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Abstract 

 

Although threespine stickleback (Gasterosteus aculeatus L.) are known to inhabit a 

wide range of habitats, their distribution in lakes across Southeast Alaska is not 

known. Threespine stickleback are an important prey item for many consumers in 

freshwater ecosystems. Additionally, isolated populations may be genetically unique 

and thus important from a conservation perspective. This study focused on identifying 

landscape factors and models useful in predicting the presence of threespine 

stickleback in small (0.5-5 ha) lakes of Southeast Alaska. Stickleback occurrence was 

assessed via snorkeling and minnow trapping in 54 lakes, which were divided into 

calibration (n=36) and prediction (n=18) data sets. A number of models representing 

four methodologies—generalized linear models, generalized additive models, 

classification trees, and artificial neural networks—were built based on the calibration 

set, cross-validated, and evaluated by prediction to the test set of lakes. Lake 

elevation, distance from saltwater, and slope of lake outlet stream were the most 

useful predictors of stickleback occurrence. Results suggest that the likelihood of 

stickleback presence is highest in low elevation lakes near the coast. Human 

development and recreational activity also tends to be common in these areas, and so 

land-use planning should account for the high potential occurrence of threespine 

stickleback here.  
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General Introduction 

 
 
Landscape modeling is a rapidly developing field with many applied uses (Duncan & 

Lach, 2006; Kollarits et al., 2006). Foremost amongst these uses is identification and 

conservation prioritization of high-value fish and wildlife habitats at broad spatial scales. 

The decision-making process of resource managers can be greatly facilitated by 

information on the spatial distribution of these resources (Johnson & Gage, 1997; 

Klemas, 2001; Mortberg et al., 2007).  

 

Landscape modeling of aquatic organisms and their habitats in Southeast Alaska is in its 

incipient stages, although fish occurrence has been modeled successfully with landscape 

predictors elsewhere (Porter et al., 2000; Torgerson & Close, 2004; Van Zyll de Jong & 

Cowl, 2005). For this reason, any modeling efforts undertaken in this region may 

potentially yield useful information and potential models for the specific species in 

question, and may additionally serve as precedent for future modeling of the distribution 

of other aquatic organisms, including fishes. For instance, landscape factors found useful 

in modeling one organism in a geographic region may be transferable to both closely-

related and disparate taxa (MacNally & Fleishman, 2002; Gutierrez et al., 2005). 

Likewise, modeling methods found useful in a geographic sub-region may be transferable 

across additional regions (Fielding & Haworth, 1995; Magnuson et al., 1998). 
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Resources directly consumed or otherwise utilized by humans are of obvious 

management importance. However, there has been increasing focus in recent times on 

ecosystem components that, while not of direct economic benefit to humans, play 

important roles in supporting populations of organisms from which we do obtain 

economic benefit (Gutierrez et al., 2005; Quist et al., 2006). The distribution of such non-

target organisms may indicate habitats available to other commercially or recreationally 

important species (Willett, 2001; MacNally & Fleishman, 2002). 

 

Determining presence of these non-game species or suites of species may in turn be 

helpful in classifying habitats in terms of their relative importance to humans. The 

presence or absence of particular species in a habitat can have many ecological 

ramifications important in describing the biotic attributes of the habitat (Sergio et al., 

2004; Pearman et al., 2006). This is likely particularly true in the case of a species such 

as the threespine stickleback, which is directly consumed by species important to 

humans. The occurrence of such trophic resources stands alongside other physical and 

biotic attributes to provide a rounded description of habitat characteristics. When all 

habitat characteristics are considered together—both physical and biotic—they can be 

used to classify and assess habitat value, which can in turn be fed into resource 

management decision making processes (Theobald et al., 2000; Ostwald et al., 2002).  

 

.  
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Direct exploitation of stickleback by humans is at most minimal. However, stickleback 

are consumed by a host of vertebrate and invertebrate consumers, including many of 

direct benefit to humans. Piscine consumers of threespine stickleback include cutthroat 

(Onchorhyncus clarki) and steelhead trout (O. mykiss) and coho (O. kisutch) and Atlantic 

salmon (Salmo salar), while mammalian consumers include otter, mink, and seal 

(Reimchen, 1994). Birds known to rely on stickleback as a dietary component include 

belted kingfishers, great blue herons, and many species of loon and grebe (Reimchen, 

1994; Ruggles, 1994). The case for the threespine stickleback’s role as a vital trophic link 

and ecological importance in aquatic ecosystems is strong. 

 

While stickleback are ecologically important as a prey item, they are also of scientific 

and conservation value as an evolutionary ‘supermodel’ (Gibson, 2005). Isolated 

stickleback populations display rapid phenotypic adaptation to newly colonized habitats 

(Bell et al., 2004; Kristjansson, 2005). Body armor reduction, especially a reduction in 

the number of lateral plates, has been the most commonly documented adaptation, 

although other adaptations include traits associated with trophic morphology, life history, 

reproductive behavior, and coloration (Foster et al., 2003). Such adaptive divergence 

associated with local environmental conditions suggests the possibility that postglacial 

landscapes may harbor a large number of isolated populations with unique morphologies 

of scientific and conservation interest (Foster et al., 2003). Gaining knowledge of where 

such populations might reside is the first step in their identification and conservation. 
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Threespine stickleback occur across a wide geographic range, from Baja California to the 

Arctic coast in the Pacific, and from Chesapeake Bay to Baffin Island in the Atlantic 

(Morrow, 1980). Within this range, they display a variety of life history strategies—

including marine, anadromous, riverine, and lacustrine forms (Foster et al., 2003). 

Although information on the broad-scale geographic distribution of stickleback exists, 

there has been very little investigation of environmental factors associated with 

stickleback occurrence at smaller scales—Hagen & Gilbertson (1972) provide an 

exception—and none in Southeast Alaska. 

   

The distribution of other fish species in freshwater has been successfully described and 

predicted using landscape-level variables for stream (Kruse et al., 1997; Oakes et al., 

2005), and lake (Olden & Jackson, 2001; Hershey et al., 2006) habitats. Lake studies in 

other geographic regions have indicated elevation, lake surface area, distance to nearest 

source habitat, and slope of lake outlet stream as important predictors of fish species 

occurrence (Matuszek & Beggs, 1988; Magnuson et al., 1998; Hershey et al., 2006).  

 

Models of species occurrence are binary classifiers in which presence and absence (or 

when absence has not been assessed, presence and ‘available’) data records are analyzed 

against environmental correlates. The output of a species occurrence model is a set of 

occurrence probabilities (where 0≥P≥1) associated with each combination of the 

environmental variables. Many statistical methods for species occurrence modeling exist. 

The most prevalent of these methods until recently was logistic regression, a 
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generalization of linear regression (hence termed a ‘generalized linear model’ or ‘GLM’) 

that accounts for the non-linearity and non-normal error distribution of binary data. 

Although logistic regression is still widely used, a number of competing methods have 

seen increased use in species occurrence modeling. These methods include (but are not 

limited to—see Elith et al., 2006) generalized additive models (GAM), classification 

trees (CT), and artificial neural networks (ANN). With the increase in the number of 

methods being used has come the challenge of selecting amongst them, for they all have 

merit dependent on specific study objectives (Segurado & Araujo, 2004; Pearson et al., 

2006).  

 

In this study, the presence of threespine stickleback in small lakes of Southeast Alaska is 

modeled with mostly landscape-level (GIS) variables. A calibration set of lakes (n=36) in 

the northern part of Southeast Alaska was used for building stickleback occurrence 

models. Model stability and predictive capability were then assessed via leave-one-out 

(n-fold) cross-validation, and prediction to a geographically separate set of lakes (n=18) 

in the southern part of Southeast Alaska. 

 

There are two main objectives to this study: 

 

 1) Determine the landscape factors most useful in modeling stickleback 

 distribution in small lakes of Southeast Alaska. 
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 2) Compare modeling methods and levels of modeling complexity to 

 determine which modeling strategies are most effective in modeling 

 stickleback distribution in small lakes of Southeast Alaska. 

 

In addition, there are three secondary objectives:  

1) Compare the distribution of salmonid fishes in small lakes with the distribution 

of stickleback in these lakes. 

2) Discuss how results from the small lakes chosen for this study may apply to 

other lentic waterbodies. 

3) Make recommendations for future species occurrence sampling programs in the 

Southeast Alaska region 

 

 
The first main objective is addressed in chapter one by performing univariate and 

multivariate analyses using GLM, and measuring the explanatory and predictive 

performance attributed to individual environmental predictor variables. The second main 

objective is addressed in chapter two by building models using the GLM, GAM, CT, and 

ANN methods mentioned above and comparing their explanatory and predictive 

performance.  

 

The secondary objectives are addressed in the chapter three of the thesis. The comparison 

of salmonid distributions with that of stickleback is performed using simple GLM 

models. The distribution of 0.5-5 ha lakes is compared to that of other lake sizes in the 
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northern area, and the utility of models generated in this study is discussed in relation to 

these other lake sizes. Lastly, some simple examples from the current work are used to 

illustrate improvements that might be made to future species occurrence study designs in 

lakes of Southeast Alaska. 

 

Study area 

 

Southeast Alaska is characterized by its rugged terrain, with countless mountain peaks 

greater than 1000 m, even though no point in the region is greater than 100 km from 

saltwater (Figure 1). The maritime climate of the region is moist and moderate, with 

average rainfall exceeding 250 cm in many portions of the region and moderate annual 

temperatures. There are over 25,000 lakes and ponds in the region (USFS, 2003a). 

 

Southeast Alaska was entirely covered in ice 15,000 years ago, with the exception of a 

few unglaciated mountain peaks and isolated refugia on some of the islands of the outer 

coast (Mann, 1986). Furthermore, the little ice age (~350-150 years BP) experienced 

glacial advance—particularly out of mainland valleys—which shapes the distribution of 

flora and fauna found in these valleys to the present day. The land has experienced large 

amounts of postglacial uplift as it rebounds from the weight of the ice mass under which 

it was once covered. This has resulted in terrains once inundated with marine waters now 

existing at as high as ~230 m elevation (Hastings, 2005). 
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The study area chosen within this context consists of northern (calibration) and southern 

(prediction) areas. The northern area comprises that part of the mainland near the town of 

Juneau that is bounded by the Berners River to the north and the Taku River to the south, 

inclusive of the portions of these two river valleys that are within the borders of Alaska 

(Figure 1). Most of the eastern portion of this area is in the Boundary Range Icefields 

ecological subsection (Nowacki et al., 2001), and is covered in glaciers. The western 

portion of the northern area is within the Stephens Passage glaciomarine terrace 

ecological subsection, while the southeastern corner of the study area is within the 

Stikine-Taku River Valleys subsection. The southern area consists of that portion of 

Revillagigedo Island that falls outside of Misty Fjords National Monument. It is 

composed of a number of ecological subsections, including Traitor’s Cove 

Metasediments, Bell Island Granitics, the Behm Island Complex, and other smaller 

intrusions (Nowacki et al., 2001). 

 
Because small lakes are not consistently mapped in the lakes GIS coverage used for site 

selection (USFS 2003a), a minimum lake size was chosen of 0.5 ha to avoid selecting 

lakes via GIS that do not actually exist on the ground. This lower surface area threshold 

also excluded many small waterbodies such as muskeg and alpine ponds which 

seemingly (although not investigated) have a very low probability of stickleback 

presence. To ensure that sampling effort could be undertaken at each lake for a minimal 

time period yet still adequately assess fish presence/absence, an upper lake surface area 

threshold of 5 ha was chosen. 
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 Lakes in this 0.5-5 ha size range comprise 34% of the total number of lakes in the 

northern study area, with the majority of all mapped lakes (54%) being smaller (<0.5 ha) 

and 12% being larger (>5 ha). A similar size distribution is seen in lakes of the southern 

study area (Table 1).  

 
 
Table 1.  Proportional representation of lake size classes in the two study areas. 
 

Lake size Northern Southern 
 (ha)  area  area        

 <0.5  141(54%) 496(56%) 
 0.5-5  90(34%) 279(32%) 
 5  32(12%) 104(12%) 
 
 
Lake selection was stratified by elevation in order to represent a range of lake elevations 

in the study. The rationale for stratifying study lakes by elevation was related to the 

natural history of the region, specifically the postglacial uplift or terrains as evidenced by 

marine deposits existing currently at elevations up to 230 m, and the continued uplift of 

the land to present (Larsen et al., 2004). Hastings (2005) suggested that the former glacial 

depression of landforms allowed colonization by fish of lower-elevation habitats, but that 

high-elevation lakes and streams may have been, and are currently, inaccessible to fish 

due to the extreme high-gradient of their connections with source, marine populations.  

 

Ninety lakes of surface area 0.5-5 hectares exist in the northern study area and 279 in the 

southern study area as identified in the Tongass National Forest lakes GIS coverage 

(USFS, 2003a). To ensure independence of sampling units, lakes which were directly 
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connected to each other by surface waters were not included in the potential pool. From 

the remaining lakes, 36 study lakes in the northern region and 18 in the southern region 

were identified via stratified random selection based on six elevation quantiles (which 

divided the number of lakes in this size class into six equal-sized groups) (Table 2): 

 
   Table 2.  Elevation-defined strata 
 

   Elevation range (m) 
Stratum Northern area  Southern area 
 
1  0-20.6   0-67.0 
2  20.6-32.2  67.0-117.4 
3  32.2-103.6  117.4-154.5 
4  103.6-323.6  154.5-240.2 
5  323.6-732.4  240.2-510.5 
6  >732.4   >510.5 
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Figure 1.  Southeast Alaska showing the northern and southern study areas. 
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Stickleback detection 

 

At each lake both minnow trapping and snorkeling were performed. Eight minnow traps 

were set evenly around the perimeter of each lake, generally in water < 1-m depth, 

although when lake margins were steep traps were set in deeper water (depth 1-5 m). 

