

LIBRARY

Ecological

SUMMARY REPORT VOLUME | OF 2

FISHERIES, RESOURCES ALONG THE ALASKAN GAS PIPELINE ROUTE (PRUDHOE BAY TO THE YUKON TERRITORY) PROPOSED BY NORTHWEST ALASKAN PIPELINE COMPANY

> TO: FLUOR NORTHWEST, INC. 701 DOUGLAS AVE. FAIRBANKS, ALASKA 99706 CONTRACT NUMBER 478085-9-K123

FOR: NORTHWEST ALASKAN PIPELINE COMPANY FAIRBANKS, ALASKA 99701

OCTOBER 1981

ERRATA SHEET

for

Fisheries Resources along the Alaskan Gas Pipeline Route (Prudhoe Bay to the Yukon Territory) Proposed by Northwest Alaskan Pipeline Company.

Please note the following corrections:

Page x

Unnamed Creek NPSI 3-166 - should read 3-116 Unnamed Creek NPSI 3-155 - should read 3-115

Page 44; Line 3

RAPS should read TAPS

Page 162 Stump Creek

LT should be added to fish species

Page 171 Tanana Overflow

AHMP should read 1305.6

Page 175 Iowa Creek

NPSI should read 4-140.09

Page 208 Unnamed Creek, paragraph 1, lines 2-4 should read

"Fishing efforts have been performed near the crossing; however no fish have been caught above the highway."

Reference 2 should be removed from the summer references and added to the spring references.

Page 313 Potlatch Creek

USGS Map reference should read Fairbanks.

Page 323 Gilmore Creek

Township should read 2N

Page 330 Unnamed Tributary to Shocker Creek

NPSI should read 4-137.06

ARLIS

Alaska Resources Library & Information Services Library Building, Suite 111 3211 Providence Drive Anchorage, AK 99508-4614

Page 351 Shorty Creek

Section should read 8

Page 370, paragraph 1, line 4

Dpeth should read depth.

Page 377 Unnamed Creek

Range should read 11W

Page 413 Unnamed Creek

Section should read 30

Page 496, paragraph 2, line 5

Deitrich should read Dietrich.

Page 515 Dietrich River Floodplain

NPSI should read 2-29.03

Page 520 West Branch of North Fork of Chandalar River

NPRX should read 031-3 NPSI should read 2-28

Page 565 Stump Creek

LT should be added to summer species list.

Page 577 Unnamed Creek

Map reference should read Sagavanirktok

Page 584 Pescado Creek

Map reference should read Sagavanirktok

Page 585 Unnamed Lake

Map reference should read Sagavanirktok

FISHERIES RESOURCES ALONG THE ALASKAN GAS PIPELINE ROUTE (PRUDHOE BAY TO THE YUKON TERRITORY) PROPOSED BY NORTHWEST ALASKAN PIPELINE COMPANY

Final Report

Prepared for and Funded by Northwest Alaskan Pipeline Company

Ьy

D. Schmidt R. Neterer C. Welling D. Troy T. Olson

LGL Alaska Research Associates, Inc. P.O. Box 80607 Fairbanks, Alaska 99708

A. Sekerak, Principal Investigator LGL Ltd.

2. Sekerak

Administered by Fluor Northwest, Inc. Contract No. 478085-9-K123

October 1981

FLUOR 4680-9-K123-10-0

222 A4

F562

1981

VIL

This report should be cited as:

Schmidt, D., R. Neterer, C. Welling, D. Troy, T. Olson, 1981. Fisheries resources along the Alaskan gas pipeline route (Prudhoe Bay to the Yukon Territory) proposed by Northwest Alaskan Pipeline Company. A summary report. Prepared for Northwest Alaskan Pipeline Company by LGL Alaska Research Associates, Inc. 608 p.

FOREWARD

Northwest Alaskan Pipeline Company, through Fluor Northwest, Inc., has sponsored a number of investigations to delineate fish distributions along the proposed gasline route from Prudhoe Bay to the Alaska/Yukon Border and to identify critical fish habitats and activities. Fish use of many streams is highly seasonal, therefore, seasonal studies are necessary to document changing patterns of fish distribution. To date, Northwest Alaskan Pipeline Company has sponsored many fisheries investigations along the proposed pipeline route including late winter (Ref. 55), spring (Ref. 54 and 121), fall (Ref. 57 and 122) and early winter (Ref. 77).

A summary document was prepared in June 1980 (Ref. 118) that contained all historical and recent information concerning fish use of 492 waterbodies that could potentially be affected by pipeline activities. The importance of each waterbody to fish was assessed, data gaps were identified and recommendations for timing of pipeline construction were provided.

The present document is the second summarization of knowledge concerning fish along the proposed pipeline. It was made necessary primarily due to recent alterations in the route of the proposed pipeline and newly acquired fisheries data. With these changes, new waterbodies that could potentially be affected were encountered along the route and others were no longer pertinent. Results of 1980 fisheries investigations along the new route are incorporated in the present summary.

Many of the most important activities or phases in the life cycles of fish are difficult to document in space, time and even importance. Except in broad terms, fish populations in interior Alaska are largely undefined in terms of numbers, distribution and movements. In most cases, it is therefore not possible to assess the importance of a particular number of individuals or a particular spawning bed or an overwintering area to an entire population. Important activities often occur during periods when weather or hydrologic conditions are severe, and intense efforts are required to document that the activity takes place at a particular time and location.

To date, few intense studies have been performed on waterbodies along the proposed pipeline route. The relatively large number of surveys that have been performed provide a good base of knowledge concerning the distribution of fish species along the proposed pipeline. Except for a number of small streams, fish species composition in particular waterbodies is also reasonably well known. Information on potential overwintering areas is also reasonably good if presence or absence of free water is used as a criteria and the nature and size (e.g., spring-fed, large flow due to precipitation, etc.) of the stream are considered. The present report contains recommendations concerning timing of pipeline construction and descriptions of the importance of each waterbody to fish. When faced with lack of information our approach has been biologically conservative, that is, recommendations are likely stringent and the importance of waterbodies or particular sections of streams to fish may be overestimated. For example, many streams are identified as being used for spawning on the basis of presence of youngof-the-year fish. Many of these individuals could have originated in spawning areas many kilometers away from the proposed crossing. Similarly, many streams have been identified as important spring and fall migration routes. Actual migrations have not been documented, but we have assumed that migrations must take place since fish are present in the open water period and overwintering habitat is thought or documented to be absent.

We have also been critical in that unsubstantiated reports of fish in streams have not been included. Vague references are normally discussed in written assessments but are not presented as documentation. A few streams remain totally unstudied and many seasonal data gaps remain. In these cases we again discuss species that could be present during unstudied portions of the year in the written assessments, but do not include these assumptions as documentation. A firm distinction is thus maintained between hard data and biological judgement.

TABLE OF CONTENTS

	Page
FORWARD	iii
_IST OF FIGURES	xv
ACKNOWLEDGEMENTS	xvii
ABSTRACT	xviii
PART I - HISTORICAL BACKGROUND AND BIOLOGICAL CONSIDERATIONS	
INTRODUCTION	1 1 5 6
Catostomus catostomus - Longnose sucker Coregonus autumalis - Arctic cisco Coregonus laurettae - Bering cisco	12 16 20 24 28 32 36 40 44 52 56 60 64 70 74 78 86 92
PART II - SUMMARY OF FISH USE AND PRELIMINARY RECOMMENDATIONS FOR TIMING OF CONSTRUCTION ACTIVITY	
INTRODUCTION	113 117

PART	III - PROVISIONAL LIST OF WATERBODIES CROSSED OR POTENTIALLY AFFECTED BY THE GAS PIPELINE PROPOSED BY NORTHWEST ALASKAN PIPELINE COMPANY	
	INTRODUCTION	9 1
PART	IV - A COMPENDIUM OF PRESENT KNOWLEDGE OF FISHERIES RESOURCES IN WATERBODIES ALONG THE NORTHWEST ALASKAN GAS PIPELINE ROUTE	
	INTRODUCTION	7
·	Unnamed Creek NPSI 6-227.03 19 Scottie Creek 19 Desper Creek 19 Unnamed Creek NPSI 6-225.01 19 Sweetwater Creek 19 Unnamed Creek NPSI 6-224 19 Unnamed Creek NPSI 6-223 19 Unnamed Creek NPSI 6-223 19 Unnamed Creek NPSI 6-221 19 Unnamed Creek NPSI 6-220 20 Gardiner Creek 20 Gardiner Creek 20 Silver Creek 20 Silver Creek 20 Unnamed Creek NPSI 6-216.01 20 Unnamed Creek NPSI 6-213.01 20 Unnamed Creek NPSI 6-213.01 20 Unnamed Creek NPSI 6-210.02 21 Unnamed Creek NPSI 6-210.02 21 Unnamed Creek NPSI 6-210.02 21 Unnamed Creek NPSI 6-209 21 Unnamed Creek NPSI 6-209 21 Unnamed Creek NPSI 6-209 21 Unnamed Creek NPSI 6-203 22 Unnamed Creek NPSI 6-203 22 Unnamed Creek NPSI 6-203 22 Unnamed Creek NPSI 6-203 22 <t< td=""><td>134567890123456789012345679012345</td></t<>	134567890123456789012345679012345

vi

	Cathedral Rapids Creek #1
	Cathedral Rapids Creek #2
	Cathedral Rapids Creek #3
	Cathedral Rapids Creek #4
	Cathedral Rapids Creek #5
	Cathedral Rapids Creek #6
	Cathedral Rapids Creek #7
	Current Charles NDST $(2, 2, 2)$
	Unnamed Creek NPSI 6-193.01
	Unnamed Creek NPSI 6-192.01
	Unnamed Creek NPSI 6-192
	Sheep Creek
	Unnamed Creek NPSI 6-190
	Unnamed Creek NPSI 6-189 239
	Unnamed Creek NPSI 5-188
,	Robertson River
	Unnamed Creek NPSI 5-186
	Unnamed Creek NPSI 5-185.04
	Unnamed Creek NPSI 5-185.03
	Unnamed Creek NPSI 5-185.02
	Unnamed Creek NPSI 5-185.01
	Bear Creek
	Chief Creek
	Unnamed Creek NPSI 5-183
	Unnamed Creek NPSI 5-182.01
	Unnamed Creek NPSI 5-182
	Unnamed Creek NPSI 5-181
	Sam Creek
	Unnamed Creek NPSI 5-179
	Berry Creek
	Sears Creek
	Unnamed Creek NPSI 5-176.01
	Dry Creek
	Johnson River
	Little Gerstle River
	Doughouty Chock 202
•	Dougherty Creek
	Gerstle River
	Sawmill Creek
	Rhoads Creek
	Granite Creek
	Tanana River
	Tanana River Side Channel 269
	Shaw Creek
	Lower Rosa Creek
	Rosa Creek #2
	Rosa Creek #3
	Rosa Creek #4 274
	Rosa Creek #5
	Rosa Creek #6

-

:

	East Fork Minton Creek #6
	East Fork Minton Creek #5
	South Fork Minton Creek
	South Fork Minton Creek
	East Fork Minton Creek #4
	East Fork Minton Creek #3
•	East Fork Minton Creek #2
	East Fork Minton Creek #1
	West Fork Minton Creek #1
	West Fork Minton Creek #2
	Gold Run Creek
	Small Creek
	Tributary to Small Creek
	Redmond Creek
	Tributary to Salcha River
	Third Slough
	Salcha River
	Two Nineteen Creek
	Little Salcha River
	Tributary to Little Salcha River
	Tributary to Million Dollar Creek
	Million Dollar Creek
	French Creek
	Knokanpeover Creek
	Tributary to French Creek NPSI 4-148.06
	Tributary to French Creek NPSI 4-148.05
	Tributary to French Creek NPSI 4-148.04
	Unnamed Creek NPSI 4-148.03
	Unnamed Creek NPSI 4-148.02
	Moose Creek
	Unnamed Creek NPSI 4-144.04
	Unnamed Creek NPSI 4-144.03
	Chena River Side Channel
	Chena River
	Unnamed Creek NPSI 4-140.14
	Potlatch Creek
	Tributary to Little Chena River #1
	Tributary to Little Chena River #2
	Little Chena River
	Iowa Creek
•	Tributary to Smallwood Creek #1
	Tributary to Smallwood Creek #2
	Smallwood Creek
	Nugget Creek Tributary
	Rose Creek
	Gilmore Creek
	Pedro Creek
	Gold Run

	Fox Creek	326
	Treasure Creek	327
	Chatanika River	328
	Shocker Creek	329
	Unnamed Tributary to Shocker Creek	330
	Unnamed Tributary to Shocker Creek	
	Unnamed Tributary to Chatanika River #1	332
	Unnamed Tributary to Chatanika River #2	333
	Unnamed Tributary to Chatanika River #3	
	Washington Chook	224
	Washington Creek	335
	South Fork Aggie Creek	220
	South Fork Aggie Creek	
	North Fork Aggie Creek	
	Tributary of Little Globe Creek	
	Little Globe Creek	340
	Unnamed Tributary to Little Globe Creek	
	Globe Creek	342
	Unnamed Tributary to Globe Creek	343
	Unnamed Tributary to Tatalina River	344
	Tatlina River	345
	Tributary to Slate Creek	346
	Slate Creek	347
	Ski Jump Ramp Creek	348
	Wilber Creek	349
	Tributary of Wilber Creek	350
	Shorty Creek	351
	Tributary to Tolovana River	352
	Tolovana River	353
	Unnamed Tributary to West Fork Tolovana River	354
	Lost Creek	355
	Erickson Creek Tributary	356
	West Fork Erickson Creek	
	Hess Creek Oxbow	
	Hess Creek	
	Hess Creek and Tributary from Fish and Mastadon Creek	
	Two-Bank Creek	361
	Unnamed Creek NPSI 4-123.01	362
	Two-Bit Creek	363
	Unnamed Creek NPSI 3-122.05	364
	Unnamed Creek NPSI 3-122.04	365
	Hot Cat Creek	366
	Unnamed Creek NPSI 3-122.02	367
	Unnamed Creek NPSI 3-122.01	368
	Isom Creek.	369
	Tributary to Isom Creek	370
•	Tributary to Isom Creek	371
	Tributary to Isom Creek	372
		373
		515

	Burbot Creek	374
	Woodchopper Creek	375
		376
		377
		378
		379
		380
		381
		382
		383
		384
		385
		386
		387
		388
	•	389
		390
		391
		392
		393
		394
		395
		396
		397
		398
	v	399
		400
		401
		402
		403
		404
		405
	0	406
		407
		408
		409
		410
	North Fork of Little Nasty Creek	411
		412
		413
•	Unnamed Creek NPSI 3-90.04	414
-		415
	•	416
		417
		418
		419
		420
		421
	uraying Lake Inter	-T L I

Elwood Creek	422
East Fork Abba-Dabba Creek	423
Abba-Dabba Creek	424
South Fork Koyukuk River	425
South Fork Koyukuk River	426
Crossroads Creek #1	427
Crossroads Creek #2	428
Chapman Creek	429
South Fork Windy Arm Creek	430
North Fork Windy Arm Creek	431
Unnamed Creek NPSI 3-78.01	432
Trent's Trickle	433
Jackson's Slough East Channel #1	434
Jackson's Slough Cross Channel	435
Jackson's Slough East Channel #2	436
Cathedral Mountain Creek	
	437
Rosie Creek	438
First Creek	439
Tributary to East Fork Spring Slough	440
Tributary to Spring Slough #1	441
Tributary to Spring Slough #2	442
Tributary to Spring Slough #3	443
Slate Creek	444
Calf Creek	445
South Fork Clara Creek Overflow	446
Clara Creek Overflow	447
Clara Creek	448
South Fork Mary Angel Creek	449
Mary Angel Creek	450
South Fork Sharon Creek	451
Marion Creek	452
North Marion Creek Overflow #1	453
North Marion Creek Overflow #2	454
North Marion Creek Overflow #3	455
Pence's Pond Creek	456
Dry Gulch	457
South Fork Confusion Creek	458
Confusion Creek	459
Middle Fork Confusion Creek	460
Minnie Creek	461
Middle Fork Koyukuk River	462
Union Gulch Creek	463
Confederate Gulch Creek	464
Hammond River	465
Middle Fork Koyukuk River	466
One-O-One Creek	467
Coon Gulch Creek	468
Dishandara la Claush	469
Richardson's Slough	409

•--

•

Over Creek		•		•			•			•			•	470
Nugget Creek						•								471
Wolf Pup Creek														472
Sheep Creek														473
Cushing Creek														474
Gold Creek														475
Linda Creek														476
Valve Site Creek														477
Sukakpak Creek														478
Access Road Creek														479
West Fork Sukakpak Creek .				•		•								480
Middle Fork Koyukuk River .				•						•	•			481
Millie's Meander					•	•								482
Eva's Alv				•										483
Dietrich River (Lower)								•						484
1415 Lake Outlet														485
Brockman Creek														486
South Branch Airport Creek														487
Middle Fork Airport Creek .														488
Airport Creek														489
Disaster Creek														490
Unnamed Creek NPSI 2-43.07						Ì		÷			Ì		•	491
Snowden Creek						-								492
Snowden Creek											÷			493
Numbers Lake Creek						Ì				•				494
Ugh Creek														495
Steep Creek														496
Buff Creek														497
Burger's Bayou														498
Tracy's Trickle														499
Unnamed Creek NPSI 2-34.07		-				-								500
Beaver Dam Brook #1		-		•								·		501
Beaver Dam Brook #2											•	•	•	502
Beaver Dam Brook #3													•	503
Beaver Dam Brook #4													•	504
Nutirwik Creek														505
Homewood Spring	•	:		•	•	•	•	•	•	•	•	•	•	506
Unnamed Creek NPSI 2-33 .	•	•	•	•	•	:	•	•	•	•	•	•	•	507
Overwintering Creek							•	•	•	•	•	•	•	508
Nina Creek											•	•	•	509
Oskar's Eddy				•				•	•	•	•	•	•	510
Unnamed Creek NPSI 2-30.02	•			:				•	:	•	•	•	•	511
Dietrich River	•			-	-	-	-	•	•	•	•	•	•	512
Wetfoot Creek								-	:	•	•	•	•	514
				:					•	•	•	•	•	514
Dietrich River Floodplain .	:	-	-	:	-	-	-		•	•	•	•	•	515
Unnamed Creek NPSI 2-28.02	•	•	•				:		•	•	•	•	•	510
Unnamed Creek NPSI 2-28.02	•	•	•		•			٠	•	•	•	٠	•	517
Unnamed Creek NPSI 2-20.01	•	•	•					•	•	•	•	•	•	518
UTHUNED UTEEN NEUT Z=27.00	•	•	•		•						•	٠		

West Branch of North Fork of Chandalar River	•	•		•	520
East Creek					521
North Atigun Pass Creek					522
Unnamed Creek NPSI 2-27.02					523
Unnamed Creek NPSI 2-27.01		Ţ.	•	•	524
Who Creek	•	•	•	•	525
Mickey's 6:30 Creek					526
Whybother Creek					527
Namod Chaok	•	•	•	•	
Named Creek	•	•	•	•	528
Trevor Creek	•	•	•	•	529
Tyler Creek	•	•	•	•	530
Unnamed Creek NPSI 2-24.007	•	•	•	•	531
Bicycle Creek	•	•	•	•	532
Waterhole Creek	•	•			533
Roche Moutonee	•		•		534
Leentha Creek					535
Holden Creek					536
Tad Creek					537
Atigun River	•	•	•	•	538
Atigun River	•	•	•	•	539
Jill Creek Tributary	•	•	•	•	540
Ed Crack	•	•	•	•	541
Ed Creek	•	•	•	•	
Mack Creek	•	.•	•	•	542
Terry Creek					543
Moss Creek	•	•	•	•	544
Hallock Creek	•	•	•	•	545
Clawsod Creek	•		•	•	546
Yan Creek					547
Kuparuk River					548
East Fork Kuparuk River					549
Toolik River					550
East Fork Toolik River		į			551
Mary Lamb Creek					552
Oksrukuyik Creek					553
Lower Oksrukuyik Creek					554
					555
Rudy Creek	•	•	•	•	
Bassett Creek	•	•	•	•	556
Dennis Creek	•	•	•	•	557
Climb Creek	•	•	•	•	558
Poison Pipe Creek	•	•	•	•	559
Polygon Creek	•		•	•	560
Gustafson Gulch	•		•	•	561
Arthur Creek			•		562
Sagavanirktok River Side Channel					563
Sagavanirktok River Side Channel		-	-	-	564
Stump Creek	•	•	•	•	565
Tributary to Lori Creek	•	•	•	•	566
in Duculy CO LUIT OFEEK	•	•	•	•	200

•

Lori Creek	•	•	•	•			•	•		•		•	•	•	567
Charlotte Creek		•	•	•	•	•	•	•	•	•	•	•	•	•	568
Happy Valley Camp Creek .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	569
Milke Creek	•	•	•	•	•	•	•	•	•	•	•	•	•	•	570
Unnamed Creek NPSI 1-9.5	•	•	•	•	•	•	•	•	•	•	•	•	•	•	571
Stout Creek	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	572
Spoiled Mary Creek	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	573
Mark Creek	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	574
Toolik River Tributary .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	575
Sand Creek	•	•	۰.	•	•	•	•	•	•	•	•	٠	•	•	576
Unnamed Creek NPSI 1-5.48	•	•	•	•	•	•	•	•	•	•	•	•	•	• .	577
Lake 802	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	578
East Fork Sylvia Creek .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	579
Sylvia Creek															580
Tributary to Short Creek	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	581
Short Creek	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	582
Telma Creek	•	•	•	٠	•	•	•	•	٠	٠	٠	•	•	•	583
Pescado Creek	•	•	•	•	•	•	•	•	•	•	•	•	•	•	584
Unnamed Lake NPSI 1-4.06	٠	•	٠	•	•	•	•	•	•	•	•	٠	٠	•	585
Low-Life Creek	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	586
Unnamed Lake NPSI 1-3.04	•	•	•	•	•	•	•	•	•	•	•	•	٠	٠	587
Unnamed Lake NPSI 1-3.03	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	588
Little Putuligayuk River															589
Putuligayuk River	•	•	٠	•	•	•	٠	•	•	•	•	•	•	•	590
LITERATURE REVIEWED	•	•	•	•	•	•	•	•.		•	•	•	•		591

LIST OF FIGURES

Figure		Page
1	Location of the proposed Northwest Alaskan Gas Pipeline in Alaska	2
2	Route of the proposed Northwest Alaskan Gas Pipeline from Prudhoe Bay to the Alaska/Yukon border	3.
3	Known distribution of the longnose sucker in water- bodies in the vicinity of the proposed gasline corridor.	9
4	Known distribution of the Arctic cisco in waterbodies in the vicinity of the proposed gasline corridor	13
5	Known distribution of the Bering cisco in waterbodies in the vicinity of the proposed gasline corridor	17
6	Known distribution of the broad whitefish in water- bodies in the vicinity of the proposed gasline corridor.	21
7	Known distribution of the humpback whitefish in water- bodies in the vicinity of the proposed gasline corridor.	25
8	Known distribution of the round whitefish in water- bodies in the vicinity of the proposed gasline corridor.	29
9	Known distribution of the least cisco in waterbodies in the vicinity of the proposed gasline corridor	33
10	Known distribution of the slimy sculpin in waterbodies in the vicinity of the proposed gasline corridor	37
11	Known distribution of the lake chub in waterbodies in the vicinity of the proposed gasline corridor	41
12	Known distribution of the Alaska blackfish in water- bodies in the vicinity of the proposed gasline corridor.	45
13	Known distribution of the northern pike in waterbodies in the vicinity of the proposed gasline corridor	49
14	Known distribution of the Arctic lamprey in waterbodies in the vicinity of the proposed gasline corridor	53
15	Known distribution of the burbot in waterbodies in the vicinity of the proposed gasline corridor	57

Figure

16		of the pink salmon in waterbodies the proposed gasline corridor	61
17		of the chum salmon in waterbodies the proposed gasline corridor	66
18		of the coho salmon in waterbodies the proposed gasline corridor	71
19		of the king salmon in waterbodies the proposed gasline corridor	75
20		of the trout-perch in waterbodies the proposed gasline corridor	79
21		of the ninespine stickleback in vicinity of the proposed gasline	83
22		of the Arctic char in waterbodies the proposed gasline corridor	88
23	Known distribution in the vicinity of	of the Dolly Varden in waterbodies the proposed gasline corridor	93
24		of the lake trout in waterbodies the proposed gasline corridor	97
25		of the sheefish in waterbodies in e proposed gasline corridor	101
26		of the Arctic grayling in water- nity of the proposed gasline corridor.	107

ACKNOWLEDGEMENTS

LGL Alaska Research Associates, Inc. would like to acknowledge our production staff in Fairbanks, Alaska, for their perserverance and assistance in the preparation of this renort. We are also grateful to Fluor Northwest, Inc. for logistical, permit, and field support during the 1979 and 1980 field investigations. We would also like to acknowledge agency biologists for their aid in verification of data assimilated. Financial support for this report was provided by Northwest Alaska Pipeline Company.

ABSTRACT

The natural gas pipeline proposed by Northwest Alaskan Pipeline Co. traverses hundreds of waterbodies in the Yukon River and Beaufort Sea drainges. This report is a comprehensive summary of all available fish use information including reports, unpublished documents, agency memoranda, and personal communications for each water course involved and is designed to facilitate information access and retrieval for fishery resources documented along the proposed gas pipeline route. This report presents: (1) biological accounts of fish species occurring along the proposed pipeline route; (2) a tabular summary of fish use and recommended timing for pipeline construction activities at individual crossings; (3) a provisional list of 388 waterbodies crossed or potentially affected by the gas pipeline with an updated evaluation of seasonal fisheries data for each; and (4) a concise assessment of all pertinent fisheries data for each waterbody summarized on a seasonal basis. PART I

,

HISTORICAL BACKGROUND AND BIOLOGICAL CONSIDERATIONS

INTRODUCTION

Northwest Alaskan Pipeline Company proposes to construct the Alaskan segment of a buried pipeline which would transport chilled natural gas from the arctic to southern markets. The proposed routing of the Northwest Alaskan Pipeline parallels (with minor variations) the Alyeska Oil Pipeline from Prudhoe Bay to a point just north of Fairbanks. From here the route is directed southeastward toward Delta Junction, where it then parallels the Alaska Highway to the Alaska/Yukon Territory border.

On January 9, 1981, LGL Alaska Research Associates, Inc. (LGL) was awarded a contract by and through Fluor Northwest, Inc., funded by Northwest Alaskan Pipeline Company, to identify the waterbodies crossed or potentially affected by the gas pipeline project and to assess and summarize fish use of these waterbodies on the basis of all historical data and the results of 1980 investigations. The latter results were published in a separate seasonal report (Ref. 122). Information for the present report was assimilated from a variety of sources including published government and consultant reports, and from the Joint Fish and Wildlife Advisory Team (JFWAT) files in Anchorage. Agencies consulted included: State Pipeline Coordinator's Office, Alaska Department of Fish and Game (Habitat and Sport Divisions) and U.S. Fish and Wildlife (Stream Alteration Division).

STUDY AREA

The study area addressed in this report extends along the proposed gas pipeline route from Prudhoe Bay to the Alaska/Yukon Territory border (Figs. 1 and 2). For descriptive purposes, the route has been separated into two distinct regions: the northern segment and the southern segment.

The northern segment is aligned closely with the Trans-Ałaskan Pipeline System (TAPS) oil line and work pad and extends from Prudhoe Bay to Delta Junction with a bypass east of Fairbanks. Between Prudhoe Bay and Atigun Pass, a distance of approximately 275 km, the proposed route crosses the arctic coastal plain before traversing the northern foothills of the Brooks Range. Within this area, the proposed gas pipeline alignment parallels the Sagavanirktok River and crosses many of its tributaries. Larger streams like the Sagavanirktok characteristically are fast flowing, clear, and have wide, extensively braided, gravel floodplains. They support resident and anadromous fish at different times of year and are often used for overwintering. Smaller streams along this section are usually narrow, single channel drainages with stained water and support fewer species of fish than larger streams. These drainages usually freeze to the bottom in winter. Surrounding vegetative types include willow, dwarf birch and tundra flora.

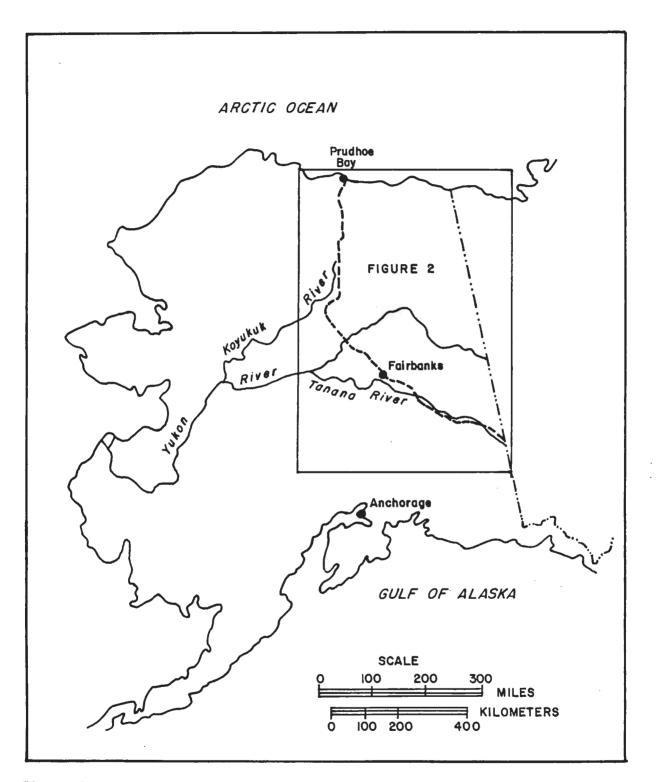


Figure 1. Location of the proposed Northwest Alaskan Gas Pipeline in Alaska.

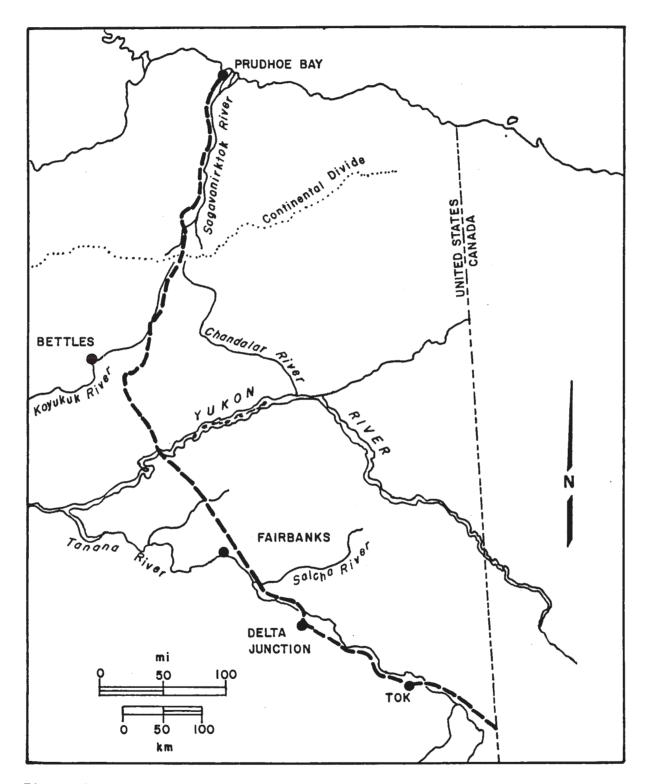


Figure 2. Route of the proposed Northwest Alaskan Gas Pipeline from Prudhoe Bay to the Alaska/Yukon Territory border.

