APPENDIX 1E TYPICAL DRAWINGS
<table>
<thead>
<tr>
<th>TYPICAL DRAWING NUMBER</th>
<th>REV.</th>
<th>DRAWING CATEGORY</th>
<th>DRAWING DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRENCH-01</td>
<td>E</td>
<td>TRENCH MODES</td>
<td>BURIED PIPE IN EXCAVATOR TRENCH</td>
</tr>
<tr>
<td>TRENCH-03</td>
<td>C</td>
<td>TRENCH MODES</td>
<td>BURIED PIPE IN ROCK TRENCH</td>
</tr>
<tr>
<td>ROW-01</td>
<td>B</td>
<td>RIGHT-OF-WAY MODES</td>
<td>NORTH SLOPE (WINTER)</td>
</tr>
<tr>
<td>ROW-02</td>
<td>E</td>
<td>RIGHT-OF-WAY MODES</td>
<td>WINTER</td>
</tr>
<tr>
<td>ROW-03</td>
<td>F</td>
<td>RIGHT-OF-WAY MODES</td>
<td>SUMMER</td>
</tr>
<tr>
<td>ROW-04</td>
<td>B</td>
<td>RIGHT-OF-WAY MODES</td>
<td>CROSS SLOPES - NORTH SLOPE (WINTER)</td>
</tr>
<tr>
<td>ROW-05A</td>
<td>F</td>
<td>RIGHT-OF-WAY MODES</td>
<td>CROSS SLOPES (WINTER)</td>
</tr>
<tr>
<td>ROW-05B</td>
<td>A</td>
<td>RIGHT-OF-WAY MODES</td>
<td>CROSS SLOPES (SUMMER)</td>
</tr>
<tr>
<td>ROW-06</td>
<td>C</td>
<td>RIGHT-OF-WAY MODES</td>
<td>POINT THOMSON GAS TRANSMISSION PIPELINE (WINTER)</td>
</tr>
<tr>
<td>ROW-21</td>
<td>E</td>
<td>RIGHT-OF-WAY MODES</td>
<td>ADDITIONAL TEMPORARY WORKSPACE 1/2</td>
</tr>
<tr>
<td>ROW-22</td>
<td>D</td>
<td>RIGHT-OF-WAY MODES</td>
<td>ADDITIONAL TEMPORARY WORKSPACE 2/2</td>
</tr>
<tr>
<td>ROAD-01</td>
<td>H</td>
<td>ROAD CROSSINGS</td>
<td>ROAD CROSSINGS</td>
</tr>
<tr>
<td>FP-01</td>
<td>E</td>
<td>THIRD-PARTY “FOREIGN” PIPELINE AND UTILITY CROSSINGS</td>
<td>THIRD-PARTY “FOREIGN” PIPELINES</td>
</tr>
<tr>
<td>UT-01</td>
<td>E</td>
<td>THIRD-PARTY “FOREIGN” PIPELINE AND UTILITY CROSSINGS</td>
<td>BURIED UTILITY</td>
</tr>
<tr>
<td>WB-01</td>
<td>F</td>
<td>WATERBODY CROSSINGS</td>
<td>MAJOR/INTERMEDIATE - TRENCHED</td>
</tr>
<tr>
<td>WB-02</td>
<td>E</td>
<td>WATERBODY CROSSINGS</td>
<td>MAJOR/INTERMEDIATE - HDD</td>
</tr>
<tr>
<td>WB-03A</td>
<td>E</td>
<td>WATERBODY CROSSINGS</td>
<td>MAJOR/INTERMEDIATE - UNSUPPORTED OR SUPPORTED SPANBRIDGE</td>
</tr>
<tr>
<td>WB-03C</td>
<td>B</td>
<td>WATERBODY CROSSINGS</td>
<td>MAJOR/INTERMEDIATE - CABLE SUPPORTED SPAN</td>
</tr>
<tr>
<td>BC-01</td>
<td>C</td>
<td>BUOYANCY CONTROL</td>
<td>CONCRETE COATING</td>
</tr>
<tr>
<td>BC-02</td>
<td>D</td>
<td>BUOYANCY CONTROL</td>
<td>SADDLE BAGS</td>
</tr>
<tr>
<td>BC-03</td>
<td>D</td>
<td>BUOYANCY CONTROL</td>
<td>BOLT-ON RIVER WEIGHTS</td>
</tr>
<tr>
<td>BC-04</td>
<td>D</td>
<td>BUOYANCY CONTROL</td>
<td>SCREW ANCHORS</td>
</tr>
<tr>
<td>BC-05</td>
<td>C</td>
<td>BUOYANCY CONTROL</td>
<td>SET-ON WEIGHTS</td>
</tr>
<tr>
<td>CC-01</td>
<td>E</td>
<td>CORROSION CONTROL</td>
<td>COATINGS</td>
</tr>
<tr>
<td>TYPICAL DRAWING NUMBER</td>
<td>REV.</td>
<td>DRAWING CATEGORY</td>
<td>DRAWING DESCRIPTION</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>CC-02</td>
<td>E</td>
<td>CATHODIC PROTECTION</td>
<td>TYPICAL DEEP VERTICAL ANODE BED</td>
</tr>
<tr>
<td>CC-03</td>
<td>D</td>
<td>CATHODIC PROTECTION</td>
<td>TYPICAL HORIZONTAL ANODE BED</td>
</tr>
<tr>
<td>FC-01</td>
<td>D</td>
<td>FRACTURE CONTROL</td>
<td>TYPICAL FRACTURE CONTROL METHOD</td>
</tr>
<tr>
<td>ACC-01</td>
<td>D</td>
<td>ACCESS ROADS</td>
<td>TYPICAL PERMANENT ROAD SECTIONS</td>
</tr>
<tr>
<td>ACC-03</td>
<td>D</td>
<td>ACCESS ROADS</td>
<td>TYPICAL TEMPORARY SNOW/ICE ROAD SECTION</td>
</tr>
<tr>
<td>ACC-05</td>
<td>D</td>
<td>ACCESS ROADS</td>
<td>TYPICAL TEMPORARY SHOOFLY ROAD PLAN/SECTION</td>
</tr>
<tr>
<td>ACC-06</td>
<td>C</td>
<td>ACCESS ROADS</td>
<td>TYPICAL TEMPORARY GRANULAR ROAD OFF HIGHWAY</td>
</tr>
<tr>
<td>FAC-05</td>
<td>F</td>
<td>PIPELINE FACILITIES</td>
<td>TYPICAL MAINLINE BLOCK VALVE PLOT PLAN</td>
</tr>
<tr>
<td>FAC-08A</td>
<td>E</td>
<td>PIPELINE FACILITIES</td>
<td>TYPICAL TEE AND VALVE GAS DELIVERY POINT PLOT PLAN</td>
