in this compound. The C-2 chrysenes are insoluble, so their disappearance may be attributed to biodegradation. The C-2 chrysenes were chosen for this analysis because they are present in high enough concentrations that their analysis is reliable, and they are widely reputed to be amongst the most non-degradable polyaromatic hydrocarbons. Tables 16-18 indicate that there has already been a substantial biodegradation of the C-2 chrysenes, and as with the alkanes this has progressed further in the surface samples, but is still significant in the subsurface samples. None of the analyzed components is consistently enriched with respect to hopane, which corroborates the assumption that hopane is amongst the least biodegradable components of crude oil. If hopane is being degraded at an appreciable rate, all the percent depletion values in Tables 16-18 will be underestimates. They will also be underestimates if the oil that arrived at the shoreline had lost less that 30% of its initial weight by evaporation. ## WATER QUALITY OF NEARSHORE WATER Ammonia and Nitrate Concentrations The trends in ammonia and nitrate concentrations following the initial fertilizer applications for each site are plotted in Figures 29 and 31 and summarized in Table 19. Baseline ammonia concentrations at KN-132B varied slightly between the fertilized and reference sites before and after fertilizer application, but there was no indication of any significant ammonia release into the nearshore waters. Baseline concentrations of nitrate ranged from 0.01 to 0.03 mg/l at this site. The maximum nitrate concentration was 0.09 mg/l at 19 hr post-application, and this returned to baseline concentrations by 57 hr. At KN-135B, both ammonia and nitrate showed the same trend, peaking at 57 hr post-application, with a trend toward baseline concentrations by 82 hr. Pre-application and reference site values for ammonia ranged from 0.01 to 0.05 mg/l. The maximum ammonia value recorded post-application was 0.29 mg/l at 57 hr; by 82 hr this had decreased to 0.08 mg/l. Background concentrations of nitrate ranged from 0.01 to 0.05 mg/l. Following fertilizer application, nitrate concentrations peaked at 0.65 mg/l with the 57-hr sample; by 82 hr this had decreased to 0.24 mg/l. TABLE 12 ESTIMATED AMOUNTS OF OIL BIODEGRADED SINCE BEACHING, KN-132B The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | | | DAY | | |------|-------|------|------|------| | WELL | 0 | 29 | 60 | 95 | | As | 5162 | 6218 | 107 | 1258 | | Bs | 2117 | 1077 | 365 | 2315 | | Cs | 5608 | 5281 | 2409 | 4559 | | Ds | 10078 | 6704 | 2248 | 1645 | | Es | 2363 | 4206 | 1950 | 585 | | Fs | 1595 | 912 | 873 | 406 | Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. Only surface (s) samples were collected at this site. Discounting samples with less than 2 g oil/Kg sediment dry weight: | Average | Surface | Fertilized [*] | 2717 | |---------|---------|-------------------------|------| | SD | | | 2133 | | SE | | | 711 | | Average | Surface | Unfertilized | 4354 | | SD | | | 2882 | | SE | | | 1019 | | | | | | ^{*} An average of 61 days since the single fertilizer application. TABLE 13 ESTIMATED AMOUNTS OF OIL BIODEGRADED SINCE BEACHING, KN-135B The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | | DAY | | |------|---|---|---| | 0 | 32 | 70 | 109 | | 3908 | 2396 | 2690 | 3695 | | 314 | 904 | 1325 | 273 | | 2089 | 1989 | 2308 | 4086 | | -85 | 1417 | 1597 | 174 | | 1140 | 767 | 2270 | 2225 | | 271 | 668 | 1414 | 219 | | 3855 | 1391 | 3836 | 1927 | | 1153 | 341 | -30 | 595 | | -603 | 2730 | 2567 | 3448 | | 2302 | 1073 | 1859 | 486 | | 397 | 2240 | 3274 | 5237 | | 273 | 1109 | 938 | 1762 | | | 3908
314
2089
-85
1140
271
3855
1153
-603
2302 | 3908 2396
314 904
2089 1989
-85 1417
1140 767
271 668
3855 1391
1153 341
-603 2730
2302 1073 | 0 32 70 3908 2396 2690 314 904 1325 2089 1989 2308 -85 1417 1597 1140 767 2270 271 668 1414 3855 1391 3836 1153 341 -30 -603 2730 2567 2302 1073 1859 397 2240 3274 | Well designations include s for surface and ss for subsurface. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion, although the entire beach was fertilized just after Day 70. Discounting samples with less than 2 g oil/Kg sediment dry weight: | Average,
SD | Surface I | 'ertilize | ·d* | 2753
1132 | |----------------|-----------|-----------|--------|--------------| | SE | | | | 327 | | Average | Surface U | nfertili | zed | 2335 | | SD | | | | 1397 | | SE | | | | 421 | | Average | Subsurfac | e Fertil | ized* | 1158 | | SD | | | | 465 | | SE | | | | 164 | | Average | Subsurfac | e Unfert | ilized | 921 | | SD | | | | 716 | | SE | | | | 227 | ^{*} An average of 60 days since the first fertilizer application. TABLE 14 ESTIMATED AMOUNTS OF OIL BIODEGRADED SINCE BEACHING, KN-211E The data are in mg/Kg sediment dry weight SD is the standard deviation of the mean, SE the standard error | | | | DAY | | |------|-------|------|---------|------| | WELL | 0 | 31 | 60 | 98 | | As | 32 | 2242 | 1200 | 304 | | Ass | 1340 | 58 | 1033 | 1500 | | Bs | 142 | 2144 | 2841 | 583 | | Bss | 2682 | 2372 | 1114 | 4223 | | Cs | 147 | 91 | -66 | 840 | | Css | 3840 | 2537 | 1421 | 1914 | | Ds | 3964 | 2441 | 1148 | 1646 | | Dss | 3932 | 509 | 1219 | 3519 | | Es | 3131 | 1130 | 1110 | 3008 | | Ess | -907 | 775 | -158 | 1737 | | Fs | 3661 | 1544 | 854 | 2486 | | Fss | -1939 | -133 | 117 | 3928 | | | | | <i></i> | | Well designations include s for surface and ss for subsurface. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. Discounting samples with less than 2 g oil/Kg sediment dry weight: | Average Surface Fertilized* SD SE | 2136
760
287 | |-----------------------------------|--------------------| | Average Surface Unfertilized | 2308 | | SD | 1265 | | SE | 516 | | Average Subsurface Fertilized* | 2427 | | SD | 1107 | | SE | 350 | | Average Subsurface Unfertilized | 940 | | SD | 1799 | | SE | 519 | ^{*} An average of 61 days since the first fertilizer application. ## TABLE 15 ESTIMATED RATE OF OIL BIODEGRADATION SUMMARY OF ALL SAMPLES FROM ALL BEACHES These calculations are based on the gravimetric weight of oil in a sediment sample, and assume that hopane is a conserved internal marker. They use 521 oil as the reference oil, and do not include samples with less than 2 g oil/Kg sediment dry weight. The data are in mg/Kg sediment dry weight #### AMOUNT BIODEGRADED SINCE BEACHING | ELICOTAL DIODECT | IIDED DINOG DIGIONITA | | |------------------|-----------------------|------| | SURF | ACE | | | | KN-132B | 3487 | | | KN-135B | 2553 | | | KN-211E | 2215 | | | | | | SUBS | URFACE | | | | KN-135B | 1026 | | | KN-211E | 1616 | | | | | | | | | | | | | | CONVERTING TO | AN ANNUAL RATE | | | | | | | SURF. | ACE | | | | KN-132B | 2790 | | | KN-135B | 2042 | | | KN-211E | 1772 | | | | | | SUBS | URFACE | | | | KN-135B | 821 | | | KN-211E | 1293 | | | | | | OVERALL ANNUAL | RATE | | | | CITE A CE | 0001 | | | SURFACE | 2201 | | | SUBSURFACE | 1057 | TABLE 16 REPRESENTATIVE CHEMICAL COMPONENTS, KN-132B Percent depleted -v- 521 oil | | C18 | phytane | phenan-
threne | C-2
chrysene | total
alkane | total
HC | grav
weight | |-------------|-----|---------|-------------------|-----------------|-----------------|-------------|----------------| | DAY 0
As | 87 | 57 | 100 | 25 | 82 | 46 | 58 | | Bs | 98 | 89 | 100 | 37 | 95 | 67 | 45 | | Cs | 90 | 62 | 100 | 31 | 87 | 51 | 80 | | Ds | 83 | 48 | 100 | 35 | 78 | 41 | 40 | | Es | 99 | 93 | 100 | 53 | 96 | 70 | 39 | | Fs | 99 | 93 | 100 | 51 | 97 | 70 | 50 | | DAY 95 | 0.7 | 20 | 100 | | 0.6 | | 4.0 | | As | 97 | 90 | 100 | 62 | 96 | 61 | 42 | | Bs | 98 | 79 | 100 | 28 | 96 | 49 | 39 | | Cs | 84 | 59 | 97 | 18 | 81 | 33 | 32 | | Ds | 82 | 43 | 100 | 16 | 75 | 25 | 16 | | Es | 98 | 91 | 100 | 56 | 98 | 63 | 18 | | Fs | 100 | 91 | 100 | 69 | 98 | 63 | 39 | Total alkanes includes ClO to C32, plus pristane and phytane; for 521 oil it is 4.3% of the total oil. Total HC is the total hydrocarbon resolvable by Gas chromatography; for 521 oil it is 56% of the total oil. Grav weight is based on the gravimetric data of Table 12. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. Only surface (s) samples were collected at this site. TABLE 17 REPRESENTATIVE CHEMICAL COMPONENTS, KN-135B Percent depleted -v- 521 oil | | C18 | phytane | phenan-
threne | C-2
chrysene | total
alkane | total
HC | grav
weight | |---------|-----|---------|-------------------|-----------------|-----------------|-------------|----------------| | DAY 0 | | | | • | | | 0 | | As | 55 | 23 | 93 | 14 | 49 | 21 | 26 | | Ass | 57 | 17 | 100 | 22 | 48 | 14 | 8 | | | | _, | | | ,,, | - ' | J | | Bs | 94 | 69 | 100 | 30 | 88 | 45 | 34 |
| Bss | 31 | -2 | 100 | 13 | 23 | 3 | -1 | | DSS | 31 | - 2 | 100 | 13 | 23 | 3 | -1 | | Cs | 97 | 90 | 98 | 45 | 93 | 63 | 39 | | Css | 59 | ĭ | 97 | -3 | 49 | 6 | 6 | | CSS | 37 | • | ,, | -5 | 47 | 0 | 0 | | Ds | 55 | 25 | 100 | 10 | 48 | 17 | 23 | | Dss | 49 | 15 | 100 | 14 | 42 | 18 | 16 | | DSS | 47 | 13 | 100 | 14 | 42 | 10 | 10 | | Es | 61 | 29 | 74 | 19 | 57 | 30 | -8 | | | 10 | -10 | 95 | 5 | | | | | Ess | 10 | -10 | 93 | 5 | 0 | - 2 | 14 | | Fs | 87 | 47 | 100 | 35 | 76 | 0.4 | o | | | | | | | 76 | 24 | 8 | | Fss | 18 | -14 | 100 | 18 | 9 | - 5 | 5 | | DAY 100 | | | | | | | | | DAY 109 | 100 | 0.7 | 100 | 0.1 | 0.0 | 4.0 | 2.0 | | As | 100 | 84 | 100 | 21 | 98 | 42 | 32 | | Ass | 95 | 70 | 98 | 17 | 93 | 36 | 18 | | Bs | 98 | 85 | 99 | 22 | 0.0 | 1.6 | 27 | | | | | | 23 | 98 | 46 | 34 | | Bss | 95 | 66 | 99 | 23 | 92 | 22 | 17 | | 0. | 0.4 | 61 | 100 | 1. | 0.1 | 0.0 | 0.0 | | Cs | 94 | 61 | 100 | 14 | 91 | 28 | 29 | | Css | 100 | 62 | 100 | 8 | 96 | 20 | 17 | | _ | 100 | | 100 | 25 | ^- | | | | Ds | 100 | 63 | 100 | 25 | 97 | 39 | 15 | | Dss | 55 | 25 | 100 | 11 | 46 | 9 | 20 | | _ | | | | | | | • | | Es | 95 | 76 | 92 | 48 | 93 | 49 | 39 | | Ess | 66 | 26 | 100 | 7 | 57 | 8 | 14 | | _ | | | | • - | | • | | | Fs | 100 | 58 | 94 | 29 | 96 | 32 | 30 | | Fss | 50 | 16 | 100 | 2 | 38 | 1 | 16 | | | | | | | | | | _____ Total alkane includes C10 to C32, plus pristane and phytane, for 521 oil it is 4.3% of the total oil. Total HC is the total hydrocarbon resolvable by Gas chromatography; for 521 oil it is 56% of the total oil. Grav weight is based on the gravimetric data of Table 13. Well designations include s for surface and ss for subsurface. Wells A, B and C are in the portion of the beach that was fertilized on Day O, wells D, E and F in the portion fertilized for the first time on Day 72. TABLE 18 REPRESENTATIVE CHEMICAL COMPONENTS, KN-211E Percent depleted -v- 521 oil | DAY 0 As 99 91 100 46 95 61 14 Ass 30 6 100 -3 19 2 23 Bs 95 89 99 51 92 62 42 Bss 26 6 95 2 16 9 12 Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16< | | C18 | phytane | phenan-
threne | C-2
chrysene | total
alkane | total
HC | grav
weight | |--|--------|-----|---------|-------------------|-----------------|-----------------|-------------|----------------| | As 99 91 100 46 95 61 14 Ass 30 6 100 -3 19 2 23 Bs 95 89 99 51 92 62 42 Bss 26 6 95 2 16 9 12 Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | DAY 0 | | | | 011-7-00110 | | | #CIBIC | | Ass 30 6 100 -3 19 2 23 Bs 95 89 99 51 92 62 42 Bss 26 6 95 2 16 9 12 Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | 99 | 91 | 100 | 46 | 95 | 61 | 14 | | Bss 26 6 95 2 16 9 12 Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss <td>Ass</td> <td>30</td> <td>6</td> <td>100</td> <td>-3</td> <td></td> <td></td> <td></td> | Ass | 30 | 6 | 100 | -3 | | | | | Bss 26 6 95 2 16 9 12 Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 | | | | | | | | | | Cs 97 90 100 61 94 67 32 Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 8 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 <t< td=""><td>Bss</td><td>26</td><td>6</td><td>95</td><td>2</td><td>16</td><td>9</td><td>12</td></t<> | Bss | 26 | 6 | 95 | 2 | 16 | 9 | 12 | | Css 34 2 100 22 22 -1 23 Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 8 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 <t< td=""><td>Cc</td><td>9.7</td><td>90</td><td>100</td><td>61</td><td>0.4</td><td>67</td><td>20</td></t<> | Cc | 9.7 | 90 | 100 | 61 | 0.4 | 67 | 20 | | Ds 91 71 100 45 87 51 43 Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 | 035 | 34 | 2 | 100 | 22 | 22 | -1 | 23 | | Dss 43 20 96 12 35 15 30 Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss< | Ds | 91 | 71 | 100 | 45 | 87 | 51 | 43 | | Es 94 71 100 14 90 51 66 Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Ess 5 -9 95 12 -12 -12 -5 Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Fs 46 17 100 14 38 14 45 Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Es | | | 100 | 14 | 90 | 51 | 66 | | Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 37 <t< td=""><td>Ess</td><td>5</td><td>- 9</td><td>95</td><td>12</td><td>-12</td><td>-12</td><td>-5</td></t<> | Ess | 5 | - 9 | 95 | 12 | -12 | -12 | -5 | | Fss 16 -3 95 -10 4 -2 -13 DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9
Fs 100 68 100 40 97 37 37 <t< td=""><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | _ | | | | | | | | | DAY 98 As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Fss | 16 | -3 | 95 | -10 | 4 | - 2 | -13 | | As 100 92 100 61 99 61 37 Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | DAV OS | | | | | | | | | Ass 66 27 100 5 55 2 24 Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | 100 | 92 | 100 | 61 | 99 | 61 | 37 | | Bs 90 60 100 25 87 32 19 Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Bss 39 18 100 -2 26 -7 18 Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | -, | | 3 | 33 | - | 24 | | Cs 95 68 100 21 91 39 30 Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Bs | 90 | 60 | 100 | 25 | 87 | 32 | 19 | | Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Bss | 39 | 18 | 100 | - 2 | 26 | <i>-</i> 7 | 18 | | Css 56 14 100 4 48 8 17 Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Ds 82 59 100 35 76 40 35 Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | | | | | | | | | | Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Css | 56 | 14 | 100 | 4 | 48 | 8 | 17 | | Dss 28 8 100 10 13 -12 17 Es 94 64 100 32 89 38 35 Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | ъ | 0.0 | 50 | 100 | 2.5 | 7.0 | | 2.5 | | Es 94 64 100 32 89 38 35
Ess 6 -25 100 3 -9 -23 9
Fs 100 68 100 40 97 37 32 | | | | | | | | | | Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | υSS | 28 | ð | 100 | 10 | 13 | -12 | 1/ | | Ess 6 -25 100 3 -9 -23 9 Fs 100 68 100 40 97 37 32 | Es | 94 | 64 | 100 | 32 | 89 | 3.8 | 35 | | Fs 100 68 100 40 97 37 32 | | | | | | | | | | | ~00 | • | 23 | 200 | • | , | 23 | , | | | Fs | 100 | 68 | 100 | 40 | 97 | 37 | 32 | | | | | | | | | | | Total alkane includes C10 to C32, plus pristane and phytane, for 521 oil it is 4.3% of the total oil. Total HC is the total hydrocarbon resolvable by Gas chromatography; for 521 oil it is 56% of the total oil. Grav weight is based on the gravimetric data of Table 14. Well designations include s for surface and ss for subsurface. Wells A, B and C were in the fertilized portion of the beach, D, E and F in the unfertilized portion. At KN-211E, baseline concentrations of ammonia and nitrate ranged from 0.01 to 0.02 mg/l and 0.01 to 0.06 mg/l, respectively. Concentrations of both nitrogen forms peaked at 7 hr post-application and returned to baseline concentrations by 57 hr post-application. The maximum ammonia concentration measured was 0.59 mg/l, whereas that for nitrate was 1.64 mg/l. Monitoring nutrient dynamics immediately after fertilizer application was not continued for subsequent applications since there was no evidence that ammonia or nitrate concentrations were leading to adverse ecological effects, despite over-application of fertilizer at KN-132B and KN-135B. Instead, samples were collected offshore on the same schedule as other monitoring parameters after the second fertilizer application. The levels of nutrients in these samples are reported in Table 21. They show nutrient concentrations of less than 3 μ M available nitrogen (<0.05 mg/l ammonia or nitrate), which are within the normal range for nearshore waters. #### Toxicity Tests A comprehensive presentation of the results of static, acute toxicity tests with each field sample is presented in Section 1 of Appendix D4; it is the final report from MEC, Inc, the contract laboratory that conducted the tests. When reviewing the results, the reader should keep in mind that there is a background mortality rate within every test population. Because juvenile test animals may die in the course of a test as the result of handling stress or natural causes, a 90% survival is the appropriate criterion for determining when toxic effects have been exhibited. For our tests, survival in all laboratory control and field reference samples was $\geq 90\%$, indicating that the test animals were in excellent condition and that the tests were conducted with appropriate care. We have reviewed the MEC report and have summarized the pertinent test results in Table 21. Survival in all undiluted field samples collected after fertilizer application ranged from 90% to 100%, indicating no toxicity due to fertilizer application. Mysid survival in the pre-application sample collected at site KN-132B was 83%, perhaps indicating some effects of site activities and manual clean-up as field crews prepared the site for bioremediation. Nevertheless, survival in all other dilutions of this sample were $\geq 90\%$, so we characterize this mortality as not environmentally significant. Toxicity tests conducted during the 1989 bioremediation demonstration-research program using the same worst-case sampling plan showed toxicity to oyster larvae a water sample collected 18 hr after application of Inipol EAP22 and Customblen at the Passage Cove test site. Five samples were collected and tested between 1 hr and 18 hr post-application, no subsequent samples were collected. Ammonia in nearshore waters was not monitored in conjunction with these tests so there is no point of reference for comparing this test with the 1990 test. Oyster larvae, used in 1989, and Mysids, used in 1990, have the same sensitivity when tested with Inipol and Inipol plus oil. Thus we expected similar sensitivity in the field. Differences between 1989 and 1990 toxicity test results must be attributed to site specific differences, either in the nature of fertilizer release into overlying waters or the rate of local mixing and tidal flushing along the nearshore zone. The 1989 data show that a ### FIGURE 29 AMMONIA IN NEARSHORE WATER OFF FERTILIZED SHORELINES # AMMONIA VS. TIME, FERTILIZED ALL BEACHES FIGURE 30 NITRATE + NITRITE IN NEARSHORE WATER OFF FERTILIZED SHORELINES ## NITRATE+NITRITE VS TIME, FERTILIZED ALL BEACHES ### TABLE 19 SUMMARY OF AMMONIA AND NITRATE CONCENTRATIONS IN NEARSHORE WATER AFTER FIRST APPLICATION OF FERTILIZER Times are in hours after fertilizer application. | Test Site | Maximum Concentrations (mg/l) Ammonia Nitrate | Time of Peak | Returned to Baseline | |-----------|---|--------------|----------------------| | KN-135 | 0.29 0.65 | 57 hours | 82 hours | | KN-211 | 0.59 1.64 | 7 hours | 57 hours | | KN-132 | 0.03 0.09 | 19 hours | 57 hours | | | | | | TABLE 20 NUTRIENT CONCENTRATIONS IN NEARSHORE WATER AFTER SECOND FERTILIZER APPLICATION | KN-132B - NUTR | LIENT DATA, FER | TILIZED | (ult) | | KN-13! | SB - NUTRIE | ENT DATA, FERT | ILIZED | (ull) | |----------------|-----------------|--------------|---------------|----------------------------|----------------|-------------|----------------|--------------|--------------| | DAY | NO3+NO2 | NH3 | P04 | | 1 | DAY | NO3+NO2 | NH3 | P04 | | 43 | 0.40 | 2.75 | 0.10 | | | 57 | 0.85 | 2.23 | 0.13 | | 60 | 0.39 | 0.63 | 0.06 | | | 70 | 0.34 | 0.53 | 0.05 | | | | | | | VII 17 | ED . MITDIE | ENT DATA, UNFE | :DTI: 17E | n com | | KN-132B - NUTR | IENT DATA, UNFE | FRTILIZET |) CoMA | | KM-13 | DB - MUIKI | ENI DAIA, ORFE | KIILIZE | , (un) | | | | | (4.) | | | DAY | NO3+NO2 | NH3 | P04 | | DAY | NO3+NO2 | нн3 | P04 | | | | 0.05 | 0.70 | 0.04 | | 43 | 0.32 | 4 94 | 0.00 | | | 57
70 | 0.05
0.46 | 0.30
0.75 | 0.01
0.02 | | 60 | 0.40 | 1.86
0.78 | 0.09
0.07 | | | 10 | 0.40 | 0.75 | 0.02 | | | | | | | | | | | | | 477 | | | | | KN-13 | 5B - NUTRI | ENT DATA, REFE | ERENCE R | EMOTE (uM) | | KN-132B - NUTR | IENT DATA, REFE | RENCE RE | MOTE (uM) | | | DAY | NO3+NO2 | NH3 | P04 | | DAY | NO3+NO2 | ин3 | P04 | | | 5 71 | | 5 | | | | | | 100 | | | 57 | 0.32 | 0.85 | 0.06 | | 43 | 0.21 | 0.82 | 0.04 | | | 70 | 0.36 | 0.79 | 0.02 | | 60 | 0.95 | 0.73 | 0.03 | | | | | | | | | | KI | N-211E - NUTF | RIENT DATA, FER
NO3+NO2 | TILIZED
NH3 | (uH)
PO4 | | | | | | | | | | | | | | | | | | | 47 | 1.21 | 2.19 | 0.25 | | | | | | | | 61 | 1.19 | 1.15 | 0.15 | | | | | | | KI | N-211E - NUTF | RIENT DATA, UNF | ERTILIZED | (uH) | | | | | | | | DAY | NO3+NO2 | инз | P04 | | | | | | | | 47 | 0.27 | 0.42 | 0.09 | | | | | | | | 61 | 0.52 | 1.40 | 0.13 | | | | | | | | | | | | | | | | | | KI | 1-211E - NUTF | RIENT DATA, REF | ERENCE RE | MOTE (uM) | | | | | | | | DAY | NO3+NO2 | ин3 | P04 | | | | | | | | 47 | 0.56 | 2.79 | 0.23 | • | | | | | | | 61 | 0.26 | 1.04 | 0.16 | | | | ### TABLE 21 RESULTS OF ACUTE TOXICITY TESTS WITH
MYSIDS Water samples were collected before and after fertilizer application. Times given for sample collection are approximate; actual times were scheduled around tidal change. | | MY | SID SURVIV | AL IN 96-HOU | R STATIC | TOXICITY TE | ST | |-------------------------|---------------------|---------------------|----------------------|----------|---------------------|---------------------| | Collection Time | KN-135 T
Treated | EST SITE
Control | KN-211 TE
Treated | ST SITE | KN-132 T
Treated | EST SITE
Control | | Pre-application | 100% | 100% | 97\$ | 90% | 83% | 100% | | 1 hr after application | 90\$ | | 100% | | 90% | | | 7 hr after application | 90% | | 978 | | 93% | | | 19 hr after application | 100% | 97% | 978 | 97% | 93% | 100% | | 32 hr after application | 93% | | 978 | | 97% | | | 57 hr after application | 100% | 93% | 938 | 974 | 97% | 97% | | 82 hr after application | 100% | | 93\$ | | 97% | | 3-fold dilution was necessary to eliminate toxicity in the field samples. Because the samples were collected immediately above the fertilized shoreline, the results do not conflict with our assessment that any ecological effects that might occur would be localized, transient and short-term. Toxicity tests were not continued for subsequent applications since there was no evidence of adverse ecological effects after the initial application, despite over-application of fertilizer at KN-132B and KN-135B. #### Chlorophyll Monitoring The potential that fertilizer application might stimulate an algal bloom was assessed by monitoring chlorophyll in the nearshore water. All readings were less than 0.67 μg chlorophyll/liter. This is consistent with values reported from previous bioremediation studies in Snug Harbor and Passage Cove, where chlorophyll values ranged from 0.2 to 1 $\mu g/l$. In contrast, chlorophyll levels in the lagoons behind KN-211D and DI-67 were in the range 10-30 $\mu g/l$ in late July. There were no indications of fertilizer applications stimulating algal blooms in the nearshore zone at the monitoring sites (Figure 31). Chlorophyll concentrations show no consistent differences in treated versus reference comparisons and no increasing trends with time. The degree of nutrient release into nearshore waters does not stimulate an algal bloom faster than the rate of dilution and flushing driven by tidal exchange at any of the monitoring sites. These results agree with data generated during the 1989 bioremediation research/demonstration project. #### Total Petroleum Hydrocarbons Measurements of the amounts of petroleum hydrocarbon in nearshore water are presented in Appendix D4, Table 1. Only 16 of the 174 samples of nearshore water collected in this program had detectable levels (0.2 mg/l) of Total Petroleum Hydrocarbon; none were greater than 0.41 mg/l, which was found in a sample from an untreated remote reference site. Only a single sample from KN-132B had detectable hydrocarbon; 0.24 mg/l on day 29 from near the treated area. Nine samples had detectable hydrocarbon in the first two days of monitoring at KN-135B, three of them before fertilizer application. Levels near the fertilized and unfertilized shorelines were 0.2-0.3 mg/l, while at the remote reference site the level was 0.4 mg/l. Only two subsequent samples had detectable levels of hydrocarbon, these were from the treated area on Day 15, and both were 0.23 mg/l. Only three samples had detectable levels at KN-211E, all less than 0.25 mg/l, occurring within four days of fertilizer application. There is no trend in the total petroleum hydrocarbon data to suggest any correlation between fertilizer applications and release of oil from the shoreline to nearshore waters. Rather, hydrocarbon releases are most likely related to clean-up crew efforts of manual removal and site preparation for bioremediation. Hydrocarbon release will continue to be a concern as part of any clean-up activity until all the oil has been removed or degraded in place, but concentrations are likely to be at or below detection limits, and should not cause environmental problems. FIGURE 31 RELATIVE CHLOROPHYLL CONCENTRATIONS IN OFFSHORE WATER ### CHLOROPHYLL CONCENTRATION KN-132 ### CHLOROPHYLL CONCENTRATION KN-135 ### CHLOROPHYLL CONCENTRATION KN-211 #### BUTOXY-ETHANOL MONITORING Butoxy-ethanol residues on the surfaces of oily cobbles are presented in Table 22. There was a five-fold difference between the initial concentrations in the two sampling areas. This could be the result of either incidental variations in the application rate within a test site or of variations in the amount of oil in the two areas of the beach, as the surface area sampled varied at the most by a factor of two. In either case, the trends through time were very similar for the upper-intertidal and mid-intertidal samples. After the first tidal flushing, the lower samples lost approximately 98% of the butoxy-ethanol, whereas the upper samples that were not covered by the high tide lost approximately 92%. Following the second tidal flushing, residues decreased to non-detectable concentrations in the lower-intertidal area and decreased another 92% in the upper-intertidal area, to approximately 0.6% of the original concentrations. During the next 24 hr, butoxy-ethanol decreased another 94%. These data agree with previous laboratory findings where 99% of the butoxy-ethanol was removed from microcosms within 24 hours. TABLE 22 BUTOXY-ETHANOL IN SAMPLE WIPES OF COBBLE SURFACES | Sampling Interval | μg Butoxy-ethanol/g
Upper-Intertidal | oil taken from cobble
Mid-Intertidal | |-----------------------------|---|---| | l hr post-application | 52,000 | 10,000 | | after first tidal flooding | 4,000 | 177 | | after second tidal flooding | 300 | ND | | after fourth tidal flooding | 19 | ND | ND represents samples below the detection limit of $10 \mu g$ butoxy-ethanol/g oil. Butoxy-ethanol poses a potential threat to wildlife if the chemical is inhaled, absorbed across the skin upon direct contact, or ingested from licking, chewing, ingesting treated substrates (i.e., rocks, sticks, gravel, etc) or as a result of cleaning or preening activities after animals have had direct contact with an Inipol-treated area. The rapid loss of butoxy-ethanol from Inipol-treated substrates supports the assertion that wildlife exposures are limited to periods immediately after application. Using the measured loss rates for butoxy-ethanol in the field, the expected 30 g of butoxy-ethanol/m² following Inipol application would be reduced to < 2.5 g/m² after one tidal exchange and to < 0.2 g/m² after 24 hours. At 0.2 g/m², butoxy-ethanol would be acutely toxic to a 1 Kg bird or mammal only if the animal absorbed all the chemical in one square meter (acute LC50 is 200 to 500 mg/Kg). As the amount of butoxy-ethanol continues to decrease with time, we feel that a 24-hr period after Inipol EAP22 application is a reasonable time to employ wildlife deterrent devices. #### SUMMARY AND CONCLUSIONS The Importance of Biodegradation in the Natural Cleansing Process The data presented here demonstrate that biodegradation is an important process contributing to the removal of oil from the shorelines of Prince William Sound. By using hopane as an internal non-biodegradable marker, we estimate that all samples collected during this program show substantial evidence of biodegradation. This includes not only the alkane fraction of the oil, but also components often considered more resistant to biodegradation, such as the chrysenes with two carbon substituents. By the end of the 1990 clean-up season, the majority of surface samples were already more than 50% depleted in alkanes and more than 20% depleted in C-2 chrysenes, while subsurface samples provide evidence that the subsurface rate is typically one half to one third of that at the surface. #### The Rate of Biodegradation By using hopane as an internal non-biodegradable marker, we estimate that the rate of biodegradation of oil on beaches in Prince William Sound is approximately 2.2 g oil biodegraded/Kg sediment/year at the surface, and 1.1 g oil/Kg sediment/year in the subsurface (30 cm). These numbers would be underestimates if the oil landing on the beach had lost less than 30% of its bulk by evaporation, if hopane was biodegraded at a significant rate, or if heavily weathered oil was less adhesive, and thus more readily removed from sediments by tidal flushing. #### Fertilizer Enhancements There are several parameters that support our conclusion that the application of nitrogenous fertilizers is an effective technique for removing oil from surface and subsurface sediments. First, nitrogen nutrients increased in interstitial waters to a depth of 50 cm at all sites following all fertilizer additions. The magnitude and duration of the enhancement varied from site to site; 10 to 100-fold increases in initial nutrient concentrations declined over an 8 to 15 day period to a 2-10 fold enhancement, which was then sustained for at least thirty days. The inorganic nutrients seem to come principally from the Customblen, whereas urea release from Inipol EAP22 could not be detected beyond four days after application. This is consistent with our understanding of the mechanism of Inipol EAP22, which was designed to keep nutrients associated with the oil, but this has not been measured. When detected, the urea from the Inipol EAP22 was found in interstitial water from a depth of 50 cm, indicating that this component, at least, penetrated into the shoreline sediments. In conclusion, the fertilizer applications were successful in providing substantial nitrogenous nutrients to at least 50 cm into the shoreline sediment at significantly elevated concentrations for at least 30 days. Second, dissolved oxygen in the interstitial waters never approached limiting concentrations. A decrease of 2 to 3 mg/l dissolved
oxygen in interstitial water on the fertilized sides of KN-135B and KN-132B occurred after both applications, suggesting an increased biological activity stimulated by nitrogenous nutrients. The effect diminished as nutrient concentrations decreased with time. Third, the fertilizer treatments produced a sustained increase in microbial numbers and microbial activity in surface and subsurface sediments. As discussed in the Results section, the mineralization activity ratio represents a convenient, if imperfect, way to monitor the effect of fertilizer addition on hydrocarbon biodegradation. The increase in biodegradation activity measured in our assays does not necessarily directly equate to in situ biodegradation rates, since the laboratory assay involves removing the bacteria from their natural milieu, and providing them with conditions that only partially mimic their natural environment. Nevertheless, the activities do reflect the robustness of the microbial communities at the study sites, and the activities are reasonable indicators of the relative activities of the hydrocarbon oxidizers in situ. As such, they suggest that fertilizer addition effects a two to three fold increase in biomineralization activity after the first addition of fertilizer, and that subsequent applications sustain and further increase the effect to a five to ten fold enhancement. #### Ecological Effects Nearshore waters collected at the test sites during the 4 days following fertilizer application showed no toxicity when tested with Mysids, a shrimp-like crustacean selected as a surrogate for indigenous species. Ammonia and nitrate concentrations in nearshore waters peaked between 7 and 57 hours post-application at concentrations <0.6 mg/l ammonia and <1.6 mg/l nitrate. Samples collected three or four days after the second fertilizer applications at each site followed the same trend. Short-term, transient concentrations of ammonia or nitrate of this magnitude are less than published data on acute toxicity of ammonia to most marine biota. Samples from cobble surfaces treated with Inipol showed that more than 99% of the butoxy-ethanol had dissipated from treated shorelines within 24 hr. The time-lapse camera, taking one frame every six minutes, recorded no wildlife on Inipol EAP22 treated areas while the wildlife deterrents were present. These findings demonstrate that potential wildlife exposures are at most transient and short-term. Our monitoring efforts demonstrated no evidence of algal blooms stimulated by nutrient release from the fertilized shorelines. Only 9% of the samples of nearshore water contained total hydrocarbon concentrations above detection limits; none exceeded 0.41 mg/l. There was no correlation with fertilizer additions. #### Frequency of Application Although enhanced microbial activity is sustained for more than 30 days from a single fertilizer application, this program has provided evidence that subsequent applications of fertilizer have a further beneficial effect. By waiting approximately three weeks before reapplication, interstitial nutrient levels have returned to near background levels, as has dissolved oxygen depletion, and the potential for nutrient release to offshore water has returned to pre-treatment levels. Repeated fertilizer applications over the course of the summer at approximately monthly intervals would probably maximize the degradation benefits of bioremediation. ## **APPENDIX SOP.**Standard Operating Procedures | Section 1. | Protocol for collecting and processing samples for toxicity tests | |------------|---| | Section 2. | Analyses of inorganic nutrients in seawater | | Section 3. | Determination of Kjeldahl Nitrogen in seawater | | Section 4. | Microbial Protocols | | Section 5. | Extraction of sediment samples for low level petroleum analysis | | Section 6. | Determination of low level total petroleum hydrocarbon and individual saturated hydrocarbon concentrations in environmental samples | | Section 7. | Determination of low-level Polynuclear aromatic hydrocarbons (PAH) and selected heterocycles | | Section 8. | Determination of Total Petroleum Hydrocarbon in seawater | | Section 9. | Determination of 2-butoxy-ethanol in surface wipes | #### SECTION 1, APPENDIX SOP #### PROTOCOL FOR COLLECTING AND PROCESSING SAMPLES FOR TOXICITY TESTS Objective: A series of water samples will be collected over time to quantify any occurrence and subsequent dissipation of toxic concentrations of constituents of Inipol and Customblen following fertilizer applications to oiled shorelines. The water samples are intended to be representative of worst-case conditions in the intertidal zone to characterize exposures that might be encountered by marine biota moving onto a treated shoreline. Further, the samples will allow an assessment of when intertidal shoreline conditions have returned to conditions appropriate for recolonization by epibenthic invertebrates. Approach: Collection Site -- Sample collection will be along an upper-berm-to-lower-tidal transect established in the center of the treated area of the shoreline. A single float can be deployed to mark the middle of the transect and used as a visual reference for orienting during sample collection. Because the depth of water overlying the shoreline varies with the height of a given tide and the tidal stage when the sample is collected, samples are to be collected along the transect of the beach where water depth is approximately 1 m. The sample will be collected at mid-depth, that is half-way between the surface and bottom. This is to ensure that the water sample has minimum dilution by overlying water but collected far enough above the substrate so that particulate matter and sediment are not included in the water sample to be tested. Sample Collection -- Two gallons of water will be collected at the designated sampling station during each sampling period for a toxicity test. A glass water sampling bottle or similar water collection device should be used to collect the water sample from a boat. Because wind, waves, and currents affect the collection process from a boat, samples can be collected within an 5-m radius of the target sampling point. Walking on the treated shoreline to collect the water sample should be avoided. Water can be stored for shipping in plastic water containers (such as cubitainers) as long as the container is clean and given an initial rinse with the site water before filling. Samples are to be labeled by station, date, and actual time of collection using labels that will not come off during storage and shipping and maintaining legibility. Sample Processing -- Water is to be stored on ice or in a 40 C refrigerator after collection and during shipment. Samples taken during a day's collecting effort should be shipped out of Prince William Sound together. Storage time between collection and shipping to the testing laboratory should be minimized, but coordinated within practical sample processing schedules as part of the overall monitoring effort. Every effort should be made to ship samples out of Prince William Sound within 12 hours of collection. Delays due to mechanical problems or weather will make interpretation of test results difficult, but samples should be shipped for testing if holding time is less than 48 hours. Sample Shipping -- Samples will be sent to Anchorage for shipping to the testing laboratory. Express or overnight service will be used to get the samples to the laboratory as soon as possible. Shipping delays will add to the uncertainty of how representative the samples are of Prince William Sound conditions. Unreasonable delays could develop a loss of credibility to the extent that the application and monitoring would have to be repeated. Samples are to be sent to the following address: MEC Analytical Systems, Inc. Bioassay Division 98 Main Street - Suite 428 Tiburon, CA *94920 Phone 415-435-1847 Collection Schedule -- Samples from treated shorelines will be collected at time O, after the site has been prepared for bioremediation treatment but before fertilizer application. Fertilizer applications are scheduled for a 4-hour window that includes the period of 2 hours before low tide and 2 hours after low tide. The first post-treatment sample is to be collected 1 hour after fertilizer application has been completed, time +1. This should be approximately midway of the incoming tide, but the exact purpose is to demonstrate water quality at 1 hour post-application. The second post-treatment sample is to be collected midway of the subsequent outgoing tide, irrespective of the time by which application was completed. This should be approximately 7 hours after the ideal application window, time +7. The next sample is to be collected midway of the next outgoing tide, approximately 12 hours later or time +19. Subsequent samples will be collected at the midpoint of the outgoing tide that occurs during the morning or early afternoon. This allows for collection and transportation out of the sound during the day. Collection times, assuming a 25-hour periodicity for two tides over a day, are then scheduled for the next three days at +32 hours, +57 hours, and +82 hours. Actual time of collection for these samples can be + 2 hours to accommodate travel times between sites. Any samples that can not be collected for weather or mechanical problems should be noted in the sampling log, and the fixed schedule be followed without change. Reference Samples from the Field -- A reference shoreline for bioassay testing will be located near test sites. Control areas used for microbiological sampling that represent a split of oiled shoreline on a single beach cannot be used for collection of controls for toxicity tests. Bioassay control shorelines should represent the degree of oiling seen on the test sites, however
physical removal activities need not be present for these reference sites. The water samples will show the degree of water quality on oiled shorelines where no treatment has occurred. Also, they will show trends in water quality through time at untreated sites. Water samples will be collected using the same collection and processing techniques employed at the treated shorelines. The collection schedule will be different. Samples are to be collected on reference shorelines at the time 0, time +19, and time +57 periods, using the tide schedule to collect at the midpoint of outgoing tides as the exact schedule. Labeling and shipping will follow the same procedures specified for treated sites. ### Collection Schedule for Toxicity Tests | Actual sampling time | Approximate Time (hrs) | Tidal Stage | Collection
Treated | | |-------------------------|------------------------|--------------------|-----------------------|---| | Pre-application | 0 | Near low tide | X | χ | | 1-hr post application | + 1 | Near mid incoming | X | | | 1st outgoing post-appl. | + 7 | mid outgoing tide | X | | | 2nd outgoing post-appl. | | mid outgoing tide | X | Χ | | 3rd outgoing post-appl. | | "mid outgoing tide | X | | | 5th outgoing post-appl. | | mid outgoing tide | X | Χ | | 7th outgoing post-appl. | | mid outgoing tide | X | | ## APPENDIX SOP. Section 2. Analyses of inorganic nutrients in seawater | Name | · initials | Oate | |-------------|------------|-------| | Originator | 1 | 0419 | | Concurrence | | | | | | | | Approved | CA | 5-23- | L'AHShul Clem File G. Drucjas D. Mchath (GALL) J. Vacca (contracts) original signed copy return Date 1+ FS.ICCUM ON QUALITY ASSURANCE PROJECT PLAN for ## THE ANALYSES OF INORGANIC NUTRIENTS IN SEAWATER SAMPLES FROM PRINCE WILLIAM SOUND, ALASKA prepared by THEODORE C. LODER III BIOGEOCHEMICAL SYSTEMS CENTER INSTITUTE FOR THE STUDY OF EARTH, OCEANS, AND SPACE UNIVERSITY OF NEW HAMPSHIRE DURHAM, NH 03824 603-862-3151 prepared for BATTELLE OCEAN SCIENCES 397 Washington St. Duxbury, MA 02332 Original: 21 May 1990 | APPROVALS: | | |---|---------| | - AC Laborat | 5/21/20 | | Dr. Theodore C. Loder III, Principal Investigator | Date | | Will Wheihain | 5/23/90 | Dr. William Steinhauer, Manager, Marine Chem. Dept., Battelle #### TABLE OF CONTENTS | | | <u>Pa</u> | ge | |------|--|-----------|----| | PROJ | JECT ELEMENTS | | 3 | | 1. | | | 3 | | 2. | Project Requested by | | 3 | | 3. | | | 3 | | 4. | Date of Project Initiation | | 3 | | 5. | Project Officer | - | 3 | | 6. | Quality Assurance Officer | | 3 | | 7. | Project Description | | 3 | | | A. Objectives | | 3 | | | B. Data Usage | | 3 | | | C. Technical Approach | | 4 | | 8. | - 3 | | 4 | | 9. | Schedule of Tasks and Products | | 5 | | 10. | Project Organization and Responsibility | | 5 | | 11. | Data Quality Requirements and Assessments | | 5 | | | A. Precision | | 5 | | | B. Accuracy | | 6 | | | C. Comparability | | 7 | | | D. Completeness | | 7 | | 12. | Sampling and Laboratory Procedures | | 8 | | 13. | Sample Custody Procedures | | 8 | | 14. | Calibration Procedures and Preventive Maintenance. | | 8 | | 15. | Documentation, Data Reduction and Reporting | | 8 | | | A. Documentation | | 8 | | | B. Data Reduction and Reporting | | 9 | | 16. | Data Validation | | 9 | | 17. | Performance and System Audit | | 9 | | 18. | Corrective Action | | 9 | | 19. | Reports | | 10 | | • | LITERATURE CITED | | 10 | | | Appendix A. Field sampling procedures. | | 11 | | | Appendix B. Sample custody form. | | 12 | | | | | | Revision No. 1.0 Date: 21 May 90 Page 3 of 12 #### QUALITY ASSURANCE PROJECT PLAN for ## THE ANALYSES OF INORGANIC NUTRIENTS IN SEAWATER SAMPLES FROM PRINCE WILLIAM SOUND, ALASKA - 1. PROJECT NAME: The Analyses of Inorganic Nutrients in Seawater Samples From Prince William Sound, Alaska - 2. PROJECT REQUESTED BY: Battelle Ocean Sciences - 3. DATE OF REQUEST: May 14, 1990 - 4. DATE OF PROJECT INITIATION: May 14, 1990 - 5. PROJECT DIRECTOR: DR. T. C. LODER III - 6. QUALITY ASSURANCE OFFICER: Ms. Joanne Knight - 7. PROJECT DESCRIPTION #### A. Objectives The objective of this project is to analyze seawater samples collected in Prince William Sound for the following inorganic nutrients: nitrate, nitrite, ammonium, phosphates and silicate. The samples will be collected by Battelle Ocean Sciences personnel in coastal areas affected by the Exxon Valdez oil spill that are being experimentally being treated with fertilizers to enhance bacterial degradation of the residual oil. silicate not required WWD 5-23-90 #### B. Data Usage The nutrient data will being provided to Battelle in a timely fashion to aid in interpreting the impact of the fertilizer additions while the experiment is still in progress. Bittelle premel in 11 to more in sayou whetier. Wheren, ANI has nonegant responsible of the bit when when he seems to the total of the seems Revision No. 1.0 Date: 21 May 90 Page 4 of 12 w7 w7 1-23-90 #### C. Technical Approach #### America North Inc. Battelle Ocean Sciences will determine the timing of sample collection and the number of samples to be collected. Samples will be filtered in the field, frozen, and delivered frozen to the University of New Hampshire. Laboratory analyses of the samples will be carried out in the Estuarine/Coastal Chemistry Lab at the University of New Hampshire using a 3-channel AutoAnalyser nutrient analyses system. The analyses to be conducted and the methods used are given in Table 1. Table 1. List of nutrient parameters to be analysed. | Parameter | Matrix | Units | Methodology | Reference | Max holding
Time | Preservation | |-----------|--------|-------|--------------|-----------|---------------------|--------------| | Nitrate | water | μМ | AutoAnalyzer | TIS(a) | 2 mon | freezing | | Nitrite | water | μМ | AutoAnalyzer | TIS(b) | 2 mon | freezing | | Ammonium | water | μΜ | AutoAnalyzer | Adam. | 2 mon | freezing | | Phosphate | water | μΜ | AutoAnalyzer | TIS(c) | 2 mon | freezing | | Silicate | water | μМ | AutoAnalyzer | TIS(d) | 2 mon | freezing | #### References: TIS (a): (Technicon Industrial Systems, 1972) TIS(b): (Technicon Industrial Systems, 1973a) TIS(c): (Technicon Industrial Systems, 1979) TIS(d): (Technicon Industrial Systems, 1973b) Adam.: (Adamski, 1976) #### 8. PROJECT FISCAL INFORMATION A budget for this project is included in the contract between the University of New Hampshire and Battelle Ocean Sciences. #### 9. SCHEDULE OF TASKS AND PRODUCTS Samples are to arrive at the University of New Hampshire, Durham, NH starting during the week of May 21, 1990. They are to be shipped frozen in sets of approximately 100-112 samples. The samples are to be analyzed within several days of receipt and draft data will be sent to Battelle within 2 weeks of receipt or sooner if possible. It is expected that samples will be shipped every 1-2 weeks to UNH during the end of May and the month of June, 1990. Once all samples have been analyzed, a copy of the final data set and report will be prepared and delivered to Battelle within one month after the final receipt of samples. #### 10. PROJECT ORGANIZATION AND RESPONSIBILITY Dr. T. Loder (EOS, University of New Hampshire, Durham, NH 03824, Tel. (603) 862-3151) will be the Principal Investigator and Program Manager for this project and will be the main contact for the project with Battelle Ocean Sciences. He will be directly responsible to Battelle Ocean Sciences for the quality and timely completion of the project. He will be responsible for data interpretation and preparation of reports to Battelle Ocean Sciences. Dr. Loder will be assisted by several students (Lab. Tel. 603-862-1542) at the University of New Hampshire who will carry out the analyses on the samples. Ms. Joanne Knight will be responsible for sample tracking and the nutrient analyses. She will be assisted by Mr. Mark Holton, Mr. Paul Waldner, and Ms. Susan Becker. Ms. Knight will be in charge of the data management and quality control under the direction of Dr. Loder. #### 11. DATA QUALITY REQUIREMENTS AND ASSESSMENTS #### A. Precision The analytical precision for the nutrient analyses will be checked once or twice per sample set by triplicate analyses of several sets of duplicate Revision No. 1.0 Date: 21 May 90 Page 6 of 12 nutrient samples, so that on the average 5% of the samples will be run in replicate. The standard deviations of these analyses will be compared to the standard deviation of the triplicate standards analyzed during each analytical sample run. The results of these replicate analyses will be reported with the data for each sample set. Although the analytical precision for these analyses varies as a function of the range of sample concentrations, they are expected to be close to those listed in Table 2. Table 2. Average standard deviations for 3-4 standards analyzed at the same time (Gagosian et al., 1983). The detection limits are about 2x the standard deviation. The accuracy of these analyses for samples is 3-5x the Std. Dev. representing $\pm 1-4\%$ of the concentration range. | Nutrient | Conc. Range (µM) | Std. Dev.
(± μM) | Est. Accuracy (4x S.D.) (± μM) | |-----------|------------------|---------------------|--------------------------------| | Phosphate | 0-3.5 | 0.04 | 0.16 | | Silicate | 0-45 | 0.06 | 0.24 | | Nitrate | 0-12 | 0.04 | 0.16 | | Nitrite | 0-8 | 0.02 | 0.08 | | Ammonium | 0-4 | 0.02 | 0.08* | The value of 0.08 μ M for ammonium accuracy is probably too low in spite of the findings in the report and a value of twice that or about 0.15 μ M is more realistic based on findings in our lab. #### B. Accuracy All inorganic nutrient samples will be analyzed utilizing a computerized 3-channel Technicon AutoAnalyzer system using methods for seawater nutrient chemistry described by Technicon and summarized by Glibert and Loder (1977) and Loder and Glibert
(1977). All samples will be quantified against working standards made up in low nutrient seawater prepared from diluted stock standards made with dried and carefully weighed reagent-grade primary standard reagents. New standards are always compared to old standards to ensure that there is continuity between analyses made over long periods of time. The salinity of the low nutrient Revision No. 1.0 Date: 21 May 90 Page 7 of 12 seawater is adjusted to approximate the salinity of the samples by dilution with small amounts of nutrient-free deionized water. Working standards are made daily or more often as needed by diluting the stock standards with calibrated Eppendorf microliter pipets and class A volumetrics, except for silicate standards which are made up in plastic volumetrics. A working calibration curve based on a single standard addition technique with the low nutrient seawater is used for determining the concentration of the nutrients in the samples. All standards and blanks are run in triplicate. This works well because the chemistries are linear in the range of concentrations normally found in the coastal waters. In addition, linearity tests will be run several times during the analysis period using multiple standards covering the range of concentrations observed in the samples. These data will be compared against the calibration curve determined with the single standard addition technique. Contamination by sample cups is eliminated because samples for the analyses are sucked directly from the original sample bottles into the analyzer. Sample peak heights are recorded on chart paper as well as by a computer linked into the system, so that hard copy of all analyses is available for cross checking. Peak height data, recorded by the computer, are then corrected for baseline drift and carryover and compared to standard peaks obtained during the calibration part of the analysis run. Then adjustments are made for refractive index corrections and chemical corrections and the final data are calculated as described by Loder and Glibert (1977). #### C. Comparability Because the methods for the nutrient analyses are standard oceanographic techniques, the data will be comparable with other data that may be collected later from the same area. #### D. Completeness It is expected that greater than 98% of the data will be obtained since duplicate samples will be collected by Battelle and one set of samples will be stored as back up samples in case any samples are lost or spilled. Revision No. 1.0 Date: 21 May 90 Page 8 of 12 #### 12. SAMPLING AND LABORATORY PROCEDURES Samples will be collected by Battelle Ocean Sciences, following their own protocols. It is expected that the samples will be filtered using 0.45 μm pore size filters (Millipore HA or equivalent) and stored in acid-washed and sample rinsed 22-ml polyethylene scintillation vials. Samples will be frozen as soon as possible after filtration, preferably on dry ice. More details of sample collection recommendations are described in Appendix A. #### 13. SAMPLE CUSTODY PROCEDURES Nutrient sample bottles will be individually labeled by the Battelle field sampling team. The samples will be frozen and shipped by by Federal Express or equivalent service to Loder's lab in New Hampshire where they will be examined for thawing, recorded on sample custody forms (Appendix B) and stored frozen in a chest freezer in the lab at UNH prior to analyses. ## 14. CALIBRATION PROCEDURES AND PREVENTATIVE MAINTENANCE The AutoAnalyzer is calibrated with each individual analysis set of samples (30-34) run using standards analyzed in an identical manner as the samples. Calibration data will be kept with each set of sample data. #### 15. DOCUMENTATION, DATA REDUCTION AND REPORTING #### A. Documentation The analytical methods used in this study are standard methods cited in several of the above sections as are the initial data reduction methods. All finalized data for the project will be transferred to a spreadsheet (Excel-Macintosh) for initial analysis, formatting and printing in data reports. The data will be organized by sample set and experiment as defined by Battelle Ocean Sciences. All raw data and calculation data sheets for the nutrient analyses will be kept on file in Room 346 in the Science and Engineering Building at UNH. Revision No. 1.0 Date: 21 May 90 Page 9 of 12 #### B. Data Reduction and Reporting Once the samples are analyzed, the appropriate corrections and calculations are made, including corrections for baseline drift, carryover, and sample refractive index (includes turbidity). These data are then validated as described in section 16 and finally listed and reported in the biweekly data reports. The data will be submitted to Battelle Ocean Sciences as computer print out hard copy and on computer disks if requested. #### 16. DATA VALIDATION All data will be proofed for error at the time they are entered in the computer by either Holton, Knight, Becker, or Waldner. Then the data will be plotted using parameter/parameter plots such as nitrate vs phosphate. Any outliers will be checked for "oceanographic consistency" to ensure that the data reported are what were actually measured. Data that do not meet the criteria for proper handling and analyses as well as oceanographic consistency will either not be reported or reported with an explanation of the associated problems. This final proofing will be carried out by Loder and Knight during preparation of the final report. #### 17. PERFORMANCE AND SYSTEMS AUDITS All the data files and records of this project will be available for inspection by Battelle officials and/or authorized representatives. #### 18. CORRECTIVE ACTION Data quality objectives and validation procedures for this program have been designed to ensure that personnel will be able to identify and correct any analytical problems for each sample set. If there are questions concerning the nutrient analyses, samples can be rerun, since the samples will be refrozen after analyses and stored until all final data analyses are completed. In addition, a back-up set of samples will be available for analyses in case of uncertainity in any of the analyses. Any rerun analyses will be noted with the reasons for the rerun. Revision No. 1.0 Date: 21 May 90 Page 10 of 12 #### 19. REPORTS There will be two types of reports resulting from this project. The first will be available within two weeks after each sample set is received and will consist of draft data of all the analyses. Second, there will be the more formal final report which will consist of the final data (both hard copy and computer disk files on Excel -Macintosh), and copies of the requested lab records concerning all of the analyses. #### LITERATURE CITED Adamski, J. M. (1976). Simplified Kjeldahl nitrogen determination for seawater by a semiautomated persulfate digestion method. Anal. Chem. 48: 1194. Gagosian, R. B., T. Loder, G. Nigrelli and J. Love. (1983). Hydrographic and nutrient data from R/V Atlantis II Cruise 108, Leg 3 March to April 1981 - Off the coast of Peru. WHOI Tech. Rpt. 83(5). 123p. Glibert, P. M. and T. C. Loder. (1977). Automated analysis of nutrients in sea water: A manual of techniques. WHOI Tech. Rpt. 77(47): 46p. Loder, T. C. and P. M. Glibert. (1977). Blank and salinity corrections for automated nutrient analysis of estuarine and seawaters. Technicon International Congress 1976. 2: 48-56. Technicon Industrial Systems. (1972). Nitrate and nitrite in water and sea water. Industrial Method No. 158-71W. Technicon Industrial Systems. (1973a). Nitrite in water and seawater. Industrial Method No. 161-71W. Technicon Industrial Systems. (1979). Orthophosphate in water and seawater. Industrial Method No. 155-71WEPA. Technicon Industrial Systems. (1973b). Silicates in water and seawater. Industrial Method No. 186-72W. #### Appendix A #### INSTRUCTIONS FOR NUTRIENT SAMPLE COLLECTION Samples for nutrient analyses may be stored in polyethylene scintillation vials which hold approximately 22 ml. The vials supplied to you by UNH have been treated as follows: The vials are washed prior to use with hot soapy water, rinsed with distilled water, soaked with approx. 10% HCl acid, and rinsed with low-nutrient, deionized distilled water (DDW). Only DDW has low enough ammonium and silicate. Note that any substitute bottles must be treated in a similar manner to ensure that they are clean. Freshly collected samples should be filtered in the field through $0.45\mu m$ filters (Millipore HA or equiv.), using cleaned and acid-washed plastic syringes (50-60 ml) and 25-mm inline filter holders from Millipore or Gelman. We like the Gelman ones the best. After rinsing the syringe with the sample several times, the syringe is filled and approx. 20 ml of sample filtered and discarded to rinse the filter and holder. Then the vials and caps should be rinsed with the filtered sample three(3) times prior to filling to below the shoulder as shown here: Do not fill the bottles any fuller than the shoulder because when the samples are frozen the caps are pushed out and some sample is lost, rendering the data suspect(useless?). Once the bottle is filled as above and the cap tightened, the samples should be frozen in an <u>upright position</u> as soon as possible, we recommend dry ice. If freezing is not possible immediately, then samples should be kept on ice until they can be frozen. Keep the samples frozen until delivered for analysis. MEMO FROM: T.C. Loder, UNH, 4/14/90 Revision No. 1.0 Date: 21 May 90 Page 12 of 12 Form SCT (5/90) ### Appendix B. Sample custody form. | Project: Project #: | Battelle Ocean Sciences Exxon Study No. 71 | 1990_ | Sampling Date: | | | | |-----------------------------------|--|---------------|----------------|---------------------------------------|--|--| | Number of Sample Type of Samples: | S:
Nutrients | | | | | | | Type of Campios. |
1101101113 | | | | | | | Sample I.D. No. | Description | Sample I.D. N | No. | Description | | | | 71NUT000 | | 71NUT000 | | · · · · · · · · · · · · · · · · · · · | | | | 71NUT000 | | 71NUT000 | | | | | | 71NUT000 | | 71NUT000 | | | | | | 711401000 | | 11711101000 | <u> </u> | | | | | TRANSFER RECO | RD: | | | TI÷: 0.0 | | | | Released by: | Date Re | ceived By: | Date | Time & Comments | | | | | | | | | | | | | | | | | | | ## APPENDIX SOP. Standard Operating Procedures Section 3. Determination of Kjeldahl Nitrogen in seawater 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 # STANDARD OPERATING PROCEDURE For The Determination of Total Kjeldahl Nitrogen in Water - A. Standard Methods for the Examination of Water and Wastewater. 17th ed., 1989, Method 4500-Norg C, 4500-NH3 C. - B. Annual Book of ASTM Standards. 1981. Method D3590. # 1. Scope and Application - 1.1 This method is for the determination of Total Kjeldahl Nitrogen in drinking water, surface and saline waters and domestic and industrial wastes. - 1.2 Total Kjeldahl nitrogen as low as 10 ug/L can be reliably detected using this method. # 2. Summary of Method 2.1 In the presence of H₂SO₄, potassium sulfate (K₂SO₄), and mercuric sulfate (H₈SO₄) catalyst, amino nitrogen of many organic materials is converted to ammonium sulfate (NH₄)₂SO₄. Free ammonia and ammonium-nitrogen are also converted to (NH₄)₂SO₄. The sample containing this nitrogen is digested until SO₃ fumes are obtained and the solution becomes colorless or pale yellow. The residue, a mercury ammonium complex, is cooled, diluted and then made alkaline and thus decomposed with a hydroxide-thiosulfate solution. The ammonia is distilled into a boric acid solution. Addition of nessler reagent results in a color change proportional to the ammonia concentration which can be quantified by spectroscopy and direct comparison to standards. # 3. Sampling and Storage 3.1 Collect sample in a 1 liter chemically cleaned bottle (ASTM method D 3370) and immediately preserve the sample by adding 1 ml of concentrated H₂SO₄ The pH should be 2.0 or less. Store at 4C. If possible, analyze the sample within 24 hours of sampling. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 # 4. Interferences - 4.1 Nitrate: during digestion, nitrate in excess of 10 mg/L can oxidize a portion of the ammonia released resulting in a negative interference. Also, nitrate can be reduced to ammonia, resulting in a positive interference. - 4.2 Inorganic salts and solids: the acid and salt content of the digestion reagent is intended to produce a digestion temperature of 365-370C. If the sample contains a very large quantity of inorganic salts and solids that dissolve during digestion, the temperature may rise above 400C and a pyrolytic loss of N may occur. To prevent this, add 1ml H₂SO₄ per gram of salt in the sample. Add the same amount of acid to both the sample and reagent blank. Too much acid will lower the digestion temperature below 360C and result in incomplete digestion and recovery. # 5. Apparatus - 5.1 Micro Kjeldahl Distillation Apparatus: use an all glass Micro-Kjeldahl still equipped with a steam generating vessel containing an immersion heater, a water cooled condenser with an outlet tip that may be submerged below the surface of the receiving acid, and an outer glass-stoppered funnel to facilitate sample addition. - 5.2 pH Meter. - 5.3 Spectrophotometer: suitable for absorbance measurements at 425nm. - 5.4 Digestion apparatus: use Kjeldahl flasks with a capacity of 100 ml in a semi-micro-kjeldahl digestion apparatus equipped with heating elements to accommodate Kjeldahl flasks and a suction outlet to vent fumes. The heating elements should provide a temperature range of 365-3700 for effective digestion. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 # 6. Reagents - 6.1 Ammonia-free water: prepared by passing distilled water through an ion-exchange column containing a strongly acid cation-exchange resin mixed with a strongly basic anion-exchange resin. Select resins that will remove organic compounds that interefere with ammonia determination. It is very difficult to store ammonia-free water in the laboratory without contamination from gaseous ammonia, therefore, <u>freshly deionized water should be used for all reagents</u>, rinses, blanks, standards and sample dilutions. - 6.2 Stock Ammonium Nitrogen Solution: dissolve 3.819g anhydrous NH4Cl that has been dried at $100c\ 1$ hour, in water and dilute to 1 L. $1.00\,\text{ml} = 1.00$ mg N= 1.22 mg NH3 - 6.3 Standard Ammonium Solution: dilute 10 ml stock solution to 1000 ml with deionized water. 1.00 ml= 10.0 ug N= 12.2 ug NH3 - 6.4 Sodium Hydroxide, 6N: 240g NaOH in 1 liter. - $6.5\,$ Boric Acid Solution (20 g/L): Dissolve 20g boric acid (H3BO3) in water, dilute to 1 L. - 6.6 Dechlorinating agent: Dissolve 1.0g of sodium arsenite (NaAsO₂) in ammonia-free water and dilute to 1 L. 1 ml will remove 1 mg/L of residual chlorine from a 500 ml sample. (0.1 ml for 50 ml sample) Caution: toxic, avoid ingestion. Make fresh weekly. - 6.7 Nessler Reagent: dissolve 50g of anhydrous Mercuric Iodide (HgI₂) and 35g of anhydrous Potassium Iodide (KI) in a small volume of water and add this mixture slowly, with stirring, to a cooled solution of 80g NaOH in 250ml water. Dilute solution to 500 ml. Store solution in a brown bottle in the dark for 5 days. Filter twice through a fritted glass crucible or a glass fiber filter before use. If reagent is stored in a chemically resistant bottle out of direct sunlight, it remains stable up to 1 year. (reagent may be used without 5 day storage if filtered through a rinsed 0.45 um membrane) Caution: toxic. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 - 6.8 Nitrogen QC Standard: 1 ml= 150 mg/L by HACH chemical. - 6.9 Digestion reagent: dissolve 134g K2SO4 in 650 ml water and 200 ml conc. H2SO4. Add with stirring, 25 ml mercuric sulfate solution (2g red HgO in 25 ml 6N H2SO4). Dilute to 1 L. - 6.10 Sodium Hydroxide-Sodium Thiosulfate Solution: dissolve 500g NaOH and 25g Na2S2O3-5H2O in water and dilute to 1 L. # 7. Procedure # 7.1 Digestion - a. Connect up evacuation tube to sink vacuum. - b. Place 50.0 ml of sample or an aliquot (for high samples) in a 100-ml Kjeldahl flask and add 3-4 boiling chips and 10 ml of digestion solution. At the same time start a duplicate and spike per 10 samples, a blank, and a standard curve check sample (QC). A typical spike is 3-5 ml of standard NH3-N (1 ml= 10 ug) A typical QC is 1 ml of 150 ug/ml solution. - c. Evaporate the samples at setting 4 (may have to turn down if bumping occurs) until SO3 fumes are given off, then digest for 30 min at setting 7. - d. Cool the residue and add 25ml water to dissolve. # 7.2 Distillation - A. Close evacuation outlet and place appropriately labeled 50 ml flask containing boric acid beneath condenser tip. - B. Quantitatively transfer sample into distillation apparatus by rinsing the beaker twice and then rinsing the sample inlet cup once. All rinses should not be more than 10 ml total. - C. Close inlet stopper and fill cup with deionized water. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 - D. Push receiving flask up so that condenser tip is below the level of acid. - E. Distill at a rate of 6 to 10 ml/min and at a rate at which steam does not escape from condenser tip nor bubbling of contents in receiving flask occurs. - F. Distill and collect 30 to 40 mls distillate below the surface of 10 ml boric acid. - G. Lower collected distillate free of contact with delivery tube and continue distillation during last 1 or 2 min to cleanse condenser and delivery tube. - H. Tightly seal flask with rubber stopper. - I. Evacuate sample and rinse apparatus 3 times, including one rinse that is allowed to steam approximately 5 min. # 7.3. Nesslerization - A. Neutralize the pH of the distillate with 6N NaOH, before adding 1 ml Nesslers. - B. Prescreen samples for approximate concentration of NH3-N by adding 10 ml sample to a glass test tube and 1 ml Nessler reagent to this sample. Mix. Estimate the concentration and make cuts if needed in 10 ml so that the concentration will fall on the curve. (An orange to brown color indicates high concentration) - C. Add 10 mls of the samples, blanks, dups, spikes, and standards to appropriately labeled test tubes. Write up work sheet in same order as tubes to ease the writing of absorbances every 30 seconds. - D. While watching a timer, add 1 ml Nessler reagent at time 0 to tube 1 (blank) and mix on vortex mixer. At 30 seconds, add 1 ml Nessler to 2nd tube and mix. At 1 min, 3rd tube, etc.. # CHEMICAL & GEOLOGICAL LABORATORIES OF ALASKA, INC. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 E. Reaction time must be the same for all samples, standards and blanks. So after at least 20 minutes from time 0, read the absorbances at 425 nm every 30 seconds starting with tube 1 (blank). If NH3-N concentration is very low in samples, reaction time can be
extended to 30 min for all samples, standards and blanks. # 8. Calculations ug TKN (curve) X Vol Distilled (ml) + Boric acid TKN ug/ml= vol sample digested (ml) X vol tested in nesslerization (ml) | Prepared by: Chris Scon | Date: 8/22/95 | | |-------------------------------|---------------|-----| | State C. Ede | 8-22-40 | *** | | Effective Date: January (1990 | | | # APPENDIX SOP. Standard Operating Procedures Section 4. Microbial Protocols # APPENDIX SOP, SECTION 4 MICROBIAL PROTOCOLS Assessment of microbial populations was an important component of this study since the ultimate fate of spilled petroleum depends on the ability of microorganisms to use hydrocarbons as a source of carbon and energy (Leahy and Colwell, 1990). However, the absolute amount and rate of biodegradation of any petroleum will depend on its composition and specific abiotic environmental parameters. Petroleum is not a single defined organic compound, thus monitoring its biodegradation or transformation is complex, demanding and often relatively inaccurate. Thus, in addition to enumeration of hydrocarbon-oxidizing microorganisms, metabolic equivalents (CO_2 evolution, O_2 consumption, enzyme assays, etc.) are often used to characterize the microbial response in soils or sediments exposed to hydrocarbons (Bartha and Atlas, 1987). microbiology portion of the study was designed to document the numbers of hydrocarbon-oxidizing and heterotrophic microorganisms and the hydrocarbon oxidation potential of microorganisms on fertilized and unfertilized plots in the study areas. ### MOST PROBABLE NUMBER OF MICROORGANISMS Sediment samples were analyzed using the Most Probable Number (MPN) technique for determining the number of heterotrophic and hydrocarbon-degrading microorganisms. While no technique to enumerate specific metabolic types of microorganisms in marine systems is absolute, the MPN technique can give consistent results that are appropriate for relative comparisons among sites and treatments. The "sheen screen" method for enumerating hydrocarbon-degrading microorganisms (Brown and Braddock, 1990) was employed throughout the study. Hydrocarbon-degrading microorganisms are defined as those microorganisms capable of emulsifying a Prudhoe Bay oil sheen layered on Bushnell-Haas marine mineral salts (Difco Laboratories, Detroit, Michigan) broth. Total heterotrophs are defined as those microorganisms capable of growth (turbidity) in marine broth (Difco Laboratories). The procedure calls for inoculation of five 100-ul aliquots of each serially diluted sample into sterile 24-well microtiter plates containing approximately 1.75 ml of sterile broth. Following inoculations, a sheen of sterile Prudhoe Bay crude oil is applied to each well of the Bushnell-Haas plates using a syringe fitted with a 26-gauge needle. Each microtiter plate is incubated at 16 ± 2 C for three weeks following inoculation. Wells are scored as positive when oil emulsification is clearly indicated by disruption of the sheen. ### HYDROCARBON OXIDATION POTENTIAL Radiorespirometry was used to assay the hydrocarbon-oxidation potential of microorganisms in sediment slurries. $[1-{}^{14}C]$ - hexadecane and $[9^{-14}C]$ -phenanthrene were used as paradigms of aliphatic and medium weight polycyclic aromatic hydrocarbons. The assay was designed to be independent of all of the complex factors regulating microbial hydrocarbon metabolism (including hydrocarbon availability) except the microbial biomass and its potential to degrade hydrocarbons in each sample. The rate of $^{14}CO_2$ production (r*; dpm/day) from radiolabelled hydrocarbon is a function of the overall rate of CO_2 production (R; ug/day) and the specific activity of the added radiotracer (A*/(Sn + A); dpm/ug; where A* is the total radioactivity added, Sn is the 'in situ' hydrocarbon concentration and A is the concentration of hydrocarbon added with the radiolabelled hydrocarbon). Therefore, $$\mathbf{r}^* = \frac{\mathbf{R}\mathbf{A}^*}{(\mathbf{S}\mathbf{n} + \mathbf{A})}.$$ The overall rate of CO_2 production (R) is in turn a function of hydrocarbon availability and the biomass, metabolic activity and growth rate of the microorganisms in the sample. r* was assayed in sediment slurries (one part sediment and nine parts sterile seawater) amended with 10 ppm radiolabelled hydrocarbon. After vigorous shaking for 30 minutes, 10-ml aliquots of each sediment slurry were pipetted into sterile 40-ml glass incubation vials fitted with Teflon-lined septa (I-Chem Research, Hayward, CA). Each vial was then injected with 50 ul of a 2 g/l solution of the radiolabelled hydrocarbon (in acetone). Vials were incubated without shaking for various time periods at 16 \pm 2 C, in the dark and killed by adding one ml of 4 M HCl at the appropriate After incubation, r* was measured by recovering 14CO2 by purging the acidified samples with N_2 gas through a toluene-containing Harvey trap (Harvey Biological Supplies, Hillsdale, NJ) into CO_2 sorbing liquid scintillation cocktail and counting the radiolabel in a liquid scintillation counter. r* was standardized to sediment dry weight. By adding 100 ug of hydrocarbon substrate to each vial (10 ppm in each slurry), A in equation (1) is large enough to make Sn negligible for all samples regardless of the degree of oil contamination. By incubating the microorganisms in the samples in identical conditions, the effect of most other external factors is minimized. Therefore, r* is an indicator of the potential for the microbial community assayed to metabolize a particular hydrocarbon. Those microbial communities in sediment samples with high r* imply higher biomass and/or metabolic activity with respect to hydrocarbon degradation. r* measured in this way is not a measure of 'in situ' hydrocarbon mineralization rates. # SEDIMENT DRY WEIGHT Dry weight determinations were obtained for each sediment sample by removing approximately 50g of sediment and weighing in a tared container. The samples were dried at 90 C for 24 hours, cooled, and re-weighed. Sediment dry weights are used to standardize all of the data. ### **QUALITY ASSURANCE** ## MOST PROBABLE NUMBER OF MICROORGANISMS The most probable number (MPN) microbial enumeration procedure is a statistical method that helps ensure the attainment of quality data through its design. Based on the results of a number of replicate inoculations (typically either three or five), the statistically significant MPN of microbes (selected for by the medium) per unit volume is calculated. Positive results in the MPN procedure were scored when the sheen of pre-sterilized oil applied to the surface of the media became emulsified, or in the case of heterotrophs, turbidity resulted. Negative controls were run by preparing sterile media plates not inoculated with sample. ## HYDROCARBON OXIDATION POTENTIAL A number of controls were run to assure the quality of the data for biodegradation potentials. Each incubation had an associated killed control. The latter was used to check for abiotic evolution of radiolabelled- CO_2 for the duration of the incubation period and to correct for duplicates. The controls were killed by addition of 1 ml of 4M HCl. ¹⁴CO₂ capture efficiency was assessed by running samples spiked with known quantities of radiolabelled bicarbonate. The purging system recovers >99% of ¹⁴CO₂ from these radiolabelled bicarbonate samples. Carryover in the purging system was assessed by periodically running acidified water samples through the line. The dpm values from these samples must fall within the range of the blank sediment samples. In addition, the ¹⁴C-labelled products collected in the Harvey traps were monitored on a daily basis. This toluene was replaced daily with a fresh aliquot. Leakage of CO_2 from the sample vials was monitored by looking for bubble production after applying a soap solution. The radiorespirometry measurements were run in duplicate to allow the elimination of unreliable data: 1. First exclude all data pairs where one or both of the duplicates was identified visually as leaking during incubation. The remaining replicates were then compared using a Comparison Index calculated as follows: Comparison Index = (Replicate 1 - Replicate 2) [(Replicate 1 + Replicate 2)/2] - 2. Next compute the mean of all Comparison Index values for a given substrate, and exclude from further consideration those data pairs where the Comparison Index for that data pair falls outside the mean \pm 2 standard deviations. - 3. Use a similar procedure to exclude background control samples that had not in fact been killed. - 4. Calculate the activity attributable to biodegradation of the substrate as the difference between reliable experimental data and the mean of reliable killed controls. ### LITERATURE CITED - Bartha, R. and R.M. Atlas. 1987. Biological effects of petroleum hydrocarbons: assessments from experimental results. IN (eds.) D.F.Boesch and N.N.Rabalais, Long-term environmental effects of offshore oil and gas development. Elsevier Applied Science, New York, NY. - Brown, E.J. and J.F. Braddock. Sheen screen, a miniaturinzed most-probable-number method for enumeration of oil-degrading microorganisms. Appl. Env. Microbiol. 56(12) (in press). - Leahy, J.G. and R.R Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Micobiol. Rev. 54(3):305-315. # APPENDIX SOP. Standard Operating Procedures Section 5. Extraction of sediment samples for low level petroleum analysis | | dez Oil Spill Assessment D OPERATING PROCEDURE | Page 1 of | |--------|---|-----------| | Title: | Extraction of Sediment Samples for Low Level Petroleum Analysis | | SOP No: EVC89-4 Revision No.: 3.0 Effective Date: November 27, 1989 VC89-4 # 1.0 SCOPE AND APPLICATION Assessment of the environmental impact of spilled oil requires that certain chemical parameters be measured in sediment samples
collected from the impacted area. These parameters include selected saturated hydrocarbons, substituted and unsubstituted polynuclear aromatic hydrocarbon compounds (PAH) and heterocyclic compounds, and total petroleum hydrocarbon compounds (PHC). This document describes the application of EPA SW846 Method 3550 and modified Method 3611 for extraction of the petroleum hydrocarbon compounds from sediments and extract cleanup by alumina column chromatography. The method will be used together with SOP EVC89-2 for analysis of unsubstituted and substituted PAH and certain heterocyclic compounds by gas chromatography using mass spectrometry detection (GC/MS), and with SOP EVC89-3 for analysis of saturated hydrocarbon compounds and total oil (PHC) by gas chromatography using flame ionization detection (GC/FID). The method is applicable for the analysis of sediment samples containing PAH at 10 to 800 μ g/kg, and PHC at 10 to 800 μ g/g (wet weight), although it can be applied to samples of higher concentration if spiking levels are adjusted and extracts split for processing based on extract weight. Thirty (30) grams of sediment is spiked with the appropriate surrogates and serially extracted with 1:1 methylene chloride/acetone using sonication techniques. The extract is dried with sodium sulfate, concentrated, and cleaned up using the EPA Method 3611 alumina column cleanup procedure to remove matrix interferences. The alumina cleanup procedure is required prior to PHC or PAH analyses. The aliphatic and aromatic fractions collected from the cleanup column are combined and optionally split into aliquots for analysis. PHC and PAH must be determined on the same 30g sediment sample aliquot. Note: In the EVC89-Series of SOPs, the methods are designed to produce data at certain environmental concentrations in order to satisfy programmatic needs. To achieve these reporting limits (RL), instruments need to be operated at maximum sensitivity for the sample sizes specified. Therefore the RL and the method detection limit (MDL) are conceptually the same value. In these SOPs the method detection limit goal (MDLG) will be used to indicate both the MDL and the RL. | Approved By: | | | |--------------|---------|-------| | | , Exxon | Date: | | Title: | Extraction of Sediment Samples for Low Level Petroleum Analysis | | | |--------------------|---|--------------------------------------|--| | SOP No:
EVC89-4 | Revision No.: 3.0 | Effective Date:
November 27, 1989 | | # 2.0 SAMPLE COLLECTION, PRESERVATION, STORAGE AND HOLDING TIMES - 2.1 Sample Collection-Sediment should be sampled in precleaned glass jars, or core liners, frozen in the field, and shipped frozen to the laboratory. - 2.2 Sample preservation--Sediment samples should be stored at -20°C. Samples should be frozen after careful inspection, and removal of overlying water. After subsampling excess sample should be archived at -20°C in the dark. - 2.3 Holding Times—Frozen samples should be extracted within 30 days of verified sample delivery acceptance. The extract should be analyzed as soon as possible within 90 days after extract preparation. The extract should be stored with sufficient solvent so that extract will not evaporate to dryness during storage either prior to or after analysis. Extract analysis or reanalysis after 90 days is acceptable if surrogate spiking recoveries are acceptable. ### 3.0 INTERFERENCES Method interferences may be caused by contaminants in solvents, reagents, glassware, and other sample processing hardware that lead to discrete artifacts and/or elevated baselines observed by GC/MS or GC/FID detection. All of these materials must be routinely demonstrated to be free from interferences under the conditions of analysis presented in SOPs EVC89-2 and EVC89-3 by running laboratory reagent blanks. Matrix interferences may be caused by contaminants that are coextracted from the sample. Since biogenic and other naturally occurring materials (i.e elemental sulfur) will cause interferences in the analysis of sediment extracts, alumina cleanup with activated copper will be used to eliminate matrix interference prior to GC/MS or GC/FID analysis for PAH and PHC respectively. ### 4.0 APPARATUS AND MATERIALS ### 4.1 Labware and Apparatus Labware must be scrupulously cleaned. Clean all labware as soon as possible after use by rinsing with the last solvent used in it. This should be followed by detergent washing with hot water, and rinses with tap water, reagent water and acetone. Glassware should then be oven dried at 150 to 200°C for a minimum of 30 minutes, and heated in a muffle furnace at 400°C for 15 to 30 minutes. Solvent rinses of benzene or methylene chloride may be substituted for the muffle furnace heating. Volumetric glassware should not be heated in a muffle furnace. After drying and cooling, glassware should be # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 3 of 8 Title: Extraction of Sediment Samples for Low Level Petroleum Analysis SOP No: EVC89-4 Revision No.: 3.0 Effective Date: November 27, 1989 sealed and stored in a clean environment to prevent any accumulation of dust or other contaminants. Store glassware inverted or capped with solvent-washed aluminum foil. The following labware and equipment is needed to perform the sediment extraction and cleanup 250 mL or 500-mL Teflon jars, or other suitable containers Vials: 1-mL glass vials with Teflon-lined caps, 7-mL vials Glass Funnels procedure: 500-mL roundbottom flasks 500-mL Erlenmeyer flasks Ultrasonic cell disrupters: Heat Systems-Ultrasonic, Inc. Model W-385 or equivalent Drying column: 20-mm ID Pyrex chromatographic column with glass wool at bottom and Teflon Stopcock, or Pyrex glass funnel. Concentrator tube: Kuderna-Danish - 10 mL, graduated. Ground glass stoppers are used to prevent evaporation of extracts. Snyder column: Kuderna-Danish - Three ball macro column. Evaporative flask: Kudema-Danish - 500 mL. Attach to concentrator tube with springs or clips. Micro reaction vessels: 2.0 mL or 1.0 mL autosampler vials with crimp cap septa. Chromatographic column: 300-mm x 10-mm ID, with Pyrex glass wool at bottom and Teflon stopcock. Analytical balance capable of weighing to 0.001 mg Analytical balance capable of weighing to 0.1 g Nitrogen blowdown apparatus Note: Balances and volumetric glassware used for sample measurement or introduction of internal standards must be calibrated. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 4 of 8 Title: Extraction of Sediment Samples for Low Level Petroleum Analysis SOP No: EVC89-4 Revision No.: 3.0 Effective Date: November 27, 1989 # 4.2 Reagents Reagent Water. Reagent water is defined as water in which an interferant is not observed at the method detection limit of the compounds of interest. Sodium sulfate: (ACS) Granular, anhydrous (purified by heating at 400 degrees C for 4 h in a shallow tray or other suitable method). Solvents: Acetone, methylene chloride (pesticide quality or equivalent). Alumina: Neutral 80-325 MCB chromatographic grade or equivalent. Dry alumina overnight at 130 degrees C prior to use. Activated copper powder ### 6 N HCI Surrogate spiking solutions: The compounds in the surrogate solutions are naphthalene-d₀, fluorene-d₁₀, and chrysene-d₁₂ for PAH analysis and o-terphenyl for PHC analysis. As general guidance, the surrogate solution is made up at a concentration so that spiking of approximately 100 µl of this solution gives a final concentration each sample is ca. 3 to 10x MDLG for low level PAH and PHC samples. However, spiking levels depend on the expected levels of PAH and PHC in the samples. Refer to SOPs EVC89-2 and EVC89-3 for additional guidance on the preparation of appropriate surrogate spiking solutions for PAH and PHC. Matrix Spike Standard: Refer to SOPs EVC89-2 and EVC89-3 for preparation of appropriate matrix spiking solution. Internal Standard Solution: Refer to SOPs EVC89-2 and EVC89-3 for preparation of appropriate internal standard spiking solution. Boiling chips, solvent extracted, approximately 10/40 mesh, silicon carbide or equivalent. ### 5.0 PROCEDURE # 5.1 Sample Preparation 5.1.1 Thaw sediment sample at room temperature. Decant off overlying liquid from sediment sample. Homogenize the soil sample with a solvent-rinsed stainless steel spatula. Removal of material not representative of the sample (e.g. large | Title: | Petroleum Analysis | | |--------------------|--------------------|--------------------------------------| | SOP No:
EVC89-4 | Revision No.: 3.0 | Effective Date:
November 27, 1989 | rocks) should be performed with the guidance of the Program Manager. Remove 5 g of sediment and place in a pre-weighed aluminum pan. Dry at 105°C for 12 hours and calculate the percent moisture content. For the analysis of core samples or sections, the sample should be obtained by extrusion of the frozen core after slight warming the outside liner so that extrusion of the frozen sediment can take place. Core sectioning, or subsampling must be conducted under the direction of the Program Manager. - 5.1.2 Add 30 g (wet weight) of the sample to a 250 or 500 mL Teflon or disposable glass jar. Mix in 60 g sodium sulfate. If the sample has excess moisture, add additional sodium sulfate. - 5.1.3 Add surrogates. Spike with PAH and/or PHC surrogates such that the final extract concentration is 240 ng/mL and/or 20 µg/mL, respectively. Note: Higher spiking levels are required for samples in which moderate to high oil levels are expected. As guidance, spiking levels should be increased by a factor of 10 if oil is visually observed, and by a factor of 100 if heavy oil (i.e. total coverage of substrate) is observed. - 5.1.4. Add 100 mL of 1:1 methylene chloride/acetone to the sample. Sonicate for 3 min with the output knob set at 10, the mode switch on pulse and the percent duty knob set at 50 percent.
After extraction, decant solvent into an Erlenmeyer flask. - **5.1.5.** Repeat step 5.1.4 two more times combining all extracts. Mix the sample thoroughly between extraction steps. - 5.1.6. Filter and dry the extract with glass wool and sodium sulfate. - 5.1.7. Concentrate the extract by Kuderna-Danish techniques to 4-5 mL. Add 50 mL hexane and reconcentrate sample by Kuderna-Danish and/or nitrogen evaporation to exactly 1.0 mL. - 5.1.8. Remove $50 \mu L$ of the extract for aliquot weight determination. Transfer the aliquot to a tared pan, dry, and weigh to ± -0.001 mg. ### 5.2 Alumina Column Cleanup | Title: | Extraction of Sediment Samples for Low Level Petroleum Analysis | | | |--------------------|---|-------------------|--------------------------------------| | SOP No:
EVC89-4 | | Revision No.: 3.0 | Effective Date:
November 27, 1989 | - 5.2.1. Fill the glass chromatographic column to about 20 cm with hexane. Add 2 g of activated copper to the column, then 10.0 g alumina. Gently tap the column to distribute the alumina evenly. Alternatively, a slurry of alumina in hexane may be used to pack the column. - 5.2.2. Allow the alumina to settle and then add 1.0 g of anhydrous sodium sulfate on top of the alumina and 10.0 g of activated copper. - 5.2.3. Drain the hexane and elute the column with 50 mL hexane. Drain the column until the head of the liquid in the column is just above the sodium sulfate layer. Close the stopcock to stop solvent flow. - 5.2.4. If the extract weight determined in step 5.1.8 indicates an extract weight in excees of this amount, the extract must be split and only a fraction added to the column. In this case the split ratio must be recorded and the ratio taken into account in final calculations. Transfer the 1.0 mL of sample extract or extract split onto the column. Rinse out the extract vial with 1 mL methylene chloride and add it to the column immediately. To avoid overloading the column, it is suggested that no more than 300 mg of extractable organics be placed on the column. - 5.2.5. Just prior to exposure of the sodium sulfate plug on the column to the air, add 100 mL methylene chloride, and elute at a flow rate of 2 mL/min. Collect the effluent in a 250 mL Erlenmeyer flask or a Kuderna-Danish evaporative concentrator. The collected fraction contains aliphatic and aromatic hydrocarbons as defined in EPA Method 3611. - **5.2.6.** Concentrate the extract as above in 5.1.7 to 5 mL. # 5.3 Preparation for Instrumental Analysis 5.3.1. The extract from the alumina column should be concentrated to 5 mL for PAH and PHC analysis. Refer to instrumental analysis SOPs for guidance on addition of PAH internal standards (defined in SOP EVC89-2) and PHC internal standard (SOP EVC89-3). It is recommended that the sediment extract be split; 20% for PAH analysis and 80% for PHC analysis. # **6.0 INSTRUMENTAL ANALYSIS** Instrumental analysis of sediment extracts for PAH will be carried out following SOP EVC89-2 or EVC89-7, and for PHC following SOP EVC89-3. In both cases, sample extracts may need to be | Title: | Extraction of Sediment Samples for Low Level Petroleum Analysis | | | |---------|---|---------------|-------------------| | SOP No: | | Revision No.: | Effective Date: | | EVC89-4 | | 3.0 | November 27, 1989 | diluted or the concentrations of the instrumental calibration curves extended to cover the range of potential analyte concentration found in contaminated sediment samples. This method is applicable to the analysis of heavily oiled sediment samples if appropriate increases in surrogate spikes and internal standards are made and extract volumes adjusted. # 7.0 QUALITY CONTROL Quality control samples must be processed in an identical manner as actual samples. - 7.1 One method blank must be run with every 20 samples, or with every sample set, whichever is more frequent. Blank levels should be no more than 5x MDL. If blank levels for any component are above 5x MDL, samples analyzed in that sample set should be reextracted and reanalyzed. If sample cannot be reextracted and reanalyzed, flag data to indicate to the data user to take appropriate action. - 7.2 Matrix spike/matrix spike duplicate (MS/MSD) samples should be run with every 20 samples, or with every sample set, whichever is more frequent. MS/MSD compounds are presented in SOPs EVC89-2 and EVC89-3. Appropriate spiking level is 3 to 10x the method detection limit. - 7.3 Surrogate materials must be spiked into every sample and QC sample. Surrogate materials are presented in SOPs EVC89-2 and EVC89-3. Appropriate spiking level is 3 to 10x the method detection limit. - 7.4 Surrogate and matrix spike recovery acceptance criteria: Refer to SOP No. EVC89-2 or EVC89-3 for appropriate recovery acceptance criteria. - 7.4 A Reference standard solution containing crude oil, when available, should be analyzed with each batch of samples. Refer to analytical SOPs for further guidance. ### **8.0 CALCULATIONS** Refer to EPA Method 3550 for calculation of percent moisture. Other calculations are presented in SOPs EVC89-2 and EVC89-3. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 8 of 8 | Title: | Extraction of Sediment Samples for Low Level Petroleum Analysis | | | |---------|---|---------------|-------------------| | SOP No: | | Revision No.: | Effective Date: | | EVC89-4 | | 3.0 | November 27, 1989 | # 9.0 REPORTING - 9.1 Reporting units are μ g/kg for PAH, μ g/kg for PHC, and μ g/g for gravimetric weight (dry weight). Percent moisture must be reported. - 9.2 MDLG or Reporting limits are 10 μ g/g for total crude oil, and 0.1 μ g/g for individual alkanes, and 10 μ g/kg for individual PAH compounds. - 9.3 Results of Matrix Spikes, Surrogate Recoveries, and Reference Material Analyses should be reported. - 9.4 Data will be reported to two (2) significant figures. # APPENDIX SOP. Standard Operating Procedures Section 6. Determination of low level total extractable hydrocarbon and individual saturated hydrocarbon concentrations in environmental samples # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 1 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: Revision No. 3.0 Effective Date: November 27, 1989 **EVC89-3** #### 1.0 INTRODUCTION This document describes modification and utilization of EPA Method 8100 for the instrumental analysis of environmental samples for the analysis of petroleum hydrocarbons (PHC); C₁₀ through C₁₂ normal alkanes, pristane and phytane, and total petroleum hydrocarbon concentrations (resolved plus unresolved aliphatic (i.e. saturated) and aromatic hydrocarbons (C_{10} to C_{30}) as defined by EPA Method 3611). The method relies on high resolution capillary gas chromatography using flame ionization detection (GC) for identification and quantification of the above analytes. Combined with SOPs EVC89-1, EVC89-4, or EVC89-5, this method allows for quantitative determination of compounds in the n- C_{10} to approximately n- C_{50} range. Compounds eluting before n- C_{10} will not be quantitatively recovered. Prior to use of this method, appropriate sample extraction techniques must be followed. Sediment, biological tissue, and oil residue extracts must be processed through alumina before GC analysis. The alumina column is optional for water analyses. PAH and PHC must be determined on the same field sample. Note: This method can be used for quantification of PHC at any levels in environmental samples. However, the amounts of spiking materials, and final sample extract volumes will have to be adjusted upward to allow for use of this method in the analysis of samples with high levels of oil and PHC. Note: In the EVC89-Series of SOPs, the methods are designed to produce data at certain environmental concentrations in order to satisfy programmatic needs. To achieve these reporting limits (RL), instruments need to be operated at maximum sensitivity for the sample sizes specified. Therefore the RL and the method detection limit (MDL) are conceptually the same value. In these SOPs the method detection limit goal (MDLG) will be used to indicate both the MDL and the RL. SAMPLE COLLECTION, PRESERVATION, STORAGE, AND HOLDING TIMES Refer to SOPs EVC89-1, EVC89-4, and EVC89-5 for sample collection, preservation, storage and holding times for water, sediment, and tissue samples, respectively. The extract should be analyzed as soon as possible within 90 days after extract preparation. The extract should be stored with sufficient solvent so that extract will not evaporate to dryness during storage either prior to or after analysis. Extract analysis or reanalysis after 90 days is acceptable if surrogate spiking recoveries are acceptable. # 3.0 APPARATUS AND MATERIALS SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 A GC with split/splitless injector (splitless mode) equipped with a capillary column and flame ionization detector (FID). The output must be connected to a data acquisition system analyzer for the chromatograms. - 3.1 GC Column-30-m long x 0.32-mm I.D. capillary DB5 column (J&W Scientific Catalog No. 123-5032, or equivalent). This column will allow for the baseline resolution of alkanes from n-C₁₀ to n-C₂₆ and phytane/n-C₁₂ and pristane/n-C₁₇ pairs. - 3.2 Autosampler-An autosampler capable of making 1-4 µL injections. ### 4.0 REAGENTS ### 4.1 Calibration Solution The stock solution should contain all available normal alkanes from C_{10} to C_{36} . However, at a minimum, a stock solution containing the following n-alkanes should be prepared: C_{10} , C_{12} , C_{14} , C_{16} , C_{18} , C_{20} , C_{22} , C_{24} , C_{23} , and
C_{32} and matrix spike compounds (Section 4.4). In addition, the isoprenoid hydrocarbons, pristane, and phytane should be included. The use of the odd carbon number normal alkanes is strongly recommended. The concentration will be $1 \mu g/\mu L$ in isooctane or hexane. Calibration standards should be prepared to cover, at a minimum, the concentration range of 1.25 to 240 μ g/mL. Internal standard and surrogate compound should be added at the 20 μ g/mL level to all calibration standards. ### 4.2 Surrogate Spiking Solution The surrogate compound for this analysis for all sample types is ortho-terphenyl. A surrogate solution is made by weighing an appropriate aliquot of purified material to a volumetric flask and diluting to volume with methylene chloride. Surrogate should be added to each sample at a concentration 3 to 10x MDLG for low level analyses and higher concentrations if oil is suspected to be in the sample. SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 # 4.3 Internal Standard Solution The internal standard for this analysis is 5-alpha-androstane. An internal standard solution is made by weighing an appropriate aliquot of purified material to a volumetric flask and diluting to volume with methylene chloride. Internal standard should be added to each sample extract to obtain a final extract concentration of approximately 20 µg/mL for low level analysis and higher concentrations if oil is suspected to be present in the sample. # 4.4 Matrix Recovery Spiking Solution The matrix recovery spiking solution should, at a minimum, consist of the following: $n-C_{15}$, $n-C_{20}$, and $n-C_{30}$. The matrix spike compounds should be added to samples at a concentration 3 to 10x MDLG for low level analysis and at much higher concentrations if oil is suspected to be in the samples. # 4.5 Retention Index Solution A retention index solution comprised of individual n-alkanes, $n-C_{10}$ through $n-C_{36}$, and pristane and phytane will be prepared to document relative retention times for all compounds eluting in the range of petroleum crude oil. The solution should be prepared from authentic materials of known purity. Note: The calibration solution and the retention index solution may be one in the same. If so, calibration compounds will be a subset of retention index compounds. ### 5.0 PROCEDURE # 5.1 Sample Extraction and Cleanup Water samples are extracted and processed following SOP EVC89-1. Sediment samples are extracted and cleaned up following SOP EVC89-4. Tissue samples are extracted and cleaned up following SOP EVC89-5. Oil samples are prepared for analysis according to SOP EVC89-6. For water analyses and for tissue analyses the same extract is to be used for PAH and PHC (SOP EVC89-3) analyses. For sediment extracts 20% of the total sample extract is # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 4 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 recommended for use in the GC/MS (SIM) analysis, with the remaining used in the PHC analysis (SOP EVC89-3) although the entire extract may be used for both analyses with the appropriate changes in internal standard spiking amounts. If any split of the initial extract is made, the split ratio must be taken into account during final calculations. # 5.2 Addition of Internal Standard The 5mL sample extracts prepared as per these SOPs are reduced in volume to 1mL. Sufficient PHC internal standard (5-alpha-androstane) is added so that the final extract concentration is approximately 20µg/mL for PHC. Higher amounts of internal standards will be needed for samples in which high levels of oil are suspected. # 5.3 High Resolution GC-FID Analysis ### **5.3.1** GC Conditions The recommended analytical system for the analysis of PHC is as follows. Instrument: Hewlett Packard 5880A (or equivalent) Features: Split/splitless capillary inlet system; VG, Beckman Cals data acquisition system (or equivalent) Inlet: Splitless Detector: Flame ionization Column: 0.32-mm I.D. x 30-m DB5 fused silica (J&W Scientific) Gases: Carrier: Make-Up: Helium 2 mL/min Helium 25 mL/min Detector: Air 240 mL/min Hydrogen 50 mL/min # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 5 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 # Temperatures: Injection port: 275°C Detector: 325°C Oven Program: 60°C for 1 min then 6°C/min to 300°C, hold 5 min (GC oven temperature program may be modified to improve resolution) Daily calibration: Mid-level calibration solution: Retention index solution Quantification: Internal standard/calibration standard. Note: The GC must be capable of the baseline resolution of all target compounds (n-alkanes, pristane, phytane) surrogates (ortho-terphenyl), and internal standard (androstane) from each other and from interfering compounds. Potential problems of resolution of n-C₁₉ and ortho-terphenyl at varying relative concentrations should be noted. Alteration of the GC program to 4 C/min may be required to achieve this goal. ## 5.3.2 Calibrations ### 5.3.2.1 Procedure Two types of calibrations are required - <u>initial</u> and <u>daily or routine</u> calibrations. GC calibration will be carried out following procedures described in EPA SW-846 Method 8000 Section 7.4. Quantification of individual components will be made using response factors determined in the <u>initial</u> calibration. Prior to use of the method for individual component or total PHC analysis, a five-point response factor calibration curve must be established showing the linear range of the analysis. A minimum of five concentration levels should be analyzed. One of the concentration levels should be at a concentration near, but above the method detection limit. The remaining concentrations should correspond to the expected working range of the GC, or the range expected in samples. A range of 1.25 to 240 µg/mL is recommended. The calibration factor must be linear within this range linearity is established, an average calibration factor # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 6 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: Revision No. 3.0 Effective Date: November 27, 1989 **EVC89-3** (response factor, RF) may be used for the analysis of samples. The initial calibration must be verified each working day by the measurement of one or more calibration standards. Quantification of individual components in the samples is to be performed using RF for that component determined from the initial calibration. The RF for each individual hydrocarbon component is calculated from authentic material, and is used to calculate analyte concentrations in samples. If an individual saturated hydrocarbon is missing from the calibration solution, an RF is estimated for that hydrocarbon from the average RF of hydrocarbons eluting immediately before and after in the chromatogram. For total petroleum hydrocarbon (PHC) determination only, an average RF is calculated from only those even numbered n-alkanes listed in Section 4.1 and used for the calculation of total petroleum hydrocarbon (resolved plus unresolved) concentrations (i.e. PHC). Use of a selected subset of universally available hydrocarbons will ensure that the average RF used to calculate total resolved plus unresolved will be the same for all laboratories performing these analyses. For routine or daily calibration, a mid-level standard is analyzed immediately prior to conducting any analyses, and after each group of 10 samples. The response factors (RF) criteria for each analyte must be met as presented below in Section 5.2.2.2. ## 5.3.2.2 Calibration Criteria Daily response factors for each compound must be compared to the initial calibration curve. Comparison of daily with initial calibrations must yield the following results in order for analysis to proceed. - o The RRF of 90% of the analytes must be within ±25% of the average RRF computed from the initial calibration. - o The remaining 10% of the analytes must be within +35% of the average RRF. If these criteria are not met an initial calibration must be performed. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 7 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 ### 5.3.3 Retention Time Windows Retention time windows must be established and maintained according to procedures outlined in EPA Method 8000, Section 7.5. Three times the standard deviation of the retention time for a compound will be used to calculate a suggested window size. However, the experience of the analysts should weigh heavily in the interpretation of chromatograms. The retention index solution should be analyzed once per day or with every set of 20 samples, whichever is more frequent. The retention index solution may be used to calculate retention time windows. ### 5.3.4 Sample Analysis Analyses will follow an analysis sequence initiated with a routine or daily calibration, followed by ten samples, and ending with a routine calibration. Every 20 samples, or once a day when samples are being analyzed, whichever is more frequent, a retention index solution should be analyzed. If the RF for any analyte in the routine calibration fails to meet the criteria established in Section 5.2.2.2, the routine calibration should be reinjected and if it fails the second time, instrument maintenance should be performed and an initial calibration performed. All
samples that were injected after the standard exceeding criteria must be reinjected. Sample injections should be made with an autosampler device and should consist of 1 to 4 μ L of the sample extract. If the response for any peak exceeds the working range of the system, the extract should be diluted and reanalyzed. ### 5.3.5 Calculations Calculations are based on the methods of internal standards. The general formula for calculating PHC is found in Section 7.8.2 of EPA SW-846 Method 8000. See Section 7.1 of this method for details of the calculation. SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 # 6.0 QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) REQUIREMENTS # 6.1 Initial Calibration and Routine or Daily Calibration Check Prior to the use of the method for low level analysis of individual components or total PHC, a five-point response factor calibration curve must be established showing the linear range of the analysis. Each calibration standard is analyzed and the area of the response factor (RF) for each compound at each concentration level is calculated using the equation the presented in Section 7.0. For every 10 sample analyses or once each day samples are analyzed, the response factor for each compound of interest relative to the internal standard is determined. These daily response factors for each compound must be compared to the initial calibration curve. The percent difference is calculated using the following equation: Percent Difference = $$\frac{RFI - RFC}{RFI} \times 100$$ where: RFI =Average response factor from initial calibration. **RFC** =Response factor from current verification check standard. If the daily response factors meet the criteria presented in Section 5.2.2.2 the analysis may proceed. If, for any analyte, the daily response factor does not meet these criteria, a five-point calibration curve must be repeated for that compound prior to the analysis of the samples. ## 6.2 Method Blank Analysis An acceptable method blank analysis must not contain any target compound at concentrations 5 times greater than the MDLG. If the method blank does not meet these criteria, the SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 analytical system is out of control and the source of the contamination must be investigated and corrective measures taken and documented before further sample analysis proceeds. # 6.3 Surrogate Compound Analysis The laboratory will spike all samples and quality control samples with ortho-terphenyl (OTP). OTP will be spiked into the sample prior to extraction and this will measure individual sample matrix effects associated with sample preparation and analysis. The laboratory will take corrective action whenever the recovery OTP is outside of 40 to 120 percent for water, sediment and tissue matrices. The following corrective action will be taken when required as stated above: - a. Check calculations to assure there are no errors; - b. Check internal standard and surrogate solutions for degradation, contamination, etc., and check instrument performance; - c. If the surrogate could not be measured because the sample required a dilution, no corrective action is required. The recovery of the surrogate is recorded as "D" with the note surrogate diluted out. - d. Reanalyze the sample or extract if the steps above fail to reveal a problem. If reanalysis of the extract yields surrogate recoveries within the stated limits, then the reanalysis data will be used. Both the original and reanalysis data will be reported. # 6.4 Matrix Spike Analysis The laboratory will spike and analyze one set of MS/MSD samples for every 20 samples or with every sample set, whichever is more frequent. The compounds and the spiking levels are presented in Section 4.4. The initial matrix spike criteria for water, sediment and tissue analysis are as follows: • The average of the percent recoveries for all compounds must fall between 40 and 120 percent. SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 • Only one compound can be below its required minimum percent recovery. If the matrix spike criteria are not met, the matrix spike analysis will be repeated. If the subsequent matrix spike analysis meets the criteria, then the reanalysis data will be used. If not, the data for the sample will be reported, but qualified as being outside the acceptance criteria of the method. Both the original and reanalysis data will be reported. ### 6.5 Method Detection Limit The actual method detection limit will be determined following procedures outlined in Federal register (1984), Vol. 49 No. 209: 198-199. The MDL should be determined for each sample extraction and analysis SOP pair [e.g. Water Extraction (EVC89-1) and PHC Analysis (EVC89-3)]. This determination will be repeated at least once per year. ### 6.6 GC Resolution The target compounds, surrogate, and internal standard must be resolved from one another and from interfering compounds. Complete baseline resolution of the $n-C_{17}/P$ ristane and $n-C_{19}/P$ nytane pairs is required. Baseline resolution of OTP and $n-C_{19}$ much be achieved as well. Potential problems may arise from the lack of baseline resolution of these compounds. Corrective action, i.e. reruns with a different temperature program, should be taken. # 6.7 Reference Sample Analysis A reference crude oil standard solution, when available, will be analyzed for PHC by methods presented in this SOP. One sample will be analyzed per batch of 20 samples, and the results will be used to establish laboratory QC charts. The results should agree within 30% of the mean of the previously reported PHC data used to construct the control charts. # 7.0 CALCULATIONS # 7.1 Calculation of Total Area Attributable to Petroleum (PHC) To calculate the concentration of total petroleum hydrocarbons (PHC) in the sample, the area response attributed to the petroleum must first be determined. This area includes the all of the resolved peaks and the unresolved "envelope". This total area must be adjusted to remove the area response of the internal standards and surrogates and the GC column bleed. SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 Column bleed is defined as the reproducible baseline shift that occurs during temperature programming of the GC column oven. To determine this area, a methylene chloride blank injection should be analyzed at the beginning of the day and after every 10 samples to determine the baseline response. The baseline is then set at a stable reproducible point just before the solvent peak $(T_o, Figure 1)$. This baseline should be extended horizontally to the end of the run (T_o) . The area for the blank run that must be subtracted from the actual sample run, includes all of the area between C_{10} (T_o) and C_{20} (T_o) or "Area A" in Figure 1. The baseline for the sample should be set in the same manner. The area in the sample will contain the area attributable to petroleum (Area B) and that attributable to the baseline (Area A). Area B (peaks plus unresolved attributable to petroleum) must be calculated by subtracting Area A and those for the standards from the total area, or, $$A_{PHC} = A_T - (A_A + A_S)$$ where. A_{PHC} = Corrected area of the chromatogram attributable to PHC A_{τ} = Total area of the chromatogram A_A = Area due to column bleed A_3 = Area of the internal and surrogate standards. The PHC is then calculated according to the equation in Section 7.2. Note: If the GC data system is capable of automatically compensating for the column bleed, as defined above, by chromatogram subtraction of the methylene chloride blank, the above manual steps need not be taken. However, the overall principles are identical whether the correction is manual or automatic. As the concentration of PHC in the sample approaches the detection limit, the baseline correction becomes more critical. Therefore the following suggestions may help to improve the accuracy of the method. Mass discrimination must be kept to a minimum by placing a small plug of silanized glass wool one cm from the base of the glass injection liner. The capillary column should be placed just below the glass wool. A full range alkane standard should be run to test the degree of mass discrimination before performing any actual sample SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 FIGURE 1. PHC QUANTITATION METHOD # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 13 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 analyses. The response factor ratio of C_{12}/C_{21} should be greater than 0.8. If less than 0.8, reposition the column in the glass liner until the mass discrimination is minimized. - 2. The instrument sensitivity must be maximized. Injection of 2μL of a lng/μL hydrocarbon standard should yield a detector signal-to-noise ratio of between 10:1 and 20:1 for the individual alkanes. - Samples should be prescreened based on color. Low level clear samples should be analyzed separately from high level, colored, samples in order to minimize baseline drift and potential carryover. - 4. Holding the column temperature at 310 degrees for 5 minutes after the GC run is useful to minimize carryover. Methylene chloride runs should be compared to monitor and baseline shift. - 7.2 PHC calculations are based on the methods of internal standards from Section 7.8.2 of EPA SW-846 Method 8000: - PHC $\mu g/(L \text{ or } g)$: = $(A_x \times C_h \times D)/(A_h \times RF \times S)$ # where: - A_e = The corrected area of the sample chromatogram. (A_e = total resolved + unresolved area) minus the area of internal standards). - $C_{\mathbf{k}} = \mu \mathbf{g}$ of internal standard (I.S), androstane added to the extract - D = Dilution factor - A_{in}
= Area response of the I.S. 5- α and rostane - RF = Average response factor of the continuing calibration standard - S = Amount of sample extracted--in L for water, in g for sediments or tissue samples. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 14 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 • RF = average of $(A_x \times C_b)/(A_b \times C_s)$ #### where: A, = Response of analyte to be measured $A_{\mathbf{h}}$ = Response of internal standard (5- α androstane) C_{ij} = Concentration of the internal standard 5- α and rostane, μg C_{r} = Concentration of the analyte to be measured, μg . #### 7.3 Calculation Notes 7.3.1 To each sample, a specific amount of ortho-terphenyl surrogate is added. The recovery of this surrogate is monitored in each sample using the response of the androstane I.S. added to the final extract. Percent OTP recovery = $(A_{cop} \times C_{max})/(C_{cop} \times A_{max})$ #### where: $A_{\perp \perp}$ = Area of 5- α androstane A_{max} = Area of OTP $C_{\infty} = \mu g$ of OTP added to the sample C_{\perp} = μ g of 5- α androstane added to the sample extract. 7.3.2 The saturated hydrocarbons $n-C_{10}$ through $n-C_{14}$ may not be quantitatively recovered by the method due to volatility. Concentrations of individual n-alkanes, n-C₁₀ through $n-C_{14}$ are considered estimates. Total resolved plus unresolved hydrocarbon (e.g. total PHC) should be determined from $n-C_{10}$ to $n-C_{36}$. The PHC, or total hydrocarbon concentration is therefore an estimate. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 15 of 15 Title: Determination of Low Level Total Petroleum Hydrocarbon and Individual Saturated Hydrocarbon Concentrations in Environmental Samples SOP No: EVC89-3 Revision No. 3.0 Effective Date: November 27, 1989 #### 8.0 REPORTING - 8.1 Reporting Units—Units are reported in $\mu g/L$ for water, $\mu g/g$ (dry weight) for sediments, and $\mu g/g$ (wet weight) for biological tissue. - 8.2 Reporting Limits or MDLG -- Reporting limit/Method Detection Limit goals for water are approximately 50 μ g/L for PHC and 0.2 μ g/L for individual normal alkanes and isoprenoids. Goals for sediments are 10 μ g/g for PHC 0.1 μ g/g for individual alkane and isoprenoid hydrocarbons. MDLG or Reporting limit goals for biological tissue are 10 μ g/g PHC and 0.1 μ g/g individual alkane and isoprenoid hydrocarbons. Actual detection limits must be determined before the initiation of sample analyses. - 8.3 Significant Figures—Significant figures are 2. - **8.4** Surrogate Recovery--Surrogate recovery is reported for each sample analyzed. - 8.5 Matrix Spike- Matrix spike recoveries should be reported for each batch of samples analyzed - **Reference Materials--**The results of the analysis of the crude oil standard reference solution, when available, will be reported for each batch of samples analyzed. # APPENDIX SOP. Standard Operating Procedures Section 7. Determination of low-level Polynuclear aromatic hydrocarbons (PAH) and selected heterocycles | | dez Oil Spill Assessment RD OPERATING PROCEDURE | Page 1 of 21 | |--|---|--| | Title: | Determination of Low-level Polynuclear Ar
Heterocycles | omatic Hydrocarbons (PAH) and Selected | | SOP No.:
EVC89-2 | Revision No.