South of Atigun Pass, the route continues through the Brooks Range where it crosses the Dietrich and Upper Koyukuk drainages. Most streams within the first 130 km south of Atigun Pass are wide, braided and fast flowing throughout the summer. Floodplains are gravel and usually without meanders. Vegetative cover in this region changes from white spruce, lichens and dwarf willows in mountainous areas, to black spruce and birch, intermixed with tundra and muskeg in lower elevations.

Approximately 130 km south of Atigun Pass, the proposed gas pipeline route enters the Yukon River drainage where most streams are slow flowing with many meanders. Although some of the larger streams are clear, most are stained brown with tannins and lignins leached from muskeg areas. Many of the larger streams, like the Koyukuk and Jim River, support overwintering fish and provide habitat for fall spawning salmon. Although most small streams do not provide overwintering habitat, they are used by juvenile and young-of-the-year fish during summer. Black spruce and willow are predominant in tundra areas, while large spruce and birch vegetate river bottoms.

From the Yukon River crossing, the proposed gas pipeline parallels the TAPS oil pipeline through the White Mountains. North of Fairbanks the northern segment is routed southeastward toward Delta Junction.

The southern segment of the study area begins near Delta Junction where the proposed gas pipeline route diverges from the Trans-Alaska Oil Pipeline. Throughout most of the 313 km between Delta and the Yukon border, the route is within the broad, flat Tanana River Valley or in the northern foothills of the Alaska Range. This routing passes through alternating tundra or muskeg and mature stands of spruce, birch and willow.

Within the first 100 km east of Delta Junction, the proposed pipeline route crosses four major rivers: The Little Gerstle, Gerstle, Johnson and Robertson rivers. These are glacial rivers that are highly turbid and have extensively braided floodplains. Most other drainages crossed in this area are small tundra streams which are used by fish during summer but often freeze solid during winter.

The current alignment leaves the foothills of the northern Alaska Range near Tok, Alaska, and borders the Tetlin Flats. This is a wet muskeg area characterized by an abundance of lakes, ponds and small streams. During ice free months, many lakes and most small streams are used by waterfowl and fish. During winter, smaller waterbodies freeze solid and do not provide overwintering habitat. Larger streams on the southern section, like the Tanana and Chisana rivers, become clear in early winter and provide overwintering habitat. From Tetlin Flats, the proposed gas pipeline alignment continues east through the Upper Tanana River drainage basin to the eastern boundary of the study area -- the Alaska/Yukon Territory border.

PATTERNS OF FISH MOVEMENTS AND STREAM USEAGE

Following breakup, fish are normally found in three general types of streams along the proposed pipeline route: (1) small beaded tundra streams, (2) large-size creeks, and (3) large rivers. The small beaded tundra streams (e.g. Lori Creek and Toolik River) are usually frozen solid during winter and break up between late March and early June. These streams vary from 0.5-1.5 m in width and seldom exceed 1 m in depth. Substrates are variable but contain gravel, sand, silt and detritus. Although the water is usually clear, it is frequently stained from tannins and lignins leached from surrounding vegetation. Stream banks are often 0.5-1.5 m in height, undercut and vegetated with willow and birch.

Within the proposed gasline corridor, small beaded tundra streams are used primarily by grayling, but round whitefish and/or char may occasionally be present depending on the geographical location of the stream. Adult grayling may move into these streams at spring breakup, spawn and then move some distance back downstream. During the egg incubation period (early May to early July) juvenile grayling, juvenile whitefish and/or juvenile char may also move upstream into these areas. After the grayling eggs have hatched in late June to early July, emergent fry remain in the general vicinity until freeze-up. As fall approaches and water temperature drops, all fish begin moving downstream to overwintering areas. Small beaded tundra streams generally do not provide spawning habitat for fall spawning species.

The large creeks (e.g., Prospect Creek, Moose Creek or Beaver Creek) are usually 5-10 m in width, with stained or clear water and a substrate consisting primarily of gravel and sand. Banks, 0-2 m in height, are seldom incised. These drainages typically exhibit alternating stretches of deep, slow-moving water and shallow, rapid riffles. Some pools, especially in lower reaches, may be deep enough to provide overwintering habitat.

Within the proposed gasline corridor, medium-sized streams receive more intense use by fish than do the small beaded tundra streams. Excluding overwintering, these drainages generally serve as major spring and fall migration routes for many species. Some, especially those with perennial spring sources, may be used for spawning by spring and fall spawning species. Young-of-the-year of fall spawning species (primarily whitefish and char) and eggs of spring spawning species (primarily grayling, northern pike, longnose sucker and slimy sculpin) may be present during spring. By late June or early July, fry of spring spawners have emerged and may remain in the vicinity until freeze-up. Many streams are used intensively as nursery areas throughout the open water season by juvenile grayling, whitefish, sculpin, pike, chub, char and others. Adult fish of several species are commonly present throughout the season. Some of the most northerly medium sized streams may also support an anadromous fish run during the open water season. As fall approaches, fish generally begin moving downstream to overwintering areas.

Large rivers such as the Tanana, Yukon and Koyukuk vary from 100-1000 m in width and 1-10 m in depth. Floodplains are usually braided and consist of gravel, sand, and silt, depending on river origin. Large rivers usually do not freeze solid and therefore provide year-round habitat for fish.

Large rivers are the primary migration pathways for all species of anadromous fish. During spring, many juvenile salmon migrate downstream to enter the ocean; others may remain in freshwater for one or two years, depending on the species. A variety of freshwater fish also use large rivers as migration routes, spawning sites and nursery areas yearround. Virtually all large rivers provide overwintering habitat for fish.

LIFE HISTORY OF FISH SPECIES

The following are individual accounts of the life histories of fishes found along the route of the proposed natural gas pipeline. Accompanying each account is a map delineating the known distribution along the route and two matrices, one containing summary statements relating environmental variables to life history stages, and the other listing the respective supportive references. This information has been synthesized from the most pertinent research publications from Alaska and northern North America. Also used in information from previous surveys along the pipeline route. The accounts, distribution maps, and matrices provide not only general life history information but also specific information which may be needed during construction activities. When available, site-specific information on spawning and migration is included after the general species account. The latter information is included only when data are available on waterbodies either crossed by or potentially affected by the proposed gas pipeline.

Account of longnose sucker on following page

Catostomus catostomus - Longnose Sucker, Figure 3

Longnose suckers are abundant in most lakes, rivers and large streams along the proposed corridor south of the Continental Divide. Little is known of their biology, probably because they are widely considered as either a pest fish or a forage fish. Spawning is known to occur shortly after breakup in spring when water temperatures are 5-10° C (Ref. 129). Spawning activity takes place primarily during daylight hours, usually in water 0.10-0.60 m deep and with a current of 0.30 to 0.45 m/s (Ref. 117, 129). Up to 40,000 eggs are deposited in gravel 50 to 100 mm in diameter (Ref. 117). The adhesive, demersal eggs hatch in one to two weeks and the 0.8 cm fry remain in the gravel for an additional one to two weeks (Ref. 129). After emerging the fry migrate downstream to lakes or large river systems. Food of longnose suckers includes amphipods, insect larvae, zooplankton and some plant material (Ref. 116, 117, 129).

Site Specific Information

None.

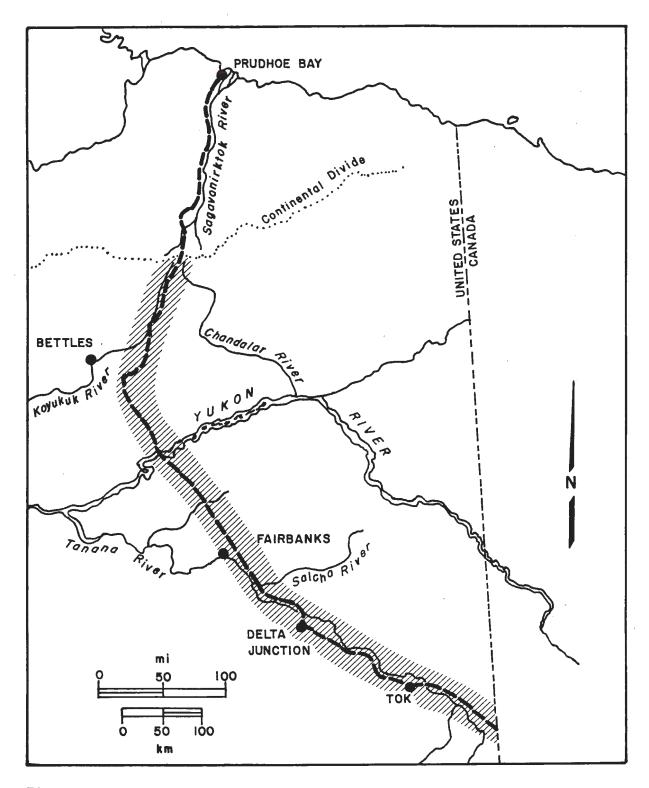


Figure 3. Known distribution of the longnose sucker in the vicinity of the proposed gas pipeline.

FISH HABITAT REQUIREMENTS DATA MATRIX

Species Longnose sucker (Catostomus catostomus)

		<u>ongnose su</u>	UNET TURE	is comus car	LOS LOMUS)	_											
		line	Subs.	Stream Veloam	Stream Dicean	Sire	Turbia:	Serileon	Temps of	Barriers to	Ingranen o Ice Co	DH HO	Oissolt,	Condi.	Aquaric Veralic	Piparian Vegerian	Food Outon
	Migration		NA												NA	NA	
	Spawning	May- July	50 100mm	0.30- 0.45m/sec		0.10- 0.60m			5-10°C	NA	Do not spawn under ice						NA
	Egg Development and Emergence	spawning emerge in				NA			10-15°C	NA						NA	NA
FRY	Feeding and Growth	1-2 weeks								NA				•			
L.	Distribution and Abundance						·.										
JUVENILE	Feeding and Growth									NA							
JUVE	Distribution and Abundance																
ADULT	Feeding and Growth									NA				•			Algae, insect larvae, molluscs, zooplank-
AD(Distribution and Abundance	Spend summer in large rivers							-								ton

FISH HABITAT REQUIREMENTS DATA MATRIX

Species Longnose sucker (Catostomus catostomus)

		line	Suds.	Stream L'ean	Sream Diceam	Stree	Turbia.	Settler.	lempe.	Barriers .	lce C	DH Ha	Oissolve Gissolve	Condi,	Aquaric Vient	Piparian Vegerian	Pood Of	of or Quality
	Migration		NA											,	NA	NA		
	Spawning	116,117 129,204	117,129	117,129		117,129			116,117 129	NA	116						NA	
	Egg Development and Emergence	117,129 204				NA			117	NA						NA	NA	
۲۲	Feeding and Growth		-							NA								
FRY	Distribution and Abundance					· .								•				
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA							117,129 196	
ADI	Distribution and Abundance	204																

`

Coregonus autumnalis - Arctic Cisco, Figure 4

Arctic cisco in Alaska are confined to large rivers flowing into the Beaufort Sea. The Sagavanirktok River is the only major waterbody within the proposed gas pipeline corridor known to contain Arctic cisco. The species is anadromous and individuals have been taken in marine water with a salinity content of up to 22 parts per thousand (Ref. 129). Upstream migrations begin in the summer; spawning generally takes place during the fall in swift water over a gravel substrate (Ref. 116, 117, 129). No nest or redd is constructed; the eggs are broadcast and eventually find their way into the interstices of the gravel. Short1v after spawning, adults mass migrate back to the sea or estuarine waters. The eggs hatch in the spring, at which time the fry also migrate to the Beaufort Sea (Ref. 117, 129, 189). Food of young ciscos in freshwater consists primarily of zooplankton and aquatic insects. Larger Arctic cisco consume larger prey such as mysids, amphipods and smaller fish in the marine environment.

Site Specific Information

None.

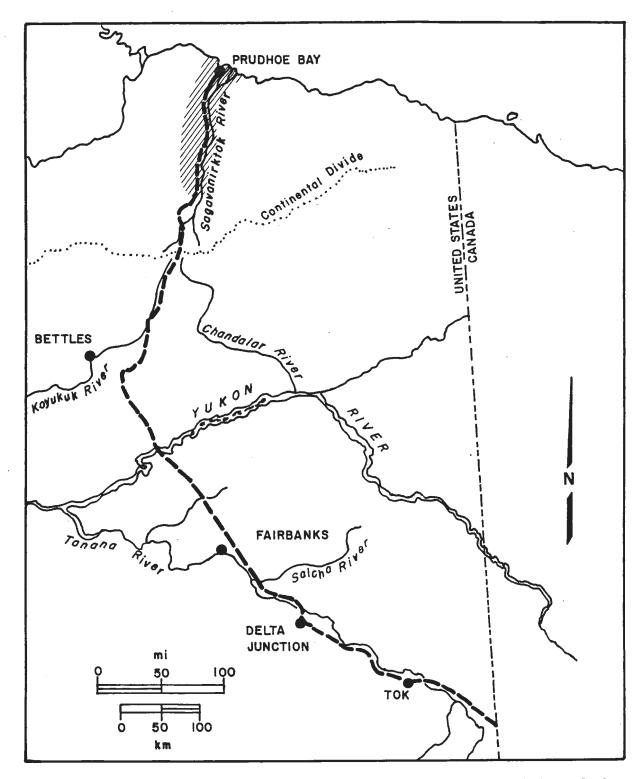


Figure 4. Known distribution of the Arctic cisco in the vicinity of the proposed gas pipeline.

,

FISH HABITAT REQUIREMENTS DATA MATRIX

Species Arctic cisco (Coregonus autumnalis)

			o (obrogon	and que de mai		-											
		11 Million	Subsr.	Stream Veleam	Sr.eom	Str.	Turbidi.	Serlie	Temps of	Barriers	Ice Centron or	-eno, Ha	Dissolution of the second	Conduct	4quaric	Riparion Vegerian	Food Quanting
	Migration	Summer	NA			· · ·									NA	NA	
	Spawning	Late summer- early fall into Nov.	Grave1	Swift water					•	NA							NA
	Egg Development and Emergence	Hatching Mar-Apr				NA				NA						NA	NA
۲۲	Feeding and Growth	Max growt May-June	n						Fastest growth at higher temps.	NA		6.7-9.2					Zooplankton
FRY	Distribution and Abundance												As low as 1.4 mg/1 at 17°C				
JUVENILE	Feeding and Growth	-								NA						-	Zooplankton, insect larvae
JUVE	Distribution and Abundance		-								·			•			
ורד	Feeding and Growth									NA							Crustaceans, amphipods, nysids, fish
ADULT	Distribution and Abundance					1-3m	May be found in muddy rivers							5.4- 22.0 ppt			

-

14

-

Species Arctic cisco (Coregonus autumnalis)

		line	Subs.	Stream Vera	Steam Discom	Streen	Turbics	Settleor	Temper	Borriers to	Ice Co	oh Ha	Oissolue Otrolue	Conduct	Aquaric Virviry	Veronion Veronion Ocoencia	Food D. Cover	or outin
	Migration	116,117, 129,189, 204	NA			·						•			NA	NA		
	Spawning	116,189	116,117, 129	116,117, 129			· · · · ·			NA							NA	
	Egg Development and Emergence	117,129, 189				NA				NA						NA	NA	
FRY	Feeding and Growth	189							189	NA	- I	189		•	• <u> </u>		189	•
L.	Distribution and Abundance										-		189					
NILE	Feeding and Growth							· · · · · · · · · · · · · · · · · · ·		NA	:						189	
JUVENILE	Distribution and Abundance																	
ADULT	Feeding and Growth				·					NA							116,129, 204	
ADL	Distribution and Abundance					204	116							116,129, 204				15

.

٤

Coregonus laurettae - Bering Cisco, Figure 5

Little is known of the biology and distribution of Bering cisco. in Alaska. It is known to have life history habits similar to Arctic cisco and there appears to be some range overlap between the two species. Bering cisco generally inhabit coastal drainages of the Bering, Chukchi, and Beaufort Seas, but may enter interior drainages. It has been documented as far upstream on the Yukon River as the confluence with the Porcupine River, and on the Kuskokwim River to the South Fork (Ref. 117, 208). Migration upriver may occur as early as June (Ref. 208), but usually occurs in late summer (Ref. 117, 129, 208). Spawning occurs in the fall presumably in clear-water streams tributary to major rivers (Ref. 129). After spawning there is a downstream migration to overwintering areas, usually river deltas or brackish lagoons (Ref. 116, 129). Nothing us known of egg and fry development or of juvenile migration to brackish waters. Bering cisco apparently do not feed during migratory movements, but in brackish waters they feed upon crustaceans and small fish (Ref. 116, 117, 129, 208).

Site Specific Information

None.

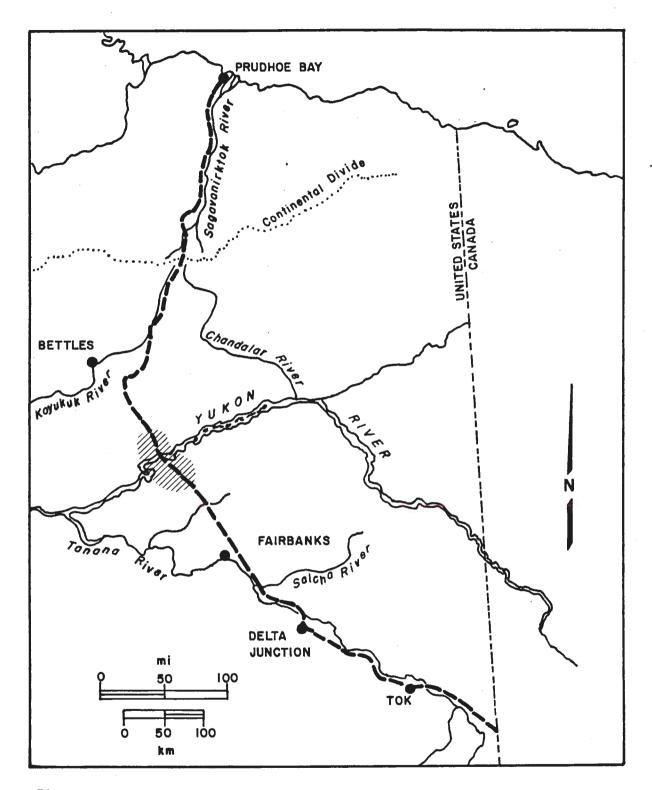


Figure 5. Known distribution of the Bering cisco in the vicinity of the proposed gas pipeline.

•

		, i'i'e	Subs.	Stream Leve	St. Com	Stree	Turbin.	Settleou	Temo.	Barriers to	lee Control of Control	DH Ha	0;501c	Cond.	Aquaric Visity	Piporion Vegerion	Tood Cover	Villon ,
	Migration	June- Sept								· · · ·								
	Spawning	Fall					Clear water		1									
	Egg Development and Emergence																	
۲	Feeding and Growth																	
FRY	Distribution and Abundance													-				
NILE	Feeding and Growth																	
JUVENILE	Distribution and Abundance																	
ILT	Feeding and Growth					•											Crusta- ceans, small fish	
ADULT	Distribution and Abundance													May occur in brackish lagoons				

	Species_B	lering ciso	:0 (Coregoi	<u>ив laure</u> t	tae)	_				•				•				
	· .	line	Subs.	Stream Ver	Sream Diceam	Stree	Turbia	Settleor	Tempo	Barriers t	Ice Co	pH Ha	Oissolue Otholue	Conque	49001ic	Piparian Vegerian	Food 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	ulor Johning
	Migration	116,117, 208																
	Spawning	116,129, 208					129							· ·				
	Egg Development and Emergence						-							•				
FRY	Feeding and Growth																	
Ē	Distribution and Abundance					•	-											
JUVENILE	Feeding and Growth					I												
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth																116,117, 129,208	
ADI	Distribution and Abundance													116,129				19

4

Coregonus nasus - Broad Whitefish, Figure 6

Broad whitefish are widely distributed north of the Yukon and Kuskokwim rivers. They have also been reported in the Tanana River as far upstream as the proposed gas pipeline crossing. Some populations of broad whitefish are anadromous while others remain in fresh water yearround (Ref. 116, 117, 129).

Upstream migration begins as early as June and may extend into September. Spawning usually begins in September and takes place in shallow streams with gravel bottoms (Ref. 129). Anadromous adults return to estuarine areas and freshwater adults return to deep waters immediately after spawning. The young hatch in the spring and move downstream. Food of broad whitefish consists of benthic organisms such as aquatic insects, snails, bivalves, molluscs, and crustaceans (Ref. 116, 117, 129).

Site Specific Information

None.

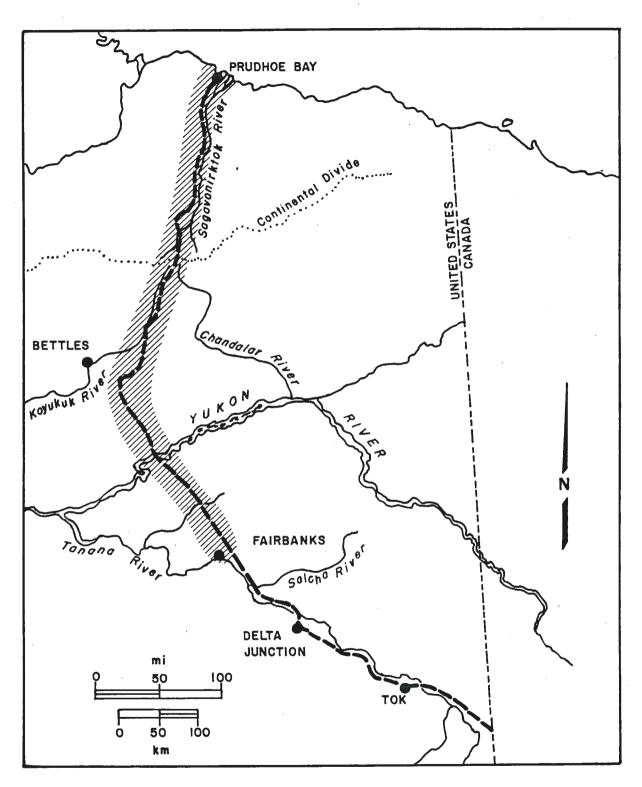


Figure 6. Known distribution of the broad whitefish in the vicinity of of the proposed gas pipeline.

	Species <u>B</u>	road white	fish (Core	допив паві	us)	_												N
		line	Subse.	Stream Veloam	Stream Discom	Sten	Turbini	Serilen.	emp.	Barriers to	Ice Co	DH Ha	Oissolue Ortolue	Conduct	49uoric	Riparion Vegerion	Food Cover	or Quality
	Migration	June-Sept	NA				· ·								NA	NA		
	Spawning	Şept-Oct	Grave1							NA						•	NA	
	Egg Development and Emergence	Hatching in spring				NA			6-12° C	NA						NA	NA	
FRY	Feeding and Growth									NA								
E	Distribution and Abundance										-			•				
JUVENILE	Feeding and Growth									NA		-						
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA							Insect larvae, molluscs, crustacea	IS
ADL	Distribution and Abundance													May occur in brack- ish water				

22

Species Broad whitefish (Coregonus nasus)

		line	Subs.	Stream	Sream Die am	Stree	Turbia.	Serrie out	Tempo	Barriers 1.	Ice Co	DH Ha	Oissource Ostorice	Condi	Aquaric Vivity	Piparion Vergerian	Food Officer	of or Quality
	Migration	129	NA								-				NA	NA		
	Spawning	116,117, 129,146, 161	129							NA				•			NA	
	Egg Development and Emergence	129,146				NA	· · · · · · · · · · · · · · · · · · ·		146	NA						NA	NA	
FRY	Feeding and Growth								•	NA								
FF	Distribution and Abundance										· · · ·							
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA							116,117, 129	
ADI	Distribution and Abundance										,			116		· · · · · · · · · · · · · · · · · · ·		23

Coregonius pidschian - Humpback Whitefish, Figure 7

Humpback whitefish have a wide distribution throughout Alaska, but are most abundant in major rivers which drain into the Beaufort, Bering and Chukchi seas. These whitefish are apparently truly anadromous but it is not known if they move out of estuarine waters. Spawning runs generally begin as early as June and spawning occurs in the fall, sometimes as late as mid-November (Ref. 129). Spawning takes place in shallow streams or littoral areas of lakes over rocky or sandy areas (Ref. 117). Spawned-out adults return downstream to overwintering areas. Eggs hatch in late winter and spring and the young begin migrating downstream, to return as mature adults 4 to 6 years later (Ref. 129). Juvenile humpback whitefish feed primarily on zooplankton while adults feed primarily upon molluscs and larval insects (Ref. 116, 116, 129).

Site Specific Information

Spawning

Chatanika River - spawning starts around 19 September (Ref. 115) with peak activity during the last week in September (Ref. 100).

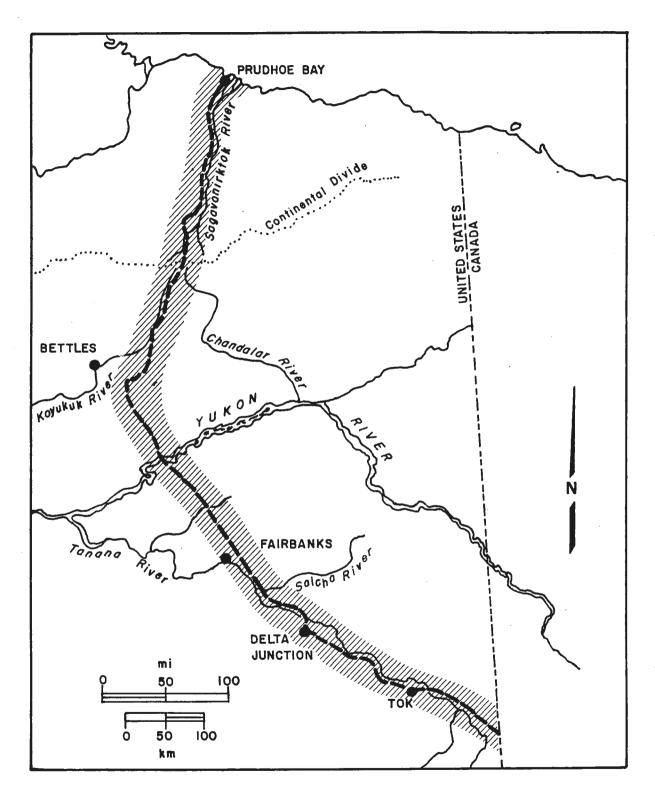


Figure 7. Known distribution of the humpback whitefish in the vicinity of the proposed gas pipeline.

Species <u>Humpback whitefish (Coregonue pidschian)</u>

		, inde	Subst.	Stean Vereau	Stream Dieam	Streed	Turbia:	Settler.	Tempe	Barriers t	/Ce Co	DH Ha	Oissolue. Other	Sen d	Aquaric Vinity	Perorion Vergerion Section	Food Corris	aro Dantin
	Migration	June	NA											,	NA	NA		
	Spawning	June-Nov	Rocks to sand	Swift water		Less than 7.6m, usually 0.5-2.5m			0-3° C	NA	May spawn under ice						NA	
	Egg Development and Emergence	Hatch from late winter to May				NA			0.5-6.1°C	NA						NA	NA	
FRY	Feeding and Growth								•	NA				•			Zooplank- ton	
Ē	Distribution and Abundance	Move into deeper water by early summer				Move into deeper water by early summer												
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance										· ·			•				
ADULT	Feeding and Growth									NA			,				Molluscs, crustacea insect larvae	ns,
AD(Distribution and Abundance	Cooler deeper water in summer				Cooler dceper water in summer			Cooler water in summer					lay occur in brack- ish water				

Species Humpback whitefish (Coregonus pidschian)

	۰.	lime	Subsr.	Stream Ver	Steam Die am	Stree	Turbia.	Serileo.	Temps of	Barriers t	Ingrant or log	oh ha	Oissolue Othour	Conduc	Aquoric Very	Riparion Vegerion	Food Quenting
	Migration	129,136, 137	NA								-			•	NA	NA	
:	Spawning	116,117, 137	116,117, 137	137		116,117, 137			117,137	NA	137						NA
	Egg Development and Emergence	116,117, 129				NA			117,137	NA						NA	NA
FRY	Feeding and Growth									NA							129
	Distribution and Abundance	117				117							······				
JUVENILE	Feeding and Growth									NA							
JUVE	Distribution and Abundance													1.5 ⁵ .			
ADULT	Feeding and Growth									NA							116,117, 129,137
ADI	Distribution and Abundance	137				116,117			117					116,129			

Prosopium cylindraceum - Round Whitefish, Figure 8

Round whitefish are widely distributed in Alaska, inhabiting lakes, large streams and rivers. This species has been documented along the entire route of the proposed natural gas pipeline. Spawning takes place in shallow gravel areas of lakes and larger streams in late September through October (Ref. 116, 117, 129). After spawning the adults migrate downstream to overwintering areas. As with other salmonids, no parental care is given to eggs or young. The eggs hatch after approximately 140 days at 2.2° C, and newly hatched fry carry a yolk sac for an additional two weeks (Ref. 129). Growth rates and age at sexual maturity vary according to latitude. (Ref. 129). Round whitefish are primarily bottom feeders, feeding upon a variety of insect larvae, gastropods, and in some cases eggs of lake trout, chum salmon and suckers (Ref. 116).

Site Specific Information

Migration

Goodpasture River - upstream migration occurs in late April to early May (Ref. 115).

Lupine River - downstream migration occurs during the first week of September (Ref. 101).

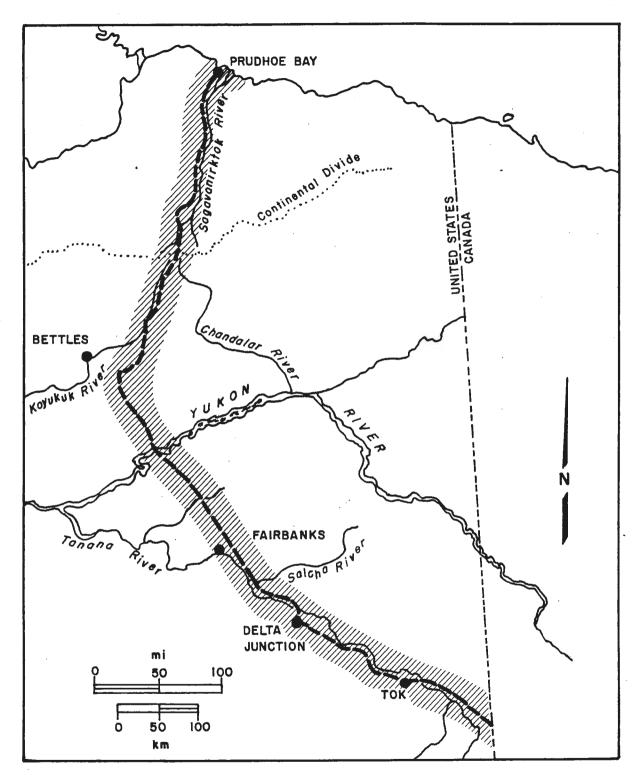


Figure 8. Known distribution of the round whitefish in the vicinity of the proposed gas pipeline.

.

Species <u>Round whitefish (Prosopium cylindraceum)</u>

.

