CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Proposed Natural Gas Pipeline Routes</td>
<td>2</td>
</tr>
<tr>
<td>The Need for Alaska's Minerals</td>
<td>4</td>
</tr>
<tr>
<td>Impact on Mineral and Energy Development in Alaska</td>
<td>4</td>
</tr>
<tr>
<td>Socio-Economic Impact in Alaska</td>
<td>7</td>
</tr>
<tr>
<td>Geology and Development Potential by Quadrangles</td>
<td>11</td>
</tr>
<tr>
<td>Development Potential by Pipeline Corridor Routes</td>
<td>170</td>
</tr>
<tr>
<td>Routes A,B,A,C; and D.</td>
<td>170</td>
</tr>
<tr>
<td>Routes E,F,H and E,G,H</td>
<td>170</td>
</tr>
<tr>
<td>Routes J,K,L,N and J,K,M,N</td>
<td>171</td>
</tr>
<tr>
<td>Routes J,O,U,V,W</td>
<td>171</td>
</tr>
<tr>
<td>Routes J,O,U,Y,BB,FF</td>
<td>172</td>
</tr>
<tr>
<td>Routes J,O,U,Y,BB,FF; J,O,U,Y,CC,TT,JJ,KK; J,O,U,Y,CC,TT,JJ,LL; J,O,U,Y,CC,TT,HH,GG; and J,O,U,Y,BB,FF.</td>
<td>172</td>
</tr>
<tr>
<td>Route J,O,S,T.</td>
<td>174</td>
</tr>
<tr>
<td>Conclusion</td>
<td>176</td>
</tr>
<tr>
<td>List of References</td>
<td>177</td>
</tr>
</tbody>
</table>

ARLIS
Alaska Resources
Library & Information Services
Anchorage, Alaska
ILLUSTRATIONS

Figure

1 Proposed Natural Gas Corridors in Alaska 15

Mineral and energy maps follow each quadrangle description

Ambler River maps follow page 15
Anchorage maps follow page 18
Arctic maps follow page 21
Barter Island maps follow page 23
Beaver maps follow page 25
Beechey Point maps follow page 28
Bendeleben maps follow page 30
Bettles maps follow page 33
Big Delta maps follow page 36
Black River maps follow page 39
Candle maps follow page 42
Chandalar maps follow page 45
Chandler Lake maps follow page 48
Charley River maps follow page 51
Christian maps follow page 54
Circle maps follow page 56
Coleen maps follow page 59
Cordova maps follow page 61
Demarcation Point maps follow page 64
Eagle maps follow page 67
Fairbanks maps follow page 70
Flaxman Island maps follow page 73
Fort Yukon maps follow page 75
Gulkana maps follow page 78
Healy maps follow page 81
Hughes maps follow page 84
Kantishna River maps follow page 87
Kateel River maps follow page 90
Kenai maps follow page 93
Killik River maps follow page 96
Livengood maps follow page 99
McCarthy maps follow page 102
Mt. Hayes maps follow page 105
Mt. McKinley maps follow page 108
Mt. Michelson maps follow page 111
Nabesna maps follow page 114
Norton Bay maps follow page 117
Phillip Smith Mountain maps follow page 120
Sagavanirktok maps follow page 123
Selawik maps follow page 126
ILLUSTRATIONS, Continued

<table>
<thead>
<tr>
<th>Illustrations</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seldovia maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Seward maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Shungnak maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Solomon maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Survey Pass maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Table Mountain maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Talkeetna maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Talkeetna Mountain maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Tanacross maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Tanana maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Tyonek maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Umiat maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Valdez maps</td>
<td>follow page</td>
</tr>
<tr>
<td>Wiseman maps</td>
<td>follow page</td>
</tr>
</tbody>
</table>

TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>National supply-demand pattern from 1972-2000</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Estimated mine, concentrator, plant and office personnel by size and type of mine.</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>Estimates of employment and population of mining communities by size and type of mine.</td>
<td>12</td>
</tr>
</tbody>
</table>
IMPACT OF A NATURAL GAS PIPELINE
ON MINERAL AND ENERGY DEVELOPMENT
IN ALASKA

By

Robert G. Bottge

ABSTRACT

This report discusses the impact of one primary and seven alternative natural gas pipeline routes and their alternatives on Alaska's mining industry. Four routes begin on Alaska's North Slope and lead to the 48 contiguous States via Canada while three routes lead to tidewater where it would be liquified for transport to West Coast ports. The report answers specific questions raised by the Corridor Planning Team of the Bureau of Land Management, the lead Department of the Interior agency for preparing an environmental impact statement for the routes proposed by the Alaskan Arctic Gas Pipeline Company.

This report summarizes the geology and the potential for mineral and energy development by 1:250,000 quadrangles through which the various pipeline routes pass. The potential impact along each route is then discussed giving the type of development likely and the number of people who could be attracted to the area.

INTRODUCTION

The Alaska Field Operation Center is cooperating in the preparation of an environmental impact statement (EIS) for the Alaskan Arctic Gas Pipeline Company's route from Alaska's North Slope to the 48 contiguous States. The EIS is being prepared by the Department of the Interior and
the Federal Power Commission. The Department of the Interior's lead agency in preparing the EIS is the Corridor Planning Team, Bureau of Land Management.

The Bureau of Mines' representative was assigned to the Corridor Planning Team on September 29, 1974, to provide input to the EIS. His base of operation remained in Juneau instead of the Corridor Planning Team in Anchorage because the Juneau office contained the data base for the minerals input. That input is summarized in this report. The reduced maps in this report were made as overlays for the 1:250,000 U.S. Geological Survey quadrangles and were submitted to the Corridor Planning Team.

This report does not conform to the EIS outline in format, but answers specific questions raised by the Corridor Planning Team. The maps conform to the guideline that all maps be self-contained. The area of influence for mineral or energy development is considered to be 50 miles either side of a proposed route.

PROPOSED NATURAL GAS PIPELINE ROUTES

The Alaskan Arctic Gas Pipeline Company proposed transmitting natural gas from Prudhoe Bay to the 48 contiguous States through Canada via the prime route designated "D" or the alternative route designated E,F,H or its option E,G,H, figure 1. Seven other routes and their alternatives were also considered exiting the State at points along the eastern border from the Arctic Ocean to the Alcan Highway, in Prince William Sound, Cook Inlet and Norton Sound, figure 1.
FIGURE 1. Proposed natural gas corridors in Alaska
THE NEED FOR ALASKA'S MINERALS

Table 1 lists minerals that have been or are likely to be found along the primary natural gas corridors and their alternatives. The primary quantity of each commodity produced in the United States in 1972 is given and compared with the primary demand. The difference between the two figures was made up by imports and/or the utilization of scrap. Two projections are given for the production of primary commodities in the United States in the year 2000. One projection assumes the Nation's mineral producers will continue to provide the same percentage of the Nation's projected requirements in 2000 as they did in 1972. The second projection for 2000 is based upon the trend of production for the last 20 years. Finally, the projected demand for 2000 primary production is given. All data is provided by the Bureau of Mines.

The table shows the United States' producers were capable of supplying the 1972 primary demand for only three commodities: coal, molybdenum and uranium. If production trends of the last 20 years continue, the Nation's producers will fall even farther behind meeting demands in the year 2000 than they did in 1972, thus requiring greater imports or greater utilization of secondary supplies such as scrap. Obviously, any mineral production from Alaska would help lessen the Nation's dependency upon imports and improve its balance of payments situation.