3.0 | Effective Date:
November 27, 1989 | | 1.0 SUN | MMARY OF METHOD | | | selected he ng/L) in w of the isola the selected this method extract con Scan GC/M | od has been designed for the analysis of polyeterocyclic compounds and their alkylated horeater, and at part-per-billion levels in sediment ated target analytes is performed by gas chroad ion monitoring mode (SIM). Samples of a diff the appropriate dilutions and/or splits are accentrations into the useable range of the met MS) can be used for high level samples. The ely determined using this analytical method. | nologues at the parts-per-trillion level (ppt, t and biological tissue samples. Quantitation matography mass spectrometry (GC/MS) in my PAH concentration can be analyzed by made on the extracts in order to bring the hod. Alternatively, EVC89-7 (PAH by Full | | This method | od describes the final preparation of sample e IM). | extracts for analysis and their analysis by | | instruments
the RL and | C89-Series of SOPs, the methods are designed one in order to satisfy programmatic needs, as need to be operated at maximum sensitivity of the method detection limit (MDL) are concepted in the concept (MDLG) will be used to in | To achieve these reporting limits (RL), for the sample sizes specified. Therefore eptually the same value. In these SOPs the | | 2.0 INT | TERFERENCES | | | sample proprofiles. | terferences may be caused by contaminants in occassing hardware that lead to discrete artifact All of these materials must be routinely demonstrated on the analysis by running laboratory reasons. | ts and/or elevated baselines in the ion current
onstrated to be free from interferences under | | extent of i | erferences may be caused by contaminants the matrix interferences will vary considerably from the environment being sampled. | | | Approved | By: | | | - - | , Exxon | Date: | TABLE 1. PAH AND ALKYL PAH TARGET COMPOUNDS | Compounds | IS Reference | Compounds | IS Reference | |--|--------------|--|--------------| | Naphthalene | 1 | Fluoranthene | 2 | | C ₁ -Naphthalenes | 1 | C ₁ -Fluoranthenes ^a | 2 | | C;-Naphthalenes; | 1 | • | | | C'-Nabiichatenes | 1 | Pyrene | 2 | | C ₄ -Naphthalenes ^a | 1 | C ₁ -Pyrene ^a | 2 | | Acenaphthylene | 1 | Benzo[a]anthracene | 3 | | Acenaphthene | 1 | Chrysene | 3 | | | | C ₁ -Chrysene ^a | 3 | | Fluorene | 1 | C ₂ -Chrysene | 3 | | C ₁ -Fluorenes ^a | 1 | C3-Chrysene | 3 | | C ₂ -Fluorenes ^a | ī | C ₄ -Chrysene ^a | 3 | | C ₃ -Fluorenes | ī | O ₄ chizysene | 3 | | C3-r 1uorenes | • | Benzo[b]fluoranthene | 3 | | Dibenzothiophene | 2 | | | | C ₁ -Dibenzothiophenes | 2 | Benzo[k]fluoranthene | 3 | | C2-Dibenzothiophenes | 2 | | • | | C ₃ -Dibenzothiophenes | 2 | Benzo[a]pyrene | 3 | | Phenanthrene | 2 | <pre>Indeno]1,2,3-c,d]pyrene</pre> | 3 | | C,-Phenanthrenes | 2 | | | | C ₂ -Phenanthrenes | 2 | Dibenzo[a,h]anthracene | 3 | | C ₃ -Phenanthrenes | 2 | - • - | | | C ₄ -Phenanthrenes ^a | 2 | Benzo[g,h,i]perylene | 3 | | Anthracene | 2 | | | | C ₁ -Anthracenes ^a | 2 | | | | C2-Anthracenesa | 2 | | | | C3-Anthracenes | 2 | | | | C ₄ -Anthracenes | 2 | | | | Internal Standards | | | | | Acenaphthene-d ₁₀ | 1 | | | | Phenanthrene-d ₁₀ | 2 | | | | Benzo (a) pyrene-d ₁₂ | 3 | | | | Surrogates | | | | | Naphthalene-d ₈ | 1 | | | | Fluorene-d ₁₀ | 1 | | | | Chrysene-d ₁₂ | 3 | | | ^aAlkylated homologues not included in calibration solution. Note: Alkylated phenanthrenes and anthracenes, and alklylated fluoranthenes and pyrenes are quantified together as total alkylated (Cx) phenanthrene/anthracenes and total alkylated (Cx) fluoranthenes/pyrenes. Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: Revision No. Effective Date: November 27, 1989 EVC89-2 3.0 An interference which is unique to selecting ion monitoring techniques can arise from the presence of an interfering compound which contains the quantitation mass ion. This event results in a positive interference to the reported value for the compound of interest. This interference is controlled to some degree by acquiring data for a confirmation ion. If the ion ratios between the quantitation ion and the confirmation ion are not the specified limits, then interferences may be present. #### 3.0 APPARATUS AND MATERIALS ### 3.1 Gas Chromatograph The analytical system includes a temperature programmable gas chromatograph and all required accessories including syringes, analytical columns, and gases. The injection port is designed for on-column injection when using packed columns and for splitless injection when using capillary columns. #### 3.2 Column A 25- or 30-m fused silica capillary column with DB-5 bonded phase, or equivalent. Capillary columns of 0.25 mm or 0.32 mm i.d. may be used. #### 3.3 Mass Spectrometer A mass spectrometer operating at 70 ev (nominal) electron energy in the electron impact ionization mode and tuned to maximize the sensitivity of the instrument to the compounds being analyzed. The GC capillary column is fed directly into the ion source of the mass spectrometer. A computer system interfaced to the mass spectrometer allows the continuous acquisition and storage on machine-readable media of all mass spectra obtained throughout the duration of the chromatographic program. The computer has software that allows searching any GC/MS data file for ions of a specific mass and plotting such ion abundances versus time or scan number. The computer allows acquisition at pre-selected mass windows for selected ion monitoring. Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected
Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 ## 4.0 REAGENTS #### 4.1 Surrogate Spiking Solution A surrogate solution is made by weighing an appropriate aliquot of each purified compound into a volumetric flask and diluting to volume with methylene chloride or other suitable solvent and added to the sample prior to extraction. The compounds in the surrogate solutions are naphthalene-d₀, fluorene-d₁₀, and chrysene-d₁₂. As general guidance, for low level of expected PAH concentrations in the samples the surrogate solution is made up at a concentration so that spiking of approximately 100 µl of this solution gives a final concentration each sample is ca. 3 to 10x MDLG. For sediments and tissues (See SOPs EVC89-4 and EVC89-5 for guidance) the amount of surrogates spiked will depend on the anticipated level of oil in the sample. ## 4.2 Internal Standard Solutions A solution containing ca. 400 ng/mL of each internal standard is prepared by weighing an appropriate aliquot of each purified compound into a volumetric flask and diluting to volume with methylene chloride or other suitable solvent. The compound(s) chosen as the internal standard should be clearly resolved from the analytes of interest and elute within a reasonable range of the analytes of interest. Possible internal standards include acenaphthene-d₁₀, phenanthrene-d₁₀, benzo(a)pyrene-d₁₂. Other suitable internal standards may be used if acceptable calibration response factors can be obtained. Add sufficient internal standard solution to the extract prior to analysis to give a concentration of the internal standards in the extract of 20 to 100 ng/mL. #### 4.3 Matrix Recovery Standard Spiking Solution A solution containing 2- and 5-ring PAH compounds is used to fortify matrix spike samples. A solution for use in water analyses, containing the compounds at the listed concentrations is found in Table 2. The solution is prepared by weighing an appropriate aliquot of each purified compound into a volumetric flask and diluting to volume with methylene chloride or other suitable solvent. Alternately, a stock solution may be purchased from a commercial vendor and diluted to the appropriate working concentration. The spiking solution is added to give a concentration of ca. 3 to 10x MDLG. TABLE 2. PAH MATRIX SPIKE COMPOUNDS | | Spiking
Solution
Concentration | |-------------------------|--------------------------------------| | Compound | (ng/mL) | | Naphthalene | 40 | | Acenaphthylene | 40 | | Acenaphthene | 40 | | Fluorene | 40 | | Phenanthrene | 40 | | Anthracene | 40 | | Fluoranthene | 40 | | Chrysene | 40 | | Pyrene | 40 | | Benzo[a]anthracene | 40 | | Benzo[b]fluoranthene | 40 | | Benzo[k]fluoranthene | 40 | | Benzo[a]pyrene | 40 | | Indeno[1,2,3-c,d]pyrene | 40 | | Dibenzo[a,h]anthracene | 40 | | Benzo[g,h,i]Perylene | 40 | $^{^{\}rm a}{\rm Spiking}$ solution in methylene chloride or other suitable solvent. The low-level spiking solution is added at 0.5 mL/1-L sample. Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 ## 5.0 SAMPLE PRESERVATION, STORAGE, AND HOLDING TIMES ## 5.1 Sample Preservation and Storage Addressed in appropriate extraction SOP. #### 5.2 Extract Holding Times The extracts should be analyzed as soon as possible within 90 days after extraction. Analysis beyond this date and any reanalysis are acceptable if results produce acceptable surrogate recoveries (i.e. quality control checks). #### **6.0** SAMPLE EXTRACTION Water samples are extracted following SOP EVC89-1. Sediment samples are extracted following SOP EVC89-4. Biological tissue samples are extracted following SOP EVC89-5. The extracts are reduced to 5mL, per these SOPs, and are further prepared for analyses according to Section 9.0 of this SOP (EVC89-2). #### 7.0 GC/MS CALIBRATIONS Two types of calibrations are required - <u>initial</u> and <u>daily or routine</u> calibrations. Sample quantification are to be performed using response factors from the initial calibrations. #### 7.1 Initial Calibration Prior to use of the method for the low-level analysis of PAH, a five-point response factor calibration curve must be established showing the linear range of the analysis. The target concentrations of the standards used to construct the curve are 20, 40, 240, 1200, and 4800 ng/mL. For water samples, these concentrations correspond to 10, 20, 120, 450, and 2400 ng/L. The calibration solutions may be adjusted to meet instrumental sensitivity requirements (ie. the low standard should yield approximately a 5 to 1 signal to noise ratio). From this initial calibration the average relative response factors (RRF) for all analytes are computed relative to the internal standard. The percent relative standard deviation for the RRF all calibrated analytes must not exceed 40 percent of the average value computed in the initial calibration. | Exxon | Valdez | Oil | Spill | Ass | essment | | |--------------|--------|-----|-------|-----|----------------|----| | STANI | DARD | OPE | RATI | NG | PROCEDU | RE | Page 7 of 21 Title: Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 # 7.2 Daily or Routine Calibrations Approximately every 12 h of GC/MS analysis, the mass spectrometer response for each PAH relative to the internal standard is determined, as described in Section 10, using daily check standards at concentrations of 40 ng/mL. Daily response factors for each compound must be compared to the initial calibration curve. Comparison of daily with initial calibrations must yield the following results in order for analysis to proceed. - o The RRF of 90% of the analytes must be within ±25% of the average RRF computed from the initial calibration. - o The remaining 10% of the analytes must be within ±35% of the average RRF. If these criteria are not met an initial calibration must be performed. #### 7.3 Compound Identification Qualitative identification of target compounds will follow the relative retention time (RRT) criteria. Table 3 contains example RRT data for parent (unsubstituted) compounds. RRT windows for alkyl homologues will be based on analysis National Institute of Standards and Technology (formerly National Bureau of Standards) SRM 1582 or other suitable reference oil. #### **8.0** DAILY GC/MS PERFORMANCE TESTS The laboratory will tune the mass spectrometer using PFTBA to maximize the sensitivity of the instrument in the mass range of interest, 100-300 amu. The GC/MS will not be tuned to meet decafluorotriphenylphosphine (DFTPP) ion abundance criteria. EPA has dropped this requirement for selected ion monitoring (SIM) methods. This allows the laboratory to tune the instrument to maximize the sensitivity for the compounds being analyzed. #### 9.0 GAS CHROMATOGRAPHY/MASS SPECTROMETRY ANALYSIS For water analyses and for tissue analyses the same extract is to be used for PAH and PHC (SOP EVC89-3) analyses. For sediment extracts 20% of the total sample extract is recommended for use in the GC/MS (SIM) analysis, with the remaining used in the PHC analysis (SOP EVC89-3) although the entire extract may be used for both analyses with the appropriate changes in internal standard spiking amounts. If any split of the initial extract is made, the split ratio must be taken into account during final calculations. TABLE 3. RELATIVE RETENTION TIMES AND CONFIDENCE FOR THE COMPOUNDS ASSOCIATED WITH THE LOW-LEVEL PAH AND HETEROCYCLIC METHODOLOGY (a) | | Absolute
Retention
Time
(minutes) | Ave rage
RRT | SD | Percent
RSD | 95
Percent
Confidence
Limits | |---|--|--|---|--|--| | Naphthalene-d ₈ (Surr.) | 11:14 | 0.733 | 0.017 | 2.289 | 0.699-0.767 | | Naphthalene | 11:16 | 0.735 | 0.017 | | 0.701-0.769 | | 2-Methylnaphthalene | 12:59 | 0.832 | 0.017 | 2.084 | 0.798-0.866 | | 1-Methylnaphthalene | 13:15 | 0.848 | 0.017 | 2.055 | 0.814-0.882 | | Acenaphthylene | 15:15 | 0.962 | 0.018 | 1.822 | 0.927-0.988 | | Acenaphthene | 15:44 | 0.988 | 0.018 | 1.849 | 0.952-1.024 | | Fluorene-d ₁₀ (Surr.) | 16:57 | 0.872 | 0.015 | 1.735 | 0.842-0.902 | | Fluorene | 17:01 | 0.875 | 0.015 | 1.745 | 0.845-0.905 | | Dibenzothiophene | 19:08 | 0.974 | 0.016 | 1.617 | 0.942-1.006 | | Phenanthrene | 19:28 | 0.988 | 0.016 | 1.589 | 0.956-1.026 | | Anthracene | 19:34 | 0.994 | 0.016 | 1.597 | 0.962-1.026 | | Fluoranthene | 22:32 | 1.130 | 0.017 | 1.461 | 1.096-1.164 | | Pyrene | 23:07 | 1.157 | 0.017 | 1.443 | | | Benz[a]anthracene Chrysene-d ₁₂ (Surr.) Chrysene Benzofluoranthenes Benzo[e]pyrene Benzo[a]pyrene Perylene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene | 26:16
26:18
26:22
29:00
29:34
29:44
29:55
32:31
32:36
33:17 | 0.873
0.8974
0.876
0.960
0.984
0.988
0.996
1.114
1.113 | 0.012
0.012
0.012
0.014
0.016
0.016
0.025
0.031
0.028 | 1.325
1.320
1.320
1.501
1.590
1.615
1.644
2.276
2.743
2.422 | 0.849-0.897
0.850-0.898
0.852-0.900
0.932-0.988
0.952-1.016
0.956-1.020
0.964-1.164
1.051-1.175 | ⁽a) This table is to <u>serve as an example</u>. Absolute retention times will vary
depending on the length and condition of the GC column. | Exxon | Valdez | iiO s | Spill | Ass | essment | | |-------|--------|-------|-------|-----|---------|------| | | | | | | PROCE | DURE | Page 9 of 21 Title: Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 ## 9.1 Sample Extract Concentration Prior to analysis, the extract volume is concentrated to ca. 1 mL under nitrogen at room temperature and transferred to a GC autosampler vial. The evaporative concentrator tube is successively rinsed with methylene chloride, the rinsings added to the autosampler vial, and the methylene chloride again evaporated. This process is continued until at least five rinsings of the tube have occurred. The pre-injection volume (PIV) for PAH analysis is 0.25 to 0.5 mL for low level analysis. The PIV for PHC analysis (SOP EVC89-3) is 0.25 mL. Note: All solvent evaporations under nitrogen must occur at room temperature with no heating. Heating may result in the unacceptable loss of volatile components of the sample. #### 9.2 Addition of Internal Standards At this point, and just prior to the analysis, the entire extract or extract split must be spiked with the appropriate amount of PHC and/or PAH internal standard (contained in ca. 10 µL), or the PAH extract split spiked with the PAH internal standards, if the extract is to be split for separate PHC and PAH instrumental analyses. The PHC internal standard is 5-alpha-androstane. The PAH internal standards are acenaphthene-d₁₀, phenanthrene-d₁₀, and benzo(a)pyrene-d₁₂. An aliquot of internal standard solution is transferred to the PAH extract of extract split to give a final internal standard concentration of approximately 40 ng/mL. Note: The amount of internal standard added will be higher if oil is present in the sample #### 9.3 Instrumental Analysis Representative aliquots are injected into the capillary column of the gas chromatograph using the following, or similar conditions: Injector Temp--250°C Transfer Line Temp--290°C Initial Oven Temp--30°C Initial Hold Time--1 min Ramp Rate--10°C/min Final Temperature--325°C The effluent from the GC capillary column is fed directly into the ion source of the mass spectrometer. The MS is operated in the selected ion monitoring (SIM) mode using appropriate windows to include the quantitation and confirmation masses for each PAH as Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 shown in Table 4. For all compounds detected at a concentration above the MDLG, a check is made to ensure the confirmation ion is present. ## 9.4 Qualitative Identification Obtain extracted ion current profiles (EICP) for the primary m/z and the confirmatory ion. The following criteria must be met to make a qualitative identification: The characteristic masses of each parameter of interest must maximize in the same or within one scan of each other. The retention time must fall within ±10 s of the retention time of the authentic compound or alkyl homologue grouping determined by analysis of reference material. Note: The alkylated PAH homologue groupings (e.g. C3 naphthalenes) appear in the EICPs as clusters of isomers. The pattern of each cluster and the retention time window for the cluster should be established by analysis of reference crude oil. Peaks within the cluster should be integrated by straight line integration to the baseline, taking into account background noise in the EICPs. Representative EICPs for all of the PAH homologous series of naphthalenes, fluorenes, phenanthrenes, and dibenzothiphenes are presented in Figure 1. The relative peak heights of the primary ion compared to the confirmation or secondary ion masses in the EICPs must fall within \pm 20 percent of the relative intensities of these masses in a reference mass spectrum (Table 4). Note, that the relative intensities of the primary and secondary ions may vary widely within a given group of PAH isomers (e.g. C₁-naphthalenes). The reference mass spectrum must be obtained from reference material analyzed in the GC/MS system. In some instances, a compound that does not meet secondary ion confirmation criteria may still be determined to be present in a sample after close inspection of the data by the mass spectroscopist. Supportive data includes the presence of the secondary ion, but the ratio is greater than \pm 20 percent of the primary ion which may be caused by an interference of the secondary ion. When the primary ion is not affected by interferences and the decision is agreed to by the reviewer, the compound is flagged with an asterisk (*) on the sample summary sheet. TABLE 4. PARAMETERS FOR TARGET ANALYTES | Analyte | Quant.
Ion | Conf.
Ions | % Rel.
Abund. of
Conf. Ions | |--|---------------|---------------|-----------------------------------| | d _g -Naphthalene ^A | 136 | 134 | 15 | | Nåphthalene | 128 | 127 | 15 | | C, -Naphthalenes | 142 | 141 | 80 | | C2-Naphthalenes | 156 | 141 | | | C ₂ -Naphthalenes | 170 | 155 | | | CNaphthalenes | 184 | 169,141 | | | d ₁₀ -Acenaphthene ^A | 164 | 162 | 95 | | Acenaphthylene | 152 | 153 | 15 | | Acenaphthene | 154 | 153 | 98 | | d10-Fluorene | 176 | 174 | 85 | | Fluorene | 166 | 165 | 95 | | C ₁ -Fluorenes | 180 | 165 | 100 | | C2-Fluorenes | 194 | 179 | 25 | | C ₃ -Fluorenes | 208 | 193 | | | d ₁₀ -Phenanthrene ^A | 188 | 184 | | | Phenanthrene | 178 | 176 | 20 | | Anthracene | 178 | 176 | 20 | | C ₁ -Phenanthrenes/anthracenes | 192 | 191 | 60 | | CPhenanthrenes/anthracenes | 206 | 191 | 00 | | C ₂ -Phenanthrenes/anthracenes
C ₃ -Phenanthrenes/anthracenes | 220 | 205 | | | C ₄ -Phenanthrenes/anthracenes | 234 | 219,191 | | | Dibenzothiophene | 184 | 152,139 | 15 | | C ₁ -Dibenzothiophenes | 198 | 184,197 | 25 | | C-Dibenzothiophenes | 212 | 197 | 23 | | C ₂ -Dibenzothiophenes
C ₃ -Dibenzothiophenes | 226 | 211 | | | Fluoranthene | 202 | 101 | 15 | | Fluoranthene | 240 | 236 | 13 | | d ₁₂ -Chrysene ²
Pyrene | 202 | 101 | 15 | | - | 216 | 215 | 60 | | C ₁ -Fluoranthenes/pyrenes | 228 | 226 | 20 | | Benzo[a]anthracene | 228 | 226 | 30 | | Chrysene | 242 | 241 | 30 | | C ₁ -Chrysenes | 256 | | | | C2-Chrysenes | - | 241 | | | C ₃ -Chrysenes | 270 | 255 | | | C ₄ -Chrysenes | 284 | 269,241 | 20 | | d ₁₂ -Benz (a) pyrene ^A | 264 | 260 | 20 | | Benzo[b] fluoranthene | 252 | 253,125 | 30,10 | | Benzo[k]fluoranthene | 252 | 253,125 | 30,10 | | Benzo(a)pyrene | 252 | 253,125 | 30,10 | | Indeno[1,2,3-c,d]pyrene | 276 | 277,138 | 25,30 | | Dibenzo[a,h]anthracene | 278 | 279,139 | 25,20 | | Benzo[g,h,i]perylene | 276 | 277,138 | 25,20 | Denotes spiking compound B Note: Relative abundance of ions within any given isomer group will vary considerably, depending on isomer of interest. Relative abundances should be determined in analysis of crude oil solution Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 ## 10.0 CALCULATIONS #### 10.1 Quantitation The <u>initial</u> calibration will be used to determine response factors for use in quantification of all compounds. The following formula is used to calculate the response factors of the internal standard to each of the calibration standards. $$\mathbf{RF} = (\mathbf{A}_{\mathbf{a}}\mathbf{C}_{\mathbf{b}})/(\mathbf{A}_{\mathbf{b}}\mathbf{C}_{\mathbf{a}})$$ where: A. = Area of the characteristic ion for the parameter to be measured. A_b = Area of the characteristic ion for the internal standard. C₁₀ = Concentration of the internal standard (ng/mL). C_a =Concentration of the parameter to be measured (ng/mL). Note: Response factor of alkyl homologues is assumed equal to that of respective unsubstituted compounds. Based on these response factors, sample extract concentrations for each PAH and alkyl homologue grouping is calculated using the following formula: $$Ce = \underbrace{(A_1)(I_1)}_{(A_{11})(RF)}$$ where: Ce =Sample extract concentration (ng/mL). A₁ = Area of the characteristic ion for the parameter to be measured. A₄ = Area of the characteristic ion for the internal standard. I = Amount of internal standard added to each extract (ng/mL). The actual sample concentration (C) for each compound is calculated by the following formula: $$C = (Ce) x \frac{V_e}{V_c}$$ Page 13 of 21 Title: Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: Revision No. 3.0 Effective Date: November 27, 1989 EVC89-2 where: C =Concentration in sample (ng/L). V_{R} =The final extract volume (mL). V. =The original volume of sample extracted (L). Alkyl homologues will be reported as total C-1, total C-2, etc. Compounds identified and quantified below the MDLG should be clearly identified in the data report with letter "J". If the concentration of any target compound in a sample exceeds the linear range defined by the standards above, the extract must be diluted so that the concentrations of all target compounds fall within the range of the calibration curve. Note: The final determined concentration in the sample must be calculated taking into account any extract splits prior to alumuna column chromatography or prior to internal standard spiking step. ## 11.0 QUALITY CONTROL/QUALITY ASSURANCE #### 11.1 GC/MS Tuning The GC/MS is tuned as described in Section 8.0. #### 11.2 GC/MS Initial Calibration and Continuing Calibration Check Prior to the use of the method for low level analysis of PAH, a five-point response factor calibration curve must be established showing the linear range of the analysis. Each calibration standard is analyzed and the area of the primary characteristic ion is tabulated against concentration for each
compound. The response factor (RF) for each compound at each concentration level is calculated using the following equation: $$RF = \frac{A_t \times C_b}{A_b \times C_t}$$ Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 where: A_x = Area of the characteristic ion for the compound to be measured. A_{k} = Area of the characteristic ion for the specific internal standard. C_{\perp} = Concentration of the internal standard. C_{n} = Concentration of the compound to be measured. The percent relative standard deviation for all calibrated analytes must not exceed 40 percent. For every 12 h of GC/MS analysis, the mass spectrometer response factor (RF) for each PAH of interest (Table 1) relative to the internal standard is determined. These daily response factors for each compound must be compared to the initial calibration curve. The percent difference is calculated using the following equation: Percent Difference = $$\frac{RFI - RFC}{RFI} \times 100$$ where: RFI = Average response factor from initial calibration. RFC = Response factor from current verification check standard. The criteria for acceptability of the daily calibration are presented in Section 7.2 of this SOP. If, for any analyte, the daily response factor does not meet these criteria, a five-point calibration curve must be repeated for that compound prior to the analysis of the samples. ## 11.3 Method Blank Analysis An acceptable method blank analysis must not contain any target compound in Table 1 at concentrations 5 times greater than MDLG. If the method blank does not meet these criteria, the analytical procedure is out of control and the source of the contamination must be investigated and corrective measures taken and documented before further sample analysis proceeds. | Exxon | Valdez | : Oil | Spill | Ass | essment | | |-------|--------|------------|-------|-----|----------------|----| | STANI | DARD | OPE | RATI | NG | PROCEDU | RE | Page 15 of 21 Title: Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 ## 11.4 Surrogate Compound Analysis The laboratory will spike all samples and quality control samples with deuterated PAH surrogate compounds. The surrogate compounds will be spiked into the sample prior to extraction and this will measure individual sample matrix effects associated with sample preparation and analysis. They will include naphthalene-d₁₀, fluorene-d₁₀, and chrysene-d₁₂. The laboratory will take corrective action whenever the surrogate recovery for any one or more surrogates is outside the following acceptance criteria for water, sediment and tissue matrices: | Surrogate | Acceptance Criteria % | |--|----------------------------| | Naphthalene-d _s Fluorene-d ₁₀ Chrysene-d ₁₂ | 40-120
40-120
40-120 | | Om Joure off | 10 120 | The following corrective action will be taken when required as stated above: - a. Check calculations to assure there are no errors; - b. Check internal standard and surrogate solutions for degradation, contamination, etc., and check instrument performance; - c. If the surrogate recovery is outside the control limits, the secondary ion may be used to check the quantitation of the surrogate. If the secondary ion meets within the control limits, this recovery is reported with flag of "#" next to the percent recovery. - d. If the upper control limit is exceeded for only one surrogate, and the instrument calibration, surrogate standard concentration, etc. are in control, it can be concluded that an interference specific to the surrogate was present that resulted in high recovery and this interference would not affect the quantitation of other target compounds. The presence of this type of interference can be confirmed by evaluating the chromatographic peak shapes in ion intensities of the surrogate. - e. If the surrogate could not be measured because the sample required a dilution, no corrective action is required. The recovery of the surrogate is recorded as "D" with the note surrogate diluted out. - f. Reextract and reanalyze the sample or reanalyze the extract if the steps above fail to reveal a problem. If reanalysis of the extract yields surrogate recoveries within the stated limits, then the reanalysis data will be used. Both the original and reanalysis data will be reported. # 11.5 Matrix Spike Analysis The laboratory will spike and analyze one set of MS/MSD sample for every 20 samples or with every sample set, whichever is more frequent. The compounds are listed in Table 2. The initial matrix spike criteria for water, sediment and tissue analysis are as follows: - The average of the percent recoveries for all 16 compounds must fall between 40 and 120 percent. - Only one compound can be below its required minimum percent recovery. These minimum percent recoveries are as follows: - 1. Ten percent for chrysene and benz(a)pyrene - 2. Twenty percent for all other compounds. Criteria for data validity for each individual matrix spike compound will be developed as data are collected and will be updated on a quarterly basis. If the matrix spike criteria are not met, the matrix spike analysis will be repeated. If the subsequent matrix spike analysis meets the criteria, then the reanalysis data will be used. If not, the data for the sample will be reported, but qualified as being outside the acceptance criteria of the method. Both the original and reanalysis data will be reported. #### 11.6 Reference Material When available, one ampoule of the crude oil standard solution will be analyzed per batch of samples. Laboratory control charts will be established for the PAH levels in the sample. The average percent difference for the target compounds should not exceed 20% of the mean of all previous values, and no single compound/isomer grouping should deviate by more than 30% of its mean value of all previous determinations. # Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 17 of 21 Title: Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 #### 11.7 Method Detection Limit The actual analytical method detection limit (MDL) will be determined following procedures outlined in Federal Register (1984), Vol. 49 No. 209: 198-199 for each sample extraction and analysis SOP pair [e.g. Water Extraction (EVC89-1) and PAH Analysis (EVC89-2)]. This determination will be repeated at least once per year. #### 12.0 REPORTING #### 12.1 Reporting Units Units are reported in ng/L for water, and $\mu g/kg$ (dry weight) for sediment and $\mu g/kg$ (wet weight) for tissue samples. #### 12.2 Reporting Limits/Method Detection Limit Goals (MDLG) Concentrations of approximately 10 ng/L per PAH component for 2-L water samples, 10 μ g/kg in sediments, and 10 μ g/kg for biological tissues are the targeted PAH goals of the program. #### 12.3 Significant Figures Results should be reported to two (2) significant figures. #### 12.4 Surrogate Recoveries Surrogate recoveries must be reported for each sample. #### 12.5 Matrix Spike Matrix spike results should be reported for each batch of samples | Title: | Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles | | | | | | |---------------------|--|--------------------------------------|--|--|--|--| | SOP No.:
EVC89-2 | Revision No. 3.0 | Effective Date:
November 27, 1989 | | | | | Figure 1. PAH Akyl Homologue Patterns for Naphthalenes Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 Figure 1. (Continued) PAH Akyl Homologue Patterns for Fluorenes Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 183.7-184.7 amu.Prudhoe Bay Crude -100 10000 28.0 30.0 32.0 33.0 34.0 File >00009 197.7-198.7 amu.Prudhoe Bay Crude -100 10000 28.8 30.0 32.0 33.0 31.0 211.7-212.7 amu.Prudhoe Bay Crude File >00009 10000--100 27.0 28.0 29.0 30.0 32.0 33.0 File >00009 225.7-226.7 amu.Prudhoe Bay Crude -100 5000 30.0 31.0 32.0 33.0 Figure 1. (Continued) PAH Akyl Homologue Patterns for Dibenzothiophenes 29.0 28.0 # Arthur D Little 27.0 Determination of Low-level Polynuclear Aromatic Hydrocarbons (PAH) and Selected Heterocycles SOP No.: EVC89-2 Revision No. 3.0 Effective Date: November 27, 1989 Figure 1. (Continued) PAH Akyl Homologue Patterns for Phenanthrenes # **APPENDIX SOP.**Standard Operating Procedures Section 8. Determination of Total Petroleum Hydrocarbon in seawater 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 | Exxon Valdez Oil Spill Assessment P STANDARD OPERATING PROCEDURE | | | | | | |--|--|-------------------------------------|--|--|--| | Subject: | Extraction of Water samples for Analysis | Total Petroleum Hydrocarbon | | | | | SOP No:
EVC89-9 | Revision No:
1.0 | Effective Date:
November 8, 1989 | | | | ## 1.0 SCOPE AND APPLICATION This document describes the application of EPA600 method 418.1 for the measurement of fluorocarbon-113 extractable petroleum hydrocarbons, as defined by the method from surface water, industrial and domestic wastes. The method is applicable to the measurement of light fuels, although loss of about half of any gasoline present during the extraction manipulations can be expected. Heavy constituents of crude oil, such as asphaltenes, are only slightly
soluble in the solvent used and do not extract from the matrix. ## 2.0 SUMMARY OF METHOD | A 1 liter sample is acidified to a low pH (<2) and serially extracted with | | |---|----| | fluorocarbon-113 in a separatory funnel. Interferences are removed with | 1 | | silica gel adsorbent. Infrared analysis of the extract is performed by dire | CL | | comparison with standards. | | | | | | Date: November 8, 1989 | |------------------------| | Date: November 8, 1989 | | | 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 2 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis 50P No. Revision No: Effective Date: EVC89-9 1.0 November 8, 1989 ## 3.0 SAMPLING AND STORAGE - 3.1 A representative sample of 1 liter volume should be collected in an amber glass bottle with a Teflon lined lid. Because a loss of grease will occur on sampling equipment, the collection of a composite sample is impractical. The entire sample is consumed by this test; no other analyses may be performed using aliquots of the sample. - 3.2 If not preserved in the field, samples are acidified (with 1:1 HCl to a pH less than 2) upon receipt and refrigerated at or below 4 degrees centigrade (C) until analysis. - 3.3 Maximum holding time is 14 days from receipt of sample. #### 4.0 INTERFERENCES Method interferences may be caused by contaminants in solvents, glassware and body oil from the analyst and other sources that lead to elevated baselines. Glassware must be demonstrated to be free of contaminants before each extraction by recording the volume and absorbance of the last solvent rinse. Matrix interferences may be caused by non-petroleum compounds which simultaneously extract from the sample. These interferences can be removed with silica gel adsorbent. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 3 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No: Revision No: Effective Date: EVC89-9 1.0 November 8, 1989 ## 5.0 APPARATUS AND MATERIALS # 5.1 Glassware and Apparatus Separatory funnel, 2000ml Pyrex or equivalent, with Teflon stopcock. Phase separation filter paper, Whatman No. 1PS, 15.0cm (catalogue number 2200-150), or equivalent. Infrared spectrophotometer, Foxboro Miran 1FF. Fixed filter with nichrome source (maximum at 3.5 micrometers, slit width 2mm and resolution of ± 0.05um), filter at 3.48um or Perkin-Elmer 710B Scanning Double Beam. Cells, 10.0 mm, 50.0 mm pathlength, infrared grade quartz. Magnetic stirrer, with Teflon coated stirring bars. Graduated cylinder, class A 50.0 ml or 100.0 ml. Pyrex or equivalent. Beaker, 50 ml pyrex or equivalent. Disposable centrifuge tubes, Polyethylene/polypropylene, inert with solvent, 50 ml VWR or equivalent. Centrifuge, Beckman GP counter top. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 4 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No: Revision No: Effective Date: EVC89-9 10 November 8, 1989 # 5.2 Reagents Fluorocarbon-113 (1,1,2trichloro-1,2,2 trifluoroethane), bp 48C, Freon reagent grade or equivalent. Freon should contain less than 1.0 mg/l total oil and grease as determined by evaporative concentration and comparison to known blank Freon. Dispose of solvent in chlorinated waste container only. Sodium sultate, anhydrous granular. Fisher reagent grade (catalogue number 3421-3), or equivalent. Silica gel. J.T. Baker reagent grade or equivalent 60-200 mesh (cat.# 3405-01) or equivalent. Heated to 100C for 8 hours to activate. Hydrochloric Acid, concentrated. J.T. Baker reagent grade (cat.# 9535-03) or equivalent. #### 6.0 PROCEDURE 6.1 Blank all glassware with freon before analysis. Verify blank by reading solvent on IR spectrophotometer after rinsing glassware. Record blank absorbance value and volume (use 30ml per rinse) of last solvent rinse. Blank limit is 0.1mg in rinse solvent. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 5 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No. Revision No: Effective Date: November 8, 1989 EVC 89-9 1.0 6.2 Mark the sample bottle at the meniscus for later determination of sample volume. If the sample was not acidified at the time of collection, add 5 mi HCl to the sample bottle and mix. - 6.3 Pour the sample into the separatory funnel. - 6.4 Add 15ml fluorocarbon-113 to sample bottle and rotate the bottle to rinse the sides. Transfer the solvent into the separatory funnel. Extract by shaking vigorously for 2 minutes. Allow layers to separate, and filter the solvent layer into the graduated cylinder through a funnel containing solvent moistened filter paper. Vent separatory funnel through stopcock to prevent pressure buildup. - 6.5 Filter solvent layer through prerinsed, blanked phase separation paper into graduated cylinder. Note: An emulsion that fails to dissipate can be broken by pouring about 1 gram of sodium sulfate into the filter paper cone and slowly draining the emulsion through the salt. Additional 1 gram portions can be added to the cone as required. Alternately, the emulsion may be drawn into centrifuge tubes and spun for 20 minutes at 3000 RPM. - 6.6 Repeat 6.4 and 6.5 twice more with 15 ml portions (heavily oiled samples may require larger extraction volumes) of fresh solvent, Combining the solvent extracts into the graduated cylinder. ¹For justification of reduced total Freon extraction volume, see attached "418.1 Spike Survey" 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 6 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No: EVC89-9 Revision No: 1.0 Effective Date: November 8, 1989 6.7 Measure sample volume by refilling sample bottle with tap water to the previously marked sample meniscus level and measuring the volume in a graduated cylinder. Record sample volume, total freon extraction volume and total oil and grease absorbance value from the IR spec. Archive 25 ml of total oil and grease extract indefinitely. - 6.8 For total petroleum hydrocarbon determination, pour extract into a blanked 50ml beaker. Add silica gel according to the following procedure (1 gram silica gel adsorbs 33mg grease): - 6.9 Calculate mg/l total oil and grease using standard curve and absorbance value. Multiply by the liters of freon extract to be analyzed (if sample has been diluted, use dilution volume). This yields mg of oil and grease being analyzed in the extract. Divide mg by 33 and double the resulting number for the gram weight of silica gel to be used. Add a freon rinsed stir bar, cover beaker and stir solution for a minimum of 5 minutes. Allow silica gel to settle, measure absorbance and record value. ---- ¹Standard Methods, method 503E, pg 502, "less than 100mg fatty material, add 3.0g silica 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 7 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No: EVC89-9 Revision No: Effective Date: 1.0 November 8, 1989 # 7.0 QUALITY CONTROL - 7.1 Matrix spikes, duplicates and method Blanks are run as submitted by clients or 10 percent of samples, which ever is greater. In addition, periodic, blind check samples are submitted by section supervisor. - 7.2 Continuing calibration verification standards are measured on IR spectrophotometer daily for each calibration curve. Acceptance criteria are 90 to 110% of true value. Instruments are recalibrated if standard recovery falls outside of accepted values. - 7.3 Calibration mixtures: - 7.3.1 Reference oil: 15.0ml n-hexadecane, 15.0ml isooctane, 10.0ml chlorobenzene. - 7.3.2 Working standards: Low standard must be 5.0 mg/L. Use 4 calibration points, not including the blank, which cover the instrument working range to be used. 5633 B STREET • ANCHORAGE, ALASKA 99518 • TELEPHONE (907) 562-2343 Exxon Valdez Oil Spill Assessment STANDARD OPERATING PROCEDURE Page 8 of 8 Subject: Extraction of Water samples for Total Petroleum Hydrocarbon Analysis SOP No: EVC89-9 Revision No: 1.0 Effective Date: November 8, 1989 # 8.0 CALCULATIONS 8.1 mg/l total oil and grease or total petroleum hydrocarbons: RxDx(F/S) where R= mg/l freon from standard curve. D= dilution factor, if used. F= total freon extract volume in ml. S= sample volume in ml. ## 9.0 REPORTING - 9.1 Reporting units for total petroleum hydrocarbons are mg/l. - 9.2 Reporting limits are 0.20mg/l. # **APPENDIX SOP.**Standard Operating Procedures Section 9. Determination of 2-butoxy-ethanol in surface wipes #### A. MS METHODOLOGY Concentrations of butoxy-ethanol in the 10 minus to 50,000 ppm range are determined with a procedure developed in June 1990 in the Corporate Research Analytical Sciences Laboratory of Exxon Research and Engineering Company. A summary of the established methodology and of the development and evaluation steps are given below: ## 1. Methodology The methodology is based on a GC/MS analysis using toluene as an internal standard. The steps used, in the order carried out, are the following: - Approximately 40-60 mg of the oil is diluted with CH₂Cl₂, in a 1:9 ratio. Sample concentration is determined accurately on a 4 or 5 place analytical balance. - An internal standard, toluene in CH₂Cl₂, is prepared in concentrations of 10, 100 or 1000 ppm to "match" the expected butoxy-ethanol concentration in the sample. Toluene was selected as internal standard because of the closeness of its retention time to that of
butoxy-ethanol and because it is not contained in detectable amounts in weathered oil samples. - Sample solution and internal standard solution are combined in exactly 1:1 ratio (25μ l each), measured volumetrically. - 0.5 μ l of the 1:1 blend is injected in a GC/MS instrument, a Finnigan Model 46B TSQ (triple stage quadrupole), and run under the following experimental conditions: #### + column: 30M DB1 "boiling point" column, .32mm id, and .25 μ film thickness - + temperature programming: start 50 C; 8 C/min to 100; then 20 C/min to 310 C - With the GC/MS instrument operating in MID (multiple ion detection) mode, areas of m/e 87 and m/e 92 are measured. M/e 87 is one of the largest peaks in the mass spectrum of ethoxy-butanol; m/e 92 is the molecular ion of toluene. There is very little or no interference to m/e 87 from components likely to be present in petroleum streams. Concentration of the butoxy-ethanol, expressed in ppm units, is calculated from the area measurements with the formula: ppm butoxy ethanol = $$\frac{\text{Area "87"}}{\text{Area "92"}} \times \frac{\text{St}}{\text{Sb}} \times \frac{100}{\text{C}_1} \times \text{C}_2$$ where \underline{St} is the relative sensitivity of m/e 92 of toluene vs. that of m/e 87 of butoxy-ethanol (6.7 in our case) Sb is 1.0 C₁ is the concentration (wt. %) of the sample in CH₂Cl₂, i.e. the dilution factor C₂ is the concentration of the toluene internal standard in CH₂Cl₂ expressed in ppm #### • Notes: - + The analysis can be carried out on any GC/MS system that possesses performance characteristics equivalent to those of the system used at CR-ASL. - + Complete GC/MS scans also can be used, although this involves a decrease in sensitivity. We used this mode in method development, and to assess the interferences of the various components (weathered oil, butoxy-ethanol, internal standard, solvent). In this case, the relative sensitivity ratio between the total ionization of toluene and that of butoxy-ethanol was found to be 1.9. - + Accuracy of the determination is improved by checking instrument performance with a known standard. In our case we used 1:99 and 1:999 parts INIPOL: weathered Alaska North Slope (ANS) standards containing, respectively, approximately 700 and 70 ppm butoxy-ethanol. The ANS standard was weathered 521F+ (ANS 521+). Oil: ethoxy-butanol standards could also be used. #### 2. Method Development This phase of the work consisted of the following: • Identification of butoxy-ethanol and determination of its elution time at standard conditions used. This step was carried out with pure butoxy-ethanol; retention time was approximately 680 scan numbers (136 seconds). These data were also used to select the characteristic m/e value (87) to use in the analysis. - Selection of an appropriate internal standard (toluene, as mentioned in Section 1). - Optimization of the GC/MS conditions to eliminate or at least minimize interferences between solvent, toluene, butoxy-ethanol, ANS 521+ (taken as typical of the samples to be analyzed later on). The conditions were arrived at using full scan GC/MS runs; the final conditions decided upon were those reported in 1. At those conditions, toluene elutes at approximately 400 scan numbers, butoxy-ethanol at approximately 680 scan numbers, and the first detectable components of ANS 521+ at 1000+ scan numbers. - Establishing the relative sensitivities between the internal standard (toluene) and the butoxy-ethanol, using 50:50 blends in CH₂Cl₂ solution. Values found were 6.7:1 in the MID mode and 1.9:1 in the full scan mode, as mentioned above. - Establishing "informal" repeatability, accuracy data and the detectability limit. This was done using 99:1 and 999:1 blends of ANS 521+ and INIPOL containing approximately 700 and 70 ppm butoxy-ethanol. - + Replicate values for the 99:1 were standard were: 747, 757, 717; for the 999:1 blend, used to check detectability, the value found was 67 ppm. Detectability is estimated to be less than 10 ppm. #### B. LABORATORY EXPERIMENTS Laboratory experiments were carried out to predict the depletion of butoxy-ethanol in field conditions and also to test the GC/MS methodology to be used. - A thin film of INIPOL, about 0.1 g, containing approximately 10 percent butoxy-ethanol was spread over 0.9g of ANS 521+/ - After approximately 5' "rest", this mixture was contacted with either 1:1 or 10:1 concentrations of seawater and agitated in a separatory funnel for approximately 20', simulating tidal action. Contact and agitation were carried out one, two, three, or four times on four separate samples to simulate the effect of one to four tidal periods. The oil phase was then separated (no emulsion was observed) and submitted to the GC/MS analysis. - GC/MS data on these experiments are shown in Table I and clearly indicate the rapid disappearance of the butoxy-ethanol, with a coefficient of partition of approximately 1.0 between the water and oil phases. • In another experiment, the butoxy-ethanol:ANS 521+ mixtures, in an hourglass were exposed to the sheltered atmosphere in our laboratories (~72F, no winds). After five hours, 50% of the butoxy-ethanol was missing; and there was no detectable butoxy-ethanol (loss of at least 99.999 percent) after 29 hours. These data indicate that we should expect rapid depletion in butoxy-ethanol even without tidal action. #### Determination of the ButoxyC. Ethanol Content of the Field Samples This effort is summarized in the following paragraphs: - Field samples were collected on plastic "wipes" and sent to us in refrigerated containers. They consisted of four samples from a lower tidal zone and four from an upper tidal zone. Both sets included materials after the initial treatment and after 1, 2, 4 tidal actions. - The "wipes" were extracted in CH₂Cl₂. - The solvent was evaporated and the extracts weighed. Control experiments with partial solvent evaporation indicated that this step did not involve loss of ethoxy-butanol. - The extracted samples were analyzed by GC/MS with the methodology described in A. Data obtained from these experiments are reported in Table II. They unequivocally confirmed that butoxy-ethanol disappears very rapidly under tidal action. The rate of disappearance is faster in the lower tidal region, where there is more contact with seawater. The high initial value in the upper tidal zone is due probably to surface migration or sampling. At any rate, even that much butoxy-ethanol disappears very rapidly. These data are illustrated visually in Figures 1-8. These field experiments corroborate extremely well the data obtained in the Laboratory, greatly increasing our confidence in laboratory predictions. #### D. Conclusion The GC/MS method developed in CR-ASL has been shown to determine the butoxy-ethanol content of INIPOL treated materials both accurately and rapidly. Laboratory and field data definitively show that butoxy-ethanol disappears very rapidly from INIPOL treated oils. #### E. Acknowledgement Major contributors to the effort described in this note included: M. Genowitz Laboratory experiments, sample extractions G. Dechert GC/MS method development, analyses S. C. Blum Planning, consulting Dave Moser and Barbara Essler Extractions TABLE I DISAPPEARANCE OF BUTOXY-ETHANOL IN LABORATORY EXPERIMENTS #### Butoxy-Ethanol Concentration, ppm | No. of "Washes" (tidal action) | 1:1
Water:ANS
Plus INIPOL | 10:1
Water:ANS
<u>Plus INIPOL</u> | |--------------------------------|---------------------------------|---| | 0 (starting material) | (10,000) | (10,000) | | 1 | 5083 | 910;729 | | 2 | 3068 | 107;150 | | 3 | 1019 | 137 | | 4 | 428 | 0 | TABLE II DISAPPEARANCE OF BUTOXY-ETHANOL IN FIELD SITUATIONS #### Butoxy-Ethanol Concentration, ppm | Tidal Action | Upper Tidal Zone | Lower Tidal Zone | |-------------------|------------------|------------------| | Initial Treatment | 52,000 | 10,000 | | After 1st Tide | 4,000 | 177 | | After 2nd Tide | 300 | Not detected(1) | | After 4th Tide | 19 | Not detected(1) | (1) Below 10 ppm 2 #### APPENDIX D1. Data tables from interstitial water samples | TABLE 1. | Fertilizer nutrients in interstitial water | |-----------|--| | TABLE 2. | Nitrogenous nutrients in interstitial water | | TABLE 3. | Summary of fertilizer nutrients from KN-132B | | TABLE 4. | Summary of fertilizer nutrients from KN-135B | | TABLE 5. | Summary of fertilizer nutrients from KN-211E | | TABLE 6. | Dissolved oxygen, salinity and temperature of interstitial water on KN-132B | | TABLE 7. | Dissolved oxygen, salinity and temperature of interstitial water on KN-135B | | TABLE 8. | Dissolved oxygen, salinity and temperature of interstitial water on KN-211E | | TABLE 9. | Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-132B | | TABLE 10. | Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-135B | | TABLE 11. | Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-211E | | TABLE 12. | Interstitial water pH values | | | | | TREATED | | TIME | | | | | | | | |----------------------------|--------|----------------|-----------|---------|--------|--------------|------------------------|----------------|--------------|------------------------|----------------------|------| | SAMPLE | SAMPLE | | OR | | SER1ES | | DATE | | | | | | | FIELD ID | TYPE | BEACH | REFERENCE | STATION | (DAYS) | DEPTH | COLLECTED | TIME | SON+EON | NH4 | P04 | NO2 | | | | | | | | | | | (UH) | (uH) | (UH) | (uH) | | 71NUT000115 | | KN132 | T
• | A | 0 | SURF | 31-HAY-90 | 10:02 | 2.86 | 2.01 | 0.58 | | | 71NUT000116 | | KN132
KN132 | T
T | A
B | 0 | BOT
SURF | 31-HAY-90
31-HAY-90 | 10:08
08:58 | 2.30 | 0.92 | 0.54 | | | 71NUT000117
71NUT000118 | | KN132 | T | 8 | 0 | BOT | 31-MAY-90 | 09:04 | 0.79 | 1.21 | 0.53 | |
 71NUT000118 | | KN132 | Ţ | c | 0 | SURF | 31-HAY-90 | 09:04 | 0.69
2.23 | 0.86 | 0.70 | | | 71NUT000119 | | KN132 | Ţ | c | 0 | SURF | 31-KAY-90 | 09:43 | 2.23 | 1.86
0.6 5 | 0.88 | | | 71NUT000131 | | KN132 | Ť | c | 0 | BOT | 31-HAY-90 | 09:50 | 2.43 | 0.60 | 0.84 | | | 71NUT000120 | | KN132 | Ţ | Y | 0 | BOT | 31-HAY-90 | 09:35 | 2.45 | 0.80 | 0.86
0.71 | | | 71NUT000122 | | KN132 | Ť | Z | 0 | BOT | 31-HAY-90 | 09:15 | 1.91 | 1.07 | 0.74 | | | 71NUT000124 | | KN132 | R | D | 0 | SURF | 31-HAY-90 | 08:15 | 1.37 | 1.09 | 0.14 | | | 71NUT000123 | | KN132 | R | D | 0 | BOT | 31-HAY-90 | 08:19 | 1.65 | 0.36 | 0.14 | | | 71NUT000132 | | KN132 | R | D | 0 | BOT | 31-HAY-90 | 08:18 | 1.70 | 1.39 | 0.08 | | | 71NUT000128 | | KN132 | R | E | 0 | SURF | 31-MAY-90 | 08:59 | 3.33 | 1.35 | 0.13 | | | 71NUT000127 | | KN132 | R | ε | 0 | BOT | 31-HAY-90 | 09:04 | 4.12 | 1.38 | 0.41 | | | 71NUT000128 | | KN132 | R | F | 0 | SURF | 31-HAY-90 | 09:15 | 3.07 | 0.58 | 0.41 | | | 71NUT000129 | | KN132 | R | F | 0 | BOT | 31-MAY-90 | 09:17 | 2.87 | 0.43 | 0.03 | | | 71NUT000150 | | KN132 | ī | Ā | 2 | SURF | 04-JUN-90 | 02:14 | 65.50 | 83.80 | 0.72 | | | 71NUT000165 | | KN132 | Ţ | Â | 2 | BOT | 04-JUN-90 | 02:19 | 62.80 | 83.20 | 0.72 | | | 71NUT000167 | | KN132 | Ţ | 8 | 2 | SURF | 04-JUN-90 | 01:36 | 57.20 | 96.30 | 1.10 | | | 71NUT000167 | | KN132 | Ţ | 8 | 2 | BOT | 04-JUN-90 | 01:40 | 65.70 | 103.10 | 0.90 | | | | | KN132 | Ţ | c | 2 | SURF | 04-JUN-90 | 01:59 | 87.30 | 122.60 | 0.90 | | | 71NUT000169 | | KN132 | Ţ | c | 2 | BOT | 04-JUN-90 | 02:07 | 88.70 | 115.80 | 0.92 | | | 71NUT 000170 | | | Ţ | Y | 2 | | 04-JUN-90 | 02:07 | 82.60 | 90.50 | | | | 71NUT000171 | | KN132 | | Ϋ́ | 2 | BOT | | 02:29 | 83.30 | | 0.61 | | | 71NUT000180 | | KN132 | Ţ | τ
2 | 2 | BOT | 04-JUN-90 | | 119.20 | 91.30 | 0.54 | | | 71NUT000172 | | KN132 | T | | 2 | BOT | 04-JUN-90
04-JUN-90 | 01:31 | 5.05 | 14 3.40
0.59 | 0.7 5
0.08 | | | 71NUT000173 | | KN132 | R | D | 2 | SURF | 04-JUN-90 | 01:41 | 5.91 | | | | | 71NUT000179 | | KN132 | R | D | 2 | SUR F
BOT | 04-JUN-90 | | 7.25 | 0.90 | 0.11 | | | 71NUT000174 | | KN132 | R | D | 2 | SURF | | 01:45 | | 0.76 | 0.12 | | | 71NUT000175 | | KN132 | R | ε | | | 04 - JUN - 90 | 01:54 | 10.80 | 8.05 | 0.22 | | | 71NUT000176 | | KN132 | R | ε | 2 | BOT | 04-JUN-90 | 02:00 | 12.00 | 9.04 | 0.28 | | | 71NUT000177 | | KN132 | R | F | 2 | SURF | 04 - JUN - 90 | 02:06 | 4.52 | 1.86 | 0.11 | | | 71NUT000178 | | KN132 | R | F | 2 | BOT | 04 - JUN - 90 | 02:12 | 3.34 | 1.12 | 0.08 | | | 71NUT000197 | | KN132 | T
- | A | 4 | SURF | 06-JUN-90 | 03:45 | 18.80 | 15.60 | 0.43 | | | 71NUT000211 | | KN132 | Ţ | A | 4 | SURF | 06-JUN-90 | 03:49 | 25.90 | 17.60 | 0.51 | | | 71NUT000198 | | KN132 | Ţ | A | 4 | BOT | 06-JUN-90 | 03:51 | 25.90 | 18.20 | 0.48 | | | 71NUT000199 | | KN132 | Ť | 8 | 4 | SURF | 06-JUN-90 | 03:11 | 26.80 | 30.00 | 0.63 | | | 71NUT000200 | | KN132 | Ť | 8 | 4 | BOT | 06-JUN-90 | 03:14 | 29.70 | 34.20 | 1.37 | | | 71NUT000212 | | KN132 | Ţ | В | 4 | BOT | 06-JUN-90 | 03:16 | 29.90 | 36.10 | 0.72 | | | 71NUT000201 | | KN132 | Ť | C | 4 | SURF | 06-JUN-90 | 03:27 | 51.70 | 70.30 | 1.13 | | | 71NUT 000202 | | KN132 | Ť | C | 4 | BOT | 06-JUN-90 | 03:34 | 63.20 | 83.30 | 0.91 | | | 71NUT000203 | | KN132 | Ť | Y | 4 | BOT | 06-JUN-90 | 04:11 | 41.70 | 46.60 | 0.56 | | | 71NUT000204 | | KN132 | Ť | Z | 4 | BOT | 06-JUN-90 | 04:00 | 52.70 | 93.10 | 0.53 | | | 71NUT000205 | | KN132 | R | D | 4 | SURF | 06-JUN-90 | 03:09 | 3.72 | 0.13 | 0.11 | | | 71NUT000206 | | KN132 | R | D | 4 | BOT | 06-JUN-90 | 03:16 | 4.53 | 1.12 | 0.19 | | | 71NUT000207 | | KN132 | R | E | 4 | SURF | 06-JUN-90 | 03:25 | 7.19 | 0.34 | 0.19 | | | 71NUT000208 | | KN132 | R | 3 | 4 | BOT | 06-JUN-90 | 03:28 | 8.68 | 1.05 | 0.24 | | | 71NUT000209 | | KN132 | R | F | 4 | SURF | 06-JUN-90 | 03:40 | 2.86 | 0.58 | 0.06 | | | 71NUT000210 | | KN132 | R | F | 4 | BOT | 06-JUN-90 | 03:47 | 2.74 | 0.37 | 0.05 | | | 71NUT000181 | | KN132 | | NA | 4 | NA . | 04-JUN-90 | 05:05 | 0.28 | 1.04 | 0.00 | | | 71NUT000229 | | KN132 | Ť | A | 8 | SURF | 10-JUN-90 | 05:37 | 10.90 | 8.76 | 0.41 | | | 71NUT000230 | | KN132 | Ť | A | 8 | BOT | 10-JUN-90 | 05:45 | 10.80 | 8.36 | 0.35 | | | 71NUT000244 | DUP | KN132 | Ť | A | 8 | BOT | 10-JUN-90 | 05:44 | 8.34 | 11.40 | 0.30 | | | | | | | TREATED | | TIME | | | | | | | | |---|--------------|--------|-------|-----------|---------|--------|-------------|------------|-------|---------|--------|-------|------| | s | AMPLE | SAMPLE | | OR | | SERIES | | DATÉ | | | | | | | F | IELD ID | TYPE | BEACH | REFERENCE | STATION | (DAYS) | DEPTH | COLLECTED | TIME | NO3+NO2 | ин4 | P04 | NO2 | | | | | | | | | | | | (uH) | (uH) | (UM) | (MU) | | 7 | 1NUT00023 | SAMP | KN132 | T | В | 8 | SURF | 10-JUN-90 | 05:17 | 24.50 | 16.40 | 0.69 | | | 7 | 1NUT000243 | 5 DUP | KN132 | T | В | 8 | SURF | 10-JUN-90 | 05:18 | 22.90 | 17.50 | 0.66 | | | 7 | 1NUT000232 | SAMP | KN132 | T | В | 8 | BOT | 10-JUN-90 | 05:23 | 10.50 | 14.00 | 0.35 | | | 7 | 1NUT000233 | SAMP | KN132 | T | С | 8 | SURF | 10-JUN-90 | 05:50 | 18.40 | 27.70 | 0.47 | | | 7 | 1NUT000234 | SAMP | KN132 | T | С | 8 | BOT | 10-JUN-90 | 05:55 | 31.80 | 48.90 | 0.70 | | | 7 | 1NUT000235 | SAMP | KN132 | T | Y | 8 | BOT | 10-JUN-90 | 06:14 | 19.90 | 18.10 | 0.45 | | | 7 | 1801000236 | SAMP | KN132 | T | Z | 8 | BOT | 10-JUN-90 | 06:06 | 20.40 | 21.00 | 0.38 | | | 7 | 1NUT000237 | 7 SAMP | KN132 | R | D | 8 | SURF | 10-JUN-90 | 04:06 | 1.28 | 0.63 | 0.06 | | | 7 | 1NUT000238 | SAMP | KN132 | R | D | 8 | BOT | 10-JUN-90 | 04:10 | 1.25 | 1.13 | 0.09 | | | 7 | 1NUT000239 | SAMP | KN132 | R | Ε | 8 | SURF | 10-JUN-90 | 05:20 | 2.51 | 0.60 | 0.16 | | | 7 | 1NUT000240 | SAMP | KN132 | R | Ė | 8 | BO T | 10-JUN-90 | 05:27 | 3.24 | 0.12 | 0.12 | | | 7 | 1NUT000241 | SAMP | KN132 | R | F | 8 | SURF | 10-JUN-90 | 05:37 | 2.54 | 0.55 | 0.04 | | | | 1NUT000242 | | KN132 | R | F | 8 | BOT | 10-JUN-90 | 05:43 | 1.48 | 0.30 | 0.00 | | | | 1NUT000261 | | KN132 | T | A | 16 | SURF | 18-JUN-90 | 12:04 | 10.90 | 1.34 | 0.65 | | | | 1NUT000262 | | KN132 | T | Ā | 16 | BOT | 18-JUN-90 | 12:14 | 4.57 | 0.34 | 0.41 | | | | 1NUT000263 | | KN132 | T | В | 16 | SURF | 18-JUN-90 | 10:38 | 29.60 | 2,18 | 0.67 | | | | 1NUT000276 | | KN132 | T | 8 | 16 | BOT | 18-JUN-90 | 10:48 | 15.50 | 0.84 | 0.47 | | | | 1NUT000264 | | KN132 | Ť | 8 | 16 | BOT | 18-JUN-90 | 10:46 | 19.20 | 0.94 | 0.53 | | | | 1NUT000265 | | KN132 | T | C | 16 | SURF | 18-JUN-90 | 11:46 | 8.44 | 1.33 | 0.56 | | | | 1NUT000203 | | KN132 | Ť | C | 16 | SURF | 18-JUN-90 | 11:48 | 10.40 | | 0.68 | | | | 1NUT000273 | | KN132 | Ť | C | 16 | BOT | 18-JUN-90 | 11:56 | 9.31 | 1.99 | 0.59 | | | | | | | | | | BOT | | | | | | | | | 1 NUT 000267 | | KN132 | Ţ | Y | 16 | | 18-JUN-90 | 11:31 | 4.04 | 0.68 | 0.40 | | | | 1NUT000268 | | KN132 | T | Z | 16 | BOT | 18-JUN-90 | 11:19 | 22.60 | 0.95 | 0.44 | | | | 1NUT 000269 | | KN132 | R | D | 16 | SURF | 18-JUN-90 | 10:24 | 9.96 | 0.51 | 0.20 | | | | 1NUT 000270 | | KN132 | R | D | 16 | BOT | 18-JUN-90 | 10:30 | 12.80 | 0.87 | 0.17 | | | | 1NUT000271 | | KN132 | R | E | 16 | SURF | 18-JUN-90 | 10:44 | 4.88 | 0.35 | 0.09 | | | | 1NUT 000272 | | KN132 | R | Ε | 16 | BOT | 18-JUN-90 | 10:46 | 4.93 | 0.35 | 0.16 | | | | 1NUT 000273 | | KN132 | R | F | 16 | SURF | 18-JUN-90 | 10:58 | 4.97 | 0.13 | 0.06 | | | | 1NUT000274 | | KN132 | R | F | 16 | BOT | 18-JUN-90 | 11:04 | 5.11 | 0.21 | 0.05 | | | 7 | 1NUT 000277 | F EB | KN132 | | NA | 16 | NA | 18-JUN-90 | 15:20 | 0.15 | 0.11 | 0.00 | | | 7 | 1NUT000313 | SAMP | KN132 | Ť | A | 29 | SURF | 30-JUN-90 | 23:39 | 21.50 | 5.74 | 0.60 | | | 7 | 1NUT000314 | SAMP | KN132 | Ť | A | 29 | BOT | 30-JUN-90 | 23:42 | 22.80 | 7.02 | 0.65 | | | 7 | 1NUT 000315 | SAMP | KN132 | T | 8 | 29 | SURF | 30-JUN-90 | 23:04 | 26.70 | 5.28 | 1.08 | | | | 1NUT 000316 | | KN132 | T | 8 | 29 | BOT | 30-JUN-90 | 23:10 | 30.80 | 5.40 | 0.71 | | | 7 | 1NUT000317 | DUP | KN132 | T | В | 29 | BOT | 30-JUN-90 | 23:44 | 21.40 | 5.64 | 0.65 | | | 7 | 1NUT000318 | SAMP | KN132 | T | C | 29 | SURF | 30-JUN-90 | 23:51 | 39.10 | 5.51 | 0.85 | | | 7 | 1NUT 000319 | DUP | KN132 | T | C | 29 | SURF | 30-JUN-90 | 23:52 | 36,90 | 5.67 | 0.88 | | | 7 | 1NUT000320 | SAMP | KN132 | T | C | 29 | BOT | 30- JUN-90 | 23:58 | 33.90 | 5.56 | 0.91 | | | 7 | 1NUT000328 | SAMP | KN132 | Ť | Y | 29 | BOT | 30-JUN-90 | 23:28 | 27.50 | 6.38 | 0.39 | | | 7 | 1NUT000327 | SAMP | KN132 | T | Z | 29 | BOT | 30-JUN-90 | 23:18 | 60.50 | 7.15 | 0.45 | | | 7 | 1NUT 000321 | SAMP | KN132 | R | D | 29 | SURF | 30-JUN-90 | 22:28 | 5.51 | 0.27 | 0.23 | | | 7 | 1NUT 000322 | SAMP | KN132 | R | D | 29 | BOT | 30-JUN-90 | 22:33 | 4.50 | 0.17 | 0.19 | | | | 1NUT000323 | | KN132 | R | Ε | 29 | SURF | 30-JUN-90 | 23:01 | 14.70 | 4.87 | 0.36 | | | | 1NUT 000324 | | KN132 | R | E | 29 | BOT | 30-JUN-90 | 23:08 | 16.30 | 4.36 | 0.29 | | | | 1NUT000325 | | KN132 | R | F | 29 | SURF | 30-JUN-90 | 23:16 | 4.61 | 0.31 | 0.11 | | | | 1NUT 000326 | | KN132 | R | F | 29 | BOT | 30-JUN-90 | 23:25 | 4.34 | 4.84 | 0.12 | | | | 1NUT 000329 | | KN132 | | NA. | 29 | NA | 01-JUL-90 | | 0.00 | 0.07 | 0.00 | | | | 4 NUT 000001 | | KN132 | T | A | 43 | BOT | 07-15-90 | 22:47 | 9.37 | 22.80 | 0.14 | | | | 4NUT00000 | | KN132 | Ť | 8 | 43 | BOT | 07-15-90 | 22:09 | 7.40 | 12.60 | 0.13 | | | | 4 NUT 000000 | | KN132 | Ť | В | 43 | BOT | 07-15-90 | 22:09 | 9.86 | 13.30 | 0.14 | | | | | | | | C | 43 | BOT | 07-15-90 | 22:40 | | 117.30 | 0.22 | | | 9 | 4NUT00000 | S SAMP | KN132 | T | L | 43 | BUT | 01-13-70 | LL.40 | 13.20 | 111.30 | V. LL | | | | | | TREATED | | TIME | | | | | | | | |---------------|---------|----------|-----------|---------|--------|-------------|------------------|-------|---------------|--------|------|------| | SAMPLE | SAMPLE | | OR | | SERIES | | DATE | | | | | | | FIELD ID | TYPE | BEACH | REFERENCE | STATION | (DAYS) | DEPTH | COLLECTED | TIME | NO3+NO2 | NH4 | P04 | NOZ | | | | |
					(uH)	(uH)	(uH)	(uM)		94 NUT 000000	SAMP	KN132	T	Y	43	BOT	07-15-90	22:32	13.70	62.70	0.17			94801000009	SAMP	KN132	T	Z	43	BOT	07-15-90	22:20	24.60	44.40	0.16			94NUT000005	SAMP	KN132	R	D	43	BOT	07-15-90	21:52	0.69	0.06	0.01			94NUT000000	SAMP	KN132	R	Ε	43	80 1	0 7-15-90	22:12	1.58	0.58	0.07			94NUT 000007	7 SAMP	KN132	R	F	60	BOT	07-15-90	21:24	1.06	0.47	0.00			94NUT000062	2 SAMP	KN132	T	A	60	BOT	08-01-90	00:30	33.20	0.25	0.65			94NUT000063	SAMP	KN132	T	В	60	BOT	08-01-90	00:00	17.0 0	0.25	0.82			94NUT 000070) DUP	KN132	Ť	В	60	BOT	08-01-90	00:00	17.40	0.32	0.80			94NUT000064	SAMP	KN132	T	С	60	BOT	08-01- 90	00:45	34.70	0.25	0.58			94NUT 000065	SAMP	KN132	T	Y	60	BOT	08-01- 90	00:15	21.80	0.28	0.20			94NUT 000066	SAMP	KN132	T	2	60	BOT	08-01- 90	00:05	53.00	0.30	0.45			94NUT 000067	SAMP	KN132	R	D	60	BOT	07- 31-90	23:29	2.32	0.88	0.09			94NUT000068	SAMP	KN132	R	E	60	BOT	07-31-90	23:50	8.36	0.53	0.08			94NUT000069	SAMP	KN132	R	F	60	BOT	08-01-90	00:01	1.82	0.86	0.01			94NUT000071	SAMP	KN132	R	STR	60	SURF	08-01-90	00:15	1.57	3.57	0.30			71NUT000005	SAMP	KN135	T	A	0	SURF	19-MAY-90	14:11	2.71	1.18	0.75	0.02		71NUT000022	SAMP	KN 135	Ť	A	0	SURF	20-MAY-90	13:54	2.25	1.41	0.62	0.07		71NUT000024	DUP	KN135	Ť	A	0	SURF	20-HAY-90	13:55	1.95	0.19	0.47	0		71NUT000023	SAMP	KN 135	Ť	A	0	BOT	20-MAY-90	14:07	2.19	1.11	0.54	0.01		71NUT000025		KN135	T	A	0	BOT	20-MAY-90	14:08	1.58	0.27	0.34	0		71NUT 000006		KN135	T	A	0	BOT	19-HAY-90	14:13	2.78	1.00	0.58	0.03		71NUT000026		KN135	Ť	В	0	SURF	20-MAY-90	13:19	2.26	0.15	0.05	0		71NUT 000027		KN135	T	В	0	BOT	20-MAY-90	13:28	2.95	1.22	0.11	0.04		71NUT000007		KN135	Ť	В	0	BOT	19-HAY-90	14:49	3.95	0.81	0.29	0.02		71NUT 0000001		KN135	T	В	0	BOT	19-MAY-90	14:50	3.25	0.63	0.03	0.02		71NUT000028		KN135	Ť	c	0	SURF	20-MAY-90	14:35	2.22	0.53	0.12	0.02		71NUT000010		KN135	Ť	c	0	BOT	19-MAY-90	14:57	3.00	0.83	0.22	0		71NUT000019		KN135	Ť	C	0	BOT	20-MAY-90	14:41	2.05	0.19	0.09	0				KN135	Ť	z	0	SURF	20-MAY-90	14.41	3.57	1.22	0.23	0.81		71NUT000036		KN135	Ť	Z	0	BOT	19-MAY-90	15:19	3.72	0.73	0.25	0.02																71NUT 000037		KN135	T	2	0	BOT	20-MAY-90	14:25	3.21	1.50	0.38	0.28		71NUT000030		KN135	R	0	0	SURF	20-MAY-90	13:47	0.97	0.89	0.33	0.03		71NUT000031		KN135	R	0	0	BOT	20-MAY-90	13:53	1.30	1.08	0.41	0		71NUT000032		KN135	R	Ε	0	SURF	20-MAY-90	14:26	1.31	0.20	0.40	0.01		71NUT000033		KN135	R	Ε	0	BOT		14:35	1.47	0.72	0.44	0.04		71NUT000034		KN135	R	F	0	SURF	20-MAY-90	14:06	2.11	0.41	0.44	0		71NUT000035		KN 135	R	F	0	BOT	20-MAY-90	14:11	2.54	2.28	0.56	0.12		71NUT 000038		KN135	R	NA	0	NA	22-MAY-90	10:06	0.00	0.44	0.00	0		71NUT000049	SAMP	KN135	Ť	A	2	SURF	23-MAY-90		133.30	153.40	1.03	0.04		71NUT000050	SAMP	KN135	T	A	2	BOT	23-MAY-90	16:28	153.90	168.40	1.14	0		71NUT000051	SAMP	KN135	T	8	2	SURF	23-HAY-90	16:00	136.20	139.80	0.38	0.12		71NUT000056	DUP	KN135	T	В	2	SURF	23-MAY-90	16:09	216.50	190.90	0.52	0.28		71NUT000052	SAMP	KN135	T	В	2	BOT	23-MAY-90	16:06	132.40	129.00	0.40	0.08		71NUT000057	7 DUP	KN135	T	8	2	BOT	23-MAY-90	16:11	184.30	162.90	0.37	0.08		71NUT000053	SAMP	KN135	T	С	2	SURF	23-MAY-90	16:56	93.90	118.70	0.21	0.03		71NUT000054	SAHP	KN135	T	С	2	BOT	23-MAY-90	16:58	144.90	162.50	0.27	0.07		71NUT000058	SAMP	KN135	T	Z	2	SURF	23-MAY-90	16:40	123.10	117.70	0.42	0.04		71NUT000059		KN 135	T	2	2	BOT	23-MAY-90	16:46	133.10	121.30	0.35	0.04		71NUT000055		KN135	R	D	2	SURF	23-HAY-90	16:44	0.47	0.98	0.46	0.01		71NUT000060		KN135	R	D	2	BOT	23-MAY-90	16:50	0.91	1.15	0.38	0		71NUT000061		KN135	R	E	2	SURF	23-HAY-90	16:59	1.40	2.17	0.44	0		. 18010000	. 974.8	1411 100	.,	-	-		•										TREATED		TIME									---------------	--------	--------	------------	---------	--------	-------------	---------------	---------------	---------	--------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	NO3+NO2	NH4	P04	NO2											(LH)	(uH)	(uH)	(uH)		71NUT000062	SAMP	KN135	R	E	2	BOT	23-MAY-90	17:00	1.14	0.95	0.46	0		71NUT000063	SAMP	KN135	R	F	2	SURF	23-MAY-90	16:28	1.07	0.70	0.45	0.02		71NUT 000064	SAMP	KN135	R	F	2	BOT	23-MAY-90	16:35	1.52	1.14	0.45	0		71NUT 000065	SAMP	KN135	Ţ	A	4	SURF	25-MAY-90	05:33	63.40	93.70	0.89	0.01		71NUT000066	SAMP	KN135	Ţ	A	4	BOT	25-MAY-90	05:38	74.40	79.50	0.92	0		71NUT000069	SAMP	KN135	T	8	4	SURF	25-HAY-90	05:47	188,20	185.10	0.22	0.07		71NUT000070	SAMP	KN135	T	В	4	BOT	25-MAY-90	05:49	182.80	180.50	0.26	0.14		71NUT000067	SAMP	KN135	T	С	4	SURF	25-HAY-90	06:11	179.80	168.00	0.31	0.01		71NUT000079	DUP	KN 135	T	С	4	SURF	25-MAY-90	06:10	189.30	175.90	0.35	0		71NUT000068	SAMP	KN135	T	С	4	BOT	25-HAY-90	06:15	195.60	173.70	0.33	0.04		71NUT000080	DUP	KN135	T	С	4	80 1	25-MAY-90	06:14	163.20	153.10	0.22	0.01		71 NUT 000077	SAMP	KN135	T	2	4	SURF	25-HAY-90	05:56	103.00	132.70	0.26	0.72		71NUT 000078	SAMP	KN135	T	2	4	BOT	25-HAY-90	06:00	103.00	132.70	0.37	0.38		71HUT000072	SAMP	KN135	R	D	4	BOT	25-MAY-90	06:05	1.47	0.44	0.46	0		71NUT000074	SAMP	KN135	R	E	4	BOT	25-HAY-90	06:13	1.67	0.95	0.41	0.05		71NUT 000076	SAMP	KN135	R	F	4	80 T	25-MAY-90	05:50	2,46	1.29	0.73	0.09		71NUT000100	SAMP	KN135	T	A	8	SURF	29-HAY-90	21:57	75.00	96.40	0.63			71NUT000113	DUP	KN135	T	A	8	SURF	29-HAY-90	21:57	76.60	34.40	0.62			71NUT000101	SAMP	KN135	T	A	8	BOT	29-HAY-90	22:02	83.70	49.40	0.48			71NUT000102	SAMP	KN135	T	8	. 8	SURF	29-HAY-90	21:43	163.90	93.20	0.35			71NUT000103	SAMP	KN135	T	8	8	801	29-HAY-90	21:48	151.50	93.40	0.34			71NUT000114	DUP	KN135	T	8	8	BOT	29-HAY-90	21:48	157.20	95.20	0.29			71NUT 000 104	SAMP	KN135	T	С	8	SURF	29-HAY-90	22:17	147.60	93.50	0.20			71NUT 000105	SAMP	KN135	T	С	8	BOT	29-HAY-90	22:22	128.10	81.70	0.21			71NUT000112	SAMP	KN135	7	Z	8	BOT	29-HAY-90	22:12	130.70	76.10	0.32			71NUT000106	SAMP	KN135	R	D	8	SURF	29-MAY-90	22:05	1.93	1.57	0.26			71NUT000107	SAMP	KN135	R	D	8	BOT	29-HAY-90	21:10	2.22	0.66	0.33			71NUT000108	SAMP	KN135	R	E	8	SURF	29-HAY-90	22:25	2.80	1.03	0.53			71NUT000109	SAMP	KN135	R	E	8	801	29-HAY-90	21:20	2.99	0.67	0.53			71NUT000110	SAMP	KN135	R	F	8	SURF	29-HAY-90	21:49	2.10	0.89	0.47			71NUT000111	SAMP	KN135	R	F	8	BOT	29-HAY-90	21:58	2.60	1.70	0.53			71NUT000182	SAMP	KN135	T	A	15	SURF	05-JUN-90	03:02	23.90	7.80	0.60			71NUT000183	SAMP	KN135	7	A	15	BOT	05-JUN-90	03:05	28.80	10.00	0.64			71NUT000184	SAMP	KN135	T	8	15	SURF	05-JUN-90	02:46	58.20	47.60	0.32			71NUT000185	SAMP	KN135	T	8	15	BOT	05 - JUN - 90	02:54	37.10	43.20	0.21			71NUT000186	SAMP	KN135	T	С	15	SURF	05-JUN-90		40.00	51.30	0.30			71NUT000187	SAMP	KN135	Ť	С	15	BOT	05-JUN-90	03:30		37.80	0.23			71NUT000188	SAMP	KN135	T	Z	15	BOT	05-JUN-90	03:15	32.70	25.40	0.28			71NUT000189	SAMP	KN135	R	D	15	SURF	05-JUN-90	02 :59	1.16	0.61	0.45			71NUT000190	SAMP	KN135	R	D	15	BOT	05 - JUN - 90	03:03	0.94	0.41	0.46			71NUT000191	SAMP	KN135	R	E	15	SURF	05-JUN-90	03:27	1.92	0.70	0.45			71NUT000195	DUP	KN135	R	E	15	SURF	05-JUN-90	03:31	1.39	0.56	0.41			71NUT000192	SAMP	KN135	R	E	15	BOT	05-JUN-90	03:32	2.29	0.86	0.51			71NUT000193	SAMP	KN135	R	F	15	SURF	05 - JUN - 90	03:14	1.95	1.65	0.47			71NUT000194	SAMP	KN135	R	F	15	80T	05-JUN-90	03:15	1.72	1.22	0.48			71NUT000196	DUP	KN135	R	F	15	BOT	05-JUN-90	03:20	1.73	1.10	0.51			71NUT000278	SAMP	KN135	T	A	32	SURF	22-JUN-90	04:42		0.27	0.40			71NUT000280	DUP	KN135	* T	A	32	SURF	22-JUN-90		41.10	0.22	0.35																																																																												