Traps were baited with salmon eggs, and set for approximately 1.5 hours (range 1.3-2.0 

hr) at each lake.  

 

A snorkel survey was conducted around the entire perimeter of each lake at 1-m depth 

parallel to shore, with the snorkeler scanning to both sides and swimming at a rate 

<0.5m/s. The snorkeler skirted around the outside of macrophytes or pieces of large wood 

when such structure precluded snorkeling in water of one-meter depth. Secchi disc 

readings were taken at three locations in the lake just prior to snorkel surveys, at two 

lakes the secchi reading was < 1 m. At those two lakes, occurrence data is based on 

minnow trapping results alone. 

 

Observations of other fish species in the above sampling efforts were also recorded. In 

addition, 45 minutes of angling was undertaken at each lake with light spinning gear and 

a Luhr Jensen™ ‘super duper’ artificial lure. 
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Chapter 1.  Landscape correlates of threespine stickleback occurrence in small lakes 

of Southeast Alaska 

 

1.1 Introduction 

 

Landscape factors have been used to effectively model organismal distribution in many 

settings (Thuiller, 2003; Steel et al., 2004; Luoto et al., 2006). Landscape factors useful 

in explaining species occurrence fall into broad categories of physical and biotic 

landscape characteristics, measures of terrain ruggedness, proximity to source habitats, 

habitat patch size, and habitat suitability.  

 

Prediction of species occurrence can yield information helpful in making management 

decisions (Zabel et al., 2002). Of particular use in this respect are landscape factors 

available across wide areas. Of lesser use are factors which, whether measured in the 

field or derived from GIS, are not available for all possible habitats. Model predictions in 

the latter case can only be used, in the worst case scenario, to predict occurrence at sites 

that have been visited in the field. 

 

Landscape factors chosen for modeling should ideally have either a direct relationship 

with the species being modeled or an indirect relationship with a factor or factors known 

to have a direct relationship with the occurrence of the study species (Guisan & Thuiller, 

2005). Direct relationships with threespine stickleback (or any other species) occurrence 
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can fall broadly into two categories: 1) relationships with population persistence (habitat 

suitability over time), and 2) relationships with habitat accessibility. Factors associated 

with these two broad categories of relationship have been referred to as ‘extinction’- or 

‘colonization’-related factors (Magnuson et al., 1998; Hershey et al., 2006). 

 

The factors having a direct causal relationship with stickleback occurrence are largely 

unknown. Additionally, even if those factors were known, they may be difficult to obtain 

over landscape-level scales. For instance, even if it was known that stickleback preferred 

a certain type of submergent vegetation for their spawning nest, would it be possible to 

detect this vegetation remotely and therefore use it for prediction to lakes not visited? 

Similarly, if a 17-cm cascade over the rocks of a stream was known to be the height limit 

of an obstruction passable by stickleback, how would that be helpful information if the 

location of such fine-scale obstructions to migration is not known? This reasoning leads 

to an ideal choice of factors that are either readily available, or that can be made available 

via remote sensing, broadly across landscapes. And ideally, such factors will have a 

direct (or plausible indirect) relationship with the species being modeled. 

 

Very little is known about stickleback migration abilities or habitat requirements in 

Southeast Alaska. However, it is known that stickleback in similar post-glacial regions 

colonized from the marine environment (Bell et al., 1993). Because Southeast Alaska 

was almost completely under ice 15,000 years ago, it appears most if not all freshwater 

fish populations in the region must have invaded in the post-glacial epoch (Hastings, 
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2005). The postglacial uplift of terrains that has taken place subsequent to glacial 

recession in Southeast Alaska means fishes colonizing from the marine environment may 

have historically had access to lakes that now exist at relatively high elevations and may 

be presently isolated from colonization. However, there are lakes that exist at extremely 

high elevations, and due to steep outlet streams, have never been accessible to fishes via a 

stream course. For such lakes, transport by birds seems the only colonization route, 

although this mode of dispersal has not been documented (T. Reimchen,  pers. comm.) 

 

For this study, 14 environmental factors with likely influence on stickleback occurrence 

(via extinction or colonization) were assessed for their use in explaining and predicting 

threespine stickleback occurrence in small lakes of Southeast Alaska using generalized 

linear models (GLM). This assessment included the utility of factors in explaining 

variability in occurrence data, as well as predicting stickleback occurrence in an 

independent set of lakes. 

 

1.2  Methods 

 

 1.2.1  Landscape and environmental factors 

The 14 environmental factors used in this study were largely obtained from GIS analysis, 

although four of the factors were measured or assessed in the field at the time of each 

lake sampling visit (Table 3). Lake elevation was obtained directly from a U.S. Forest 

Service lakes GIS coverage (USFS, 2003a). These elevation values were found consistent  
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Table 3.  Environmental variables used to model stickleback occurrence in small lakes of 
Southeast Alaska, and the definition, source, and ecological category (sensu Magnuson et 
al., 1998; Hershey et al., 2006) of each variable. For adjacent landscape variables, the 
width (m) of the band around the lakeshore analyzed is in parenthesis. 
  
Environmental Factor   Source    Category  
 
Lake specific factors 
1) Lake elevation (m)   USFS lakes GIS coverage1 Colonization 
2) Lake depth (m)   Field measured  Extinction  
3) Lake perimeter (m)   USFS lakes GIS coverage1 Extinction 
4) Lake surface area (ha)  USFS lakes GIS coverage1 Extinction 
5) Lake substrate (binary)  Field measured assessment 
     (mineral-dominated or  

organic-dominated)  Extinction 
Adjacent landscape factors 
6) Wetlands coverage (200 m)(%) National wetlands inventory2 
     (NWI)    Extinction 
7) Mean slope (100 m)(%)  Based on digital elevation 

model grid cells within 
100 m of lake1,3   Extinction 

8) Mean slope (1000 m)(%)  Based on digital elevation 
model grid cells within 
1000 m of lake1,3  Extinction 

9) Linear distance from lake to  
marine shoreline (m)   Based on USFS lakes and  
     marine shoreline GIS 
     coverages   Colonization 
 
Inlet and Outlet stream factors 
10) Presence of inlet stream(s) (bin.) Assessed in the field  Extinction 
11) Presence of outlet stream (bin.) Assessed in the field  Colonization 
12) Length of outlet stream (m) Digitized from aerial 
     Photography   Colonization 
13) Mean slope of outlet stream (%) Based on digital elevation 
     model grid cells intersected 

by digitized outlet stream1,3 Colonization 
14) Mean slope of outlet stream (%) Based on digital elevation 
     model grid cells intersected 

by digitized outlet stream1,3 Colonization 
           
1USFS (2003a); 2USFWS (2006); 3USGS (2004)
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with independent measurements derived from a Shuttle Radar Tomography Mission 

digital elevation model (SRTM-DEM) (USGS, 2004) and from helicopter altimeter 

readings taken at the time of field visits. Lake perimeter and surface area were digitized 

from USFS ortho-rectified aerial photography (USFS, 2003b). The length and location of 

lake outlet streams were digitized using a combination of the ortho-rectified digital 

photography and 15-m contour lines generated from the SRTM-DEM data (USGS, 

2004).  

 

Although all lakes did not have outlet streams, a likely location (and length) of the flow 

path from the lake to saltwater was obtained using the aerial photography and SRTM-

DEM data for all lakes. . This is because the lack of an outlet stream—defined for this 

study as either a surface water outlet at the time of visit or a scoured bed (>0.3-m wide) 

devoid of perennial vegetation—was not thought to preclude fish access to a lake over 

long periods of time. Information on the length and gradient of the most plausible flow 

path (i.e. during extreme high water events) was still thought valuable, even in the 

absence of a permanent lake outlet stream. 

 

Although the length of a lake outlet stream was generally measured to saltwater, an 

exception was made for those lakes near the Taku River. The lower Taku River is a low-

gradient (<1%) river in immediate proximity to saltwater (<20 km) that contains known 

populations of stickleback (K. Kissner, pers. comm.). In addition, tidal influence extends 

to Twin Glacier Creek (R. Host, pers. comm.), and so all study lakes flow either directly 
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into saltwater or into the Taku River within 10 k of saltwater influence. Because of this 

saltwater influence and the presence of stickleback, it was thought that the lower Taku 

River represents a source habitat for colonizing stickleback similar to that of the marine 

environment. 

 

The mean and maximum gradient of lake outlet streams was measured by summarizing 

the values of the SRTM-DEM for those grid cells intersected by the digitized stream 

course. Two other slope-related factors—the mean slope of terrain analyzed both within 

100 m, and within 1000 m, of the lake shoreline—were obtained from summarizing the 

SRTM-DEM cell-values within these respective bands around the lake. The percentage of 

wetlands coverage (within 200 m of the lakeshore) was calculated using the National 

Wetlands Inventory GIS coverage (USFWS, 2006). 

 

Lake substrate was characterized during lake sampling visits by observing the bottom of 

the lake and prodding the substrate with a graduated 1.5-m dowel stick. The depth of 

deposited organic material was measured every 50 m around the lake perimeter. If >50% 

of these measurements indicated > 0.3 m depth of organics, the entire lake was classified 

as having substrate dominated by organics. Otherwise, the lake was classified as having 

mineral substrates. Lake depth (m) was taken as the mean of three depth measurements 

collected with a hand-held depth sonar at evenly spaced points along the long axis of 

each lake. 
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 1.2.2 Statistical analysis 

Statistical analysis of the factors that explain and predict stickleback occurrence was 

performed using GLM (logistic regression) which uses the logit link function to convert 

environmental factor values and presence/absence data to a probability of occurrence 

(Hosmer & Lemeshow 2000): 

)1( uu eeP += , where u takes the form of the more familiar linear regression equation— 

nvn XbXbXbAu ++++= ...211  

where A = regression constant, bn= regression coefficients, and Xm= independent 

variables. In using GLM, is not required that predictor variables be normally distributed, 

linearly related, or of equal variance (Tabachnick & Fidell, 2000; Porter et al., 2000).  

Individual factor contribution to model performance was assessed for three stages of 

model assessment:  1) model calibration—how well a model explained the data it was 

based on (calibration data), 2) leave-one-out cross-validation—how well a model 

performed when iteratively built on n-1 of the calibration cases and used to predict to the 

single removed case, and, 3) prediction—how well a model built on the calibration set of 

lakes predicted the data in the southern, prediction set of lakes. 

 

Two metrics were used to assess individual factor contribution to model performance. 

The first was McFadden’s ρ2, which is the proportion of the null deviance that each 

model explained (Porter et al., 2000; Johnson et al., 2002). A second metric, the area 

under the receiver-operating characteristic curve (Fielding & Bell, 1997; Elith & 

Burgman, 2002), was also used. AUC is a measure of how well a model discriminates 
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between presence and absence records (Boyce et al., 2002). A model’s AUC score is the 

rate of true positives to false negatives that a model yields across the entire range of 

possible threshold values between 0 and 1. This is why AUC is termed ‘threshold 

independent’ and considered more useful than other metrics available (Liu et al., 2005). 

The AUC score was used to compare model (and thus individual predictor) performance 

in cross-validation and prediction as well. The AUC value can be used to compare model 

performance in all three stages—calibration, cross-validation, and prediction—of model 

assessment. 

 

Three strategies were used to elucidate the contribution of individual variables in 

explaining and predicting stickleback occurrence. The first and simplest strategy was to 

run univariate GLM models with one individual predictor at a time to assess the 

proportion of deviance (McFadden’s ρ2) explained by each individual predictor. 

Univariate model performance was also assessed on cross-validation and in prediction to 

the test set, using AUC as the performance metric.  

 

The second strategy was to run all possible subsets of two- and four-factor models that 

could be obtained from combinations of the 14 total environmental predictors, and 

compare—between all predictors—the average amount of deviance explained when each 

predictor was included in a model. The number of factors included in the ‘all subsets’ 

models was limited to four to reduce computing time. The amount of deviance explained 
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by models including each factor was scaled within each model category (1, 2, and 4 

factor models) to allow comparisons between categories.  

 

The third strategy was to investigate ‘secondary effects’, factors that may not explain 

significant variance in their own right, but decrease model deviance when included after 

primary effects are already in the model. In this strategy, each factor that explained at 

least 0.2 of the null deviance was included individually in models as a ‘main effect’. 

Then, each of the remaining 13 factors were included one-at-a-time into models with the 

‘primary’ (>0.2 null deviance) factors already included. The mean amount of residual 

deviance explained upon inclusion of each of these ‘secondary effects’ was then 

compared across models containing each combination of main and secondary effect. 

A final step concerned those factors which were considered primarily ‘extinction’-related 

or ‘colonization’-related (Magnuson et al., 1998; Hershey et al., 2006). Extinction factors 

are factors related largely to the suitability of a lake for sustaining a population for a long 

period of time. Colonization factors are those factors which are more closely associated 

with how accessible a lake is to colonization. The classification of each factor used in this 

study (extinction- or colonization-related) is included in Table 3.  