IMPACT ON MINERAL AND ENERGY DEVELOPMENT IN ALASKA

A natural gas pipeline would probably have little impact on the development of mineral and energy deposits in Alaska. Unless a company were able
to contract for natural gas at the time the reserves were being committed, no natural gas would be available. Also, a mining venture is not a large consumer of energy for a cross country pipeline company to service. For example, a large company mining 100,000 tons of ore and waste and concentrating 40,000 tons of copper ore each day would consume approximately 16,100 Mcf per day for heat and power (1). Adding smelting and refining capabilities at the concentrator site would bring total heat and power requirements to approximately 28,000 Mcf per day. By contrast, the City of Anchorage consumed about 58,000 Mcf per day in 1971 and the Collier ammonia and Phillips-Marathon liquid natural gas plants consumed about 101,000 Mcf per day. Large petrochemical plants producing ethane, propane and isobutane commonly consume 400,000 Mcf per day with the largest plants consuming over 1,500,000 Mcf per day (2). For a pipeline company transmitting 2,000,000 Mcf per day, a mining company probably is not a large enough consumer to consider servicing.

The primary impact of a natural gas pipeline on the development of mineral and energy deposits lies with an accompanying permanent road. The development of small, high-grade deposits or large, low-grade deposits within 50 miles either side of a pipeline road would be enhanced. However, a permanent road which originates on the North Slope and goes into Canada without passing through a supply point, such as Fairbanks, would have marginal utility for mining companies. The creation of an ice road to be used during the construction of the pipeline and then left to melt, such as has been

2/ Underlined numbers in parentheses refer to references listed at the end of the text.
TABLE 1.- National supply-demand pattern from 1972-2000

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Unit</th>
<th>1972 Primary Production</th>
<th>1972 Primary Demand</th>
<th>2000 Production if 1972 constant ratio prevails</th>
<th>2000 Production if past 20-year trend prevails</th>
<th>2000 Primary Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony (Sb)</td>
<td>S.T.</td>
<td>1,005</td>
<td>19,865</td>
<td>2,400</td>
<td>1,520</td>
<td>48,000</td>
</tr>
<tr>
<td>Asbestos</td>
<td>Thousand S.T.</td>
<td>131</td>
<td>759</td>
<td>420</td>
<td>290</td>
<td>2,430</td>
</tr>
<tr>
<td>Chromium (Cr)</td>
<td>Thousand S.T.</td>
<td>0</td>
<td>506</td>
<td>0</td>
<td>0</td>
<td>1,090</td>
</tr>
<tr>
<td>Coal</td>
<td>Million S.T.</td>
<td>595</td>
<td>520</td>
<td>1,100</td>
<td>818</td>
<td>1,000</td>
</tr>
<tr>
<td>Cobalt (Co)</td>
<td>Thousand lb.</td>
<td>0</td>
<td>19,268</td>
<td>0</td>
<td>0</td>
<td>24,700</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>Thousand S.T.</td>
<td>1,665</td>
<td>1,951</td>
<td>4,600</td>
<td>2,600</td>
<td>5,400</td>
</tr>
<tr>
<td>Gas</td>
<td>Billion C.F.</td>
<td>21,624</td>
<td>22,565</td>
<td>46,900</td>
<td>44,500</td>
<td>49,000</td>
</tr>
<tr>
<td>Gold (Au)</td>
<td>Thousand T.oz.</td>
<td>1,450</td>
<td>7,254</td>
<td>2,900</td>
<td>1,033</td>
<td>14,300</td>
</tr>
<tr>
<td>Iron (Fe)</td>
<td>Million S.T.</td>
<td>52</td>
<td>83</td>
<td>95</td>
<td>58</td>
<td>153</td>
</tr>
<tr>
<td>Lead (Pb)</td>
<td>Thousand S.T.</td>
<td>619</td>
<td>970</td>
<td>912</td>
<td>822</td>
<td>1,430</td>
</tr>
<tr>
<td>Manganese (Mn)</td>
<td>Thousand S.T.</td>
<td>29</td>
<td>1,366</td>
<td>50</td>
<td>0</td>
<td>2,360</td>
</tr>
<tr>
<td>Mercury (Hg)</td>
<td>Thousand Fl.</td>
<td>7</td>
<td>41</td>
<td>10</td>
<td>15</td>
<td>57</td>
</tr>
<tr>
<td>Molybdenum (Mo)</td>
<td>Thousand lb.</td>
<td>112,138</td>
<td>51,504</td>
<td>409,300</td>
<td>196,700</td>
<td>188,000</td>
</tr>
<tr>
<td>Nickel (Ni)</td>
<td>Thousand S.T.</td>
<td>17</td>
<td>172</td>
<td>38</td>
<td>38</td>
<td>385</td>
</tr>
<tr>
<td>Oil</td>
<td>Million bbl.</td>
<td>4,094</td>
<td>5,990</td>
<td>9,200</td>
<td>6,491</td>
<td>13,500</td>
</tr>
<tr>
<td>Platinum (Pt)</td>
<td>Thousand T.oz</td>
<td>5</td>
<td>467</td>
<td>9</td>
<td>0</td>
<td>820</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>Thousand T.oz.</td>
<td>37,233</td>
<td>122,257</td>
<td>64,000</td>
<td>45,200</td>
<td>210,000</td>
</tr>
<tr>
<td>Tin (Sn)</td>
<td>L.T. (1)</td>
<td>48,853</td>
<td>48,853</td>
<td>90</td>
<td>58</td>
<td>90,000</td>
</tr>
<tr>
<td>Tungsten (W)</td>
<td>Thousand lb.</td>
<td>8,150</td>
<td>13,607</td>
<td>44,000</td>
<td>1,970</td>
<td>74,000</td>
</tr>
<tr>
<td>Uranium (U)</td>
<td>S.T.</td>
<td>11,590</td>
<td>10,250</td>
<td>92,700</td>
<td>20,659</td>
<td>82,000</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>Thousand S.T.</td>
<td>478</td>
<td>1,489</td>
<td>995</td>
<td>600</td>
<td>3,100</td>
</tr>
</tbody>
</table>

(1) Confidential company information.

Units: S.T. = short tons; lb. = pounds; C.F. = cubic feet; T.oz. = troy ounces; Fl. = flasks; bbl. = barrels; L.T. = long tons.

proposed for the prime route "D" or its alternative E,F,H and its option G, would have no impact on the development of mineral and energy resources.

The course of mineral development could be altered by the State of Alaska. Should the State take its royalty from natural gas production in kind, it may make the natural gas available for mineral ventures. However, even the State must make its request for natural gas when the reserves are being committed in order to have a supply to distribute. Likewise, a State policy to connect any permanent natural gas pipeline road to the road system within Alaska via proposed corridors would aid in the development of mining. If the State of Alaska desires mineral development, then there could be an impact on the mining industry from the natural gas pipeline and road, otherwise, the pipeline will have little or no impact on mineral development.

Socio-Economic Impact in Alaska

If mining develops, an impact upon the land will come from miners, service personnel, and their families brought to the area. Estimating the impact from unknown numbers and types of mines developed at unknown locations and commencing at unknown times is purely rank speculation. Problems which enter into these estimates will now be discussed.