	71NUT000279	SAMP	KN 135	T	A	32	BOT	22-JUN-90	04:47		0.75	0.37			71NUT000281	SAMP	KN135	T	8	32	SURF	22-JUN-90	04:28		1.13	0.01			71NUT000282	SAMP	KN135	T	8	32	BOT	22-JUN-90	04:32	18.50	1.37	0.06						TREATED		TIME									---------------	--------	---------	-----------	---------	--------	-------	-----------------------	-------	---------	--------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	SON+20N	NH4	P04	NO2											(uH)	(uH)	(uH)	(uH)		71NUT00028	5 DUP	KN135	1	В	32	BOT	22-JUN-90	04:34	21.70	1.03	0.00			71NUT000284	SAMP	KN135	T	С	32	SURF	22-JUN-90	04:59	20.90	1.58	0.12			71NUT00028	SAMP	KN 135	T	С	32	BOT	22-JUN-90	05:05	20.80	1.81	0.24			71NUT000292	SAMP	KN135	T	Z	32	BOT	2 2- JUN-90	05:13	47.30	1.05	0.09			71NUT00028	SAMP	KN135	R	0	32	SURF	22-JUN-90	04:39	2.72	0.60	0.37			71NUT00028	7 SAMP	KN135	R	D	32	BOT	22-JUN-90	04:43	2.74	0.21	0.33			71NUT000288	SAHP	KN135	R	E	32	SURF	22-JUN-90	04:54	4.13	0.53	0.43			71NUT000289	SAMP	KN135	R	€	32	BOT	22-JUN-90	04:58	4.62	0.35	0.51			71NUT000290	SAMP	KN135	R	F	32	SURF	22-JUN-90	04:24	2.36	0.53	0.44			71NUT000291	SAMP	KN135	R	F	32	BOT	22-JUN-90	04:30	3.56	0.56	0.34			94 NUT 000029	SAMP	KN135	T	A	57	BOT	07-17-90	11:42	15.10	30.90	0.22			94NUT000030	SAMP	KN135	T	В	57	BOT	07-17-9 0	11:34	69.30	100.20	0.33			94NUT000031	SAMP	KN135	T	С	57	BOT	07-17-90	12:58	28.40	71.30	0.18			94NUT00003	2 DUP	KN135	T	С	57	BOT	0 7-17-90	13:00	28.80	67.30	0.10			94NUT000037		KN135	T	Z	57	BOT	07-17- 9 0	10:29	45.80	98.80	0.19			94NUT000034		KN135	R	D	57	BOT	07-17-90	12:23	2.15	0.27	0.17			94NUT000035		KN135	R	Ε	57	BOT	07-17-90	13:00	3.04	0.76	0.21			94NUT 000036		KN135	R	F	57	BOT	07-17-90	12:15	0.78	0.35	0.23			94NUT000033		KN135		NA.	57	NA .	07-17-90	00:00	0.92	6.33	0.19			94NUT000042		KN135	T	A	70	BOT	07-30-90	10:13	28.10	0.64	0.25			94NUT 000043		KN135	T.	В	70	BOT	07-30-90	09:56	58.00	3.14				94NUT000044		KN135	Ť	c	70	BOT	07-30-90	11:37		0.76	0.08			94 NUT 000045		KN135	Ť	c	70	BOT	07-30-90	11:38	23.70	0.78				94NUT000049		KN135	Ť	2	70	BOT	07-30-90	11:13	16.80	1.04	0.14							STR	70		07-30-90	18:00			0.09			94NUT000051		KN135	T			SURF			0.42	0.27	0.02			94NUT000046		KN135	R	D	70	BOT	07-30-90	10:26	1.48	0.54	0.10			94NUT000047		KN135	R	Ε	70	BOT	07-30-90	11:35	3.24	0.90	0.12			94NUT000048		KN135	R	F	70	BOT	07-30-90	10:14	4.53	0.54	0.13			94NUT000050		KN135	_	NA	70	NA	07-30-90		0.30	0.21	0.00			94NUT 00007		KN 135	Ť	A	78	BOT	08-07-90		100.90	14.30	0.31			94NUT000075		KN135	Ť	A	78	BOT	08-07-90		113.90	15.70	0.35			94NUT000082	SAMP	KN135	Ť	В	78	BOT	08-07-90		150.20	45.60	0.57			94NUT000074	SAMP	KN135	T	С	78	BOT	08-07-90	18:40		9.47	0.07			94NUT 000075	SAMP	KN135	T	Z	78	BOT	08-07-9 0	18:30	173.80	32.30	0.01			94NUT000076	SAMP	KN135	R	D	78	BOT	08-07-90	18:20	.22.20	3.88	0.03			94NUT000077	SAMP	KN135	R	E	78	BOT	08-07 -90	18:30	36.00	2.54	0.13			94NUT000078	SAMP	KN135	R	F	78	BOT	08-07 -90	18:15	23,60	7.59	0.11			94NUT000081	EB.	KN135		NA	78	АК	08-07-90	22:34	0.43	4.28	0.00			94NUT000080) EB	KN135		HA	78	NA	08-0 7-90	23:35	0.23	4.19	0.00			71NUT000081	SAMP	KN211	T	A	0	SURF	26-HAY-90	06:20	2.71	1.42	0.32			71NUT00008	SAMP	KN211	T	A	0	BOT	26-HAY-90	06:32	4.35	1.78	0.36			71NUT000083	SAMP	KN211	T	8	0	SURF	26-HAY-90	06:01	4.78	0.51	0.12			71NUT000093		KN211	T	8	0	SURF	26-HAY-90	06:02	4.88	1.14	0.13			71NUT000084		KN211	T	9	0	BOT	26-HAY-90	06:07		1.12	0.07			71NUT00008		KN211	T	С	0	SURF	26-MAY-90	06:15	4.04	0.56	0.12			71NUT00008		KN211	T	C	0	BOT	26-HAY-90	06:18	2.26	0.58	0.09			71NUT000098		KN211	T	Z	0	BOT	26-HAY-90	06:56	9.61	2.38	0.95			71NUT00008		KN211	R	D	0	SURF	26-MAY-90	06:17	4.73	2.59	0.75			71NUT000088		KN211	R	D	0	BOT	26-HAY-90	06:23	4.84	1.67	0.83			71NUT000000		KN211	R	E	0	SURF	26-HAY-90	05:47	2.52	0.92	0.29			71NUT000009		KN211	R	E	0	BOT	26-MAY-90	05:51	2.77	1.56	0.34			/ INUTUUUS	J SAMP	RRE I I	ĸ	E	•	~ .	20 (84) 70	42121			4124						TREATED		TIME									---------------	---	--------	-----------	---------	--------	-------	-------------------	-------	---------	-------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	NO3+NO2	NH4	P04	NO2											(uM)	(uH)	(uH)	(uH)		71NUT000094	DUP	KN211	R	E	0	BOT	26-MAY-90	05:53	2.46	0.69	0.31			71NUT000091	SAMP	KN211	R	F	0	SURF	26-MAY-90	06:01	2.29	0.54	0.23			71NUT000092	SAMP	KN211	R	F	0	BOT	26-MAY-90	06:07	2.30	0.91	0.31			71NUT 000099	E B	KN211		NA	0	NA	26-MAY-90	11:27	0.00	0.21	0.10			71NUT000133	SAMP	KN211	T	A	2	SURF	01-JUN-90	11:58	40.10	33.90	1.86			71NUT000147	7 DUP	KN211	T	A	2	SURF	01-JUN-90	11:58	43.10	38.30	1.82			71NUT000134	SAMP	KN211	T	A	2	BOT	01-JUN-90	12:01	43.20	41.20	1.83			71NUT000135	SAMP	KN211	T	8	2	SURF	01-JUN-90	11:20	17.30	8.78	0.37			71NUT 000136	SAMP	KN211	T	В	2	BOT	01-JUN-90	11:25	12.50	7.60	0.27			71NUT000137	SAMP	KN211	T	С	2	SURF	01-JUN-90	11:41	9.28	7.04	0.22			71NUT 000138	SAMP	KN211	T	С	2	BOT	01-JUN-90	11:45	13.80	8.14	0.20			71NUT000139	SAMP	KN211	T	Y	2	BOT	01-JUN-90	12:18	23.70	13.10	1.08			71NUT000140		KN211	T	Z	2	BOT	01-JUN-90	12:10	21.40	15.40	0.77			71NUT000141		KN211	R	D	2	SURF	01-JUN-90	11:19	1.57	1.22	0.12			71NUT000142		KN211	R	D	2	BOT	01-JUN-90	11:22	2.40	1.52	0.20			71NUT 000 143		KN211	R	E	2	SURF	01-JUN-90	10:28	1.50	1.52	0.15			71NUT000144		KN211	R	E	2	BOT	01-JUN-90	10:34	0.49	0.93	0.10			71NUT000145		KN211	R	F	2	SURF	01-JUN-90	11:33	1.62	0.78	0.17			71NUT000146		KN211	R	F	2	BOT	01-JUN-90	11:42	1.21	0.55	0.16			71NUT000148		KN211	R	F	2	BOT	01-JUN-90	11:41	1.80	2.36	0.26			71NUT000149		KN211	ī	Ä	4	SURF	03-JUN-90	02:50	14.30	6.72	0.72			71NUT000143		KN211	Ţ	Â	4	SURF	03-JUN-90	02:51	17.00	7.70									4	BOT	03-JUN-90	02:57	17.50					71NUT000150		KN211	Ţ	A	4			02:37		7.47	0.94			71NUT000151		KN211	T -	8		SURF	03-JUN-90		1.90	1.72	0.20			71NUT000152		KN211	T -	8	4	80T	03-JUN-90	02:18	2.47	1.95	0.24			71NUT000153		KN211	T -	С	4	SURF	03-JUN-90	02:37	2.93	1.31	0.21			71NUT000154		KN211	T -	C	4	BOT	03-JUN-90	02:40	1.56	1.24	0.16			71NUT000155		KN211	Ţ	Y	4	BOT	03-JUN-90	03:04	28.50	7.08	0.84			71NUT000156		KN211	T	2	4	BOT	03-JUN-90	03:13	32.90	11.00	0.87			71NUT000157		KN211	R	D	4	SURF	03-JUN-90	02:17	0.55	0.78	0.20			71EUT000158	SAMP	KN211	R	D	4	BOT	03-JUN-90	02:21	0.69	1.56	0.22			71NUT000159	SAMP	KN211	R	Ε	4	SURF	03-JUN-90	02:00	0.38	1.24	0.27			71NUT000160	SAMP	KN211	R	E	4	BOT	03-JUN-90	02:04	0.07	0.41	0.12			71NUT000164	DUP	KN211	R	E	4	BOT	03-JUN-90	02:03	0.15	0.78	0.17			71NUT000161	SAMP	KN211	R	F	4	SURF	03-JUN-90	02:28	1.32	2.61	0.42			71NUT000162	SAMP	KN211	R	F	4	BOT	03-JUN-90	02:33	1.42	0.68	0.30			71NUT000213	SAMP	KN211	T	A	8	SURF	07-JUN-90	04:52	13.30	8.15	0.58			71NUT000214	SAMP	KN211	T	A	8	BOT	07-JUN-90	04:57	13.70	8.14	0.53			71NUT000215	SAMP	KN211	T	8	8	SURF	0 7-JUN-90	04:28	0.92	7.16	0.19			71NUT000216	SAMP	KN211	T	8	8	BOT	07-JUN-90	04:31	0.39	7.34	0.26			71NUT000217	SAMP	KN211	T	С	8	SURF	07-JUN-90	04:39	1.52	7.34	0.23			71NUT000218	SAMP	KN211	T	С	8	BOT	07-JUN-90	04:42	9.43	11.20	0.39			71NUT000219	SAMP	KN211	T	Y	8	BOT	07-JUN-90	05:05	16.80	7.38	0.61			71NUT000227	7 DUP	KN211	T	Y	8	BOT	07-JUN-90	05:04	17.00	7.75	0.61			71NUT 000220		KN211	T	2	8	BOT	07-JUN-90	05:13	19.30	8.15	0.71	
71NUT 000221		KN211	R	D	8	SURF	07-JUN-90	04:25		0.67	0.62			71NUT000222		KN211	R	D	8	BOT	07-JUN-90	04:29		0.65	0.55			71NUT000223		KN211	R	Ε	8	SURF	07-JUN-90	04:12		0.87	0.40			71NUT000228		KN211	R	Ε	8	SURF	07-JUN-90		0.67	0.26	0.20			71NUT000224		KN211	R	E	8	BOT	07-JUN-90	04:17		0.52	0.26			71NUT000225		KN211	R	F	8	SURF	07-JUN-90	04:36		0.25	0.29			/ ING 1000223	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NAC II	^	•	•	30												TREATED		TIME									---	-------------------	--------	-------	-----------	---------	--------	-------	------------------	-------	---------	--------	------	------			SAMPLE	SAMPLE		OR		SERIES		DATE								FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	NO3+NO2	NH4	P04	NO2												(uH)	(uH)	(UH)	(uM)			71NU100022	SAMP	KN211	R	F	8	BOT	07-JUN-90	04:40	1.22	0.14	0.27				71NUT000245	SAMP	KN211	T	A	16	SURF	15-JUN-90	09:37	14.00	0.86	0.40				71NUT000259	P DUP	KN211	T	A	16	SURF	15-JUN-90	09:39	11.80	2.00	0.52			į	71NUT000246	SAMP	KN211	T	A	16	BOT	15-JUN-90	09:43	10.50	2.18	0.45			;	71NUT000247	7 SAMP	KN211	T	В	16	SURF	15-JUN-90	09:05	4.15	0.67	0.20			;	71NUT000248	SAMP	KH211	T	В	16	BOT	15-JUN-90	09:09	3.79	0.28	0.20			;	71NUT000260	DUP	KN211	T	В	16	вот	15-JUN-90	09:11	3.59	1.83	0.14			;	71NUT000249	SAMP	KN211	T	C	16	SURF	15-JUN-90	09:22	2.07	0.53	0.08			1	71NUT000250	SAMP	KN211	T	С	16	BOT	15-JUN-90	09:28	1.98	0.17	0.06			1	71NUT000258	SAMP	KN211	T	Y	16	BOT	15-JUN-90	10:05	18.20	0.90	0.33			7	71NUT000257	7 SAMP	KN211	T	2	16	BOT	15-JUN-90	09:56	13.80	0.66	0.37			7	71NUT000251	SAMP	KN211	R	D	16	SURF	15-JUN-90	09:15	2.66	0.42	0.32				71NUT000252	SAMP	KN211	R	D	16	BOT	15-JUN-90	09:23	3.58	1.28	2.10			7	71NUT000253	SAMP	KN211	R	ε	16	SURF	15-JUN-90	08:53	0.35	0.09	0.07			7	1NUT000254	SAMP	KN211	R	ε	16	BOT	15-JUN-90	09:00	0.28	0.31	0.15			7	71NUT000255	SAMP	KN211	R	F	16	SURF	15 - JUN- 90	09:35	1.55	0.40	0.22			7	1NUT000256	SAMP	KN211	R	F	16	BOT	15-JUN-90	09:46	1.55	0.30	0.25			7	1NUT000309	SAMP	KN211	T	A	31	SURF	30-JUN-90	11:14	15.30	6.78	0.44			7	11 TOOO310	SAMP	KN211	T	A	31	BOT	30-JUN-90	11:17	16.30	8.07	0.47			7	1NUT000307	7 DUP	KN211	T	A	31	BOT	30-JUN-90	11:20	14.60	7.38	0.46			7	71NUT000311	SAMP	KN211	T	В	31	SURF	30-JUN-90	10:37	5.84	8.96	0.30			7	71NUT000312	SAMP	KN211	T	В	31	BOT	30-JUN-90	10:43	21.90	30.20	0.92			7	'1NUT000297	7 SAMP	KN211	T	С	31	SURF	30-JUN-90	10:52	1.27	0.86	0.13			7	71NUT000308	B DUP	KN211	T	C	31	SURF	30-JUN-90	10:55	1.72	0.55	0.09			7	1NUT 000298	SAMP	KN211	T	C	31	BOT	30-JUN-90	10:59	1.73	0.56	0.04			7	1NUT 000305	SAMP	KN211	T	Y	31	BOT	30-JUN-90	11:40	19.90	4.67	0.26			7	1NUT000306	SAMP	KN211	T	Z	31	BOT	30-JUN-90	11:29	23.40	4.47	0.34			7	71NUT000299	SAMP	KN211	R	D	31	SURF	30-JUN-90	10:26	2.72	0.77	0.15			7	71NUT000300	SAMP	KN211	R	D	31	BOT	30-JUN-90	10:31	2.95	0.43	0.20			7	100003 0 1	SAMP	KN211	R	ε	31	SURF	30-JUN-90	10:12	0.10	0.00	1.00			7	1NUT000302	SAMP	KN211	R	ε	31	BOT	30-JUN-90	10:18	0.47	0.55	0.16			7	1NUT000303	SAMP	KN211	R	F	31	SURF	30-JUN-90	10:39	3.96	0.42	0.28			7	71NUT000304	SAMP	KN211	R	F	31	BOT	30-JUN-90	10:41	3.23	0.23	0.25			9	4NUT000018	SAMP	KN211	T	A	47	BOT	07-16-90	11:33	111.93	74.40	1.44			9	4NUT000019	SAMP	KN211	T	В	47	BOT	07-16-90	10:48	78.20	103.40	2.04			9	4NUT000020	SAMP	KN211	T	C	47	BOT	07-16-90	11:01	18.20	20.10	1.27			5	74 NUT 000021	DUP	KN211	T	С	47	BOT	07-16-90	11:02	9.81	12.60	0.63			9	24NUT000027	7 SAMP	KN211	T	Y	47	BOT	07-16-90	11:52	58.00	10.60	0.43			9	24NUT000028	SAMP	KN211	T	Z	47	BOT	07-16-90	11:43	75.00	26.70	0.42			9	24 NUT 000024	SAMP	KN211	R	٥	47	BOT	07-16-90	11:12	1.62	1.26	0.13			9	4 NUT 000025	SAMP	KN211	R	ξ	47	BOT	07-16-90	11:06	0.24	0.76	0.13			9	24NUT000026	SAMP	KN211	R	F	47	BOT	07-16-90	11:13	2.19	0.74	0.14				4NUT000052		KN211	T	A	62	BOT	0 7-31-90	13:49	45.90	5.47	1.29				4NUT000057		KN211	T	В	62	BOT	07-31-90	13:56	37.90	3.68	0.45				4NUT000053		KN211	T	В	62	BOT	07-31-90	13:55	54.20	4.90	0.64				4NUT000054		KN211	T	C	62	BOT	07-31-90	14:10	25.20	2.26	0.26				24NUT000058		KN211	R	D	62	BOT	07-31-90	12:14	2.63	0.36	0.05				24NUT000059		KN211	R	Ε	62	BOT	07-31-90	10:24	0.97	0.27	0.00				24NUT000060		KN211	R	F	62	BOT	07-31-90	12:20	3.40	0.78	0.06				24NUT00006		KN211	R	STR	62	SURF	07-31-90	14:30	8.61	0.49	0.00				24 NUT 00008		KN211	T	A	98	BOT	09-05-90	18:10		29.30	0.66																					TREATED		TIME									------------	--------	-------	-----------	---------	--------	-------	------------------	-------	--------------	-------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLFECTED	TIME	NO3+NO2	NH4	P04	NO2											(uH)	(uH)	(uH)	(uM)		94NUT00008	4 SAHP	KN211	T	8	98	BOT	09-0 5-90	17:45	33.80	18.90	0.02			94NUT00008	5 DUP	KN211	Ť	8	98	BOT	09-05-9 0	17:45	18.40	17.20	0.00			94NUT00008	6 SAMP	KN211	T	С	98	BOT	09-05-90	17:55	13.80	12.50	0.15			94NUT00009	1 SAMP	KN211	Ť	Y	98	BOT	09-05-90	18:20	5.71	21.20	0.07			94NUT00008	7 SAMP	KN211	R	D	98	BOT	09-05-90	17:55	0.68	7.03	0.00			94NUT00008	8 SAMP	KN211	R	Ε	98	BOT	09-05-90	17:51	0.59	10.10	0.44			94NUT00008	9 SAMP	KN211	R	F	98	BOT	09-05-90	18:04	0.61	7.95	0.00			94NUT00009	O SAMP	KN211	NA	AMB	98	HA	09-05-90	18:07	1.13	8.12	0.02			94NUT00009	4 SAMP	KN211	T	A	104	BOT	09-11-90	10:54	57.50	19.10	0.18			94NUT00009	5 SAMP	KN211	Ť	В	104	BOT	09-11-90	10:40	7.71	15.70	0.00			94NUT00009	6 DUP	KN211	T	В	104	BOT	09-11-90	10:40	7.58	16.10	0.00			94NUT00009	7 SAMP	KN211	T	C	104	BOT	09-11-90	10:50	5.6 5	25.90	1.59			94NUT00010	O SAMP	KN211	T	Y	104	BOT	09-11-90	10:55	8.15	49.50	1.29			94NUT00009	8 SAMP	KN211	R	D	104	BOT	09-11-90	10:45	3.03	11.00	0.00			94NUT00009	9 SAMP	KN211	R	F	104	BOT	09-11-90	10:55	2.50	10.70	1.10			94NUT00010	2 SAMP	KN211	NA	AMB	104	NA	09-11-90	10:55	3.21	10.10	0.07			94NUT00010	3 EB	KN211	NA	EB	104	NA	09-11-90		0.34	6.78	0.00		SAMP = Sample DUP = Duplicate Sample EB = Equipment Blank AMB = Ambient Sample T = Treated R = Reference				TREATED		TIME			NET		GROSS	GROSS		----------------------------	---	----------------	-----------	---------	--------	--------------	------------------------	--------	------------------	--------------	----------------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(uH)	BATCH#	(MG/L)	(UH)															71kDL000114	SAMP	KN132	т	A	0	SURF	31-MAY-90	0.00	901653	0.31	22,13		71kDL000129		KN132	T	A	0	SURF	31-MAY-90		901653	0.31	22.13		71KDL000115		KN132	T	A	0	BOT	31-MAY-90		901653	2.23	159.22		71KDL000116		KN132	T	В	0	SURF	31-MAY-90		901653	0.33	23.56		71KDL000117	SAMP	KN132	T	В	0	BOT	31-MAY-90	55.45	901653	1.16	82.82		71KDL000118	SAMP	KN132	T	С	0	SURF	31-MAY-90	35.46	901653	0.88	62.83		71kDL000119	SAMP	KN132	T	C	0	BOT	31-MAY-90	24.75	901653	0.73	52.12		71kDL000126	SAMP	KN132	T	Y	0	BOT	31-HAY-90	0.00	901653	0.37	26.42		71kDL000127	SAMP	KN132	T	Z	0	BOT	31-MAY-90	9.04	901653	0.51	36.41		71kDL000120	SAMP	KN132	R	D	0	SURF	31-MAY-90	0.00	901653	0.34	24.28		71KDL000121	SAMP	KN 132	R	D	0	BOT	31-HAY-90	0.00	901653	0.23	16.42		71kDL000122	SAMP	KN132	R	Ε	0	SURF	31-MAY-90	0.00	901653	0.29	20.71		71kDL000123	SAMP	KN132	R	Ε	0	BQT	31-MAY-90	0.00	901653	0.27	19.28		71kDL000130	DUP	KN132	R	E	0	BOT	31-MAY-90	21.90	901653	0.69	49.27		71kDL000124	SAMP	KN132	R	F	0	SURF	31-MAY-90	30.46	901653	0.81	57.83		71KDL000125	SAMP	KN132	R	F	0	BOT	31-KAY-90	10.47	901653	0.53	37.84																																			
71KDL000167	SAMP	KN132	T	8	2	SURF	04-JUN-90	151.13	901689	2.50	178.50		71KDL000168	SAMP	KN132	T	B	2	BOT	04-JUN-90	143.99	901689	2.40	171.36		71KDL000169	SAMP	KN132	T	C	2	SURF	04-JUN-90	279.65	901689	4.30	307.02		71KDL000170	SAMP	KN 132	T	C	2	BOT	04-JUN-90	508.13	901689	7.50	535.50		71IDL000177	SAMP	KN132	T	Y	2	BOT	04-JUN-90	172.55	901689	2.80	199.92		71IDL000178	SAMP	KN132	T	Z	2	BOT	04-JUN-90	272.51	901689	4.20	299.88		71KDL 000180	DUP	KN132	T	Z	2	BOT	04-JUN-90		901689	4.20	299.88		71KDL000171		KN132	R	D	2	SURF	04-JUN-90		901689	0.17	12.14		71kDL000172	SAMP	KN132	R	D	2	BOT	04-JUN-90		901689	0.10	7.14		71KDL000173		KN132	R	E	2	SURF	04-JUN-90		901689	0.11	7.85		71kDL000179		KN132	R	E	2	SURF	04-JUN-90		901689	0.31	22.13		71KDL000174		KN132	R	E	2	BOT	04-JUN-90		901689	0.13	9.28		71kDL000175	• • • • • • • • • • • • • • • • • • • •	KN132	R	F	2	SURF	04-JUN-90		901689	0.16	11.42		71KDL000176		KN132	R	F	2	BOT	04-JUN-90		901689	0.84	59.98		71kDL000181		KN132	_	NA	2	NA	04-JUN-90		901689	0.29	20.71		71KDL 000198		KN132	T _	A	4	SURF	06-JUN-90		901765	0.29	20.71		71kDL000199		KN132	T	A	4	BOT	06-JUN-90		901765	0.43	30.70		71KDL000200	-	KN132	T _	В	4	SURF	06-JUN-90		901765	0.56	39.98		71KDL000201		KN132	T -	В	4	BOT	06-JUN-90		901765	0.74	52.84		71kDL000202		KN132	T -	C	4	SURF	06-JUN-90		901765	0.65	46.41		71kDL000203		KN132	T -	C	4	BOT	06-JUN-90		901765 901765	0.73	52.12		71kDL000204		KN132	T -	Y	4	BOT	06-JUN-90		901765	0.57 0.87	40.70 62.12		71KDL000211		KN132	T	Z D	4	BOT	06-JUN-90 06-JUN-90		901765	0.00	0.00		71KDL000205	•	KN132	R	D	4	SURF SURF	06-JUN-90		901765	0.00	0.00		71KDL000212		KN132	R	D	4	BOT	06-JUN-90		901765	0.00	0.00		71KDL000206		KN132	R	E	4	SURF	06-JUN-90		901765	0.00	0.00		71kDL000207		KN132 KN132	R	E	4	BOT	06-JUN-90		901765	0.00	0.00		71KDL000208 71KDL000213		KN132	R R	E	4	BOT	06-JUN-90		901765	0.00	0.00				KN132	R	F	4	SURF	06-JUN-90		901765	0.00	0.00		71KDL000209 71KDL000210		KN132	R	F	4	BOT	06-JUN-90		901765	0.00	0.00		71kDL000210		KN132	Ť	Ā	8	SURF	10-JUN-90		901796	0.28	19.99		71kDL000230		KN132	Ţ	Â	8	BOT	10-JUN-90		901796	0.33	23.56		71kDL000232		KN132	Ţ	8	8	SURF	10-JUN-90		901796	0.44	31.42		71kDL000232		KN 132	T T	8	8	BOT	10-JUN-90		901796	0.44	31.42		71kDL000234		KN132	Ť	c	8	SURF	10-JUN-90		901796	0.46	32.84		1 1200000	west		•	•	-											TREATED		TIME			NET		GROSS	GROSS		-------------	--------	--------	-----------	---------	--------	-------	-----------	----------	--------	--------	--------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(uH)	BATCH#	(MG/L)	(uH)															71KDL000235	SAMP	KN132	T	С	8	BOT	10-JUN-90	31.89	901796	0.83	59.26		71KDL000236		KN132	T	Y	8	BOT	10-JUN-90		901796	0.08	5.71		71KDL000237		KN132	T	Z	8	BOT	10-JUN-90		901796	0.50	35.70		71KDL000238		KN132	R	D	8	SURF	10-JUN-90		901796	0.33	23.56		71KDL000239		KN132	R	D	8	BOT	10-JUN-90	21.18	901796	0.68	48.55		71KDL000244		KN132	R	D	8	BOT	10-JUN-90		901796	0.59	42.13		71KDL000240		KN132	R	E	8	SURF	10-JUN-90		901796	0.31	22.13		71KDL000245		KN132	R	E	8	SURF	10-JUN-90		901796	0.25	17.85		71KDL000241		KN132	R	E	8	BOT	10-JUN-90		901796	0.48	34.27		71KDL000242		KN132	R	F	8	SURF	10-JUN-90	0.00	901796	0.26	18.56		71KDL000243	SAMP	KN132	R	F	8	BOT	10-JUN-90	5.47	901796	0.46	32.84		71KDL000165		KN132	Ť	A	16	SURF	04-JUN-90		901689	2.10	149.94		71KDL000166	-	KN132	ř	A	16	BOT	04-JUN-90		901689	2.30	164.22		71KDL000265		KN132	Ť	В	16	SURF	18-JUN-90		901957	0.48	34.27		71KDL000266		KN132	Ť	В	16	BOT	18-JUN-90		901957	0.53	37.84		71KDL000267		KN132	Ť	C	16	SURF	18-JUN-90		901957	0.64	45.70		71KDL000268		KN132	T	С	16	BOT	18-JUN-90	4.76	901957	0.45	32.13		71KDL000277		KN132	T	Υ	16	BOT	18-JUN-90	18.33	901957	0.64	45,70		71KDL000278	SAMP	KN132	T	Z	16	BOT	18-JUN-90	16.18	901957	0.61	43.55		71KDL000270		KN132	R	D	16	BOT	18-JUN-90		901957	0.58	41.41		71KDL000269		KN132	R	D	16	SUR F	18-JUN-90		901957	0.49	34.99		71kDL000275		KN132	R	D	16	SURF	18-JUN-90		901957	0.70	49.98		71KDL000271		KN132	R	E	16	SURF	18-JUN-90		901957	0.64	45.70		71KDL000272		KN132	R	E	16	BOT	18-JUN-90		901957	0.65	46.41		71KDL000276		KN132	R	E	16	BOT	18-JUN-90		901957	0.54	38.56		71KDL000273		KN132	R	F	16	SURF	18-JUN-90		901957	0.52	37.13		71KDL000274		KN132	R	F	16	BOT	18-JUN-90		901957	0.63	44.98		71KDL000279		KN132		NA.	16	NA	18-JUN-90		901957	1.10	78.54		71KDL000313		KN132	T	A	29	SURF	30-JUN-90		902212	0.81	57.83		71KDL000314		KN132	T	A	29	BOT	30-JUN-90	26.18	902212	0.75	53.55		71KDL000315		KN132	T	8	29	SURF	30-JUN-90		902212	0.54	38.56		71KDL000316		KN132	T	8	29	BOT	30-JUN-90		902212	0.53	37.84		71KDL000317		KN132	T	С	29	SURF	30-JUN-90		902212	0.36	25.70		71KDL000318		KN132	Ť	C	29	BOT	30-JUN-90		902212	0.36	25.70		71KDL000327		KN132	T	Y	29	BOT	30-JUN-90	89.01	902212	1.63	116.38		71KDL000328		KN132	Ť	Z	29	BOT	30-JUN-90		902212	1.50	107.10		71KDL000319		KN132	R	D	29	SURF	30-JUN-90		902212	0.45	32.13		71KDL000325		KN132	R	D	29	SURF	30-JUN-90		902212	1.70	121.38		71KDL000320		KN132	R	D	29	BOT	30-JUN-90		902212	0.50	35.70		71kDL000321		KN132	R	E	29	SURF	30-JUN-90		902212	0.33	23.56		71KDL000322		KN132	R	E	29	BOT	30-JUN-90		902212	0.41	29.27		71KDL000326		KN132	R	ε	29	BOT	30-JUN-90		902212	1.70	121.38		71KDL000323		KN132	R	F	29	SURF	30-JUN-90		902212	0.46	32.84		71KDL000324		KN132	R	F	· 29	BOT	30-JUN-90		902212	1.34	95.68		71KDL000329		KN132	NA	NA	29	NA .	01-JUL-90		902212	1.10	78.54		71KDL000327		KN132	Ť	A	32	SURF	18-JUN-90		901957	0.21	14.99		71kDL000264		KN132	T T	Ä	32	BOT	18-JUN-90		901957	0.22	15.71		94KDL000001		KN132	T	Â	43	BOT	07-15-90		902517	1.50	107.10		94KDL000002		KN132	T	В	43	BOT	07-15-90		902517	1.20	85.68		94KDL000002		KN132	T T	C	43	BOT	07-15-90		902517	2.70	192.78		94KDL000003		KN132	Ť	c	43	BOT	07-15-90		902517	2.60	185.64		74KDEUUUU00	UUP	KH IJE	•	C	73	501	3, ,,	.,,,,,,,		4.00						TREATED		TIME			NET		GROSS	GROSS		-------------	--------	--------	-----------	---------	--------	-------	------------------	--------	--------	--------	---------------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(UH)	BATCH#	(MG/L)	(uM)																												94KDL000005	SAMP	KN132	T	Z	43	BOT	07-15-90	94.01	902517	1.70	121.38		94KDL000007	SAMP	KN132	R	D	43	BOT	07-15-90	35.46	902517	0.88	62.83		94KDL000008	SAMP	KN132	R	Ε	43	BOT	07-15-90		902517	0.91	64.97		9410000009	SAMP	KN132	R	F	43	BOT	07-15-90	36.89	902517	0.90	64.26		94KDL000048	SAMP	KN132	T	A	60	BOT	08-01-90	4.76		0.45	32.13		94KDL000049	SAMP	KN132	T	В	60	BOT	08-01-90	9.76		0.52	37.1 3		94KDL000050	SAMP	KN132	T	C	60	BOT	08-01-90	11.19		0.54	38.56		94KDL000053	DUP	KN132	T	C	60	BOT	08-01-90	0.48		0.39	27.85		94KDL000051	SAMP	KN132	T	Y	60	BOT	08-01-90	6.90		0.48	34.27		94KDL000052	SAMP	KN132	T	Z	60	BOT	08-01-90	6.90		0.48	34.27		94IDL000054	SAMP	KN132	R	D	60	BOT	08-01-9 0	9.04		0.51	36.41		94KDL000055		KN132	R	E	60	BOT	08-01-90	4.05		0.44	31.42		94IDL000056	SAMP	KN132	R	F	60	BOT	08-01-90	7.62		0.49	34.99		94KDL000057	SAMP	KN132	R	STR	60	BOT	08-01-90	37.60		0.91	64.97		71kDL000017	SAMP	KN135	T	A	0	SUR F	20-MAY-90	0.00	901475	0.22	15.71		71KDL000001	SAMP	KN135	T	A	0	SURF	19-MAY-90	93.30	901454	1.69	120.67		71KDL000002	SAMP	KN135	T	A	0	BOT	19-MAY-90		901454	0.27	19.28		71KDL000018	SAMP	KN135	T	A	0	BOT	20-MAY-90	0.00	901475	0.35	24.99		71kDL000019	SAMP	KN135	T	В	0	SURF																																								
20-MAY-90	71.16	901475	1.38	98.53		71kDL000004	SAMP	KN135	T	В	0	BOT	19-MAY-90	0.00	901454	0.34	24.28		71kDL000020	SAMP	KN 135	T	8	0	BOT	20-HAY-90	0.00	901475	0.35	24.99		71kDL000021	SAMP	KN135	T	C	0	SURF	20-MAY-90	0.00	901475	0.37	26.42		71KDL000022	SAMP	KN135	T	C	0	BOT	20-MAY-90	0.00	901475	0.24	17.14		71KDL000006	SAMP	KN135	T	C	0	BOT	19-MAY-90	5.47	901454	0.46	32.84		71KDL000005	DUP	KN135	T	C	0	BOT	19-MAY-90	0.00	901454	0.22	15.71		71kDL000029	SAMP	KN135	T	Z	0	SURF	20-MAY-90	0.00	901475	0.28	19.99		71KDL000014	SAMP	KN135	T	Z	0	BOT	19-MAY-90	0.00	901454	0.21	14.99		71kDL000030	SAMP	KN135	T	Z	0	BOT	20-MAY-90	0.00	901475	0.36	25.70		71KDL000024	SAMP	KN135	R	D	0	SURF	20-HAY-90	13.33	901475	0.57	40.70		71kDL000031	DUP	KN135	R	D	0	SURF	20-HAY-90	158.98	901475	2.61	186.35		71KDL000023	SAMP	KN135	R	D	0	BOT	20-MAY-90	0.00	901475	0.28	19.99		71kDL000032	DUP	KN135	R	D	0	BOT	20-MAY-90	0.00	901475	0.27	19.28		71kDL000025	SAMP	KN135	R	E	0	SURF	20-MAY-90	0.00	901475	0.25	17.85		71KDL000026	SAMP	KN135	R	E	0	BOT	20-MAY-90	22.61	901475	0.70	49.98		71KDL000027	SAMP	KN135	R	F	0	SURF	20-MAY-90	0.00	901475	0.35	24.99		71kDL000028	SAMP	KN135	R	F	0	BOT	20-MAY-90	0.00	901475	0.29	20.71		71KDL000035	EB	KN135	R	NA	0	NA	22-MAY-90	NA	901527	0.34	24.28		71KDL000048	SAMP	KN135	T	A	2	SURF	23-MAY-90	175.41	901527	2.84	202.78		71KDL000049	SAMP	KN135	T	A	2	BOT	23-MAY-90	171.84	901527	2.79	199.21		71kDL000050	SAMP	KN135	T	В	2	SURF	23-HAY-90		901527	4.06	289.88		71kDL000051	SAMP	KN135	Ť	В	2	BOT	23-MAY-90	253.95	901527	3.94	281.32		71kDL000052	SAMP	KN135	T	C	2	SURF	23-MAY-90	260.37	901527	4.03	287.74		71KDL000060	DUP	KN135	T	C	2	SURF	23-MAY-90	201.11	901527	3.20	228.48		71kDL000053	SAMP	KN135	T	C	2	BOT	23-MAY-90	215.39	901527	3.40	242.76		71KDL000061	DUP	KN135	Ť	С	2	BOT	23-MAY-90		901527	3.90	278.46		71KDL000062	SAMP	KN135	T	Z	2	SURF	23-HAY-90		901527	4.20	299.88		71KDL000063	SAMP	KN135	T	Z	2	BOT	23-MAY-90	279.65	901527	4.30	307.02		71KDL000054	SAMP	KN135	R	D	2	SURF	23-MAY-90		901527	0.36	25.70		71kDL000055	SAMP	KN135	R	D	2	BOT	23-MAY-90	6.19	901527	0.47	33.56		71KDL000056	SAMP	KN135	R	E	2	SURF	23-MAY-90	21.90	901527	0.69	49.27		71KDL000057	SAMP	KN135	R	E	2	BOT	23-MAY-90	6.19	901527	0.47	33.56		71KDL000058	SAMP	KN135	R	F	2	SURF	23-HAY-90	5.47	901527	0.46	32.84																		TREATED		TIME			NET		GROSS	GROSS		--------------	--------	--------	-----------	---------	--------	-------	-----------	--------	--------	--------	---------------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(uH)	BATCH#	(MG/L)	(uH)															71KDL000059	SAMP	KN135	R	F	2	BOT	23-MAY-90	1.90	901527	0.41	29.27		71KDL000064	SAMP	KN135	T	A	4	SURF	25-MAY-90	61.17	901558	1.24	88.54		71KDL000078	DUP	KN135	T	A	4	SURF	25-MAY-90		901558	1.35	96.39		71KDL000065	SAMP	KN135	T	A	4	BOT	25-MAY-90	145.42	901558	2.42	172.79		71KDL000079	DUP	KN135	T	A	4	BOT	25-MAY-90	91.15	901558	1.66	118.52		71kDL000068	SAMP	KN135	T	8	4	SURF	25-MAY-90	191.83	901558	3.07	219.20		71KDL000069	SAMP	KN135	T	8	4	BOT	25-MAY-90	242.52	901558	3.78	269.89		71KDL000066	SAMP	KN135	T	С	4	SURF	25-MAY-90	183.26	901558	2.95	210.63		71kDL000067	SAMP	KN135	T	C	4	BOT	25-MAY-90	191.11	901558	3.06	218.48		71KDL000076	SAMP	KN135	T	Z	4	SURF	25-MAY-90	141,13	901558	2.36	168.50		71KDL000077	SAMP	KN135	T	Z	4	BOT	25-MAY-90	149.70	901558	2.48	177.07		71kDL000071	SAMP	KN135	R	D	4	BOT	25-MAY-90	4.76	901558	0.45	32.13		71kDL000073	SAMP	KN135	R	E	4	BOT	25-MAY-90	6.19	901558	0.47	33.56		71KDL000075	SAMP	KN135	R	F	4	BOT	25-MAY-90	1.19	901558	0.40	28.56		71KDL000099	SAMP	KN135	T	A	8	SURF	29-MAY-90	18.33	901615	0.64	45.70		71KDL000100	SAMP	KN135	T	A	8	BOT	29-MAY-90	31.18	901615	0.82	58.55		71KDL000101	SAMP	KN135	T	8	8	SURF	29-MAY-90	86.16	901615	1.59	113.53		71KDL000102	SAMP	KN 135	T	В	8	BOT	29-MAY-90	91.87	901615	1.67	119.24		71KDL000103	SAMP	KN135	T	С	8	SURF	29-MAY-90	79.73	901615	1.5	107.10		71KDL000112	SAMP	KN135	T	C	8	SURF	29-MAY-90	85.44	901615	1.58	112.81		71KDL000104	SAMP	KN135	T	C	8	BOT	29-MAY-90	103.29	901615	1.83	130.66		71KDL000111	SAMP	KN135	T	2	8	BOT	29-MAY-90	59.02	901615	1.21	86.39		71KDL000105	SAMP	KN135	R	D	8	SURF	29-MAY-90	0.00	901615	0.33	23.56		71KDL000106	SAMP	KN135	R	D	8	BOT	29-MAY-90	9.04	901615	0.51	36.41		71KDL000113	DUP	KN135	R	D	8	BOT	29-MAY-90	0.48	901615	0.39	27.85		71kDL000107	SAMP	KN135	R	E	8	SURF	29-HAY-90	21.18	901615	0.68	48.55		71KDL000108	SAMP	KN135	R	E	8	BOT	29-MAY-90	0.00	901615	0.28	19.99		71kDL000109	SAMP	KN135	R	F	8	SURF	29-MAY-90	11.19	901615	0.54	38.56		71KDL000110	SAMP	KN135	R	F	8	BOT	29-MAY-90	0.00	901615	0.29	20.71		71kDL000182	SAMP	KN135	T	A	15	SURF	05-JUN-90	0.00	901765	0.38	27.13		71kDL000183	SAMP	KN135	T	A	15	801	05-JUN-90	11.90	901765	0.55	39.27		71KDL000184	SAMP	KN135	T	В	15	SURF	05-JUN-90	34.75	901765	0.87	62.12		71KDL000195	DUP	KN135	T	В	15	SURF	05-JUN-90	26.18	901765	0.75	53 .55		71KDL000185	SAMP	KN135	T	8	15	BOT	05-JUN-90	44.03	901765	1.00	71.40		71KDL000186	SAMP	KN135	T	C	15	SURF	05-JUN-90	40.46	901765	0.95	67.83		71KDL000187	SAMP	KN135	T	C	15	BOT	05-JUN-90	63.31	901765	1.27	90.68		71KDL000196	DUP	KN135	T	C	15	BOT	05-JUN-90	16.18	901765	0.61	43.55		71KDL000190	SAMP	KN135	T	F	15	SURF	05-JUN-90	7.62	901765	0.49	34.99		71KDL000189	SAMP	KN135	T	Z	15	BOT	05-JUN-90	20.47	901765	0.67	47.84		71KDL000194	SAMP	KN135	R	D	15	SURF	05-JUN-90	0.00	901765	0.32	22.85		71KDL000197	SAHP	KN135	R	D	15	BOT	05-JUN-90	0.00	901765	0.38	27.13		71kDL000192	SAMP	KN135	R	Ε	15	SURF	05-JUN-90	0.48	901765	0.39	27.85		71KDL000193	SAMP	KN135	R	E	15	BOT	05-JUN-90	1.19	901765	0.40	28.56		71KDL000191	SAMP	KN135	R	F	15	BOT	05-JUN-90	0.00	901765	0.36	25.70		71KDL000282	SAMP	KN135	T	A	32	SURF	22-JUN-90	0.00	902035	0.26	18.56		71KDL000283	SAMP	KN135	T	A	32	BOT	22-JUN-90	0.00	902035	0.33	23.56		71KDL000284	SAMP	KN135	T	8	32	SURF	22-JUN-90	0.00	902035	0.35	24.99		71KDL 000285	SAMP	KN135	T	8	32	BOT	22-JUN-90	8.33	902035	0.50	35.70		71KDL000286	SAMP	KN135	T	C	32	SURF	22-JUN-90	12.61	902035	0.56	39 .98		71KDL000287	SAMP	KN135	T	С	32	BOT	22-JUN-90	19.75	902035	0.66	47.12		71kDL000294	SAMP	KN135	T	2	32	801	22-JUN-90	34.03	902035	0.86	61.40		71KDL000292	SAMP	KN135	R	D	32	SURF	22-JUN-90	11.90	902035	0.55	39.27																		TREATED		TIME			NET		GROSS	GROSS		--------------	--------	--------	-----------	---------	--------	------------------	------------------	--------	--------	--------	--------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD 1D	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(UH)	BATCH#	(MG/L)	(uH)															71KDL000295	DELP	KN135	R	D	32	SURF	22-JUN-90	7.62	902035	0.49	34.99		71kDL000293		KN135	R	D	32	BOT	22-JUN-90		902035	0.29	20.71		71KDL 000288		KN135	R	E	32	SURF	22-JUN-90		902035	0.37	26.42		71KDL 000289		KN135	R	E	32	BOT	22-JUN-90		902035	0.46	32.84		71KDL 000296		KN135	R	E	32	BOT	22-JUN-90		902035	0.35	24.99		71KDL 000290		KN135	R	F	32	SURF	22-JUN-90		902035	0.45	32.13		71KDL000291		KN135	R	F	32	BOT	22-JUN-90		902035	0.48	34.27		94KDL000019		KN135	T	Ä	57	BOT	07-17-90		902517	1.40	99.96		94KDL000020	SAMP	KN135	T	В	57	BOT	07-17-90		902517	2.10	149.94		94KDL000021		KN135	T	С	57	BOT	07-17-90		902517	1.90	135.66		94KDL000026	SAMP	KN135	T	Z	57	BOT	07-17-90	136.85	902517	2.30	164.22		94KDL000022	SAMP	KN135	R	D	57	BOT	07-17-90		902517	0.70	49.98		94KDL 000023	SAMP	KN135	R	E	57	BQT ⁻	07-17-90	24.04	902517	0.72	51.41		94KDL 000024	SAMP	KN135	R	F	57	SOT	07-17-90																																																																																																																												
29.75	902517	0.80	57.12		94KDL000025	DUP	KN135	R	F	57	BOT	0 7-17-90	21.90	902517	0.69	49.27		94KDL000027	EB	KN135	NA	NA	57		07-17-90	NA	902517	0.66	47.12		94KDL000028	SAMP	KN135	T	A	70	BOT	07-30-90	21.18		0.68	48.55		94KDL000032	DUP	KN135	T	A	70	BOT	07-30-90	16.18		0.61	43.55		94KDL000029	SAMP	KN 135	T	В	70	BOT	07-30-90	51.88		1.11	79.25		94KDL000030	SAMP	KN135	T	С	70	BOT	07-30-90	27.61	· · ·	0.77	54.98		94KDL000031	SAMP	KN135	T	2	70	BOT	07-30-90	11.90		0.55	39.27		94KDL000037	SAMP	KN135	T	STR	70	SURF	07-30-90	6.19		0.47	33.56		94KDL000034	SAMP	KN135	R	D	70	BOT	07-30-90	0.00		0.38	27.13		94KDL000035	SAMP	KN135	R	E	70	BOT	07-30-90	2.62		0.42	29.99		94KDL 000036	SAMP	KN135	R	F	70	BOT	07-30-90	0.00		0.35	24.99		94KDL000033	EB	KN135		NA	70	NA	07-30-90	KA		0.28	19.99		94KDL000058	SAMP	KN135	T	A	78	BOT	08-07-90	8.33		0.50	35.70		94KDL000065	SAMP	KN135	T	Α,	78	BOT	08-07-90	8.33		0.50	35.70		94KDL000059	SAMP	KN135	T	В	78	BOT	08-07-90	28.32		0.78	55.69		94KDL000060	SAMP	KN135	T	С	78	BOT	08-07-90	8.33		0.50	35.70		94KDL000061	SAMP	KN135	T	Z	78	BOT	08-07-90	21.90		0.69	49.27		94KDL000062	SAMP	KN135	R	D	78	BOT	08-07-90	6.90		0.48	34.27		94KDL000063	SAMP	KN135	R	E	78	BOT	08-07-90	6.19		0.47	33.56		94KDL000064	SAMP	KN135	R	F	78	BOT	08-07-90	9.04		0.51	36.41		94KDL000067	SAMP	KN135		NA	78	NA	08-07-90	0.00		0.28	19.99		94KDL 000066	SAMP	KN135		NA	78	NA	08-07-90	0.00		0.34	24.28		71KDL000080		KN211	T	A	0	SURF	26-MAY-90		901573	0.72	51.41		71kDL000096		KN211	T	A	0	SURF	26-MAY-90		901573	0.43	30.70		71kDL000081	SAMP	KN211	T	A	0	BOT	26-MAY-90		901573	0.77	54.98		71kDL000082		KN211	T	В	0	SURF	26-MAY-90		901573	0.49	34.99		71kDL000083		KN211	T	В	0	BOT	26-MAY-90		901573	0.49	34.99		71KDL000084	SAMP	KN211	T	С	0	SURF	26-MAY-90		901573	0.45	32.13		71KDL000085		KN211	T	C	0	BOT	26-MAY-90		901573	0.69	49.27		71KDL000095		KN211	T	2	0	BOT	26-MAY-90		901573	1.07	76.40		71KDL000086		KN211	R	D	0	SURF	26-MAY-90		901573	0.32	22.85		71KDL000087		KN211	R	D	0	BOT	26-MAY-90		901573	0.93	66.40		71KDL000097		KN211	R	D	0	BOT	26-MAY-90		901573	0.49	34.99		71KDL000088		KN211	R	E	0	SURF	26-MAY-90		901573	0.61	43.55		71KDL000089		KN211	R	E	0	BOT	26-MAY-90		901573	0.34	24.28		71KDL000090		KN211	R	F	0	SURF	26-MAY-90		901573	0.43	30.70		71KDL000091		KN211	R	F	0	BOT	26-MAY-90		901573	0.27	19.28		71KDL000098	EB	KN211		NA	0	NA	26-MAY-90	KA	901573	0.44	31.42					TREATED		TIME			NET		GROSS	GROSS		-------------	--------	-------	-----------	---------	--------	-------	-----------	-------	--------	--------	-------		SAMPLE	SAMPLE		OR		SERIES	;		TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(LM)	BATCH#	(MG/L)	(uH)															71KDL000131	SAMP	KN211	Ť	A	2	SURF	01-JUN-90	34.75	901679	0.87	62.12		71KDL000132		KN211	T	Ā	2	BOT	01-JUN-90		901679	1.09	77.83		71kDL000133		KN211	T	В	2	SURF	01-JUN-90		901679	0.48	34.27		71KDL000134		KN211	T	В	2	BOT	01-JUN-90		901679	0.36	25.70		71KDL000136		KN211	T	C	2	SURF	01-JUN-90		901679	0.28	19,99		71KDL000141		KN211	Ţ	C	2	SURF	01-JUN-90		901679	0.23	16.42		71kDL000135		KN211	T	C	2	BOT	01-JUN-90		901679	0.40	28.56		71KDL000138		KN211	T	Y	2	BOT	01-JUN-90		901679	0.42	29.99		71KDL000140		KN211	T	Z	2	BOT	01-JUN-90		901679	0.28	19.99		71KDL000143		KN211	R	D	2	SURF	01-JUN-90		901679	0.19	13.57		71KDL000144		KN211	R	D	2	BOT	01-JUN-90		901679	0.19	13.57		71KDL000145		KN211	R	E	2	SURF	01-JUN-90		901679	0.16	11.42		71KDL000146		KN211	R	E	2	BOT	01-JUN-90		901679	0.17	12.14		71KDL000142		KN211	R	E	2	BOT	01-JUN-90		901679	0.28	19.99		71KDL000147		KN211	R	F	2	SURF	01-JUN-90		901679	0.21	14.99		71KDL000148		KN211	R	F	2	BOT	01-JUN-90		901679	0.19	13.57		71KDL000149		KN211	T	Ä	4	SURF	03-JUN-90		901690	0.10	7.14		71KDL000150		KN211	T	A	4	BOT	03-JUN-90		901690	0.34	24.28		71kDL000151	-	KN211	Ť	8	4	SURF	03-JUN-90		901690	0.26	18.56		71KDL000163		KN211	T	8	4	SURF	03-JUN-90		901690	0.71	50.69		71KDL000152		KN211	T	В	4	BOT	03-JUN-90		901690	0.23	16.42		71KDL000153		KN211	T	C	4	SUR F	03-JUN-90		901690	0.21	14.99		71kDL000154		KN211	T.	C	4	BOT	03-JUN-90		901690	0.21	14,99		71KDL000155		KN211	T.	Y	4	BOT	03-JUN-90		901690	0.26	18.56		71KDL000156		KN211	Ţ	Z	4	BOT	03-JUN-90		901690	0.33	23.56		71KDL000157		KN211	R	D	4	SURF	03-JUN-90		901690	0.31	22.13		71KDL000164		KN211	R	D	4	BOT	03-JUN-90		901690	0.67	47.84		71KDL000159		KN211	R	E	4	SURF	03-JUN-90		901690	0.36	25.70		71KDL000160		KN211	R	E	4	BOT	03-JUN-90		901690	0.45	32.13		71KDL000161		KN211	R	F	4	SURF	03-JUN-90		901690	0.28	19,99		71KDL000162		KN211	R	F	4	BOT	03-JUN-90		901690	0.20	14.28		71KDL000215		KN211	T	Ā	8	BOT	07-JUN-90		901765	0.00	0.00		71KDL000216		KN211	Ţ	В	8	SURF	07-JUN-90		901765	0.00	0.00		71KDL000217		KN211	T	B	8	BOT	07-JUN-90		901765	0.25	17.85		71KDL000218		KN211	T	C	8	SURF	07-JUN-90		901765	0.00	0.00		71KDL000219		KN211	T	C	8	BOT	07-JUN-90		901765	0.00	0.00		71kDL000226		KN211	T	Y	8	BOT	07-JUN-90		901765	0.00	0.00		71KDL000227		KN211	T	Z	8	BOT	07-JUN-90		901765	0.00	0.00		71kDL000229		KN211	T	Z	8	BOT	07-JUN-90		901765	0.00	0.00		71kDL000220		KN211	R	D	8	SURF	07-JUN-90	0.00	901765	0.00	0.00		71kDL000228		KN211	R	D	8	SURF	07-JUN-90		901765	0.00	0.00		71KDL000221		KN211	R	D	8	BOT	07-JUN-90	0.00	901765	0.00	0.00		71kDL000222		KN211	R	E	8	SURF	07-JUN-90	0.00	901765	0.00	0.00		71kDL000223		KN211	R	E	8	BOT	07-JUN-90		901765	0.00	0.00		71kDL000224		KN211	R	F	8	SURF	07-JUN-90		901765	0.00	0.00		71kDL000225		KN211	R	F	8	BOT	07-JUN-90		901765	0.00	0.00		71KDL000246		KN211	Ť	Ä	16	SURF	15-JUN-90		901930	0.25	17.85		71KDL000240		KN211	Ţ	A	16	BOT	15-JUN-90		901930	0.34	24.28		71kDL000247		KN211	Ţ	В	16	SURF	15-JUN-90		901930	0.66	47.12		71KDL000248		KN211	Ť	В	16	BOT	15-JUN-90		901930	0.30	21.42		71kDL000249		KN211	Ţ	c	16	SURF	15-JUN-90		901930	0.45	32.13				KN211	Ť	c	16	BOT	15-JUN-90		901930	0.32	22.85		71KDL000251	SAMP	24511	'	•				3.30					•			TREATED		TIME			NET		GROSS	GROSS		-------------	--------	-------	-----------	---------	--------	-------	-----------	--------	--------	--------	----------------		SAMPLE	SAMPLE		OR		SERIES			TKN		TKN	TKN		FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	DATE	(uH)	BATCH#	(MG/L)	(uH)															71KDL000261	SAMP	KN211	T	Y	16	BOT	15-JUN-90	0.00	901930	0.36	25.70		71KDL000262		KN211	T	Z	16	BOT	15-JUN-90		901930	0.29	20.71		71KDL000252		KN211	R	D	16	SURF	15-JUN-90		901930	0.56	39.98		71KDL000253		KN211	R	D	16	BOT	15-JUN-90		901930	1.06	75.68		71KDL000257		KN211	R	F	16	BOT	15-JUN-90		901930	0.47	33.56		71kDL000258		KN211	R	F	16	BOT	15-JUN-90		901930	0.38	27.13		71KDL000297		KN211	T	A	31	SURF	30-JUN-90		902212	0.44	31.42		71KDL000298		KN211	T	A	31	BOT	30-JUN-90		902212	0.44	31.42		71KDL000299		KN211	T	В	31	SURF	30-JUN-90	0.00	902212	0.34	24.28		71KDL000303	DUP	KN211	T	В	31	SURF	30-JUN-90	1.19	902212	0.40	28.56		71kDL000300	SAMP	KN211	T	В	31	BOT	30-JUN-90	11.19	902212	0.54	38.56		71KDL000301	SAMP	KN211	T	С	31	SURF	30-JUN-90	1.19	902212	0.40	28.56		71KDL000302	SAMP	KN211	T	С	31	BOT	30-JUN-90	0.00	902212	0.35	24.99		71KDL000305	DUP	KN211	T	C	31	BOT	30-JUN-90	2.62	902212	0.42	29.99		71KDL000311	SAMP	KN211	T	Y	31	BOT	30-JUN-90	51.17	902212	1.10	78.54		71KDL000312	SAMP	KN211	T	Z	31	BOT	30-JUN-90	42.60	902212	0.98	69.97		71KDL000306	SAMP	KN211	R	D	31	BOT	30-JUN-90	3.33	902212	0.43	30.70		71KDL000304	SAMP	KN211	R	D	31	SURF	30-JUN-90	0.00	902212	0.32	22.85		71KDL000307	SAMP	KN211													
R	Ε	31	SURF	30-JUN-90	18.33	902212	0.64	45.70		71KDL000308	SAMP	KN211	R	E	31	BOT	30-JUN-90	29.04	902212	0.79	56.41		71KDL000309	SAMP	KN211	R	F	31	SURF	30-JUN-90	27.61	902212	0.77	54.98		71KDL000310	SAMP	KN211	R	F	31	BOT	30-JUN-90	29.75	902212	0.80	57.12		94KDL000010	SAMP	KN211	T	A	47	BOT	07-16-90	94.01	902517	1.70	121.38		94KDL000013	DUP	KN211	T	A	47	BOT	07-16-90	86.87	902517	1.60	114.24		94KDL000011	SAMP	KN211	T	В	47	BOT	07-16-90	151.13	902517	2.50	178.50		94KDL000012	SAMP	KN211	T	C	47	BOT	07-16-90	51.17	902517	1.10	78.54		94KDL000014	SAMP	KN211	T	Y	47	BOT	07-16-90	58.31	902517	1.20	85.68		94KDL000015	SAMP	KN211	T	Z	47	BOT	07-16-90	51.17	902517	1.10	78.54		94KDL000016	SAMP	KN211	R	D	47	BOT	07-16-90		902517	0.96	68.54		94KDL000017	SAMP	KN211	R	E	47	BOT	07-16-90		902517	1.00	71.40		94KDL000018	SAMP	KN211	R	F	47	BOT	07-16-90		902517	0.78	55.69		94KDL000038		KN211	T	A	60	BOT	07-31-90		902809	1.31	93.53		94KDL000044	DUP	KN211	T	A	60	BOT	07-31-90		902809	1.31	93.53		94KDL000039		KN211	T	В	60	BOT	07-31-90		902809	0.98	69.97		94KDL000040		KN211	T	С	60	BOT	07-31-90		902809	0.77	54.98		94KDL000041		KN211	R	D	60	BOT	07-31-90		902809	0,61	43.55		94KDL000045		KN211	R	E	60	BOT	07-31-90		902809	0.56	39.98		94KDL000046		KN211	R	F	60	BOT	07-31-90		902809	0.48	34.27		94KDL000047		KN211	R	STR	60	SURF	07-31-90		902809	0.44	31.42		94KDL000068		KN211	T	A	98	BOT	09-05-90		903520	0.77	54.98		94KDL000069		KN211	T	В	98	BOT	09-05-90		903520	0.47	33.56		94KDL000070		KN211	Ţ	В	98	BOT	09-05-90		903520	0.47	33.56		94KDL000071		KN211	R	С	98	BOT	09-05-90		903520	0.54	38.56		94KDL000072		KN211	R	D	98	BOT	09-05-90		903520	0.36	25.70		94KDL000073		KN211	R	F	98	BOT	09-05-90		903520	0.44	31.42		94KDL000074		KN211	R	AHB	98	BOT	09-05-90		903520	0.41	29.27		94KDL000076		KN211	T -	A		BOT	09-11-90		903520	0.59	42.13		94KDL000077		KN211	T -	В		801	09-11-90		903520	0.51	36.41		94KDL000078		KN211	T -	В		BOT	09-11-90		903520	0.78	55.69		94KDL000081		KN211	T	Y		BOT	09-11-90		903520	0.99	70.69 38.54		94101000079		KN211	R	D		BOT	09-11-90		903520	0.54	38.56 30.70		94KDL000080	SAMP	KN211	R	F	104	BOT	09-11-90	3.33	903520	0.43	30.70	#### APPENDIX D1, TABLE 3 -SUMMARY OF FERTILIZER NUTRIENTS FROM KN-132B	KN1328 - NU	TRIENT DATA, F	ERTILIZED	(uH)				-------------	-----------------	-------------	-----------	---------	------		DAY	NO3+NO2	ин3	ORGANIC N	TOTAL N	PO4		0	1.94	1.11	27.40	30.44	0.71		2	79.14	103.33	153.88	336.35	0.77		4	36.63	44.50	0.00	81.13	0.73		8	17.84	19.21	0.00	37.06	0.48		16	13.46	1.22	40.58	55.25	0.54		29	32.11	5.94	24.95	62.99	0.72		43	13.36	45.52	68.72	127.60	0.16		60	29.52	0.28	6.39	36.18	0,58		KN1328 - NU	TRIENT DATA, U	NFERTILIZED	(uH)				DAY	NO3+NO2	ин3	ORGANIC N	TOTAL N	P04		0	2.59	0.94	8.04	11.56	0.16		2	6.98	3.19	1.47	11.64	0.14		4	4.95	0.60	0.00	5.55	0.14		8	2.05	0.56	5.48	8.09	0.08		16	7.11	0.40	14.76	22.27	0.12		29	8.33	2.47	32.13	42.93	0.22		43	1.11	0.37	36.28	37.76	0.03		60	4.17	0.76	6.15	11.07	0.06		KN1328 - NU	TRIENT DATA, F,	/U RATIOS						F/U	F/U	F/U	F/U	F/U		DAY	NO3+NO2	инз	ORGANIC N	TOTAL N	P04		0	0.75	1.18	3.41	2.63	4.47		2	11.34	32,41	104.72	28.90	5.40		4	7.40	74.37		14.61	5.19		8	8.70	34.62	0.00	4.58	6.08		16	1.89	3.02	2.75	2.48	4.44		29	3.86	2.40	0.78	1.47	3.31		43	12.03	123.02	1.89	3.38	6.00		60	7.08	0.36	1.04	3.27	9.72	NOTE: The fertilized beach values are the averages of surface and subsurface samples from wells A,B,C,Y and Z. The unfertilized values are the averages of surface and subsurface samples from wells D,E and F. NOTE: 1mg/L of Nitrogen * 71.4 = 1 uM Nitrogen ORGANIC N = Kjeldahl Nitrogen - NH3. If this results in a negative value it is set to zero. TOTAL N = ORGANIC N + NH3 + NO3+NO2 APPENDIX D1, TABLE 4 SUMMARY OF FERTILIZER NUTRIENTS FROM KN-135B	KN1358 - NUTR	IENT DATA, FER	RTILIZED	(uH)				---------------	----------------	------------	-----------	---------	------		DAY	NO3+NO2	ин3	ORGANIC N	TOTAL N	PO4		0	2.73	0.81	11.33	14.87	0.32		2	145.16	146.46	87.92	379.54	0.51		4	144.27	147.49	-0.86	290.90	0.41		8	123.81	79.26	0.00	203.07	0.38		15	37.17	31.87	0.00	-69.04	0.37		32	31.23	1.02	9.65	41.91	0.18		57	37.48	73.70	36.38	147.56	0.20		70	28.34	1.29	24.46	54.09	0.47		78	115.58	23.47	0.00	139.05	0.26		KN1358 - NUTR	IENT DATA, UNF	FERTILIZED	(uH)				DAY	NO3+NO2	NH3	ORGANIC N	TOTAL N	PO4		0	1.62	0.93	23.44	25.98	0.43		2	1.09	1.18	5.76	8.03	0.44		4	1.87	0.89	3.15	5.91	0.53		8	2.44	1.09	4.90	8.42	0.44		15	1.64	0.89	-0.56	1.97	0.47		32	3.36	0.46	4.12	7.94	0.40		57	1.99	0.46	24.11	26.56	0.20		70	3.08	0.66	0.21	3.96	0.12		78	27.27	4.67	2.71	34.64	0.09		KN1358 - NUTR	IENT DATA, F/U	J RATIOS						F/U	F/U	F/U	F/U	F/U		DAY	NO3+NO2	NH3	ORGANIC N	TOTAL N	P04		0	1.69	0.87	0.48	0.57	0.75		2	133.79	123.94	15.26	47.29	1.16		4	77.29	165.10	-0.27	49.20	0.77		8	50.74	72.93	0.00	24.11	0.87		15	22.70	35.86	0.00	35.03	0.79		32	9.31	2.21	2.34	5.28	0.45		57	18.83	160.22	1.51	5.55	1.00		70	9.19	1.96	115.01	13.67	4.06		78	4.24	5.03	0.00	4.01	2.91								NOTE: The fertilized beach values are the averages of surface and subsurface samples from wells A,B,C and Z. The unfertilized values are the averages of surface and subsurface samples from wells D,E and F. NOTE: 1mg/L of Witrogen * 71.4 = 1 uM Witrogen ORGANIC N = Kjeldahl Nitrogen - NH3. If this results in a negative value it is set to $z_{\rm c}$ TOTAL N = ORGANIC N + NH3 + NO3+NO2 APPENDIX D1, TABLE 5 SUMMARY OF FERTILIZER NUTRIENTS FROM KN-211E	KN211E - N	UTRIENT DATA, F	ERTILIZED	(uH)				------------	-----------------	-------------	-----------	---------	-------		DAY	NO3+NO2	инз	ORGANIC N	TOTAL N	P04		0	4.39	1.19	17.05	22.63	0.27		2	24.93	19.27	0.00	44.20	0.94		4	13.23	5.13	0.00	18.36	0.54		8	10.26	8.07	0.00	18.33	0.46		16	8.39	1.01	2.06	11.45	0.28		31	12.20	7.25	4.55	24.00	0.35		47	58.52	41.30	40.81	140.63	1.04		60	40.80	4.08	29.68	74.56	0.66		98	31.20	19.82	0.00	51.02	0.18		104	17.32	25.26	0.00	42.58	0.61		KN211E - N	UTRIENT DATA, U	NFERTILIZED	(uH)				DAY	NO3+NO2	ин3	ORGANIC N	Total N	P04		0	3.13	1.27	8.18	·12.58	0.44		2	1.51	1.27	0.00	2.78	0.17		4	0.65	1.15	3.05	4.86	0.24		8	1.49	0.48	0.00	1.97	0.37		16		0.47	16.31	18.44	0.52		31	2.24	0.40	17.61	20.25	0.34		47	1.35	0.92	36.92	39.19	0.13		60	2.33	0.47	11.43	14.23	0.04		98	0.63	8.36	0.00	8.99	0.15		104	2.77	10.85	0.00	13.62	0.55		KN211E - N	UTRIENT DATA, F	/U RATIOS						F/U	F/U	F/U	F/U	F/U		DAY	NO3+NO2	инз	ORGANIC N	TOTAL N	P04		0	1.40	0.94	2.08	1.80	0.62		2		15.19		15.89	5.65		4	20.22	4.46	0.00	3.78	2.22		8		16.81		9.30	1.23		16		2.16	0.13	0.62	0.53		31		18.13	0.26	. 1.19	1.01		47		44.89	1.11	3.59	7.79		60		8.68	2.60	5.24	18.00		98		2.37	NA	5.68			104	6.26	2.33	NA	3.13		NOTE: The fertilized beach values are the averages of surface and subsurface samples from wells A,B,C,Y and Z. The unfertilized values are the averages of surface and subsurface samples from wells D,E and F. NOTE: 1mg/L of Nitrogen * 71.4 = 1 uM Nitrogen ORGANIC N = Kjeldahl Nitrogen - NH3. If this results in a negative value it is set to zero. TOTAL N = ORGANIC N + NH3 + NO3+NO2 #### APPENDIX D1, TABLES 6-12 Tables 6-11 of Appendix D1 list the measured values of dissolved oxygen, salinity and temperature for the three shorelines monitored in this program. Tables 6-8 list the samples from the individual wells; A, B and C are on the fertilized portion of the beach, D, E and F are on the unfertilized portion. Wells A-F represent the centers of the sediment sampling areas. Wells Y (KN-132B and KN-211E) and Z (KN-132B, KN-135B and KN-211E) are sealed so that they collect interstitial water from only the bottom 10cm of their depth, and are on the fertilized portion of the beach. The Tables indicate samples collected from the top of the well as SFC (surface) and from the bottom of the well as BOT.; D.O. is dissolved oxygen, measured in mg/l (ppm); SAL. is salinity, measured in ppt; and TEMP is temperature, measured in degrees Celsius. Samples collected from nearshore, surface water are labeled AMB, for ambient																																																																																																																																																																																																																																																																																																																																																																																																			
conditions offshore of the fertilized (FERT) and unfertilized (UNFERT) portions of the beach. Tables 9-11 indicate the average values for the fertilized (FERT), unfertilized (UNFERT), and ambient samples, together with standard deviations of the means (STD) to give an idea of the differences between the wells. The ratio of the values on fertilized and unfertilized portions is included as F/U. The data are presented graphically in Figures 10-12 of the main report. Table 12 lists pH measurements made on some interstitial water samples, beginning on Day 29 for KN-132B. The abbreviations are the same as those used in Tables 6-11. APPENDIX D1, TABLE 6 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-132B		UL	INILA	31111M	L WATE	V OIL K	11-1361	2				-----------------	-------	-------	--------	--------	---------	---------	----------	-------	-------		DATE	05/31	06/04	06/06	06/10	06/18	06/30	07/12	07/15	08/01		DAY	0	2	4	8	16	29	40	43	60									REAPPLY				D.O. SFC A	5.0	4.5	4.0	4.0	7.0	3.5	10211121	NO	NO		D.O. SFC B	5.5	3.5	4.0	5.0	6.0	4.0													SFC	SFC		D.O. SFC C	5.0	5.5	3.5	4.5	5.5	5.5		TAKEN	TAKEN		D.O. SFC D	7.0	5.0	7.0	8.0	5.5	5.5					D.O. SFC E	8.0	6.0	7.0	5.5	6.0	4.0					D.O. SFC F	5.0	5.5	7.0	5.0	6.0	5.0					D.O. BOT A	5.0	4.5	5.0	4.0	7.0	5.5		4.0	7.0		D.O. BOT B	6.0	4.5	4.0	3.5	5.5	4.0		4.5	5.5		D.O. BOT C	5.5	5.5	4.0	4.0	6.0	6.0		1.5	6.0		D.O. BOT D	7.0	5.0	7.0	4.5	5.5	5.0		4.5	5.0		D.O. BOT E	6.0	5.5	7.0	4.5	6.0	4.0		5.5	7.0		D.O. BOT F	6.0	6.0	7.0	5.0	6.5	5.0		7.0	7.0		D.O. BOT Y	6.0	6.0	5.0	4.0	6.5												4.0		4.5	3.5		D.O. BOT Z	6.5	4.5	4.0	4.0	6.0	4.0		4.5	5.5		D.O. AMB FERT	6.0		6.0	5.5	8.0	7.0		9.0	8.0		D.O. AMB UNFERT	11.0	7.0	7.0		8.0	7.0		7.0	6.0													SAL. SFC A	23.5	20.5	17.0	15.2	20.0	23.0		, NO	NO		SAL. SFC B	26.5	22.0	20.0	14.0	16.8	23.0		SFC	SFC		SAL. SFC C	23.0	19.0	15.0	13.5	19.8	23.0		TAKEN	TAKEN		SAL. SFC D	12.0	12.9	14.2	9.0	4.5	18.0					SAL. SFC E	20.0	14.0	12.5	14.5	1.5	19.0					SAL. SFC F	15.7	12.0	10.5	10.5	0.2	18.0					SAL. BOT A	23.0	20.0	17.0	15.2	20.9	23.0		18.5	15.5					20.0	14.9	18.4	23.0		18.2	16.0		SAL. BOT B	26.5	22.0									SAL. BOT C	27.0	19.0	15.0	15.5	19.3	24.0		16.5	13.2		SAL. BOT D	15.1	13.5	14.0	10.0	6.0	18.5		15.5	16.8		SAL. BOT E	21.0	13.5	11.5	14.0	2.5	19.0		17.8	15.6		SAL. BOT F	15.2	12.0	10.3	10.0	0.1	17.5		14.2	9.0		SAL. BOT Y	25.1	19.0	14.0	15.5	21.2	23.0		17.0	13.6		SAL. BOT Z	25.2	20.5	15.5	13.8	17.1	23.0		16.0	13.5		SAL. AMB FERT	27.1		16.5	20.0	23.5	23.0		21.0	18.0		SAL. AMB UNFERT	8.0		25.0	8.5	15.5	20.0		22.0	19.8			0.0		25.0	0.0	20.0	20.0			27.0		TEMP SFC A	13.0	14.5	16.0	13.2	13.0	18.0		NO	NO		TEMP SFC B	13.0	16.0	16.0	13.0	12.8	18.0		SFC	SFC		TEMP SFC C	12.5	14.0	15.0	13.2	12.9	18.0		TAKEN	TAKEN		TEMP SFC D				13.0	12.5	19.0		IAKEN	IAKEN			11.6	16.0	16.0								TEMP SFC E	11.0	14.0	15.0	13.0	12.0	18.0					TEMP SFC F	10.5	13.5	14.0	12.5	10.0	16.5					TEMP BOT A	13.0	15.0	16.0	13.5	12.5	18.0		14.9	14.1		TEMP BOT B	12.5	16.0	16.0	13.8	12.9	19.0		16.0	14.9		TEMP BOT C	12.5	14.0	15.0	13.8	12.8	18.0		15.0	14.5		TEMP BOT D	11.9	14.5	15.5	13.0	12.5	18.0		15.8	14.0		TEMP BOT E	11.5	14.0	14.5	13.0	11.8	17.0		14.5	13.2		TEMP BOT F	10.0	13.0	14.0	12.5	9.8	17.0		13.0	12.0		TEMP BOT Y	12.5	14.5	16.0	13.2	12.3	18.0		15.0	14.3		TEMP BOT Z	13.2	15.0	16.0	15.5	13.0	18.0		15.0	14.2				15.0				16.0		14.0	14.1		TEMP AMB FERT	12.0		14.0	13.0	12.1						TEMP AMB UNFERT	9.2		15.0	10.0	12.2	16.5		14.5	14.0	# APPENDIX D1, TABLE 7 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-135B		<u>VI</u>	AIVIL	VOITIT	AL WAIL	K ON I	W1-122	<u>U</u>					-----------------	-----------	-------	-------------	-------------	--------	-------------	----------	-------	-------	---------		DATE	05/20	05/23	05/25	05/29	06/05	06/22	07/13	07/17	07/30	08/07		DAY	0	2	4	8	15	32	53	57	70	78									REAPPLY					D.O. SFC A	7.0	7.0	6 .0	3.5	2.5	6. 0		NO	NO	NO		D.O. SFC B	7.0	7.5	5.5	5.0	3.5	6.0		SFC	SFC	SFC		D.O. SFC C	7.0	7.0	5.5	5.5	3.0	5.5		TAKEN	TAKEN	TAKEN		D.O. SFC D	8.0	6.0	7.0	5.5	7.0	5.5						D.O. SFC E	7.0	5.5	7.0	6.0	5.0	5.0						D.O. SFC F	6.0	4.5	6.0	5.0	6.0	5.5						D.O. BOT A	8.0	7.0	5.5	3.5	3.5	5.5		4.5	5.5	4.5		D.O. BOT B	7.0	6.0	5.5	5.0	3.5	6.0		3.0	3.5	3.5			7.0	6.5	5.5			5.0		3.0		4.5		D.O. BOT C				4.0	3.0				3.5			D.O. BOT D	7.0	6.0	7.0	6.0	7.0	7.0		5.5	6.0	6.0		D.O. BOT E	7.0	6.0	7.0	6.5	7.0	6.0		6.0	5.0	4.0		D.O. BOT F	7.0	6.0	6.0	6.0	5.5	5.5		6.0	5.5	2.0		D.O. BOT Z	8.0	7.0	5.0	5.5	4.5	5.5		3.5	5.0	5.0		D.O. AMB FERT	9.0			5. 5	5.5	7.0		7.0	7.0	7.0		D.O. AMB UNFERT		8.0		5.0	7.0	5.5		8.0	7.0	6.0		SAL. SFC A	20.8	25.9	27.8	14.7	24.0	14.0		NO	NO	NO		SAL. SFC B	16.8	24.9	24.5	12.0	23.5	4.0		SFC	SFC	SFC		SAL. SFC C	18.3	24.7	25.3	14.0	22.5	8.5		TAKEN	TAKEN	TAKEN		SAL. SFC D	16.4	20.7	23.5	17.2	20.0	18.0		1				SAL. SFC E	15.3	19.5	23.0	18.3	22.0	18.3						SAL. SFC F	16.8	20.6	23.5	18.8	20.5	18.0						SAL. BOT A	19.6	25.3	27.2	16.1	24.0	14.0		23.0	11.0	19.7		SAL. BOT A	17.2	25.1	24.3	11.2	23.0	4.0		20.0	8.8	18.7					25.8		22.5	8.0		21.5	4.5	17.2		SAL BOT C	18.4	24.3		16.0				19.2	5.1	22.0		SAL BOT D	16.6	20.3	23.5	19.8	21.0	16.5						SAL BOTE	15.8	19.5	23.0	20.9	22.0	18.0		19.5	6.8	21.0		SAL. BOT F	17.0	21.2	23.5	20.1	22.0	18.0		20.6	8.0	21.5		SAL. BOT Z	20.0	25.6	26.8	16.3	23.0	6.0		19.0	5.0	16.1		SAL. AMB FERT	20.2				21.0	24.0		22.5	8.5	21.9		SAL. AMB UNFERT		23.0		17.3	16.0	23.0		21.8	14.8	22.5		TEMP SFC A	12.8	11.6	9.9	12.9	15.5	11.0		NO	NO	NO		TEMP SFC B	12.7	11.5	9.0	11.4	15.0	11.0		SFC	SFC	SFC		TEMP SFC C	11.0	10.3	9.1	11.1	13.5	11.0		TAKEN	TAKEN	TAKEN		TEMP SFC D	12.1	11.2	10.0	11.8	15.0	11.8						TEMP SFC E	12.8	11.2	10.5	11.8	14.0	12.0						TEMP SFC F	12.9	11.0	10.0	12.3	15.0	11.8						TEMP BOT A	12.1	11.5	9.9	12.1	15.0	11.0		17.0	12.5	13.8		TEMP BOT B	11.0	10.7	9.0	11.0	14.0	11.0		17.5	12.8	13.5		TEMP BOT C	10.8	9.9	9.0	10.8	13.0	11.5		16.0	12.8	13.7					10.0	11.5	14.5	12.0		16.1	13.0	13.5		TEMP BOT D	11.6	11.0			14.3	12.0		16.1	13.6	13.5		TEMP BOT E	12.5	10.8	10.5	11.9				16.8	13.8	14.0		TEMP BOT F	14.6	11.0	10.0	12.0	15.0	12.0			12.5	13.5		TEMP BOT Z	10.7	10.4	9.8	11.4	14.0	11.0		17.0				TEMP AMB FERT	13.9	44.0			14.0	12.0		17.5	13.0	14.2		TEMP AMB UNFERT		11.0		11.1	15.0	11.5		16.9	13.9	1.4 +)	APPENDIX D1, TABLE 8 DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-211E		<u>Ur</u>	INIE	<u> </u>	AL WATE	<u>R ON F</u>	N-211	<u>E</u>						------------------	-----------	-------	----------	---------	---------------	-------	----------	-------	-------	------------	-------		DATE	05/26	06/01	06/03	06/07	06/15	06/30	07/13	07/16	07/31	09/05	09/11		DAY	0	2	4	8	16	31	44	47	62	98	104		2	· ·	_	•	Ū	10	51	REAPPLY	• •	•		10.		D.O. SFC A	5.4	7.0	5.5	3.0	6.0	6.0	KLFUTET	NO	NO	NO	NO		D.O. SFC B	6.0	5.0	1.5	2.0	5.0	2.0		SFC	SFC				D.O. SFC C	5.2	3.5	1.0	2.0	4.0	2.0				SFC	SFC		D.O. SFC D	3.5	5.0	1.5			3.5		TAKEN	TAKEN	TAKEN	TAKEN						2.5	3.5								D.O. SFC E	3.5	3.0	2.0	1.5	1.5	1.0							D.O. SFC F	6.5	4.0	7.0	3.0	4.0	4.5				2.5			D.O. BOT A	5.5	6.0	6.0	3.5	4.5	4.0		5.5	6.0	3.5	5.0		D.O. BOT B	4.5	4.5	1.5	1.0	5.0	1.0		1.0	1.5	2.0	1.0		D.O. BOT C	4.5	3.5	1.0	1.0	4.0	2.0		2.5	1.0	1.5			D.O. BOT D	2.5	5.5	1.5	2.0	3.0	3.5		1.5	3.0	2.5	4.5		D.O. BOT E	2.5	3.0	2.0	1.0	1.0	1.0		1.5	3.5				D.O. BOT F	5.0	3.5	7.5	3.5	4.0	3.5		5.0	4.0	4.0	5.5		D.O. BOT Y		7.0	6.5	4.5	7.0	5.0		5.5		3.0			D.O. BOT Z	7.0	6.0	7.0	4.5	7.0	5.5		5.5			1.5		D.O. AMB FERT	7.0	6.0	4.5							
5.5	7.0	5.5		7.0	7.0	6.0	8.0		D.O. AMB UNFERT	7.0	7.0	8.0	6.0	7.0	6.0		7.5	6.0	7.0	7.0			,		3.0					,	0.0	,.0	,,,		SAL. SFC A	19.3	17.0	20.0	20.0	21.5	20.5		, NO	NO	NO	NO		SAL. SFC B	20.0	22.0	23.5	22.2	25.0	23.0		,													SFC	SFC	SFC	SFC		SAL. SFC C	20.0	19.5	22.0	21.0	24.0	23.0		TAKEN	TAKEN	TAKEN	TAKEN		SAL. SFC D	24.7	24.0	24.0	23.0	22.9	20.9							SAL. SFC E	27.5	24.0	23.9	21.5	19.4	20.3							SAL. SFC F	28.6	23.5	26.0	24.3	25.0	21.0							SAL. BOT A	19.3	18.0	19.5	20.8	22.5	21.0		23.5	9.0	14.8	10.0		SAL. BOT B	20.0	21.5	24.0	23.7	24.8	23.5		24.4	9.5	17.2	12.5		SAL. BOT C	21.6	20.0	22.0	21.9	24.5	23.0		24.9	12.0	19.2	13.5		SAL. BOT D	25.2	23.5	24.8	22.8	24.0	21.0		22.5	10.6	19.1	16.0		SAL. BOT E	26.8	25.0	23.4	23.5	23.5	21.0		22.0	5.8				SAL. BOT F	28.8	26.0	26.2	24.8	24.2	20.5		22.5	14.2	17.5	13.5		SAL. BOT Y	18.2	17.5	18.5	18.2	22.5	22.5		23.8		17.8			SAL. BOT Z	15.9	18.0	18.0	18.0	21.2	21.5		21.0			15.5		SAL. AMB FERT					28.0	26.0		25.8	20.5	21.5	15.0		SAL. AMB UNFERT		26.5		25.3	26.0	21.5		23.0	22.2	21.5	22.8		OAE. MIND ON EN		20.5		25.5	20.0	21.5		25.0	22.2	2	22.0		TEMP SFC A	9.0	11.0	11.5	12.5	12.8	14.0		NO	NO	No.	NO		TEMP SFC B	9.8	12.5	13.0	13.9	12.8	16.0		SFC	SFC	S ‡	SFC				11.0	12.0		12.9	14.0							TEMP SFC C	9.1			12.8				TAKEN	TAKEN	TAK S	TAKEN		TEMP SFC D	10.8	12.5	13.0	13.4	12.8	15.0							TEMP SFC E	9.1	12.9	13.2	14.0	12.5	15.0							TEMP SFC F	9.0	12.7	13.0	14.0	12.5	15.0							TEMP BOT A	9.1	11.0	11.0	12.0	12.5	14.0		15.0	15.0	1):	12.0		TEMP BOT B	9.5	11.5	13.0	14.0	12.9	16.5		14.8	15.3	1.4 *	13.0		TEMP BOT C	9.0	11.0	12.0	12.8	12.8	14.0		14.0	14.0	1:	12.5		TEMP BOT D	11.0	12.1	12.5	13.5	13.0	15.0		14.2	15.0	1.5	13.0		TEMP BOT E	9.8	12.2	13.0	13.8	12.5	15.0		14.5	14.8				TEMP BOT F	9.4	12.7	13.0	13.8	13.5	15.2		14.0	13.8	•	12.0		TEMP BOT Y	8.8	10.0	10.5	11.0	12.5	13.5		14.1					TEMP BOT Z	8.5	10.0	10.0	11.5	12.8	13.0		14.6			12.0		TEMP AMB FERT	0.5	20.0	10.0	11.0	13.0	14.0		14.5	15.0		12.5		TEMP AMB UNFERT		12.7		13.3	12.3	15.0		14.5	13.8	; ;	12.0		TEMIT AND UNTERT		12.7		13.3	14.3	15.0		14.5	13.0	, •	1 ()	# APPENDIX D1, TABLE 9 SUMMARY OF DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-132B	DATE DAY	05/31	06/04	06/06 4	06/10 8	06/18 16	06/30 29	07/12 40	07/15 43	08/01 60		---	----------------------	-------------------	----------------------	----------------------	----------------------	----------------------	--------------	----------------------	----------------------		D.O. FERT-AVG D.O. UNFERT-AVG AMB-AVG	5.6 6.5 8.5	4.8 5.5 7.0	4.2 7.0 6.5	4.1 5.4 5.5	6.2 5.9 8.0	4.6 4.8 7.0	4.6 4.8	3.8 5.7 8.0	5.5 6.3 7.0		F/U	0.9	0.9	0.6	0.8	1.0	1.0	1.0	0.7	0.9		FERT-STD UNFERT-STD AMBIENT-STD	0.4 1.0 2.5	0.7 0.4 0.0	0.4 0.0 0.5	0.5 1.2 0.0	0.6 0.3 0.0	0.9 0.6 0.0	0.9 0.6	1.2 1.0 1.0	1.1 0.9 1.0		SAL. FERT-AVG SAL. UNFERT-AVG AMBIENT-AVG	25.0 16.5 17.6	20.3 13.0	16.7 12.2 20.8	14.7 11.3 14.3	19.2 2.5 19.5	23.1 18.3 21.5	23.1 18.0	17.2 15.8 21.5	14.4 13.8 18.9		F/U	1.5	1.6	1.4	1.3	7.8	1.3	1.3	1.1	1.0		FERT-STD UNFERT-STD AMBIENT-STD	1.8 3.1 9.6	1.2 0.8	2.1 1.5 4.3	0.7 2.1 5.8	1.3 2.2 4.0	0.4 0.6 1.5	0.4 0.6	1.0 1.5 0.5	1.2 3.4 0.9		TEMP FERT-AVG TEMP UNFERT-AVG AMBIENT-AVG	12.8 11.1 10.6	14.9 14.2	15.8 14.8 14.5	13.7 12.8 11.5	12.8 11.4 12.2	18.1 17.6 16.3	18.1 17.6	15.2 14.4 14.3	14.4 13.1 14.1		F/U	1.2	1.1	1.1	1.1	1.1	1.0	1.0	1.1	1.1		FERT-STD UNFERT-STD AMBIENT-STD	0.3 0.7 1.4	0.8 0.9	0.5 0.7 0.5	0.3 0.2 1.5	0.2 1.1 0.0	0.4 0.8 0.3	0.4 0.8	0.4 1.1 0.3	0.3 0.8 0.0	APPENDIX D1, TABLE 10 SUMMARY OF DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-135B	OF INTERSTITIAL WATER ON KN-135B												--	-------	-------	-------------	-------	-------	-------	-------	-------	-------	-------		DATE	05/20	05/23	05/25	05/29	06/05	06/22	07/13	07/17	07/30	08/07		DAY	0	2	4	8	15	32	53	57	70	78		2	Ü	-	•	v	10	32	00	0,	, 0	, 0														D.O. FERT-AVG	7.3	6.8	5.6	4.4	3.2	5.7	5.7	3.5	4.4	4.4		D.O. UNFERT-AVG	7.0	5.7	6.7	5.8	6.3	5.8	5.8	5.8	5.5	4.0		AMB-AVG	9.0	8.0	0.,	5.3	6.3	6.3	0.0	7.5	7.0	6.5		AMB-AVO	7.0	0.0		5.5	0.5	0.5		7.5	7.0	0.5		F/U	1.0	1.2	0.8	0.8	0.5	1.0	1.0	0.6	0.8	1.1		170	1.0	1.2	0.0	0.0	0.5	1.0	1.0	0.0	0.0	1.1														FERT-STD	0.4	0.5	0.2	0.8	0.4	0.4	0.4	0.6	0.9	0.5		UNFERT-STD	0.6	0.6	0.2	0.5	0.4	0.6	0.4	0.0	0.4						0.5				0.0			1.6		AMBIENT-STD	0.0	0.0		0.3	0.8	0.8		0.5	0.0	0.5																			•																																																							SAL. FERT-AVG	18.7	25.0	25.8	14.0	23.3	8.8	8.8	20.9	7.3	17.9		SAL. UNFERT-AVG	16.3	20.3	23.3	19.2	21.3	17.8	17.8	19.8	6.6	21.5		AMBIENT-AVG	20.2	23.0		17.3	18.5	23.5		22.2	11.7	22.2														F/U	1.1	1.2	1.1	0.7	1.1	0.5	0.5	1.1	1.1	0.8																										FERT-STD	1.4	0.5	1.3	1.9	0.6	4.1	4.1	1.5	2.7	1.4		UNFERT-STD	0.6	0.6	0.2	1.2	0.8	0.6	0.6	0.6	1.2	0.4		AMBIENT-STD	0.0	0.0	5. 2	0.0	2.5	0.5		0.3	3.2	0.3		· · · · · · · · · · · · · · · · · · ·	0.0	0.0		0.0	2.3	0.5		0.5	3.2	0.5																																																																	0.0		440			4.60	10.7	12.6		TEMP FERT-AVG	11.6	10.9	9.3	11.6	14.3	11.1	11.1	16.9	12.7	13.6		TEMP UNFERT-AVG	12.8	11.0	10.2	11.9	14.6	11.9	11.9	16.6	13.5	13.7		AMBIENT-AVG	13.9	11.0		11.1	14.5	11.8		17.2	13.5	14.1														F/U	0.9	1.0	0.9	1.0	1.0	0.9	0.9	1.0	0.9	1.0																										FERT-STD	0.8	0.7	0.4	0.7	0.9	0.2	0.2	0.5	0.2	0.1		UNFERT-STD	0.9	0.1	0.2	0.2	0.4	0.1	0.1	0.3	0.3	0.2		AMBIENT-STD	0.0	0.0		0.0	0.5	0.3		0.3	0.5	0.1		THE PERSON OF TH	0.0	0.0									# APPENDIX D1, TABLE 11 SUMMARY OF DISSOLVED OXYGEN, SALINITY AND TEMPERATURE OF INTERSTITIAL WATER ON KN-211E		-																																																																																																																																																																																																																																																																																																																																										
-----------------	-------	-------	-------	-------	-------	-------	------	-------	-------	-------	-------		DATE	05/26	06/01	06/03	06/07	06/15	06/30	7/13	07/16	07/31	09/05	09/11		DAY	0	2	4	8	16	31	44	47	62	98	104															D.O. FERT-AVG	5.4	5.3	3.8	2.7	5.3	3.4	3.4	4.0	2.8	2.5	2.5		D.O. UNFERT-AVG	3.9	4.0	3.6	2.3	2.8	2.8	2.8	2.7	3.5	3.3	5.0		AMB-AVG	7.0	6.0	5.8	5.0	7.0	5.5	0.0	6.3	7.0	6.0	4.8															F/U	1.4	1.3	1.0	1.2	1.9	1.2	1.2	1.5	0.8	0.8	0.5																												FERT-STD	0.5	1.3	2.1	0.9	0.7	1.7	1.7	1.9	2.2	0.8	1.8		UNFERT-STD	1.4	1.0	2.6	0.9	1.2	1.3	1.3	1.6	0.4	0.8	0.5		AMBIENT-STD	0.0	0.0	1.3	0.5	0.0	0.0	0.0	0.8	0.0	0.0	3.3																				•																							*																																					SAL. FERT-AVG	19.3	19.2	20.9	20.7	23.3	22.3	22.3	23.5	10.2	17.3	12.9		SAL. UNFERT-AVG	26.9	24.3	24.7	23.3	23.2	20.8	20.8	22.3	10.2	18.3	14.8		AMBIENT-AVG	20.7	26.5	2	25.3	27.0	23.8	20.0	24.4	21.4	21.5	18.9				20.0		2010	20	20.0							F/U	0.7	0.8	0.8	0.9	1.0	1.1	1.1	1.1	1.0	0.9	0.9																												FERT-STD	0.8	1.8	1.6	1.2	1.3	1.1	1.1	1.3	1.3	1.6	2.0		UNFERT-STD	1.6	0.9	1.1	1.1	1.8	0.3	0.3	0.2	3.4	0.8	1.3		AMBIENT-STD		0.0		0.0	1.0	2.3		1.4	0.8	0.0	3.9																																																																																TEMP FERT-AVG	9.1	11.0	11.6	12.6	12.8	14.4	14.4	14.5	14.8	13.5	12.4		TEMP UNFERT-AVG	9.9	12.5	13.0	13.8	12.8	15.0	15.0	14.2	14.5	13.5	12.5		AMBIENT-AVG	2.3	12.7	13.0	13.3	12.6	14.5	15.0	14.5	14.4	13.9	12.3		AMBILITIATO		12.7		13.3	12.0	14.5		1110	2	10.5	12.0		F/U	0.9	0.9	0.9	0.9	1.0	1.0	1.0	1.0	1.0	1.0	1.0		-,~	0.7	0.2	0.7														•									FERT-STD	0.3	0.6	0.7	0.7	0.1	1.1	1.1	0.4	0.6	0.8	0.4		UNFERT-STD	0.8	0.3	0.2	0.2	0.4	0.1	0.1	0.2	0.5	0.0	0.5		AMBIENT-STD		0.0		0.0	0.4	0.5		0.0	0.6	0.1	0.3	#### APPENDIX D1, TABLE 12 pH OF INTERSTITIAL WATER #### pH VALUES ALL BEACHES	BEACH DAY	KN-211 31	KN-132 29	KN-135 57	KN-211 47	KN-132 44	KN-135 70	KN-211 62	KN-132 61		---------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------	--------------		pH SFC A	7.60	7.50 REAPPLY								pH SFC B	7.20	7.90 ALL								pH SFC C	7.20	7.50 BEACHES								pH SFC D	7.10	7.30 MID	NO	SFC	TAKEN	NO	SFC	TAKEN		pH SFC E	6.90	7.50 JULY								pH SFC F	7.40	7.30								pH BOT A	7.50	7.60	7.11	7.68	7.70	7.11	7.42	7.44		pH BOTB	7.10	7.90	6.95	7.19	7.73	6.85	7.20	7.45		pH BOT C	7.10	7.50	6.97	7.22	7.44	6.97	7.09	7.10		H BOT D	7.20	7.30	7.41	7.17	7.65	7.00	6.99	7.31		H BOTE	6.90	7.40	7.44	6.97	7.90	7.32	7.13	7.47		pH BOTF	7.40	7.30	7.40	7.39	7.63	7.38	7.31	7.46		pH BOTY	7.30	7.40		7.35	7.42			6.94		pH BOT Z	7.40	6.90	7.12	7.39	7.46	7.10		7.09		pH AMB FERT			8.37	8.24	8.25	8.16	8.31	8.17		PH AMB UNFERT	8.07	7.99	8.37	8.30	8.25	8.10	8.30	8.22	#### APPENDIX D1. Data tables from interstitial water samples	TABLE 1.	Fertilizer nutrients in interstitial water		-----------	--		TABLE 2.	Nitrogenous nutrients in interstitial water		TABLE 3.	Summary of fertilizer nutrients from KN-132B		TABLE 4.	Summary of fertilizer nutrients from KN-135B		TABLE 5.	Summary of fertilizer nutrients from KN-211E		TABLE 6.	Dissolved oxygen, salinity and temperature of interstitial water on KN-132B		TABLE 7.	Dissolved oxygen, salinity and temperature of interstitial water on KN-135B		TABLE 8.	Dissolved oxygen, salinity and temperature of interstitial water on KN-211E		TABLE 9.	Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-132B		TABLE 10.	Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-135B		TABLE 11.	Summary of dissolved oxygen, salinity and temperature of interstitial water on KN-211E		TABLE 12.	Interstitial water pH values					TREATED		TIME									--------------	--------	--------	-----------	---------	--------	-------	---------------	-------	---------	--------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	NO3+NO2	NH4	P04	NO2											(UH)	(UH)	(uH)	(uH)		71NUT00011	5 SAMP	KN132	T	A	0	SURF	31-MAY-90	10:02	2.86	2.01	0.58			71NUT00011	6 SAMP	KN132	T	A	0	BOT	31-MAY-90	10:08	2.30	0.92	0.54			71NUT00011	7 SAMP	KN132	T	8	0	SURF	31-HAY-90	08:58	0.79	1.21	0.53			71NUT 000118	B SAMP	KN132	T	8	0	BOT	31-HAY-90	09:04	0.69	0.86	0.70			71NUT00011	9 SAMP	KN132	T	С	0	SURF	31-HAY-90	09:38	2.23	1.86	0.88			71NUT00013	1 DUP	KN132	T	С	0	SURF	31-HAY-90	09:43	2.08	0.65	0.84			71NUT 00012	O SAMP	KN132	T	С	0	BOT	31-HAY-90	09:50	2.43	0.60	0.86			71NUT00012	2 SAMP	KN132	T	Y	0	BOT	31-HAY-90	09:35	2.15	0.77	0.71			71NUT00012	4 SAMP	KN132	T	Z	0	BOT	31-HAY-90	09:15	1.91	1.07	0.74			71NUT00012	5 SAMP	KN132	R	٥	0	SURF	31-HAY-90	08:15	1.37	1.09	0.14			71NUT 000 13		KN132	R	٥	0	BOT	31-HAY-90	08:19	1.65	0.36	0.08			71NUT00012		KN132	R	D	0	BOT	31-HAY-90	08:18	1.70	1.39	0.13			71NUT00012		KN132	R	E	0	SURF	31-HAY-90	08:59	3.33	1.35	0.26			71NUT00012		KN132	R	Ε	0	BOT	31-HAY+90	09:04	4.12	1.38	0.41			71NUT00012		KN132	R	F	0	SURF	31-HAY-90	09:15	3.07	0.58	0.06			71NUT00012		KN132	R	F	0	BOT	31-HAY-90	09:17	2.87	0.43	0.03			71NUT00016		KN132	Ť	Ä	2	SURF	04-JUN-90	02:14	65.50	83.80	0.72			71NUT00016		KN132	, T	Ä	2	BOT	04-JUN-90	02:19	62.80	83.20	0.49			71NUT00016		KN132	Ť	8	2	SURF	04-JUN-90	01:36	57.20	96.30	1.10			71NUT00016		KN132	Ţ	8	2	BOT	04 JUN 90	01:40	65.70	103.10	0.90					KN132	Ţ	c	2	SURF	04 JUN 90	01:59	87.30	122.60	0.90			71NUT000169		KN132	ľ	c	2	BOT	04-JUN-90	02:07	88.70	115.80				71NUT000170											0.92			71NUT00017		KN132	T -	Y	2	BOT	04-JUN-90	02:29	82.60	90.50	0.61			71NUT000184		KN132	T -	Y	2	BOT	04-JUN-90	02:30	83.30	91.30	0.54			71NUT 000177		KN132	Ţ	Z	2	BOT	04 - JUN - 90		119.20	143.40	0.75			71xUT00017.		KN132	R	D	2	SURF	04-JUN-90	01:41	5.05	0.59	0.08			718UT00017		KN132	R	D	2	SURF	04-JUN-90	01:42	5.91	0.90	0.11			71NUT000174		KN132	R	0	2	BOT	04-JUN-90	01:45	7.25	0.76	0.12			71NUT00017		KN132	R	E	2	SURF	04-JUN-90	01:54	10.80	8.05	0.22			71NUT00017		KN132	R	Ε	2	BOT	04-JUN-90	02:00	12.00	9.04	0.28			71NUT00017	7 SAMP	KN132	R	F	2	SURF	04-JUN-90	02:06	4.52	1.86	0.11			71xUT00017	B SAMP	KN132	R	F	2	BOT	04 - JUN - 90	02:12	3.34	1.12	0.08			71NUT00019	7 SAMP	KN132	T	A	4	SURF	06-JUN-90	03:45	18.80	15.60	0.43			71NUT00021	1 DUP	KN132	T	A	4	SURF	06-JUN-90	03:49	25.90	17.60	0.51			71NUT000198	S SAMP	KN132	T	A	4	BOT	06-JUN-90	03:51	25.90	18.20	0.48			71NUT000199	SAMP	KN 132	T	В	4	SURF	06-JUN-90	03:11	26.80	30.00	0.63			71NUT00020	SAMP	KN 132	T	9	4	BOT	06-JUN-90	03:14	29.70	34.20	1.37			71xUT00021	2 DUP	KN132	T	9	4	BOT	06-JUN-90	03:16	29.90	36.10	0.72			71NUT00020	1 SAMP	KN132	T	С	4	SURF	06-JUN-90	03:27	51.70	70.30	1.13			71NUT00020	2 SAMP	KN132	T	С	4	BOT	06-JUN-90	03:34	63.20	83.30	0.91			71NUT00020	SAHP	KN132	T	Y	4	BOT	06-JUN-90	04:11	41.70	46.60	0.56			71NUT000204	4 SAMP	KN132	T	Z	4	BOT	06-JUN-90	04:00	52.70	93.10	0.53			71xUT00020	SAMP	KN132	R	D	4	SURF	06-JUN-90	03:09	3.72	0.13	0.11			71NUT00020	SAMP	KN132	R	D	4	801	06-JUN-90	03:16	4.53	1.12	0.19			71NUT00020		KN132	R	Ε	4	SURF	06-JUN-90	03:25	7.19	0.34	0.19			71NUT00020		KN132	R	Ε	4	BOT	06-JUN-90	03:28	8.68	1.05	0.24			71NUT00020		KN132	R	F	4	SURF	06-JUN-90	03:40	2.86	0.58	0.06			71NUT00021		KN132	R	F	4	BOT	06-JUN-90	03:47
10.90	8.76	0.41			71NUT00022		KN132	Ť	Ä	8	BOT	10-JUN-90	05:45	10.80	8.36	0.35			71NUT00024		KN132	Ť	Ä	8	BOT	10-JUN-90	05:44	8.34	11.40	0.30			1 1110100027	. 55		•	••	-												TREATED		TIME									--------------	---------	--------	-----------	---------	---------	-------	------------------	-------	---------	--------	------	------		SAMPLE	SAMPLE		OR		SER1E\$		DATÈ							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAY\$)	DEPTH	COLLECTED	TIME	NO3+NOS	NH4	P04	NOZ											(LM)	(LM)	(uM)	(uM)		71NUT 0002	S1 SAMP	KN132	T	8	8	SURF	10-JUN-90	05:17	24.50	16.40	0.69			71NUT00024	3 DUP	KN132	T	8	8	SURF	10-JUN-90	05:18	22.90	17.50	0.66			71NUT0002	SZ SAHP	KN132	Ť	8	8	BOT	10-JUN-90	05:23	10.50	14.00	0.35			71NUT0002	SAMP	KN132	Ť	C	8	SURF	10-JUN-90	05:50	18.40	27.70	0.47			71NUT00023	SAMP	KN132	T	C	8	BOT	10-JUN-90	05:55	31.80	48.90	0.70			71NUT0002	S SAMP	KN132	Ť	Y	8	BOT	10-JUN-90	06:14	19.90	18.10	0.45			71NUT0002	SAMP	KN132	T	2	8	BOT	10-JUN-90	06:06	20.40	21.00	0.38			71NUT00023	7 SAMP	KN 132	R	D	8	SURF	10-JUN-90	04:06	1.28	0.63	0.06			71NUT0002	SAHP	KN132	R	D	8	BOT	10-JUN-90	04:10	1.25	1.13	0.09			71NUT00023	9 SAMP	KN132	R	Ε	8	SURF	10-JUN-90	05:20	2.51	0.60	0.16			71NUT00024	O SAMP	KN132	R	E	8	BOT	10-JUN-90	05:27	3.24	0.12	0.12			71NUT00024	1 SAMP	KN132	R	F	8	SURF	10-JUN-90	05:37	2.54	0.55	0.04			71NUT00024	2 SAMP	KN132	R	F	8	BOT	10-JUN-90	05:43	1.48	0.30	0.00			71NUT0002	1 SAMP	KN132	T	A	16	SURF	18-JUK-90	12:04	10.90	1.34	0.65			71NUT00026	2 SAMP	KN132	T	A	16	BOT	18-JUN-90	12:14	4.57	0.34	0.41			71NUT00026	SAMP	KN132	1	8	16	SURF	18-JUN-90	10:38	29.60	2.18	0.67			71NUT00027	6 SAMP	KN132	T	8	16	BOT	18-JUN-90	10:48	15.50	0.84	0.47			71NUT00028		KN132	1	8	16	801	18-JUN-90	10:46	19.20	0.94	0.53			71NUT00026	SAMP	KN132	T	C	16	SURF	18-JUN-90	11:46	8.44	1.33	0.56			71NUT00027	5 DUP	KN132	T	C	16	SURF	18-JUN-90	11:48	10,40	1.60	0.68			71NUT00026	6 SAMP	KN132	1	C	16	BOT	18-JUN-90	11:56	9.31	1.99	0.59			71NUT00026	7 SAMP	KN132	1	Y	16	BOT	18-JUN-90	11:31	4.04	0.68	0.40			71NUT00026	8 SAMP	KN132	1	Z	16	BOT	18-JUN-90	11:19	22.60	0.95	0.44			71NUT00026	9 SAMP	KN132	R	D	16	SURF	18-JUN-90	10:24	9.96	0.51	0.20			71NUT00027	O SAMP	KN132	R	D	16	BOT	18-JUN-90	10:30	12.80	0.87	0.17			71NUT00027	'1 SAHP	KN132	R	ε	16	SURF	18-JUN-90	10:44	4.88	0.35	0.09			71NUT00027	Z SAMP	KN132	R	ε	16	BOT	18-JUN-90	10:46	4.93	0.35	0.16			71NUT0002	3 SAMP	KN132	R	F	16	SURF	18-JUN-90	10:58	4.97	0.13	0.06			71NUT0002	4 SAMP	KN132	R	F	16	BOT	18-JUN-90	11:04	5.11	0.21	0.05			71NUT00027	7 E8	KN132		NA	16	NA	18-JUN-90	15:20	0.15	0.11	0.00			71NUT00031	3 SAMP	KN132	T	A	29	SURF	30-JUN-90	23:39	21.50	5.74	0.60			71NUT0003	4 SAMP	KN132	1	A	29	BOT	30-JUN-90	23:42	22.80	7.02	0.65			71NUT00031	SAMP	KN132	1	8	29	SURF	30-JUN-90	23:04	26.70	5.28	1.08			71NUT00031	6 SAMP	KN132	T	8	29	BOT	30-JUN-90	23:10	30.80	5.40	0.71			71NUT00031	7 DUP	KN132	T	8	29	BOT	30-JUN-90	23:44	21.40	5.64	0.65			71NUT00031	8 SAHP	KN132	1	C	29	SURF	30-JUN-90	23:51	39.10	5.51	0.85			71NUT 0003	9 DUP	KN132	1	C	29	SURF	30-JUN-90	23:52	36.90	5.67	0.88			71NUT0003	O SAMP	KN132	1	C	29	BOT	30-JUN-90	23:58	33.90	5.56	0.91			71NUT00032	8 SAMP	KN132	1	Y	29	BOT	30-JUN-90	23:28	27.50	6.38	0.39			71NUT0003	7 SAMP	KN132	1	Z	29	BOT	30-JUN-90	23:18	60.50	7.15	0.45			71NUT00032	1 SAMP	KN132	R	D	29	SURF	30-JUN-90	22:28	5.51	0.27	0.23			71NUT00032	2 SAMP	KN132	R	D	29	BOT	30-JUN-90	22:33	4.50	0.17	0.19			71NUT 0003	SAMP	KN132	R	ε	29	SURF	30-JUN-90	23:01	14.70	4.87	0.36			71NUT0003	4 SAHP	KN132	R	ε	29	BOT	30-JUN-90	23:08	16.30	4.36	0.29			71NUT0003	SAMP	KN132	R	F	29	SURF	30-JUN-90	23:16	4.61	0.31	0.11			71NUT0003	6 SAMP	KN132	R	F	29	BOT	30-JUN-90	23:25	4.34	4.84	0.12			71NUT0003	29 E8	KN132		HA	29	NA	01-JUL-90		0.00	0.07	0.00			94 NUT 00000	1 SAMP	KN132	1	A	43	801	07-15-90	22:47	9.37	22.80	0.14			94MUT00000	34 SUP	KN132	Ť	8	43	BOT	07-15-90	22:09	7.40	12.60	0.13			94MUT0000	2 SAMP	KN132	T	8	43	BOT	07-15-90	22:09	9.86	13.30	0.14			94 NUT 0000	3 SAMP	KN132	T	C	43	BOT	0 7-15-90	22:40	15.20	117.30	0.22						TREATED		TIME									--------------	--------	--------	-----------	---------	--------	-------	------------------	-------	------------------	--------	------	------		SAMPLE	SAMPLE		OR		SERIES		DATE							FIELD ID	TYPE	BEACH	REFERENCE	STATION	(DAYS)	DEPTH	COLLECTED	TIME	NO3+NO2	ин4	P04	NO2											(uH)	(uH)	(uH)	(uM)		94NUT 00000	8 SAMP	KN132	Ţ	Y	43	BOT	07-15-90	22:32	13.70	62.70	0.17			94NUT00000	9 SAMP	KN132	T	Z	43	BOT	07-15-90	22:20	24.60	44.40	0.16			94NUT00000	5 SAMP	KN132	R	D	43	BOT	07-15-90	21:52	0.69	0.06	0.01			94NUT00000	6 SAMP	KN132	R	E	43	BOT	0 7-15-90	22:12	1.58	0.58	0.07			94NUT00000	7 SAHP	KN132	R	F	60	BOT	07-15-90	21:24	1.06	0.47	0.00			94NUT00006	2 SAMP	KN132	T	A	60	BOT	08-01-90	00:30	33.20	0.25	0.65			94NUT00006	3 SAMP	KN132	T	8	60	BOT	08-01-90	00:00	17.00	0.25	0.82			94NUT00007	0 DUP	KN132	T	В	60	BOT	08-01-90	00:00	17.40	0.32	0.80			94NUT00006	4 SAMP	KN132	T	С	60	BOT	08-01-90	00:45	34.70	0.25	0.58			94NUT00006	SAMP	KN132	T	Y	60	BOT	08-01-90	00:15	21.80	0.28	0.20			94NUT00006	SAMP	KN132	T	Z	60	BOT	08-01-90	00:05	53.00	0.30	0.45			94NUT00006	7 SAMP	KN132	R	D	60	BOT	07-31-90	23:29	2.32	0.88	0.09			94NUT000064	SAMP	KN132	R	Ε	60	BOT	07-31-90	23:50	8.36	0.53	0.08			94NUT000069	SAMP	KN132	R	F	60	BOT	08-01-90	00:01	1.82	0.86	0.01			94NUT00007	1 SAMP	KN132	R	STR	60	SURF	08-01-90	00:15	1.57	3.57	0.30			71NUT00000	5 SAMP	KN135	T	A	0	SURF	19-MAY-90	14:11	2.71	1.18	0.75	0.02		71 NUT 00002	2 SAMP	KN 135	T	A	0	SURF	20-MAY-90	13:54	2.25	1.41	0.62	0.07		71NUT000024		KN135	T	A	0	SURF	20-MAY-90	13:55	1.95	0.19	0.47	0		71NUT 00002		KN135	T	A	0	BOT	20-MAY-90	14:07	2.19	1.11	0.54	0.01		71NUT00002		KN135	T	A	0	BOT	20-MAY-90	14:08	1.58	0.27	0.34	0		71NUT000000	SAMP	KN135	T	A	0	BOT	19-MAY-90	14:13	2.78	1.00		0.03		71NUT00002		KN 135	T	В	0	SUR F	20-MAY-90	13:19	2.26	0.15	0.05	0		71NUT00002		KN135	T	В	0	BOT	20-HAY-90	13:28	2.95	1.22	0.11	0.04		71NUT00000		KN135	T	8	0	BOT	19-HAY-90	14:49	3.95	0.81	0.29	0.02		71NUT000004		KN135	T	В	0	BOT	19-MAY-90	14:50	3.25	0.63	0.03	0.02		71NUT000028		KN 135	T	c	ō	SURF	20-MAY-90	14:35	2.22	0.53	0.12	0		71NUT000010		KN135	T	c	ō	BOT	19-MAY-90	14:57	3.00	0.83	0.22	0		71NUT000025		KN 135	T	Ċ	0	BOT	20-MAY-90	14:41	2.05	0.19	0.09	0		71NUT 000034		KN135	Ť	Z	0	SURF	20-MAY-90		3.57	1.22	0.23	0.81		71NUT00002		KN135	T	Z	0	BOT	19-HAY-90	15:19	3.72	0.73	0.35	0.02		71NUT00003		KN 135	T	z	0	BOT	20-MAY-90	14:25	3.21	1.50	0.38	0.28		71NUT 00003		KN135	R	D	0	SURF	20-MAY-90	13:47	0.97	0.89	0.33	0.03		71NUT00003		KN135	R	D	0	BOT	20-MAY-90	13:53	1.30	1.08	0.41	0		71NUT00003		KN135	R	E	0	SURF	20-MAY-90	14:26	1.31	0.20	0.40	0.01		71NUT00003		KN 135	R	E	0	BOT	20-MAY-90	14:35	1.47	0.72	0.44	0.04		71NUT000034		KN135	R	F	0	SURF	20-MAY-90	14:06	2.11	0.41	0.44	0.04		71NUT00003		KN135	R	F	0	BOT	20-MAY-90	14:11	2.54	2.28	0.56	0.12		71kUT00003		KN135	R	, NA	0	NA	22-HAY-90	10:06	0.00	0.44	0.00	0.12		71NUT00003		KN135	Ť	A	2	SURF	23-MAY-90		133.30	153.40	1.03	0.04		71NUT00005		KN 135	Ť	Â	2	BOT	23-HAY-90		153.90	168.40	1.14	0.04		71NUT00005		KN135	Ţ	B	2	SURF	23-MAY-90		136.20	139.80	0.38	0.12											216.50		0.52			71NUT000056		KN135	T -	8	2	SURF	23-HAY-90			190.90		0.28		71NUT00005		KN135	Ţ	8	2	BOT	23-HAY-90		132.40 184.30	129.00	0.40	0.08		71NUT00005		KN135	7	B	2	BOT	23-HAY-90		93.90	162.90	0.37	0.08		71NUT00005		KN135	Ţ	C	2	SURF																														