	Species_ <u></u>	ound white	efish (Prog	sopium cyl	indraceum)	_					. •							30
		lime	Subs.	Stream Vel. am	Sream Diseam	Sire.	Turbin.	Settlen.	Tempo	Barriers r.	Ice Co	DH HG	Oissolue Otto	Condin	Aquaric Veralic	Riparion Vegrian	Food Out	or ounling
	Migration	As late as Oct	NA												NA	NA		
	Spawning	Sept- Oct	Grave1			Shallow water			4.5°C	NA							NA	
	Egg Development and Emergence	140 days after spawing				NA			140 days at 2.2°C	NA					~	NA	NA	
FRY	Feeding and Growth				-					NA				·				
	Distribution and Abundance																	
JUVENILE	Feeding and Growth							-		NA								
JUVE	Distribution and Abundance																	
761	Feeding and Growth									NA							Insect larvae, molluscs, fish eggs	
ADULT	Distribution and Abundance			-		Shallow lakes	Clear streams	ι ι						May occur in brack- ish water				

Species <u>Round whitefish (Prosopium cylindraceum)</u>

		line,	Subsr.	Stream Vote	Stream Diseam	Stree	Turbia.	Settlent	Tempe.	Borriers to	Ice Co	DH Her	Oissolue. Ostolue.	Conduct	Aquaric Vivity	Riporion Vegerion	Food Cover	or Quality
	Migration	116,117	NA											,	NA	NA		
	Spawning	116,117, 129	116,117			129			117	NA							NA	
	Egg Development and Emergence	117,129				NA			117,129	NA						NA	NA	
FRY	Feeding and									NA	· ·							
L.	Distribution and Abundance						•				-							
JUVENILE	Feeding and Growth									NA			• • • • • • • • • • • • • • • • • • •					
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA							116,117, 129	
ADI	Distribution and Abundance					116,117	116							116,117				31

Coregonus sardinella - Least Cisco, Figure 9

Least cisco, including both anadromous and non-anadromous populations, are widely distributed throughout the state from the Kuskokwim and Tanana drainages northward. The distribution of this species includes the entire proposed natural gas pipeline corridor. Spawning occurs from late September to early October in clear streams and rivers with gravel and sand bottom (Ref. 116, 117, 129). Spawning takes place at night, with peak activity between 8 PM and midnight. Eggs hatch in early spring, but the young usually do not migrate downstream until early summer, by which time they have grown to 4 cm in size (Ref. 129). Non-anadromous populations are usually restricted to large, deep lakes capable of sustaining an overwintering population. After spawning anadromous populations migrate to large river deltas or to estuarine areas to overwinter. Anadromous fish usually do not feed during upriver migration but are known to feed upon mysids, amphipods, and zooplankton in estuarine areas. Non-anadromous fish have a diet restricted to aquatic and terrestrial insects and zooplankton.

Site Specific Information

Migration

Chatanika River - upstream migration begins in early July and lasts through late September (Ref. 129).

Spawning

Chatanika River - spawning begins in mid-September (Ref. 115) with peak spawning activity during the last week of September (Ref. 100).

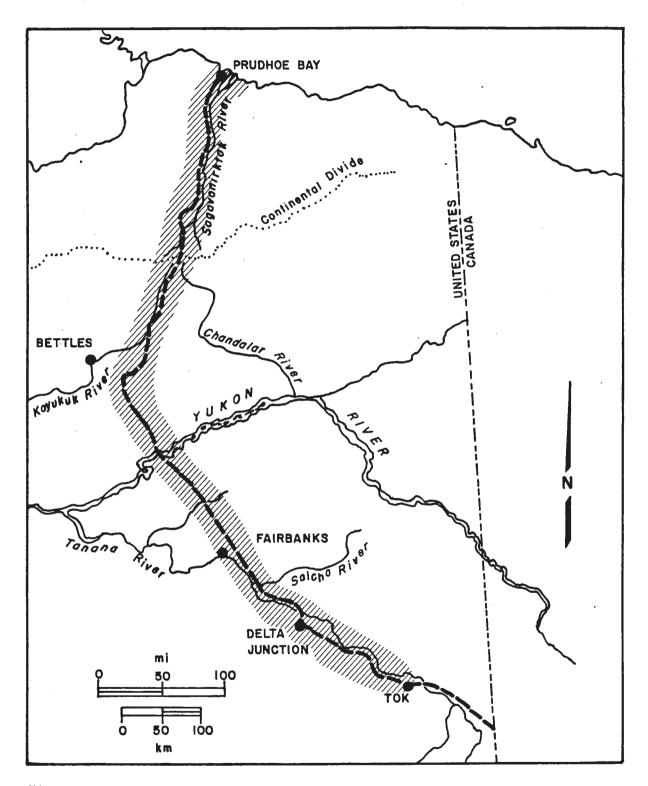


Figure 9. Known distribution of the least cisco in the vicinity of the proposed gas pipeline.

34

Species Least cisco (Coregonus Bardinella)

			Suds.	Stream Leite	Sream Diceam	Sree	Turbia:	Settlen.	Tempo.	Barriers to	Ice Co	DH DIEr	O'SSOL	Condu.	Aquaric Vilitity	Perorion Piparion Vegerian	Food Oner Cover	Ulor Comin
	Migration	July- Sept	NA												NA	NA		
	Spawning	Sept- Oct	Sand and gravel	0.5m/sec		1.3-2.6m			0-3°C	NA							NA	
	Egg Development and Emergence	Early spring				NA			1.0°C	NA				•	· · · ·	NA	NA	
FRY	Feeding and Growth									NA	•							
F	Distribution and Abundance																	
JUVENILE	Feeding and Growth									NA	**************************************							
JUVE	Distribution and Abundance																	
ADULT .	Feeding	Feeds in sea during summer					Feeding is reduced by high turbidity		Faster growth rates at higher temps.	NA			<u> </u>				Zooplank- ton, mysids, insect larvae	
AD(Distribution and Abundance													0-34 ppt salinity				N

Species Least cisco (Coregonue eardinella)

	P	, iline	Subse,	Stream Vale	Steam Dieam	Shee	Turbia.	Settler.	Tempe	Barriers ro	100 00 01 01 01 01 01 01 01 01 01 01 01	DH HO	Olssow.	Condi.	Aquoric Very	Piparian Vegerian	Food Official	or contin
	Migration	117,129	NA											,	NA	NA		,
	Spawning	117,129, 146	116,117, 129	129		117,129			129,199	NA							NA	
	Egg Development and Emergence	129				NA			199	NA						NA	NA	
FŖY	Feeding and Growth							•		NA								
F	Distribution and Abundance																	-
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance													· · · · ·		<u> </u>		
ADULT	Feeding and Growth	116					199		146	NA							117,129	
ADI	Distribution and Abundance													199				ω 5

Cottus cognatus - Slimy Sculpin, Figure 10

Slimy sculpin are widely distributed throughout Alaska, including the entire route of the proposed gas pipeline. Slimy sculpin are found to depths of 128 m in lakes (Ref. 129) but tend to prefer rocky clear streams with cool water (Ref. 116). Spawning takes place in the spring shortly after breakup when water temperatures range from 4.5 to 10.0° C (Ref. 114, 117, 129). The male selects the nest site, usually under-a rock or log, and cares for the young after hatching (Ref. 116, 117, 129). Egg development requires about 28 days and the sac fry remain in the gravel for about a week (Ref. 129). Sculpin have been observed to move through soft sediment in deep lakes (Ref. 129). Slimy sculpin feed primarily on benthic immature insects (Ref. 116, 117, 129); however, larger individuals occasionally prey on grayling fry (Ref. 131).

Site Specific Information

Spawning

- Sheenjek River drainage, Monument Creek observed newly hatched sculpin along with eyed eggs 25 June (Ref. 114).
- Sheenjek River drainage, Monument Creek estimated to have spawned in late May, one week after breakup (Ref. 114).
- Delta Clearwater River observed many sculpin spawning in shallow water on and around a large, dead log 28 April; underside of log was covered with numerous egg masses (Ref. 89).

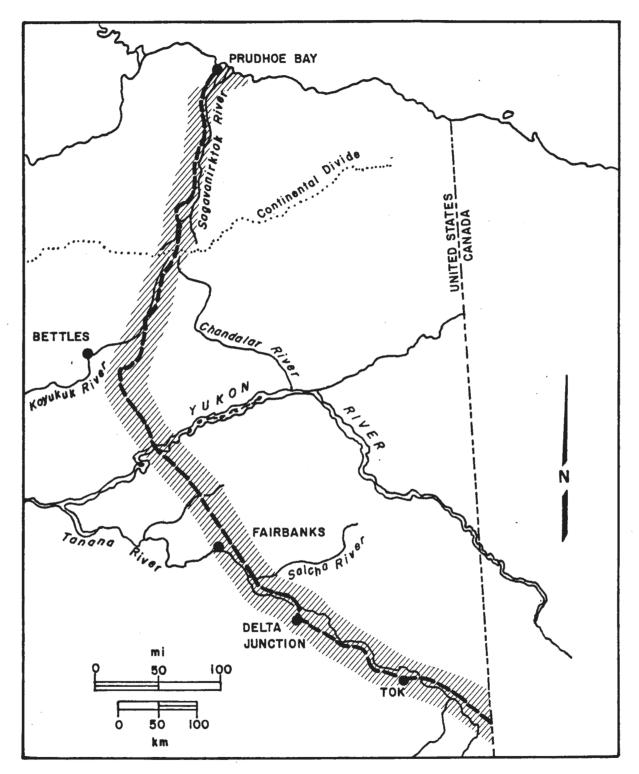


Figure 10. Known distribution of the slimy sculpin in the vicinity of the proposed gas pipeline.

Species <u>Slimy sculpin (Cottue cognatue)</u>

		line	Subst.	Stream Veloam	Stream Diceam	Stree	Turbia.	Settler.	Temper	Barriers .	Ice Co	oh ha	Oissolue Other	Condi.	Aquaric Vinity	Piparian Vegrian Serian	Food Curlon Food Cover And Cuonity
•	Migration		NA								·				NA	NA	
	Spawning	Spring	Sand to rocks	Flowing water		Shallows, .9230m			4.5-10°C	NA				•			NA
	Egg Development and Emergence	Hatch in June after 28 day incubatior				NA				NA						NA	NA
FRY	Feeding and Growth	Most growth during summer								: NA							
E E	Distribution and Abundance																
JUVENILE	Feeding and Growth									NA		-					Insect larvae
JUVE	Distribution and Abundance					•	-										
ADULT	Feeding and Growth									NA	· · ·			ť			Insect larvae, rarely fish eggs and fry
ADI	Distribution and Abundance					Up to 128m											

38

•

Species _______ (Cottus cognatus)

		line	Suds,	Stream Vale	Steam Dicam	Stree Stree	Turbia.	Settleor	Temper	Barriers to	le Ce	oh ha	Oissolt,	Condi.	Aquaric Veriality	Serain Riporion Vegerion	Proving Food Cover And Oughing
	Migration		NA												NA	NA	
	Spawning	34,114, 116,117, 129	116,117, 129	116		116,117, 129			114,117, 129	NA							NA
	Egg Development and Emergence	32,114				NA				NA						NA	NA
FRY	Feeding and Growth	114								NA							
Ľ.	Distribution and Abundance													,			
JUVENILE	Feeding and Growth									NA							129
JUVE	Distribution and Abundance						,			L							
ADULT	Feeding and Growth									NA							114,116, 117,129, 131
AD(Distribution and Abundance					129				:							

Couesius plumbeus - Lake Chub, Figure 11

The lake chub is the only member of the minnow family found in Alaska. This species is confined to interior Alaska in the Yukon-Koyukuk-Tanana-Porcupine drainages (Ref. 129). Lake Chub are most frequently found in lakes and streams of both clear and muddy water (Ref. 116). Spawning may occur as early as April (Ref. 117) when water temperatures approach 5° C (Ref. 129). Spawning takes place in shallow streams with gravel or large rock substrates (Ref. 116, 129, 144). Very little is known about egg and fry development or about fry migration. Lake chub are visual feeders, preying upon zooplankton, larval insects, and algae (Ref. 117, 129). They are in turn preyed upon by lake trout, burbot, northern pike, and a variety of piscivorous birds including king fishers and mergansers (Ref. 118).

Site Specific Information

None.

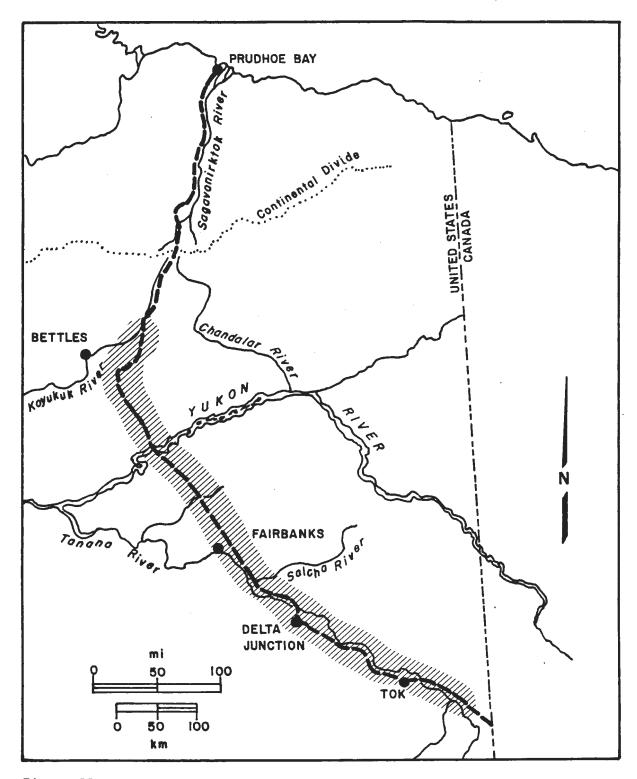


Figure 11. Known distribution of the lake chub in the vicinity of the proposed gas pipeline.

.

•

42 Species Lake chub (Couesius plumbeus) Food Quantity Stean Deorh Barriers to Movers to Misemento Oction or Riporion Verorion And Corion Cover Temperature 2°° Conductivity Serrie able Aquaric Vegeraric Srean Discon Discharge Substrate 'ce Cover Dissolution Turbidin Stream Velocity ð lime Ha 'NA **Migration** NA NA ٠ April-Rocks, . Shallow 4-8°C Aug gravel, silt, or debris water Spawning NA NA Develop in 10 Wi11 Egg Development 8-19°C develop on silt days, NA NA and NA NA emerge in or debris Emergence June Feeding Zooplankton and NA Growth FRY -Distribution and Abundance Feeding and NA JUVENILE Growth Distribution . and Abundance ۰ Feeding Insect and larvae, NA algae Growth ADULT Typically Occupies Can Distribution inhabits withstand deeper and water nea water turbid Abundance 16°C

water

. .

Species Lake chub (Couesius plumbeus)

		line	Subst.	Stream Vere	Steon Diceon	Stree	Turbidi	Settleou	Temper	Borriers r.	Ice Co.	DH DIEr	Oissolue. Otholue	Condi,	Aquaric Very	Piparian Vegerian	Food Of Other	o for Quality
	Migration		NA								-				NA	NA		
	Spawning	116,117, 129,144	116,129, 144			129,144			117 , 144 :	NA							NA	
	Egg Development and Emergence	144	144			NA			144	NA						NA	NA	
FRY	Feeding and Growth									, NA							129	
Ē	Distribution and Abundance																	
JUVENILE	Feeding and Growth						,			NA								
JUVE	Distribution and Abundance																	
ILT	Feeding and Growth									NA							116,117, 129	
ADULT	Distribution and Abundance					116	116,129		144									43

Dallia pectoralis - Alaska Blackfish, Figure 12

The Alaska blackfish is found in lowland areas along Alaska's western coast from Barrow to the Alaska Peninsula. Its range also extends up the Yukon River to the RAPS crossings and up the Tanana River to Fairbanks (Ref. 129). Little is known of the biology of the Alaska blackfish and misconceptions of its ability to withstand total freezing still persist (Ref. 116, 117, 129). Blackfish can however withstand extreme cold and severe oxygen deprivation. Upstream migration into swampy, grassy areas begins in the spring when water temperatures reach 10° to 15° C (Ref. 117, 129). The demersal, adhesive eggs are deposited in spring and early summer on vegetation, and develop in about 10 days at 12° to 13° C. The newly hatched fry carry a yolk sac for an additional 10 days (Ref. 129). Blackfish feed on zooplankton and insect larvae, and are fed upon by birds, mink, and otter (Ref. 117).

Site Specific Information

Spawning

- Lake Aleknagik (Wood River Lakes system) spawning estimated to occur mainly in July (Ref. 112).
- Big Eldorado Creek (Fairbanks) spawning occurs from May to August with most intense spawning in June (Ref. 111).

Migration

Big Eldorado Creek - blackfish migrate upstream after breakup in May (Ref. 111).

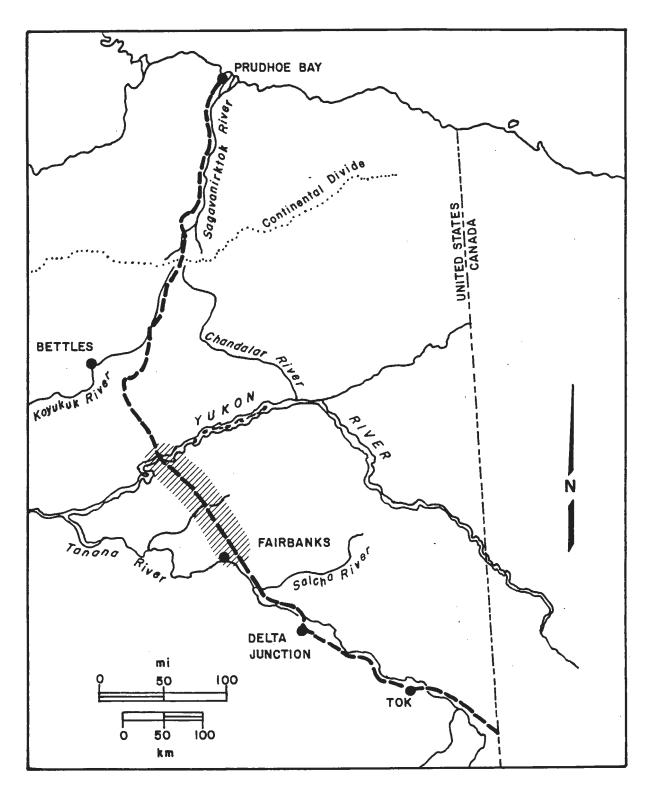


Figure 12. Known distribution of the Alaska blackfish in the vicinity of the proposed gas pipeline.

Species Alaska blackfish (Dallia pectoralis)

	Species _#	Alaska bla	<mark>ckfish (</mark> Da	llia pecto	ralis)	_												46
		Line	Subs.	Stream Velon	Stream Discom	Stree	Turbia:	Settler.	Temper	Barriers .	log control or log co	PH Ha	Oissolues Otrolles	Cond.	Aquaric Venting	Ribarian Vegerian	Food Outon	0,0101 B
	Migration	Spring	NA			·			Migration begins with a 5.6-8.3°C temp rise		Migration may begin after break up	í			NA	NA		
	Spawning	May- Aug								NA					Eggs are probably spawned on aquatic vegetatior		NA	
	Egg Development and Emergence	Hatch 10 days after spawning				NA			12-13°C	NA						NA	NA	
FRY .	Feeding and Growth	Rapid growth during first summer								NA							Zooplank- ton	
Ē	Distribution and Abundance					ŗ												
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance													1				
JLT	Feeding and Growth	Most growth during summer								NA							Insect larvae, molluscs	
ADULT	Distribution and Abundance		Prefer silt,mud, detritus	Can with- stand hig spring flows	h		Can withstand turbid water		-20 to +20°C		Jpstream novement after break-up	Typically 7.2-8.0	2.3- 12.6mg/1		Occurs in weedy swamps			

-

Species Alaska blackfish (Dallia pectoralia)

. .

			Subs.	Stream Leite	Stean Dison	Sree	Turbin.	Serricon Soliteon	Temper	Barriers r.	Ice Co	oh ha	Oissolue Otholue	Conque	Aquaric Very	Ribarian Vegerian	Food Cover	of or Quality
	Migration	117	NA						111,117		117				NA	NA		ĺ
	Spawning	111,116, 117,129				<u></u>				NA					116,129		NA	
	Egg Development and Emergence	129				NA			112,116, 117,129	NA						NA	NA	
FRY	Feeding and Growth	117								NA	· .						129	٢
Ē	Distribution and Abundance																	
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth	111,177								NA							116,117, 129	
ADI	Distribution and Abundance		111	111			111		111,129, 177		111	177	117,177		116,117, 177			47

Esox lucius - Northern Pike, Figure 13

Northern Pike Have a wide distribution throughout the state and are found in virtually every major drainage except the Copper River and those in Southeast Alaska. Although they do occur north of the Brooks Range, they have not been documented in waterbodies along the route of the proposed gas pipeline. Spawning occurs in the spring after breakup when water temperatures are 4° to 11° C (Ref. 116, 117, 129). Eggs are deposted on vegetation in the still shallows of marshes, lakes, and rivers (Ref. 117, 129). Egg development varies from 4 to 29 days depending upon temperature; the hatched fry carry a yolk sac for an additional 10 days (Ref. 129). Fry feed primarily upon larger zooplankton and insect larvae but may switch to a fish diet within two weeks (Ref. 129). Large pike have no predators other than man but young fish fall prey to bears, dogs, eagles, ospreys, and other pike (Ref. 117). Canabalism among young pike causes the majority of predation related mortality.

Site Specific Information

Spawning

- Goodpaster River (mouth to km 53) spawning in mainstem; ripe pike caught in April 1973 and four ripe pike caught 13 May 1973 (Ref. 95).
- Minto Flats region spawning peaked 21-26 May 1972 (Ref. 100).
- Minto Flats region spawning began 10 May and lasted til 2 June 1973 (Ref. 115).
- Minto Flats region spawning period from 15 May-15 June; spawning began 10 May 1970 (Ref. 120).
- Lake Aleknagik (Wood River Lakes system) spawning peaked 10-20 June 1976 (Ref. 104).

Migration

- Goodpaster River upstream movements during late April and early May 1973 (Ref. 95).
- Minto Flats region pike ascend the rivers in Minto Flats area beneath the ice in spring (Ref. 120).
- Minto Flats region pike migrate downstream in fall and overwinter in the Tolovana and Tanana rivers (Ref. 120).

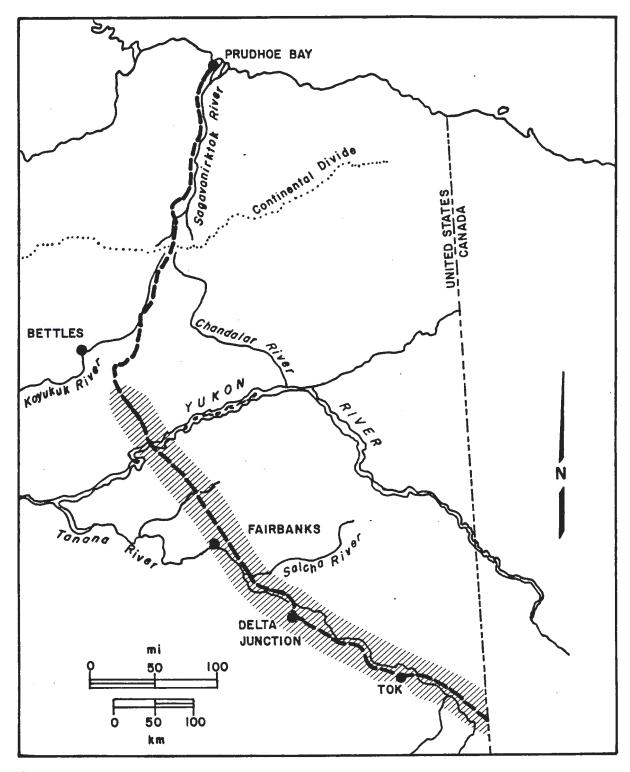


Figure 13. Known distribution of the northern pike in the vicinity of the proposed gas pipeline.

Ł

Species Northern pike (Esox lucius)

	Species <u>no</u>	orthern pik	e (Esox li	ucius)		_												50
		lime	Subs.	Stream Ver	Stream Discom	Ster	Turbini	Settleor	Tempe.	Barriers to	/Ce Co	DH HO	Oissoure Other	Condi.	Aquoric Vec	Riparion Vegerion	Poor Cover	of or Quality
	Migration	April	NA						4.4- 11.1°C		Will migrate under ice			<u> </u>	NA	NA	~	
i	Spawning	April- May		Quiet water		0.18 m minimum			6-9°C	NA	Begin spawning after ice out				Spawns on aquatic vegetation	May spawn on overhang- ing cover	NA	
	Egg Development and Emergence	Hatch 5-29 days after spawning				NA	· · · · · · · · · · · · · · · · · · ·		6-18°C	NA						NA	NA	
FRY	Feeding . and Growth	Rapid growth during first summer								NA					Fry remain on or near vegetation until yoke sac digest	- ed	Zooplank- ton, insect larvae	
Ŀ	Distribution and Abundance						•					Fry sensitive to pH extremes						
JUVENILE	Feeding and Growth						-			NA				ŧ			Insect larvae, fish	1
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA							Fish, water- fowl, small mammals	
AD	Distribution and Abundance											As high as 9.5						

Species Northern pike (Esox lucius)

		Iine	Subs.	Stream Leve	Steam Discom	Stree Stree	Turbian	Settler.	Temper	Barriers to	Ice Co	pH Ha	Oissolue .	Conque	Aquoric Very	Piparion Vegerion	Food Cover	A.I.I.
	Migration	117	NA			X			117		120			<u> </u>	NA	NA		
	Spawning	116,117, 129,201		129,201		117,129			117,129	NA	201			•	116,117, 129	117,201	NA	
	Egg Development and Emergence	116,129				NA			117,129, 201	NA						NA	NA	
FRY	Feeding and Growth	116,117								NA				-	117		117,129, 201	
FI	Distribution and Abundance											129						
JUVENILE	Feeding and Growth								-	NA							129	
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth									NA				· · · · · · · · ·			129,201	·
ADI	Distribution and Abundance											117		•				51

Lampetra japonica - Arctic Lamprey, Figure 14

Arctic lamprey are distributed primarily in coastal drainages. Their range also extends into interior Alaska via the Yukon River and its tributaries, including the Tanana, Salcha and Chatanika rivers (Ref. 129). Coastal populations are anadromous and parasitic while the freshwater forms are non-parasitic and tend to be smaller in size (Ref. 117, 129). Spawning generally occurs in May in shallow nests located in slow flowing margins of rocky streams (Ref. 129, 152). Incubation time of eggs is largely unknown but probably takes several weeks (Ref. 117, 129). The newly hatched fry, or ammocoetes, burrow into silty substrate and filter-feed by extending their head from the burrow. They remain as ammocoetes for one to several years then metamorphose into the adult Parasitic adults migrate downstream to the sea and non-parasitic form. adults remain in freshwater. Parasitic forms prey upon most species of salmon, flounders, pygmy whitefish, and threespine stickleback (Ref. 129). They in turn are preyed upon by inconnu, northern pike, burbot, and gulls particularly during their spawning activities (Ref. 117).

Site Specific Information

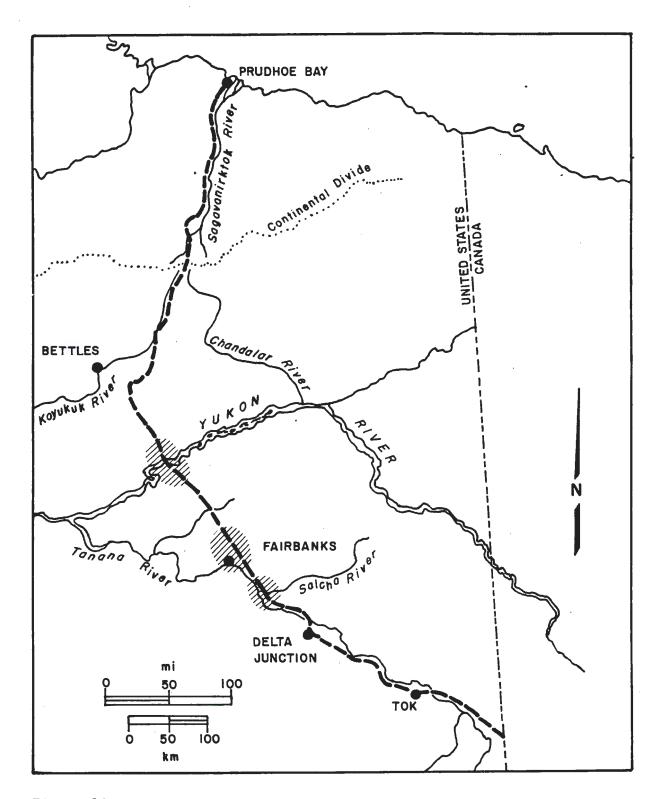


Figure 14. Known distribution of the Arctic lamprey in the vicinity of the proposed gas pipeline.

	Species <u>A</u>	rctic lamp	rey (Lampe	tra japoni	lca)	-											
		, I'l'	Subs.	Stream Veloam	Stream Discom	Sree	Turbia	Settlen.	Tempo.	Barriers to	¹ Ce C	over DH	Oissol	Cond.	Aquaric Verality	Riparian Vearian	Food Official Control of Control
	Migration	Early spring	NA										f		NA	NA	
	Spawning	May- July	Gravel, 13-51 mm	0.15- 0.30m/se		0.08- 0.20m	· .	· · · · · · · · · · · · · · · · · · ·	12-15°C	NA							NA
	Egg Development and Emergence	Hatch 10 days after spawning				NA			12-13°C	NA						NA	NA
FRY	Feeding and Growth					2				NA							Micro- scopic plants & animals
Ē	Distribution and Abundance	In rivers for first 3-4 yrs															
JUVENILE	Feeding and Growth									NA							Micro- scopic plants & animals
JUVE	Distribution and Abundance	Move into lakes in spring					Sometimes found in muddy water								_		
ADULT	Feeding and Growth									NA							Parasitic and non- parasitic popula- tions
AD	Distribution and Abundance	Move into rivers in spring					Sometimes found in muddy water										

Species Arctic lamprey (Lampetra japonica)

		line	Suds.	Stream Vele	Sream Sream	Stree Stree	Turbin.	Settleor	Tempe	Borriers to	Ce Co	ta Ha	Oissolue Other	Condi,	49uoric	Piparion Vegerion	Tood Cover	Cor Outin
	Migration	116,152	NA												NA	NA		
	Spawning	129,152	117	129,152		129,152			117	NA				•			NA	
	Egg Development and Emergence	117,129				NA			129	NA						NA	NA	
FRY	Feeding and Growth									NA							117	
Ľ	Distribution and Abundance	116,117															· · ·	
JUVENILE	Feeding and Growth									NA		-	,				117	
JUVE	Distribution and Abundance	152					116											
ורד	Feeding and Growth									NA				•			116,117, 129	
ADULT	Distribution and Abundance	117					116											5ე. 5

Lota lota - Burbot, Figure 15

Burbot are widely distributed throughout Alaska, especially in deeper lakes and large river systems. Although a member of the cod family, burbot remain in freshwater for their entire lives. Burbot spawn in winter, as early as November and as late as early April (Ref. 87, 116, 117, 129). Typical spawning areas are 0.3 to 1.5 m deep with a sand, gravel and rocky substrate (Ref. 129). Egg development time is dependent upon temperature and ranges from 30 days at 6.1° C to 71 days at 0° C. Newly hatched fry are only 0.3 to 0.4 cm long, colorless, and without a yolk sac (Ref. 129). Young-of-the-year and yearling burbot frequent rocky shores and weedy areas of tributary streams (Ref. 117) and feed upon insect larvae, molluscs, and mysids (Ref. 117). After approximately 3 years there is a shift toward a diet of fish. Young burbot fall prey to other fish and gulls, while adults are preyed upon only by man.