 

Comparisons between those factors categorized as extinction- and colonization-related 

were performed by taking the mean of each category’s performance (using McFadden’s 

ρ2) on univariate analyses. A similar comparison was also performed by building a single 
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model using all extinction factors and another using all colonization factors and 

comparing the two. 

 

All statistical analyses were performed in the ‘R’ statistical environment (R Development 

Core Team, 2006); all GLM models were built using the 'glm' function that comes with 

the base R program.  

 

 

1.3 Results 

 

 1.3.1  Main effects 

The factors of greatest explanatory importance were lake elevation, linear distance to 

marine shoreline, length of outlet stream, maximum outlet stream gradient, and mean 

outlet stream gradient (Figure 2). These factors explained the highest proportion of 

deviance individually—and also had significant non-zero (p<0.05) coefficients—in 

univariate models (Hosmer & Lemeshow, 2000). The proportion of deviance explained 

by univariate models ranged from a low of  ~4 × 10-5 (univariate factor: mean slope in 

100 m band around lake) to a high of 0.29 (univariate factor: lake elevation). Length of 

lake outlet stream and linear distance from lake to saltwater explained similar amounts of 

deviance (0.22 and 0.26 respectively); these two factors, not surprisingly, also show high 

collinearity (Pearson correlation coefficient = 0.84).  
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Comparisons of univariate performance in the calibration, cross-validation, and 

prediction stages (Figure 3) revealed that all five of the factors identified as important 

main effects above displayed relative stability on cross-validation, not showing a 

precipitous drop in AUC value from calibration to cross-validation. AUC score was 

expectedly lower on cross-validation for all factors, because models were predicting to a 

data record not included in model construction. Even so, the AUC score for some factors 

(presence of outlet stream, presence of inlet stream, mean slope in 100 m band around 

lake) dropped drastically on cross-validation relative to other factors. Such factors appear 

to have a spurious relationship with stickleback occurrence in the original, calibration 

dataset. 
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Figure 2.  Proportion of null deviance (McFadden’s ρ2) explained by each univariate GLM 
model. 
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Figure 3.  Stability of environmental variable importance on cross-validation and prediction 
to the test set as measured by area under the ROC curve (AUC): 1) calibration AUC value -
mean AUC score (    ), 2) relative change in AUC value on cross-validation (    ), and, 3) 
relative change in AUC value on prediction to test set (    ). 
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 Most of the individual factors that produced relatively useful univariate models 

continued to contribute to model performance when included in two-factor (bivariate) 

and four-factor models (Figure 4). Bivariate and four-factor models that included lake 

elevation displayed the highest McFadden’s ρ2 values. In contrast, lake outlet stream 

length explained a relatively small portion of the deviance in bivariate and four-factor 

models when compared to univariate models including lake outlet stream length  

alone. Using presence of lake outlet stream in bivariate and four-factor models increased 

McFadden’s ρ2, although the deviance outlet stream presence explained in univariate 

models was below the mean for the univariate models.  

 

On prediction to the test set of lakes univariate models including linear distance to 

saltwater, lake elevation, and length of outlet stream displayed higher AUC values than 

on the original data. Similarly, univariate models including presence of an inlet stream 

and lake perimeter had AUC scores higher on prediction to the test set. Mean outlet 

stream gradient was the single individual effect (as identified above) that predicted 

stickleback occurrence in the test set relatively poorly. 
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Figure 4.  Scaled deviance explained by each environmental factor. For univariate 
models (    ), this is the scaled deviance of the single univariate model. For two- (    ) 
and four-factor (    ) models, this is the mean scaled deviance averaged across all 
possible models which include each of the 14 environmental variables. 
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 1.3.2  Secondary effects 
 
When secondary effects were added to models in which a main effect was already 

included, these secondary effects did not improve model performance dramatically. The 

one possible exception is the presence of outlet stream factor. The presence of a lake 

outlet stream, although not producing a model significant at the p-0.05 level individually, 

was the factor that decreased model deviance to the highest degree when added to each of 

the main effects above (a mean of 0.15 of the total model deviance) (Figure 5). The 

presence of an outlet stream also increased model AUC score on cross-validation (mean 

increase ~0.06) to a greater extent than any of the other potential ‘secondary effects’. 

Inclusion of lake surface area and presence of an inlet stream both decreased model 

deviance and increased model cross-validation AUC value. However, these two factors 

did not decrease model deviance or increase cross-validation AUC values to a great 

extent (< 0.10 change in model deviance and < 0.05 change in cross-validation AUC 

value), nor did any other secondary factors.  

 

 1.3.3  Extinction-related vs. colonization-related factors 

Colonization-related factors contributed to model explanatory performance more than 

extinction-related factors (Figure 5), explaining a larger portion of model deviance. This 

was the case when comparing both the mean deviance explained by univariate models 

comprised of each of the categories (Figure 5), and the total deviance explained in two 

models built with all of the factors of the respective categories included (Figure 6). 
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Figure 5.  Mean proportion of deviance (McFadden’s ρ2) explained by inclusion of secondary 
effects in models, given prior inclusion of a primary (proportion of deviance explained > 
0.20) effect.
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Figure 6.  Mean and total proportion of null deviance (McFadden’s ρ2) explained by 
extinction- and colonization-related environmental variables.   
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1.4  Discussion 

 

 1.4.1  Main effects 

It is difficult to assess the individual roles of environmental predictors in an observational 

study, inherent in which are interactions between variables and possible missing 

covariates (Beier & Noss, 1998; Li & Wu, 2004; Parker et al., 2005). However, this 

chapter has attempted to do just that from a number of angles, using deviance explained 

on calibration—and model AUC values in 3 model assessment stages—to elucidate the 

factors that shape stickleback occurrence. The overall trend observed is that factors 

related to habitat accessibility—the colonization-related factors—override any of the 

factors related to population extinction.  

 

The relative importance of extinction- versus colonization-related factors in shaping 

organism (including fish) distribution has been investigated in a variety of studies 

previously (Conroy et al., 1999; Magnuson et al., 1998; Beisner et al., 2006; Bertolo & 

Magnan, 2006; Hershey et al., 2006). Beisner et al. (2006) illustrated for lakes the 

relative importance of extinction and colonization factors across varying motilities of 

subject organism, with the distribution of less vagile species being influenced to a larger 

degree by physical barriers to dispersal. Over the range of species size they considered—

from phytoplankton to fish—fish were on the low vagility end, and thus most limited by 

isolation factors. Bertolo & Magnan (2006) stressed the importance of lake elevation and 

longitude, in shaping fish distribution in Canadian Shield lakes, and note that these 
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factors reflect the extent to which fish could colonize lakes historically. Van Zyll de Jong 

et al. (2005) related the distribution of fishes at a regional scale in Newfoundland in part 

to the ability of fishes to access lakes. However, they noted that individual differences in 

lake environmental character become of greater importance at smaller spatial scales.   

 

Attributing stickleback presence to individual predictors was not possible in this study 

due to collinearity between the predictors. An example of the problem of collinearity 

amongst factors is illustrated by lake elevation and linear distance to saltwater (Pearson 

correlation= 0.64). Distance to saltwater (and the closely related length of outlet stream), 

is apparently quite useful in explaining stickleback distribution. However, a mechanism 

by which this factor might limit stickleback range is unclear. For instance, if a very slow, 

low-gradient stream stretched inland for a long distance, it seems that stickleback could 

negotiate such a distance and colonize nearby habitats. Distance from saltwater may be 

an indirect factor; other factors, including elevation and outlet stream grade, are perhaps 

more direct indications of lake accessibility. Fransen et al. (2006) used elevation 

effectively to model fish distribution in streams of Washington state. However, they point 

out that even elevation is likely an indirect influence on distribution, instead proxying for 

a suite of factors including likelihood of migration barriers and stream temperature. 

 

It appears that many lake habitats exist across the region that would be suitable for 

stickleback, but do not contain stickleback. Stickleback are not known as an 

environmentally sensitive species; this is reflected in the wide range of habitats 
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stickleback are known to inhabit (Foster et al., 2003). Stickleback are apparently largely 

confined to low-lying, accessible habitats in Southeast Alaska, and excluded via 

migration barriers from other available, suitable habitats. Such a difference between the 

occupied habitats of a species and the total number of available habitats for that species 

can be referred to conceptually as the difference between the ‘realized’ and ‘fundamental’ 

niche of a species (Zaniewski et al., 2002; Brotons et al., 2004). Such a distinction in the 

literature has been made with the implication being that, given enough time for dispersal, 

the realized niche that a species actually occupies will approach  that of the fundamental 

niche of all available habitats (Lehmann et al., 2002). Although this may be the case for 

threespine stickleback, the constraint of their dispersal to surface waters—apparently of 

moderate grade—makes it seem unlikely they will ever fully occupy all suitable habitats 

in the region. 

 

The natural history of Southeast Alaska may assist in explaining the distribution of 

stickleback here (Hastings, 2005). The main colonization mode of stickleback is via 

surface waters (T. Reimchen, pers. comm.). Many of the habitats sampled in this study 

may not be presently, nor have been historically, accessible to colonization. The upper 

elevational extent of stickleback occurrence in the present study was 205 m above sea 

level. This coincides well with the maximum observed elevation of marine deposits in the 

immediate area (230 m) (Hastings, 2005) and suggests that stickleback may be limited 

more or less to this maximum. It is conceivable that stickleback could access and survive 

at much higher elevations. However, the high collinearity between lake elevation and 



 

 

34

maximum outlet stream gradient seen in the study lakes (0.85), suggests that lakes of high 

elevation with moderate, meandering outlet streams navigable by stickleback may be 

exceptional in this region. It is likely that outlet stream gradient conspires with elevation 

to limit stickleback populations largely to lower elevations.  

 

 1.4.2  Secondary effects 

Presence of an outlet stream was related to stickleback occurrence, although outlet stream 

was not significant (p=0.07) by itself in a univariate model. Three lakes in the area of the 

Herbert River, north of the town of Juneau, lacked outlet streams and stickleback 

populations. Two of these three lakes are ‘intermorainal swale ponds’: locations of water 

impoundment between terminal moraines created ~140 years ago by little ice age 

advance of the Herbert Glacier (R. Carstensen, pers. comm.). One lake is a large (3.2 ha) 

kettle pond created roughly at the same time. All did not exist ~150 years ago, and all are 

relatively low-lying (elevation range: 50-100 m), but not in the floodplain of the Herbert 

River. These lakes can be contrasted with a fourth study lake that is located on the 

opposite side of the Herbert River at slightly lower elevation (in the floodplain), has an 

outlet stream, and contains stickleback. The Herbert River in the area of these lakes 

seems unlikely stickleback habitat, with cascades and high water velocities, and no 

stickleback were captured in very limited trapping performed in the Herbert River. 

Whether stickleback colonized this fourth lake via the Herbert River as it is situated 

today, or via marine waters at some historical point in time, is unknown. However, it 

seems because the three lakes in this area lacking outlet streams are apparently devoid of 
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stickleback, the lack of an outlet stream may reduce the chances that a lake will harbor 

stickleback.  

 

It is important to note that some of the other factors considered secondary effects here—

presence of an inlet stream, lake surface area, mean slope around the lake, and others—

might show significant primary relationships with stickleback occurrence upon more 

extensive sampling.  

 

 1.4.3  Summary 

The distribution of threespine stickleback in small lakes represents the distribution of a 

prey resource for many other vertebrate (and invertebrate) consumers (Reimchen, 1994), 

and so in turn is likely related to the distribution of these consumers. A secondary 

objective of this study was to detect other fish species in these small lakes. Either 

cutthroat trout, Dolly Varden, or coho salmon co-occurred with stickleback in 18 of the 

22 lakes that contained stickleback, and these salmonids were only found in 4 lakes not 

containing stickleback. The distribution of stickleback roughly approximates that of 

salmonid species directly consumed by man (for more discussion of this, see the ‘general 

discussion and recommendations’ section below). Stickleback likely influence salmonid 

populations in these shared habitats through competition and as a prey resource, though it 

is clear neither precludes the presence of the other. 
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Unique morphological populations of threespine stickleback occur in other post-glacial 

landscapes (Bell et al., 1993). These populations are of scientific and conservation 

concern from evolutionary biology and genetic conservation perspectives (Foster et al., 

2003). Stickleback populations in Southeast Alaska have been largely unsampled, and so 

such potentially unique populations remain unidentified in this region. The identification 

of landscape correlates of stickleback populations in this study may help to guide future 

efforts to identify and potentially protect such populations of concern. 
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Chapter 2.  Comparison of methods for modeling threespine stickleback occurrence 

in small lakes of Southeast Alaska 

 

2.1 Introduction  

 
 
Modeling species occurrence entails discrimination between habitat units in which a 

species occurs and in which it does not occur (Guisan & Zimmerman, 2000). An ideal 

species occurrence model does this perfectly, splitting multivariate space so that there is 

no overlap between presence and absence locations. Such an ideal model will never 

predict species occurrence probability to be greater at a site where a species does not 

occur than it will predict to a site where a species does occur (Fielding & Bell, 1997). 

