APPENDICES TO WRITTEN DIRECT TESTIMONY PHASE 1A FROST HEAVE

CANADIAN ARCTIC GAS PIPELINE LTD.

Mathews

ŀ

Library Office of the Ripoline Coordinator 1001 Neble Street, Suite 450 Fairbanks, Alaska 99701

APPENDICES

ТО

WRITTEN DIRECT TESTIMONY

 a_{γ}

PHASE 1A

FROST HEAVE

Arctic Gas

Office of the Proeline Coordinator 1001 Neble St., Suite 450, Fairbanks, AK 99701

CANADIAN ARCTIC GAS PIPELINE LIMITED

APPENDIX

Electromagnetic Methods for Mapping

Shallow Permafrost

by

Pieter Hoekstra

Northern Engineering Services Company Limited

Calgary, Alberta

January 1977

Paper presented to the 46th Annual International Meeting of the Society of Exploration Geophysicists, Houston, Texas, October, 1976. Submitted for publication to Geophysics, January, 1977.

ABSTRACT

Information about the distribution of permafrost is vital to the safe design of proposed northern gas pipelines. In the southern fringe of the discontinuous permafrost zone proposed pipelines will traverse many boundaries of frozen and unfrozen ground and these boundaries must be mapped before final design. In this area, the thickness of permafrost is typically 1 to 10 m. In the last two years, new equipment for shallow exploration have been developed and tested for mapping permafrost in the Mackenzie Valley at sites from approximately Fort Simpson, N.W.T. to Zama, Alberta.

Two electromagnetic techniques were tested, radiohm and inductive coupling methods. Radiohm methods were tried in the VLF (15-30 khz) and LF (200-400 khz) band. The LF equipment because of its limited skin depth was found to map shallow permafrost well. The problem with LF radiation was the limited coverage of existing transmitters in the Arctic. An inductive coupling system consisting of horizontal co-planar loops, separated by 3.7 m on a fiberglass boom, and operating at a frequency of 40 khz, also was found to accurately delineate permafrost.

Measurements with LF radiohm and inductive coupling equipment showed identical trends along a traverse. By integrating terrain typing with geophysical interpretation, the thickness of permafrost could be obtained to an accuracy of \pm 30 percent from a single measurement with the inductive coupling system.

INTRODUCTION

Proposed northern gas pipeline routes plan to refrigerate the gas to temperatures below 0° C from Prudhoe Bay, Alaska to certain locations, further south, of which the temperature of the gas will be above 0° C. The geotechnical reason for chilling the gas is to prevent thaw of permafrost and subsequent settlement of a buried line. Chilling of the gas in the line would allow it to be buried in ground condition, where the Alyeska oil line is elevated.

From its point of origin at Prudhoe Bay, proposed gas line routes first pass through the continuous permafrost zone. The thickness of permafrost in this zone is considerably larger than the depth influenced by the temperature field of the chilled gas line. In this zone, the gas line will encounter but few geotechnical problems and the thickness of permafrost is of no great interest to pipeline engineers. However, further south all lines will traverse certain mileages in the discontinuous permafrost zone. Here the pipe will cross many boundaries of frozen and unfrozen ground. Where a chilled line is laid in unfrozen ground, the potential for frost heave exists, which requires special mitigating measures; corrolary thaw settlement demands attention where a warm line traverses frozen ground. To make decisions on the last point of chilling and to plan geotechnical mitigating measures against frost heaving or thaw settlement, it is important to accurately map the boundaries of frozen and unfrozen ground in the discontinuous zone.

- 1 -

The investigations reported here are for the specific geotechnical objective to map permafrost along the pipeline right-of-way in the discontinuous permafrost zone; that objective requires continuous, high-resolution data for several hundreds of miles at relatively low cost.

٦Į,

REVIEW OF THE LITERATURE

Much progress has been made in the past five years in deriving permafrost information from geophysics. On land, electrical and electromagnetic methods rather than seismic methods are most often used in geotechnical investigations. Electromagnetic methods are found to have advantages over electrical methods in the Arctic. The two main reasons are that (a) electrical methods require low resistance-contact with the ground and this is difficult to establish when the surface is frozen and snow covered, and (b) the lateral resolution of ground conditions obtainable with galvanic methods is often inadequate in the discontinuous zone.

Electromagnetic methods that have been used to map permafrost fall in two categories:

(a)

Plane Wave Methods

The source of electromagnetic fields are distant transmitters or natural telluric currents. Koziar and Strangway (4) tested magneto-telluric methods in the audio-frequency range in the. Mackenzie Delta, N.W.T., Canada. They measured the apparent resistivity at 11 frequencies from 10hz to 10khz. The depth of permafrost was on the order of 100 m, and that depth was derived within reasonable accuracy by fitting a two-layer resistivity model to the experimental data.

- 3 -

Hoekstra and Sellmann (1975) used VLF methods to map permafrost in the vicinity of Fairbanks, Alaska. In sections of fine-grained sediments, permafrost could be delineated from VLF radiohm measurements.

Inductive Coupling Methods

(b)

The resistivity of ground can also be obtained from a measurement of the mutual coupling between two loops (Keller and Frischknecht, 1966). Daniels et al. (1975) used a large source (2000 ft. perimeter) and receiver loop (1000 ft. perimeter). The separation distance between loops ranged from 1 to 4 kilometers and measurements were made at frequencies varying between 200 hz to 20 khz. They found that the permafrost depth could be derived from soundings by using a twolayer resistivity model. Andrieux et al. (1975) used a similar approach, source and receiver were separated by 300 to 400 m and the frequency was varied between 35 hz to 17 khz. They concluded from their interpretation, that resistivity variations within the permafrost can be as important as the resistivity changes from frozen to unfrozen ground. Sinha (1976) published extensively the theorectical modeling curves, showing the response of different loop configurations above homogeneous and layered ground.

4

EXPERIMENTAL METHODS

Two electromagnetic methods were tested in this project, radiohm and inductive coupling methods. The principles of each method have been described in detail elsewhere (Sinha, 1976; Hoekstra, 1975) and here only the results of computer model studies are used to support the decisions made during the course of the investigation, and the procedures employed for data interpretation.

All tests were made in the discontinuous permafrost zone along the proposed Arctic Gas pipeline route at over a hundred sites between approximately Fort Simpson, N.W.T. and Zama, Alberta. Preliminary measurements with galvanic methods showed that the resistivity of frozen ground within the area typically varies from 100 ohm-m to 5000 ohm-m, and the resistivity of the underlying unfrozen ground from 10 to 50 ohm-m.

Radiohm Methods

It soon became evident from computer modeling and field data that VLF radiohm measurements were not well suited for mapping shallow permafrost. In Figure 1, the apparent resistivity at VLF is computed for two-layer permafrost situations. Since much of the permafrost encountered in the Mackenzie Valley, south of Fort Simpson, N.W.T. is less than 10 m thick, the VLF radiohm method clearly is not overly sensitive to shallow permafrost. This conclusion was verified by field

- 5 -

measurements. Typical VLF apparent resistivites over unfrozen and frozen ground varied from 10 to 60 ohm-m. It was difficult to separate resistivity variations caused by changes in soil type from those caused by frozen or unfrozen conditions. The VLF resistivity over sections of frozen ground were often only 5 to 15 ohm-m higher than in adjacent sections of unfrozen ground.

Better sensitivity for delineating permafrost can be expected at higher frequencies, because of a decrease in skin depth. Figure 2. shows values for two-layer permafrost situations computed for a frequency in the LF band. The LF data are indeed more sensitive to shallow permafrost. In the computations both conduction and displacement currents are considered, but since there is inadequate knowledge about the relative dielectric constants of frozen ground at LF frequencies, displacement currents cannot be properly accounted for in modeling. An LF radiohm apparatus was designed and built by Geonics Ltd. The equipment is similar in its principle of operation as the Geonics EM16R. The electric field is measured by probes spaced 3 m apart. Several components must be changed in the instrument to tune it to a particular frequency.

Inductive Coupling Methods

The characteristics of the inductive coupling system tested are given in Table I. The instruments measure the quadrature phase component of mutual coupling. In Figure 3, the computed ratio of the magnitude of the quadrature phase component of the secondary magnetic field and the magnitude of the primary field at the receiver coils is

- 6 -

plotted versus the resistivity of homogeneous ground for the EM31. Over layered ground an apparent resistivity is defined as the resistivity of homogeneous ground that would give the same quadrature phase response as the one measured. In Figure 4, the computed response over two-layer permafrost is given for the EM31. The data show that this system is sensitive to the presence of shallow frozen ground.

The effective depth of exploration of the EM31 is difficult to define, because it depends on the resistivity of the ground as well as on the sequence of resistivity layering. For the permafrost situations modeled in Figure 4, the instrument readings with the EM31 can be seen to measurably respond to changes in permafrost thickness up to at least 10 m.

RESULTS

Figure 5 shows typical results obtained with LF radiohm and the EM 31 along a section of discontinuous permafrost in the Mackenzie Valley. The data show identical trends in the apparent resistivity profiles, which gives confidence in both methods of resistivity mapping, since frequency and current flow in the ground differ markedly.

Also shown on Figure 5 is the delineation of frozen ground derived from the resistivity survey. The delineation assumes that resistivity variation in this section is caused by frozen or unfrozen conditions, and not by differences in material type. In much of the terrain in the Mackenzie Valley, differences caused by material type are readily recognized by proper use of other terrain information. The delineation of frozen versus unfrozen ground was validated by 43 drillholes, and by numerous other observations. For example, the ground in this area of the discontinuous permafrost zone is unfrozen under shallow lakes and ponds.

Ŧ

An example of EM31 and LF data over an area, where changes in ground conditions cause part of the resistivity variations, is given in Figure 6. In this section, sand dunes are encountered overlaying the till. There is no difficulty in recognizing the presence of the sand dunes, and they also show up clearly in the resistivity profiles. However, at stations 480, and 600 meters, resistivity highs are encountered

- 8 -

apparently not connected with sand dunes. Drillholes were placed at these locations and it was determined that these resistivity highs are due to frozen ground in till. Geophysical surveys in this section served the purpose of alerting to changes in ground conditions, where drillholes should be placed.

Figure 4 shows that three ground parameters determine the value of ρ_a , i.e. ρ_1 , ρ_2 , and d_1 . An important objective in surveying is to obtain an estimate of d_1 and this requires that ρ_1 and ρ_2 are evaluated independently. In electromagnetic soundings ρ_1 , ρ_2 and d_1 are often obtained by making measurements at several different frequencies and/or transmitter-receiver separations; that requires station by station measurements. Our approach at this time has been to obtain ρ_1 , ρ_2 from test hole and other terrain information. Figure 7 illustrates this last point further. In a traverse across a section of discontinuous permafrost, sharp resistivity contrasts occur at the interface of frozen and unfrozen ground. The value of ρ_2 (the resistivity of unfrozen ground underlaying the frozen ground) was assumed to be equal to the apparent resistivity measured over a section of unfrozen ground (e.g. at station 500). Subsequently, ρ_1 and d_1 were obtained by calibrating computer modeling of two-layer ground to test hole data.

Along the entire Arctic Gas pipeline route the terrain has been classified according to the geological origin of the surficial materials. It soon became apparent that the resistivities ρ_1 and ρ_2 are characteristic of the terrain type. Figure 8 shows a comparison between the depth of permafrost from borehole data and geophysics

- 9

(EM31 data) in three different terrain types. Using these calibration curves it appears that permafrost depth can be estimated to ± 30 percent. Moreover, at later stages in the project considerably more borehole data will become available to improve calibration. Integrating the geophysical interpretation with terrain typing is a practical approach, because for major projects such as pipelines, roads and railway corridors, terrain typing preceeds geophysical surveys.

Although with time, the methods of data processing will be improved, a detailed meter by meter delineation of hundreds of miles of pipeline right-of-way will require that a simple interpretation (in terms of presence or absence, and thickness of permafrost) is adopted. The accuracy of determining the thickness of permafrost can also be improved by making simultaneous measurements with two systems with different effective depths of exploration. That approach will be field tested in 1977.

The LF frequency band is assigned to non-directional beacons (NDB's) for navigational aids. Typically, LF transmitters operate at an output power below 10 kw. The effective coverage for measurements on the ground wave seldom exceed a radius of 75 km. There are, therefore, large areas in the Arctic where no coverage from existing transmitters is available. Although erecting transmitters for surveying is economically feasible, obtaining the necessary permits requires much persistence.

- 10 -

The EM31 instruments proved practical in Arctic operation. The instrument is carried by an operator in the manner shown in Figure 9. Clearly, if the terrain is suitable and a right-of-way is cleared, the instrument could be mounted on a carriage or sled for continuous surveying. The calibration of the inductive coupling systems causes at the moment the greatest difficulty. In an airborne system (e.g. a "bird" towed by helicopter), the equipment is calibrated by taking the system to an altitude where coupling due to ground currents become effectively zero. The only method for calibrating ground equipment used so far, has been to calibrate the instrument over ground of known resistivity. The instrument response curve of figure 3 shows that calibration is best done over ground of high resistivity (> 1000 ohm-m), here the quadrature phase response would be less than 10³ ppm. The problem is that ground of 1000 ohm-m and uniform with depth may not be found in a particular survey area.

- 11 -

CONCLUSIONS

Two electromagnetic types of equipment were found to accurately delineate the boundaries of frozen and unfrozen ground in areas of shallow permafrost. The equipment items were the Geonics EM31 and a LF radiohm unit. The success of both methods is to a large extent related to the effective depth of exploration. The effective depth of exploration should be within a factor 2 of the average expected permafrost depth in the area. If the depth of exploration is much greater than (3x) the average permafrost depth, resistivity variation caused by stratigraphic changes below the permafrost can complicate interpretation.

Because coverage from existing transmitters in the Arctic is limited, the EM31 is preferred as a survey instrument. Moreover, it can be sled mounted to obtain a continuous resistivity profile. Measurements with the EM31 can provide the geotechnical engineer, at least, the following information:

- a) extrapolation of permafrost conditions between drillholes
- a warning of drastic changes in permafrost conditions between drillholes.

When the instrument measurements are integrated with available surficial geology and terrain information and test hole data, the depth of permafrost was estimated within an accuracy of ± 30 percent by using two-layer computer models. The intepretation of geophysical data can be

- 12 -

e more reliable by sounding at different frequencies or by measurements at different transmitter-receiver separations.

ł

ACKNOWLEDGEMENT

The geophysical investigations to test and develop inductive coupling systems have benefited much from the help of Dr. A. K. Sinha and Mr. L. S. Collett of the Geological Survey of Canada. Dr. Sinha provided us with the complex computer programs to model layered ground.

Mr. D. McNeill, of Geonics Ltd. contributed much of his experience about inductive coupling systems to the project.

REFERENCES

音

- Andrieux, P., L. Junca, and Gildas Omnes, 1975.
 Electromagnetic Soundings on Coastal Permafrost: Preprint, 45th Annual Meeting, SEG, Denver
- Daniels, Y., G. V. Keller, and J. Jacobson, 1975.
 Computer-Assisted Interpretation of Electromagnetic Soundings Over Permafrost Sections: Geophysics v. 41, p. 752
- Hoekstra, P., P. V. Sellmann, and A. Delaney, 1975.
 Ground and Airborne Resistivity Surveys of Permafrost Near Fairbanks, Alaska;
 Geophysics, v. 40, p. 641
- Keller, C. V. and F. E. Frischknecht, 1966.
 Electrical Methods in Geophysical Prospecting, Peragamon Press, N.Y.
- A. Koziar, and D. W. Strangway, 1975.
 Magneto-telluric Sounding of Permafrost: Science v. 190, p. 566
- 6. Sinha, A. K., 1976.

Determination of Ground Constants of Permafrost Terrain by an Electromagnetic Method:

Can. J. of Earth Sci. v. 13, p. 429.

- 15 -

TABLE 1

Major Characteristics of Inductive Coupling System (Geonics EM31) Tested for Mapping Shallow Permafrost

ĥ

Instrument	Transmitter- Receiver Separation	Frequency	Quantity Measured	Coil Orientations
Geonics, EM31	3.7 m	40khz	quadrature phase response	horizontal co-planar

- 16 -

FIGURE LEGEND

Figure 1

The computed apparent resistivity, ρ_a , for the radiohm methods at VLF (18.6 khz) as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_1) in the winter.

Figure 2

The computed apparent resistivity, ρ_a for the radiohm method at LF (375 khz) as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_1) in the winter.

Figure 3

The quadrature phase response of the EM31 as a function of the resistivity of homogeneous ground.

Figure 4

The computed relation between the quadrature phase response of the EM31 and the depth of permafrost for several resistivity profiles typical of permafrost in the winter.

Figure 5

Measured values of apparent resistivity with LF radiohm (375 khz) and inductive coupling (EM31) over a section of discontinuous permafrost. The delineation of frozen versus unfrozen ground is also shown.

Figure 6

Ŧ

Measured values of apparent resistivity with LF radiohm (375 khz) and inductive coupling (EM31) over a section of discontinuous permafrost with sand dunes overlaying till. The delineation of frozen versus unfrozen ground is also shown.

Figure 7

Apparent resistivity (EM31) and land form profiles across a section of discontinuous permafrost. In some areas there is a good correlation between vegetation type and the presence or absence of permafrost.

Figure 8

Comparison of permafrost depth derived from borehole information and resistivity surveys. In different terrain types, different resistivity profiles were modeled to obtain a best fit between borehole and geophysical interpretation. (RKM = till, DL = Deltaic deposits)

Figure 9

Schematic diagram of the manner in which the EM31 is carried by an operator.

Figure 1. The computed apparent resistivity ρ_a , for the radiohm method at VLF (18.6 khz) as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_1) in the winter.

Figure 2. The computed apparent resistivity, ρ_a for the radiohm method at LF (375 khz) as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_1) in the winter.

APPENDIX

Northern Engineering Services -

GEOPHYSICAL METHODS IN SUPPORT OF SUBSURFACE EXPLORATION FOR THE ARCTIC GAS PIPELINE

Northern Engineering Services Company Limited

Calgary, Alberta

February, 1977

1.

INTRODUCTION

The purpose of this report is to provide background information on the proposed use of geophysics in subsurface exploration of permafrost. In particular, it is the objective of this report to show that:

- a) the proposed use of geophysics by Arctic Gas is a logical extension of work conducted over the last decade.
- b) the new equipment to be used in the geophysical surveys have undergone substantial field testing. Geophysical data have been correlated with existing ground truth data.
- c) the results of the tests warrant the confidence to be placed in the new geophysical methods for serving the purpose of:
 - 1) extrapolating information between test holes.
 - accurately locating boundaries between frozen and unfrozen ground.
 - 3) alerting to sudden changes in subsurface conditions.
 - 4) optimizing test hole location and spacing.

In Chapter 2, a brief explanation for our selection of electrical resistivity rather than seismic methods for mapping permafrost is found. A brief review of existing knowledge about the electrical resistivity of frozen ground is also included.

Chapter 3 discusses the different geophysical techniques available for measuring the electrical resistivity of the

- 1 -

şi.

ground, and the research undertaken by NESCL to further the development of some of the techniques.

Chapter 4 shows the results obtained during field testing and compares geophysical interpretations of permafrost parameters with existing ground truth.

The use we propose to make of geophysics in determining permafrost parameters is taken up in Chapter 5.

- 2 -

GEOPHYSICAL METHODS AND THE PROPERTIES OF FROZEN GROUND

2.1 Seismic Methods

In engineering geophysics on land, two geophysical methods are dominantly used in subsurface exploration, electrical and electromagnetic and seismic methods. Because engineering is mainly concerned with shallow exploration (<100 ft) seismic refraction rather than seismic reflection techniques are employed. Figure II-1 shows, schematically, the path of propagation of reflected and refracted waves. The reason for having to use refraction seismic in engineering geophysics is that for shallow exploration, the reflected wave arrives at the geophone placed on the surface, in the same time interval, as other events, such as surface waves, and direct waves. Shallow reflection events are, therefore, very difficult to recognize.

Refraction seismic is frequently used in engineering to determine depth to bedrock. It has one severe limitation in subsurface exploration; that limitation is that refraction surveys can only be conducted when the velocity of propagation of seismic waves increases with depth. For example, in figure II-2, layer 2 has a velocity, V2, which is less than the velocity of the first layer, V1, and as a result no refracted wave returns to the surface from the boundary of layer 1 and 2. Layer 2 can not be recognized in refraction seismic surveys.

Unfortunately, a decrease in seismic velocity with depth is common in permafrost situations, because frozen ground has a higher velocity than the unfrozen ground beneath it. Also, the velocity in frozen ground decreases with increasing temperature. Figure II-3 illustrates this with typical data from the literature (Nakano, 1975).

- 3 -

2.

- Northern Engineering Services -

Therefore, seismic methods have little use in mapping permafrost over land. The geophysical methods used in subsurface exploration for engineering purposes in permafrost have been mainly electrical and electromagnetic methods.

2.2 The Electrical Resistivity of Frozen and Unfrozen Ground

Electrical and electromagnetic geophysical methods for exploration in permafrost can only be successful if frozen and unfrozen ground have different resistivities. The literature is abound with information on this subject. (e.g. Parkhomenko, 1967, Dement'ev, 1959, Hoekstra et. al., 1975). Figure II-4, summarizes the relation between resistivity and temperature for several soils and one rock type. The data show:

- a) that the resistivity of frozen ground is always higher than that of the same ground in the unfrozen state.
- b) that the resistivity increases in frozen soil when the temperature is lowered. Frozen ground close to 0^oC may have a resistivity only slightly higher than that of unfrozen ground.

Ice content also has a large influence on the resistivity of frozen ground. Figure II-5 shows the relation between ice content and resistivity, measured in-situ in the walls of a tunnel excavated in Fairbanks Silt. Since much frozen ground particularly in the first 10 to 30 feet contains excess ice, there is often a large contrast in resistivity between frozen and unfrozen ground. A similar relation between ice content and resistivity is reported by Larin et. al., (1973).

In summary, many investigations in the U.S.S.R. and North America have established that frozen and unfrozen ground can be distinguished by their values of electrical resistivity.

- 4 -

When careful work is done in a particular geological setting, it is often possible to delineate regions of high ice content from regions of low ice content.

- 5 -
Northern Engineering Services -

REFERENCES

- Dement'ev, A.I., Principles of Geocryology, Part II: N.R.C., Ottawa, Canada, Techn. Transl. 1287, 1959.
- Hoekstra, P., P.V. Sellmann and A. Delaney, Ground and Airborne Resistivity Surveys of Permafrost near Fairbanks, Alaska, Geophysics V. 40, 641-656, 1975.
- Larin, S.M., G.P. Morov, M.A. Kholmyonsky, and Y.V. Neizvestnov, in Ground Water in the Cryolithosphere, U.S.A. CRREL, TL 437, 1973.
- Nakano, Y. and N.H. Froula, Sound and Shock Transmission on Frozen Soils, Proc. North American Contrib. to 2nd Int. Conf. on Permafrost, NRC-NAS, p 359, 1973.

Parkhomenko, E.I., Electrical Properties of Rock, Plenum Press, N.Y., 1967.

Figure II-1. Illustration of direct, reflected, and refracted wave paths in two-layer ground.

Figure II-2.

ï

Seismic wave paths for the low-velocity-layer problem.

The Compressional Wave Velocity of Several Soils as a Function of Temperature. (Nakano et al., 1973)³

Northern Engineering Service

Ï

A is a sand, B is a silt, and C is a clay soil.

- 9 -

-Northern Engineering Services

ş

The Resistivity of Several Soils and One Rock Type as a Function of Temperature (Hoekstra et al., 1975)

- 10 -

The Resistivity of Frozen Silt as a Function of Ice Content (Hoekstra et al., 1975)²

TECHNIQUES FOR MEASURING THE ELECTRICAL RESISTIVITY OF GROUND

Northern Engineering Sci

3.

The electrical resistivity of ground can be measured by several different techniques. These techniques differ in ease of operation, productivity of surveying and depth of exploration. Some of the techniques to be discussed have only become available for routine field use in the last 2 to 5 years.

3.1 Galvanic Resistivity Measurement (Keller and Frischknecht, 1966)

The conventional technique for measuring the resistivity of ground, and the one most often employed in the past and at present is the galvanic technique.

In galvanic resistivity measurements, current is driven into the ground from a generator between two current probes, and the voltage induced in the ground is measured between two other probes. The probes can be arranged in many different configurations, but the geometry used in our field work is shown in figure III-1. It is called a Schlumberger array. In figure III-1, I_1 and I_2 are the current probes; P_1 and P_2 are the voltage probes.

The resistivity of the ground is calculated from the ratio of voltage between P_1 and P_2 and the current flow between I_1 and I_2 . The equation from which the resistivity is computed is given by:

$$\rho_a = 0.5 \left(\frac{L^2}{a} - \frac{a}{4}\right) 2\pi \frac{V}{I}$$

where V is voltage between P_1 and P_2

I is current flow between I_1 and I_2

L and a are spacings defined in figure III-1

 ρ_{a} is the apparent resistivity of ground.

The depth of exploration is increased by enlarging the spacing between the current electrodes, that is by increasing the L spacing. The effect of increasing the L spacing is that the current will penetrate further into the ground, so that deeper subsurface layers will influence the value of resistivity measured at the surface. The value of resistivity obtained at the surface over layered ground is determined by all subsurface layers penetrated by the current lines. The value of resistivity measured at the surface is therefore called the apparent resistivity, ρ_a . Figure III-2 is a typical example of the variation in ρ_a with L spacing over two-layer ground. At small L spacings, ρ_a equals ρ_1 and the current lines are confined to the first layer. When the L spacing is increased, and the current lines penetrate into the second layer, the value of ρ_a changes; and at large L spacings ρ_a equals ρ_2 .

Frozen ground poses several specific problems to the use of galvanic measurements. In order to have current flow into the ground the contact resistance of the probes with the ground must be kept low. In the winter when the ground is frozen, probe contact resistance is a difficult problem to overcome. In the summer, when the active layer is thawed, the contact resistance problems are removed, and good resistivity measurements over frozen ground can be made. Much use is made of this method for mapping permafrost in the U.S.S.R.

