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SUMMARY OF THE OCEANOGRAPHY AND SURFACE WIND STRUCTURE
| OF THE PACIFIC SUBARCTIC REGION
IN RELATION TO WASTE RELEASES AT SEA

INTRODUCTION

The purpose of this report is to briefly outline fhe
physical oceanography and surface wind structure of the Gulf
of Alaska and waters adjacent to the Pacific Coast of Alaska.
The information to be gained from this summary is then used
to evaluate the efficacy of the rather arbitrary 50-mi1e'
International Agreement Zone inside which vessels are pro-
hibited from discharging oily ballast waters and slop oil
with a concentration greater than 100 ppm.

The narrative portion of this report is intended as a
résumé of the many accompanying figures. Since the conclusions
reached were based largely on these figures and the reports
from which they were taken, they are presented here as the
background material.

No attempt is made to calculate the dispersion of crude
0il wastes since these are not generally miscible with seawater.
It is known (Kinney et al., 1969) that the lower fraction
hydrocarbons, gaséline and kerosene will evaporate rather

rapidly (less than a day in Cook Inlet studies). The live



crude oils of Cook Inlet origin are considerably less likely

to remain clumped (at sea) than those originating from Sumatra
or other regions. 0ils recovered from tank cleaning are altered
considerabiy, however. Weathering turns Cook Inlet crude oils
into a viscous, tar-like material (Ray Morris, FWQA, persdna]
communication). The bulk of this report, then, is concerned
with those wastes discharged in rather large volume which are
likely to maintain their identity in such a fashion that they
will be aesthetic nuisances if washed ashore or will intefere

with bird and animal 1ife at sea or ashore.

Geographic Regjons

The North Pacific has been the subject of intense study
by oceanographers from Japan, Russia, Canada, and the United
States for many years, particularly in connection with its
extensive salmon and other fisheries. As a result, the geography
of the so-called Subarctic Pacific (SP) has been well-defined.

Figures 1 and 2 exhibit the principal features of the SP.
Of particular interest are the American and Alaskan Coastal
Regions and the Western Gyral Region south of the Aleutian
chain. These regions are defined mainly on the basis of their
surface and subsurface currents and temperature-salinity re-
lationships. In other words, waters of a particular region

are sufficiently unlike those of others and also so similar



over a broad area that they can be so classified. The cir-
culation in a given region will be unique; for instance, waters
in the Alaskan Gyral may recirculate within the Gyral for
several orbits before entering the coastal water regions.
Waters once in the coastal regions, however, are more likely

to move westward within the coastal #egion, leaving the system

by entering the Western Gyral or Subarctic Region.

Bathymetry

The seaward extent of the continental shelf area is some-
times given by the 200-meter depth contour. The bathymetric
charts (Figures 3 and 4) show as the first contour the 1000-meter
isobath; since the 200-meter isobath lies quite close, the former
contour can be taken as the 1imit of the continental shelf in
the Alaska region. It can be seen that this is near the
Aleutian Island chain, about 60-120 miles off the south and
southeast coast of Alaska, and shows the broad extent of the
shelf area in the Bristol Bay region.

Although the shelf is relatively far offshore (as opposed
to the West Coast of the United States) it-will be pointed out
that onshore currents still exist in this region.

Figure 5 shows the complex inland sea area of southeast

Alaska.



Currents Deduced from Drift Bottle Releases

Because drift bottles are partly exposed directly to the
wind, their use as indicators of surface currents is often
viewed with suspicion by oceanographers. However, drift
bottle release results are good indicators of the path likely
to be followed by solids, such as impacted oil s]udges,‘and
other surface debris.

According to Dodimead et al. (1963), the drift bottle
data shown in Figures 6 to 11 exhibit the following surface
flow phenomena:

1. northward drift between Attu and Komandorski Islands;

2. from as far south as latitude 46°N between 140°W and
145°W into the Gulf of Alaska;

3. around the Gulf of Alaska (Alaskan Gyre);

4. along the southern side of the Aleutian Islands, into
the Bering Sea, and eastward along the northern side of the
islands;

5. circulating within the Subarctic Region;

6. from the Subarctic Region into the California Current
system, toward the’Hawaiian Islands, and then westward to the
Philippine and Japanese Islands;

7. around the western Subarctic Gyre.

VFrom the viewpoint of solid wastes drifting with the

surface currents one reaches the unhappy, but not surprising,



conclusion that there is really no safe place to dump refuse,
even in the middle of the North Pacific Ocean, since the waste
will eventually end up on a beach. In transit, of course, the
waste may disintegrate and fall to the bottom or become in-
distinguishable, depending on the time of transit, the sea

state during its passage, and the nature of the waste.

Computed Surface Currents

Figure 12 shows a schematic diagram of the surface cir-
culation deduced from direct and indirect observations. Some
of the features given in;Figures 1 and 2 are also present here.
In Figure 13 the currents at a depth of about 200 meters are
shown; it can be seen that the surface features maintain them-
selves at this depth for the most part with additional structure
coming into the picture as exemplified by the California Under-
current.