Alaska is a relatively unknown area for hard rock minerals. In 1972, $6.5 million was spent in Alaska versus $4.5 million in the Yukon and $72.0 million in British Columbia (6, 5, 4). When considered on a per square mile basis, the average expenses for exploration were $11.50 on Alaska, $21.75 in the Yukon and $200.40 in British Columbia. Additional money spent on exploration in Alaska would help to define the areas of mineralization.
The number of people employed and otherwise associated with a mine depends upon numerous variables such as the kind of mineral, type and configuration of mineralization, type and degree of ore beneficiation, type of townsite (camp with dormitories or town with houses and apartments), company policy on purchasing replacement parts or fabricating much of what is needed. A review of Bureau of Mines' publications and the Yearbooks of the Canadian Mining Manual has led to the construction of table 2.

Table 2 is meant to give an order of magnitude for total employment at a mine, concentrator, plant and office located at a remote site. For example, a company using an open-pit technique to mine 50,000 tons of ore and waste per day and concentrate 15,000 tons of ore per day would employ about 80 people in the mine and 70 people in the concentrator, or 150 combined. The surface plant might employ 150 X 0.65 or 98 people, and the office 150 X 0.35 or 52. Because of the large number of variables, the number of employees can only be estimated within plus or minus 50 percent. So the mining complex might employ 300 ± 150 people.

The type and degree of ore concentration can make a big difference in the number of employees required for a mineral operation. Flotation is a common type of concentration for sulfide ores, but gold ore is commonly treated by the cyanide process, and oxide ores require a roasting step. Vat leaching may be utilized in addition to the regular beneficiation processes. If a concentrate is produced by flotation, employment is relatively small, but smelting and refining can also be done at the concentrator site, thus boosting the concentrator figures given in table 2 by factors of three or more. In this report only the employees associated with flotation concentration are considered, so the concentrator employment must be considered minimum.
TABLE 2.- Estimated mine, concentrator, plant, and office personnel by type and size of mine 1/

<table>
<thead>
<tr>
<th>Daily tonnage 2/</th>
<th>Underground</th>
<th>Open pit</th>
<th>Flotation concentrator 3/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Room & pill</td>
<td>Open stope</td>
<td></td>
</tr>
<tr>
<td>175,000</td>
<td>-</td>
<td>-</td>
<td>160</td>
</tr>
<tr>
<td>150,000</td>
<td>-</td>
<td>-</td>
<td>150</td>
</tr>
<tr>
<td>100,000</td>
<td>-</td>
<td>-</td>
<td>120</td>
</tr>
<tr>
<td>75,000</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
<tr>
<td>50,000</td>
<td>-</td>
<td>-</td>
<td>80</td>
</tr>
<tr>
<td>40,000</td>
<td>-</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>30,000</td>
<td>-</td>
<td>-</td>
<td>60</td>
</tr>
<tr>
<td>25,000</td>
<td>430</td>
<td>-</td>
<td>50</td>
</tr>
<tr>
<td>20,000</td>
<td>380</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>15,000</td>
<td>320</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>10,000</td>
<td>250</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>7,500</td>
<td>210</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>5,000</td>
<td>160</td>
<td>330</td>
<td>30</td>
</tr>
<tr>
<td>4,000</td>
<td>140</td>
<td>290</td>
<td>25</td>
</tr>
<tr>
<td>3,000</td>
<td>120</td>
<td>250</td>
<td>20</td>
</tr>
<tr>
<td>2,000</td>
<td>100</td>
<td>210</td>
<td>15</td>
</tr>
<tr>
<td>1,000</td>
<td>60</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>40</td>
<td>80</td>
<td>5</td>
</tr>
<tr>
<td>250</td>
<td>30</td>
<td>60</td>
<td>5</td>
</tr>
</tbody>
</table>

Plant: (Underground mine employment + concentrator employment) X 0.492
(Open pit mine employment + concentrator employment) X 0.650

Office: (Underground mine employment + concentrator employment) X 0.189
(Open pit mine employment + concentrator employment) X 0.350

1/ Mine employees: those involved with drilling, blasting, and removing ore and waste from the mine.
Concentrator employees: those involved in crushing, grinding, and concentrating the ore and disposing of tailings.
Plant employees: all maintenance and shop personnel.
Office employees: all professional and clerical personnel.

2/ Daily tonnage for mines includes ore and waste; daily tonnage for the concentrator is ore only.

3/ The daily tonnage handled by the concentrator is less than that mined. Waste in underground mines may approximate 15 percent of the ore mined; in open pits, waste may be two to three times the ore mined and sometimes more.
The total number of people, employees and dependents brought into a
townsite depends upon the company's townsite administration policy. If
dormitories are built and only single men encouraged to work at the mine,
then the population of the townsite will approximate company employment.
If houses and apartments are built encouraging families to come, then the
townsite population could be the company employment plus 1.5 to 2.5 times
employment. Also, the composition of the townsite will have a definite
impact on the other towns in Alaska. A townsite of predominantly single
employees will require different services from nearby Alaskan towns than
will a townsite composed predominantly of families. In the mine example
above, the 300 employees might create a townsite of from 300 to 1,050 people
excluding service personnel and their families.

The last component of a townsite is the service industry; that is, the
number of people employed to service the mining company and its personnel.
This component will vary for each company and each location. A review of
twelve different sources for this type of data has led the author to
conclude that the creation of 100 jobs in a basic industry will create
between 67 and 108 new jobs in associated service industries within the
State (3, 5). The number created at the mining townsite could be between
17.5 and 25.5 as these are the ratios existing at Clinton Creek and Faro in
the Yukon Territory 3/. In the mine example here, the creation of 300
mine-associated jobs will create an additional 201 to 324 jobs within the
State of Alaska of which 52 to 176 will be at the townsite. On the average,
the service personnel would likely bring two dependents adding a total of
156 to 228 additional people to the townsite.

3/ From communications with personnel of Clinton Mine Division, Cassiar
Asbestos Corporation, Ltd., and Anvil Mining Corporation, Ltd.
In total, a mining company employing 300 people could create a town with the following makeup:

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine company employees</td>
<td>150</td>
<td>300</td>
<td>450</td>
</tr>
<tr>
<td>Service industry employees</td>
<td>26</td>
<td>60</td>
<td>115</td>
</tr>
<tr>
<td>Dependents</td>
<td>0</td>
<td>720</td>
<td>1130</td>
</tr>
<tr>
<td>Total</td>
<td>176</td>
<td>1080</td>
<td>1695</td>
</tr>
</tbody>
</table>

A company opening a 50,000 ton-per-day open pit mine with 15,000 ton-per-day concentrator may bring from 176 to 1,695 people to a townsit depending upon the type of ore deposit to be mined, type of beneficiation, and the policy of the company towards parts replacement and townsit administration. The estimate of population created by one size and type of mine may be 1,080 minus 84 percent or plus 57 percent. Because few mining ventures are completely composed of families or single employees, probably plus or minus 50 percent is a likely deviation from an average or medium estimate, making the population for the townsit range from 540 to 1,620.

Table 3 shows similar employment and population estimates for mining communities for three sizes and three types of mines. Population estimates are given in hundreds to show the order of magnitude for mining communities for various sizes and types of mines. High, medium and low estimates are given to show the influence that companies and ore deposits have on populations.