Two types of surveys are made with Schlumberger arrays. They are:

3.1.1 Vertical Soundings

1

In vertical soundings, ρ_a is measured at the same location as a function of L spacing and the measurement often allows a computation of the thickness of permafrost. Figure III-3 shows computed examples of what typical vertical soundings

- 13 -

ł

along the Mackenzie corridor will look like over frozen and unfrozen ground in the summer. The initial linear increase in ρ_a over frozen ground with L spacing is due to the active layer; the decline in ρ_a at larger L spacings is caused by unfrozen ground underlying the permafrost. The computed data show that:

- (a) at virtually all L spacings, frozen (F) and unfrozen ground (UF) can be readily distinguished by Schlumberger soundings,
- (b) to obtain the thickness of permafrost from a vertical sounding one cannot take the inflection point in the graph as a measure of thickness, because the thickness of permafrost would be seriously overestimated, (e.g. 20m versus 5m). It is necessary to use computer processing of the data to obtain permafrost thickness,

Vertical soundings for mapping permafrost thickness in the discontinuous zone have disadvantages. To make vertical soundings over permafrost (e.g. 20m in thickness), requires a spacing between the two outer current probes of at least 150m. It is common to find lateral variations in permafrost over such distances, and lateral variations cause uncertainties in interpretation. Also the productivity of surveying is slow, perhaps 15 soundings a day.

3.1.2 Horizontal Profiling

In horizontal profiling, measurements at one L spacing are made at many different locations in an area, or along a line, so that the resistivity of the ground is measured to approximately the same depth. From figure III-3 it is evident that this can be an effective way to delineate permafrost. For example, if a fixed L spacing of 5m is chosen, values of ρ_a of 50 ohm-m and 410 ohm-m would be measured over unfrozen and frozen ground respectively. Horizontal profiling is extensively used in the U.S.S.R. to map permafrost.

3.1.3 Summary Galvanic Techniques

In summary, although galvanic measurements can be good, and accurate techniques for measuring the electrical resistivity of the ground, their application to surveys for engineering purposes in permafrost has severe draw backs. These draw backs are:

- a) surveys cannot be performed in winter when the ground is frozen or snow covered.
- b) the lateral resolution of this method in locating changes in subsurface conditions is on the order of 15m to 30m. This is inadequate for locating the many transitions between frozen and unfrozen ground.
- c) the productivity of surveying is low.

3.2 Non-contact Techniques for Measuring Electrical Resistivity

Because of the increased demand for subsurface exploration in permafrost regions, there has been considerable efforts made by government agencies and industries to develop methods for measuring the electrical resistivity of frozen ground which would remove some of the drawbacks of galvanic measurements. In particular, techniques were sought:

a) that do not require low contact resistance with the ' ground; techniques that can be used in the winter when the ground is frozen.

b) that have better resolution of local changes in subsurface conditions than galvanic techniques. Two techniques came about after several years of development that satisfy the above criteria, radiohm and inductive coupling techniques. Over the past two years, Arctic Gas has helped the development of these new geophysical techniques along by awarding contracts for designing and building special equipment.

3.2.1 <u>Radiohm Methods</u> (Collett et. al., 1967; Hoekstra et. al., 1975).

Radiowaves propagating over the earth's surface are influenced by the nature of the subsurface, and from measurements on the radio ground wave, the resistivity of the ground can be derived. The sources of radiowaves used in field work are existing transmitters such as the U.S. Navy station NLK, operating at 18.6 khz out of Jim Creek, Washington, and airport navigational beacons (NDB), such as FS, operating at 375 khz located at Fort Simpson, N.W.T.

The electromagnetic field vectors of a transmitter are shown in figure III-4. At the ground surface, there are three field vectors: a horizontal radially oriented electric field, E; a horizontal, azimuthally oriented magnetic field, ${\rm H}_{\rm d}\,;$ and a vertical electric field, E_z . All three field vectors decay in amplitude with increasing distance from the transmitter and are affected by daily changes in the ionosphere and the nature of the path between transmitter and measurement station. The basis for obtaining a local measurement of ground resistivity is illustrated in figure III-5, where a wave is shown propagating over a change in ground conditions. Changes in local subsurface conditions cause only perturbations in amplitude and phase of E_r , while local changes do not affect E_z and H_{ϕ} . Therefore, by measuring the ratio $\frac{Ez}{H_{\star}}$. called surface impedance, a measurement of the local resistivity of the ground is obtained. The factors of path of propagation, topography, and daily variation in field strengths equally influence E , ${\rm H}_{\varphi},$ and E $_{\rm r},$ and are eliminated in a ratio measurement.

aborn Engineering Serv

Ï

Figure III-4 illustrates that the field vectors E_r and H_{ϕ} penetrate vertically into the ground, and attenuate with depth. The depth of exploration of this method is related to the attenuation of the wave in the ground, and the depth of exploration is approximately 0.5 - 0.8 times the skin depth. The skin depth of the radiation is defined as the depth of ground which attenuates a wave 37 per cent. The skin depth depends on frequency and resistivity and the dependence is shown in figure III-6. The skin depth decreases with increasing frequency and decreasing resistivity. The frequency bands in which measurements are made are VLF (very low frequency) and LF (low frequency).

In North America, sufficient field strength at VLF (15-30 khz) is available for radiohm measurements virtually everywhere. The field strength is provided by powerful U.S. Navy transmitter situtated on the Atlantic and Pacific Coast. The LF frequency band (200-400 khz) is assigned to airport Non-Directional Beacons. (NDB's). These beacons often operate at low power, so that there are large areas of the Arctic where there is insufficient field strength to make LF radiohm measurements.

The equipment required for radiohm measurements is basically a receiver, that can separately measure the electrical and magnetic fields. Commercial equipment for making radiohm measurement was available in 1975 in the VLF band only. Arctic Gas in 1975 awarded a contract to Geonics Ltd. of Toronto, Ontario for the building of an LF radiohm unit similar in operation to the VLF equipment. The weight of both LF and VLF instruments are under 15 lbs., and they can be operated by one person.

Y

Figure III-7 shows a schematic of the VLF insrument. Coil A is first used to establish the transmitter direction by nulling the field received in the coil. Coil A is then switched off, and the ratio of Ex, measured between two probes spaced 10m apart, and Hy, measured with Coil B, is determined by adjusting the amplitude and phase dials until an audio null is attained. The instrument reads directly in resistivity and phase. The LF prototype equipment is similar in operation to the VLF unit; the audio tone has been replaced by a meter for nulling. A measurement takes about 2 minutes to complete.

Over homogeneous ground, the resistivity measured with radiohm equipment is equal to the ground resistivity, but over layered ground an apparent resistivity is measured and computer modeling is required to resolve the layering in the ground. In figure III-8, ρ_a is modeled at VLF (18.6 khz) for summer (s) and winter (w) conditions using typical resistivity values encountered in the Mackenzie Valley. The data for permafrost are computed for two different thicknesses of the active layer. The computed data illustrate several points:

- 1) that VLF surveys will look too deep for areas from Fort Simpson south, because the permafrost is typically less than 10m thick.
- 2) The influence of the active layer in the summer is small. VLF measurements can be used to indicate depth of permafrost in both summer and winter in areas where permafrost thickness is larger than about 20 m.

In figure III-9 ρ_a is modeled at a LF frequency of 375 khz, the frequency of the Fort Simpson beacon. The computed data show that an LF frequency is ideally suited for measuring shallow permafrost. The active layer has a significant influence on resistivity so it is best to make measurements in the winter. Surveying with radiohm methods has three main advantages over galvanic probe methods.

- 1) The determination of E_r is a voltage measurement; so that virtually no current needs to flow between the probes and the ground. Probes can therefore be inserted in the snow cover, and surveys can be made when the ground is frozen.
- 2) Figure III-6 shows that the depth of penetration of VLF surveys is often 50m or more. To obtain a depth of penetration of 50m with the galvanic method, spreads are required over distances of at least 150m, and over such distances permafrost conditions frequently are variable. The radiohm method, on the other hand, maps ground conditions on a much more local scale (25m²); therefore, a local resolution is maintained with deep exploration.
 - 3) The productivity of measurements of the radiohm method is greatly increased when compared to the galvanic method, and the necessary crew size is reduced to two men from three or four. Depending on the terrain and the distance between measurement points, 50 to 200 locations can be measured by a two-man crew in a day.

The disadvantage of the radiohm technique is that the depth of exploration depends on frequency and ground resistivity (see figure III-6) and the choice of frequency is usually limited to one VLF and one LF transmitter. In the galvanic probe method, the depth of exploration is chosen by changing the electrode spacing.

3.2.2 <u>Inductive Coupling Methods</u> (Keller and Frischknecht, 1966) The inductive coupling techniques tested for permafrost mapping basically differ from radiohm methods in three aspects: 1)

2)

11

When two loops, one a transmitter, the other a receiver, are suspended above the ground, the received signal is the sum of the primary field - the field that would be present in free space - and the secondary field - the field specifically due to the presence of ground. In most cases, the magnitude of the primary field is many times larger than that of the secondary field, so that it is difficult to accurately measure the part due to the ground. The secondary field has a component inphase and a component in quadrature (90° out) phase with the transmitted signal. The primary field, however, is all inphase. The quadrature phase component of the secondary field can, therefore, be measured with much greater accuracy than the inphase component, and the prototype instrument measures the quadrature phase component only.

The depth of exploration of the two-loop system is mainly determined by the frequency and the separation distance of the two loops. When the frequency and the spacing between the loops are chosen so that the skin depth of the radiation (see figure III-7) is at least five times the loop separation, there is a near linear relation between the quadrature phase response of the secondary field and the resistivity of ground. In figure III-12, the relation between quadrature phase response (in parts per million of primary field) is plotted as a function of the resistivity of uniform ground for the system shown in figure III-10.

The depth of exploration of our inductive coupling systems depends mainly on the separation distance of the two horizontal loops. The effective depth of exploration is about two times the separation distance between the center of the loops, or approximately 7.5m for the EM31 shown in Figure III-10. The EM34 shown in Figure III-11 can be operated at separation distances of 15.24m and 30.48m, so that exploration depths of up to 60m can be achieved. NESCL has awarded a contract for an instrument with a loop separation of 9.4m (30 ft.), and an exploration depth of about 18.8m (60 ft.), for use in mapping permafrost thicknesses between 8m (25 ft.) to 18m (60 ft.). This instrument will be delivered in April, 1977.

Figure III-12 shows the relation between resistivity of homogeneous ground and instrument readings. When the ground consists of layers with different resistivity, the response can also be computed (Sinha, 1976). Figure III-13 shows the response of the EM31 for resistivity layering typical of permafrost in the winter.

The inductive coupling system appears to be the most convenient and most productive way of ground resistivity mapping. The advantages are:

a) No contact with the ground is required.

b) The instrument is selfcontained and does not require the field from a distant transmitter.

c) A continuous record of ground resistivity along a traverse can be obtained if so required.

REFERENCES

¥

Northern Engineering Service

- Collet, L.S. and A. Becker, Radiohm Method for Earth Resistivity Surveying, Canadian Patent No. 795, 919, 1967.
- Hoekstra, P., P.V. Sellmann, and A.J. Delaney. Ground and Airborne Resistivity Surveys of Permafrost near Fairbanks, Alaska, Geophysics, V. 40 p. 641, 1975.
- Keller, G.V. and F.C. Frischknecht. Electrical Methods in Geophysical Prospecting, Pergamon Press, N.Y., 1966.
- Sinha, A.K. Determination of Ground Constants of Permafrost Terrain by an Electromagnetic Method. Can. J. of Earth Sci. V. 13, p. 429, 1976.
- Ward, S.H. The Electromagnetic Method, in Mining Geophysics, Vol. II, SEG, Tulsa, Oklahoma, 1967.

					•		
I_{1} P_{1} P_{2} I_{2} I_{2} I_{3} I_{4} I_{4							
I_1 P_1 P_2 I_2 I_2				a			
	I		P 1	P 2	<u> </u>	I2	

 \sim

- Northern Engineering Service

Ť

The Electromagnetic Field Vectors of a Vertically Polarized Radio Groundwave

Schematic Diagram of the Perturbations in the Electromagnetic Field Vectors when a Wave Propogates over Changes in Subsurface Conditions

Figure III-7 Schematic of VLF

1

هر 1 بر The computed apparent resistivity ρ_a , for the radiohm method at VLF (18.6 khz) as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_1) in the winter.

i i The computed apparent resistivity, ρ_{a} for the radiohm method at LF (375 khz as a function of the thickness of frozen ground for two values of frozen ground resistivity (ρ_{1}) in the winter.

- 32 -

Figure III-10 Schematic diagram of the manner in which the EM31 is carried by an operator.

ٹد. در

			•	
r .	NORTHERN	ENGINE	ERING	SERVICE
ERA	· · · · · · · · · · · · · · · · · · ·	OMPANY	LIMITE	D
		LALGARY		
4 <u>4</u>	_	I SUIST	65 / (H)	•
and the state				

CANADIAN ARCTIC GAS STUDY LIMITED

Schematic Diagram of EM34

- 36 -

RESULTS OF FIELD TESTING AND SURVEYS

4.1 Objectives and Scope of Work

Northern Engineering Servi

4.

¥

4.2

The field work over the past two years had two objectives:

- a) to prove that the different techniques for measuring the electrical resistivity of ground yield similar results.
- b) to perform field tests to ascertain to what extent different geophysical techniques could lower the cost and improve the quality of subsurface exploration for various ground parameters.

Field trials were made to determine if the following geotechnical objectives could be derived from geophysics:

a) delineation of the boundaries of frozen and unfrozen ground.

b) measurement of the thickness of frozen ground.

c) determination of the location of unfrozen zones under the rivers of the Arctic coastal plain in the winter.

d) determination of the extent and depth of gravel deposits.

Comparison of Results Between Different Techniques

Figure IV-1 and Figure IV-2 show the results of linear traverses with LF radiohm and inductive coupling methods (EM31) over sections of discontinuous permafrost south of Fort Simpson, N.W.T.

The following observations can be made from that data:

a)

the trend in the resistivity profiles and the location of the anomalies, is identical for the radiohm and inductive coupling methods. The resistivity highs all occur at the same locations. This gives confidence in both techniques of resistivity mapping. The instruments operate at greatly different frequency (LF radiohm, 375 khz, EM31, 40 khz), and the current distribution induced in the ground is also dissimilar between both techniques. Therefore the fact that both techniques show identical trends is substantial proof that the theory and equipment design which is basic to the two techniques is sound.

The values of apparent resistivity measured in both techniques differ, but that is expected, because both instruments have different depths of exploration. Only over ground which is uniform with depth should resistivity values be identical.

b) The resolution of detecting sudden changes in subsurface conditions is about ⁺/₋ 5M (15 ft.). That is an improvement over the conventional probe method by at least a factor three.

U.S.A. CRREL in 1976 also began an extensive testing program comparing VLF and LF radiohm, inductive coupling (EM31), and galvanic measurements. The results were reported by Sellmann et al, 1976. These data show that the agreement between the electrical resistivity values obtained with different methods is very good.

4.3 Delineating the Boundaries of Frozen and Unfrozen Ground from Electrical Resistivity Methods

Figure IV-1 shows a traverse over ground of similar soil type. Because frozen ground has much higher resistivities than unfrozen ground, it is to be expected that the resistivity highs are caused by the presence of frozen ground, and the boundaries of frozen ground are delineated in Figure IV-1. Figure IV-2 is an example of a situation where changes in soil type cause part of the resistivity variations. Resistivity highs are encountered over sand dunes, which are usually unfrozen south of Fort Simpson N.W.T., and over permafrost in till. The anomalies at station 480 and 600 are apparently not related to sand dunes. Drill holes placed at such locations found permafrost. This is an example where geophysics served the purpose of alerting to anomalies where drill holes should be placed.

Northern Engineering Services

In the spring of 1976, geophysical traverses were followed by the placing of approximatelv 43 drill holes at locations of geophysical measurements. An important objective of that drilling program was to check the delineation of permafrost from geophysical interpretations.

Table IV-1 summarizes the comparison between test hole log and geophysical interpretation. There is agreement in 22 out of 25 test holes listed. The remaining 18 test holes of the 1976 spring program are holes placed so close to the holes listed in Table IV-1, that they do not provide independent checks. At three sites, geophysical interpretations could not be made with certainty, because variations in soil stratigraphy also caused resistivity variations. Some of the geophysical profiles over the sites checked by test holes are given in the report, "Geotechnical Data Report, Permafrost Distribution: Willowlake River, N.W.T. to Zama Lake, Alberta".

In addition to test hole data, there are numerous other observations that can be used as ground truth. For example, ground is unfrozen under ponds and fens south of Willowlake River, and these events also should be consistent with geophysical 4.3

Į.

data. All of the ground truth collected has confirmed that permafrost boundaries can be accurately delineated by electrical resistivity surveys.

Estimating the Thickness of Frozen Ground from Geophysical Surveys

The computer model curves in Figure III-8, III-9, and III-12, show that 3 ground parameters determine the apparent resistivity, the resistivity of unfrozen ground, ρ_2 , the resistivity of frozen ground, $\rho_1,$ and the thickness of frozen $\dot{}$ ground, d_1 . To obtain d_1 from a single measurement of apparent resistivity requires that other methods must be used to determine ρ_1 and ρ_2 . The approach that we have taken at this time is to chose values for $\boldsymbol{\rho}_1$ and $\boldsymbol{\rho}_2,$ at locations of test holes, so that the permafrost depth obtained from geophysical interpretation agrees with the depth found in test holes. It is anticipated that values of ρ_1 and ρ_2 are characteristics of terrain types, so that an established correlation between test holes and geophysics can be extrapolated within a terrain unit. Figure IV-3 compares the results of the data available so far. When more test hole data becomes available the agreement can probably be considerably improved.

Again, in addition to test hole data, other information can be used Lo obtain values for ρ_1 and ρ_2 . Unfrozen ground adjacent to frozen ground should yield an independent value of ρ_2 .

Moreover, measurements with two instruments with different depth of exploration would yield additional information.

An example of a survey with several instruments is shown in Figure IV-4, for an area north of Willowlake River, N.W.T. at approximately MP 576. Traverses are shown with VLF (phase and resistivity), the EM31, and EM34 at 15.24m loop separation.

The interpretation of permafrost thickness is consistent with all four readings.

In summary, our geophysical results so far indicate that it will be possible to estimate permafrost thickness to \pm 30 per cent, when some test hole data are available for calibration. When more drill hole data become available, improvements in estimates will be possible. Furthermore, we expect at least to recognize from geophysical surveys areas where sudden changes in permafrost thicknesses take place.

4.4 <u>Mapping Unfrozen Zones Under Rivers of the Arctic Coastal</u> Plain in the Winter

During the period of April 1 to May 21, 1976, geophysical surveys were conducted at 11 rivers on the Arctic Coastal plain in the Yukon Territory and Alaska. The objectives of the survey were:

- a) to determine if shallow unfrozen subsurface channels in the riverbed are connected to open water leads and icings.
- b) to determine the availability of water from rivers.
- c) to establish a methodology for investigating ground water on Arctic rivers.

Measurements were made with the EM31 and VLF radiohm. 'Figure II-5 and Figure IV-6 show results over sections in the west channel of the Sagavanirktok River near Prudhoe Bay, Alaska. Sixteen test holes were placed during this program to check the geophysical interpretations.

The geological cross sections derived from test hole data indicate the depth of ice, frozen gravel, and unfrozen gravel.

Ę.

Because no casing was used, the holes in thawed gravel sometimes needed to be discontinued at shallow depth when caving occurred. In frozen gravel, the depth of the holes was 40 ft. (12m).

There is a good qualitative agreement with the EM31 response and the test hole data. At all sites where thawed ground occurs within 30 ft. (10m) from the surface, the response is in excess of 0.2, and is between 0.1 and 0.2 when unfrozen ground is not found within the first 30 ft. (10m). The response increases when unfrozen ground is found closer to the surface.

The VLF radiohm data also corresponds well with test hole data. The VLF readings rapidly decrease when taliks are encountered within the first 40 ft. At test hole TH-14, VLF data indicate a talik at depth greater than 40 ft. (12m).

From the results shown in Figure IV-5 and IV-6 and many other traverses across rivers on the Arctic coastal plain, it was concluded that non-contact electrical resistivity surveys locate areas under the river where unfrozen zones (taliks) can be found. Once such areas have been pinpointed they can be further explored by drilling.

4.5 Geophysical Exploration for Gravel Deposit

One of the common uses of electrical resistivity mapping has been in support of exploration for granular deposits. Un² fortunately, during the NESCL borrow program in the summer of 1975 the geophysical instrumentation for non-contact exploration was not yet available, nor had crews been adequately trained in geophysical measurements.

The new equipment items were, however, tested on gravel deposits near Calgary, and on a deposit near Fort Simpson,
N.W.T. Figure IV-7 shows a resistivity profile across a section of the Standard General, Ogden Pit. The resistivity profile has been interpreted in terms of depth of granular material. The gravel deposit can be seen to sharply terminate near station 400. The interpretation corresponded well with available ground truth at the pit.

Figure IV-8 shows resistivity profiles with VLF radiohm and the EM31 over deposit FS-13 near Fort Simpson, N.W.T. The location of three test holes is also shown. The data obtained with the EM31 and the VLF show resistivity highs where the deeper gravel is located. The high values of resistivity obtained with the EM31 in one section indicates that the deposit there, is at least 30 ft. in depth. From the VLF profile one can derive the approximate lower boundary of gravel. Again the important information from geophysical traverses is that it indicates where the test holes should be placed, and over what area certain test hole information can be extrapolated.

So far no frozen gravel deposits have been investigated, and to what extent geophysical surveys can aid in the exploration of frozen deposits is not yet known. Northern Engineering Services -

REFERENCES

Sellmann, P.V., A. Arcone, and A. Delaney. Preliminary Evaluation of New LF Radiowave and Magnetic Induction Resistivity Units - over Permafrost Terrain. Abstract of paper presented to Workshop on Permafrost Geophysics, Vancouver, B.C., October 1976.

NESCL, Geotechnical Data Report; Permafrost Distribution: Willowlake River, N.W.T. to Zama, Alberta, February, 1977. Figure IV-1

L.,

- 45

1

Measured values of apparent resistivity with LF radiohm (375 khz) and inductive coupling (EM31) over a section of discontinuous permafrost with sand dunes overlaying till. The delineation of frozen versus unfrozen ground is also shown.

Figure IV-2

46 -

I

- 52 -

-Northern Engineering Services

Site No.	Test Hole No.	Station No.	Frozen (F)	or Unfrozen (U)	Agreement
		an 1964 - Tanang ang ang ang ang ang ang ang ang an	Geophysics	Test Hole	Yes No
N76-3	N76-3-1	0+50	?	U	
N76-5	N76-5-1	0+14.5	U	Ū	х
	N76-5-2	0+25	F	F	x
N76-8A	N76-8A-1	1+15	U	U	X
	N76-8A-2	1+15.5	U	U	X
	N76-8A-4	1+10	U	U	X
N76-8B	N76-8B-2	0+50	F	F	X
	N76-8B-3	0+35	U	U	X
N76-10	N76-10-1	0+30	F	F	X
	N76-10-2	0+08	F	· F	X
N76-14	N76-14-1	1+00	F	F	X
N76-15	N76-15-2	0+60W	. U	U	X
	N76-15-3	0+25W	F	F	X
	N76-15-4	0+37W	F	F	x
N76-19	N76-19-2	0+45W	\mathbf{F}	F	X
N76-21	N76-21-1	0+60S	\mathbf{F}	F	X
	N76-21-2	0+25E	F	F	X
N76-22	N76-22-1	0+17N	U	U	X
•	N76-22-2	0+15N	U	U	X
	N76-22-3	0+30N	F	F	X
· · ·	N76-22-4	0+50N	F	F	X
N76-23	N76-23-1	0+65N	?	U	
	N76-23-2	0+40N	F	F	X
	N76-23-3	0+25N	F	F	x
N76-24	N76-24-1	0+80s	?	U	-
	N76-24-3	1+100S	F	F	X
	N76-24-4	0+90s	F	. .	x

Table 4-1. Comparison of permafrost delineation from test hole log and geophysical interpretation*.

* Frozen ground less than 1 m thick is considered due to seasonal frost, and permaftost is considered absent.

' F

5.

CONCLUSIONS AND OUTLOOK

Research and development by government agencies and industries in geophysical methods for electrical resistivity measurements of ground have resulted in two new techniques, radiohm and inductive coupling. Field tests with these instruments have shown that they have the following advantages over conventional methods:

- a) They can be used when the ground is frozen and snow covered, the best time for field surveys in permafrost regions.
- b) The productivity of surveying has been improved over conventional methods by at least a factor 10.
- c) The resolution for detecting local changes in subsurface conditions has been improved by at least a factor 3.

d) A continuous resistivity profile can be obtained.

In applying electrical resistivity mapping to subsurface exploration, field tests showed that geophysical surveys can lower the cost and improve the quality of subsurface exploration for the following geotechnical objectives:

a) delineating boundaries of frozen and unfrozen ground

- b) determining the thickness of frozen ground
- c) locating unfrozen zones under rivers of the Arctic coastal plain in the winter.
- d) making inventories of unfrozen granular deposits.

The best use of geophysical surveys is made when it is closely integrated with geological office and field studies, and drilling. Once a pipe center line has been cleared, plans are to haul a sled with two inductive coupling systems over the pipe center line, and record two resistivity profiles continuously. One of the systems will be the EM 31, (depth of exploration 7.5 to 10m), and one system with an exploration depth up to 18 - 20m (60 ft). The system with deeper exploration depth will be delivered in early April 1977, and will subsequently be field tested. The concept is illustrated in Figure V-1.

Subsequent to the geophysical surveys drill holes will be placed to calibrate geophysical interpretations and to check out anomalies in the geophysical profiles. The continuous geophysical profile will allow a continuous extrapolation of test hole information.