 

This ideal species occurrence model is rarely encountered. More common are models in 

which there is overlap in the environmental predictor combinations associated with 

species presence and absence. For these models, ‘false positives’ and ‘false negatives’ 

will be generated in the model output. Such errors correspond with model output 

probabilities greater at species absence locations than species presence locations 

(Fielding & Bell, 1997).  

 

So, generally, models have error rates, and the object is to produce models that minimize 

both false positives and false negatives (Fielding & Bell, 1997). Minimizing one or the 

other is simple: produce a model that has an output of probability occurrence of 1 at all 
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sites, or of 0 at all sites. Balancing the two types of errors is more difficult and is a main 

goal of species occurrence modeling (Fielding & Bell, 1997). 

 

A further challenge consists of producing robust models; models that can be used to 

predict outside of the dataset on which they were first constructed. This ability is at least 

as important, if not more important, than model performance in predicting only to the 

data on which the model is based (Boyce et al., 2002). Very often, models are 

constructed with the objective of not merely explaining the original data, but predicting 

accurately to new, independent sites. 

 

A number of methods exist for modeling species occurrence (Guisan & Zimmerman, 

2000; Elith et al., 2006). In fact, the number of methods has increased greatly recently, 

due in part to the increased speed of the personal computer, which makes many of these 

methods feasible (Garzon et al., 2006). With this increase in available methods comes the 

difficulty of choosing amongst them. 

 

There have been a number of efforts recently to compare the performance of different 

modeling methods side-by-side (Segurado & Araujo, 2004; Elith et al., 2006). These 

efforts have identified some strengths and weaknesses of the various methods. However, 

some of these method comparisons have produced equivocal results (Moisen & Frescino, 

2005; Pearson et al., 2006), and some authors have suggested not choosing a single 

method, but instead routinely using multiple methods to analyze the same dataset 
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(Thuiller, 2003). Alternatively, others have suggested that the modeling method should 

be chosen on a case-by-case basis, depending on the characteristics of the specific dataset 

being analyzed (Segurado & Araujo, 2004; Pearson et al., 2006). 

 

In this study, threespine stickleback occurrence in small lakes of Southeast Alaska was 

modeled with mostly landscape-level (GIS) variables. A calibration set of lakes (n=36) in 

the northern part of the region was used for building models using four methodologies 

widely used for species presence modeling: the generalized linear model (GLM),  

generalized additive model (GAM), classification tree (CT), and artificial neural network 

(ANN). For each modeling method, a ‘simple’, ‘intermediate’, and ‘complex’ model was 

constructed. Model stability and predictive capability were then assessed via leave-one-

out cross validation, and prediction to a geographically separate set of lakes (n=18) in the 

southern part of the region. The performances of the four modeling methodologies, and 3 

levels of model complexity, were then compared for each of three—calibration, cross 

validation, and prediction—stages of model assessment. 

 

2.2  Methods 

 
 
Before model construction, all variables showing collinearity (Pearson correlation 

coefficient > 0.70) in pairwise tests were examined. For pairs of variables showing 

collinearity > 0.70, the variable retained either made more sense as a plausible correlate 

of stickleback occurrence or was more readily available for all lakes in the study region, 



 

 

40

and therefore more useful for predictive purposes. All remaining variables were then 

tested for significance in univariate GLM’s, and retained only if they significantly 

reduced deviance at the p<0.25 level (Hosmer & Lemeshow, 2000). All statistical 

analyses were performed using ‘R’ (R Development Core Team, 2006). 

 

For each of the four modeling methods—GLM, GAM, CT, and ANN, a ‘simple’, 

‘intermediate’, and ‘complex’ model were constructed. These three levels of model 

complexity correspond with three model sizes—two factors, three factors, and five 

factors were included in models of each respective complexity level. For CT models, 

there is a variation from these model sizes that is discussed in the CT section below. 

 

 2.2.1  Simple models 

The simple (two-factor) model for each method included lake elevation and linear 

distance to saltwater. These two factors are the most readily available across the 

landscape of Southeast Alaska, as the first already exists as an attribute in the USFS 

‘lakes’ coverage (USFS, 2003a) and the second is obtainable through relatively simple 

GIS processing. These two factors have the added benefit of being available at all points 

on the landscape irrespective of whether a lake is mapped at that point or not. This is 

convenient because not all lakes in the size range investigated in this study are mapped. 

So these two factors can be used to predict probabilities of stickleback occurrence for 

small lakes throughout the landscape, even if they are not mapped.  
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Additionally, lake elevation and linear distance to shoreline are two of the most useful 

explanatory variables in the pool of factors considered. When used individually in 

univariate GLMs, these two factors are the two out of the total pool of factors that explain 

the largest proportion of deviance (0.29 and 0.26, respectively). A bivariate model 

including lake elevation and linear distance to saltwater ranks sixth out of all possible 

combinations of factors in bivariate GLMs (91 total possible). And both of these factors 

appear in a three-factor model selected by stepwise forward selection using AICc (AIC 

with small sample correction) (Burnham & Anderson, 2002). 

 

 2.2.2  Intermediate models 

The intermediate (three-factor) model for each method included those factors in a GLM 

chosen by a stepwise forward procedure using AICc: lake elevation, linear distance to 

saltwater, and presence of a lake outlet stream. So the intermediate model is the simple 

model with presence of lake outlet stream added as a third factor. 

 

 2.2.3  Complex models 

The complex (five-factor) model for each method included all those factors that showed 

deviance reduction in univariate GLM’s significant at p<0.25 (Hosmer & Lemeshow, 

2000): 1) lake elevation, 2) linear distance to saltwater, 3) presence of lake outlet stream, 

4) mean slope of lake outlet stream, and 5) lake surface area. 
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 2.2.4  Generalized linear models (GLM) 

GLM are characterized by a link function which allows modeling of non-normal response 

variables such as presence/absence data. The GLM used here—and commonly with 

presence/absence data—is logistic regression, which uses the logit link to model the 

probability of presence: 

 

)1( uu eeP += , where u takes the form of the more familiar linear regression equation— 

nvn XbXbXbAu ++++= ...211  

 

where A = regression constant, bn= regression coefficients, and Xm= independent 

variables. It is not required that predictor variables be normally distributed, linearly 

related, or of equal variance (Porter et al., 2000; Tabachnick & Fidell, 2000). A potential 

drawback of GLM is the necessary a priori assumption of linearity or—upon predictor 

transformation—some other type of parametric response. This results in limited model 

flexibility in contrast to the other data-driven, non-parametric methods used in this study 

(Segurado & Araujo, 2004). 

 

 2.2.5  Generalized additive models (GAM) 

GAM (Hastie & Tibshirani, 1990) have been used extensively in modeling species 

distribution. Generalized additive models are known for their flexibility and data-driven 

nature, which allow them to model complex ecological relationships (Granadeiro et al., 
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2004). In GAM, the smoothed form of one factor at a time is estimated via maximum 

likelihood, according to the following relationship (Hastie and Tibshirani, 1990): 

 

 

The residual deviance is iteratively explained with subsequent significant factors, with 

model error decreasing upon each subsequent smooth. GAM have compared favorably to 

GLM in a number of species distribution studies (Franklin, 1998; Pearce & Ferrier, 2000; 

Thuiller, 2003). GAM strength lie in their ability to model highly non-linear and non-

monotonic relationships. A crucial step in using GAM is choosing smoothers that result 

in a reasonable number of effective degrees of freedom (Thuiller et al., 2003). The 

‘mgcv’ library of R (Wood, 2006) automates the degrees of freedom associated with each 

parameter via a cross-validation routine in which the ‘un-biased risk estimator’ (UBRE) 

criterion is minimized by balance between gains from reduced deviance and the estimated 

degrees of freedom for the entire model, serving the same purpose as an AIC score . The 

smooth of each variable included in models for this study was approximated with a cubic 

spline smoother.  

 

 2.2.6  Classification trees (CT) 

The work of Breiman (1984) paved the way for the modern increase in the use of CT for 

modeling species presence (De’ath, 2002; Thuiller et al., 2003; Hershey et al., 2006). CT 
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use a recursive partitioning approach to the data, with each subsequent split causing the 

maximum possible decrease in the total deviance (impurity) of the tree (De’ath & 

Fabricius, 2000). The final tree represents a balance between homogeneity within each 

‘node’ of the tree and complexity of the entire tree (Figure 7): 
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Figure 7.  Example of classification tree used in the present study. 
 
 
 CT allow for complex interactions amongst predictors, are easy to conceptualize, have 

no distributional assumptions, are robust to the presence of outliers, and handle 

categorical predictors well (Vayssieres et al., 2000; Turgeon & Rodriguez, 2005). They 

have been used with success in modeling stream and lake fish distributions (Magnuson et 

al., 1998; Turgeon & Rodriguez, 2005; Hershey et al., 2006). The CT used here was 

constructed using the ‘rpart’ library of R (Therneau & Atkinson, 2006), which follows 

the work of Breiman et al. (1984) closely.  
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The factors used in the intermediate and complex CT models constructed for this study 

differed from those factors used with the other modeling methods. The reason for this is 

that the rpart CT algorithm, when given a choice of any of the 5 factors made available to 

the algorithm to split the data, continually split the data using lake elevation and linear 

distance to saltwater, rather than using any of the three remaining factors. For this reason, 

the intermediate and complex CT models used here are built only with the ‘elevation’ and 

‘linear distance’ factors, and other model parameters were varied to add model 

complexity. The parameters varied in the R function ‘rpart’ to create more complex CT 

models were the CP, minbucket, and minsplit parameters (Therneau & Atkinson, 2006). 

 

 2.2.7  Artificial neural networks (ANN) 

Artificial neural networks have as their basis an algorithm designed to mimic mammalian 

brain function (Bishop, 1995). ANN are increasingly being used to model species 

occurrence (Lusk et al., 2002; Olden, 2003; Olden et al., 2006). ANN consist of layers 

comprised of neurons. In species occurrence modeling, the number of layers is typically 

3: an input layer, a ‘hidden’ layer, and an output layer (Figure 8). The number of neurons 

in the input layer corresponds to the number of environmental predictors used in the 

model. The number of neurons in the hidden layer varies but is  
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Figure 8.  Architecture of artificial neural network (ANN) models used in this study. 
 

 

usually optimized by cross-validating ANNs built with a range of neurons in the hidden 

layer. The number of neurons in the output layer also varies, but for species occurrence 

modeling, one neuron is often used (Olden & Jackson, 2002). Each ANN model run 

produces a slightly different result due to the heuristic nature of ANN. Therefore, ANN 

solutions were calculated 10 times for each model and the mean used for predictive 

purposes (Segurado & Araujo, 2004). 

 

 2.2.8  Model evaluation 

The area under the receiver-operating characteristic curve (AUC) (Fielding & Bell, 1997; 

Elith & Burgman, 2002), was used to evaluate all models. AUC is a measure of how well 

a model discriminates between presence and absence records (Fielding & Bell, 1997). A 

model’s AUC score is the rate of true positives to false negatives that a model yields 

across the entire range of possible threshold values between 0 and 1. This is why AUC is 

considered threshold independent and is considered effective in relation to other model 

evaluation metrics (Liu et al., 2005). The AUC score was used to compare model (and 
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thus individual predictor) performance in cross-validation and prediction as well. The 

AUC value can be used to compare model performance in all three stages—calibration, 

cross-validation, and prediction—of model assessment. 

 

 2.2.9  Geographic prediction 

Simple (two-factor) models were used to predict stickleback occurrence across 

Revillagigedo Island using the following steps in ArcGIS and ‘R’: 

 

1) a GIS raster file containing SRTM-DEM derived elevations for all 30X30m 

pixels across the island was converted to a point feature shapefile. 

 

2) a GIS raster file was produced using the ‘euclidean distance’ tool (Spatial 

Analyst toolbox) with source set as the marine shoreline (from the USFS ‘shore’ 

GIS coverage). This raster was converted to a point feature shapefile. 

 

3) The two shapefiles were spatially joined, and the attribute table was imported 

into the ‘R’ environment. 

 

4) For ‘simple’ models from each modeling method, the predict function for each 

method was used, with the target prediction object being the GIS-output 

‘elevation’ and ‘distance from shoreline’ values. 
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5) The output probabilities were then exported from ‘R’ to a .dbf file, brought 

back into ArcGIS, joined (by a unique identifier) to the ‘elevation’ point 

shapefile, and reconverted to a raster dataset. 

 

 2.2.10  Variable importance  

For all models and complexity levels, relative variable importance was assessed by 

comparing the AUC value of the full model with that of the model with each factor 

excluded in turn. This was performed for the calibration, cross-validation, and prediction 

stage. The comparison value is expressed as (AUCfull model- AUCreduced model)/ AUCfull model . 

 

2.3  Results 
 

 
The differences in performance of the four modeling methods used here were generally 

not clear-cut, but there were a number of notable trends in model performance (Figure 9). 

Every modeling method and level of complexity predicted stickleback occurrence better 

than random chance. All models had lower AUCxvalidation (mean 0.81) than AUCcalibration 

(mean 0.94) across all modeling methods and model complexity levels. This was 

expected, as rather than the models just predicting to the data upon which they were 

constructed, models were predicting to the left-out record in this stage. Surprisingly, 

mean AUCprediction nearly equaled AUCcalibration across all models (0.92 and 0.94 

respectively). The predictive performance of all models on the test set of lakes was higher 

than expected. AUC values of >0.9 are subjectively considered very useful (Fielding & 
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Bell, 1997). More details on the relative performance of the four modeling methods 

follow. 