GEOLOGY AND DEVELOPMENT POTENTIAL BY QUADRANGLES

The quadrangles traversed by a corridor 50 miles either side of the prime and alternative routes proposed by the Alaskan Arctic Gas Pipeline Company as well as the seven additional routes and their options considered
TABLE 3.- Estimates of employment and population of mining communities by size and type of mine

<table>
<thead>
<tr>
<th>Item</th>
<th>Open Pit</th>
<th></th>
<th>Underground - Room & Pillar</th>
<th>Underground - Open Stope</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small</td>
<td>Medium</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Daily tons of ore and waste 1/</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,000 - 50,000</td>
<td>30,000 - 75,000</td>
<td>50,000 - 175,000</td>
<td>250 - 1,000</td>
</tr>
<tr>
<td>Daily tons of ore 2/</td>
<td>7,500 - 15,000</td>
<td>15,000 - 25,000</td>
<td>25,000 - 50,000</td>
<td>250 - 1,000</td>
</tr>
<tr>
<td>Daily tons of ore 3/</td>
<td>7,500 - 15,000</td>
<td>15,000 - 25,000</td>
<td>25,000 - 50,000</td>
<td>250 - 1,000</td>
</tr>
<tr>
<td>Concentrated</td>
<td>1/</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mine personnel 2/</td>
<td>90 - 180</td>
<td>130 - 230</td>
<td>180 - 380</td>
<td>30 - 90</td>
</tr>
<tr>
<td>Concentrator</td>
<td>70 - 100</td>
<td>100 - 140</td>
<td>140 - 210</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Office</td>
<td>60 - 100</td>
<td>80 - 130</td>
<td>110 - 210</td>
<td>10 - 20</td>
</tr>
<tr>
<td>Total company</td>
<td>320 - 560</td>
<td>460 - 740</td>
<td>640 - 1,180</td>
<td>70 - 180</td>
</tr>
<tr>
<td>Dependents 5/</td>
<td>770 - 1,340</td>
<td>1,100 - 1,780</td>
<td>1,540 - 2,830</td>
<td>160 - 440</td>
</tr>
<tr>
<td>Medium estimate of townsite population 6/</td>
<td>1,200 - 2,000</td>
<td>1,600 - 2,700</td>
<td>2,300 - 4,200</td>
<td>200 - 700</td>
</tr>
<tr>
<td>Low estimate of townsite population 7/</td>
<td>600 - 1,000</td>
<td>800 - 1,400</td>
<td>1,200 - 2,100</td>
<td>100 - 400</td>
</tr>
<tr>
<td>High estimate of townsite population 8/</td>
<td>1,800 - 3,000</td>
<td>2,400 - 4,100</td>
<td>3,500 - 6,300</td>
<td>300 - 1,100</td>
</tr>
</tbody>
</table>

1/ Rounded to nearest 1,000 tons except for small mines.
2/ Taken from table 2.
3/ Calculated by formula in table 2, rounded to nearest 10.
4/ Based upon 20 service employees per 100 company employees, rounded to nearest 10.
5/ Based upon 2 service employees for each service and company employee.
6/ Summation of company and service employees plus their dependents, rounded to nearest 100.
7/ Medium estimate of townsite population minus 50 percent, rounded to nearest 100.
8/ Medium estimate of townsite population plus 50 percent, rounded to nearest 100.
by the Corridor Planning Team were analyzed for their mineral and energy potential. The quadrangles also show the prime and alternative routes proposed by El Paso Gas Company. Quadrangles touched by a corridor 50 miles either side of these routes were considered when the Corridor Planning Team believed El Paso would file an application with the Department of the Interior. Consideration of the El Paso routes was dropped in November of 1974 by the Corridor Planning Team, but the mineral and energy resource assessment had been completed and so is included in this report.

The methodology to evaluate the geology and development potential for each quadrangle was to solicit the views of individuals who were highly knowledgeable about specific areas of the State. Respondents on hard rock minerals were Charles Hawley of C. C. Hawley and Associates, Phil Holdsworth of Inexco Mining Company, Jeffrey Knaebel of Resource Associates and Robert Seraphim of R. H. Seraphim Engineering, Ltd. The Bureau of Mines' staff provided additional input on coal, petroleum and minerals where specific knowledge was available. The author then summarized the participant's views. The views of each participant were held confidential so as to not relate specific information with specific individuals or organizations.

The geology section is a broad brush approach giving geology by major rock types. The purpose of this section is to show the reader what type of rocks occur and hence what types of minerals or fossil fuel may be present. For example, sedimentary rocks may be sources of oil, gas, coal and certain nonmetallics such as phosphates and oil shales, as well as uranium. Metamorphic rocks have the potential for mineralization due to a past history of heat and pressure being applied to the area. Igneous
and volcanic rocks may indicate still different minerals being present in the area. Granites denote the possibilities of such elements as gold, copper, lead, zinc and antimony occurring while mafic and ultramafic rocks may indicate the presence of copper, nickel, chromium, asbestos and tungsten.

The mineral and energy potential for each quadrangle is then discussed. The areas of relative potential are described from energy and mineral maps, two maps for each quadrangle where needed. The potential maps show the types of minerals or energy likely to occur; they say nothing of the size or quality of mineral or energy resources. For example, large areas of Alaska have never been drilled for oil and gas but the occurrence of a sedimentary basin indicates the potential for these resources. Likewise, an area of mafic rocks indicates the potential for copper, nickel, chromium, asbestos and tungsten. Only an exploration program followed by drilling will prove or disprove the occurrence of resources in commercial quantities.

Finally, the potential for the development within a corridor 50 miles either side of a pipeline route is considered. The potential for each type of resource is a summary of views solicited by the author from the consultants and Bureau of Mines' staff mentioned earlier. This section is meant to show the types and sizes of resources which could be developed in an area between 1975 and 2001 with the construction of a natural gas pipeline with access road and a positive program of encouraging development by the State of Alaska. The size of development is given to relate the resource with the socio-economic impact. The number of people likely to be drawn to an area is taken from table 3.
QUADRANGLE: Ambler River

GEOLOGY: Predominantly sedimentary deposits of limestone and sandstone in the northern third and metamorphic rocks in the middle third. Glacial and glaciofluvial deposits locally cover sedimentary rocks in the southern third. Ultramafic rocks occur along the southern border.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $32,300 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The southern quarter is geologically favorable but no surface indications are present

Coal Scattered outcrops of bituminous coal occur in the southern quarter

Minerals The middle half has high potential for gold, antimony and tungsten and for copper, lead and zinc in a belt trending east-west through the southern part of the high potential area.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal Unknown; little exploration to date

Minerals The Kobuk area is probably the most important potential mineral producing area in the State. Perhaps 8,000 to 12,000 claims have been staked there recently. Estimates place Kennecott's Bornite property at 5 million tons of 4 to 5 percent copper and its Arctic Camp property at 15 to 30 million tons of 4 to 6 percent copper plus 6 to 8 percent lead. A high potential exists for medium-size underground mines at both locations in the next ten years, and the potential is high for the development of similar properties nearby.
QUADRANGLE: Anchorage

GEOLOGY: Predominantly sandstone and shale with minor amounts of conglomerate, volcanic rocks and limestone. Granitic intrusives occur along the northern border. Glacial and glacio-fluvial deposits occur along the western border.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $88,058,800 - coal, lode gold, lode silver, placer gold, copper, lead, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- Oil and gas: Much of the northwestern half is contained within the Cook Inlet Mesozoic Province. Much of the Province is geologically favorable for oil and gas although no surface indications exist.

- Coal: Anthracite, bituminous and subbituminous coal occur in the northwestern half.