The geological terrain mapping will allow segmentation of the route in divisions of similar geological origin. For each division, such characteristics as soil type, stratification and ice content may then be established.

The transmittal of terrain and subsurface data in convenient forms to those responsible for design and construction is as much a concern to us as the collection of the data. Terrain typing, the presence or absence of permafrost and test hole data are presently being entered in computer files. The experience so far has been that computer storage and data' manipulation allows us to quickly respond to requests for terrain data, and to supply those data in convenient formats.

Northern Engineering Services . l'anno J. Henderson Prepared by: Approved by: <u>F. Hoekstra, Ph.D., P.Eng.</u> ينية (ياتية || || - 56 -

TABLE	1
-------	---

Summary of Mileages in right-of-way from	Differen Compress	t Catego or Stati	ories of .on MO6 (Thicknes MP 262.9	s of Per) to Com	mafrost pressor	along th Station	ME15 (ME	Gas Pip 660.8)*	eline ling st
From Station	6	7	8	9	10	11	12	13	14	Total Miles
At MP	262.9	310.0	356.9	400.2	446.4	489.8	534.3	583.1	625.3	
To Station	7	8	9	10	11	12	13	14	15	
At MP	310.0	356.9	400.2	446.4	489.8	534.3	583.1	625.3	660.8	
Distance Between Stations, Miles	47.1	46.9	43.3	46.2	43.4	44.5	48.8	42,2	35.5	397.9
			:	· · · · · · · · · · · · · · · · · · · ·	·	- - - -	•		• •	
Miles of Unfrozen Ground, Including Rivers	16.3	6.1	8.1	3.1	5.3	4.0	15.4	17.2	14.0	89.5
Miles of Frozen Ground Less than 15 Ft. thick	3.3	3.3	3.3	3.3	2.7	5.3	4.7	3.3	4.0	33.2
: : 	1	· · · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		·		
Number of Sections of Unfrozen Ground and Frozen	40	1.0	50	60	0.2	224	266	4.5.5	100	
Notes fran 15Ft. Intek	40	45	110	10/	02	534	300	422	426	
Number of Interfaces	80	80	118	124	104	668	/32	844	<u>852</u>	
Miles of Frozen Ground 15 Ft. to 25 Ft. Thick	1.8	3.7	4.8	8.0	8.3	16.2	13.4	10.0	7.5	73.7
Miles of Frozen Ground 25 Ft. to 60 Ft. Thick	3.7	9.4	11.2	18.0	20.0	14.8	12.0	9.0	7.0	105.1
Miles of Frozen Ground Greater than 60 Ft. Thick	22.0	24.4	15.9	13.8	7.1	4.2	3.3	2.7	3.0	96.4
						•	·			
River Crossing, Miles	0.27	0.10	0.13	0.10	0.33		0.35	0.23	0.06	1.6
Mileages where Bedrock is within 20 Ft. of the Surface and Ground is unfrozen or frozen less						67 				
than 15 Ft. Thick	7.0	3.0	3.2	1 0			0.0	10	1 5	17 5

* Information derived from boreholes listed on Table 2

- Nurthorn Ensine

ther

TABLE 2

References of boreholes used for terrain studies, Willowlake River to Fort Good Hope.

E. W. Brooker and Associates Ltd. Geotechnical Investigation, Mile 650-724.7 for Department of Public Works, 1972.

R. M. Hardy and Associates Ltd. "Geotechnical Investigation, Mackenzie Highway, Mile 544-635" for Department of Public Works, 1972-73.

Underwood McLellan and Associates Ltd. "Geotechnical Investigation, Proposed Mackenzie Highway, Mile 450-545" for Department of Public Works, 1972-73.

Templeton Consultants Ltd.

"Preliminary Soils and terrain investigation program Mile 100-520 of proposed pipeline route" for Alberta Gas Trunk Line Co. Ltd. (Gas Arctic Project), 1971.

E. W. Brooker and Associates Ltd. "Geotechnical Report, Terrain Investigation Proposed Arctic Gas Pipeline Route" for Gas Arctic - Northwest Project Study Group, 1972.

Ripley Klohn and Leonoff Alberta Ltd. "Prudhoe Bay, Alaska to Alberta/N.W.T. Border" for Mackenzie Valley Pipeline Research Ltd., 1970.

Blackwell, J.M., and Watson, G.H., "Mackenzie Delta Section - Mackenzie Valley Pipeline Research Ltd., 1972.

Templeton Engineering Co.

"Permafrost Regression Studies, Norman Wells and Fort Simpson, N.W.T." for Alberta Gas Trunk Line Co. Ltd. - Gas Arctic - Northwest Project Study Group, 1970.

Geophysical Field Investigations at 40 sites along the proposed Arctic Gas route between Willowlake River, N.W.T. to Saline River, N.W.T.

FORT NELSON LOWLAND

JTH EDGE ERIA PLATEAU

2 OF 2

1 ppendix

		Terrain	Depth ft	Pressure psf	Lensing Heave Rate ft/yr	Total Heave Rate ft/yr	Duration of Test (min)	Period Over Which Heave Rates Calc. (min)
<u>Test</u> N76-8B-3U9 N76-8B-3U9 N76-8B-3U10	(1) (2) (1) (2)	DL DL DL DL DL	22.5 23.0 23.5 24.0	3600 2880 4320 5040	0.1 0.16 0.34 0.09	0.1 0.16 0.34 0.1	8817 12804 11590 14025	5000 - 8817 8500 - 12804 6600 - 11590 3000 - 7000
N76-23-3U3 N76-23-3U3 N76-23-3U4 N76-23-3U4 N76-23-3U4 N76-23-3U4 B8A-1U3 B8A-1U3 B8A-3U6	 (1) (2) (3) (4) (5) (1) (2) (1) (2) (1) (2) 	RKM RKM RKM RKM RKM RKM RKM RKM	25.0 25.5 26.0 26.5 27.0 17.5 18.0 17.8 18.3	2880 4032 2880 3600 4032 2880 3456 4032 3024	0.86 0.28 0.08 0.53 0.36 1.08 0.75 0.30 0.64	$\begin{array}{c} 0.85 \\ 0.38 \\ 0.10 \\ 0.55 \\ 0.32 \\ 1.17 \\ 0.77 \\ 0.29 \\ 0.60 \end{array}$	8219 6665 8229 14405 10166 9623 8190 5505 9687	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
B8A-3U6 N75-SH1-U3 N75-SH1-U3 N75-SH1 N75-SH1 NRSH-1 NRSH-2 NRSH-4 RSHC-1 RSHC-2 RSHC-3 RSHF-1 RSHF-3	(2) (1) (2) (3) (4)	RKM MRD Slurry Slurry Slurry Slurry Slurry Slurry Slurry Slurry Slurry Slurry Slurry	8.0 8.5 - - - - - - - - - - -	3024 4032 2016 3024 504 1008 504 1728 3456 4032 3024 2016	$\begin{array}{c} 0.0\\ 0.13\\ 0.08\\ 0.32\\ 0.21\\ 0.22\\ 0.38\\ 0.13\\ 0.13\\ 0.24\\ 0.44\\ \end{array}$	$\begin{array}{c} 0.01 \\ 0.06 \\ 0.14 \\ 0.09 \\ 0.35 \\ 0.22 \\ 0.18 \\ 0.41 \\ 0.17 \\ 0.15 \\ 0.27 \\ 0.47 \end{array}$	11176 11168 14006 18510 14240 12564 8586 12581 11061 12500 18641 14031	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

TABLE 1 - SUMMARY OF FREEZING TEST DATA

1

· _ •

- Deltaic fine sand overlying layered silt and clay. - Lodgement till; silty clay matrix with variable amount of sand, gravel, pebbles, cobbles, boulders. DL - Mackenzie River Delta; layered silt and clay, occasional layer of fine sand. RKM

MRD

Slurry - MRD remoulded.

		TABLE 2. THAW	JELILEIENI		
			SPECIAL	DEEP BURIAL AVERAGE DEPTH FROM ORIGIN SURFACE TO BOTTOM OF	NAL GROUND PIPE
	DISTANCE	PERMAFROST	SUPPORT MILES	12 ft. (or less) MILES	16 ft. MILES
SEGMENT	MILES	FILLS,			2 1
	22	7.0	0.7	4.2	2.1
MP 661-MP 683	22	4.6	3.2	0.5	0.9
MP 683-MP 723	40	4.0	$\mathbf{D} = \mathbf{D}^{\circ}$	8.3	7.4
MP 723-MP 807	84	16.6	0.9	7 5	15.0
MP 807-MP 881	74	37.3	14.8	1.0	
TOTAL	220	65.5	19.6	20.5	25.4

ABLE 2. THAW SETTLEMENT

Land Land

.....

TABLE 3(a) SEGMENT: MP 661 - MP 683

ı.

		PEAT DEPTH	PERMAFROST DEPTH	SETTLEMENT OF PIPELINE FOR INDICATED BURIAL DEPTH (ft)			
IEST HOLE NO.	TERRAIN TYPE	(ft)	(ft)	81	12'	16'	
N75-6A-1	RKM-BS	12.1	15.6	1.9	0.5	0	
N75-6B-1	RKM-BS	7.8	16.3	1.3	0.7	0.1	
N75-TSF-6B-1	RKM-PT	4.8	43.0+	0.4	0.3	0.2	

TABLE 3(b) SEGMENT: MP 683 - MP 723

1

	•		,	SETTLEMENT OF PIPELINE FOR INDICATED BURIAL DEPTH			
		PEAT DEPTH	PERMAFROST DEPTH		(ft)(2)	
TEST HOLE NO.	TERRAIN TYPE	(ft)	(ft)(1)	8'	12'	16'	
N76-6-1	DL-Sand Dune	0.5	15.0	2.0	0.7	0	
N75-4B-1	DL-PT	7.3	18.5+ (50.0)	1.0 (3.1)	0.4 (2.6)	0.2 (2.3)	
N75-4B-2	DL-PT	4.0	20.4+ (50.0)	0.6 (1.2)	0.3 (1.0)	0.1 (0.8)	
N75-4D-1	DL-PT + Trees	4.3	20.5	2.1	1.6	0.8	
N76-5-2	DL-BS	8.0	33.0	11.1	8.2	5.9	
N75-5A-2	DL-BS	10.5	23.4+ (50.0)	4.9 (8.3)	3.5 (6.9)	1.9 (5.2)	
N75-TSF-13-1	DL-Trees	0.5	52.5	11.0	10.8	10.5	
N75-TSF-13B-1	DL-BS	13.5	42.0	15.8	14.5	13.1	
N76-8A-3	DL-BS	7.5	24.0	8.5	5.5	1.7	
N76-8B-2	DL-Trees	0.5	50.5	9.2	9.1	8.9	
N73-101	RKM-BS	10.0	17.5	1.6	0.7	0.2	
N73-102	RKM-BS	15.5	19.0	3.2	1.9	0.7	
N73-103	RKM-BS	10.0	9.0	0.3	0	0	
N73-104	RKM-BS	14.0	18.0	3.2	1.9	0.5	
N73-105	RKM-BS	5.0	25.5+ (50.0)	0.6 (1.2)	0.3 (0.9)	0.3 (0.8)	

(1) Number shown (

) is assumed depth for permafrost

(2) Number shown (

) is settlement to assumed permafrost depth

TABLE 3(c) SEGMENT: MP 723 - MP 807

					SETTLEMENT OF PIPELINE FOR INDICATED BURIAL DEPTH		
TEST HOLE NO.	TERRAIN TYPE	(ft)	(ft)(1,3)	-	81	12'	16'
N76-10-1	RKM(AB)-BŚ	6.5	34.0		2.1	1.1	0.7
N76-10-2	RKM(AB)-BS	4.0	18.3		0.8	0.2	0.1
N76-14-1	RKM-BS	3.0	27.0+ [33.5]		0.8	0.7	0.6
N75-TSF-21A-1	HM-BS	9.0	18.5		3.3	2.1	0.8
N76-15-3	RKM-BS	4.6	26.0		0.7	0.4	0.3
N76-15-4	RKM-BS	2.8	22.0		0.5	0.3	0.2
N75-EB-1	RKM-BS	8.0	14.5+ (40.0)		2.2 (4.7)	0.3 (2.8)	0.0 (2.6)
N75-EB-3	RKM-BS	10.7	18.0+ (40.0)		4.1 (12.8)	2.6 (11.3)	0.8 (9.5)
N75-EB-8	RKM-BS	10.3	19.0+ (40.0)		4.4 (5.7)	2.8 (4.0)	0.7 (1.9)
N75-EB-13	RKM-BS	8.5	13.0+ (40.0)		1.2 (1.7)	0.0 (0.6)	0.0 (0.5)
N75-TSF-22-1	RKM-BS	9.5	19.0		5.3	2.6	0.5

Number shown ((1)

.) is assumed depth for permafrost

Number shown ((2)

] is based on geophysics survey

) is settlement to assumed permafrost depth

Number shown [(3)

SEGMENT: MP 807 - MP 881 TABLE 3(d)

				SETTLEMENT OF PIPELINE FOR INDICATED BURIAL DEPTH			
TEST HOLE NO.	TERRAIN TYPE	PEAT DEPTH (ft)	PERMAFROST DEPTH (ft)(3)	8'	(ft) 12'	16'	
N76-19-2	RKM-BS	11.0	22.5	3.0	1.7	0.6	
N76-21-1	RKM-BS	23.0	38.5	10.0	8.3	7.0	
N76-22-3	RKM-BS	7.0	24.3	1.7	0.4	0.2	
N76-22-4	RKM-BS	5.6	33.0	3.5	1.7	0.5	
N76-23-3	RKM-BS	13.3	21.0	5.1	3.8	2.4	
N76-24-2	RKM-BS	8.5	27.8+ [44.6]	2.3	1.0	0.8	
N76-24-3	RKM-BS	7.0	34.0	3.7	2.3	0.9	

(3) Number shown [

] is based on geophysics survey

8 ¹ 1

Ĵ

FIG. 1 FROST HEAVE TEST CELL

-HAHLEIGUUN TO THE

1 J

 $S = A_o X + a_o \int_{a}^{X} (P + \delta' \times) dx$

WHERE:

S = TOTAL THAW SETTLEMENT

 $A_0 = OBTAINED FROM FIGURES 9. 10 AND 11$

X = THAW DEPTH

 a_{o} = OBTAINED FROM FIGURES 12 13 AND 14

P = EFFECTIVE LOAD ON SOIL LAYER

 σ' = SUBMERGED UNIT WEIGHT OF SOIL

 \star = DISTANCE BELOW GROUND SURFACE

NOTE 1 ON FIGURES 9 TO 14, FOLLOWING, THE SOLID LINE HAS BEEN ADOPTED FOR THAW SETTLEMENT ANALYSIS. THE DOTTED LINE IS BASED ON REGRESSION ANALYSIS.

NOTE 2 WHERE MORE THAN ONE LAYER OF SOIL IS PRESENT THEN THE TOTAL SETTLEMENT IS OBTAINED BY CALCULATING THE SETTLEMENT OF EACH LAYER AND THEN ADDING THEM TOGETHER.

. .

A: PIPE SUBJECTED TO VARIABLE HEAVE RATE AS A FUNCTION OF EFFECTIVE PRESSURE IN THE SOIL .

HEAVE LENGTH (FT)

FIGURE 2

Annal I. I. K. I.

3000-MAXIMUM UNSUPPORTED SPAN IN THAWING PERMAFROST OR BETWEEN PIPE SUPPORTS (1) 2000 -PIPE 48 x 0.72 in. PRESSURE 1680 psig PIPE ΔT 85° F NO LOAD н 1000-Щ И 50 150 100 250 200 · 300 FREE SPAN BETWEEN SUPPORTS (ft)

FIGURE 4

FIGURE 2

FIGURE 3 DEEP HEATER PRELIMINARY SET POINTS

GROUND SURFACE

HEAD OFFICE

BOX 5858, STN. "L" EDMONTON, ALTA., CANADA TEC 4G3 CABLE 'CAPROCO' - TWX 6108311870 PHONE (403) 466-1167

CALGARY OFFICE

2727A - 58 AVENUE S.E. T2C 0B4 PHONE (403) 272-2233 SASKATCHEWAN OFFICE

404 MISSISSIPPIAN AVE. P.O. BOX 2005, CALGARY, ALTA. P.O. BOX 936, ESTEVAN, SASK, S4A 2A7 TWX 610 - 792-1696 PHONE (306) 634-5701

> Edmonton, Alberta 28 January, 1977

- a complete corrosion prevention service -

Northern Engineering Services Limited 635 - 6th Avenue, S. W. CALGARY, Alberta T2P OT5

Attention: Mr. Graham King

Dear Graham:

Í

Re: Effects of AC Power Line Along Pipe Line Route

This is further to our telephone conversation of 27/1/77.

It is my understanding that you are considering the feasibility of running up to 400 miles of 15 KVA power line along the pipe line right of way between Station 6 and Station 15.

Some years ago, I carried out a study on the potential problems associated with the proximity of high voltage AC power lines to coated buried pipelines.

Based on the available data to that time (1967), it was my conclusion that there would be no corrosion problems due to induced AC on a pipe line parallel to or crossing an HV AC power line provided cathodic protection is maintained on the pipe line to normally accepted criteria (ie. 850 mV negative to CuCuSO ..

I have generally kept abreast of the literature since that time and have had no reason to modify or change this conclusion.

There are some potential hazards to the pipe line or to pipe line personnel where pipe lines are laid parallel to high voltage AC power lines. These are:

Voltages caused on the pipeline by capacitive coupling or induction 1) could lead to annoying shocks and in extreme cases could be lethal

TEHRAN, IRAN P.O. BOX 12-1687 PHONE 897-393 TELEX 215310

- OTHER OFFICES -

SAFAT, KUWAIT P.O. BOX 5020 PHONE 630988 TELEX 2127

LONDON, ENGLAND PHONE 01-262-1005 TELEX 21792

. . 2

Northern Engineering Services Limited Mr. Graham King --2--

28 January, 1977

to persons making contact with the line. The extreme example is the hazard to welders working on a section of line up on skids and out of contact with ground. To deal with this problem, the best approach is frequent grounding of the pipe either by installing ground mats at valves and other regular points of contact or by installing temporary grounds for pipe up on skids during construction.

2) Fault currents due to malfunctions or switching in the power line and lighting surges. These have been known in rare cases to cause damage to the coating on the pipe and even to the pipe wall itself. Where the potential magnitude of this problem is significant, it can be minimized by use of electrolytic grounding cells or polarization cells which permit flow of AC current while blocking DC currents which would cause difficulty in maintaining cathodic protection.

I would suspect that the probability of these effects on a 15 KV line would be quite minor. Most concern in the industry has been directed to power lines rated at 100 KV or more. This aspect in as far as magnitude of probable induced voltages and magnitude of fault currents should be checked with your power transmission people.

For your additional background in this matter, I am enclosing a copy of a recent article by E. A. Cherney and D. J. Carrigan of Ontario Hydro. It will be noted that the power line on which they were experimenting was rated at 230 KV.

We trust this background will be of assistance.

With best regards,

Yours very truly,

CAPROCO CORROSION PREVENTION LTD.

C & hi Mun

F. W. Hewes, P. Eng. Managing Director

FWH/cdw Encl.

1

- a complete corrosion prevention service -

HEAD OFFICE

BOX 5858, STN. "L" EDMONTON, ALTA., CANADA TEC 4G3 CABLE "CAPROCO" - TWX 6108311870 PHONE (403) 466-1167

CALGARY OFFICE

2727A - 58 AVENUE S.E. T2C 0B4 PHONE (403) 272-2233

SASKATCHEWAN OFFICE

404 MISSISSIPPIAN AVE. P.O. BOX 2005, CALGARY, ALTA. P.O. BOX 936, ESTEVAN, SASK, S4A 2A7 TWX 610 - 792-1696 PHONE (306) 634-5701

> Edmonton, Alberta 28 January, 1977

Northern Engineering Services Limited 635 - 6th Avenue, S.W. CALGARY, Alberta

Attention: Mr. G. King

Dear Graham:

T2P 0Z5

1

1.

Re: Corrosion Control Recommendations Thermally Insulated Main Line Sections

During our meeting of 14/1/77 in Calgary you described and showed me diagrams of a number of main line insulating systems being considered for control of frost problems.

It is my purpose in this letter to give recommendations on the corrosion control measures to be followed with these systems.

The alternatives have been arbitrarily divided into three types, based on corrosion control considerations.

Basically I cannot visualize any problems in maintaining adequate corrosion control with any of these approaches.

I trust this is what you require at this time.

With best regards,

Yours very truly,

CAPROCO CORROSION PREVENTION LTD.

W. Hewes, P. Eng. Managing Director

FWH/nah Attach.

> TEHRAN, IRAN P.O. BOX 12-1687 PHONE 897-393 TELEX 215310

- OTHER OFFICES -

SAFAT, KUWAIT P.O. BOX 5020 PHONE 630988 **TELEX 2127**

LONDON, ENGLAND PHONE 01-262-1005 TELEX 21792

ATTACHMENT

RECOMMENDATIONS

(1) TYPE I SYSTEM

(a) Description

- Steel outer casing

- Heat trace cables or conduits outside casing in contact with soil.

- (b) Recommendations
 - (i) Coat main line steel pipe in mill using fusion bond epoxy system.
 - (ii) Coat outer steel casing externally in mill using fusion bond epoxy system.
 - (iii) Coat all conduits or cables externally.
 - (iv) At each end of each insulated section, install preformed heat shrink sleeve extending over the end of the casing and along the carrier pipe. This must be done before the bonding of the casing to the carrier pipe as described in (v) below.
 - (v) Bond steel casing to carrier pipe at each end of each insulated section using thermite weld system and insulated copper cables sized appropriately for length of cased section. (Note maximum size of thermite weld cartridge to be used is 15 grams. Copper lead strands must be separated into bundles to enable this size of cartridge to be used.) All thermite weld connections must be very carefully coated.
 - (vi) Coat all field welds on carrier pipe using field applied fusion bond epoxy powder system before installing thermal insulation over the weld area.
 - (vii) Coat all field welds on outer casing pipe using either field applied fusion bond epoxy powder system or a heat shrink sleeve.
 - (viii) Bond coated metallic conduit or cable sheaths into casing pipe at suitable intervals using insulated copper cable and thermite weld connections using the same precautions as in
 (v) above.

ATTACHMENT RECOMMENDATIONS Page 2

(2) TYPE II SYSTEM

- (a) Description
 - Steel outer casing
 Heat trace conduits inside the casing (aluminum conduits)
- (b) Recommendations
 - (i) As for Type I.
 - (ii) As for Type I.
 - (iii) Conduits do not need to be coated externally for corrosion reasons.
 - (iv) As for Type 1.
 - (v) As for Type I.
 - (vi) As for Type I.
 - (vii) As for Type I.
- (3) TYPE III SYSTEM

i i

(a) Description

Polyethylene - Butyl outer sheath over polyurethane insulation.

Heat trace cables or conduits (if any) outside of outer sheath and in contact with soil.

- (b) Recommendations
 - (i) As for Type I.
 - (ii) Coat all conduits and cables externally.
 - (iii) Coat all field welds on carrier pipe using field applied fusion bond powder system before installing thermal insulation over the weld area.
 - (iv) Bond coated metallic conduit or cable sheaths into the carrier pipe at suitable intervals to provide protection along with main line or alternatively provide for separate protection of these facilities using sacrificial anodes or impressed current systems as practical. (See Note 1 Below).

ATTACHMENT RECOMMENDATIONS Page 3

NOTE

J.

4

...*n*t

(1) The heat trace conduits will have to be protected and can be protected readily by the methods shown. The best approach in any particular section will depend on such conditions as:

> Length of Conduit Run Resistivity of Soil Availability of AC Power.

HEAD OFFICE

BOX 5858, STN. "L'' EDMONTON, ALTA., CANADA T6C 4G3 CABLE "CAPROCO" - TWX 6108311870 PHONE (403) 466-1167

CALGARY OFFICE

T2C OB4 PHONE (403) 272-2233

SASKATCHEWAN OFFICE

404 MISSISSIPPIAN AVE. P.O. BOX 2005, CALGARY, ALTA. P.O. BOX 936, ESTEVAN, SASK, S4A 2A7 PHONE (306) 634-5701

Appendix 12

Edmonton, Alberta 28 January, 1977

Northern Engineering Services Limited 635 - 6th Avenue, S. W. CALGARY, Alberta T2P OT5

Attention: Mr. J. Price

Dear Jasper:

14

Re: Corrosion Prevention Pile Systems

This is further to my discussions with you and Mr. Reid on 14/1/77 in Calgary, on the subject of protection of piling used for support of buried main line piping.

The main recommendation I have in this respect is to ensure that the pile assemblies are electrically isolated from the main line pipe steel.

It would appear that a measure of protection for the piling structure would also be advisable to ensure against corrosion attack which might lead to mechanical weakening on the structure over the life of the pipeline. For this purpose, I would suggest you consider fabricating the piling structure out of precoated pipe (eg. coated with fusion bond epoxy). The areas of coating damage resulting from transportation, fabrication and installation could then be taken care of by arbitrary installation of two 17# packaged, magnesium anodes for each pile structure.

The weld areas and areas of coating damage could be coated on site but this would not significantly affect the anode life and is not,

recommended. Coating applied to pipe on a regular production run basis should cost in the range \$0.45 to \$0.50 per square foot. The anodes, packaged would cost of the order of \$35.00 each FOB Edmonton and would weigh about 50 lbs. each.

TEHRAN, IRAN P.O. BOX 12-1687 PHONE 897-393 TELEX 215310

- OTHER OFFICES -SAFAT, KUWAIT P.O. BOX 5020 PHONE 630988

TELEX 2127

LONDON, ENGLAND PHONE 01-262-1005 TELEX 21792

Northern Engineering Services Limited --2--Mr. J. Price

28 January, 1977

I trust this is the information you require at this

point.