</tr>
<tr>
<td>CONST-02</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>HORIZONTAL BORING/DRILLING ROADS</td>
</tr>
<tr>
<td>CONST-03</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>OPEN-CUT ROADS</td>
</tr>
<tr>
<td>CONST-04</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES – MAJOR/INTERMEDIATE OPEN-CUT</td>
</tr>
<tr>
<td>CONST-05</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES – MINOR OPEN-CUT</td>
</tr>
<tr>
<td>CONST-06</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES - ISOLATED OPEN-CUT - DAM AND PUMP</td>
</tr>
<tr>
<td>CONST-07</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES - ISOLATED OPEN-CUT - DAM AND FLUME</td>
</tr>
<tr>
<td>CONST-08</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES - ISOLATED OPEN-CUT - DAM AND DIVERT</td>
</tr>
<tr>
<td>CONST-09</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>WATERBODIES - HORIZONTAL DIRECTIONAL DRILL</td>
</tr>
<tr>
<td>CONST-11</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING – FORD</td>
</tr>
<tr>
<td>CONST-12</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - MAT BRIDGE</td>
</tr>
<tr>
<td>CONST-13</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - MAT ROCK/CULVERT BRIDGE</td>
</tr>
<tr>
<td>CONST-14</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - ROCK/CULVERT BRIDGE</td>
</tr>
<tr>
<td>CONST-15</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - ICE BRIDGE</td>
</tr>
<tr>
<td>CONST-16</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - CLEAN SNOW FILL</td>
</tr>
<tr>
<td>CONST-17</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>EQUIPMENT CROSSING - LOG FILL</td>
</tr>
<tr>
<td>TYPICAL DRAWING NUMBER</td>
<td>REV.</td>
<td>DRAWING CATEGORY</td>
<td>DRAWING DESCRIPTION</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>CONST-20</td>
<td>F</td>
<td>CONSTRUCTION TYPICALS</td>
<td>HELIPADS</td>
</tr>
<tr>
<td>CONST-22A</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>1500 PERSON CAMP - 20 ACRES</td>
</tr>
<tr>
<td>CONST-22B</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>750 PERSON CAMP - 10 ACRES</td>
</tr>
<tr>
<td>CONST-22C</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>500 PERSON CAMP - 8 ACRES</td>
</tr>
<tr>
<td>CONST-22D</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>150 PERSON CAMP - 3 ACRES</td>
</tr>
<tr>
<td>CONST-22E</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>50 PERSON CAMP - 2 ACRES</td>
</tr>
<tr>
<td>CONST-23A</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>PIPE STORAGE/CAMP/ CONTRACTOR YARD - OPTION 1 - 50 ACRES</td>
</tr>
<tr>
<td>CONST-23B</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>PIPE STORAGE/CAMP/ CONTRACTOR YARD - OPTION 2 - 50 ACRES</td>
</tr>
<tr>
<td>CONST-23C</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>PIPE STORAGE/CAMP/ CONTRACTOR YARD - OPTION 3 - 50 ACRES</td>
</tr>
<tr>
<td>CONST-23D</td>
<td>B</td>
<td>CONSTRUCTION TYPICALS</td>
<td>STAND ALONE PIPE STORAGE YARD - 20 ACRES</td>
</tr>
<tr>
<td>CONST-24</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>STAND ALONE CONTRACTOR YARD - 8 ACRES</td>
</tr>
<tr>
<td>CONST-33</td>
<td>C</td>
<td>CONSTRUCTION TYPICALS</td>
<td>TYPICAL WATER DISCHARGE SITE</td>
</tr>
<tr>
<td>CONST-34</td>
<td>D</td>
<td>CONSTRUCTION TYPICALS</td>
<td>HYDROSTATIC TEST POINT</td>
</tr>
<tr>
<td>FAULT-01</td>
<td>C</td>
<td>CONCEPTUAL “ZEE” FAULT CROSSINGS DESIGN</td>
<td>STRIKE-SLIP FAULTS</td>
</tr>
<tr>
<td>FAULT-02</td>
<td>C</td>
<td>CONCEPTUAL “U” FAULT CROSSINGS DESIGN</td>
<td>STRIKE-SLIP FAULTS</td>
</tr>
<tr>
<td>FAULT-03</td>
<td>C</td>
<td>CONCEPTUAL “ZEE” FAULT CROSSINGS DESIGN</td>
<td>REVERSE OR THRUST FAULTS</td>
</tr>
</tbody>
</table>
NOTES:

1. MINIMUM DEPTH OF COVER SHOWN FOR TYPICAL CLASS 1, 2 OR 3 LOCATIONS. ADDITIONAL DEPTH MAY BE REQUIRED FOR CROSSINGS, AREAS REQUIRING BUOYANCY CONTROL, AREAS WITH FROST HEAVE POTENTIAL AND OTHER AREAS AS IDENTIFIED SUCH AS ROAD ENCROACHMENTS.

2. TRENCH WALLS WILL BE AS VERTICAL AS SOIL CONDITIONS ALLOW.

3. BEDDING ONLY REQUIRED IF NATIVE TRENCH MATERIAL IS NOT SUITABLE, OTHERWISE PIPE CAN REST ON NATIVE SOIL TRENCH BOTTOM.

4. NATIVE MATERIAL EXCAVATED FROM TRENCH MAY BE USED FOR BEDDING AND Padding IF SUITABLE.

DRAFT 1 FERC APPLICATION NOT FOR CONSTRUCTION

Appendix 1E TRENCH–01
Alaska Pipeline Project
Trench Modes – Buried Pipe in Excavator Trench

DRAFT
NOTES:

1. MINIMUM DEPTH OF COVER SHOWN FOR TYPICAL CLASS 1, 2 AND 3 LOCATIONS BASED ON ALTERNATIVE MAXIMUM ALLOWABLE OPERATING PRESSURE CRITERIA (CFR 192.328). ADDITIONAL DEPTH MAY BE REQUIRED FOR CROSSINGS, AREAS REQUIRING BUOYANCY CONTROL, AND OTHER AREAS AS IDENTIFIED SUCH AS ROAD ENCROACHMENTS.

2. TRENCH WALLS WILL BE AS VERTICAL AS BEDROCK STABILITY CONDITIONS ALLOW.

3. FOAM PILLOWS, SAND BAGS OR IMPORTED SAND BEDDING REQUIRED TO SUPPORT PIPE.

4. IMPORT SAND PADDING REQUIRED.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION
HIGHWAY CROSSING (BORED)

ROAD CROSSING (OPEN CUT)

FOREIGN PIPELINE CROSSING

BEND

HORIZONTAL DIRECTIONAL DRILL (HDD)

PROPOSED GAS PIPELINE
CONSTRUCTION ROW BOUNDARY
ADDITIONAL TEMPORARY WORKSPACE (N.T.S.)

Appendix 1E ROW—21
Alaska Pipeline Project
Right-of-Way Modes — Additional Temporary Workspace 1/2

DRAFT
NOTES:
1. WARNING SIGNS TO BE INSTALLED ON EACH SIDE OF ROAD ROW.
2. MINIMUM DEPTHS OF COVER SHOWN, CROSSING AGREEMENTS MAY DICTATE ADDITIONAL DEPTH.
3. CROSSING ANGLE TO BE AS CLOSE AS PRACTICAL TO 90° OR AS SPECIFIED IN THE CROSSING AGREEMENT.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E ROAD-01
Alaska Pipeline Project
Road Crossings

DRAFT
DETAIL "A"

New pipeline is placed over existing foreign pipeline

DETAIL "B"

New pipeline is placed under existing foreign pipeline

Appendix 1E FP–01

Alaska Pipeline Project

Foreign Pipeline And Utility Crossings – Foreign Pipelines

DRAFT
DETAIL "A"

NEW PIPELINE IS PLACED OVER EXISTING BURIED UTILITY

DETAIL "B"

NEW PIPELINE IS PLACED UNDER EXISTING BURIED UTILITY

Appendix 1E UT-01

Alaska Pipeline Project

Foreign Pipeline And Utility Crossings – Buried Utility

DRAFT
PROFILE

NOTES:

1. CROSSING SHALL BE CONSTRUCTED IN ACCORDANCE WITH APPROVED METHOD(S) FROM AUTHORITIES HAVING JURISDICTION.
2. EROSION CONTROL DESIGN SHALL BE IMPLEMENTED AS PER THE SEDIMENT AND EROSION CONTROL PLAN.
3. INSTALL APPROVED AND APPROPRIATE VEHICLE CROSSING AS REQUIRED.
4. ALL MAJOR AND INTERMEDIATE WATERBODY CROSSINGS WILL HAVE A DETAILED SITE SPECIFIC CROSSING DRAWING INCLUDING RECLAMATION PLANS. PROFILE SHOWN IS FOR ILLUSTRATIVE PURPOSES ONLY.
5. INSULATION MAY BE REQUIRED IN SOME CIRCUMSTANCES.
NOTES:

1. ALL HDD INSTALLATIONS WILL HAVE A DETAILED SITE SPECIFIC CROSSING DRAWING.
2. LENGTH OF HDD DEPENDS ON WATERBODY CROSSING WIDTH, DEPTH OF CHANNEL AND APPROACH SLOPE ANGLES.
NOTES:
1. CONCEPTUAL DESIGN FOR ILLUSTRATIVE PURPOSES ONLY.
2. EXPANSION LOOP(S) MAY BE REQUIRED.
3. FREEBOARD CLEARANCE WILL DEPEND ON SPECIFIC STREAM CHARACTERISTICS AND NAVIGABILITY.
NOTES:
1. CONCEPTUAL DESIGN FOR ILLUSTRATIVE PURPOSES ONLY.
2. EXPANSION LOOP(S) MAY BE REQUIRED.
NOTE:
1. BAGS FILLED WITH LOCALLY SOURCED OR IMPORTED GRANULAR SOIL.
Appendix 1E BC-03
Alaska Pipeline Project
Buoyancy Control – Bolt-on River Weights

DRAFT
NOTE:

1. Extensions will be required if minimum depth (TBD) and torque (TBD) are not met. If bedrock encountered, alternate buoyancy control measures will be required.
Appendix 1E BC-05
Alaska Pipeline Project
Buoyancy Control – Set-on Weights
THREE-LAYER POLYETHYLENE (3LPE)

FUSION BONDED EPOXY (FBE)

ABRASION COATED FBE

CONCRETE ROCK PROTECTION
MATERIALS LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SCREENED CAP FOR 1" PVC VENT PIPE</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1" DIAMETER CONTINUOUS VENT PIPE, PERFORATED (SEE NOTE 4)</td>
<td>39'-4"</td>
</tr>
<tr>
<td>3</td>
<td>CALCINED PETROLEUM COKE BREEZE</td>
<td>1100 lb</td>
</tr>
<tr>
<td>4</td>
<td>DURICHLORE TC-3, 2.6" x 7" (OR EQUIVALENT) CENTER CONNECTED TUBULAR STfCr ALLOY ANODE, c/w #8 AWG INDIVIDUAL HALAR LEAD WIRE CONTINUOUS TO JUNCTION BOX</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>4 CIRCUIT ANODE JUNCTION BOX</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1" DIAMETER CONTINUOUS UNPERFORATED PVC VENT PIPE (SEE NOTE 4)</td>
<td>VARIES</td>
</tr>
<tr>
<td>7</td>
<td>ANODE CENTRALIZERS (TOP)</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>ANODE CENTRALIZERS (BOTTOM)</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>END CAP FOR 1" PVC VENT PIPE</td>
<td>1</td>
</tr>
</tbody>
</table>

NOTES:
1. ALL DIMENSIONS IN INCHES AND FEET UNLESS OTHERWISE NOTED.
2. THE BENTONITE SEAL IS TO EXTEND FROM THE TOP OF THE COKE BREEZE COLUMN TO GROUND SURFACE.
3. THE DIAMETER OF THE MAIN BORE SHALL BE A MINIMUM OF 9".
4. VENT PIPE TO BE CONTINUOUS 1" # PVC PIPE WITH ONLY THE PORTION WITHIN THE ACTIVE GROUND BED TO BE PERFORATED.
MATERIAL LIST

<table>
<thead>
<tr>
<th>No.</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2" x 60" SiFeCr. ANODES</td>
<td>TO SUIT</td>
</tr>
<tr>
<td>2</td>
<td>#8 HMWPE (BLACK) ANODE LEADS</td>
<td>TO SUIT</td>
</tr>
<tr>
<td>3</td>
<td>55 lb BAGS OF CALCINED PETROLEUM COKE BREEZE</td>
<td>TO SUIT</td>
</tr>
<tr>
<td>4</td>
<td>4.5" WEEPING TILE</td>
<td>TO SUIT</td>
</tr>
<tr>
<td>5</td>
<td>4.5" CAP FOR WEEPING TILE</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4.5" x 4.5" x 5" TREATED CEDAR POST</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>B2 WIRING PEDESTAL</td>
<td>1</td>
</tr>
</tbody>
</table>

SECTIONAL PLAN VIEW

SECTIONAL ELEVATION VIEW

GENERAL INSTALLATION PROCEDURE:
1. EXCAVATE A TRENCH.
2. POUR A 4" BED OF COKE BREEZE EVENLY ALONG THE TRENCH AND TAMPER TO COMPACT.
3. PLACE ANODES AT THE NOTED SPACING IN THE CENTRE OF THE COKE BREEZE BED.
4. POUR COKE BREEZE BACKFILL OVER THE ANODES TO ACHIEVE A TRENCH COVER 4" ABOVE THE ANODES AND TAMPER TO COMPACT.
5. PLACE THE WEEPING TILE SYSTEM IN THE TRENCH ABOVE THE COKE BREEZE.
6. LAY WARNING TAPE AS SHOWN.
7. BURIAL DEPTH WILL VARY WITH GROUND CONDITIONS.