- Minerals: The northwestern corner has good potential for gold, copper, silver, platinum, chromium and nickel. A central zone from southwest to northeast has good potential for copper, gold, lead, zinc, silver and tungsten.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- Oil and gas: The potential for oil and gas deposits is good.

- Coal: An estimated 137 million tons of coal occur. The potential for medium-size, underground or open pit mines is fair.

- Minerals: The potential for small-size gold deposits is fair.
QUADRANGLE: McCarthy

GEOLOGY: Predominantly sedimentary and volcanic rocks with granitic intrusives. Glacial and glaciofluvial deposits overlay the rocks along major drainages.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $201,075,400 - copper, lode silver, placer gold, lead, lode gold, placer silver.

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas None
Coal None
Minerals The northeastern quarter has a high potential for copper and molybdenum. Generally, the southwestern half has a high potential for copper, silver, gold and molybdenum.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas None
Coal None
Minerals The potential for small placer gold deposits is high. The potential for medium-size copper and gold deposits is good.
QUADRANGLE: Mt. Hayes

GEOLOGY: The northeastern half consists mostly of metamorphic rocks cut by intrusives. The southwestern half has both volcanic and sedimentary rocks. Ultramafic rocks are found near the Denali Fault

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $3,260,000 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The Middle Tanana Basin includes part of the northeastern quarter, so that area may have some potential

Coal Several areas of subbituminous coal occur in the northwestern quarter

Minerals The southwestern half has high potential for copper and molybdenum. A good potential for uranium exists in the northwestern corner. Placer gold has been produced in the southeastern corner

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal The potential for developing the estimated 76.5 million tons of coal reserves is rated good

Minerals The development of small and medium-size placer gold deposits is high. The potential for small copper-nickel vein deposits or small disseminated copper-nickel deposits occurring in the ultrabasic rocks is fair
QUADRANGLE: Mt. McKinley

GEOLOGY: A complex area of sedimentary and metamorphic rocks with granitic intrusives

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $1,069,500 - placer gold, lode gold, placer silver, lode silver, lead, copper, zinc

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas: Much of the western half of this quadrangle lies within the Minchumina Basin, hence oil and gas may have potential.

Coal: No surface occurrences known; may occur in the Minchumina Basin.

Minerals: The eastern half has a high potential for copper, gold, lead and zinc. The northeastern quarter has a good potential for sedimentary uranium. The Kantishna district to the west of Mt. McKinley National Park has been a producer of antimony, gold, silver and lead.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas: Unknown; little exploration to date.

Coal: Unknown; little exploration to date.

Minerals: The potential for continued placer gold mining in the Kantishna area is high. The potential for the development of small-size lead-zinc deposits is good.
QUADRANGLE: Mt. Michelson

GEOLOGY: Undifferentiated marine and nonmarine rocks in northern quarter; limestones, shales, graywackes in remaining areas; granitic intrusive area occurs on the eastern border

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: None

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

<table>
<thead>
<tr>
<th>Oil and gas</th>
<th>Northern quarter has proven potential or high potential; the remaining northern half has good potential based on oil seeps or other indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>Two subbituminous areas occur in the northern half</td>
</tr>
<tr>
<td>Phosphate</td>
<td>Scattered deposits occur in an east-west band across the central area of the quadrangle</td>
</tr>
<tr>
<td>Minerals</td>
<td>The southern half has good potential for tin, tungsten, fluorite, gold, lead, copper and zinc deposits</td>
</tr>
</tbody>
</table>

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

<table>
<thead>
<tr>
<th>Oil and gas</th>
<th>A gas field exists in the middle of the proposed corridor, and the potential for development is high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>The potential for development of large coal deposits is low</td>
</tr>
<tr>
<td>Minerals</td>
<td>The potential for developing medium-size copper, lead and zinc deposits associated with the igneous intrusives is low. The potential for developing the medium-size, low-grade phosphate deposits is low</td>
</tr>
</tbody>
</table>
QUADRANGLE: Nabesna

GEOLOGY: Much of the northeastern area is covered by alluvium. The remaining area consists of sedimentary and volcanic rocks with granitic intrusives. Ultramafic rocks occur parallel to the Denali Fault which cuts the quadrangle from northwest to southeast.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $3,140,600 - lode gold, placer gold, lode silver, copper, lead, placer silver.

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- **Oil and gas**: The northeastern quarter is within the Upper Tanana Basin and may have potential for oil and gas.
- **Coal**: No known surface occurrences; may occur in the Upper Tanana Basin.
- **Minerals**: A band through the central part of the quadrangle from northwest to southeast has high potential for copper and molybdenum. Placer gold has been produced in the south and central areas.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- **Oil and gas**: Unknown; little exploration to date.
- **Coal**: Unknown; little exploration to date.
- **Minerals**: The potential for the development of small and large placer deposits is high. The potential for large, low-grade copper-molybdenum deposits is good.
QUADRANGLE: Norton Bay

GEOLOGY: The northwestern quarter has predominantly metamorphic rocks while the remainder of the area is underlain with sandstones and shales with some volcanic rocks.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $1,647,800 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas: The eastern two thirds are within the Yukon-Koyukuk Cretaceous Province and may have potential for oil and gas. The southeastern quarter is geologically favorable for oil and gas although no surface indications are present.

Coal: Scattered outcrops of lignite occur in the area.

Minerals: The northwestern quarter has good potential for platinum and palladium while the remaining area has good potential for gold, lead, silver, tungsten and mercury.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas: Unknown; little exploration to date.

Coal: Unknown; little exploration to date.

Minerals: The potential for small placer gold deposits is high.
QUADRANGLE: Phillip Smith Mt.

GEOLOGY: Predominantly sedimentary rocks - sandstones, shales, limestones and dolomites. An area of metamorphic rocks occurs in the southeast corner.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: None

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- **Oil and gas**: The northwestern quarter is geologically favorable. Surface indications occur in some areas.

- **Coal**: Subbituminous coal occurs along the western border.

- **Minerals**: The northwestern third has low potential. Most of the remaining area has good potential for gold, lead, copper, zinc and tin. The southeastern corner has high potential for copper, lead and zinc.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- **Oil and gas**: The northwestern corner of the quadrangle has good potential for development.

- **Coal**: The potential for development is considered low.

- **Minerals**: The potential for medium-size copper, lead and zinc vein-type deposits in the limestones is high.
QUADRANGLE: Sagavanirktok

GEOLOGY: Predominantly sandstone, graywacke and shales changing to nonmarine rocks towards the north. Northern half covered by beach and terrace deposits and alluvium. Southeastern quarter consists of limestones and other marine deposits.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: None

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Potential Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>Northwestern quarter has proven production or high potential; remaining areas have good potential based on oil seeps or other indications.</td>
</tr>
<tr>
<td>Coal</td>
<td>Subbituminous and lignitic coals occur in scattered outcrops over the northern half.</td>
</tr>
<tr>
<td>Minerals</td>
<td>Southeastern quarter has low to good potential for gold, lead, copper, zinc, tin, tungsten and fluorite deposits.</td>
</tr>
</tbody>
</table>

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Potential Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>The potential is high for the development of hydrocarbons, particularly natural gas.</td>
</tr>
<tr>
<td>Coal</td>
<td>The potential for developing a large coal deposit is low.</td>
</tr>
<tr>
<td>Minerals</td>
<td>The development of small to medium-size copper, lead and zinc deposits in the limestones is considered low.</td>
</tr>
</tbody>
</table>
QUADRANGLE: Selawik