With best regards,

Yours very truly,

CAPROCO CORROSION PREVENTION LTD.

NI

F. W. Hewes, P. Eng. Managing Director

FWH/cdw

... I

					۲ 		а 		1	βί L	4 6	
			•	TAB	LE l							
		Summary	of Des	ign Qua: (mi	ntities les)	<u>, M-06</u>	to MF-1	5				
	From To Length	M-06 M-07 47.1	M-07 M-08 46.9	M-08 M-09 43.3	M-09 M-10 46.2	M-10 M-11 43:4	M-11 M-12 44.5	M-12 MF-13 48.8	MF-13 MF-14 42.2	MF-14 MF-15 35.5	Total 397.9	
Insulated and he pipe Bare Bino	at-traced	13.1	7.1	9.2	6.5	9.3	15.6	26.6	26.5	24.5	138.4	
Insulated and he river crossing Total pipe	at-traced s	<u> </u>	<u>0.1</u> 46.9	$\frac{0.1}{43.3}$	<u>0.1</u> 46.2	<u>0.3</u> 43.4	<u>-</u> 44.5	<u>0.4</u> 48.8	<u>0.2</u> 42.2	<u>0.1</u> 35.5	$\frac{1.6}{397.9}$	

Heat Probes

Operating Year 1	1.8	3.7	4.8	8.0	8.3	16.2	13.4	10.0	7.5	73.7
Operating Year 3				unal	located	1				30.0
Operating Year 5				unal	located	1 1				15.0
Total										118.7

TABLE 2

River and Stream Crossings Requiring Insulation and Heat Tracing

		Frost-Susceptible Width (ft.)				
		Integral	Separate			
Crossing	Pipe OD	Heat Tracing	Heat Tracing			
Prudhoe Bay to CD-07	48"	-				
<u>CD-07 to CD-08</u>			۰ ۲۰۰۰ ۲			
Channel	48"		200			
Moose Channel	48"		500			
Channel	48"	1. A. 193	150			
Ministicoog Channel	48"		300			
Channels (2)	48"		700			
West Channel	36"	2 x 1,300				
Channel	36"	·	2 x 150			
Shallow Bay	36"	$2 \times 26,250$				
Channels	36"	$2 \times 1,100$				
Channel	36"	$2 \times 1,100$	÷ .			
Channel	36"		2 x 800			
Channel	36"	$2 \times 1,500$	•			
Pond	36"	2 x 1,000				
North Reindeer Channel	36"	2 x 3,000	х.			
Channel	36"		2 x 250			
Pond	36"		2 x 700			
Channel	36"		2 x 200			
Channel	36"	2 x 1,900				
Channel	36"		2 x 250			
Pond	36"		2 x 700			
Channel	36"		2 x 700			
Channel	36"		2 x 300			
Langley Island Channel	36"	2 x 4,500	* •			
Pond	36"	2 x 1,100				
Niglintgak to Richards Island						
Kumak Channel	24"	2 500				
Kanguk Channel	24"	2,000	700			
Channel	24"		100			
Kuluarpak Channel	24"		700			
Taglu to Tununuk Junction						
Channel	48"		150			
Harry Channel	48"		400			
Channel	48"		250			
Channel	48"		200			
Lake	48"		100			
Yaya Channel	48"		500			

River and Stream Crossings Requiring Insulation and Heat Tracing (Continued)

		Frost-Susceptible Width (ft.)				
		Integral	Separate			
Crossing	Pipe OD	Heat Tracing	Heat Tracing			
Tununuk Junction to MD-01		· · · · ·				
Creeks (2)	48"		250			
East Channel	48"	2 x 3,300	200			
Parsons Lake to Parsons Lake			n de la companya de la			
Junction	30"	_	-			
MD-01 to $MD-02$	18"	•				
	40					
MD-02 to MD-03	- 3					
Pond	48"		400			
Creek	48"		100			
MD-03 to M-04						
Creeks (4)	48"		400			
Thunder River	48"		100			
<u>M-04 to M-05</u>						
Creeks (3)	48"		100			
	-10		300			
M-05 to M-06						
Creek	48"		150			
Tieda River	48"		300			
M-06 to M-07						
Hare Indian River	48"	1,000				
Creek	48"		50			
Tsinta Creek	48"		50			
Creek Spafu Crook	48"		50			
Creek	48" 48"		50 200			
	70		200			

Î

TABLE 2

River and Stream Crossings Requiring Insulation and Heat Tracing (Continued)

		Frost-Susceptible Width (ft.)			
· •		Integral	Separate		
Crossing	Pipe OD	Heat Tracing	Heat Tracing		
	•				
M = 0.7 to $M = 0.8$					
Creek	48"		50		
Donnelly River	48"		200		
Hanna River	48"		150		
Oscar Creek	48"		150		
M-08 to M-09					
Bosworth Creek	48"		200		
Canyon Creek	48"		300		
Christina Creek	48"		200		
<u>M-09 to M-10</u>					
Note Creek	, YON		100		
Nota Creek	48"		100		
Creeks (4)	48"		*200 *250		
CLEEKS (4)	48		250		
M-10 to M-11	· · · · · · · · · · · · · · · · · · ·				
Creek	48"		50		
Little Smith River	48"		400		
Creeks (3)	48"		250		
Saline River	48"	v	800		
Creeks (5)	48"		250		
M-11 to M-12					
			· · · · ·		
Creeks (3)	48"		150		
5. 5 <u>1</u>	ан сайтаан ал		· · · ·		
<u>M-12 to MF-13</u>					
			. · · · ·		
Whitesand River	48"		500		
Ochre River	48"		300		
Creeks	48"		500		
Smith River	48"		300		
Creeks (4)	48"		250		

یچید. Ŷ

Sheet 4 of 4 January 1977

TABLE 2

River and Stream Crossings Requiring Insulation and Heat Tracing (Continued)

л 4

			Frost-Susceptib	le Width (ft.)
Crossing	·· · · · · · · · · · · · · · · · · · ·	Pipe OD	Heat Tracing	Host Traging
		<u></u>	neae macing	neat fracing
MF-13 to MF-14				
Creeks (3)		48"	1.	300
Willowlake River		48"		800
Creek	· ·	48"		1.00
MF-14 to MF-15	s en			
Trail Creek		48"		100
Creeks (2)		48"		200
Total		24"	2.500	1 500
· · · · · · · · · · · · · · · · · · ·		36"	85,500	1,000
	- A-	48"	7,600	13,000
Grand Total			95,600	22,600

TABLE 🕄

Deep	Burial	and	Pi]	Le	Suppor	tΩι	lanti	ties.	,
-	Sc	outh	of	Mi	lepost	661	L	·	_

(miles)

	Deep Burial								
Milepost	Permafrost	less than 12'	16'	Pile Supports					
661-683	7.0	4.2	2.1	0.7					
683-723	4.6	0.5	0.9	3.2					
723-807	16.6	8.3	7.4	0.9					
807-881	37.3	7.5	15.0	14.8					
Total	65.5	20.5	25.4	19.6					

ç.

-]

-

January 1977

TABLE 1 PROJECTED AVERAGE-DAY GAS VOLUMES (MMcfd at 60°F and 14.73 psia)

		Op	erating Ye	ar	
	1	2	3	4	5
Prudhoe Bay to Tununuk Jct.					
Prudhoe Bay Supply Fuel Used in Alaska		2,000.0	2,000.0	2,250.0	2,250.0
Delivery at Alaska-Yukon					
Border Fuel llead in Yukan	_ ` *	2,000.0	2,000.0	2,250.0	2,250.0
Fuel Used in N.W.T.	-	.5	.5	5.7	5.7
Delivery to Tununuk Jct.		1,994.1	1,994.1	2,238.3	2,238.3
Mackenzie Delta to Caroline					
Niglintgak Supply Taglu Supply	175.0 700.0	175.0 700.0	210.0 840.0	245.0 980.0	315.0 1,260.0
Total Delivery to Tununuk Jct.	875.0	2,869.1	3,044.1	3,463.3	3,813.3
Fuel Used at Station MD-01 Parsons Lake Supply		7.8 375.0	8.1 450 0	525 0	7.5
Fuel Used in N.W.T.	10.9	51.5	59.6	96.8	119.4
Delivery to Westcoast	239.3	248.3	287.4	318.1	354.7
Fuel Used in N.W.T. Fuel Used in Alberta	- 9 0	6.9 36.8	8.5 42.6	5.6	7.2
Delivery to Caroline	990.8	2,892.8	3,087.9	3,493.6	3,913.1
Caroline to Alberta-B.C. Border					
Caroline Supply Fuel Used in Alberta		617.0	617.8 .2	686.4 .3	686.3 .3
Delivery to ANG at Alberta-B.C. Border	с 1 — с. К. — 1 — с.	616.8	617.6	686.1	686,0
Caroline to Monchy	, 4 , 4				
Caroline Supply Fuel Used in Alberta	990.8	2,275.8 4.6	2,470.1 5.7	2,807.2 13.6	3,226.8
Delivery to TCPL	990.8	892.7	1,083.9	1,263.6	1,678.4
Polinow to Marshy		۵.۵ - ۲.۰۲ ۱	4.2	3.4	3./
Delivery to Monchy	_	1,3/4./	1,3/6.3	1,526.6	1,525.9
System Summary (MMcfd)					ь.
Total Supply	1,250.0	3,250.0	3,500.0	4,000.0	4,500.0
Total Delivery	1,230.1	3,132.5	134.8 3,365.2	205.6 3,794.4	255.0
System Summary (Btu* x 10 ⁹)			• -		
Total Supply	1,306.9	3,602.9	3,864.3	4,412.7	4,935.4
Total Fuel Total Delivery	20.8	130.5	149.0 3 715 3	227.3 4 185 4	280.3
Delivery H.H.V. (Btu*/ft ³)	1,045.5	1,108.5	1,104.0	1,103.0	1,096.6
*Dry Basis at 14.73 psia			-		

. آ. د هد

ien.

TABLE 2 PROJECTED AVERAGE ANNUAL GAS VOLUMES (Bcf at 60°F and 14.73 psia)

			Cale	endar Yea	r	
	1982	1983	1984	1985	1986	1987
Prudhoe Bay to Tununuk Jct.						
Prudhoe Bay Supply Fuel Used in Alaska		368.0	730.5	745.8	821.8	821.8
Delivery at Alaska-Yukon Border Fuel Used in Yukon	-	368.0	730.5	745.8	821.8	821.8
Fuel Used in N.W.T.	_	.1	.2	.5	2.1	2.2
Delivery to Tununuk Jct.	-	366.9	728.3	743.3	817.5	817.5
Mackenzie Delta to Caroline						
Niglintgak Supply Taglu Supply	32.2 128.8	63.9 255.7	66.1 264.2	78.8 315.4	93.8 375.0	115.1 460.2
Total Delivery to Tununuk Jct. Fuel Used at Station MD-01 Parsons Lake Supply Fuel Used in N.W.T.	161.0 - 69.0 2.1	686.5 1.4 137.0 11.5	1,058.6 2.9 141.5 19.3	1,137.5 2.9 168.9 24.0	1,286.3 2.6 200.9 36.7	1,392.8 2.7 246.4 43.6
Delivery to Westcoast Fuel Used in N.W.T. Fuel Used in Alberta	44.0 - 1.7	89.0 1.3 8.5	93.1 2.6 13.8	106.8 2.9 17.1	118.4 2.1 25.7	129.6 2.6 31.6
Delivery to Caroline	182.2	711.8	1,068.4	1,152.7	1,301.7	1,429.3
Caroline to Alberta-B.C. Border						аў. 1. р
Caroline Supply Fuel Used in Alberta	_	113.5 _	225.4	229.8	250.7	250.7
Delivery to ANG at Alberta-B.C. Border	- · ·	113.5	225.3	229.7	250.6	250.6
Caroline to Monchy		,				
Caroline Supply Fuel Used in Alberta	182.2	598.3 .8	843.0 1.7	922.9 2.6	1,051.0 5.3	1,178.6 6.9
Delivery to TCPL Fuel Used in Saskatchewan	182.2	343.8	337.7 1.4	406.9 1.5	486.8 1.3	613.0 1.4
Delivery to Monchy	-	253.0	502.2	511.9	557.6	557.3
System Summary					• .	v
Total Supply Total Fuel Total Delivery	230.0 3.8 226.2	824.6 25.3 799.3	1,202.3 44.0 1,158.3	1,308.9 53.6 1,255.3	1,491.5 78.1 1,413.4	1,643.6 93.2 1,550.4

ï

COMPRESSION EQUIPMENT REQUIREMENTS

Station		Compression Unit Horse-	Refrigeration HP (ISO)	Total Pro	Number posed f	of Comp or Oper	ression Uni ating Year
Number	Milepost	power (ISO)	per Station	1	2	3	4 5
Prudhoe Ba	v to Tununuk Ju	action					
CA 05	222 00	20.000	17 000		-		
CA-05	223.00	30,000	17,000	-	Т	. T	
00 00	572+57	50,000	17,000	-	-		
Mackenzie	Delta to Tununul	Junction					
None							
Tununuk Ju	nction to Caroli	ine					
MD-01	43.45	30,000	34,000	-	1	1	1 1
MD-02	90.85	30,000	17,000	·		-	1 1
MD-03	126.97	30,000	17,000	-	1	1	1 1
M-04	177.10	30,000	17,000		-	1 .	1 1
M-05	219.62	30,000	17,000		1	1	1 1
M-06	262.86	30,000	17,000	-	-	-	1 1
M-07	310.00	30,000	17,000	1	1	1	1 1
M-08	356.89	30,000	17,000	-	- .	1	1 1
M-09	400.23	30,000	17,000		1	1	1 1
M-10	446.37	30,000	17,000			-	1 1
M-11	489.83	30,000	17,000	1	1	1	1 1
M-12	534.23	30,000	17,000		-	1	1 1
MF-13	583.14		-		1	1	1 1
MF-14	625.26	30,000	-	-		-	1 1
MF-15	660.79	38,000		1	1	1	1 1
MF-15A	699.96	38,000	6,400	-		1	1 1
MF-16	735.38	38,000	6,400	1	1	1	1 1
MF-17	768.82	38,000	6,400	· _	-		1 1
MF-18	809.85	38,000	6,400	1	1	1	1 1
MF-19	856.64	38,000	6,400	· <u> </u>	-	1	1 1
M-20	901.16	38,000		1 -	1	1	1 1
M-21	941.84	38,000		-	·	-	1 i
M-22	982.14	38,000		<u> </u>	1	1	1
M-23	1,020.29	38,000	-	· ·	·	1	1'' L
M-24	1,062.47	38,000		1	1	1	1 1
M-25	1,108.23	38,000		_	· •• .		1 1
M-26	1,148.80	38,000		· 	1	1	1 1
M-27	1,190.20	38,000		· _	-	1	1 1
M-28	1,229.68	38,000		1	1	1	1 1
M-29	1,263.21	38,000		<u> </u>	-	-	1 i
M-30	1,310.69	38,000			1	1	1 1
M-31	1,353.10	38,000		· 😐	·- ,	1	1 I
M-32	1,391.17	38,000		1	1	1	1 1
M-33	1,429.60	38,000		· _	<u> </u>	-	1 1
		, 					
Caroline t	o Coleman						
None							
		4			* • •		
Caroline t	o Monchy						
E-01	98.39	38,000			1	• 1	1 1
E-03	191.23	38,000	•	· · · · · · · · · · · · · · · · · · ·			
E-05	295.57	38,000		-	1	1	1 i
		-					4.

Note: - Station MF-15 will have a heater for gas heating.

- Stations M-20 through M-33, inclusive, will have aircooled heat exchangers for gas cooling.

- Stations M-07 and M-11 are prebuilt in Year 1 to ... accommodate construction resource limitations.

- - **ima.** .
TABLE 4

	Increment	al Number	Proposed	
		perating	1001	5
<u> </u>	$\frac{2}{2}$	<u>3</u>	4	<u> </u>
9	11	9	10	0
				0
7	5	6	5	0
2	6	3	5	0
2	5	3	4	× 0
_2	0	_2	1	<u>0</u>
13	16	14	15	0
	0.70	210	240	0
326	370	318	540	. 0
47	85	64		<u> </u>
373	455	382	414	0
	$\frac{1}{9}$ 7 2 2 2 13 326 47 373	Increment for 0 1 2 9 11 7 5 2 6 2 5 2 0 13 16 326 370 47 85 373 455	Incremental Number for Operating 1 2 3 9119756263202131614326370318478564373455382	Incremental Number Proposed for Operating Year 1 2 3 4 91191075652635253420211316141532637031834047856474373455382414

SUMMARY OF COMPRESSION FACILITY REQUIREMENTS

		Tota	al Number P	roposed	
		toi	c Operating	Year	
	1	2	3	4	5
Compressor Stations	. 9	20	29	39	39
Compressor Units	7	12	18	23	23
20,000 ISO bp (gas)	2	8	11	16	16
30,000 ISO hp (9837	2	7	10	14	14
17,000 ISO np (propane)	2	,	·	5	5
6,400 ISO hp (propane)	_2				
Total Units	13	29	43	58	58
Tratalled ICO Horsepower			¥.		
Installed 150 not seponde	326	696	1,014	1,354	1,354
Gas (10 ³ 150 np)	520	122	196	270	270
Propane (10° ISO hp)	_47	132			• •••••••••••
- 1 (103 TCO hp)	373	828	1,210	1,624	1,624
Total (10° 150 mp)	575		•		

GGK/ej December 31, 1976

TABLE 5

COMPARISON OF NEW AND OLD DESIGNS NEAR LAST POINT OF COLD FLOW

Stat	ion		Milepost	<u> </u>	Com	pression	(hp)	C1	hiller (h	ıp)
Old	New	Old	New	Change	Old	New	Change	Old	New	_Change
M-12	M-12	534.23	534.23	0	30,000	30,000	0	17,000	17,000	0
ME-13	MF-13	583.14	583.14	0	30,000	30,000	0	17,000	0	-17,000
ME-14	MF-14*	621.80	625.26	+3.46	30,000	30,000	0	17,000	0	-17,000
ME-15	MF-15*	673.97	660.79	-13.18	30,000	38,000	+8,000	17,000	0	-17,000
Non-exist	MF-15A*	-	699.96	-	-	38,000	+38,000	_	6,400	+6,400
ME-16	MF-16*	719.46	735.38	+15.92	30,000	38,000	+8,000	0	6,400	+6,400
ME-17	MF-17*	755.29	768.82	+13.53	30,000	38,000	+8,000	0	6,400	+6,400
ME-18	MF-18	809.85	809.85	0	55,000	38,000	-17,000	0	6,400	+6,400
ME-19	MF-19	856.64	856.64	0 ° ·	55,000	38,000	-17,000	0	6,400	+6,400
M-20	M-20	901.16	901.16	0	55,000	38,000	-17,000			0

* New station sites

-01	E - 02	E-03	TOTALS
98.39	147.25	191.23	
010	2,360	2,410	
			-
	1		
	· · · · · · · · · · · · · · · · · · ·		
			1
	L		• • • •

LEGEND

PELINE

TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS CHILLING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS COOLING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & GAS TO AIR DIRECT HEAT XCHANGE FOR GAS COOLING.

TATION WITH CENTRIFUGAL - GAS TURBINE

SAS MEASUREMENT STATION

PELINE PRESSURE

(AS FLOWING VOLUME (14 73 PSIA & 60°F)

IDE VALVE FOR FUTURE DELIVERIES

Fill and

÷

RESSURE REGULATING FACILITY.

HEATER LOAD GIVEN IN MMBTU/HR.

.. HEATER CAPACITY GIVEN IN MMBTU/HR.

DESIGNED AN	OTHE NORTHERN ENGINEERING BERVICES COMPANY LIMITED CALGARY ALBERTA	
DC.	Engineering Services ENGINEERS FOR Company Limited	
CHECKOD BY	CANADIAN ARCTIC GAS PIPELINE LIMITED	SCALE: N.T.S.
ENGINEERS, APP	FLOW DIAGRAM	DATE JANUARY, 1977
T. Haal	MAXIMUM CAPACITY	PROJECT No: 18111
PROJECT MANASER: y King	AVERAGE SUMMER CONDITIONS - OPERATING YEAR 1	084WING N 4-0229-6001-2 -C

J King.	AVERAGE	WINTER	CONDITIONS - OPERATING	YEAR 1	DRAWING No. 4-0229-6002-2-C	
9			1			

CALOABY ALBERTA

ENGINEERS FOR CANADIAN ARCTIC GAS PIPELINE LIMITED

DATE: JANUARY, 1977

PROJECT No 18111

SIGNED BY		Nonamata	
AM.	OBLED.	NORTHERN	ENGINEE

7

RAWN BY N.

V

ROJECT MANAGER

APP T. Heal

NOTES . HEATER LOAD GIVEN IN MMBTU/HR . . HEATER CAPACITY GIVEN IN MMBTU/HR RING SERVICES LIMITED

Fell me

FLOW DIAGRAM

MAXIMUM CAPACITY

PRESSURE REGULATING FACILITY

GAS MEASUREMENT STATION

MPELINE PRESSURE

LEGEND PIPELINE

-01 E-02 E-03 TOTALS

98.39	147.25	191.23	
1,010	2,360	2,410	
·			

STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE PROPANE COMPRESSION FOR GAS CHILLING. STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE PROPANE COMPRESSION FOR GAS COOLING

STATION WITH CENTRIFUGAL-GAS TURBINE GAS COMPRESSION & GAS TO AIR DIRECT HEAT EXCHANGE FOR GAS COOLING STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION

SAS FLOWING VOLUME [1473 PSIA & 60°F] SIDE VALVE FOR FUTURE DELIVERIES

01	E - 02	E-03	E - 04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
10	2,360	2,410	2,390	2,520	3,150	
1				ł		2
000	s			38,000		
000				38,000		76,000
866				21,613		52,479
526.6				1,589.9		
6.9				53		12 2
619.7				1,584.6		
291.8				1, 243.1		
597.7				1,695.5		
1.31				1.36		
41.6				4 2.7		
80.5				87.3		
61.8			and a second	87.3		
413				- 0		6,413
0				0		0
0	·····			0		
0				0		0
0				0		0

LEGEND

PELINE

ATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS CHILLING. IATION WITH CENTRIFUGAL - GAS TURBINE GAS DMPRESSION & CENTRIFUGAL - GAS TURBINE GOANE COMPRESSION FOR GAS COOLING. IATION WITH CENTRIFUGAL - GAS TURBINE GAS DMPRESSION & GAS TO AIR DIRECT HEAT XCHANGE FOR GAS COOLING.

TATION WITH CENTRIFUGAL - GAS TURBINE

IAS MEASUREMENT STATION

IPELINE PRESSURE

AS FLOWING VOLUME (14 73 PSIA & 60°F)

IDE VALVE FOR FUTURE DELIVERIES

Fel and

RESSURE REGULATING FACILITY.

NOTES

HEATER LOAD GIVEN IN MMBTU/HR
 HEATER CAPACITY GIVEN IN MMBTU/HR

CANADIAN ARCTIC GAS PIPELINE LIMITED SCALE N T 5 FLOW DIAGRAM AXIMUM CAPACITY FROMECT ANAGER AVERAGE SUMMER CONDITIONS - OPERATING YEAR 2 4-0229-6003-2-C	DESIGNED AY DRAWN BY DC	NORTHERN ENGINEERING BERVICES COMPANY LIMITED CALGARY ALBERTA Engineering Structor Company Limited	
FLOW DIAGRAM AXIMUM CAPACITY PROJECT N= 18111 PROJECT N= 181111 PROJECT N= 1811111 PROJECT N= 1811111 PROJECT N= 1	CHECKED BY	CANADIAN ARCTIC GAS PIPELINE LIMITED	SCALE NTS
AXIMUM CAPACITY PROJECT No 18111	CX CN ENGINEERS APP 1	FLOW DIAGRAM	DATE, JANUARY, 1977
FROMECT ANAGER AVERAGE SUMMER CONDITIONS - OPERATING YEAR 2 4-0229-6003-2-C	1 Kopper	MAXIMUM CAPACITY	PROJECT No 18111
in the second se	g King	AVERAGE SUMMER CONDITIONS - OPERATING YEAR 2	DRAWING No 4-0229-6003-2-C

-01	F - 02	E-03	E-04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
010	2,360	2,410	2,390	2,520	3,150	
1	-			1		2
,000				38,000		
000				38,000		76,000
859				25,459		60,318
694.6				1,630.9		
7.3				5.9		13,2
687.3				1,625.0		
254.9				1,185.1		
694.7				1,695.5		
1.35				1.43		
.39.4				37.4		
82.2			1	88,8		
82.2				88.8		
0				0	-	0
0		· · · · · · · · · · · · · · · · · · ·		0		0
0				0		
0			1	0		0
0				0		0

NOTES

LEGEND

IPELINE

f

TATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE IROPANE COMPRESSION FOR GAS CHILLING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE IROPANE COMPRESSION FOR GAS COOLING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & GAS TO AIR DIRECT HEAT SCHANGE FOR GAS COOLING

TATION WITH CENTRIFUGAL - GAS TURBINE

JAS MEASUREMENT STATION

IPELINE PRESSURE

TAS FLOWING VOLUME (14 73 PSIA & 60"F)

IDE VALVE FOR FUTURE DELIVERIES

RESSURE REGULATING FACILITY.