Site Specific Information

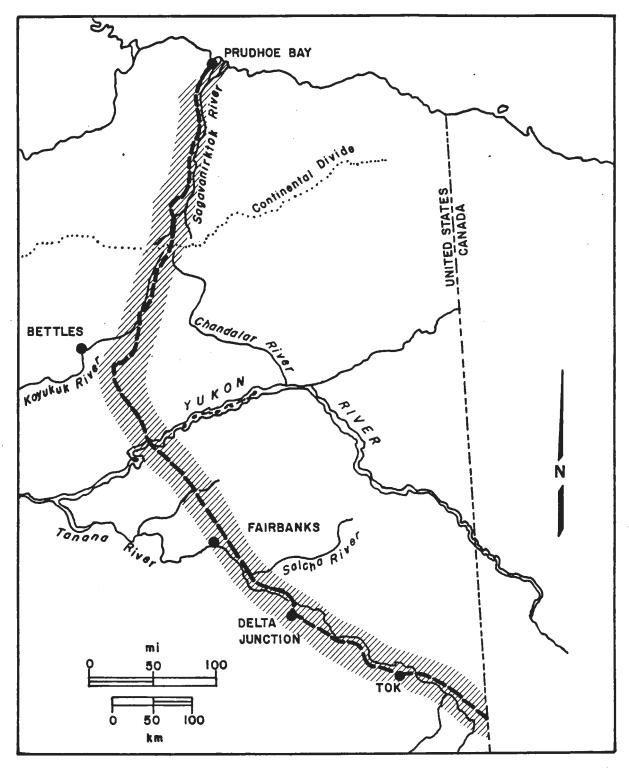


Figure 15. Known distribution of the burbot in the vicinity of the proposed gas pipeline.

Species <u>Burbot (Lota lota)</u>

	Species	<u>Burbot (Lo</u>	ta lota)	<u> </u>														58
		line,	Subst.	Stream Velo	St. Cority	Stree	Turbidi	Settlear	Tempe.	Barriers to	Ice Co	DH Ha	Olssolka Otto	Condi.	49001ic	Riparion Vegrion	Food Cover	of or Outling
	Migration	Nov- Jan	NA												NA	NA		
	Spawning	Nov- April	Sand, gravel, or stones			0.3- 1.5m			0.6- 1.7°C	NA	Spawns under ice						NA	
	Egg Development and Emergence	Hatch 30-71 day after spawning				NA			0-6.1°C	NA						NA	NA	
FRY	Feeding and Growth								15.6- 18.3°C optimum	, NA				•		<u></u>	Insect larvae	
i L	Distribution and Abundance	River channels and lakes in summer	Rocky shores				×.								Ofter found in weedy areas			
NILE	Feeding and Growth								15.6- 18.3°C optimum	NA							Insect larvae, mysids, molluscs	
JUVENILE	Distribution and Abundance	River channels and lakes in summer	Rocky shores												Ofter found in weedy areas			
ADULT	Feeding and Growth								15.6- 18.3°C optimum	NA							Fish	
AD(Distribution and Abundance					Often reside in deep water												

Species Burbot (Lota lota)

•

		line	Subs.	Stream L'rate	Sream Dicam	Stree	Turbia.	Settlen	Tempo	Barrier of Ure Morriers	/ce CS	DH Uer	Oissoure Alloure	Condi,	Aquaric Veriality	Perorion Piparion Vegerion	Prof. on Control Control	or ountry
	Migration	10,117	NA												NA	NA		
	Spawning	87,116, 117,129	117,129			116,117, 129			117	NA	10,87, 116,117						NA	
	Egg Development and Emergence	10,87, 129				NA			87,129	NA						NA	NA	
FRY	Feeding and Growth								117	NA							117	
	Distribution and Abundance	117	. 117												117			
NILE	Feeding and Growth								117	NA							117	
JUVENILE	Distribution and Abundance	117	117												117			
ורד	Feeding and Growth								117	NA							87,116, 117,129	
ADULT	Distribution and Abundance					116,117, 129												59

Oncorhynchus gorbuscha - Pink Salmon, Figure 16

Pink salmon have a primarily coastal distribution. Along the proposed pipeline route they are found only in the lower reaches of the Sagavanirktok River. Adults begin upstream migration between June and late September after spending two years in the ocean (Ref. 116, 117, 129). Spawning occurs relatively close to the ocean in rocky or gravel bottomed streams. Eggs usually hatch from December to February and the sac fry remain in the gravel until the yolk sac is absorbed in April or early May (Ref. 129). Upon emergence from the gravel, the fry begin their downstream migration. They arrive in estuaries in early summer and move offshore one or two months later (Ref. 129).

Site Specific Information

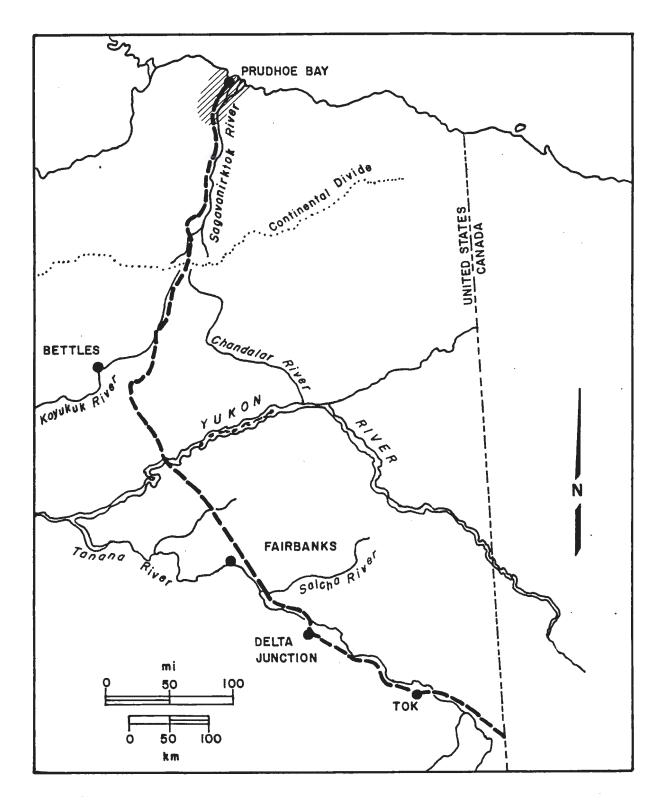


Figure 16. Known distribution of the pink salmon in the vicinity of the proposed gas pipeline.

•

	Species <u>P</u>	ink salmon	(Oncorhyn	chus gorbu	uscha)	_												6 2
			Subs.	Stream Veream	Stream Die am	Stree	Turbin	Settleor	Tempe.	Barriers 1.	Ice Co.	DH Ha	Oissolve.	Condition	4quaric	Riparion Vegerion	Food Out	-ollin
	Migration	June- Sept	NA	2.13m/sec maximum		0.18m minimum			7.2- 15.6°C	-			Low DO inhibits nigration		NA	NA		
	Spawning	Aug- Oct	1.3- 12.7mm	0.21-1.01 m/sec		0.15m minimum			7.2- 16.0°C	NA							NA	
	Egg Development and Emergence	Hatch Dec-Feb, emerge Apr-May		0.17m/sec needed for proper O ₂ exchange	Poor develop- ment at low flows	NA			4.4- 13.3°C	NA			2.3- 9.9mg/1			NA	NA	
FRY	Feeding and Growth									NA			•					
Ē	and	Remain in fresh- water sev- eral month after emerging	S											· · · · · · ·				
JUVENILE	Feeding and Growth									NA							Zooplank- ton, krill	
JUVE	Distribution and Abundance		•															
ADULT	Feeding and Growth									NA							Zooplank- ton, krill, fish	
AD	Distribution and Abundance						-		25.8°C upper le- thal, 5.6-14.6°(prefered		•			ę				

Species Pink salmon (Oncorhynchus gorbuscha)

		Time	Subs.	Stream Lean	Stream	Schorge Stree	Turbin.	Settlen.	Temper	Barriers to	Ice Co.	- Ha	Oissolund Ofton	Condu	Aquaric Vivie	Perotion Piparion Vegerion	Poor Cover	or ounity
	Migration	116,117, 129,167, 188	NA	207		198,207			207				198		NA	NA		
	Spawning	116,117, 129,167, 187,188	116,117, 167,207	207		116,198, 207			117,207	NA							NA	
	Egg Development and Emergence	116,117, 129	198	188,198	198	NA			117,129, 167,187, 188,207	NA			167,197			NA	NA	
FRY	Feeding and Growth									NA								
	Distribution and Abundance	116																
JUVENILE	Feeding and Growth								-	NA	•						117,129	
	Distribution and Abundance					5												
	Feeding and Growth				·					NA							117].
	Distribution and Abundance					•			207									63

.

Oncorhynchus keta - Chum Salmon, Figure 17

Chum salmon are widely distributed in Alaska and are found in coastal streams and in major interior water courses. Migration usually begins in late summer and may extend into September and October (Ref. 117, 129). In the Yukon and Kuskokwim rivers there are two distinct runs known as summer chums and fall chums (Ref. 129). Fall chums are slightly larger and tend to spawn in locations further upstream (Ref. 129). Chum salmon in the Salcha, Chena, Chatanika and Middle and South Fork Koyukuk rivers usually reach their spawning grounds by mid-July and spawning is complete by 1 September. Fry start emerging from the gravel in early April and emergence continues through May. Fry spend little time in freshwater and out migrations start shortly after emergence. Chum salmon generally spend 3-5 years at sea before returning to freshwater to spawn.

Site Specific Information

Spawning

Delta River - spawning peaked the last week of October 1974 (Ref. 32).

- Delta River spawning occurred from mid-October to end of November 1975; spawning peaked 29 October (Refs. 32 and 33).
- Salcha River spawning peaked during the second and third weeks of August 1976 (Ref. 14).
- Chena River chum salmon spawn in late summer (Ref. 11).
- Slate Creek spawning observed on 26 August (Ref. 131).
- Jim and Middle and South Fork Koyukuk rivers spawning in these rivers peaks 20-30 July (Ref. 88).
- Delta River hatching began early February and continued to mid-March 1976 (Ref. 33).

Chena River - eggs hatch January-February (Ref. 11).

Delta River - fry emergence began in early April and lasted through the third week of that month (Ref. 33).

Migration

Delta River - adults first arrived 8 October 1974 (Ref. 32).

Jim and Middle and South Fork Koyukuk rivers - first arrive after 1 July (Ref. 88).

Salcha River - fry out migration occurred 18 May-8 June 1973, 16-30 May 1976 and 11-13 May 1977 (Ref. 35).

Delta River - peak out migration of fry occurred 8-21 April 1976 (Ref. 16).

Jim and Middle and South Fork Koyukuk rivers - out migration peaks during breakup (Ref. 88).

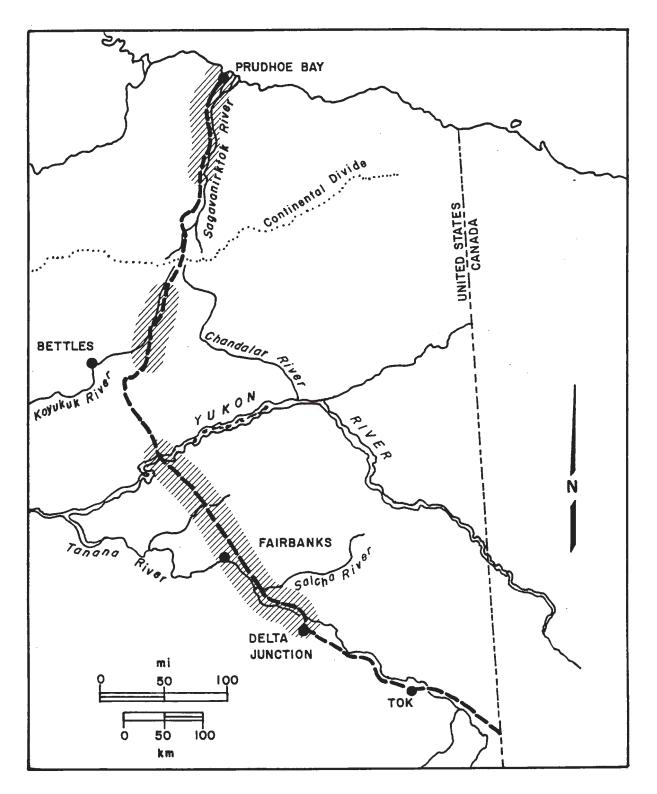


Figure 17. Known distribution of the chum salmon in the vicinity of the proposed gas pipeline.

Matrices for chum salmon on following pages

.

.

.

	Species <u>_</u> c	<u>hum salmon</u>	(Oncorhyn	ichus keta		_												68
		¹ ime	Subsr.	Stream Velon	Sream Diseam	Streed	Turbin.	Settlen.	Tempe	Barriers to	Ice Co	DH Ha	Oissolue Otto	Conduct	40001ic	Ribarian Vibarian Vegerian	5000 00.00	or ounity
	Migration	June- Oct	NA	2.44m/sec maximum).18m minimum		•	8.3- 15.6°C		May migrate under ice				NA	NA		
	Spawning	Aug- Nov	13-102mm	0.46- 1.01 m/sec		7.18m minimum			7.2- 12.8°C	NA .	May spawn under ice			·			NA	
	Egg Development and Emergence	Hatch Dec-Feb, emerge 60 90 days later	Higher mortality - in small gravel, 1.0-3.8mm			NA			4.4- 13.3°C	NA			0.72- 3.7mg/l critical level			NA	NA	
FRY	Feeding and Growth	Rapid growth during first summer								NA				Majority of growth in salt water	· · · · · ·		Insect larvae, zooplank- ton	
Ľ	and	Some fry remain in fresh wa- ter during lst summe	gravel						23.9°C upper lethal	х.								
JUVENILE	Feeding and Growth									NA							Crustacea fish, krill	15
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth						•			NA								
ADI	Distribution and Abundance								11.2- 14.6°C prefered					•				

~

. 🧹

Species <u>Chum salmon (Oncorhynchus keta)</u>

				Stream Leite	Sream Diceam	Stree	Turbin.	Settler.	Tempe.	Barriers t	10,000,00,00,00,00,00,00,00,00,00,00,00,	DH DH	O'ssolue Ground	Cond.	Aquaric Vertinity	Piparion Vegerion	Poor Cover	olor Quality
	Migration	8,10,16, 32,35, 116,117, 129,162, 191		207		207			207		32				NA	NA		
	Spawning	8,10,15, 16,32,34, 116,117, 129,131	15,32, 116,117, 129,191, 207	191,207		32,207			116,117, 207	NA	32						NA	
	Egg Development and Emergence	10,15,16, 32,34, 117,129	148			NA			34,116, 117,207	NA			148,197, 206,207			NA	NA	2
٢	Feeding and Growth	16,34, 191								NA				117			14,117, 129,191	
FRY	Distribution and Abundance	15,116, 117,191	.116,117						129					,				5
JUVENILE	Feeding and Growth									NA	,						116,129, 162	
JUVE	Distribution and Abundance						,											
ADULT	Feeding and Growth									NA								e
ADL	Distribution and Abundance								15,117, 207									. 69

•

Oncorhynchus kisutch - Coho Salmon, Figure 18

In the vicinity of the gas pipeline corridor, coho salmon are found primarily in the Yukon, Chena and upper Tanana rivers. Adults migrate upriver from September to October and spawning takes place from October to November. Adults die shortly after spawning is completed. Eggs hatch in early spring, but the young (alevins) remain in their natal gravels for two to three weeks. Fry emerge from March to July and remain in freshwater to rear for one to two years, including streams and lakes located upstream of natal areas. Seaward migration of smolts generally occurs during and immediately following breakup. Coho salmon spend two to three years at sea before returning to spawn in their fourth or fifth year of life.

Site Specific Information

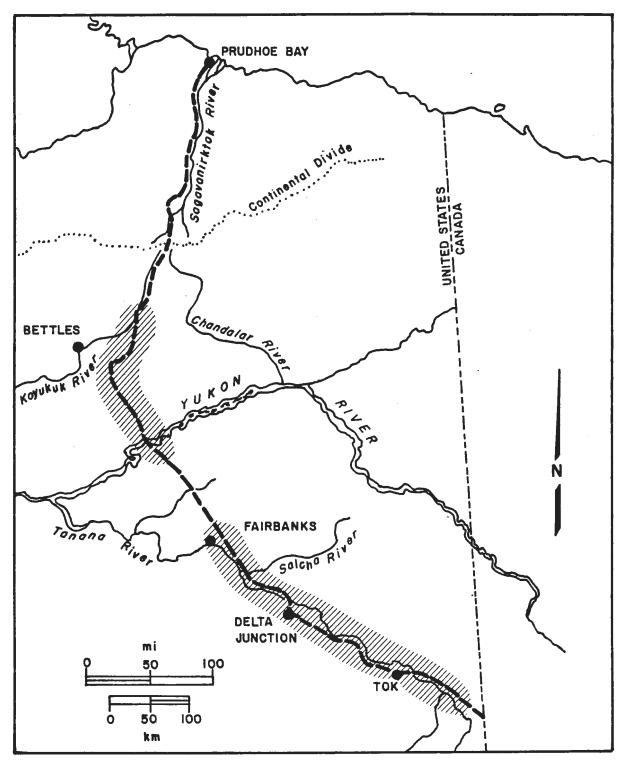


Figure 18. Known distribution of the coho salmon in the vicinity of the proposed gas pipeline.

Species Coho salmon (Oncorhynchus kisutch)

	Species	<u>Coho salmo</u>	n (Oncorhyn	<u>nchus kisu</u>	tch)	_											72
		line	Subsr.	Stream Vole	Stream Discom	Strend	Turbia.	Settleor	'empe	Barriers .	¹ Ce C	DH Ha	Oissolue .	Condu	49uoric Venoric	Ribarian Vegerian	To or out on the contract of t
	Migration	Sept- Oct	NA	2.44m/sec maximum		0.18m minimun			7.2- 15.6°C		· · · · · · · · · · · · · · · · · · ·			•	NA	NA	
	Spawning		Gravel, 13-102mm	0.3- 0.9m/sec		0.18m minimum, 0.3-0.38m typically			4.4- 9.4°C	NA	May spawn under ice						NA
	Egg Development and Emergence	Hatch 35-50 days after spaw ing, emerg Mar-July	n- Ie			NA			4.4- 13.3°C	NA						NA	NA
FRY	Feeding and Growth	Feed heavily in summer	Gravel							NA							Zooplank- ton, in- sects, mites
E E	Distribution and Abundance		Gravel to boulders	0.05- 0.24m/see	r	Shallow water in early sum- mer, pools in late			25.1°C upper lethal, 12-14°C prefered								
JUVENILE	Feeding and Growth	Feed heavily in summer	Gravel			S Utiline r				NA							Zooplank- ton, insects, fish fry
JUVE	Distribution and Abundance		Gravel to boulders			Shallow water in early sum- mer, pools in late		•	10-20°C	-	•		4.0- 11.3mg/1	•			
ADULT	Feeding and Growth					. summer				NA							Fish, crusta- ceans
AD	Distribution and Abundance								25.8°C upper leathal 11.8-14.6 prefered	c							

.

•

Species <u>Coho salmon (Oncorhynchus kisutch)</u>

		line	Subs.	Stream Leve	Stean Dison	Sree	Turbia	Serilen.	Tempe.	Barriers .	Ice Co	DH HO	Oissolus Other	Conque	Aquoric Very	Piparion Vegerion	Food Out on the food of the fo
	Migration	8,10,116 117,179	NA	207		117,207			207				<u> </u>		NA	NA	
	Spawning	8,10,32, 116,117, 129	117,207	117,207		207			207	NA	32						NA
	Egg Development and Emergence	10,117, 129				NA			116,117, 207	NA						NA	NA
FRY	Feeding and Growth	117	117							NA							116,117, 129
Ľ	Distribution and Abundance		117	207		117			117								
JUVENILE	Feeding and Growth	117	117					-		NA							116,117, 129
JUVE	Distribution and Abundance		117			J17			206,207				206,207			,	
ADULT	Feeding and Growth									NA							129,183
ADI	Distribution and Abundance								207								73

Oncorhynchus tshawytscha - King Salmon, Figure 19

King salmon that use streams along the proposed pipeline route are found primarily in the upper Tanana River drainages (Goodpaster, Salcha and Chena rivers) and middle Yukon River drainages (Prospect, Jim and Middle and South Fork Koyukuk rivers). King salmon destined for the aforementioned streams probably enter the Yukon River in late May and arrive on the spawning grounds in early July. Spawning peaks 20-30 July in middle Yukon River drainages and in early August in upper Tanana River drainages. After hatching and emergence from spawning redds, young king salmon generally remain in freshwater for two years before migrating to sea. Smolts begin their downstream migration during and immediately following spring breakup. King salmon remain at sea two to five years before returning to freshwater to spawn in their fourth to seventh year of life.

Site Specific Information

Spawning

Salcha River - peak spawning during last week of July 1974 (Ref. 25).

Salcha River - peak spawning during first week of August 1976 (Ref. 14).

- Jim, Prospect and Middle and South Fork Koyukuk rivers peak spawning occurs 20-30 July (Ref. 88).
- Salcha River fry emergence continued at least through 18 June 1976 and possibly through that entire month (Ref. 14).

Migration

Salcha River - adults entered river in early July 1974 (Ref. 25).

- Jim, Prospect and Middle and South Fork Koyukuk rivers adults begin arriving after 1 July (Ref. 88).
- Salcha River smolt out migration probably peaked before 25 May 1976 (Ref. 14).
- Jim, Prospect and Middle and South Fork Koyukuk rivers smolt out migration peaks during breakup (Ref. 88).

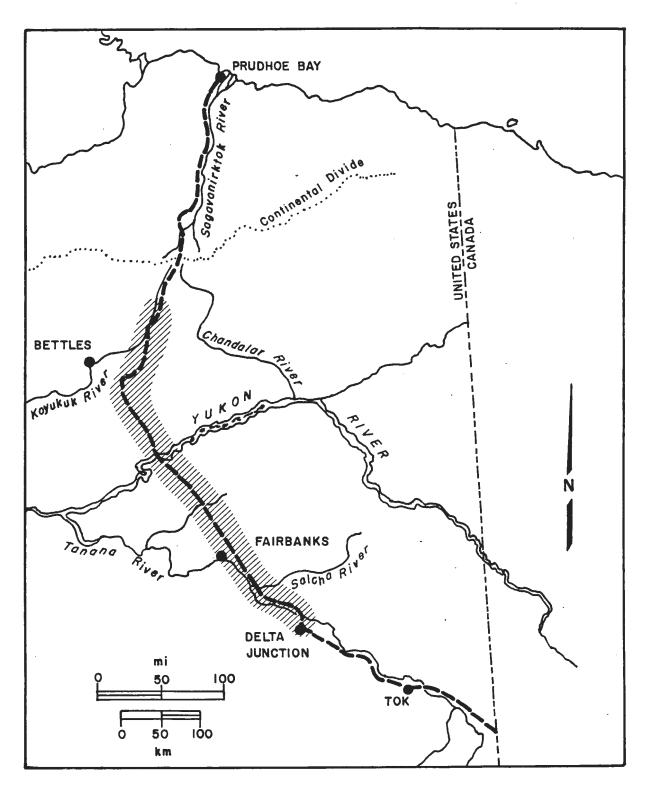


Figure 19. Known distribution of the king salmon in the vicinity of the proposed gas pipeline.

-

. .

	Species <u></u>	ing salmon	(Oncorhyn	ichus tsha	wytscha)	_												76
		line	Subs.	Stream Lean	Stream Discon	Streen	Turbic.	Settleor	Temper	Barriers to	Ice Co	DH DH	Oissoute	Condition	Aquaric Verality	Piparion Vegerion	Food Over Tood Over and Over	Quality
:	Migration	May- July	NA	2.44m/sec		0.24m minimum			3.3- 13.3°C					· · · · · · · ·	NA	NA		
	Spawning	July- Sept	13-102mm	0.32- 1.09m/sec		0.30m minimum		Silt load may inhibit spawning	5.6- 13.9°C	NA							NA	
	Egg Development and Emergence		may increase	Reduced velocity may increase mortality		NA		Silt load may inhibit develop- ment	5.0- 14.4°C	NA			2.5mg/1 minimum		· ·	NA	NA	
FRY	Feeding and Growth	2-3 weeks Rapid growth Mar-May							- -	NA							Insects, crusta- ceans	
Ľ	Distribution and Abundance			0.09- 0.46m/sec		May occupy deep water		Sediment loading may increase mortality	,				Less than 9.0mg/l increases mortality			Fry found hear brush piles and beaver		
JUVENILE	Feeding and Growth									NA						Todges	Insects, molluscs, fish	
JUVE	Distribution and Abundance												Less than 4.5mg/1 is avoided	٩				
ADULT	Feeding and Growth									NA								
AD	Distribution and Abundance								25.2°C upper lethal, 7.3-14.6°C prefered									

Species King salmon (Oncorhynchus tshawyscha)

	-	line	Suds.	Streon	Steam Dicean	Sree	Turbin.	Settlen.	'emper	Barriers .	10, 10, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	oh Dh	Oissolve Gissolve	Condi,	Aquaric View	Perorion Riborion Vegerion	Pood Of	olor Quality
	Migration	32,34,35 116,117, 129,162	NA	207		35,207			35,207					-	NA	NA		
	Spawning	32,35, 117,129	116,117, 207	207		116,207		35	207	NA							NA	
	Egg Development and Emergence	129	186	186		NA		186	116,117, 186,207	NA			186			NA	NA	
۲۲	Feeding and Growth	32								NA							14,129	
FRY	Distribution and Abundance			14,32, 35,207		14,32, 35		207			32		32,206			14		
NILE	Feeding and Growth									NA							116,117, 129,162	
JUVENILE	Distribution and Abundance												206,207			-		
JLT	Feeding and Growth									NA								
ADULT	Distribution and Abundance								207									77

•

Percopsis omiscomaycus - Trout-perch, Figure 20

Presence of the trout-perch in the vicinity of the proposed pipeline corridor is confined to the Yukon River. Little is known of the biology of this fish in river systems, however lake populations have been investigated. In the Yukon River spawning apparently occurs from late spring through summer as ripe specimens were taken at Circle, Alaska, on 28 June 1958. Timing of spawning of river populations is suspected to closely follow that of lake populations. The latter move into shallow clearwater tributaries of lakes to spawn at night in gravel and cobble substrate. The eggs adhere to the substrate and hatch in 10 to 20 days.

Site Specific Information

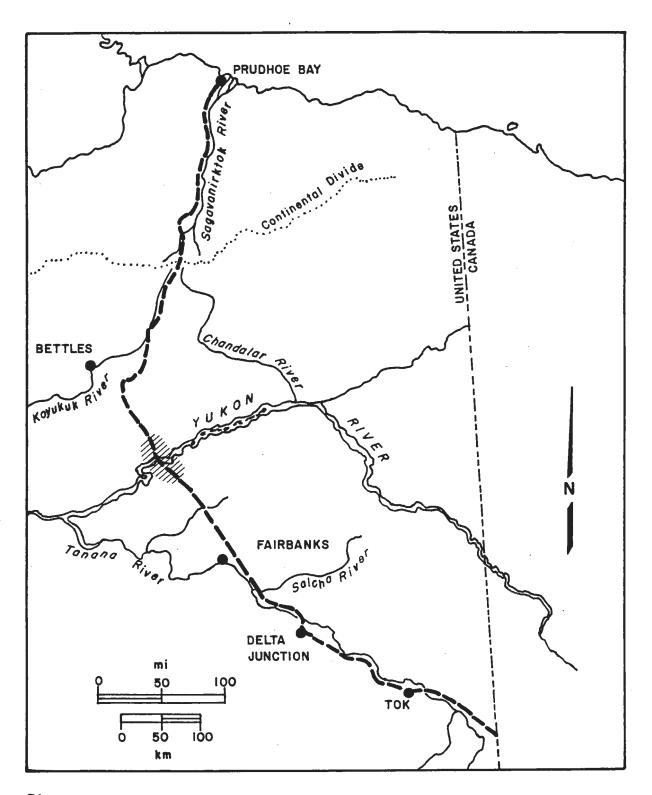


Figure 20. Known distribution of the trout-perch in the vicinity of the proposed gas pipeline.

Species Trout-perch (Percopsis omiscomaycus) 80 Food Quanting Stream Dears Riborion Vegetarion and arion Cover Bariers to Movers to Misemento Orion or ^{Temperolure} 200 Conductivity Serrie able Aquaric Vegeraric Stream Discharge Substrate 'ce Cover Dissolved Dissolved Turbidin Stream Velocity Time of Ha Beaver May 0.6m dam foun-NA Migration dation may NA NA inhibit migration May-Silt, 0.1-1.0m 4.5-Aug sand, and 20°C Spawning NA gravel NA Egg Development Hatch 20-] week 23°C after NA NA and NA NA spawning Emergence Feeding and NA Growth . FRY Distribution and Abundance Feeding and JUVENILE NA Growth Distribution and Abundance Aquatic Most • Feeding growth insects and during NA molluscs ADULT Growth summer algae lay occupy 0.10-. May occupy Distribution rocky 61m turbid and streams water Abundance

Species <u>Trout-perch</u> (Percopsis omiscomaycus)

		line	Subs.r.	Stream L'ean	Stream Dicam	Shere	Turbia	Settleor	Temps	Barriers .	/Ce Cc	DH Ha	O.Ssolue O.Ssolue	Condi.	Aquaric Vivity	Piparian Viparian Verian	Tood Outer	or outin
	Migration	202	NA	r		202				202					NA	NA		
	Spawning	116,117, 129,202, 203	117,202			116,117, 203			129	NA							NA	
	Egg Development and Emergence	129				NA			129,203	NA						NA .	NA .	
FRY	Feeding and Growth									NA				•				
E	Distribution and Abundance																	
JUVENILE	Feeding and Growth									NA								
JUVE	Distribution and Abundance														· · · · · · · · · · · · · · · · · · ·			
ADULT	Feeding and Growth	190								NA							116,117, 129	
ADL	Distribution and Abundance		117			117,129	117											81

Pungitius pungitius - Ninespine Stickleback, Figure 21

Ninespine stickleback are present in many waterbodies along the pipeline corridor north of the Brooks Range. Spawning generally takes place in shallow, well vegetated areas during spring and summer. Spawning may occur more than once in a season (Ref. 116). Eggs normally hatch within 7 days and the young disperse into nearby nursery areas.

Site Specific Information

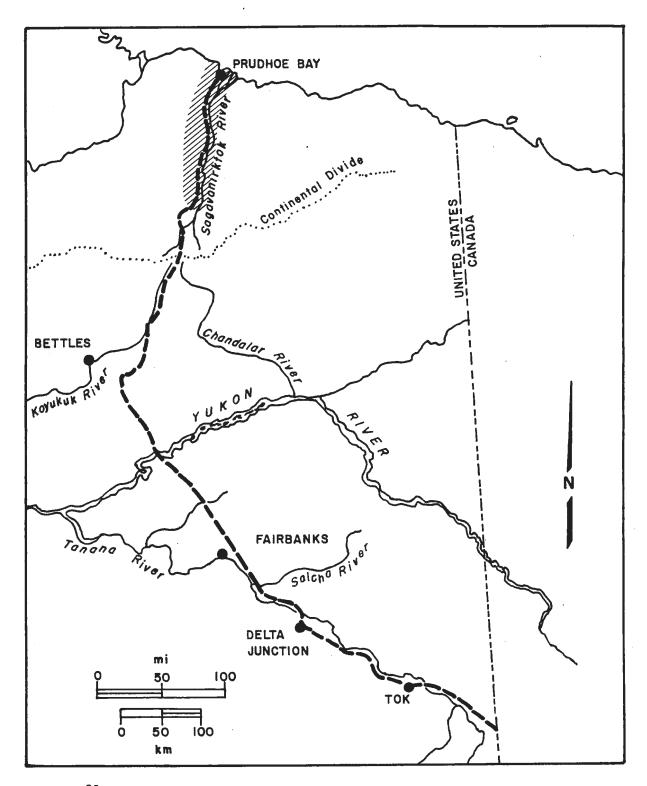


Figure 21. Known distribution of the ninespine stickleback in the vicinity of the proposed gas pipeline.