Appendix 1E CC-03
Alaska Pipeline Project
Cathodic Protection – Typical Horizontal Anode Bed

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION
NOTES:

1. FIBREGLASS WRAP CRACK ARRESTORS INSTALLED ON TOP OF EXTERNAL COATING AT THE COATING MILL OR OTHER SUITABLE LOCATIONS.
2. CRACK ARRESTORS SHALL BE INSTALLED AT PIPE ENDS WITH SUFFICIENT CLEARANCE NOT TO INTERFERE WITH THE WELDING OR NDE PROCESS.
3. CRACK ARRESTOR SIZE AND SPACING ARE TBD.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E FC-01
Alaska Pipeline Project
Fracture Control – Typical Fracture Control Method

DRAFT
TYPICAL CROSS—SECTION ALL WEATHER ROAD FOR PERMAFROST AREA

TYPICAL CROSS—SECTION ALL WEATHER ROAD FOR NON—PERMAFROST AREA

DESIGN STANDARDS
CLASS III ALL WEATHER ROAD

1. MAXIMUM GRADE: SUSTAINED — 6%
 PITCH — 8%
2. MAXIMUM RIGHT—OF—WAY WIDTH TBD.
3. TYPICAL SUBGRADE HEIGHT ON PERMAFROST: 5', NON PERMAFROST: 2'.
4. DESIGN SPEED TBD.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION
Appendix 1E ACC—03
Alaska Pipeline Project
Access Roads – Typical Temporary Snow/Ice Road Section

DRAFT
NOTES:
1. A HELICOPTER PAD WILL BE PROVIDED FOR REMOTE BLOCK VALVE LOCATIONS WITH NO ACCESS.
2. TEG UNIT WILL BE PROVIDED FOR CATHODIC PROTECTION WHERE CONVENTIONAL POWER IS NOT AVAILABLE.
NOTE:

1. A HELICOPTER PAD WILL BE PROVIDED FOR REMOTE DELIVERY POINT TAKE-OFFS WITH NO ACCESS.
NOTES:

1. ACQUIRE AND MARK ADDITIONAL TEMPORARY WORKSPACE.
2. EXCAVATE ENTRY AND EXIT BAYS.
3. AFTER COMPLETION OF PIPE TIE-INS, BACKFILL AND COMPACT IN LIFTS TO MINIMIZE
 SUBSIDENCE AND THE NEED FOR A CROWN OVER THE EXCAVATION.
4. REMOVE DITCH RAMPS.
5. FOR UNSABLE SOIL, PROVIDE SHORING AS REQUIRED.
NOTES:
1. SWAMP MATS MAY BE REQUIRED ACROSS ROAD TO PROTECT HARD TRAVELLED SURFACE FROM EQUIPMENT, DURING INSTALLATION.
2. OPEN-CUT ROAD CROSSING TO BE CARRIED OUT AS QUICKLY AS PRACTICAL.
3. PROPER SIGNAGE AND ROAD CLOSURE REQUIRED BEFORE COMMENCING TRENCHING.
4. TRENCH Spoil TO BE REPLACED IN 6" LIFTS AND COMPACTED TO 95% OF THE MAXIMUM PROCTOR DRY DENSITY.
5. ORIGINAL HARD TRAVELLED SURFACE TO BE RESTORED TO ORIGINAL CONDITION FOLLOWING COMPLETION OF CROSSING INSTALLATION.
NOTES:

1. CLEAR VEGETATION FROM EXCAVATION AND MATERIALS STORAGE AREAS, LEAVING A VEGETATED BUFFER BACK FROM THE BANK ON THE STORAGE AND WORK SIDES OF THE ROW. CLEAR VEGETATION FROM THE WORK SIDE ONLY IF A VEHICLE CROSSING IS REQUIRED.
2. GRUB ROOTS, AND SALVAGE SPOIL MATERIAL FROM GRADED AND EXCAVATED AREAS AND STORE SEPARATELY OUT OF THE WAY OF CROSSING ACTIVITIES.
3. CONSTRUCT SPOIL CONTAINMENT BERMS AND INSTALL SEDIMENT CONTROL FEATURES (E.G. SILT FENCE, STRAW BALES) DOWNSLOPE OF PROPOSED SPOIL STORAGE AREAS.
4. THE INSTREAM PIPE SECTION SHALL BE CONSTRUCTED AND TESTED PRIOR TO INSTREAM ACTIVITY.
5. ANY EQUIPMENT WORKING INSTREAM MUST BE CLEAN, IN GOOD WORKING CONDITION AND CONTAIN ENVIRONMENTALLY FRIENDLY HYDRAULIC AND LUBRICATING FLUIDS.
6. EXCAVATE BELLHOLE THROUGH WATERCOURSE AND STOCKPILE SPOIL INSTREAM, IN DISCRETE PILES ADJACENT TO THE EXCAVATION DOWNSTREAM OF THE CROSSING. SPOIL SHOULD NOT BE STOCKPILED IN THE MAIN CHANNEL (THALWEG). THE INSTREAM SPOIL PILES MUST NOT BLOCK MORE THAN 2/3 OF THE CHANNEL WIDTH.
7. EXCAVATE SAGS ON BOTH SIDES OF WATERCOURSE AND STOCKPILE WET SPOIL BEHIND THE SPOIL CONTAINMENT BERMS. INSTALL PIPE SECTION, BACKFILL EXCAVATION AND STABILIZE WATERCOURSE BED AND BANKS.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E CONST–04
Alaska Pipeline Project
Construction Typicals – Waterbodies – Major/Intermediate Open–Cut