And my	F	U	in
--------	---	---	----

. HEATER LOAD GIVEN IN MMBTU/HR . HEATER CAPACITY GIVEN IN MMBTU/HR SIGNID NORTHERN ERGINEERING SERVICES COMPANY LIMITED CALGARY ALBERTA ľ OBTHE Δ N BY LIGINEERS FOR NORM CANADIAN ARCTIC GAS PIPELINE LIMITED HECKED M SCALE NT5 DATE FLOW DIAGRAM JANUARY 1977 PROJECT No 18111 MAXIMUM CAPACITY 0 DRAWING NE AVERAGE WINTER CONDITIONS - OPERATING YEAR 2 4-0229-6004-2-C

CANADA US A BORDER M.P. 394 38 CHEWAN A I +0.630" WT. GR.70 FLOW MONCHY MILE POST 394.38 1,6947 PSIA ELEVATION 2,720 FT. 1,602.3 MMCFD 1,602 3 MMCFD VOLUME UP TO 1,602.3 MMCFD 49 99 MILES 48 82 MILES PRESSURE 1,499.3 PSIA TEMPERATURE 59.0 °F DELIVERY _____

-01	E-02	E-03	E - 04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
210	2,360	2,410	2,390	2,520	3,150	
1		1		1		3
000		38,000		38,000		
000		38,000		38,000		114,000
216		32,517		11,315		78,848
381,6		2,874.1		1,606.0		
7.5		7.2		3.7		18.4
374.1		2,866.9		1,602.3		
200.0		1,312.3		1,441.3		
\$94.2		1,698.4		1,695.5		
1.33		1.29		1.18		
36:3		47.6		51.9		
76.9		84.6		75.1		
61.2		65.8		75.1		
'56		6,968		0		12,724
0		0		0		0
0	,	0		0		· · · · · · · · · · · · · · · · · · ·
0		0		0		. 0
0		0		0		0

LEGEND

PELINE

ATION WITH CENTRIFUGAL - GAS TURBINE GAS DMPRESSION & CENTRIFUGAL - GAS TURBINE KOPANE COMPRESSION FOR GAS CHILLING 'ATION WITH CENTRIFUGAL - GAS TURBINE GAS DMPRESSION & CENTRIFUGAL - GAS TURBINE IOPANE COMPRESSION FOR GAS COOLING (ATION WITH CENTRIFUGAL - GAS TURBINE GAS DMPRESSION & GAS TO AIR DIRECT HEAT (CHANGE FOR GAS COOLING

IATION WITH CENTRIFUGAL - GAS TURBINE AS COMPRESSION

AS MEASUREMENT STATION

PELINE PRESSURE

AS FLOWING VOLUME (1473 PSIA & 60°F)

DE VALVE FOR FUTURE DELIVERIES

ESSURE REGULATING FACILITY.

tel w

NOTES	

HEATER LOAD GIVEN IN MMBTU/HR
 HEATER CAPACITY GIVEN IN MMBTU/HR

CANADA ×0.630" WT, GR.70 FLOW MONCHY MILE POST 394 38 0 1.694.7 PSIA ELEVATION 2,720 FT. 1,620.2MMCFD 1,620.2 MMCFD Z65 Ø VOLUME UP TO 1,620.2 MMCFD 49.99 MILES Zoa 48.82 MILES PRESSURE 1,507.3 P51A TEMPERATURE 45.0 °F DELIVERY _ __ __ _

BORDER

-01	<u>E-02</u>	E-03	E - 04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
010	2,360	2,410	2,390	2,520	3,150	
1		1		1		3
000		38,000		38,000		
000		38,000	T	38,000		114,000
817		28,385		10,645		79,847
913.7		2,9052		1,6238		
8.5		6.6		3.6		18.7
05.2		2,898.6		1,620.2	·	
1713		1,348.4	1	1,444.9		
523.0		1,698.3		1,695.4		
1.39		1.26		1.17		
34.5		41.9		40,9		·
81.1		74.4		63.2		
60.0		60.0		63.1		
381		5,505		0		13.386
0		0		0		0
0		0		0		
0		0		0		0
0		0		0		0

LEGEND

A S K AT C H E W A N

PELINE

ATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS CHILING. IATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE IOPANE COMPRESSION FOR GAS COOLING. IATION WITH CENTRIFUGAL -GAS TURBINE GAS OMPRESSION & GAS TO AR DIRECT HEAT KCHANGE FOR GAS COOLING.

TATION WITH CENTRIFUGAL - GAS TURBINE

AS MEASUREMENT STATION

PELINE PRESSURE

AS FLOWING VOLUME (1473 PSIA & 60°F)

DE VALVE FOR FUTURE DELIVERIES

IESSURE REGULATING FACILITY.

J	FUL	in
	,	

NOTES . HEATER LOAD GIVEN IN MMBTU/HR. .. HEATER CAPACITY GIVEN IN MMBTU/HR Englandrug Survey ľ NORTHERN ENGINEERING SERVICES COMFANY LIMITED w 7. ENGINEERS FOR CANADIAN ARCTIC GAS PIPELINE LIMITED 1 E C K SCALE NT.S A FLOW DIAGRAM DATE JANUARY , 1977 PROJECT No 18111 1 MAXIMUM CAPACITY DRAWING No. 4-0229-6006-2-C AVERAGE WINTER CONDITIONS - OPERATING YEAR 3

-01	E - 02	E-03	E - 04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
010	2,360	2,410	2,390	2,520	3,150	
<u>}</u>		1		1		3
000		38,000		38,000		
,000		38,000		38,000		114,000
762		32,476		16,690		81,928
280.9		3,273.7		1,7891		
7.2		7.2		4.5		18.9
273.7		3,266.5		1,784.6		
344.9		1,350.3		1,367.6		
699.4		1,699.4		1,695.6		
1.26		1.26	1	1.24		
4.3.4		46.1		48.7		
76.4		78.8 ,		79.3		
62.3		64.9		793		
,096		5,856		Ő		11,952
0		0		0		0
0		0		0		
0		0		0		0
0		0		0		0

NOTES:

HEATER LOAD GIVEN IN MMBTU/HR
 HEATER CAPACITY GIVEN IN MMBTU/HR

LEGEND

IPELINE

TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE TROPANE COMPRESSION FOR GAS CHILING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS COOLING. TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & GAS TO AIR DIRECT HEAT SCHANGE FOR GAS COOLING.

TATION WITH CENTRIFUGAL - GAS TURBINE

SAS MEASUREMENT STATION

PELINE PRESSURE

SAS FLOWING VOLUME (1473 PSIA & 60°F)

IDE VALVE FOR FUTURE DELIVERIES

Fred ou

RESSURE REGULATING FACILITY

DESGNED BY	ORTHE NORTHERN ENGINEERING SERVICES COMPANY LIMITED CALGARY ALBERTA	
J. S. CHECKED BY	CORANY LINING CORANY LINING CORANY LINING CANADIAN ARCTIC GAS PIPELINE LIMITED	SCALE : NTS
AWLS	FLOW DIAGRAM MAXIMUM CAPACITY	DATE JANUARY, 1977 PROJECT No. 18111
Jking	AVERAGE SUMMER CONDITIONS - OPERATING YEAR 4	4-0229-6007-2 -C

U.5 A BORDER CANADA D.×0.630" WT. GR.70 FLOW MONCHY 1,694.7 P5IA 1,761.5 MMCFD .3 MILE POST 394.38 ELEVATION 2,720 FT. 1,761.5 MMCFD VOLUME UP TO 1,761.5 MMCFD Zos 49.99 MILES 48.82 MILES PRESSURE 1,467.9 PSIA TEMPERATURE 47.0 *F DELIVERY

-01	E - 02	E-03	E-04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
1,010	2,360	2,410	2,390	2,520	3.150	
1		1		1		٦
1,000		38,000		38,000		······································
1,000		38,000		38,000		114.000
1,444		29,654	· · · · · · · · · · · · · · · · · · ·	14,857		74 955
1,237.4		3 230.6		1765.8		
6.8		6.7		4.3		17.8
1,230.6		3,223.9		1.761.5		
,358.3		1,366.4		13849		
1,699.2		1,699.2		1.695.6		······
1.25		1.24		1.23		
40.6		41.8		40.3		
72.1		72.4		685		
62.0		62.0		68.5		
1,263		4,386		0		8440
0		0		0		0047
0		0		0		
0		0				
0		0		0		0

LEGEND

A 5 K AT CHEWAN

PIPELINE

STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE PROPANE COMPRESSION FOR GAS CHILLING. STATION WITH CENTRIFUGAL - GAS CHILLINO. STATION WITH CENTRIFUGAL - GAS TURBINE PROPANE COMPRESSION FOR GAS COOLING. STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & GAS TO AIR DIRECT HEAT EXCHANGE FOR GAS COOLING

STATION WITH CENTRIFUGAL - GAS TURBINE

GAS MEASUREMENT STATION

PIPELINE PRESSURE

GAS FLOWING VOLUME (14.73 PSIA & 60°F)

SIDE VALVE FOR FUTURE DELIVERIES

PRESSURE REGULATING FACILITY.

Foll and

NOTES		
 HEATER LOAD GIVEN IN MMBTU/HR. HEATER CAPACITY GIVEN IN MMBTU/HR. 		
DESIGNED BY: DEAWN BY: F.B. CHECKED BY: CHECKED BY:	CALE N T S ATE: JANUARY, 1977 ROJECT Nº 18111 RAWING No	

-01	E-02	E-03	E - 04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
010	2.360	2.410	2,390	2,520	3,150	
1		1		1		3
.000		38,000		38,000		
000		38,000		38,000		114,000
016		35,220		32,279		102,515
484.3		3,476.8		1,654.1		
7.5		7.6		6.9		22.0
476.8		3,469.2		1,647.2		
286.3		1,192.7		1,108.1		
628.7		1,506 7		1,695.6		
1.27		1.26		1.53		
40.5		40.7		44.2		
74 1		74.4		106.8		
61.7		63.4		106.8		
1.527		4,701		0		10,228
0		0		0		0
		0		0		
		0		0		0
		0		0		0

NOTES

LEGEND

PIPELINE

STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE PROPANE COMPRESSION FOR GAS CHILING. STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & CENTRIFUGAL - GAS TURBINE FROPANE COMPRESSION FOR GAS COOLING STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION & GAS TO AIR DIRECT HEAT EXCHANGE FOR GAS COOLING

STATION WITH CENTRIFUGAL - GAS TURBINE GAS COMPRESSION

GAS MEASUREMENT STATION

PIPELINE PRESSURE

GAS FLOWING VOLUME (14 73 PSIA & 60°F)

SIDE VALVE FOR FUTURE DELIVERIES

PRESSURE REGULATING FACILITY.

Fill m

DE SIGNED BY	DTHE NORTHERN ENGINEERING BERVICES	
AK	COMPANY LIMITED	
DRAWN BY	Engineering Services Engineers FOH	······································
CHECKED BY	CANADIAN ARCTIC GAS PIPELINE LIMITED	SCALE N.T.S
34	FLOW DIAGRAM	DATE JANUARY , 1977

BORDER N.5 A ¥0¥ ×0.630" WT. GR.70 FLOW MONCHY MILE POST 394.38 1.694.7 PSIA ELEVATION 2,720 FT. 1,714 8 MMCFD 1,714.8 MMCFD VOLUME UP TO 1,714.8 MMCFD Ø Zős 49.99 MILES 48 82 MILES PRESSURE 1,457.4 PSIA TEMPERATURE 66.0 °F DELIVERY

-01	E - 02	E-03	E~04	E-05	E-06	TOTALS
98.39	147.25	191.23	236.03	295.57	345.56	
010	2,360	2,410	2,390	2,520	3,150	
		1		1		3
000		38,000		38,000		
000		38,000		38,000		114,000
817		41,864		36, 346		119,027
629.3		3,620.9		1,722.3		··
8.4		8.6		7.5		24.5
6209		3,6123	5	1,714.8		
242.1		1,139.9		1,057.6		
621.9		1,493.9		1,695.7		
1.31		1 31		1.60		
35.4		33.8		33.5		
73 2		72.6		102.3		
62.0		62.0		102.3		
,172		4,711		- 0		9883
0		0		0		0
0		0		0		
0		0		0		0
0		0		0		0

NOTES:

HEATER LOAD GIVEN IN MMBTU/HR
HEATER CAPACITY GIVEN IN MMBTU/HR.

<u>l e g e n d</u>

IPELINE

TATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS CHILLING. IATION WITH CENTRIFUGAL - GAS TURBINE GAS OMPRESSION & CENTRIFUGAL - GAS TURBINE ROPANE COMPRESSION FOR GAS COOLING TATION WITH CENTRIFUGAL GAS TURBINE GAS OMPRESSION & GAS TO AIR DIRECT HEAT XCHANGE FOR GAS COOLING

TATION WITH CENTRIFUGAL - GAS TURBINE

SAS MEASUREMENT STATION

PELINE PRESSURE

AS FLOWING VOLUME (14 73 PSIA & 60°F)

IDE VALVE FOR FUTURE DELIVERIES

RESSURE REGULATING FACILITY.

DESIGNED BY	OFTHE NORTHERN ENGINEERING CERVICES	
DRAWN BY	Lagenerne Sovies EBGINEERS FOR	
CHECKED BY	CANADIAN ARCTIC GAS PIPELINE LIMITED	SCALE NTS
ENGINEES APP	FLOW DIAGRAM	DATE JANUARY, 1977
PRQUECT HALVAGER	AVERAGE WINTER CONDITIONS - OPERATING YEAR 5	PROJECT No. 18111
for g.		4-0229-8010-2 -C

Ind w

í.

Ŷ

. .

.

• ¥

.

-1

A.

Ï

ł

and the second secon

OWNERSHIP DAIA HOLE DRILL 21 29 30 31 32 25 6.6.50 2.369 6.1.55 2.359 The second secon 111-13 H 1800 PROFILE 8 + 14 H + 10 WITCH 4-621...669367-0686 (2-6-240 26.6-2000 (2-6-2000) (2-6-1700 8 - 84 - 5 2 - 4 - 5 - 50 - 2 - 4 - 4 - 5 - 5 - 2 - 4 - 4 - 5 - 50 2.44 stra fostition verse d'entralmiger s militaire d'entralmiger 1600 TERRAIN TYPING LEGENO 415 -- HEAN MARGE CAREE, NAT, 10 FORM PARALLER PORTIONAAPHIN STRIJEDS 1244430 (1971). Affliceful measure gluin superity affl and there informed the theory framework measure many analysis graced over this Suitair film ward pfoint fine wood and other with some abley other ¢4 MATCH teres repare mode and not about riders Manyousky becading the control of the first states component of 1122 with minute paral and ground technology tanga - constructs and and atractical anomae of and algebra general webbinding action (512), and bouiders Salaant plain: charactive and addive general deposits but hydre web houst notainer onlytaning to exiterize shorten ground notaine component of hoursest still δ PLADING AND ENABLY ter-graphi, frateria Cf. Crovassa filblinger värena antilterat pläges of skit, used, gravel, mit ablatten föld Nicalizati est placial finites the dise factors WE Readed valley baths Hateraria tra teatures Hellenative Charmon get kreutlerer AL I 10 5 L 15 Loope graveliy and shirt abiditon adii usel Defininganeyi tiri C'ho if fr (bul geouraith iann bhan 70 th' narfhior velaet. Data annoimrd parail brreis, tspar ho datarnin, asratigeapp an dramfourith) hernetrosforflexied pretient places (Money Paulinois planes are along a long with the underiving appartal-modif terrado idje .8 Specified box patterns: elevisted past hope, mainte peut stateau atth anne palsas. White apertifies are small fotestateau ĥ Centerally an about grave postfand appearance, with some materiline patterne. Localdy, transitional in relivionted and ribbed face. Specificant 1 is 20-ft deep FOOTAGE тніз bettendared and eithed form. Major table at or allow growing surface in heliums, with sparse free in willow filter formand. The set of the strenged. The set of the REFERENCE DRAWINGS B NOTES SHEET 4-6210-1059 909 196 4-0210-1095 4-0210-1099 - BKE . Petral S NATCH LINE Confirments about about the triane types are either too must be two confirming intermentiats to assame at the real of earling transports. Transfer of percentaire to confirme terrain write fullow: NAT CH 11, 47 11.69 12、15 EZ 21 01 JJ 19.24 87 BI 끐 CHAINAGE (miles) 01.0 -DATA est to contined electrol per CONSTRUCTION DATA DE SIGN a As SEGMEN N¹ SEGMEN 29 32 21 28 30 31 26 2 1. 1 0.13 0.14 0.16 0 48 0.59 0.63 0.42 070.140.10 EC-1 EC-10 NA 0 10 0.07 LENGTH EROSION CONTRO EE -ID EC-16 НÅ EC - 10 EC-10, EC-8 EC-IC NA N A 8-1 BI H A 8 - 0 B~l B-1 BUOY. B-2 HA 8 · L. 11-9-2 D ¥ 7 B ¥ 6 I . Y . 6 11-1-2 1-1-7. 1-4 REVEG U-V-2 U-V 6 0,5 ιö ____ UTH GRID ZONE 11 SCALE (miles) NORTHERN ENGINEERING COMPANY LIMITED CALGARY ALBERTA SERVICES Tolling the +Ly-\$1076 PIPELIN-ALLE CARRIER PUT LONG STORES POINT OF INTER ENGINEERS FOR ΰ CARRER PAR Source (Const.)
 CARRER PAR Source (Const.)
 BERS BALAN
 SWEAR WEIGHT DRIVE HOLE ET CANADIAN ARCTIC GAS PIPELINE LIMITED MURST SOF EEL SALUP WEIGHT CHANAGE EUL GAS PIPELINE ROUTE ALIGNMENT AND TERRAIN DATA (C) NORTHWEST TERRITORIES + DIST OF MACKEN7IE + & YUNON TERRITORI TAT AN STRUE 809 STORAGE OR 191 DOWNSTREAM MP X 4 POTREAM M.P. ۵ CAMP SITE ANCHOR BLOCK I 0 8 8 STAGING AREP TERRAIN MAPPING B BORRDE SITE 1.1.7/1: J.D. MOLLARD & ASSOCIATES LIMITED On TEST LEAD & DIRECTION OF WHES 36 AL4 1 1M - 0200 - 1018 Lab My - 2+11 18 00 19 DATE REGINA, SASK

Ĵ

. . . .

Å

٦.

•1 4

APPENDIX 16

ADDENDUM TO SECTION 8.b.2 FORMULAE AND BASIC ASSUMPTIONS

The following additional formulae and basic assumptions were used in performing hydraulic flow calculations to determine system capacity and fuel consumption. The subsection numbering system that was used in the original filing of Exhibit 8.b.2 has been retained.

1. Formulae

---- jaa

1.3 Gas Flowing Temperature

For those portions of the pipeline where insulation and heat tracing are required to prevent frost heave, the flowing temperature of the gas is determined using the following formulae:

$$T_{2} = T_{a} + (T_{1} - T_{a}) e^{-A}$$
1.3.1
$$T_{a} = T_{i} - \frac{(P_{1} - P_{2}) J_{12}}{A} - \frac{\Delta h}{j AC_{P12}}$$
1.3.9
$$A = 5280 \frac{s K_{i} L}{m C_{P12}}$$
1.3.10
$$s = \frac{2\pi}{\ln(D_{i}/D)}$$
1.3.11

1.5 Chilling, Cooling, and Gas Heating Stations

Propane compression horsepower, cooling load, and gas pressures and temperatures at stations with mechanical propane coolers are determined using formulae 1.5.1 to 1.5.9.

At stations with aerial cooling, the air temperature rise through the aerial cooler is calculated from the formula:

$$\Delta T = d_W$$

1.5.12-a

2. Basic Assumptions

2.2 Pipe

The details of the line pipe to be installed are summarized as follows:

Segment	Outside Diameter (inches)	Wall Thickness (inches)	Minimum Yield <u>Strength</u> (psi)	Maximum Allowable Operating <u>Pressure</u> (psig)
Alaska-Yukon border to Tununuk Junction	48	0.720	70,000	1,680
Niglintgak to Taglu	24	0.360	70,000	1,680
Taglu to Tununuk Junction	48	0.720	70,0 <u>0</u> 0	1,680
Parsons Lake to Parsons Lake Junction	30	0.450	70,000	1,680
Tununuk Junction to Caroline	48	0.720	70,000	1,680
Caroline to Coleman	36	0.464	70,000	1,440
Caroline to Empress	48	0.720	70,000	1,680
Empress to Monchy	42	0.630	70,000	1,680

Detailed Specifications for the line pipe and the other major system components appear in Section 8.b.6, Material Specificiations.

For purposes of the flow calculations, the effective pipe roughness (k) has been assumed as 0.0003 inches, and the drag factor (F_1) as 0.975 for all segments of the system.

.....

Ï

2.3 Flowing Gas Temperatures

Prudhoe Bay to Station M-15

Design station discharge temperature	T	=	12°F	
Design station suction temperature	тС	=	0°F	
Highest allowable temperature	Ģ		32°F	
Lowest allowable temperature		-	-13°F	

Station M-15 to Station M-20

Design station discharge temperature	Т	=	50°F
Design station suction temperature	 Т	=	34°F
Highest allowable temperature	5		65°F
Lowest allowable temperature (for short periods)			25°F
in a construction of the			

South of Station M-20

Design station discharge temperature	not less than 58°F
Highest allowable temperature (north of Caroline)	110°F
Lowest allowable temperature (for short periods)	25°F

2.7 Ditch Configuration

The following table lists average values for the burial depth to the top of the pipe and the pipe diameter for each section of the route, as used in the heat-transfer calculations.

		Pi	pe
S	ection	Burial	Diameter
From	To	(inches)	(inches)
Prudhoe Bay	Shallow Bay	48	48
Shallow Bay	Tununuk Junction	48	36*
Niglintgak	Taglu	48	24
Taglu	Tununuk Junction	48	48
Parsons Lake	Parsons Lake Junction	48	30
Tununuk Junction	MF-15	48	48
MF-15	M-20	30	48
M-20	Caroline	36	48
Caroline	Coleman	36	36
Caroline	Empress	36	48
Empress	Monchy	36	42

* Dual pipeline

_

1985 **-**

tria.

ंगल

<u>, 1</u> ; ;

در به

• =

.

Two sizes of turbine are used for the main gas compression, 30,000 and 38,000 HP (ISO). The horsepower available from these units at each station is interpolated from the performance curves following. The air intake and exhaust losses have been included in the performance curves.

The following values were used for these units in the flow calculations.

30,000 HP (ISO) 38,000 HP (ISO)

Main	line gas c	compre	essor			
effic	ciency (E)			80%	80%	
Fuel	constant	(a ₁)	(BTU/day)	1.733 x 10	0 ⁹ 1.8770 x	109
Fuel	constant	(b ₁)	(BTU/HP-day)	0.0001249 x	10 ⁹ 0.0001545	x 10 ⁹

	48 <u>inches</u>	42 inches
Equivalent length of station suction piping (Ls) (miles)	0.5826	0.5826
Equivalent length of discharge piping (Ld) (miles)	0.2214	0.1759

TURBINE PERFORMANCE CURVES (ISO RATING = 38,000 H.P.)

2.9 Chilling/Cooling/Heating Performance Data

The propane refrigeration performance data were based on a 17,000 HP (ISO) turbine driving the propane compressor. The propane refrigeration performance data for the cooled portion of the line were based on a 6,400 HP (ISO) turbine driving the propane compressor. Physical parameters that define the chilling and cooling systems for the flow calculations are given below. The four tables which follow show the maximum capabilities and the horsepower requirements of the two types of propane refrigeration systems, as used in the flow calculations, fuel consumption calculations, and the annual capability analysis.

Propane Chiller Data

Heat transfer factor of propane evaporators (U_1)

Horsepower requirements of propane air circulating fans (d₂)

Propane turbine fuel constant (a2)

Propane turbine fuel constant (b2)

Electrical turbine generator fuel constant (c₂)

Equivalent length of piping through chiller and associated piping (L_)

Equivalent length of piping for station discharge (L_)

Propane Cooler Data

Heat transfer factor of propane evaporators (U_1) Horsepower requirements of propane air circulating fans (d_2) Propane turbine fuel constant (a_2) Propane turbine fuel constant (b_2) Electrical turbine generator fuel constant (c_2) Equivalent length of piping through cooler and associated piping (L_c)

Equivalent length of piping for station discharge (L_{O})

5.4 x 10⁶ BTU/hr-°R

0.16 HP/ton 0.947 x 10⁹ BTU/day

0.0001206 x 10⁹ BTU/HP-day

0.000288 x 10⁹ BTU/HP-day

0.5489 miles

0.2114 miles

5.4 x 10^6 BTU/hr-°R

0.16 HP/ton 0.4200 x 10⁹ BTU/day 0.0001375 x 10⁹ BTU/HP-day 0.000288 x 10⁹ BTU/HP-day

0.5489 miles

0.2114 miles

Aerial Cooler Data

Heat transfer factor of aerial coolers (U_2)

Aerial cooler air temperature rise factor (d_{a})

Horsepower requirements of aerial coolers air circulating fans (d_3)

Equivalent length of piping through cooler and associated piping (L_{c})

Equivalent length of piping for station discharge (L_{2})

Gas Heater Data Heater capacity

] [

Overall heater thermal efficiency based on lower heating value of gas ($E_{\rm H}$)

 7.2×10^6 BTU/hr-°R

0.0012 °R/ton

100 A

0.10 HP/ton

0.8352 miles

0.2332 miles

22.5 x 10⁶ BTU/hr

75.0%

W_{max} in tons

(1 ton = 12,000 BTU/hr)

Elevation = 0 feet

А

d'.