Figures 14 to 23 show the so-called geostrophic surface
currents from 1955 to 1962, These currents are computed from
a knowledge of the vertical distribution of density obtained
at widely separated locations in the ocean. Density, in turn,
is calculated from the temperature and salinity of water samples
obtained at different depths in a given column of water.

The charts of 'geopotential topography' show contours on

which current direction is indicated by arrows. Current speed



is inversely proportional to the separation of the contours,
hence closely spaced contours indicate swift currents. In-
sets on the charts can be used to pick off current speeds.

In general there are rather swiftly moving currents in
the coastal regions moving out along the Aleutian chain.
Currents move northward along the Canadian-Alaskan coast
and eastward from the Subarctic current and the West Wind
drift (Figure 12).

The broad area of seemingly sluggish currents (as re-
vealed by widely separated contours) corresponds to the
Alaskan Gyre.

Because of the method of calculation, the currents shown
are seaward of the 1000-meter isobath with the exception of
Figure 20, which is based on a 300-mete? computation. The
latter figureAexhibits a component of current toward Kodiak
Island from the east, as well as the onshore currents along
the Aleutians. In the Aleutian chain currents are shown as
moving north into Bristol Bay (this feature is also shown in
the other figures).

Figure 23 shows in more detail the currents in the Gulf
and the relative position of the Alaskan Gyre.

In all figures the velocities in sea miles per day (SMD)

at selected positions are indicated. In the last figure, for



instance, a current of 1 SMD is shown south of the Alaskan
Gyre, but in Figure 15 a 12 SMD current is shown southwest
of Kodiak. -

The current charts, then, exhibit great extremes in speed
and direction, both in time and space. It should be borne in
mind that the currents shown in these charts do not show short
duration wind effects; hence, wind drift at the surface would
be superimposed on these currents. The resultant drift of
surface material could then be paralje] to the contours or
could cross the contours at right angles. This is an extremely
important fact to consider when attempting to show probable
drift of any ocean waste discharge, especially one which will
be constrained to remain in the very few upper inches of water
and which is discharged nearshore.

The indications of this section are that there is an on-
shore component of current in the coastal regions; in conjunction
with the drift bottle data it can be seen that material dis-
charged within several hundred miles of the coast will move
alongshore at speeds of 1-15 miles per day (independent of
wind drift). The prevailing wind drift will determine in the
mean whether a waste discharged, say, in the ndrthéast part of
the Alaskan Gyral will move into Cook Inlet, out a]ong‘the

Aleutian chain, or remain within the Gyral.



Inferred Currents

Temperature and salinity determine density - the distri-
bution of which can be used to compute current velocity. The
individual distribution of properties can also be used to
infer current directions.

Figures 24 to 27 show these properties; comparison with
the SP zones (Figure 24) reveals the presence of the Alaskan
Gyre, the northward bending of the 10°-15°C temperature con-
tours shows thét the temperature of the water masses is fairly
well retained in transit and shows a shoreward component.

The salinity distribution (Figures 25 and 26) reveals relatively
fresh water along the coast due‘to runoff, The density dis-
tribution (as Sigma-t) also revedls a marked coastal region
extending several hundred miles offshore. As a rule of thumb

it can be postulated that a waste released inside the 23.8
contour west of Juneau and the 24.6 contour south of Kodiak

will quite likely reach shore within a few days, depending on

the set of the wind.

Winds
During the winter, the Subarctic is under the influence
of the Aleutian Low which is located in the Bering Sea near
the Aleutians. In conjunction with the Siberian and North

American Arctic High pressure cells, the winter winds are



predominantly westerly. They blow from the northwest in
the western part of the region through southwest on the
eastern side.. In the northern gulf, easterly winds prevail.

In the summer the North Pacific High predominates over
the Aleutian Low, and the prevailing westerlies of the winter
are replaced by south or southwest winds. Near the Canadian
and Alaskan coasts prevailing summer winds are generally
light and variable.

Figures 28 to 51 show average monthly surface wind data,
sea level pressures, and storm tracks in the region of in-
terest.

Each monthly wind rose shows the speed and direction
frequency of surface winds at various locations. For instance,
Figure 28, for January, has onshore winds about 26 percent
of the time at the Seward station. At the station off Queen
Charlotte Island there is an onshore component about 50
percent of the time. Additional information is also given
at each wind rose.

The surface pressure charts can be used to infer wind
direction by noting that circulation is counterclockwise
around a Tow and clockwise around a high. Wind direction
does not parallel the isobars, but has a slight component

inward toward a Tow and out from a high. The memory aid is



that with one's back to the wind the low pressure cell will

be on one's left-hand side. The monthly frequency at the
Seward station is given in Table 1 where an 'onshore component'’
is defined as coming from the south, southwest and west bars

of the wind rose.

TABLE 1

Onshore Winds, Seward Wind Rose
(from U.S. Navy, 1956)

Mnth 4 F M A M J J A S O N D
p 26 20 25 22 32 43 34 46 32 34 20 24

The implications of this section on wind are rather ob-
vious: there will be an onshore wind component sometime during
any month of the year. Surface matgrial will drift at 2-5 per-
cent of the imposed wind speed, and this drift will be super-
jmposed on the net density related currents shown in the

previous section.