GEOLOGY: Predominantly sandstone and shale mostly covered by alluvium and glacial terrace deposits. Metamorphic and sedimentary rocks interfinger along the northern border

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $3,100 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas Most of the quadrangle lies within either the Selawik Basin or the Kobuk Cretaceous Province. Much of the Selawik Basin has good potential for oil and gas although no surface indications are present

Coal No surface exposures known; may occur in areas favorable for oil and gas

Minerals The northern border has high potential for gold, antimony and tungsten. The central area has good potential for tin, tungsten and fluorite. The southern quarter has good potential for gold, lead, silver, tungsten and mercury as well as sedimentary uranium and thorium

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date
Coal Unknown; little exploration to date
Minerals Unknown; little exploration to date
QUADRANGLE: Seldovia

GEOLOGY: Most of the land consists of sandstones and shales with minor amounts of conglomerate and volcanic. The northcentral area is overlain by glacial and glaciofluvial deposits.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $2,312,600 - chromite, lode gold, coal, lode silver, lead, copper

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The northwestern two-thirds are part of the Cook Inlet Mesozoic Province and Cook Inlet Tertiary Province. This area has proven production potential.

Coal The northcentral area is underlain by subbituminous coal.

Minerals The eastern third has good potential for copper, gold, lead, zinc, silver and tungsten. The central third has good potential for uranium.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas The potential for offshore development is high.

Coal Approximately 235 million tons of subbituminous coal occurs in the corridor. The potential for large underground mines is good.

Minerals The potential for mineral development north of Homer is low.
QUADRANGLE: Seward

GEOLOGY: Predominantly sandstone and shale with minor amounts of conglomerate, volcanic rocks and limestone. Some intrusive granitic rocks occur.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $36,418,900 - copper, placer gold, lode gold, lode silver, placer silver, lead

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas None
Coal None
Minerals The northwestern quarter has good potential for copper, gold, lead, zinc, silver and tungsten. The eastern third has a high potential for copper and gold

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas None
Coal None
Minerals The potential for small copper, gold and silver deposits is fair
QUADRANGLE: Shungnak

GEOLOGY: Predominantly sandstone and shale mostly covered by alluvium and glacial terrace deposits. Metamorphic and sedimentary rocks interfinger in the northeast

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $183,600 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The northern quarter and westcentral border are contained in sedimentary basins which may hold some potential

Coal No surface exposures known; may occur in areas favorable for oil and gas

Minerals The northern quarter has little potential, but most of the remaining area has good potential for gold, lead, silver, tungsten and mercury. The central half has good potential for tin, tungsten and fluorite, and for uranium and thorium

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal Unknown; little exploration to date

Minerals The development of large, low-grade gold deposits associated with intrusives is rated good. Large, low-grade uranium deposits of either intrusive or sedimentary origin is rated fair
QUADRANGLE: Solomon

GEOLOGY: Predominantly metamorphic rocks with scattered granitic intrusions

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $26,134,700 - placer gold, placer silver, lode gold, lode silver, copper, lead

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas None
Coal None
Minerals There is a good potential for gold, lead, silver, tungsten and mercury in the western two thirds, and good potential for uranium and thorium in the eastern third. The western two thirds have been an important past placer gold producing area

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas None
Coal None
Minerals The potential for continued placer gold development along the western boundary of the pipeline corridor is high
PROJECTION
NEW OF POTENTIAL BE EXPECTED
SEEPS OR OTHER INDICATIONS OF HYDROCARBONS PRESENT
GEOLOGICALLY FAVORABLE BUT NO SURFACE INDICATIONS PRESENT
COAL
- ANTHRACITE
- BITUMINOUS
- SUBBITUMINOUS
- LIGNITE
UTILITY CORRIDOR
GEOLGIC BASIN
GEOTHERMAL RESOURCE

SOLOMON
NORTON SOUND BASIN
SOLOMON

LEGEND

METALLOGENIC PROVINCES

HIGH POTENTIAL

GOOD POTENTIAL

LOW POTENTIAL

NOTE: ANGLE REPRESENTS POTENTIAL QUANTITY OF DASHES REPRESENT STRAIGHTS WITHIN PROVINCE

SIGNIFICANT MINERAL DEPOSITS

HIGH CLAIM CONCENTRATION

UTILITY CORRIDOR

SCALE 1:250,000
QUADRANGLE: Survey Pass

GEOLOGY: Predominantly limestone and marine clastic rocks. The southern quarter has a belt of metamorphic rocks trending east-west. Mafic and ultramafic rocks occur along the southern border.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $28,300 - lode gold, lode placer

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>None</td>
</tr>
<tr>
<td>Coal</td>
<td>None</td>
</tr>
<tr>
<td>Minerals</td>
<td>The northern quarter has good potential for nickel, chromium, copper, platinum and zinc. The middle half has high potential for gold, antimony and tungsten. The southern quarter has high potential for copper, lead and zinc</td>
</tr>
</tbody>
</table>

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>None</td>
</tr>
<tr>
<td>Coal</td>
<td>None</td>
</tr>
<tr>
<td>Minerals</td>
<td>The potential for medium-size, high-grade copper-zinc-silver deposits associated with the metamorphic rocks is high. The potential for medium-size, high-grade copper-zinc deposits in limestones is considered fair</td>
</tr>
</tbody>
</table>
QUADRANGLE: Table Mt.

GEOLOGY: Predominantly sedimentary rocks of limestone, dolomite and shale. Granitic intrusives occur along the eastern border.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: None

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- Oil and gas: None
- Coal: None
- Minerals: The northern quarter has good potential for tin, tungsten and fluorite deposits; the southern three quarters have good potential for gold, lead, copper, zinc and tin.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- Oil and gas: None
- Coal: None
- Minerals: Unknown; little exploration to date
QUADRANGLE: Talkeetna

GEOLOGY: Predominantly sedimentary sandstone, limestones and shales, and minor volcanics associated with granitic intrusives. Large areas are overlain by glacial and glaciofluvial deposits in the southern half.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $7,901,700 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The Cook Inlet Tertiary Province includes most of the southeastern half and this area is geologically favorable for oil and gas, although no surface indications exist.

Coal Subbituminous coal occurs throughout much of the southeastern half of the quadrangle.

Minerals The northwestern three quarters have a high potential for copper, gold, lead, zinc, silver and molybdenum. The southeastern quarter has a good potential for uranium. The central area has been a major placer gold producer.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date.

Coal Approximately 44 million tons of subbituminous coal occur within the pipeline corridor. The potential for large open pit mines is high.

Minerals The potential for a large, low-grade uranium deposit is considered low.
QUADRANGLE: Talkeetna Mts.

GEOLOGY: Predominantly volcanic and granitic intrusive rocks overlain by alluvium, glacial and glaciofluvial deposits

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $132,600 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The western and eastern borders are included in the Cook Inlet Tertiary Province and Copper River Basin, respectively. The western area is geologically favorable for oil and gas, although no surface indications exist

Coal Lignite deposits occur in the northwestern corner

Minerals The southeastern half has good potential for gold, copper, silver, lead and zinc while the northwestern half has good potential for gold, copper, silver, platinum, chromium and nickel

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal Probably 14 million tons of lignite coals occur within the corridor. The potential for their development is considered low

Minerals The potential for large, low-grade copper-molybdenum deposits is low
QUADRANGLE: Tanacross

GEOLOGY: The northeastern half and southwestern quarter are predominantly metamorphic and volcanic rocks with granitic and small ultramafic intrusives. The remaining area is overlain by alluvium and terrace deposits.