 

2.3.1  Generalized linear models (GLM) 

The GLM models of all three complexity levels tended to show stability upon cross-

validation (Figure 8), with AUCcalibration- AUCx-validation less (~0.08) than the other three 

modeling methods. Unlike the other modeling methods, intermediate and complex GLM 

models showed better performance than the simple GLM model on cross-validation. 

Complex GLM model AUC value on prediction to the test set was higher than for the 

other complex models:  AUCGLM > AUCCT > AUCGAM > AUCANN.  
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Figure 9.  Performance (AUC value) of the four modeling methods and three model 
complexity levels on calibration, cross-validation, and prediction to the test set. 
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 2.3.2  Generalized additive models (GAM) 

GAM models—especially the intermediate and complex levels—tracked the original data 

more closely than GLM models, performing similarly in the calibration stage to the CT 

models, and discriminating stickleback occurrence lakes at a higher rate than both GLM 

and ANN in calibration. The simple and complex GAM models had AUCxval lower than 

that of the other methods, while the intermediate GAM model AUCxval was equal to that 

of ANN (0.85) and greater than the GLM and CT intermediate models. Mean GAM 

performance dropped off most between calibration and cross-validation, (AUCcalibration- 

AUCxval) (mean 0.18). The complex GAM model had the lowest AUCprediction value (0.71) 

of any model in any stage of assessment, reflecting a tendency of the flexible GAM 

method to overfit the calibration data. 

 

 2.3.3  Classification trees (CT) 

CT models tracked the calibration data closely, and then dropped off in performance 

somewhat on cross-validation. The CT simple model had AUC=1.0 on prediction to the 

test set, perfectly discriminating between occurrence and non-detection sites. However, 

GAM intermediate AUC for prediction to the test set was lower (0.86) than the other 

methodologies and complex showed performance intermediate between that of the other 

complex models.  

 



 

 

52

 2.3.4  Artificial neural networks (ANN) 

ANN simple and intermediate models predicted to the test set with equal accuracy (AUC 

= 0.93) and with higher accuracy than the complex model (AUC=0.80). ANN models. 

Mean AUCxval for ANN models of all complexity was equal to that of GLM and higher 

than both CT and GAM. 

 

 2.3.5  Model complexity 

The relative performance of the three levels of model complexity (mean across all 

modeling methods) followed this pattern: 

 

Calibration: AUCcomplex (0.98) > AUCintermediate (0.97) > AUCsimple (0.88) 

Cross Validation: AUCintermediate (0.83) > AUCsimple (0.81) > AUCcomplex (0.80) 

Prediction: AUCsimple (0.96) > AUCintermediate (0.92) > AUCcomplex  (0.87) 

 

Complex models performed best on calibration, but their performance dropped off on 

cross-validation and prediction. The trend with simple models was generally the opposite, 

they did not track the original data closely but were relatively robust on cross-validation 

and prediction. GLMs were an exception to this pattern, the most complex GLM 

outperforming the other complex models on prediction with AUC (0.93), which was 

equal to the AUC of GLM simple and intermediate models. 
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 2.3.6  Variable importance 
 
The importance of the five variables included in models as expressed by (AUCfull model- 

AUCreduced model)/ AUCfull model indicated the relatively high contribution of linear distance 

to saltwater and lake elevation in explaining stickleback distribution (Figure 10-12). Lake 

area, presence of lake outlet stream, and mean slope of outlet stream, when excluded 

from complex models, actually increased model prediction accuracy to the test set, as 

well as in cross-validation in some instances (Figure 12). 

 

Modeling methods differed with respect to the relative contribution of each factor to 

model performance. GLM predicted most accurately to the test set of lakes when all five 

factors were included in the model, while exclusion of lake area, presence of lake outlet 

stream, or mean slope of outlet stream from ANN increased AUC value on prediction to 

the test set (Figure 12). In the calibration stage, exclusion of linear distance from 

saltwater had little effect on the AUC value of the CT simple model, but a greater effect 

on each of the other simple models (Figure 10). In contrast, lake elevation was much 

more important to simple model performance in the prediction stage of model 

performance (Figure 12). 
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Figure 10.  Relative change in AUC Value upon inclusion of each factor in 
simple models: (AUCfull model- AUCreduced model)/ AUCfull model for 
each stage of model performance—calibration, cross-validation, and 
prediction. 
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Figure 11.  Relative change in AUC Value upon inclusion of each factor in 
intermediate models: (AUCfull model- AUCreduced model)/ AUCfull model for each stage 
of model performance—calibration, cross-validation, and prediction. 
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Figure 12.  Relative change in AUC Value upon inclusion of each factor in 
complex models: (AUCfull model- AUCreduced model)/ AUCfull model for each stage of 
model performance—calibration, cross-validation, and prediction. 
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2.4  Discussion 
 
 
 
All modeling methods explained and predicted stickleback presence fairly well, with 

AUC values for all methods, complexities, and model assessment stages exceeding 0.7. 

The parametric GLM modeling method is a conservative choice, as the a priori 

determination of response shape limits the extent to which GLMs overfit data (Vaughan 

& Ormerod, 2005). The other three methods are empirical approaches and more prone to 

overfitting, but this can be avoided in all methods by limiting the number of factors used 

in models (Vaughan & Ormerod, 2005). The GAM and CT simple models had the 

highest predictive performance of all methods and model complexities in prediction to 

the test set. ANN simple and intermediate models performed robustly on cross-validation 

and prediction; the complex ANN model fell off in predictive performance relative to the 

other modeling methods. Parsimony seems the key in successfully building robust models 

for the three non-parametric modeling methods used here. 

 

Guisan & Zimmerman (2000) suggest that shrinkage rules can be used to limit the 

number of variables included in models, citing the m/10 rule (Harrell et al., 1996) as an 

upper limit, where m is the number of observations in the minority of a binary dataset. In 

the current study, m would be the number of lakes in the calibration dataset where 

stickleback were present divided by 10, 14/10= 1.4. Using this rule for the current dataset 

would result in models with maximum size of a single variable. While this rule seems a 
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bit conservative, it does generally coincide with the finding that simple models appear 

appropriate, given the small sample size of the present study. 

 

The results here generally coincide with the suggestion that added insight can be gained 

by using multiple modeling methods, but there may not be a clear choice of method that 

outperforms all others (Thuiller, 2003). Although GLM, GAM, CT, and ANN have all 

performed favorably in one application or another (Olden & Jackson 2001; Segurado & 

Araujo, 2003; Thuiller, 2003; Moisen & Frescino, 2005), it may be ill-conceived to pick a 

single method at the exclusion of others. Rather, a strategy of using multiple methods 

side-by-side and then being able to compare and contrast results has the benefit of 

multiple results that can support each other or provide alternate possibilities. Hosmer & 

Lemeshow (2000) suggest a subjective scale for assessing model performance based on 

AUC value, with >0.9 being excellent, 0.8-0.9 being good, 0.7-0.8 adequate, and 0.6-0.7 

poor. The results from the current study generally fall into the good-excellent range, and 

fall within the range of AUC values found by previous studies (Table 4).  

 

Output probabilities from the simple model of each of the four modeling methods showed 

the same general trends (Figure 13). The results of model performance across modeling 

methods and stages of model assessment indicate that simple models including two 

widely available landscape factors (lake elevation and linear distance to saltwater) 

perform robustly on cross-validation and prediction. The high performance of such 

simple models (across all methods), and the availability of these two factors across the 
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region allows prediction to all points on the terrain of the southern prediction area. In 

doing this, the caveats exist that:  

 

1) The eastern portion of Revillagigedo Island was not sampled due to land status 

that prohibited lake access, so predictions to that area of the island are, strictly 

speaking, outside of the range of model inference. 

 

2) AUC scores on prediction were high, suggesting model validity. However the 

prediction set of lakes was small (n=18) with only four lakes in which stickleback 

occurred. It is possible that models would not predict as accurately given a larger 

sample of stickleback occurrence records from lakes on Revillagigedo Island. 

 

3) The ‘lake elevation’ and ‘linear distance to saltwater’ factors allow prediction 

across all points on the terrain of Revillagigedo Island. This, obviously, does not 

indicate stickleback occurrence at all points on the terrain, only the probability of 

occurrence given the existence of a small lake. 

  

4) These probabilities are only predictions from the northern calibration lakes to 

the southern study area. The models performed well on prediction to the southern 

set of lakes (AUC range 0.93-1.0), but further testing is required to verify model 

predictive accuracy. 
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Table 4.  Literature AUC values for species occurrence modeling. 
     
    Organism(s)  Modeling  Model 
Author, year   modeled  method  performance stage  Mean AUC (range) 

Dobrowski et al., 2006 Plants (19 spp.) GAM   x-validation (5-fold)*  0.74(0.58-0.84) 
Jensen et al., 2005  Blue crab  GAM   calibration   0.85(0.81-0.91) 
          x-validation (interannual)† 0.71(0.44-0.86) 
Luoto et al., 2006  Butterflies (98 spp.) GAM   x-validation (4-fold)*  0.79(0.48-0.99) 
Suarez-Seaone et al., 2002 Birds (3 spp.)  GAM   calibration    0.92(0.90-0.96) 
          x-validation (10-fold)* 0.91(0.88-0.95) 
Brotons et al., 2004  Birds (30 spp.)  GLM   calibration   0.87(0.70-1.0) 
          prediction (70%-30%)‡ 0.82(0.57-0.94) 
Pearson et al., 2006  Proteaceae (4 spp.) ANN   prediction (70%-30%)‡ 0.95(0.89-0.99) 
       CT   prediction (70%-30%)‡ 0.90(0.86-0.95) 
       GAM   prediction (70%-30%)‡ 0.96(0.92-0.99) 
       GLM   prediction (70%-30%)‡ 0.96(0.92-0.99) 
Thuiller, 2003   Trees (61 spp.) GLM   calibration    0.95(0.82-0.99)  
          prediction (70%-30%)‡ 0.94(0.82-1.0)   
          prediction (independent set) 0.95(0.82-0.99) 
 `      GAM   calibration    0.96(0.84-0.99)  
          prediction (70%-30%)‡ 0.94(0.84-1.0)   
          prediction (independent set) 0.95(0.84-0.99) 
       CT   calibration    0.94(0.83-0.99)  
          prediction (70%-30%)‡ 0.87(0.54-0.96)  
          prediction (independent set) 0.92(0.82-0.98) 
       ANN   calibration    0.97(0.87-1.0)   
          prediction (70%-30%)‡ 0.95(0.82-0.99)  
          prediction (independent set) 0.96(0.85-0.99)  
*Cross validation performed as noted, in contrast with the leave-one-out (n-fold) cross-validation performed in the present study. 
†Cross validation performed from one model calibration year to other model testing years. 
‡Model built with 70% of original records and prediction made to the 30% remaining records. 
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Figure 13.  Predicted probabilities of stickleback occurrence from the simple model 
(two factor model with lake elevation and distance from saltwater included) of each 
modeling method applied to the landscape of Revillagigedo Island. 
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Each modeling methodology differed slightly in the pattern of predicted distributions 

(Figure 13). For instance, ANN, and to a lesser extent GLM, predicted probabilities 

remain at levels above zero for a considerable distance inland. GAM and CT, however, 

predict a sharp drop-off in probability so that both methods predicted stickleback 

occurrence probability ~0.0 anywhere roughly 10 km or more from saltwater. Of course, 

it is impossible to tease apart the effect of elevation and linear distance, for the two 

factors show collinearity (Pearson correlation coefficient= 0.64). But the utility of these 

simple models is evident, at least for predicting occurrence probability over large spatial  

scales. 

 

CT, and to a lesser extent GAM, produced models with output probabilities typically 

either very low (0<P<0.05) or very high (0.95<P<1.0) on cross-validation and prediction 

(see output probability graphs, Appendix A, Figures 1-3). Although both methods had 

generally high AUC values on cross-validation and prediction, such dichotomization of 

response may not be a realistic representation of how stickleback occurrence probabilities 

vary across environmental gradients. GLM and ANN models yielded results that may be 

more realistic, showing a gradual trend between low- and high-probability lakes. It may 

be that providing the CT and GAM methods with a larger dataset would allow both these 

methods to build more complex response curves (GAM) or trees (CT). The performance 

of the four different methods used here in relation to sample size is not clear. Hernandez 

et al. (2006) compared the performance of four different species distribution modeling 

methods over a range of sampling sizes, and found differences across methods, although 
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none of the methods they evaluated were used in the present study. Published information 

comparing the methods used here across sample sizes appears to be lacking. 

 

Another characteristic of both CT and GAM predictions to the test set (Appendix A, 

Figure 3) is their tendency to produce a number of false positives and no false negatives. 

In all lakes in the prediction set that were assigned low probability by these two methods, 

stickleback were not detected. However CT and GAM did not perform as well when they 

predicted a probability of occurrence of ~1.0. When probabilities of near 1.0 were 

predicted by these methods, in approximately 50% of lakes stickleback were actually 

absent. The exception is the relatively high performance of the CT simple model, which 

in fact had the highest performance of any model in prediction to the test set. 

 

It appears all modeling methods performed adequately in this study, particularly when the 

number of factors was limited. It might be that with a larger sample size, an increased 

number of environmental predictors would significantly improve model fit and predictive 

capability. The small sample size used here does not support a large number of model 

parameters, and a parsimonious modeling strategy is most appropriate, particularly when 

using the CT and GAM methods. 