NORPAC Data
During the summer of 1955 a multi-ship, multi-nation
oceanographic expedition of the North Pacific (NORPAC) took
place. The station spacing in the Gulf of Alaska was good
and sections of some of the figures from the NORPAC Atlas are

reproduced.
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Figure 52 shows the surface currents during the crujse;
the Alaskan Gyre is outlined by the 0.70 contour and the
currents are similar to those shown previously.

In Figure 53 the quantity of zooplankton was estimated
from data collected at varying depths and with different nets.
Some: features are worthy of comment: "note that south of about
latitude 30°N there is..a relative absence of zooplankton,
while there is an increase northward and particularly along
the coast. The large amount in the coastal areas supports
the idea that this is a zone of nutrient abundance and is a
very important enrichment and biotic area.

- The number of fish larvae, Figure 54, was standardized
to the amount in a volume of water 10 square meters in area
at the surface and 140 meters thick. It is difficult to
generalize on the data presented in the chart, other than
to suggest that there are no obvious barren or fertile zones
that probably could not be explained on the basis of sampling
methods or gear. Larvae are, however, present throughout the
North Pacific.

Seal and porpoise sightings during NORPAC are shown in
Figure 55. Since no special effort was made to maintain a
sea-1ife watch aboard all vessels, the result should not be
taken as to indicate more than the fact that these mammals

can and do live hundreds of miles from land.

11



Figure 56 shows whale sightings. As in Figure 54, the
most sightings occur between latitudes 40°N and 50°N, and
longitudes 150° to 180°. |

Conclusions to be reached in this section are that the
North Pacific and especially the coastal zones are highly
productive in terms of zooplankton and fish larvae and many
marine mammals can be found far offéhore. The Aleutian Islands
are wel]-known'breeding grounds for different species of
seagoing mammals which depend on the nearshore fishery for
food while raising their young. The Gulf of Alaskaland the
Bering Sea--Bristol Bay area contains relatively high con-
centrations of nutrients making the lower stages of the food
chain highly productive and available to grazing zooplankton.
As has been shown, this is reflected in the large gradients

of zooplankton toward the coast.
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SUMMARY

It has been shown that the circulation in the Gulf of
Alaska and the Pacific side of the Alaska coast is somewhat
closed. A cdunter—c]ockwise circulation exists at all times
of the year. - Currents near the coast are fairly fast with a
jet-like stream passing south of Kodiak, out along the Aleu-
tian chain and into the Bering Sea.

Wind systehs in the Gulf will drive surface material
inshore a few days of each month at a rate of 3-5 percent of
the wind speed. |

The naturally high nutrient level in the Pacific Subarctic
supports an extensive and unique biota both inshore and at sea.
The Gulf itself is traversed periodically by Asian and North

American salmon stocks.
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CONCLUSIONS AND RECOMMENDATIONS

Nonsoluble or sparingly soluble liquids such as those
normally discharged at seavfrom freighters and tankers dis-
charging oily ballast or slops from tank-cleaning operations
will eventually end up on Alaskan or other beaches no matter
where they are discharged in the Pacific north of about 45°N
latitude. If the amount of discharge at any one time is
slight,if dispersion is great, or if part of the material
falls to the bottom during its sea drift period, then the
identifiable amount on shore could be minuscule.

The closer to shore the discharge, the better the chance
for its ending up on shore, of course. The dispersant action
of the sea will not apply to these wastes since they are not
miscible in the usual sense. The velocity shear associated
with circulation around the Alaskan Gyral will tend to move
a waste material into the coastal region where the prevailing
onshore wind system will exert itself.

Material once inside the southeast Alaskan inland waters
will be effectively trapped. Wastes discharged at depth in
the vicinity of Cook Inlet will probably move into the estuary
with bottom water which replaces waters moving out at the
surface. This mechanism has not been established for Cook
Inlet but has for the Columbia River and Chesapeake Bay

estuaries, among others.

15



Releases near the 50-mile zone along the Aleutians will
most likely either end up on the Islands or enter the Bering
Sea, assuming a relatively long half-life. The 50-mile zone
is a rather ineffective arbitrary limit; in féct, there‘is
no limit that could be set that would ensure that sea dis-
charges would not affect remote.areas, much less the immediate
region of the discharge. The NORPAC biological observations
(Figures 52 to 56) point out that there is no desert in the

sea where wastes can be discharged and put out of mind.
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Figure 39
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Storm Tracks

- ;‘7 Primary track, olong which there has besn’ mt;ximum
¢oncentration of individuo! storm cenler paths.
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Secondory track, olong which there hos been moderate
concentrotion of individual storm cenfer paihs,
Figure 41
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Figure 42
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W Unidentified

Ws Sei (Balae )
Wh  Humpback

B Blue (Balaenoptera musculus or
Sibbaldus musculus)

Finback (Balaenoptera physalus)

Sperm (Physeter catodon)
Pilot (Globicephala_scammoni)

Killer (Orcinus orca or Grampus

Row M

orea
FK False Killer (Pseudorca crassidens)