DRAFT
NOTES:
1. CLEAR VEGETATION FROM WORK SPACE AND MATERIAL STORAGE AREAS, LEAVING A VEGETATED BUFFER BACK FROM THE BANK ON THE STORAGE SIDE OF THE ROW.
2. GRUB ROOTS, SALVAGE SPOIL MATERIAL FROM GRADED AND EXCAVATED AREAS AND STORE THEM SEPARATELY OUT OF THE WAY OF CROSSING ACTIVITIES.
3. CONSTRUCT SPOIL CONTAINMENT BERRMS AND INSTALL SEDIMENT CONTROL FEATURE (e.g. SILT FENCE, STRAW BALES) DOWNSLOPE OF PROPOSED SPOIL STORAGE AREAS.
4. THE INSTREAM PIPE SECTION SHALL BE CONSTRUCTED AND TESTED PRIOR TO INSTREAM ACTIVITY.
5. TO REDUCE THE NEED FOR EQUIPMENT WORKING INSTREAM, LOCATE BACKHOES ON BOTH BANKS OF THE WATERCOURSE DURING EXCAVATION.
6. EXCAVATE THE CROSSING AND STORE WET SPOIL BEHIND THE SPOIL CONTAINMENT BERRMS. INSTALL PIPE SECTION, BACKFILL EXCAVATION AND STABILIZE WATERCOURSE BED AND BANKS.
DAM AND PUMP BY INSTREAM PUMPING ACROSS EXCAVATION OR BY REMOTE PUMPING AROUND EXCAVATION

NOTES:

1. INSTALL THE VEHICLE CROSSING ON THE WORK SIDE EDGE OF THE ROW TO ALLOW FOR A WIDE EXCAVATION.
2. STOCKPILE ALL REQUIRED MATERIALS AND EQUIPMENT ON THE SITE PRIOR TO BEGINNING INSTREAM WORK.
3. PERFORM THE BANK GRADE AND PREPARE SPOIL CONTAINMENT SMPNS AS CIRCUMSTANCES DICTATE.
4. COMPLETE WELDING, COATING, AND WEIGHTING OF THE RIVER PIPE SECTION.
5. BEGIN THE OPERATION IN THE EARLY MORNING TO ALLOW FOR SAME DAY INSTALLATION IF POSSIBLE.
6. INSTALL PUMPS AND CHECK OPERATION TO EQUALIZE FLOW.
7. CONSTRUCT THE SPOIL SIDE DAM USING SPECIFIED DAMMING TECHNIQUES. DAM SHOULD BE CONSTRUCTED ON THE SPOIL SIDE EDGE OF THE ROW TO ALLOW FOR A WIDE EXCAVATION.
8. PLUG THE VEHICLE CROSSING CULVERT OR CONSTRUCT THE DOWNSTREAM DAM USING SPECIFIED DAMMING TECHNIQUES. WHERE A BRIDGE IS USED THE DAM SHOULD BE CONSTRUCTED AS CLOSE TO THE SPOIL SIDE OF THE BRIDGE AS POSSIBLE TO ALLOW FOR A WIDE EXCAVATION.
9. EXCAVATE TRENCH AS RAPIDLY AS POSSIBLE AND INSTALL PIPE.
10. BACKFILL THE STREAM CHANNEL FIRST PUSHING THE SULLED WATER BACK INTO THE BANK EXCAVATIONS. PUMP OR DRAIN THE BANK EXCAVATIONS WHILE PROGRESSIVELY BACKFILLING FROM THE STREAM CHANNEL OUTWARD. CONSTRUCT WATER CONTAINMENT SMPNS IF NECESSARY.
11. STABILIZE BED AND BANKS OF THE STREAM CHANNEL, REMOVE THE DOWNSTREAM DAM OR VEHICLE CROSSING PLUG, REMOVE UPSRMA Dam OR VEHICLE CROSSING PLUG AND REMOVE BYPASS PUMPS.
NOTES:

1. INSTALL THE VEHICLE CROSSING ON THE WORK SIDE EDGE OF THE ROW TO ALLOW FOR A WIDE EXCAVATION.
2. GRADE THE BANKS OF THE WATER CROSSING AND PREPARE THE SPOIL CONTAINMENT AREAS.
3. CONSTRUCT THE FLUME WITH CORRECT FLANGES AND FLANGE WINGS, AS PER THE SPECIFICATIONS.
4. STOCKPILE ALL REQUIRED MATERIALS PRIOR TO BEGINNING INSTREAM WORK.
5. COMPLETE CONSTRUCTION OF PIPE SECTION.
6. INSTALL THE FLUME IN THE STREAM CHANNEL USING SEALING TECHNIQUES. DEWATER THE AREA BETWEEN THE FLANGE WINGS.
7. BEGINNING IN THE EARLY MORNING, EXCAVATE THE TRENCH AS QUICKLY AS POSSIBLE PLACING SPOIL OUT OF THE STREAM CHANNEL. CREATE SPOIL CONTAINMENT SUMPS IF NECESSARY TO KEEP SPOIL FROM FLOWING BACK INTO THE STREAM CHANNEL.
8. PUMP EXCAVATION AS REQUIRED TO PREVENT DOWNSTREAM FLOW OF SITTED WATER. DIRECT THE PUMPED WATER INTO VEGETATED AREAS WELL BACK FROM THE WATER COURSE. CONSTRUCT WATER CONTAINMENT SUMPS.
9. INSTALL PIPE.
10. BACKFILL THE STREAM CHANNEL FIRST, SQUEEZE THE SITTED WATER INTO THE BANK EXCAVATIONS. PUMP OR DRAIN THE BANK EXCAVATIONS WHILE PROGRESSIVELY BACKFILLING FROM THE STREAM CHANNEL OUTWARD AND COMPLETE BACKFILL.