 

 2.4.1  Summary 

Landscape factors were used here to effectively model the occurrence of threespine 

stickleback. Such widely available attributes such as lake elevation and lake distance 
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from saltwater can be very useful in modeling and predicting broad-scale patterns of 

distribution. The successful use of these attributes for modeling stickleback occurrence 

encourages further use of such simple landscape models for modeling the distribution of 

other fish species in this region. 

 

The choice of method for modeling fish distribution can be a difficult one. In this study, 

simple empirical models (GAM, CT, and ANN) with two environmental factors included 

were successfully used. Three- and five-factor GLM were also effective in all stages of 

model assessment. Future fish occurrence studies in Southeast Alaska might benefit from 

larger sample sizes, which may support more complex empirical models.  
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Chapter 3.  General Discussion and Recommendations 
 

3.2  General Discussion 
 
 
 
Stickleback absence in some low-lying lakes close to saltwater represented variance for 

which models did not account. Water temperature is perhaps a missing covariate that 

might be beneficial to include in future modeling efforts. One small lake in the Taku 

River floodplain, but at the toe of a steep side slope, had cold water temperature  (8.0ºC) 

at the time of sampling relative to all other low-lying lakes sampled (a number of alpine 

lakes had lower water temperatures). The water source of this lake appears to come from 

a steep, adjacent alluvial fan and associated groundwater upwell. In addition, this 

particular lake was quite small, so apparently water did not have a long residence time in 

the lake in which to warm. The possibility exists that stickleback avoid cold waters when 

possible.  

 

Stickleback were not detected in two other small lakes in the northern study area that 

were at low elevation and in proximity to saltwater. These lakes were shallow, and 

neither had an outlet stream. Lake depth was not a significant correlate of stickleback 

occurrence in this study, but that does not rule out the possibility that it may influence 

occurrence patterns, as it does for lake trout (Hershey et al., 2006), and arctic char (Van 

Zyll de Jong et al., 2005; Hershey et al., 2006) in other high latitude lakes. Although 

water temperature was not extreme at either lake when taken at the time of visit (16ºand 
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17ºC respectively), a smaller pond in the area reached at least 27ºC (S. Pyare, pers. 

comm.) during the summer of 2005. While it is not known whether 27ºC is within the 

thermal limits of threespine stickleback, the possibility of an upper thermal limit for 

stickleback exists. Both warm and cold water temperatures can potentially affect fish 

species distribution in freshwater. Swales (2006) found the upper temperature of North 

American lakes and reservoirs harboring rainbow trout populations (Onchorynchus 

mykiss) to be around 21ºC, while the influence of water temperature on stream fish 

distribution has been demonstrated for a number of fish species (Dunham et al., 2003; de 

la Hoz Franco & Budy, 2005; Smith & Kraft, 2005). Temperature data taken during site 

visits in the present study did not reveal any correlation with stickleback presence 

probability (unpublished data), but it may be that measurements resulting from more 

intensive lake temperature sampling would show some relationship with stickleback 

presence.  

 

Winterkill also presents a possible limit on habitat suitability for fish in lakes (Rahel, 

1984). Causes can include anoxia (Rahel, 1984, Jackson et al., 2001) and the possibility 

(especially in small lakes at high latitudes) of lakes freezing solid (Hershey et al., 2006). 

In northern Sweden, isolated lakes that experience anoxic conditions in winter are 

relatively species poor (Ohman et al 2006), and Paszkowski & Tonn (2000) suggest that 

wintertime anoxia is a filter on fish communities in northern Alberta. Factors that 

potentially mitigate the effects of winter anoxia relate to availability of refuge, either via 

deep water (Jackson et al., 2001) or inlet streams (Tonn & Magnuson, 1982). Assessing 
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the extent of anoxic lake conditions in southeast Alaska—and the possible landscape-

level covariates of dissolved oxygen levels—would likely aid in explaining fish 

distribution patterns in the region. Any such assessment would greatly benefit from 

intensive DO sampling through time, and such sampling was not possible in the present 

study.  

 

Previous studies on lake (Olden & Jackson, 2001; Hershey et al., 2006) and stream 

(Rieman & McIntyre, 1995; Porter et al., 2000) fish distribution have shown the utility of 

landscape factors for predicting occurrence. The present study confirms the usefulness of 

such factors in prediction, with most of the important predictors in this dataset (lake 

elevation, lake area, and outlet stream length) being large-scale landscape factors. Field- 

measured factors (presence of outlet stream being the exception) generally did not 

explain stickleback occurrence well. Concordance with the literature was found in the 

importance of lake surface area (Rago & Wiener, 1986), elevation (Hershey et al., 2006), 

and lake connectivity (Magnuson et al., 1998) for explaining lake fish distribution. The 

lack of significance of lake depth seen here diverges from some published findings 

(Jackson et al., 2001; Hershey et al., 2006).  

 

Stickleback were not found at an elevation of greater than 205 m in this study. They are 

known to occur at an elevation of 215 m in Upper Slate Lake (E. Kline, pers. comm.), 

which is near the northern, calibration set of lakes. The maximum elevation at which a 

natural (unstocked) lake fish population is known to occur in Southeast Alaska is in 
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Lower Texas Lake in the far southern portion of the region at 710 m (Baade, 1961). 

There is no definite barrier to fish passage between Lower Texas Lake and the saltwater, 

at least for the anadromous coho salmon documented there. There is a high-elevation 

(410 m) lake on Baranof Island in northern Southeast Alaska which contains a 

documented population of resident sculpins. The outlet stream from this lake is of 

extremely high gradient and is likely to represent a barrier to fish migration. Such high-

elevation fish populations appear to be anomalous; the likelihood of stickleback and other 

fish species presence in lakes of the region seems to have a strong negative correlation 

with elevation. 

 

The relatively high importance of elevation as a predictor of fish distribution found here 

concurs with a number of previous studies of both stream and lake fishes. Elevation is 

significantly associated with the distribution of small-bodied fishes (including nine-spine 

and brook stickleback), in Canadian Shield lakes (Bertolo & Magnan, 2006). These 

authors also found elevation significant in explaining the occurrence of five other large-

bodied fish species. Hershey et al. (2006) found lake elevation of varying importance in 

explaining the presence of five fish species in northern Alaska—ranging from not 

explanatory for arctic grayling, to very important in explaining arctic char presence. 

Although in studies by Hershey et al. (2006), Magnuson et al. (1998) and the present 

study, lake elevation is classified as a colonization-related variable, it is worthy of note 

that many factors—including ionic composition (D’Arcy and Carignan, 1997; Kratz et 

al., 1997), temperature (Cavalli et al., 1997; Edmundson & Mazumder, 2002), and 
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productivity (Magnuson et al., 1998)—may covary with elevation. Thus, it is impossible 

in such field studies to put a finger on a single, proximate cause of species presence or 

absence. 

 

Southeast Alaska has experienced dramatic post-glacial rebound (Hastings, 2005). As a 

result, the potential exists that basins which historically were inundated with marine 

waters now exist as lakes far above saltwater. The phenomenon of historic fjords 

uplifting to become isolated lakes has been observed in post-glacial landscapes 

elsewhere—including in eastern Canada (Girard and Angers, 2006), northwest Russia 

(Snyder et al., 1997; Corner et al., 1999), southern Sweden (Sandgren and Snowball, 

2001), southern Finland (Sarmaja-Korjonen and Hyvarinen, 2002), and central Norway 

(Solem et al., 1997). Such historic indundation and subsequent lake isolation is thought to 

have greatly influenced fish distributions in postglacial regions. For salt-water tolerant 

species such as the torrent sculpin Cottus gobio, anadromous salmonids, and the 

ninespine stickleback (Pungitius pungitius), historic marine inundation  may have 

increased the number of habitats colonizable (Power et al., 1973; Scott and Crossman, 

1973; Kontula and Vainola, 2004). However, in other instances, such as for the saltwater-

intolerant longnose dace in eastern Canada, historic low-lying seas may have been a 

barrier to colonization (Girard and Angers, 2006).   

 

The maximum known elevation of marine deposits in southeast Alaska of 230 m 

(Hastings, 2005) may roughly indicate an elevational cutoff for natural fish populations, 
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as fish access to such high elevation lakes may be compromised by high-gradient outlet 

streams. Exceptions might include lakes such as the above-mentioned Lower Texas Lake, 

which is situated at high elevation, but has a moderate-gradient outlet allowing fish 

populations to colonize. The high collinearity between lake elevation and maximum 

outlet stream gradient seen in the lakes of the present study (0.85), suggests that such a 

situation may be uncommon in Southeast Alaska given the abrupt terrain. Elevation 

appears to covary with a number of factors that may influence stickleback distribution in 

the region. 

 

Many of the small lakes in this study show evidence of current or past beaver damming at 

the outlet of the lake. The presence of a beaver dam at a lake outlet indicates that perhaps 

at times in the past, not nearly as much water was impounded in the lake basin. At the 

extreme, it is possible that some of these small lakes owe their existence to beaver dams, 

without which they might not impound water. Therefore, even if the current position of a 

lake is below the possible elevation limit of historic marine inundation, this historic 

period of potential colonization may predate the age of the lake itself.  

 

Small lakes can be considered ephemeral landscape features due to sediment and organic 

matter deposition in their basins (Kalff, 2002). An important facet of stickleback 

distribution in lakes is not only where populations persist presently, but which habitats 

will persist longest into the future. A small lake with an inlet stream(s) actively 

transporting sediment may have a life expectancy less than that of a large, deep lake that 
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does not experience a large input of sediment (Wetzel, 2001; Kalff, 2004). Such habitat 

changes through time will likely reshape stickleback distribution in small lakes from its 

present state. 

 

The results of this study suggest the utility of landscape models for successfully 

predicting stickleback occurrence. The large elevational extent sampled across yielded 

factors (including, but not limited to, lake elevation) that were useful in explaining model 

deviance and predicting to a geographically separate set of lakes. At this scale, the 

colonization-related factors clearly are important in discriminating occurrence from non-

detection lakes. At smaller scales there may be other, biotic factors that shape organismal 

distribution (Trani, 2002). Such factors may only become evident upon sampling a much 

larger number of lakes than was sampled here. However, this study can serve as a 

springboard towards further investigating other factors that may shape the distribution of 

stickleback, and other fishes, in the region.  

 

 

3.2  Salmonid occurrence 
 

As indicated previously (Chapter 1, Section 1.4.3), the distribution of salmonid species at 

a large scale roughly mirrored that of stickleback. Across all sites sampled (northern and 

southern areas, n=54), 82% of stickleback-bearing lakes contained salmonid species. 

Conversely, in stickleback-absence lakes, 88% were also devoid (as evidenced by 
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sampling) of salmonids. It appears that, although salmonid distribution patterns differ 

somewhat from that of stickleback, competition and/or predation are not limiting the 

range of either species in this region. 

 

Focusing on the calibration lakes, further evidence of the parallels in distribution pattern 

between stickleback and salmonids is illustrated by the fact that the importance of some 

of the environmental factors most useful in explaining stickleback distribution is 

maintained when applied to salmonids (Figure 14). For instance, lake elevation, which 

ranked first in explained deviance (McFadden’s ρ2) amongst predictors of stickleback 

(Figure 14a), consistently ranked one or two in explaining the most deviance in univariate 

GLM models for salmonid taxa (Figures 14 b-d). Lake elevation only dropped from the 

top five rankings of all factors (univariate GLM model McFadden’s ρ2 and p-value) in its 

significance explaining anadromous (coho) salmonid presence (rank=8, Figure 14h). This 

drop in rank is at odds with the fact that lake elevation explains by far the most deviance 

(McFadden’s ρ2) of all models explaining anadromous status (= presence of coho 

salmon). The relatively high p-value (0.14) of lake elevation in explaining coho presence 

(Figure 14h) may be due to, 1) lake elevation being outranked by factors with which it is 

collinear (mean Pearson correlation with lake elevation for the seven factors = 0.42), 

and/or, 2) lack of data (coho were only present in 7 of 36 calibration lakes). A larger 

sample may have led to a lower p-value for lake elevation in explaining lake anadromous 

status. 
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A paucity of data for resident salmonid (n=9) and coho presence (n=7) lakes in the 

calibration data may be one reason that other important factors in explaining stickleback 

occurrence seem to explain deviance in the salmonid data (Figures 14c-d),  
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Figure 14.  Changes in rank of univariate model McFadden’s ρ2 and p-values when applied to other fish taxa 
sampled in this study (models correspond to each of the 14 environmental factors). Any Fish= stickleback, 
Dolly Varden, cutthroat trout, or coho salmon. Resident salmonids= Dolly Varden or cutthroat trout. 
Anadromous= coho salmon. 
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but that this does not translate to high levels of univariate model significance (Figures 

14g-h). However, with exceptions (examples: length of outlet stream and maximum 

stream gradient for resident salmonids) (Figure 14c), important factors in explaining 

stickleback deviance hold for the salmonid taxa (Figure 14a-d). 