23-HAY-90			118.70	0.21	0.03		71NUT 000054		KN135	T -	C	2	BOT	23-KAY-90		144.90	162.50	0.27	0.07		71NUT00005		KN135	T -	Z	2	SURF	23-HAY-90		123.10	117.70	0.42	0.04		71NUT 000059		KN135	T	Z	2	BOT	23-HAY-90		133.10	121.30	0.35	0.04		71NUT00005		KN135	R	D	2	SURF	23-HAY-90	16:44	0.47	0.98	0.46	0.01		71NUT000064		KN135	R	D	2	BOT	23-HAY-90	16:50	0.91	1.15	0.38	0		71NUT00006	1 SAMP	KN135	R	E	2	SURF	23-MAY-90	16:59	1.40	2.17	0.44	0	# APPENDIX D2. --Data-Tables from Microbial Analyses	TABLE 1.	Percentage mineralization of hexadecane		----------	---		TABLE 2.	Percentage mineralization of phenanthrene		TABLE 3.	Mineralization Ratios		TABLE 4.	Mineralization Frequency Distribution		TABLE 5.	Median MPN Values		TABLE 6.	Biomineralization Data		TABLE 7.	Microbial Enumeration Data	APPENDIX D2. TABLE 1. Percentage mineralization of hexadecane ### %HEXADECANE MINERALIZED FERTILIZED BEACHES AVERAGE ALL SURFACE AND SUBSURFACE SEDIMENTS		DAY	SURFAC				JRFACE			---------	--	-------------	--	--	------	--	---		KN-135B	0 2 4 8 15 32 52 56 70 78]] :	7.0 16.4 12.1 16.3 14.2 9.5 12.5 15.9	3.8 6.3 6.5 10.5 7.3 5.9 4.7 10.2 8.8 6.0	Avg.	*CO2 5.0 12.6 15.4 13.0 5.7 9.6 9.6 17.0 8.4 6.5	3.2 5.7 5.2 5.1 2.8 5.2 5.8 10.5 6.2 4.5		KN-211E	0 2 4 16 31 45 102 112		3.4 8.5 6.7 9.0 11.1 11.2 16.0	2.4 5.1 3.6 5.7 8.5 5.8 7.8 6.3		4.7 7.4 7.9 8.5 5.4 5.9 13.2 6.8	1.3 4.1 3.1 5.8 3.2 4.1 8.9 9.6		KN-132B	0 2 4 8 16 29 43 60		3.3 12.9 4.8 8.7 11.2 15.5 8.8 4.0	1.1 8.0 2.3 6.8 8.8 7.7 8.2 3.4				APPENDIX D2. TABLE 1. Percentage mineralization of hexadecane # %HEXADECANE MINERALIZED UNFERTILIZED BEACHES AVERAGE ALL SURFACE AND SUBSURFACE SEDIMENTS		DAY		FACE		SUBSURFACE			---------	--	------	---	--	--	---		KN-135B	0 2 4 8 15 32 52 56 70 78	Avg.	\$CO2 5.8 8.6 9.7 7.4 4.4 2.1 3.0 3.8 1.3 2.6	St.Dev. 2.3 2.8 4.7 2.1 0.8 1.2 2.2 2.6 0.8 2.7	Avg. %CO2 4.0 10.4 5.1 4.9 2.1 1.1 1.2 2.7 0.4 2.2	St.Dev. 2.0 3.9 3.0 3.2 2.3 0.5 0.7 2.0 0.3 2.8		KN-211E	0 2 4 16 31 45 102 112		5.6 12.6 5.8 5.9 8.4 2.5 5.9	3.2 4.2 2.7 4.6 3.9 1.8 5.3	5.1 3.5 3.8 2.1 1.7 1.1 1.2	3.2 1.4 1.9 2.0 0.7 1.3 0.6		KN-132B	0 2 4 8 16 29 43 60		2.7 6.4 2.4 2.9 4.7 1.3	1.6 2.5 2.1 1.1 1.4 2.4 1.2 0.9			APPENDIX D2. TABLE 2. Percentage mineralization of phenanthrene ## ***PHENANTHRENE MINERALIZED FERTILIZED BEACHES AVERAGE ALL SURFACE AND SUBSURFACE SEDIMENTS**		DAY	SURFACE		SUBSURFACE			----------	---------------	-----------	---------	------------	---------				Avg. %CO2	St.Dev.	Avg. %CO2	St.Dev.		KN-135B	0	0.9	0.6	1.6	1.5			2	9.6	10.5	17.1	7.3			4	13.5	13.0	18.5	13.2			4 8	6.4	6.3	9.6	7.5			15	18.3	11.0	5.8	7.1			32	16.7	10.1	14.2	9.2			52	4.8	4.4	2.1	1.1			56	4.5	4.3	3.7	3.3			70	1.8	1.6	1.4	1.1			78	3.4	3.8	2.0	1.1			, 0	3.1	3.0	2.0	1.1		KN-211E	0	6.7	6.3	11.5	6.3			2	3.4	4.7	7.1	4.2			4	2.2	1.6	6.3	4.5			16	7.5	7.6	6.2	4.3			31	5.6	4.9	6.1	3.9			45	7.2	5.0	3.4	2.1			102	17.9	9.7	12.9	4.1			112	9.8	5.3					112	3.0	٥.5	6.3	4.7		KN-132B	0	2.3	0.9				101 1011	2	3.2	2.8					4	2.5	1.5					8	6.4	5.7					16	9.5	5.8					29	3.6	2.9												43	1.4	1.2					60	1.3	1.5			APPENDIX D2. TABLE 2. Percentage mineralization of phenanthrene ### *PHENANTHRENE MINERALIZED UNFERTILIZED BEACHES AVERAGE ALL SURFACE AND SUBSURFACE SEDIMENTS		DAY	SURFACE Avg. %CO2	St.Dev.	SUBSURFACE Avg. %CO2	St.Dev.		---------	--	--	--	--	--		KN-135B	0 2 4 8 15 32 52 56 70 78	2.1 10.4 14.0 6.8 7.4 5.1 0.8 1.2 0.5 2.1	2.4 8.0 7.6 4.8 4.9 1.9 0.4 0.8 0.3 1.9	2.6 17.3 10.5 5.7 3.1 2.7 0.5 0.8 0.4 1.3	2.7 9.5 5.9 4.7 2.4 1.9 0.5 1.0		KN-211E	0 2 4 16 31 45 102 112	10.3 6.5 2.7 5.3 2.9 0.6 6.6 4.0	7.1 3.2 2.3 4.0 1.3 0.5 5.3 3.3	16.5 10.2 4.6 4.6 7.0 1.0 5.9 4.3	5.7 3.8 2.6 2.8 2.1 0.8 1.7		KN-132B	0 2 4 8 16 29 43 60	2.4 2.0 1.1 1.5 2.2 1.7 0.7	1.6 1.4 1.1 0.9 1.6 0.8 0.6			#### APPENDIX D2. ## TABLE 3. Mineralization Ratios ### HEXADECANE MINERALIZATION RATIO ## FERTILIZED/UNFERTILIZED AVERAGE ALL SEDIMENTS		DAY	SURFACE	SUBSURFACE		---------	------------------	---------	------------		KN-135B	0	1.2	1.3			2	1.9	1.2			4	1.2	3.0			4 8	2.2	2.6			15	3.2	2.7			32	4.5	8.6			52	4.2	7.7			56	4.2	6.4			70	14.9	19.9			78	3.4	3.0		KN-211E	0	0.6	0.9			0 2 4	0.7	2.1			4	1.2	2.1			16	1.5	4.0			31	1.3	3.2			45	4.5	5.6			102	2.7	11.5			112	2.8	4.4		KN-132B	0	1.2				0 2 4 8	2.0				4	2.0				8	3.7				16	3.9				29	3.3				43	6.9				60	2.6		#### APPENDIX D2. ## TABLE 3. Mineralization Ratios ### PHENANTHRENE MINERALIZATION RATIO ## FERTILIZED/UNFERTILIZED AVERAGE ALL SEDIMENTS	KN-135B	DAY 0 2 4 8 15 32 52 56 70 78	SURFACE 0.4 0.9 1.0 0.9 2.5 3.3 6.1 3.9 3.8 1.6	SUBSURFACE 0.6 1.0 1.8 1.7 1.9 5.3 4.5 4.8 3.3 1.5		---------	---	---	---		KN-211E	0 2 4 16 31 45 102 112	0.7 0.5 0.8 1.4 2.0 11.6 2.7 2.4	0.7 0.7 1.4 1.3 0.9 3.4 2.2		KN-132B	0 2 4 8 16 29 43 60	0.9 1.6 2.2 4.4 4.3 2.1 2.0 1.9		TABLE 4. Mineralization Frequency Distribution APPENDIX D2. ## KN132 HEXADECANE MINERALIZATION FREQUENCY DISTRIBUTION	DAY	FERT FRACTION GT 5%	UNFERT FRACTION GT 5%	FERT FRACTION GT 10%	UNFERT FRACTION GT 10%		----------	---------------------------	-----------------------------	----------------------------	------------------------------		0	0.06	0.11	01 100	01 100		2	0.72	0.67	0.70	0.11		4	0.44	0.22	0.00	0.00		8	0.61	0.00	0.44	0.00		16	0.78	0.06	0.67	0.00		29	0.67	0.44	0.44	0.00		43	0.50	0.00	0.38	0.00		60	0.25	0.00	0.17	0.00		DAY 2-60	0.58	0.21	0.40	0.02	## KN132 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION	DAY	FERT GT2%	UNFERT GT2%	FERT GT5%	UNFERT GT5%		----------	--------------	----------------	--------------	----------------		0	0.69	0.67	0.00	0.11		2	0.50	0.36	0.28	0.00		4	0.64	0.14	0.07	0.00		8	0.75	0.39	0.42	0.00		16	1.00	0.50	0.78	0.06		29	0.56	0.33	0.33	0.00		43	0.25	0.06	0.00	0.00		60	0.25	0.08	0.00	0.00		DAY 2-60	0.57	0.28	0.29	0.01	## KN132 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION		FERT	UNFERT		----------	-------	--------		DAY	GT10%	GT10%		0	0.00	0.00		2	0.00	0.00		4	0.00	0.00		8	0.25	0.00		16	0.33	0.00		29	0.00	0.00		43	0.00	0.00		60	0.00	0.00		DAY 2-60	0.08	0.00	## KN135 HEXADECANE MINERALIZATION FREQUENCY DISTRIBUTION		FERT/SURF FRACTION	UNFERT/SURF FRACTION	FERT/SUB	UNFERT/SUB		--	--	---	--	--		DAY	GT 5%	GT 5%	FRACTION GT 5%	FRACTION GT 5%		0	0.70	0.58	0.50	0.33			1.00	0.94	0.94																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
0.33		2 4 8	0.83	0.94	1.00	0.56		8	0.94	0.89	1.00	0.44		15	1.00	0.22	0.44	0.13		32	0.88	0.00	0.75	0.00		52	0.93	0.25	0.71	0.00		56	0.94	0.19	1.00	0.11		70	0.89	0.00	0.50	0.00		78	0.56	0.29	0.50	0.13		DAY 2-78	0.92	0.42	0.75	0.26															DDDM /GUDD	totoon (arm -					FERT/SURF	UNFERT/SURF	FERT/SUB	UNFERT/SUB			FRACTION	FRACTION	FRACTION	FRACTION		DAY	FRACTION GT 10%	FRACTION GT 10%	FRACTION GT 10%	FRACTION GT 10%		0	FRACTION GT 10% 0.20	FRACTION GT 10% 0.00	FRACTION GT 10% 0.10	FRACTION GT 10% 0.00		0	FRACTION GT 10% 0.20 1.00	FRACTION GT 10% 0.00 0.33	FRACTION GT 10% 0.10 0.61	FRACTION GT 10% 0.00 0.56		0	FRACTION GT 10% 0.20 1.00 0.56	FRACTION GT 10% 0.00 0.33 0.44	FRACTION GT 10% 0.10 0.61 0.86	FRACTION GT 10% 0.00 0.56 0.06		0 2 4 8	FRACTION GT 10% 0.20 1.00 0.56 0.67	FRACTION GT 10% 0.00 0.33 0.44 0.11	FRACTION GT 10% 0.10 0.61 0.86 0.72	FRACTION GT 10% 0.00 0.56 0.06		0 2 4 8 15	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11	FRACTION GT 10% 0.00 0.56 0.06 0.06		0 2 4 8 15 32	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56 0.25	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11 0.50	FRACTION GT 10% 0.00 0.56 0.06 0.06 0.00		0 2 4 8 15 32 52	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56 0.25 0.71	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00 0.00 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11 0.50 0.50	FRACTION GT 10% 0.00 0.56 0.06 0.06 0.00 0.00		0 2 4 8 15 32 52 56	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56 0.25 0.71 0.61	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00 0.00 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11 0.50 0.50 0.71	FRACTION GT 10% 0.00 0.56 0.06 0.06 0.00 0.00 0.00		0 2 4 8 15 32 52 56 70	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56 0.25 0.71 0.61 0.83	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00 0.00 0.00 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11 0.50 0.50 0.71 0.39	FRACTION GT 10% 0.00 0.56 0.06 0.06 0.00 0.00 0.00		0 2 4 8 15 32 52 56	FRACTION GT 10% 0.20 1.00 0.56 0.67 0.56 0.25 0.71 0.61	FRACTION GT 10% 0.00 0.33 0.44 0.11 0.00 0.00 0.00	FRACTION GT 10% 0.10 0.61 0.86 0.72 0.11 0.50 0.50 0.71	FRACTION GT 10% 0.00 0.56 0.06 0.06 0.00 0.00 0.00		KN135 H	IEXADECANE	MINI	ERALIZATION	FREQUENCY	DISTRIBUTION		---------	------------	------	-------------	-----------	--------------			FERT/SU	JRF	UNFERT/SURI	₹	FERT/SUB			FERT/SURF	UNFERT/SURF	FERT/SUB	UNFERT/SUB		------	--	---	--	---			FRACTION	FRACTION	FRACTION	FRACTION		PAY	GT 15%	GT 15%	GT 15%	GT 15%		0	0.00	0.00	0.00	0.00		2	0.50	0.00	0.39	0.17		4	0.33	0.13	0.71	0.00		8	0.39	0.00	0.33	0.00		15	0.50	0.00	0.00	0.00		32	0.19	0.00	0.13	0.00		52	0.21	0.00	0.14	0.00		56	0.50	0.00	0.43	0.00		70	0.83	0.00	0.11	0.00		78	0.22	0.00	0.06	0.00		2-78	0.43	0.01	0.25	0.02			0 2 4 8 15 32 52 56 70 78	FRACTION OAY OAY OCT 15% O 0.00 2 0.50 4 0.33 8 0.39 15 0.50 32 0.19 52 0.21 56 0.50 70 0.83 78 0.22	FRACTION FRACTION OAY GT 15% GT 15% 0 0.00 0.00 2 0.50 0.00 4 0.33 0.13 8 0.39 0.00 15 0.50 0.00 32 0.19 0.00 52 0.21 0.00 56 0.50 0.00 70 0.83 0.00 78 0.22 0.00	FRACTION FRACTION FRACTION OAY GT 15% GT 15% GT 15% 0 0.00 0.00 0.00 0.00 2 0.50 0.00 0.39 4 0.33 0.13 0.71 8 0.39 0.00 0.33 15 0.50 0.00 0.00 32 0.19 0.00 0.13 52 0.21 0.00 0.13 52 0.21 0.00 0.14 56 0.50 0.00 0.43 70 0.83 0.00 0.11 78 0.22 0.00 0.06	## KN135 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION	DAY 0 2 4 8 15 32 52 56 70 78 DAY 2-78	FERT/SURF FRACTION GT 2% 0.00 0.81 0.94 0.78 0.89 1.00 0.72 0.56 0.39 0.56 0.73	UNFERT/SURF FRACTION GT 2% 0.33 1.00 1.00 0.83 0.94 0.94 0.00 0.06 0.00 0.39 0.57	FERT/SUB FRACTION GT 2% 0.14 1.00 1.00 0.69 0.94 0.50 0.71 0.19 0.44 0.74	UNFERT/SUB FRACTION GT 2% 0.39 0.94 0.88 0.79 0.56 0.00 0.11 0.00 0.13		---	--	--	---	---		DAY 0 2 4 8 15 32 52 56 70 78 DAY 2-78	FERT/SURF FRACTION GT 5% 0.00 0.44 0.56 0.33 0.89 0.94 0.22 0.44 0.06 0.22	UNFERT/SURF FRACTION GT 5% 0.08 0.57 0.88 0.56 0.50 0.44 0.00 0.00 0.00	FERT/SUB FRACTION GT 5% 0.07 0.89 0.67 0.31 0.78 0.00 0.21 0.00 0.00 0.00	UNFERT/SUB FRACTION GT 5% 0.22 0.94 0.81 0.43 0.28 0.11 0.00 0.00 0.00	## KN135 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION		FERT/SURF FRACTION	UNFERT/SURF FRACTION	FERT/SUB FRACTION	UNFERT/SUB FRACTION		----------	-----------------------	-------------------------	----------------------	------------------------		DAY	GT 10%	GT 10%	GT 10%	GT 10%		0	0.00	0.00	0.00	0.00		2	0.31	0 .50	0.89	0.72		4	0.44	0.69	0.61	0.50		8	0.28	0.22	0.33	0.21		15	0.72	0.38	0.13	0.00		32	0.81	0.00	0.56	0.00		52	0.11	0.00	0.00	0.00		56	0.13	0.00	0.07	0.00		70	0.00	0.00	0.00	0.00		78	0.06	0.00	0.00	0.00		DAY 2-78	0.31	0.19	0.32	0.17	#### KN211 HEXADECANE MINERALIZATION FREQUENCY DISTRIBUTION 0.67 0.48 112 DAY 2-112	DAY 0 2 4 16 31 45 102 112 DAY 2-112	FERT/SURF FRACTION GT 5% 0.19 0.61 0.56 0.72 0.61 0.88 1.00 0.89 0.74	UNFERT/SURF FRACTION GT 5% 0.50 0.89 0.56 0.44 0.89 0.13 0.35 0.25	FERT/SUB FRACTION GT 5% 0.50 0.69 0.94 0.69 0.44 0.63 0.75 0.28 0.63	UNFERT/SUB FRACTION GT 5% 0.50 0.11 0.33 0.11 0.00 0.00 0.00 0.00		---------------------------------------	--	--	---	---		DAY 0 2 4 16 31 45	FERT/SURF FRACTION GT 10% 0.00 0.39 0.22 0.33 0.39 0.56 0.86	UNFERT/SURF FRACTION GT 10% 0.17 0.78 0.06 0.19 0.28 0.00 0.15	FERT/SUB FRACTION GT 10% 0.00 0.19 0.17 0.31 0.11 0.13	UNFERT/SUB FRACTION GT 10% 0.11 0.00 0.00 0.00 0.00		KN211 HEXAD	DECANE MINERA FERT/SURF FRACTION GT 15%	LIZATION FREQUENCY UNFERT/SURF FRACTION GT 15%	DISTRIBUTION FERT/SUB FRACTION GT 15%	UNFERT/SUB FRACTION GT 15%		-------------	--	--	--	----------------------------------		0	0.00	0.00	0.00	0.00		2	0.17	0.28	0.06	0.00		4	0.00	0.00	0.06	0.00		16	0.11	0.06	0.25	0.00		31	0.33	0.06	0.00	0.00		45	0.19	0.00	0.06	0.00		102	0.29	0.05	0.31	0.00		112	0.39	0.00	0.11	0.00		DAY 2-112	0.21	0.07	0.12	0.00	0.13 0.11 0.00 0.00 KN211 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION	DAY 0 2 4 16 31 45 102 112 DAY 2-112	FERT/SURF FRACTION GT 2% 0.78 0.33 0.39 0.83 0.78 0.81 1.00 1.00 0.73	UNFERT/SURF FRACTION GT 2% 1.00 1.00 0.44 0.89 0.67 0.00 0.89 0.69 0.65	FERT/SUB FRACTION GT 2% 0.89 1.00 0.83 0.75 0.89 0.78 1.00 0.94 0.89	UNFERT/SUB FRACTION GT 2% 1.00 0.89 0.78 1.00 0.14 1.00 0.89 0.84		---------------------------------------	--	--	---	---		DAY 0 2 4 16 31 45 102 112 DAY 2-112	FERT/SURF FRACTION GT																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
5% 0.44 0.22 0.11 0.50 0.50 0.63 1.00 0.72 0.52	UNFERT/SURF FRACTION GT 5% 0.72 0.61 0.22 0.44 0.11 0.00 0.56 0.31 0.32	FERT/SUB FRACTION GT 5% 0.83 0.69 0.56 0.63 0.61 0.11 1.00 0.39 0.57	UNFERT/SUB FRACTION GT 5% 0.89 0.94 0.39 0.44 0.83 0.00 0.78 0.28	KN211 PHENANTHRENE MINERALIZATION FREQUENCY DISTRIBUTION		FERT/SURF FRACTION	UNFERT/SURF FRACTION	FERT/SUB FRACTION	UNFERT/SUB FRACTION		-----------	-----------------------	-------------------------	----------------------	------------------------		DAY	GT 10%	GT 10%	GT 10%	GT 10%		0	0.22	0.44	0.61	0.89		2	0.22	0.17	0.19	0.50		• 4	0.00	0.00	0.11	0.06		16	0.22	0.11	0.19	0.00		31	0.11	0.00	0.22	0.06		45	0.31	0.00	0.00	0.00		102	0.75	0.17	0.67	0.00		112	0.39	0.13	0.17	0.00		DAY 2-112	0.28	0.08	0.22	0.09	TABLE 5. Median MPN Values APPENDIX D2. ## MPN DATA SUMMARY MEDIAN MPN VALUES ### FERTILIZED/SURFACE	KN135B	DAY 0 2 4 8 15 52 56 70 78	OIL DEGRADERS 2.62E+04 4.79E+04 1.55E+05 1.56E+04 1.56E+05 1.37E+05 1.39E+06 1.49E+06 1.85E+06	LOG OIL 4.42 4.68 5.19 4.19 5.19 5.14 6.14 6.17 6.27	HETEROTROPHS 1.58E+06 2.39E+06 2.75E+07 2.40E+07 9.86E+06 5.24E+06 2.51E+08 1.36E+07 3.11E+07	LOG HET 6.20 6.38 7.44 7.38 6.99 6.72 8.40 7.13 7.49		--------	---	--	---	--	--		KN211E	0 2 4 16 31 45 102 112	9.58E+03 7.70E+05 9.55E+04 4.54E+05 2.39E+05 3.08E+05 1.81E+05 3.19E+04	3.98 5.89 4.98 5.66 5.38 5.49 5.26 4.50	1.56E+06 2.41E+06 4.44E+06 5.97E+06 2.39E+05 2.29E+06	6.19 6.38 6.65 6.78 5.38 6.36		KN132B	0 2 4 8 16 29 43 60 95	2.49E+05 1.55E+06 7.77E+05 1.60E+06 9.73E+05 2.80E+05 1.35E+06 8.41E+05 1.17E+06	5.40 6.19 5.89 6.20 5.99 5.45 6.13 5.92 6.07	4.46E+06 9.64E+06 2.44E+07 4.59E+07 4.73E+06 4.61E+06 2.77E+07	6.65 6.98 7.39 7.66 6.67 6.66 7.44 7.25	## MPN DATA SUMMARY MEDIAN MPN VALUES ## UNFERTILIZED/SURFACE	KN135B	DAY 0 2 4 8 15 52 56 70 78	OIL DEGRADERS 4.24E+04 1.58E+04 4.20E+04 1.56E+05 9.75E+04 2.34E+05 1.79E+05 2.52E+05 1.22E+06	LOG OIL 4.63 4.20 4.62 5.19 4.99 5.37 5.25 5.40 6.09	HETEROTROPHS 3.30E+06 4.53E+06 4.59E+07 9.85E+06 4.61E+06 5.15E+06 8.43E+06 9.99E+06	LOG HET 6.52 6.66 7.66 6.99 6.66 6.71 6.93 7.00		--------	---	--	--	--	---		KN211E	0 2 4 16 31 45 102 112	4.63E+04 1.27E+06 4.80E+05 4.44E+05 9.88E+05 5.32E+05 8.51E+04 1.17E+05	4.67 6.10 5.68 5.65 5.99 5.73 4.93 5.07	4.56E+06 4.61E+06 8.37E+06 9.61E+06 2.44E+05 1.72E+07	6.66 6.66 6.92 6.98 5.39 7.24		KN132B	0 2 4 8 16 29 43 60 95	2.30E+05 2.17E+05 1.60E+05 3.71E+05 1.57E+05 1.60E+05 5.94E+03 1.78E+04 5.32E+05	5.36 5.34 5.20 5.57 5.20 5.20 3.77 4.25 5.73	2.40E+06 4.47E+06 9.91E+06 4.56E+06 4.12E+05 7.75E+06 5.82E+06 2.97E+06	6.38 6.65 7.00 6.66 5.61 6.89 6.76	## MPN DATA SUMMARY MEDIAN MPN VALUES ### FERTILIZED/SUBSURFACE		DAY	OIL DEGRADERS	LOG OIL	HETEROTROPHS	LOG HET		--------	-----	---------------	---------	---------------------	---------		KN135B	0	1.66E+04	4.22	2.22E+05	5.35			2	1.02E+04	4.01	2.47E+06	6.39			4	1.03E+05	5.01	2.49E+06	6.40			8	1.01E+05	5.00	2.51E+07	7.40			15	1.62E+05	5.21	1.17E+06	6.07			52	7.54E+05	5.88	4.40E+06	6.64			56	5.82E+06	6.76	6.52E+07	7.81			70	1.26E+06	6.10	1.28E+07	7.11			78	1.70E+06	6.23	8.99E+06	6.95		KN211E	0	4.60E+04	4.66	2.46E+06	6.39			2	1.93E+06	6.29	4.62E+06	6.66		•	4	8.19E+05	5.91	7.89E+06	6.90			16	4.62E+05	5.66	4.61E+06	6.66			31	9.98E+05	6.00	2.23E+05	5.35			45	3.32E+05	5.52	2.74E+06	6.44			102	3.72E+04	4.57					112	8.51E+04	4.93			# MPN DATA SUMMARY MEDIAN MPN VALUES ### UNFERTILIZED/SUBSURFACE	KN135B	DAY 0 2 4 8 15 52 56 70 78	OIL DEGRADERS 1.63E+04 4.70E+03 9.97E+03 2.27E+04 2.34E+04 3.60E+05 9.78E+04 1.30E+05 1.17E+06	4.21 3.67 4.00 4.36 4.37 5.56 4.99 5.11 6.07	HETEROTROPHS 4.63E+05 4.74E+05 4.70E+06 2.51E+06 2.50E+05 2.54E+06 2.50E+06 1.43E+06 1.63E+06	LOG HET 5.67 5.68 6.67 6.40 5.40 6.40 6.16 6.21		--------	---	--	--	---	---		KN211E	0 2 4 16 31 45 102	1.63E+04 2.23E+04 8.03E+05 9.75E+05 2.50E+05 2.53E+05 9.57E+03 1.28E+04	4.21 4.35 5.90 5.99 5.40 5.40 3.98 4.11	4.64E+06 9.87E+06 4.60E+06 2.44E+06 9.99E+04 2.41E+06	6.67 6.99 6.66 6.39 5.00 6.38	TABLE 6. Biomineralization Data APPENDIX D2. ### BIOMINERALIZATION DATA		BEACH SEGMENT	Hex. DPM	Hex. DPM	Hex.	Phen.	Phen.	Phen. DPM		----------------------	------------------	-------------	----------------	------	-------------	-------------	--------------		KN135	AU1		Rep #2 3823			Rep #2	Rep #3		Site #1	AU2	5291	1853						Time 0	AU3	4110	1033		2652		116		Day 0	BU1	4128			343	107	446		05/19/90	BU2	4543	3407		1196	411			33, 23, 33	BU3	621	3.07	160	1236	469	116		Hex spike=64,000DPM	CU1	-	2618	100	126	498	110		Phen spike=60,000DPM	CU2	3602	4886		830	689			2	CU3	8813	8176	411	487	754	110					32,4		.07	734	110			DU1				464	697				DU2	1991	2497			1498				DU3	3162	496	155	866	162	76			EU1	4173	340		588	364				EU2	6203	5516		632	660				EU3	1982	2509	267	149	669	310			FU1	4444	2940		2052	1068				FU2	4770	4802		3018	4931				FU3	4952	4093	199	1242	1429	433			AL1	2286			701	1100				AL2	3463	6126		721	1189				AL3	1046	6136 3077	262	971	1257				BL1	1198	236	263	423	498				BL2	5347	5001		190	126				BL3	3954	3263	130	624	514	7.6			CL1	3872	506	130	1002 330	1223	76			CL2	670	4474		2307	717 3285				CL3	1623	420	108	149	198	240			023	1023	420	100	143	196	248			DL1	3169	4073		314	349				DL2	1747	2701		568	384				DL3	3783	127	397	752	210	465			EL1	3630	4342		1530	912				EL2		1371		3375	4994				EL3	2599	2997	1676	1488	2313	88			FL1	1233	3484		1293	1242				FL2	778			616	650				FL3	154	2824		3382	4519	131		KN135	AU1	7128	8635		3390	2842			-----------------------	-----	-------	-------	-------	-------	-------	------		Site #1	AU2	10458	10825		1917	2024			Time 1	AU3	13107	11682	104	18772	17718	468		Day 2	BU1	16214	21556		2299	2742			05/23/90	BU2	7238	7787		6928	4720				BU3	6992	11363	121	11227	11983	195		Hex spike=64,000 DPM	CU1	7984	6828		1522	1216	133		Phen spike=60,000 DPM	CU2	13426	11528		899	830			•	CU3	7053	6819	121	103	845	456					0025		103	. 043	400			DU1	5317	4890		1646	2104				DU2	4686	4774		1646	3104				DU3			633	2738	7077					7494	6642	677	14475	8452	751			EU1	4418	3614		2948	1816				EU2	2292	3440		15819	2209				EU3	5209	5401	131	8583	212	218			FU1	4779	7546		1999	2374				FU2	9057	5792		6439	15284				FU3	7519	6757	547	7377	9389	111												AL1	10101	8077		12097	15038				AL2	1385	4637		2222	2525				AL3	12245	10687	12338	6342	7503	1441			BL1	12961	11036		15430	14178				BL2	11063	6074		14605	10828				BL3	8593	8775	4852	9615	7906	100			CL1	3493	3452	1032	6980	7722	100			CL2	5301	5456		13233	11524				CL3	8526	10117	400	9150	8158	8756			023	0320	10117	400	3130	0130	8/30			DL1	6549	5611		EARA	2502				DL1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
6394			5039	3582				DL2	7319	5818	6665	1211	4358						6107	6665	5757	5666	750			EL1	6496	6964		14611	14751				EL2	3354	3165	0501	6639	5831				EL3	7885	11609	9524	16581	15916	2312			FL1	9433	6791		11446	11555				FL2	9817	3763		15899	17544				FL3	4351	4777	6817	9083	9632	99		KN135 Site #1 Time 2 Day 4 05/25/90	AU1 AU2 AU3 BU1 BU2	9854 15503 9001 8171 5921	11140 15288 10004 8965 7964	948	24703 11935 13346 8732 2687	22284 11752 12934 4056 4295	265		---	---------------------------------	---	--	------------	---	---	------------		Hex spike=64,000 DPM	BU3 CU1	9729 2169	4592 1773	522	1654 189	1810 190	158		Phen spike=60,000 DPM	CU2 CU3	5513 3160	4191 5903	4581	1335 2104	1598 2127	86			DU1 DU2 DU3 EU1 EU2	9221 4908 97 3975 6576	9115 4181 514 5132 8714	325	5414 1842 7683 5497 6413	5968 2029 231 6145 5674	79			EU3 FU1 FU2	3524 2263 10865	3495 3826 10327	895	7157 9608 13850	6898 10202 12311	117			FU3	4800	8674	161	15292	15919	108			AL1 AL2 AL3 BL1 BL2	11227 12254 11443 7229 9242	10312 11468 10457 9043 10050	527	7818 8521 18446 16759 3042	8666 8090 19257 15462 2648	103			BL3 CL1 CL2 CL3	12128 4048 10823	218 4631 8731 7197	115 254	13020 3291 20977 2212	5149 3739 24216 4205	8 8			DL1	539	1264		1099	378	113			DL2 DL3 EL1 EL2	1515 6231 2977 3705	2169 4915 4171 3507	828	7467 22159 9904 6547	7721 1525 10899 6270	81			EL3 FL1 FL2 FL3	4260 4609 1262 3939	2963 5498 1078 5703	90	1573 4267 5456 9036	4878 4498 5090 10394	96 256		::										BEACH SEGMENT							KN135 AU1 5412 8162	Site #1 Time 3 Day 8 05/29/90 Hex spike=55,000 DPM Phen spike=60,000 DPM	AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	12771 5801 18331 5275 11285 3478 2977 5696	20665 6577 17505 5930 14409 3907 4068 8496	208 273 94	6009 2730 13589 1943 8254 1631 1078 1390	6826 2072 7067 2751 8503 1913 991 1545	302 140 128		---	---------------------------------	---	---	------------------	---	---	-------------------			DU2 DU3	2741 2938	3926 3264	195	994 1535	1035 1878	141																					EU1 EU2	4177 3902	5163 4177		4933 4561	4813 5102				EU3	3355	4062	654	1771	1949	91			FU1 FU2	5196 7016	4711 5272		5050 9291	6071 9792				FU3	5579	3949	120	5673	6128	92												AL1	7781	6608		1921	2913				AL2 AL3	7383 8833	6000 9613	182	4365 15174	2269 14478	105			BL1	13128	10428	102	2093	2671	103			BL2 BL3	8459 7593	8215 5093	120	10531 3813	5232 2383	102			CL1	4262	3347	120	3094	3235	102			CL2		3693		3023		204			CL3	5992	5653	172	8443	8171	204			DL1	4918	2358		1932	1485				DL1 DL2	2086	1339		18080	2292				DL3	2561	2147	95	1336	701	73			EL1	2644	3262		3689	1588				EL2 EL3	3833 1829	6312 1158	110	2933 5333	16184 1495	81			FL1	2949	3252	110	5510	6032	01			FL2	4894	4676	0.3	7562	7718	100			FL3	555	419	93	1200	1299	103		::									• •										BEACH							BEACH SEGMENT	KN135	AU1	5063	3248	11746	11723		---------	-----	-------	-------	-------	-------		Site #1	AU2	12108	13456	24028	21861		Time 4 Day 15 06/05/90 Hex spike=55,000 DPM Phen spike=60,000 DPM	AU3 BU1 BU2 BU3 CU1 CU2 CU3 DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	10958 10570 3998 3868 4683 13266 6043 3019 3084 1969 2054 2477 2720 2320 2639 2802	13677 9083 3247 4656 4570 10015 8671 3531 3586 2022 2687 2516 2421 2647 2468 2850	277145492265152146	11608 18259 1039 5795 4933 14043 9263 2946 4088 1055 6851 7541 1898 7891 2269 2784	13088 11704 988 7478 3853 12703 9872 3311 1397 8191 6933 2335 8593 3577 2410	852 146 199 178 430 145		--	--	---	--	---	---	--	--			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3		4400 6101 3938 2039 2524 2960 2338 1981 2344	750 375 241	12234 3832 2579 461 1120 1953 1968 1136	3153 13663 4392 3617 504 1224 1641 2405 1301	197 137 136			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	892 1917	942 1821 1041 1090 802 790 890	233 235 151	333 3712 743 2883 2320 1488	994 454 2290 669 3080 2285 1578	117 109 236			BEACH SEGMENT AU1 AU2		5513 4444		8450 14378				Time 5	AU3		3494				279	i	Day 32 06/22/90 Hex spike=55,000 DPM Phen spike=60,000 DPM	BU1 BU2 BU3 CU1 CU2 CU3	2884 8885 4111 4459 2472	3798 14142 7360 4350 2414 2642	232 129	2357 25783 6239 7825 10135 9488	3625 7107 8339 5604 2319 7080	134 317		---	---	---	--	---------------------------------	--	--	--------------------------------			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	1797 1350 709 718 1140 1376 695 1338 1585	1096 1903 773 953 2234 2476 1337 2890 1481	844 105 237	3232 2478 2710 3903 3046 3081 2046 2735 1520	2994 2476 1196 4173 4690 3992 2926 5408 2347	197 93 214			AL1 AL2 AL3 BL1 BL2 BL3	7018 7174 10725 1256 6543 8220	7023 5065 3536 3643 8609	568 4674	10402 14511 11359 10396 5024 2378	8026 8161 14256 11343 3924 2693	99 903			CL1 CL2 CL3	3052 6673 2221	2612 7976 1202	89	3290 13731 2015	2907 16597 1263	509			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	744 992 1054 762 1332 743 537 1179 1240	736 241 932 675 1184 876 1134 720 819	80 270 78	1709 1292 1374 905 940 1684 4390 1889 1392	1898 1984 1451 1242 751 1123 4090 1099 936	81 87 138		KN135B refertilized 7/3 KN135 Site #1 Time 6 Pre-reapplication 07/12/90 (Day 52)	AU1 AU2 AU3 BU1 BU2 BU3 CU1	8975 1442 3125 12727 13231 5267 7454	9090 11199 6982 86 8652 3498 5602	0 0 1281 0 0 896	4765 2008 1529 2925 9075 2369 1238	4730 2492 1099 2850 8433 2143 865	0 0 104 0 0 445		Hex spike=61,000 DPM	CU2	6552	7870	0	600	748	0		--	--	---	--	--	---	--	--		Phen spike=58,500 DPM	CU3	9917	10137	222 1	2050	1940	145			DU1 DU2 DU3 EU1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
EU2 EU3 FU1 FU2 FU3	3517 3401 2443 706 1037 2037 1139 1202 1251	5288 3775 1846 1676 1332 1393 1490 127 842	0 0 2686 0 0 930 0 0	774 571 655 670 869 524 577 446 654	814 730 694 670 1042 615 326 270 506	0 0 152 0 0 126 0 205			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	6387 8213 1999 5836 2481 6020 1917 4783	8192 1198 1493 11470 11557 3285 2274 8658 7940	0 0 286 0 0 1107 0 0 1429	2083 1463 139 1512 1521 964 120 840 1917	2068 289 489 1667 154 910 540 899 1335	0 0 118 0 0 311 0 302		-	DL1	1592	1567	0	196	267	0			DL2	1326	1148	0	294	333	0			DL3	1496	699	944	148	125	76			EL1	798	951	0	1182	1035	0			EL2	181	725	0	590	248	0			EL3	655	1027	131	230	395	589			FL1	1560	852	0	208	181	0			FL2	593	667	0	558	411	0			FL3	1157	1337	240	442	336	117		KN135 Site #1 Time 7 Day 4 Re-app. 07/16/90 (Day 56) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	4588 7858 16270 13675 24550 2474 6174 13483 11511	3557 3693 10738 7438 11983 3465 3308 14669 10610	0 0 1293 0 0 2270 0 0 1417	3521 931 8811 3799 3777 651 1013 5988 456	4693 1376 3692 364 2248 976 594 3627 221	0 0 343 0 0 896 0 776			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	2921 3064 6411 1799 1779 858 2801 2210 2560	5395 2071 2115 1801 1374 1223 260 3383 1546	0 0 517 0 0 588 0 0	761 2542 569 795 574 927 763 942 2236	1074 618 338 687 215 890 654 1123 1001	0 0 237 0 0 232 0 0 139		---	---	--	--	---	--	---	---			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	19656 3210 9208 3180 49 13699 8065 8708 3005	16064 4829 5763 6818 11450 19092 8387 6133 395	0 0 2385 0 0 1261 0 0 525	2124 868 1219 1294 6177 3535 1892 5212 395	3080 1763 1306 2317 4877 232 1388 181 513	0 0 3051 0 0 511 0 0 89			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	3413 2625 1212 1155 365 2167 1124 3073 744	2242 2225 1017 1481 510 1500 1219 4871 692	0 0 904 0 0 337 0 0 373	255 413 254 406 479 546 254 2146 818	501 327 311 450 625 593 395 1925 381	0 0 463 0 0 150 0 98		KN135 Site #1	AU1 AU2	9843 14286	9901 14550	0	805 787	770 489	0		Time 8 Day 18 Re-app. 07/30/90 (Day 70) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU3 BU1 BU2 BU3 CU1 CU2 CU3	14092 16410 12517 11299 468 13531 16610	14548 12074 15807 4536 396 11861 16763	2710 0 0 946 0 0	2082 2383 1125 750 246 1999 639	2987 1342 2337 227 213 1948 681	204 0 0 199 0 0			DU1 DU2 DU3 EU1	1426 1563 173 1533	1956 1058 880 1298	0 0 186 0	90 537 294 661	686 488 548 905	0 0 142 0			EU2 EU3 FU1 FU2 FU3	1185 1319 879 660 380	1123 1317 995 501 525	0 273 0 0 236	546 479 404 330 251	456 525 449 250 365	0 162 0 0 148		---	---	--	--	--	---	--	---			AL1 AL2 AL3 BL1 BL2 BL3 CL1	2511 8293 5319 11588 7015 6636 2344	2807 5540 7231 11150 7783 2719 2387	0 0 1030 0 0 525	546 1506 986 2215 1076 445	588 1705 1183 1199 1255 398	0 0 215 0 299 0			CL2 CL3	899 1901	721 1843	0 937	245 686	270 717	0 194			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	448 482 582 714 564 1056 250 588 317	915 413 357 554 555 236 240 399 561	0 0 127 0 0 173 0 0	1850 167 137 554 402 470 132 120 276	130 143 146 513 424 477 162 89 388	0 0 301 0 0 213 0 0 174		KN135 Site #1 Time 9 Day 27 Re-app. 08/07/90 (Day 78) Hex spike=61,000 DPM Phen spike=28,570 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	3860 9715 9462 6771 7256 9349 2865 1060 2315	2642 6838 11923 8654 2605 5690 3105 482 3102	0 0 917 0 0 2629 0 0 427	252 752 2762 842 857 2745 308 267 488	370 1060 1732 719 918 3942 518 821 527	0 0 430 0 0 1677 0 0			DU1	7065	1102	0	1512	935	0			DU2	924	4606	0	288	273	0			DU3 EU1 EU2 EU3 FU1 FU2	675 1285 471 644 3226 4237	627 731 802 673 4882 3381	1590 0 0 230 0	1232 406 377 210 2098 686	660 682 142 267 550 1017	254 0 0 301 0			FU3	2511	1608	2363	1067	748	675		---	---	--	---	---	--	---	--			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	2054 6679 5225 3236 6124 9080 1069 2493 4029	1168 3144 5579 2354 4595 6120 1404 1852 702	0 0 1432 0 0 2013 0 0 646	436 695 3557 568 574 844 327 418 875	1104 965 857 994 1208 713 407 167 826	0 0 396 0 0 1235 0 0 748			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	789 1625 494 946 457 1908 4395 1446 862	1049 164 407 774 544 2704 5790 2386 649	0 0 207 0 0 168 0 0	274 119 282 408 423 311 1223 230 704	237 560 443 436 468 488 651 726 1524	0 0 267 0 0 152 0 0 238		KN135 Site #1 Time 10 Day 57 Re-app. 09/07/90 (Day 109) Processed 9/8/90 Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	181 1782 521 163 831 1767 1447 500 153	1716 655 381 809 1030 737 4675 603 110	343 777 286	471 146 442 562 251 707 1148 86 166	1003 123 771 84 431 626 203 235 182	248 232 69			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2	418 902 751 462 796 233 1606 795 2051	1248 1388 3590 138 1046 246 345 472 3962	113 112 204	156 100 3730 181 397 60 87 255 427	251 106 1239 91 397 195 190 213 95	186 155 74			AL1	177	1038		914	442		AL2 295 252	AL3	249	170	282	181	117	477		-----	------	------	-----	-----	------	-----		BL1	85	585		82	124	111		BL2	411	160		214	90			BL3	619	358	63	291	186	68		CL1	74	310	•	134	139	•		CL2	347	343		213	152			CL3	2932	1502	167	65	88	115																		DL1	490	425		241	91			DL2	143	441		52	325			DL3	1237	232	57	829	104	204		EL1	52	287		62	198			EL2	276	607		246	45			EL3	243	1189	93	167	73	51		FL1	1186	781		83	694			FL2	902	300		227	313			FL3	518	2335	960	301	1126	213	:: ### BEACH SEGMENT	KN211	2111	1226	1105						-----------------------	------	------	------	------	-------	-------	-----		Site #2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
AU1	1226	1107		2232	2170				AU2	2417	2735		12315	13008			Time 0	AU3	1224	952	110	428	482	93		Day 0	BU1	2129	2067		4506	4404			05/26/90	BU2	1374	1230		778	986				BU3	5832	5351	157	2903	2933	85		Hex spike=64,000 DPM	CU1		3159		5776	4283			Phen spike=60,000 DPM	CU2	2039	2597		2044	1765				CU3	3415	3485	93	6167	6368	97								0000	J.												DU1	5623	6828		8168	7785				DU2	2187	1875		2841	2672				DU3	6866	6606	1469	3176	3278	87			EU1	4879	4966		3353	2603	0,			EU2	917	946		1640	1531				EU3	2762	2606	270	8412	9337	100			FU1	4359	3667	210	14845		108			FU2	3801				14732						2722	125	7290	7334				FU3	2689	2598	137	3520	5860	692												AL1	2810	2604		343	505				AL2	2074	2162			505							0.6	7003	6266				AL3	4189	3836	86	11449	12882	212			BL1	4040	3870		10364	10040				BL2	3958	3749		8922	8278				BL3 CL1 CL2 CL3	3378 3449 2236 3069	4214 2124 2627 2518	116 126	6838 4690 7801 4211	5339 2897 8266 3791	111 87		---	---------------------------------	--------------------------------------	--------------------------------------	------------	--	---	------------			DL1 DL2 DL3 EL1 EL2	7819 4044 4660 1535 1262	7872 4140 3843 2153 1521	235	2386 12583 6229 11014 9024	2381 12871 8097 12727 12684	106			EL3 FL1 FL2 FL3	1468 3359 3503 3764	1374 2382 3266 3908	125 250	10664 11761 9402 9808	9356 11162 8940 8583	166 98		::										BEACH SEGMENT								KN211 Site #2 Time 1 Day 2 06/01/90	AU1 AU2 AU3 BU1 BU2	2119 3277 1950 8378 4243	2262 2976 1865 8280	88	405 1686 500 7829	307 1892 278 7068	85		Hex spike=55,000 DPM Phen spike=60,000 DPM	BU3 CU1 CU2	2372 6722 6575	4878 2227 4936 6935	83	6787 249 582 1119	6067 269 648 1217	118		- · · ·	CU3	7959	10249	964	972	737	141			DU1 DU2 DU3 EU1 EU2	6541 7560 5838 8067 9313	8930 6319 5308 9417 9312	128	6242 2697 3127 2597 5531	4069 2140 3458 2761 2668	90			EU3 FU1 FU2	7825 6845 2295	9233 7291 2727	147	2112 4135 3093	1957 4747 3105	134		,	FU3	5570	4461	261	8300	6496	174			AL1 AL2 AL3 BL1	6280 3616 2906 9381	5246 438 3980 7441	581	1967 1574 4127 4933	1682 1618 131 8925	97			BL2 BL3 CL1 CL2	4731 3854 3768 1452	3053 4537 3651 1473	166	4308 3293 9144 5814	3049 3890 5285 5032	9 9			CL3	2323	2779	317	2564	3892	1555		DL1	3762	3276	8270	5119		-----	------	------	------	------		-----	------	------	------	------			DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	2051 2680 811 2057 1841 2658 1603 2944	2374 2150 1559 1425 1672 2352 1352 2364	398 77 196	4658 3770 8646 8618 5266 8094 2890 6158	4401 3086 8944 7126 3924 7461 3456 6277	103 96 620		---	--	---	--	--------------------------	--	--	------------------			BEACH SEGMENT								KN211 Site #2 Time 2 Day 4 06/03/90	AU1 AU2 AU3 BU1 BU2	6254 5320 2547 1817 3256	6277 4983 2722 2389 4953	190	776 543 3529 2280 1052	832 473 3440 2519 1184	78		Hex spike=55,000 DPM Phen spike=60,000 DPM	BU3 CU1 CU2 CU3	4019 6710 1551 1734	2909 7139 3430 2240	185 203	978 1882 471 1669	1125 1675 524 1262	219 135			DU1 DU2 DU3 EU1	3555 1223 2342 2733	2563 1102 2673 3144	128	1264 476 3303 1372	2885 993 3608 1088	8 89			EU2 EU3 FU1 FU2 FU3	3725 5149 4749 3203 2295	5656 4691 4244 5050 1910	421 166	762 636 2054 3732 545	972 898 1856 4254 677	90 131			AL1 AL2 AL3 BL1	2588 3754 3774 3912	3070 3616 3446 4573	262	5183 1389 7066 4416	4206 1230 4393 4246	21 0			BL2 BL3 CL1 CL2 CL3	6434 5486 9122 3751 3994	3707 4678 6824 4405 3224	70 5 26	5104 1871 1268 11224 2212	4190 1703 1337 4272 2395	333 151			DL1 DL2	3225 2185	3375 2290		2267 3061	3993 2961	- 3.		DL3	2349	3481	290	1858	1372	362		-----	------	------	-----	------	------	-----		EL1	2960	3686		4257	3910			EL2	1707	3120		6141	4593			EL3	2054	1366	74	2652	1962	285		FL1	1342	1965		3619	2963			FL2	2650	2876		1698	1518			FL3	389	517	90	532	456	159	::	BEACH		---------		SEGMENT			SEGMENT								-----------------------	------------	------------	------------	-----	-----------	------------	-----		KN211 Site #2	AU1 AU2	119 106	106 112		78 104	241 109			Time 3	AU3	337	302	67	-0.	103			Day 8	BU1	364	261		126	133			06/07/90	BU2	132	146		138	85				BU3	3386	4781	86	600	501	83		Hex spike=55,000 DPM	CU1	250	91		292	129			Phen spike=60,000 DPM	CU2	331	337		189	164				CU3	963	920	89	1960	1902	107												DU1	381	336		189	273				DU2	874	893		440	476				DU3	2386	2138	118	467	279	112			EU1	8251	7811		1108	1033				EU2	2696	3228		874	643				EU3	4763	4214	79	742	979	103			FU1	2535	2675		1519	1569				FU2	9766	6922		4440	242				FU3	1982	1654	93	1742	1555	272												AL1	126	291		85	97				AL2	867	1368		413	446				AL3	304	641	69	172	155	292			BL1	572	144		539	488				BL2	457	463		684	889				BL3	1007	283	104	605	555	150			CL1	268	327		381	215				CL2	2272	2001		2517	2655				CL3	450	239	100	646		215												DL1	237	110		532	356				DL2	442	353		442	273												DL3	2082	1291	78	3205	3025	94		-----	------	------	-----	------	------	-----		EL1	1451	1311		4436	4271			EL2	1843	1416		4741	5483			EL3	2251	2742	259	3678	3254	103		FL1	1109	976		3345	3491	_		FL2	872	894		2810	2818			FL3	1275	1134	77	825	846	70	:: ## BEACH	SECMENT			---------	--								KN211	AU1	4495	4983		2990	3960			------------------------	-------	-------	-------	-----	-------	-------	-------		Site #2	AU2	12349	11935		15623	16003			Time 4	AU3	4728	4369	376	3132	2781	194		Day 16	BU1	1622	2363		874	1401	134		06/15/90	BU2	5870	5700		2721	2359				BU3	2779	2546	359	3237	3346	101		Hex spike=55,000 DPM	CU1	3756	3914	333	1248		101		Phen spike=60,000 DPM	CU2	7478	7623			1260			Then bpixe-00,000 bits	CU3			0.3	5766	2272				C03	3081	2664	83	6308	6908	176												DU1		3773		305	1127				DU2	1539	3215		8819	8857				DU3	3772	7833	189	4203	2230	99			EU1	1753	1497	202	2051	1614	22			EU2	7036	8373		2012	2387				EU3	2272	1809	163	1517	2592	460			FU1	3734	4354	103	2169		469			FU2	1824	2284			4561				FU3			70	3243	3667	0.4.0			F U 3	1646	1596	72	3134	3121	243												AL1	3561	3367		939	888				AL2	4242	5799		4536	4160				AL3	2307	1965	239	715	658	310			BL1		3947		3512	3581	310			BL2	9848	10414		4688	3301				BL3	1938	2128	264	4460	4971	94			CL1	2642	4199	201	1923	2106	74			CL2	9076	8769		3603	7118				CL3	3124	3098	218	7331	8009	97			423	2121	3030	210	1221	0003	31												DL1	1517	1551		1009	1373				DL2	888	1026		2279	4011			::	DL3 EL1 EL2 EL3 FL1 FL2	4528 1385 949 869 754 967 1258	3804 1314 1051 743 655 971 1975	68 109 75	4590 4699 4541 3213 2252 1663 370	4282 5138 4213 1197 2579 2175 332	219 100 182		---	---	--																																																																																																																																																																																																																																																																																														
--	-------------------	---	---	-------------------		KN211 Site #2 Time 5 Day 31	BEACH SEGMENT AU1 AU2 AU3 BU1	2520 2576 10875 8059	2892 4653 14874 10759	99	1765 10280 2481 3474	1964 9909 2213 4119	195		06/30/90 Hex spike=55,000 DPM Phen spike=60,000 DPM	BU2 BU3 CU1 CU2 CU3	9404 2388 2357 1713 5633	12903 3086 3077 2629 9820	1005	5081 3188 503 339 3920	4509 2694 526 418 3694	184			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	6453 3177 4587 3393 3881 8118 3020 2674 2780	7302 3649 5198 4513 6061 9942 3314 3147 3598	205 513 335	2627 3061 824 1319 1127 1676 1203 1760 2165	3143 2827 953 1575 918 1716 1716 2151 1903	165 151 323			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	6641 5079 2395 1105 2302 2859 2956 3571 4486	6615 4117 1630 1387 1613 2009 2457 2915 3010	116 107 242	598 2735 3096 5753 3821 1907 3539 6579 4947	759 1579 3005 5257 3121 1789 3006 7919 3266	189 152 150			DL1 DL2	2056 1567	1595 1486		5023 2381	6353 2047				DL3 EL1 EL2 EL3 FL1 FL2 FL3	1081 1100 1295 1216 1351 1045 1129	983 1451 1093 990 974 1370 524	203 146 200	5695 4587 5038 4896 4104 3100 3051	3963 4126 5021 5056 3873 3683 2618	204 152 127		--	--	--	--	---	---	--	---		KN211E refertilized 7,	/12/90								KN211 Site #2 Time 6 Day 4 Re-app. 07/16/90 (Day 45) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	8935 13315 10352 8601 4435 3451 5351 2623 2436	8098 12723 7332 8461 461 4624 3481 6479 4418	0 0 512 0 0 1495 0 0 1495	807 4198 5913 10727 1986 6902 692 6746 1293	94 3323 5856 5960 1757 5073 729 4860 1850	0 0 173 0 0 1083 0 736			DU1 DU2 DU3 EU1	3087 3442 1932 1545	3002 3673 369 1325	0 0 892 0	254 595 387 400	252 671 274 768	0 0 319 0			EU2 EU3 FU1 FU2 FU3	827 1231 2385 720 1467	338 925 1335 982 939	0 649 0 0 490	1140 818 631 332 256	925 613 874 340 380	0 354 0 0 85			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	2064 9585 943 3632 1714 5440 1890 7446 2560	3621 4327 558 1627 7944 3173 4312 4680 3921	0 0 1100 0 0 570 0 0	1846 1120 3613 2065 1717 880 1461 2371 1192	1458 1818 5004 1598 2813 1170 1319 2605 2488	0 0 355 0 0 1400 0 0			DL1 DL2 DL3 EL1 EL2 EL3 FL1	2280 2701 460 767 283 712 195	1071 1757 304 742 563 415 392	0 0 315 0 0 224	749 998 1832 658 655 295	882 399 1464 531 773 483 346	0 0 5 63 0 0 413			FL2	568	883	0	137	787	0		---	---	--	---	--	--	---	--			FL3	735	390	158	213	494	121		KN211 Site #2 Time 7 Day 19 Re-app. 07/31/90 (Day 60) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1	1506	1090	0	871	929	0			AU2	2414	3742	0	968	952	0			AU3	1131	130	236	208	273	289			BU1	929	1065	0	329	333	0			BU2	6211	1729	0	4324	976	0			BU3	1107	574	326	232	289	983			CU1	3052	454	0	948	851	0			CU2	1105	1007	0	285	232	0			CU3	829	727	373	1154	355	296			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	1437 502 1326 1656 450 2233 932 1056 705	1161 346 1392 2327 1967 2093 256 1290 708	0 0 165 0 0 237 0 0	417 123 1281 335 1452 2207 268 377 421	633 154 1170 546 767 406 399 514 485	0 0 136 0 0 161 0 0			AL1	323	240	0	148	105	0			AL2	92	796	0	590	688	0			AL3	1598	4814	989	195	219	86			BL1	473	340	0	605	683	0												BL2	280	1315	0	476	114	0			BL3	5138	104	857	1801	3696	154			CL1	233	331	0	425	406	0			CL2	213	771	0	431	599	0			CL3	1943	2426	381	506	6846	98			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	223 146 926 324 190 708 180 152 649	114 1270 667 261 495 105 135 583 718	0 0 202 0 0 139 0 0	561 123 208 401 170 182 214 185 139	312 138 1824 165 135 1456 138 238 588	0 0 101 0 0 89 0		KN211 Site #2 Time 8 Day 55 Re-app. 09/05/90 (Day 96) Processed 9/7/90 Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	1318 110 778 570 323 4869 118 104 465	1032 104 382 366 601 6823 771 829 224	544 219 93	314 363 163 569 200 190 393 283 127	428 98 642 830 444 235 210 116 172	289 150 207		--	--	--	--	-------------------	---	--	-------------------			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2	81 633 107 191 427 1674 99	114 245 85 80 647 195 80 72	79 103	153 104 178 153 219 91 113 115	354 116 146 369 323 257 138 267	121 115			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	1310 209 954 1467 290 2693 1988 1226 414	94 855 276 809 706 631 2661 729 126 396	150 104 100	784 641 373 393 242 299 179 163 149	71 1143 656 176 624 125 304 70 87 384	122 197 74			DL1 DL2 DL3 EL1	417 570 112 248	523 225 348 171	104	238 301 480 96	244 971 285 612	193			EL2 EL3 FL1 FL2 FL3	291 194 305 200 361	360 654 270 276 253	82 84	322 137 151 109 246	129 78 123 90 175	87 114		KN211 Site #2 Time 9 Day 61 Re-app. 09/11/90	AU1 AU2 AU3 BU1 BU2	268 7690 5756 8801 20827	2697 6766 6149 5858 14063	97	2645 3044 10191 4430 9385	15565 4759 10381 8800 11534	165		(Day 102) Processed 10/23/90 Hex spike=61,000 DPM	BU3 CU1 CU2 CU3	6247 1283 7574 14413	8338 6682 7274 13817	776 149	8024 7191 17664	2972 4634 13940	2815		---	--------------------------	-------------------------------	-------------------------------	------------	-----------------------	-----------------------	------		Phen spike=46,000 DPM	CUS	14412	13017	149	7115	3010	900			D U 1	2992	2245		1560	4405				DU2	5678	2245 3822		1568 4912	4495 2949				DU3	63	2525	628	2422	1263	148			EU1 EU2	1942 2329	2043 3891		1965	1016				EU3	12304	8038	476	2789 10050	2750 6155	982		•	FU1	1475	2529		2775	2081	702			FU2 FU3	298 1602	1864 1698	1006	2054	3948	1101			FUJ	1002	1090	1096	1122	400	1101			27.1	0276	5530							AL1 AL2	8276 2037	5539 87		6757 6675	7436 6019				AL3	6707	5516	2030	5512	3745	999			BL1	17453	16330		4942	5546				BL2 BL3	12017 2645	6919 2184	131	8262 3955	7253 2653	1512			CL1	1012	782	131	4301	3783	1512			CL2																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
13013	11026		7065	8220				CL3	8934	8768	576	7868	3819	991					_							DL1 DL2	1225 1005	385 1114		2457	2963				DL3	1244	1159	697	2988 2594	2912 2711	562			EL1	699	999	•••	4279	2845	302			EL2 EL3	992	362	0.0	2725	2542				FL1	1559 1150	630 891	92	2554 3538	4308 2651	690			FL2	1297	966		2131	2087				FL3	451	1694	252	1525	1502	395											KN211	2111	14022	11404		554				Site #2	AU1 AU2	14932 10657	11494 10877		7764 2762	8290 3874			Time 10	AU3	3100	3576	1120	3241	2045	103																																																																	Day 71 Re-app.	BU1	8135	7542		1508	5604			09/21/90 (Day 112)	BU2 BU3	8362 10686	5175 9147	544	4847 3749	7498	1140		Processed 10/25/90	CU1	6130	7548	344	6377	4130 8034	1148		Was as the C1 000 per	CU2	4878	12790	.	2145	3640			Hex spike=61,000 DPM Phen spike=46,000 DPM	CU3	1268	5280	288	2233	1945	333		THEM OPENCTO, OUT DEM							,			984	845		1694	744	DU1		------	------	-------	------	-------	-------	-----			94	65		2648	3052	DU2		373	2965	2429	210	4174	7239	DU3			1566	560		1565	7040	EU1			2159	985		3217	4941	EU2		256	508	1256	457	1239	1217	EU3			4981	5276		848	5377	FU1			1373	1282		1320	1881	FU2		1188	2513	1568	789	1932	400	FU3		1100	-515																1635	1621		1397	1881	AL1			5932	5402		4661	4316	AL2		537	3160	2508	196	1896	1202	AL3		337	2655	2279	130	3115	2276	BL1			1933	1953		1584	1818	BL2		161	1325	2012	291	2757	2779	BL3		101	2233	2364	231	2272	3576	CL1						16840	21070	CL2		1006	9155	4001	1143	1449	1812	CL3		1206	1636	974	1143	1443	1012	CHO												0.5.0		1460	1500	DL1			1309	950		1462	1523				1412	2118	264	1157	1267	DL2		1119	2153	2411	364	532	692	DL3			2042	2291		1802	1974	EL1			2173	726		1099	1013	EL2		189	1508	3086	909	620	859	EL3			3300	2126		1781	501	FL1			1185	2543		2041	2419	FL2		361	1789	4010	909	325	523	FL3											BEACH SEGMENT								----------------------	------------------	------	------	----	------	------	-----		KN132	AU1	1574	1855		1336	1772			Site #3	AU2	2114	2149		949	1158			Time 0	AU3	2153	2918	78	137	172	123		Day 0	BU1	2219	2668		1635	1374			05/31/90	BU2	1988	2779		2151	2577				BU3	2664	1929	80	2235	637	93		Hex spike=55,000 DPM	CU1	1363	1659		1029	1367		Phen spike=60,000 DPM 2658		CU3	1072	987	86	1593	941	87		---	---	--	--	-------------------	---	---	-------------------			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	1749 2705 2193 1041 1484 1620 507 3530 1682	2359 1453 1818 1061 1202 1440 588 3273 1862	84 168 78	1614 2066 1874 416 1721 2058 327 3248 509	1564 2024 2021 860 1690 2457 319 3103 490	259 117 107		· · · · · · · · · · · · · · · · · · ·							•			BEACH SEGMENT								KN132 Site #3 Time 1 Day 2 06/04/90	AU1 AU2 AU3 BU1 BU2	1969 2923 6801 5716 1969	1793 3363 7595 6645 1351	67	362 514 2328 3006 749	357 532 870 3572 668	81		Hex spike=55,000 DPM Phen spike=60,000 DPM	BU3 CU1 CU2	10343 10315 13174	8084 9476 12112	110	2568 5196 3609	1763 4627 3927	272			CU3	13496	12227	296	800	967	103			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	5702 3010 2222 3869 3212 5401 2444 3256 4906	4588 2731 2028 3772 3975 6107 1810 3084 5164	145 141 449	2625 1542 1306 1151 121 2638 387 512 1490	1842 17432 1276 1147 1647 2617 377 386 1299	80 129 70		::										BEACH SEGMENT								KN132 Site #3 Time 2 Day 4 06/06/90	AU1 AU2 AU3 BU1 BU2 BU3	823 3072 340 2001 3493	774 3893 346 2092 3562	66	96 1614 136 1984 1269	112 1486 123 2016 1444	115		Hex spike=55,000 DPM Phen spike=60,000 DPM	CU1 CU2 CU3	4054 2116 2309 4386	4118 2521 2558 4759	179 85	627 679 1518 2142	169 667 1756 3796	74 131			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	1816 999 3626 1857 3332 1187 731 396 1133	1282 1127 3369 1136 3576 1314 981 565 1043	83 195 87	590 733 2083 359 919 654 333 139 200	669 962 2309 405 1023 541 294 182 186	84 235 83		---------------------------	---	---	--	-----------------	--	---	-----------------		* *										BEACH SEGMENT								KN132	AU1	613	1260		531	516			Site #3	AU2	327	384		135	125			Time 3	AU3	4119	3606	191	2275	2359	114		D ay 8 06/10/90	BU1	9179	6238		9526	9688			06/10/90	BU2 BU3	5412	5902	204	5523	6187			Hex spike=55,000 DPM	CU1	9960 2118	10390	324	4133	2681	117		Phen spike=60,000 DPM	CU2	10211	3323 8483		600	7799			Phen spike-00,000 DPM	CU3	1540	1130	262	688	3521	100			C03	1340	1130	202	2169	630	190			DU1	2746	2245		1080	1121				DU2	1584	1917		1521	1706				DU3	899	981	169	1349	1345	76			EU1	2132	2771	103	1609	1758	76			EU2	1467	1720		788	934				EU3	1610	1499	77	1080	1429	76			FU1	915	1104		279	490	, 0			FU2	1361	1512		750	700				FU3	978	961	157	305	391	86		: :										BEACH									SEGMENT								7711 20		440	1.554						KN132	AU1	440	1674		3002	3859			Site #3 Time 4	AU2 AU3	6003 2849	8251	100	10142	9971			Day 16			1795	123	2167	1856	144		07/01/90	BU1 BU2	10521 14250	11467 12804		11298	8204			07/01/90	BU3	9111	9116	130	8842	4865	160		Hex spike=55,000 DPM	CU1	5037	3756	120	10213 3613	5694	152		Phen spike=60,000 DPM	CU2	3232	695		2349	4151 4482			I Spine ovjour DEM	CU3	1345	1023	1027	2285	3094	216						,	-203	J U J T	- 10	.		DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2	1019 3560 961 2471 1102 2772 1647 2140 1669	1303 2037 1864 2487 890 2486 1212 1778 1366	88 140 112	1425 1713 1092 1546 1171 2803 796 669 732	1755 1701 883 2204 1415 4179 657 617 505	89 234 68		--	--	---	--	--	---	--	---		::										BEACH SEGMENT								KN132 Site #3 Time 5 Day 29 07/01/90	AU1 AU2 AU3 BU1 BU2	11751 8680 6921 14432 14224	12739 9426 6765 14789 11313	179	1131 668 4161 4904 3625	1188 742 4005 4141 4651	170		Hex spike=55,000 DPM Phen spike=60,000 DPM	BU3 CU1	5227 2452	5466 2293	930	507 311	562 288	150		rhen apike-60,000 DFM	CU2 CU3	7903 4816	8032 4539	184	2122 2755	2483 2512	134			DU1 DU2	1498 1388	1714 1528		1173 1249	1277 1256				DU3 EU1 EU2	3496 3747 3968	3487 3071 3798	191	1838 1107 1892	1519 1203 1844	140			EU3 FU1 FU2	5369 2224 1888	5137 2031 1758	170	1415 324 543	1288 368 582	162		KN132B refertilized 7/	FU3 '11/90	2185	2328	153	1302	1347	140		KN132 Site #3 Time 6 Day 4 Re-app. 07/15/90 (Day 43) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	881 1739 235 9712 3788 246 8290 10713 1155																																																																																																																																																																																																																																																																																																																																																																																																																																																								
431 2870 404 10364 4768 256 12975 12331 1049	0 0 295 0 0 164 0 0	175 277 527 1827 2027 388 104 214 176	804 239 1127 1818 1252 730 93 154 489	0 0 336 0 0 113 0 0 307			DU1 DU2 DU3 EU1 EU2 EU3	2188 2399 1163 1039 883 800	2376 1877 256 869 929 949	0 0 1267 0 0 827	744 610 1370 399 336	638 402 1224 652 646	0 0 169 0 0 854		--	--	--	--	--	---	---	---		-										FU1 FU2 FU3	446 533 427	380 467 98	0 0 0	470 157 238	408 394 312	0 0 694		KN132 Site #3 Time 7 Day 21 Re-app. 08/01/90 (Day 60) Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	510 4202 601 2445 3099 1508 7143 3052 2440	432 735 285 3013 4148 829 6321 2083 2533	0 0 313 0 0 607 0 308	370 838 179 410 1812 420 2633 625 511	198 482 193 224 2093 296 2179 500 760	0 0 448 0 0 374 0 0 273			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	1587 1510 1544 1676 3855 175 729 393	1446 1555 1835 667 490 411 730 26 0	0 0 270 0 0 171 0 0	357 287 739 177 500 600 217 155 1692	1427 199 431 29 404 317 170 81 661	0 0 208 0 0 218 0 0		KN132 Site #3 Time 8 Day 56 Re-app. 09/05/90 (Day 95) Processed 9/7/90 Hex spike=61,000 DPM Phen spike=58,500 DPM	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	390 801 2956 758 2333 190 987 659 278	574 252 1127 216 5645 752 574 2868 376	192 130 221	129 259 385 272 693 118 112 386 511	97 258 881 167 252 72 350 332 1353	79 89 286			DU1 DU2 DU3	866 393 503	940 409 315	270	277 983 436	193 364 261	112		EU1	132	98		248	341			-----	-----	-----	-----	-----	-----	-----		EU2	109	209		104	240			EU3	230	293	109	236	245	190		FU1	537	471		213	226			FU2	185	163		279	814			FU3	113	258	172	144	335	116	. APPENDIX D2. TABLE 7. Microbial Enumeration Data ## MICROBIAL ENUMERATION DATA		BEACH SEGMENT	% Dry Wt.	. HET MPN	Corr. MPN	Oil MPN	Corr. Oil		---	---	--	--	--	--	--		KN135 Site #1 Time 0 Day 0 05/19/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	0.95 0.94 0.95 0.95 0.95 0.93 0.92	2.40E+06 1.50E+06 7.50E+05 4.30E+05 1.50E+06	0.00E+00 2.55E+06 1.58E+06 8.01E+05 4.50E+05 1.57E+06 0.00E+00 0.00E+00	2.70E+05 9.30E+04 1.50E+04 4.30E+03 2.40E+04	8.04E+03 2.62E+04			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.95 0.94 0.96 0.96 0.95	7.50E+06 1.50E+06	5.00E+06 1.58E+06 9.87E+05 7.79E+06 0.00E+00	1.50E+04 4.30E+04 7.50E+04 9.30E+04 4.60E+05	4.24E+04 4.52E+03 1.59E+04 4.47E+04 7.81E+04 9.82E+04 4.88E+05			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	0.91	4.30E+04 9.30E+05 4.30E+06	2.22E+05 0.00E+00 4.67E+04 9.90E+05 4.59E+06	4.30E+04 9.30E+02 2.00E+03 9.30E+03 9.30E+04	2.33E+04 4.74E+04 1.01E+03 2.13E+03 9.93E+03 9.42E+04			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.93 0.91 0.92 0.87 0.92	4.30E+05 9.30E+05 4.60E+06	4.66E+04 4.63E+05 1.02E+06 0.00E+00 5.29E+06 0.00E+00 1.65E+05	9.30E+03 9.30E+03 1.50E+04 2.30E+02 1.50E+04	4.66E+03 1.00E+04 1.02E+04 1.63E+04 2.65E+02 1.63E+04 1.65E+04	``` KN135 AU1 0.95 3.90E+07 4.11E+07 1.50E+04 1.58E+04 Site #1 AU2 0.96 2.30E+06 2.39E+06 1.50E+04 1.56E+04 Time 1 AU3 0.96 9.30E+05 9.70E+05 9.30E+03 9.70E+03 Day 2 BU1 0.97 4.30E+05 4.45E+05 0.00E+00 05/23/90 0.97 9.30E+06 9.60E+06 1.50E+05 1.55E+05 BU₂ BU3 0.92 9.30E+06 1.01E+07 4.30E+03 4.69E+03 CU1 0.96 9.30E+05 9.72E+05 2.30E+05 2.40E+05 CU₂ 0.96 9.30E+05 9.72E+05 4.30E+05 4.49E+05 CU3 0.94 4.30E+06 4.58E+06 7.50E+04 7.99E+04 0.93 9.30E+06 1.00E+07 4.30E+03 4.64E+03 DU1 0.94 2.30E+06 2.46E+06 2.30E+03 2.46E+03 DU₂ DU3 0.95 4.30E+06 4.53E+06 1.40E+03 1.48E+03 EU1 0.92 2.30E+07 2.51E+07 2.30E+04 2.51E+04 0.95 2.30E+07 2.42E+07 9.30E+04 9.80E+04 EU2 EU3 0.94 2.30E+06 2.44E+06 7.50E+04 7.96E+04 FU1 0.96 4.30E+06 4.48E+06 7.50E+03 7.81E+03 FU2 0.95 9.30E+06 9.82E+06 1.50E+04 1.58E+04 FU3 0.96 2.30E+06 2.41E+06 4.30E+04 4.50E+04 AL1 0.93 2.30E+06 2.47E+06 2.70E+04 2.91E+04 AL₂ 0.90 4.30E+05 4.79E+05 4.30E+03 4.79E+03 AL3 0.91 2.30E+06 2.51E+06 9.30E+03 1.02E+04 BL1 0.91 2.30E+07 2.52E+07 1.50E+05 1.64E+05 BL2 0.90 2.30E+06 2.55E+06 4.30E+03 4.76E+03 BL3 1.07 9.30E+04 8.67E+04 2.00E+03 1.86E+03 CL1 0.93 2.30E+07 2.48E+07 1.20E+05 1.30E+05 CL2 0.91 2.30E+05 2.51E+05 4.30E+04 4.70E+04 0.91 9.30E+05 1.02E+06 9.30E+03 1.02E+04 CL3 DL1 0.92 2.30E+06 2.50E+06 2.30E+04 2.50E+04 DL2 0.91 4.30E+05 4.74E+05 2.40E+03 2.65E+03 DL3 0.91 4.30E+05 4.70E+05 4.30E+03 4.70E+03 EL1 0.92 2.10E+05 2.29E+05 7.50E+03 8.17E+03 EL2 0.93 2.30E+05 2.48E+05 1.50E+03 1.62E+03 EL3 0.92 2.30E+05 2.51E+05 4.30E+03 4.69E+03 FL1 0.92 9.30E+05 1.01E+06 4.30E+03 4.69E+03 FL2 0.91 9.30E+06 1.02E+07 4.30E+04 4.71E+04 FL3 0.93 9.30E+05 1.00E+06 1.50E+04 1.62E+04 ``` ``` KN135 AU1 0.97 9.30E+07 9.63E+07 1.50E+05 1.55E+05 Site #1 AU2 0.96 0.00E+00 9.30E+03 9.66E+03 0.96 2.30E+06 2.40E+06 1.50E+04 1.56E+04 Time 2 AU3 Day 4 BU1 0.90 9.30E+06 1.03E+07 1.50E+05 1.66E+05 05/25/90 BU2 0.96 4.30E+07 4.46E+07 4.30E+04 4.46E+04 BU3 0.94 9.30E+06 9.89E+06 9.30E+05 9.89E+05 CU1 0.96 4.30E+07 4.48E+07 2.30E+04 2.40E+04 0.94 9.30E+06 9.86E+06 2.30E+05 2.44E+05 CU2 CU3 0.95 4.30E+07 4.51E+07 9.30E+05 9.75E+05 DU1 0.94 4.30E+07 4.59E+07 7.50E+04 8.01E+04 DU2 0.93 7.50E+07 8.08E+07 3.90E+04 4.20E+04 DU3 0.96 2.30E+06 2.39E+06 7.50E+03 7.79E+03 EU1 0.94 4.30E+07 4.59E+07 7.50E+04 8.01E+04 EU2 0.93 2.30E+07 2.46E+07 9.30E+04 9.95E+04 EU3 0.97 1.50E+06 1.54E+06 2.30E+03 2.36E+03 FU1 0.95 2.30E+08 2.42E+08 9.30E+03 9.78E+03 FU2 0.93 4.30E+08 4.61E+08 9.30E+06 9.96E+06 FU3 0.96 1.50E+08 1.57E+08 1.50E+04 1.57E+04 0.90 4.30E+04 4.78E+04 9.30E+04 1.03E+05 AL1 AL2 0.91 9.30E+06 1.02E+07 4.30E+05 4.70E+05 AL3 0.90 9.30E+05 1.03E+06 4.30E+04 4.76E+04 BL1 0.90 9.30E+06 1.04E+07 9.30E+04 1.04E+05 BL2 0.92 2.30E+06 2.49E+06 4.30E+05 4.66E+05 BL3 0.92 9.30E+05 1.01E+06 2.30E+04 2.51E+04 CL1 0.92 7.50E+07 8.17E+07 7.50E+04 8.17E+04 CL2 0.92 4.30E+07 4.66E+07 4.30E+05 4.66E+05 CL3 0.92 9.30E+05 1.01E+06 4.30E+04 4.66E+04 DL1 0.93 9.30E+04 9.97E+04 1.50E+03 1.61E+03 DL2 0.92 2.30E+05 2.50E+05 7.50E+03 8.15E+03 DL3 0.92 4.30E+06 4.70E+06 4.30E+03 4.70E+03 EL1 0.91 9.30E+05 1.03E+06 2.30E+04 2.54E+04 EL2 0.90 7.50E+05 8.35E+05 1.50E+05 1.67E+05 EL3 0.89 1.50E+08 1.68E+08 1.50E+04 1.68E+04 FL1 0.93 2.30E+07 2.47E+07 9.30E+03 9.97E+03 FL2 0.91 2.30E+07 2.52E+07 7.50E+04 8.22E+04 FL3 0.91 2.10E+08 2.30E+08 4.30E+02 4.72E+02 :: BEACH % Dry Wt. MPN Corr. Oil MPN Corr. SEGMENT MPN Oil ``` KN135 AU1 0.96 4.30E+07 4.46E+07 1.50E+04 1.56E+04 ``` Site #1 AU2 0.97 2.30E+07 2.36E+07 9.30E+05 9.55E+05 Time 3 AU3 0.94 4.30E+07 4.58E+07 9.30E+03 9.90E+03 0.95 2.30E+07 2.42E+07 4.30E+04 4.52E+04 Dav 8 BU1 05/29/90 BU2 0.95 4.30E+07 4.53E+07 7.50E+03 7.90E+03 0.96 2.30E+07 2.39E+07 9.30E+03 9.66E+03 BU3 CU1 0.96 2.30E+07 2.40E+07 9.30E+03 9.71E+03 CU2 0.97 2.30E+07 2.38E+07 4.30E+04 4.44E+04 CU3 0.93 2.30E+06 2.47E+06 4.30E+05 4.62E+05 0.96 2.30E+07 2.40E+07 2.10E+04 2.19E+04 DU1 0.94 4.30E+07 4.57E+07 2.10E+05 2.23E+05 DU2 DU3 0.96 2.30E+07 2.41E+07 4.30E+04 4.50E+04 ``` ``` EU1 0.96 4.30E+06 4.46E+06 3.90E+04 4.05E+04 EU2 0.94 9.30E+06 9.85E+06 2.30E+05 2.44E+05 EU3 0.94 4.30E+06 4.58E+06 1.50E+05 1.60E+05 FU1 0.94 2.30E+07 2.44E+07 1.50E+05 1.59E+05 0.96 4.30E+06 4.48E+06 1.50E+05 1.56E+05 FU2 FU3 0.94 4.30E+06 4.58E+06 4.30E+04 4.58E+04 AL1 0.92 2.30E+07 2.51E+07 7.50E+04 8.18E+04 AL2 0.92 4.30E+07 4.69E+07 2.30E+04 2.51E+04 AL3 0.93 4.30E+07 4.60E+07 9.30E+05 9.95E+05 BL1 0.92 2.30E+07 2.50E+07 9.30E+03 1.01E+04 0.92 9.30E+07 1.01E+08 9.30E+04 1.01E+05 BL2 BL3 0.93 2.30E+07 2.46E+07 7.50E+05 8.03E+05 CL1 0.92 2.30E+07 2.49E+07 9.30E+04 1.01E+05 0.92 2.30E+07 2.51E+07 2.10E+06 2.29E+06 CL2 0.92 2.30E+07 2.49E+07 1.50E+04 1.63E+04 CL3 DL1 0.91 4.30E+06 4.72E+06 9.30E+03 1.02E+04 DL2 0.90 9.30E+06 1.03E+07 2.10E+05 2.33E+05 DL3 0.93 2.30E+06 2.47E+06 9.30E+04 1.00E+05 EL1 0.91 4.30E+06 4.71E+06 1.50E+05 1.64E+05 0.93 2.30E+05 2.49E+05 2.10E+03 2.27E+03 EL2 EL3 0.92 2.30E+06 2.51E+06 9.30E+03 1.01E+04 FL1 0.92 9.30E+05 1.01E+06 1.50E+04 1.63E+04 FL2 0.91 4.30E+06 4.73E+06 2.10E+07 2.31E+07 0.93 2.30E+06 2.48E+06																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
2.10E+04 2.27E+04 FL3 ```		BEACH SEGMENT	% Dry Wt	. MPN	Corr. MPN	Oil MPN	Corr. Oil		------------------	------------------	----------	----------------------	--------------	---------	--------------		KN135 Site #1	AU1 AU2		9.30E+05 2.30E+07					Time 4 Day 15 06/05/90	AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.96 0.94 0.96 0.94 0.96		4.07E+07 4.57E+07 4.49E+06 9.86E+06 9.72E+05	2.10E+04 2.90E+08 9.30E+03 1.20E+06 7.50E+04	2.19E+04 3.08E+08 9.72E+03 1.27E+06 7.84E+04		------------------------	---	--------------------------------------	----------	--	--	--			DU1		2.30E+07						DU2	0.96	9.30E+05	9.71E+05	2.30E+02	2.40E+02			DU3	0.93	2.30E+06	2.47E+06	4.30E+06	4.62E+06			EU1		2.30E+05						EU2		2.30E+07						EU3	0.93	9.30E+04	9.96E+04	4.30E+04	4.60E+04			FU1	0.96	2.30E+07						FU2	0.93		4.61E+06					FU3	0.95	2.30E+07				``` AL1 0.80 9.30E+05 1.17E+06 2.70E+04 3.39E+04 AL2 0.92 7.10E+06 7.76E+06 3.90E+05 4.26E+05 AL3 0.88 4.30E+05 4.90E+05 4.30E+03 4.90E+03 0.93 2.30E+07 2.48E+07 1.20E+06 1.29E+06 BL1 BL2 0.93 7.50E+04 8.09E+04 1.50E+05 1.62E+05 BL3 0.93 2.30E+07 2.47E+07 4.30E+06 4.61E+06 0.90 2.30E+05 2.56E+05 2.10E+05 2.34E+05 CL1 CL2 0.89 2.30E+06 2.59E+06 9.30E+04 1.05E+05 CL3 0.91 2.10E+05 2.31E+05 7.50E+04 8.24E+04 DL1 0.95 2.30E+05 2.42E+05 2.30E+05 2.42E+05 DL2 0.93 9.30E+04 1.00E+05 2.30E+03 2.48E+03 DL3 0.93 2.30E+05 2.47E+05 4.30E+04 4.62E+04 EL1 0.85 9.30E+06 1.09E+07 7.50E+06 8.78E+06 EL2 0.91 9.30E+05 1.03E+06 7.50E+04 8.27E+04 EL3 0.88 4.30E+05 4.89E+05 4.30E+02 4.89E+02 0.92 2.30E+05 2.50E+05 4.30E+03 4.67E+03 FL1 FL2 0.92 4.30E+04 4.66E+04 7.50E+03 8.12E+03 FL3 0.90 4.30E+06 4.78E+06 2.10E+04 2.34E+04 ```		BEACH SEGMENT	% Dry Wt. MPN	Corr. MPN	Oil MPN	Corr. Oil		----------------------------	-------------------	---	--------------	----------	--------------		KN135 Site #1 Time 5	AU1 AU2 AU3	0.95 2.30E+06 0.95 4.30E+07 0.93 2.30E+07	4.54E+07	4.30E+04	4.54E+04	``` 0.91 2.30E+07 2.54E+07 2.10E+08 2.32E+08 Day 32 BU1 06/22/90 BU₂ 0.95 1.50E+08 1.58E+08 9.30E+04 9.80E+04 BU3 0.95 4.30E+06 4.53E+06 7.50E+05 7.90E+05 CU1 0.95 4.30E+07 4.53E+07 2.10E+06 2.21E+06 CU2 0.89 4.30E+07 4.83E+07 7.50E+05 8.43E+05 CU3 0.95 4.30E+07 4.54E+07 9.30E+06 9.83E+06 0.95 4.30E+07 4.52E+07 2.30E+07 2.42E+07 DU1 DU2 0.90 7.50E+06 8.35E+06 7.50E+05 8.35E+05 DU3 0.91 9.30E+07 1.02E+08 2.30E+06 2.53E+06 EU1 0.91 9.30E+06 1.02E+07 1.20E+04 1.32E+04 EU2 0.89 2.30E+07 2.57E+07 2.10E+07 2.35E+07 EU3 0.94 1.20E+07 1.28E+07 0.00E+00 0.95 2.30E+07 2.43E+07 4.30E+07 4.54E+07 FU1 FU2 0.94 1.50E+07 1.59E+07 0.00E+00 FU3 0.95 2.30E+07 2.41E+07 7.50E+04 AL1 0.87 1.50E+05 1.72E+05 2.10E+05 2.40E+05 AL2 0.91 4.30E+07 4.71E+07 4.30E+05 4.71E+05 AL3 0.92 4.30E+07 4.68E+07 2.10E+05 2.29E+05 BL1 0.89 2.30E+07 2.59E+07 7.20E+04 8.10E+04 BL2 0.91 4.30E+04 4.70E+04 BL3 0.90 7.50E+06 8.38E+06 1.20E+05 1.34E+05 CL1 0.89 4.30E+07 4.81E+07 9.30E+04 1.04E+05 CL2 0.92 2.30E+07 2.49E+07 2.10E+05 2.27E+05 CL3 0.89 2.30E+05 2.59E+05 4.30E+03 4.84E+03 DL1 0.90 9.30E+08 1.04E+09 1.60E+06 1.78E+06 DL2 0.92 4.30E+05 4.66E+05 7.20E+04 7.80E+04 DL3 0.92 9.30E+05 1.02E+06 0.00E+00 EL1 0.92 9.30E+05 1.01E+06 2.10E+07 2.28E+07 EL2 0.90 2.30E+06 2.56E+06 0.00E+00 EL3 0.92 4.30E+07 4.67E+07 0.00E+00 0.91 4.30E+07 4.74E+07 9.30E+03 1.03E+04 FL1 0.92 2.30E+07 2.50E+07 9.30E+06 1.01E+07 FL2 FL3 0.92 9.30E+05 1.02E+06 4.30E+05 4.69E+05 KN135B refertilized 7/12/90 0.95 5.00E+06 5.24E+06 1.10E+05 1.15E+05 KN135 AU1 Site #1 AU2 0.96 0.00E+00 7.00E+04 7.26E+04 Time 6 AU3 0.94 5.00E+07 5.33E+07 2.30E+05 2.45E+05 Pre-reapplication BU1 0.97 5.00E+06 5.15E+06 2.60E+04 2.68E+04 07/12/90 BU2 0.95 1.30E+07 1.37E+07 1.30E+05 1.37E+35 BU3 (Day 52) 0.95 0.00E+00 3.00E+05 3.16E+05 ``` 0.96 5.00E+06 5.23E+06 2.80E+04 2.93E+04 CU1 ``` CU2 0.95 0.00E+00 8.00E+05 8.42E+05 CU3 0.94 3.00E+06 3.19E+06 3.00E+05 3.19E+05 DU1 0.98 8.00E+06 8.20E+06 7.00E+04 7.18E+04 DU2 0.92 3.00E+06 3.25E+06 5.00E+06 5.41E+06 DU3 0.92 5.00E+06 5.45E+06 2.20E+05 2.40E+05 EU1 0.97 1.10E+07 1.14E+07 2.20E+05 2.27E+05 0.79 5.00E+06 6.34E+06 2.20E+05 2.79E+05 EU2 EU3 0.93 2.40E+06 2.58E+06 1.70E+05 1.83E+05 FU1 0.97 5.00E+06 5.15E+06 3.00E+05 3.09E+05 0.96 1.10E+06 1.15E+06 1.30E+05 1.35E+05 FU2 FU3 0.97 1.30E+06 1.34E+06 AL1 0.90 8.00E+05 8.92E+05 2.20E+05 2.45E+05 AL2 0.91 0.00E+00 1.70E+06 1.86E+06 AL3 0.91 8.00E+05 8.83E+05 1.30E+06 1.43E+06 BL1 0.91 3.00E+06 3.28E+06 1.30E+06 1.42E+06 BL2 0.93 3.00E+07 3.22E+07 3.00E+05 3.22E+05 BL3 0.91 5.00E+06 5.52E+06 1.70E+04 1.88E+04 CL1 0.94 2.20E+06 2.33E+06 2.20E+06 2.33E+06 CL2 0.95 8.00E+06 8.38E+06 8.00E+04 8.38E+04 CL3 0.93 1.30E+07 1.40E+07 7.00E+05 7.54E+05 DL1 0.92 5.00E+06 5.41E+06 7.00E+05 7.58E+05 DL2 0.94 2.40E+06 2.56E+06 3.00E+05 3.21E+05 DL3 0.95 1.70E+05 1.80E+05 3.40E+03 3.59E+03 EL1 0.95 3.00E+06 3.14E+06 3.00E+05 3.14E+05 EL2 0.95 2.40E+06 2.54E+06 1.30E+06 1.37E+06 EL3 0.93 1.10E+06 1.18E+06 1.10E+06 1.18E+06 FL1 0.86 1.10E+06 1.28E+06 2.40E+06 2.80E+06 FL2 0.94 5.00E+06 5.30E+06 3.40E+05 3.60E+05 FL3 0.94 5.00E+05 5.33E+05 2.80E+05 2.99E+05 KN135 0.94 1.60E+09 1.71E+09 1.30E+06 1.39E+06 AU1 Site #1 AU2 0.91 3.00E+08 3.30E+08 3.30E+06 3.63E+06 Time 7 AU3 0.96 2.40E+08 2.51E+08 2.20E+06 2.30E+06 Day 4 Re-app. BU1 0.92 1.60E+09 1.73E+09 5.00E+06 5.42E+06 07/16/90 BU2 0.93 1.60E+09 1.72E+09 9.00E+05 9.69E+05 (Day 56) BU3 0.90 9.00E+07 1.00E+08 2.20E+06 2.45E+06 CU1 0.95 2.30E+07 2.41E+07 2.80E+05 2.94E+05 CU2 0.93 3.00E+07 3.24E+07 2.20E+05 2.37E+05 CU3 0.96 9.00E+07 9.42E+07 1.30E+06 1.36E+06 ``` ``` 0.94 8.00E+06 8.48E+06 1.30E+05 1.38E+05 DU1 0.95 8.00E+06 8.45E+06 1.70E+05 1.80E+05 DU2 DU3 0.93 3.00E+06 3.22E+06 5.00E+05 5.37E+05 EU1 0.93 1.30E+06 1.40E+06 2.80E+05 3.02E+05 EU2 0.94 1.30E+06 1.39E+06 1.40E+06 1.49E+06 0.94 8.00E+06 8.50E+06 1.10E+05 1.17E+05 EU3 0.95 3.00E+06 3.17E+06 1.30E+05 1.37E+05 FU1 0.95 8.00E+06 8.43E+06 1.70E+05 1.79E+05 FU2 FU3 0.95 3.00E+07 3.16E+07 3.30E+03 3.48E+03 AL1 0.90 9.00E+07 1.00E+08 5.00E+05 5.57E+05 AL2 0.88 5.00E+08 5.69E+08 2.20E+06 2.50E+06 AL3 0.91 1.60E+09 1.76E+09 1.70E+06 1.87E+06 BL1 0.90 2.10E+06 2.33E+06 2.20E+06 2.44E+06 0.86 3.00E+07 3.49E+07 5.00E+06 5.82E+06 BL2 BL3 0.84 2.20E+07 2.63E+07 2.20E+05 2.63E+05 CL1 0.92 6.00E+07 6.52E+07 2.20E+06 2.39E+06 CL2 0.85 2.20E+06 2.58E+06 1.10E+06 1.29E+06 0.76 2.40E+08 3.15E+08 3.00E+06 3.94E+06 CL3 DL1 0.92 2.20E+06 2.39E+06 9.00E+04 9.78E+04 0.92 2.30E+06 2.51E+06 1.40E+05 1.53E+05 DL2 DL3 0.92 4.00E+05 4.37E+05 2.20E+04 2.40E+04 EL1 0.91 3.00E+06 3.29E+06 8.00E+04 8.79E+04 EL2 0.92 2.30E+06 2.50E+06 7.00E+04 7.61E+04 0.00E+00 1.30E+06 1.45E+06 EL3 0.90 FL1 0.84 0.00E+00 1.70E+05 2.04E+05 FL2 0.93 8.00E+05 8.62E+05 2.20E+04 2.37E+04 FL3 0.94 8.00E+06 8.53E+06 5.00E+05 5.33E+05 KN135 AU1 0.96 1.30E+07 1.35E+07 5.00E+05 5.21E+05 Site #1 AU2 0.96 1.30E+07 1.36E+07 3.00E+06 3.14E+06 0.93 2.40E+08 2.58E+08 1.70E+06 1.83E+06 Time 8 AU3 Day 18 Re-app. BU1 0.94 1.30E+07 1.38E+07 1.40E+06 1.49E+06 07/30/90 BU2 2.20E+05 2.34E+05 0.94 (Day 70) BU3 0.96 8.00E+06 8.30E+06 2.40E+06 2.49E+06 CU1 0.96 5.00E+07 5.22E+07 1.10E+06 1.15E+06 CU2 0.93 8.00E+06 8.61E+06 3.00E+06 3.23E+06 CU₃ 0.96 1.10E+07 1.15E+07 8.00E+05 8.37E+05 0.94 0.00E+00 7.00E+05 7.48E+05 DU1 DU2 0.95 1.30E+07 1.36E+07 1.70E+06 1.78E+06 DU3 0.92 1.30E+07 1.42E+07 1.70E+05 1.86E+05 0.89 3.00E+06 3.37E+06 EU1 0.00E+00 ``` ``` EU2 0.91 7.00E+06 7.70E+06 0.00E + 00 EU3 0.95 1.10E+07 1.16E+07 3.00E+05 3.17E+05 FU1 0.95 8.00E+06 8.38E+06 1.70E+04 1.78E+04 FII2 0.92 0.00E+00 0.00E + 00 FU3 0.94 0.00E+00 3.00E+04 3.19E+04 AL1 0.86 1.10E+07 1.28E+07 1.10E+06 1.28E+06 AL2 0.87 2.20E+06 2.52E+06 3.00E+04 3.44E+04 AL3 0.93 0.00E+00 0.90 1.30E+07 1.44E+07 2.20E+05 2.43E+05 BL1 0.89 2.20E+07 2.48E+07 1.10E+06 1.24E+06 BL2 BL3 0.92 1.10E+07 1.20E+07 3.00E+06 3.28E+06 CL1 0.87 2.40E+07 2.77E+07 1.70E+06 1.96E+06 CL2 0.89 1.30E+06 1.46E+06 1.70E+05 1.91E+05 CL3 0.89 0.00E+00 3.00E+06 3.36E+06 0.92 7.00E+04 7.58E+04 1.10E+05 1.19E+05 DL1 DL2 0.93 0.00E+00 3.30E+04 3.55E+04 DL3 0.93 4.00E+04 4.31E+04 2.20E+05 2.37E+05 EL1 0.91 1.30E+06 1.43E+06 0.00E+00 EL2 0.92 1.70E+06 1.84E+06 1.30E+05 1.41E+05 0.91 8.00E+05 8.78E+05 2.80E+04 3.07E+04 EL3 FL1 0.93 9.00E+06 9.67E+06 1.30E+06 1.40E+06 FL2 0.92 0.00E+00 5.00E+04 5.43E+04 FL3 0.92 2.20E+06 2.39E+06 1.70E+05 1.84E+05 KN135 0.94 2.80E+07 2.98E+07 1.10E+07 1.17E+07 AU1 Site #1 AU2 0.92 5.00E+06 5.43E+06 1.70E+06 1.85E+06 Time 9 AU3 0.95 0.00E+00 3.50E+06 3.68E+06 Day 27 Re-app. BU1 0.94 0.00E+00 1.10E+06 1.16E+06 08/07/90 BU₂ 0.90 0.00E+00 1.30E+06 1.45E+06 (Day 78) BU3 0.93 5.00E+07 5.36E+07 1.30E+06 1.39E+06 CU1 0.93 3.00E+07 3.24E+07 1.70E+06 1.83E+06 CU2 0.93 0.00E+00 8.00E+06 8.62E+06 CU3 0.91 0.00E+00 2.80E+06 3.06E+06 DU1 0.96 0.00E+00 1.70E+06 1.78E+06 ```	DU2	0.93	0.00E+00	3.00E+07	3.21E+07		-----	------	----------	----------	----------		DU3	0.90	0.00E+00				EU1	0.94	0.00E+00				EU2	0.92	0.00E+00				EU3	0.95	0.00E+00	8.00E+05	8.45E+05		FU1	0.93	0.00E+00	7.00E+05	7.55E+05		FU2	0.92	0.00E+00	1.30E+07	1.41E+07			FU3	0.90	0.00E+00	8.00E+06	8.86E+06		--	---	--	--	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