Species <u>Ninespine stickleback</u> (Pungitius pungitius)

		line	Subse,	Stream Vole	Stean Die an	Stren	Turbia.	Settlen.	Temp.	Barriers t	Ice Co	pH Ha	Olssolue. Other	Condu.	49uoric	Ribarian Vegerian	Food Over the contract of the	\$7
	Migration		NA							Low water crossing may impede migration					NA	NA		
	Spawning	May- July					· .		11-12°C	NA					Eggs deposited on aquatic vegetation		NA	
	Egg Development and Emergence	Hatch 1 week after spawning				NA			18°C	NA						NA	NA	
FRY	Feeding and Growth								3 -16 °C	NA							Insect larvae, Zooplank- ton	
Ē	Distribution and Abundance								3-16°C									-
JUVENILE	Feeding and Growth								3-16°C	NA							Insect larvae, Zooplank- ton	
JUVE	Distribution and Abundance								3-16°C				· · · · · · · · · · · · · · · · · · ·		۰.			
ADULT	Feeding and Growth								3-16°C	NA							Insect larvae, Zooplank- ton	
AD	Distribution and Abundance	Overwinten in deep water				May occur in lakes to 110m			3-16°C				Can with- stand low DO	Can with- stand hig salinity	Inhabits vegetat- ed stream margins			

84

Species Ninespine stickleback (Pungitius pungitius)

		, ine	Subset.	Stream Vole	Stean Disan	Sheen	Turbia	Settleor	Temper	Barriers r.	Ice Co	DH Ha	Oissolue.	Condi.	Aquaric Vivity	Piparian Vergerian	Food Cover	of or Quality
	Migration		NA							205	·				NA	NA		
	Spawning	116,117, 129							129 ,14 5	NA				<u>.</u>	116,117, 129		NA	
	Egg Development and Emergence	129				NA			129	NA						NA	NA	
FRY	Feeding and Growth								145	NA							145	
Ē	Distribution and Abundance								145									
JUVENILE	Feeding and Growth								145	NA			-				145	
JUVE	Distribution and Abundance							•	145									
ורד	Feeding and Growth								145	NA							116,117, 129,145	
ADULT	Distribution and Abundance	129 •				129			129,145				129	129	116			85

Salvelinus alpinus - Arctic Char, Figure 22

Arctic char are abundant in streams and lakes along the gas pipeline corridor draining into the Beaufort Sea but are only occasionally present in Yukon River drainages. Arctic char are generally replaced by Dolly Varden south of the Brooks Range to the Yukon River and in headwater streams of the upper Tanana River. Mature anadromous Arctic char, followed shortly by immature fish, generally enter freshwater streams (upstream migration) from August to September. Arctic char generally seek large rivers or perennial springs that flow year-round. Spawning takes place from mid-August to October. Adults may remain in spawning areas to overwinter but most move downstream to overwinter in lower reaches of spawning streams. Spawning areas must also provide overwintering habitat for eggs, since hatching occurs in spring or late winter. Emigration to the sea of adult and juvenile (smolts) char occurs shortly after breakup (June to early July). Arctic char generally remain near the mouths of natal streams and feed in estuarine waters before returning to freshwater in late summer and fall. Non-anadromous Arctic char have a similar life history as anadromous fish except that they remain in freshwater year-round.

Site Specific Information

Spawning

- Beaufort Sea drainges spawn in fall in spring fed and mountain streams (Ref. 105).
- Sagavanirktok River drainage eggs are deposited in late September 1972 (Ref. 102).
- Echooka, Ivishak and Lupine rivers and Accomplishment Creek spawning occurred from the last week of August to the third week of November 1971 (Ref. 101).
- Firth River drainage, Yukon Territory spawning from mid-August to late September (Ref. 110).
- Sadlerochit Spring, Arctic National Wildlife Refuge evidence suggests that non-anadromous dwarf Arctic char spawn late in the year since spawning had not occurred by early November (Ref. 108).
- Sagavanirktok River drainage fry began to emerge from spawning gravels in mid-June; hatching occurred in mid-April (Ref. 102).
- Canning River drainage, Spring CS-10 fry emerged from gravel from the last week of May to the first week of June 1973 (Ref. 102).

Firth River drainage, Yukon Territory - fry emerge from gravel in late May (Ref. 110).

Migration

- Sagavanirktok River migrations occur from breakup through September (Ref. 101).
- Lupine River upstream migration occurred from 15 August to 4 September 1971; run peaked 25 August 1971 (Ref. 101).
- Ivishak River most upstream migrants present by 3 September 1971
 (Ref. 101).

Ivashak River - upstream migrant spawners run peaked 21-25 August 1972; non-spawners run peaked 1-6 September 1972 (Ref. 102).

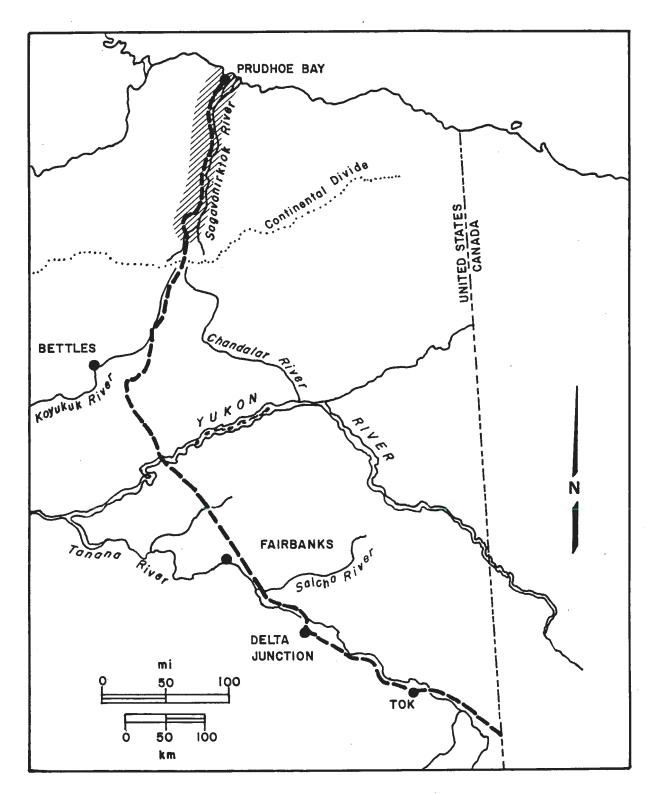


Figure 22. Known distribution of the Arctic char in the vicinity of the proposed gas pipeline.

Matrices for Arctic char

-

.

•

on following pages

.

,

Species Arctic char (Salvelinus alpinus)

		l'ine	Subset	Stream Vote	Stream Discom	Streen	Turbidi	Settleon	Tempa.	Barriers to	100 Ce Co	oh ha	Dissolve Other	Conduc	Aquaric Verinity	Piparian Vibarian Vegerian	radion to concorrent and cuontin	Quality
	Migration	To sea June-July, return Aug-Sept to spawn	NA	2.5- 3.0m/sec		1.0- 2.0m				Can leap falls l.5m high, blocked by 3.3m falls					NA	NA		
	Spawning	Aug- Oct	Gravel or rocks			1.0- 4.5m			0.5- 13°C	NA							NA	
	Egg Development and Emergence	Hatch in Apr, emerge May-June				NA			0-2.2°C typically 7.8°C maximum	'NA						NA	NĄ	
۲۲	Feeding and Growth	Rapid growth July-Sept								: NA							Insect larvae, amphipods	
FRΥ	Distribution and Abundance	Over- winter in springs	Hide among rocks and gravel	0.1- 0.5m/sec typically		Usually in water less than l.Om							About 9.4mg/1					
JUVENILE	Feeding and Growth		ť							NA							Insect larvae, amphipods	
JUVE	Distribution and Abundance	Over- winter in springs	Hide among rocks	,		More abundant in Jeeper pools					Over- winter near ice edge		About 9.4mg/1					
ADULT	Feeding and Growth								Slow growth at low temps.	NA		Low pH may slow growth rate					Insect larvae, molluscs, crusta- ceans,fish	
ADI	Distribution and Abundance	Over- winter in springs				2.0m or deeper	·				Over- winter near ice edge		About 9.4mg/1	May Inhabit saline water				

Species Arctic char (Salvelinus alpinus)

		, interest	Subs.	Stream Vere	Stream Discon	Streen Streen	Turbic:	Serileou	Tempa Tempa	Barriers t	/ce Co	oth der	0:500L	Conduc	Aquoric Very	Piparion Vegerion	Food Official	of or Quality
	Migration	106,107, 116,117, 149,170	NA	170		170			107	170			<u></u>		NA	NA		
	Spawning	107,116, 117,129, 166,170, 192,204	116,117 129			117			117	NA					in	<u></u>	NA	
:	Egg Development and Emergence	107,117, 129,204				NA			117,129 204	NA	. 1					NA	NA	
۲۲	Feeding and Growth	204								NA							204	-
FRΥ	Distribution and Abundance	107	116,204	170		170,204							204					•
JUVENILE	Feeding and Growth									NA							116,117, 204	
JUVE	Distribution and Abundance	107	116			204					204		204					
ADULT	Feeding and Growth	•							170	NA		182					116,117, 129,166, 170,182	
AD(Distribution and Abundance	107				170					204		204	116,170, 192,204				16

Salvelinus malma - Dolly Varden, Figure 23

Along the proposed pipeline route, Dolly Varden are found primarily in clear headwater streams of the Alaska Range in the upper Tanana River drainage and the southern Brooks Range in the middle Yukon drainage. Fish from both regions appear to be non-anadromous and spawn in September and October. Dolly Varden were seen spawning in Schroeder's Spring (Overwintering Creek), a Dietrich River tributary, on 13 September 1976 (Ref. 11). Dolly Varden in both regions are usually associated with clear spring water areas and only minor seasonal movements occur. Dolly Varden in the vicinity of the proposed pipeline are small, rarely exceeding 25 cm in length.

Site Specific Information

None.

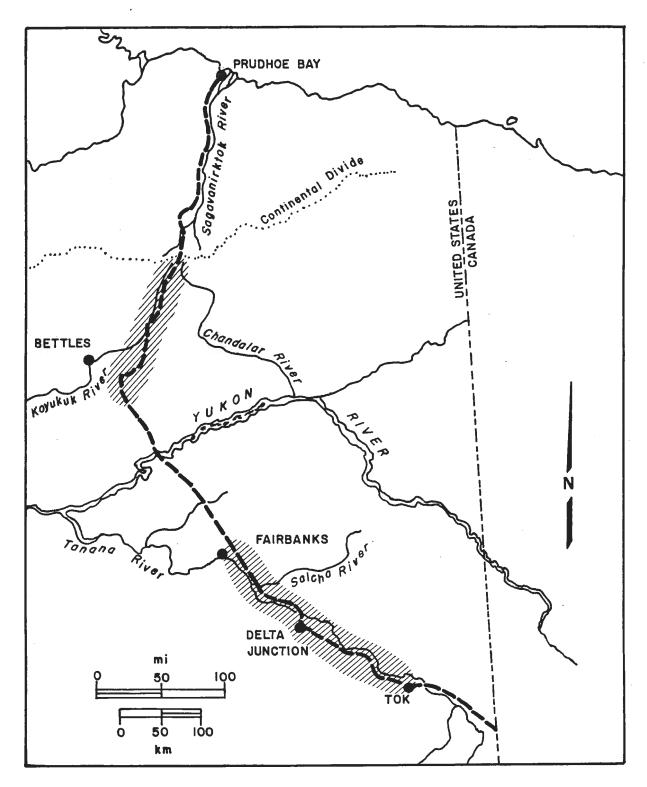


Figure 23. Known distribution of the Dolly Varden in the vicinity of the proposed gas pipeline.

94

Species Dolly Varden (Salvelinus malma)

		line	Subse .	Stream Leicon	Steon Dieon	Sire.	Turbia.	Serfler	Temp.	Barriers to	Ice C.	oh war	0.550µ	Condi	Aquaric Veralic	Piparion Vegarion	Food Out
	Migration	May- Dec	NA												NA	NA	
	Spawning	Aug- Nov	6-50mm	Moderate current		At least 0.3m	· · ·		5.5- 7.8°C	NA							NA
	Egg Development and Emergence	Hatch Mar-Apr, emerge Apr-May			,	NA			8.5°C	NA						NA	NA
FRY	Feeding and Growth	Rapid growth during first 6 months								, NA							Insects, crusta- ceans
Ŀ	Distribution and Abundance		Grave1														
JUVENILE	Feeding and Growth									NA							Insects, spiders, fish eggs
JUVE	Distribution and Abundance		Grave1														
ADULT	Feeding and Growth									NA							Snails, fish eggs. fish
ADL	Distribution and Abundance	Over- winter in lakes	Mud to gravel				Rarely inhabit muddy water		•								

Species Dolly Varden (Salvelinus malma)

		ine.	Subs.	Stream	Steam Dison	Stree Stree	Turbic:	Settleon	enpe	Barriers t	/ce Co	ph Ha	Oissolue Otholue	Condi.	Aquaric Very	Piparian Vegrian Serian	Too Cover	ouoliny
-	Migration	117,129, 139,147, 192	NA												NA	NA	·	
	Spawning	117,129, 139,147	117,129	117		129			117,129	NA							NA	
	Egg Development and Emergence	116,117, 129				NA			129	NA						NA	NA	
FRY	Feeding and Growth	116,117, 138							· .	NA							129,138	
	Distribution and Abundance		זוז															
JUVENILE	Feeding and Growth									NA					-		117,129, 138,182	
JUVE	Distribution and Abundance	•	117															
ADULT	Feeding and Growth									NA	· ·						116,117, 129,138, 182	
ADL	Distribution and Abundance	117,147	117				116								-			95

Salvelinus namaycush Lake Trout, Figure 24

In Alaska, the distribution of the lake trout is confined to Beaufort Sea drainages of the Brooks Range and areas within the Alaska Range south to the coast. Lake trout are only documented along the proposed gas pipeline corridor in Stump Creek, Roche Moutonee Creek and the Atigun River, all of which are Sagavanirktok River drainages. Adult lake trout favor deep, cool waters of lakes during summer but move into shallow shoreline areas to spawn in fall. Eggs remain within gravel and rubble substrates during winter and hatch after four to five months. After spawning, adult lake trout disperse throughout lake or river systems. Young trout remain in shallow water along the shores for several years before moving into deeper waters.

Site Specific Information

None.

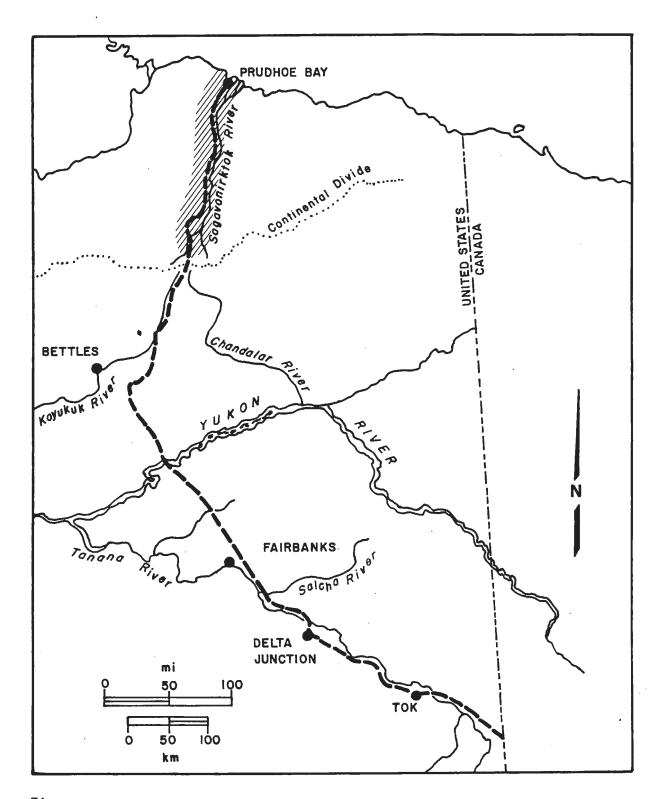


Figure 24. Known distribution of the lake trout in the vicinity of the proposed gas pipeline.

Species Lake trout (Salvelinus namaycush)

		I'me	Subst.	Stream Vole	Steam Die am	Streed	Turbia:	Serrice of	empe.	Barriers .	Ingriter to	-ano Ha	0:5501	Cond.	Aquaric View	Piparian Vibarian Vegerian	Bod Current
Migrat	tion		NA											;	NA	NA	
Spawn	-	Late summer to early fall	Gravel, boulders			0.3- 36.0m	· .		8.9- 13.9°C	NA							NA
Egg Develop and Emerge	g pment d ence	Hatch Feb-Mar				NA			0.3- 1.0°C	NA						NA	NA .
Feedi and Grow	d I						•			NA							Crusta- ceans
Distrib and Abunda	L F																
ш Feedi and Grow	ing 1 /th									NA							Crusta- ceans
and Grow Distribu Abunda	1 1					Prefer shallow lake margins											
Feedi and Growt	l t									NA							Mysids, insects, snails, fish
⊂	1					Inhabits deep cold lakes and clear streams							- · ·				

86

Species ______ (Salvelinus namaycush)

		lime	Subst.	Stream Velo	Stream Die am	Streen	Turbic:	Settleon.	Tempe	Barriers t	Ice Co	DH Ha	Oissolus Other	Condi,	Aquaric Vinity	Piparian Vegerian	Food Cover	Villor Outin
	Migration		NA												NA	NA		
	Spawning	116,117, 129	116,117, 129			117,129			117	NA							NA	
	Egg Development and Emergence	116,117, 129				NA			117	NA				· · · · · · · · · · · · · · · · · · ·		NA	NA	
FRY	Feeding and Growth									NA							129	
L	Distribution and Abundance												•					
NILE	Feeding and Growth									NA							116,129	
JUVENILE	Distribution and Abundance	•				116,117												
ADULT	Feeding and Growth	•								NA	·						116,117, 129,158, 190	
ADL	Distribution and Abundance			•		116,117												66

.

Stenodus leucichthys - Sheefish (Inconnu), Figure 25)

Sheefish or inconnu are found in streams of the Yukon and Tanana river drainages. They inhabit primarily the Chena, Chatanika, Tatalina, Tolovana, Yukon, Ray, Dall, Kanuti and Koyukuk rivers and Hess Creek. Sheefish appear to utilize the lower reaches of many of the aforementioned streams more heavily than upper reaches where the proposed pipeline corridor is often situated. They begin a gradual upstream spawning migration after spring breakup. This migration may last several months, with non-spawners traveling to summer rearing areas and spawners reaching spawning grounds as early as August. Spawning occurs from late September to early October and a rapid downstream post-spawning migration to overwintering areas occurs shortly afterward. Anadromous sheefish overwinter in estuarine areas near the mouths of large rivers which probably do not occur within the proposed pipeline corridor. Nonanadromous (i.e., Minto Flats sheefish) populations overwinter in large, deep rivers.

Site Specific Information

Spawning

Chatanika River - spawning occurs in late September and early October (Ref. 113).

Upper Kobuk River - spawning occurs in late September (Ref. 86).

Koyukuk River - spawning occurs in September and October (Ref. 11).

Migration

Minto Flats/Chatanika River - sheefish enter Minto Flats in late May after breakup; sheefish reach spawning grouns on Chatanika River in late August and September; rapid downstream migration following spawning (Ref. 113).

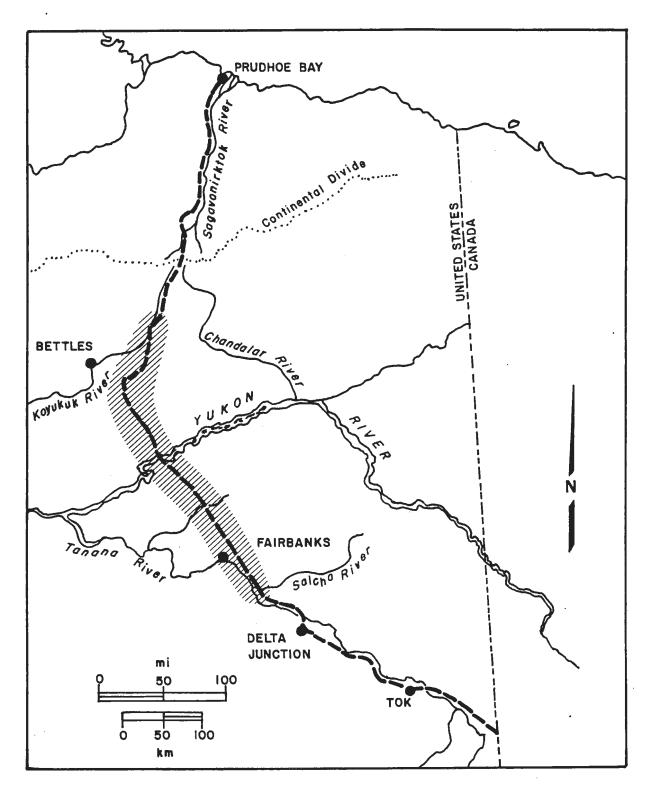


Figure 25. Known distribution of the sheefish in the vicinity of the proposed gas pipeline.

Species Sheefish (Stenodus leuichthys)

		line	Subs.	Stream Leicen	Steon Diceon	Streen	Turbin.	Settleor	Tempo	Barriers to	Ice Co	DH HG	Oissolue.	Conque	Aquaric Vivity	Ribarian Vegerian	Food O.	olor Quality
	Migration	June- Sept	NA							Water falls may stop migration	Will out-		· · · · · · · · · · · · · · · · · · ·	<u> </u>	NA	NA		
	Spawning	Sept- Oct	Sand and gravel	Swift streams		1-3m	Clear streams		1.4- 4.6°C	NA	May spawn under ice						NA .	
	Egg Development and Emergence	Feb- Apr				NA	-			NA						NA	NA	
FRY .	Feeding and Growth									NA							Plankton, insect larvae	
L.	Distribution and Abundance				· · ·													
JUVENILE	Feeding and Growth					-				NA							Aquatic insects, crusta- ceans	
JUVE	Distribution and Abundance							,										,
JLT	Feeding and Growth	•				May feed in shallo water 0.6-1.5m	May feed v in silty water			NA							Fish, isopods, mysids	
ADULT	Distribution and Abundance	ø	Gravel	Slow moving water			Common in muddy water						Avoids DO deficient water	Can with- stand brackish water 6-7ppt				

102

Species <u>Sheefish (Stenodus leuichthys)</u>

		line	Subs.	Stream Leite	Sream Die am	Stree	Turbia.	Settleon	Temps	Barriers .	Ice Co	DH Ha	Oissolue Othore	Condi.	Aquaric Vivity	Riborion Vegerion	Projection Food Over	or Quality
	Migration	83,113, 116,117	NA							86	86,113			<u>.</u>	NA	NA		
	Spawning	86,113, 116,117, 129	86,116, 129	86,129	· · · ·	86,129	86,129		86,129	NA	86,117						NA	
	Egg Development and Emergence	129				NA				NA						NA	NA	
FRY	Feeding and Growth									NA				•			86,129	
	Distribution and Abundance																	
JUVENILE	Feeding and Growth	•						-		NA							86,116, 117,129, 150	
JUVE	Distribution and Abundance																	
ADULT	Feeding and Growth			•		134	134			NA							86,116, 117,129, 134	
ADL	Distribution and Abundance		86	86			116						113	86				103

.

 $\overline{\omega}$

Thymallus arcticus - Arctic Grayling, Figure 26

Arctic grayling are found throughout the proposed pipeline corridor and are the most frequently occurring species. Adult grayling begin their upstream spawning migration as early as 10 April in some streams and juveniles follow shortly thereafter. Spawning generally lasts 3-15 days and falls within the period 10 May to 20 June depending upon the region (see site-specific information below). The timing of migration and spawning for grayling in streams north of the Brooks Range generally appears to be two weeks after the same events in more southerly Alaskan streams. Adults may remain in the vicinity of spawning grounds to rear but most spend the summer months in other tributaries or the mainstem of the system. Juvenile and young-of-the-year grayling generally remain in natal streams until near freeze-up when all grayling begin moving downstream into large rivers or lakes to overwinter.

Site Specific Information

Spawning

- Little Salcha River spawning occurred 13 May-16 June 1952 (Ref. 83).
- Chatanika River spawning occurs mid-May to early June (Ref. 84).
- Mineral Lake Outlet spawning began on 18 May 1969 and 1970 (Ref. 39).
- Mineral Lake Outlet spawning occurred from 31 May to 7 June 1971 (Ref. 93).
- Goodpaster River spawning began 11 May near mouth and 18 May approximately 50 km upstream in 1973 (Ref. 95).
- Upper Chena River all adult female grayling were spawned out by 22 May 1970 (Ref. 39).
- Upper Chena River spawning began 26 May 1973 (Ref. 94).

Jim River - grayling spawned 28 May to 11 June 1972 (Ref. 21).

Tea Lake Outlet - spawning occurs from late May to early June (Ref. 11).

- Kuparuk River spawning completed by 14 June (Ref. 11).
- Happy Valley Camp Creek spawning occurred 1-10 June (Ref. 11).
- Weir Creek, Kavik River drainage spawning occurred 11-18 June 1973 (Ref. 106).

Chatanika River - grayling first hatch 1 July (Ref. 84).

Upper Chena River - first fry found 18 June 1970 (Ref. 39).

- Jim River grayling hatched 20 June to 4 July 1972 (estimated) (Ref. 21).
- Happy Valley Camp Creek fry emerged 25 June (Ref. 11).
- Weir Creek, Kavik River drainage fry emerged late June and early July 1973 (Ref. 106).
- Tea Lake Outlet hatching is completed by mid-July (Ref. 11).

Migration

- Shaw Creek first grayling captured 15 March 1953; major immigration took place 12-23 April in 1952 and 1953 (Ref. 83).
- Little Salcha River major immigration took place 4-13 May 1952; stream was ice free 15 May 1952 (Ref. 83).
- Little Salcha River major immigration took place 28 April to 9 May 1953; stream was ice free 16 May 1953 (Ref. 83).
- Chatanika River Spring migration occurs 15 May to 10 June (Ref. 84).
- Mineral Lake Outlet grayling first entered stream 19 May 1971; major immigration began 25 May 1971 (Ref. 93).
- Upper Chena River major upstream migration began 20 April 1973 (Ref. 94).
- North and South Fork Goodpaster River first upstream migrant caught. 16 April 1973; grayling moving steadily by 29 April 1973 (Ref. 95).
- Poplar Creek near Gulkana River adult grayling began moving into stream 14 May 1972; spawning run lasted 12 days (Ref. 21).
- Unnamed Tributary of Jim River grayling began upstream movement before 25 May 1972 (Ref. 21).
- Prospect Creek upstream spawning migration began 2 June 1972 (Ref. 21).
- Weir Creek, Kavik River drainage grayling first entered stream 7 June 1973 (Ref. 106).

Chatanika River - downstream movement of fry occurs 1 August to 1 September (Ref. 84).

,

- Rosie Creek heaviest fall emigration occurred 31 August to 4 September 1975 (Ref. 34).
- Organo Creek heaviest fall emigration occurred 25-29 August 1975 (Ref. 34).
- Prospect Creek most adult grayling had left stream by 15 October 1972 but immatures were still common (Ref. 21).
- Weir Creek, Kavik River drainage peak out migration of fry and juveniles occurred 13-21 September 1973 prior to freeze-up (Ref. 106).

Lupine River - downstream migration began 2 September 1971 (Ref. 101).

.

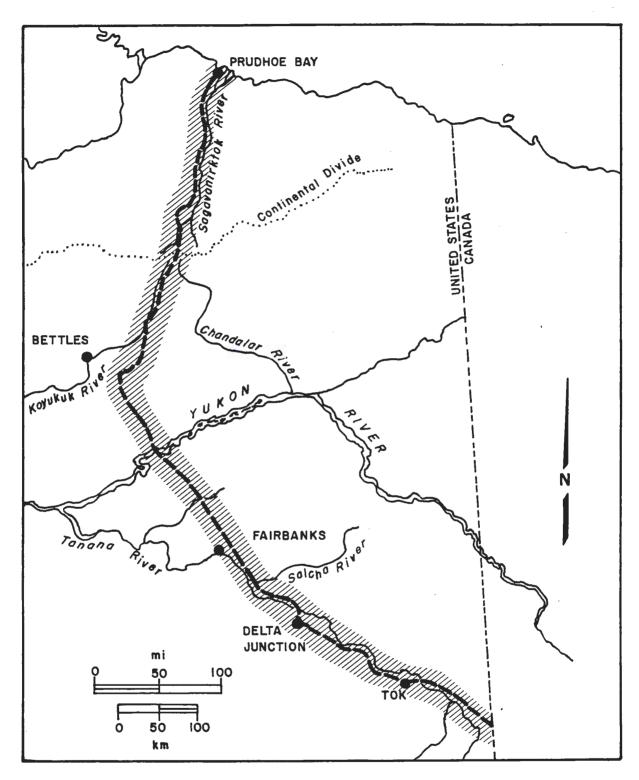


Figure 26. Known distribution of the Arctic grayling in the vicinity of the proposed gas pipeline.

	Species _	<u>Arctic gra</u>	vling (The	mallus are	cticus)	_												108
		Time	Subs.	Stream Ver	Stream Dieam	Stree	Turbin.	Settlen.	Tempo	Barriers t	Ice Co	DH Her	Oissolue.	Condi	49401ic	Ribarian Vegerian	Food Our	or aniny Country
	Migration	April after break up	NA			0.25- 0.50m			0-4°C	Water falls may block migration	Begin migration			· ·	NA	NA		
	Spawning	April- June	Sand, gravel, rocks 5-76mm	riffles	1-17m ³ /sec	0.20- 0.25m	Rarely spawns in turbid waters		4-11.5°C	NA		,		,	May spawn near vegetated areas		NA	
	Egg Development and Emergence	Hatch 11-31 days afte spawning		High flow can wash- out eggs		NA		•	1-11.5°C	NA						NA	NA	
FRY	Feeding and Growth	Rapid growth in summer							No growth at O°C	NA							Zooplank- ton, benthic inverte- brates	
Ŀ	Distribution and Abundance	Small streams in summer		Prefers low flow		0.25- 0.5m												
NILE	Feeding and Growth	Rapid growth in summer								NA	-						Insect larvae	
JUVENILE	Distribution and Abundance	Small streams in summer		Prefers low flow		0.25- 0.5m					May congregate at edge of ice							
JLT	Feeding and Growth	•				Tend to feed in pools				NA							Insects, amphipods, molluscs	
ADULT	Distribution and Abundance	Small streams in summer	Inhabits rocky shores	Prefers low flow		0.25- 0.5m	Prefers clear water		Prefers cold water		May congregate at edge of ice							

Species Arctic grayling (Thymallus arcticus)

		line	Sudsy.	Stream Velo	Stean Diean	Ster	Turbin.	Settleor	Tempa of	Barriers r.	/ce Co	oh ha	O'SSOL	Conduc	49uoric	Riporion Vegerion	Food Cover	olor Domin
	Migration	83,84,85 106,117, ·204	NA			106			84,106, 117,204	204	83,106, 117			,	NA	NA		
	Spawning	21,83,85 116,117, 129,141, 159,181, 204	86,116, 117,129, 159	84	84,106	84	83,84, 106		84,106, 117,204	NA					117	••••••••••••••••••••••••••••••••••••••	NA	
	Egg Development and Emergence	106,117, 129,159 204		159		NA			83,84, 117,204	NA						NA	NA	-
FRY	Feeding and Growth	84,106, 191			•				204	NA							117,204	
Ē		88,84,85, 106		85		85,106	· ,						l					
JUVENILE .	reeding	84,206							-	NA							85,117	
JUVE	Distribution and Abundance	106,204		85,106		85,106				,	106							
ADULT	Feeding and Growth					194				NA	•						83,84,85, 116,117, 129,204	
ADI	Distribution and Abundance	106,204	116,117	85		85,106, 117	85,116 117		21,83, 117		106,204							109

PART II

SUMMARY OF FISH USE AND PRELIMINARY RECOMMENDATIONS FOR TIMING OF CONSTRUCTION ACTIVITY

INTRODUCTION

A tabular summary has been derived from evaluation of all available fisheries data pertinent to construction of the gas pipeline by Northwest Alaskan Pipeline Company. This summary includes documented fish presence, use and recommendations that prioritize the period or periods of year when instream construction would have the least impact on aquatic fauna found at individual waterbody crossings. These recommendations can aid in preconstruction planning, design and construction scheduling.