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION
NOTES:

1. IF THERE IS A HIGH VELOCITY STREAMFLOW, INSTALL DEFLECTION BARRIER (e.g., MEDIAN BARRIERS) TO PERMIT CONSTRUCTION OF DAM OUTSIDE FULL STREAMFLOW.
2. CONSTRUCT DAM FROM LOCAL MATERIALS, SANDBAGS, AQUADAMS, SHEET PILING, MEDIAN BARRIERS, GRAVEL OR OTHER APPROPRIATE MATERIAL TO EXTEND OVER HALFWAY ACROSS THE WATERCOURSE.
3. INSTALL IMPERMEABLE BARRIER WITHIN DAM.
4. INSTALL RIPRAP ON UPSTREAM SIDE TO PROTECT THE DAM FROM EROSION IF DAM IS CONSTRUCTED OF LOOSE MATERIAL.
5. SPOIL STORAGE SHALL BE ABOVE THE HIGH WATER MARK OR PROTECTED BY EROSION CONTROL MEASURES TO ENSURE THAT, WHEN THE WATER LEVEL RISES AFTER ALL FLOW HAS BEEN CHANNELIZED INTO ONE CHANNEL, SPOIL IS NOT WASHED AWAY.
6. INSTALL SUMPS TO COLLECT SEEPAGE AND THEN PUMP TO DewaterING AREA.
7. ENSURE DISCHARGE AREA CAN HANDLE THE VOLUME OF WATER AND SILT PUMPED TO SHORE.
8. COMPLETE TRENCHING, LOWERING IN AND BACKFILLING.
9. REMOVE DAM, STABILIZE BANK.
10. REPEAT PROCESS FOR OTHER CHANNEL.
11. TEMPORARY DIVERSION ALSO MAY BE MADE THROUGH ABANDONED CHANNELS AS LONG AS STEPS ARE TAKEN TO MINIMIZE A FLUSH OF SEDIMENT ONCE THE WATERCOURSE IS REDIRECTED THROUGH THE "NEW" CHANNEL.
12. TEMPORARY DIVERSION THROUGH A CHANNEL EXCAVATED INTO A FLOOD PLAIN IS POSSIBLE IF LINED OR PASSED THROUGH A FLEXIBLE CONDUIT TO PREVENT EXCESSIVE EROSION ALONG THE "NEW" CHANNEL.
Appendix 1E CONST-09
Alaska Pipeline Project
Construction Typicals – Waterbodies – Horizontal Directional Drill

DRAFT
NOTES:

1. Use fords to provide vehicular access across relatively shallow and narrow watercourses with granular beds and stable banks. Where water depth, streambed composition or bank slopes could pose trafficability problems for rubber-tired vehicles, limit ford traffic to vehicles and equipment with tracks.
2. Do not use ford during fish spawning, incubation or migration periods.
3. Minimize grading in proximity to watercourse. Grade and grub only along the trenchline and an area immediately adjacent to the trenchline. Pull dirt and debris away from watercourse, if banks require sloping.
4. Minimize use of ford.
5. Stabilize banks and approaches with granular blanket underlain by a geotextile, if warranted.
6. Mark boundaries of ford on both sides of crossing to confine all vehicle traffic to ford.
7. Restore and stabilize beds and banks to original contour when ford is not longer needed. Granular blanket need not be removed if it is not a barrier to fish during low flow conditions.
NOTES:
1. USE SWAMP MATS TO PROVIDE VEHICULAR ACCESS ACROSS WATERCOURSES IN BOTH FROZEN AND UN-FROZEN CONDITIONS.
2. FOR WATERCOURSES FROZEN TO THE BOTTOM, GEOTEXTILE FABRIC IS PLACED OVER EXISTING SNOW/ICE SURFACE PRIOR TO PLACEMENT OF THE SWAMP MATS. ALTERNATIVELY, CLEAN SNOW OR ICE CAN BE USED TO FILL THE CHANNEL PRIOR TO PLACEMENT OF THE GEOTEXTILE FABRIC AND SWAMP MATS (PROFILE 1).
3. FOR NARROW WATERCOURSES WITH STABLE BANKS, GEOTEXTILE FABRIC IS DRAPE ACROSS THE CHANNEL PRIOR TO PLACEMENT OF THE SWAMP MATS (PROFILE 2).
NOTES:
1. TO PROTECT THE STREAM BED, A GEOTEXTILE LINER SHALL BE LAID DOWN ON THE BED AND BANKS AFTER INSTALLING THE CULVERT BUT BEFORE PLACING ANY RAMP MATERIAL. GEOTEXTILE SHALL BE WIDE ENOUGH TO FOLD BACK INTO THE EDGE OF THE RAMP AT THE UPSTREAM AND DOWNSTREAM ENDS OF THE RAMP AND PREVENT ANY FILL FROM FALLING INTO THE STREAM. THE SIDES OF THE RAMP SHALL BE ARMOURED TO PROTECT IT FROM EROSION DURING HIGH STREAMFLOWS.
2. CULVERTS SHALL BE INSTALLED AS REQUESTED AND BE OF SUFFICIENT SIZE AND NUMBER TO HANDLE A ONE IN TWENTY YEAR STREAM FLOW. CULVERTS SHALL ALSO BE OF SUFFICIENT WALL THICKNESS AND GRADE TO HANDLE HEAVY LOADS.
3. RAMPS SHALL BE OF SUFFICIENT DEPTH TO PREVENT COLLAPSE OF THE CULVERT.
4. RAMPS SHALL BE CONSTRUCTED FROM COMPANY APPROVED LOCAL MINERAL SUBSOIL FREE OF ORGANICS OR OTHER DELETERIOUS MATERIAL.
NOTES:
1. TO PROTECT THE STREAM BED, A GEOTEXTILE LINER SHALL BE LAID DOWN ON THE BED AND BANKS AFTER INSTALLING THE CULVERT BUT BEFORE PLACING ANY RAMP MATERIAL. GEOTEXTILE SHALL BE WIDE ENOUGH TO FOLD BACK INTO THE EDGE OF THE RAMP AT THE UPSTREAM AND DOWNSTREAM ENDS OF THE RAMP AND PREVENT ANY FILL FROM FALLING INTO THE STREAM. THE SIDES OF THE RAMP SHALL BE ARMOURED TO PROTECT IT FROM EROSION DURING HIGH STREAMFLOWS.
2. CULVERTS SHALL BE INSTALLED AS REQUESTED AND BE OF SUFFICIENT SIZE AND NUMBER TO HANDLE A ONE IN TWENTY YEAR STREAM FLOW. CULVERTS SHALL ALSO BE OF SUFFICIENT WALL THICKNESS AND GRADE TO HANDLE HEAVY LOADS.
3. RAMPS SHALL BE OF SUFFICIENT DEPTH TO PREVENT COLLAPSE OF THE CULVERT.
4. RAMPS SHALL BE CONSTRUCTED FROM APPROVED LOCAL MINERAL SUBSOIL FREE OF ORGANICS OR OTHER DELETERIOUS MATERIAL.
5. TOP COURSE OF 1” ROAD CRUSH MAY BE ADDED IF REQUIRED.