Propane Evaporator				Amb	ient Air '	Temperatu	re in °F			
Temp. °F	-15	<u>-5</u>	5	15	25	35	45	55	65	75
35 40 45 50	9,972 10,248 10,605 10,839	9,972 10,248 10,602 10,839	9,972 10,248 10,602 10,839	9,972 10,248 10,602 10,839	9,973 10,248 10,602 10,839	9,925 10,200 10,551 10,788	9,757 10,032 10,363 10,607	9,538 9,814 10,124 10,372	8,289 8,977 9,803 10,137	6,900 7,427 8,041 8,662
Elevation =	500 feet								Ψ.	
Propane Evaporator				Amb.	ient Air '	[emperatu	re in °F	•	×.	
Temp. °F	-15	-5	5	15	25	35	45	55	65	75
35 40 45 50	9,876 10,153 10,497 10,735	9,876 10,150 10,497 10,735	9,876 10,150 10,497 10,735	9,876 10,150 10,497 10,735	9,876 10,150 10,497 10,735	9,828 10,104 10,442 10,683	9,661 9,936 10,255 10,504	9,443 9,719 10,026 10,270	8,159 8,843 9,659 10,031	6,784 7,306 7,913 8,527
evation =	1,000 fee	et		- - -						· ·
Propane Evaporator				Amb	ient Air 1	[emperatu	re in °F	ι.		
Temp. °F	-15	-5	5	<u>15</u>	25	35	45	55	65	75
35 40 45 50	9,777 10,055 10,387 10,629	9,777 10,052 10,387 10,629	9,777 10,052 10,387 10,629	9,777 10,052 10,387 10,629	9,777 10,052 10,387 10,629	9,730 10,005 10,331 10,578	9,563 9,839 10,150 10,399	9,345 9,622 9,927 10,164	8,029 8,707 9,504 9,924	6,668 7,183 7,784 8,390
Elevation =	1,500 fee	et		м 1		n .				
Propane Evaporator				Ambi	ient Air J	Temperatu	ce in °F			
Temp. °F	-15	-5	5	15	25	35	45	55	<u>~65</u>	75
35 40 45 50	9,688 9,961 10,283 10,531	9,686 9,961 10,289 10,531	9,686 9,961 10,289 10,531	9,686 9,961 10,289 10,531	9,686 9,961 10,289 10,531	9,639 9,915 10,229 10,480	9,472 9,749 10,057 10,302	9,255 9,533 9,835 10,063	7,899 8,582 9,374 9,830	6,561 7,071 7,664 8,264
Elevation =	2,000 fee	et								
Propane Evaporator				Ambi	lent Air 1	lemperatu	re in °F		1. •	
)emp. °F	-15	-5	5	15	25	35	<u>45</u>	55	65	75
35 40 45 50	9,593 9,869 10,186 10,432	9,593 9,869 10,186 10,432	9,593 9,869 10,186 10,432	9,593 9,869 10,186 10,432	9,593 9,869 10,186 10,432	9,546 9,822 10,132 10,381	9,379 9,657 9,962 10,202	9,169 9,442 9,741 9,961	7,778 8,455 9,243 9,719	6,454 6,968 7,545 8,136

 HP_2 (in Horsepower)

Cooler Heat 5	Pransfer = 40)00 Tons					
Propane			Ambie	nt Air Tempe	rature in °F		
Temp. °F	15	25	35	45	55	65	75
						<u></u>	<u> </u>
35	1252	1252	1252	1340	1920	2975	4404
40	1252	1252	1252	1247	1589	2433	3788
45	1263	1263	1263	1263	1263	1912	3172
50	1274	1274	1274	12/4	1270	1537	2614
Cooler Heat 1	Pransfer = 50	000 Tons					
Propane			Ambie	nt Air Tempe	rature in °F		
Evaporator Temp °F	15	25	35	45	55	65	75
<u> </u>	15	25		45	<u> </u>	<u></u>	15
35	1638	1638	1638	1797	2535	3312	4769
40	1565	1565	1565	1565	2131	2881	4119
45	1577	1577	1,577	1577	1709	2439	3475
50	1593	1593	1593	1593	1593	2061	2891
Cooler Heat 1	ransfer = 60	000 Tons					
Propage			Ambie	nt lir Tempe	rature in OF		
Evaporator	•		1110010	ine mir iempe.	Lacare in i		
Temp. °F	15	25	35	45	. 55	65	75
35	2370	2370	-2370	2371	3222	4152	5145
40	2219	2219	2219	2219	2709	3628	4578
45	2033	2033	2033	2033	2195	3087	4001
50	1914	1914	1914	1914	1914	2626	3528
Cooler Heat T	ransfer = 70	00 Tons					
Droppro						•	
Evaporator			Ambie	nt Air Tempe:	rature in 'F		
Temp. °F	<u>15</u>	25	35	45	55	65	75
		•			•		
35	3335	3335	3335	3333	3967	5065	99999*
40	3100	3100	3100	3100	3366	4446	5570
45	2807	2807	2807	2807	2805	3796	4881
50	2677	2677	2677	2677	. 2677	3261	4322
Cooler Heat T	ransfer = 80					an a	
Propane			Ambie	nt Air Temper	rature in °F		,
Evaporator		6 F					
Temp. T	15	25	35	45	55	65	75
35	4470	4470	4470	4471	4782	6058	99999*
40	4149	4149	4149	4149	4144	5338	99999*
45	3783	3783	3783	3783	3782	4577	99999*
50	3566	3566	3566	3566	3567	3951	5188
Cooler Heat T	ransfer = 90	000 Tons					
Propane			Ambie	nt Air Tempe	rature in °F		
Evaporator		_					
Temp, °F	15	25	35	45	55	65	75
35	5823	5824	5824	5824	5824	99999*	999999*
40	5418	5418	5418	5418	5416	99999*	99999*
45	4911	4911	4911	4911	4906	5429	99999*
50	4635	4635	4635	4635	4635	4710	99999*

1

* Indicates maximum capability of system has been reached.

F

2.10 Insulation and Heat Tracing Data

The insulation and heat tracing requirements used in flow calculations and fuel consumption calculations are given below:

LOCa		
From	To	Extent of Insulation and Heat Tracing
2 1		(miles)
CD-07	Tununuk Junction	8.9*
Niglintak	Taglu	0.8+
Taglu	Tununuk Junction	0.3
Tununuk Junction	MD-01	0.6*
M-06	M-07	15.0
M-07	M-08	8.7
M-08	M-09	9.3
M-09	M-10	7.7
M-10	M-11	9.8
M-11	M-12	15.0
M-12	MF-13	26.5
MF-13	MF-14	26.3
MF-14	MF-15	24.1
* · · ·		

* Dual line, 36" O.D. pipe + 24" O.D. pipe

Thickness of insulation 3.0 inches Thermal conductivity of insulation (K_i) 0.012 BTU/ft-°R-hr Mean effective temperature of outer surface of insulation (T_i) 35°F The electrical power requirements associated with mitigating frost heave used for fuel consumption calculations are given below:

Location	Power Required (KW)
·	(Kilowatts)
CD-08	1,195
M-06	666
M-07	1,184
M-08	1,097
M-09	1,228
M-10	1,410
M-11	1,765
M-12	
MF-13	2,677
MF-14	2,438
MF-15	1,446

Overall thermal efficiency of electrical power generation and transmission (E_E)

90%

Electrical turbine generator fuel constant (c_4)

0.000288 x 10⁹ BTU/HP-day

LEGEND

25

150°

¥.

STATION NUMBER (MILE POST) COMPRESSOR STATION DESIGNATION. THE NUMBER DESIGNATES THE OPERATING YEAR FOR WHICH THE COMPRESSOR STA. OR MEASURING STA. IS REQUIRED. FUTURE COMPRESSOR STATION NOT REQUIRED UNTIL AFTER T THE 5th, OPERATING YEAR. MECHANICAL REFRIGERATION REQ'D AT COMPRESSOR STNS. MECHANICAL COOLING REQ'D AT COMPRESSOR STATIONS. AERIAL COOLING REQ'D AT COMPRESSOR STATIONS. GAS HEATING REQ'D AT COMPRESSOR STATIONS. _وجر NO REFRIGERATION, COOLING, OR HEATING REQ'D AT COMPRESSOR STATION. PROPOSED DEMPSTER & MACKENZIE HIGHWAYS. STOCKPILE SITES WITH WHARVES. STOCKPILE SITES. OPERATING AND MAINTENANCE DIVISION AND DISTRICT HEADQUARTERS. OPERATING AND MAINTENANCE DISTRICT HEADQUARTERS. PROPOSED NATURAL GAS PIPELINE. MILEAGES SHOWN FROM COMPRESSOR STATION M-04 TE: TO COMP. STN. MF - 19 SHOULD BE DECREASED BY бò, 2 MILES TO OBTAIN THE TRUE MILEAGE FROM RICHARDS ISLAND ORIGIN. MILEAGES SHOWN FROM COMP. STN. M-20 TO CAROLINE JCT. SHOULD BE DECREASED BY I MILE TO OBTAIN THE TRUE MILEAGE FROM RICHARDS ISLAND ORIGIN. Fold mi MSIUMUBUI ARCTIC GAS SYSTEM ROUTE MAP CROSS DELTA AMENDMENT REVISED . JAN. 27 , 1977 NORTHERN ENGINEERING SERVICES COMPANY LIMITED DATE . NOVEMBER 1975 CALGARY ALBERTA -----PROJ. NO SEPARTMENT HICH THE APPLICAN CANADIAN ARCTIC GAS STUDY LIMITED ^{DWG. NO} '4-0254 - 1004 HIS APPLICATION

Z LAND USE FACILITY DESCRIPTION AREA ACRES BORROW CU.YD. ï١ **BLOCK VALVE** d0 0.31 BLOCK VALVE 0.31 K-OO COMPRESSOR STATION PAD (FUT.) 10.37 BLOCK VALVE 0.31 BLOCK VALVE 0.31 K-O1 COMPRESSOR STATION PAD (FUT.) 18.37 12,000 METER STATION PIPELINE RIGHT OF WAY 1,890.90 SUB-TOTAL SPREAD ""H" 1,928.88 12,000 . CHAINAGE EQUATION NORTH SOUTH (AOO C 147.85 147.20 M-33 CAROLINE JUNC 0 Fold our Spread ' ' '' Summer Year ! PROPOSED PIPELINE ROUTE MAP 115°00' MP-00 TO MP-130 CAROLINE TO ALTA. - B.C. BORDER CROSS DELTA AMENDMENT JANUARY , 1977 engineleting elevicity any limited i stad NOVEMBER, 1975 ADJ. 100 . PAMADIAN 2C-0251-1001 ABCTIC GAS STUDY

	LAN	D USE
FACILITY DESCRIPTION	AREA ACRES	BORROW CU. YO
SUB-TOTAL SPREAD "H'' Block Valve Block Valve Pipeline Right of Way	1,920.00 2.30 2.30 675.20	12,000
TOTAL SPREAD ""H"	2,608.00	12,000
TOTAL CAROLINE TO ALBERTA-B.C. BORDER - 36°	2,608.08	12,000

X

Ŷ

CHAINAGE	EQUATION
NORTH	SOUTH
147.85	147.20

toll on

	~ //	•	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
i and i			
X farmer			
1 TEX			
			·
3 Paparia			
X / Reh		LAND	USE
Fill Cont	FACILITY DESCRIPTION	T	
5 22 / 15 QU &		AREA ACRES	BORROW CU. YD.
A CONTRACTOR			
No Comment	SUB-TOTAL SPREAD ***0;;*	696.03	1,149,000
S. C.	RMP 435	15.00	145,000
	M-11 COMPRESSOR STATION	41.32	380,000
And the second sec	AIRSTRIP	175.00	
	ROAD	72 78	250 000
	BLOCK ANTAE	2 20	2 00, 000 2 000
	PIPELINE RIGHT OF WAY	2.3U 847 84	4, UUU
) > / Mar	······································	043.04	
	SUB-TOTAL SPREAD 'O''	1,046.05	2,088,000
from the			
om li	M-12 COMPRESSOR STATION	41.32	320,000
	ROAD	61.04	213,000
15	AIRSTRIP	175.60	
S E Lungo	RMP 384	15 60	145 000
	REMOTE TOWER	0.52	140,000
	BLOCK AVIAE	2 20	2.000
	RMP 334	15 10	2,000 145.000
- Amor	ME_13 COMORCEGOR CTATION	13.00	145,000
	DAAn	21.33	107,000
AN A	Albergin	30.3/	125,000
		175.00	100,000
	BLUCK VALVE	2.30	2,000
	PIPELINE RIGHT OF DAY	1.171.11	
	CULTER THEN THE	1111	inter the test
	1		
1 1 Source	TOTAL SPHEAD "D"	3,577.23	3,505,000
	•	Y a	A
and the set		JAC.	laur.
			. – .
> ~ ~ ~ ~ ~			•
A De la			
12 13 0. 51			
500, 2 m Br 1	PROPOSED PIPELINE RO	DUTE MAP	
	MP A 70 TO MP A	NO	
	HUNDER RIVER IV OUR	n PAKALLE	- Las
	CROSS DELTA AMEN	JDMENT	: 1
		CES JAN	UARY 1977
THIS MAP HAS BEEN TA PRINTED DASS MAPS POP		NC	DV. 1975
THE DEPARTMENT OF MI	Legensering Breares & RESCIELOS FED	Loi Ra: 18	111
BARLINGAS GARS A MONAGAS A			
WHICH THE APRICANT	CAMAMADA APPTY DAR COLORY IMAN	The Location	00.01 10.00

Lawrence Lawrence

1

h-----h

4---4

-1

_

•				
	1 × × 4', -			
	Rí? L'			2.
	The the t			
	$L$ $\lambda$ , $\mathcal{A}$			
	5 5 [ ,0. ]			
	E Silv		LAN	D USE
	for the 12 , S	FACILITY DESCRIPTION		1
			AREA ACRES	BORROW CU. YD.
	12 282 4			
	122°07, 25 \ 3. P	ME-14 COMPRESSOR STATION	<u> </u>	
	my Hall		27.55	245,000
		RAAD	175.00	330,000
		BLOCK VALVE	262.00	915,000
	1 - 2 - { - ~	PMP 255	2.30	2,000
	1 5 8	ME_15 COMPRESSOR STATION	25.00	193,000
	1 - 1	RUND	29.44	265,000
			116.36	400,000
	Wind I		25.00	193,000
	کے 🔬 🕹		8.04	78,000
		FIFELINE KIGHT UF WAY	1,076.36	
		SUB-TOTAL SPREAD **E''	1,747.05	2,821,000
. 1	13 - PR			
		MF-15A CUMPRESSOR STATION	39.60	302,000
	1 44 2		138.18	475,000
		BLUCK VALVE	2.30	2,000
		MACKENZIE HIGHWAY STOCKPILE -		
	T. AS.	PLMP 722	25,UO	122,000
ç.	and i		3.64	12,000
1. 		MF-16 COMPRESSOR STATION	43.94	348,000
	CAR 3		101.82	350,000
	$2 \cdot c_{\mu}$	PIPELINE RIGHT OF WAY	974.55	
		SUB-TOTAL SPREAD 'E''	1 329 03	1 611 000
	r I h		.,010,00	1,011,000
	20. July Min	TUTAL SPREAU	3,076.08	4,232,000
-	FX W.		······································	
	1 3.		J. 1	) as a fir
			a Mu	
	Locality and the second s			
		PROPOSED PIPELINE RC	ITE MAD	
	G, Gi	MP 600 TO MAD	750 750	
	45 64 1	THE UUT IU MIP /	JU	
	( , tring	ANT FURI SIMPSON ROUTE	REALIGN	JMENT
		CROSS DELTA AMEN	DMENT	-
		()	Connects	
	THIS MAP HAS BEEN	COMPANY LINUTED	JANU	JARY , 1977
	THE DEPARTMENT OF	CALGADY ALDEDTA	PARE: NOVE	MBER, 1975
	HOSE INSTALLATION	Languarman interes Engleng LBS P020 Contact	COLKO!	
	TO THIS APPLICATION.	CANADIAN ARCTIC GAS STUDY LIMITED	- 1M -	0251-1001
			A	

		· .		
	120°00.			
				LAND USF
	* * *	FACILITY DESCRIPTION	AREA ACRE	S BORROW CU. YD.
	GM 179 GM 179 Site: MF-17 Camp & Date: Feb. to Ap Pigg Laid: M	BLOCK VALVE MF-17 COMPRESSOR STATION AIRSTRIP ROAD REMOTE TOWER BLOCK VALVE METER STATION MF-18 COMPRESSOR STATION AIRSTRIP ROAD PIPELINE RIGHT OF WAY SUB-TOTAL SPREAD "F" BLOCK VALVE MF-19 COMPRESSOR STATION WORK PAD ROAD BLOCK VALVE PIPELINE RIGHT OF WAY, SUB-TOTAL SPREAD "F"	2.3 39.6 175.0 11.6 0.5 2.3 11.0 39.0 52.4 1,018. 1,652.5 2.3 39.6 15.1 436.3 2.3 1,018.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
. 1	Pipe Laid: M	20R-INIAL 2640 L	1,513.7	75 938,000
	Stockpile: N	TOTAL SPREAD ''F''	3,166.2	3,614,000
		PROPOSED PIPELINE RO MP 750 TO MP 8 EAST FORT SIMPSON ROUTE	UTE M 990 REALI	an AP IGNMENT
	111-1-2-	CROSS DELTA AMEN	DMENT	
	THIS MAP HAS BEEN	NOSTHERN ENGINEERING SERVIC	CES CES	¹ JANUARY , 1977
	PRINTED BASE MAPS IN THE DEMANTMENT OF	COMPANY LIMITED	DATE:	NOVEMBER, 1975
	WHOCH THE APPLICANT	La trans La trans La CIPELES FOR La provint Strates Cangang Landre	PRO1 NO	D.:
	10 THIS APPLICATION	CANADIAN ARCTIC GAS STUDY LIMIT	ED DWG. NO	^{0.1} 1M-0251-1002

٠,

1

Ŧ

Site 1 / 1 Can	FACILITY DESCRIPTION	LAND	USE
		AREA ACRES	BORROW CU. YD.
Acg Sic 2 1 4 068 dW	M-20 COMPRESSOR STATION HIGH LEVEL O & M BLOCK VALVE M-21 COMPRESSOR STATION ROAD BLOCK VALVE M-22 COMPRESSOR STATION ROAD BLOCK VALVE M-23 COMPRESSOR STATION ROAD PIPELINE RIGHT OF WAY SUB-TOTAL SPREAD "G"	32.83 8.04 2.30 32.83 189,55 2.30 32.83 2.30 32.83 2.30 32.83 2,036.36 2,372.17	104,000 12,000 2,000 193,000 140,000 1,000 104,000 84,000 1,000 104,000 140,000
119°004			
		1 . (	
Spread "G" Winter Year 4		JMAA	
Poly in the second seco	PROPOSED PIPELINE RC MP 890 TO MP 1 60th PARALLEL TO CA CROSS DELTA AMEND	DUTE MAP 1030 AROLINE DMENT	
THIS MAP HAS DEEN PRINTED BASE MAPS PK THE DEPARTMENT OF A WHICH THE APPLICAN' THOSE INSTALLATIONS TO THIS APPLICATION.	CANADIAN ARCTIC GAS STUDY LIMITED	23 ATVISED: JANU DATE: NOVE 2601 HO.: 2D- 2D-	JARY , 1977 MBER, 1975 0251 - 1001

......

**ار** بار

**د....** د. الکلوم

. _____

( ... ) -

-

**1** 

FINANCIAL FORMAT CALENDAR YEARS BASE CASÉ ESCALATED DATA

BASE COST MARCH 31, 1976

Party and Party

Lund

14

ITEM						IN SERVICE					
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	in sentice
1. 1	LAND Land	393 79	1,959 395							2,352 474	Year 5 Year 6
2.	PIPELINE Pipeline Pipeline Pipeline Pipeline	472 756,418 53,141	2,354 1,270,369 99,339	1,492,391 195,176	524,370 578,687 697	222,910 5,907 749	12,102 4,557	4,089	0. 605	2,826 4,043,548 1,149,253 18,706 9,395	Year 5 Year 6 Year 7 Year 8
	Sub-total	809,559	1,369,708	1,687,567	1,103,754	229,566	16,659	5,810	8,605	5,231,228	fear 9
3.	COMPRESSOR STATIONS Compressor Stations Compressor Stations Compressor Stations		32,521 710	196,020 33,980	167,109 196,299 21,459	220,577 151,279 30,257	219,925 195,720	222,187		395,650 451,566 392,663 448,164	Year 5 Year 6 Year 7 Year 8
	Sub-tota)		33,231	230,000	384,867	402,113	415,645	222,187		1,688,043	
4.	BUILDINGS AND IMPROVEMENTS Buildings and Improvements Buildings and Improvements Buildings and Improvements		6,946 866	40,958 7,500	31,175 20,253 1,501	21,995 11,229 2,257	18,632 15,082	19,011		79,079 50,614 31,362 36,350	Year 5 Year 6 Year 7 Year 8
F			7,812	48,458	52,929	35,481	33,714	19,011		197,405	
5.	Measuring Equipment Sub-total	•	938 938	7,029 452 7,481	11,696 4,093 15,789	9,172 9,172			-	19,663 13,717 33,380	Year 5 Year 6
6.	TRANSPORTATION EQUIPMENT Transportation Equipment Sub-total			1,701 551 2,252	8,496 2,889 11,385	690 690				10,197 4,130 14,327	Year 5 Year 6
7.	COMMUNICATION EQUIPMENT Communication Equipment Communication Equipment Communication Equipment Communication Equipment	3,949 181	11,197 521	14,456 1,173	13,752 3,178	5,422 254 54	1,268 772	2,512	596	43,354 10,475 1,522 3,338 715	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-tota]	4,130	11,718	15,629	16,930	5,730	2,040	2,631	596	59,404	
8.	TOOLS AND WORK EQUIPMENT Tools and Work Equipment Sub-total		an a	6,876 514	34,378 3,998	7,119				41,254 11,631	Year 5 Year 6
9.	OFFICE EQUIPMENT Office Equipment Sub-total		7 19	133 40 173	361 47 408	36	· · · · ·			52,885 506 130 636	Year 5 Year 6
10.	PRE-PERMIT COSTS	216,000								216,000	Year 5
	SUB-TOTAL ITEMS 1-10	1,030,161	1,425,780	1,998,950	1,624,438	<u>689,907</u>	468,058	249,639	<u>9,201</u>	<u>7,496,134</u>	
11.	CONSTRUCTION	88,863	248,308	503,751	440,431	114,152	54,167	43,187	750	1,493,609	
	TOTAL CONSTRUCTION COST	1,119,024	1,674,088	2,502,701	2,064,869	804,059	522,225	292,826	9,951	<u>8,989,743</u>	
	SUMMARY BY IN SERVICE DATE:										
	Year 5 Year 7 Year 7 Year 8 Year 9	1,061,447 57,577	1,556,927 117,161	2,225,544 277,157	1,110,842 929,108 24,919	587,439 181,932 34,688	286,847 235,378	290,957 1,869	9,951	5,954,760 1,968,442 493,698 561,023 11,820	, ,
	TOTAL CONSTRUCTION COST	1,119,024	1,674,088	2,502,701	2,064,869	804,059	522,225	292,826	9,951	8,989,743	
						<b>4</b>					

ENGINEERING FORMAT CALENDAR YEARS BASE CASE ESCALATED DATA

COST BASE MARCH 31, 1976

J

and and

1

-----

Ĵ

1

1

ۇ .