 

Patterns in distribution of salmonids differ from that of stickleback in a number of 

ways. For resident salmonids, presence of an inlet stream seems to be an important 

factor, accounting for more deviance than any other factor. In all lakes in the 

northern, calibration set containing Dolly Varden or cutthroat trout, an inlet stream or 

streams were documented. In the southern set of lakes, the association between inlet 

streams and resident salmonids persisted, but not as strongly; four of six lakes with 

Dolly Varden or cutthroat had an inlet stream(s) in these lakes. Coho salmon were 

predicted marginally well by the percentage of wetlands coverage in the lake 

surrounding area (p=0.06) (Figure 14h). This wetlands factor never appeared in 

stickleback occurrence models. In addition, elevation was even more important as a 

factor for coho occurrence than stickleback, explaining over half the deviance (0.52) 

(Figure 14d), and being significant well below the 0.05 level (p=0.01) (Figure 14h). 

Coho were found mainly at very low elevations in the floodplain of the Taku River in 

the northern area, with an elevation of 32 m being the maximum at which coho were 

observed. Coho were not observed in the southern set of lakes. This may be because 

the floodplain landscape position was not prevalent in this area; random stratified site 

selection in this area yielded no lakes situated in the floodplain. It may be that 
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anadromous fishes, including coho, are constrained to low-lying, floodplain habitats 

to an even greater extent than are stickleback (Figure 14, 15). 

 

3.3  Generalizing to the total population of lakes 
 
 
 
As stated previously, there were logistical constraints in the size class of lake visited 

in the present study. The question exists, how do the current results generalize to 

lentic water bodies not represented in this study? Lakes both lesser (<0.5 ha) and 

greater (>5 ha) in surface area than those sampled here show a skew in distribution 

towards lower elevations (Table 5). 

 
 
Table 5.  Elevational distribution of study lakes in relation to the entire population of 
lakes in the northern study area. 
 
Elevation           Number of lakes (proportion of lakes in stratum)  
stratum  <0.5 ha  0.5-5 ha >5 ha  Total 
 
0-20.6   42(0.63)  15(0.22) 10(0.15) 67 
20.6-32.2  12(0.44)  15 (0.56) 0 (0.0)  27 
32.2-103.6  34(0.67)  15(0.29) 2(0.04)  51 
103.6-323.6  19(0.45)  15(0.45) 8(0.19)  42 
323.6-732.4  19(0.46)  15(0.37) 7(0.17)  41 
>732.4   15(0.43)  15(0.43) 5(0.14)  35 

Total (proportion) 141(0.54)  90(0.34) 32(0.12) 263 
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Figure 15.  Comparison of simple (two-factor) models with lake elevation and distance 
from saltwater included for each of four fish taxa modeled. 
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Whether this skew in elevational distribution translates into a higher proportion of the 

entire lake population containing stickleback and/or other fishes is not known. Of study 

lakes 0.5-5 ha in surface area, 39% contained stickleback, 44% contained any fish 

species, and 19% contained coho salmon. As elevation shows strong correlation with the 

presence of all fish species, a higher proportion of lakes both smaller (<0.5 ha) and larger 

(>5 ha) than the study lakes might be expected to support fish populations. However, 

other factors may confound this relationship between lake size and fish species 

occurrence: 

 

1) Smaller lentic waterbodies may be less likely associated with outlet streams. 

Lake surface area was correlated with outlet stream presence (Pearson correlation 

coefficient= 0.36). Whether this association holds true for lakes of other sizes is 

not known, but there is some evidence that it does. Of large lakes (>5 ha) in the 

calibration area, 81% are associated with (intersect) a USFS mapped stream arc 

(USFS 2003a), compared to smaller (0.5-5 ha) lakes of the (48%), and even 

smaller <0.5 ha lakes (5%). While this seemingly supports the idea that larger 

lakes are more likely to have an outlet stream, note that information gathered 

during site visits resulted in an assessment of  ‘outlet stream presence’ for 75% 

(27 of 36) study lakes in the 0.5-5 ha range, well above the 48% rate based on 

outlet streams mapped (USFS 2003a) for lakes of this size class. The presence or 

absence of lake outlet streams—a factor associated with lake accessibility to 
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colonizing fishes, and potentially with other lake biotic and physical attributes—is 

not readily assessed from available GIS information.  

 

2) Evidence from the present study regarding the role of lake surface area in 

shaping fish distribution is ambiguous. Lake surface area was included in 

‘complex’ models in the present study, due to a p-value <0.25 (0.19) in a 

univariate GLM (Table 6). However, the proportion of deviance explained 

(McFadden’s ρ2) by surface area in a univariate stickleback GLM (0.038) (Table 

6) is very small when contrasted with that explained by linear distance from 

saltwater (0.26), a nearly 7-fold difference. Similarly, a univariate GLM for coho 

occurrence using elevation (although not being significant; p-value  =0.47) 

explained 20 times the deviance that surface area did (elevation McFadden’s ρ2= 

0.34, surface area McFadden’s ρ2=0.017). The coefficient of surface area for coho 

occurrence is negative as well, indicating less likelihood of occurrence for larger 

lakes (although again note that the model p-value of 0.47 did not approach any 

conventional level of significance). 

 

3) Evidence from the literature suggests that lake size may promote fish species 

occurrence. A strong trend in species richness vs. available area of habitat has 

been an observed trend in community ecology for many years (Preston, 1960; 

MacArthur & Wilson, 1963) including in lakes (Barbour & Brown, 1974; Tonn & 

Magnuson, 1982). A logical extension of this trend is that individual taxa may be 
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less likely present in smaller habitats; this has borne true for some species in lakes 

(Beauchamp et al., 1992; Hershey et al., 2006 ). It may be that for the small 

sample size and somewhat narrow range of lake sizes considered here, this 

general relationship was not clearly evident, but that it does exist over the entire 

size range of lakes in the region. 

 

Table 6.  Lake surface area univariate GLM parameters for fish taxa occurrence 
 

   Estimated        
Fish taxon  Coefficient p-value McFadden’s ρ2 
Stickleback  0.52  0.19  0.038 
Any fish  0.77  0.07  0.074 
Resident salmonids 0.71  0.09  0.071 
Coho   -0.41  0.47  0.017 

 

 

3.4  Recommendations for future fish species occurrence modeling. 
 

3.4.1  Sample size 
 

A key recommendation to come from this research involves sample size. The utility of 

large sample sizes in species occurrence modeling can be illustrated in an example based 

on the stickleback modeling performed in the present study. For stickleback, univariate 

GLM models with lake elevation as the sole predictor resulted in coefficients of 0.766 for 

the intercept and 7.6 X 10-3 for the elevation term. As stated previously (Chapter 1, 
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Section 1.2.2, the output probabilities of occurrence from logistic regression models are 

produced by the following equation: 

 

  )1( uu eeP += , where nvn XbXbXbAu ++++= ...211 ; 

And so, substituting, we have,  ( )ElevationxElevationx eeP
33 106.7766.0106.7766.0 1

−− ++ +=  

 

This equation was the result of maximum likelihood estimation performed in GLM, and 

does not represent a true, underlying distribution of stickleback occurrence probabilities 

for the study area. However, because it has support from the data in the present study, it 

is a good starting point for generating some hypothetical data to illustrate the effect of 

sample size on occurrence models. Specifically, we can now generate random data which 

results from this underlying relationship between elevation and stickleback occurrence. 

Initially, we start from a mock dataset generated across 36 lakes (as in the present study). 

From 10 GLM models built from random data output from the above equation, the 

amount of variation in model fit is dramatic (Table 7): 
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Table 7.  Variation in the significance and explanatory power 
of lake elevation in 10 trial univariate model runs. Models 
based on 36 hypothetical lakes. 

 
  Elevation term   
Trial  p-value  McFadden’s ρ2 
1  0.04   0.29 
2  0.02   0.37 
3  0.06   0.17 
4  0.02   0.38 
5  0.11   0.22 
6  0.03   0.46 
7  0.02   0.25 
8  0.006   0.49 
9  0.03   0.49 
10  0.06   0.17 

  

The significance of the elevation term varies from (0.006-0.11) and the deviance 

explained over almost a 3-fold range (0.17-0.49). Contrasting this with models built on 

100 theoretical lakes in the same fashion (Table 8): 

 

  
Table 8.  Variation in the significance and explanatory power of 
lake elevation in 10 trial model runs. Models based on 100 
hypothetical lakes. 

 
 Elevation term   
Trial  p-value  McFadden’s ρ2 
1  1.6 x 10-4  0.30 
2  3.0 x 10-4  0.26 
3  7.2 x 10-4  0.37 
4  8.5 x 10-4  0.30 
5  1.3 x 10-3  0.31 
6  1.9 x 10-3  0.35 
7  1.2 x 10-4  0.42 
8  3.0 x 10-4  0.45 
9  5.1 x 10-5  0.41 
10  1.2 x 10-4  0.37 
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Here, the significance is much higher (p-values much smaller) and the proportion of 

deviance explained by models built on this larger dataset ranges over a less than 2-fold 

range (0.26-0.45). (10 models run on a theoretic sample of 1000 lakes results in p-values 

all ~0, with McFadden’s ρ2 ranging from 0.28-0.39.) 

 

Increased sample sizes lead to greater model certainty as well as greater confidence in 

relative variable importance (Pearce & Ferrier, 2000; Stockwell & Peterson, 2002). At 

detection probabilities >0.5, greater sample size is suggested, as opposed to greater 

sampling effort at each site (Tyre et al., 2003). For these reasons, a sampling strategy as 

was performed in the present study (ie. short sampling visit and maximized number of 

sites) appears appropriate, but more sites sampled would be beneficial. However, 

although an intuitive sense suggests detection probability was greater than 50% in this 

study, repeat sampling trials at a number of sites would be useful to support this. With 

this caveat in mind, more sites visited may result in greater insight into relative 

importance of predictors, as well as increased model precision.  

 

As discussed previously, model predictive utility, above simply building precise models, 

is generally desired in species occurrence modeling. In the current study, stickleback 

models were tested in the 18 southern lakes. This southern test set was chosen 

intentionally to be geographically separate from the calibration set, with the goal of 

testing model transferability. This general goal was only partially met by predicting to 

these southern lakes, because 18 lakes is not a large sample, and so the possibility of high 
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model predictive performance by chance existed. This can be illustrated by theoretical 

trials similar to those above, but with the randomly generated data being the test data for 

18 hypothetical lakes. For comparison, data from a hypothetical test set of 36 lakes is 

computed from the same underlying GLM as used above (Table 9): 

 

Table 9.  Comparison of AUC values for 10 trial model predictions 
to hypothetical test lakes. 

 
  AUC value 
Trial  18 test lakes 36 test lakes 
1  0.78  0.75 
2  0.96  0.95 
3  0.84  0.82 
4  0.89  0.82 
5  0.71  0.84 
6  1.0  0.91 
7  0.88  0.94 
8  0.82  0.90 
9  0.87  0.75 
10  0.82  0.83 
 

 
AUC values based on 18 hypothetical lakes range from 0.71-1.0, while for 36 

hypothetical lakes AUC values range from 0.75-0.95. In 1000 trials, the standard 

deviation in AUC values from 18 lakes and from 36 lake test sets differs (0.11 and 0.07 

respectively), as do the minimum AUC value for the two test sets (0.32-0.47). Although 

no minimum test set size can be suggested from these hypothetical test trials, the trend 

towards decreased variation in results with larger datasets, both in the calibration and 

prediction sets, is evident. 
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3.4.2  Choice of modeling method 

The choice of modeling method is not a clear cut issue; all methods performed suitably in 

the present study. One clear difference was that GLM models were not as prone to overfit 

the original, calibration dataset as the other methodologies used, particularly when 3-5 

terms were included in the model. A limitation of GLM is that they are constrained to 

follow the limited range of shapes allowed within logistic response. Only the parameters 

of the model can change, but the model fitted values will always follow an s-shaped 

logistic curve. This is in contrast with GAM, CT, and ANN, which all can assume a 

shape dictated (to a further extent) by the data at hand (Segurado & Araujo, 2004; Olivier 

& Wotherspoon., 2005). Occurrence records generated by both a linear model and non-

linear model (sine curve) illustrate this behavior (Figure 16). GLM is adequate when 

occurrence likelihood is expected to vary linearly across environmental gradients. 

However, this is often not the case, and logistic regression does not have the flexibility to 

deal with more complex responses (Suarez-Seaone et al., 2002; Olivier & Wotherspoon, 

2005). A downside to the use of GAM, CT, and ANN is that many are already familiar 

with the more conventional GLM method, and gaining technical expertise in 

implementing these methods may be time consuming. However, when extensive datasets 

are available, and occurrence appears to interact with environmental factors in a complex 

manner, the more flexible methodologies are recommended. One further note regards the 

rather disjointed occurrence probabilities that are output from CT models. Although use  
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of CT is not discouraged for future work, especially due to ease of use and 

interpretability, the ‘quantum’ steps that output probabilities take along environmental 

gradients seem an unrealistic representation of how occurrence probabilities may be 

distributed in the natural world (Figure 16). The other modeling methods (GLM and 

ANN) used here tend to output probabilities that change gradually as environmental 

factors vary; this may be a more realistic perspective. 
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Figure 16.  Comparison of occurrence model response curves for mock data 
distributed in a linear (A) and non-linear (B) pattern. 
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3.4  Summary of recommendations. 
 

 

This section presents a concise summary of the findings, corresponding to secondary 

objective three, from the present study—organized by the primary or secondary objective 

under which the findings fall— with implications and recommendations for future fish 

distribution research in Southeast Alaska.  