Recommendations for timing of construction activity were based on all available fisheries data, including general and site-specific life history information for indigenous species (see Part I of this report), professional judgement and knowledge of the region traversed by the gasline. Recommendations are presented as 'preferred' and 'alternate' time periods. In general, preferred timing of construction avoids critical (instream disturbance might result in a fairly significant mortality to a portion of the population) and sensitive (instream construction should be limited; effects of disturbance variable) periods in fish life histories. Alternate recommendations avoid critical periods but may encompass sensitive times when fish are present (rearing). Some waterbodies are critical and/or sensitive to fish year-round. In such cases, recommendations indicate the period (or periods) that would least impact the aquatic fauna.

The words 'critical' and 'sensitive' are relative terms used to compare the importance of fish habitat to fish and the potential for adverse effects to fisheries resources. When habitat is utilized by fish for spawning, wintering, migrating or rearing, the habitat is considered critical and/or sensitive. An explanation of these fish uses and an assessment of their importance to fish populations follows:

<u>Spawning</u>: For the purposes of this report, spawning includes the spawning act, egg incubation, hatching and pre-emergent fry stages of fishes. Spawning habitat has been identified by the presence of young-of-the-year or pre-spawning, ripe or post-spawning adults. Spawning is a time of site-specific use of habitat and is considered a non-mobile activity. Consequently, spawning areas are extremely vulnerable to disturbance. Therefore, for the purpose of making recommendations, spawning is considered a critical fish use.

<u>Wintering</u>: Wintering is the use of habitat by fish (any life history stage, egg to adult) during some part of the winter period (generally freeze-up to break-up). Some waterbodies are undoubtedly used for only a short period (early winter use areas) while others provide good habitat for fish from freeze-up to break-up (overwintering areas). Wintering is generally site-specific and may involve non-mobile life history stages of fish. Wintering areas then, are highly vulnerable to disturbance, and the the purpose of this report, wintering is considered a <u>critical</u> fish use.

<u>Migrating</u>: Migrating is the use of aquatic habitat by fish for moving between seasonal use areas and/or habitats. Migrating fish are by definition mobile and may be capable of moving to avoid or reduce the effects of physical disturbance. However, disruption of major upstream spawning migrations or major emigrations, prior to freeze-up, could have extremely detrimental, and in some cases, lethal effects on fish populations (e.g., the blockage of a small tundra stream just prior to freeze-up would trap fish in upstream areas that soon become dry or freeze to the bottom during winter). Long-term seasonal migration and short-term movements associated with feeding and social behavior may not be so adversely affected. For the purpose of this report, migrating may be <u>sensitive</u> or <u>critical</u> depending upon the magnitude and significance of the migration.

<u>Rearing</u>: All waterbodies containing fish are considered rearing areas. Rearing fish are generally mobile and can often move to avoid or reduce the impact of physical disturbance. Fish mobility may vary with species, size, behavior and physical conditions within the stream, however. For example, fry are usually not as mobile as adults; some fish are sedentary while others are highly mobile; and, turbidity could affect species reaction to a disturbance. For the purpose of this report, rearing is considered a <u>sensitive</u> fish use.

For the purpose of making recommendations regarding timing of construction activity, the gasline corridor has been divided into three large geographical regions: Region I, Beaufort Sea to the Continental Divide of the Brooks Range; Region II, Continental Divide of the Brooks Range to the Yukon River; Region III, Yukon River to the Canadian Border. The following broad temporal guidelines for recommendations were developed for each gasline corridor region based on fish use habitat.

Region I Region II Region III	l May-20 July 15 April-15 July 1 April-15 July (early breakup streams) 15 April-15 July (late breakup streams)	A critical period for most streams due to the occurrence of major spring migrations and spring spawning (primarily grayling).
Region I Region II Region III	20 July-25 August 15 July-25 August 15 July-1 September	A sensitive period. Fry of spring spawning species have emerged and major fall emigrations have not yet begun. Fish are mobile at this time and can move

to avoid or reduce effects of

disturbance.

Region I	25 August-1 October (small streams) 25 August-15 October (large streams)	A critical period for all streams. Fish must emigrate from streams that do not provide winter habitat prior
Region II	25 August-1 October (small streams) 25 August-15 October (large streams)	to freeze-up. Major upstream migrations and spawning of fall spawning species occurs in streams that provide over-
Region III	l September-1 November	wintering habitat.
Region I	l October-l May (small streams) 15 October-l May (large streams)	A preferred period for con- struction in many streams that do not provide winter habitat. These streams generally are dry
Region II	15 October-15 April (small streams) 1 November-15 April (large streams)	or freeze to the bottom during winter. This is a critical period for fish overwintering in springs, large rivers and
Region III	<pre>1 November-1 April (early breakup streams) 1 November-15 April (late breakup streams)</pre>	lakes.

Due to the immense number of waterbodies (primarily streams) traversed by the proposed gasline, a wide spectrum of stream types is encountered (i.e., size, flow regime, species present, water source, water chemistry, etc.). Many streams are similar in nature and can be adequately protected by the guidelines developed above. However, each waterbody is unique and not all fall into such clearly definable categories. Little information is available for some streams, making specific detailed recommendations improbable. In addition, recommendations must take into account natural variability (i.e., effects of weather on fish and their environment). Consequently, recommendations for timing of construction activity presented in this report are considered conservative and favor fisheries resources when adequate information is not available to properly assess the fishery resource status of the waterbody involved. Recommendations are based on biological considerations only and do not take into account other aspects of a large construction project (i.e., engineering, economics, etc.). It is important to note that recommendations in this report can be more flexible if (1) suitable mitigative measures alleviate the particular fisheries concerns, or (2) additional data clarifies the fish use status of some streams.

All waterbodies crossed or potentially affected by the proposed gas pipeline route are presented in a south to north geographic sequence beginning at the Alaska/Canada border and ending at Prudhoe Bay. The appropriate Northwest Pipeline Stream Identification (NPSI) number and Northwest Pipeline River and Floodplain Crossing (NPRX) number has been used to identify each waterbody crossing or waterbody potentially affected by pipeline construction. Site specific fishery information may be found in Part I.

Fish species are abbreviated following Rockwell and Johnson (Ref. 11). For ease of reference, fish species found in the study area and appropriate symbols are as follows:

AB	Alaska blackfish (Dallia pectoralis)
AC	Arctic char (Salvelinus alpinus)
AL	Arctic lamprey (Lampetra japonica)
BB	Burbot (Lota lota)
BC	Bering cisco (Coregonus laurettae)
BW	Broad whitefish (Coregonus nasus)
СА	Arctic cisco (Coregonus autumnalis)
CD	Sculpin (Cottus sp.)
CI	Cisco (Coregonus sp.)
CN	Slimy sculpin (Cottus cognatus)
CS	Least cisco (Coregonus sardinella)
DS	Chum salmon (Oncorhynchus keta)
DV	Dolly Varden (Salvelinus malma)
GR	Arctic grayling (Thymallus arcticus)
BW	Humpback whitefish (Coregonus pidschian)
IN	Inconnu (Stenodus leucichthys)
KS	King salmon (Oncorhynchus tshawytscha)
LC	Lake chub (Couesius plumbeus)
LS	Longnose sucker (Catostomus catostomus)
LT	Lake trout (Salvelinus namaycush)
NP	Northern pike (Esox lucius)
PS	Pink salmon (Oncorhynchus gorbuscha)
RW	Round whitefish (Prosopium cylindraceum)
SB	Stickleback (Family Gasterosteidae)
S9	Ninespine stickleback (Pungitius pungitius)
SK	Sucker (Catostomus sp.)
SS	Coho salmon (Oncorhynchus kisutch)
TP	Trout-perch (Percopsis omiscomaycus)
WF	Whitefish (Coregonus or Prosopium sp.)
X	Fish present but species not identified
~	, ton present but spectes not radiatined

5

187

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Unnamed Creek	131-2	6-227.03	None	None	1 Jan-31 Dec	None necessary	Construction activity may affect fish in downstream areas
Scottie Creek	131-1	6-227	BB,HW,LS, NP	Migrating Rearing Wintering	15 Jun-1 Sep	1 Sep-1 Nov	This stream is important to fish year-round
Desper Creek	130-1	6-226	NP	Rearing	1 Nov-15 Apr	15 Jun-1 Sep	Data gap present
Unnamed Creek	129-5	6-225.01	None	None	l Jan-31 Dec	None necessary	
Sweetwater Creek	129-4	6-225	None	None	l Jan-l Dec	None necessary	
Unnamed Creek	129-3	6-224	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	129-2	6-223	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	129-1	6-222	GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Unnamed Creek	128-2	6-221	None	None	1 Jan-31 Dec	None necessary	
Unnamed Creek	1281	6-220	None	None	l Jan-31 Dec	None necessary	

•

			Fish Species	Fish Use	Recomme		
Waterbody	NPRX	NPSI	Documented	Documented	Preferred	ruction Activity Alternate	Comments
Gardiner Creek	127-	6-219	CN,GR,LS	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Tenmile Creek	126-1	6-218	None	Unknown	l Nov-15 Apr	15 Apr-31 Oct	Good habitat but numerous surveys have failed to document fish use
Silver Creek	125-1	6-217	NP	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gaps present
Unnamed Creek	124-3	6-216.01	None	None	l Jan-31 Dec	None necessary	
Lethe Creek	124-2	6-216	GR,NP,X	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Beaver Creek	124-1	6-125	GR,LS,RW	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Unnamed Creek	123-2	6-214.01	None	None	1 Jan-31 Dec	None necessary	
Unnamed Creek	123-1	6-213.01	GR	Rearing	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Unnamed Creek	122-2	6-213	None	None	1 Jan-31 Dec	None necessary	

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Bitters Creek	122-1	6-212	CN,GR,LS NP,RW,WF	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov	No fish at gasline crossing but construcțion may affect fish downstream
Unnamed Creek	121-2	6-210.02	None	None	l Jan-31 Dec	None necessary	Data gap present
Unnamed Creek	121-1	6-210.01	None	None	1 Jan-31 Dec	None necessary	Data gap present
Unnamed Creek	119-2	6-210	None	None	1 Jan-31 Dec	None necessary	· · · · · · · · · · · · · · · · · · ·
Unnamed Creek	119-1	6-209	None	None	l Jan-31 Dec	None necessary	
Tanana River	118-2	6-207	BB,CN,GR, HW,LC,LS, NP,RW	Migrating Rearing Spawning Wintering	15 Jun-1 Sep	None	This stream is important to fish year-round
Tanana Overflow	118-1	6-206	None	None	l Jan-31 Dec	None necessary	
Tok River	117-2	6-205	BB,CN,GR, LC,LS,RW, WF	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Tok Overflow	117-1	6-204	None	None] Jan-3] Dec	None necessary	· · ·
Crystal Slough Creek	114-1	6-203.03	CN,GR,NP, LS,X	Migrating Rearing Spawning	l Nov-l Apr	<pre>15 Jul-l Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-l Sep</pre>	Good habitat during winter bu no fish have been caught

\$*** \$

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recommended Timing for Construction Activity Preferred Alternate		Comments
Unnamed'Creek	113-4	6-203.01	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	113-3	6-203	None	None	l Jan-31 Dec	None necessary	· · · · · · · · · · · · · · · · · · ·
Moon Lake Tributary	<u>`</u> 113-2	6-202	None	None	l Jan-31 Dec	None necessary	
Yerrick Creek	113-1	6-201	CN,DV,GR, R₩	Migrating Rearing Wintering	15 Jul-1 Sep	1 May-1 Nov	This stream is important to fish year-round
Unnamed Creek	112-10	6-200.01	None	None	1 Jan-31 Dec	None necessary	·
Unnamed Creek	112-9	6-200	None	None	l Jan-31 Dec	None necessary	
Cathedral Rapids Creek #1	112-8	6-199	None	None	l Jan-31 Dec	None necessary	
Cathedral Rapids Creek #2	112-7	6-198	None	None] Jan-3] Dec	None necessary	
Cathedral Rapids Creek #3	112-6	6-197B	None	None	l Jan-31 Dec	None necessary	
Cathedral Rapids Creek #4	112-5	6-197A	None	None	l Jan-31 Dec	None necessary	
Cathedral Rapids Creek #5	112-4	6-197	None	None] Jan-31 Dec	None necessary	
Cathedral Rapids Creek #6	112-3	6-196	None	None] Jan-3] Dec	None necessary	
Cathedral Rapids Creek #7	112-2	6-195	None	None	1 Jan-31 Dec	None necessary	

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Unnamed Creek	112-1	6-193.01	GR,LC,LS, NP,RW	Rearing] Jan-31 Dec	None necessary	Avoid downstream areas. See assessment
Umnamed Creek	111-6	6-192.01	None	None] Jan-31 Dec	None necessary	
Unnamed Creek	111-5	6-192	None	None	l Jan-31 Dec	None necessary	
Sheep Creek	111-4	6-191	None	None	1 Jan-31 Dec	None necessary	
Umnamed Creek	111-3	5-190	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	111-2	5-189	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	111-1	5-188	None	None	l Jan-31 Dec	None necessary	
Robertson River	110-4	5-187	CN,GR,LC, WF	Migrating Rearing	15 Nov-1 Apr	l Jun-15 Nov if fish passage is adequate to allow for emigration; otherwise, l Jun-1 Sep	Winter construction may affect fish in downstream overwinterin areas of the Tanana River
Unnamed Creek	110-3	5-186	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	110-2	5-185.03	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	110-1	5-185.02	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	109-2	5-185.01	None	None	l Jan-31 Dec	None necessary	

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constr Preferred	ended Timing for Fuction Activity Alternate	Comments
Bear Creek	109-1	5-185	CN,DV,GR, LS	Migrating Rearing Spawning	l Nov-l Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	r
Chief Creek	108-4	5-184	GR	Rearing	l Oct-15 Apr	15 Apr-1 Oct	Data inconclusive; additional investigations recommended
Unnamed Creek	108-3	5-183	None	None	1 Jan-31 Dec	None necessary	
Unnamed Creek	108-2	5-182.01	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	108-1	5-182	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	107-2	5-181	None	None	1 Jan-31 Dec	None necessary	
Sam Creek	107-1	5-180	None	None	l Jan-31 Dec	None necessary	
Unnamed Creek	106-3	5-179	CN,GR,LS, RW	Rearing	1 Jan-31 Dec	None necessary	Fish do not get as far upstream as proposed gasline
Berry Creek	106-2	5-178	BB,CN,DV, GR,LS,RW	Migrating Rearing Spawning Wintering	l Aug≁l Sep	10 Jul-31 Oct	This stream is important to fish year-round
Sears Creek	106-1	5-177	GR,LS	Migrating Rearing Spawning Wintering	15 Jul-1 Sep	l Sep-l Nov	This stream is important to fish year-round

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for Fuction Activity Alternate	Comments
Unnamed Creek	105-2	5-176.01	None	None	l Jan-31 Dec	None necessary	
Dry Creek	105-1	5-176	None	None	l Jan-3l Dec	None necessary	Avoid spring breakup and periods of extreme high run-off
Johnson River	104-1	5-175	GR,LC,RW	Migrating Rearing	15 Nov-1 Apr	15 Jun-15 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jun-1 Sep	Data gap present
Little Gerstle River	103-2	5-174	CN,GR,LS, RW	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Dougherty Creek	103-1		None	None	1 Jan-31 Dec	None necessary	
Gerstle River	102-1	5-172	GR	Migrating Rearing	l Nov-l Apr	l Jun-l Nov if fish passage is adequate to allow for emigration; otherwise, l Jun-l Sep	Avoid low clear water periods
Sawmill Creek	100-2	5-171	None	None	l Jan-31 Dec	None necessary	
Rhoads Creek	100-1	5-170	None	None	1 Jan-31 Dec	None necessary	
Granite Creek	099-1	5-169	None	Ìone	l Jan-31 Dec	None necessary	· · · · · · · · · · · · · · · · · · ·

Waterbody .	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Tanana River	096-1	5-166	BB,BW,CI, CN,CS,DS, GR,HW,KS, LC,LS,NP, RW,SS	Migrating Rearing Spawning Wintering	15 Jun-1 Jul	1 Jul-15 Aug	This stream is important to fish year-round
Tanana River Side Channel	095-1	5-165.01	B₩,LC,LS, RW	Migrating Rearing	15 Jun-1 Jul	1 Ju1-15 Aug	Data gap present
Shaw Creek	093-2	5-165	BB,GR,HW, RW	Migrating Rearing Spawning Wintering	15 Jul-1 Sep	1 Jul-15 Jul	This stream is important to fish year-round
Lower Rosa Creek	093-1	5-164	GR,WF	Migrating Rearing Spawning	l Nov-15 Apr	l Jul-l Nov is fish passage is adequate to allow for emigration; otherwise, l Jul-l Sep	Data gap present
Rosa Creek #2	092-12	5-162	None	None	1 Sep-15 Apr	l Jul-1 Sep	Data gap present
Rosa Creek #3	092-11	5-161.09	None	None	l Sep-15 Apr	l Jul-l Sep	Data gap present
Rosa Creek #4	092-10	5-161.08	None	None	l Sep-15 Apr	l Jul-1 Sep	Data gap present
Rosa Creek #5	092~9	5-161.07	None	None	1 Jan-31 Dec	None necessary	·····
Rosa Creek #6	092-8	5-161.06	None	None	1 Jan-31 Dec	None necessary	······································

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
East Fork Minton Creek #6	092-7	5-161,05	None	None	l Jan-31 Dec	None necessary	,
East Fork Minton Creek #5	092-6	5-161.04	None	None	l Jan-31 Dec	None necessary	
South Fork Minton Creek	092-5	5-161.032	None	None	l Jan-31 Dec	None necessary	·
South Fork Minton Creek	092-4	5-161.031	None	None	l Jan-31 Dec	None necessary	
East Fork Minton Creek #4	092-3	5-161.03	None	None	l Jan-31 Dec	None necessary	• · · · · ·
East Fork Minton Creek #3	092-2	5-161.02	None	None	l Jan-31 Dec	None necessary	Fish may reach as far upstream as this crossing in some years
East Fork Minton Creek #2	092-1	5-161.01	None	None	1 Jan-31 Dec	None necessary	
East Fork Minton Creek #1	091-6	5-161	None	None	l Jan-31 Dec	None necessary	
West Fork Minton Creek #1	091-5	5-161	None	None	l Jan-31 Dec	None necessary	
West Fork Minton Creek #2	091-4	5-161	None	None	l Jan-31 Dec	None necessary	
Gold Run Creek	091-3	5-160	None	None	l Jan-31 Dec	None necessary	
Small Creek	091-2	5-159.02	None	None	l Jan-31 Dec	None necessary	
Tributary to Small Creek	091-1	5-159.01	None	None	l Jan-31 Dec	None necessary	

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Redmond Creek	090-1	5-159	BB,GR,RW	Migrating Rearing Spawning	l Nov-l Apr	15 Jul-l Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-l Sep	· · ·
Tributary to Salcha River	089-3	4-158.03	Nóne	None	l Jan-31 Dec	None necessary	
Salcha River	089-1	4-158	AL,BB,CN DS,GR,KS, LS,RW,SB	Migrating Rearing Spawning Wintering	l Jun-10 Jul	None	This stream is important to fish year-round
Two-Nineteen Creek	088-4	4-157.01	None	None	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Little Salcha River	088-3	4-157	CN,GR	Migrating Rearing Spawning	15 Jul-1 Sep	l Oct-l Nov	Further winter work recommended. This stream may be sensitive and/or critical to fish year-round
Tributary to Little Salcha River	088-2	4-156.05	None	None	l Jan-31 Dec	None necessary	
Tributary to Million Dollar Creek	088-1	4-156.04	None	None	l Jan-31 Dec	None necessary	
Million Dollar Creek	087-2	4-156.03	CN,GR	Migrating Rearing Spawning] Nov-1 Apr	15 Jul-l Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-l Sep	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
French Creek	087-1	4-155	CN,GR	Migrating Rearing	l Nov-l Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Knokanpeover Creek	086-5	4-154	GR	Migrating Rearing Spawning	l Nov-l Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Tributary to French Creek	086-4	4-148.06	None	None	l Jan-31 Dec	None necessary	Data gap present
Tributary to French Creek	086-3	4-148.05	GR	Rearing	l Nov-l Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Tributary to French Creek	086-2	4-148.04	None	None] Jan-31 Dec	None necessary	Data gap present
Unmamed Creek	086-1	4-148.03	None	Unknown	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Unnamed Creek	085-2	4-148.02	None	Unknown	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present

			Fish Species	Fish Use	Recommer Constru	nded Timing for uction Activity	
Waterbody	NPRX	NPSI	Documented	Documented	Preferred	Alternate	Comments
Moose Creek	085-1	4-148	CN,GR	Migrating Rearing	15 Jun-1 Sep	None	Data gap present
Unnamed Creek	084-5	4-144.04	None	Unknown	1 Nov-15 Apr	<pre>15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep</pre>	Data gap present
Unnamed Creek	084-4	4+144.03	None	Unknown	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Chena River Side Channel	084-3	4-144.02	None	None	1 Jan-31 Dec	None necessary	
Chena River	084-2	4-144	AL,BB,BW, CN,CS,DS, GR,HW,IN, KS,LS,NP, RW,SK,SS, WF	Migrating Rearing Spawning Wintering	15 Jul-1 Nov	None	This stream is important to fish year-round
Unnamed Creek	084-1	4-140.14	None	Unknown	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Potlatch Creek	083-6	4-140.13	None	None	l Jan-31 Dec	None necessary	· · · · · · · · · · · · · · · · · · ·
Tributary to Little Chena River #1	083-5	4-140.12	None	None	l Jan-31 Dec	None necessary	
Tributary to Little Chena River #2	083-4	4-140.11	None	None	l Jan-31 Dec	None necessary	
Little Chena River	083-3	4-140.10	None	None	1 Nov-15 Apr	15 Apr-1 Nov	Good fish habitat but survey have failed to document fish use

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
South Fork Koyukuk River	047-1	3-85	CN,DS,GR, KS,SK,WF	Migrating Rearing Spawning Wintering	5 Jun-5 Jul	None	This stream is important to fish year-round
South Fork Koyukuk River	046-4	3-85	None	Unknown	15 Oct-15 Apr	15 Jul-15 Oct 1f fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Crossroads Creek #1	046-3	3-82.03	None	None	1 Jan-31 Dec	None necessary	
Crossroads Creek #2	046-2	3-82.02	None	None] Jan-31 Dec	None necessary	
Chapman Creek	046-1	3-81	GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
South Fork Windy Arm Creek	045~7	3-80	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
North Fork Windy Arm Creek	045-6	3-79	CN,GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

•

` Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constr Preferred	nded Timing for uction Activity Alternate	Comments
Unnamed Creek	045-5	3-78.01	None	None	l Jan-31 Dec	None necessary	,
Trent's Trickle	045-4	3-78	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Jackson Slough East Channel #1	045-3	3-77.02	CN,GR,KS, RW	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 1 Jul-25 Aug	Data gap present
Jackson Slough Cross Channel	045-2	3-77.01	CN,GR,RW KS	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Noy if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Jackson Slough East Channel #2	045-1	3-77	CN,GR,KS, RW	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Cathedral Mountain Creek	044-6	3-75	None	None	l Jan-31 Dec	None necessary	
Rosie Creek	· 044–5	3-74	CD,CN,DV, GR,RW	Migrating Rearing Spawning Wintering	15 Ju1-25 Aug	25 Aug-1 Nov	This stream may be importan to fish year-round

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
First Creek	044-4	3-72.06	CN,GR	Migrating Rearing	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Tributary to East Fork Spring Slough	Q44-3	3-72.04	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Tributary to Spring Slough #1	044-2	3-72.03	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Tributary to Spring Slough'#2	044-1	3-72.02	GR	Migrating Rearing	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Tributary to Spring Slough #3	043-9	3-72.01	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Slate Creek	043~8	3-72	CN,DV,GR, RW,KS,DS	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gaps present

•

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Calf Creek	043-7	3-71	GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
South Fork Clara Creek Overflow	043-6	3-70.01	CN,GR,WF	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Clara Creek Overflow	043-5	3-70	GR,RW	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Clara Creek	043-4	3-69	GR,X	Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
South Fork Mary Angel Creek	043-3	3-65	CN,GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Mary Angel Creek	043-2	3-63.04	BB,CN,GR, LS,RW	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	

. Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constru Preferred	nded Timing for uction Activity Alternate		Comments
South Fork Sharon Creek	043-1	3-63.03	GR ,	Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap ı	present
Marion Creek	042-6	3-63	CD,DV,GR	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug		
North Marion Creek Overflow #1	042-5	3-62.04	None	None	l Jan-31 Dec	None necessary		
North Marion Creek Overflow #2	042-4	3-62.03	None	Unknown	15 Jul-15 Apr	None	Data gap	present
North Marion Creek Overflow #3	042-3	3-62.02	None	Unknown	15 Jul-15 Apr	None	Data gap į	present
Pence's Pond Creek	042-2	3-62.01	GR	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap p	present
Dry Gulch	042-1	3-62	None	Unknown	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap y	present

•

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
South Fork Confusion Creek	041-8	3-61.03	None _;	Unknown	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Confusion Creek	041-7	3-61.02	GR	Rearing	l Nov-l May	1 Jul-1 Nov	Data gaps present - fish may not be present during May and June
Middle Fork Confusion Creek	041-6	3-61.015	None	Unknown	15 Oct-1 May	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Minnie Creek	041-4	3-61	BB,CN,GR	Migrating Rearing Spawning] Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Middle Fork Koyukuk River	041-3	3-60.19	CN,DV,GR, LS,RW	Migrating Rearing Wintering	Į5 Jul-25 Aug	25 Aug-1 Nov	Data gap present. This stream is important to fish year-round
Jnion Gulch Creek	041-2	3- 60.17	CD,GR,RW	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Confederate Gulch Creek	041-1	3-60.16	GR :	Migrating Rearing Spawning	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Middle Fork Koyukuk River	040-8	2-60.13	CN,DV,GR, LS,RW	Migrating Rearing Wintering	15 Jul-25 Aug	25 Aug-1 Nov	Data gap present. This stream is important to fish year-round
One-0-One Creek	040-7	2-60.122	CN,GR,LS	Migrating Rearing	l Nov-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Coon Gulch Creek	040-6	2-60.121	GR,SK	Migrating Rearing	l Nov-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Richardson's Slough	040-5	2-60.12	GR,RW	Migrating Rearing	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Over Creek	040-4	2-60.07	BB,GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish	Data gap present
Nugget Creek	040-3	2-60	CN,GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

•

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Wolf Pup Creek	040-2	2-59	CN	Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Sheep Creek	040-1	2-53	CN,GR	Migrating Rearing	15 Sep-15 Apr	15 Jul-15 Aug	Data gap present
Cushing Creek	039-4	2-52.01	None	None	15 Sep-15 Apr	15 Jul-15 Aug	Data gap present
Gold Creek	039-3	2-52	GR,X	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Linda Creek	039-2	2-51	CN,GR	Rearing	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Valve Site Creek	, 039-1	2-49.07	None	Unknown	15 Jul-15 Apr	15 Jun-15 Jul	Data gap present
Sukakpak Creek	038-8	2-49.03	GR	Migrating Rearing Spawning	1 Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Access Road Creek	038-7	2-49.026	GR	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
West Fork Sukakpak Creek	038-6	2-49.025	GR	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Middle Fork Koyukuk River	038-5	2-49	CN,DV,GR, LS,RW	Migrating Rearing	15 Jul-25 Aug	None	This stream is important to fish year-round
Millie's Meander	038-4	2-48.03	CN,GR	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Eva's Alv	038-3	2-48.01	GR	Migrating Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Dietrich River (Lower)	038-2	2-48	BB,CN,GR, LS,RW,X	Migrating Rearing Wintering	15 Jul-25 Aug	25 Aug-1 Nov	This stream is important to fish year-round
1415 Lake Outlet	038-1	2-46.01	None	None	1 Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Brockman Creek	037-7	2-46	CN, DV, GR	Rearing	l Nov-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
South Branch Airport Creek	037-5	2-45.03	GR	Rearing	1 Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Airport Creek	037-3	2-45.01	DV,GR	Migrating Rearing	1 Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Disaster Creek	037-2	2-45	CN,GR	Rearing	1 Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Unnamed Creek	` 037-1	2-43.07	None	Unknown	l Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Snowden Creek	036-4	2-43	CN,GR	Rearing	l Nov-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Snowden Pond Inlet	036-3	2-41.06	None	Unknown	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
NumbersLake Creek	036-2	2-41.03	CD,GR,X	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Ugh Creek	036-1	2-41	GR	Migrating Rearing ,	1 Oct-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Steep Creek	035-4	2-39	None	None	l Jan-31 Dec	None necessary	
Buff Creek	035-3	2-38	None	None	1 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Fish use suspected to be sporadic during open water
Burger's Bayou	035-2	2-36.02	CN,DV,GR, BB	Migrating Rearing Wintering	15 Jul-25 Aug	None	This stream is important to fish year-round
Tracy's Trickle	035-1	2-36	GR	Rearing	15 Jul-15 Apr	None	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Constr	nded Timing for uction Activity Alternate	Comments
Unnamed Creek	034-8	2-34.07	None .	Unknown	1 Oct-15 Apr	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Beaver Dam Brook #1	034-7	2-34.05	GR,CN,RW	Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Beaver Dam Brook #2	034-6	2-34.04	None	None	1 Jan-31 Dec	None necessary	
Beaver Dam Brook #3	034-5	2-34.03	None	None	1 Jan-31 Dec	None necessary	
Beaver Dam Brook #4	034-4	2- 34. 02	None	None	l Jan-31 Dec	None necessary	
Nutirik Creek	034-3	2-34	DV,GR	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	
Homewood Spring	034-2	2-32.05	CN,DV,GR	Migrating Rearing Wintering	15 Jul-1 Nov	None	Data gap present
Unnamed Creek	034-1	2-33	None	Unknown	15 Jul-25 Aug	25 Aug-1 Nov	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		nded Timing for uction Activity Alternate	Comments
Overwintering Creek	033-7	2-32.02	BB,CN,DV, GR	Migrating Rearing Spawning Wintering	15 Jul-25 Aug	None	This stream is important to fish year-round
Nina Creek	033-6	2-31.01	None	None	15 Jul-25 Aug	None	Data gap present
Oskar's Eddy	033-5	2-31	DV	Migrating Rearing	15 Oct-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Unnamed Creek	033-4	2-30.02	None	None	1 Jan-31 Dec	None necessary	
Dietrich River	033-3	2-32.04	None	None	1 Dec-15 Apr	<pre>15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug</pre>	Data gap present
Wetfoot Creek	033-2	2-29.04	DV,GR,R₩	Migrating Rearing	1 Nov-15 Apr	15 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Dietrich River Floodplain	033-1	2-29.03	GR	Migrating Rearing	1 Dec-15 Apr	15 Jul-1 Dec if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present
Dietrich River Floodplain	032-3	2-29.02	CN,DV,GR, RW	Migrating	1 Dec-15 Apr	15 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI ·	Fish Species Documented	Fish Use Documented		ended Timi ruction Ac		Comments
Unnamed Creek	032-2	2-28.02	None	Unknown	20 Jul-1 May	None	· · · · · · · · · · · · · · · · · · ·	Data gaps present
Unnamed Creek	032-1	2-28.01	None	Unknown	20 Jul-1 May	None		Data gap present
Unnamed Creek	031-3	2-27.05	None	Unknown	20 Jul-1 May	None		Data gap present
East Creek	031-2	2-27.04	None	Unknown	20 Jul-1 May	None	•	Data gap present
North Atigun Pass Creek	031-1	2-27.03	None	Unknown	20 Jul-1 May	None	<u> </u>	Data gap present
Unnamed Creek	030-2	2-27.02	None	Unknown	20 Jul-1 May	None		Data gap present
Unnamed Creek	030-1	2-27.01	None	Unknown	20 Jul-1 May	None		Data gap present
Who Creek	029-9	2-26	None	Unknown	20 Jul-1 May	None		Data gap present
Mickey's 6:30 Creek	029-8	2-25.03	None	Unknown	20 Jul-1 May	None		Data gap present
Whybother Creek	029-7	2-25.02	None	Unknown	20 Jul-1 May	None		Data gap present
Named Creek	029-6	2-25.01	None	Unknown	20 Jul-1 May	None		Data gap present