--			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.91 5.00E+06 0.93 0.78 0.91 0.92 0.90 2.20E+07 0.94 0.93 0.89	0.00E+00 0.00E+00 0.00E+00 0.00E+00 7 2.45E+07 0.00E+00 0.00E+00	2.20E+06 1.70E+06	2.36E+06 2.19E+06 1.87E+05 0.00E+00 1.90E+06 1.49E+06 3.01E+06			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.91 4.00E+05 0.93 1.70E+06 0.92 0.91 0.91 7.00E+06 0.92 0.92 0.94 0.90 1.30E+06	1.82E+06 0.00E+00 0.00E+00 7.69E+06 0.00E+00 0.00E+00	1.30E+06 1.70E+06	1.39E+06 0.00E+00 1.86E+06 2.42E+05 3.25E+06 7.61E+05		KN135 Site #1 Time 10 Day 57 Re-app. 09/07/90 (Day 109) Processed 9/8/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93		1.70E+05 2.20E+06 3.00E+05 3.30E+05 3.00E+06 2.30E+06	5.38E+05 1.83E+05 2.37E+06 3.23E+05 3.55E+05 3.23E+05 3.23E+06 2.47E+06 1.51E+05			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93		1.70E+06 3.00E+06 1.10E+05 3.00E+05 1.70E+05 5.00E+05 8.00E+05	9.68E+04 1.83E+06 3.23E+06 1.18E+05 3.23E+05 1.83E+05 5.38E+05 8.60E+05 3.23E+06			AL1	0.93		2.80E+05	3.01E+05		AL3 BL1	0.93	3.00E+05 3.00E+05			------------	------	----------------------	----------		BL2	0.93	2.80E+05			BL3	0.93	2.20E+06	_		CL1	0.93	1.70E+06			CL2	0.93	8.00E+04			CL3	0.93	1.70E+06								DL1	0.93	2.20E+04	2.37E+04		DL2	0.93	5.00E+05	_		DL3	0.93	8.00E+05			 EL1	0.93	2.30E+05			EL2	0.93	8.00E+05			EL3	0.93	7.00E+05			FL1	0.93	5.00E+05	5.38E+05		FL2	0.93		3.23E+05		FL3	0.93		1.51E+06	. ## BEACH SEGMENT	KN211 Site #2 Time 0 Day 0 05/26/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.96 0.97 0.97 0.96 0.95 0.95	1.50E+06 9.30E+05 9.30E+05 4.30E+06 2.30E+06 2.30E+05 9.30E+06	1.56E+06 9.55E+05 9.54E+05 4.44E+06 2.40E+06 2.42E+05 9.80E+06	9.30E+03 1.50E+05 9.30E+03 9.30E+03 1.50E+04 7.50E+04 4.30E+03 2.10E+04 3.90E+03	1.56E+05 9.55E+03 9.54E+03 1.55E+04 7.81E+04 4.52E+03 2.21E+04		---	---	--	--	--	--	--			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.93 0.93 0.95 0.96 0.93 0.96 0.94	4.30E+06 4.30E+06 3.90E+06 9.30E+06 2.30E+06 4.30E+06 7.50E+06	4.61E+06 4.63E+06 4.13E+06 9.67E+06 2.48E+06 4.46E+06 8.01E+06	2.30E+05 7.50E+04 1.50E+05 9.30E+03 1.50E+04 4.30E+04 7.50E+04 4.30E+04 4.30E+03	8.05E+04 1.61E+05 9.84E+03 1.56E+04 4.63E+04 7.78E+04 4.59E+04			AL1 AL2 AL3 BL1 BL2	0.93 0.93 0.94	9.30E+06 2.10E+06 2.30E+06	9.98E+06 2.26E+06	2.30E+02 2.30E+04 9.30E+04 4.30E+04 9.30E+04	2.47E+04 1.00E+05 4.60E+04			BL3 CL1 CL2 CL3	0.93 0.95	9.30E+06 2.30E+07 4.30E+05 4.30E+06	2.47E+07 4.54E+05	1.50E+04 9.30E+04	1.61E+04 9.81E+04		---	-------------------------------------	--	--	--	--	--			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.92 0.94 0.94 0.93 0.93	1.50E+07 9.30E+06 2.30E+06 9.30E+06 4.30E+06 4.30E+06 9.30E+06 2.30E+06	1.01E+07 2.45E+06 9.85E+06 4.59E+06 4.64E+06 4.60E+06	1.50E+04 4.30E+04 9.30E+03 2.30E+04 3.90E+02	1.63E+04 4.58E+04 9.85E+03 2.46E+04 4.21E+02 1.60E+06		: :	BEACH SEGMENT	% Dry Wt	. мри	Corr. MPN	Oil MPN	Corr. Oil		KN211 Site #2 Time 1 Day 2 06/01/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	0.97 0.97 0.96 0.96 0.98 0.97	7.50E+05 4.30E+06 4.30E+06 4.30E+06 4.30E+06 3.90E+05 2.30E+06	4.45E+06 4.49E+06 4.46E+06 4.41E+06 4.02E+05	1.20E+05 9.30E+04	1.23E+05 9.63E+04 9.72E+05 1.24E+06 2.15E+05 4.02E+03			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.94 0.91 0.94 0.92 0.94 0.95	9.30E+06 4.30E+06 4.30E+06 2.30E+07 2.30E+07 4.30E+06 2.30E+05 4.30E+06	4.56E+06 4.71E+06 2.46E+07 2.49E+07 4.60E+06 2.43E+05 4.61E+06	2.10E+05 9.30E+06 4.30E+05 1.50E+06	1.27E+06 1.64E+06 4.59E+05 2.28E+05 9.94E+06 4.54E+05 1.61E+06			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.95 0.95 0.94 0.93 0.93 0.92	9.30E+04 4.30E+05 2.30E+06 4.30E+06 4.30E+06 4.30E+06 4.30E+06 4.30E+06	4.54E+05 2.43E+06 4.59E+06 4.62E+06 4.63E+06 1.01E+07 4.64E+06	2.10E+07 9.30E+05 2.10E+06 9.30E+05 1.50E+06	2.22E+07 9.82E+05 2.24E+06 9.99E+05 1.62E+06 0.00E+00 4.64E+06			DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.94 0.93 0.92 0.94 0.94	9.30E+06 9.30E+06 4.30E+06 9.30E+06 4.30E+06 9.60E+06 4.30E+07 4.30E+06	9.87E+06 4.63E+06 1.01E+07 4.58E+06 1.02E+07 4.59E+07	2.10E+04 2.10E+05 9.30E+04	1.01E+05 9.92E+03 1.59E+04 4.59E+04		---	--	--	--	--	--	--		: :	BEACH SEGMENT	% Dry Wt	. MPN	Corr. MPN	Oil MPN	Corr.		KN211 Site #2 Time 2 Day 4 06/03/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	0.97 0.97 0.98 0.98 0.97 0.97	4.30E+06 4.30E+06	4.44E+06 4.45E+06 4.39E+06 9.51E+05 2.38E+07 2.49E+06	1.50E+04 1.20E+05 4.30E+04 1.50E+06 9.30E+05 9.30E+04	4.39E+04 1.53E+04 1.55E+06 1.01E+06 9.62E+04			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2	0.97 0.90 0.95 0.89 0.94 0.96	2.30E+06 1.50E+07 9.30E+06	4.60E+06 3.60E+05 8.37E+06 9.82E+07 4.80E+07 2.44E+06 1.56E+07 9.84E+06 4.56E+06	2.30E+05 1.50E+04 4.30E+05 7.50E+04 4.30E+06 2.30E+07 1.50E+07 1.50E+04 1.50E+06				AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.94 0.93 0.94 0.93 0.95	9.30E+06 7.50E+05 4.30E+06 9.30E+05 9.30E+06 1.50E+07 4.30E+07 7.50E+06 4.30E+06	7.94E+05 4.57E+06 9.95E+05 9.89E+06 1.61E+07 4.54E+07 7.89E+06	3.90E+04 4.30E+06 3.50E+05 9.30E+05 9.30E+06 2.10E+06 9.30E+04	4.13E+04 4.57E+06 3.74E+05 9.89E+05 9.97E+06 2.22E+06 9.78E+04			DL1 DL2		4.30E+06 6.40E+05					DL3	0.93	4.30E+07	4.62E+07	1.20E+07	1.29E+07		-----	------	----------	----------	----------	----------		EL1			2.46E+07				EL2	0.94	4.30E+06	4.57E+06	1.50E+04	1.59E+04		EL3	0.93	9.30E+06	9.97E+06	1.50E+07	1.61E+07		FL1	0.94	9.30E+06	9.94E+06	2.30E+07	2.46E+07		FL2	0.95	4.30E+05	4.51E+05	1.50E+04	1.57E+04		FL3			9.82E+05					BEACH SEGMENT	% Dry Wt.	. MPN	Corr. MPN	Oil MPN	Corr. Oil		---	---	--	--	--	--	--		KN211 Site #2 Time 3 Day 8 06/07/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.97 0.93 0.95	9.30E+05 2.30E+07 9.30E+05 2.10E+06 9.30E+06 1.50E+05	9.52E+05 2.16E+06 1.00E+07 1.57E+05 4.47E+05	2.30E+03 4.30E+05 2.30E+04 4.30E+04 4.30E+06 1.50E+04 1.50E+05	2.37E+03 4.57E+05 2.35E+04 4.43E+04 4.63E+06			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.92 0.93 0.93 0.95 0.95 0.94	4.30E+05 4.30E+05 4.30E+06 2.30E+06 1.50E+06 9.30E+06 9.30E+05	9.96E+04 4.66E+05 4.61E+05 4.60E+05 2.43E+06 1.59E+06 9.84E+06 9.95E+05 7.93E+06	1.50E+05 1.50E+05 4.30E+04 9.30E+05 4.30E+04 4.30E+05																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
1.62E+05 1.61E+05 4.54E+04 9.84E+05 4.55E+04 4.60E+05			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	0.95 0.95 0.94 0.95 0.95 0.94	9.30E+05 4.30E+06 9.30E+05 2.30E+05 2.30E+07 2.30E+05 2.30E+06	9.77E+04 9.80E+05 4.54E+06 9.88E+05 2.43E+05 2.41E+07 2.44E+05 2.47E+06 4.60E+05	4.30E+05 2.10E+05 2.30E+05 1.50E+06 2.30E+05 4.30E+04 4.30E+06	4.53E+05 2.22E+05 2.44E+05 1.58E+06 2.41E+05 4.57E+04 4.63E+06			DL1 DL2	0.94 0.93	4.30E+05 4.30E+05	4.56E+05 4.61E+05	1.50E+04 1.50E+06	1.59E+04 1.61E+06	``` DL3 0.94 4.30E+05 4.55E+05 2.10E+05 2.22E+05 EL1 0.93 9.30E+05 9.99E+05 9.30E+03 9.99E+03 EL2 0.91 4.30E+05 4.72E+05 9.30E+03 1.02E+04 EL3 0.94 9.30E+05 9.92E+05 9.30E+05 9.92E+05 FL1 0.94 2.30E+06 2.45E+06 2.10E+05 2.24E+05 FL2 0.94 1.50E+05 1.60E+05 9.30E+04 9.92E+04 FL3 0.94 2.30E+05 2.44E+05 9.30E+04 9.85E+04 ``` BEACH % Dry Wt. MPN Corr. Oil MPN Corr.		SEGMENT		MPN		Oil		--	---	---	--	--	--		KN211 Site #2 Time 4 Day 16 06/15/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.95 1.20E+06 0.97 2.30E+06 0.96 9.30E+06	9.57E+06 1.27E+06 2.37E+06 9.65E+06 2.36E+07 0.00E+00 2.42E+07	7.50E+05 4.30E+05 4.30E+05 9.30E+06 1.10E+05 4.30E+04 2.30E+06	7.72E+05 4.54E+05 4.43E+05 9.65E+06 1.13E+05 4.56E+04 2.42E+06			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.92 2.10E+06 0.95 4.30E+06 0.94 2.30E+08	9.61E+06 2.27E+06 4.52E+06 2.46E+08 2.41E+07 4.50E+05 9.84E+06	4.30E+05 3.90E+05 2.10E+05 9.30E+04 4.30E+05 7.50E+05 9.30E+05	4.44E+05 4.22E+05 2.21E+05 9.93E+04 4.51E+05 7.85E+05 9.84E+05			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.93 4.30E+06 0.94 7.50E+07	9.85E+05 4.11E+05 4.61E+06 7.94E+07 1.00E+08 4.60E+07 9.88E+06	2.30E+05 1.50E+05 4.30E+06 9.30E+06 4.30E+05 2.30E+06 4.30E+05	2.44E+05 1.58E+05 4.61E+06 9.85E+06 4.62E+05 2.46E+06 4.57E+05			DL1 DL2	0.92 4.30E+05 0.92 4.30E+05	4.67E+05 4.68E+05	2.30E+06 1.50E+06	2.50E+06 1.63E+06		EL2 0. EL3 0.	94 9.30E+06 94 9.30E+05 94 2.30E+06	9.88E+05 2.45E+06	9.30E+05 7.50E+03	9.88E+05 7.98E+03		------------------	---	----------------------	----------------------	----------------------		FL2 0.	95 2.30E+07 94 9.30E+06 95 4.30E+04	9.87E+06	1.50E+05	1.59E+05	## BEACH SEGMENT	KN211 Site #2 Time 5	AU1 AU2 AU3	0.96 1.50E+05 1.56E+05 9.30E+04 9 0.97 2.30E+05 2.38E+05 4.30E+04 4	1.44E+04		----------------------------	-------------------	--	----------			AU3	0.91 2.30E+05 2.52E+05 2.30E+06 2	2.52E+06		Day 31	BU1	0.95 2.30E+05 2.43E+05 2.30E+05 2	2.43E+05		06/30/90	BU2 BU3 CU1 CU2 CU3	0.93 1.50E+06 1.61E+06 9.30E 0.97 9.30E+04 9.56E+04 4.30E 0.96 9.30E+04 9.68E+04 2.30E 0.96 4.30E+05 4.47E+05 2.30E 0.96 2.30E+05 2.39E+05 7.50E	C+04 4.42E+04 C+05 2.39E+05 C+04 2.39E+04		----------	--	--	---			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2	0.94 2.30E+05 2.44E+05 9.30E 0.92 4.30E+06 4.66E+06 2.10E 0.95 2.30E+06 2.41E+06 4.30E 0.93 9.50E+04 1.02E+05 4.30E 0.95 2.30E+07 2.42E+07 9.30E 0.95 4.30E+04 4.51E+04 4.30E 0.94 9.30E+04 9.89E+04 4.30E 0.95 9.30E+04 9.79E+04 9.30E 0.93 2.30E+07 2.46E+07 1.50E	1+06 2.28E+06 1+06 4.50E+06 1+05 4.63E+05 1+05 9.80E+05 1+05 4.51E+05 1+06 4.57E+06 1+05 9.79E+05			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.94 2.30E+05 2.45E+05 4.30E 0.94 7.50E+04 7.99E+04 2.30E 0.93 2.30E+05 2.47E+05 9.30E 0.75 9.30E+04 1.25E+05 4.30E 1.13 7.50E+05 6.64E+05 2.30E 0.94 2.30E+07 2.44E+07 1.20E 0.94 2.10E+05 2.23E+05 1.50E 0.94 9.30E+04 9.90E+04 1.50E 0.93 1.50E+05 1.62E+05 1.50E	#+05 2.45E+05 #+05 9.98E+05 #+05 5.77E+05 #+06 2.04E+06 #+06 1.27E+06 #+06 1.60E+06 #+06 1.60E+06			DL1 DL2	0.94 1.50E+05 1.60E+05 1.50E 0.92 2.30E+05 2.50E+05 2.30E	#+06 1.60E+06 #+05 2.50E+05	``` DL3 0.93 4.30E+04 4.61E+04 1.50E+06 1.61E+06 EL1 0.93 0.00E+00 2.30E+04 2.47E+04 0.95 9.30E+04 9.80E+04 2.30E+05 2.42E+05 EL2 EL3 0.93 2.30E+05 2.47E+05 2.30E+05 2.47E+05 0.93 9.30E+04 9.98E+04 2.10E+04 2.25E+04 FL1 0.93 9.30E+04 1.00E+05 1.50E+07 1.62E+07 FL2 FL3 0.94 9.30E+04 9.87E+04 1.50E+06 1.59E+06 KN211E refertilized 7/12/90 KN211 0.95 8.00E+06 8.43E+06 2.70E+06 2.84E+06 AU1 Site #2 AU2 0.95 3.00E+07 3.14E+07 2.70E+06 2.83E+06 Time 6 AU3 0.97 0.00E+00 1.30E+05 1.33E+05 Day 4 Re-app. BU1 0.96 2.20E+06 2.29E+06 3.00E+05 3.12E+05 07/16/90 BU₂ 0.98 1.30E+05 1.33E+05 1.40E+04 1.43E+04 0.97 1.30E+06 1.34E+06 3.00E+05 3.08E+05 (Day 45) BU₃ CU1 0.94 1.70E+06 1.80E+06 2.70E+04 2.87E+04 CU2 0.94 0.00E+00 1.10E+06 1.17E+06 CU3 0.95 5.00E+06 5.27E+06 7.00E+04 7.38E+04 DU1 0.93 2.30E+06 2.47E+06 3.00E+04 3.22E+04 DU2 0.94 0.00E+00 5.00E+05 5.32E+05 0.95 2.40E+08 2.54E+08 8.00E+05 8.45E+05 DU3 EU1 0.95 0.00E+00 3.00E+06 3.16E+06 EU2 0.95 0.00E+00 1.70E+04 1.80E+04 EU3 0.95 2.30E+06 2.43E+06 5.00E+05 5.29E+05 FU1 0.95 0.00E+00 5.00E+06 5.26E+06 FU2 0.96 0.00E+00 5.00E+05 5.20E+05 FU3 0.94 3.00E+07 3.20E+07 1.30E+06 1.39E+06 AL1 0.95 8.00E+05 8.46E+05 1.70E+05 1.80E+05 AL2 0.94 2.10E+06 2.24E+06 1.40E+06 1.49E+06 AL3 0.93 3.00E+05 3.23E+05 1.30E+04 1.40E+04 BL1 0.90 5.00E+06 5.53E+06 3.00E+05 3.32E+05 BL2 0.93 3.00E+06 3.23E+06 5.00E+06 5.38E+06 BL3 0.92 5.00E+06 5.46E+06 8.00E+05 8.73E+05 CL1 0.93 0.00E+00 1.10E+06 1.18E+06 CL2 0.94 8.00E+06 8.54E+06 5.00E+04 5.34E+04 CL3 0.92 1.10E+06 1.20E+06 1.10E+05 1.20E+05 DL1 0.91 0.00E+00 3.30E+04 3.62E+04 DL2 0.91 2.20E+06 2.41E+06 1.70E+05 1.86E+05 DL3 0.93 0.00E+00 7.00E+05 7.54E+05 EL1 0.92 0.00E+00 3.00E+06 3.26E+06 EL2 0.93 1.70E+06 1.83E+06 1.70E+05 1.83E+05 EL3 0.94 0.00E+00 2.40E+06 2.56E+06 FL1 0.94 0.00E+00 8.00E+05 8.53E+05 ```		FL2 FL3	0.96 0.95	7.00E+06	7.32E+06 0.00E+00	2.70E+04 2.40E+05			--	--	--	--	--	--	--		KN211 Site #2 Time 7 Day 19 Re-app. 07/31/90 (Day 60)	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2	0.91 0.97 0.93 0.95 0.91 0.96 0.91	2.40E+06 3.00E+05 5.00E+05 2.40E+06 5.00E+05	3.09E+05 5.38E+05 2.53E+06 5.49E+05 0.00E+00	1.10E+06 3.00E+04 8.00E+04 5.00E+06	1.21E+06 3.09E+04 8.61E+04 5.28E+06 5.49E+04 1.77E+05 1.21E+04			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.97 0.96 0.94 0.95 0.97 0.94	5.00E+06 8.00E+06 1.30E+07 1.10E+06 8.00E+05 1.10E+06 3.00E+05 2.40E+07	3.64E+06 5.13E+06 8.36E+06 1.38E+07 1.15E+06 8.44E+05 1.13E+06 3.19E+05 2.47E+07	3.00E+04 5.00E+05 1.30E+06 3.00E+05 1.70E+05 5.00E+04 2.10E+04 2.20E+05	1.50E+05 3.08E+04 5.23E+05 1.38E+06 3.15E+05 1.79E+05 5.14E+04 2.24E+04 2.26E+05			AL1 AL2 AL3 BL1	0.95 0.95 0.91 0.98	8.00E+05 1.10E+06	3.15E+06 8.38E+05 1.21E+06 3.05E+06	7.00E+05	8.40E+05 7.33E+05 9.92E+03 1.12E+06	``` BL2 0.91 1.30E+06 1.43E+06 3.00E+05 3.30E+05 BL3 0.95 8.00E+06 8.40E+06 2.20E+06 2.31E+06 CL1 0.95 5.00E+06 5.26E+06 1.70E+06 1.79E+06 CL2 0.96 9.00E+06 9.39E+06 2.20E+05 2.30E+05 CL3 0.94 1.30E+06 1.39E+06 3.00E+06 3.20E+06 DL1 0.93 1.30E+06 1.40E+06 3.00E+04 3.23E+04 DL2 0.94 1.30E+07 1.38E+07 1.40E+05 1.48E+05 DL3 0.94 5.00E+06 5.33E+06 7.00E+05 7.47E+05 EL1 0.94 2.40E+06 2.56E+06 0.00E+00 0.96 1.70E+06 1.78E+06 8.00E+05 8.37E+05 EL2 EL3 0.94 3.00E+06 3.20E+06 1.10E+06 1.17E+06 FL1 0.93 3.00E+06 3.22E+06 2.20E+04 2.36E+04 FL2 0.94 5.00E+05 5.34E+05 1.70E+05 1.82E+05 FL3 0.95 8.00E+06 8.44E+06 8.00E+05 8.44E+05 ```	KN211 Site #2 Time 8 Day 55 Re-app. 09/05/90 (Day 96) Processed 9/7/90	AU1 AU2 AU3 BU1 BU2 BU3 CU1 CU2 CU3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	4.00E+05 4.26E+05 1.40E+04 1.49E+04 3.50E+05 3.72E+05 1.40E+05 1.49E+05 1.30E+06 1.38E+06 3.00E+06 3.19E+06 3.50E+05 3.72E+05 1.70E+05 1.81E+05 2.30E+06 2.45E+06		--	---	--																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
---			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	5.00E+05 5.32E+05 0.00E+00 8.00E+05 8.51E+05 1.10E+05 1.17E+05 2.20E+05 2.34E+05 5.00E+05 5.32E+05 1.40E+05 1.49E+05 5.00E+05 5.32E+05 7.00E+04 7.45E+04			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2	0.94 0.94 0.94 0.94 0.94 0.94 0.94	1.30E+05 1.38E+05 9.00E+03 9.57E+03 5.00E+05 5.32E+05 3.50E+05 3.72E+05 5.00E+05 5.32E+05 2.30E+05 2.45E+05 1.30E+06 1.38E+06 8.00E+05 8.51E+05 1.30E+06 1.38E+06			DL1 DL2 DL3 EL1	0.94 0.94 0.94 0.94	9.00E+05 9.57E+05 5.00E+05 5.32E+05 2.30E+05 2.45E+05 7.00E+05 7.45E+05			EL2 EL3 FL1 FL2 FL3	0.94 0.94 0.94 0.94	3.00E+05 3.19E+05 8.00E+04 8.51E+04 1.40E+06 1.49E+06 1.10E+06 1.17E+06 3.00E+05 3.19E+05		KN211 Site #2 Time 9 Day 61 Re-app. 09/11/90	AU1 AU2 AU3 BU1 BU2	0.94 0.94 0.94 0.94	5.00E+05 5.32E+05 3.00E+03 3.19E+03 1.70E+05 1.81E+05 1.30E+04 1.38E+04 1.70E+06 1.81E+06		(Day 102) Processed 10/23/9	BU3 CU1 CU2 CU3	0.94 0.94 0.94 0.94	3.00E+05 3.19E+05 1.40E+05 1.49E+05 1.70E+06 1.81E+06 5.00E+04 5.32E+04		--	---	--	---			DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	2.20E+05 2.34E+05 2.20E+03 2.34E+03 1.70E+04 1.81E+04 5.00E+04 5.32E+04 9.00E+04 9.57E+04 3.50E+05 3.72E+05 2.80E+04 2.98E+04 8.00E+04 8.51E+04 1.70E+05 1.81E+05			AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	1.70E+04 1.81E+04 1.70E+04 1.81E+04 1.70E+05 1.81E+05 3.00E+06 3.19E+06 5.00E+04 5.32E+04 3.50E+04 3.72E+04 9.00E+04 9.57E+04 3.00E+02 3.19E+02 3.00E+04 3.19E+04			DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	5.00E+04 5.32E+04 1.70E+04 1.81E+04 7.00E+03 7.45E+03 3.00E+03 3.19E+03 5.00E+03 5.32E+03 1.70E+04 1.81E+04 8.00E+02 8.51E+02 9.00E+03 9.57E+03 3.00E+04 3.19E+04		KN211 Site #2 Time 10	AU1 AU2 AU3	0.94 0.94 0.94	7.00E+04 7.45E+04 7.00E+03 7.45E+03 1.10E+05 1.17E+05		Day 71 Re-app. 09/21/90 (Day 112) Processed 10/25/9	BU1 BU2 BU3 CU1 CU2 CU3	0.94 0.94 0.94 0.94 0.94	3.00E+04 3.19E+04 2.20E+04 2.34E+04 3.00E+04 3.19E+04 0.00E+00 5.00E+03 5.32E+03 8.00E+04 8.51E+04		DU1 DU2 DU3 EU1 EU2 EU3 FU1 FU2 FU3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	7.00E+04 7.45E+04 2.20E+05 2.34E+05 1.70E+04 1.81E+04 3.00E+05 3.19E+05 2.80E+05 2.98E+05 1.30E+05 1.38E+05 7.00E+03 7.45E+03 1.10E+05 1.17E+05 1.70E+04 1.81E+04		---	--	--		AL1 AL2 AL3 BL1 BL2 BL3 CL1 CL2 CL3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	8.00E+04 8.51E+04 3.50E+04 3.72E+04 0.00E+00 1.40E+05 1.49E+05 8.00E+04 8.51E+04 5.00E+05 5.32E+05 ERR 9.00E+04 9.57E+04 1.40E+04 1.49E+04		DL1 DL2 DL3 EL1 EL2 EL3 FL1 FL2 FL3	0.94 0.94 0.94 0.94 0.94 0.94 0.94	3.00E+04 3.19E+04 7.00E+04 7.45E+04 1.70E+04 1.81E+04 7.00E+03 7.45E+03 1.10E+05 1.17E+05 1.70E+03 1.81E+03 7.00E+03 7.45E+03 0.00E+00 9.00E+02 9.57E+02	## BEACH SEGMENT	KN132 Site #3 Time 0 Day 0 05/31/90	AU1 AU2 AU3 BU1 BU2	0.91 2.30E+07 0.94 2.30E+07 0.84 2.30E+07 0.96 4.30E+06 0.97 9.30E+05	2.44E+07 2.72E+07 4.46E+06 9.63E+05	2.10E+05 2.10E+05 1.50E+04 7.50E+05	2.22E+05 2.49E+05 1.56E+04 7.77E+05		---	---------------------------------	---	--	--	--		00,02,70	BU3 CU1	0.96 4.30E+05 0.93 4.30E+06	4.46E+05	2.10E+06	2.18E+06	``` CU3 0.95 2.30E+06 2.43E+06 3.90E+06 4.12E+06 0.97 4.30E+06 4.45E+06 2.10E+05 2.17E+05 DU1 0.96 2.30E+06 2.40E+06 7.50E+04 7.84E+04 DU2 0.95 9.30E+06 9.84E+06 4.30E+05 4.55E+05 DU3 EU1 0.93 7.50E+05 8.11E+05 7.50E+04 8.11E+04 0.94 9.30E+06 9.92E+06 7.50E+05 8.00E+05 EU2 0.95 4.30E+06 4.51E+06 2.10E+06 2.20E+06 EU3 FU1 0.91 7.50E+05 8.21E+05 2.30E+04 2.52E+04 FU2 0.93 9.30E+05 1.00E+06 0.00E+00 0.87 4.30E+05 4.96E+05 2.10E+05 2.42E+05 FU3 :: BEACH % Dry Wt. MPN Corr. Oil MPN Corr. SEGMENT MPN Oil 0.97 2.30E+07 2.38E+07 7.50E+05 7.77E+05 KN132 AU1 AU2 0.97 4.30E+06 4.45E+06 1.50E+06 1.55E+06 Site #3 0.97 9.30E+06 9.61E+06 4.30E+05 4.44E+05 Time 1 AU3 Day 2 BU1 0.96 2.30E+07 2.40E+07 1.50E+06 1.56E+06 BU₂ 06/04/90 0.97 4.30E+06 4.42E+06 2.00E+03 2.06E+03 BU3 0.96 9.30E+06 9.64E+06 2.10E+06 2.18E+06 0.95 1.50E+10 1.58E+10 4.30E+04 4.52E+04 CU1 CU2 0.95 1.50E+06 1.58E+06 9.30E+06 9.78E+06 CU3 0.97 2.30E+07 2.38E+07 1.50E+06 1.55E+06 DU1 0.96 9.30E+06 9.69E+06 2.30E+05 2.40E+05 DU2 0.97 3.90E+06 4.03E+06 7.50E+04 7.75E+04 0.96 9.30E+06 9.67E+06 2.30E+05 2.39E+05 DU3 EU1 0.97 2.30E+06 2.38E+06 2.10E+05 2.17E+05 EU2 0.96 4.30E+06 4.47E+06 1.50E+05 1.56E+05 0.95 9.30E+06 9.76E+06 1.50E+05 1.57E+05 EU3 FU1 0.97 9.30E+05 9.61E+05 2.30E+05 2.38E+05 0.95 4.30E+09 4.53E+09 9.30E+04 9.80E+04 FU2 FU3 0.96 4.30E+06 4.47E+06 9.30E+05 9.67E+05 :: BEACH % Dry Wt. MPN Corr. Oil MPN Corr. SEGMENT MPN Oil KN132 AU1 0.96 1.50E+07 1.57E+07 2.80E+05 2.93E+05 0.94 2.30E+07 2.44E+07 1.10E+05 1.17E+05 Site #3 AU2 0.96 9.30E+06 9.68E+06 2.10E+06 2.19E+06 Time 2 AU3 ``` Day 4 06/06/90 BU1 BU2 BU3 CU1 CU2 CU3 0.97 4.30E+07 4.44E+07 9.30E+02 9.61E+02 0.96 4.30E+07 4.46E+07 7.50E+05 7.77E+05 0.97 1.50E+07 1.55E+07 2.10E+06 2.17E+06 0.97 1.20E+07 1.24E+07 7.50E+05 7.76E+05 0.96 4.30E+07 4.50E+07 4.30E+07 4.50E+07 0.94 2.30E+07 2.45E+07 9.30E+06 9.91E+06 ``` DU2 0.96 9.30E+08 9.70E+08 9.30E+04 9.70E+04 DU3 0.95 2.30E+07 2.42E+07 1.20E+05 1.26E+05 EU1 1.00 4.30E+05 4.30E+05 3.50E+05 3.50E+05 EU2 0.94 4.30E+06 4.58E+06 1.50E+05 1.60E+05 EU3 0.95 2.30E+07 2.41E+07 1.20E+06 1.26E+06 0.94 9.30E+06 9.91E+06 FU1 1.50E+05 1.60E+05 FU2 0.95 4.30E+07 4.52E+07 9.30E+04 9.77E+04 FU3 0.94 9.30E+05 9.91E+05 9.30E+04 9.91E+04 :: BEACH % Dry Wt. MPN Corr. Oil MPN Corr. SEGMENT MPN Oil KN132 0.93 4.30E+07 4.63E+07 1.50E+07 AU1 1.62E+07 Site #3 AU2 0.96 2.30E+07 2.40E+07 1.50E+06 1.57E+06 Time 3 AU3 0.93 4.30E+07 4.63E+07 3.77E+06 3.50E+06 Day 8 BU1 0.95 4.30E+07 4.51E+07 2.10E+06 2.20E+06 06/10/90 BU₂ 0.94 4.30E+07 4.59E+07 1.50E+06 1.60E+06 BU3 0.97 1.20E+08 1.23E+08 2.00E+05 2.05E+05 CU1 0.95 2.30E+07 2.41E+07 7.50E+05 7.86E+05 CU2 0.94 4.30E+07 4.57E+07 1.50E+07 1.60E+07 CU3 0.96 7.50E+07 7.81E+07 4.30E+05 4.48E+05 0.95 2.30E+07 2.42E+07 2.00E+04 2.10E+04 DU1 DU2 0.95 2.30E+07 2.41E+07 1.50E+05 1.57E+05 DU3 0.94 4.30E+06 4.56E+06 3.50E+05 3.71E+05 EU1 0.93 4.30E+06 4.60E+06 2.10E+06 2.25E+06 EU2 0.94 0.00E+00 2.10E+07 2.24E+07 EU3 0.96 4.30E+05 4.50E+05 7.50E+05 7.85E+05 FU1 0.84 1.20E+06 1.43E+06 9.40E+04 1.12E+05 FU2 0.94 4.30E+06 4.56E+06 7.50E+05 7.96E+05 FU3 0.95 2.30E+06 2.43E+06 4.30E+04 4.54E+04 :: BEACH % Dry Wt. MPN Corr. Oil MPN Corr. SEGMENT MPN Oil KN132 AU1 0.92 4.30E+06 4.69E+06 4.30E+05 4.69E+05 Site #3 AU2 0.91 4.30E+06 4.73E+06 9.30E+06 1.02E+07 Time 4 AU3 0.96 3.90E+07 4.08E+07 4.30E+04 4.50E+04 Day 16 BU1 0.96 2.30E+06 2.39E+06 4.30E+05 07/01/90 BU₂ 0.96 9.30E+07 9.73E+07 9.30E+05 9.73E+05 BU3 0.96 2.30E+07 2.40E+07 1.50E+06 CU1 0.94 9.30E+05 9.92E+05 9.30E+06 9.92E+06 CU₂ 0.93 2.30E+06 2.48E+06 3.50E+05 3.77E+05 0.94 9.30E+06 9.93E+06 9.30E+05 9.93E+05 CU3 ``` DU1 0.96 2.30E+06 2.39E+06 9.30E+06 9.67E+06 ``` EU3 0.95 2.30E+05 2.42E+05 2.10E+05 2.21E+05 FU1 0.80 2.30E+05 2.88E+05 2.10E+04 2.63E+04 FU₂ 0.85 1.50E+05 1.75E+05 4.30E+02 5.03E+02 FU3 0.84 9.30E+05 1.11E+06 4.30E+03 5.13E+03 :: BEACH SEGMENT KN132 AU1 0.93 2.30E+06 2.46E+06 4.30E+06 4.60E+06 Site #3 AU2 0.92 1.50E+06 1.62E+06 7.50E+04 8.12E+04 Time 5 AU3 0.93 4.30E+06 4.61E+06 4.30E+05 4.61E+05 Day 29 BU1 0.96 2.30E+06 2.39E+06 4.30E+06 4.47E+06 07/01/90 BU₂ 0.96 9.30E+06 9.73E+06 BU3 0.97 2.30E+06 2.38E+06 9.30E+03 9.61E+03 CU1 0.95 9.30E+06 9.78E+06 9.30E+04 9.78E+04 CU₂ 0.94 3.90E+07 4.16E+07 4.30E+06 4.58E+06 CU3 0.94 2.30E+07 2.44E+07 9.30E+04 9.88E+04 DU1 0.95 2.30E+06 2.41E+06 2.30E+04 2.41E+04 DU₂ 0.96 2.30E+06 2.39E+06 9.30E+05 9.67E+05 DU3 0.97 \ 7.50E+06 \ 7.75E+06 \ 3.90E+04 \ 4.03E+04 EU1 0.95 7.50E+06 7.89E+06 0.00E+00 EU2 0.94 4.30E+06 4.55E+06 1.50E+05 1.59E+05 EU3 0.95 2.30E+07 2.43E+07 7.50E+04 7.93E+04 FU1 0.97 4.30E+06 4.41E+06 9.30E+05 9.55E+05 0.97 2.30E+07 2.37E+07 1.20E+06 FU2 1.24E+06 0.94 4.30E+07 4.59E+07 1.50E+05 1.60E+05 FU3 KN132B refertilized 7/11/90 KN132 AU1 0.97 2.40E+07 2.49E+07 7.00E+05 7.25E+05 Site #3 AU2 0.93 0.00E+00 8.00E+05 8.60E+05 Time 6 AU3 0.95 1.70E+08 1.78E+08 2.30E+06 2.41E+06 Day 4 Re-app. BU1 0.94 2.40E+07 2.56E+07 2.30E+05 2.46E+05 07/15/90 BU₂ 0.93 0.00E+00 2.60E+05 2.79E+05 (Day 43) BU3 0.97 3.00E+07 3.10E+07 1.30E+06 1.35E+06 CU1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
0.94 0.00E+00 2.80E+06 2.99E+06 CU₂ 0.96 0.00E+00 1.70E+06 1.77E+06 CU3 0.94 2.60E+07 2.77E+07 8.00E+06 8.51E+06 ``` 0.95 3.90E+05 4.12E+05 2.10E+05 2.22E+05 0.96 9.30E+06 9.72E+06 1.50E+05 1.57E+05 1.57E+05 1.62E+06 4.64E+05 0.95 9.30E+05 9.76E+05 1.50E+05 0.92 4.30E+05 4.65E+05 1.50E+06 0.93 7.50E+04 8.10E+04 4.30E+05 DU1 DU2 DU3 EU1 EU2 ``` 0.93 2.40E+07 2.58E+07 3.00E+03 3.22E+03 0.95 3.00E+06 3.16E+06 3.50E+03 3.69E+03 EU1 0.94 5.00E+06 5.30E+06 2.10E+03 2.23E+03 EU2 EU3 0.93 8.00E+06 8.61E+06 1.30E+04 1.40E+04 FU1 0.92 7.00E+06 7.57E+06 9.00E+03 9.74E+03 FU2 0.84 3.00E+05 3.56E+05 5.00E+03 5.94E+03 FU3 0.86 5.00E+06 5.82E+06 3.30E+03 3.84E+03 KN132 0.96 1.70E+07 1.78E+07 5.00E+06 5.23E+06 AU1 Site #3 AU2 0.96 1.70E+07 1.77E+07 7.00E+05 7.27E+05 Time 7 AU3 0.91 1.70E+07 1.86E+07 5.00E+06 5.48E+06 0.96 7.00E+06 7.26E+06 3.00E+06 3.11E+06 Day 21 Re-app. BU1 08/01/90 BU₂ 0.96 8.00E+06 8.34E+06 5.00E+05 5.22E+05 (Day 60) BU3 0.96 1.40E+06 1.46E+06 6.00E+05 6.25E+05 0.94 1.30E+07 1.38E+07 3.00E+06 3.18E+06 0.94 5.00E+07 5.30E+07 2.60E+05 2.76E+05 CU1 CU₂ 0.95 9.00E+07 9.46E+07 8.00E+05 8.41E+05 CU3 DU1 0.96 2.40E+06 2.51E+06 5.00E+03 5.22E+03 DU2 0.94 2.40E+06 2.54E+06 0.00E+00 DU3 0.96 3.00E+07 3.14E+07 0.00E+00 EU1 0.96 3.00E+06 3.14E+06 1.70E+04 1.78E+04 0.94 3.00E+06 3.19E+06 1.70E+04 1.81E+04 EU2 EU3 0.96 5.00E+06 5.20E+06 2.70E+04 2.81E+04 FU1 0.94 3.00E+05 3.19E+05 1.40E+04 1.49E+04 0.95 2.40E+06 2.54E+06 5.00E+03 5.29E+03 FU2 0.94 2.80E+06 2.97E+06 1.10E+05 1.17E+05 FU3 KN132 AU1 0.94 5.00E+05 5.32E+05 Site #3 AU2 0.94 3.00E+05 3.19E+05 Time 8 AU3 0.94 1.70E+05 1.81E+05 Day 56 Re-app. BU1 0.94 2.30E+06 2.45E+06 09/05/90 BU₂ 0.94 1.30E+06 1.38E+06 (Day 95) BU3 0.94 8.00E+06 8.51E+06 Processed 9/7/90 CU1 0.94 1.70E+06 1.81E+06 CU2 0.94 1.10E+06 1.17E+06 CU3 0.94 5.00E+05 5.32E+05 DU1 0.94 2.20E+05 2.34E+05 DU2 0.94 7.00E+05 7.45E+05 DU3 0.94 5.00E+05 5.32E+05 ``` 0.96 5.00E+06 5.23E+06 7.00E+03 7.33E+03 0.96 2.40E+07 2.50E+07 3.00E+04 3.12E+04 DU1 DU2 DU3	EU1	0.94	5.00E+05 5.32E+05		-----	------	-------------------		EU2	0.94	8.00E+05 8.51E+05		EU3	0.94	0.00E+00		FU1	0.94	2.80E+05 2.98E+05		FU2	0.94	2.20E+05 2.34E+05		FU3	0.94	7.00E+05 7.45E+05	G ## APPENDIX D3. Data Tables from Oil Analyses	Section 1.	The need for filtration in estimating Total Extractable Hydrocarbon in sediments		------------	--		Section 2.	Total Extractable Hydrocarbon in Sediment Samples		Section 3.	Distribution of Total Extractable Hydrocarbon in Sediments		Section 4.	Gas Chromatography Analyses		Section 5.	Hopane Analyses	# APPENDIX D3, SECTION 1 The Need for Filtration in Estimating Total Extractable Hydrocarbon in Sediments One of the parameters being measured in the joint ADEC/USEPA/Exxon Bioremediation Monitoring Program is the amount of Total Extractable Hydrocarbon in the sediments on the three monitoring beaches. This parameter was analyzed by Battelle Ocean Sciences using the Exxon Valdez Oil Spill Assessment Standard Operating Procedure EVC89-4 (Appendix SOP, Section 5), but subsequent chemical analyses revealed that this method often gave a substantial overestimate of the amount of Total Extractable Hydrocarbon in the samples. We have therefore modified the procedure to include filtration through a glass fiber filter with 99.98% efficiency at 0.3 um at step 5.1.6, which previously involved only filtration with glass wool and sodium sulfate. Table I and Figure 1 show the gravimetric analyses of samples from KN-132B, while Figure 2 shows the ratio of unfiltered: filtered sample weight as a function of the filtered weight. For these samples, which are the combination of the three individual sediment samples taken around each well, the lack of the additional filtration leads to an overestimate of the amount of total extractable hydrocarbon by from 20 to 320%. Table II and Figures 3 and 4 show the same analyses of the individual samples that were used to make the composite samples of Table I. One sample is now overestimated almost 8-fold by neglecting the filtration step. Tables III and IV and Figures 5-8 repeat the analyses for the samples from KN-211E. In these data, the lack of filtration of the composite sample leads to an overestimate of more than 100% in some samples, and even higher overestimates in the individual samples. #### Conclusions: - Filtration with a 0.3um filter removes substantial amounts of silt from many organic solvent extracts of oiled sediments. - Neglecting the filtration step can result in substantial overestimates of the oil loading, especially in lightly and moderately oiled samples (<10g/Kg) ## APPENDIX D3, SECTION 1, TABLE 1 Effect of Filtration on the combined samples from KN-132B Day 0 All units in mg/Kg dry weight of sediment KN-132. PRECOLUMN TOTAL EXTRACTABLE HYDROCARBON, DAY O. ALL UNITS IN MG/KG DRY WEIGHT SEDIMENT.	COL 1	COL S	COL 3		---------------	---------------	-------------		ORIGINAL EXT.	ORIGINAL EXT.	REEXT.		UNFILTERED *	FILTERED	FILTERED **		HG/KG DRY	MG/KG DRY	MG/KG DRY	#### STATION	A-S	8783.01	4998.83	3663.11		------	----------	----------	----------		8-5	6083.94	2920.29	2611.60		C-S	5790.50	3464.00	1409.96		D-\$	22644.39	15732.86	15373.86		E-S	8322.63	2614.68	3690.86		F-S	1850.62	1175.1	1597.52	^{*} Sum of individual gravimetric weights. ^{**} Actual weight of combined extracts. APPENDIX D3, SECTION 1, Figure 1 Effect of Filtration on the combined samples from KN-132B, Day 0 ## APPENDIX D3, SECTION 1, TABLE 2 Effect of Filtration on the individual samples from KN-132B Day 0 All units in mg/Kg dry weight of sediment ### KM-132. PRECOLUMN TOTAL EXTRACTABLE HYDROCARBON, DAY O. ALL UNITS IN MG/KG DRY WEIGHT SEDIMENT.	COL 1	COL 2	COL 3		---------------	---------------	-------------		ORIGINAL EXT.	ORIGINAL EXT.	REEXT.		UNFILTERED *	FILTERED	FILTERED **		MG/KG DRY	MG/KG DRY	MG/KG DRY	#### STATION	AS	14380.25	8761.77		----	----------	----------		AS	11317.87	3382.55		AS	719.79	399.02		BS	6910.5	3746.99		BS	3710.67	1917.15		BS	7647.26	2322.4		CS	2182.61	1491.88		CS	13142.71	1685.1		CS	1875.22	1345.07		DS	19476.14	16554.23		DS	23913.79	15962.1		DS	24547.98	14066.36		ES	12082.45	2741.65		ES	5246.58	3837.68		ES	7547.17	4746.95		FS	1213.2	1279.69		FS	2651.33	2072.69		FS	1663.31	1435.56					^{*} Sum of individual gravimetric weights. ^{**} Actual weight of combined extracts. APPENDIX D3, SECTION 1, Figure 3 Effect of Filtration on the individual samples from KN-132B Day 0 APPENDIX D3, SECTION 1, Figure 4 Effect of Filtration on the individual samples from KN-132B Day 0 ## APPENDIX D3, SECTION 1, TABLE 3 Effect of Filtration on the combined samples from KN-211E Day 0 All units in mg/Kg dry weight of sediment KM-211. PRECOLUMN TOTAL EXTRACTABLE HYDROCARBON, DAY O. ALL UNITS IN MG/KG DRY WEIGHT SEDIMENT.	COL 1	COL 2	COL 3		---------------	---------------	-----------		ORIGINAL EXT.	ORIGINAL EXT.	REEXT.		UNFILTERED .	FILTERED	FILTERED		MG/KG DRY	MG/KG DRY	MG/KG DRY					#### STATION	AS	377.65	117.82 188.98		-----	----------	-------------------		ASS	6020.69	4138.06 4401.52		28	356.44	137.59 192.26		828	23369.44	18554.69 20189.08		CS	316.82	198.73 309.18		CSS	16920.46	14226.31 12578.62		DS	8714.23	2326.96 5164.87		DSS	11462.5	8826.71 9002.82		ES	3542.47	4569.42 1610.7		ESS	21650.13	16844.37 20359.17		FS	6965.91	5412.29 4467.82		FSS	17690.68	14548.02 16628.84	^{*} Sum of individual gravimetric weights. ^{**} Actual weight of combined extracts. APPENDIX D3, SECTION 1, Figure 5 Effect of Filtration on the combined samples from KN-211E Day 0 ORIG EXT, UNFILT ORIG EXT, FILTERED REEXT, FILTERED APPENDIX D3, SECTION 1, Figure 6 Effect of Filtration on the combined samples from KN-211E Day 0 ## APPENDIX D3, SECTION 1, TABLE 4 Effect of Filtration on the individual samples from KN-211E Day 0 All units in mg/Kg dry weight of sediment KM-211. PRECOLUMN TOTAL EXTRACTABLE HYDROCARSONS, DAY O. ALL VALUES IN MG/KG DRY WEIGHT SEDIMENT.		ORIG EXT. UNFILTERED * MG/KG DRY	REEXT. FILTERED ** MG/KG DRY		--------	--	------------------------------------		STATIO	W			AS	287.99	155.83		AS	631.22	297.3		AS	200.57	114.13		ASS	242.34	140.5		ASS	20371.36	10753.06		ASS	1633.87	1204.19		85	139.76	115.49		85	451.06	168.75		85	418.4	316.87		855	23594.79	19232.83		228	23844.94	21261.68		888	22650.95	19860.81		CS	486.11	412.66		CS	366.1	380.36		C\$	102.8	148.4		CSS	25008.65	17613.64		CSS	6156.13	4436.33		CSS	19603.09	19442.96		DS	11169.08	5048.68		D\$	3156.38	2135.92		DS	11765.23	9893.33		DSS	11152.51	8303.71		DSS	18264.06	16878.64		D\$\$	5072.46	4101.49		ES	7315.57	4726.89		ES	1591.47	858.43		ES	1744.64	249.13		ES8	22621.2	20000		ESS	18277.23	17474.99		ESS	23987.32	21554.96		FS	3182.14	2528.29		FS	16589.86	12953.37		FS	1137.98	871.1		FSS	14668.55	11203.75		FSS	16992.26	17463.62		FSS	21434.91	21538.46					Sum of individual gravimetric weights. Actual weight of combined extracts. APPENDIX D3, SECTION 1, Figure 7 Effect of Filtration on the individual samples from KN-211E Day 0 APPENDIX D3, SECTION 1, Figure 8 Effect of Filtration on the individual samples from KN-211E Day 0 #### APPENDIX D3, SECTION 2 Total Extractable Hydrocarbon in Sediment Samples	Sample Field ID	Battelle ID																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
Station/ Depth	Total Oil	Sample Dry Weight (kg)	Total Oil/ Station (mg/kg)	Avg Oil/ Station (mg/kg)	Sum Oil/ Station (mg/kg)		---------------------	----------------	-------------------	-----------	---------------------------	-------------------------------	--------------------------------	--------------------------------		71PPT000131	1579	A-S	242.00	0.02762	8761.77	4181.11	4124.96		71PPT000132	1880	A-S	98.50	0.02912	3382.55				71PPT000133	1881	A-S	11.40	0.02857	399.02				71PPT000134	1882	B-S	109.00	0.02909	3746.99	2662.18	2660.42		71PPT000135	1884	8-8	56.00	0.02921	1917.15				71PPT000136	1\$85	8-\$	68.00	0.02928	2322.40				71PPT000137	1886	C-S	40.40	0.02708	1491.88	1507.35	1485.16		71PPT0001 38	1\$87	C-S	32.00	0.01899	1685.10				71PPT000139	1888	C-S	38.20	0.02840	1345.07				71PPT000140	1889	D-S	319.00	0.01927	16554.23	15540.90	15 5 45.85		71PPT000141	I \$ 90	D-S	303.50	0.01899	15982.10				71PPT000142	IS91	D-S	267.50	0.01899	14086.36				71PPT000143	1592	E-S	78.00	0.02845	2741.65	3775.43	3776.83		71PPT000144	1593	E-S	104.50	0.02723	3837.68				71PPT000145	1594	E-S	136.00	0.02865	4746.95				71PPT000146	1595	F-S	36.40	0.02844	1279.89	1596.05	16 0 0.00		71PPT000147	1596	F-S	57.60	0.02779	2072.69				71PPT000148	1597	F-S	35.20	0.02452	1435.56				Sample Field ID	Battelie ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	----------------	-------------------	-----------	---	--------------------------------		71PPT000-							131,132,133	IS79,80,81	A-S	312.50	0.08531	3663.11		134, 135, 136	1882,84,85	B-S	228.75	0.08759	2611.60		137,138,139	IS86,87,88	C-S	105.00	0.07447	1409.96		140,141,142	IS89,90,91	D-S	880.00	0.05724	15373.86		143,144,145	1892,93,94	E-S	311.25	0.08433	3690.86		146, 147, 148	1895,96,97	F-S	129.00	0.08075	1597.52						Total Sample	Post-column	Pre-column			---------------	------------------	----------	-----------	--------------	-----------------	------------	------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Total Oil	Total Oil			Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		71PPT000-									131,132,133	1879,80,81	A-S	191.00	0.08531	2238.89	3663.11	38.88		134,135,136	1 \$82 , 84 , 85	B-\$	37.50	0.08759	428.13	2611.60	83.61		137, 138, 139	1886,87,88	C-S	60.60	0.07447	813. <i>7</i> 5	1409.96	42.29		140,141,142	1889,90,91	D-S	435.00	0.05724	7599.58	15373.86	50.57		143,144,145	1892,93,94	E-S	143.50	0.08433	1701.65	3690.86	53.90		146,147,148	1895,96,97	F-S	70.00	0.08075	866.87	1597.52	45.74		Sample Field ID	Battelle ID	Station/ Depth	Total Oil (mg)	Sample Dry Weight (kg)	Total Oil/ Station (mg/kg)	Avg Oil/ Station (mg/kg)	Sum Oil/ Station (mg/kg)		----------------------	----------------	-------------------	-------------------	---------------------------	-------------------------------	--------------------------------	--------------------------------		71PPT000398	IR87	A-S	222.50	0.02800	7946.43	6842.31	6322.67		71PPT000399	IR88	A-S	39.00	0.02831	1377.61				71PPT000 3 40	IR89	A-S	217.00	0.01937	11202.89				71PPT000401	IR90	8-S	198.00	0.02919	6783.14	5500.96	5483.98		71PPT000402	IR91	8-8	216.00	0.02899	7450.85				71PPT000403	IR92	8-5	67.00	0.02953	2268.88				71PPT000404	1893	C-S	41.50	0.02873	1444.48	12696.77	11198.80		71PPT000405	IR94	C-S	392.50	0.01960	20025.51				71PPT000406	IR95	C-S	328.75	0.01978	16620.32				71PPT000408	IR97	D-S	372.50	0.01982	18794.15	12311.74	11509.55		71PPT000409	IR98	D-S	361.00	0.02915	12384.22				71PPT000410	1 R99	D-S	170.00	0.02953	5756.86				71PPT000411	I S01	E-S	150.00	0.02886	5197.51	4782.15	4784.02		71PPT000412	1802	E-S	150.00	0.02868	5230.13				71PPT000413	1803	E-S	112.00	0.02858	3918.82				71PPT000414	1504	F-S	26.60	0.02946	902.92	1237.04	1237.11		71PPT000415	1505	F-S	44.60	0.02952	1510.84				71PPT000416	1806	F-S	38.00	0.02929	1297.37				Sample Field ID	Battelle ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	----------------	-------------------	-----------	---------------------------------------	--------------------------------		71PPT000-							398,399,340	IR87,88,89	A-S	498.75	0.07568	6590.25		401,402,403	IR90,91,92	B-S	551.25	0.08770	6285.63		404,405,406	IR93,94,95	C-S	795.00	0.06812	11670.58		408,409,410	IR97,98,99	0-8	952.50	0.07851	12132.21		411,412,413	1801,02,03	E-S	407.50	0.08611	4732.32		414,415,416	1804,05,06	F-S	110.00	0.08827	1246.18		•				Total Sample	Post-column				-------------	------------	----------	-----------	--------------	-------------	-----------	----------------		Sampie	Battelle	Station/	Total Oil	Dry Weight/	Total Oil	Total Oil			Field ID	ID	Depth	. (mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		71PPT000-									398,399,340	IR87,88,89	A-S	332.50	0.07568	4393.50	6590.25	3 3.3 3		401,402,403	IR90,91,92	B-S	229.00	0.08770	2611.17	6285.63	58.46		404,405,406	IR93,94,95	c-s	559.00	0.06812	8206.11	11670.58	29.69		408,409,410	IR97,98,99	D-S	604.00	0.07851	7693.29	12132.21	36.59		411,412,413	1801,02,03	E-S	198.00	0.08611	2299.38	4732.32	51.41		414,415,416	1804,05,06	F-S	53.50	0.08827	606.09	1246.18	51.36								Avg Oil/	Sum Oil/		----------------------	--------------	----------	-----------	-------------	-----------------	----------	----------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Dil/	Station	Station		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)		94PPT000 08 5	IU77	A-S	53.20	0.02896	1837.02	2004,20	1993.10		94PPT000086	IU 78	A-S	42.80	0.02977	1437.69				94PPT000087	IU79	A-S	77.40	0.02827	2737.88				94PPT000088	IU 80	B-S	34.60	0.02874	1203.90	2708.30	2711.34		94PPT000089	IU 81	B-S	173.50	0.02917	5947.89				94PPT000090	IU82	B-S	28.60	0.02939	973.12				94PPT000091	IU83	C-S	418.50	0.01832	22843.89	11161.58	9724.57		94PPT000092	IU84	C-S	175.50	0.01893	9271.00				94PPT000093	IU85	C-S	38.00	0.02774	1369.86				94PPT000095	IU87	D-S	372.50	0.02853	13056.43	12440.18	12426.92		94PPT000096	1U88	D-S	241.50	0.01931	12506.47				94PPT000097	1U89	D-S	342.50	0.02913	11757.64				94PPT000098	IU90	E-S	59.00	0.02863	2060.78	3322.82	3300.65		94PPT000099	IU91	E-S	127.00	0.02720	4669.12				94PPT000100	IU92	E-S	90.00	0.02779	3238.58				94PPT000101	IU93	F-S	27.00	0.02671	1010.86	1132.43	1135.14		94PPT000102	IU94	F-S	37.80	0.02853	1324.92				94PPT000103	IU95	F-S	30.20	0.02845	1061.51				Sample Field ID	Battelle ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	----------------	-------------------	-----------	---	--------------------------------		94PPT000-							085,086,087	1077,78,79	A-S	173.60	0.08700	1995.40		088,089,090	IU80,81,82	B-S	246.25	0.08729	2821.06		091,092,093	1083,84,85	C-S	638.75	0.06499	9828.44		095,096,097	1087,88,89	D-S	972.50	0.07698	12633.15		098,099,101	IU90,91,92	E-S	276.25	0.08362	3303.64		101,102,103	1093,94,95	F-S	97.20	0.08369	1161.43		Sample	Battelle	Station/	Total Oil	Total Sample Dry Weight/	Post-column Total Oil	Pre-column Total Oil			-------------	---------------------	----------	-----------	-----------------------------	--------------------------	-------------------------	------------		Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		94PPT000-									085,086,087	1077,78,79	A-S	58.80	0.08700	675.90	1995.40	66.13		088,089,090	IU 8 0,81,82	B-2	116.00	0.08729	1328.90	28 21.0 6	52.89		091,092,093	1083,84,85	C-S	428.80	0.06499	6597.20	9828.44	32.88		095,096,097	1087,88,89	D-S	562.50	0.07698	7307.10	12633.15	42.16		098,099,101	1090,91,92	E-S	66.00	0.08362	789.30	3303.64	76.11		101,102,103	1093,94,95	F-S	42.00	0.08369	501.90	1161.43	56.79		Sample	Battelle	Station/	Total Oil	Sample Dry		Avg Oil/ Station	Sum Oil/ Station		-------------	----------	----------	-----------	-------------	-----------------	---------------------	---------------------		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
(mg/kg)		94PPT000147	IW39	A-S	47.50	0.02878	1650.45	1881.40	1887.71		94PPT000148	IW40	A-S	43.25	0.02863	1510.65				94PPT000149	1941	A-S	73.50	0.02960	2483.11				94PPT000150	1442	B-S	23.80	0.02865	830.72	4737.35	3837.88		94PPT000151	1443	8-8	235.00	0.01950	12051,28				94PPT000152	1444	B-S	39.25	0.02951	1330.06				94PPT000153	1445	C-S	276.00	0.01901	14518.67	12455.58	10900.74		94PPT000154	1446	C-S	419.00	0.01970	21269.04				94PPT000155	1447	C-S	46.25	0.02929	1579.04				94PPT000156	IW48	D-S	209.00	0.01939	10778.75	9354.35	8346.88		94PPT000157	1449	D-S	69.00	0.02905	2375.22				94PPT000158	1W50	D-S	287.00	0.01925	14909.09				94PPT000159	IW51	E-S	27.75	0.02894	958.88	2763.97	2694.58		94PPT000160	IW52	E-S	138.50	0.02661	5204.81				94PPT000161	IW53	E-S	62.25	0.02925	2128.21				94PPT000162	1W54	F-S	12.30	0.02780	442.45	625.99	6 29. 05		94PPT000163	IW55	F-S	10.60	0.02735	387.57				94PPT000164	IW56	F-S	29.50	0.02815	1047.96				Samula.	Battelle	Station/	Total Oil	Total Sample	Total		---------------	------------	----------	-----------	--------------	------------		Sample	Battette	Station/	TOTAL UTL	Dry Weight/	Oil/Sample		Field ID	IO	Depth) (mg)	Station (kg)	(mg/kg)		71PPT000-							147,148,149	IW39,40,41	A-S	153.75	0.08701	1767.04		150,151,152	1442,43,44	B-S	276.25	0.07766	3557.17		153,154,155	1445,46,47	C-S	670.00	0.06799	9854.39		156,157,158	1448,49,50	0-5	577.50	0.06768	8532.80		159, 160, 161	IW51,52,53	E-S	225.00	0.08480	2653.30		162,163,164	IW54,55,56	F-S	53.13	0.08329	637.83						Total Sample	Post-column	Pre-column			-------------	------------	----------	-----------	--------------	-------------	------------	----------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Total Oil	Total Oil			Field ID	OI	Depth	(mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		94PPT000-									147,148,149	IW39,40,41	A-S	74.50	0.08701	856.22	1767.04	51.54		150,151,152	1442,43,44	B-S	141.50	0.07766	1822.04	3557.17	48.78		153,154,155	1445,46,47	C-S	502.50	0.06799	7390.79	9854.39	25.00		156,157,158	1448,49,50	D-S	368.75	0.06768	5448.43	8532.80	36.15		159,160,161	IW51,52,53	E-S	98.50	0.08480	1161.56	2653.30	5 6. 22		162,163,164	1954,55,56	F-S	24.00	0.08329	288.15	637.83	54.82								Avg Oil/	Sum Oil/		---------------	----------	----------	---------------	-------------	-----------------	-----------------	------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Dil/	Station	Station		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)		740000004			450.00						71PPT000006	IM02-1	A-S	158.00	0.02872	5501.39	11614.93	11542.96		71PPT000010	IM04-1	A-S	571.00	0.02801	20385.58				71PPT000012	IM06-1	A-S	257.00	0.02869	8957.83				71PPT000007	IM03-1	A-SS	133.00	0.02748	4839.88	3 823.97	3828.26		71PPT000011	IM05-1	A-SS	74.80	0.02715	2755.06				71PPT000013	IM07-1	A-SS	106.50	0.02747	3876.96				71PPT000014	IMO8-1	B-S	244.50	0.02892	8454.36	4195.52	41 96. 38		71PPT000018	IM10-1	B-S	48.20	0.02902	1660.92				71PPT000020	IM12-1	8-8	71.00	0.02873	2 471.28				71PPT000015	IM09-1	B-SS	26.50	0.02790	949.82	61 74.88	6174.32		71PPT000019	IH11-1	8-55	196.50	0.02754	7135.08				71PPT000021	IH13-1	B-\$\$	292.00	0.02797	10439.76				71PPT000022	IM14-1	C-S	39.50	0.02877	1372.96	1809.89	1809.22		71PPT000024	IM16-1	C-\$	64.20	0.02863	2242.40				71PPT000026	IM18-1	C-S	5 3.25	0.02935	1814.31				71PPT000023	IM15-3	C-SS	147.40	0.01416	10409.60	5576.84	4698.42		71PPT000025	IH17-1	C-SS	156.50	0.02714	5766.40				71PPT000027	IM19-1	C-SS	14.70	0.02651	554.51				71PPT000028	IM21-1	0-\$	94.00	0.02871	3274.12	12921.23	12727.38		71PPT000030	IH23-1	D-S	769.00	0.02765	27811.93				71PPT000032	IH25-1	D-S	221.50	0.02885	7677.64				71PPT000029	IM22-1	D-SS	246.50	0.02789	8838.29	6097.93	6111.31		71PPT000031	IM24-1	D-SS	179.00	0.02795	6404.29				71PPT000033	IH26-1	D-SS	84.00	0.02753					71PPT000034	IM27-1	E-S	117.00	0.02836	4125.53	8912.73	8968.84		71PPT000036	IM29-1	E-S	614.50	0.02896	21218.92				71PPT000038	IM31-1	E-S	40.00	0.02870	1393.73				71PPT000035	IM28-1	E-SS	268.50	0.02842	9447.57	15800.72	15405.77		71PPT000037	IM30-1	E-SS	244.00	0.02775	8792.79				71PPT000039	IM32-1	E-SS	748.00	0.02565					71PPT000040	IM33-1	F-S	134.50	0.02978		4641.08	4629.10		71PPT000042	IM35-1	F-S	171.50	0.02850					71PPT000044	IN37-1	F-S	99.00	0.02921	3389.25				71PPT000041	IN34-1	F-SS	73,25	0.02760		4890.94	4935.60		71PPT000043	IM36-1	F-SS	38.80	0.02737		70/01/7	4,55.00		71PPT000045	IM38-1	F-SS	298.00	0.02737	10601.21				7 IFF 1000043	Indu i	1 33	276.00	0.02011	10001.21				Sample Field ID	Battelle ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	------------------	-------------------	-----------	---	--------------------------------		B1							71PPT000-							006,010,012	IM02-1,04-1,06-1	A-S	962.50	0.08542	11267.85		007,011,013	IM03-1,05-1,07-1	A-SS	307.50	0.08210	3745.43		014,018,020	IMO8-1,10-1,12-1	B-S	359.38	0.08668	4146.00		015,019,021	IM09-1,11-1,13-1	B-SS	512.50	0.08341	6144.35		022,024,026	IM14-1,16-1,18-1	c-s	153.75	0.08675	1772.33		023,025,027	IM15-3,17-1,19-1	c-ss	312.50	0.06781	4608.46		028,030,032	IM21-1,23-1,25-1	D-S	1095.00	0.08521	12850.60		029,031,040	IM22-1,24-1,26-1	D-SS	487.50	0.08337	5847.43		034,036,038	IM27-1,29-1,31-1	E-S	740.00	0.08602	8602.65		035,037,039	IM28-1,30-1,32-1	E-SS	1205.00	0.08182	14727.45		040,042,044	IM33-1,35-1,37-1	F-S	395.00	0.08749	4514.80		041,043,045	IM34-1,36-1,38-1	F-SS	402.50	0.08307	4845.31		Sample	Battelle	Station/	Total Oil	Total Sample Dry Weight/	Post-column Total Oil	Pre-column Total Oil			-------------	------------------	----------	-----------	--------------------------	--------------------------	-------------------------	----------------		Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar				5 Cp (· ·	otation (kg)	(mg/kg)	(mg/kg)	Components		71PPT000-					(1119) (3)	(mg/ cg/	Components		006,010,012	IM02-1,04-1,06-1	A-S	680.00	0.08542	7960.85	11267.85	29.35		007,011,013	IM03-1,05-1,07-1	A-SS	237.00	0.08210	2886.72	3745.43	22.93		014,018,020	IMO8-1,10-1,12-1	B-S	238.75	0.08668	2754.38	4146.00	33.57		015,019,021	IM09-1,11-1,13-1	B-SS	372.50	0.08341	4465.89	6144.35	27.32		022,024,026	IM14-1,16-1,18-1	C-S	80.50	0.08675	927.95	1772.33	47.64		023,025,027	IM15-3,17-1,19-1	C-SS	228.00	0.06781	3362.34	4608.46	27.04		028,030,032	IM21-1,23-1,25-1	D-S	557.50	0.08521	6542.66	12850.60	49.09		029,031,040	IM22-1,24-1,26-1	D-SS	350.00	0.08337	4198.15	5847.43	28.21		034,036,038	IM27-1,29-1,31-1	E-S	607.50	0.08602	7062.31	8602.65	17.91		035,037,039	IM28-1,30-1,32-1	E-SS	977.50	0.08182	11946.96	14727.45	18.88		040,042,044	IM33-1,35-1,37-1	F-S	251.25	0.08749	2871.76	4514.80	36. 3 9		041,043,045	IM34-1,36-1,38-1	F-SS	323.75	0.08307	3897.32	4845.31	19.57		Sample Field ID Battelle Station / Opeth Total Oil (mg) Sample Dry (mg) (kg) Total Oil (mg/kg) Station (mg/kg) Station (mg/kg) 71PPT000303 1051 A-S 76.50 0.02854 2680.45 5437.41 5447.79 71PPT000307 1057 A-S 117.50 0.02882 9541.98 - 71PPT000306 1055 A-S 117.50 0.02882 9541.98 - 71PPT000307 1056 A-SS 26.50 0.02818 940.38 1433.50 71PPT000318 1056 A-SS 26.50 0.02865 1797.56 7197100000 1059 8-S 415.00 0.01984 20917.34 8900.91 7471.19 71PPT000311 1061 8-S 78.50 0.02920 2688.36 71971.99 71PPT000313 1663 8-S 90.00 0.02906 3097.04 7980.28 71PPT000314 1664 8-SS 272.50 0.01865 14611.26 719PT000314 1664 8-SS 102.50 0.							Avg Oil/	Sum Oil/																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
---	----------------------	----------	----------	----------------	-------------	------------------	------------------	-----------------		71PPT000303 1051 A-S 76.50 0.02854 2680.45 5437.41 5447.79 71PPT000305 1055 A-S 117.50 0.02873 4089.80 71PPT000307 1057 A-S 275.00 0.02882 9541.98 71PPT000306 1056 A-SS 225.00 0.02723 1560.78 1432.91 1433.50 71PPT000306 1056 A-SS 26.50 0.02818 940.38 71PPT000388 1058 A-SS 51.50 0.02865 1797.56 71PPT000310 1056 A-SS 51.50 0.02865 1797.56 71PPT000310 1061 B-S 78.50 0.02920 2688.36 71PPT000311 1061 B-S 78.50 0.02920 2688.36 71PPT000311 1063 B-S 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 1063 B-SS 272.50 0.01865 14611.26 71PPT000314 1064 B-SS 102.50 0.01851 5537.55 71PPT000316 1065 C-S	•	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		71PPT000305 1955 A-S 117.50 0.02873 4088.80 71PPT000304 1952 A-S 275.00 0.02882 9541.98 71PPT000306 1956 A-SS 265.00 0.02882 9541.98 71PPT000306 1956 A-SS 266.50 0.02818 940.38 71PPT000308 1958 A-SS 51.50 0.02818 940.38 940.38 71PPT000308 1958 A-SS 51.50 0.02865 1797.56 71PPT0003011 1961 B-S 78.50 0.02865 1797.56 71PPT000311 1961 B-S 78.50 0.02920 2688.36 71PPT000313 1963 B-S 90.00 0.02906 3097.04 71PPT000311 1966 B-SS 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 1962 B-SS 272.50 0.01865 14611.26 71PPT000315 1964 B-SS 102.50 0.01865 14611.26 71PPT000315 1964 B-SS 102.50 0.01865 15537.55 71PPT000317 1967 C-S 1126.00 0.01852 60799.14 71PPT000316 1966 C-S 34.00 0.02898 1173.22 71PPT000318 1966 C-SS 206.50 0.01865 1173.22 71PPT000318 1966 C-SS 206.50 0.01865 1173.22 71PPT000318 1966 C-SS 30.00 0.02898 1173.22 71PPT000318 1966 C-SS 30.00 0.02898 1173.22 71PPT000312 1970 C-SS 40.40 0.02886 1069.14 71PPT000322 1970 C-SS 40.40 0.02866 1069.14 71PPT000322 1970 C-SS 40.40 0.02866 1069.14 71PPT000322 1970 C-SS 40.50 0.01904 10582.98 71PPT000322 1972 D-SS 49.50 0.01904 10582.98 71PPT000322 1972 D-SS 49.50 0.02793 340.14 71PPT000322 1972 D-SS 49.50 0.02793 340.14 71PPT000322 1977 E-S 274.50 0.01904 10582.98 71PPT000323 1981 E-S 286.00 0.02767 1011.93 9802.08 7642.75 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1983 F-S 193.00 0.02802 2944.33 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1986 F-S 153.50 0.02829 5425.95 71PPT000333 1986 F-S 153.50 0.01907 3150.00 5673.18 5032.53 71PPT000333 1986 F-S 156.50 0.01907 3150.00 5673.18 5032.53	Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)		71PPT000305 1955 A-S 117.50 0.02873 4088.80 71PPT000304 1952 A-S 275.00 0.02882 9541.98 71PPT000306 1956 A-SS 265.00 0.02882 9541.98 71PPT000306 1956 A-SS 266.50 0.02818 940.38 71PPT000308 1958 A-SS 51.50 0.02818 940.38 940.38 71PPT000308 1958 A-SS 51.50 0.02865 1797.56 71PPT0003011 1961 B-S 78.50 0.02865 1797.56 71PPT000311 1961 B-S 78.50 0.02920 2688.36 71PPT000313 1963 B-S 90.00 0.02906 3097.04 71PPT000311 1966 B-SS 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 1962 B-SS 272.50 0.01865 14611.26 71PPT000315 1964 B-SS 102.50 0.01865 14611.26 71PPT000315 1964 B-SS 102.50 0.01865 15537.55 71PPT000317 1967 C-S 1126.00 0.01852 60799.14 71PPT000316 1966 C-S 34.00 0.02898 1173.22 71PPT000318 1966 C-SS 206.50 0.01865 1173.22 71PPT000318 1966 C-SS 206.50 0.01865 1173.22 71PPT000318 1966 C-SS 30.00 0.02898 1173.22 71PPT000318 1966 C-SS 30.00 0.02898 1173.22 71PPT000312 1970 C-SS 40.40 0.02886 1069.14 71PPT000322 1970 C-SS 40.40 0.02866 1069.14 71PPT000322 1970 C-SS 40.40 0.02866 1069.14 71PPT000322 1970 C-SS 40.50 0.01904 10582.98 71PPT000322 1972 D-SS 49.50 0.01904 10582.98 71PPT000322 1972 D-SS 49.50 0.02793 340.14 71PPT000322 1972 D-SS 49.50 0.02793 340.14 71PPT000322 1977 E-S 274.50 0.01904 10582.98 71PPT000323 1981 E-S 286.00 0.02767 1011.93 9802.08 7642.75 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1983 F-S 193.00 0.02802 2944.33 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1986 F-S 153.50 0.02829 5425.95 71PPT000333 1986 F-S 153.50 0.01907 3150.00 5673.18 5032.53 71PPT000333 1986 F-S 156.50 0.01907 3150.00 5673.18 5032.53	71PPT000303	1051	A-S	76.50	0.02854	2680.45	5437.41	5447.79		71PPT000307 1957		-	_				210.111			71PPT000304 1952										71PPT000306 1056	71PPT000304	1952	A-SS	42.50	0.02723	1560.78	1432.91	1433.50		71PPT0003191 1059 8-S 415.00 0.01984 20917.34 8900.91 7471.19 71PPT000311 1061 8-S 78.50 0.02920 2688.36 71PPT000313 1043 8-S 90.00 0.02906 3097.04 71PPT000312 10460 8-SS 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 10462 8-SS 272.50 0.01865 14611.26 71PPT000315 10464 8-SS 102.50 0.01851 5537.55 71PPT000315 10467 C-S 1126.00 0.01852 60799.14 71PPT000317 10467 C-S 1126.00 0.01852 60799.14 71PPT000316 10469 C-S 34.00 0.02898 1173.22 71PPT000316 10466 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71PPT000318 1048 C-SS 30.00 0.02806 1069.14 71PPT000321 1071 0-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000322 1073 0-S 438.00 0.01844 23752.71 71PPT000322 1072 0-SS 49.50 0.01904 10582.98 71PPT000322 1074 0-SS 9.50 0.02793 340.14 71PPT000322 1077 0-SS 64.50 0.01951 3306.00 71PPT000322 1077 0-SS 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000322 1078 0-SS 266.00 0.01951 3306.00 71PPT000322 1077 0-SS 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000332 1081 0-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000332 1082 0-SS 481.50 0.01820 26456.04 71PPT000333 1083 0-SS 54.00 0.02786 1938.26 71PPT000333 1083 0-SS 54.00 0.02786 1938.26 71PPT000333 1083 0-SS 54.50 0.01820 5425.95 71PPT000333 1085 0-SS 5153.50 0.02829 5425.95 71PPT000333 1085 0-SS 231.00 0.01973 11708.06 5673.18 5032.59 71PPT000334 1086 0-SS 231.00 0.01973 11708.06 5673.18 5032.59 71PPT000336 1086 0-SS 231.00 0.01973 11708.06 5673.18 5032.59 71PPT000336 1086 0-SS 231.00 0.01973 11708.06 5673.18 5032.59	71PPT000306	1956	A-SS	26.50	0.02818	940.38				71РРТ000311 1061 8-S 78.50 0.02920 2688.36	71PPT000308	1958	A-SS	51.50	0.02865	1797.56				71PPT000313 1043 B-S 90.00 0.02906 3097.04 71PPT000310 1060 B-SS 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 1062 B-SS 2772.50 0.01865 14611.26 71PPT000314 1064 B-SS 102.50 0.01851 5537.55 71PPT000315 1065 C-S 45.50 0.02903 1567.34 21179.90 15751.99 71PPT000317 1067 C-S 1126.00 0.01852 60799.14 71PPT000319 1069 C-S 34.00 0.02898 1173.22 71PPT000316 1066 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71PPT000318 1068 C-SS 30.00 0.02806 1069.14 71PPT000320 1070 C-SS 40.40 0.02736 1.476.61 71PPT000321 1071 D-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000323 1073 D-S 438.00 0.01844 23752.71 71PPT000325 1075 D-S 201.50 0.01904 10582.98 71PPT000326 1076 D-SS 49.50 0.02793 340.14 71PPT000327 1077 E-S 274.50 0.01864 14570.06 12249.06 10972.83 71PPT000328 1079 E-S 366.00 0.01963 19232.79 71PPT000329 1079 E-S 366.00 0.01903 19232.79 71PPT000329 1079 E-S 366.00 0.01802 2944.33 71PPT000329 1079 E-S 366.00 0.02767 1011.93 9802.08 7642.75 71PPT000320 1080 E-SS 481.50 0.01820 26456.04 71PPT000332 1082 E-SS 54.00 0.02786 1938.26 71PPT000332 1082 E-SS 54.00 0.02786 1938.26 71PPT000333 1083 E-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000337 1085 F-S 153.50 0.02829 5425.95 71PPT000337 1085 F-S 153.50 0.02829 5425.95 71PPT000337 1085 F-S 216.50 0.01827 11850.03 71PPT000337 1086 F-S 216.50 0.01827 11850.03 71PPT000334 1086 F-SS 231.00 0.01973 11708.06 5673.18 5032.53	71PPT000309	1959	B-S	415.00	0.01984	20917.34	8900.91	7471.19		71PPT000310 1960 B-SS 62.00 0.01760 3522.73 7890.51 7980.28 71PPT000312 1962 B-SS 272.50 0.01865 14611.26																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
14611.26 14611.26	71PPT000311	1961	8-5	78.50	0.02920	2688.36				71PPT000312 1062 8-SS 272.50 0.01865 14611.26 71PPT000314 1064 8-SS 102.50 0.01851 5537.55 71PPT000315 1065 C-S 45.50 0.02903 1567.34 21179.90 15751.99 71PPT000317 1067 C-S 1126.00 0.01852 60799.14 71PPT000319 1069 C-S 34.00 0.02898 1173.22 71PPT000316 1066 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71PPT000318 1068 C-SS 30.00 0.02806 1069.14 71PPT000312 1070 C-SS 40.40 0.02736 1476.61 71PPT000321 1071 D-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000323 1073 D-S 438.00 0.01844 23752.71 71PPT000325 1075 D-S 201.50 0.01904 10582.98 71PPT000326 1076 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000327 1077 E-S 9.50 0.02793 340.14 71PPT000328 1076 D-SS 64.50 0.01951 3306.00 71PPT000327 1077 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000328 1078 E-S 366.00 0.01903 19232.79 71PPT000329 1079 E-S 366.00 0.01903 19232.79 71PPT000328 1078 E-S 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000332 1080 E-SS 481.50 0.01820 26456.04 71PPT000333 1080 E-SS 481.50 0.01820 26456.04 71PPT000333 1083 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1085 F-S 153.50 0.02829 5425.95 71PPT000333 1087 F-S 216.50 0.01827 11850.03 71PPT000334 1086 F-SS 231.00 0.01973 11708.06 5673.18 5032.53 71PPT000334 1086 F-SS 88.00 0.02790 3154.12	71PPT000313	1963	B-S	90.00	0.02906	3097.04				Tippt000314	71PPT000310	1960	B-SS	62.00	0.01760	3522 <i>.7</i> 3	7890.51	7980.28		71РРТ000315 I 465 C - S 45.50 0.02903 1567.34 21179.90 15751.99 71РРТ000317 I 467 C - S 1126.00 0.01852 60799.14	71PPT000312	1962	B-SS	2 72.50	0.01865	14611.26				71РРТ000317 1067 C-S 1126.00 0.01852 60799.14 71РРТ000319 1069 C-S 34.00 0.02898 1173.22 71РРТ000316 1066 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71РРТ000318 1068 C-SS 30.00 0.02806 1069.14 1120.00 107	71PPT000314	1964	B-SS	102.50	0.01851	5537.55				71PPT000319 1969 C-S 34.00 0.02898 1173.22 71PPT000316 1966 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71PPT000318 1968 C-SS 30.00 0.02806 1069.14 1120.00 102.00 0.02736 .1476.61 1120.00 1120.00 0.02860 3566.43 12634.04 11221.25 71PPT000321 1971 D-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000323 1973 D-S 438.00 0.01844 23752.71 171PPT000325 1975 D-S 201.50 0.01904 10582.98 1639.45 71PPT000322 1972 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000324 1976 D-SS 49.50 0.02793 340.14 1806.99 1639.45 71PPT000327 1977 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000331	71PPT000315	1965	C-S	45.50	0.02903	1567.34	21179.90	15751.99		71PPT000316 1066 C-SS 206.50 0.01901 10862.70 4469.48 3720.27 71PPT000318 1068 C-SS 30.00 0.02806 1069.14	71PPT000317	1967	C-S	1126.00	0.01852	60799.14				Tippt000318 Iq68 C-ss 30.00 0.02806 1069.14 Tippt000320 Iq70 C-ss 40.40 0.02736 .1476.61 Tippt000321 Iq71 D-s 102.00 0.02860 3566.43 12634.04 11221.25 Tippt000323 Iq73 D-s 438.00 0.01844 23752.71 Tippt000325 Iq75 D-s 201.50 0.01904 10582.98 Tippt000322 Iq72 D-ss 49.50 0.02789 1774.83 1806.99 1639.45 Tippt000324 Iq74 D-ss 9.50 0.02793 340.14 Tippt000326 Iq76 D-ss 64.50 0.01951 3306.00 Tippt000327 Iq77 E-s 274.50 0.01884 14570.06 12249.06 10972.83 Tippt000329 Iq79 E-s 366.00 0.01903 19232.79 Tippt000331 Iq81 E-s 82.50 0.02802 2944.33 Tippt000328 Iq78 E-ss 28.00 0.02767 1011.93 9802.08 7642.75 Tippt000332 Iq82 E-ss 54.00 0.01820 26456.04 Tippt000333 Iq83 F-s 193.00 0.01900 10157.89 9144.62 8587.55 Tippt000337 Iq87 F-s 216.50 0.01827 11850.03 Tippt000334 Iq84 F-ss 231.00 0.01973 11708.06 5673.18 5032.53 Tippt000334 Iq86 F-ss 88.00 0.02790 3154.12	71PPT000319	1969	C-S	34.00	0.02898	1173.22				71PPT000320 1Q70 C-SS 40.40 0.02736 1476.61 71PPT000321 1Q71 D-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000323 1Q73 D-S 438.00 0.01844 23752.71 71PPT000325 1Q75 D-S 201.50 0.01904 10582.98 71PPT000322 1Q72 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000324 1Q74 D-SS 9.50 0.02793 340.14 71PPT000326 1Q76 D-SS 64.50 0.01951 3306.00 71PPT000327 1Q77 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1Q79 E-S 366.00 0.01903 19232.79 71PPT000331 1Q81 E-S 82.50 0.02802 2944.33 71PPT000328 1Q78 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000332 1Q82 E-SS 54.00 0.02767 1011.93 9802.08 7642.75 71PPT000332 1Q82 E-SS 54.00 0.02786 1938.26 71PPT000333 1Q83 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000333 1Q87 F-S 216.50 0.01827 11850.03 71PPT000334 1Q84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000334 1Q84 F-SS 88.00 0.02790 3154.12	71PPT000316	1966	C-SS	206.50	0.01901	10862.70	4469.48	3720.27		71PPT000321 1Q71 D-S 102.00 0.02860 3566.43 12634.04 11221.25 71PPT000323 1Q73 D-S 438.00 0.01844 23752.71 71PPT000325 1Q75 D-S 201.50 0.01904 10582.98 71PPT000322 1Q72 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000324 1Q74 D-SS 9.50 0.02793 340.14 71PPT000326 1Q76 D-SS 64.50 0.01951 3306.00 71PPT000327 1Q77 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1Q79 E-S 366.00 0.01903 19232.79 71PPT000331 1Q81 E-S 82.50 0.02802 2944.33 71PPT000332 1Q82 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000332 1Q82 E-SS 54.00 0.02767 1011.93 9802.08 7642.75 71PPT000333 1Q83 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1Q85 F-S 153.50 0.02829 5425.95 71PPT000337 1Q87 F-S 216.50 0.01827 11850.03 71PPT000334 1Q84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000334 1Q84 F-SS 88.00 0.02790 3154.12	71PPT000318	1968	C-SS	30.00	0.02806	1069.14				71PPT000323	71PPT000 3 20	1970	C-SS	40.40	0.02736	.1476.61				71PPT000325 1975 D-S 201.50 0.01904 10582.98 71PPT000322 1972 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000324 1974 D-SS 9.50 0.02793 340.14 71PPT000326 1976 D-SS 64.50 0.01951 3306.00 71PPT000327 1977 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1979 E-S 366.00 0.01903 19232.79 71PPT000331 1981 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000337 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.53 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000321	1971	D-S	102.00	0.02860	3566.43	12634.04	11221.25		71PPT000322 1972 D-SS 49.50 0.02789 1774.83 1806.99 1639.45 71PPT000324 1974 D-SS 9.50 0.02793 340.14 71PPT000326 1976 D-SS 64.50 0.01951 3306.00 71PPT000327 1977 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1979 E-S 366.00 0.01903 19232.79 71PPT000331 1981 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000323	1973	D-S	438.00	0.01844	23752.71				71PPT000324 1974 D-SS 9.50 0.02793 340.14 71PPT000326 1976 D-SS 64.50 0.01951 3306.00 71PPT000327 1977 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1979 E-S 366.00 0.01903 19232.79 71PPT000331 1981 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000325	1975	D-S	201.50	0.01904	10582.98				71PPT000326 1976 D-SS 64.50 0.01951 3306.00 71PPT000327 1977 E-S 274.50 0.01884 14570.06 12249.06 10972.83 71PPT000329 1979 E-S 366.00 0.01903 19232.79 71PPT000331 1981 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000322	1972	D-SS	49.50	0.02789	1774.83	1806.99	1639.45		71PPT000327	71PPT000324	1974	D-SS	9.50	0.02793	340.14				71PPT000329 1979 E-S 366.00 0.01903 19232.79 71PPT000331 1981 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000326	1976	D-SS	64.50	0.01951																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
3306.00				71PPT000331 1081 E-S 82.50 0.02802 2944.33 71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1080 E-SS 481.50 0.01820 26456.04 71PPT000332 1082 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1085 F-S 153.50 0.02829 5425.95 71PPT000337 1087 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1086 F-SS 88.00 0.02790 3154.12	71PPT000327	1977	E-S	274.50	0.01884	14570.06	12249.06	10972.83		71PPT000328 1978 E-SS 28.00 0.02767 1011.93 9802.08 7642.75 71PPT000330 1980 E-SS 481.50 0.01820 26456.04 71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000329	1979	E-S	366.00	0.01903	19232.79				71PPT000330 IQ80 E-SS 481.50 0.01820 26456.04 71PPT000332 IQ82 E-SS 54.00 0.02786 1938.26 71PPT000333 IQ83 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 IQ85 F-S 153.50 0.02829 5425.95 71PPT000337 IQ87 F-S 216.50 0.01827 11850.03 71PPT000334 IQ84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 IQ86 F-SS 88.00 0.02790 3154.12	71PPT000331	1981	E-S	82.50	0.02802	2944.33				71PPT000332 1982 E-SS 54.00 0.02786 1938.26 71PPT000333 1983 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 1985 F-S 153.50 0.02829 5425.95 71PPT000337 1987 F-S 216.50 0.01827 11850.03 71PPT000334 1984 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 1986 F-SS 88.00 0.02790 3154.12	71PPT000328	1978	E-SS	28.00	0.02767	1011.93	9802.08	7642. 75		71PPT000333 IQ83 F-S 193.00 0.01900 10157.89 9144.62 8587.55 71PPT000335 IQ85 F-S 153.50 0.02829 5425.95 71PPT000337 IQ87 F-S 216.50 0.01827 11850.03 71PPT000334 IQ84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 IQ86 F-SS 88.00 0.02790 3154.12	71PPT000330	1980	E-SS	481.50	0.01820	26456.04				71PPT000335 IQ85 F-S 153.50 0.02829 5425.95 71PPT000337 IQ87 F-S 216.50 0.01827 11850.03 71PPT000334 IQ84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 IQ86 F-SS 88.00 0.02790 3154.12	71PPT000332	1982	E-SS	54.00	0.02786	1938.26				71PPT000337 IQ87 F-S 216.50 0.01827 11850.03 71PPT000334 IQ84 F-SS 231.00 0.01973 11708.06 5673.18 5032.58 71PPT000336 IQ86 F-SS 88.00 0.02790 3154.12	71PPT000333	1983	F-S	193.00	0.01900	10157.89	9144.62	8587. 55		71PPT000334	71PPT000 33 5	1985	F-S	153.50	0.02829	5425.95				71PPT000336 IQ86 F-SS 88.00 0.02790 3154.12	71PPT000337	1987	F-S	216.50	0.01827	11850.03				***************************************	71PPT000334	1984	F-SS	231.00	0.01973	11708.06	56 73 .18	5032.58		71PPT000338 IQ88 F-SS 59.50 0.02758 2157.36	71PPT000336	1986	F-SS	88.00	0.02790	3154.12					71PPT000 338	1988	F-SS	59.50	0.02758	2157.36				Sample Field ID	Battelle ID	Station/ Depth	Total Oil (mg)	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	----------------	-------------------	-------------------	---	--------------------------------		71PPT000-							303,305,307	1951,55,57	A-S	451.50	0.08610	5243.90		304,306,308	1952,56,58	A-SS	125.00	0.08406	1487.03		309,311,313	1959,61,63	8-8	582.00	0.07810	7451.98		310,312,314	1960,62,64	8-55	424.00	0.05475	7744.29		315,317,319	1965,67,69	C-S	1075.00	0.07653	14046.78		316,318,320	1966,68,70	C-SS	267.00	0.07443	3587.26		321,323,325	1971,73,75	D-S	727.50	0.06608	11009.38		322,324,326	1972,74,76	D-SS	120.63	0.07532	1601.50		327,329,331	1977,79,81	E-S	723.75	0.06589	10984.22		328,330,332	1978,80,82	E-SS	555.00	0.07373	7527.47		333,335,337	1983,85,87	F-S	587.50	0.06557	8959.89		334,336,338	1984,86,88	F-SS	389 .3 8	0.07521	5177.17		Sample	Battelle	Station/	Total Oil	Total Sample Dry Weight/	Post-column Total Oil	Pre-column Total Oil			-------------	------------	----------	-----------	--------------------------	--------------------------	-------------------------	------------		Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar					4		(mg/kg)	(mg/kg)	Components		71PPT000-									303,305,307	1951,55,57	A-S	292.60	0.08610	3398.37	5243.90	35.19		304,306,308	1952,56,58	A-SS	96.20	0.08406	1144.42	1487.03	23.04		309,311,313	1959,61,63	8-5	392.80	0.07810	5029.45	7451.98	32.51		310,312,314	1960,62,64	B-SS	279.70	0.05475	5108.68	7744.29	34.03		315,317,319	1965,67,69	C-S	743.50	0.07653	9715.14	14046.78	30.84		316,318,320	1966,68,70	C-SS	210.80	0.07443	2832.19	3587.26	21.05		321,323,325	1971,73,75	D-S	491.00	0.06608	7430.39	11009.38	32.51		322,324,326	1972,74,76	D-SS	99.50	0.07532	1321.03	1601.50	17.51		327,329,331	1977,79,81	E-S	511.00	0.06589	7755.35	10984.22	29.40		328,330,332	1978,80,82	E-SS	448.00	0.07373	6076.22	7527.47	19.28		333,335,337	1983,85,87	F-S	435.00	0.06557	6634.13	8959.89	25.96		334,336,338	1984,86,88	F-SS	305.50	0.07521	4061.96	5177.17	21.54								Avg Oil/	Sum Oil/		-------------	----------	----------	-----------	-------------	-----------------	----------	-------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		Field ID	ID	Depth	(mg) .	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)		94PPT000009	1U39	A-S	70.00	0.02851	2455.28	5729.29	5750.46		94PPT000011	IU41	A-S	72.00	0.02869	2509.59				94PPT000013	1043	A-S	353.00	0.02888	12222.29				94PPT000010	1U40	A-SS	20.75	0.02705	767.10	2371.83	2353.26		94PPT000012	1042	A-SS	21.00	0.02801	749.73				94PPT000014	1044	A-SS	151.50	0.02706	5598.67				94PPT000015	1045	8-5	307.50	0.02842	10819.85	6415.82	6 36 0.16		94PPT000017	1047	8-5	169.00	0.02817	5999.29				94PPT000019	1049	8-5	72.00	0.02965	2428.33				94PPT000016	1046	8-55	35.00	0.02671	1310.37	3149.04	2910.91		94PPT000018	1048	B-SS	77.50	0.02809	2758.99				94PPT000020	1U50	8-55	102.50	0.01906	5377.75				94PPT000021	1051	C-S	32.25	0.02836	1137.17	4042.38	4003.84		94PPT000023	1U53	C-S	256.50	0.02817	9105.43				94PPT000025	IU55	C-S	55.50	0.02945	1884.55				94PPT000022	1U52	C-SS	46.00	0.02648	1737.16	3495.73	2885.31		94PPT000024	1054	C-SS	10.30	0.02745	375. 23				94PPT000026	1056	C-SS	151.50	0.01809	8374.79				94PPT000027	IU57	D-S	329.50	0.02038	16167.81	16414.38	1 5374. 56		94PPT000029	1U59	D-S	246.00	0.02879	8544.63				94PPT000031	IU61	D-S	483.50	0.01971	24530.70				94PPT000028	1058	D-SS	3.70	0.02774	133.38	843.76	846.41		94PPT000030	IU60	D-SS	25.40	0.02835	895.94				94PPT000032	1062	D-SS	42.10	0.02803	1501.96				94PPT000033	1063	E-S	72.00	0.02879	2500.87	6567.05	55 7 6.07		94PPT000035	1U65	E-S	301.00	0.02005	15012.47				94PPT000037	IU67	E-S	65.00	0.02971	2187.82				94PPT000034	1064	E-SS	280.00	0.01804	15521.06	13798.28	11514.26		94PPT000036	IU66	E-SS	42.90	0.03101	1383.42				94PPT000038	1068	E-SS	456.50	0.01864	24490.34				94PPT000039	1069	F-S	278.00	0.02889	9622.71	11952.53	11574.01		94PPT000041	IU71	F-S	327.00	0.01939	16864.36				94PPT000043	1073	F-S	196.50	0.02097	9370.53				94PPT000040	1U70	F-SS	48.70	0.02799	1739.91	3371.62	3336.54		94PPT000042	1072	F-SS	19.90	0.02786					94PPT000044	1074	F-SS	208.60	0.02723													Battelle Ocean Sciences Pre-column, combined gravimetric analysis				Total Sample	Total		---------------------	--	---	--	--		Battelle	Station/	Total Oil	Dry Weight/	Oil/Sample		ID	Depth	(mg)	Station (kg)	(mg/kg)								IU39,41,43	A-S	486.25	0.08608	5648.82		1040,42,44	A-SS	202.50	0.08212	2465.90																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																								