 

Primary objective 1: Landscape correlates of stickleback distribution (Chapter 1) 

 

Colonization-related factors (e.g., lake elevation, slope of lake outlet stream) were 

apparently much more influential than extinction-related factors (depth, lake surface 

area, surrounding wetlands) in shaping stickleback distribution (Chapter 1, Section 

1.3.3). For this reason, future species occurrence studies for both stickleback and other 

fish species conducted at large spatial scales may benefit from focusing on such factors. 

Additionally, because the colonization-related factors developed here serve as indirect 

indicators of potential barriers to fish migration, it is recommended that factors be 

developed that create a more direct tie to actual, ground–verified migration barriers 

(Chapter 1, Section 1.1). For instance, development of an index that describes the 

relationship between lake elevation and slope of a lake outlet stream to the likelihood of 

their actually existing a migration barrier(s) along the stream course could lead to 

models that use the likelihood of a barrier as an independent variable. This may more 
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accurately explain and predict fish occurrence than the coarse-scale slope factor (with 

no ground verification) used in the present study. 

 

While colonization-related factors were most useful in the present study, extinction-

related factors describing habitat suitability may be of greater use if they are more fully 

developed. An example of such development would be sampling of water chemistry 

parameters through time, especially water temperature and pH. These parameters were 

measured during site-visits only in the present study. Because their variability through 

time was unknown, they were not included in analyses. However, both have been found 

influential in fish species occurrence studies conducted elsewhere (Rago & Wiener, 

1986; Matuszek et al., 1990; Hershey et al., 2006).   

 

 

 

 

Primary objective 2: Comparison of methods for modeling stickleback occurrence 

(Chapter 2) 

 

The results from this study were somewhat equivocal regarding choice of modeling 

method (Chapter 2, Section 2.4). Simple models with two (and at the most three) 

factors included outperformed more complex (five-factor) models (Chapter 2, Section 

2.4). While this is true for the small number of lakes sampled in this study, a larger 
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sample size may support more complex models (Chapter 3). GLM models, because of 

their a priori response shape, lend themselves to these small sample sizes (Chapter 3, 

Section 3.4.1). However, greater sample sizes may support the complex response output 

of GAM, CT, and ANN (Chapter 3, Section 3.4.1). 

 

 

Secondary objective 1: Comparison of salmonid and stickleback distribution (Chapter 3, 

Section 3.3.2) 

 

Salmonids and stickleback overlap greatly in their distribution in Southeast Alaska, and 

it appears that the colonization-related factors helpful in explaining and predicting 

stickleback distribution work well for salmonids as well (Chapter 3, Section 3.2). 

Therefore it is suggested that such colonization-related factors (lake elevation, slope 

and presence of outlet stream, outlet stream length and its proxy, linear distance from 

saltwater) be considered first in modeling salmonids at large spatial scales. However, 

extinction-related factors may be important as well, especially at finer scales (Chapter 

3, Section 3.1), and so should not be ruled out as potentially influential. 

 

Secondary objective 2: Applying results of the present study to other lentic waterbodies 

(Chapter 3, Section 3.3). 
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There was no strong relationship found in the present study between lake size and 

stickleback distribution for the size range of lakes considered here (Chapter 1, Section 

1.4). However, both smaller (<0.5 ha) and larger (> 5 ha) lentic waterbodies show a 

skew in distribution towards lower elevation in the northern, calibration study area 

(Chapter 3, Section 3.3), which may promote likelihood of fish species occurrence in 

these lakes. Further studies of species occurrence over a wider range of lake sizes 

should be conducted to verify or refute the utility of the correlates important for the 0.5-

5 ha size range considered here. 
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Appendices 
 
Appendix A. Output probabilities from the four modeling methods and three levels of model complexity on 
calibration, cross-validation, and prediction to the set of test lakes. 
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Appendix A, Figure 1.  Model output probabilities for the calibration stage of model assessment. 
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Appendix A, Figure 2.  Model output probabilities for the cross-validation stage of model assessment. 
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Appendix A, Figure 3.  Model output probabilities for the prediction stage of model assessment. 
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Appendix B.  Environmental attribute values, geographic location, and fish presence records for the 54 lakes sampled. 
 
Appendix B, Table 1.  Environmental attribute values of the 54 lakes sampled. 
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S
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S
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surrounding area 
(1000 m

 buffer) 

Length of outlet 
stream

 (m
) 

1 N 0.35 700 310 3 0.7 0 0 1 1 3 1.4 0.8 10 490
2 N 1.1 130 530 2.6 0.5 0 0 1 0.91 3 1.6 2 8.7 100
3 N 2.4 5000 580 760 15 1 1 0 0.04 42 6.3 9.7 57 4600
4 N 3.2 550 780 110 16 0 1 0 0 21 5.3 6.6 28 2300
5 N 3.3 1300 700 150 6 0 1 0 0.1 33 6.2 20 36 2100
6 N 3.2 2200 1200 210 2.9 1 1 1 0.16 29 6.9 8.6 31 2800
7 N 0.9 6300 590 66 1.3 1 1 0 0.11 19 5.2 3.9 29 8600
8 N 0.2 1200 210 30 2.8 1 1 0 0.47 3.3 1.2 2.1 61 1600
9 N 0.49 3900 320 850 0.93 1 0 0 0.01 68 16 8.4 34 7600

10 N 0.73 7800 460 730 1.7 1 1 0 0 65 8.4 9.4 21 13000
11 N 1 5200 570 51 4.3 1 1 0 0.41 23 5.8 4.6 9.4 7100
12 N 2.4 2400 940 32 0.73 1 1 0 0.61 23 3.5 6.8 19 7600
13 N 1.6 910 550 120 13 1 1 0 0.07 19 5.2 12 9.3 1500
14 N 0.97 1800 450 14 9.3 1 1 1 0.95 11 1.9 0.9 21 3700
15 N 0.37 4600 300 54 2.5 0 0 0 0 14 3.8 3.2 21 6800
16 N 0.78 830 520 32 0.9 1 1 1 0.23 14 2.7 3.9 18 4000
17 N 1.4 2500 950 26 3.9 1 1 0 0.63 7.3 1 3.7 14 3000
18 N 1.4 4400 500 48 3.6 0 0 1 0.23 16 4.1 3.7 28 6600
19 N 3 4600 930 48 4 1 1 0 0.22 22 3.6 4.7 14 7800
20 N 0.66 3700 760 31 1.3 0 1 0 0.17 21 4.2 1.7 30 6700
21 N 0.6 2300 330 190 9.8 0 0 1 0 41 5.9 5 6.1 6900
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) 

Lake depth (m
) 

P
resence of inlet 
stream

 (s) (bin) 
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22 N 0.96 1700 530 12 1.1 1 1 0 0.51 3.5 0.58 2.8 46 2100
23 N 1.1 610 510 9.8 4.1 0 1 0 0.55 3.5 1.4 1.3 45 880
24 N 0.7 1200 400 29 0.7 1 1 0 0.55 6.5 2.1 7.4 45 1300
25 N 0.54 660 500 10 1.7 1 1 0 0.32 7.9 3.8 2.3 48 750
26 N 0.18 3300 250 490 0.9 1 1 0 0.5 32 7.5 8.3 36 11000
27 N 0.4 4800 250 500 5.4 0 0 1 0.97 30 6.4 2 32 7200
28 N 0.71 5000 360 880 9.8 1 1 0 0 60 22 7.9 52 7000
29 N 1.6 630 570 240 6.1 1 1 0 0.44 52 18 9.1 31 900
30 N 0.96 4000 640 520 1.8 0 0 1 0.96 18 6.6 1.7 24 4900
31 N 0.72 5600 370 810 1.8 1 1 0 0 56 11 7.8 18 7700
32 N 0.55 180 400 23 3.2 0 0 0 0.21 2 1 2 45 170
33 N 1.2 3200 500 390 2.9 0 1 1 0.47 23 5.1 5.7 29 12000
34 N 1.6 970 860 370 5.6 0 1 1 0.59 62 16 7.8 5 1800
35 N 2.4 7700 730 880 28 1 1 0 0.08 85 8.5 15 2.7 9800
36 N 1.2 5500 410 980 22 1 1 0 0 57 8.8 10 24 9000
37 S 1.2 2900 580 60 3 0 0 1 0.84 14 3.1 2.9 18 6500
38 S 1 200 590 11 1.4 1 1 1 0.76 2.1 1.6 6.3 12 54
39 S 2 860 1000 110 3.2 1 1 0 0.18 15 9.2 14 28 490
40 S 1.1 1500 590 80 4.7 1 1 1 0.75 20 5.4 12 27 3100
41 S 0.27 10000 240 150 1 0 1 1 0.66 22 4.5 10 48 12000
42 S 0.65 1500 500 150 1.3 0 1 1 0.82 20 6.7 11 23 2300
43 S 2.5 5100 660 200 5.1 0 1 1 0.95 18 5.7 12 32 6100
44 S 1.5 1300 560 310 1.7 1 1 1 0.62 40 6.6 12 34 4300
45 S 2.6 6100 830 270 4.2 0 1 0 0.74 36 3.8 10 37 8000
46 S 5 5300 990 710 30 1 1 0 0.25 46 7.4 22 51 6900
47 S 0.46 4700 390 540 1.1 1 1 0 0.94 34 7.3 11 45 9800
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48 S 1.9 1300 650 63 5 1 1 1 0.4 19 6 12 24 1700
49 S 1.4 900 700 78 4.3 1 1 1 0.59 18 4.8 7.6 24 2300
50 S 0.76 1400 640 230 4.2 0 1 0 0.39 24 6.9 12 35 2800
51 S 2 2300 1400 180 3.9 1 1 1 0.41 14 4.3 9.1 27 4100
52 S 2.2 2700 670 370 7 0 1 0 0.57 23 6.2 22 35 4100
53 S 0.49 1300 370 140 4.6 0 0 0 0.84 12 4.7 19 25 1900
54 S 0.85 2100 440 290 2.5 0 1 1 0.98 27 6.1 9.7 31 2600
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Appendix B, Table 2.  Geographic location and fish species occurrence data for the 
54 lakes sampled (Datum: NAD27 Alaska). 
 

Lake ID
 

A
rea (N

= N
orthern, 

S
=S

outhern) 

Latitude 

Longitude 

Stickleback 

D
olly V

arden 

C
utthroat trout 

C
oho salm

on 

1 N 58.85113 134.97701 0 0 0 0
2 N 58.84623 134.97547 0 0 0 0
3 N 58.76219 134.84351 0 0 0 0
4 N 58.66487 134.96667 1 0 0 0
5 N 58.61602 134.90784 1 0 0 0
6 N 58.60659 134.87320 1 0 1 0
7 N 58.56970 134.75455 0 0 0 0
8 N 58.57091 133.64419 1 0 0 1
9 N 58.56356 133.85258 0 0 0 0

10 N 58.55566 134.69362 0 0 0 0
11 N 58.54842 134.73974 1 1 1 0
12 N 58.55096 133.83959 1 0 1 1
13 N 58.54604 133.73241 1 0 1 0
14 N 58.54410 133.80276 1 0 1 1
15 N 58.53585 134.73787 0 0 0 0
16 N 58.53614 133.78133 1 0 0 0
17 N 58.53685 133.63232 1 0 1 1
18 N 58.52727 134.73171 0 0 0 0
19 N 58.52724 134.72349 0 1 0 0
20 N 58.52287 134.73813 0 0 0 0
21 N 58.51970 134.77807 0 0 0 0
22 N 58.51193 133.99791 0 1 1 1
23 N 58.50884 133.77488 1 0 0 0
24 N 58.50404 133.84351 1 1 0 1
25 N 58.49262 134.00204 1 0 0 0
26 N 58.43954 134.70577 0 0 0 0
27 N 58.43504 134.67720 0 0 0 0
28 N 58.42853 134.44958 0 0 0 0
29 N 58.42624 134.74527 0 0 0 0
30 N 58.42414 134.68690 0 0 0 0
31 N 58.42208 134.43897 0 0 0 0
32 N 58.41656 134.55546 1 0 0 1
33 N 58.41081 134.70323 0 0 0 0
34 N 58.40694 134.73875 0 0 0 0
35 N 58.38375 134.38856 0 0 0 0
36 N 58.32747 134.32481 0 0 0 0
37 S 55.82679 131.52764 0 0 0 0
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Lake ID
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C
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C
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on 

38 S 55.77049 131.50736 0 0 0 0
39 S 55.72778 131.69619 1 0 0 0
40 S 55.70022 131.35457 1 0 1 0
41 S 55.69788 131.38644 0 0 0 0
42 S 55.67220 131.53595 0 0 0 0
43 S 55.65535 131.19242 0 0 0 0
44 S 55.60157 131.44775 0 0 0 0
45 S 55.57787 131.57127 0 0 0 0
46 S 55.57564 131.61188 0 0 0 0
47 S 55.52316 131.41537 0 0 0 0
48 S 55.51740 131.40119 1 0 1 0
49 S 55.51304 131.64003 1 0 1 0
50 S 55.41368 131.21427 0 1 0 0
51 S 55.40265 131.18078 0 1 0 0
52 S 55.32242 131.34907 0 0 1 0
53 S 55.28863 131.39809 0 0 0 0
54 S 55.24275 131.30816 0 0 0 0

 

 