		1007	Fish Species	Fish Use	Constr	nded Timing for uction Activity	
Waterbody	NPRX	NPSI	Documented	Documented	Preferred	Alternate	Comments
Trevor Creek	029-5	2-25	AC,GR,RW	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Tyler Creek	029-4	2-24.02	GR,RW	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Unnamed Creek	029-2	2-24.007	GR	Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Bicycle Creek	029-1	2-24.006	GR	Rearing	15 Oct-1 May	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	Data gap present
Waterhole Creek	028-2	2-24.005	GR	Rearing	15 Oct-1 May	15 Jul-1 Nov if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep.	Data gap present
Roche Moutonee	028-1	2-24	GR,LT,RW, AC	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constr Preferred	ended Timing for Fuction Activity Alternate	Comments
Leentha Creek	027-4	2-23.015'	AC,GR	Rearing	l Oct-l May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Holden Creek	027-3	2-23.01	AL,GR,RW	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Tad Creek	027-2	2-22.04	GR	Rearing	1 Oct-1 May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Atigun River	027 - 1 ,	2-22	AC,BB,CN, GR,LT,RW	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Jill Creek	025-9	2-21.11	GR	Rearing	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Jill Creek Tributary	025-8	2-21.10	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Ed Creek	025-7	2-21.09	GR	Rearing	1 Oct-1 May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Mack Creek	`025-6	2-21.08	GR ,	Rearing	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Terry Creek	025-5	2-21.07	GR	Rearing	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Moss Creek	025-4	2-21.06	None	Unknown	1 Oct-1 May	20 Jul-1 Oct †f fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Hallock Creek	025-3	2-21.05	None	None	1 Jan-31 Dec	None necessary	
Clawsod Creek	025-2	2-21.045	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Yan Creek	025-1	2-21.04	CN	Rearing	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for ruction Activity Alternate	Comments
Kuparuk River	024-1	2-21	CN,GR	Migrating Rearing Spawning	l Nov-l May	20 Jul-l Nov if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
East Fork Kuparuk River	023-3	1-20.01	GR	Rearing	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Toolik River	023-2	1-20	AC,GR	Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
East Fork Toolik River	023-1	1-19.01	None	None	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Good fish habitat but survey failed to document fish use
Mary Lamb Creek	022-2	1-19.005	None	Unknown	}5 Oct−l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 15 Jul-1 Sep	
Oksrukuyik Creek	022-1	1-19	AC,CN,GR	Migrating Rearing Spawning	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constru Preferred	nded Timing for uction Activity Alternate	Comments
Lower Oksrukuýik Creek	020-1	1-18.01	AC,BB,CN, GR,WF,RW	Migrating Rearing Spawning	20 Jul-25 Aug	25 Aug-1 Nov	
Rudy Creek	019-6	1-17	AC,GR	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Bassett Creek	019-5	1-16.03	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Dennis Creek	019-4	1-16.02	AC,GR	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Climb Creek	019-3	1-16.01	AC,GR,X	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Poison Pipe Creek	019-2	1-16	AC,GR	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recomme Constr Preferred	ended Timing for Fuction Activity Alternate	Comments
Polygon Creek	019-1	1-15	AC,BB,CN, GR	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Gustafson Gulch	,018-4	1-14	AC,GR	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Arthur Creek	018-3	1-13	AC,BB,CN, GR	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Sagavanirktok River Side Channel	018-2	1-12.05	GR	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Sagavanirktok River Side Channel	018-1	1-12.04	CN,GR	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Stump Creek	017-3	1-12.02	GR,S9	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

` Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for Fuction Activity Alternate	Comments
Tributary to Lori Creek	.017-2	1-12.015	None :	Unknown	l Sep-l May	20 Jul-1 Sep	Data gap present
Lori Creek	017-1	1-12.01	GR	Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Charlotte Creek	016-3	1-12	AC,CN,GR, S9,RW	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Happy Valley Camp Creek	016-2	1-11	AC,CN,GR, RW	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	
Milke Creek	016-1	1-10	AC,GR,S9	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Unnamed Creek	015-3	1-9.5	GR	Rearing	15 Oct-l May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Stout Creek	015-2	1-9	AC,GR,BB, CN	Rearing.	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented		ended Timing for Fuction Activity Alternate	Comments
Spoiled Mary Creek	015-1	1-8	AC,CN,GR	Migrating Rearing	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Mark Creek	014-1	1-7	BB,CN,GR, WF	Migrating Rearing Spawning	15 Oct-1 May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Toolik River Tributary	013-1 ,	1-5.49	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gaps present
Sand Creek	012-2	1-5.485	None	Unknown	l Oct-l May	20 Jul-15 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present
Jnnamed Creek	012-1	1-5.48	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-25 Aug	Data gap present

Waterbody	NPRX	NPSI	Fish Species Documented	Fish Use Documented	Recommen Constru Preferred	nded Timing for uction Activity Alternate	Comments
Lake 802	010-1	1-5.295	None	Unknown	20 Jul-15 May	None	Data gap present
East Fork Sylvia Creek	007-5	1-5.055	None	None	1 Jan-31 Dec	None necessary	
Sylvia Creek	007-4	1-5.05	AC,GR,S9	Migrating Rearing Spawning	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present
Tributary to Short Creek	007-3	1-5.045	None	Unknown	1 Oct-1 May	20 Jul-l Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present
Short Creek	007-2	1-5.02	None	Unknown	l Oct-l May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present
Telma Creek	007-1	1-5.01	59	Rearing	1 Oct-1 May	20 Jul-1 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present
Pescado Creek	005-2	1-4.07	S9	Rearing	1 Oct-1 May	20 Jul-7 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present

•

Waterbody	NPRX NPSI		Fish Species Documented	Fish Use Documented	Recommended Timing for Construction Activity Preferred Alternate		Comments
Unnamed Lake	005-1	1-4.06	None	Unknown	20 Jul-15 May	None	Data gap present
Low-Life Creek	004-2	1-3.05	S9	Rearing	l Oct-l May	20 Jul-7 Oct if fish passage is adequate to allow for emigration; otherwise, 20 Jul-20 Aug	Data gap present
Unnamed Lake	004-1	1-3.04	None	Unknown	20 Jul-15 May	None	Data gap present
Unnamed Lake	003-1	1-3.03	None	Unknown	20 Jul-15 May	None	Data gap present
Little Putuligayuk River	002-1	1-3	None	None	15 Sep-1 May	1 May-15 Sep	Data gap present
Putuligayuk River	001-1	1-1	S9	Rearing	15 Sep-1 May	1 May-15 Sep	Data gap present

PART III

PROVISIONAL LIST OF WATERBODIES CROSSED OR POTENTIALLY AFFECTED BY THE GAS PIPELINE PROPOSED BY NORTHWEST ALASKAN PIPELINE COMPANY

INTRODUCTION

In a large scale project such as pipeline construction it is essential for reference purposes to maintain an updated list of waterbodies crossed or potentially affected by the pipeline. To date, the provisional list contains 388 entries. Reference 4, 11, 42, 48 and 125 provided the basis for this list which includes lotic and lentic habitats. Many waterbodies have multiple pipeline crossings -- in most cases each crossing is treated as a separate entry in the list.

Data sources (see Literature Reviewed) that contain physical or biological information are listed by number for each waterbody. The most recent evaluation of the fish use status of each is provided in the form of seasonal criteria. These criteria were developed to standardize the manner in which waterbodies were evaluated. It is important to note that criteria definitions in this report differ somewhat from those used in 1979-1980 seasonal reports (Refs. 54, 55, 57, and 77). This is due, in part, to the availability of new information as well as to a change in rationale concerning conditions that must be met for a specific criteria to be assigned. For the purpose of this report, criteria assignment has been limited to actual documentation of fish use or non fish use (habitat not available) for each season. These have been based on interpretation of results of field investigations and/or literature (see Part IV -These criteria numbers do not necessarily reflect the Compendium). authors' recommendations for additional field sampling. Although seasonal data gaps may remain for some streams, further investigations may be unnecessary and costly. The criteria used are as follows:

Number	Criteria
1	Fish Use Area - Waterbody investigated and fish use documented.
2	No Fish Use - Waterbody investigated and no fish use documented.
3	No Fish Use Inferred - Absence of habitat inferred and supported by indirect evidence: small drainage with negligible intermittent or no flow or fish blockage present.
4	Data Gaps Present - Waterbody investigations incomplete or lacking: waterbody has not been surveyed for fish use, or previous data were inconclusive.

Waterbody evaluations were based on an extensive literature review, communications with state and federal agencies, previous field surveys and professional judgement. Primary sources for literature were published government and consultant reports and file data from the Joint Fish and Wildlife Advisory Team (JFWAT) in Anchorage. Agencies consulted included the State Pipeline Coordinator's Office, Alaska Department of Fish and Game (Habitat and Sport Fish Divisions) and U.S. Fish and Wildlife (Stream Alteration Division).

Abbreviations used in the Provisional List of Waterbodies are as follows:

NPRX	- Northwest Alaskan Pipeline River Crossing	
NPSI	 Northwest Alaskan Pipeline Stream Identification number 	
NPAS	- Northwest Alaskan Pipeline Alignment Sheet	
NPMP	- Northwest Pipeline Milepost	
AHMP	- Alaska Highway Milepost	
Alyeska	AS- Alyeska Alignment Sheet	
Sta.	- Station	
S	- Spring	
F	- Fall	
W	- Winter	

PROVISIONAL LIST OF WATERBODIES

Waterbody	NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
Unnamed Creek Scottie Creek	131-2 131-1	6-227.03 6-227	131 131	740.6 739.4	1222,2 1223.4				2 3 3 1 1 1	2,30,54,76,118 5,6,7,8,9,10,17,22,26,29,30, 54,55,57,59,60,72,73,76,77,
Desper Creek	130-1	6-226	130	737.4	1225.6				4 1 2	118 5,6,7,9,10,17,26,29,30,54,55,
Unnamed Creek Sweetwater Creek	129-5 129-4	6-225.01 6-225	129 129	732.5 730.2	1232.1 1234.2				2 3 3 2 3 2	57,60,68,72,73,76,118,121 2,30,54,76,118 2,9,29,30,54,57,59,60,72,73 76,118
Unnamed Creek Unnamed Creek Unnamed Creek Unnamed Creek Unnamed Creek	129-3 129-2 129-1 128-2 128-1	6-224 6-223 6-222 6-221 6-220	129 129 129 128 128	729.8 728.6 728.2 724.2 723.5	1234.7 1235.9 1236.3 1240.6 1241.2				2 3 3 3 3 3 3 1 2 3 3 3 2 3 3	2,29,30,54,59,60,73,76,118 2,29,30,54,76,118 2,27,30,54,55,57,59,60,76,118 2 2
Gardiner Creek	127-1	6-219	127	718.5	1246.7				1 1 2	5,6,7,8,9,10,17,22,26,29,30,
Tenmile Creek	126-1	6-218	126	712.5	1252.8				222	54,55,57,59,60,68,72,73,76,118 2,5,6,9,10,17,26,29,30,54,55, 57,59,60,73,118
Silver Creek	125-1	6-217	125	706.5	1258.7				343	2,5,6,9,10,26,29,30,54,59,60, 73,76,118,121
Unnamed Creek Lethe Creek Beaver Creek	124-3 124-2 124-1	6-216.01 6-216 6-215	124 124 124	703.5 701.0 699.2	1262.3 1266.5 1268.0				2 3 3 2 3 2 1 1 2	2,30,54,76,118 2,29,30,54,55,59,60,76,118,123 5,6,7,8,9,10,17,22,26,29,30, 54,55,57,59,60,72,76,118
Unnamed Creek	123-2	6-214.01	123	697.0	1270.4				2 3 3	2,30,54,76,118
Unnamed Creek Unnamed Creek Bitters Creek	123-1 122-2 122-1	6-213.01 6-213 6-212	123 122 122	694.6 690.1 688.2	1273.0 1278.3 1280.2				3 4 3 2 3 2 1 1 2	2,30,59,60,76,118,123 2,9,29,30,59,60,76,118 5,6,9,10,26,29,30,54,57,59,60, 69,72,73,76,118
Unnamed Creek Unnamed Creek	121-2 121-1	6-210.02 6-210.01	121 121	685.5 683.5	1283.2 1285.4				4 4 4 4 4 4	2,30,76,118 2,30,76,118
Unnamed Creek Unnamed Creek Tanana River	119-2 119-1 118-2	6-210 6-209 6-207	119 119 118	672.7 671.4 666.0	1296.7 1297.9 1303.3				3 3 3 3 3 3 1 1 1	2,29,30,76,118 2,29,30,59,60,76,118 3,5,6,7,9,10,13,17,22,26,29, 30,54,55,57,60,69,72,76,118
Tanana Overflow Tok River	118-1 117-2	6-206 6-205	118 117	663.8 659.9	1305.4 1309.4				2 3 3 1 1 2	2 3,5,6,7,9,10,17,22,26,29,30, 54,55,57,59,60,72,73,76,118

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Haul Road Station		iter F	ia* W	References
Tok Overflow	117-1	6-204	. 117	657.6-	1311.5				2	3	3	2
Crystal Slough Creek	114-1	6-203.03	114	658.0 640.7	1328.2				. 1	1	4	2,9,26,30,54,55,57,60,73,76,
Unnamed Creek Unnamed Creek Moon Lake Tributary	113-4 113-3 113-2	6-203.01 6-203 6-202	113 113 113	639.2 638.2 636.9	1329.5 1330.5 1331.9				3 2 2	3 3 2	3 3 3	118,123 2,30,60,76,118 2,30,54,59,60,76,118 2,6,29,30,59,69,76,118
Yerrick Creek	113-1	6-201	113	634.7	1333.7				1	1	1	3,5,6,7,8,9,10,17,22,26,29,54
Unnamed Creek Unnamed Creek Cathedral Rapids Creek #1 Cathedral Rapids Creek #2	112-10 112-9 112-8 112-7	6-200.01 6-200 6-199 6-198	112 112 112 112	632.5 632.5 630.9 630.4	1336.9 1336.9 1338.1 1338.7				2 2 2 2	3	3 3 3 3	55,57,64,68,69,72,73,76,77,118 2,29,30,54,59,60,69,76,118 2,29,30,54,59,60,69,76,118 2,4,7,22,29,30,60,68,69,73,118 2,4,7,22,29,30,59,60,68,69,76 118
Cathedral Rapids Creek #3	112-6	6-197B	112	630.3	1338.7				2	3	3	2,4,7,22,29,30,59,60,68,69,76 118
Cathedral Rapids Creek #4	112-5	6-197A	112	630.2	1338.8				2	3	3	2,4,7,22,29,30,59,60,68,69,76 118
Cathedral Rapids Creek #5 Cathedral Rapids Creek #6	112-4 112-3	6-197 6-196	112 112	630.1 629.9	1338.9 1339.0				3 2	3 3	3 3	2,4,7,22,30,60,68,69,76,118 2,4,7,22,29,30,59,60,68,69,76 118
Cathedral Rapids Creek #7	112-2	6-195	112	629.7 /	1339.2				2	3	3	2,4,7,22,29,30,60,68,69,76,118
Unnamed Creek	112-1	6-193	112	628.9	1339.8				1	3	2	2,5,6,10,26,29,30,54,57,69,72 76,118
Unnamed Creek Unnamed Creek Sheep Creek	111-6 111-5 111-4	6-192.01 6-192 6-191	111 111 111	628.4 628.0 626.8-	1340.5 1340.9 1342.2				2 2 3	3 3 3	3 3 3	2,30,54,76,118 2 3,5,6,7,8,10,22,29,30,54,68,69
Unnamed Creek	111-3	6-190	111	627.0 625.4	1343.7	·			2	2	3	72,76,118 2,29,30,54,76,118
Unnamed Creek Unnamed Creek Robertson River	111-2 111-1 110-5	5-189 5-188 5-187	111 111 110	624.9 623.6 621.2- 621.5	1344.1 1345.2 1347.6				2 2 1	3 3 1	3 3 2	2 2 3,5,6,7,8,9,10,17,22,26,29,30, 54,55,57,73,75,76,77,118
Unnamed Creek Unnamed Creek	110-4 110-2	5-186 5-185.03	110 110	619.7 618.9	1349.4 1350.1				2 2	3 3	3 3	2 2,30,54,76,118

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
Unnamed Creek Unnamed Creek Bear Creek	, 110-1 109-2 109-1	5-185.02 5-185.01 5-185	110 109 109	618.7 616.8 611.6	1350.2 1352.3 1357.3				2 2 3 2 2 3 1 1 2	2,30,54,76,118 2,30,54,76,118 3,5,6,7,8,9,10,17,22,26,29,30, 54,55,57,59,60,69,72,73,76,77,
Chief Creek	108-4	5-184	108	610.3	1358.6				3 3 2	118,123 3,5,6,7,8,9,10,17,22,26,29,30, 54,55,57,59,60,72,76,118
Unnamed Creek	108-3	5-183	108	607.1	1361.7				3 3 3	2,5,26,29,30,54,76,118
Unnamed Creek Unnamed Creek Unnamed Creek Sam Creek Unnamed Creek	108-2 108-1 107-2 107-1 106-3	5–182.01 5–182 5–181 5–180 5–179	108 108 107 107 106	606.8 605.8 604.8 603.3 600.1	1362.0 1363.4 1364.4 1365.9 1369.1				2 3 3 2 3 3 3 3 2 2 3 2 1 1 2	2,5,30,54,76,118 2 2,29,30,54,59,60,73,76,118 3,5,6,7,8,9,10,26,30,54,55,76, 118 3,5,6,9,10,26,29,30,54,57,59, 60,73,76,118
Berry Creek	106-2	5-178	106	597.9	1371.4				111	3,5,6,7,8,9,10,22,29,30,54,57, 59,60,69,72,73,76,77,118
Sears Creek	106-1	5-177	106	594.8	1374.4				114	3,5,6,7,8,9,10,17,22,29,30,54, 57,59,60,64,69,72,76,77,118
Unnamed Creek Dry Creek	105-2 105-1	5-176.01 5-176	105 105	592.3 591.2	1377.0 1378.1				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2,30,54,76,118 3,5,6,7,8,9,10,22,29,30,54,57,
Johnson River	104-1	5-175	104	588.6- 588.8	1380.5				4 1 3	59,60,68,69,72,73,76,118 3,5,6,7,8,9,10,17,22,26,29,30, 54,57,60,69,72,73,76,77,118
Little Gerstle River	103-2	5-174	103	581.0	1388.4				142	3,5,6,7,8,9,10,17,22,26,29,30, 72,73,76,77,118
Dougherty Creek Gerstle River	103-1 102-1	5-173 5-172	103 102	579.0 576.3- 576.7	1390.4 1393.0				2 3 3 4 1 2	2 3,5,6,7,8,9,10,17,22,26,29,30, 54,57,72,73,76,118,130
Sawmill Creek Rhoads Creek	100-2 100-1	5-171 5-170	100 100	565.4 561.2%	1403.9 1407.6		·		2 2 2 2 3 2	3,5,6,7,8,9,10,29,30,54,76,118 3,5,6,9,10,29,30,54,76,118
Granite Creek	099-1	5-169	99	559.4	1409.2				2 2 2	3,5,6,7,9,10,22,29,30,54,76,
Tanana River	096-1	5-166	96	539.2		47	9215+00		111	118 3,5,11,13,15,16,27,29,30,32,57 76,118,123
Tanana River Side Channel	095-1	5-165.01	95	538.7				*	4 1 4	3,11,13,30,42,43,57,76,77,118, 122
Shaw Creek Lower Rosa Creek	093-2 093-1	5-165 5-164	93 93	527.4 526.4		49 49	9789+15 9800+40		$\begin{array}{cccc}1&1&1\\1&3&4\end{array}$	3,5,11,29,30,57,65,76,77,118 5,11,29,30,76,122

•

173

Waterbody	NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References	174
Rosa Creek #2 Rosa Creek #3 Rosa Creek #4 Rosa Creek #5 Rosa Creek #6	092-12 092-11 092-10 092-9 092-8	5-162 5-161.09 5-161.08 5-161.07 5-161.06	92 92 92 92 92	521.4 521.3 520.4 520.1 519.9		49 50 50 50 50	10110+50 10142+74 10165+25 10214+80		3 3 3 3 3 2 3 3 2 4 3 2 3 3 2 3 3 2	5,11,29,30,55,57,76,118 5,11,29,30,55,57,76,118 5,11,29,30,55,57,76,118 5,11,29,30,55,57,76,118 5,11,29,30,55,57,76,118 5,11,29,30,55,57,76,118	
East Fork Minton Creek #6 East Fork Minton Creek #5 South Fork Minton Creek South Fork Minton Creek East Fork Minton Creek #4	092-7 092-6 092-5 092-4 092-3	5-161.05 5-161.04 5-161.032 5-161.031 5-161.03	92 92 92 92 92	518.7 518.3 518.2 518.0 517.8		51 51 51 51	10244+06 10258+12 10298+63		2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3 2	5,11,29,30,32,54,66,76,118 5,11,29,30,32,54,66,76,118 5,11,29,30,32,54,66,76,118 5,11,29,30,32,54,55,66,76,118 5,11,29,30,32,54,55,66,76,118 5,11,29,30,32,54,55,66,76,118	
East Fork Minton Creek #3 East Fork Minton Creek #2 East Fork Minton Creek #1 West Fork Minton Creek #1 West Fork Minton Creek #2	092-2 092-1 091-6 091-5 091-4	5-161.02 5-161.01 5-161 5-160.02 5-160.01	92 92 91 91 91	517.4 517.1 517.0 516.0 515.5		51 51 51 51	10305+90 10316+98 10393+01 10394+88		3 3 2 3 3 2 4 4 2 3 3 2 3 3 2 3 3 2	5,11,29,30,32,66,76,121 5,11,29,30,32,54,66,76,118 121 5,11,30,32,54,76,118 5,11,30,32,54,76,118	
Gold Run Creek Small Creek Tributary to Small Creek Redmond Creek	091-3 091-2 091-1 090-1	5-160 5-159.02 5-159.01 5-159	91 91 91 90	514.3 512.9 512.3 507.3		51 52 52 53	10487+62 10561+41 10589+47 10855+33		2 3 2 2 2 3 2 3 3 1 1 3	3,5,11,29,30,54,76,118 11,30,54,57,76,118 11,30,54,76,118 3,5,11,14,25,29,30,32,35,38, 54,55,57,76,77,118	
Tributary to Salcha River Salcha River	089-3 089-1	4-158.03 4-158	89 89	504.5 503.5		53 53A	11037+79 19+00		2 2 2 1 1 1	11,30,54,76,118 3,5,11,13,14,25,30,32,35,38,	
Two-Nineteen Creek Little Salcha River	088-4 088-3	4-157.01 4-157	88 88	499.8 498.2		54 54	223+50 281+71		3 4 4 1 1 3	76,118,123,128 11,30,54,76,118 3,5,11,13,29,30,31,38,55,57, 76,77,83,118	
Tributary to Little Salcha River Tributary to Million Dollar Creek	088-2 088-1	4-156.05 4-156.04	88 88	497.3 495.7		54 54	345+50 417+00 [:]		3 3 3 2 3 3	11,30,54,76,118 11,20,30,31,54,76,118	
Million Dollar Creek French Creek	087-2 087-1	4-156.03 4-155	87 87	493.4 489.9		54 55	545+00 643+55		1 4 2 4 1 2	5,11,29,30,31,57,64,76,118,120 3,5,11,19,29,30,31,38,55,57, 76,77,118	6
Knokanpeover Creek Tributary to French Creek Tributary to French Creek	086-5 086-4 086-3	4-154 '4-148.06 4-148.05	86 86 86	487.5 485.6 485.1		56	809+40		1 1 2 2 2 2 4 1 4	3,5,11,19,29,30,31,55,57,76, 118 122 122	

Waterbody	NPRX	NPSI	NPAS	NPMP	Ahmp	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W References
· · · ·									
Tributary to French Creek	086-2	4-148.04	86	484.7					4 2 4 122
Unnamed Creek Unnamed Creek	086-1 085-2	4-148.03 4-148.02	86 85	483.7 482.6					4 4 4 4 4 4
Moose Creek	085-1	4-148	85	482.0			;		4 1 4 5,11,29,30,31,38,54,57,76,77
Unnamed Creek	084-5	4-144.04	84	476.3					118,122
Unnamed Creek	084-4 084-3	4-144.03 4-144.02	84 84	476.2 475.8	.e				4 4 4 3 2 3 122
Chena River Side Channel Chena River	084-3	4-144.02	84 84	475.8					1 1 1 3,5,11,13,17,27,29,30,31,38,
									59,76,118
Unnamed Creek	084-1	4-140.14	84	475.1					4 4 4
Potlatch Creek	083-6	4-140.13	83	472.7					4 3 4 122
Tributary to Little Chena River #1	083-5	4-140.12	83	469.9					4 4 4
Tributary to Little Chena River #2	083-4	4-140.11	83	469.2					4 4 4 122
Little Chena River	083-3	4-140.10	83	468.9					4 4 4 122
Iowa Creek	083-2	4-140.04	83	468.3					4 1 4 122
Tributary to Smallwood Creek	082-2	4-140.08	82	465.9					4 4 4 122
Smallwood Creek	082-1	4-140.07	82	463.9					4 1 4 122
Nugget Creek Tributary	081-5	4-140.06	81	460.5					4 3 4 122
Rose Creek	081-4	4-140.05	81	459.3					4 4 4
Gilmore Creek	081-3	4-140.04	81	457.6					4 4 4
Pedro Creek	081-2	4-140.03	81	457.4					4 4 4
Gold Run Creek	081-1	4-140.02	81	456.9					4 4 4
Fox Creek	080-2	4-140.01	80	454.4					3 3 3 122
Treasure Creek	080-1	4-140	80	450.1		62	659+43		3 3 3 3,5,11,17,29,30,54,55,57,76,1
Chatanika River	079-4	4-139	79	446.4		63	873+63		1 1 1 3,5,11,17,29,30,31,39,76,81,
Shocker Creek	079-3	4-138	79	445.3		63	914+00		84,89,113,118 1 1 4 5,11,29,30,54,57,76,118
Unnamed Tributary to	079-2	4-137.06	79	445.0		63			3 3 3 30,54,76,118
Shocker Creek Unnamed Tributary to	079-1	4-137.05	79	444.8		63			3 3 3 30,54,76,118
Shocker Creek	073-1	-137.03	13	0.777		05			
Unnamed Tributary to	078-5	4-137.03	78	443.3		63	1025+70		3 3 3 11,30,76,118
Chatanika River #1	070 4	4 107 00	70	442.0		62	1007.70		2 2 2 11 20 76 110
Unnamed Tributary to Chatanika River #2	078-4	4-137.02	78	443.2		63	1027+70		3 3 3 11,30,76,118
Unnamed Tributary to	078-3	4-137.01	78	443.1		63	1032+20		3 3 3 11,30,76,118
Chatanika River #3								-	· · ·

. .

.