1045,47,49	B-S	551.25	0.08624	6392.05		1046,48,50	B-SS	210.00	0.07386	2843.22		IU51,53,55	C-S	338.75	0.08599	3939.41		IU52,54,56	C-SS	205.00	0.07202	2846.43		IU57,59,61	D-S	1060.00	0.06888	15389.08		IU 58 ,60,62	D-\$\$	67.75	0.08412	805.40		IU63,65,67	E-S	426.25	0.07855	5426.48		1064,66,68	E-SS	777.50	0.06769	11486.19		1069,71,73	F-S	795.00	0.06925	11480.14		1070,72,74	F-SS	258.50	0.08308	3111.46			IU39,41,43 IU40,42,44 IU45,47,49 IU46,48,50 IU51,53,55 IU52,54,56 IU57,59,61 IU58,60,62 IU63,65,67 IU64,66,68 IU69,71,73	ID Depth IU39,41,43 A-S IU40,42,44 A-SS IU45,47,49 B-S IU46,48,50 B-SS IU51,53,55 C-S IU52,54,56 C-SS IU57,59,61 D-S IU58,60,62 D-SS IU63,65,67 E-S IU64,66,68 E-SS IU69,71,73 F-S	ID Depth (mg) IU39,41,43 A-S 486.25 IU40,42,44 A-SS 202.50 IU45,47,49 B-S 551.25 IU46,48,50 B-SS 210.00 IU51,53,55 C-S 338.75 IU52,54,56 C-SS 205.00 IU57,59,61 D-S 1060.00 IU58,60,62 D-SS 67.75 IU63,65,67 E-S 426.25 IU64,66,68 E-SS 777.50 IU69,71,73 F-S 795.00	Battelle Station/ Total Oil Dry Weight/ ID Depth (mg) Station (kg) IU39,41,43 A-S 486.25 0.08608 IU40,42,44 A-SS 202.50 0.08212 IU45,47,49 B-S 551.25 0.08624 IU46,48,50 B-SS 210.00 0.07386 IU51,53,55 C-S 338.75 0.08599 IU52,54,56 C-SS 205.00 0.07202 IU57,59,61 D-S 1060.00 0.06888 IU58,60,62 D-SS 67.75 0.08412 IU63,65,67 E-S 426.25 0.07855 IU64,66,68 E-SS 777.50 0.06769 IU69,71,73 F-S 795.00 0.06925	Battelle Ocean Sciences Post-column, combined gravimetric analysis	Sample Field ID	Battelle ID	Station/ Depth	Total Oil (mg)	Total Sample Dry Weight/ Station (kg)	Post-column Total Oil Sample (mg/kg)	Pre-column Total Oil Sample (mg/kg)	% Polar Components		--------------------	----------------	-------------------	----------------	---------------------------------------	---	--	-----------------------		94PPT000-									009,011,013	IU39,41,43	A-S	277.00	0.08608	3217.94	5648.82	43.03		010,012,014	1040,42,44	A-SS	134.00	0.08212	1 631.7 6	2465.90	33.83		015,017,109	1045,47,49	8-8	290.00	0.08624	3362.71	6392.05	47.39		016,018,020	1046,48,50	8-88	144.50	0.07386	1956.40	2843.22	31.19		021,023,025	1051,53,55	C-S	159.00	0.08599	1849.05	3939. 41	53.06		022,024,026	1052,54,56	C-SS	143.00	0.07202	1985.56	2846.43	30.24		027,029,031	1057,59,61	0-S	789.00	0.06888	11454.70	15389.08	25.57		028,030,032	1058,60,62	0-88	49.50	0.08412	588.45	805.40	26.94		033,035,037	1063,65,67	E-S	280.80	0.07855	3574.16	5426.48	34.13		034,036,038	1064,66,68	E-SS	594.00	0.06769	8775.30	11486.19	2 3. 60		039,041,043	1069,71,73	F-S	572.00	0.06925	8259.93	11480.14	28.05		040,042,044	1070,72,74	F-SS	204.00	0.08308	2455.46	3111.46	21.08	### Battelle Ocean Sciences Pre-column individual gravimetric analysis							Avg Oil/	Sum Oil/		---------------------	---------------	----------	-----------	-----------------	-----------------	----------	------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		Field ID	ID	Depth	(mg)	· Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)											94PPT000166	IW58	A-S	178.75	0.02771	6450.74	8708.48	7644.66		94PPT000169	IW60	A-S	33.80	0.02838	1190.98				94PPT000171	IW62	A-S	368.75	0.01995	18483.71				94PPT000167	IW59	A-SS	27.60	0.02857	966.05	1200.69	1212.05		94PPT000170	IW61	A-SS	15.80	0.02769	570.60				94PPT000172	1463	A-SS	60.00	0.02905	2065.40				94PPT000173	1464	B-S	54.50	0.02996	1819.09	8245.52	8135.45		94PPT000175	IW66	B-S	437.50	0.02846	15372.45				94PPT000177	I W68	B-S	213.75	0.02833	7545.01				94PPT000174	IW65	B-SS	24.60	0.02722	903.75	814.92	813.88		94PPT000176	IW67	B-SS	13.80	0.02745	502 .73				94PPT000178	I W6 9	B-SS	28.20	0.02716	1038.29				94PPT000179	IW70	C-S	268.75	0.02783	9656.85	5402.49	5 37 7.46		94PPT000181	IW72	c-s	24.80	0.02842	872.62				94PPT000183	IW74	C-S	168.75	0.02972	5677.99				94PPT000180	IW71	C-SS	13.60	0.02748	494.91	1058.06	1055.08		94PPT000182	IW73	C-SS	3.20	0.02835	112.87				94PPT000184	IW75	C-SS	71.50	0.02786	2566.4				94PPT000185	IW76	D-S	191.00	0.02757	6927.82	11185.07	11020.95		94PPT000187	IW78	D-S	151.00	0.02833	5330.04				94PPT000189	IW80	D-S	568.00	0.02667	21297.34				94PPT000186	IW77	D-SS	17.75	0.02724	651.62	2367.51	2373.91		94PPT000188	IW79	D-SS	113.50	0.02756	.4118.29				94PPT000190	IW81	D-SS	65.50	0.02808	2332.62				94PPT000191	IW82	E-S	146.00	0.02843	5135.42	5488.89	5 3 74.77		94PPT000193	IW84	E-S	258.00	0.02709	9523.81				94PPT000195	IW86	E-S	53.50	0.02960	1807.43				94PPT000192	IW83	E-SS	71.00	0.02893	2454.2	2927.17	2927.54		94PPT000194	1 48 5	E-SS	119.50	0.02874	4157.97				94PPT000196	I W8 7	E-SS	62.00	0.02858	2169.35				94PPT000197	IW88	F-S	468.00	0 .01895	24696.57	13452.48	12130.25		94PPT0001 99	IW90	F-S	97.00	0.02770	3501.81				94PPT000201	I W9 2	F-S	370.00	0.03043	12159.05				94PPT000198	1W89	F-SS	250.00	0.02721	9187.80	10181.41	9393.94		94PPT000200	IW91	F-SS	117.00	0.02866	4082.34				94PPT000202	IW93	F-SS	346.00	0.02003	17274.09			### Battelle Ocean Sciences Pre-column, combined gravimetric analysis					Total Sample	Total		---------------	---------------------	----------	-----------	--------------	------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Oil/Sample		Field ID	ID	Depth	` (mg)	Station (kg)	(mg/kg)		94PPT000-							166, 169, 171	IW58,60,62	A-S	584.38	0.07604	7685.10		167,170,172	IW59,61,63	A-SS	106.00	0.08531	1242.53		173,175,177	1464,66,68	B-S	700.00	0.08675	8069.16		174,176,178	1465,67,69	B-SS	68.40	0.08182	835.98		179,181,183	IW70,72,74	C-S	468.75	0.08597	5452.48		180,182,184	IW71,73,75	C-SS	88.75	0.08369	1060.46		185,187,189	1W76,78,80	D-S	900.00	0.08257	10899.84		186,188,190	IW77,79,81	D-SS	193.75	0.08288	2337.72		191, 193, 195	1482,84,86	E-S	452.50	0.08513	5315.40		192,194,196	IW83,85,87	E-SS	253.75	0.08625	2942.03		197,199,201	1 488 ,90,92	F-S	920.00	0.07708	11935.65		198,200,202	IW89,91,93	F-SS	695.00	0.07590	9156.79	Battelle Ocean Sciences Post-column, combined gravimetric analysis					Total Sample	Post-column	Pre-column			-------------	---------------------	----------	-----------	--------------	-------------	------------	------------		Sample	Battelle	Station/	Total Oil	Dry Weight/.	Total Oil	Total Oil			Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		94PPT000-									166,169,171	1958,60,62	A-S	387.00	0.07604	5089.43	7685.10	33.78		167,170,172	IW59,61,63	A-SS	61.80	0.08531	724.42	1242.53	41.70		173,175,177	1464,66,68	8-8	431.00	0.08675	4968.30	8069.16	38.43		174,176,178	1965,67,69	8-55	42.80	0.08182	523.10	835.98	37.43		179,181,183	IW70,72,74	C-S	313.50	0.08597	3646.62	5452.48	33.12		180,182,184	IW71,73,75	C-SS	55.50	0.08369	663.16	1060.46	37.46		185,187,189	IW76,78,80	D-S	646.00	0.08257	7823.66	10899.84	28.22		186,188,190	1 477 ,79,81	D-SS	155.50	0.08288	1876.21	2337.72	19.74		191,193,195	1482,84,86	E-S	285.00	0.08513	3347.82	5315.40	37.02		192,194,196	1 483 ,85,87	E-SS	199.00	0.08625	2307.25	2942.03	21.58		197,199,201	IW88,90,92	F-S	674.00	0.07708	8744.16	11935.65	26.74		198,200,202	IW89,91,93	F-SS	569.00	0.07590	7496.71	9156.79	18.13	## Battelle Ocean Sciences Pre-column individual gravimetric analysis							Avg Oil/	Sum Oil/		------------------------------	------------	----------	-----------	------------------	-----------------------	-------------------	---------------------------		Sample	Battelle	Station/	Total Dil	Sample Dry	Total Oil/	Station	Station		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)											71PPT000092	1838	A-S	4.60	0 .029 52	155.83	189.09	188.96		71PPT000094	1839	A-S	8.80	0.02960	297.30				71PPT000102	1540	A-S	3.40	0.02979	114.13				71PPT000093	IS41	A-SS	307.00	0.02855	10753.06	4032.58	4387.81		71PPT0000 95	1542	A-SS	23.00	0.01910	1204.19				71PPT000103	1943	A-SS	4.00	0.02847	140.50				71PPT0000 96	1544	B-S	3.40	0.02944	115.49	200.37	200.18		71PPT000104	1\$45	B-S	5.00	0.02963	168.75				71PPT000098	1546	B-S	9.30	0.02935	316.87				71PPT000097	1547	B-SS	358.50	0.01864	19232.83	20118.44	20130.79		71PPT000105	1548	B-SS	409.50	0.01926	21261.68				71PPT000 099	1549	B-SS	371.00	0.01868	19860.81				71PPT000100	1\$50	C-S	11.60	0.02811																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																															
412.66	313.81	311.49		71PPT000106	1851	C-S	11.00	0.02892	380.36				71PPT000108	1852	C-S	4.40	0.02965	148.40				71PPT000101	1853	C-SS	341.00	0.01936	17613.64	13830.97	12453.20		71PPT000107	1854	C-SS	127.50	0.02874	4436.33				71PPT000109	1855	C-SS	363.00	0.01867	19442. 9 6				71PPT000110	1856	D-S	140.00	0.02773	5048.68	5692.65	5181. 05		71PPT000112	1857	D-S	59.40	0.02781	2135.92				71PPT000114	I \$58	D-S	185.50	0.01875	9893.33				71PPT000111	1\$59	D-SS	163.50	0.01969	8303.71	9761.28	8911. 33		71PPT000113	1860	D-SS	318.50	0.01887	16878.64				71PPT000115	IS61	D-SS	118.00	0.02877	4101.49				71PPT000116	1862	E-S	90.00	0.01904	4726.89	1944.82	1 587. 92		71PPT000118	1863	E-S	24.80	0.02889	858.43				71PPT000121	1864	E-S	7.20	0.02890	249.13				71PPT000117	1865	E-SS	377.00	0.01885	20000.00	19676.98	19 67 4.61		71PPT000120	1866	E-SS	327.50	0.01874	17475.99				71PPT 000 122	1867	E-SS	402.00	0.01865	21554.96				71PPT 00 01 23	1868	F-S	71.50	0.02828	2528.29	5450.92	4564 .76		71PPT000125	1869	F-S	250.00	0.01930	12953.37				71PPT 00012 7	1570	F-S	24.60	0.02824	871.10				71PPT000124	1871	F-SS	215.00	0.01919	11203.75	1 6735. 28	167 07. - 0		71PPT000126	1572	F-SS	336.00	0.01924	17463.62				71PPT000128	1873	F-SS	406.00	0.01885	215 38 .46				71PPT000129	IS74MS	A-S	2.60	0.02933					71PPT000129	1 S 74 S D	A-S	52.50	0.02935	1788.76				71PPT000130	1 S75B	A-SS	1.60	0.02839	56.36				71PPT000130	1 S 75 M S	A-SS	4.00	0.02880	138.89				71PPT000130	187580	A-SS	3.10	0.02911	106.49			Battelle Ocean Sciences Pre-column, combined gravimetric analysis Total Sample Total Oil/Sample Sample Battelle Station/ Total Oil Dry Weight/ (mg) Station (kg) (mg/kg) Field ID ID Depth 71PPT000-A-S 188.98 92,94,102 1838,39,40 16.80 0.08890 A-SS 335.00 0.07611 4401.52 93,95,103 IS41,42,43 17,00 96,104,98 1544,45,46 8-S 0.08842 192.26 20189.08 97,105,99 1547,48,49 B-SS 1142.50 0.05659 100,106,108 IS50,51,52 C-S 26.80 0.08668 309.18 101,107,109 IS53,54,55 C-SS 840.00 0.06678 12578.62 110,112,114 IS56,57,58 D-S 383.75 0.07430 5164.87 111,113,115 IS59,60,61 D-SS 606.25 0.06734 9002.82 123.75 0.07683 1610.70 E-S 117,120,122 1565,66,67 E-SS 1145.00 0.05624 20359.17 F-S 338.75 0.07582 4467.82 124,126,128 1571,72,73 F-SS 952.50 0.05728 16628.84 129 IS74HS A-S 2.74 0.02933 93.42 129 27.00 0.02935 919.93 IS74SD A-S 130 1S758 A-SS 1.62 0.02839. 57.06 130 1875MS A-SS 4.22 0.02880 146.53 130 157550 A-SS 2.88 0.02911 98.94 Battelle Ocean Sciences Post-column, combined gravimetric analysis					Total Sample	Post-column				-------------	-------------	----------	-----------	--------------	-------------	-----------	------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Total Oil	Total Oil			Field ID	ID	Depth	(mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		71PPT000-									92,94,102	1\$38,39,40	A-S	9.70	0.08890	109.11	188.98	42.26		93,95,103	1541,42,43	A-SS	268.00	0.07611	3521.22	4401.52	20.00		96,104,98	1544,45,46	B-S	9.60	0.08842	108.57	192.26	43.53		97,105,99	1547,48,49	8-55	974.00	0.05659	17211.52	20189.08	14.75		100,106,108	1850,51,52	C-S	14.60	0.08668	168.44	309.18	45.52		101,107,109	1853,54,55	c-ss	692.00	0.06678	10362.38	12578.62	17.62		110,112,114	1856,57,58	D-\$	260.00	0.07430	3499.33	5164.87	32.25		111,113,115	1859,60,61	D-SS	498.00	0.06734	7395.31	9002.82	17.86		116,118,121	1862,63,64	E-S	85.50	0.07683	1112.85	1610.70	30.91		117,120,122	1865,66,67	E-SS	920.00	0.05624	16358.46	20359.17	19.65		123,125,127	1868,69,70	F-S	271.30	0.07582	3577.55	4467.82	19.93		124,126,128	1871,72,73	F-SS	249.00	0.05728	4347.07	16628.84	73.86		129	IS74MS	A-S	1.38	0.02933	47.05	93.42	49.64		129	1 \$ 74 \$D	A-S	13.25	0.02935	451.45	919.93	50.93		130	15758	A-SS	0.70	0.02839	26.07	57.06	54.32		130	IS75MS	A-SS	1.80	0.02880	63.19	146.53	56.87		130	1 S 75 SD	A-SS	1.40	0.02911	47.41	98.94	52.08										# Battelle Ocean Sciences Pre-column individual gravimetric analysis							Avg Oil/	Sum Oil/		---------------	----------	----------	-----------	-------------	-----------------	-------------------	-------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)											71PPT000341	IR33	A-S	17.60	0.02977	591.20	6689.34	6 388.3 7		71PPT000342	1R34	A-S	7.10	0.02919	243.23				71PPT000343	1R35	A-S	527.00	0.02740	19233.58				71PPT000344	1R36	A-SS	6.50	0.02845	228.47	970. 09	973.18		71PPT000345	IR37	A-SS	8.60	0.02835	303.35				71PPT000346	1R38	A-SS	68.00	0.02859	2378.45				71PPT000347	1R39	8-S	268.75	0.02874	9351.08	6914.66	6862.68		71PPT000348	IR40	8-S	323.75	0.02895	11183.07				71PPT000349	IR41	8-5	6.20	0.02955	209.81				71PPT000350	IR42	B-SS	767.50	0.02858	26854.44	17368.12	17408.74		71PPT000351	1R43	B-SS	182.50	0.02833	6441.93				71PPT000352	IR44	B-SS	547.50	0.02911	18807.97				71PPT000353	IR45	C-S	8.10	0.02875	281.74	601.10	599.68		71PPT000354	IR46	C-S	10.80	0.02935	367.97				71PPT000355	1R47	C-S	33.20	0.02878	1153.58				71PPT000356	IR48	C-SS	440.00	0.02771	15878.74	16259.29	16274.93		71PPT000357	1R49	C-SS	583.50	0.02840	20545.77				71PPT000358	1R50	C-SS	347.50	0.02813	12353.36				71PPT000359	IR53	D-S	55.50	0.02734	2029.99	5022.34	5036.87		71PPT000360	IR54	D-S	270.00	0.02807	9618.81				71PPT000361	IR55	D-S	98.00	0.02867	3418.21				71PPT000362	IR56	D-SS	470.00	0.02902	16195.73	14773.47	14870.54		71PPT000363	1R57	D-SS	197.50	0.02783	7096.66				71PPT000364	IR58	D-SS	607.50	0.02889	21028.04				71PPT000365	IR59	E-S	6.30	0.02860	220.28	4049.85	4049.76		71PPT000366	IR60	E-S	163.75	0.02870	5705.57				71PPT000367	IR61	E-S	177.50	0.02852	6223.70				71PPT000368	IR62	E-SS	515.00	0.02859	18013.29	19 401.7 4	19380.99		71PPT000369	1R63	E-SS	577.50	0.02748	21015.28				71PPT000370	IR64	E-SS	545.00	0.02842	19176.64				71PPT000371	IR65	F-S	120.00	0.02846	4216.44	9145.77	9278. 20		71PPT000372	IR66	F-S	578.75	0.02921	19813.42				71PPT000373	IR67	F-S	95.00	0.02788					71PPT000374	1R68	F-SS	666.25	0.02813		14756.00	1 468 4.48		71PPT000375	1R69	F-SS	412.50	0.02895	14248.70	. 4. 20130			71PPT000375	IR70	F-SS	182.50	0.02881	6334.61				7 177 1000370	1470	1 - 33	102.30	0.02001	١٥.جرين			Battelle Ocean Sciences Pre-column, combined gravimetric analysis	Sample Field ID	Battelle ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Total Oil/Sample (mg/kg)		--------------------	----------------	-------------------	-----------	---------------------------------------	--------------------------------		71PPT000-							341,342,343	IR33,34,35	A-S	547.50	0.08637	6339.01		344,345,346	IR36,37,38	A-SS	85.20	0.08539	997.77		347,348,349	IR39,40,41	8-\$	616.25	0.08724	7063.85		350,351,352	IR42,43,44	B-SS	1576.00	0.08602	18321.32		353,354,355	IR45,46,47	C-S	55.20	0.08688	635.36		356,357,358	IR48,49,50	C-SS	1396.00	0.08424	16571.70		359,360,361	IR53,54,55	D-\$	427.50	0.08408	5084.44		362,363,364	IR56,57,58	D-SS	1312.00	0.08575	15300.29		365,366,367	IR59,60,61	E-S	356.25	0.08582	4151.13		368,369,370	IR62,63,64	E-SS	1655.00	0.08449	19588.12		371,372,373	IR65,66,67	F-S	802.50	0.08555	9380.48		374,375,376	IR68,69,70	F-SS	1270.00	0.08589	14786.35	## Battelle Ocean Sciences Post-column, combined gravimetric analysis	Sample Field ID	Sattelle ID	Station/ Depth	Total Oil	Total Sample Dry Weight/ Station (kg)	Post-column Total Oil Sample (mg/kg)	Pre-column Total Oil Sample (mg/kg)	% Polar Components		--------------------	----------------	-------------------	-----------	---------------------------------------	---	--	-----------------------		71PPT000-									341,342,343	IR33,34,35	A-S	435.00	0.08637	5036.47	6339.01	20.55		344,345,346	IR36,37,38	A-S\$	63.40	0.08539	742.48	997.77	25.59		347,348,349	IR39,40,41	8-\$	449.50	0.08724	5152.45	7063.85	27.06		350,351,352	IR42,43,44	8-SS	1254.00	0.08602	14578.01	18321.32	20.43		353,354,355	IR45,46,47	C-S	16.93	0.08688	194.9	635.36	69.32		356,357,358	IR48,49,50	C-SS	1174.00	0.08424	13936.37	16571.70	15.90		359,360,361	IR53,54,55	D-S	327.50	0.08408	3895.1	5084.44	23.39		362,363,364																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
IR56,57,58	D-SS	1118.00	0.08575	13037.9	15300.29	14.79		365,366,367	IR59,60,61	E-S	265.50	0.08582	3093.68	4151.13	25.47		368,369,370	IR62,63,64	E-S\$	1406.00	0.08449	16641.02	19588.12	15.05		371,372,373	IR65,66,67	F-S	639.00	0.08555	7469.32	9380.48	20.37		374,375,376	IR68,69,70	F-SS	1076.00	0.08589	12527.65	14786.35	15.28	### Battelle Ocean Sciences Pre-column individual gravimetric analysis							Avg Oil/	Sum Oil/		---------------------	----------	----------	-----------	-------------	-------------------	----------	-------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)		0/00017	*****						_		94PPT000047	IU01	A-S	82.50	0.02764	2984.80	1734.19	1 703. 49		94PPT000049	1U03	A-S	59.00	0.02880	2048.61				94PPT000051	1005	A-S	5.00	0.02956	169.15				94PPT000048	IU02	A-SS	38.80	0.02855	1359.02	1667.00	1 670. 76		94PPT000050	IU04	A-SS	99.50	0.02862	3476.59				94PPT000052	1006	A-SS	4.70	0.02842	165.38				94PPT000053	1007	B-S	30.60	0.02910	1051.55	3707.45	2872.90		94PPT000055	1009	8-8	193.00	0.01919	10057.32				94PPT000057	IU11	8-8	0.40	0.02968	13.48				94PPT000054	1U08	B-SS	338.00	0.01933	17485.77	15672.11	1 5659.7 5		94PPT000056	IU10	8-88	353.40	0.01886	18 738. 07				94PPT000058	IU12	B-SS	207.00	0.01918	10 79 2.49				94PPT000059	IU13	C-S	13.50	0.02879	.468.91	522.96	523.09		94PPT000061	IU15	C-S	10.60	0.02889	366.91				94PPT000063	IU17	C-S	21.20	0.02892	733.06				94PPT000060	IU14	C-SS	448.50	0.01869	23996.79	14241.28	14110.59		94PPT000062	IU16	C-SS	155.00	0.01958	7916.24				94PPT000064	IU18	C-SS	208.00	0.01924	10810.81				94PPT000065	IU19	D-S	104.00	0.02805	3707.66	1641.61	1627.34		94PPT000067	IU21	D-S	6.00	0.02939	204.15				94PPT000069	1023	D-S	27.25	0.02690	1013.01				94PPT000066	IU20	D-SS	280.00	0.01924	14553.01	13262.51	13230.74		94PPT000068	IU22	D-SS	181.50	0.01969	9217.88				94PPT000070	IU24	D-SS	308.00	0.01923	16016.64				94PPT000071	IU25	E-S	167.00	0.02862	5835.08	2663.69	2666. 36		94PPT000073	IU27	E-S	22.20	0.02799	793.14				94PPT000075	1029	E-S	40.00	0.02935	1362.86				94PPT000072	IU26	E-SS	322.00	0.01866	17256.16	17388.94	17389.04		94PPT000074	IU28	E-SS	360.50	0.01946	18525.18				94PPT000076	IU30	E-SS	320.50	0.01956	16385.48				94PPT000077	IU31	F-S	15.70	0.02971	528.44	940.16	927. 95		94PPT000079	IU33	F-S	59.00	0.02858	2064.38	, ,,,,,,	, , ,		94PPT000081	1035	F-S	6.70	0.02943	227.66				94PPT00 0078	IU32	F-SS	313.00	0.01888	16578.39	13727.26	13737.43		94PPT000080	1034	F-SS	285.00	0.01901	14992.11	13121.20	12,21.73		94PPT000082	IU36	F-SS	180.50	0.01878	9611.29				747 F 100000E	.0.50	1 33	100.30	0.010/0	7011.29			### Battelle Ocean Sciences Pre-column, combined gravimetric analysis				Total Sample	Total		--------------	--	---	--	---		Battelle	Station/	Total Oil	Dry Weight/	Oil/Sample		ID	Depth	; (mg)	Station (kg)	(mg/kg)								IU01,03,05	A-S	142.50	0.08599	1657.17		1002,04,06	A-SS	144.50	0.08558	1688.48		IU07,09,11	B-S	224.00	0.07797	2872.90		IU08, 10, 12	B-SS.	935.00	0.05736.	16300.56		IU13,15,17	c-s	44.00	0.08659	508.14		1014, 16, 18	C-SS	822.00	0.05751	14293.17		1019,21,23	D-S	135.00	0.08434	1600.66		1020,22,24	D-SS	812.50	0.05816	13970.08		IU25,27,29	E-S	232.50	0.08597	2704.43		1026,28,30	E-SS	1020.00	0.05768	17683.77		1u31,33,35	F-S	81.88	0.08772	933.37		1U32,34,36	F-SS	790.00	0.05668	13937.90			ID IU01,03,05 IU02,04,06 IU07,09,11 IU08,10,12 IU13,15,17 IU14,16,18 IU19,21,23 IU20,22,24 IU25,27,29 IU26,28,30 IU31,33,35	ID Depth IU01,03,05 A-S IU02,04,06 A-SS IU07,09,11 B-S IU08,10,12 B-SS IU13,15,17 C-S IU14,16,18 C-SS IU19,21,23 D-S IU20,22,24 D-SS IU25,27,29 E-S IU26,28,30 E-SS IU31,33,35 F-S	ID Depth (mg) IU01,03,05 A-S 142.50 IU02,04,06 A-SS 144.50 IU07,09,11 B-S 224.00 IU08,10,12 B-SS 935.00 IU13,15,17 C-S 44.00 IU14,16,18 C-SS 822.00 IU19,21,23 D-S 135.00 IU20,22,24 D-SS 812.50 IU25,27,29 E-S 232.50 IU26,28,30 E-SS 1020.00 IU31,33,35 F-S 81.88	Battelle Station/ Total Oil Dry Weight/ ID Depth (mg) Station (kg) IU01,03,05 A-S 142.50 0.08599 IU02,04,06 A-SS 144.50 0.08558 IU07,09,11 B-S 224.00 0.07797 IU08,10,12 B-SS 935.00 0.05736 IU13,15,17 C-S 44.00 0.08659 IU14,16,18 C-SS 822.00 0.05751 IU19,21,23 D-S 135.00 0.08434 IU20,22,24 D-SS 812.50 0.08597 IU26,28,30 E-SS 1020.00 0.05768 IU31,33,35 F-S 81.88 0.08772	Battelle Ocean Sciences Post-column, combined gravimetric analysis	Sample Field ID	Battelle ID	Station/ Depth	Total Oil	Total Sample. Dry Weight/ Station (kg)	Post-column Total Oil Sample (mg/kg)	Pre-column Total Oil Sample (mg/kg)	% Polar Components		--------------------	----------------	-------------------	-----------------	--	---	--	-----------------------		94PPT000-									047,049,051	1001,03,05	A-S	78.00	0.08599	907.08	1657.17	45.26		048,050,052	1002,04,06	A-SS	95.50	0.08558	1115.91	1688.48	33.91		053,055,057	1007,09,11	B-S	143.00	0.07797	1834.04	2872.90	36.16		054,056,058	1008, 10, 12	B-SS	776.00	0.05736	13528.59	16300.56	17.01		059,061,063	tu13,15,17	C-S	10.80	0.08659	124.73	508.14	75.45		060,062,064	IU14,16,18	c-ss	595.00	0.05751	10346.03	14293.17	27.62		065,067,069	IU19,21,23	D-S	77.00	0.08434	913.00	1600.66	43.00		066,068,070	IU20,22,24	D-\$\$	694.50	0.05816	11941.20	13970.08	14.50		071,073,075	1U25,27,29	E-S	131.00	0.08597	1523.80	2704.43	43.70		072,074,076	1026,28,30	E-\$\$	888.50	0.05768	15404.00	17683.77	12.90		077,079,081	1031,33,35	F-S	43.80	0.08772	498.70	933.37	46.60		078,080,082	1032,34,36	F-SS	61 6.5 0	0.05668	10876.90	13937.90	22.00	Battelle Ocean Sciences Pre-column individual gravimetric analysis							Avg Oil/	Sum Oil/		-------------	----------	----------	----------------	-------------	-----------------	----------	-------------------		Sample	Battelle	Station/	Total Oil	Sample Dry	Total Oil/	Station	Station		Field ID	ID	Depth	(mg)	Weight (kg)	Station (mg/kg)	(mg/kg)	(mg/kg)											94PPT000109	IW01	A-S	23.00	0.02918	788.21	524.86	524.04		94PPT000111	1W03	A-S	14.60	0.02932	497.95				94PPT000113	I W05	A-S	8.50	0.02947	288.43				94PPT000110	1W02	A-SS	1.35	0.02899	46.57	6775.35	5 05 8.60		94PPT000112	1W04	A-SS	11.60	0.02891	401.25				94PPT000114	1W06	A-SS	375.50	0.01889	19878.24				94PPT000115	IW07	B-S	35.60	0.02971	1198.25	3141.57	2504.79		94PPT000117	IW09	8-8	6.00	0.02932	204.64				94PPT000119	IW11	8-5	154.50	0.01926	8021.81				94PPT000116	1W08	B-SS	386.50	0.01864	20734.98	21296.33	21289.75		94PPT000118	IW10	B-SS	407.50	0.01844	22098.70				94PPT000120	IW12	B-SS	411.00	0.01952	21055.33				94PPT000121	IW13	C-S	69.00	0.02892	2385.89	2298.51	2034.27		94PPT000123	IW15	C-S	5.20	0.02906	178.94				94PPT000125	IW17	C-S	82.50	0.01905	4330.71				94PPT000122	IW14	C-SS	234.00	0.01953	11981.57	10264.89	10193.89		94PPT000124	IW16	C-SS	66.60	0.01974	3373.86				94PPT000126	IW18	C-SS	293.50	0.01901	15439.24				94PPT000127	IW19	D-S	148.50	0.01867	7953.94	3505.63	2951.17		94PPT000129	IW21	D-S	11.30	0.02818	400.99				94PPT000131	IW23	D-S	59.00	0.02729	2161.96				94PPT000128	1W20	D-SS	299.00	0.01968	15193.09	13284.78	13323.28		94PPT000130	1W22	D-SS	346.25	0.01927	17968.34				94PPT000132	IW24	D-SS	127.50	0.01905	6692.91				94PPT000135	IW27	E-S	116.25	0.02724	4267.62	5867.46	5160.14		94PPT000137	IW29	E-S	240.00	0.01951	12301.38				94PPT000139	IW31	E-S	28.80	0.02787	1033.37																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
94PPT000134	1W26	E-SS	388.75	0.01832	21219.98	17066.15	17029.24		94PPT000136	1W28	E-SS	247.50	0.01881	13157.89				94PPT000138	IW30	E-SS	318.75	0.01895	16820.58				94PPT000133	IW25	F-S	75.00	0.02790	2688.17	4915.33	4800. 50		94PPT000141	1W33	F-S	318.75	0.02716	11736.01				94PPT000143	1W35	F-S	9.30	0.02890	321.80				94PPT000140	1W32	F-SS	287.50	0.01878	15308.84	17081.94	17 05 3.48		94PPT000142	1W34	F-SS	448.75	0.01878	23895.10				94PPT000144	IW36	F-SS	230.0 0	0.01910	12041.88												Battelle Ocean Sciences Pre-column, combined gravimetric analysis					Total Sample	Total		---------------	--------------	----------	-----------	--------------	------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Oil/Sample		Field ID	ID	Depth	· (mg)	Station (kg)	(mg/kg)		94PPT000-							109,111,113	IW01,03,05	A-S	45.80	0.08796	520.69		110,112,114	IW02,04,06	A-SS	365.00	0.07678	4753.84		115,117,119	IW07,09,11	B-S	190,50	0.07829	2433.26		116,118,120	IW08, 10, 12	B-SS	1116.00	0.05661	19713.83		121,123,125	IW13,15,17	C-S	150.50	0.07702	1954.04		122,124,126	IW14,16,18	C-SS	563.75	0.05828	9673.13		127,129,131	IW19,21,23	D-S	225.00	0.07414	3034.80		128,130,132	IW20,22,24	D-SS	1023.75	0.05800	17650.86		135,137,139	IW27,29,31	E-S	410.63	0.07462	5502.88		134, 136, 138	IW26,28,30	E-SS	1002.50	0.05609	17873.06		133,141,143	IW25,33,35	F-S	434.38	0.08396	5173.59		140,142,144	IW32,34,36	F-SS	995.00	0.05666	17560.89	### Battelle Ocean Sciences Post-column, combined gravimetric analysis					Total Sample	Post-column	Pre-column			---------------	-------------	----------	-----------	--------------	-------------	------------	----------------		Sample	Battelle	Station/	Total Oil	Dry Weight/	Total Oil	Total Oil			Field ID	ID	Depth	. (mg)	Station (kg)	Sample	Sample	% Polar							(mg/kg)	(mg/kg)	Components		94PPT000-									109,111,113	I₩01,03,05	A-S	21.60	0.08796	245.57	520.69	52.84		110,112,114	IW02,04,06	A-SS	297.50	0.07678	3874.71	4753.84	18.49		115,117,119	.IW07,09,11	B-S	125.00	0.07829	1596.63	2433.26	34.38		116,118,120	IW08,10,12	B-SS	920.00	0.05661	16251.55	19713.83	17.56		121,123,125	IW13,15,17	C-S	106.00	0.07702	1376.27	1954.04	29.57		122,124,126	IW14,16,18	c-ss	437.50	0.05828	7506.86	9673.13	22.39		127,129,131	IW19,21,23	D-S	162.75	0.07414	2195.17	3034.80	27.67		128,130,132	IW20,22,24	D-SS	847.00	0.05800	14603.45	17650.86	17.26		135,137,139	IW27,29,31	E-S	282.50	0.07462	3785.85	5502.88	31.20		134, 136, 138	IW26,28,30	E-SS	838.00	0.05609	14940.27	17873.06	16.41		133,141,143	IW25,33,35	F-S	309.50	0.08396	3686.28	5173.59	2 8.7 5		140,142,144	IW32,34,36	F-SS	823.00	0.05666	14525.24	17560.89	17.29										### APPENDIX D3, SECTION 3 Distribution of Total Extractable Hydrocarbon in Sediment Samples The graphs show the distribution histograms of the individual samples, with the data treated arithmetically, and as natural logarithms. The data are those presented in Tables 5-7 of the main report. KN-132B, Surface, All Days Group 1 is 0-5 g/Kg KN-132B, Surface, All Days Natural Log, Group 1 is 2.5-3.0 ### KN-135B, Surface, All Days Group 1 is 0-5 g/Kg KN-135B, Surface, All Days Natural Log, Group 1 is 2.5-3.0 ### KN-135B, Subsurface, All Days Group 1 is 0-5 g/Kg KN-135B, Subsurface, All Days Natural Log, Group 1 is 2.5-3.0 KN-211E, Surface, All Days Group 1 is 0-5 g/Kg KN-211E, Surface, All Days Natural Log, Group 1 is 2.5-3.0 ### KN-211E, Subsurface, All Days Group 1 is 0-5 g/Kg KN-211E, Subsurface, All Days Natural Log, Group 1 is 2.5-3.0 APPENDIX D3, SECTION 4 Data Tables of Oil Analyses Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle Lab ID	A-S 1N81,82,83	8-S 1N84,85,86	C-S IN87,88,89	D-S IN90,91,92	E-S 1N93,94,95	F-S IN96,97,98		-------------------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------		C10	ND	ND	ND	ND	ND	ND		C11	ND	ND	ND	ND	ND	ND		C12	ND	ND	ND	ND	ND	ND		C13	ND	ND	ND	ND	ND	ND		C14	0.425	ND	0.258	1.389	ND	ND		C15	1.480	0.078	0.863	4.581	ND	0.041		C16	1.941	0.133	1.104	6.196	0.094	0.060		C17	2.784	0.240	1.404	7.920	0.173	0.120		Pristane	6.124	0.892	3.840	18.675	0.738	0.449		C18	3.500	0.306	2.180	12.623	0.233	0.137		Phytane	6.495	0.883	4.145	20.899	0.773	0.409		C19	2.800	0.306	1.609	9.862	0.231	0.146		C20	2.805	0.349	1.418	8.422	0.276	0.210		C21	3.075	0.661	1.786	9.748	0.455	0.054		C22	2.835	0.473	1.717	9.383	0.489	0.262		C23	2.656	0.344	1.508	9.276	0.354	0.136		C24	2.928	0.498	1.882	11.947	0.493	0.235		C25	3.138	0.492	1.878	12.991	0.479	0.225		C26	2.863	0.385	1.619	9.384	0.324	0.178		C27 ·	2.364	0.324	1.367	7.773	0.279	0.140		C28	3.642	1.020	1.728	11.217	1.037	0.356		C29	2.870	0.644	1.768	8.154	0.803	0.241		C30	2.912	0.496	1.545	8.428	0.492	0.249		C31	1.984	0.369	1.204	6.311	0.396	0.155		C32	1.509	0.291	0.944	4.802	0.386	0.124		C33	1.970	0.601	1.555	5.970	0.773	0.341		C34	2.360	0.863	1.797	7.852	0.765	0.350		OTP (% Recovery)	82	80	81	77	83	84		Total H.C.	2130.02	687.59	1521.15	6344.44	831.67	446.36		Pristane/Phytane	0.94	1.01	0.93	0.89	0.95	1.10		C17/Pristane	0.45	0.27	0.37	0.42	0.23	0.27		C18/Phytane	0.54	0.35	0.53	0.60	0.30	0.33		TALK	52.84	8.87	31.13	174.23	8.53	3.76		LALK	15.74	1.41	8.84	50.99	1.01	0.71		LALK/TALK	0.30	0.16	0.28	0.29	0.12	0.19	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20)	Station ID-Depth: Battelle Lab ID:	A-S IN81,82,83	B-S 1N84,85,86	C-S 1N87,88,89	D-S IN90,91,92	E-S IN93,94,95	F-S 1N96,97,98	NA 521 oil	NA 521 oil		---	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-----------------	------------------		Analyte naphthalene C1-naphthalenes	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	26.27 277.39	26.33 281.57		C2-naphthalenes	0.05	ND	0.03	0.09	ND	0.00	919.53	926.63		C3-naphthalenes	0.64	ND	0.36	1.48	0.03	0.03	1076.73	1090.16		C4-naphthalenes	2.12	0.25	1.29	6.13	0.13	0.13	882.64	890.76		acenaphthylene	ND	acenaph thene	ND ND	ND ND		fluorene	ND 0.47	ND	ND 0.44	ND 0.37	ND ND	ND 0.01	75.67 241.14	79.80 246.72		C1-fluorenes	0.17 1.14	0.02 0.17	0.11 0.74	3.90	0.12	0.01	451.68	490.42		C2-fluorenes C3-fluorenes	1.48	0.17	1.03	5.14	0.12	0.19	468.53	480.09		anthracene	ND	phenanthrene	ND	ND	ND	ND	ND	ND	311.52	313.70		C1-phenanthrenes/anthracenes	0.38	0.05	0.15	0.35	0.06	0.02	804.56	812.71		C2-phenanthrenes/anthracenes	2.41	0.52	1.49	7.49	0.39	0.27	1011.71	1021.54		C3-phenanthrenes/anthracenes	2.74	0.68	1.84	9.32	0.56	0.40	756.44	763.26		C4-phenanthrenes/anthracenes	1.72	0.57	ND	6.29	0.61	0.33	474.45	461.85		dibenzothiophene	ND	ND	ND	, ND	ND	ND	249.34	254.34		C1-dibenzothiophenes	0.36	0.05	0.18	0.46	0.05	0.02	455.83	471.57		C2-dibenzothiophenes	2.69	0.57	1.65	8.77	0.41	0.26	864.51	886.27		C3-dibenzothiophenes	3.34	0.90	2.24	11.31	0.71	0.49	820.97	838.63		fluoranthene	ND	ND 0.03	ND 0.04	ND 0.19	ND 0.02	ND 0.01	ND 14.54	ND 15.11		pyrene	0.06 0.50	0.02 0.14	0.34	1.33	0.02	0.06	113.06	118,93		C1-fluoranthenes/pyrenes	ND	U. 14 ND	ND	ND	ND	ND	ND	ND		benzo(a)anthracene chrysene	0.38	0.15	0.25	0.97	0.14	0.05	57.46	60.05		C1-chrysenes	0.50	0.26	0.46	1.89	0.27	0.11	112.71	109.23		C2-chrysenes	0.93	0.35	0.65	2.47	0.37	0.19	173.17	168.00		C3-chrysenes	0.71	0.28	0.55	1.82	0.33	0.16	127.91	130.48		C4-chrysenes	ND	benzo(b)fluoranthene	0.06	ND	0.04	0.15	0.02	0.01	8.63	8.72		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	0.01	ND	ND	ND	ND	ND	ND		indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	ND	ND	ND	ND 0.07	ND	ND 5.75	ND		benzo(g,h,i)perylene	0.04	0.02	0.03	0.09 70.02	0.03 4.63	0.01 2.84	10782.14	5.44 10952.31		Total PAH	22.57	5.32	13.47	70.02 7.35	1.53	0.73	318.17	345.63		C30a,B (hopane)	2.40	1.08	1.82	7.35	1.53	0.75	310.17	347.03		d8-naphthalene (% Rec):	73	57	63	82	64	61	106	104		d10-fluorene (% Rec):	82	69	78	87	76	69	101	101		d12-chrysene (% Rec):	88	75	81	89	77	69	96	95	Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle Lab ID	A-S IR87, 8 8,89	B-S IR90,91,92	C-S IR93,94,95	D-S IR97,98,99	E-S ISO1,02,03	F-S IS04,05,06	NA 521 oil		-------------------------------------	----------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	---------------		C10	ND	C11	ND	C12	ND	C13	ND	ND	ND	ND 0 (05	ND	ND	219.647		C14	0.455	ND	1.111	0.485	ND	ND	767.102		C15	1.450	ND 0.473	3.381	1.796	ND 0. 103	ND 0.034	1489.993		C16	1.798	0.132	3.993	2.029	0.102	0.024	1930.046		C17	2.317	0.310	4.839	2.805	0.252	0.039	2478.727		Pristane	5.412	0.785	12.882	8.268	0.919	0.261	1526.736		C18	3.264	0.350	6.738	3.888	0.312	0.062	3102.561		Phytane	5.738	0.810	13.684	9.396	0.801	0.191	1626.569		C19	2.507	0.368	5.298	3.664	0.339	0.057	3664.348		C20	2.297	0.547	5.117	3.207	0.459	0.062	3229.352		C21	2.252	0.422	4.947	3.578	0.400	0.082	3114.174		C22	2.330	0.711	4.778	3.890	0.651	0.140	3035.105		C23	2.193	0.666	4.703	3.398	0.200	0.027	2705.964		C24	2.355	0.493	4.601	3.091	0.557	0.098	2542.130		C25	2.239	0.595	5.077	3.692	0.580	0.114	2248.327		C26	2.045	0.468	4.611	3.165	0.439	0.077	1931.222		C27	1.773	0.352	3.778	2.695	0.414	0.078	1427.298		C28	2.280	0.948	4.972	3.812	0.642	0.229	1118.152		C29	1.749	0.955	4.171	3.463	0.936	0.206	1017.787		C30	2.101	0.593	4.009	2.664	0.539	0.126	805.011		C31	1.462	0.348	3.530	2.233	0.405	0.089	692.901		C32	1.219	0.288	2.902	1.849	0.380	0.105	489.071		C33	1.603	0.778	3.424	2.652	0.845	0.207	540.465		C34	2.013	0.764	4.073	3.015	0.828	0.215	487.548		OTP (% Recovery)	62	56	72	69	68	63	8 2		Total HC	2047.76	1078.88	3934.88	3589.02	899.41	241.93	520743.99		Pristane/Phytane	0.94	0.97	0.94	0.88	1.15	1.36	0.94		C17/Pristane	0.43	0.39	0.38	0.34	0.27	0.15	1.62		C18/Phytane	0.57	0.43	0.49	0.41	0.39	0.33	1.91		TALK	41.70	10.09	90.05	61.07	9.28	2.04	39036.93		LALK	14.09	1.71	30.48	17.87	1.46	0.24	16881.78		LALK/TALK	0.34	0.17	0.34	0.29	0.16	0.12	0.43										TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Exxon Bioremediation Project (N0531-2971) Beach KN132, Time Series 29 #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/Kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth: Battelle Lab ID:	A-S IR87,88,89	B-S IR90,91,92	C-S 1R93,94,95	D-S IR97,98,99	E-S ISO1,02,03	F-S IS04,05,06	NA 521 oil		---------------------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	----------------------		Analyte	• •				• •	, ,			naphthalene	ND	0.00	ND	ND	0.00	0.00	27.64		C1-naphthalenes	ND	ND	ND	ND	0.00	0.00	298.18		C2-naphthalenes	0.03	ND	0.08	ND	0.02	0.00	992.61		C3-naphthalenes	0.49	0.04	1.15	0.37	0.04	0.01	1162.65		C4-naphthalenes	1.97	0.27	4.77	3.44	0.19	0.03	962.68			ND ND		acenaphthylene	ND	acenaphthene	ND	ND	ND	ND ND	ND	ND	81.77		fluorene					ND				C1-fluorenes	0.19	ND	0.26	ND 2 04		ND	252.44		C2-fluorenes	1.16	0.24	2.36	2.01	0.15	0.02	511.45		C3-fluorenes	1.81	0.57	3.75	3.62	0.31	0.05	549.88		phenanthrene	ND	ND	ND	ND	0.01	0.00	339.05		anthracene	ND	C1-phenanthrenes/anthracenes	0.28	0.09	0.44	ND	0.10	0.01	884.16		C2-phenanthrenes/anthracenes	2.39	0.80	4.65	4.15	0.54	0.11	1198.64		C3-phenanthrenes/anthracenes	3.12	1.32	6.13	6.60	0.80	0.17	933.80		C4-phenanthrenes/anthracenes	1.95	0.95	3.33	3.99	0.56	0.12	486.57		dibenzothiophene	ND	ND	ND	ND	0.01	0.00	295.95		C1-dibenzothiophenes	0.28	0.05	0.48	0.16	0.05	0.01	509.95		C2-dibenzothiophenes	2.78	0.87	5.63	4.79	0.55	0.10	1028.53		C3-dibenzothiophenes	3.69	1.76	7.48	7.82	1.01	0.21	1002.02		fluoranthene	ND	pyrene	0.07	0.04	0.12	0.13	0.03	0.00	16.07		C1-fluoranthenes/pyrenes	0.52	0.29	0.94	0.94	0.21	0.03	142.89		benzo(a)anthracene	ND		0.38	0.31	0.61	0.63	0.27	0.04	62.24		chrysene	0.73	0.52	1.19	1.16	0.45	0.08	123.11		C1-chrysenes	1.11	0.76	1.79	1.74	0.65	0.13	197.16		C2-chrysenes	0.70	0.47	1.21	1.10	0.42	0.09	132.21		C3-chrysenes		ND	ND	ND	ND	ND	ND		C4-chrysenes	ND O OF		0.09	0.10	0.05	0.01	9.89		benzo(b)fluoranthene	0.05	0.04					9.09 ND		benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND			benzo(a)pyrene	0.01	ND	ND	ND	ND	ND	ND		indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	0.00	ND		benzo(g,h,i)perylene	0.03	0.03	0.05	0.06	0.03	0.01	4.98		Total PAH	23.74	9.42	46.51	42.81	6.45	1.24	12206.50		C30a,8 (hopane)	2.32	1.91	3.61	3.96	2.06	0.45	308.77		Surrogate Recoveries									d8-naphthalene	64	7 7	75	7 0	84	80	112		d10-fluorene	62	89	73	72	79	72	106		d12-chrysene	71	128	80	72	151	102	108		OTE OIL VOCING	, ,	120	00	7.5			, , ,	Battelle Ocean Sciencea Sediment PHC Data in mg/kg Dry Weigh Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	A-S 1077,78,79	8-S 1U80,81,82	C-S 1U 83,8 4,85	D-S 1U87,88,89	E-S IU90,91,92	F-S 1U93,94,95	521 oil		---------------------------------	-------------------	-------------------	----------------------------	-------------------	-------------------	-------------------	---------------------			***								C10	ND	C11	ND	ND	MD	ND	ND	MD	ND		C12	ND	C13	ND ND	ND	ND 2.111	ND ND	ND ND	ND	223.539		C14	ND	ND ND	5.598	ND	ND	ND ND	751.467 1447.781		C15	0.159	ND ND	6.885	ND	ND	ND ND	2054.517		C16 C17	0.139	UN CN	7.537	ND	ND	0.062	2593.330		PRISTANE	0.194	0.780	13.500	4.696	0.371	0.345	1512.716		C18	0.347	0.780 ND	7.837	4.090 ND	ND	0.077	3524.861		PHYTANE	0.347	0.820	11.089	5.458	0.338	0.235	1942,190		C19	0.295	ND	7.285	ND	0.144	0.095	3590.389		C20	0.194	ND	6.430	ND	ND	0.060	3405.738		C21	0.231	ND	6.871	ND	0.112	0.070	3100.503		C22	0.263	ND	7.478	ND	0.235	0.132	3125.229		C23	0.345	ND	7.190	ND	0.213	ND	2781.902		C24	0.245	ND	6.526	ND	0.160	0.087	2585.491		C25	0.324	0.228	6.581	1.622	0.240	0.144	2306.754		C26	0.288	ND	5.959	1.400	0.174	0.105	2167.446		C27	0.273	ND	4.771	1.329	0.184	0.111	1441.866		C28	0.345	0.302	4.377	1.522	0.299	0.199	1381.074		C29	0.318	0.204	4.702	1.654	0.253	0.175	1091.070		C30	0.150	ND	3.742	ND	ND	0.131	822.188		C31	0.199	0.178	3.952	ND	0.166	0.116	754.899		C32	0.110	ND	2.571	ND	MD	0.066	523.001		c33	0.356	0.346	3.419	2.082	0.351	0.234	600.660		C34	0.326	0.372	3.084	ND	0.295	0.223	567.867		OTP (% Recovery)	D.O.	D.O.	90	91	D.O.	86	113		Total HC	421.33	813.51	4455.32	5088.72	447.05	295.18	569996.60		Pristane/Phytane	0.91	0.95	1.22	0.86	1.10	1.47	0.78		C17/Pristane	0.45	NA	0.56	NA	NA	0.18	1.71		C18/Phytane	0.74	NA	0.71	NA	NA	0.33	1.81		TALK	4.96	1.63	114.91	9.61	2.83	2.09	40841.57		LALK	1.19	NA	43.68	NA	0.14	0.29	17591.62		LALK/TALK	0.24	NA	0.38	NA	0.05	0.14	0.43	TALK = Total n-Aikanes (C10 - C34) LALK = Light n-Aikanes (C10 - C20)	Station-Depth: Battelle Lab ID:	A-S 1077,78,79	B-\$ IU80,81,82	C-S IU83,84,85	D-S IU89,87,88	E-\$ IU90,91,92	F-S 1U93,94,95	NA 521 oil	NA 521 oil		--	-------------------	--------------------	-------------------	-------------------	--------------------	-------------------	------------------	------------------		Analyte naphthalene	0.01	ND	ND	ND	ND	0.00	28.81	29.41		C1-naphthalenes	ND	ND	ND	ND	ND	ND	302.51	305.93		C2-naphthalenes	ND	ND	0.45	ND	ND	ND	986.63	995.97		C3-naphthalenes	0.01	ND	2.26	0.18	ND	0.01	1153.95	1153.85		C4-naphthalenes	0.08	0.28	4.80	2.75	0.04	0.04	921.70	913.48		acenaph thy lene	ND	acenaphthene	0.00	ND	fluorene	ND	ND	ND 0.50	ND	ND	ND	76.87	80.48		C1-fluorenes	ND 0.05	ND 0.34	0.50	ND 2 01	ND	ND 0.07	250.29	255.83		C2-fluorenes	0.05	0.21	2.43	2.01 4.34	0.05 0.12	0.03 0.07	491.80 539.77	474.37 537.51		C3-fluorenes	0.10 0.00	0.46 ND	3.68 ND	4.34 ND	ND	ND	339.77 ND	737.71 ND		anthracene	0.03	ND	ND ND	0.23	ND	ND	336.42	355.97																																																																																																																																																																																																																																																																																																																																																																																																																												
phenanthrene	0.05	ND	0.83	ND	0.03	0.02	845.44	861.79		C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes	0.22	0.43	4.35	4.18	0.18	0.12	1153.71	1172.78		C3-phenanthrenes/anthracenes	0.35	0.90	6.50	8.26	0.31	0.24	898.33	898.68		C4-phenanthrenes/anthracenes	0.35	0.79	4.30	6.52	0.34	0.21	549.76	556.79		dibenzothiophene	ND	ND	0.07	ND	ND	ND	292.83	313.24		C1-dibenzothiophenes	. 0.02	ND	0.80	ND	0.02	0.01	495.90	528.64		C2-dibenzothiophenes	0.20	0.55	5.82	4.44	0.15	0.11	990.59	1033.09		C3-dibenzothiophenes	0.38	1.11	8.01	9.05	0.33	0.25	948.33	978.15		fluoranthene	0.03	ND	ND	0.44	ND	ND	ND	ND		pyrene	0.03	0.03	0.11	0.42	0.01	0.00	13.95	15.55		C1-fluoranthenes/pyrenes	0.08	0.20	1.02	1.34	0.07	0.03	127.49	129.01		benzo(a)anthracene	0.01	ND	chrysene	0.09	0.16	0.57	0.83	0.10	0.03	62.26	77.95		C1-chrysenes	0.13	0.27	1.12	1.59	0.18	0.07	121.29	138.19		C2-chrysenes	0.18	0.40	1.62	2.33	0.26	0.11	179.90	195.31		C3-chrysenes	0.14	0.30	1.20	1.59	0.21	0.08	139.37	146.74		C4-chrysenes	ND	benzo(b)fluoranthene	0.02	0.02	0.09	0.13	0.02	0.01	8.38	9.45		benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND	NĐ	ND		benzo(a)pyrene	0.01	ND	indeno(1,2,3-c,d)pyrene	ND	ND	ND	ND	ND	ND ND	ND	ND		dibenzo(a,h)anthracene	ND 0.01	ND 0 03	ND 0.05	ND 0.07	ND 0.02	ND 0.01	ND 4.63	ND 5.32		benzo(g,h,i)perylene	0.01 2.60	0.02 6.11	50.57	50.72	2.43	1.45	11920.93	12163.48		Total PAH	0.68	0.89	3.57	4.92	0.82	0.51	311.53	326.84		C30a,B (hopane)	0.00	0.09	3.57	4.72	0.02	0.51	311.33	320.04		Surrogate Recoveries										d8-nachthal and	98	105	89	101	55	94	119	121		d8-naphthalene d10-flourene	110	95	99	112	53	85	110	107		d12-chrysene	141	132	100	103	137	116	110	125		UIL CITYSCHE	141	136	100	103	.57			14.5	Exxon Bioremediation Project (N0531-2994) Beach KN132 - Time Series 95 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	A-S IW39,40,41	B-S IW42,43,44	C-S 1W45,46,47	D-S 1 448,49,5 0	E-S IW51,52,53	F-\$ IW54,55,56	NA 521 oil	NA 600 oil		---------------------------------	-------------------	-------------------	-------------------	--------------------------------	-------------------	--------------------	----------------------	------------------		C10	ND	C11	ND	C12	ND	ND	ND	ND	ND	ND	37.180	ND		C13	ND	ND	ND	ND	ND	ND	220.210	ND		C14	ND	ND	1.324	0.885	ND	ND	973.121	ND		C15	ND	ND	4.172	3.388	ND	ND	1541.975	ND		C16	0.113	ND	5.366	4.140	ND	ND	1954.040	ND		C17	0.240	0.342	8.777	6.986	0.126	ND	3154.182	215.888		PRISTANE	0.615	1.655	12.310	12.174	0.555	0.297	1476.538	114.335		C18	0.207	0.237	6.126	4.806	0.096	ND	2931.367	762.965		PHYTANE	0.353	1.397	8.636	8.454	0.374	0.118	1642.220	486.240		C19	0.250	0.357	5.029	4.488	0.144	ND	3335.934	2196.463		C20	0.189	0.106	4.620	4.025	0.081	ND	3522.659	3226.176		C21	0.250	0.324	5.353	4.874	0.153	ND	2943.984	3124.676		C22	0.263	0.464	4.870	4.182	0.253	ND	2815.388	3012.502		C23	0.375	0.498	5.621	5.057	0.361	0.079	2706.625	2884.008		C24	0.283	0.508	5.128	5.047	0.377	0.070	2539.098	2774.050		C25	0.292	0.515	4.619	4.931	0.285	0.095	2216.801	2442.767		C26	0.270	0.436	3.798	4.689	0.203	0.066	1958.161	2271.844		C27	0.262	0.482	3.490	3.914	0.264	0.079	1424.452	1553.864		C28	ND	ND	2.343	3.145	ND	ND	1171.569	1330.399		C29	ND	ND	1.982	2.421	ND	ND	1002.036	1107.108		C30	ND	ND	2.979	3.058	ND	ND	780.742	849.645		C31	ND	ND	3.579	3.064	ND	ND	759. 96 9	869.914		C32	ND	ND	2.344	1.927	ND	ND	486.791	557 .8 89		C33	ND	ND	3.005	2.406	ND	ND	488.157	542.882		C34	ND	ND	3.298	2.627	ND	ND	504.866	635.857		OTP (% Recovery)	60.52	68.67	86.71	86.57	63.78	79.00	98.55	96.74		Total HC	477.25	1156.35	4732.98	3747.53	656.14	167.43	553904.42	495579.94		Pristane/Phytane	1.74	1.18	1.43	1.44	1.48	2.52	0.90	0.24		C17/Pristane	0.39	0.21	0.71	0.57	0.23	NA	2.14	1.89		C18/Phytane	0.59	0.17	0.71	0.57	0.26	NA .	1.79	1.57		TALK	2.99	4.27	87.82	80.06	2.34	0.39	39469.31	30358.90		LALK	1.00	1.04	35.41	28.72	0.45	NA	17670.67	6401.49		LALK/TALK	0.33	0.24	0.40	0.36	0.19	NA	0.45	0.21	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Exxon Bioremediation Study (N0531-2994) Beach KN132, Time Series 95 #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab 1D:	A-S IW39,40,41	B-S IW42,43,44	C-S IW45,46,47	D-S 1W48,49,50	E-S IW51,52,53	F-S IW54,55,56	NA 521 oil	NA 521 oil	NA 600 oil	NA 600 oil		------------------------------------	-------------------	-------------------	-------------------	-------------------	-------------------	-------------------	---------------	---------------	---------------	---------------		Analyte												naphthalene	ND	ND	ND	ND	ND	0.00	23.93	24.46	2.85	2.75		C1-naph thal enes	ND	ND	ND	ND	ND	ND	296.38	300.6	3.75	2.74		C2-naphthalenes	ND	ND	0.59	ND	ND	ND	1033.03	1056.78	ND	ND		C3-naphthalenes	ND	0.12	2.09	0.38	ND	ND	1302.92	1306.21	18.02	21.79		C4-naphthalenes	ND	1.01	5.75	3.57	ND	ND	1126.85	1120.61	119.08	101.23		acenaphthylene	ND		ND	acenaphthene	ND ND	ND	ND	ND	ND	ND ND	82.43	85.1	3.03	2.33		fluorene	ND	ND	0.57	ND ND	ND	ND	275.19	277.01	56.65	54.36		C1-fluorenes				4 7/						308.69		C2-fluorenes	ND	0.53	2.77	1.76	0.06	ND	577.54	568.94	321.08			C3-fluorenes	0.15	1.04	4.70	3.49	0.15	ND	707.8	696.61	657.6	643.47		anthracene	ND ND	ND	ND		phenanthrene	ND	ND	0.11	ND	ND	ND	339.41	333.73	142.82	141.05		C1-phenanthrenes/anthracenes	0.04	ND	0.86	ND	0.04	0.01	915.57	896.36	771.21	755.5		C2-phenanthrenes/anthracenes	0.19	0.87	4.19	2.76	0.23	0.08	1267.34	1243.26	1330.63	1280		C3-phenanthrenes/anthracenes	0.25	1.75	6.46	4.98	0.35	0.11	1006.2	912.77	1079.47	1028.67		C4-phenanthrenes/anthracenes	0.40	1.66	6.62	5.22	0.59	0.15	817.55	786.87	878.79	835.4		dibenzothiophene	ND	ND	0.07	ND	ND	ND	270.95	271.61	87.83	86.25		C1-dibenzothiophenes	0.02	0.06	0.77	ND	0.03	0.01	585.21	574.78	394.73	379.73		C2-dibenzothiophenes	0.14	0.98	5.29	3.69	0.19	0.06	1146.35	1102.99	1101.07	1048.59		C3-dibenzothiophenes	0.31	2.05	8.21	7.01		0.13	1145.92	1122	1238.67	1175.54		fluoranthene	ND		0.01	0.03	0.07	0.10	0.01	ND	8.09	9.1	9.58	11.29		pyrene	0.01	0.30	1.08	0.84	0.10	0.02	145.42	137.35	151.84	164.16		C1-fluoranthenes/pyrenes					ND	ND	ND	ND	ND ND	ND		benzo(a)anthracene	ND	ND	ND	ND						75.55		chrysene	0.08	0.18	0.58	0.45	0.11	0.01	65.2	65.41	72.58	168.69		C1-chrysenes	0.15	0.41	1-44	1.10	0.19	0.03	145.58	146.6	156.06			C2-chrysenes	0.23	0.67	2.42	1.80	0.34	0.07	243.8	253.89	271.21	284.21		C3-chrysenes	0.21	0.45	1.77	1.28	0.28	0.06	175.53	177.21	209.85	192.16		C4-chrysenes	ND	ND	ND	ND	ND	ND	_ ND	ND	ND	ND		benzo(b)fluoranthene	0.01	0.02	0.08	0.05	ND	ND	7.66	7.1	8.78	8.92		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.01	0.02	0.05	0.04	0.01	0.00	4.56	4.4	5.26	4.66		Total PAH	2.30	12.16	56.55	38.52	3.12	0.75	13716.41	13481.75	9092.44	8777.73		C30a,B (Hopane)	0.73	1.09	3.48	2.52	0.91	0.27	287.76	295.62	314.71	330.1		cooding (nobule)	0.73	1.07	3.40		0.71	7.21						Surrogate Recoveries												d8-naphthalene	79	60	83	80	80	78	103	104	104	108		d10-fluorene	86	66	86	88	100	92	103	105	104	102			113	72	94	90	100	106	110	107	106	113		d12-chrysene	113	12	74	90	109	100	110	107	100	. 13	Exxon Bioremediation Project (NO531-2971) Beach KN135 - Time Series 0 Battelle Ocean Sciences Sediment PHC in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle Lab ID	A-S IMO2,04,06	A-SS IM03,05,07	B-S IM08,10,12	B-SS IM09,11,13		C-SS IM15-3,17-1,19-1	D-S IM21,23,25	D-SS IM22,24,26	E-S IM27,29,31	E-SS IM28,30,32		-------------------------------------	-------------------	--------------------	-------------------	--------------------	--------																																																																																																																																																																																																																																																																																																																																																																																																																							
--------------------------	-------------------	--------------------	-------------------	--------------------		C10	ND	c11	ND	ND	ND	0.199	ND	ND	0.631	0.171	ND	2,865		C12	1.680	0.583	ND	1.893	ND	0.918	4.978	1.838	0.575	11,103		C13	4.925	1.676	ND	4.397	ND	2.443	10.391	4.329	1.673	20.713		C14	9.149	2.976	0.177	6.743	0.047	4.100	14.958	6.745	3.271	25,179		C15	13.755	4.264	0.613	8.629	0.121	5.958	19.349	8.535	4.464	29.291		C16	15.107	4.247	0.659	8.706	0.161	5.703	18.963	8.839	6.105	28.955		C17	18.079	6.617	0.871	8.496	0.212	5.271	22.310	8.748	7.220	30.227		Pristane	19.132	7.115	3.122	8.159	0.540	8.559	20.563	9.408	8.172	21.639		C18	19.685	5.263	1.046	9.762	0.254	6.190	22.433	10.121	8.394	31.922		Phytane	18.736	5.635	3.102	7.964	0.465	8.300	20.597	9.245	8.365	21.358		C19	16.156	4.144	1.314	8.110	0.268	5.295	17.704	8.059	6.596	26.589		C20	16.991	4.626	0.887	8.193	0.474	4.225	18.954	8.471	6.732	26.983		C21	14.741	3.921	1.581	7.097	0.442	4.544	17.349	7.540	6.145	23.969		C2 2	14.343	3.672	1.409	6.726	0.331	4.709	16.278	7.232	5.979	22.400		C23	13.508	3.327	0.865	6.329	0.286	4.175	15.812	6.337	5.652	20.428		C24	13.396	3.663	1.297	6.026	0.331	4.171	15.120	6.435	5.659	18.892		C25	16.721	4.372	2.733	7.419	0.675	4.186	16.847	7.668	6.650	20.289		C26	11.964	3.097	1.177	5.228	0.259	3.970	12.084	5.544	5.571	15.395		C27	8.756	2.393	0.951	3.829	0.178	3.146	8.872	4.017	3.875	11.146		C28	10.340	3.022	1.230	3.941	0.514	3.558	9.100	4.346	4.017	12.003		C29	8.506	2.122	1.085	3.224	0.375	3.133	7.398	3.583	3.467	8.824		C30	6.004	2.178	0.946	2.518	0.416	2.501	7.853	3.367	3.431	6.823		C31	5.622	1.671	0.918	2.440		2.306	5.430	2.731	2.838	6.254		C32	3.766	1.192	0.792	1.717	0.248	1.726	4.111	1.876	2.006	4.394		C33	4.441	1.298	1.083	1.790	0.425	1.919	4.404	2.052	2.144	4.609		C34	5.711	1.806	1.169	1.732	0.464	1.930	6.389	2.560	2.776	5.867		OTP (% Recovery)	78	82	79	63	77	77	80	76	72	56		Total H.C.	5084.59	1562.67	1481.76	2007.17	455.55	2093.33	5992.33	2355.83	2190.76	5273.98		Pristane/Phytane	1.021	1.263	1.006	1.024	1.161	1.031	0.998	1.018	0.977	1.013		C17/Pristane	0.945	0.930	0.279	1.041	0.393	0.616	1.085	0.930	0.884	1.397		C18/Phytane	1.051	0.934	0.337	1.226	0.546	0.746	1.089	1.095	1.003	1.495		TALK	253.346	72.130	22.803	125.144	6.722	86.077	297.718	131.144	105.240	415.120		LALK	115.527	34.396	5.567	65.128	1.537	40.103	150.671	65.856	45.030	233.827		LALK/TALK	0.456	0.477	0.244	0.520	0.229	0.466	0.506	0.502	0.428	0.563	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20)				•		------------------	----------------	------------	---------------------		Station ID-Depth	F-S	F-SS	NA		Battelle Lab ID	IM33,35,37	IM34,36,38	521 oil							C10	ND	ND	ND		C11	ND	0.428	ND		C12	0.212	2.854	50.846		C13	0.631	5.947	249.901		C14	1.232	8.158	880.036		C15	1.923	10.039	1598.298		C16	1.636	10.019	2264.195		C17	1,968	10.496	2836.071			4.390	8.782	1638.371		Pristane C18	1.780	11.142	3755.571			3.944	8.573	2036.187		Phytane C19	2.022	9.365	3976.66		C20	2.163	9.391	3637.031			2.030	8,123	3417.873		C21	1.733	7.880	3268.264		C22		6.996	2960.865		C23	1.368 1.619	6.873	2760.709		C24	3.030	7.753	2462.717		C25	1.576	5.806	2137.342		C26			1554.697		C27	1.182	4.221			C28	1.425	3.955	1321.111		C29	1.222	3.560	1193.269 933.216		C30	1.074	2.773			C31	1.151	2.712	829.403		C32	0.855	1.845	578.019		C33	1.174	2.139	631.744		C34	1,217	1.932	690.837		OTP (% Recovery)	D.O.	72	101		T-4-1 # 6	1503.82	2107.49	589798.99		Total H.C.	1.113	1.024	0.805		Pristane/Phytane		1.195	1.731		C17/Pristane	0.448 0.451	1.300	1.844		C18/Phytane		144.404	43988.675		TALK	34.223		19248,609		LALK	13.567	77.837	0.438		LALK/TALK	0.396	0.539	0.430	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Exxon Bioremediation Study (N0531-2971) Beach KN135, Time Series 0 #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth: Battelle Lab ID:	A-S IM02/04/06	A-SS 1M03/05/07	B-S IM08/10/12	B-SS IM09/11/13	C-S IM14/16/18	C-SS IM15-3/17-1/19-1	D-S IM21/23/25	D-SS 1M22/24/26	E-S IM27/29/31	E-SS 1M28/30/32		--	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------------	-------------------	--------------------	-------------------	--------------------		Analyte	0.04	0.00	0.04	0.04	0.00	0.04	0.01	0.01	0.02	0.04		naphthalene	0.01	0.00	0.01	0.01		0.01 0.01	ND			0.01		C1-naphthalenes	0.08	ND 0.04	0.02	ND 0.17	0.02 0.04	0.01	0.21	ND 0.12	0.28 1.63	0.12 1.34		C2-naphthalenes	1.21	0.06	0.06	1.63	0.04	0.12	1.68	1.62	2.71	1.34 6.94		C3-naphthalenes	4.35	0.51	0.36 1.19	2.88	0.03	3.24	6.57	3.18	2.72	8.77		C4-naphthalenes	6.32	1.67			ND	3.24 ND	ND	3.18 ND	ND	ND		acenaphthylene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NO NO	ND	ND	ND		acenaphthene	ND	ND	ND ND	ND	0.00	ND	ND	ND	0.09	ND		fluorene	1.06	0.13	0.12	0.34	0.00	0.30	0.50	0.33	0.58	1.19		C1-fluorenes	3.43	0.13	0.12	1.40	0.02	1.52	3.44	1.52	1,60	3.99		C2-fluorenes	3.43 3.85	1.10	0.86	1.50	0.14	2.00	4.12	1.69	1.56	4.38		C3-fluorenes	3.65 ND	ND	ND	ND	ND	0.00	4.12 ND	ND	ND	4.36 ND		anthracene	0.30	ND	ND	ND	0.01	0.04	ND	ND ND	0.55	0.17		phenanthrene	2.32	0.22	0.20	0.60	0.06	0.23	ND	0.43	2.15	2.85		C1-phenanthrenes/anthracenes	6.91	1.60	1.33	2.62	0.27	2.65	5.33	2.77	3.67	8.15		C2-phenanthrenes/anthracenes	6.31	1.81	1.68	2.43	0.32	3.16	6.67	2.76	2.99	6.94		C3-phenanthrenes/anthracenes	4.22	1.07	1.28	1.45	0.32	2.14	4.36	1.63	1.94	3.94		C4-phenanthrenes/anthracenes	0.18	ND	ND	ND	0.01	ND	ND	ND	0.39	0.10		dibenzothiophene	1.87	0.19	0.17	0.48	0.04	0.20	0.31	0.43	1.31	2.22		C1-dibenzothiophenes C2-dibenzothiophenes	7.23	1.70	1.47	2.67	0.27	2.82	6.51	3.01	3.41	8.00		C3-dibenzothiophenes	7.87	2.06	1.90	2.88	0.38	3.53	8.19	3.25	3.51	8.09		fluoranthene	ND	ND ND		baleus	0.13	0.03	0.04	0.05	0.01	0.06	0.15	0.06	0.06	0.12		C1-fluoranthenes/pyrenes	1.12	0.28	0.32	0.39	0.09	0.52	1.16	0.44	0.52	1.05		benzo(a)anthracene	ND	ND	ND	ND	ND	0.03	ND	ND	ND	ND		chrysene	0.98	0.20	0.27	0.30	0.12	0.31	1.05	0.37	0.50	0.88		C1-chrysenes	1.62	0.38	0.46	0.55	0.19	0.61	1.90	0.66	0.80	1.47		C2-chrysenes	2.13	0.53	0.69	0.71	0.25	0.84	2.51	0.87	1.04	2.06		C3-chrysenes	1.44	0.41	0.50	0.51	0.20	0.54	1.71	0.60	0.68	1.43		C4-chrysenes	ND	benzo(b)fluoranthene	0.11	0.02	0.03	0.03	0.02	0.04	0.11	0.04	0.04	ND		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.07	0.02	0.02	0.03	0.01	0.02	0.08	0.02	0.04	ND		Total PAH	65.09	14.85	13.65	23.62	3.08	25.92	56.56	25.82	34.78	74.22		C30a,B (hopane)	4.44	1.21	1.76	1.48	0.83	1.47	5.00	1.81	2.31	3.88		Surrogate Recoveries												d8-naphthalene	83	81	74	67	89	81	87	71	82	65		d10-fluorene	86	88	83	72	84	81	88	76	85	67		d12-chrysene	103	94	91	80	135	93	110	89	104	77		are on your	103	, ,	,,									Station ID-Depth:	F-S	F-SS	Rep 1	Rep 2	Rep 3	Rep 4		------------------------------	------------	------------	----------	---------	----------------	------------		Battelle Lab ID:	1M33/35/37	1M34/36/38	521 oil	521 oil	521 oil	521 oil		Analyte	0.04	0.04	0/ 77	24.44	77 00	70.04		naph tha Lene	0.01	0.01	26.77	24.16	33.22	32.96		C1-naphthalenes	0.02	ND	271.22	248.57	319.70	326.57		C2-naphthalenes	0.06	0.31	863.84	816.18	1065.49	1085.54		C3-naph tha lenes	0.21	1.77	997.23	953.22	1257.26	1262.14		C4-naph tha lenes	1.00	2.81	794.59	782.90	1044.45	1011.24		acenaphthylene	ND	ND	ND	ND	ND	ND		acenaphthene	ND	ND	ND	MD	ND	ND		fluorene	ND	ND	81.48	75.68	91.42	90.19		C1-fluorenes	ND	0.33	231.92	213.96	292.83	276.39		C2-fluorenes	0.51	1.32	436.72	440.56	559.70	522.59		C3-fluorenes	0.84	1.58	422.39	419.50																																																																																																																																																																																																																																																																																																																																																							
586.12	584.35		anthracene	ND	ND	ND	ND	ND	ND		phenanthrene	ND	ND	310.58	284.25	354.18	362.52		C1-phenanthrenes/anthracenes	0.09	0.63	785.50	735.09	887.37	901.25		C2-phenanthrenes/anthracenes	1.00	2.57	934.28	927.44	1240.11	1236.38		C3-phenanthrenes/anthracenes	1.53	2.47	681.30	696.63	967.74	920.43		C4-phenanthrenes/anthracenes	1.25	1.65	419.33	423.45	627.16	526.06		dibenzothiophene	ND	ND	251.58	220.18	304.62	309.43		C1-dibenzothiophenes	0.09	0.50	463.03	409.37	499.37	511.12		C2-dibenzothiophenes	1.16	2.55	844.66	782.70	1003.68	998.40		C3-dibenzathiophenes	1.84	2.83	786.08	741.30	982.28	951.17		fluoranthene	ND	ND	ND	ND	ND	ND		ругеле	0.03	0.05	13.88	12.25	16,29	16.10		C1-fluoranthenes/pyrenes	0.29	0.39	110.38	105.76	139.66	136.37		benzo(a)anthracene	ND	ND	ND	ND	ND	ND		chrysene	0.20	0.25	85.74	62.21	64.87	79.15		C1-chrysenes	0.38	0.47	143.65	116.83	126.80	147.71		C2-chrysenes	0.57	0.64	195.50	166.49	198.92	206.10		C3-chrysenes	0.44	0.48	131.15	123.62	149.34	156.12		C4-chrysenes	ND	ND	ND	ND	ND	ND		benzo(b)fluoranthene	0.03	ND	9.20	7.13	9.58	10.04		benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND		benzo(a)pyrene	ND	ND	ND	ND	ND	ND		indeno(1,2,3-c,d)pyrene	ND	ND	ND	ND	ND	ND		dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND		benzo(g,h,i)perylene	0.02	0.02	ND	ND	6.22	6.10		Total PAH	11.55		10292.00	9789.41	12828.38	12666.43		C30a,B (hopane)	1.55	1.39	321.53	328.35	362.97	367.29		C30a,B (Hopane)	1.00	1.37	321.33	320.33	302.77	307.27		Surrogate Recoveries								d8-naphthalene	63	72	100	96	105	107		d10-fluorene	93	80	97	94	99	9 8		d12-chrysene	113	81	115	96	95	110									ND = Not Detected Replicates 1 and 2 run with AS, ASS, BS, CS, DS, DSS, ES, ESS, FS and FSS. Replicates 3 and 4 run with CSS. Exxon Bioremediation Study (NO531-2971) Beach KN135, Time Series 32 Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/Kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	A-\$ 1951/55/57	A-\$\$ 1952/56/58	B-S 1959/61/63	B-SS 1960/62/64	C-S 1969/67/65	c-ss 1970/68/66	D-S 1971/73/75	D-SS 1972/74/76	E-\$ 1977/79/81	E-\$\$ 1978/80/82		--	--------------------	----------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------	--------------------	----------------------		Analyte naphthalene	0.00	0.00 0.00	0.01 0.03	ND ND	0.03 0.70	ND 0.02	0.01 0.03	ND 0.01	0.01 0.07	ND 0.04		C1-naphthalenes C2-naphthalenes	0.01 0.04	0.02	0.09	0.34	4.75	0.02	0.14	0.06	0.68	0.55		C3-naphthalenes	0.10	0.10	0.50	2.34	8.26	1.46	1.13	0.74	1.96	3.77		C4-naphthalenes	0.57	0.47	2.52	4.53	7.78	2.42	4,49	1.15	4.05	5.17		acenaphthyl ene	ND	acenaph thene	ND	fluorene	ND	ND	ND	ND	0.31	ND	ND	ND	ND	ND		C1-fluorenes	0.04	0.03	0.12	0.49	1.84	0.30	0.26	0.14	0.54	0.65		C2-fluorenes	0.35	0.23	1.31	2.08	3.99	1.09	2.07	0.51	2.26	2.30		C3-fluorenes	0.60	0.38	1.89 ND	2.36 ND	3.95 ND	1.19 ND	2.71 ND	0.56 ND	2.77 ND	2.42 ND		anthracene	ND ND	ND ND	ND	ND	1.67	0.04	ND	ND	0.24	ND ND		phenanthrene C1-phenanthrenes/anthracenes	0.09	0.04	0.24	0.85	6.40	0.55	0.17	0.23	1.66	1.42		C2-phenanthrenes/anthracenes	0.77	0.48	2.34	3.66	8.97	2.04	3.92	0.95	5.09	4.60		C3-phenanthrenes/anthracenes	1.14	0.59	3.21	3.33	6.48	1.84	4.66	0.83	5.09	4.01		C4-phenanthrenes/anthracenes	1.16	0.52	2.54	1.73	3.54	1.27	2.82	0.47	3.22	2.50		di benzoth i ophene	ND	ND	ND	ND	1.26	0.02	ND	ND	0.16	0.04		C1-dibenzothiophenes	0.06	0.04	0.17	0.75	3.89	0.46	0.29	0.20	1.13	1.24		C2-dibenzothiophenes	0.88	0.53	2.63	3.79	8.62	2.02	4.86	1.00	5.43	4.79		C3-dibenzothiophenes	1.52	0.72	3.74	4.06	7.89	2.14	5.90	0.95	6.04	4.82		fluoranthene	ND ND 0.10	ND 0.08		pyrene	0.04	0.01	0.07 0.58	0.07 0.56	0.14 1.10	0.04 0.30	0.10 0.79	0.02 0.14	0.10	0.08		C1-fluoranthenes/pyrenes	0.32 ND	0.11 ND	ND	ND	I.IU ND	ND	ND	ND	ND	ND		benzo(a)anthracene chrysene	0.26	0.08	0.37	0.53	1.22	0.22	0.75	0.12	0.76	0.53		C1-chrysenes	0.44	0.14	0.72	0.92	1.87	0.39	1.35	0.20	1.27	0.97		C2-chrysenes	0.69	0.21	1.06	1.21	2.25	0.52	1.73	0.25	1.67	1.21		C3-chrysenes	0.57	0.17	0.89	0.76	1.43	0.40	1.18	0.17	1.22	0.85		C4-chrysenes	ND	benzo(b)fluoranthene	0.04	0.01	0.06	0.07	0.13	0.03	0.10	0.01	0.09	0.06		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	0.00	ND	indeno(1,2,3-c,d)pyrene	ND ND ND	ND ND		dibenzo(a,h)anthracene	ND 0.07	ND	ND	ND 0.03	ND 0.07	ND 0.02	ND 0.05	ND 0.01	0.06	0.04		benzo(g,h,i)perylene	0.03 9.72	0.01 4.90	0.04 25.12	34.45	88.54	18.98	39.53	8.73	46. 38	42.70		Total PAH C30a,B (hopane)	1.92	0.50	2.43	2.24	3.96	1.08	3.17	0.48	3.79	2.35		cooa, b (nopane)	1.72	0.50	2.45	2.64	3.70	1.00	3.1.	0.40	3117			Surrogate Recoveries												d8-naphthalene	76	62	74	67	80	67	69	68	75	76		d10-fluorene	78	65	80	76	83	74	73	71	79	78		d12-chrysene	80	67	82	95	113	79	90	85	92	93	Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/Kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth:	F-S	F-SS	Rep 1	Rep 2	Rep 3	Rep 4		--	----------------------	----------------------	------------------------	------------------------	------------------------	------------------------		Battelle Lab ID:	1983/85/87	1984/86/88	521 oil	521 oil	521 oil	521 oil		Analyte naphthalene C1-naphthalenes C2-naphthalenes	0.01	0.00	28.20	28.32	32.81	33.50			0.04	ND	296.87	296.11	342.60	352.88			0.11	0.08	966.47	968.86	1087.18	1118.49		C3-naphthalenes	0.38	0.84	1131.90	1113.19	1239.90	1267.96		C4-naphthalenes	2.59	2.67	920.89	892.58	997.04	980.17		acenaphthylene	ND	ND	ND	ND	ND	ND		acenaphthene	ND	ND	ND	ND	90.23	ND		fluorene	ND	ND	83.31	79.18		89.07		C1-fluorenes	ND	0.19	255.40	255.75	288.73	286.74		C2-fluorenes	1.30	1.19	455.93	473.98	534.90	508.23		C3-fluorenes	2.04	1.48	471.17	448.65	509.76	464.86		anthracene phenanthrene	ND ND	ND ND	ND 332.96 836.61	ND 338.06 819.75	ND 376.01 942.52	ND 396.50 933.58		C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes C3-phenanthrenes/anthracenes	0.11 2.44 3.36	0.28 2.09 2.39	1054.04 767.64	1034.15 718.42	1160.21 832.56	1103.98 757.28		C4-phenanthrenes/anthracenes	2.40	1.50	444.78	388.06	501.98	462.45		dibenzothiophene	ND	ND	271.07	269.06	303.53	311.00		C1-dibenzothiophenes	0.16	0.24	484.94	481.96	550.12	557.43		C2-dibenzothiophenes	3.17	2.62	893.22	887.33	1025.36	1004.44		C3-dibenzothiophenes	4.27	2.99	835.93	798.10	939.07	860.14		fluoranthene pyrene C1-fluoranthenes/pyrenes	ND	ND	ND	ND	ND	ND			0.09	0.05	14.23	13.52	16.17	14.26			0.63	0.41	125.14	124.69	131.53	122.38		benzo(a)anthracene chrysene	ND 0.64 1.18	ND 0.42 0.73	ND 62.85 111.76	ND 79.31 135.81	ND 74.40 134.94	ND 122.12 203.88		C1-chrysenes C2-chrysenes C3-chrysenes	1.74 1.05	0.95 0.61	172.87 131.51	193.26 144.29	195.30 155.03	264.80 159.03		C4-chrysenes	ND	ND	ND	ND	ND	ND		benzo(b)fluoranthene	80.08	0.04	9.03	9.47	9.48	12.41		benzo(k)fluoranthene	ND	ND	ND	ND	ND	ND		benzo(a)pyrene indeno(1,2,3-c,d)pyrene dibenzo(a,h)anthracene	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND	ND		benzo(g,h,i)perylene	0. 05	0.02	5.14	5.75	6.49	5.56		Total PAH	27.84	21.80	1116 3.8 6	10997.60	12477.84	12393.15		C30a,B (hopane)	3.06	1.45	322.58	327.16	346.23	353.43		Surrogate Recoveries								d8-naphthalene	77	67	108	10 8	112	115		d10-fluorene	78	66	101	101	101	100		d12-chrysene	101	91	96	112	99	1 3 5	ND = Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS. NA = Non Applicable Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS, and FSS.	Station ID-Depth Battelle ID	A-\$ 1951,55,57	A-SS 1952,56,58	B-S 1959,61,63	B-SS 1960,62,64	C-S 1965,67,69	C-SS 1966,68,70	D-S 1971,73,75	D-SS 1972,74,76		---------------------------------	--------------------	--------------------	-------------------	--------------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																		
-------------------	--------------------	-------------------	------------------------		C10	ND	ND	ND	ND	MD	ND	ND	ND		C11	ND	ND	ND	0.126	ND	0.114	ND	0.160		C12	ND	0.062	0.282	1.727	1.315	0.968	2.276	1.010		C13	ND	0.193	0.766	4.182	4.199	2.270	5.331	2.247		C14	ND	0.398	1.601	5.866	9.836	3.497	8.590	2.926		C15	0.204	0.651	2.679	7.717	15.900	4.748	11.501	3.639		C16	0.225	0.610	2.476	8.435	21.795	4.987	12.221	3.637		C17	0.457	0.792	2.805	8.632	24.048	4.956	11.284	3.534		PRISTANE	1.721	1.626	7.297	9.825	20.946	5.375	15.236	2.964		C18	0.576	0.779	4.126	9.985	29.079	5.934	13.185	4.046		PHYTANE	1.817	1.626	7.600	9.184	21.623	5.388	14.907	2.911		C19	0.606	0.700	3.005	7.624	26.688	4.869	11.122	3.475		C20	1.107	0.726	3.214	8.924	24.003	5.098	11.774	3.087		C21	0.913	0.742	2.947	7.391	21.767	4.327	10.314	2.893		C22	0.773	0.591	2.433	6.366	23.345	4.016	9.509	2.812		C23	0.510	0.498	2.473	5.519	22.441	3.689	8.157	2.586		C24	0.578	0.582	2.356	5.895	20.709	3.755	8.355	2.466		C25	0.745	0.602	2.404	5.772	21.170	3.826	7.907	2.289		C26	0.579	0.532	2.015	5.039	18.795	. 3.333	7.214	2.044		C27	0.451	0.423	1.554	3.390	13.115	2.264	5.592	1.474		C28	1.260	0.473	2.809	3.757	11.590	2.713	6.868	1.333		C29	0.969	0.458	1.821	3.308	10.972	2.274	5.063	1.177		C30	0.618	0.367	2.645	2.828	8.031	2.007	5.271	0.912		C31	0.404	0.356	1.754	2.494	7.383	1.669	3.867	0.877 0.65 0		C32	0.319	0.310	1.334	1.860	5.358	1.180	2.783	0.650		C33	0.882	0.407	1.771	2.046	5.431	1.304	3.130	0.753		C34	0.855	0.421	2.713	2.717	7.112	1.735	4.268 70	0.753 82		OTP (% Recovery)	84	79	79	64	82	69	70	95		Total HC	1477.078	541.898	2652.735	2485.822	5351.814	1408.427	4069.11	751.69		Pristane/Phytane	0.95	1.00	0.96	1.07	0.97	1.00	1.02	1.02		C17/Pristane	0.27	0.49	0.38	0.88	1.15	0.92	0.74	1. <u>1</u> 9		C18/Phytane	0.32	0.48	0.54	1.09	1.34	1.10	0.88	1.39		TALK	13.03	11.67	51.98	121.60	354.08	75.53	175.58	50.74		LALK	3.18	4.91	20.95	63.22	156.86	37.44	87.28	27.76		LALK/TALK	0.24	0.42	0.40	0.52	0.44	0.50	0.50	0.55	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20)	Station ID-Depth	E-S	E-SS	F-S	F-SS	Rep 1	Rep 2		--	---	---	--	--	---	---		Battelle ID	[977,79,81	1978,80,82	1983,85,87	1984,86,88	521 oil	521 oil		C10 C11 C12 C13 C14 C15 C16 C17 PRISTANE C18 PHYTANE	ND ND 0.843 2.265 4.534 6.978 8.261 8.927 15.747 11.748 16.086	ND 1.051 5.511 11.441 14.611 17.597 18.370 17.250 14.286 19.737 14.071	ND ND 1.259 3.292 6.178 8.419 9.061 8.496 12.831 10.100 12.496	ND 0.321 2.257 5.182 7.167 9.006 8.902 8.839 9.169 10.249 8.993	ND ND 65.186 219.291 766.223 1430.055 2039.292 2700.319 1513.487 3485.761 1902.760	ND 47.364 259.307 843.245 1717.353 2370.745 3015.708 1704.379 3927.072 2188.138		C19 C20 C21 C22 C23 C24 C25 C26 C27 C28	9.201 9.621 8.027 8.179 7.797 7.546 7.954 7.249 5.936 7.809 6.189	16.709 15.331 14.016 13.404 12.177 11.840 12.332 9.722 7.103 6.614 5.642 4.441	8.152 8.069 6.972 6.832 6.524 6.422 6.421 5.671 4.281 5.0817 3.817	8.222 8.513 7.723 7.096 6.763 6.220 6.619 6.245 4.015 3.846 3.492 2.824	3681.403 3656.178 3110.783 2954.145 2683.081 2512.689 2493.119 1966.643 1400.644 1215.554 1017.786 803.264	4200.302 3774.499 3684.107 3437.434 3093.378 2867.394 2699.059 2183.272 1577.293 1339.275 1179.108 905.189		C31	4.822	4.360	3.303	2.694	753.193	849.828		C32	3.325	3.019	2.452	1.871	518.111	557.739		C33	3.694	3.184	2.663	2.031	545.161	620.237		C34	5.446	3.952	2.703	2.403	666.899	611.443		OTP (% Recovery)	73	75	76	69	97	103		Total HC	4009.32	3334.17	3495.00	2289.39	514313.780	571531.30		Pristane/Phytane	0.98	1.02	1.03	1.02	0.80	0.78		C17/Pristane	0.57	1.21	0.66	0.96	1.78	1.77		C18/Phytane	0.73	1.40	0.81	1.14	1.83	1.79		TALK	152.37	249.42	130.13	132.50	40684.78	45760.35		LALK	62.38	137.61	63.03	68.66	18043.71	20155.60		LALK/TALK	0.41	0.55	0.48	0.52	0.44	0.44	TALK = Total n-Alkanes (C10 - C34) ND = Not Detected LALK = Light n-Alkanes (C10 - C20) NA = Non Applicable Replicate 1 was run with AS, ASS, BS, BSS, CS, and CSS. Replicate 2 was run with DS, DSS, ES, ESS, FS and FSS. Exxon Bioremediation Project (NO531-2994) Beach KN135 - Time Series 70 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	A-S 1U39,41,43	A-\$\$ 1U40,42,44	B-S 1U45,47,49	B-SS 1U46,48,50	C-S IU51,53,55	C-SS 1U52,54,56	D-S 1U57,59,61	D-SS 1U58,60,62	E-\$ 1U63,65,67	E-SS 1U64,66,68		--	--	---	--	--	---	--	--	---	--	---		C10 C11 C12 C13 C14 C15 C16 C17 PRISTANE C18 PHYTANE C19 C20 C21 C22 C23 C24 C25 C26	ND ND ND 0.219 0.600 0.519 0.673 3.412 1.042 3.640 0.919 0.717 0.693 0.973 0.989 0.547 0.869	ND ND 0.147 0.303 0.673 0.579 0.710 2.448 0.894 2.605 0.725 0.626 0.607 0.718 0.636 0.508 0.508	NO NO NO 0.169 0.383 0.953 0.952 1.397 3.677 1.480 3.496 1.383 0.941 1.161 1.613 1.349 0.952 1.347 0.952	ND ND 0.141 0.370 0.674 1.286 1.178 1.353 3.399 1.705 3.467 1.332 1.005 1.063 1.144 1.110 0.909 1.049 0.892 0.702	ND ND 0.049 0.123 0.369 0.377 0.621 1.383 0.597 1.416 0.652 0.514 0.509 0.579 0.589 0.366 0.476	ND ND 0.266 0.639 1.198 1.876 1.902 1.749 4.299 2.286 4.372 1.816 1.404 1.313 1.551 1.352 1.277 1.352 1.185 0.941	ND ND 3.930 11.595 17.237 22.771 24.123 19.443 28.867 25.521 28.526 19.806 18.182 17.884 18.022 16.492 15.841 15.751 13.963 10.012 9.982	MD ND 0.211 0.630 0.937 1.307 1.391 1.139 1.572 1.511 1.603 1.213 1.128 1.012 1.087 0.966 0.925 0.948 0.811 0.619 0.604	ND ND 1.145 2.858 4.076 5.367 5.539 4.364 7.471 6.045 7.699 4.856 4.362 4.170 4.133 3.880 3.512 3.689 3.455 2.511																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
ND 1.988 10.159 20.367 26.126 31.537 31.383 28.291 23.793 33.960 24.777 28.722 25.167 24.449 23.932 21.460 20.562 19.178 18.577 11.758		C28 C29 C30 C31 C32 C33 C34 OTP (% Recovery) Total HC Pristane/Phytane C17/Pristane C18/Phytane TALK LALK LALK/TALK	0.779 0.837 0.505 0.700 0.422 0.940 1.578 79 1902.22 0.94 0.20 0.29 15.54 4.69	0.593 0.606 0.519 0.502 0.391 0.639 0.808 81 1040.31 0.94 0.29 0.34 12.88 4.66 0.36	1.971 1.272 1.213 1.205 0.784 1.440 1.949 83 2150.49 1.05 0.38 0.42 25.70 7.66 0.30	0.771 0.814 0.669 0.898 0.639 1.096 0.988 80 1249.98 0.98 0.40 0.40 0.40	0.611 0.627 0.385 0.264 0.243 0.611 0.694 71 1146.80 0.98 0.45 0.45 0.42 9.94 3.30	1.219 1.033 0.996 1.111 0.751 0.969 1.109 78 1337.41 0.98 0.41 0.52 29.30 13.14	9.982 10.168 7.774 7.218 5.145 6.595 7.017 85 8137.40 1.01 0.67 0.89 324.47 162.61	0.604 0.550 0.451 0.474 0.294 0.441 0.418 97 420.05 0.98 0.72 0.94 19.07 9.47	3.014 2.381 2.123 1.900 1.396 1.923 2.521 79 2395.23 0.97 0.58 0.79 79.22 38.61 0.49	11.758 10.402 8.317 8.193 5.861 6.271 7.496 80 6597.11 0.96 1.19 1.37 436.73 237.70	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Exxon Bioremediation Project (N0531-2994) Beach KN135 - Time Series 70 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits≈ 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth	F-S	F-SS	Rep 1	Rep 2		--	---	---	--	--		Battelle ID	1U69,71,73	1U72,74,70	521 oil	521 oil		C10 C11 C12 C13 C14 C15 C16 C17 PRISTANE C18 PHYTANE C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 C31	ND ND 1.217 3.747 7.514 10.995 10.303 10.090 19.447 12.211 18.808 10.000 9.579 10.847 9.686 9.675 10.008 8.450 7.719 6.146 6.111 5.535 5.321 4.781	0.239 1.878 4.460 6.038 7.686 7.871 6.650 6.549 7.612 6.322 6.660 6.311 5.728 5.779 5.279 5.006 4.781 4.208 3.254 3.580 2.602 2.274 2.187	ND ND 211.622 761.824 1426.330 2049.101 2561.793 1524.497 3348.153 1867.565 3544.387 3380.998 3019.986 2750.919 2535.708 2266.935 2065.290 1378.508 1316.252 1015.770 847.770 749.236	ND ND ND 222.760 751.545 1450.310 2045.610 2554.990 1544.197 3172.452 1587.926 3570.994 3364.258 3072.327 3073.479 2776.303 2588.677 2314.342 2028.913 1455.797 1245.820 1063.641 920.587 849.204		C32	3.779	1.435	530.961	578.197		C33	5.001	1.577	590.505	609.781		C34	6.160	1.657	543.445	600.212		OTP (% Recovery)	81	85	114	117		Total HC	5782.34	1780.12	574601.06	574582.42		Pristane/Phytane	1.03	1.04	0.82	0.97		C17/Pristane	0.52	1.02	1.68	1.65		C18/Phytane	0.65	1.20	1.79	2.00		TALK	174.88	104.75	39880.85	40310.20		LALK	75.66	55.41	17284.21	17132.92		LALK/TALK	0.43	0.53	0.43	0.43	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) ND = Not Detected NA = Non Applicable Replicate 1 run with AS, ASS, BS, BSS, CS, and CSS. Replicate 2 run with DS, DSS, ES, ESS, FS, FSS. #### Battelle Ocean Sciences Sediment PAH/Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	A-S 1U39,41,43	A-SS 1U40,42,44	B-S IU45,47,49	B-\$\$ 1U46,48,50	C-S IU51,53,55	C-SS IU52,54,56	D-S IU57,59,61	D-SS IU58,60,62		------------------------------------	-------------------	--------------------	-------------------	----------------------	-------------------	--------------------	-------------------	--------------------		Analyte	100// 11/10	,,	,	,,	,,	,.,		,,		naphthalene	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00		C1-naphthalenes	0.02	0.01	0.02	0.01	0.01	ND	0.07	0.01		C2-naphthalenes	0.06	0.02	0.10	0.04	0.04	0.05	0.17	0.01		C3-naphthalenes	0.24	0.11	0.62	0.24	0.09	0.46	2.44	0.12		C4-naphthalenes	1.29	0.79	1.89	1.27	0.71	1.56	9.88	0.51		acenaphthylene	ND	ND	ND	NÐ	ND	ND	ND	ND		acenaphthene	ND	fluorene	ND	C1-fluorenes	ND	ND	0.15	0.06	ND	0.11	0.59	0.03		C2-fluorenes	0.64	0.37	0.93	0.58	0.37	0.70	4.31	0.23		C3-fluorenes	1.21	0.77	1.47	1.00	0.82	1.14	6.56	0.34		anthracene	ND	phenanthrene	ND	ND	ND	ND	0.02	ND	ND	ND		C1-phenanthrenes/anthracenes	0.08	0.05	0.26	0.07	ND	0.17	0.28	0.02		C2-phenanthrenes/anthracenes	1.27	0.72	1.75	1.05	0.66	1.34	7.67	0.40		C3-phenanthrenes/anthracenes	2.17	1.20	2.65	1.56	1.37	1.74	10.64	0.55		C4-phenanthrenes/anthracenes	1.90	0.96	2.19	1.21	1.15 ND	1.17 ND	6.98 ND	0.36		dibenzothiophene	ND 0.10	· ND	ND 0.21	O.08	0.05	0.13	0.48	ND 0.03		C1-dibenzothiophenes	0.10	0.05 0.81	1.96	1.17	0.84	1.49	8.91	0.03		C2-dibenzothiophenes	1.47 2.43	1.34	2.92	1.71	1.55	1.93	12.05	0.59		C3-dibenzothiophenes	2.43 ND	1.34 ND	ND	ND	ND	ND	ND	ND		fluoranthene	0.05	0.03	0.06	0.03	0.03	0.03	0.18	0.01		pyrene C1-fluoranthenes/pyrenes	0.40	0.20	0.47	0.25	0.23	0.27	1.55	0.08		benzo(a)anthracene	ND	chrysene	0.27	0.13	0.31	0.13	0.18	0.16	0.83	0.04		C1-chrysenes	0.53	0.26	0.58	0.28	0.34	0.34	1.73	0.08		C2-chrysenes	0.79	0.41	0.89	0.42	0.53	0.47	2.58	0,12		C3-chrysenes	0.66	0.31	0.72	0.34	0.40	0.34	1.94	0.10		C4-chrysenes	ND	benzo(b)fluoranthene	0.04	0.02	0.04	0.02	0.03	0.02	0.12	0.01		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.03	0.01	0.04	0.01	0.02	0.01	0.05	0.00		Total PAH	15.65	8.56	20.24	11.54	9.44	13.65	80.05	4.09		C30a,B (hopane)	1.87	0.80	2.10	0.90	1.10	0.85	5.30	0.24		Surrogate Recoveries										d8-naphthalene	67	65	78	58	55	66	89	93		d10-fluorene	81	76	87	73	64	72	97	108		d12-chrysene	82	76	83	69	71	75	95	111		are on journe	0_	. •		•	• •				Battelle Ocean Sciences Sediment PAH/Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.						- 4					--------------------------------------	--------------	--------------	--------------	--------------	--------------	-----------------	-------------	-------------		Station-Depth:	E-\$	E-SS	F-S	F-SS	Rep 1	Rep 2	Rep 3	Rep 4		Battelle Lab ID:	1063,65,67	1066,68,64	1069,71,73	1074,72,70	521 oil	521 oil	521 oil	521 oil		Analyte	0.01	0.01	0.01	0.00	26.89	27.60	27.14	28.48		naphthalene C1-naphthalenes	0.01	0.09	0.01	0.02	286.87	294.93	292.33	299.65		C2-naphthalenes	0.11	0.61	0.09	0.06	936.20	959.65	961.37	980.81		C3-naphthalenes	0.39	4.91	0.30	0.61	1097.60	1124.06	1146.09	1152.14		C4-naphthalenes	1.92	9.00	4.13	2.17	916.39	914.56	950.35	928.19		acenaphthylene	ND	acenaphthene	ND	fluorene	ND	ND	ND	ND	72.96	77.85	76.73	78.10		C1-fluorenes	ND	0.87	ND	0.14	245.81	248.13	254.34	249.35		C2-fluorenes	0.87	3.77	1.91	0.88	489.16	457.13	499.27	473.57		C3-fluorenes	1.51	4.96	3.71	1.29	530.32	541.55	554.44	510.02		anthracene	ND	phenanthrene	ND	ND	ND	ND	319.87	335.97	325.53	334.00		C1-phenanthrenes/anthra	0.12	1.67	ND	0.20	805.95	836.22	823.14	828.07		C2-phenanthrenes/anthra	1.55	7.64	3.22	1.72	1095.92	1139.33	1109.37	1129.52		C3-phenanthrenes/anthra	2.57	8.09	6.45	2:14	866.00	864.18	890.57	823.13		C4-phenanthrenes/anthra		4.90	5.33	1.38	570.27	533.2 5	584.89	505.26		di benzo thi ophene	ND	0.06	ND	ND	271.82	288.19	274.03	285.32		C1-dibenzothiophenes	0.13	1.34	0.13	0.19	455.92	488.62	458.36	478.02		C2-dibenzothiophenes	1.92	7.66	4.57	1.89	918.65	963.74	928.99	952.25		C3-dibenzothiophenes	3.01	8.84	7.76	2.42	877.44	923.10	905.49	856.58		fluoranthene	ND																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