The second se

	-	COSTS BY CALENDAR YEAR (\$ 000)									IN SERVICE
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR ó	YEAR 7	YEAR 8	YEAR 9	TOTAL	
1.	LAND Land Sub-total	359 73 432	1,794 362 2,156					•		2,153 435 2,588	Year 5 Year 6
2.	PIPELINE Pipeline Pipeline Pipeline	512,183	945,624 69,134	1,236,849 128,005	457,457 438,696 638	188,520 4,311	5,592	1,009	5,047	3,152,113 836,269 10,541 6,056	Year 5 Year 6 Year 7 Year 9
3,	COMPRESSOR STATIONS Compressor Stations Compressor Stations Compressor Stations	524,097	32,002 649	193,280 33,067	166,357 193,152 21,016	220,184 148,750 29,760	218,359 192,954	220,776	5,047	391,639 447,052 388,125 443,490	Year 5 Year 6 Year 7 Year 8
4.	ANCILLARY FACILITIES Ancillary Facilities Ancillary Facilities Ancillary Facilities	159,895 31,123	32,651 195,447 15,926	226,347 105,865 44,125	9,342 85,277	7,424 616 141	3,082 702	220,776		470,549 183,875 3,698 843	Year 5 Year 6 Year 7 Year 8
5.	MEASURING STATIONS Measuring Stations Sub-total	191,010	1,043 1,043	7,584 493 8,077	94,819 11,856 4,351 16,207	9,421 9,421 9,421	3,704			20,483 14,265 34,748	Year 5 Year 6
6.	OPERATIONS AND MAINTENANCE FACILITIES Operations and Maintenance Facilities Sub-total	-	3,949 799 4,748	30,455 5,833 36,288	53,561 10,807 64,368	8,006 8,006		~		87,965 25,445 113,410	Year 5 Year 6
7.	COMMUNICATION FACILITIES Communication Facilities Communication Facilities Communication Facilities Communication Facilities	3,616 166	10,246 477	13,234 1,074	12,587 2,910	4,963 232 49	1,161 706	2,299 109	545	39,683 9,590 1,393 3,054 654	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total	3,782	10,723	14,308	15,497	5,244	1,867	2,408	545	54,374	
	SUB-TOTAL DIRECT COSTS	<u>719,329</u>	1,277,452	1,799,864	1,468,007	622,377	422,556	224,193	5,592	<u>6,539,370</u>	· · · · · · · · · · · · · · · · · · ·
9.	PRE-PERMIT COSTS OPERATIONS PRIOR TO SERVICE Operations Prior to Service Operations Prior to Service Operations Prior to Service Operations Prior to Service	216,000 22,173 6,123	23,747 6,413	25,477 7,120	14,392 6,247	8,840 525 595	2,625 3,791	4,088 618	3,092	216,000 85,789 34,743 3,150 8,474 3,710	Year 5 Year 6 Year 6 Year 7 Year 8 Year 9
10.	Sub-total ENGINEERING Engineering Engineering Engineering Engineering	28,296 40,563 2,597	30,160 71,407 5,238	32,597 95,233 12,757	20,639 42,671 44,112 1,299	9,960 26,311 9,234 1,797	6,416 13,692 11,663	4,706 13,384 67	3,092 335	135,866 249,874 91,015 24,225 26,844 402	Year 5 Year 6 Year 7 Year 8 Year 9
11.	Sub-Lotal CONTINGENCIES Contingencies Contingencies Contingencies	43,160 21,971 1,405	76,645 38,683 2,840	107,990 51,587 6,912	88,082 23,114 23,892 704	37,342 14,252 5,001 975	25,355 7,416 6,315	7,252	335	392,360 135,355 49,301 13,121 14,542 219	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total TOTAL COST (1)	23,376 1, <u>030,161</u>	41,523 <u>1,425,780</u>	58,499 1,998,950	47,710 1,624,438	20,228 689,907	13,731 <u>468,058</u>	7,289 249,639	182 182 <u>9,201</u>	212,538 <u>7,496,134</u>	
	SUMMARY BY IN SERVICE DATE: Year 5 Year 6 Year 7 Year 8 Year 9 TOTAL COST (1) (1) EXCLUDES ALLOWANCE FOR FUNDS	976 ,760 53 ,401 1 ,030 ,161	1,323,942 101,838 1,425,780	1,759,564 239,386 1,998,950	791,337 809,444 23,657 1,624,438	487,921 168,669 33,317 <u>689,907</u>	251,927 216,131 <u>468,058</u>	247,799 1,840 <u>249,639</u>	9,201 <u>9,201</u>	4,851,603 1,691,990 444,253 497,247 11,041 <u>7,496,134</u>	
	USED DURING CONSTRUCTION										

ENGINEERING FORMAT CONSTRUCTION YEARS BASE CASE ESCALATED DATA

COST BASE MARCH 31, 1976

ì

Ŷ

ITEM	-	COSTS BY CALENDAR YEAR (\$ 000)								-	IN SERVICE
NO	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR S	YEAR 6	YEAR 7	YEAR 8	YEAR 9	ΤΟΤΑΙ	
1.	LAND Land Sub-total		2,153 435 2,588					~		2,153 435 2,588	Year 5 Year 6
2.	PIPELINE Pipeline Pipeline Pipeline	368,872	859,863 71,486	1,374,429 57,369	548,949 481,190	226,224 3,830	6,711		6,056	3,152,113 836,269 10,541 6,056	Year 5 Year 6 Year 7 Year 9
	Sub-total	368,872	931,349	1,431,798	1,030,139	230,054	6,711		6,056	4,004,979	
3.	COMPRESSOR STATIONS Compressor Stations Compressor Stations Compressor Stations Sub-total			192,010 3,893	199,629 178,938 378,567	264,221 126,094 390,315	262,031 178,559 440,590	264,931		391,639 447,052 388,125 443,490	Year 5 Year 6 Year 7 Year 8
4.	ANCILLARY FACILITIES Ancillary Facilities Ancillary Facilities Ancillary Facilities	124,965 29,033	209,578 12,542	124,796 32,841	11,210 100,550	8,909	3,698 843	~		470,549 183,875 3,698 843	Year 5 Year 6 Year 7 Year 8
	Sub-total	153,998	222,120	157,637	111,760	8,909	4,541			658,965	
5.	MEASURING STATIONS Measuring Stations Sub-total			6,256 6,256	14,227 2,960 17,187	11,305 11,305				20,483 14,265 34,748	Year 5 Year 6
<b>6.</b>	OPERATIONS AND MAINTENANCE FACILITIES Operations and Maintenance Facilities Sub-total		-	23,692 4,791 28,483	64,273 11,047 75,320	9,607 9,607				87,965 25,445 113,410	Year 5 Year 6
7.	COMMUNICATION FACILITIES Communication Facilities Communication Facilities Communication Facilities Communication Facilities	1,995 98	9,724 407	12,859 829	15,105 2,300	5,956	1,393 295	2,759	654	39,683 9,590 1,393 3,054 654	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total	2,093	10,131	13,688	17,405	5,956	1,688	2,759	654	54,374	
	SUB-TOTAL DIRECT COSTS	<u>524,963</u>	1,166,188	1,833,765	1,630,378	<u>656,146</u>	<u>453,530</u>	267,690	6,710	<u>6,539,370</u>	
8.	PRE-PERMIT_COSTS	216,000						•		216,000	Year 5
9.	OPERATIONS PRIOR TO SERVICE Operations Prior to Service Operations Prior to Service Operations Prior to Service Operations Prior to Service	18,327 5,089	23,073	27,118 7,469	17,271 5,375	10,608	3,150 3,568	4,906	3,710	85,789 34,743 3,150 8,474 3,710	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total	23,416	29,275	34,587	22,646	10,608	6,718	4,906	3,710	135,866	l.
10.	ENGINEERING Engineering Engineering Engineering Engineering	29,749 1,749	- 64,881 5,089	104,039 5,984	51,205 46,620	31,573 7,795	16,430 10,783	16,061	402	249,874 91,015 24,225 26,844 402	Year 5 Year 6 Year 7 Year 8 Year 9
ł	Sub-total	31,498	69,970	110,023	97,825	39,368	27,213	16,061	, 402	392,360 ,	<i></i>
11.	CONTINGENCIES Contingencies Contingencies Contingencies Contingencies	16,114 945	35,144 2,759	56,357 3,241	27,740 25,253	17,103 4,222	8,899 5,840	8,702	219	135,355 49,301 13,121 14,542 219	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total	17,059	37,903	59,598	52,993	21,325	14,739	8,702	219	212,538	
	TOTAL COST (1)	<u>812,936</u>	<u>1,303,336</u>	2,037,973	<u>1,803,842</u>	727,447	<u>502,200</u>	<u>297,359</u>	<u>11,041</u>	7,496,134	
	SUMMARY BY IN SERVICE DATE?										
	Year 5 Year 6 Year 7 Year 8 Year 9	776,022 36,914	1,204,416 98,920	1,921,556 116,417	949,609 854,233	585,506 141,941	302,312 199,888	297,359	11,041	4,851,603 1,691,990 444,253 497,247 11,041	
)	TOTAL COST (1)	<u>812,936</u>	1,303,336	2,037,973	1,803,842	727,447	502,200	297,359	<u>11,041</u>	7,496,134	
	(1) EXCLUDES ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION										

FINANCIAL FORMAT CALENDAR YEARS BASE CASE UNESCALATED DATA

COST-BASE MARCH 31, 1976

ITEM	DESCRIPTION	COSTS BY CALENDAR YEAR (\$ 000)										
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	IN SERVICE	
1.	LAND Land	329	1,637							1,966	Year 5	-
	Sub-total	396	1,969							2,365	Tear 6	
² .	PIPELINE Pipeline Pipeline Pipeline Pipeline Sub-total	652,751 45,831	1,042,029 82,870	1,119,143	353,494 438,598 518	136,871 4,020 523	7,150 3,178	2,807 975	4,879	3,167,417 857,540 11,688 6,508 5,854	Year 5 Year 6 Year 7 Year 8 Year 9	
3	COMPRESSOR STATIONS	070,002	26 102	1,272,515	192,010	141,414	10,328	3,782	4,879	4,049,007		
	Compressor Stations Compressor Stations Compressor Stations Sub-total	,	26,152 567. 26,719	152,919 26,354	110,790 144,965 15,928 271,683	136,806 105,883 21,533 · 264,222	131,222 131,722 262,944	120,282 120,282		289,861 308,692 253,033 273,537 1,125,123	Year 5 Year 6 Year 7 Year 8	
4.	BUILDINGS AND IMPROVEMENTS Buildings and Improvements Buildings and Improvements Buildings and Improvements		5,258 654	30,285 5,587	19,961 14,276 1,075	13,423 7,538 1,539	10,821 9,704	10,046		55,504 33,940 19,434 21,289	Year 5 Year 6 Year 7 Year 8	
	Sub-total .		5,912	35,872	35,312	22,500	20,525	10,046		130,167		
5.	MEASURING EQUIPMENT Measuring Equipment Sub-total		769 769	5,314 356 5,670	7,362 2,904 10,266	5,622 5,622			-	13,445 8,882 22,327	Year 5 Year 6	
6.	TRANSFORTATION EQUIPMENT Transportation Equipment Sub-total			1,328 427 1,755	6,636 2,238 8,874	525 525				7,964 3,190 41,154	Year 5 Year 6	
7.	COMMUNICATION EQUIPMENT Communication Equipment Communication Equipment Communication Equipment Communication Equipment	3,261 153	9,082 421	11,194 880	10,094 2,252	3,778 171 39	853 505	1,567	348	33,631 7,484 1,024 2,111 418	Year 5 Year 6 Year 7 Year 8 Year 9	
	Sub-total	3,414	9,503	12,074	12,346	3,988	1,358	1,637	348	44,668		
8.	TOOLS AND WORK EQUIPMENT Tools and Work Equipment Sub-total		tersen.	5,426 406	27,123	5,428			a se ga se a	32,549 8,950	Year 5 Year 6	
9.	OFFICE EQUIPMENT Office Equipment Sub-total		9 6 15	102 30 132	272 .34 306	25	· . · . · · ·			41,499 383 95 478	Year 5 Year 6	
10.	PRE-PERMIT COSTS	216,000								216,000	Year 5	
	SUB-TOTAL ITEMS 1-10	918,392	1,169,786	<u>1,513,121</u>	1,161,636	443,724	295,155	135,747	5,227	5,642,788		
			-								,	
								Þ			•	
		-			•				-			
<u>)</u> .												

ENGINEERING FORMAT CALENDAR YEARS BASE CASE UNESCALATED DATA

COST BASE MARCH 31, 1976

Г

ITEM						IN SERVICE					
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	IN SERVICE
۱.	LAND	300	1,499							1,799	Year 5
	Sub-total	51 361	1 802							2 163	Year 6
2		442 646	776 024	022 285	205 025					2 440 700	Vorm F
٤.	Pipeline	10,062	58,131	101,484	334,761	114,070				618,508	Year 6
•	Pipeline			4	474	2,938	2,836	519	2,597	6,248 3,116	Year 7 Year 9
	Sub-total	452,607	835,055	1,024,869	641,170	117,008	2,836	519	2,597	3,076,661	
3.	COMPRESSOR STATIONS		25,594	149,993	110,122	126 410				285,709	Year 5
	Compressor Stations		1 213	23,355	15,563	103,818	130,017	110 004		249,398	Year 7
	Sub-total		26.113	175,592	268,000	261,355	259,452	119,294		1,109,823	tear o
4.	ANCILLARY FACILITIES	137.417	158.848	82 347	7 453	,		,		386 065	Year 5
	Ancillary Facilities	27,047	12,853	\$33,690	62,333	5,202	1 002			141,125	Year 6
	Ancillary facilities					90	450			540	Year 8
	Sub-tota]	164,464	171,701	116,037	69,786	5,691	2,442			530,121	
5	MEASURING STATIONS Measuring Stations		849	5,739 386	7,473	5.787				14,061	Year 5 Year 6
	Sub-total		849	6,125	10,560	5,787				23,321	
6.	OPERATIONS AND MAINTENANCE FACILITIES		3,021	23,099	39,979				-	66,099	Year 5
	Operations and Maintenance Facilities	-	603	4,367	7,949	5,925				18,844	Year 6
-		0.005	3,024	27,400	47,928	5,925				84,943	
7.	Communication Facilities	2,985	386	806	9,243	3,458				30,787 6,853	Year 5 Year 6
	Communication Facilities					35	781 463	1,434		937 1,932	Year 7 Year 8
-	Communication Facilities	3 125	9 700	11 061	11 205	2 640	1 244	64	319	383	Year 9
1		620 557	1 047 844	1 361 140	1 048 750	300 115	265 001	1,150	2 016	40,052	
0		016,000	1,047,044	1,301,140	1,040,730	333,413	203,331	121, 31,1	2,310	4,007,324	N - E
0.		216,000	10,000	<b>60, 203</b>			· · ·	at a traing to		216,000	rear 5
9.	Operations Prior to Service	5,287	5,319	5,692	4,773	6,567		· · · · · · ·		70,337 27,638	Year 5 Year 6
	Operations Prior to Service Operations Prior to Service					3/5	2,686	2,807	ан сан 1	2,250 5,918	Year 7 Year 8
	Operations Prior to Service	24 429	25 017	26 072	15 000	7 267	4 551	408	2,042	2,450	Year 9
10		2 4002	59,500	71 606	13,050	7,307	4,501	3,213	2,042	100,090	N
	Engineering	2,241	4,368	9,978	33,146	16,251	0.107			65,984	Year 6
	Engineering	-		•	962	1,275	7,821	7,242		15,537	Year 7 Year 8
	Engineering Sub-total	37.233	. 62.868	81.663	62 917	23 964	15 958	7 277	175	210	Year 9
11.	CONTINGENCIES	18,961	31 689	38 837	15 601	20,004	.5,550	,,,,,,,		105 099	Yoon 5
	Contingencies Contingencies	1,213	2,368	5,408	17,956	8,800	4 409			35,745	Year 6
	Contingencies				J22	690	4,408	3,925		8,852	Year 8
	Sub-total	20,174	34,057	44,245	34.079	12,978	8.645	3.944	94 94	113	Tear 9
	TOTAL COST (1)	918,392	1,169,786	1,513,121	1,161,636	443,724	295,155	135,747	5,227	5.642.788	
	SUMMARY BY IN SERVICE DATE:							the second s		<del>م م الم الم الم الم الم الم الم الم الم </del>	
	Year 5	872.341	1.084.936	1.325.711	535 732			, ., ·		3,818,720	
	Year 6 Year 7	46,051	84,850	187,410	608,383	302,478	150 046			1,229,172	
	Year 8				17,521	23,634	145,109	134,702	F 007	303,445	
		010 202	1 100 700	1 510 101	1 101 000		005 35-	1,045	5,227	6,2/2	
		918,392	1,109,786	1,513,12	1,101,036	443,724	542,122	135,747	5,227	5,642,788	
	(1) Excludes Allowance for Funds Used During Construction										

Poge 5

ENGINEERING FORMAT CONSTRUCTION YEARS BASE CASE UNESCALATED DATA

COST BASE MARCH 31, 1976

. فسر

-

Ĵ

Ŋ

.

j

1

ITEM					·	INC SERVICE					
NO	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	IN SERVICE
١.	LAND Land	•	1,799 364							1,799 364	Year 5 Year 6
	Sub-total		2,163				-	-		2,163	
2.	PIPELINE Pipeline . Pipeline Pipeline	321,648	725,381 60,374	1,034,638 46,914	367,122 374,336	136,884 2,845	3,403		3,116	2,448,789 618,508 6,248 3,116	Year 5 Year 6 Year 7 Year 9
	Sub-total	321,648	785,755	1,081,552	741,458	139,729	3,403		3,116	3,076,661	al a
3.	COMPRESSOR STATIONS Compressor Stations Compressor Stations Sub total			153,562 3,112	132,147 138,037	163,702 93,378	156,020 126,712	143,153		285,709 304,851 249,398 269,865	Year 5 Year 6 Year 7 Year 8
				156,674	270,184	257,080	282,732	143,153		1,109,823	
••	Ancillary Facilities Ancillary Facilities Ancillary Facilities	25,334	171,213 10,280	97,027 25,718	8,944 73,550	6,243	2,391 540	,		386,065 141,125 2,391 540	Year 5 Year 6 Year 7 Year 8
	Sub-Total	134,215	181,493	122,745	82,494	6,243	2,931			530,121	
5.	MEASURING STATIONS Measuring Stations Sub-total			5,093 5,093	8,968 2,315 11,283	6,945 6,945				14,061 9,260 23,321	Year 5 Year б
6.	OPERATIONS AND MAINTENANCE FACILITIES Operations and Maintenance Facilities Sub-total	-		18,124 3,617 21,741	47,975 8,117	7,110				66,099 18,844	Year 5 Year 6
7.	COMMUNICATION FACILITIES	1 658	7 962	10 075	13 002	7,110				84,943	
	Communication Facilities Communication Facilities Communication Facilities Communication Facilities	84	335	639	1,645	4,150	937 211	1,721	383	30,787 6,853 937 1,932 383	Year 5 Year 6 Year 7 Year 8 Year 9
	Sub-total	1,742	8,297	10,714	12,737	4,150	1,148	1,721	383	40,892	
	SUB-TOTAL DIRECT COSTS	457,605	977,708	1,398,519	<u>1,174,248</u>	421,257	290,214	144,874	3,499	4,867,924	
8.	PRE-PERMIT COSTS	216,000				1				216,000	Year 5
. 9.	OPERATIONS PRIOR TO SERVICE Operations Prior to Service Operations Prior to Service Operations Prior to Service	15,928 4,423	19,279 5,183	21,789 6,000	13,341 4,152	7,880	2,250 2,549	3,369	2 450	70,337 27,638 2,250 5,918 2,450	Year 5 1 Year 6 Year 7 Year 8
	Sub-total	20,351	24,462	27,789	17,493	7,880	4,799	3,369	2,450	108,593	Tear 9
-10.	ENGINEERING Engineering Engineering Engineering Engineering	25,929 1,527	54,378 4,282	79,108 4,799	34,571 35,875	19,501 5,773	9,764 7,647	8,691		193,986 65,984 15,537 16,338	Year 5 Year 6 Year 7 Year 8
	Sub-total	27,456	58,660	83,907	70,446	25,274	17,411	8,691	210	210	Year 9
n.	CONTINGENCIES Contingencies Contingencies Contingencies Contingencies	14,048 825	29,460 2,320	42,853 2,601	18,727 19,434	10,565 3,127	5,291 4,142	4,710	113	105,088 35,745 8,418 8,852	Year 5 Year 6 Year 7 Year 8
	Sub-total	14,873	31,780	45,454	38,161	13,692	9,433	4,710	113	158,216	rear 9
	TOTAL COST (1)	736,285	1,092,610	1,555,669	1,300,348	468,103	321,857	161,644	6,272	5,642,788	
	SUMMARY BY IN SERVICE DATE: Year 5 Year 6 Year 7 Year 8 Year 9	704,092 32,193	1,009,472 83,138	1,462,269 93,400	642,887 657,461	362,980 105,123	180,056 141,801	161,644	6,272	3,818,720 1,229,172 285,179 303,445 6,272	
	TOTAL COST (1)	736,285	1,092,610	1,555,669	1,300,348	<u>468,103</u>	<u>321,857</u>	<u>161,644</u>	6,272	5,642,788	
	Used During Construction								:		

FINANCIAL FORMAT CALENDAR YEARS NO EXPANSION CASE ESCALATED DATA

BASE COST MARCH 31, 1976

1

1

ITEM	Des coursion	COSTS BY CALENDAR YEAR (\$ 000)									IN SERVICE
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	
١.	LAND	393 79	1,959							2,352 474	Year 5 Year 6
	Sub-total	472	2,354	н. 1						2,826	
2.	PIPELINE	756,418	,270,369	,492,391	524,370	000 010			e.	4,043,548	Year 5
	Sub-total	53,141	99,339	195,176	578,687 1,103,057	222,910				1,149,253 5,192,801	Year 6
3.	COMPRESSOR STATIONS		32,521	196,020	167,109			-		395,650	Year 5
	Compressor Stations	-	710	33,980	196,299 363 408	220,577				451,566	Year 6
4.	BUILDINGS AND IMPROVEMENTS	-	6,946	40,958	31,175	220,577				79.079	Year 5
	Buildings and Improvements		866	7,500	20,253	21,995			<i></i>	50,614	Year 6
5			938	7 029	11,696	21,995				19,663	Year 5
5.	Measuring Equipment		550	452	4,093	9,172				13,717	Year 6
م			938	7,481	15,789	9,172				33,380	North C
ο.	Transportation Equipment			551	8,496 2,889	690		- 		4,130	Year 6
	Sub-total			2,252	11,385	690				14,327	
7.	COMMUNICATION EQUIPMENT Communication Equipment	3,949 181	11,197	14,456	13,752 3,178	5,422			-	43,354 10,475	Year 5 Year 6
	Sub-total	4,130	11,718	15,629	16,930	5,422				53,829	
-8.	TOOLS AND WORK EQUIPMENT Tools and Work Equipment			6,876 514	34,378 3,998	7,119				41,254 11,631	Year 5 Year 6
	Sub-total			7,390	38,376	7,119				52,885	
9.	OFFICE EQUIPMENT		12	133	361 47	36				506 ·	Year 5 Year 6
	Sub-total		19	173	408	36				636	ical o
10,	PRE-PERMIT COSTS	216,000								216,000	Year 5
	SUB-TOTAL ITEMS 1-10	1,030,161	1,425,780	,998,950	,600,781	<u>487,921</u>				6,543,593	t i se se
11.	ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION	88,863	248,308	503,751	440,074	100,845		ta Alexandria Alexandria		1,381,841	
	TOTAL CONSTRUCTION COST	1,119,024	1,674,088	2,502,701	2,040,855	588,766			*	7,925,434	
÷	SUMMARY BY IN SERVICE DATE:										
	Year 5 Year 6	1,061,447	1,556,927	2,225,544	1,110,844 930,011	588,766				5,954,762 1,970,672	
	TOTAL CONSTRUCTION COST	1,119,024	1,674,088	2,502,701	2,040,855	588,766				7,925,434	
										,	
					ſ						
					·						
					-						
											-
									2 C		* •
						1					
						1					
L		1	I	L	1		l	1	1	II	L

ENGINEERING FORMAT. CALENDAR YEARS NO EXPANSION CASE ESCALATED DATA

COST BASE MARCH 31, 1976

1

ITEM	DESCRIPTION		COSTS BY CALENDAR YEAR (\$ 000)								
NO.		YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	IN SERVICE
1.	LAND Lànd	359 73	1,794 362							2,153	Year 5 Year 6
	Sub-total	432	2,156							2,588	Tear o
2.	PIPELINE Pipeline	512,183 11,914	945,624 69,134	1,236,849 128,005	457,457 438,696	188,520				3,152,113 836,269	Year 5 Year 6
3.		524,097	1,014,758	1,364,854	896,153	188,520				3,988,382	
	Compressor Stations Sub-total		32,002 649 32,651	193,280 33,067 226 347	166,357 193,152 359,509	220,184				391,639 447,052	Year 5 Year 6
4.	ANCILLARY FACILITIES	159,895	195,447	105,865	9,342	220,104				838,691	
	Ancillary Facilities Sub-total	31,123 191,018	15,926 211,373	44,125 149,990	85,277 94,619	7,424 7,424				470,549 183,875 654,424	Year 5 Year 6
5.	MEASURING STATIONS Measuring Stations		1,043	7,584	11,856	0 403				20,483	Year 5
	Sub-total		1,043	493 8,077	16,207	9,421		1 1		14,265	Year 6
6.	OPERATIONS AND MAINTENANCE FACILITIES Operations and Maintenance Facilities		3,949 799	30,455 5,833	53,561 10,807	8,006		-		87,965 25,445	Year 5 Year 6
7			4,748	36,288	64,368	8,006				113,410	
/.	Communication Facilities	3,616 166	10,246 477	13,234 1,074	12,587 2,910	4,963				39,683	Year 5
	Sub-total	3,782	.10,723	14,308	15,497	4,963				49,273	ieur o
	SUB-TOTAL DIRECT COSTS	<u>719,329</u>	1,277,452	1,799,864	1,446,353	438,518				<u>5,681,516</u>	
8,	PRE-PERMIT COSTS	216,000								216,000	Year 5
9.	Operations Prior to Service	22,173 6,123	23,747 6,413	25,477 7,120	14,392 6,247	8,840				85,789	Year 5
	Sub-total	28,296	30,160	32,597	20,639	8,840				120,532	
10.	ENGINEERING Engineering	40,563 2,597	71,407 5,238	95,233 12,757	42,671 44,112	26,311			· · · · · · · · · · · · · · · · · · ·	249,874	Year 5 Year 6
	Sub-total	43,160	76,645	107,990	86,783	26,311				340,889	
11 <b>.</b> • • • •	CONTINGENCIES Contingencies Sub-total	21,971 1,405	38,683	51,587 6,912	23,114 23,892	14,252				135,355 49,301	Year 5 Year 6
	TOTAL COST (1)	23,370	41,523	58,499	47,006	14,252				184,656	
	SUMMARY BY IN SERVICE DATE:	1,031,101	1,425,780	,998,950	1,600,781	487,921				<u>6,543,593</u>	
	Year 5 Year 6	976,760 1	,323,942 1	,759,564	791,337	197 021	-			4,851,603	
	TOTAL COST (1)	1,030,161 1	,425,780 1	,998,950	,600,781	487,921				6 542 502	e
	(1) EXCLUDES ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION								i i	0,543,595	
	· · · · · · · · · · · · · · · · · · ·										5
			1								
										*	
				4							
											· •
				•							
									·		