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
Washington Creek	078-2	4-137	78	439.8		64	1209+62		111	1,3,5,11,17,29,30,31,38,54,56,
Unnamed Tributary to Washington Creek	078-1	4-136.01	78	439.6		64	1220+00		4 4 4	76,77,118 11,30,76,118
South Fork Aggie Creek	076-5	4-136	76	432.5		64	1595+00		3 3 3	1,3,5,11,17,29,30,31,38,54,57, 76,118
North Fork Aggie Creek	076-4	4-135	76	431.7		65	1635+00		3 3 3	
Tributary of Little Globe Creek	076-3	4-134.01	76	430.0		66	1740+00		4 4 4	11,30,76,118
Little Globe Creek Unnamed Tributary to	076-2 076-1	4-134 4-133.01	76 76	429.0 428.9		66 66	1759+00 1796+00	.e	4 3 4 4 4 4	11,17,29,30,67,76,118,122 11,30,76,118
Little Globe Creek Globe Creek	075-2	4-133	75	426.3		65	1966+75		4 4 4	1,3,5,11,17,29,30,38,48,66,76,
Unnamed Tributary to	075-1	4-132.02	75	425.3		67	1988+88	•	4 4 4	118,121,122 11,30,66,76,118
Globe Creek Unnamed Tributary to Tatalina River	074-2	4-132.01	74	422.0		67	2167+00		4 4 4	11,30,48,76,118
Tatalina River	074-1	4-132	74	421.0		67	2241+80		144	1,3,5,11,17,29,30,48,55,76,
Tributary of Slate Creek Slate Creek	073-5 073-4	4-131.01 4-131	73 73	416.8 416.6		68 68	2456+31 2459+35	· .	4 2 4 3 3 4	118,121 11,30,76,118,122 3,5,11,17,29,30,38,48,76,118, 121,122
Ski Jump Ramp Creek Wilber Creek	073-3 073-2	4-130 4-129	73 73	414.9 414.0		68 68	2550+00 2608+00		4 3 4 1 4 4	11,29,30,76,122 3,5,11,17,29,30,48,76,118
Tributary of Wilber Creek Shorty Creek Tributary to Tolovana River Tolovana River	073-1 072-3 072-2 072-1	4-128.04 4-128.03 4-128.01 4-128	73 72 72 72	412.7 408.5 407.5 407.0		69 69 70 70	2666+35 2855+73 2924+55 2957+90		4 3 4 4 3 4 4 2 4 4 1 2	11,30,76,118,122 11,30,76,118,122 11,30,76,118,122 1,35,11,13,17,20,30,31,48, 57,74,76,118,121
Unnamed Tributary to West Fork Tolovana River	071-2	4-127.01	71	403.9		70	3122+16		434	11,30,76,118,122
Lost Creek	071-1	4-127	71	400.7		71	104+33		1 4 4	3,5,11,17,29,30,31,48,76,118, 121,122,123,132
Erickson Creek Tributary West Fork Erickson Creek	070-1 069-1	4-126 4-125	70 69	396.3 393.0		72 72,73	337+66 513+62		¹⁷ ³ ⁴ ⁴ ⁴	3,11,29,30,76,118,121 3,5,11,17,29,30,31,76,118,122, 123
Hess Creek Oxbow Hess Creek	068-5 068-4	4-123.05 4-123A.04	68 68	387.0 386.8 ·		73 73,74W	800+02 820+00	<i>.</i>	4 2 4 1 1 2	11,17,30,76,118,122 1,3,5,11,17,29,30,31,48,70,76, 118,121

Waterbody	• NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
Hess Creek and Tributary fro Fish and Mastadon Creeks	m 068-3	4-123.03	68	386- 387.3		73	829+65		4 4 4	3,5,11,29,30,31,48,76,118
Two-Bank Creek Unnamed Creek Two-Bit Creek Unnamed Creek	068-2 068-1 067-5 067-4	4-123.02 4-123.01 4-123 3-122.05	68 68 67 67	387.3 382.4 381.8 381.4 380.2		74 74 74 75	1040+40 1071+47 1096+85 1150+15		4 3 4 4 3 4 4 3 4 4 4 4	11,30,76,118,122 11,30,76,118,122 11,29,30,76,118,122 11,17,30,76,118
Unnamed Creek Hot Cat Creek	067-3 067-2	3-122.04 3-122.03	67 67	379.5 378.5		75 75	1181+44 1242+94		4 4 4 3 4 4	11,30,76,118,122 5,11,17,30,31,48,61,76,118, 121,122
Unnamed Creek Unnamed Creek Isom Creek	067-1 066-4 066-3	3-122.02 3-122.01 3-122	67 66 66	375.9 374.33 371.4		75 75 76	1367+33 1447+20 1642+50	-	4 3 4 4 3 4 4 4 4	11,17,30,76,118,122 11,17,30,76,118,122 3,5,11,29,30,31,48,76,118,122
Tributary to Isom Creek	066-2	3-121.02	66	370.6		76	1649+50		4 3 4	3,5,11,17,29,30,31,48,76,118,
Tributary to Isom Creek	066-1	3-121.01	66	370.4- 370.5					4 4 4	122
Tributary to Isom Creek Yukon River	065-1 064-2	3-121 3-120	65 64	370.5 369.4 360.7- 361.1		76 77-78	1682+08 58+00		4 4 4 1 1 1	11,30,76,118 1,3,5,11,13,17,20,21,29,30,38, 48,76,118
Burbot Creek	064-1	3-119	64	359.3		78	158+21	1HR168+10	4 4 4	5,11,20,21,29,30,48,76,118
Woodchopper Creek Phelps Creek Unnamed Creek Unnamed Creek Stumblin Creek	063-1 062-4 062-3 062-2 062-1	3-118 3-117 3-116 3-115 3-114	63 62 62 62 62	358.4 352.9 351.1 350.0 348.6		78 79	215+30 508+70	1HR215+20 1HR501+00	1 4 4 4 1 3 4 3 4 4 3 4 4 3 4	5,11,20,21,29,30,48,76,118 5,11,20,21,29,30,48,64,76,118 122 122 122 122
Unnamed Creek Unnamed Creek Fort Hamlin Hills Creek	061-3 061-2 061-1	3-113 3-112 3-111	61 61 61	347.3 345.4 344.1		80 81	899+00 971+50	1HR892+15 1HR1011+08	4 4 4 4 3 4 1 4 4	11,17,20,21,29,119,122 5,11,20,21,29,30,45,61,70,76, 118
Knowater Creek North Fork Ray River	060-2 060-1	3-110.01 3-110	60 60	341.3 337.9		81 82	1123+25 58+49	1HR1158+45 1HR1337+34	4 3 4 1 4 1	11,20,21,30,76,118,122 1,5,11,17,20,21,29,30,38,48, 55,64,74,76,77,118
Fed Creek (South Branch) West Fork Dall River	059-1 057-3	3–109 3–108	59 57	333.2 325.8		82 84	270+25 673+00	1HR1600+24 1HR2001+50	4 3 4 1 4 3	11,29,30,48,76,118,121,122 1,5,11,20,21,29,30,38,48,76, 118
(Middle Branch) West Fork Dall River	057-2	3-107	57	323.4		84	798+00	1HR2125+39	143	1,5,11,20,21,29,30,38,48,76, 118
Smoky Creek Unnamed Creek	057 -1 056-3	3-106.02 3-106.01	57 56	322.7 321.1		84 85	818+75 915+75	1HR2163+02 1HR2245+45	3 3 4 3 4 4	11,20,21,30,76,118,121,122 11,20,21,30,76,118,121,122

Waterbody	NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station		iter F	ria* ₩	References
	.056-2	3-106	56	320.2		85	961+66	1HR2291+88	1	4	4	5,11,20,29,30,48,76,118
Unnamed Creek	056-1	3-105.01	56	319.8					4	4	4	
Olson's Lake Creek	055-3	3-105	55	316.9		85	1149+38	1HR2469+77	1	4	4	5,11,29,30,48,70,76,118
Kristie's Creek	055-2	3-104.01	55	316.6		0.0	56.00	100000.00	4	4	4	5 11 00 00 01 40 76 110
Caribou Mountain Creek	055-1	3-104	55	314.1		86	56+03	1HR2609+50	1	4	4	5,11,29,30,31,48,76,118
Kanuti River	054-4	3-103	54	311.0		86	231+00	1HR2777+75	1	4	2	1,3,5,11,13,17,20,21,29,30,31, 32,37,55,67,74,76,118
Netsch's Creek Tributary #1	054-3	3-102	54	309.1		87	331+60	1HR2875+90	4	4	4	11,29,30,76,118,122
Netsch's Creek Tributary #2	054-2	3-101	54	308.7		87	349+00	1HR2894+96	4	4	4	11,29,30,76,118
Netsch's Creek Tributary #3	054-1	3-100.01	54	308.5		87	370+80	1HR2944+05	4	4	4	11,30,76,118
South Fork Fish Creek	053-4	3-100	53	305.0		87	520+50	1HR3255	1	4	1	1,3,5,11,20,21,29,30,48,76,118
Middle Fork Fish Creek	053-3	3-99	53	304.0		87	577+90	1HR3255	4	1	2	1,3,5,11,20,21,29,30,48,76,118, 128
Fish Creek	053-2	3-98	53	302.3		88W	653+50	1HR3255+12	1	1	2	1,3,5,11,17,20,21,29,30,34,37, 38,48,55,64,67,76,118,123,128
Alder Mountain Creek	053-1	3-97	53	300.7		88W	742+50	2HR115+00	4	4	4	5,11,20,21,29,30,48,76,118
Pung's Crossing Creek	052-4	3-96.01	52	297.6		89	932+40	2HR363+36	1		4	5,11,20,21,30,76,118
South Fork Bonanza Creek	052-3	3-95	52	293.8		89	1123+60	2HR550+59	1	1	1	1,3,5,11,17,20,21,29,30,31,34, 37,38,55,76,77,118
Grizzly Creek	052-2	3-94-03	52	293.7		89		2HR545	4	1	4	11,122
Unnamed Bonanza Creek Channel		3-94.02	52	293.7		89	1128+50	2HR547	4		4	11,20,21,30,76,118,122
Oxbow Lake System	051-5	3-94.01	51	293.2		89	1148+00	2HR561+64	1		4	11,20,30,48,76,118,122
North Fork Bonanza Creek	051-4	3-94	51	292.2		89	1208+32	2HR606+69	4	1	2	1,3,5,11,17,20,21,29,30,31,34,
South Fork Little Nasty Creek	051-3	3-93	51	289.9		90	1327+15	2HR759+84	4	4	4	38,45,67,76,118,121,123,128 5,11,20,21,29,30,48,67,76,118, 121
The Little Nasty Creek	051-2	3-92	51	289.7		90	1340+25	2HR767+82	1	1	4	1,5,11,20,21,24,30,48,61,64, 76,118,123,128
North Fork of Little Nasty Creek	051-1	3-91.02	51	289.6					4	3	4	11,122
Prospect Creek	050-3	3-91	50	285.3		91	1590+00	2HR1099+52	1	1	1	1,3,5,11,17,20,21,29,30,31,34, 37,38,43,55,70,74,76,77,118, 123
Unnamed Creek Unnamed Creek	050-2 050-1	3-90.05 3-90.04	50 50	284.6 ′ 282.1					4 4	4 4	4 4	

٠

.

1

Waterbody	NPRX	NPSI	NPAS	NPMP	Анмр	A1yeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
Douglas Creek	049-2	3-89	49	278.4		92	330+00	2HR1470+34	4 1 3	1,3,5,11,17,20,21,29,30,34,48, 62,74,76,118,121
Unnamed Creek Jim River	049-1 048-3	3-87.03 3-87	49 48	276.6 275.2		92	453+50	2HR1579+80	4 4 4 1 1 1	1,3,5,11,13,17,20,21,30,34,38, 48,62,76,118,123,128
Inlet to Grayling Lake Ward's Wallow	048-1 047-6	3-86.05 3-86.04	48 47	270.4 269.8					4 4 4 4 4 4	11 122
Grayling Lake Inlet Elwood Creek East Fork Abba-dabba Creek	047-5 047-4 047-3	3-86.02 3-86.01 3-86.005	47 47 47	269.3 267.6 267.0		93	849+00	2HR1949+14	1 4 4 4 4 4 4 4 4	11,20,21,30,48,70,76,118
Abba-dabba Creek	047-2	3-86	47	266.5		94	963+28	2HR2098+18	iii	1,5,11,20,21,29,30,48,61,64, 74,75,76,77,122
South Fork Koyukuk River	047-1	3-85	47	264.4		94-95	1073+00	2HR2206+88	1 1 1	1,3,5,11,13,17,20,21,29,30,48, 76,118
South Fork Koyukuk River	046-4	3-85	46	264.3				,	4 4 4	70,110
Crossroads Creek #1 Crossroads Creek #2 Chapman Creek South Fork Windy Arm Creek	046-3 046-2 046-1 045-7	3-82.03 3-82.02 3-81 3-80	46 46 46 45	259.5 259.4 258.3 257.3		95 95 96 96	222+50 288+75 295+17 343+75	3HR129+23 3HR129+58 3HR205+23 3HR255+64	4 3 4 4 4 4 4 1 4 1 1 4	11,20,21,29,30,76,118,122 11,20,21,29,30,76,118 1,5,11,20,21,29,30,48,76,118 1,11,20,21,29,30,48,76,118,121
North Fork Windy Arm Creek	045-6	3-79	45	256.0		96	417+25	3HR326+94	114	1,5,11,20,21,29,30,48,64,74,
Unnamed Creek Trent's Trickle	045-5 045-4	3-78.01 3-78	45 45	255.1 254.0		96 96	458+70 518+39	3HR369+59 3HR413+47	4 4 4 1 1 4	76,118 11,20,21,30,76,118,121 5,11,20,21,29,30,48,61,62,70, 76,118,122
Jackson's Slough East Channel #1	045-3	3-77.02	45	253.2		97	555+85	3HR452+15	114	5,11,30,34,48,61,62,64,76,118, 123,132
Jackson's Slough Cross Channel	045-2	3-77.01	45	253.0		. 97	570+70	3HR464+00	114	5,11,29,30,34,48,61,62,66,74, 76,118,123,132
Jackson's Slough East Channel #2	045-1	3-77	45	252.8		97	593+00	3HR483+00	114	5,11,30,34,48,61,62,64,76,118, 123,132
Cathedral Mountain Creek	044-6	3-75	44	251.8- 252.0					4 2 4	11,122
Rosie Creek	044-5	3-74	44	250.5		97		3HR599+00	111	3,5,11,17,20,21,29,30,31,48, 74,76,77,118
First Creeƙ Tributary to East Fork Spring Slough	044-4 044-3	3-72.06 3-72.04	44 44	248.1 247.0		97 97~98		3HR727+14 3HR776+84	1 4 4 1 4 4	11,20,21,30,76,118 5,11,30,76,118,130

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Hau l Road Station	Crite S F		References
ributary to Spring Slough	044-2	3-72.03	44	246.8		98	· · · · · · · · · · · · · · · · · · ·	3HR783+98	1 1	4	5,11,30,76,118
ributary to Spring Slough	044-1	3-72.02	44	246.7		. 98		3HR790+14	ii	4	5,11,30,76,118,128
ributary to Spring Slough	043-9	3-72.01	43	246.5		98		3HR797+60	i i	4	5,11,30,48,76,118
late Creek	043-8	3-72	43	245.0		98	976+83	3HR876+86	ii		1,3,5,11,17,20,21,29,30,31,
	045-0	5-72	40	243.0			970103	30070400		4	34,38,76,118,122,123,128,131, 132
alf Creek	043-7	3-71	43	244.3		98	1004+75	3HR910+70	14	3	5,11,29,30,31,48,76,118
outh Fork Clara Creek 🕠	043-6	3-70.01	43	244.0		98	1015+80	3HR925+49	14	4	5,11,29,30,31,48,76,118
lara Creek Overflow	043-5	3-70	43	243.9		98	1019+50	3HR933+34	14	4	5,11,29,30,31,48,64,76,118
lara Creek	043-4	3-69	43	243.8		98	1036+20	3HR941+85	14	4	5,11,17,29,30,31,34,48,76,118
outh Fork Mary Angel Creek	043-4	3-65	43	243.8		90 98-99	4+30	3HR1052+04	1 4	•	5,11,29,30,31,48,64,76,118
ary Angel Creek	043-2	3-63.04	43	241.5		90-99	8+40	3HR1055+57	11		5 11 20 24 49 61 64 70 74 76
ary Angel Creek	043-2	3-03.04	43	241.4		99	8440	3HK1055+57	1 1	3	5,11,30,34,48,61,64,70,74,76, 118,123
outh Fork Sharon Creek	043-1	3-63.03	43	240.8		99	38+70	3HR1076+29	14	4	5,11,30,76,118
arion Creek	042-6	3-63	42	240.3		99	59+85	3HR1114+14	11	3	1,3,5,11,20,21,29,30,31,34,38 48,74,76,118,122
orth Marion Creek Overflow #1	042-5	3-62.04	42	240.2		99	68+80	3HR115	42	4	11,30,76,118,122
orth Marion Creek Overflow #2	042-4	3-62.03	42	240.1		99	70+75	3HR1120+33	4 4	4	11,30,76,118
orth Marion Creek Overflow #3	042-3	3-62.02	42	240.0		99	78+00	3HR1122+90	44	4	11,30,76,118
ence's Pond Creek	042-2	3-62.01	42	239.9		99	85+50	3HR1143+81	14	3	4,11,20,21,30,31,48,76,118
ry Gulch	042-1	3-62	42	236.3					44		
outh Fork Confusion Creek	041-8	3-61.03	41	234.1		100	369+00	3HR1439+92	43	2	5,11,20,30,31,48,76,77,118
onfusion Creek	041-7	3-61.02	41	233.9		100	391+70	3HR1443	14	3	5,11,20,30,31,48,76,118
iddle Fork Confusion Creek	041-6	3-61.015	41	233.8					44	4	
innie Creek	041-5	3-61	41	232.3		100	454+46 [°]	3HR1519+34	14	3	1,3,5,11,17,20,21,29,30,34,38 48,76,118,123,128
iddle Fork Koyukuk River	041-4	3-60.19	41	231.2		100	495+50	3HR1588+80	1.4	1	48,70,118,123,128 1,3,5,11,13,17,20,21,30,76, 118,123,128
nion Gulch Creek	041-3	3-60.17	41	230.3		100	536+00	3HR1600	1 1	4	5,11,20,21,30,31,48,76,118
onfederate Gulch Creek	041-2	3-60.16	41	229.8		100	590+75	3HR1655+00	i 4		11.30.76.118
ammond River	041-1	2-55	41	229.0		101	635+60	3HR1711+42	14	4 2	11,30,76,118 1,5,11,13,20,21,29,30,38,48,
		L-33	11	223.0		101	055.00	5111711742	. 4	-	76,118,132
iddle Fork Koyukuk River	040-8	2-60.13	40	228.8		101			1 4	1	1,3,5,11,17,20,21,29,30,37,48

1

Provisional List of Waterbodies (continued)

Waterbody	NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Cri S	ter F		References
One-O-One Creek Coon Gulch Creek Richardson's Slough Over Creek Nugget Creek	040-7 040-6 040-5 040-4 040-3	2-60.122 2-60.121 2-60.12 2-60.07 2-60	40 40 40 40 40	228.6 228.1 226.1 225.8 224.2		101 101 101	778+30 805+39 886+60	3HR1861+03 3HR1896+30 3HR1969+70	1 1 1 1 4	4 4 1 4	4 4 4 4	5,11,30,48,76,118 1,11,30,48,76,118 5,11,20,21,30,34,48,76,118,121
Wolf Pup Creek Sheep Creek Cushing Creek Gold Creek Linda Creek	040-2 040-1 039-4 039-3 039-2	2-59 2-53 2-52.01 2-52 2-51	40 40 39 39 39	223.7 223.2 222.9 222.4 221.9		102 102 102 102 102	906+50 933+00 948+60 976+00 1001+18	3HR1990+56 3HR2018+85 3HR2033+06 3HR2059+11 3HR2087+21	4 1 4 1	4 4 3 4	4 3	5,11,20,30,34,48,76,118,121 5,11,20,21,29,30,34,48,76,118 5,11,20,30,48,76,118,122 3,5,11,17,20,21,29,30,31,34, 48,64,76,118,121 5,11,17,20,21,29,30,31,34,48,
Valve Site Creek Sukakpak Creek Access Road Creek West Fork Sukakpak Creek	039-1 038-8 038-7 038-6	2-49.07 2-49.03 2-49.026 2-49.025	39 38 38 38	219.7 216.5 216.2 216.0	·	102 103	1121+05 1305+00	3HR2203+04 3HR2373+80	4 1 1 1	3 1 4 4	3 4 4	76,118,121 11,20,30,76,118 5,11,20,21,30,31,61,62,76,118, 130 11 11
Middle Fork Koyukuk River Millie's Meander Eva's Alv Dietrich River (Lower)	038-5 038-4 038-3 038-2	2-49 2-48.03 2-48.01 2-48	38 38 38 38	214.3- 214.6 214.0 212.4 212.1		103 103 103 104	1361+45 1418+76 1507+08 1526+55	3HR2440+47 3HR2489+60 3HR2583+84 3HR2604+66	1 1 2 1	4 4 1 1	4 4	1,3,5,13,17,20,21,29,30,31,38, 48,74,76,118,123,128,132 11,30,31,48,64,70,76,118,121 11,20,30,48,76,118,121 1,3,5,11,17,20,21,29,30,31,37,
1415 Lake Outlet Brockman Creek	038-1 037-7	2-46.01 2-46	38 37	211.5 210.6		104 104	1556+18 1581+87	3HR2631+80 3HR2662+07	4 4	4 1	4 2	38,48,61,62,76,77,118 11,30,76,118,121 11,20,21,29,30,48,64,76,118
South Branch Airport Creek Airport Creek Disaster Creek Unnamed Creek Snowden Creek	037-5 037-3 037-2 037-1 036-4	2-45.03 2-45.01 2-45 2-43.07 2-43	37 37 37 37 37 36	209.4 208.5 207.8 207.5 205.0		104 104 104 104 105	1637+70 1681+92 1719+41 1831+09 1870+20	3HR2728+26 3HR2775+58 3HR2809+90 3HR2925+28 3HR2959+42	4 1 4 1	4 4 4 1	4 4 4	11,20,30,76,118,123,128 11,20,30,48,76,118,130 3,5,11,20,29,30,48,64,76,118 11,30,76,118 3,5,11,17,20,21,29,30,34,48, 64,76,118,122
Snowden Pond Inlat Number Lake Creat Ugh Creek Steep Creek Buff Creek	036-3 036-2 036-1 035-4 035-3	2-41.04 2-41.03 2-41 2-39 2-38	36 36 36 35 35	204.4 203.7 202.3 198.3 196.8		105 105 106 106	1941+95 2011+00 2235+00 52+10	4HR3026+13 4HR3103+51 4HR3309+86 4HR3375+85	4 1 1 4 4	4 4 3 3	4 4	` 1,5,11,20,30,48,76,118,121 11,20,30,48,76,118 11,29,30,76,118,121,122 11,29,30,76,118,121,122

Waterbody	• NPRX	NPSI	NPAS	NPMP	Анмр	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria S F V		References
Burger's Bayou	035-2	2-36.02	35	196.3		106	72+50	4HR3414+01	ווו		1,5,11,20,30,48,76,77,118,122,
Tracy's Trickle	035-1	2-36	35	193.9		107 [·]	212+40	4HR3543+02	444		128 11,30,76,118
Unnamed Creek	034-8	2-34.07	. 34	192.9		107		1	4 4 4		
Beaver Dam Brook #1	034-7	2-34.05	34	192.4		107	295+10	4HR255+58	114	t i	11,30,76,118,122
Beaver Dam Brook #2	034-6	2-34.04	34	192.0		107	321+32	4HR280+97	4 3 4	ŀ	11,30,76,118,122
Beaver Dam Brook #3	034-5	2-34.03	34	191.8		107	329+88	4HR290+66	434	ŀ	11,30,76,118,122
Beaver Dam Brook #4	034-4	2-34.02	34	191.8		107	334+05	4HR293+50	4 3 4	ŀ	11,30,76,118,122
Nutirwik Creek	034-3	2-34	34	190.8		107	375+54	4HR343+00	114		3,5,11,17,20,21,30,38,48,64,
Homewood Spring	034-2	2-32.05	34	188.4-			496+00		4 1 1		67,76,118,122 30,41,76,118,122,130
				188.7							
Unnamed Creek	034-1	2-33	34	187.8					4 4 4	ł	
Overwintering Creek	033–7	2-32.02	33	186.8		108		4HR553+73	4 1 1		11,30,40,41,64,76,118
Nina Creek	033-6	2-31.01	33	186.0		108			4 4 4		
Oskar's Eddy	033-5	2-31	33	185.1		108	662+80	4HR632+98	144		5,11,30,76,87,118
Unnamed Creek	033-4	2-30.02	33	184.9		108	675+00	4HR649+00	4 3 3	}	11,20,30,76,118
Wetfoot Creek	033-2	2-29.04	33	184.0					414	ŀ	11,121,122,130
Dietrich River Floodplain	033-1	2-29.03	33	182.1-		109			414		1,3,5,11,20,30,31,62,76,118,
		0 00 00	~~	183.3							121,126
Dietrich River Floodplain	032-3	2-29.02	32	181.8- 182.1					4 1 4	ł	1,3,5,11,20,30,62,118,122,126
Unnamed Creek	032-2	2-28.02	32	177.4					4 4 4	ŀ	
Unnamed Creek	032-1	2-28.01	32	177.0					444	ŀ	
Unnamed Creek	031-3	2-27.05	31	174.8					à 4 4	1	
North Branch North Fork Chandalar River	031-3	2-27.05	31	175.4					444	ļ	
East Creek	031-2	2-27.04	31	171.8		110	247+32	4HR1360	444	ļ.	1,3,5,11,30,31,48,67,76
North Atigun Pass Creek	031-1	2-27.03	31	171.7					4 4 4		
Unnamed Creek	030-2	2-27.02	30	168.6					444		
Unnamed Creek	030-1	2-27.01	30	165.5		1			444	ļ	
Who Creek	029-9	2-26	29	163.8		111		5HR520+00	4 4 4	ŀ	11,30,76,118
Mickey's 6:30 Creek	029-8	2-25.03	29	163.6		111-		5HR541+66	4 4 4	ļ	11,30,76,118
Whybother Creek	029-7	2-25.02	29	163.5		112 112		5HR550+80	4 4 4	ļ '	11,30,76,118
Named Creek	029-6	2-25.01	29	163.2		112		5HR552+37	4 4 4	ļ '	11,30,76,118
Trevor Creek	029-5	2-25	29	160.6		112	837+00	5HR709+72	1 1 4		11,30,48,64,70,76,118,123,128,
											132

182

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Haul Road Station			ria* W	References
Tyler Creek Unnamed Creek	029-2	2-24.03	29 29	160.5 159.6		112	881+00	5HR717+90	1 4	4	4	11,30,48,76,118,121,123,128
Bicycle Creek Waterhole Creek Roche Moutonee	029 -1 028-2 028-1	2-24.006 2-24.005 2-24	29 28 28	159.5 158.8 154.1		113	; 1170+91	5HR1053+28	4 4 1	4 4 1	4 4 4	128 123,128,132 3,11,30,48,57,62,64,76,118,128
Leentha Creek Holden Creek	027-4 027-3	2-23.015 2-23.01	27 27	152.8 151.8		114	30+44	5HR1176+47	4 1	4 1	4 4	11,121 11,30,48,62,64,76,118,121,123, 128,130,132
Tad Creek Atigun River Jill Creek	027~2 027-1 025-9	2-22.04 2-22 2-21.11	27 27 25	151.7 148.4 141.6		114 114 115	44+00 20+94 380+60	5HR1169 5HR1364+44 6HR229+00	2 1 4	4 1 4	4 2 4	11,118,121 1,3,5,11,30,31,48,76,77,118,128 11,30,48,64,76,118,121,122,128
Jill Creek Tributary Ed Creek	025-8 025-7	2-21.10 2-21.09	25 25	141.5 140.9		115 115	395+24 421+74	6HR234+75 6HR436+25		4 4	4 4	11,30,48,76,118 11,20,30,48,76,118,121,122,123, 130,132
Mack Creek Terry Creek Moss Creek	025-6 025-5 025-4	2-21.08 2-21.07 2-21.06	25 25 25	140.6 139.9 139.4		115 115 115	438+29 466+12 494+00	6HR452+00 6HR490+00 6HR500+41		4 4 4	4 4 4	11,30,48,76,118,122,123,130,132 11,30,48,64,76,118 11,30,48,76,118
Hallock Creek Clawsod Creek	025-3 025-2	2-21.05 2-21.045	25 25	139.3 137.6		115	504+27	6HR512+00	4 4	4 2		11,30,48,76,118 11,30
Yan Creek Kuparuk River	025-1 024-1	2-21.04 2-21	25 24	137.0 132.6		115 117	629+06 842+00	6HR641+00 6HR936+50	4 1	4 1	4 2	11,30,48,76,118,122 1,3,5,11,29,30,36,48,64,67,76, 118
East Fork Kuparuk River	023-3	1-20.01	23	130.7		117	921+55	6HR911+80	4	4	4	5,11,30,48,64,76,118,121
Toolik River	023-2	1-20	23	130.0		117	968+30	6HR948+50	4	4	4	3,5,11,29,30,48,64,76,118,121, 122
East Fork Toolik River Mary Lamb Creek	023-1 022-2	1-19.01 1-19.005	23 22	129.6 125.0		117	973+30	6HR970+25	4 4	4 4	4 4	11,30,48,76,118,121,122
Oksrukuyik Creek	022-1	1-19.005	22	125.0		118	1325+64	6HR1285+32	1	4		1,3,5,11,29,30,48,50,57,64,76, 118
Lower Oksrukuyik Creek	020-1	1-18.01	20	110.3		120	895+76	6HR2109+00	۱	1	4	1,11,30,48,57,64,70,76,77,118, 123,124
Rudy Creek Bassett Creek Dennis Creek Climb Creek Poison Pipe Creek	019-6 019-5 019-4 019-3 019-2	1-17 1-16.03 1-16.02 1-16.01 1-16	19 19 19 19 19 19	108.6 107.0 106.9 106.3 106.1		120 121 121 121 121 121	947+99 1029+20 1033+60 1060+34 1077+10	6HR2153 6HR2228+14 6HR2234+80 6HR2262+60 6HR2318+92	1 4 1 1 1	1 4 1 4 1	4 4 4 4	3,11,29,30,48,76,118,121,122 11,30,48,76,118 11,30,48,76,118,121,122 11,30,48,64,76,118,121 11,29,30,48,76,118

.

ł

Waterbody	NPRX	NPSI	NPAS	NPMP	AHMP	Alyeska AS	Alyeska Pipe Station	Haul Road Station	Criteria* S F W	References
 Polygon Creek Gustafson Gulch Arthur Creek Sagavanirktok River Side Channel	019-1 018-4 018-3 018-2	1-15 1-14 1-13 1-12.05	19 18 18 18	105.1 102.3 101.9 99.7		121 122 122 122	1125+00 1280+00 1297+50 1424+79	6HR2351+97 6HR2517+85 6HR2536+20 6HR2657+20	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11,30,48,64,76,118,122 11,30,48,63,76,118,121,122 11,29,30,48,63,64,76,118,122 11,30,48,64,76,118,121
Sagavanirktok River Side Channel	` 018-1	1-12.04	18	99.1		122	1445+85	6HR2684+43	144	11,30,48,76,118,121
Stump Creek Tributary to Lori Creek Lori Creek Charlotte Creek Happy Valley Camp Creek	017-3 017-2 017-1 016-3 016-2	1-12.02 1-12.015 1-12.01 1-12 1-11	17 17 17 16 16	97.4 94.7 93.6 91.5 87.6		122 123 123 124	1499+00 1719+50	6HR2770+86 6HR2974+15 6HR3083+19 6HR3259+77	4 1 4 4 4 4 4 4 4 1 1 2 1 1 3	11,30,48,57,63,76,118 11,30,48,63,70,76,118,121 11,29,30,64,76,118,122 3,5,11,29,30,48,63,64,76,118, 122
Milke Creek Unnamed Creek Stout Creek Spoiled Mary Creek Mark Creek	016-1 015-3 015-2 015-1 014-1	1-10 1-9.5 1-9 1-8 1-7	16 15 15 15 14	87.1 86.4 83.6 82.4 76.5		124 124 125 126	493+95 791+40	6HR3296+20 6HR3471+69 6HR3535+62 6HR3849+41	1 1 4 4 4 4 1 1 4 1 4 4 1 4 4	3,11,29,30,48,63,64,76,118 30 11,30,48,64,70,76,118,122 11,29,30,48,76,118,122 3,11,29,30,48,63,76,118
Toolik River Tributary Sand Creek Unnamed Creek Lake 802 East Fork Sylvia Creek	013-1 012-2 012-1 010-1 007-5	1-5.49 1-5.485 1-5.48 1-5.295 1-5.055	13 12 12 10 7	69.6 67.8 64.3 54.4 39.3		126W 126W		6HR4195+99 6HR4481+00	4 4 4 4 4 4 4 3 4 4 4 4 4 2 4	11,30,42,43,76,118 11,30,42,43,76,118,122 11,122
Sylvia Creek Tributary to Short Creek Short Creek	007-4 007-3 007-2	1-5.05 1-5.045 1-5.02	7 7 7	39.0 38.6 38.4		132 132	1316+45 4822+81	7HR1624+77 7HR1655+59	1 4 3 4 4 4 4 4 4	11,30,48,76,118 11,30,48,76,118
Telma Creek Pescado Creek	007-1 005-2	1-5.01 1-4.07	. 7 5	35.8 27.4		132	4951+44 ⁺		4 ⁻ 14 414	11,30,48,76,118,122 11,30,43,48,76,77,122
Unnamed Lake Low-life Creek Unnamed Lake Unnamed Lake	005-1 004-2 004-1 003-1	1-4.06 1-3.05 1-3.04 1-3.03	5 4 4 3	26.7 23.0 17.6 12.5		. 135	806	7HR2482+36	4 4 4 4 1 4 4 4 4 4 4 4	11,30,76,118 122
Little Putuligayuk River Putuligayuk River	002-1 001-1	1-3 1-1	2	9.4 3.2			1478+52		4 3 3 4 1 3	3,11,30,48,57,76,118,121,122 27,30,40,43,48,56,76,118,121

184

. •

* S = Spring, F = Fall, W = Winter