pyrene	0.05	0.13	0.13	0.04	13.93	14.48	13.62	13.70		C1-fluoranthenes/pyrene		1.17	1.04	0.30	123.52	123.32	128.22	127.67		benzo(a)anthracene	ND 0.30	ND	ND 0 FO	ND 0.47	ND 55.81	ND 47 /1	ND 57.31	ND 69.70		chrysene	0.28 0.52	0.60 1.19	0.59 1.21	0.17 0.36	106.72	67.41 130.58	118.42	135.24		C1-chrysenes	0.81	1.19	1.82	0.52	167.40	186.95	192.85	185.45		C2-chrysenes	0.65	1.42	1.45	0.38	126.32	139.59	141.35	138.10		C3-chrysenes	ND	1.42 ND	ND	ND	120.32 ND	ND	ND	ND		C4-chrysenes benzo(b)fluoranthene	0.04	0.09	0.09	0.03	8.57	9.61	8.83	9.32		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene		ND ND	ND ND	ND	ND	ND	ND	ND		dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.03	0.05	0.05	0.01	4.85	4.75	4.47	3.38		Total PAH	19.05	70.85	44.03	16.92	11391.15	11694.77	11727.51	11575.02		C30a,B	1.88	3.26	3.77	0.99	307.27	299.04	310.89	328.30												Surrogate Recoveries										d8-naphthallene	72	77	81	76	119	121	116	121		d10 - f Luor ene	83	86	90	86	111	108	112	113		d12 chryslene	81	86	88	85	109	120	111	125		•									ND = Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS. NA = Non Applicable Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS.	Station ID-Depth Battelle ID	A-\$ 1W58,60,62	A-SS IN59,61,63	B-\$ 1W64,66,68	B-SS IW65,67,69	C-S 1W70,72,74	C-SS IW71,73,75	D-\$ 1W76,78,80	D-SS IW77,79,81		---------------------------------	--------------------	--------------------	--------------------	--------------------	-------------------	--------------------	--------------------	--------------------		C10	ND	C11	ND	C12	ND 0.619		C13	ND 1.712		C14	ND	0.119	ND	ND	ND	ND	ND	2.738		C15	ND	0.127	ND	0.115	1.126	ND	ND	4.161		C16	ND	0.137	ND	0.110	1.112	ND	ND	3.546		C17	ND	0.242	1.036	0.205	1.662	ND	ND	5.034		PRISTANE	2.201	0.678	3.157	0.571	3.675	0.873	11.286	4.926		C18	ND	0.207	0.602	0.120	1.185	ND	ND	3.537		PHYTANE	2.704	0.660	2.756	0.446	4.290	0.701	9.468	3.219		C19	ND	0.116	ND	0.090	1.251	ND	ND	3.05		C20	ND	0.083	ND	0.066	0.849	ND	ND	2.893		C21	ND	0.160	ND	0.109	1.124	ND	ND	3.115		C22	ND	0.212	ND	0.102	1.005	ND	ND	2.993		C23	0.746	0.196	0.928	0.159	1.333	0.152	ND	2.82		C24	ND	0.147	ND	0.110	1.012	ND	ND	2.775		C25	ND	0.103	ND	0.100	1.029	ND	ND	2.53		C26	ND	0.111	ND	0.096	0.952	ND	ND	2.302		C27	ND	0.119	ND	0.100	0.882	ND	ND	1.824		C28	1.172	0.150	ND	ND	0.978	ND	ND	1.358		C29	ND 1,183		C30	ND	ND	ND	0.091	0.938	ND	ND	1.25		C31	ND	0.264	ND	0.138	1.322	ND	ND	0.966		C32	ND	0.151	ND	0.081	0.776	ND	ND	0.744		C33	ND	0.200	ND	0.097	1.224	ND	ND	0.529		C34	ND	0.236	ND	0.130	1.334	ND.	ND_	0.534		OTP (% Recovery)	90.93	70.98	92.25	79.51	88.01	107.51	121.13	89.61		Total HC	3408.66	488.44	3431.14	357.96	2763.42	516.88	5161.9	1298.60		Pristane/Phytane	0.81	1.03	1.15	1.28	0.86	1.25	1.19	1.53		C17/Pristane	NA	0.36	0.33	0.36	0.45	NA	NA	1.02		C18/Phytane	NA	0.31	0.22	0.27	0.28	NA	NA	1.10		TALK	1.92	3.08	2.57	2.02	21.09	0.15	NA	52.21		LALK	NA	1.03	1.64	0.71	7.19	NA	NA	27.29		LALK/TALK	NA	0.33	0.64	0.35	0.34	NA	NA	0.52	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Exxon Bioremediation Project (NO531-2994) Beach KN135 - Time Series 109 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	E-S IW82,84,86	E-\$\$ IW83,85,87	F-S IW88,90,92	F-SS LW89,91,93	Rep 1 521 oil	Rep 2 521 oil	Rep 3 521 oil	Rep 4 521 oil	NA 600 oil	NA 600 oil		---------------------------------	-------------------	----------------------	-------------------	--------------------	-------------------------	------------------	------------------	------------------	---------------	---------------		C10	ND	ND	NO	ND	ČII	ND	C12	ND	0.581	ND	4.278	48,779	ND	ND	ND	ND	ND		C13	ND	1.585	ND	9,19	206.318	140.423	117.936	196.841	ND	ND		C14	0.326	2.473	ND	12.772	941.150	455.330	273.038	990.318	ND	ND		C15	0.574	3.839	ND	18.641	1467.655	1230.630	1174.112	1579.288	ND	ND		C16	0.972	3.358	ND	15.281	1932.692	1622.455	1528.289	2107.256	ND	ND		C17	1.822	4.727	ND	22.708	2981.721	2758.354	2628.544	3257.894	218.408	173.986		PRISTANE	3.728	5.753	11.739	21.651	1392.417	1330.427	1248.395	1548.709	114.083	ND		C18	1.048	3.275	ND	15.496	2845.334	2405.282	2314.974	3060.944	785.490	764.893		PHYTANE	3.086	3.865	10.493	14.175	1595.864	1134.828	1035.321	1680.757	411.073	306.237		C19	0.595	2.486	ND	13.433	3203.009	2881.464	2755.598	3416.773	2226.348	2192.407		C20	0.389	3.367	ND	13.075	2956.250	2677.117	2570.497	3361.214	3481.960	3167.281		C21	0.899	2.676	ND	13.453	3063.731	2559.087	2449.411	2990.832	3123.168	3116.428		C22	0.94	2.416	ND	13.142	2681.604	2504.052	2406.926	2790.208	3129.705	2976.447		C23	1.206	2.551	ND	12.333	2502.674	2332.162	2239.907	2671.626	2963.148	2866.299		C24	1.042	2.451	ND	11.778	2402.525	2232.648	2133.094	2515.6	2836.385	2746.66		C25	1.184	2.279	ND	11.07	2091.249	1927.439	1864.391	2209.218	2477.412	2337.025		C26	0.855	2.036	ND	9.993	1861.194	1686.930	1658.842	1942.137	2187.013	2100.534		C27	0.856	1.68	ND	7.754	1338.262	1245.037	1209.270	1371.431	1589.389	1485.974		C28	0.446	1.28	ND	5.793	1058.037	942.849	892.851	1100.967	1163.216	1253.173		C29	0.49	1.091	ND	5.162	886.779	791.000	764.797	952.34	944.134	1023.977		C30	0.768	1.322	ND	5.66	725.298	723.616	708.235	796.934	900.729	886.412		C31	1.074	1.516	ND	4.367	729.375	549.297	530.390	769.315	1028.976	824.769		C32	0.692	0.956	ND	3.419	448.969	405.313	401.854	453.466	559.839	486.755		C33	0.831	0.704	ND	2.607	424.508	337.485	318.426	335.931	515.807	397.051		C34	0.973	0.982	ND	2.423	452.456	296.503	279.301	502.603	514.126	555.138		OTP (% Recovery)	88.68	94.23	89.29	94.80	96.94	83.75	77.95	103.14	98.05	106.56		Total HC	2155.26	1602.73	5645.23	5586.80	553960.89	428168.06	414556.88	559012.94	523135.35	472551.55		Pristane/Phytane	1.21	1.49	1.12	1.53	0.87	1.17	1.21	0.92	0.28	NA		C17/Pristane	0.49	0.82	NA	1.05	2.14	2.07	2.11	2.10	1.91	NA		C18/Phytane	0.34	0.85	NA	1.09	1.78	2.12	2.24	1.82	1.91	2.50		TALK	17.98	49.63	NA	233.83	37249.57	32704.47	31220.68	39373.14	30645.25	29355.21		LALK	5.73	25.69	NA	124.87	16582.91	14171.06	13362.99	17970.53	6712.21	6298.57		LALK/TALK	0.32	0.52	NA	0.53	0.45	0.43	0.43	0.46	0.22	0.21	TALK = Total n-Alkanes (C10 - C34) ND = Not Detected NA = Non Applicable LALK = Light n-Alkanes (C10 - C20) Replicate 1 was run with AS, ASS, BS, BSS, CS and CSS. Replicates 2 and 3 were processed as sediment samples according to SOP EVC 89-4. Replicate 4 was run with DS, DSS, ES, ESS, FS and FSS. #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	A-S IV58,60,62	A-SS IW59,61,63	B-S 1W64,66,68	B-SS IW65,67,69	C-S IW70,72,74	C-SS IW71,73,75	D-S IW76,78,80	D-SS 1W77,79,81		------------------------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------		Analyte										naphthal ene	ND	ND	ND	0.00	ND	ND	ND	ND		C1-naphthallenes	ND	ND	ND	0.01	ND	ND	ND	ND		C2-naphthalenes	ND	0.04	ND	0.02	ND	ND	ND	ND		C3-naphthalenes	ND	0.08	0.48	0.06	0.39	0.07	ND	0.55		C4-naphthalenes	1.82	0.33	2.31	0.29	2.77	0.52	3.70	1.89		acenaphthylene	ND	acenaph thene	ND	fluorene	ND	C1-fluorenes	ND	ND	ND	ND	ND	ND 0.05	ND	ND		C2-fluorenes	0.90	0.14	1.04	0.14	1.21	0.25	ND 5 of	0.75		C3-fluorenes	2.69	0.38	2.70	0.29	2.75	0.47	5.05	1.34		anthracene	ND	ND 0.01	ND 0.04	O. 00	ND	ND ND	ND ND	ND ND		phenanthrene	ND				ND	ND	ND ND	ND ND		C1-phenanthrenes/anthracenes	ND	0.04	0.24	0.02	ND 2.32	0.40	2.73	1.27		C2-phenanthrenes/anthracenes	1.37	0.26	1.88 3.97	0.24 0.41	3.58	0.40	6.11	1.74		C3-phenanthrenes/anthracenes	3.34 4.34	0.50 0.61	4.69	0.41	3.30 3.47	0.68	6.31	1.63		C4-phenanthrenes/anthracenes	4.34 ND	ND	4.69 ND																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
ND	3.47 ND	ND	ND	ND		dibenzothiophene	0.09	0.03	0.19	0.02	0.12	ND	ND	0.11		C1-dibenzothiophenes	2.12	0.34	2.29	0.28	2.37	0.44	4.53	1.59		C2-dibenzothiophenes	4.99	0.72	4.98	0.51	4.25	0.80	8.20	2.40		C3-dibenzothiophenes	ND	ND	4.90 ND	ND	ND	ND	ND	ND		fluoranthene	0.09	0.01	0.09	0.01	0.06	0.01	ND	0.02		pyrene C1-fluoranthenes/pyrenes	0.81	0.11	0.85	0.08	0.55	0.12	1.10	0.31		benzo(a)anthracene	ND	ND	ND	ND.UG	ND	ND	ND	ND		chrysene	0.52	0.07	0.49	0.04	0.33	0.06	0.73	0.14		C1-chrysenes	1.09	0.15	1.08	0.10	0.77	0.14	1.58	0.29		C2-chrysenes	2.07	0.29	2.11	0.18	1.45	0.27	2.90	0.56		C3-chrysenes	1.69	0.22	1.58	0.14	1.10	0.20	2.31	0.42		C4-chrysenes	ND	benzo(b)fluoranthene	0.08	0.01	0.08	0.01	0.04	0.01	ND	0.02		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.06	0.01	0.05	0.00	0.03	0.01	ND	ND		Total PAH	28.06	4.35	31.13	3.31	27.55	5.12	45.25	15.03		C30a,B (Hopane)	3.18	0.42	3.32	0.29	2.05	0.36	4.36	0.72		Surrogate Recoveries:	31.0									•								-		d8-naphthalene	91	84	95	94	93	131	116	74		d10-fluorene	94	94	92	98	90	133	120	87		d12-chrysene	100	106	99	101	97	158	144	93											Exxon Bioremediation Study (N0531-2994) Beach KN135, Time Series 109 ### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab 1D:	E-S IW82,84,86	E-SS 1W83,85,87	F-S IW88,90,92	F-SS IW89,91,93	Rep 1 521 oil	Rep 2 521 oil	NA 600 oil	NA 600 oil		------------------------------------	-------------------	--------------------	-------------------	--------------------	------------------	------------------	-----------------	-----------------		Analyte							- 4-			naph th a llene	ND	ND	ND	ND	23.06	23.15	3.17	2.91		C1-naphthalenes	0.10	ND	ND	ND	285.50	278.94	5.00	4.33		C2-naphthalenes	0.64	ND	1.48	ND	975.44	959.77	ND	ND		C3-naphthalenes	1.18	0.41	3.40	2.15	1186.20	1194.55	11.69	16.99		C4-naphthalenes	1.85	1.71	6.58	7.32	1029.80	996.20	110.12	104.85		acenaphthylene	ND	acenaph thene	ND	fluorene	0.04	ND	ND	NO	76.10	75.72	2.12	2.36		C1-fluorenes	0.30	ND	0.97	_ ND	252.91	247.97	52.75	50.72		C2-fluorenes	1.05	0.70	2.84	3.06	492.65	502.09	286.77	285.84		C3-fluorenes	1.60	1.41	6.16	5.60	671.25	618.98	589.61	602.21		anthracene	ND	phenanthrene	0.20	ND	0.33	ND	314.67	308.16	139.68	139.36		C1-phenanthrenes/anthracenes	0.92	0.14	2.21	ND	838.33	816.50	742.48	733.18		C2-phenanthrenes/anthracenes	2.31	1.31	6.37	5.13	1156.23	1099.72	1249.61	1237.25		C3-phenanthrenes/anthracenes	2.49	1.99	7.97	7.37	893.75	858.96	1008.59	995.99		C4-phenanthrenes/anthracenes	2.80	1.89	7.08	5.82	749.19	670.53	822.63	797.23		di benzoth i ophene	0.13	ND	0.23	ND	256.38	245.46	84.51	87.25		C1-dibenzothiophenes	ND	0.11	1.53	0.54	536.00	520.88	379.69	375.47		C2-dibenzothiophenes	2.23	1.56	7.08	6.69	1015.17	977.77	1037.14	1025.32		C3-dibenzothiophenes	3.36	2.52	10.72	9.74	1013.23	942.30	1071.41	1117.73		fluoranthene	ND	ND 0.00	ND	ND	ND 10 24	3.19	3.62	3.51		pyrene	0.05	0.02	ND	0.11	10.21 129.05	10.39 127.60	12.53 159.43	12.85 149.37		C1-fluoranthenes/pyrenes	0.49	0.30	1.39	1.19 ND		127.60 8.40	11.07	149.37 ND		benzo(a)anthracene	ND 0.32	ND 0.17	ND 0.80	0.57	8.48 69.74	65.98	85.11	74.66		chrysene	0.65	0.17	1.62	1.31	141.99	138.53	163.63	161.07		C1-chrysenes	1.01	0.74	2.92	2.64	235.82	235.66	275.64	275.96		C2-chrysenes	0.90	0.49	2.14	1.92	168.81	167.07	210.36	205.35		C3-chrysenes C4-chrysenes	ND	benzo(b)fluoranthene	ND	0.02	ND	0.06	6.67	7.00	7.63	8.11		benzo(k)fluoranthene	ND	ND	ND	ND	ND	, .oo	ND	ND		benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	ND ND	ND	ND	ND	ND	ND	ND		benzo(g,h,i)perylene	0.03	ND	ND	ND	4.15	4.34	5.85	5.24		Total PAH	24.66	15.91	73.84	61.21	12540.78	12105.81	8531.84	8475.11		C30a, B (Hopane)	2.18	0.90	4.67	3.06	283.35	289.58	292.13	314.86			2.10	0.70	4.07	5.00	203.33	207.30	2/21.5	511100		Surrogate Recoveries:										d8-naphthalene	76	88	85	90	101	9 8	108	111		d10-fluorene	88	93	96	99	96	97	102	102		d12-chrysene	94	104	103	108	10 2	105	112	111											ND = Not Detected NA = Non Applicable Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS.	Station-Depth: Battelle Lab ID:	Rep 3 521 oil	Rep 4 521 oil	NA 600 oil	NA 600 oil		------------------------------------	-------------------------	------------------	---------------	--------------------		Analyte	321 010	321 010	000 011	000 011			25.19	26.05	3.17	3.12		naphthalene	304.00	306.33	ND	ND		C1-naphthalenes				ND		C2-naph that enes	1030.94	1053.95	ND			C3-naph thallenes	1272.15	1294.35	ND	ND TO		C4-naphthalenes	1097.36	906.84	121.50	109.77		acenaphthylene	ND	ND	ND	ND		ac enaph thene	ND	ND	ND	ND		fluorene	73.73	80.65	ND.	ND		C1-fluorenes	273.44	280.73	57.13	60.64		C2-fluorenes	533.70	573.19	302.00	320. 96		C3-fluorenes	637.91	656.24	639.15	683.86		anthracene	ND	ND	ND	ND		phenanthrene	346.86	337.44	139.81	138.57		C1-phenanthrenes/anthracenes	926.98	913.29	751.67	753.74		C2-phenanthrenes/anthracenes	1282.23	1274.39	1293.98	1313.35		C3-phenanthrenes/anthracenes	993.23	972.20	1058.68	1035.96		C4-phenanthrenes/anthracenes	813.54	736.55	865.97	887.56		dibenzothiophene	277.71	269.29	84.89	84.99		C1-dibenzothiophenes	584.59	585.52	378.24	385.74		C2-dibenzothiophenes	1132.87	1137.11	1041.73	1085.25		C3-dibenzothiophenes	1133.26	1088.00	1143.15	1210.33		fluoranthene	ND	ND	ND	ND		pyrene	12.77	13.11	13.18	14.03		C1-fluoranthenes/pyrenes	141.70	137.39	162.18	157.77			ND	ND	ND	ND		benzo(a)anthracene	66.28	68.23	72.52	75.17		chrysene	146.73	155.44	153.16	164.91		C1-chrysenes	261.21	253.87	286.81	300.02		C2-chrysenes	196.84	189.13	218.75	196.64		C3-chrysenes	190.04 ND	ND	210.73 ND	ND		C4-chrysenes		6.88	10.53	8.26		benzo(b)fluoranthene	8.14					benzo(k)fluoranthene	ND	ND	ND	ND		benzo(a)pyrene	ND	ND	ND	ND		indeno(1,2,3-c,d)pyrene	ND	ND	ND	ND		dibenzo(a,h)anthracene	ND	ND	ND	ND		benzo(g,h,i)perylene	6.36	5.45	6.40	4.16		Total PAH	13579.72	13321.62	8804.60	8994.80		C30a,B (Hopane)	292.23	290.43	303.02	312. 73		Surrogate Recoveries:						d8-naphthalene	109	106	111	113		d10-fluorene	104	102	100	106		d12-chrysene	111	115	108	115		u iz-ciii yselle	111	117	100	112	ND = Not Detected NA Non Applicable Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS.	Station ID-Depth Battelle Lab ID	A-S IN26-1,28-1,36-1	A-SS IN27-1,29,50	B-S IN30-1,32,51-1	8-SS IN31,33,52	C-S IN34,53,55-1	C-SS 1N35,54,56	D-S IN57,59,61	D-SS 1N58,60,62		-------------------------------------	-------------------------	----------------------	-----------------------	--------------------	---------------------	--------------------	-------------------	--------------------		C10	ND	C11	0.006	1.621	ND	4,120	ND	3.372	ND	2.450		c12	0.003	5.916	ND	15.133	ND	13.633	0.430	9.512		C13	ND	9.830	0.013	25.240	0.015	22.679	0.795	15.454		C14	ND	11.207	0.034	29.993	0.028	27.046	1.273	17.966		C15	0.005	12.821	0.053	36.982	0.046	31.825	1.763	20.962		C16	0.002	12.366	0.053	35.985	0.045	30.952	1.716	20.325		C17	0.004	11.729	0.054	33.653	0.051	29.566	1.791	19.498		Pristane	0.053	10.039	0.008	26.308	0.008	27.116	3.962	17.602		C18	0.006	13.151	0.058	36.485	0.053	32.942	2.388	21.704		Phytane	0.027	9.710	0.064	25.640	0.088	26.826	4.009	17.001		C19	0.003	10.912	0.050	31.093	0.056	27.711	1.753	17.934		C20	0.009	10.264	0.050	28.388	0.045	26.437	2.073	16.462		C21	0.019	9.732	0.061	25.411	0.063	24.381	1.577	15.244		C22	0.020	9.436	0.063	26.069	0.069	23.724	1.622	15.359		C23	0.013	8.382	0.043	23.381	0.040	21.658	1.615	13.521		C24	0.009	8.141	0.059	22.445	0.065	21.135	1.597	13.040		C25	0.015	7.863	0.057	21.350	0.065	22.497	1.912	12.787		C26	0.013	6.989	0.048	18.532	0.059	18.235	1.537	11.288		C27	0.009	5.229	0.038	13.800	0.048	13.346	1.313	8.124 ⁻		C28	0.040	5.401	0.053	13.149	0.099	12.651	2.523	7.379		C29	0.028																																																																																																																																																																																																																																																																																																																																																																																																																																		
4.070	0.050	10.536	0.092	11.318	1.510	6.928		C30	0.024	3.221	0.048	8.170	0.100	9.176	1.488	5.511		C31	0.022	3.180	0.037	7.772	0.073	8.055	1.196	5.200		C32	0.022	2.144	0.037	5.363	0.064	5.573	0.929	3.594		C33	0.035	2.365	0.061	5.680	0.101	5.939	1.299	3.882		C34	0.039	3.133	0.070	7.475	0.110	7.936	1.818	3.700		OTP (% Recovery)	70	88	84	58	89	83	75	80		Total Hydrocarbon	32.43	2707.34	59.77	6554.32	75.78	7310.61	1804.35	4769.22		Pristane/Phytane	1.923	1.034	0.125	1.026	0.091	1.01	0.99	1.04		C17/Pristane	0.080	1.168	6.750	1,279	6.375	1.09	0.45	1.11		C18/Phytane	0.231	1.354	0.906	1.423	0.602	1.23	0.60	1.28		TALK	0.348	179.105	1.090	486.205	1.387	451.79	35.91	287.82		LALK	0.040	99.818	0.365	277.071	0.339	246.16	13.98	162.27		LALK/TALK	0.115	0.557	0.335	0.570	0.244	0.54	0.39	0.56	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	C10 ND 0.526 ND ND C11 ND 8.731 0.526 7.955 C12 ND 27.499 4.868 26.417 C13 0.099 40.030 8.669 38.250 C14 0.775 43.772 10.560 42.329 C15 0.615 50.851 11.958 48.651 C16 0.523 47.246 11.730 46.090 C17 0.631 43.809 11.022 41.998 Pristane 2.231 30.567 11.253 32.775 C18 0.907 47.495 12.813 47.369 Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23		--		C11 ND 8.731 0.526 7.955 C12 ND 27.499 4.868 26.417 C13 0.099 40.030 8.669 38.250 C14 0.775 43.772 10.560 42.329 C15 0.615 50.851 11.958 48.651 C16 0.523 47.246 11.730 46.090 C17 0.631 43.809 11.022 41.998 Pristane 2.231 30.567 11.253 32.775 C18 0.907 47.495 12.813 47.369 Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C12 ND 27.499 4.868 26.417 C13 0.099 40.030 8.669 38.250 C14 0.775 43.772 10.560 42.329 C15 0.615 50.851 11.958 48.651 C16 0.523 47.246 11.730 46.090 C17 0.631 43.809 11.022 41.998 Pristane 2.231 30.567 11.253 32.775 C18 0.907 47.495 12.813 47.369 Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C13		C14		C15 C16 C16 C17 C16 C17 C18 C18 C19		C17		Pristane 2.231 30.567 11.253 32.775 C18 0.907 47.495 12.813 47.369 Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C18 0.907 47.495 12.813 47.369 Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		Phytane 2.315 29.925 10.866 32.139 C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C19 0.645 40.380 10.628 40.055 C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C20 0.682 43.320 9.303 37.044 C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C21 0.728 35.464 8.965 35.198 C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C22 0.700 32.819 8.902 33.273 C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C23 0.559 29.332 8.141 29.695 C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C24 0.698 28.053 7.848 28.528 C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C25 0.935 28.512 7.770 27.655 C26 0.701 22.528 6.860 23.330		C26 0.701 22.528 6.860 23.330						C27 0.593 16.420 5.135 16.990		C28 1.192 16.948 5.627 15.185		C29 0.893 12.241 4.668 13.443		C30 0.753 9.994 3.947 10.628		C31 0.653 10.050 3.238 9.818		C32 0.553 6.236 2.163 6.559		C33		The state of s		OTP (% Recovery) 81 69 79 87		Total Hydrocarbon 1015.45 8170.36 3005.44 8446.86		Pristane/Phytane 0.96 1.02 1.04 1.02		C17/Pristane 0.28 1.43 0.98 1.28		C18/Phytane 0.39 1.59 1.18 1.47		TALK 15.64 656.72 170.66 641.35		LALK 4.88 393.66 92.08 376.16		LALK/TALK 0.31 0.60 0.54 0.59		TALK = Total n-Alkanes (C10 - C34) ND = Not Detected		LALK = Light n-Alkanes (C10 - C20) NA = Non Applicable		Station ID-Depth: Battelle Lab ID:	A-S IN26-1/28-1/36-1	A-SS IN27-1/29/50	B-S IN30-1/32/51	B-SS IN31/52/33	C-S IN34/53/55-1	C-SS IN35/54/56	D-S IN57/59/61	D-SS IN58/60/62	E-S IN63/65/67	E-SS IN64/66/68		---------------------------------------	-------------------------	----------------------	---------------------	--------------------	---------------------	--------------------	-------------------	--------------------	-------------------	--------------------		Analyte naphthalene	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.01	0,00	0.03		C1-naphthalenes	0.00	ND	0.00	ND	0.00	ND	ND	ND	ND	ND		C2-naphthalenes	0.00	0.71	0.00	1,91	0.00	1.13	0.06	1.10	ND	3.72		C3-naph thatenes	0.00	3.93	0.01	9.21	0.01	7.33	0.38	4.37	0.14	15.79		C4-naphthalenes	0.01	3.89	0.02	10.71	0.02	11.08	1.50	6.72	0.85	17.71		acenaphthylene	ND	acenaphthene	ND MD	ND		fluorene	ND	C1-fluorenes	MD	0.53	0.00	1.45	0.00	1.26	0.11	0.81	ND	2.69		C2-fluorenes	0.00	1.69	0.01	4.67	0.01	4.58	0.67	2.91	0.37	7.78		C3-fluorenes	0.01	2.00	0.01	4.94	0.02	6.07	1.10	3.60	0.72	8.48		anthracene	ND	phenanthrene	ND	ND	0.00	0.21	ND	ND	ND	0.15	ND	0.30		C1-phenanthrenes/anthrac	0.00	1.23	0.01	4.07	0.01	2.84	0.27	1.88	ND	5.66		C2-phenanthrenes/anthrac	0.01	3.44	0.03	9.13	0.04	9.33	1.40	5.80	0.77	14.43		C3-phenanthrenes/anthrac	0.01	3.06	0.03	7.65	0.04	9.21	1.82	5.62	1.11	12.34		C4-phenanthrenes/anthrac	0.02	1.90	0.02	4.54	0.04	6.16	1.51	3.80	0.94	7.53		di benzoth i ophene	ND	· ND	0.00	0.13	ND	ND	, ND	0.07	ND	0.20		C1-dibenzothiophenes	0.00	0.95	0.01	2.97	0.01	2.24	0.21	1.31	0.06	4.69		C2-dibenzothiophenes	0.01	3.53	0.03	8.95	0.03	9.27	1.45	5.69	0.98	14.78		C3-dibenzothiophenes	0.01	3.68	0.03	9.09	0.04	10.29	2.02	6.45	1.40	14.09		fluoranthene	ND	ND	ND O OO	ND 0.45	ND 0.00	ND 0 47	ND O OZ	ND O OB	ND 0.03	ND 0.22		pyrene	0.00	0.06 0.51	0.00 0.01	0.15	0.00	0.17 1.41	0.03 0.37	0.08 0.93	0.03																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
1.96		C1-fluoranthenes/pyrenes	0.01 ND	ND	ND	1.20 ND	0.01 ND	1.41 ND	0.37 ND	0.93 ND	0.22 ND	ND		benzo(a)anthracene	0.01	0.36	0.01	0.86	0.01	0.70	0.23	0.43	0.16	1.05		chrysene C1-chrysenes	0.01	0.58	0.01	1.56	0.02	1.36	0.43	0.86	0.31	1.86		C2-chrysenes	0.02	0.88	0.01	2.16	0.02	2.05	0.71	1.31	0.46	2.82		C3-chrysenes	0.02	0.66	0.02	1.58	0.03	1.76	0.69	1.09	0.38	2.21		C4-chrysenes	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND		benzo(b)fluoranthene	0.00	0.04	0.00	0.12	0.00	0.11	0.03	0.07	0.03	0.14		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	ND	0.00	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.00	0.03	0.00	0.07	0.00	0.07	0.04	0.05	0.02	0.09		Total PAH	0.14	33.76	0.32	8 7.3 5	0.37	88.43	15.03	55.11	8.93	140.56		C30a,B (hopane)	0.05	1.58	0.09	4.06	0.13	4.53	2.21	3.2 5	1.12	5.55		d8-maphthalene (% Rec):	63	80	78	58	88	83	66	71	70	90		d10-fluorene (% Rec):	75	87	82	56	88	89	78	81	76	92		d12-chrysene (% Rec):	97	98	87	62	94	81	72	73	82	89		Station ID-Depth: Battelle Lab ID:	F-S IN69/71/73	F- ss 1N70/72/74	Rep 1 521 oil	Rep 2 521 oil	Rep 3 521 oil	Rep 4 521 oil	Rep 5 521 oil	Rep 6 521 oil	NA 600 oil		--	-------------------	----------------------------	-------------------------	-------------------	-------------------------	-------------------------	-------------------------	-------------------------	-------------------		Analyte naphthalene	0.01 ND	0.03 ND	26.27 277.39	26.33 281.57	25.03 266.25	26.02 271.56	27.18 288.15	28.49 311.78	2.47 3.43		C1-naphthalenes C2-naphthalenes	0.21	4.09	919.53	926.63	880.08	910.39	957.22	985.17	4.53		C3-naphthalenes	1.88	14.42	1076.73	1090.16	1051.28	1076.17	1146.53	1141.04	13.89		C4-naphthalenes	4.31	15.81	882.64	890.76	870.06	872.74	957.95	921.97	90.85		acenaphthylene acenaphthene	ND ND	fluorene	ND	ND	75.67	79.80	68.89	70.99	76.82	86.64	2.55		C1-fluorenes	0.45	2.27	241.14	246.72	229.68	244.51	260.59	269.13	54.83		C2-fluorenes	1.84	6.44	451.68	490.42	462.07	463.04	521.76	502.18	274.40		C3-fluorenes	2.32	7.27	468.53	480.09	491.46	471.94	516.82	532.29	458.47		anthracene	ND	ND	ND	ND ND	ND	ND	ND	ND	ND		phenanthrene	ND O 70	0.23	311.52	313.70	297.60	307.49	320.70	344.49	139.09		C1-phenanthrenes/anthracenes	0.70 3.67	4.93 12.37	804.56 1011.71	812.71 1021.54	774.65 978.76	767.87 967.88	815.98 1063.32	860.14 1066.27	649.72 1027.40		C2-phenanthrenes/anthracenes C3-phenanthrenes/anthracenes	3.60	11.17	756.44	763.26	740.75	721.85	817.71	775.01	797.11		C4-phenanthrenes/anthracenes	2.47	5.29	474.45	461.85	444.85	435.88	499.81	485.21	494.05		dibenzothiophene	ND	0.22	249.34	254.34	237.41	248.17	260.47	279.67	84.08		C1-dibenzothiophenes	0.70	3.56	455.83	471.57	444.43	456.75	489.06	525.17	314.80		C2-dibenzothiophenes	3.98	11.65	864.51	886.27	835.87	850.08	929.60	976.04	842.19		C3-dibenzothiophenes	4.29	12.02	820.97	838.63	804.84	792.73	894.67	903.30	854.68		fluoranthene	ND	pyrene	0.07	0.2	14.54	15.11	12.91	12.24	14.78	14.53	13.06		C1-fluoranthenes/pyrenes	0.60 ND	1.56 ND	113.06 ND	118.93 ND	107.22 ND	113.01 ND	130.14 ND	123.49 ND	123.70 ND		benzo(a)anthracene chrysene	0.40	1.11	57.46	60.05	56.60	70.93	60.56	83.46	74.86		C1-chrysenes	0.69	2.13	112.71	109.23	109.74	127.33	112.57	149.34	139.20		C2-chrysenes	1.01	2.87	173.17	168.00	162.35	176.58	168.90	201.25	200.18		C3-chrysenes	0.77	2.07	127.91	130.48	123.14	128.12	135.65	140.66	153.92		C4-chrysenes	ND	ND	ND	ND	ND	ND	ND.	ND	ND		benzo(b)fluoranthene	0.05	0.13	8.63	8.72	8.71	8.54	7.57	11.74	9.88		benzo(k)fluoranthene	ND ND ND		benzo(a)pyrene	ND ND	indeno(1,2,3-c,d)pyrene dibenzo(a,h)anthracene	ND ND ND	ND ND		benzo(g,h,i)perylene	0.03	0.08	5.75	5.44	4.89	4.55	5.27	4.79	4.64		Total PAH	34.04	121.92	10782.14	10952.31	10489.51	10597.36	11479.78	11723.24	6828.01		C30a,B (hopane)	2.04	4.69	318.17	345.63	317.02	309.94	3 22.72	317.83	373.50		d8-naphthalene (% Rec):	76	90	106	104	99	102	105	110	99		d10-fluorene (% Rec):	81	86	101	101	99	99	105	102	101		d12-chrysene (% Rec):	90	106	96	95	96	10 7	96	112	103	ND = Not Detected NA = Non Applicable Replicates 1 and 2 run with stations BS and CS. Replicates 3 and 4 run with AS, ASS and BS. Replicates 5 and 6 run with CSS, DS, ES, ESS, FS and FSS.	Station ID-Depth Battelle Lab ID	A-S 1R33,34,35	A-SS IR36,37,38	B-S IR39,40,41	B-SS 1R42,43,44	C-SS IR45,46,47	C-SS 1R48,49,50	D-S 1R53,54,55	D-SS IR56,57,58		-------------------------------------	-------------------	--------------------	-------------------	--------------------	--------------------	--------------------	-------------------	--------------------		C10	ND	C11	ND	0.044	ND	5.819	ND	2.478	ND	6.073		C12	0.319	0.344	2,129	22.788	ND	13.271	0.526	21.956		C13	0.678	0.686	3.588	36.571	ND	21,886	0.978	33.809		C14	1.479	0.868	5.253	42.272	ND	25.266	1.660	36.861		C15	2.511	1.111	6.962	49.082	ND	30.438	2.490	41.042		C16	2.377	1.150	6.959	50.000	ND	31.811	2.512	40.141		C17	2.325	1.045	6.720	45.665	0.018	28.984	2.438	36.931		PRISTANE	8.493	1.338	10.718	40.639	0.071	30.119	5.425	29.363		C18	2.658	1.202	7.882	52.567	0.019	32.344	3.226	40.248		PHYTANE	8.129	1.294	10.357	39.373	0.054	29.023	5.616	27.745		C19	2.415	1.062	6.360	43.325	0.024	27.251	2.366	33.696		C20	2.034	0.964	5.635	38.199	0.022	24.258	2.098	31.414		C21	2.464	0.841	5.683	38.276	ND	23.584	2.480	28.367		C22	2.046	0.871	5.489	35.009	0.047	22.514	2.141	27.650		C23	2.028	0.757	4.854	32.249	0.023	20.610	1.968	25.192		C24	1.833	0.727	4.819	30.698	0.030	19.381	2.002	23.937		C25	2.174	0.738	5.088	29.313	0.045	18.850	2.202	22.184		C26	2.011	0.676	4.453	25.775	0.032	17.193	1.959	19.840		C27	1.650	0.541	3.557	19.708	0.033	13.398	1.733	14.612		C28	2.592	0.590	3.826	18.768	0.052	13.350	2.214	13.738		C29	2.025	0.546	3.349	16.146	0.050	12.268	1.740	11.366		C30	2.399	0.459	2.778	12.699	ND	9.331	1.865	8.903		C31	1.834	0.392	2.864	12.246	0.032	8.299	1.462	7.983		C32	1.484	0.294	1.854	8.434	0.030	5.845	1.155	5.563		C33	1.742	0.335	2.278	8.856	0.076	6.328	1.525	5.738		C34	2.086	0.429	2.467	11.119	0.074	7.616	1.796	4.748		OTP (% Recovery)	74	97	77	102	66	83	79	84		Total Hydrocarbon	2645.81	389.57	2996.74	10985.29	78.47	8089.86	2040.01	7602.20		Pristane/Phytane	1.04	1.03	1.03	1.03	1.33	1.04	0.97	1.06		C17/Pristane	0.27	0.78	0.63	1.12	0.25	0.96	0.45	1.26		C18/Phytane	0.33	0.93	0.76	1.34	0.35	1.11	0.57	1.45		TALK	45.16	16.67	104.85	685.58	0.61	436.55	44.54	541.99		LALK	16.80	8.48	51.49	386.29	0.08	237.99	18.29	322.17		LALK/TALK	0.37	0.51	0.49	0.56	0.14	0.55	0.41	0.59	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle Lab ID	E-S IR59,60,61	E-SS 1R62,63,64	F-S 1R65,66,67	F-SS 1R68,69,70	Rep 1 521 oil	Rep 2 521 oil		-------------------------------------	-------------------	--------------------	-------------------	--------------------	-------------------------	-------------------------		C10	ND	ND	ND	ND	ND	ND		C11	ND	5.973	ND	5.717	ND	ND		C12	ND	24.293	1.600	20.221	46.798	43.240		C13	ND	40.262	3.589	30.571	232.721	256.744		C14	ND	44.490	5.379	32.865	868.494	779.554		C15	ND	50.362	7.822	37.907	1695.590	1550.219		C16	ND	51.133	7.225	36.336	2315.533	2241.748		C17	0.185	45.677	7.185	34.298	2782.244	2727.324		PRISTANE	1.300	38.404	12.163	27.8 7 5	1696.382	1641.540		C18	0.148	50.177	7.488	33.324	3852.863	3908.006		PHYTANE	1.661	36.909	10.666	23.072	2174.276	2102.117		C19	0.200	42.399	6.534	31.392	4003.271	3994.833		C20	ND	37.500	5.902	27.624	3718.107	3583.176		C21	ND	35.501	6.201	26.106	3398.828	3412.025		C22	0.240	35.209	6.283	26.106	3317.275	3250.479		C23	0.352	31.772	5.413	23.727	2996.178	2890.269		C24	0.221	30.102	5.458	22.461	2801.664	2694.679		C25	0.370	28.263	5.642	20.728	2507.748	2382.012		C26	0.335	24.701	5.448	18.544																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
2145.326	2078.487		C27	0.312	18.636	4.355	14.185	1538.947	1498.591		C28	0.560	16.166	4.064	13.172	1306.359	1384.811		C29	0.614	14.060	4.119	10.736	1127.951	1119.699		C30	0.404	10.766	3.256	8.790	921.715	873.122		C31	0.434	10.282	3.080	7.722	854.912	801.683		c32	0.443	7.358	2.040	5.252	559.887	551.978		C33	0.823	7.722	2.658	5.710	621.890	612.739		C34	0.850	6.761	2.500	5.040	742.495	599.575		OTP (% Recovery)	43	86	79	77	94	89		Total Hydrocarbon	1281.81	9241.03	3451.87	6660.98	581736.21	577602.66		Pristane/Phytane	0.78	1.04	1.14	1.21	0.78	0.78		C17/Pristane	0.14	1.19	0.59	1.23	1.64	1.66		C18/Phytane	0.09	1.36	0.70	1.44	1.77	1.86		TALK	6.49	669.56	113.24	498.53	44356.80	43234.99		LALK	0.53	392.27	52.73	290.25	19515.62	19084.84		LALK/TALK	0.08	0.59	0.47	0.58	0.44	0.44	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) ND = Not Detected NA = Non Applicable Replicate 1 was run with AS, ASS, BS, BSS, CS, and CSS. Replicate 2 was run with DS, DSS, ES, ESS, FS, FSS. Exxon Bioremediation Study (N0531-2971) Beach KN211, Time Series 31 #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/Kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.		A-S IR33,34,35	A-SS IR36,37,38	B-S IR39,40,41	B-SS IR42,43,44	C-S IR45,46,47	C-SS IR48,49,50	D-S IR53,54,55	D-SS IR56,57,58		--	-------------------	----------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------		Analyte naphthalene	0.00	0.00	0.00	0.02	0.00	0.01	0.00	0.01		C1-naphthalenes	ND	ND	ND	ND	0.00	ND	ND	ND		C2-naphthalenes	0.07	0.02	0.68	2.51	0.00	1.82	0.06	1.64		C3-naph that enes	0.72	0.26	2.49	13.80	0.00	9.85	0.67	10.92		C4-naph that enes	2.52	0.53	4.39	17.86	0.02	13.37	2.30	13.62		acenaphthylene	ND	acenaph thene	ND	ND	ND	0.07	ND	ND	ND	0.01		fluorene	ND	C1-fluorenes	0.15	0.04	0.49	2.19	ND	1.54	0.15	1.71		C2-fluorenes	1.18	0.22	1.84	7.93	0.01	5.82	1.05	5.75		C3-fluorenes	2.14	0.36	2.59	10.30	0.02	7.76	1.70	7.09		phenanthrene	ND	ND	0.09	0.22	ND	ND	ND	ND		anthracene	ND	C1-phenanthrenes/anthracene	0.43	0.11	1.10	5.37	0.00	3.38	0.17	3.56		C2-phenanthrenes/anthracene	2.81	0.51	3.98	15.67	0.03	11.29	1.88	11.00		C3-phenanthrenes/anthracene	3.51	0.55	4.24 2.55	15.54 8.52	0.05 0.05	10.76 5.33	2.54 1.73	10.60 5.79		C4-phenanthrenes/anthracene	1.77	0.32 ND	0.07	0.18	ND	7.33 ND		0.08		dibenzothiophene	ND 0.41	0.10	0.07	4.22	0.00	2.64	0.19	2.81		C1-dibenzothiophenes	3.17	0.10	4.24	15.71	0.03	11.62	2.20	10.77		C2-dibenzothiophenes C3-dibenzothiophenes	4.60	0.67	5.11	17.57	0.06	13.14	3.11	11.83		fluoranthene	ND	pyrene	0.08	0.01	0.08	0.28	0.00	0.21	0.05	0.18		C1-fluoranthenes/pyrenes	0.70	0.10	0.73	2.53	0.02	1.87	0.49	1.71		benzo(a)anthracene	ND	chrysene	0.39	0.06	0.43	1.19	0.01	0.95	0.26	0.79		C1-chrysenes	0.78	0.11	0.80	2.30	0.02	ND	0.51	1.55		C2-chrysenes	1.25	0.17	1.29	3.80	0.04	2.86	0.90	2.79		C3-chrysenes	0.85	0.11	0.84	2.61	0.04	1.98	0.64	1.70		C4-chrysenes	ŅD	ND	benzo(b)fluoranthene	0.06	0.01	0.06	0.19	0.00	0.13	0.04	0.12		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND ND ND		dibenzo(a,h)anthracene	ND	ND	ND 0.04	ND 0.11	ND 0.00	ND 0.08	ND 0.03	0.07		benzo(g,h,i)perylene	0.04	0.01	0.04	0.11 150.68	0.42	106.43	20.68	106.12		Total PAH	27.64 2.43	4. 79 0.28	39.04 2.18	6.77	0.42	5.33	1.80	4.26		C30a,B (hopane)	2.43	0.20	2.10	0.77	0.16	J.33	1.80	4.20		Surrogate Recoveries										d8-naphthalene	83	91	82	104	36	90	74	84		d10-fluorene	82	87	78	108	73	92	79	89		d12-chrysene	93	116	88	112	8 5	94	82	88		··· , · · ·									Exxon Bioremediation Study (N0531-2971) Beach KN211, Time Series 31 Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/Kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth	E-\$	E-SS	F-\$	F-SS	Rep 1	Rep 2	Rep 3	Rep 4		--	--------------------	--------------------	----------------------	----------------------	----------------------------	----------------------------	----------------------------	----------------------------		Battelle Lab ID	IR59,60,61	IR62,63,64	1R65,66,67	IR68,69,70	521 oil *	521 oil *	521 oil *	521 oil *		Analyte naphthalene C1-naphthalenes C2-naphthalenes	0.00	0.02	0.00	0.01	32.52	30.49	28.41	28.01			ND	ND	ND	ND	326.03	317.17	304.44	298.84			ND	2.11	0.15	1.52	1109.13	1070.43	1031.74	1020.53		C3-naphthalenes	0.13	11.14	1.82	10.12	1319.80	1279.30	1258.19	1241.53		C4-naphthalenes	1.09		5.22	13.08	1085.63	1060.66	1084.56	1044.61		acenaphthylene	ND	acenaphthene	ND	fluorene	ND	ND	ND	1.73	89.89	85.13	88.25	82.01		C1-fluorenes	ND	1.89	0.43		302.37	277.07	287.31	283.77		C2-fluorenes	0.55	7.45	2.45	5.86	612.29	565.86	558.59	552.45		C3-fluorenes	1.00	9.21	3.36	6.57	683.01	650.67	657.68	613.09		phenanthrene	ND	0.21	ND	ND	369.12	359.79	341.32	337.41		anthracene	ND	C1-phenanthrenes/anthracen	ND	3.68	0.47	2.95	955.03	932.60	894.88	882.71		C2-phenanthrenes/anthracen C3-phenanthrenes/anthracen	0.96	12.82	4.27	10.00	1295.88	1270.80	1247.27	1189.66			1.61	13.36	5.30	10.08	1031.66	1007.70	984.89	959.53			1.12	7.67	3.38	5.19	589.03	555.43	457.19	514.60		C4-phenanthrenes/anthracen dibenzothiophene C1-dibenzothiophenes	ND	0.12	ND	0.05	339.47	313.75	299.29	289.32			0.05	2.83	0.51	2.38	600.43	545.15	505.42	492.72		C2-dibenzothiophenes C3-dibenzothiophenes	1.15	12.68	4.63	9.81	1198.98	1106.02	1036.93	1016.65			1.99	14.81	6.02	11.08	1166.27	1080.39	1035.40	1010.07		fluoranthene	ND	pyrene	0.04	0.23	0.11	0.17	17.66	18.36	20.03	15.44		C1-fluoranthenes/pyrenes	0.36	2.06	0.85	1.47	161.76	147.99	137.84	149.32		benzo(a)anthracene	ND	chrysene	0.20	0.92	0.42	0.68	69.89	72.94	60.24	59.58		C1-chrysenes C2-chrysenes	0.41 0.73	1.73 2.93	0.83 1.48 1.07	1.39 2.22 1.73	142.27 218.42 154.99	138.29 216.18 152.49	114.39 182.09 124.73	117.61 198.15 142.88		C3-chrysenes C4-chrysenes benzo(b)fluoranthene	0.53 ND 0.03	2.49 ND 0.15	ND 0.07	ND 0.10	ND 9.93	ND 10.57	ND 9.04	ND 9.70		benzo(k)fluoranthene	ND	benzo(a)pyrene	ND	indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.02	0.07	0.04	0.06	5.56	5.51	5.45	4.70		Total PAH	11.98	127.39	42.90	98.26	13887.04	13270.74	12755.57	12 554.88		C30a,B (hopane)	1.57	5.74	3.08	4.00	358.24	402.30	345.82	3 85 .1 7		Surrogate Recoveries										d8-naphthalene	76	82	76	81	96	94	90	88		d10-fluorene	98	93	93	90	95	93	93	91		d12-chrysene	105	85	93	84	92	95	82	88	ND = Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS, CSS, DS and DSS. Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS. ^{*} The hopane analyses for these runs were unusually high and not used in determining the amount of total oil biodegraded on KN-211E, Day 31 depicted in the table in the text entitled "Estimated Amounts of Oil Biodegrades Since Beaching. KN-211E". Rather the mean hopane concentration of all the other analyses of 521 oil, 303.59 mg/kg (314.95 mg/kg surrogate corrected), was used. Exxon Bioremediation Project (N0531-2994) Beach KN211 - Time Series 62 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	A-S 1U01,03,05	A-SS 1U02,04,06	B-S IU07,09,11	B-SS 1U08,10,12	C-S IU13,15,17	C-SS IU14,16,18	D-S IU19,21,23	D-SS IU20,22,24		---------------------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------		C10	ND	C11	ND 5.189		C12	ND	ND	ND	12.791	0.012	10.703	ND	19.433		C13	ND	ND	ND 0.250	20.940	ND	17.682 22.805	ND	28.641		C14	ND	ND 0. 27.1	0.250	28.248 35.996	ND 0.016	28.998	0.034 0.108	32.081 36.067		C15	ND ND	0.231 0.246	0.626 0.532	33.791	0.022	27.072	0.108	36.392		C16 C17	ND ND	0.246	0.532	33.036	0.022	27.417	0.101	33.476		PRISTANE	0.477	1.445	2.782	37.126	0.050	27.559	0.120	30.597		C18	ND	0.329	0.595	32.349	0.042	27.004	0.116	35.581		PHYTANE	0.417	1.177	2.317																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
25.719	0.044	20.387	0.506	29.239		C19	ND ND	0.303	0.424	31.359	0.042	23.507	0.064	31.217		C20	ND	0.273	0.422	27.091	0.029	22.363	0.136	28.068		C21	ND	0.310	0.521	27.078	0.030	22.385	0.138	25.989		C22	ND	0.298	0.566	26.943	0.039	22.527	0.212	25.060		C23	ND	0.305	0.551	24.772	0.054	20.251	0.129	22.707		C24	ND	0.308	0.540	23.226	0.059	19.650	0.097	21.534		C25	0.170	0.394	0.616	22.183	0.063	18.301	0.194	20.450		C26	ND	0.383	0.516	19.482	0.049	16.488	0.128	18.961		C27	0.084	0.373	0.463	15.429	0.040	13.243	0.146	13.779		C28	ND	0.404	0.507	11.951	0.067	10.848	0.353	11.561		C29	0.172	0.434	0.575	12.205	0.058	10.372	0.355	10.590		C30	ND	0.367	0.490	10.929	0.045	9.094	0.250	9.061		C31	0.149	0.429	0.560	8.927	0.041	8.291	0.249	8.921		C32	0.127	0.335	0.495	6.419	0.037	5.476	0.229	6.150		C33	0.382	0.562	0.791	7.372	0.084	6.848	0.438	7.734		C34	0.435	0.599	0.876	6.642	0.091	5.380	0.467	7.037		OTP (% Recovery)	D.O.	85	57	87	91	80	83	93		Total HC	478,30	647.10	1155.89	9273.87	64.18	7154.09	444.62	8303.47		Pristane/Phytane	1.14	1.23	1.20	1.44	1.14	1.35	1.13	1.05		C17/Pristane	NA	0.25	0.24	0.89	0.62	0.99	0.21	1.09		C18/Phytane	NA NA	0.28	0.26	1.26	0.95	1,32	0.23	1.22		TALK	1.52	7.25	11.58	479.16	0.95	396.71	4.06	495.68		LALK	NA	1.75	3.52	255.60	0.19	207.55	0.68	286.15		LALK/TALK	NA	0.24	0.30	0.53	0.20	0.52	0.17	0.58	TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20) EXXON Bioremdiation Study, N0531-2994 Beach KN211, Time Series 62 Battelle Ocean Sciences Sediment PAH/Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	E-\$ IU25,27,29	E-\$\$ 1U26,28,30	F-S 1U31,33,35	F-SS 1U32,34,36	Rep 1 521 oil	Rep 2 521 oil	Rep 3 521 oil	Rep 4 521 oil		---	--	---	--	--	--	---	--	---		Analyte naphthalene C1-naphthalenes C2-naphthalenes C3-naphthalenes C4-naphthalenes C4-naphthalenes acenaphthylene acenaphthylene acenaphthene fluorene C1-fluorenes C2-fluorenes C3-fluorenes anthracene phenanthrenes/anthra C2-phenanthrenes/anthra C3-phenanthrenes/anthra C4-phenanthrenes/anthra c4-phenanthrenes/anthra c1-dibenzothiophenes C2-dibenzothiophenes C3-dibenzothiophenes C3-dibenzothiophenes C1-fluoranthene pyrene C1-fluoranthenes/pyrene benzo(a)anthracene chrysenes C2-chrysenes C3-chrysenes C4-chrysenes C4-chrysenes benzo(b)fluoranthene	ND ND 0.02 0.29 ND ND ND 0.15 0.31 ND ND 0.34 0.52 ND ND	0.02 ND 0.77 6.46 13.80 ND ND 1.24 5.92 8.39 ND ND 2.12 12.16 13.90 8.66 ND 1.64 12.31 15.14 ND 0.25 2.23 ND 1.92 8.39 ND	ND N	0.01 ND 1.31 8.09 12.22 ND ND 133 4.96 6.48 ND 0.12 2.62 9.45 10.08 6.28 ND 1.83 9.13 10.50 ND 0.17 1.43 ND 1.45 2.23 1.82 ND 0.11	29.39 306.94 993.33 1187.00 948.90 ND ND 83.87 265.97 509.54 591.51 ND 340.48 844.98 1161.23 909.50 552.92 288.03 485.31 979.41 923.28 ND 15.53 129.96 ND 15.53 129.96 ND ND 15.53 129.96 ND ND 15.53 129.96 ND ND 15.53 129.96 ND ND ND ND 15.53 129.96 ND ND ND ND ND ND ND ND ND ND ND ND ND	28.67 297.42 975.89 1159.94 954.29 ND 78.46 260.32 497.38 548.96 835.95 1150.72 894.35 555.11 280.48 470.76 909.17 ND 13.99 137.20 ND 13.99 137.20 ND 13.99 137.20 ND	26.23 280.35 938.11 1156.94 970.66 ND ND 80.42 262.70 533.89 596.91 ND 321.76 820.22 1148.16 919.86 559.58 270.82 460.69 942.38 ND 14.15 133.62 ND 14.15 133.62 ND 112.74 167.86 137.09 ND	23.13 260.10 904.00 1124.47 962.59 ND 72.80 273.53 520.88 565.96 1047.05 838.22 513.87 254.00 424.76 834.69 819.98 11.72 116.45 ND 11.72 116.45 ND 11.72		benzo(k)fluoranthene benzo(a)pyrene indeno(1,2,3-c,d)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene Total PAH C30a,B (hopane)	ND ND 0.01 0.02 4.22 1.13	ND ND ND 0.08 115.11 5.92	ND ND ND 0.01 0.66 0.50	ND ND ND 0.06 92.43 4.13	ND ND ND 4.94 12097.94 319.43	ND ND ND 4.98 11858.08 304.74	ND ND ND 4.43 11868.43 328.30	ND ND ND 3.20 11172.49 326.86		Surrogate Recoveries										d8-naphthalene d10-fluorene d12-chrysene	DO DO DO	10 7 116 120	106 96 112	90 101 95	114 107 114	115 105 109	104 111 104	98 114 113	ND * Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS. NA = Non Applicable Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS. EXXON Bioremdiation Study, N0531-2994 Beach KN211, Time Series 62 Battelle Ocean Sciences Sediment PAH/Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth:	A-S	A-SS	B-S	B-SS	C-S	C-SS	D-S	D-SS		--	--------------------------------------	------------------------------------	--	---	--	------------------------------------	--	--		Battelle Lab ID:	1U01,03,05	1U02,04,06	IU07,09,11	IU08, 10, 12	IU13,15,17	IU14,16,18	IU19,21,23	IU20,22,24		Analyte naphthalene C1-naphthalenes C2-naphthalenes C3-naphthalenes	ND ND 0.01 0.04	ND ND ND 0.07 0.38	ND ND ND 0.08	ND ND 1.32 8.43 14.31	0.00 0.00 ND 0.00 0.01	ND ND 1.03 6.81 10.76	0.00 0.00 ND 0.02 0.19	0.02 ND 1.24 6.85		C4-naphthalenes acenaphthylene acenaphthene fluorene C1-fluorenes C2-fluorenes	0.13 ND ND ND ND 0.06	0.36 ND ND ND ND	0.76 ND ND ND ND 0.39	14.31 ND ND ND 1.44 5.90	ND ND ND ND ND	ND ND ND 1.20 4.39	ND ND ND ND O_08	ND ND ND 1.18 4.69		C3-fluorenes anthracene phenanthrene C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes	0.16 ND ND 0.04 0.16	0.36 ND ND 0.03 0.39	0.82 ND ND 0.03 0.83	8.85 ND ND 3.36 12.48	ND ND ND 0.00	6.45 ND ND 1.91	0.16 ND ND 0.01 0.20	6.55 ND 0.14 2.59 9.69		C3-phenanthrenes/anthracenes	0.27	0.62	1.36	13.57	0.02	9.32	0.28	9.57		C4-phenanthrenes/anthracenes	0.38	0.58	1.26	10.26	0.03	6.69	0.26	5.94		dibenzothiophene	ND 0.08		C1-dibenzothiophenes	0.02	0.03	0.05	2.46	0.00	1.74	0.01																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																			
1.85		C2-dibenzothiophenes	0.15	0.41	0.93	12.07	0.01	8.82	0.21	9.48		C3-dibenzothiophenes	0.35	0.71	1.56	14.35	0.02	10.13	0.32	11.00		fluoranthene pyrene C1-fluoranthenes/pyrenes benzo(a)anthracene chrysene	ND		0.01	0.02	0.03	0.24	0.00	0.17	0.01	0.16			0.09	0.15	0.27	2.19	0.01	1.40	0.08	1.57			ND		0.07	0.08	0.13	0.90	0.01	0.67	0.08	0.89		C1-chrysenes C2-chrysenes C3-chrysenes C4-chrysenes benzo(b)fluoranthene benzo(k)fluoranthene	0.13 0.24 0.21 ND 0.01	0.16 0.27 0.22 ND 0.01	0.29 0.43 0.38 ND 0.02 ND	1.92 3.26 2.36 ND 0.13	0.01 0.02 0.02 ND 0.00 ND	1.44 2.29 1.77 ND 0.10	0.13 0.19 0.18 ND 0.01 ND	1.81 2.59 1.84 ND 0.12 ND		benzo(a)pyrene indeno(1,2,3-c,d)pyrene dibenzo(a,h)anthracene benzo(g,h,i)perylene Total PAH C30a,B (hopane)	ND		ND		ND	ND	ND	ND	ND	ND	0.00	ND			0.01	0.01	0.02	ND	0.00	ND	0.01	0.07			2.56	4.67	9.63	119.78	0.16	86.43	2.42	91.40			0.71	0.65	1.01	5.53	0.12	4.16	0.70	4.68		Surrogate Recoveries										d8-naphthalene	98	68	48	95	81	80	100	103		d10-fluorene	85	81	60	108	95	90	88	106		d12-chrysene	118	77	55	103	97	87	132	108		Station-Depth: Battelle Lab ID:	E-S 1U25,27,29	E-SS 1U26,28,30	F-S 1U31,33,35	F-SS 1U32,34,36	Rep 1 521 oil	Rep 2 521 oil	Rep 3 521 oil	Rep 4 521 oil		---	--------------------	------------------------	----------------------	-----------------------	----------------------------	----------------------------	----------------------------	----------------------------		Analyte naphthalene C1-naphthalenes	ND ND	0.02 ND	ND ND	0.01 ND	29.39 306.94	28.67 297.42	26.23 280.35	23.13 260.10		C2-naphthalenes C3-naphthalenes	ND 0.02	0.77 6.46	ND 0.01	1.31 8.09	993.33 1187.00	975.89 1159.94	938.11 1156.94	904.00 1124.47		C4-naphthalenes acenaphthylene	0.29 ND ND	13.80 ND	0.03 ND ND	12.22 ND ND	948.90 ND ND	954.29 ND ND	970.66 ND ND	962.59 ND ND		acenaphthene fluorene C1-fluorenes	ND ND	ND ND 1.24	ND ND	ND 1.33	83.87 265.97	78.46 260.32	80.42 262.70	72.80 273.53		C2-fluorenes C3-fluorenes	0.15 0.31	5.92 8.39	0.02 ND	4.96 6.48	509.54 591.51	497.38 548.96	533.89 596.91	520.88 565.96		anthracene phenanthrene	ND ND ND	ND ND 2.12	ND ND 0.01	ND 0.12 2.62	ND 340.48 844.98	ND 337.06 835.95	ND 321.76 820.22	ND 305.08 798.95		C1-phenanthrenes/anthra C2-phenanthrenes/anthra C3-phenanthrenes/anthra	0.30 0.48	12.16 13.90	0.04 0.05	9.45 10.08	1161.23 909.50	1150.72 894.35	1148.16 919.86	1047.05 838.22		C4-phenanthrenes/anthra dibenzothiophene	0.52 ND	8.66 ND	0.10 ND	6.28 ND	552.92 288.03	555.11 280.48	559.58 270.82	513.87 254.00		C1-dibenzothiophenes C2-dibenzothiophenes C3-dibenzothiophenes	ND 0.34 0.59	1.64 12.31 15.14	0.01 0.03 0.06	1.83 9.13 10.50	485.31 979.41 923.28	470.76 940.42 909.17	460.69 947.35 942.38	424.76 834.69 819.98		fluoranthene pyrene	ND 0.01	ND 0.25	ND 0.00	ND 0.17	ND 15.53	ND 13.99	ND 14.15	ND 11.72		C1-fluoranthenes/pyrene benzo(a)anthracene	0.15 ND 0.14	2.23 ND 1.19	0.03 ND 0.04	1.43 ND 0.73	129.96 ND 67.71	137.20 ND 63.04	133.62 ND 53.01	116.45 ND 55.68		chrysene C1-chrysenes C2-chrysenes	0.24 0.33	2.47 3.50	0.06	1.45 2.23	131.33 192.38	122.03 185.75	112.74 167.86	119.10 171.44		C3-chrysenes C4-chrysenes	0.32 ND 0.02	2.69 ND 0.17	0.09 ND ND	1.82 ND 0.11	145.24 ND 9.29	146.66 ND 9.08	137.09 ND 8.51	141.54 ND 9.31		benzo(b)fluoranthene benzo(k)fluoranthene benzo(a)pyrene	ND ND	indeno(1,2,3-c,d)pyrene dibenzo(a,h)anthracene	0.01 0.02	DN DN 80.0	ND ND 0.01	ND ND 0.06	ND ND 4.94	ND ND 4.98	ND ND 4.43	ND ND 3.20		benzo(g,h,i)perylene Total PAH C30a,B (hopane)	4.22 1.13	115.11 5.92	0.66 0.50	92.43 4.13	12097.94 319.43	11858.08 304.74	11868.43 328.30	11172.49 326.86		Surrogate Recoveries										d8-naphthalene d10-fluorene	DO DO DO	107 116 120	106 96 112	90 101 95	114 107 114	115 105 109	104 111 104	98 114 113		d12-chrysene	טט	120	112	90	114	109	104	,,,,	ND = Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS. Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS. Exxon Bioremediation Project (NO531-2994) Beach KN211 - Time Series 98 Battelle Ocean Sciences Sediment PHC Data in mg/kg Dry Weight Reporting Limits= 0.1mg/kg 521 Reference Oil data in mg/kg oil.	Station ID-Depth Battelle ID	A-\$ IW01,03,05	A-SS IW02,04,06	B-S IW07,09,11	B-SS IW08,10,12	C-S IW13,15,17	C-SS IW14,16,18	D-\$ IW19,21,23	D-\$\$ IW20,22,24		---------------------------------	--------------------	--------------------	-------------------	--------------------	-------------------	--------------------	--------------------	----------------------		C10	ND	ND	ND	ND	ND	ND	ND ND	ND		C11	ND	ND	ND 0.175	ND 10.928	ND ND	1.133 5.354	0.508	ND 19.393		C12	ND ND	1.538 2.754	0.175	17.923	ND ND	7.690	1.277	29.127		C13 C14	ND	3.814	0.239	26.506	0.219	9.481	1.747	35.15		C15	ND	5.823	0.792	38.872	0.351	13.770	2.717	46.536		C16	ND ND	5.651	0.816	36.759	0.313	14.446	2.436	40.75		C17	ND	7.789	1.111	55.828	0.621	18.229	3.413	53.354		PRISTANE	0.075	10.234	2.090	47.378	1.730	18.967	4.603	41.719		C18	ND	5.227	0.845	33.973	0.388	14.344	2.242	36.185		PHYTANE	0.080	6.354	1.869	25.467	1.393	15.670	2,793	25.687		C19	ND	4.450	0.635	33.156	0.297	11.734	1.918	29.471		C20	ND	4.049	0.541	29.260	0.281	9.777	1.767	33.38		C21	ND	4.408	0.651	30.359	0.387	10.440	2.01	31.13		C22	ND	4.194	0.500	26.501	0.511	10.474	1.896	29.394		C23	0.051	4.202	0.746	26.747	0.477	9.760	2.051	28.431		C24	ND	3.960	0.596	23.395	0.515	9.939	1.903	26.734		C25	ND	3.814	0.670	21.699	. 0.368	9.320	1.771	24.738		C26	ND	3:490	0.549	19.048	0.340	8. 73 7	1.684	22.209		C27	ND	2.705	0.456	15.045	0.333	6.711	1.412	17.104		C28	ND	2.122	0.293	10.681	0.162	7.169	0.976	13.059		C29	ND	2.007	0.177	8.900	0.155	5.622	0.778	10.865		C30	ND	2.246	0.411	10.356	0.316	5.085	0.977	11.149		C31	ND	3.057	0.528	7.365	0.538	5.383	1.195	11.709		C32	0.138	1.994	0.305	7.682	0.303	3.755	0.607	5.668		C33	0.118	2.135	0.360	8.843	0.341	3.658	0.916	6.817		C34	0.124	1.978	0.568	8.299	0.488	3.437	0.914	6.852		OTP (% Recovery)	68.50	75.66	86.45	70.94	85.60	85.79	91.58	83.23		Total HC	131.73	2763.86	1044.98	10792.34	872.09	5434.22	1444.19	11096.86		Pristane/Phytane	0.94	1.61	1.12	1.86	1.24	1.21	1.65	1.62		C17/Pristane	NA	0.76	0.53	1.18	0.36	0.96	0.74	1.28		C18/Phytane	NA.	0.82	0.45	1.33	0.28	0.92	0.80	1.41		TALK	0.43	83.41	12.34	508.13	7.70	205.45	37.12	569.21		LALK	NA	41.10	5.53	283.21	2.47	105.96	18.03	323.35		LALK/TALK	NA	0.49	0.45	0.56	0.32	0.52	0.49	0.57											TALK = Total n-Alkanes (C10 - C34) LALK = Light n-Alkanes (C10 - C20)	Station ID-Depth Battelle ID	E-S IW27,29,31	E-SS IW26,28,30	F-S IW25,33,35	F-SS IW32,34,36	Rep 1 521 oil	Rep 2 521 oil	NA 600 oil	NA 600 oil		---------------------------------	-------------------	--------------------	-------------------	--------------------	-------------------	-------------------	------------------	-------------------		C10	ND	C11	ND	ND	ND	3.816	ND	ND	ND	ND		C12	ND	21.123	ND	17.653	44.101	ND	ND	ND		C13	ND	33.579	ND	26.394	235.619	226.299	ND	ND		C14	ND	41.029	ND	31.085	1032.193	977.766	ND	ND		C15	0.904	55.923	ND	42.115	1656.685	1600.826	ND	ND		C16	1.071	49.233	ND	36.271	2129.682	2092.346	ND	ND		C17	2.043	65.069	ND	49.671	3328.500	3115.61	209.953	214.313		PRISTANE	5.812	45.767	4.732	39.037	1577.449	1455.008	98.350	120.012		C18	1.247	45.085	_ ND	31.83	3335.617	3078.007	825.720	865.109		PHYTANE	4.326	33.089	3.367	23.177	1859.888	1698.866	546.647	556.65		C19	1.341	38.813	ND	31.888	3571.641	3438.489	2284.586	2330.554		C20	0.996	37.934	ND	27.582	3494.107	3335.001	3488.224	3024.598		C21	1.28	37.49	ND	28.098	3103.271	3055.4	3256.865	3638.966		C22	1.239	36.458	ND	26.908	3016.245																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
2911.084	3141.642	3229.256		C23	1.663	34.467	ND	26.54	2896.285	2731.308	3019.863	3118.362		C24	1.395	33.891	ND	25.145	2709.905	2616.861	2897.862	2974.038		C25	1.471	29.273	ND	22.773	2350.143	2291.286	2527.982	2584.168		C26	1.362	26.611	ND	20.581	2089.872	2157.147	2228.879	2255.257		C27	1.284	20.33	ND	15.471	1493.142	1390.325	1626.896	1640.348		C28	0.796	15.459	ND	11.671	1205.309	1166.987	1362.372	1159.739		C29	0.746	12.518	ND	9.738	1097.491	1023.135	1139.660	1154.05		C30	1.233	12.279	ND	9.867	840.580	819.234	904.966	960.81		C31	1.376	8.427	ND	7.325	874.683	764.038	947.788	976.04		C32	0.871	6.325	ND	5.648	494.416	480.422	576.136	584.839		C33	ND	4.349	ND	ND	516.631	453.853	445.012	524.284		C34	ND ND	ND	ND	ND	503.232 101.80	538.094 106.78	530.063 95.27	562.912 102.19		OTP (% Recovery)	89.49	84.72	D.O.	81.00	101.00	100.76	73.21	102.19		Total HC	2636.52	11505.37	2332.70	10837.71	602713.64	600778.12	522748.82	543816.83		Pristane/Phytane	1.34	1.38	1.41	1.68	0.85	0.86	0.18	0.22		C17/Pristane	0.35	1.42	NA.	1.27	2.11	2.14	2.13	1.79		C18/Phytane	0.29	1.36	NA NA	1.37	1.79	1.81	1.51	1.55		TALK	22.32	665.67	NA NA	508.07	42019.35	40263.52	31414.47	31797.64		LALK	7.60	387.79	NA NA	298.31	18828.15	17864.34	6808.48	6434.57		LALK/TALK	0.34	0.58	NA NA	0.59	0.45	0.44	0.22	0.20		LALK/ IALK	V. J4	0.50	NA.	0.37	0.43	0.44	V.46	0.20	TALK = Total n-Alkanes (C10 - C34) ND = Not Detected LALK = Light n-Alkanes (C10 - C20) NA = Non Applicable Replicate 1 was run with AS, ASS, BS, BSS, CS and CSS. Replicate 2 was run with DS, DSS, ES, ESS, FS and FSS. #### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	A-S IW01,03,05	A-SS 1W02,04,06	B-S IW07,09,11	B-SS IW08, 10, 12	C-S IW13, 15, 17	C-SS IW14,16,18	D-S IW19,21,23	D-SS IW20,22,24		---	-------------------	--------------------	-------------------	----------------------	---------------------	--------------------	-------------------	--------------------		Analyte	ND	naphthalene	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND		C1-naphthalenes C2-naphthalenes	ND	ND	0.06	1.47	0.02	0.43	ND	ND		C3-naphthalenes	ND	0.68	0.23	8.56	0.02	2.23	ND ND	5.96		C4-naphthalenes	0.02	2.96	0.84	16.83	0.64	5.81	1.45	17.93		acenaphthylene	ND	acenaphthene	ND	ND	ND	ND	ND	0.05	ND	ND		fluorene	ND	C1-fluorenes	ND	0.16	0.07	1.69	ND	0.51	ND	1.24		C2-fluorenes	ND	1.32	0.45	7.82	0.32	2.66	0.60	6.21		C3-fluorenes	0.04	2.36	0.85	10.07	0.62	3.93	1.14	10.01		phenanthrene	ND	anthracene	ND	ND	ND	. ND	ND	ND	ND	ND		C1-phenanthrenes/anthracenes	ND	0.25	0.13	2.81	0.04	0.92	ND	1.79		C2-phenanthrenes/anthracenes	0.04	2.65	0.87	15.90	0.63	5.63	1.07	11.78		C3-phenanthrenes/anthracenes	0.08	3.69	1.34	17.54	1.06	6.93	1.63	13.62		C4-phenanthrenes/anthracenes	0.07	2.14	0.89	9.38	0.67	3.91	1.46	12.62		dibenzothiophene	ND	ND	0.01	ND	ND	ND	ND	ND		C1-dibenzothiophenes	ND	0.25	0.12	2.84	0.05	0.91	ND	1.68		C2-dibenzothiophenes	0.04	3.16	0.97	15.27	0.75	6.03	1.24	13.29		C3-dibenzothiophenes	0.09	4.27	1.54	19.15	1.23	8.08	1.99	16.86		fluoranthene	0.00	ND	ND	ND	ND	0.03	ND	ND		pyrene	0.00	0.06	0.02	0.23	0.02	0.10	0.03	0.18		C1-fluoranthenes/pyrenes	0.02	0.54	0.22	2.22	0.16	0.93	0.29	2.11		benzo(a)anthracene	ND	0.03	0.01	ND	0.01	0.06	ND	ND		chrysene	0.02	0.28	0.12	1.09	0.11	0.56	0.17	1.13		C1-chrysenes	0.03	0.61	0.26	2.64	0.22	1.19	0.40	2.66		C2-chrysenes	0.05	0.90	0.39 0.35	3.94 3.00	0.37 0.28	1.85 1.46	0.69 0.50	4.24 3.64		C3-chrysenes	0.06	0.73		3.00 ND	0.28 ND	1.40 ND	ND	3.64 ND		C4-chrysenes	ND 0.00	ND 0.03	ND 0.02	ND ND	0.01	0.06	ND ND	ND ND		benzo(b)fluoranthene	ND	ND	ND	ND ND	ND.OI	ND	ND ND	ND		benzo(k)fluoranthene	ND	ND ND	ND	ND	ND	ND	ND	ND		benzo(a)pyrene indeno(1,2,3-c,d)pyrene	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	0.00	0.02	0.01	ND	0.01	0.04	0.02	ND		Total PAH	0.58	27.08	9.77	142.45	7.31	54.33	12.69	126.95		C30a,B (Hopane)	0.21	1.54	0.84	6.18	0.75	3.10	1.21	5.37		coca,o (nopane)	0,21	1.54	0.04	0.10	0.17	3.10	,	2.27		Surrogate Recoveries										d8-naphthalene	65	73	79	72	81	83	88	87		d10-fluorene	81	78	88	82	85	85	92	90		d12-chrysene	91	78	83	92	87	89	106	104	Exxon Bioremediation Study (N0531-2994) Beach KN211, Time Series 98 ### Battelle Ocean Sciences Sediment PAH & Hopane Data in mg/kg Dry Weight Reporting Limits= 0.01mg/kg 521 Reference Oil data in mg/kg oil.	Station-Depth: Battelle Lab ID:	E-S IW27,29,31	E-SS IW26,28,30	F-S IW25,33,35	F-\$\$ 1 W 32,34,36	Rep 1 521 oil	Rep 2 521 oil	NA 600 oil	NA 600 oil		--	-------------------	--------------------	-------------------	-------------------------------	-------------------------	-------------------------	-------------------	------------------		Analyte naphthalene C1-naphthalenes	ND ND	ND ND	ND ND	ND ND	25.42 279.82	25.86 284.17	3.08 3.09	3.01 3.09		C2-naphthalenes	ND	2.23	ND	2.35	930.37	932.98	ND	ND		C3-naphthalenes C4-naphthalenes	ND 1.89	9.22 18.45	ND 1.22	10.52 17.52	1110.41 954.23	1085.29 905.31	10.63 74.22	11.05 71.15		acenaphthylene	ND	acenaphthene	ND	fluorene	ND ND	ND 1.68	ND ND	ND 1.99	87.92 321.76	85.61 293.49	2.76 58.64	2.83 55.65		C1-fluorenes C2-fluorenes	0.80	7.39	0.55	7.13	631.54	592.15	331.50	326.09		C3-fluorenes	2.04	11.15	1.56	10.58	721.24	675.53	658.74	588.73		phenanthrene	ND	ND	ND	ND	342.29	334.83	140.98	138		anthracene	ND ND	ND 2.81	ND ND	ND 2.89	ND 964.31	ND 935.46	ND 781.68	ND 749.99		C1-phenanthrenes/anthracenes C2-phenanthrenes/anthracenes	ND	14.43	1.34	13.13	1312.37	1229.92	1314.59	1241.7		C3-phenanthrenes/anthracenes	3.13	15.25	2.32	14.59	1088.94	995.17	1124.66	1040.69		C4-phenanthrenes/anthracenes	3.24	12.70	2.48	12.16	561.25	484.51 281.03	568.70 85.50	536.57 85.9		dibenzothiophene C1-dibenzothiophenes	ND ND	ND 2.60	ND 0.08	ND 2.89	276.97 576.94	552.55	373.06	359.56		C2-dibenzothiophenes	2.06	15.54	1.69	14.00	1192.92	1104.93	1113.13	1040.34		C3-dibenzothiophenes	3.90	19.00	3.13	17.21	1157.21	1077.08	1176.06	1090.11		fluoranthene	ND	ND	ND 0.04	ND	4.63 13.27	4.24 12.64	4.84 14.32	4.19 14.04		pyrene C1-fluoranthenes/pyrenes	ND 0.59	0.23 2.45	0.49	ND 2.24	144.46	129.51	158.82	133.76		benzo(a)anthracene	ND	ND	ND	ND	7.96	9.29	7.90	9.07		chrysene	0.32	1.24	0.30	1.19	65.38	72.35	71.11	74.61		C1-chrysenes	0.79	2.68 4.58	0.68 1.13	2.72 5.06	129.88 202.40	145.46 207.91	138.55 214.82	153.06 224.39		C2-chrysenes C3-chrysenes	1.26 1.08	4.36 3.47	0.91	3.51	154.06	158.07	182.59	179.1		C4-chrysenes	ND	benzo(b)fluoranthene	0.04	0.13	0.04	0.13	7.61	7.84	8.75	8.7		benzo(k)fluoranthene	ND ND	benzo(a)pyrene indeno(1,2,3-c,d)pyrene	ND ND	ND	dibenzo(a,h)anthracene	ND	benzo(g,h,i)perylene	ND	ND	0.03	ND	4.94	6.02	4.26	6.11 8151.49		Total PAH	21.14 2.11	147.23 5.36	17.99 2.16	141.81 5.64	13270.49 323.66	12629.20 335.15	8626.99 353.76	344.83		C30a,B (Hopane)	2.11	3.30	2.10	5.04	323.00	333.13	333.70	344.03		Surrogate Recoveries						400	407	407		d8-naphthalene	82 88	81 97	141 100	87 93	99 105	102 104	103 105	103 104		d10-fluorene d12-chrysene	100	112	213	111	100	104	99	107		are onlysene	100	, , ,							ND = Not Detected Replicates 1 and 2 were run with AS, ASS, BS, BSS, CS and CSS. NA = Non Applicable	Station-Depth: Battelle Lab ID:	Rep 3 521 oil	Rep 4 521 oil	NA 600 oil	NA 600 oil		------------------------------------	------------------	------------------	---------------	---------------		Analyte		22				naphthalene	24.06	24.82	3.11	2.96		C1-naphthalenes	292.40	312.69	5.59	4.43		C2-naph that lenes	1034.87	1088.86	ND	ND			1299.18	1342.32	18.36	21.69		C3-naphthalenes	1116.89	1143.37	111.59	109.94		C4-naphthalenes				• • • • • •		acenaph thy lene	ND	ND	ND	ND		acenaphthene	ND	ND 07	ND	ND 2 02		fluorene	81.15	84.93	3.11	2.82		C1-fluorenes	272.77	296.07	59.72	54.22																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
C2-fluorenes	564.84	578.08	316.79	322.95		C3-fluorenes	657.98	669.09	679.42	630.27		phenanthrene	ND	ND	ND	ND		anthracene	340.10	339.25	144.84	143.33		C1-phenanthrenes/anthracenes	911.31	908.14	788.46	771.78		C2-phenanthrenes/anthracenes	1261.89	1242.35	1343.36	1303.22		C3-phenanthrenes/anthracenes	1003.58	905.14	1003.89	1093.66		C4-phenanthrenes/anthracenes	790.30	776.47	872.31	847.95		dibenzothiophene	272.29	279.07	89.33	85.31		C1-dibenzothiophenes	571.59	576.51	400.48	391.46		C2-dibenzothiophenes	1107.59	1112.02	1103.39	1074.80		C3-dibenzothiophenes	1058.39	1109.61	1169.62	1178.15		fluoranthene	4.16	ND	3.76	2.70		pyrene	12.03	12.48	12.87	12.55		C1-fluoranthenes/pyrenes	138.03	133.35	159.60	146.14		benzo(a)anthracene	6.52	8.88	11.27	9.87		chrysene	68.42	72.76	82.11	78.57		C1-chrysenes	147.24	160.04	176.05	171.94		C2-chrysenes	252.46	268.40	280.37	305.92		C3-chrysenes	192.45	186.74	213.45	205.26		C4-chrysenes	ND	ND	ND ND	ND		benzo(b)fluoranthene	6.95	7.80	8.30	9.29		benzo(k)fluoranthene	ND	ND	ND	ND			ND	ND	ND	ND		benzo(a)pyrene	ND ND	ND	ND	ND		indeno(1,2,3-c,d)pyrene	ND ND	ND ON	ND ND	ND		dibenzo(a,h)anthracene			5.32	4.83		benzo(g,h,i)perylene	4.61	4.60				Total PAH	13494.05	13643.84	9066.47	8986.01		C30a,B (Hopane)	290.79	302.22	344.39	357.29		Surrogate Recoveries							103	109	111	108		d8-naphthalene	105	104	104	108		d10-fluorene	115	116	119	118		d12-chrysene	112	110	119	110	ND = Not Detected NA = Non Applicable Replicates 3 and 4 were run with DS, DSS, ES, ESS, FS and FSS. ### APPENDIX D3, SECTION 5 Hopane Analyses As part of the Quality Assurance and Quality Control of the Gas Chromatography of the oil samples in this program, artificially weathered Prudhoe Bay crude oil is run before and after each batch of samples. This weathered oil had been treated so as to have lost 30% of its initial weight by evaporation; since this was done under conditions equivalent to 521 F, the oil is known as 521 oil. A single sample of fresh Prudhoe Bay crude oil is also included in each run. Table 1 lists the concentrations of hopane determined in these replicate samples, and the surrogate corrected data are shown graphically in Figures 1 and 2. The standard deviation of the measurements of hopane in the 521 oil is 12% of the mean, indicating acceptable reproducibility. As shown in Figure 1, the reproducibility within a given experimental series is very much better, and calculations were always based on the standards run with each batch of samples. One series of standards, batches 17 and 18, gave very high values, and these were excluded from the analysis. Calculations for this series of samples used the average hopane concentration of all the other standards. The average of all the samples indicates that the 521 oil is 30.05% depleted in total hydrocarbon weight with respect to unweathered oil, which is in excellent agreement with the known depletion (30.33 % loss by weight). This marginal underestimate is probably attributable to a small loss of the most highly volatile components of Prudhoe Bay crude oil during handling. Table 1 and Figures 1 and 2 also include analyses of oil that has been artificially weathered under conditions equivalent to 600 F. The calculated depletion in hydrocarbon of 36% may be compared with that measured during evaporation (39.48%). ## APPENDIX D3, SECTION 5, TABLE 1 Hopane Concentrations in Reference Oils									•									-------	-----	----	-------	-----	--------	----	----------	-----------------------	---------	-----------	--------------	-----	----------------	----------	---------		0	0		0.4.4		040¥ B		Raw	Surr corr		Surr corr	010 *		Raw	Surr con			Beach	Day		Batch	кер	DIUAR	ec	[Hopane]	•	•	[Hopane]	D10 % PBC			[Hopane]										321 011	321 011	PBC Oil	PBC OIL	PBC		000 011	000 011	000 011																			135		0	1	1		97	321.53	331.47423	233.25	238.0102		98					135		0	1	2		94	328.35	349.30851									211		0	3	1	1	05	322.72	307.35238	227.95	215.04717	1	06					211		0	3	2	1	02	317.83	311.59804									211		0	2	1		99	317.02	320.22222	209.19	195.50467	1	07	373.5	369.802	101		211		0	2	2		99	309.94	313.07071									132		0	6	1	1	01	318.17	315.0198	199.88	203.95918		98					132		0	6	2	1	01	345.63	342.20792									135		32	15	1	1	01	322.58	319.38614	215.35	205.09524	1	05					135		32	15	2	1	01	327.16	323.92079									135		32	16	1	1	01	346.23	342.80198	227.43	206.75455	1	10					135		32	16	2	1	00	353.43	353.43									211		31	17	1		95	358.24	377.09474	244.83	269.04396		91					211		31	17	2		93	402.30	432.58065									211		31	18	1	,	93	345.82	371.84946	229.1	246.34409		93					211		31	18	2		91	385.17	423.26374									132		29	19	1	1	06	308.77	291.29245	230.24	284.24691		81					135		70	21		1	12	310.89	277.58036	251.75	220.83333	1	14					135		70	21		1	13	328.30	290.53097									135		70	20		1	11	307.27	276.81982	224.93	202.63964	1	11					135		70	20	2	1	80	299.04	276.88889									132		60	22		1	10		283.20909	237.18	215.61818	1	10					132		60	22		1	07		305.45794									211		61	23			07		298.53271	225.15	206.55963	1	09					211		61	23			05	-	290.22857									211		61	24			11		295.76577		213.32432	1	111					211		61	24			14		286.7193									135		09	25			96		295.15625	211.9			104		286.402			135		09	25	_		97		298.53608		203.84158		101		308.6863			135		09	26			04		280.99038		198.29412		102	303.02	303.02			135	1	09	26			02		284.73529		197.05882		102		295.0283			132		95	27			03		279.37864		191.94393		107		302.6058			132		95	27			05		281.54286		204.80769		104		323.6275			211		97	28			05		308.24762		215.62376		01		336.9143			211		97	28			04		322.25 962		224.03846		104		331.5673			211		97	29			06		274.33019		227.16832		101		331.1442			211		97	29	2	1	04	302.22	290.59615	210	198.11321	1	106	35 7.29	343.5481	104	Note for batches 25+ the rep 2 for PBC was itself the average of two runs.		Mean	321.213	314.14541	221.7775	216,15087		-------------------	-------	---------------	-----------	----------	-----------			sd	25.53229	37.970938	14.095	22.47975			se	4.20	6.24	2.88	4.59			IJ≃	37.0 0	37.00	24.00	24.00		Mean less batches	17,18	314.95	303.59	220.40	212.37	## APPENDIX D3, SECTION 5, FIGURE 1 Hopane Concentrations in Reference Oils Hopane Concentration, Surrogate Corr In 600 & 521 Oils and Prudhoe Bay Crude ## APPENDIX D3, SECTION 5, FIGURE 2 Hopane Concentrations in Reference Oils ### Hopane Concentration, Surrogate Corr In 600 & 521 Oils and Prudhoe Bay Crude 9 # APPENDIX D4. Data Tables from Offshore Water Analyses - TABLE 1. Total Petroleum Hydrocarbon in Nearshore Water - TABLE 2. Fertilizer Nutrients in Nearshore Water - Section 1. Final Laboratory Report of the Toxicity Tests # APPENDIX D4, TABLE 1 TOTAL PETROLEUM HYDROCARBON IN NEARSHORE WATER	SAMPFID	type	BEACH	-	REP	DAY	DATE	TPH	TPHQ	UNITS		---------------	---------	--------	----	-----	-----	-----------	------	------	-------		71TPH000009	SAMP	KN135	RR	1	0	19-MAY-90		ND	MG/L		71TPH000010	SAMP	KN135	RR	2	0	19-MAY-90	0.3		MG/L		71TPH000011	SAMP	KN135	RR	3	0	19-MAY-90		ND	MG/L		71TPH000012	SAMP	KN135	T	1	0	19-MAY-90		ND	MG/L		71TPH000013	SAMP	KN135	T	2	0	19-MAY-90		ND	MG/L		71TPH000014	SAMP	KN135	T	3	0	19-MAY-90		NO	MG/L		71TPH000015	SAMP	KN135	R	1	0	19-MAY-90		ND	MG/L		71TPH000016	SAMP	KN135	R	2	0	19-MAY-90		NO	MG/L		71TPH000017	SAMP	KN135	R	3	0	19-MAY-90		ND	MG/L		1455	MB							ND	MG/L		71TPH000018	SAMP	KN135	T	1	0	20-MAY-90		NO	MG/L		71TPN000019	SAMP	KN135	T	2	0	20-MAY-90		ND	MG/L		71TPH000020	SAMP	KN135	T	3	0	20-MAY-90		ND	MG/L		71TPH000021	SAMP	KN 135	R	1	0	20-MAY-90	0.2		MG/L		71TPH000022	SAMP	KN135	R	2	0	20-MAY-90	0.25		MG/L		71TPN000023	SAMP	KN135	R	3	0	20-MAY-90		ND	MG/L		71TPH000024	SAMP	KN135	RR	1	0	20-MAY-90		NO	MG/L		71TPH000025	SAMP	KN135	RR	2	0	20-MAY-90		ND	MG/L		71TPH000026	SAMP	KN135	RR	3	0	20-MAY-90		ND	MG/L		1476	MB							NO	MG/L		71TPH000027	SAMP	KN 135	T	1	2	23-MAY-90		NO	MG/L		71TPH000028	SAMP	KN135	T	2	2	23-MAY-90	0.21		MG/L		71TPH000029	SAMP	KN135	T	3	2	23-HAY-90	0.3		MG/L		71TPH000030	SAMP	KN 135	R	1	2	23-MAY-90	0.24		MG/L																																																																																																																																																																																																																																																																																																												