Page 8____

ENGINEERING FORMAT CONSTRUCTION YEARS NO EXPANSION CASE ESCALATED DATA

COST BASE MARCH 31, 1976

١

4

HEM	DESCRIPTION		COSTS BY CALENDAR YEAR (\$ 000)								
NO.	UESCRIPTION	YEAR 2	YEAR 3	YÉAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	IN SERVICE
1.	LAND Land		2,153							2,153	Year 5
	Sub-total		2,588							435	· Year 6
2.	PIPELINE Pipeline	368,872	859,863	1,374,429	548,949					3,152,113	Year 5
	Sub-total	368,872	931,349	57,369	481,190	226,224	÷			836,269	Year 6
3.	COMPRESSOR STATIONS			192,010	199,629	,				3,988,382	Voor F
	Sub-total			3,893	178,938	264,221		-		447,052	Year 6
4.	ANCILLARY FACILITIES	124,965	209,578	124,796	11,210	204,221				838,691	
	Sub-total	29,033	12,542	32,841	100,550	8,909		-		183,875	Year 5 Year 6
5.	MEASURING STATIONS	133,390	222,120	6 256	14 227	8,909				654,424	
	Measuring Stations Sub-total			0,200	2,960	11,305				20,483 14,265	Year 5 Year 6
6.	OPERATIONS AND MAINTENANCE FACTLITTES			6,256	17,187	11,305				34,748	
	Operations and Maintenance Facilities			4,791	64,273	9,607				87,965 25,445	Year 5 Year 6
7				28,483	75,320	9,607				113,410	
	Communication Facilities	1,995	9,724	12,859 829	15,105	5,956				39,683	Year 5 Year 6
	Sub-total	2,093	10,131	13,688	17,405	5,956				49,273	, i i i i i i i i i i i i i i i i i i i
L.	SOB-TOTAL DIRECT COSTS	524,963	1,166,188	1,833,765	1,630,378	526,222				5,681,516	
a.	OPERATIONS OF TO STOLLES	216,000								216,000	Year 5
	Operations Prior to Service	18,327 5,089	23,073 6,202	27,118	17,271 5,375	10,608				85,789	Year 5
	Sub-total	23,416	29,275	34,587	22,646	10,608				120,532	iear o
10.	ENGINEERING Engineering	29,749 1,749	64,881 5,089	104,039 5,984	51,205 46,620	31, 573				249,874	Year 5
	Sub-total	31,498	69,970	110,023	97,825	31,573				340,889	Year 6
1 <b>1.</b>	CONTINGENCIES Contingencies	16,114 945	35,144	56,357	27,740	17 102			n an	135,355	Year 5
	Sub-total	17,059	37,903	. 59,598	52,993	17,103			алан алар Алар Алар Алар	49,301	Year 6
<i>8</i>	TOTAL COST (1)	812,936	1,303,336	,037,973	1,803,842	585,506				6,543,593	
	SUMMARY BY IN SERVICE DATE:										
	Year 5 Year 6	776,022	98 920	,921,556	949,609	585 505				4,851,603	
	TOTAL COST (1)	812,936	, 303, 336	.037.973	803 842	585 506				1,691,990	
	(1) EXCLUDES ALLOWANCE FOR FUNDS	canadaman h	<del>dereidente</del> f		1,003,042	383,308				6,543,593	
	USED DURING CONSTRUCTION						2				
											-
	•			:							
								*			
						ĺ	:	· .			
		ŀ									

Foge 9

FINANCIAL FORMAT CALENDAR YEARS NO EXPANSION CASE UNESCALATED DATA

COST BASE MARCH 31, 1976

107

7

2

_

j

أ

Ĵ

- formation

1

17.5.44		COSTS BY CALENDAR YEAR (\$ 000)									IN SERVICE
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	
١.	LAND	329	1,637							1,966	Year 5
	Land · Sub-total	67 396	1,969			-				2,365	fedr o
2.	PIPELINE	652,751	1,042,029	1,119,143	353,494					3,167,417	Year 5
	Pipeline	45,831	82,870	153,370	438,598	136,871				857,540	Year 6
2		698,582	1,124,899	1,2/2,513	792,092	136,871				4,024,957	
٦.	COMPRESSUR STATIONS Compressor Stations		26,152	26,354	144,965	136,806	×			308,692	Year 6
	Sub-total ·		26,719	179,273	255,755	136,806				598,553	
4.	BUILDINGS AND IMPROVEMENTS Buildings and Improvements		5,258	30,285	19,961 14,276	13,423		;		55,504 33,940	Year 5 Year 6
	Sub-total		5,912	35,872	34,237	13,423				89,444	
5.	MEASURING EQUIPMENT		769	5,314	7,362	<b>5</b> (20)				13,445	Year 5
	Measuring Equipment Sub-total		769	5,670	2,904	5,622				22,327	fear b
6.	TRANSPORTATION EQUIPMENT			1,328	6,636					7,964	Year 5
	Transportation Equipment			427	2,238	525				3,190	Year 6
-		2.063	0.000	1,755	8,8/4	525				11,124	
7.	COMMUNICATION EQUIPMENT Communication Equipment	3,261	9,082	880	2,252	3,778				7,484	Year 6
	Sub-total	3,414	9,503	12,074	12,346	3,778				41,115	
8.	TOOLS AND WORK EQUIPMENT			5,426	27,123 3,116	5,428				32,549 8,950	Year 5 Year 6
	Sub-total			5,832	30,239	5,428				41,499	
9.	OFFICE EQUIPMENT		9	102	272	0.5				383	Year 5
	Office Equipment		15	- 132	34 306	25 25				95 478	fear 6
	545 66641										
10.	PRE-PERMIT COSTS	216,000								216,000	Year 5
<b>10.</b>	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216,000 918,392	1,169,786	1,513,121	1,144,115	302,478		-		216 ,000	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216,000 9 <u>18,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000	Year 5
10.	PRE-PERMIT COSTS	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 5,047 ,892	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216,000 9 <u>18,392</u>	1,169,786	<u>1,513,121</u>	<u>1.144,115</u>	<u>302,478</u>				216 ,000 5 <u>,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 5 <u>,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 5 <u>,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216,000	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 5 <u>,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	302,478				216,000 - <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 <u>918 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 <u>5,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 5 <u>,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	302,478				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 <u>918 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 <u>5,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	302,478				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 <u>918 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 <u>5.047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216 ,000 <u>5,047 ,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	302,478				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	<u>302,478</u>				216,000 <u>5,047,892</u>	Year 5
10.	PRE-PERMIT COSTS SUB-TOTAL ITEMS 1-10	216 ,000 9 <u>18 ,392</u>	<u>1,169,786</u>	<u>1,513,121</u>	<u>1,144,115</u>	302,478				216,000 <u>5,047,892</u>	Year 5

ENGINEERING FORMAT CALENDAR YEARS NO EXPANSION CASE UNESCALATED DATA

#### COST BASE MARCH 31, 1976

f

ITEM	DEC CONDITION (	COSTS BY CALENDAR YEAR (\$ 000)							TOTAL	IN SERVICE	
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR B	YEAR 9	TOTAL	
۱.	LAND	300	1,499							1,799 364	Year 5 Year 6
	Sub-total	361	1,802							2,163	
2.	PIPELINE	442,545	776,924	923,385	305,935	114.070				2,448,789 618,508	Year 5 Year 6
	Sub-total	452,607	835,055	1,024,869	640,696	114,070				3,067,297	
3.	COMPRESSOR STATIONS		25,594	149,993	110,122	136,418				285,709 304,851	Year 5 Year 6
	Sub-total		26,113	175,592	252,437	136,418				590,560	
4:	ANCILLARY FACILITIES Ancillary Facilities	137,417 27,047	158,848	82,347 33,690	7,453 62,333	5,202				386,065 141,125	Year 5 Year 6
	Sub-total	164,464	171,701	116,037	69,786	5,202				527,190	
5.	MEASURING STATIONS Measuring Stations		849	5,739 386	7,473 3,087	5,787				14,061 9,260	Year 5 Year 6
	Sub-total		849	6,125	10,560	5,787				23,321	
6.	OPERATIONS AND MAINTENANCE FACILITIES Operations and Maintenance Facilities		3,021 603	23,099 4,367	39,979 7,949	5,925				66,099 18,844	Year 5 Year 6
	Sub-total		3,624	27,466	47,928	5,925				84,943	
7.	COMMUNICATION FACILITIES Communication Facilities	2,985 140	8,314 386	10,245 806	9,243 2,063	3,458			÷.,	30,787 6,853	Year 5 Year б
	Sub-total	3,125	8,700	11,051	11,306	3,458				37,640	-
1	SUB-TOTAL DIRECT COSTS	620,557	1,047,844	<u>1,361,140</u>	1,032,713	<u>270,860</u>				<u>4,333,114</u>	
8.	PRE-PERMIT COSTS	216,000								216,000	Year 5
9.	OPERATIONS PRIOR TO SERVICE Operations Prior to Service	19,141 5,287	19,698	20,381 5,692	4,773	6,567			r ,	27,638	Year 6
	Sub-total	24,428	25,017	26,073	15,890	6,567				97,975	
10.	ENGINEERING Engineering	34,992 2,241	58,500 4,368	71,685 9,978	28,809 33,146	16,251				65,984	Year 6
	Sub-total	37,233	62,868	81,663	61,955	16,251		ar fa		259,970	Nerv F
<b>11.</b>	CONTINGENCIES Contingencies	18,961 1,213	31,689	38,837 5,408	15,601	8,800				35,745	Year 6
	Sub-total	20,174	34,057	44,245	33,557	8,800				140,833	
	TOTAL COST (1)	918,392	1,169,786	1,513,121	1,144,115	302,478				5,047,892	
1	SUMMARY BY IN SERVICE DATE:	140 050		1 225 711	505 700					3 818 720	
	Year 5 Year 6	46,051	84,850	187,410	608,383	302,478				1,229,172	
	TOTAL COST (1)	<u>918,392</u>	1,169,786	1,513,121	1,144,115	302,478				5,047,892	
	(1) EXLUDES ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION										
				,							e
		9	-							·	
											· -
								1 A. A.	,		
							,				
	in the second	<u> </u>	L			<u> </u>	I	l	I	<u> </u>	0 - 11
#### CANADIAN ARCTIC GAS PIPELINE LIMITED

SECTION 10 COST OF FACILITIES SUMMARY OF CONSTRUCTION COSTS TOTAL FACILITIES

ENGINEERING FORMAT CONSTRUCTION YEARS NO EXPANSION CASE UNESCALATED DATA

COST BASE MARCH 31, 1976

ITEM				COSTS BY	CALENDAR	YEAR (\$ 000	D)				IN SERVICE
NO.	DESCRIPTION	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6	YEAR 7	YEAR 8	YEAR 9	TOTAL	
1.	LAND		1,799							1,799 364	Year 5 Year 6
	Sub-total		2,163							2,163	
2.	PIPELINE Pipeline	321,648	725,381 60,374	1,034,638 46,914	367,122 374,336	136,884				2,448,789 618,508	Year 5 Year 6
	Sub-total	321,648	785,755	1,081,552	741,458	136,884				3,067,297	
3.	COMPRESSOR STATIONS Compressor Stations			153,562 3,112	132,147 138,037	163,702				285,709 304,851	Year 5 Year 6
	Sub-total ·			156,674	270,184	163,702				590,560	•
4.	ANCILLARY FACILITIES Ancillary Facilities	108,881 25,334	171,213 10,280	97,027 25,718	8,944 73,550	6,243				386,065	Year 6
.r	Sub-total	134,215	181,493	122,745	82,494	6,243				527,190	Year 5
5. "	Measuring Stations			5,035	2,315	6,945				9,260	Year 6
6	Sub-total			18,124	47.975	6,945				66,099	Year 5
	Operations and Maintenance Facilities			3,617	8,117	7,110 7,110				18,844 84,943	Year 6
7.	COMMUNICATION FACILITIES	1,658	7,962	10,075	11,092	7,115				30,787	Year 5
	Communication Facilities	84 1.742	335 8,297	639 10,714	1,645 12,737	4,150				6,853 37,640	Year 6
	SUB-TOTAL DIRECT COSTS	457,605	977,708	1,398,519	1,174,248	325,034				4,333,114	
8.	PRE-PERMIT COSTS	216,000	and the second s							216,000	Year 5
9.	OPERATIONS PRIOR TO SERVICE	15,928	19,279 5,183	21,789 6,000	13,341	7,880				70,337 27,638	Year 5 Year 6
	Sub-total	20,351	24,462	27,789	17,493	7,880				97,975	
10.	ENGINEERING Engineering	25,929 1,527	54,378 4,282	79,108 4,799	34,571 35,875	19,501				193,986 65,984	Year 5 Year 6
	Sub-total	27,456	58,660	83,907	70,446	19,501		•		259,970	
11.	CONTINGENCIES Contingencies	14,048 825	29,460 2,320	42,853 2,601	18,727 19,434	10,565				105,088 35,745	Year 5 Year 6
	Sub-total	14,873	31,780	45,454	38,161	10,565				140,833	
	TOTAL COST (1)	736,285	1,092,610	1,555,669	1,300,348	362,980				5,047,892	
	SUMMARY BY IN SERVICE DATE:	704 092	1 009 472	1.462.269	642,837					3.818.720	
	Year 6	32,193	83,138	93,400	657,461	362,980				1,229,172	
	TOTAL COST (1)	736,285	1,092,610	1,555,669	<u>1,300,348</u>	<u>362,980</u>				5,047,892	
	(1) EXCLUDES ALLOWANCE FOR FUNDS USED DURING CONSTRUCTION				· · ·					,	
										-	
1											1
				1 1							
	4										
••••••••			•••••••••••••••••••••••••••••••••••••••	•	h		·····	•	*·····	••••••••••••••••••••••••••••••••••••••	

oge <u>12</u>

# THERMOCASE INSULATED GAS LINE

#### PRODUCT SPECIFICATION

FOR

CANADIAN ARCTIC GAS

REVISION A

# GENERAL ELECTRIC COMPANY THERMAL SYSTEMS PROGRAMS

5

January 10, 1977

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF THE GENERAL ELECTRIC COMPANY AND IS FURNISHED FOR EVALUATION PURPOSES ONLY, SUBJECT TO THE CONDITION THAT NO COPY OR OTHER REPRODUCTION BE MADE IN WHOLE OR IN PART AND THAT NO OTHER USE BE MADE OF SUCH INFORMATION WITHOUT THE EXPRESS WRITTEN PERMISSION OF THE GENERAL ELECTRIC COMPANY.

#### 1.0 GENERAL

This specification covers the manufacture and installation of the General Electric ThermoCase insulation system for transporting gas through the Canadian Arctic.

The insulation system consists of two distinct ThermoCase concepts: One for frost-susceptible below ground areas and another for frostsusceptible river crossings. The below ground areas are further broken down into regions requiring high density insulation and those requiring low density insulation.

Each concept consists basically of a double jointed inner transport pipe encased in closed cell rigid polyurethane foam insulation, which is protected by an outer steel jacket providing protection from mechanical damage, moisture, and chemicals (see Figure 1).

The factory insulated casing is transported to the field and welded end-to-end using conventional hand or automatic welding equipment. The exposed joints are covered in the field with pre-molded urethane halves and the outer jacket closed-out by a welded coupling.

The rugged nature of ThermoCase minimizes the precautions usually necessary in stringing, storing, and handling of the completed system. All exposed foam is factory sealed to prevent degradation of the insulation prior to field installation.

Calculated thermal performance for the insulated system is shown below for two cases:

-2-

<u>Condition No. 1 - No Heater</u> 15°F Gas Temperature 32°F Jacket Surface Temperature Heat Loss = 11 Btu/HR/FT

# 1.0 GENERAL (continued)

Condition No. 2 - With Heaters (Estimated Heat Leak) 15°F Gas Temperature 50°F Average Jacket Surface Temperature Heat Loss = 28 Btu/HR/FT

#### 2.0 PRODUCT DESCRIPTION

Ť

#### 2.1 Below Ground

The below ground system consists of the inner pipe encased in rigid closed-cell polyurethane foam and covered by a protective steel jacket. The foam density will be 2.5 PCF or greater. The jacket thickness may vary from 3/8 to 3/4 inch, depending on field requirements.

Pre-insulated pipe is butt welded at the factory to form double joints. The joining weld is inspected and insulated using premolded urethane halves, then closed out with an outer jacket coupling. This same process is used in the field to weld each double joint into the line. Figure 2 shows a completed joint.

The pipe insulation consists of rigid closed cell urethane foam produced in the factory under rigid quality controls. The urethane is foamed-in-place between the carrier pipe and the protective outer jacket (which also functions as a vapor barrier). The foam establishes a natural bond between the carrier pipe and the concentric mounted outer jacket forming an integral structure , which minimizes handling problems and mechanical damage.

In addition to the outer jacket which serves as a vapor barrier, all exposed foam at the joint ends is factory sealed using a butyl coating. The coating is sufficiently elastic to withstand anticipated contraction, expansion and distortion under normal field conditions without loss of seal integrity. This seal prevents

.-3-

#### 2.1 Below Ground (continued)

degradation of the insulation due to exposure to moisture or adverse chemical agents prior to installation and application of the insulation.

The insulated pipe is delivered to the field site with a nominal cut-back for joint welding. Ordinary equipment and procedures are generally acceptable for laying the pre-insulated pipe. Back-filling is handled with the same care provided to any coated line.

The pre-molded urethane halves are made of 2.5 PCF foam and factory sealed with a butyl coating. The halves are taped in the cut-back area after butt welding the inner pipe to provide a continuous insulation giving the joint the same insulating properties as the pre-insulated pipe. This field joining process is fast, efficient, can be accomplished under almost any climatic conditions and requires no special personnel training.

#### 2.2 Below Ground Transitions

Transitioning from insulated below ground pipe to uninsulated pipe is accomplished by a closeout end cap welded to the outer jacket and sealed in the factory to the inner casing, using an elastic (silicone) sealant (see Figure 3).

#### 2.3 River Crossings

River crossing insulated system is the same as the below ground system except for the addition of internal heat traces on the outer jacket as shown in Figure 4. The formed aluminum conduits are installed at the factory prior to the foaming operation. Conduit is placed inside the jacket and sealed to prevent foam separation of the conduit from the jacket. Injected foam forces the conduit into intimate contact with the jacket during the normal foaming process. Retainer rings are used to assure proper alignment and spacing of the conduit.

-4-

#### 2.3 River Crossings (continued)

The pre-molded halves for the cut-back area of river crossing insulation fill the cavity to the outer pipe. The cavity above the conduit is left open to allow normal heating of the outer jacket via natural convection.

# 2.4 River Crossing Transitions

#### 2.4.1 River Crossing to Below Ground

Transitioning from insulated river crossings to normal below ground insulation is accomplished as shown in Frigure 5 Heat traces are brought out through the insulated cut-back at the butt joint, a special slotted coupling welded over the cut-back and the cavity where the heat trace exists completely potted to provide a positive seal.

#### 2.4.2 River Crossing to Uninsulated Pipe

Transitioning from river crossing insulation to uninsulated pipe is accomplished as shown in Figure 6. Heat traces are brought out through a factory bonded FRP end cap, potted in place to provide a positive seal.

#### 2.5 Materials

2.5.1 Vapor Barrier

Two-part butyl coating to seal polyurethane	foam.
General Physical Properties	Values
Average Solids % by Volume Dry Time, Touch, Hours	46% 4-8
Minimum Recoat Interval Hours @ 77°F, 50% R.H.	4-8
Maximum Dry Film	15
Inickness per Coat-Mils Theoretical	736
Pot LIfe - Hours 77°F	2
100°F 125°F	1
Weight/gal. 1bs. 77°F K Eacton Btu in/hp Et ² °F	8.5
	<u> </u>

-5-

2.5.1 Vapor Barrier

Dry Film Properties	Values
Tensile Strength PSI	325
Elongation %	475
Water Vapor Transmission Perms	
@ 20 mil DFT	0.02
Service Temperature °F	-30 to 200
Flame spread, UL 723	

2.5.2 Mylar Tape Polyester backed tape used to seal heat tracing while foaming. Width 2" - 3": Properties Values Adhesion to Steel 35 oz/in. width Tensile Strength Longitudinal 22 lb/in. width Transverse 28 lb/in. width Total Thickness 0.0023 inches Strength at Break 70% Water Vapor Transition Rate Less than 3 gr. H₂0/100 sq.in./24 hrs

- 2.5.3 <u>Aluminum Retainer Ring (Figure 10)</u> 6063-T6 Material Ft_u = 35,000 PSI Ft_y = 31,000 PSI % Elong. In 2" 1/16" Thickness = 12% 1/2" Thickness = 18% Fs_u = 22,000 PSI
- 2.5.4 <u>Aluminum Conduit (Figure 9)</u> 3003 = H14 Ft_u = 22,000 PSI Ft_y = 21,000 PSI % Elong = 8% for 1/16" thickness In 2" = 16% for 1/2" thickness Fs_u = 14,000 PSI E = 10.0 x 10⁶ PSI

Conforms to QQ-A-250/2 (Standard Aluminum Specification)

<i>…</i> 。 <i>∪</i> 。 <i>∪</i>	Horaca octanito ribor		······································	
	Cera-Form by Johns-Manville			
	Properties	* . *	Values	
•	Temperature Limit °F Density 1b/ft Transverse Strength		2100° 13 50 PS	[
	Lineal Shrink after 2100° Soak %: 1000° 1500° 2000° 2300°	ć	0.25 0.3 2.4 3.2	•
•	Compressive Resistance, PSI Pressure Required to Compress: 5% 10%	·평.	1.75 3.25	
	Conductivity, Btu-ft/hr ft ⁻ °F, @ 600°F 1000°F 1200°	r	.49 .71 .84	
	1400° 1600° 1800° 2000° Major Constituents	•	.98 1.13 1.29 1.49 Alumina	and
			Silica	
2.5.6	Potting Compound Two-Part Silicone RTV 619 Uncured Properties Color Consistency Viscosity, Poises Shelf Life (months)		<u>Values</u> Black Easily 90 6	Pourable
	Cured Properties Specific Gravity Hardness, Shore A Tensile Strength, PSI Elongation, % Tear Resistance, Die B, Lb/in. Brittle Point, degrees F Linear Shrinkage, %		Values 1.22 45 925 125 25 Below - <.2	75

f

# 2.5.5 Molded Ceramic Fiber - Used for Heat Shields (Figure 8)

-7-

# 2.5.6 Potting Compound (continued)

Thermal Properties	Values
Thermal Conductivity Btu-in/hr Ft ² °F @200°F	1,92 ,16 -
Coefficient of Thermal Expansion in/in °F (0-350F)	5x10 -5

#### Electric Properties

Dielectric Strength, volts/mil .075"thick	500	
Dielectric Constant @ 60 H2	3.0	
Dissipation Factor @ 60 H2	.00	ן זיב
Volume Resistivity, OHM-CM	lxl	015

#### 2.5.7 Urethane Foam Insulation

Insulation used for this ThermoCase system is a rigid closed cell polyurethane foam that can be supplied in any density from 2PCF to 25 PCF. For this application 2.5PCF and 12PCF nominal density foam will be used.

The foam is stable, will not corrode, sustain fungus nor attract rodents or insects. It has a fairly high resistence to most chemicals and solvents, except for some of the chlorinated solvents.

The following minimum physical properties are exhibited by the foam:

	Type I	Type II
Appearance	Light Tan	Light Tan
Density (min. core) ASTM 1622	2.5 PCF	12.0 PCF
Compressive Strength ASTM 1621		r
min. parallel to rise	33 PSI	350 PSI
Water Absorption ASTM E96	1.2 PCF	2.2 PCF
Thermal Conductivity (initia)		$\frac{1}{2} \left( \frac{1}{2} + 1$
ASTM C518 maximum as		
manufactured		
(Btu-in/ft ⁻ -hr-°F)	.138	.26
Closed Cell Content ASTM 2856	90%	90%
Dimensional @ -20°F ASTM 2126	1,2%	1.2%
Creep	(see figur	re 7)
Shear	28PSI	130PSI -
Useful temperature °F	-320° to +225°	-320° to +225°

-8-

# 2.5.8 Elastic Sealant

G.E. Selant - 1200

Typica	1 Properties	
Property	Value	Test Method
Hardness (Shore A Scale)	35	ASTM D-676-59T
Ultimate tensile strength (at maximum elongation)	400 PSI	ASTM D-412-66T
Peel strength	20 lb/in.	MIL-S-8802C
Staining	None	TT-S-00230 (COM-NBS)
Weathering (after 10,000 hours in Atlas Weatherometer)	No change in hardness or color	
Ozone resistance	Excellent	
Compression set (1/2" thick rod, 1" diameter, under 50% compression for 1 year)	2.6%	
Tear strength (Die B, after 1 year exposure)	35 lb/in.	ASTM D-624-54
Tack-free time	1 hour	
Curing Time	7 to 14 days at 75°F, 1/4" section	
Sag; slump	None	· · · · · · · · · · · · · · · · · · ·

-9-



January .

· · ·

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF THE GENERAL ELECTRIC COMPANY AND IS FURNISHED FOR EVALUATION PURPOSES ONLY, SUBJECT TO THE CONDITION THAT NO COPY OR OTHER REPRODUCTION BE MADE IN WHOLE OR IN PART AND THAT NO OTHER USE BE MADE OF SUCH INFORMATION WITHOUT THE EXPRESS WRITTEN PERMISSION OF THE GENERAL ELECTRIC COMPANY.





THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF THE GENERAL ELECTRIC COMPANY AND IS FURNISHED FOR EVALUATION PURPOSES ONLY, SUBJECT TO THE CONDITION THAT NO COPY OR OTHER REPRODUCTION BE HADE IN WHOLE OR IN PART AND THAT NO OTHER USE BE MADE OF SUCH INFORMATION WITHOUT THE EXPRESS WRITTEN PERMISSION OF THE GENERAL ELECTRIC COMPANY.







	REVISIONS	
	DESCRIPTION	DATE APPROVED
•		ELEC ELEC INFO
		S DOC CTRIC DECT IN CTRIC CTRIC
	WALL	PANY PANY PANY
	// IN VP	AND AND IN F UT T
	C TYP	HE E
		OPRIE URNIS AND T XPRES
		SHED SHED SS WAT
		UTTE O
		ORMA OR OR N PER
		TION UATIC USE RMISS
		ION MORT
	$\searrow$	
		HE GE
		<b>r</b> "
	0.D.	•
l and the second		
		_
		2YP
<u></u> K		
42 IN. 12		
5411 4		
U.D. SEGMENTS		
ERWISE SPECIFIED SIGNATURES DAY MO YR		
SON: DEFINALS ANGLES CHECKED	GENERAL (76) E	TACOMA
+ + ISSUED	ALCOND DISTONO DEPI LUC	
ENGRG		
CES V MFG MATLS	HEAT SHIEL	DS
	SIZE CODE IDENT NO.	- /
	A 16331 F	1G.8
		SHEET
<u>1</u>		JHEET
	1	
	u de la constante de	· · · · · · · · · · · · · · · · · · ·







THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF THE GENERAL ELECTRIC COMPANY AND IS FURNISHED FOR EVALUATION PURPOSES ONLY. SUBJECT TO THE CONDITION THAT NO COPY OR OTHER REPRODUCTION BE MADE IN WHOLE OR IN PART AND THAT NO OTHER USE BE MADE OF SUCH INFORMATION WITHOUT THE EXPRESS WRITTEN PERMISSION OF THE GENERAL ELECTRIC COMPANY.