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $900 - placer gold, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- Oil and gas: The Upper Tanana Basin extends into the south-central part of the area, hence oil and gas may have some potential
- Coal: No known surface occurrences; may occur in the Upper Tanana Basin
- Minerals: The northeastern quarter has good potential for copper

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- Oil and gas: Unknown; little exploration to date
- Coal: Unknown; little exploration to date
- Minerals: The potential for several large, low-grade copper-molybdenum deposits is high
QUADRANGLE: Tanana

GEOLOGY: Predominantly metamorphic rocks intruded by granitics and overlain by granitic volcanics. Large, ultramafic intrusives occur in the northern area. Alluvium covers much of the area along major drainages. Sedimentary rocks are scattered

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $10,092,900 - placer gold, tin, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE

Oil and gas The Lower Tanana Basin encompasses the southwestern quarter, hence oil and gas may have potential

Coal A long trend of subbituminous coal occurs in the eastern half

Minerals The northwestern half has high potential for tin, tungsten, gold, lead, zinc, copper, antimony and silver. The southeastern half has good potential for antimony, gold, silver, lead, zinc and mercury. The southeastern quarter has been a past placer gold producer

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal Unknown; little exploration to date

Minerals The potential for small, medium, and large placer gold producers is high. The potential for medium-size massive sulfide lead, zinc and silver deposits in limestones is good. Large asbestos deposits have good potential in the ultramafic rocks. The potential for medium-size tin deposits associated with granitic intrusives is fair
QUADRANGLE: Tyonek

GEOLOGY: Predominantly volcanic and granitic intrusive rocks largely overlain in the eastern third by glacial and glaciofluvial deposits

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $5,996,600 - natural gas, placer gold, coal, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

- **Oil and gas**: The eastern half lies within the Cook Inlet Tertiary Province and is geologically favorable for oil and gas, although no surface indications are present. Production has occurred in the southeastern eighth.

- **Coal**: Subbituminous coal occurs in the eastern half.

- **Minerals**: The western half has a high potential for copper, gold, lead, zinc, silver and molybdenum. The eastern half has good potential for uranium.

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

- **Oil and gas**: The potential for continued natural gas production is high.

- **Coal**: Approximately 2,331 million tons of subbituminous coal occur in the corridor area. The potential for a large open pit development is high.

- **Minerals**: The potential for a large sedimentary-type uranium deposit being developed is low.
QUADRANGLE: Umiat

GEOLOGY: Predominantly marine and nonmarine sandstone and shales; overlain by alluvium, beach and terrace deposits in the northern portions

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: None

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas Northern half has proven production or has high potential; southern half has good potential based on oil seeps or other indications

Coal Most of the western two-thirds are underlain by subbituminous coals

Minerals None

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas The potential for developing additional oil and gas deposits is high

Coal The potential for developing the approximately 11,000 million tons of subbituminous coal within the corridor is considered low

Minerals None
QUADRANGLE: Valdez

GEOLOGY: Predominantly sandstone and shale with minor amounts of conglomerate, volcanic rocks and limestone except in the northeast corner where volcanic rocks predominate. The northcentral area is overlain by alluvium and glacial and glaciofluvial deposits

MINERALS PRODUCED IN ORDER OF THEIR VALUE, 1880-1971: $4,300 - placer gold, copper, lode gold, lode silver, placer silver

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

Oil and gas The northcentral area is part of the Cook Inlet Mesozoic Province and Copper River Basin and, hence, may have oil and gas potential

Coal No surface occurrences known; may occur in the Cook Inlet Mesozoic Province and the Copper River Basin

Minerals Except for the northern border, the northwest quarter has good potential for copper, gold, lead, zinc, silver and tungsten. The northeast quarter has high potential for copper, silver, gold and molybdenum except for the northern border. The southeastern quarter has good potential for copper, chromium and nickel

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

Oil and gas Unknown; little exploration to date

Coal Unknown; little exploration to date

Minerals The potential for small gold deposits is good
QUADRANGLE: Wiseman

GEOLOGY: Predominantly limestones and marine clastic rocks in the northern half, metamorphic rocks in the next southern quarter, and sandstones and shales in the southern quarter.

MINERAL POTENTIAL WITHIN THE QUADRANGLE:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Potential Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>The Kobuk Cretaceous Province embraces the southern quarter, so oil and gas may possibly occur.</td>
</tr>
<tr>
<td>Coal</td>
<td>An outcrop of bituminous coal occurs in the southeast.</td>
</tr>
<tr>
<td>Minerals</td>
<td>The northern quarter has good potential for gold, lead, copper, zinc and tin. Most of the remaining areas have high potential for gold, antimony and tungsten. A belt favorable for copper, lead and zinc trends through the middle of the quadrangle from southwest to northeast. Much of the central area has been an important placer gold producing area.</td>
</tr>
</tbody>
</table>

POTENTIAL FOR DEVELOPMENT WITHIN 50 MILES OF A CORRIDOR FROM 1975-2001:

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Potential Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil and gas</td>
<td>Unknown; little exploration to date.</td>
</tr>
<tr>
<td>Coal</td>
<td>Unknown; little exploration to date.</td>
</tr>
<tr>
<td>Minerals</td>
<td>The continued development of small, medium and large placer gold deposits is high. The development of high-grade, low-tonnage copper, lead and zinc vein-type deposits is rated good where limestone is intruded by granites. The development of large-size, low-grade copper, lead, zinc and gold deposits associated with metamorphic rocks is rated fair.</td>
</tr>
</tbody>
</table>
DEVELOPMENT POTENTIAL BY PIPELINE CORRIDOR ROUTES

The potential for mineral and energy development is summarized in this section. The potentials are a judgment guess made by the author based on the information received to date. In general, the potential for development is made irrespective of land status except for the Arctic National Wildlife Range.

Routes A, B, A, C; and D

These three routes cross the North Slope of Alaska close to the Arctic Ocean, figure 1. The mineral and energy resources crossed by the routes consist primarily of oil and gas, both known or suspected. Several subbituminous coal outcrops occur as does one geothermal area. No past production of any resource is known. The potential for oil and gas development is high except where restricted by land status such as the Arctic National Wildlife Range. The number of people brought into the area along the routes could be large, up to 4,900 for a large, underground coal or phosphate mine and townsite, but the potential for such an event occurring is considered low.

Routes E, F, H and E, G, H

These two routes, which can be considered as one, proceed southeast away from the Arctic Coast around the south end of the Arctic National Wildlife Range. The mineral and energy resources along these two routes are largely unknown. Oil, gas, subbituminous coal and a geothermal area occur in the northern area north of the Brooks Range. The geology along most of the routes indicate a good to high potential for hard rock minerals, but the potential for development is unknown due to lack of exploration. The
development of small to medium-size mines along the pipeline routes in
the Sagavanirktok and Mt. Michelson quadrangles has a low potential at
this time. These small to medium-size, perhaps high-grade, mines could
attract several hundred to several thousand people to those areas.