71TPH000031	SAMP	KN135	R	2	2	23-MAY-90		ND	MG/L		71TPH000032	SAMP	KN135	R	3	2	23-MAY-90	0.21		MG/L		71TPH000033	SAMP	KN 135	RR	1	2	23-MAY-90		ND	MG/L		71TPH000034	SAMP	KN135	RR	2	2	23-MAY-90	0.4		HG/L		71TPH000035	SAMP	KN 135	RR	3	2	23-MAY-90	0.41		HG/L		71TPH000036	DUPMSS)	KN 135	T	NA	2	23-MAY-90	2.99		HG/L		71TPH000037MS	CZZN	KN 135	T	NA	2	23-MAY-90	2.97		HG/L		71TPH000037SD	MSSD	KN135	T	NA	2	23-MAY-90		MD	HG/L		71TPH000038	FB	KN 135	T	NA	2	23-MAY-90		ND	HG/L		1528	HB							NO	HG/L		71TPH000039	SAMP	KN135	T	1	4	25-MAY-90		ND	MG/L		71TPH000040	SAMP	KN 135	T	2	4	25-MAY-90		ND	HG/L		71TPH000041	SAMP	KN135	T	3	4	25-MAY-90		ND	MG/L		71TPH000042	SAMP	KN135	R	1	4	25-MAY-90		ND	MG/L		71 ТРН000043	SAMP	KN 135	R	2	4	25-MAY-90		ND	MG/L		71TPH000044	SAMP	KN135	R	3	4	25-MAY-90		ND	MG/L		71TPH000046	SAMP	KN135	RR	1	4	25-MAY-90		ND	HG/L		71TPH000047	SAMP	KN135	RR	2	4	25-MAY-90		ND	MG/L		71TPH000048	SAMP	KN 135	RR	3	4	25-MAY-90		ND	HG/L		1563	MB							ND	MG/L		71TPH000050	SAMP	KH211	T	1	0	26-MAY-90		ND	HG/L		71TPH000051	SAMP	KN211	T	2		26-MAY-90		ND	MG/L		71TPH000052	SAMP	KN211	T	3	0	26-MAY-90		ND	MG/L		71TPH000053	SAMP	KN211	R	1	0	26-MAY-90		ND	MG/L		71TPH000054	SAMP	KN211	R	2	0	26-MAY-90		ND	HG/L		71TPH000055	SAMP	KN211	R	3	0	26-MAY-90		ND	MG/L		71TPH000056	DUP	KN211	R	NA		26-MAY-90		ND	MG/L		71TPH000057MS	MSSD	KX211	R	NA	0	26-MAY-90	2.49		MG/L		71TPH000057SD		KN211	R	NA		26-MAY-90	1.98		MG/L		71TPH000058	SAMP	KH211	R	1	0	26-MAY-90		ND	MG/L		71TPH000059	SAMP	KN211	RR	2	0	26-MAY-90		ND	MG/L		71TPH000060	SAMP	KN211	RR	3	0	26-MAY-90		ND	HG/L		1574	HB							ND	MG/L		71TPH000062	SAMP	KN135	T	1	8	29-MAY-90		ND	MG/L		71TPH000063	SAMP	KN135	T	2	8	29-MAY-90		MD	MG/L		71TPH000064	SAMP	KN135	T	3	8	29-MAY-90		ND	HG/L		71TPH000065	SAMP	KN135	R	1	8	29-MAY-90		ND	MG/L												# APPENDIX D4, TABLE 1 (continued) TOTAL PETROLEUM HYDROCARBON IN NEARSHORE WATER	SAMPFID	type	BEACH		REP	DAY DATE	TPH TPHQ UNITS		----------------------------	------------	------------------	---------	----------	------------------------------	------------------------		71TPH000066	SAMP	KN135	R	2	8 29-MAY-90	ND MG/L		71TPH000067	SAMP	KN135	R	3	8 29-MAY-90	ND MG/L		71TPH000068	SAMP	KN135	RR	1	8 29-MAY-90	ND MG/L		71TPH000069	SAMP	KN135	RR	2	8 29-MAY-90	ND MG/L		71TPH000070	SAMP	KN135	RR	3	8 29-MAY-90	ND MG/L		1614	· M8					ND MG/L		71TPH000071	SAMP	KN132	T	1	0 31-MAY-90	ND MG/L		71TPH000072	SAMP	KN132	T	2	0 31-MAY-90	ND MG/L		71TPH000073	SAMP	KN132	T	3	0 31-MAY-90	ND MG/L		71TPH000074	SAMP	KN132	R	1	0 31-MAY-90	ND MG/L		71TPH000075 71TPH000076	SAMP	KN 132 KN 132	R R	2 3	0 31-MAY-90 0 31-MAY-90	ND MG/L		711PH000076	SAMP	KN132	RR	1	0 31-MAY-90	ND MG/L ND MG/L		71TPH000077	SAMP	KN132	RR	ż	0 31-MAY-90	ND MG/L		71TPH000079	SAMP	KN132	RR	3	0 31-MAY-90	ND MG/L		71TPH000080MS		KN132	T	NA	0 31-MAY-90	2.73 MG/L		71TPH000080SD	MSSD	KN 132	T	NA	0 31-MAY-90	2.39 MG/L		71TPH000081	DUP	KN132	T	NA	0 31-MAY-90	ND MG/L		71TPH000082	FB	KN132	T	NA	0 31-MAY-90	ND MG/L		1654	MB					ND MG/L		71TPH000083	SAMP	KN211	T	1	4 03-JUN-90	ND MG/L		71TPH000084	SAMP	KN211	T	2	4 03-JUN-90	ND MG/L		71TPH000085	SAMP	KN211	T	3	4 03-JUN-90	ND MG/L		71TPH000086	SAMP	KN211	R	1	4 03-JUN-90	ND MG/L		71TPH000087	SAMP	KN211	R	2	4 03-JUN-90	0.24 MG/L		71TPH000088 71TPH000089	SAMP	KN211 KN211	R T	3	4 03-JUN-90	ND MG/L ND MG/L		711PH000099	SAMP	KN211	Ť	1 2	2 01-JUN-90 2 01-JUN-90	ND MG/L ND MG/L		71TPH000091	SAMP	KN211	T	3	2 01-JUN-90	0.21 MG/L		71TPH000092	SAMP	KN211	Ŕ	1	2 01-JUN-90	ND MG/L		71TPH000093	SAMP	KN211	R	2	2 01-JUN-90	0.23 HG/L		1680	MB			_		ND MG/L		71TPH000094	SAMP	KN211	R	3	2 01-JUN-90	ND MG/L		71TPH000095	SAMP	KN211	RR	1	2 01-JUN-90	ND MG/L		71TPH000096	SAMP	KN211	RR	2	2 01-JUN-90	ND MG/L		71TPH000097	SAMP	KN211	RR	3	2 01-JUN-90	ND MG/L		71TPH000098	SAMP	KN211	RR	1	4 03-JUN-90	ND MG/L		71TPH000099	SAMP	KOL211	RR	2	4 03-JUN-90	ND NG/L		71TPW000100	SAMP	KN211	RR	3	4 03-JUN-90	ND MG/L		71TPH000101 71TPH000102	DUP	KN211 KN211	T	NA.	4 03-JUN-90 4 03-JUN-90	ND MG/L		71TPH000102	FB MSSD	KN211	NA T	NA NA	4 03-JUN-90 4 03-JUN-90	ND NG/L 3.12 NG/L		71TPH00010350	MSSD	KN211	Ť	MA	4 03-JUN-90	3.32 MG/L		71TPH000104	SAMP	KN132	Ť	1	2 04-JUN-90	0.29 MG/L		71TPH000105	SAMP	KN132	T	Ž	2 04-JUN-90	ND MG/L		71TPH000106	SAMP	KN132	T	3	2 04-JUN-90	ND MG/L		71TPW000107	SAMP	KN132	RR	1	2 04-JUN-90	ND MG/L		71TPH000108	SAMP	KN132	RR	2	2 04-JUN-90	ND MG/L		71TPH000109	SAMP	KN132	R	3	2 04-JUN-90	ND MG/L		71TPH000110	SAMP	KN132	RR	1	2 04-JUN-90	ND MG/L		71TPH000111	SAMP	KN132	RR	2	2 04-JUN-90	ND MG/L		71TPH000112	SAMP	KN132	RR	3	2 04-JUN-90	ND MG/L		1688	MB	W1475	-		45 05 1171 00	ND MG/L		71TPH000113 71TPH000114	SAMP	KN135 KN135	T T	1	15 05-JUN-90 15 05-JUN-90	0.23 MG/L 0.23 MG/L		711PH000114 71TPH000115	SAMP	KN 135	T	3	15 05-JUN-90	MD MG/L		71TPH000115	SAMP	KN 135	R	1	15 05-JUN-90	ND MG/L		71TPH000117	SAMP	KN 135	R	ż	15 05-JUN-90	ND MG/L		71TPH000118	SAMP	KN135	R	3	15 05-JUN-90	ND MG/L		71TPH000119	SAMP	KN135	RR	1	15 05-JUN-90	ND MG/L		71TPH000120	SAMP	KN135	RR	2	15 05-JUN-90	ND MG/L		71TPH000121	SAMP	KN135	RR	3	15 05-JUN-90	ND MG/L		71TPH000122	FB	KN135	T	NA	15 05-JUN-90	ND MG/L		71TPH000123MS		KN135	T	NA	15 05-JUN-90	2.73 MG/L		71TPH000123SD		KN135	T	NA	15 05-JUN-90	2.62 MG/L		71TPH000124	SAMP	KN132	T	1	4 06-JUN-90	ND MG/L	# APPENDIX D4, TABLE 1 (continued) TOTAL PETROLEUM HYDROCARBON IN NEARSHORE WATER	SAMPFID	type	BEACH		REP	DAY	DATE	TPH	TPHQ	UNITS		--------------------------------	------------	----------------	--------	------	-----	------------------------	------	----------	--------------		71TPH000125	SAMP	KN132	т	2		06-JUN-90		ND	MG/L		71TPH000125	SAMP	KN132	Ť	3		06-JUN-90		ND	MG/L		71TPH000127	SAMP	KN132	R	1	4	06-JUN-90		ND	MG/L		71TPH000128	SAMP	KN132	R	2	4	06-JUN-90		ND	MG/L		71TPH000129	SAMP	KN132	R	3	4	06-JUN-90		ND	HG/L		717PH000130	SAMP	KN132	RR	1	4	06-JUN-90		MD	MG/L		71TPH000131	SAMP	KN132	RR	2	4	06-JUN-90		ND	MG/L		71TPH000132	SAMP	KN132	RR	3	4	06-JUN-90		ND	MG/L		71TPH000133	SAMP	KN211	T T	1		07-JUN-90 07-JUN-90		ND	HG/L		71TPH000134 71TPH000135	SAMP	KN211 KN211	Ť	2	_	07-JUN-90		ND ND	MG/L MG/L		71TPH000136	SAMP	KN211	R	1	_	07-JUN-90		ND	MG/L		71TPH000137	SAMP	KN211	R	2	_	07-JUN-90		ND	MG/L		71TPH000138	SAMP	KN211	R	3	8	07-JUN-90		ND	MG/L		71TPH000139	SAMP	KN211	RR	1	8	07-JUN-90		ND	MG/L		71TPH000140	SAMP	KN211	RR	2	8	07-JUN-90		ND	MG/L		71TPH000141	SAMP	XX211	RR	3	_	07-JUN-90		ND	MG/L		71TPH000142	DUP	XXX211	R	1		07-JUN-90		ND	HG/L		71TPH000143MS 71TPH000143SD		KN211	R	1	_	07-JUN-90 07-JUN-90	2.44		MG/L		71TPH000143SD 71TPH000144	MSSD FB	KN211 KN211	R	NA	8	07-JUN-90	2.10		MG/L MG/L		1794	MB	N/16 1		86		01-90M-70		MD	MG/L		71TPH000145	SAMP	KN132	Т	1	8	10-JUN-90		ND	MG/L		71TPH000146	SAMP	KN132	T	2	8	10-JUN-90		ND	HG/L		71TPH000147	SAMP	KN132	T	3	8	10-JUN-90		ND	HG/L		71TPH000148	SAMP	KN 132	R	1	8	10-JUN-90		ND	MG/L		71TPH000149	SAMP	KN132	R	2	8	10-JUN-90		ND	MG/L		71TPH000150	SAMP	KN132	R	3	8	10-JUN-90		MD	MG/L		71TPH000151	SAMP	KN132	RR	1	8	10-JUN-90		MD	HG/L		71TPH000152	SAMP	KN132	RR	2	8	10-JUN-90		ND	MG/L		71TPH000153 1795	SAMP	KN132	RR	3	8	10-JUN-90		ND	MG/L		71TPH000154	SAMP	KN211	т	1	16	10-JUN-90		ND ND	MG/L MG/L		71TPH000155	SAMP	KN211	Ť	ž		15-JUN-90		MD	MG/L		71TPH000156	SAMP	KN211	T	3		15-JUN-90		MD	HG/L		71TPH000157	SAMP	KN211	R	1	16	15-JUN-90		ND	MG/L		71TPH000158	SAMP	KXI211	R	2	16	15-JUN-90		MD	HG/L		71TPH000159	SAMP	KN211	R	3	16	15-JUN-90		ND	MG/L		71TPH000160	SAMP	101211	RR	1		15-JUN-90		MD	MG/L		71TPH000161	SAMP	101211	RR	2		15-JUN-90		ND	HG/L		71TPH000162	SAMP	101211	RR	3	16																																																																																																																																																																																																											
15-JUN-90		ND	MG/L		1929 71TPH000163	MB SAMP	KN132	т	1	14	18-JUN-90		ND ND	MG/L MG/L		71TPH000165	SAMP	KN132	T	2		18-JUN-90		ND	MG/L		71TPH000165	SAMP	KN132	Ť	3		18-JUN-90		ND	MG/L		71TPH000166	SAMP	KN132	R	1		18-JUN-90		ND	MG/L		71TPH000167	SAMP	KN132	R	2		18-JUN-90		ND	MG/L		71TPH000168	SAMP	KN132	R	3	16	18-JUN-90		MD	MG/L		71TPH000169	SAMP	KN132	RR	1		18-JUN-90		ND	MG/L		71TPH000170	SAMP	KN132	RR	2		18-JUN-90		ND	MG/L		71TPH000171	SAMP	KN132	RR	3		18-JUN-90		ND	MG/L		71TPH000172	DUP	KN132	T	1		18-JUN-90		ND	MG/L		71TPH000174MS 71TPH000174SD	MSSD	KN132 KN132	T T	1		18-JUN-90 18-JUN-90	2.89		MG/L MG/L		71TPH000174SD	FB	KN132	'	NA I		18-JUN-90	2.42	ND	MG/L		1958	MB	N# 146		- AP		15 TON 70		ND	MG/L		71TPH000185	SAMP	KN135	Т	1	32	22-JUN-90		ND	HG/L		71TPH000186	SAMP	KN 135	T	2		22-JUN-90		ND	MG/L		71TPH000187	SAMP	KN135	T	3	32	22-JUN-90		MD	MG/L		71TPH000188	SAMP	KN135	R	1	32	22-JUN-90		ND	MG/L		71TPH000189	SAMP	KN 135	R	2		22-JUN-90		MD	HG/L		71TPH000190	SAMP	KN135	R	3		22-JUN-90		ND	MG/L		71TPH000191	SAMP	KN135	RR	1		22-JUN-90		ND	HG/L		71TPH000192	SAMP	KN135	RR	2		22-JUN-90		MD	MG/L		71TPH000193 2036	SAMP MB	KN 135	RR	3	32	22-JUN-90		ND ND	MG/L MG/L		2030									mu/L	# APPENDIX D4, TABLE 1 (continued) TOTAL PETROLEUM HYDROCARBON IN NEARSHORE WATER	SAMPFID	type	BEACH		REP	DAY	DATE	TPH 1	PHQ	UNITS		---------------	------	--------	----	-----	-----	-----------	-------	-----	-------		71TPH000194	SAMP	KN211	т	1	31	30-JUN-90		ND	MG/L		71TPH000195	SAMP	KN211	T	2	31	30-JUN-90		ND	MG/L		71TPH000196	SAMP	KN211	T	3	31	30-JUN-90		ND	MG/L		71TPM000197	SAMP	KN211	R	1	31	30-JUN-90		ND	MG/L		71TPH000198	SAMP	KN211	R	2	31	30-JUN-90		ND	MG/L		71TPH000199	SAMP	KN211	R	3	31	30-JUN-90		ND	MG/L		71TPH000200	SAMP	KN211	RR	1	31	30-JUN-90		ND	MG/L		71TPH000201	SAMP	KN211	RR	2	31	30-JUN-90		ND	MG/L		71TPH000202	SAMP	KN211	RR	3	31	30-JUN-90		ND	MG/L		71TPH000203	DUP	KN211	T	1	31	30-JUN-90		ND	MG/L		71TPH000204MS	MSSD	KN211	T	1	31	30-JUN-90	2.89		MG/L		71TPH000204S0	MSSD	KN211	T	1	31	30-JUN-90	3.22		MG/L		71TPH000205	FB	KN211		NA	31	30-JUN-90		ND	MG/L		71TPH000206	SAMP	KN132	T	1	29	30-JUN-90		ND	MG/L		71TPH000207	SAMP	KN 132	T	2	29	30-JUN-90		ND	MG/L		71TPH000208	SAMP	KN132	T	3	29	30-JUN-90	0.24		MG/L		71TPH000209	SAMP	KN132	R	1	29	30-JUN-90		ND	MG/L		71TPH000210	SAMP	KN132	R	2	29	30-JUN-90		ND	MG/L		71TPH000211	SAMP	KN132	R	3	29	30-JUN-90		ND	MG/L		71TPH000212	SAMP	KN132	RR	1	29	30-JUN-90		ND	MG/L		71TPH000213	SAMP	KN132	RR	2	29	30-JUN-90		ND	MG/L		71TPH000214	SAMP	KN132	RR	3	29	30-JUN-90		ND	MG/L		2211	MB							ND	MG/L	PRELIMINARY DATA ·Bioremediation Monitoring Program Nutrients are reported in uM (micro-moles per liter)	SAMPFID	BEACH	FERT/ UNFERT	TIME	DEPTH	NO3+NO2	NH4	P04		--	---	-----------------	---	--	---	--	---		71NSR000005 71NSR0000005 71NSR0000010 71NSR0000111 71NSR000013 71NSR000015 71NSR000015 71NSR000018 71NSR000019 71NSR000019 71NSR0000020 71NSR0000020 71NSR000022 71NSR000023 71NSR000024 71NSR000025 71NSR000025 71NSR000021 71NSR000021 71NSR000021 71NSR000021 71NSR000021 71NSR000031	KN1355 KN13131 KN1211 KN1211 KN1211 KN1211 KN1211 KN1211 KN1212 KN1212 KN1212 KN1212 KN1212 KN1212 KN1232 KN1232 KN1332 KN1332 KN1332 KN1332 KN1332		01792721927209700179279722097001799227722097 1358 1358 15 1351588 15 11335588 15	**************************************	15537766459384172991782493252312958321167239 00 6302032060 0000065 2 95493252312958321167239 10 000065 2 11 000011000001100000000000000000000	15594937576834741285784587834363179627797539 00 7 62 4367200111468319 0011211021100 00 10	644523887965639 5511141684927957326577268744124 0.122387965639 5511141684927957326577268744124	# APPENDIX D4, TABLE 2 FERTILIZER NUTRIENTS IN NEARSHORE WATER # RESULTS OF AQUATIC BIOASSAYS ON WATER SAMPLES TAKEN AT VARYING TIMES OFF TREATED AND CONTROL BEACH AREAS IN PRINCE WILLIAM SOUND # Prepared by: MEC Analytical Systems Inc. Bioassay Division 98 Main Street, Suite 428 Tiburon, CA 94920 Prepared for: U.S. EPA Bioremediation Program 437 E Street Suite 301 Anchorage, Alaska 99501 # TABLE OF CONTENTS		PAGE		--	---------------------------------		1.0 Introduction	1		 2.0 Methods 2.1 Test Protocols 2.2 Test Solution Preparation 2.3 Summary of Bioassay Test Procedures 2.3.1 Mysidopsis bahia Testing 2.3.2 Data Analysis 	2 2 2 2 2 2 3		3.0 Results 3.1 KN - 135 Results 3.2 KN - 211 Results 3.3 KN - 132 Results	4 4 4 4		4.0 References	11	# TABLE OF CONTENTS (CONTINUED) # LIST OF TABLES	Number		PAGE		---------	--	------		Table 1	Summary of Results, Site KN - 135	5		Table 2	Summary of Results, Site KN - 211	6		Table 3	Summary of Results, Site KN - 132	7		Table 4	KN - 135, Summary of Test Conditions For the Mysid Shrimp <i>Mysidopsis bahia</i>	8		Table 5	KN - 211, Summary of Test Conditions For the Mysid Shrimp Mysidopsis bahia	9		Table 6	KN - 132, Summary of Test Conditions For the Mysid Shrimp <i>Mysidopsis bahia</i>	10	# **APPENDICES** A Analytical Data The EPA and Exxon Corporation are currently evaluating the potential for bioremediation of oiled beaches in Prince William Sound resulting from the Exxon Valdez Oil Spill of 1989. MEC Analytical Systems was requested by the EPA to conduct aquatic bioassays on water samples taken at varying times off treated and control beach areas. The bioassays were performed using the mysid shrimp, *Mysidopsis bahia* in a four day acute toxicity test. This species was selected due to its previously documented sensitivity to the test chemicals. The following report presents the results of those studies. The studies were conducted at the MEC Analytical Systems Bioassay Laboratory in Tiburon, California. The project was managed by Dr. Kurt Kline. ### 2.1 TEST PROTOCOLS Maintenance of and procedures for *Mysidopsis bahia* are described in EPA (1985). The test was static with no renewals of the test solutions. ### 2.2 TEST SOLUTION PREPARATION Water samples from site KN - 135 were received at MEC on May 23 through 26, 1990 (Appendix Table 1). Water samples from site KN - 211 were received at MEC laboratories on May 31 through June 4, 1990 (Appendix Table 1). Water samples from site KN - 132 were received at MEC laboratories on June 4 through June 8, 1990 (Appendix Table 1). Two gallons of each sample were received each day. Samples were delivered in coolers at 4°C and were maintained in refrigeration at 4°C until used. The diluent used for this study was laboratory seawater (from San Francisco Bay) which had been filtered at 50 and 5 μm and UV-sterilized. The concentrations of the test site water samples used were 6.25, 12.5, 25, 50, and 100%. The control sites were tested at 100% only. ### 2.3 SUMMARY OF BIOASSAY TEST PROCEDURES ### 2.3.1 Mysidopsis bahia Testing Mysid shrimp less than fourteen days old were used for testing. The test animals were obtained from Aquatox, Hot Springs, AK. The test was carried out in 250 ml beakers containing 200 ml of test solution and ten shrimp per beaker. Three replicates were run for each treatment (concentration). The shrimp were fed 0.1 ml of an *Artemia* nauplii suspension (340-350 nauplii per 0.1 ml) two times daily during testing. Water quality measurements were made at the end of each 24-hour exposure for the tour day duration of testing as well as on freshly made test solutions on Day 0. Testing was conducted at $20 \pm																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
2^{\circ}$ C with a photoperiod of fourteen hours light and ten hours dark. Initial total ammonia was measured on the 100% concentration only on Day 0 and that data is presented in Appendix Table 1. ### 2.3.2 Criteria for Test Acceptability The criteria used to determine test acceptability was the following: Mysidopsis bahia 1. Control survival to exceed 80% ### 2.4 DATA ANALYSIS At the conclusion of all tests a statistical evaluation of test species survival of *Mysidopsis* was performed using Dunnett's test (ANOVA) with Bonferroni's adjustment if necessary. The effect on mortality was considered to be a statistically significant difference (P < 0.05) between the mean values for the test organisms and the mean values for control organisms at the end of the test (EPA, 1985). The No Observed Effect Concentration (NOEC) is the highest exposure where no adverse effects were observed. The Lowest Observed Effect Concentration (LOEC) is the lowest exposure where statistically significant effects on the test species were observed. The Maximum Allowable Toxic Concentration (MATC) is the geometric mean of the NOEC and the LOEC. The lowest NOEC values of the two tested effects is reported as the NOEC for the test. Tables 1 to 3 summarize the results of the bioassays. Tables 4, 5, and 6 present the test conditions. Appendix Tables 2 through 4 summarize the water quality data. Appendix Tables 5 through 7 show the complete toxicity testing results. ### 3.1 KN - 135 RESULTS Water quality parameters in all of the tests were acceptable. Dissolved oxygen was well above 40% saturation (3.3 mg/L at 25°C) and salinity was maintained at 30 ± 2 ppt. Total ammonia ranged from 0.17 to 0.47 ppm for the control sites and from 0.21 to 0.88 for the test sites. No significant toxicity was found in any water samples during this test period (Table 1). ### 3.2 KN - 211 RESULTS Water quality parameters in all of the tests were acceptable. Dissolved oxygen was well above 40% saturation (3.3 mg/L at 25°C) and salinity was maintained at 30 ± 2 ppt. Total ammonia ranged between 0.11 and 0.56 ppm for the test sites, and 0.10 and 0.44 ppm at the control sites. No significant toxicity was found in any water samples during this test period (Table 2). ### 3.3 KN - 132 RESULTS Water quality parameters in all of the tests were acceptable. Dissolved oxygen was well above 40% saturation (3.3 mg/L at 25°C) and salinity was maintained at 30 ± 2 ppt. Total ammonia ranged between 0.13 and 0.58 ppm for the controls, and 0.17 and 0.56 ppm at the test sites. No significant toxicity was found except in the 100% concentration of the pretreatment sample (Table 3). TABLE 1 SUMMARY OF RESULTS SITE KN - 135 # Percent Mortality At Test Hours	Concentration									--------------------	--------------	--------	--------	---------	---------	---------	---------		(%)	Pretreatment	1 Hour	7 Hour	19 Hour	32 Hour	57 Hour	82 Hour		Laboratory Control	3.3	3.3	3.3	6.7	6.7	6.7	3.3		6.25	3.3	0.0	13.3	3.3	3.3	10.0	3.3		12.5	0.0	6.7	3.3	10.0	3.3	6.7	3.3		25	6.7	0.0	3.3	10.0	10.0	3.3	3.3		50	0.0	3.3	10.0	6.7	3.3	6.7	0.0		100	0.0	10.0	10.0	0.0	6.7	0.0	0.0		LC50	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%		NOEC	100%	100%	100%	100%	100%	100%	100%	### Percent Mortality for Control Hours	Concentration					--------------------	--------------	----------	----------		(%)	Pretreatment	19 Hours	57 Hours		Laboratory Control	3.3	6.7	6.7		Site Control	0.0	3.3	6.7		NOEC	100%	100%	100%	NOEC: No Observable Effects Concentration. TABLE 2 SUMMARY OF RESULTS SITE KN - 211 # Percent Mortality At Test Hours	Concentration									--------------------	--------------	--------	--------	---------	---------	---------	---------		(%)	Pretreatment	1 Hour	7 Hour	19 Hour	32 Hour	57 Hour	82 Hour		Laboratory Control	0.0	0.0	0.0	0.0	0.0	3.3	3.3		6.25	3.3	3.3	3.3	3.3	6.7	0.0	0.0		12.5	3.3	5.0	3.3	3.3	0.0	3.3	6.7		25	0.0	3.3	10.0	3.3	3.3	0.0	3.3		50	0.0	6.7	10.0	6.7	6.7	0.0	3.3		100	3.3	10.0	3.3	3.3	3.3	6.7	6.7		LC50	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%		NOEC	100%	100%	100%	100%	100%	100%	100%	Percent Mortality for Control Hours	Concentration					--------------------	--------------	----------	----------		(°c)	Pretreatment	19 hours	57 hours		Laboratory Control	0.0	0.0	3.3		Site Control	10.0	0.0	3.3		NOEC	100%	100%	100%	NOEC: No Observable Effects Concentration. TABLE 3 SUMMARY OF RESULTS SITE KN - 132 ### Percent Mortality At Test Ilours	Concentration									--------------------	--------------	--------	--------	---------	---------	---------	---------		(%)	Pretreatment	1 Hour	7 Hour	19 Hour	32 Hour	57 Hour	82 Hour		Laboratory Control	0.0	0.0	0.0	0.0	6.7	0.0	0.0		6.25	6.7	6.7	0.0	-3.3	3.3	0.0	3.3		12.5	3.3	0.0	0.0	3.3	3.3	13.3	6.7		25	0.0	3.3	3.3	6.7	0.0	6.7	0.0		50	3.3	3.3	3.3	3.3	3.3	13.3	3.3		100	16.7*	10.0	6.7	6.7	3.3	3.3	3.3		LC50	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%	> 100%		NOEC	50%	100%	100%	100%	100%	100%	100%	# Percent Mortality for Control Hours Concentration (%) Pretreatment 19 Hours 57 Hours	(%)	Pretreatment	19 Hours	57 Hours		--------------------	--------------	----------	----------		Laboratory Control	0.0	0.0	0.0		Site Control	0.0	0.0	3.3		NOEC	100%	100%	100%	^{*} Significant statistical difference. NOEC: No Observable Effects Concentration. # TABLE 4 # KN - 135 SUMMARY OF TEST CONDITIONS FOR THE MYSID SHRIMP # Mysidopsis bahia	Parameter	Data		------------------------------	---		Test type	Static Renewal (Acute)		Duration	4 days		Test Photoperiod	14 hour light: 10 hour dark		Start Date	5/23/90, 5/24/90, 5/25/90, 5/26/90		Completion Date	5/27/90, 5/28/90, 5/29/90, 5/30/90		Control water	30 ± 2 ppt San Francisco Bay seawater		Test Temperature	$20 \pm 2^{\circ}$ C		Organisms per container	10		Test chamber/Exposure volume	250 ml beaker/200 ml		Number of Test Containers	3 per concentration		Sample Storage Conditions	4°C in the dark		Organism			Test Species	Mysidopsis bahia		Source	Aquatox, Hot Springs, AK		Date Acquired	5/18/90, 5/25/90		Age	5-10 days		Diet	Newly hatched Artemia nauplii (0.1 ml twic daily)	# TABLE 5 # KN - 211 # SUMMARY OF TEST CONDITIONS FOR THE MYSID SHRIMP # Mysidopsis bahia	<u>Parameter</u>	Data		------------------------------	---		Took towns	Static Demonstration (Acres)		Test type	Static Renewal (Acute)		Duration	4 days		Test Photoperiod	14 hour light: 10 hour dark		Start Date	5/31/90, 6/1/90, 6/2/90, 6/3/90, 6/4/90		Completion Date	6/4/90, 6/5/90, 6/6/90, 6/6/90, 6/8/90		Control water	30 ± 2 ppt San Francisco Bay seawater		Test Temperature	20 ± 2 °C		Organisms per container	10		Test chamber/Exposure volume	250 ml beaker/200 ml		Number of Replicates	3 per concentration		Sample Storage Conditions	4°C in the dark		Organism			Test Species	Mysidopsis bahia		Source	Aquatox, Hot Springs, AK		Date Acquired	5/25/90, 5/30/90		Age	6-7 days old		Diet	Newly hatched Artemia nauplii (0.1 ml, twice daily)			• /	# TABLE 6 # KN - 132 SUMMARY OF TEST CONDITIONS FOR THE MYSID SHRIMP # Mysidopsis bahia	<u>Parameter</u>	Data		------------------------------	--		Test type	Static Renewal (Acute)		Duration	4 days		Test Photoperiod	14 hour light: 10 hour dark		Start Date	6/4/90, 6/5/90, 6/6/90, 6/8/90		Completion Date	6/8/90, 6/9/90, 6/10/90, 6/12/90		Control water	30 ± 2 ppt San Francisco Bay seawater		Test Temperature	20 ± 1°C		Organisms per container	10		Test chamber/Exposure volume	250 ml beaker/200 ml		Number of Replicates	3 per concentration		Sample Storage Conditions	4°C in the dark		Organism			Test Species	Mysidopsis bahia		Source	Aquatox, Hot Springs, AK		Date Acquired	5/30/90, 6/7/90		Age	6-7 days old		Diet	Newly hatched Artemia nauplii (0.1 ml twic			daily)	EPA. 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms, third edition. Peltier, W.H. and C.I. Weber, eds. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH, EPA/600/4-85/013. # ANALYTICAL DATA # APPENDIX TABLE 1 SAMPLE IDENTIFICATIONS AND INITIAL AMMONIA CONCENTRATIONS	Data	G- I	Total	0- 1-	, D-4-			------------------	-----------------------	-----------------	-----------------------	-----------------	--		Date Received	Sample Designation	Ammonia mg/L	Sample Description	Date Sampled					<u></u>					SITE KN -							5/23/90	Control 1	0.47	KN135R - 0 Hour	5/21/90			5/23/90	Test 1	0.71	KN135T - 0 Hour	5/21/90			5/23/90	Test 2	0.79	KN135T - 1 Hour	5/21/90			5/23/90	Test 3	0.88	KN135T - 7 Hour	5/22/90			5/24/90	Control 2	0.17	KN135R - 19 Hour	5/22/90			5/24/90	Test 4	0.22	KN135T - 19 Hour	5/23/90			5/24/90	Test 5	0.21	KN135T - 32 Hour	5/23/90			5/25/90	Control 3	0.43	KN135R - 57 Hour	5/24/90			5/25/90	Test 6	0.46	KN135T - 57 Hour	5/24/90			5/26/90	Test 7	0.28	KN135T - 82 Hour	5/25/90			SITE KN -	211						5/31/90																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
Control 1	0.10	KN211R - 0 Hours	5/30/90			5/31/90	Test 1	0.11	KN211T - 0 Hours	5/30/90			5/31/90	Test 2	0.15	KN211T - 1 Hours	5/30/90			6/1/90	Test 3	0.48	KN211T - 7 Hours	5/30/90			6/2/90	Control 2	0.29	KN211R - 19 Hours	5/31/90			6/2/90	Test 4	0.16	KN211T - 19 Hours	5/31/90			6/3/90	Test 5	0.14	KN211T - 32 Hours	5/31/90			6/4/90	Control 3	0.44	KN211R - 57 Hours	6/2/90			6/4/90	Test 6	0.56	KN211T - 57 Hours	6/2/90			6/4/90	Test 7	0.55	KN211T - 82 Hours	6/3/90			SITE KN -	132						6/4/90	Control 1	0.36	KN132R - 0 hour	6/2/90			6/4/90	Control 2	0.58	KN132R - 19 Hour	6/3/90			6/4/90	Test 1	0.56	KN132T - 0 Hour	6/2/90			6/4/90	Test 2	0.40	KN132T - 1 Hour	6/2/90			6/4/90	Test 3	0.44	KN132T - 7 Hour	6/2/90			6/4/90	Test 4	0.49	KN132T - 19 Hour	6/3/90			6/5/90	Test 5	0.29	KN132T - 32 Hour	6/4/90			6/6/90	Control 3	0.13	KN132R - 57 Hour	6/5/90			6/6/90	Test 6	0.17	KN132T - 57 Hour	6/5/90			6/8/90	Test 7	0.20	KN132T - 82 Hour	6/6/90		# APEENDIX TABLE 2	Concentratio	ation Day 0 Rep °C DO pH					į	Day	1		ı	Day	2			Day 3	,			Day 4	1			--------------	-----------------------------	------	------	------	------	------	-------	------	------	------	-----	--------	------	------	-------	-------	------	------	-------	---------------	------		(%)	Rep	°C	DO	pll	Sal	°C	DO	pII	Sal	°C	DO	plI	Sal	°C	DO	pII	Sal	°C	DO	pH	Sal																									Laboratory	1	21.1	6.9	7.69	28	18.0		7.79	30	18.5		7.81	30	19.2	5.8	7.79	30	21.2	4.7	7.83	30		Control	2	21.9	6.8	7.74		18.0	6.9	7.80		18.5		7.87		19.1	5.8	7.81		21.2	4.6	7.84				3	21.4	6.8	7.76		18.0	6.8	7.81		18.5	5.5	7.89		18.9	5.5	7.80		21.2	4.6	7.84			Pretreatment	1	21.1	10.2	8.26	31	18.0	7.0	8.04	30	18.5	5.4	7.98	30	18.8	5.5	7.79	30	21.0	4.2	7.74	30		Control	2	21.0	10.2	8.27		18.0	7.1	8.05		18.5	5.3	7.99		18.7	5.5	7.79		21.0	4.2	7.76				3	19.9	10.2	8.28		18.0	7.1	8.09		18.5	5.7	8.07		18.3	5.7	7.87		21.0	4.2	7.80			Pretreatment	Teet																						6.25	1	21.9	6.6	7.83	3()	18.0	6.8	7.89	30	18.8	46	7.85	30	19.3	4.9	7.81	30	21.2	4.5	7.81	30		0.20	2	22.0	6.8	7.83	.,,,	18.0	6.8	7.90	.,,,	18.8				19.2	4.4	7.79	.,,,	21.2	4.4	7.83	.,,,			3	21.5	6.7	7.83		18.3	6.8	7.89		18.9		7.82		19.1	4.4	7.80		21.3	4.4	7.82				.,	2	···	7100		10.0	0.0	,		10.	***	. 10.2				7,00		21.0	•••	7.02			12.5	1	22.0	7.0	7.87	29	18.8	6.7	7.87	30	19.0	4.2	7.77	30	19.0	4.8	7.81	30	21.3	4.3	7. 7 9	30			2	22.0	6.9	7.88		18.8	6.7	7.86		18.9	4.2	7.77		19.0	4.7	7.79		21.2	4.2	7.80				3	22.0	7.1	7.88		19.0	6.7	7.88		18.8	4.4	7.82		19.0	5.1	7.85		21.1	4.2	7.85			25	1	21.9	7.3	7.94	28	18.2	6.7	7.94	30	18.8	4.6	7.83	30	19.2	4.9	7.84	30	21.0	4.5	7.85	30			2	22.0	7.3	7.94		18.2	6.8	7.95		18.6	4.2	7.80		19.1	4.9	7.80		21.1	4.4	7.81				3	21.9	7.5	7.94		18.5	6.8	7.95				7.85		19.0	4.7	7.81		21.2	4.2	7.80			50	1	21.0	Q I	8.07	าน	18.7	6.8	7.96	3(1)	18.8	17	7.86	20	18.9	4.9	7.82	2(1)	21.1	4.2	7.81	30)		20	2	21.6		8.07	20	18.9	6.9	7.98	,)()	18.8		7.81	.707	18.8	4.7	7.79	.7()	21.1	4.2	7.80	.)()			3	21.1		8.08		18.9	6.9	7.97				7.82		18.8	4.8	7.83		20.9	4.2	7.81				,,	-1.1	0.2	0.00		10.7	(). >	7.77		10.0	4.4	7.02		10.0	4.0	7.0.7		20,9	4.2	7.01			100	I	21.0	9.7	8.30	29	18.3	7.0	8.08	30	18.8	4.7	7.85	31	19.0	5.2	7.83	30	21.0	4.2	7.82	30			2	21.2	9.8	8.30		18.2	7.0	8.12		18.8	5.0	7.97		19.0	5.1	7.85		21.1	4.3	7.85				3	21.0	9.7	8.31		18.2	7.0	8.09		18.9	4.7	7.92		18.9	5.1	7.86		21.1	4.3	7.83			Min		19.9	6.6	7.69	28	18.0	6.7	7.79	30	18.5	4.2	7.77	30	18.3	4.4	7.79	30	20.9	4.2	7.74	30		Max		22.0	10.2	8.31	31	19.0	7.1	8.12	30	19.0	5.7	8.07	31	19.3	5.8	7.87	30	21.3	4.7	7.85	30	### APPENLAX TABLE 2 (Cont'd)	Concentratio	(%) Rep		Day (0]	Day	1		I)ay	2			Day 3	3			Day 4	4			--------------	---------	------	-------	------	-----	------	-----	------	-----	------	-----	------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pH	Sal	°C	DO	pII	Sal																									1 Hour Test																							6.25	1	21.0	7.1	7.83	30	18.2	6.6	7.92	30	18.8	5.0	7.87	30	18.9	5.3	7.88	30	21.3	4.3	7.83	30			2	21.1	7.0	7.83		18.1	6.6	7.87		18.8	5.2	7.88		18.9	5.1	7.86		21.2	4.3	7.84				3	21.1	7.0	7.83		18.0	6.5	7.86		18.9	5.7	7.93		18.9	5.2	7.89		21.1	4.4	7.86			12.5	1	20.9	7.0	7.88	28	18.1	6.5	7.88	30	18.8	5.8	7.97	30	18.8	5.3	7.90	30	21.1	4.5	7.90	30			2	21.0	6.9	7.89		18.4	6.4	7.91		18.6	5.1	7.91		18.7	5.3	7.85		21.0	4.6	7.89				3	20.9		7.89		18.7	6.5	7.92		18.5		7.91		18.6	5.2	7.88		21.0	4.6	7.86			25	1	21.8	7.2	7.95	28	18.0	67	7.95	30	18.8	40	7.86	30	19.0	5.3	7.87	30	21.2	4.7	7.84	30		43	-	21.5	7.5	7.96	20	18.1	6.7	7.95	30	18.7		7.87	50	18.9	5.2	7.84	50	21.2	4.7	7.82	.70			2			7.96		18.1	6.8					7.93		18.9	5.1	7.87		21.3	4.7	7.82				3	21.6	7.0	7.90		10.1	0.0	7.90		10.7	3.0	1.93		10.9	3.1	7.07		21.2	4.7	7.00			50	1	22.0	8.0	8.08	30	18.3	6.9	8.00	30	18.6		7.92	30	18.9	5.1	7.81	30	21.2	4.3	7.78	30			2	21.3	8.2	8.08		18.4	6.9	8.00		18.7		7.93		18.7	4.8	7.83		21.1	4.3	7.80				3	21.5	8.1	8.09		18.6	6.9	8.00		18.5	5.4	7.93		18.5	4.9	7.85		21.1	4.2	7.81			100	1	21.8	9.9	8.30	30	18.0	7.1	8.13	30	18.9	4.5	7.91	31	19.0	5.2	7.85	30	21.1	4.7	7.80	30			2	21.5	10.0	8.32		18.0	7.1	8.12		18.8	4.3	7.85		18.9	4.7	7.82		21.2	4.5	7.79				3			8.32		18.1	7.1	8.11		18.6		7.84		18.8	4.7	7.81		21.0	4.2	7.77			Min		20.9	6.9	7.83	28	18.0	6.4	7.86	30	18 5	12	7.84	30	18.5	4.7	7.81	30	21.0	4.2	7.77	30		Min Max				8.32		18.7	7.1					7.97		19.0	5.3	7.90		21.3	4.7	7.90			IVI M X		22.0	10.2	0.32	50	10.7	7.1	0.13	JU	10.9	J.0	1.91	31	19.0	J.J	7.90	50	41.3	4./	1.90	.70	### APPENDIX TABLE 2 (Cont'd)	Concentratio	n	1	Day (0			Day	ı		ı)ay	2			Day 3	3			Day -	4			--------------	----------------------------	------	-------	------	-----	------	-----	------	-------	------	-----	------	----	------	-------	------	-----	------	-------	------	----		(%)	%) Rep °C DO pli Sal °C DO				pll	Sal	°C	DO	pH	Sal	°C	DO	pH	Sal	°C	DO	pll	Sal					7 Hour Test																							6.25	1	21.1	7.0	7,86	29	18.0	6.2	7.89	30	19.0	4.5	7.86	30	19.0	5.2	7.89	30	21.2	4.5	7.78	30		0.20	2	21.4	7.0	7.85			6.2	7.90	•,,,,	18.9		7.89		19.0	5.2	7.90		21.2	4.2	7.78				3	21.0		7.85		18.0		7.91				7.94		19.0	5.5	7.95		21.1	4.3	7.82			12.5	1	20.9	7.0	7.86	30	18.1	6.5	7.92	30	18.8	4.9	7.81	30	18.9	5.6	7.93	30	21.1	4.4	7.87	30			2	20.2	7.0	7.88		18.1	6.5
19.1	4.8	7.79		21.2	4.5	7.78			Min		20.2	6.9	7.85	28	18.0	6.2	7.89	20	18.6	4.3	7.78	28	18.5	4.6	7.79	28	21.0	4.2	7.78	30		Max		21.6	9.5	8.29	30	18.8	6.9	8.07	30	19.0	5.8	7.94	30	19.2	5.7	7.95	30	21.2	4.7	7.87	30	# APPEN...X TABLE 2 (Cont'd)	Concentratio	n		Day (0		Ì	Day	i		ı	l)ay	2			Day 3	1			Day 4	ı			--------------	-----	------	-------	-----------	-----	------	-----	------	------	------	------	------	-----	------	-------	------	-----	------	-------	------	------		(%)	Rep		DO		Sal		DO	pH	Sal		•	pll	Sal	°C	DO		Sal		DO		Sal		Laboratory	1	20.1	7.6	7.82	30	19.5	5.4	7.89	30	20.0	5.0	7.85	30	21.7	5.0	7.91	30	20.1	4.6	7.87	30		Control	2	20.1	7.0	7.02	.,0	19.7	4.8	7.84	.,()	20.0		7.87	50	21.7	5.0	7.90		20.1	4.4	7.87	.,()		Control	3					19.5	4.3	7.80				7.88		21.7	5.1	7.90		20.1	4.1	7.85			19 Hour	1	19.3	9.8	8.39	28	19.8	5.8	8.04	26	20.0	5.4	7.91	26	21.9	5.2	7.86	28	20.5	4.5	7.73	28		Control	2	10	2 107	· · · · ·		19.8	5.7	8.03		20.0		7.89		22.0	5.3	7.88		20.5	4.2	7.73				3						6.1					7.93		22.0	5.3	7.91		20.5	4.8	7.84			19 Hour Tes	t																						6.25	1	19.6	7.9	7.96	30	19.5	6.3	8.01	30	19.9	6.0	7.99	30	21.5	5.5	8.08	30	20.2	5.7	8.10	30			2					19.5	5.8	7.97		19.9	6.0	7.98		21.6	5.5	8.04		20.3	4.9	8.00				3					19.6		7.92		19.8	6.0	7.99		21.7	5.6	8.04		20.2	4.9	8.00																										12.5	1	19.0	8.0	7.98	29	19.8	5.5	7.91	29	19.9	6.1	7.98	30	21.7	5.6	8.00	29	20.5	4.5	7.95	30			2					19.7	5.3	7.92		19.9	6.0	7.97		21.8	5.6	7.98		20.5	4.1	7.88				3					19.8	5.3	7.92		20.0	6.0	7.97		21.8	5.7	7.99		20.4	4.2	7.91			25	1	18.0	8.0	8.04	28	19.6	5.1	7.87	28	19.9	5.4	7.91	29	21.7	5.2	7.96	29	20.3	4.6	7.92	30			2					19.8	5.2	7.88		20.0	5.4	7.91		22.0	5.2	7.91		20.2	4.4	7.79				3					19.8	5.4	7.90		20.0	5.4	7.91		22.0	5.2	7.91		20.4	4.4	7.84			50	1	18.7	8.4	8.15	28	19.9	5.7	7.97	28	20.0	5.4	7.94	28	21.9	5.2	7.92	28	20.4	4.2	7.80	30			2					20.0	5.4	7.91		20.0	5.6	7.89		21.9	5.3	7.89		20.4	3.9	7.78				3					19.8	5.1	7.87		19.9	5.5	7.90		22.0	5.3	7.90		20.3	4.1	7.86			100	1	18.6	9.9	8.40	28	19.8	4.8	7.87	27	19.8	5.5	7.87	27	21.9	5.3	7.87	28	20.5	4.2	7.82	28			2					19.5	4.3	7.80		20.0	4.8	7.77		21.9	5.0	7.84		20.5	3.9	7.73				3					19.8	4.4	7.90		20.1	5.1	7.83		22.0	5.0	7.81		20.6	3.7	7.72			Min		18.0	7.6	7.82	28	19.5	4.3	7.80	26	19.8	4.8	7.77	26	21.5	5.0	7.81		20.1	3.7	7.72	28		Max		20.1	9.9	8.40	30	20.0	6.3	8.10	30	20.1	6.1	7.99	30	22.0	5.7	8.08	30	20.6	5.7	8.10	30	# APPENDAX TABLE 2 (Cont'd)				Day	0			Day	I		-	Day	2			Day 3	3			Day 4	1			------------	-----	------	-----	------	-----	------	-----	------	-----	------	-----	------	-----	------	-------	------	-----	------	-------	------	-----		(%)_	Rep	°C	DO	pll	Sal	°C	DO	pH	Sal		32 Hour To	est																						6.25	1	19.7	7.8	8.00	29	19.8	5.7	7.91	29	19.8	5.9	7.94	30	21.8	5.6	8.00	30	20.5	4.3	7.88	30			2					19.6	5.6	7.89		20.0	5.7	7.94		21.9	5.5	7.98		20.5	4.0	7.82				3					19.5	5.6	7.89		20.0	5.6	7.92		22.0	5.5	7.96		20.5	4.2	7.82			12.5	ł	19.1	8.0	8.01	29	19.7	5.3	7.85	29	20.0	5.5	7.90	30	22.0	5.5	7.95	30	20.5	4.2	7.83	30			2					19.7	5.9	7.93		20.0	5.7	7.95		22.0	5.6	7.95		20.5	4.4	7.85				3					19.6	6.3	8.01		19.8	6.0	7.98		22.0	5.6	7.97		20.4	4.2	7.89			25	1	18.3	8.4	8.06	29	19.7	5.8	7.93	29	19.8	6.2	7.96	30	22.0	5.6	7.96	30	20.6	4.1	7.85	30			2					19.7	5.5	7.89		20.0	5.6	7.91		22.0	5.5	7.92		20.6	4.0	7.78				3					19.8	5.7	7.93		20.0	5.6	7.93		22.0	5.5	7.93		20.5	4.1	7.82			50	1	19.6	9.0	8.15	29	19.5	5.6	7.92	29	20.0	5.4	7.89	29	22.0	5.2	7.89	29	20.4	4.4	7.86	30			2					19.6	5.5	7.93		19.8	5.5	7.92		22.0	5.2	7.92		20.2	4.3	7.80				3					19.7	5.7	7.97		19.8	5.9	7.94		22.6	5.3	7.94		20.2	4.6	7.92			100	1	18.9	9,9	8.38	30	19.8	6.1	8.05	28	[9,9	5.6	7.92	28	21.9	5.4	7.92	28	20.3	4.6	7.84	30			2					19.7	5.8	8.03		20.0	5.5	7.92		21.9	5.3	7.92		20.3	4.3	7.81				3					19.8	5.9	8.05		20.0	5.5	7.93		22.0	5.2	7.93		20.2	4.0	7.80			Min		18.3	7.8	8.00	20	19.5	5.3	7.85	28	19.8	5.4	7.89	28	21.8	5.2	7.89	28	20.2	4.0	7.78	30		Max		19.7	9.9	8.38	30	19.8	6.3	8.05	20	20.0	6.2	7.98	30	22.6	5.6	8.00	30	20.6	4.6	7.92	30	# APPENDAX TABLE 2 (Cont'd)	Concentratio	on Day 0 Rep °C DO pH S						Day	1		ı	Day	2			Day 3	,			Day 4	1			-----------------------	----------------------------	--------------	------------	--------------	----------	----------------------	-------------------	----------------------	----------	----------------------	-----	----------------------	-----	----------------------	-------------------	----------------------	-----	----------------------	-------------------	----------------------	-----		(%)	Rep		-		Sal		DO		Sal		-	pII	Sal	°C	DO	pII	Sal		DO	pH	Sal		Laboratory Control	1 2 3	21.0	7.4	7.93	30	18.9 18.9 18.8	6.1 6.2 5.5	7.99 8.02 7.94	30	21.0 21.0 21.0	6.1	7.93 7.95 7.93	30	19.0 19.1 19.1	5.7 5.0 4.3	7.98 7.92 7.84	30	18.7 18.7 18.5	5.2 5.6 5.1	7.88 7.94 7.88	30		57 Hour Control	1 2 3	18.1	9.5	8.23	30	18.7 18.3 18.0	6.3 6.4 6.4	8.11 8.12 8.09	28	21.3	6.0	7.91 7.92 7.91	29	19.1 19.2 19.0	4.1 4.2 4.2	7.69 7.72 7.77	30	18.5 18.5 18.2	5.1 5.2 4.9	7.77 7.80 7.83	29		57 Hour Test 6.25	1 2 3	21.0	7.7	7.61	30	19.0 19.0 19.0	6.5	8.06 8.05 8.06	30	21.2 21.3 21.3	6.2	7.86 7.86 7.89	30	19.2 19.2 19.3	5.1 4.9 5.0	7.89 7.87 7.96	30	19.0 18.8 18.8	5.5 5.3 5.5	7.84 7.88 8.00	30		12.5	1 2 3	20.5	7.8	7.76	30	18.8 18.8 18.3	6.5 6.5 6.9	8.06 8.03 8.09	29	21.1 21.0 21.0	6.0	7.89 7.87 7.89	29	19.3 19.1 19.0	5.0 5.1 4.9	7.92 7.87 7.86	30	18.8 18.6 18.5	5.3 5.4 5.0	7.95 7.93 7.90	30		25	1 2 3	19.5	8.1	7.90	30	18.9 19.0 19.0	5.3 5.4 5.6	7.96 7.97 7.99	29	21.1 21.1 21.1	5.9	7.76 7.74 7.73	29	19.2 19.1 19.2	4.3 3.7 3.8	7.79 7.70 7.69	30	18.8 18.8 18.8	5.5 4.5 4.7	7.95 7.82 7.84	30		50	1 2 3	19.0	8.5	7.98	30	18.7 18.5 18.1	6.5 5.6 6.1	8.08 7.95 8.01	28		5.6	7.76 7.74 7.74	29	19.2 19.2 19.0	3.8 3.9 4.3	7.70 7.69 7.73	30	18.5 18.5 18.4	5.0 4.8 5.2	7.88 7.86 7.90	30		100	1 2 3	18.5	9.8	8.16	30	18.8 18.8 18.7	6.1 6.1 6.2	8.06 8.12 8.10	28	21.1 21.2 21.1	5.8	7.77 7.81 7.82	29	19.1 19.1 19.1	4.2 4.1 4.1	7.71 7.71 7.68	30	18.9 18.8 18.6	5.8 5.1 5.3	7.91 7.89 7.87	30		Min Max		18.1 21.0	7.4 9.8	7.61 8.23	30 30	18.0 19.0	5.3 6.9	7.94 8.12	28 30			7.73 7.95		19.0 19.3	3.7 5.7	7.68 7.98		18.2 19.0	4.5 5.8	7.77 8.00		# APPENDAX TABLE 2 (Cont'd)	Concentratio	centration Day 0 (%) Rep °C DO p						Day	1		1)ay	2			Day 3	}			Day 4	Į.			--------------	----------------------------------	------	-----	------	-----	------	-----	------	-----	------	-----	-------	-----	------	-------	------	-----	------	------------	------	-----					•		Sal		-	pll	Sal		•	pII	Sal	°C	DO		Sal		DO	pH	Sal		T N d a		21.2	7.0	7.02	20	21.2	()	0.05	20	20.1	E 0	7.05	20	10.5	5.4	7.06	21	20.2	<i>5 5</i>	7.02	21		Laboratory	1	21.3	7.8	7.83	30	21.2		8.05	30	20.1		7.85	30	18.5	5.4	7.96	31	20.2	5.5	7.82	31		Control	2					21.3	6.2	8.04		20.0		7.86		18.5	5.6	8.00		20.4	5.0	7.86				3					21.3
		6.25	1	21.0	7.9	7.86	30	21.2	6.4	8.04	30	20.0	5.1	7.86	30	18.8	5.9	8.01	31	20.2	5.2	7.66	31			2					21.2	6.3	8.05		20.0	5.0	7.86		18.8	5.5	7.97		20.4	4.3	7.74				3							8.07		19.9		7.84		18.6	5.5	7.94		20.5	3.9	7.73				.,							.,			•••												12.5	1	20.3	7.9	7.90	30	21.3	6.2	8.04	30	19.8	4.9	7.81	30	18.6	4.7	7.87	31	20.5	4.0	7.70	31			2					21.1	6.1	8.04		19.8		7.83		18.5	5.4	7.93		20.2	4.5	7.76				3							8.04		20.0		7.82		18.5	5.5	7.95		20.2	4.6	7.79									21.0	0.1	0.01		2010	•••	, 102		1010				_0	****	,			25	1	21.3	8.1	7.94	30	21.3	6.1	8.07	30	20.0	5.0	7.83	30	18.8	5.0	7.87	31	20.2	4.1	7.73	31			2					21.2	6.0	8.06		20.0	4.3	7.76		18.7	4.2	7.78		20.2	3.4	7.68				3						6.0	8.05		20.0	4.0	7.68		18.8	3.8	7.74		20.5	3.4	7.65																										50	1	22.0	8.3	8.01	30	21.1	5.7	8.05	30	19.6	4.4	7.81	30	18.7	4.0	7.77	30	20.5	3.5	7.64	31			2					21.2	5.6	8.03		19.6	4.7	7.75		18.6	4.5	7.79		20.2	3.6	7.66				3					21.2	5.6	8.04		19.8	4.8	7.83		18.6	5.0	7.84		20.2	4.0	7.68																										100	I	21.1	8.9	8.16	30	21.0	5.7	8.15	30	20.0	4.4	7.78	30	18.5	4.0	7.68	30	20.1	4.3	7.64	30			2					21.0	5.8	8.17		20.0	5.0	7.90		18.6	5.6	7.91		20.2	5.5	7.79				3					21.0	5.8	8.20		20.0	5.1	7.92		18.5	5.4	7.88		20.5	5.4	7.77																										Min		20.3	7.8	7.83	30	21.0		8.03		19.6		7.68		18.5	3.8	7.68	30	20.1	3.4	7.64	30		Max		22.0	8.9	8.16	30	21.3	6.4	8.20	30	20.1	5.8	7.92	30	18.8	5.9	8.01	31	20.6	5.5	7.86	31	### API LNDIX TABLE 3	Concentration	n		Day (0		i	Day	1		1	Day	2			Day 3	1			Day 4	1			---------------	------	------	-------	------	------	------	-----	------	------	------	-----	------	------------	------	-------	-------	------	------	-------	------	-----		(%)	Rep	°C	DO	pH	Sal	°C	DO	plI	Sal	°C	DO	pll	Sal	°C	DO	pH	Sal	°C	DO	pll	Sal		Laboratory	1	20.4	7.0	7.72	30	21.0	7.0	7.99	30	20.7	5.0	7.87	30	21.1	5.2	7.86	30	20.5	5.3	7.86	30		Control	2	20.4	1.9	1.12	30	20.8	7.1	7.99	50	20.7		7.89		21.0	4.6	7.78	.50	20.5	4.8	7.78			Control	3					20.6	7.1	7.97		20.8		7.90		20.6	5.4	7.76		20.9	4.8	7.79				3					20.0	7.1	1.91		20.0	5.0	7.90		20.0	J.4	7.00		20.6	4.0	1.19			Pretreatment	1	18.7	9.5	8.22	30	20.8	7.0	8.16	30	20.6	5.9	7.90	3 0	21.6	2.4	7.59	30	20.4	4.8	7.61	30		Control	2					20.5	7.2	8.17		20.6	5.8	7.91		21.3	2.7	7.53		20.6	4.1	7.66				3					20.0	7.3	8.14		20.6	5.5	7.91		20.9	4.8	7.73		20.6	4.4	7.72			Pretreatment	Tact																						6.25	l	20.0	7.9	7.92	30	20.9	6.5	7.90	30	20.8	5.5	7.82	30	21.1	5.8	7.90	30	21.0	6.1	7.82	30		0.23	2	20.0	1.7	1.72	.,()	20.9	6.7	7.93	50	20.8		7.80		21.0	5.3	7.84	.,()	21.0	6.1	7.73				3					20.8	6.8	7.97				7.81		21.0	5.5	7.88		21.0	6.0	7.72				.,					20.0	0.0	1.71		20.0	0.0	7.01		21.0	3.3	7.00		21.0	0.0	1.12			12.5	1	19.9	7.8	7.91	30	20.6	7.0	7.99	30	20.7	5.2	7.84	30	20.9	5.6	7.91	30	21.0	6.0	7.77	30			2					20.6	7.0	7.99		20.7	5.2	7.81		20.6	5.2	7.86		21.0	5.9	7.76				3					20.5	6.8	7.97		20.7	5.2	7.87		20.9	5.3	7.86		20.9	5.9	7.22			25	1	19.2	8.0	7.98	30	21.0	7.0	8.00	30	20.9	5.4	7.95	30	21.8	5.6	7.94	30	20.6	6.0	7.93	30		23	2	17.2	0.0	7.50	30	20.9	7.1	8.01	30			7.99	.50	21.8	5.9	7.98	50	20.7	6.1	7.98				3					20.9	7.1	8.03				7.97		21.7	5.4	7.92		20.8	5.5	7.90				3					20.7	7.1	0.03		20.7	3.0	1.51		21.7	3.4	1.72		20.0	3.0	7.20			50	1	18.2	8.5	8.10	30	20.8	7.1	8.06	30	20.8	5.9	7.96	30	21.7	5.4	7.88	30	20.7	5.0	7.87	30			2					20.8	7.2	8.08		20.8	5.9	7.95		21.5	5.1	7.85		20.6	5.6	7.71				3					20.6	7.2	8.07		20.8	5.9	7.93		21.0	5.6	7.89		20.6	5.6	7.83			100	1	18.1	86	8.27	30	21.0	7.2	8.13	30	21.0	5.8	7.94	30	21.1	5.2	7.86	30	20.9	5.7	7.85	30		100	2	10.1	0.0	0.27	50	20.9	7.1	8.13	.,,,	21.0		7.96	50	21.2	5.2	7.85		20.8	5.9	7.82	,			3					20.9	7.1					7.96		21.2	5.4	7.89		20.7	5.6	7.82				5					20,7	,	0.12		20.7	5.0	0		-1.2	5	,,,,,			2.07				Min		18.1	7.8	7.72	30	20.0	6.5	7.90		20.6		7.80		20.6	2.4	7.53		20.4	4.1	7.22			Max		20.4	9.5	8.27	30	21.0	7.3	8.17	30	21.0	5.9	7.99	30	21.8	5.9	7.98	30	21.0	6.1	7.98	30	# APPENLIX TABLE 3 (Cont'd)	Concentratio	n		Day (0			Day	1		j	Day	2			Day 3	3			Day 4	4			--------------	-----	------	-------	------	------	------	-----	------	------	------	-------	------	-----	------	-------	------	-----	------	-------	---------	-----		(%)	Rep	°C	DO	pll	Sal	°C_	DO	pll	Sal			pll	Sal	°C	DO	pll	Sal	°C		pll	Sal		1 Hour Test																							6.25	1	20.2	7.9	7.96	30	20.9	7.0	8.01	30	20.9	5.5	7.91	30	21.5	5.5	7.89	30	20.5	6.0	7.97	30		0.20	2	20.2	,,,	7,70	20	20.9	7.1	8.00	.,,,			7.90		21.6	5.3	7.86		20.5	5.3	7.88				3					20.9						7.89		21.6	4.6	7.79		20.5	5.3	7.85				v					2000	0.0	7122		2000	2,42,	7107		21.0	1107	,>		2015	510	, ,,,,,			12.5	1	19.9	7.9	7.98	30	21.0	6.8	7.99	30	20.9	5.3	7.89	30	21.0	5.3	7.93	30	20.9	5.4	7.90	30			2					20.8	7.2	8.01		20.9	5.2	7.92		21.2	5.5	7.93		21.0	5.6	7.91				3					20.8	7.0	8.00		20.9	5.3	7.92		21.1	5.4	7.88		21.0	5.5	7.90																										25	1	19.2	8.1	8.04	30	20.9	7.1	8.02	30	20.9	5.4	7.88	30	21.0	5.3	7.83	30	20.9	5.5	7.86	30			2					20.9	7.0	8.03		20.9	5.4	7.84		21.0	5.4	7.86		20.8	6.4	7.91				3					20.8	7.1	8.05		20.9	5.4	7.84		20.6	5.3	7.86		20.2	5.6	7.90			50	1
19.0	8.6	7.98	30			8.03	30			7.97	30	21.5	5.4	7.90	30	20.2	6.0	7.95	30			2					21.0		8.04				7.97		21.5	5.3	7.86		20.5	6.1	7.89				3					20.9	7.0	8.04		20.8	5.9	7.96		21.4	5.2	7.82		20.3	5.7	7.89			50	1	22.0	9.0	8.07	30	21.0	7.0	8.09	30	20.8	5.9	7.93	30	21.4	5.0	7.81	30	20.4	5.6	7.89	30			_					20.9	7.0	8.08				7.89		21.3	4.8	7.88		20.2	4.3	7.92				2 3					20.9		8.09		20.7		7.85		21.1	5.0	7.81		20.0		7.91			100	1	10.0	10.6	0 27	20	21.2	7.3	8.17	30	20.9	5.0	7.98	20	20.7	5.6	7.92	20	20.5	5.5	7.95	30		100	1	19.0	10.0	8.37	30	21.2			30				30			7.88	30		5.4	7.94	30			2 3					21.2	7.2	8.16		20.9		7.97		20.9	5.7			20.2						3					21.0	7.3	8.17		20.9	5./	7.94		21.1	5.3	7.85		20.3	5.3	7.92			Min		18.1	8.0	7.71	30	20.6	6.9	8.00	30	20.6	5.4	7.85	30	20.6	4.8	7.81	30	20.0	4.3	7.89	30		Max		22.0	10.6	8.37	30	21.2	7.3	8.17	30	20.9	5.9	7.98	30	21.5	5.8	7.96	30	20.9	6.1	7.98	30 .	# APPENLAX TABLE 3 (Cont'd)	Concentratio	n		Day (D			Day	1		1	Day	2			Day 3	1			Day 4	1			--------------	-----	------	-------	-------	------	------	-----	------	------	------	------	------	------	------	-------	-------	------	------	-------	--------	------		(%)	Rep	°C	DO	pll	Sal	°C	DO	pll	Sal	°C	DO	pll	Sal	°C	DO	pH	Sal	°C	DO	pll	Sal		Laboratory	1	19.1	8.0	7.87	31	21.8	6.2	7.98	30			7.92	30	21.2	5.7	7.90	30	21.4	6.0	7.97	30		Control	2					21.8	6.1	7.97		22.0	5.2	7.89		21.2	5.4	7.86		21.8	4.3	7.76				3					21.8	6.1	7.95		22.1	5.3	7.91		21.3	5.6	7.92		21.8	5.0	7.88			19 Hour	1	18.3	8.9	8.24	30	21.7	6.0	7.93	30	21.8	4.3	7.82	30	21.5	5.7	7.82	30	21.4	4.0	7.70	30		Control	2					21.7	6.1	7.94		21.7	4.3	7.77		21.3	5.4	7.78		21.5	4.1	7.70				3					21.6	6.1	7.99		21.8	4.5	7.78		21.2	5.6	7.83		21.2	4.9	7.82	•		19 Hour Test																							6.25	1	18.8	8.0	7.88	30	21.7	6.0	7.95	30	21.7	5.2	7.90	30	21.5	6.2	7.80	29	21.7	5.8	8.00	30			2					21.6	6.0	7.94		21.7		7.88		21.5	6.3	7.87		21.7	5.9	8.02				3					21.7	6.0	7.94		21.6	5.3	7.94		21.4	6.3	7.88		21.7	5.7	7.99																										12.5	1	18.7	8.1	7.90	30	21.6	5.9	7.96	30	21.7		7.84	30	21.4	5.5	7.83	29	21.4	5.2	7.89	30			2					21.3	5.8	7.94		21.7	4.8	7.86		21.2	5.4	7.81		21.4	5.3	7.91				3					21.2	5.8	7.95		21.5	5.1	7.91		21.2	5.7	7.86		21.2	5.0	7.88			25	1	18.3	8.1	7.96	30	21.5	5.8	7.95	30	22.1	5.1	7.89	30	21.2	6.0	7.89	29	21.9	5.6	7.96	30			2					21.6	5.8	7.97		22.1	5.1	7.89		21.1	5.9	7.90		21.9	5.2	7.92				3					21.6	5.9	7.95		22.0	5.1	7.82		21.1	5.9	7.88		21.8	5.5	7.95			50	1	180	มา	8.05	3(1)	21.6	5.7	7.92	30	22.0	5.1	7.88	30	21.0	6.1	7.89	30	21.4	5.5	7.94	30		34	2	10.0	0.2	0.0.7	.,,,	21.4	5.8	7.94	.,(,	22.0		7.96	.,()	21.0	6.3	7.96	.,,,	21.5	5.6	7.97	.,,,			3					21.3	5.7	7.93				7.99		20.6	6.4	7.95		21.4	5.9	8.02	•			.,					21/	.,,	1.23		21.7	.,,,	1.72		20.0	0.4	7.7.7		21.4	,,,,	().(/2			100	i	18.1	8.7	8.21	30	21.3	5.7	8.05	30	21.8	5.5	7.98	30	21.5	6.0	7.91	30	21.8	5.8	7.96	30			2					21.4	5.7	8.09		21.9	5.5	7.99		21.8	6.0	7.93		21.8	5.5	7.95				3					21.4	5.7	8.12		21.9	5.6	8.00		21.6	6.1	7.95		21.8	5.7	8.00			Min		18.0	8.0	7.87	30	21.2	5.7	7.92	30	21.5	4.3	7.77	30	20.6	5.4	7.78	29	21.2	4.0	7.70	30		Max		19.1		8.24		21.8		8.12				8.00		21.8	6.4	7.96		21.9	6.0	8.02	30	# APPENDIX TABLE 3 (Cont'd)	Concentration	n		Đay (D		1	Day 1	l		1	Day	2			Day 3	3			Day 4	ı			---------------	-----	------	-------	-------------	-----	------	-------	------	-----	------	-----	------	-----	------	------------	--------------	------------	--------------	------------	--------------	------		(%)	Rep	°C	DO	pH	Sal	°C	DO	pH	Sal	°C	DO	pH	Sal	°C	DO	pII	Sal	°C	DO	pll	Sal				20.0		- 04	20	24.5		0.06	20	24.5		0.04	••	24.4		= 0.4	•	200			•		Laboratory	1	20.0	7.4	7.84	29			8.06	30			8.06	30	21.4	6.1	7.86	30	20.0	4.8	7.67	30		Control	2					22.0	6.5	8.05		21.2				21.3	6.0	7.98		20.0	4.7	7.78				3					22.0	6.6	8.06		21.2	6.7	8.08		21.3	6.0	8.00		20.0	4.8	7.81			32 Hour Test																							6.25	1	19.0	7.5	7.97	29	22.0	6.4	8.06	30	21.2	6.5	8.05	28	21.6	5.5	7.98	30	20.1	3.9	7.77	30		0,20	2					22.0	6.4	8.06				8.03		21.5	4.6	7.87		20.0	3.8	7.71	****			3					22.1		8.06				8.05		21.6	5.2	7.94		20.0	4.1	7.74										•																12.5	1	19.8	7.6	8.00	30	22.0	6.4	8.08	30	21.0	6.5	8.03	29	21.4	5.7	8.00	30	20.1	4.0	7.80	30			2					22.0	6.4	8.07		21.0	6.4	8.02		21.4	5.6	7.97		19.9	4.9	7.78				3					21.9	6.5	8.06		21.0	6.4	8.01		21.4	5.5	7.97		20.0	4.6	7.79																										25	1	19.2	7.9	8.06	31	21.6	6.6	8.07	30	21.6	6.3	8.02	28	21.7	5.5	7.97	30	20.1	4.3	7.78	30			2					21.6	6.5	8.08		21.7	6.3	7.99		21.6	5.5	7.96		19.9	4.2	7.80				3					21.6	6.4	8.08		21.7	6.3	8.00		21.6	5.8	7.99		19.9	4.3	7.80																										50	1	18.5	8.3	8.20	31	21.9		8.12	30			8.00	30	21.4	5.0	7.87	30	20.1	4.0	7.74				2					21.7		8.12				8.03		21.3	5.9	8.01		19.9	4.3	7.80				3					21.6	6.5	8.12		21.3	6.5	8.05		21.3	6.0	8.04		19.9	4.5	7.84			100		100	0.0	0.24	22	21.0		0.12	20	21.2		0.04	20	21.4	<i>(</i> 1	0.00	20	10.0	4.4	7.06	20		100	1	18.9	9.0	8.34	32			8.13	30			8.04	30	21.4	6.1	8.06	<i>3</i> 0	19.8	4.4	7.86	30			2					21.7						8.05		21.4	6.1	8.07 8.10		19.8 19.9	4.9 4.9	7.88 7.86	•			3					21.8	0.3	8.18		21.2	0.3	8.09		21.4	6.3	0.10		19.9	4.9	7.00			Min		18.5	75	7.97	29
7.75	30			2					21.5	6.7	8.02		21.7	5.9	7.99		20.4	3.9	7.80		20.6	2.8	7.69				3					21.4	6.7	8.05		21.5	5.9	8.02		20.5	4.1	7.85		20.7	2.8	7.70			50	1	19.0	8.5	V 11	30	21.3	6.0	8.12	29	21.2	6.3	8.09	30)	20.5	4.1	7.88	20	20.8	2.9	7.70	30		30	2	10.0	ο,	0.11	.50	21.0		8.08	29			8.00		20.5	4.5	7.85	2,	20.8	3.1	7.71	.,,,			3					21.0		8.10				8.09		20.5	4.3	7.90		20.7	3.0	7.74				.,					21.0	0.7	0.10		21.1	0.1	0.07		20	7	7.20		20.7	.,,,,	7.74			100	1	22.0	9.6	8.25	30	21.0	6.9	8.15	29	21.5	5.4	7.96	30	20.4	4.4	7.67	29	20.9	3.2	7.64	30			2					21.0	6.7	8.12		21.7	5.6	8.00		20.3	4.6	7.87		20.7	2.5	7.62				3					21.0	6.7	8.17		21.6	5.8	8.04		20.3	5.1	7.93		20.5	2.7	7.66			Min		18.0	7.4	7.83	30	20.3	6.3	7.88	28	21.0	5.4	7.96	30	20.2	3.9	7.67	29	20.5	2.5	7.62	30		Max			10.0			21.5	7.0	8.18				8.09		20.7	5.1	7.96		20.9	4.1	7.83		# APPENL. A TABLE 3 (Cont'd)	Concentration	n		Day (D		1	Day	1		1	Day	2			Day 3	3			Day 4	1			---------------	-----	------	-------	------	------------	------	-----	------	-----	------	-----	------	------------	------	-------	------	-----	------	-------	------	------------		(%)	Rep	°C	DO	pII	Sal	°C	DO	pH	Sal	°C	DO	pH	Sal	°C	DO	pH	Sal	°C	DO	plI	Sal		82 Hour Tes	ıf																						6.25	1	19.0	7.9	8.02	30	21.5	7.0	8.09	29	21.4	6.2	8.07	30	20.7	3.8	7.80	30	20.9	3.5	7.76	30		0.20	2	1210	,,,	0102	00	21.5		8.06				8.04		20.7	4.2	7.88		20.9	3.3	7.78				3											8.07		20.8	4.3	7.85		20.6	3.4	7.78				•					21.5	0.,	0.00		21	0.1	0.07		20.0	1,0	7.05		20.0	./1	7.70			12.5	1	18.2	8.0	8.04	30	21.2	6.7	8.08	29	21.3	5.2	7.96	30	20.6	3.8	7.78	30	20.5	3.5	7.72	30			2					21.2	7.0	8.11		21.3	6.3	8.12		20.6	4.6	7.95		20.6	3.3	7.83				3						6.9	8.09				8.06		20.6	4.7	7.89		20.7	3.4	7.77																										25	1	18.0	8.1	8.11	3 0	21.7	6.6	8.07	29	21.4	6.0	8.03	3 0	20.6	3.6	7.74	30	20.8	3.6	7.78	30			2					21.2	6.9	8.12		21.4	6.2	8.10		20.6	3.8	7.78		20.8	3.6	7.80				3						6.8			21.4	6.2	8.07		20.6	3.3	7.77		20.9	3.2	7.74																										50	1	18.0	8.2	8.21	30	21.0	6.8	8.14	28	21.3	6.1	8.07	30	20.3	3.6	7.74	30	20.8	3.3	7.69	30			2					21.1	7.1	8.18		21.3	6.0	8.09		20.3	3.9	7.80		20.7	3.4	7.71				3					20.6	7.2	8.17		21.1	6.1	8.12		20.3	4.0	7.88		20.6	3.4	7.76																										100	1	18.0	10.0	8.34	31	21.5	7.0	8.23	29	21.4	4.9	7.95	30	20.2	3.0	7.61	30	20.6	3.7	7.74	30			2 3					21.5	7.0	8.22		21.3	5.4	8.05		20.2	3.6	7.76		20.7	4.2	7.78				3					21.4	7.0	8.24		21.3	5.5	8.05		20.3	4.5	7.83		20.9	3.9	7.74																										Min		18.0	7.9	8.02	30	20.6	6.4	8.06	28	21.0	4.9	7.95	30	20.2	3.0	7.61	30	20.5	3.2	7.69	3 0		Max		19.0	10.0	8.34	31	21.7	7.2	8.24	29	21.5	6.3	8.12	30	20.8	4.7	7.95	30	20.9	4.2	7.83	30	### APPENDIX TABLE 4	Concentration	1		Day 0)			Day 1				Day 2	.			Day 3	,			Day 4				---------------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	----------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pll	Sal	°C	DO	pH	Sal		Laboratory	1	18.7	7.6	7.76	30	21.5	6.5	8.04	29	21.3	6.2	7.99	30	21.3	3.7	7.65	30	20.8	3.0	7.48	31		Control	2					21.5	6.6	8.01		21.2	6.5	8.01		21.3	3.9	7.80		20.7	3.0	7.59				3					21.5	6.6	8.00		21.3	6.3	7.99		21.3	3.8	7.76		20.5	3.3	7.58			Pretreatment	1	18.5	9.4	8.31	27	22.0	6.6	8.22	28	21.3	6.1	8.05	29	21.1	3.1	7.61	29	20.5	3.3	7.54	30		Control	2					21.4	6.7	8.22		21.1	6.1	8.04		21.0	3.3	7.60		20.8	3.3	7.50				3					20.9	6.8	8.20		21.0	6.3	8.02		21.0	4.1	7.79		20.7	3.3	7.57			19 Hour	1	18.0	9.5	8.33	27	21.6	6.6	8.19	28	20.9	6.2	7.98	29	20.9	4.1	7.68	29	20.5	3.5	7.60	30		Control	2					21.5	6.6	8.18		21.0	6.2	7.98		20.9	3.5	7.57		20.5	3.0	7.52				3					21.3	6.7	8.19		21.0	6.1	8.00		20.8	3.5	7.61		20.5	3.2	7.54			Min		18.0	7.6	7.76	27	20.9	6.5	8.00	28	20.9	6.1	7.98	29	20.8	3.1	7.57	29	20.5	3.0	7.48	30		Max		18.7	9.5	8.33	30	22.0	6.8	8.22	29	21.3	6.5	8.05	30	21.3	4.1	7.80	30	20.8	3.5	7.60	31	# APrENDIX TABLE 4 (Cont'd)	Concentrati	on		Day 0				Day 1				Day 2				Day 3	,			Day 4				-------------	--------	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pll	Sal	°C	DO		Sal	°C	DO		Sal	°C	DO	pll	Sal	°C	DO	pll	Sal		Pretreatmen	t Test																						6.25	1	19.1	7.5	7.92	29	21.5	6.3	7.91	28	21.2	5.9	7.92	30	21.3	3.5	7.70	30	20.2	2.9	7.70	29			2					21.0	6.4	8.02		21.4	5.9	7.99		21.3	3.8	7.86		21.3	3.0	7.75				3					21.2	6.4	7.99		21.4	6.3	8.03		21.3	4.5	7.82		21.1	3.1	7.73			12.5	1	18.5	7.7	7.96	29	21.3	6.3	8.01	28	21.1	6.5	8.07	30	21.2	4.1	7.87	30	21.0	3.3	7.79	30			2					21.3	6.4	8.03		21.0	6.5	8.09		21.2	4.5	7.92		21.0	3.3	7.81				2 3					21.2	6.4	8.00		20.8	6.6	8.05		21.2	4.2	7.86		21.0	3.1	7.76			25	1	18.0	8.0	8.02	30	21.8	6.4	8.01	29	21.2	5.9	7.97	30	21.2	3.4	7.69	30	21.3	2.9	7.68	30			2					21.5	6.4	8.02		21.1	6.0	7.98		21.2	3.6	7.69		21.3	2.6	7.65				3					21.8	6.5	8.04		21.0	6.3	8.04		21.2	3.8	7.72		21.1	2.8	7.63			50	1	18.0	8.4	8.12	30	21.6	6.5	8.08	29	21.4	5.8	8.00	29	21.0	3.5	7.74	29	21.1	2.6	7.65	29			2					21.7	6.5	8.09		21.7	5.9	8.02		21.1	3.5	7.75		21.0	2.5	7.65				2 3					21.5	6.5	8.10		21.6	5.8	7.97		21.1	3.6	7.78		20.9	2.7	7.68			100	1	18.3	9.5	8.32	28	21.1	6.6	8.16	28	21.4	6.4	8.02	29	21.2	3.8	7.69	29	21.3	2.6	7.61	29			2					21.2	6.6	8.17		21.8	6.0	8.02
20.8	2.8	7.58			100	t	18	9.6	8.37	28	21.8	6.7	8.16	28	21.5	6.1	8.00	29	21.0	NT	7.67	29	21.1	2.8	7.58	29			2					21.9	6.7	8.18		21.5	6.0	8.03		21.0	NT	7.54		21.1	2.4	7.52				3					21.9	6.7	8.20		21.4	6.1	8.07		21.0	NT	7.67		20.8	2.4	7.51			Min		18.0	8.0	7.98	28	20.9	6.2	8.00	28	21.0	5.9	7.97	29	21.0	NT	7.54	29	20.8	2.4	7.51	29		Mux		18.1	9.6	8.37	30	22.0	6.7	8.20	29	21.8	6.5	8.08	30	21.0	NT	7.83	30	21.3	3.4	7.75	30	Note: NT = Not taken. # APrendIX TABLE 4 (Cont'd)	Concentratio	n		Day 0	1			Day 1	1			Day 2				Day 3	3			Day 4				--------------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pll	Sal	°C	DO	pll	Sal	°C	DO		Sal	°C	DO		Sal	°C	DO	pII	Sal		7 Hour Test																							6.25	1	18.2	8.0	7.96	30	22.0	6.7	8.01	29	21.5	6.2	8.00	30	20.8	4.3	7.77	30	21.2	2.7	7.64	29			2					21.9	6.4	8.00		21.5	6.1	7.99		20.9	4.1	7.76		21.0	2.9	7.65				3					21.9	6.6	8.02		21.4	6.0	8.02		20.9	3.9	7.84		21.0	2.9	7.69			12.5	1	18.1	7.9	7.98	30	21.0	6.6	8.05	29	21.2	6.2	8.06	30	21.0	4.5	7.91	30	21.0	2.9	7.72	30			2					21.5	6.4	8.03		21.2	6.0	7.99		21.0	4.4	7.79		21.0	3.0	7.70				3					21.6	6.5	8.04		21.1	6.1	8.05		21.0	4.4	7.87		20.8	3.2	7.74			25	1	18.8	8.1	8.03	30	21.5	6.7	8.05	29	21.4	6.1	7.99	30	20.8	4.2	7.68	30	21.1	3.1	7.66	30			2					21.4	6.5	8.04		21.5	6.1	8.00		20.8	4.3	7.72		21.0	3.2	7.66				3					21.5	6.7	8.05		21.4	6.3	8.05		20.8	4.6	7.79		20.9	3.3	7.69			50	1	19.0	8.7	8.13	29	21.5	6.7	8.09	28	21.3	6.1	8.04	29	20.9	4.0	7.70	30	21.0	3.1	7.65	29			2					21.3	6.6	8.11		21.2	6.2	8.05		21.0	4.2	7.85		20.8	3.1	7.72				3					20.9	6.7	8.09		21.1	6.4	8.07		21.0	5.6	7.94		21.0	3.4	7.76			100	1	18.5	9.8	8.37	28	21.8	6.6	8.17	28	21.3	6.2	8.02	29	20.8	3.5	7.61	29	20.9	2.5	7.60	29			2					21.9	6.7	8.20		21.4	6.2	8.08		20.8	3.1	7.66		21.0	2.6	7.53				2 3					21.9	6.7	8.20		21.2	6.3	8.09		20.8	4.3	7.88		21.0	2.5	7.55			Min		18.1	7.9	7.96	28	20.9	6.4	8.00	28	21.1	6.0	7.99	29	20.8	3.1	7.61	29	20.8	2.5	7.53	29		Max		19.0	9.8	8.37	30	22.0	6.7	8.20	29	21.5	6.4	8.09	30	21.0	5.6	7.94	30	21.2	3.4	7.76	30	### API ExtDIX TABLE 4 (Cont'd)	Concentratio	n		Day 0	,			Day 1				Day 2				Day 3				Day 4				--------------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pll	Sal	°C	DO		Sal	°C	DO	plI	Sal	°C	DO	pll	Sal	°C	DO	pll	Sal		19 Hour Tes	t																						6.25	1	18.9	7.8	7.89	29	21.5	6.4	8.03	29	21.6	6.0	7.99	30	20.8	3.7	7.68	30	21.1	2.6	7.54	29			2					21.4	6.5	8.01		21.5	6.1	7.98		20.9	3.8	7.67		21.0	2.6	7.59				3					21.4	6.5	8.03		21.3	6.1	8.00		20.9	3.6	7.79		21.1	2.7	7.65			12.5	1	18.5	8.0	7.93	30	21.3	6.3	8.02	29	21.3	6.2	7.98	29	21.0	3.6	7.78	30	20.9	2.5	7.62	30			2					21.1	6.6	8.05		21.3	6.0	8.06		21.0	3.6	7.83		21.0	2.7	7.67				3					21.0	6.6	8.05		21.1	6.3	8.05		21.0	4.9	7.84		21.0	3.3	7.73			25	1	18.0	8.1	7.99	28	21.9	6.7	8.03	29	21.3	6.0	8.00	29	20.9	4.6	7.75	29	21.2	3.5	7.71	30			2					21.8	6.6	8.05		21.3	6.5	8.06		20.9	4.2	7.73		21.1	3.0	7.67				3					21.9	6.6	8.05		21.3	6.4	8.06		20.9	3.9	7.70		21.0	3.2	7.65			50	ı	18.8	8.7	8.10	28	21.8	6.7	8.10	28	21.3	6.1	8.01	29	21.0	4.2	7.68	29	20.9	2.7	7.61	29			2					21.7	6.7	8.08		21.2	6.1	8.01		21.0	3.8	7.65		21.0	2.8	7.59				3					21.6	6.6	8.11		21.1	6.3	8.07		21.0	4.7	7.87		21.0	3.0	7.68			100	ı	18.0	9.7	8.32	26	21.6	6.7	8.17	26	21.3	6.2	8.03	28	20.8	4.2	7.65	28	21.2	2.7	7.53	26			2					21.5	6.8	8.16		21.2	6.3	8.04		20.8	3.0	7.61		21.0	2.4	7.49				3					21.9	6.8	8.16		21.2	6.1	8.00		20.9	3.0	7.50		21.0	2.5	7.49			Min		18.0	7.8	7.89	26	21.0	6.3	8.01	26	21.1	6.0	7.98	28	20.8	3.0	7.50	28	20.9	2.4	7.49	26		Mux		18.9	9.7	8.32	30	21.9	6.8	8.17	20	21.6	6.5	8.07		21.0	4.9	7.87	30	21.2	3.5	7.73	30	# APPENDIX TABLE 4 (Cont'd)	Concentration	n		Day 0)			Day 1				Day 2				Day 3				Day 4				---------------	-----	------	-------	---------	-----	------	-------	-------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	------	-----		(%)	Rep	°C	DO	pH	Sal	°C	DO	pll	Sal				10.2	7.5	7.70	20	21.2		7.00	20	20.7	2.4	774	20	21.1	2.5	7.70	20	21.0	5.0	7.70	20		Laboratory	1	18.3	7.5	7.79	29	21.3	6.3	7.88	29	20.7	3.4	7.74	29	21.1	3.5	7.70	29	21.8	5.0	7.73	28		Control	2					21.2	6.4	7.98		20.8	3.5	7.74		21.0	3.7	7.70		21.9	5.0	7.74				3					21.1	6.5	7.99		20.8	3.1	7.77		21.1	3.8	7.73		21.9	5.0	7.77			32 Hour Test																							6.25	1	18.2	7.5	7.83	29	20.9	6.2	8.01	29	20.9	3.0	7.63	29	21.1	3.7	7.73	28	21.9	5.0	7.82	28			2					21.1	6.2	7.99		20.9	3.8	7.74		21.1	3.7	7.74		21.9	5.0	7.83				3					21.2	6.2	8.01		20.9	3.5	7.74		21.0	3.8	7.79		22.0	5.0	7.92			12.5	1	18.0	7.3	7.86	29	21.2	6.2	8.03	29	20.6	3.9	7.78	29	21.1	3.8	7.80	28	22.0	5.3	7.92	28		12.0	2	10.0	,,	, ,,,,,		21.2	6.3	8.04		20.6	4.1	7.83		21.0	3.7	7.80		22.0	5.2	7.91				3					21.1	6.0	8.02		20.6	4.3	7.83		21.1	3.7	7.82		22.0	5.3	7.90				.,					21.1	0.0	0.02		20.0	4.5	7.00		21.1	3.7	7.02		22.0	.//	7.20			25	1	18.0	7.7	7.94	28	21.5	6.2	8.03	29	20.7	3.9	7.73	28	21.1	3.5	7.74	28	22.0	5.2	7.80	28			2					21.4	6.3	8.06		20.8	4.0	7.78		21.2	3.7	7.74		22.0	5.1	7.77				3					21.3	6.4	8.06		20.8	3.9	7.80		21.0	3.8	7.78		21.9	5.1	7.79																										50	1	18.0	8.0	8.02	28	21.3	6.6	8.12	29	20.2	4.0	7.79	28	21.1	3.3	7.71	28	21.9	5.1	7.80	28			2					21.2	6.6	8.13		20.3	4.8	7.89		21.0	3.6	7.76		21.9	5.1	7.82				2 3					21.1	6.7	8.12		20.3
7.88	28	21.4	5.3	7.89	28		-	3					20.4	5.5	7.95		20.9	3.0	7.58		22.0	5.2	7.82		21.4	5.3	7.86									20.5	5.6	7.96		20.9	3.1	7.61		22.0	5.0	7.81		21.3	5.5	7.90			57 Hour Test																							6.25	1	20.0	7.7	8.04	28	20.2	5.2	7.88	28	20.9	3.4	7.66	26	22.0	5.1	7.80	27	21.2	5.4	7.92				2					20.1	5.2	7.89		20.9	3.4	7.68		22.0	5.1	7.81		21.5	5.3	7.93			3	3					20.1	5.3	7.90		20.9	3.7	7.73		22.0	5.1	7.81		21.5	5.1	7.99			12.5	1	20.0	7.8	8.10	28	20.3	5.1	7.90	28	20.9	3.3	7.68	28	22.0	5.2	7.84	27	21.4	5.5	7.93	27			2					20.3	4.9	7.89		21.0	3.0	7.65		21.9	5.2	7.88		21.4	5.3	7.92				3					20.3	4.9	7.91		21.0	3.2	7.70		21.9	5.3	7.90		21.3	5.3	7.97			25	ı	19.5	7.8	8.15	28	20.2	5.9	7.97	28	20.8	3.7	7.76	28	22.0	5.2	7.89	27	21.2	5.3	7.95	27			2					20.2	5.5	7.95		20.9	4.1	7.80		22.0	5.1	7.87		21.3	5.6	8.00				3					20.2	5.5	7.94		20.9	4.1	7.80		22.0	5.1	7.86		21.5	5.9	8.05			50	1	18.2	7.9	8.23	27	20.4	4.9	7.92	28	21.0	3.3	7.67	28	22.0	5.0	7.82	27	21.5	5.5	7.95	27			2					20.4	5.1	7.98		21.9	3.3	7.67		21.9	5.0	7.83		21.5	5.6	7.98				3					20.4	5.5	8.00		21.0	3.4	7.72		21.9	5.1	7.82		21.4	5.6	8.01			100	1	19.0	8.4	8.39	26	20.1	6.1	8.06	27	20.7	3.3	7.69	26	22.0	5.1	7.80	26	21.2	5.8	7.96	27			2		• • •	.,,,,	2.7	20.1	6.1	8.05	_,	20.6	3.6	7.71	,	22.0	5.2	7.81		21.3	5.8	7.97				3					20.1	5.6	8.00		20.7	3.7	7.69		22.0	5.1	7.80		21.3	5.9	7.98			Min		18.0	7.5	7.97	26	20.1	4.9	7.86	27	20.5	3.0	7.58	26	21.9	5.0	7.80	26	21.0	5.1	7.83	27		Max		20.1	8.4	8.39	29	20.5	6.1	8.06	29	21.9	4.5	7.82		22.0	5.5	7.95	28	21.5	5.9	8.05		# APPENDIX TABLE 4 (Cont'd)	Concentration	n		Day 0)			Day 1				Day 2				Day 3				Day 4				---------------	-----	------	-------	------	-----	------	-------	-------	-----	------	-------	------	-----	------	-------	------	-----	------	-------	-------------	-----		(%)	Rep	°C	DO	pll	Sal	°C	DO	pII	Sal	°C	DO	pll	Sal	°C	DO	pН	Sal	°C_	DO	pH	Sal				21.0	5.0		20	21.0		7.04	20	21.4		7.70	20	20.2	4.0	7.47	20	21.6	5.0	5 00	20		Laboratory	1	21.0	5.9	7.74	30	21.9	6.3	7.96	20	21.4	5.7	7.79	28	20.2	4.8	7.67	28	21.6	5.2	7.80	28		Control	2					22.0	6.3	7.96		21.4	6.1	7.96		20.2	4.6	7.81		21.6	5.4	7.83				3					22.0	6.3	7.97		21.3	6.1	8.00		19.9	5.0	7.82		21.5	5.5	7.87			82 Hour Test	t																						6.25	1	18.0	6.1	7.83	30	21.9	6.5	7.96	28	21.5	6.2	8.05	28	20.8	6.0	7.58	28	21.5	5.9	7.90	28			2					21.9	6.4	7.99		21.3	6.1	7.98		20.7	5.9	7.70		21.6	5.5	7.90				3					21.9	6.3	7.99		21.5	6.1	8.01		20.6	5.9	7.74		21.7	5.4	7.83			12.5	1	18.5	6.1	7.86	30	21.9	6.3	7.99	28	21.6	6.2	8.03	28	20.5	5.8	7.78	28	21.5	5.6	7.85	28			2					21.9	6.3	7.99		21.6	6.2	8.05		20.6	5.2	7.78		21.6	5.6	7.90				3					21.9	6.4	7.99		21.6	6.4	8.60		20.4	5.4	7.74		21.3	5.5	7.87			25	1	18.7	6.6	7.93	29	22.0	6.4	7.95	28	21.4	6.3	8.07	28	20.2	5.8	7.74	28	21.9	5.2	7.88	28		25	2	10.7	0.0	7.75		22.0	6.4	7.93	20	21.5	6.3	8.08	20	20.2	5.6	7.83		21.9	5.4	7.89				3					22.0	6.4	7.92		21.5	6.1	8.05		20.3	5.4	7.78		21.9	5.3	7.87																										50	1	20.0	6.8	8.05	28	22.0	6.4	7.93	27	21.5	6.0	8.05	27	20.2	5.3	7.73	26	21.8	5.4	7.86	28			2					22.0	6.4	7.94		21.3	6.2	8.07		20.2	5.0	7.73		21.8	5.4	7.86				3					22.0	6.4	7.95		21.3	6.1	8.05		20.0	5.3	7.72		21.8	5.6	7.84			100	1	20.0	8.0	8.28	26	22.0	6.4	8.15	26	21.3	6.1	8.04	26	20.5	4.8	7.70	26	21.5	5.6	7.85	28			2					22.0	6.5	8.16		21.4	6.0	8.05		20.6	5.3	7.68		21.8	5.9	7.83				3					22.0	6.5	8.15		21.5	6.0	8.05		20.7	5.5	7.70		21.9	5.5	7.80			Min		18.0	5.9	7.74	26	21.9	6.3	7.92	20	21.3	5.7	8.04	26	19.9	4.6	7.58	26	21.3	5.2	7.80	28		Max		21.0	8.0	8.28	30	22.0	6.5	8.16	28	21.6	6.4	8.08	28	20.8	6.0	7.83	28	21.9	5.9	7.90			MIGA		21.0	0.0	0.20			0.0	0.170	_0	_1.0	~	00		_0.0			0					### APPENDIX TABLE 5	Concentration	n	Initial					√e		----------------	------	---------	-------	-------	-------	-------	----------		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival							•				Laboratory	1	10	10	10	9	9	90		Control	2	10	10	10	10	10	100			3	11	11	11	1 1	11	100		Pretreatment	1	11	11	11	11	11	100		Control	2	11	11	11	11	11	100			3	10	10	10	10	10	100		Pretreatment	Test								6.25	1	10	10	10	10	10	100			2	10	10	10	10	Q.	90			3	10	10	10	10	10	100			,	10	10	10	10		100		12.5	1	12	12	12	12	12	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	10	10	9	()	90			3	10	10	9	4)	()	90											50	1	10	10	10	10	10	£00			2	10	10	10	10	10	100			3	10	10	10	10	10	100		100		4.0	4.0						100	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	11	11	11	11	11	100		1 Hour Test									6.25	1	10	10	10	10	10	100		3122	2	10	10	10	10	10	100			3	10	10	10	10	10	100				20	10		•				12.5	1	10	10	10	10	10	100			2	10	10	9	Q.	Q	90			3	10	10	9	()	Q	90											25	1	10	10	10	10	10	100			2	10	10	10	1.0	10	100			3	10	10	10	10	10	100		50	1	10	10	10	10	10	[()()		_ -	2	10	10	10	10	10	100			3	10	9	9	Q	ij	90			_								100	1	10	10	10	10	;0	100			2	10	10	9	Q	8	80			3	10	9	9	Q	0	440	### APPENDIX TABLE 5 (Cont'd)	Concentration		Initial					%		---------------	------	---------	---------	---------	---------	--------	----------		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival		7 Hour Test									6.25	1	10
TCA		50	1	10	10	10	10	10	100			2	9	9	9	9	9	100			3	ģ	9	9	8	$\acute{ m s}$	88.9							•	.,	00.7		100	1	10	10	10	10	10	100			2	10	9	9	9	9	(10)			3	10	10	10	10	()	90							-				Laboratory	1	10	10	10	10	10	100		Control	2	10	10	9	()	()	90			3	10	10	9	Q	()	90			_			-					57 Hour	1	10	10	10	10	10	100		Control	2	10	10	10	Q	i)	90			3	10	10	10	()	()	90						_					57 Hour Test									6.25	1	11	10	10	10	10	90.9			2	11	11	10	10	10	90,9			3	10	10	10	10	()	90											12.5	1	10	10	10	10	10	100			2	10	10	10	10	Q	90			3	10	9	9	Q	4	O()											25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	Q.	4)	O()											50	1	10	10	10	10	10	100			2	10	10	9	()	O.	(30)			3	10	10	10	10	4)	Φ()											100	1	10	10	10	10	(0)	100			2	10	10	10	10	70	100			3	10	10	10	10	10	100										# APPENDIX TABLE 5 (Cont'd)	Concentration		Initial					%		---------------	------	---------	-------	-------	-------	-------	----------		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival											Laboratory	1	10	10	10	10	10	100		Control	2	10	10	10	9	9	90			3	10	10	10	10	10	100		02.11									82 Hour Test		4.0	4.0	4.0	40	10	100		6.25	1	10	10	10	10	10	100			2	10	10	9	9	9	90			3	10	10	10	10	10	100			_	4.0			4.0				12.5	1	10	10	10	10	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100		2.5					4.0	40	4.00		25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	9	9	90											50	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100											100	1	10	10	10	10	10	100			2	10	10	10	10	10	100						10	10	10		### APPENDIX TABLE 6	Concentration		Initial					c7 _C		---------------	--------	----------	-------	-------	-------	----------	---		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival		Laboratory	1	10	10	10	10	10	100		Control	2	10	10	10	10	10	100		Contion	3	10	10	10	10	10	100			3	10	10	10	10	10	100		Pretreatment	1	10	9	9	7	7	70		Control	2	10	10	10	10	10	100			3	10	10	10	10	10	100			-					• •	• • • • • • • • • • • • • • • • • • • •		Pretreatment	Test								6.25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	9	90											12.5	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	9	9	9	9	90											25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100		20									50	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100		100	1	10	10	10	10	10	1770		100	1 2	10	10	10	10	10	90			3	10 10	10	10	10	10	100			3	10	10	10	10	117	1(4)		1 Hour Test									6.25	1	10	10	10	10	10	100		0.20	2	10	10	10	10	10	100			3	10	10	10	10	ij	90			_		-0		• •				12.5	1	20	19	19	19	[9]	95			2	10	10	10	10	Q	9()			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	9	9	r)	O()											50	1	10	10	10	10	10	100			2	10	9	9	u)	Q	90			3	10	10	10	()	9	90											100	1	10	8	8	8	\	80			2 3	10	10	10	0	4	()()			3	10	10	10	10	10	(00)										# APPENDIX TABLE 6 (Cont'd)	Concentration (%)	n Rep.	Initial Added	Day 1	Day 2	Day 3	Day 4	% Survival		-------------------	-----------	------------------	---------	-------	-------	-------	---------------		(,0)	Acp.	Audeu	Day 1	Day 2	Day 3	Day 4	3 Ul VIVAI		7 Hour Test									6.25	1	10	10	10	10	10	100			.2	10	10	10	10	9	90			3	10	10	10	10	10	100											12.5	1	10	10	10	10	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100					_						25	1	10	9	9	8	8	80			2	10	10	10	10	10	100			3	10	10	10	9	9	90		50	1	10	10	10	10	0	00		30	1 2	10	10	10	10	9	90			3	10 10	9 10	9	9	8	80			3	10	10	10	10	10	100		100	1	10	10	10	10	9	90		100	2	10	10	10	10	10	100			3	10	10	10	10	10	100			3	10	10	10	10	10	100											Laboratory	1	10	10	10	10	10	100		Control	2	10	10	10	10	10	100			3	10	10	10	10	10	100				10	10	10	10	10	100		19 Hour	1	10	10	10	10	10	100		Control	2	10	10	10	10	10	100			3	10	10	10	10	10	100											19 Hour Test									6.25	1	10	10	9	9	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100											12.5	1	10	10	10	10	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	9	9	9	9	90			3	10	10	10	10	10	100		£0.	4	1.1	1.1	1.	1.1	11	100		50	1	11	11	11	11	11	100			2	10	9	9	8	8	80			3	10	10	10	10	10	100		100	1	10	10	10	10	10	100		100	2	10	10	10	10	10	100			3	10	10	9	9	9	90			3	10	10	7	9	,	70	### APPENDIX TABLE 6 (Cont'd)	Concentration		Initial				%				---------------	------	---------	-------	-------	-------	-------	----------	--		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival			Laboratory	1	10	10	10	10	10	100			Control	2	10	10	10
Survival		T - E		4.0							Laboratory	1	10	10	10	10	10	100		Control	2	10	10	10	10	10	100			3	10	10	10	10	10	100		Pretreatment	1	10	10	10	10	10	1693		Control	2	10	10	10	10	10	100 100		Control										3	10	10	10	10	10	100		19 Hour	1	10	10	10	10	10	1641		Control	2	10 10	10 10	10	10	10	100		Control	3	10	10	10 10	10	10	100			3	10	10	10	10	10	100											Pretreatment	Test								6.25	1	10	10	10	10	10	100			2	10	9	9	9	9	90			3	10	9	9	9	9	90											12.5	1	10	10	10	10	10	100			2	10	10	10	9	9	90			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100											50	1	10	10	10	10	10	[(X)			2	10	9	9	9	9	Φ()			3	10	10	10	10	10	100		100	1	10	10	10	10	.)			100	1 2	10	10	10	10	8	80			3	10 10	10 9	10 9	10	9	90			3	10	9	9	8	8	80											1 Hour Test									6.25	1	10	10	10	9	()	90		_	2	10	10	10	10	10	100			3	10	10	10	10	9	90											12.5	1	10	10	10	10	10	1440			2	10	10	10	10	10	1(0)			3	10	10	10	10	10	100											25	1	10	10	10	10	10	1600			2	10	10	10	10	EO.	100			3	10	9	9	9	Q	181											50	1	10	10	10	9	()	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100											100	1	10	10	10	10	()	***			2	10	10	10	10	8	>()			3	10	10	10	10	10	[(4)	# APPENDIX TABLE 7 (Cont'd)	Concentration	n	Initial					%		---------------	------	---------	-------	-------	-------	-------	----------		(%)	Rep.	Added	Day 1	Day 2	Day 3	Day 4	Survival											7 Hour Test									6.25	1	10	10	10	10	10	100			2	12	12	12	12	12	100			3	10	10	10	10	10	100				_	_						12.5	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	10	10	10	9	90			3	10	10	10	10	10	100											50	1	10	10	10	10	10	100			2	10	9	9	9	9	90			3	10	10	10	10	10	100											100	1	10	9	9	9	9	90			2	10	10	10	10	9	90			3	10	10	10	10	10	100											19 Hour Test									6.25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	9	90											12.5	1	10	10	10	10	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100											25	1	10	10	10	10	10	100			2	10	10	10	10	9	90			3	10	9	9	9	9	90											50	1	10	9	9	9	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100											100	1	10	10	10	10	10	100			2	10	10	10	10	9	90			3	10	9	9	9	9	90										### APPENDIX TABLE 7 (Cont'd)	Concentration (%)	Rep.	Initial Added	Day 1	Day 2	Day 3	Day 4	% Survival		-------------------	------	------------------	-------	-------	-------	-------	---------------		T - E	•	10							Laboratory	1	10	9	9	9	9	90		Control	2	10	10	10	10	01	001			د	.10	10	10	9	9	90		32 Hour Test									6.25	1	10	10	10	9	9	90			2	10	10	10	10	10	100			3	10	10	10	10	10	100		12.5	1	10	10	10	10	10	100			2	10	10	10	9	9	90			3	10	10	10	10	10	100				10	10	10	10	10	100		25	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	10	100		50	1	10	10	10	10	10	100			2	10	10	10	9	9	90			3	10	10	10	10	10	100											100	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	9	9	90		Laboratory	1	10	10	10	10	10	1/V)		Control	2		10	10	10	10	100		Control	3	10 10	10	10	10	10	100			3	10	10	10	10	10	100		57 Hour	1	10	10	10	10	10	100		Control	2	10	10	10	10	10	100			3	10	10	10	10	9	90		57 Hour Test									6.25	1	10	10	10	10	10	100		0.25	2	10	10	10	10	10	100			3	10	10	10	10	10	100			,	10	10	10	10	10	1147		12.5	1	10	10	10	10	9	90			2	10	10	10	10	8	80			3	10	10	10	10	9	90		25	1	10	10	10	10	9	Θ ()			2	10	10	10	10	10	1(x)			3	10	9	9	9	9	90		50		10	6		0				50	1	10	9	9	9	8	80			2	10	10	10	10	9	90			3	10	10	10	10	9	() ()		100	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	10	10	9	OU										# APPENDIX TABLE 7 (Cont'd)	Laboratory	1	10	10	10	10	10	100		-------------	---	-----	------	----	------	----	-----		Control	2	10	10	10	10	10	100			3	10	10	10	10	10	100		82 Hour Tes	t			٠					6.25	1	.10	.10	10	10	10	100			2	10	10	10	10	10	100			3	10	10	9	9	9	90		12.5	1	10	10	9	9	9	90			2	10	10	10	9	9	90			3	10	10	10	10	10	100		25	1	10	10	10	10	10	100		,	2	10	10	10	10	10	100			3	10	10	10	10	10	100		50	1	10	10	10	9	9	90			2	10	· 10	10	10	10	100			3	10	10	10	10 .	10	100		100	1	10	10	10	10	10	100			2	10	10	10	10	10	100			3	10	9	9	9	9	90																																					