Routes J,K,L,N and J,K,M,N

These two routes follow the Trans-Alaska Pipeline route away from the
Arctic Coast into the Phillip Smith Mountain quadrangle, then turn south­
estward and exit Alaska in the Charley River quadrangle, figure 1.
The energy resources along these two routes consist of oil, gas and coal
both north and south of the Brooks Range. Nearly all of these lands have
unknown potential for these resources because little exploration has been
done to date. Much the same situation exists for mineral development along
the routes except in the Phillip Smith Mountain and Chandalar quadrangles.
There, along the southern flank of the Brooks Range, a belt of metamorphic
rocks has a high potential for small and medium size, high-grade copper,
lead and zinc deposits. If these were underground open stope mines, they
could employ 105 to 375 people and create townsites of 400 to 1,400
people. In the Charley River quadrangle, a high potential for a large,
low-grade uranium deposit exists. If this type of deposit were developed
by open pit mining, perhaps 380 to 680 employees could be attracted to the
company creating a town of 1,400 to 2,500 people. Probably small and
medium-size gold placer deposits will be worked in the summer months
providing employment for groups of 10 to 20 employees.

Route J,O,U,V,W

This route follows the Trans-Alaska Pipeline from the Arctic Ocean to
Fairbanks and the highway from Fairbanks to the border of Alaska, figure 1.
The known energy resources occur as oil and gas north of the Brooks Range and north of the Alaska Range. Geothermal sources occur within the pipeline corridor in the Bettles, Tanana, Livengood, Gulkana and Nubesna quadrangles. A large number of mineral claims exist along the pipeline route. Most basic types of minerals occur such as gold, copper, lead, zinc, nickel, chromium, asbestos and tungsten. The potential for development in the Brooks Range centers around small to medium-size copper, lead and zinc deposits which could be mined by underground methods creating townsites of 400 to 1,400 people. In the Tanacross and Nubesna quadrangles large, low-grade copper-molybdenum deposits have high potential for occurring. The development of these types of deposits by open pit mining methods could create companies of 380 to 680 employees and townsites of 1,400 to 2,500 people. A medium-size coal mining operation has good potential in the Mt. Hayes quadrangle and could bring 260 to 420 employees to the area creating a townsites of 900 to 1,500 people.

Routes J,O,U,Y,BB,FF
J,O,U,Y,CC,TT,JJ,KK
J,O,U,Y,CC,TT,JJ,LL
J,O,U,Y,CC,TT,HH,GG
J,O,U,Y,BB,FF

These routes follow the Trans-Alaska Pipeline from the Arctic Coast to Fairbanks and then the Railbelt through Anchorage to Whittier (J,O,U,Y,CC,-TT,JJ,KK), or Seward (J,O,U,Y,CC,TT,JJ,LL), or Starichkof Point (J,O,U,Y,-CC,TT,HH,GG). The remaining route (J,O,U,Y,BB,FF) stays to the west of Cook Inlet, terminating at Drift River, figure 1.

The known energy resources occur as oil and gas north of the Brooks Range and coal in scattered locations both north and south of the Brooks Range and north of the Alaska Range. Geothermal sources occur within the
pipeline corridor in the Bettles, Tanana and Livengood quadrangles. A large number of mineral claims exist along the pipeline route. Most basic types of minerals occur such as gold, copper, lead, zinc, nickel, chromium, asbestos and tungsten. The potential for development in the Brooks Range centers around small to medium-size copper, lead and zinc deposits which could be mined by underground methods creating townsites of 400 to 1,400 people. South of the Fairbanks quadrangle, the primary potential for development centers around the large subbituminous coal deposits in the Railbelt, on the west side of Cook Inlet, and on the Kenai Peninsula. Medium and large open pit mines could require 260 to 680 employees and create townsites of 900 to 2,500 people in the Railbelt and to the west of Cook Inlet. Large underground room and pillar-type mines on the Kenai Peninsula could require 305 to 910 employees and create townsites of 1,100 to 3,300 people. The quadrangles having the greatest mineral potential are the Healy and Talkeetna Mountains. There, large-size, low-grade copper-molybdenum and uranium deposits could attract 380 to 680 employees to open pit-type mines creating townsites of 1,400 to 2,500 people.

Routes J, O, U, V, Z, VV, MM, RR
J, O, U, V, Z, VV, MM, SS
J, O, U, V, Z, VV, NN

These routes follow the Trans-Alaska Pipeline from the Arctic Ocean to the Valdez quadrangle, figure 1. There, route J, O, U, V, Z, VV, NN splits off and goes to the Gulf of Alaska via the Copper River. The remaining routes follow the TAPS lines to the Valdez area before route J, O, U, V, Z, VV, MM, RR bypasses Valdez to the east and terminates on the Gulf coast. The known energy resources occur as oil and gas north of the Brooks Range and coal in
scattered locations both north and south of the Brooks Range and north of the Alaska Range. Geothermal sources occur within the pipeline corridor in the Bettles, Tanana, Livengood, Gulkana, and Valdez quadrangles. A large number of mineral claims exist along the pipeline route. Most basic types of minerals occur such as gold, copper, lead, zinc, nickel, chromium, asbestos and tungsten. The potential for development in the Brooks Range centers around small to medium-size copper, lead and zinc deposits which could be mined by underground methods creating townsites of 400 to 1,400 people. In the remainder of the routes, the mineral potential centers around small gold placers and small copper and gold lode mines. These types of mines, if mined by underground open stope methods, could result in companies of 105 to 145 employees and create townsites of 400 to 500 people.

Route J, O, S, T

This route begins on the Arctic Coast and follows the Trans-Alaska Pipeline south to the Bettles quadrangle then heads westward to Golovin on Norton Sound, figure 1. The known energy resources occur as oil and gas north of the Brooks Range and coal in scattered locations both north and south of the Brooks Range and north of the Alaska Range. Geothermal sources occur within the pipeline corridor in the Bettles quadrangle. A large number of mineral claims exist along the pipeline route. Most basic types of minerals occur such as gold, copper, lead, zinc, nickel, chromium, asbestos and tungsten. The potential for development in the Brooks Range centers around small to medium-size copper, lead and zinc deposits which could be mined by underground methods creating townsites of
400 to 1,400 people. The most likely areas for development are north of the pipeline route in the Ambler River and Survey Pass quadrangles. Kennecott's Bornite and Arctic Camp properties could result in two medium-size underground mines within the next 5 to 10 years, requiring 145 to 375 employees and creating townsites of 500 to 1,400 people. Similar sizes of mines have a high potential for occurring at other locations in these two quadrangles. Large uranium deposits have good potential for occurring in the Candle and Bendeleben quadrangles.
CONCLUSION

The impact on mineral and energy development by the installation of a natural gas pipeline from Alaska's North Slope to the 48 contiguous States via Canada and from the North Slope to tidewater on Norton Sound, Cook Inlet, and Prince William Sound were examined. The general geology in each quadrangle touched or within a corridor extending 50 miles on either side of each proposed route was described. The potential for mineral and energy development in each quadrangle was analyzed by synthesizing the views of four consultants and various Bureau personnel. Finally, the potential for mineral and energy development along and 50 miles either side of each proposed pipeline was appraised and estimates made of the number of people which would likely accompany development.

In general, the impact from any natural gas pipeline or its permanent access road was thought to be little or none unless the State of Alaska wished to assist development by distributing its royalty gas from gas production to Alaskan consumers or by connecting any permanent pipeline access road to the present Alaska highway system. However, unless the State can make a firm request for natural gas when reserves are being committed, it is unlikely the State will have a supply to distribute.
LIST OF REFERENCES