Appendix 1E CONST-14
Alaska Pipeline Project
Construction Typicals – Equipment Crossing – Rock/Culvert Bridge

DRAFT
NOTES:

1. USE ICE BRIDGES TO PROVIDE VEHICULAR ACCESS ACROSS FLOWING WATERCOURSSES WITH SIGNIFICANT NATURAL ICE COVER.
2. WATER FROM WATERCOURSSES (OR HAULED TO SITE, IF NECESSARY) IS PUMPED ONTO THE PROPOSED ICE BRIDGE TO INCREASE THE LOAD–BEARING CAPACITY FOR HEAVY EQUIPMENT USE.
3. MONITOR ICE BRIDGE INTENSITY DURING CONSTRUCTION ACTIVITIES, FLOOD AS REQUIRED TO MAINTAIN LOAD–BEARING CAPACITY.
4. PRIOR TO SPRING BREAK–UP AND TO MINIMIZE ICE JAMS AND POTENTIAL FLOODING, THE ICE BRIDGE IS CLEANED OF DEBRIS AND NOTCHED AT SEVERAL LOCATIONS.
NOTES:

1. USE SNOW FILLS TO PROVIDE VEHICULAR ACCESS ACROSS WATERCOURSES WITH LITTLE OR NO FLOW.
2. CLEAN SNOW FROM ADJACENT AREAS IS PUSHED ONTO THE CROSSING LOCATION TO PROVIDE A LEVEL SURFACE FOR EQUIPMENT. IF THE SUPPLY OF CLEAN SNOW IS INADEQUATE, SNOW CAN BE PROVIDED BY SNOWMAKING MACHINES OR HAULED FROM NEARBY AREAS, SUCH AS LAKES.
3. PRIOR TO SPRING BREAK-UP AND TO MINIMIZE POTENTIAL FLOODING, THE SNOW FILL IS CLEARED OF DEBRIS AND V-NOTCHED.
NOTES:

1. USE LOG FILL TO PROVIDE VEHICULAR ACCESS ACROSS SMALL WATERCOURSES WITH LITTLE OR NO FLOW.
2. THE LOGS ARE BUNDLED WITH CABLE TO FACILITATE EASY REMOVAL AND PLACED ONTO GEOTEXTILE FABRIC IN THE CHANNEL. THE GEOTEXTILE FABRIC IS THEN WRAPPED AROUND THE LOG FILL.
3. APPROVED MATERIAL (e.g. SWAMP MAT, SNOW, SOIL) IS PLACED OVER THE LOG FILL TO PROVIDE A STABLE DRIVING SURFACE.
4. REMOVE CROSSING AT COMPLETION OF CONSTRUCTION OR PRIOR TO SPRING BREAK-UP.
5. ENSURE WATERCOURSE IS CLEARED OF DEBRIS OR SOIL THAT MAY HAVE BEEN DEPOSITED DURING CONSTRUCTION ACTIVITIES.
NOTE:
1. HELIPAD THICKNESS WILL DEPEND ON LOCAL GROUND CONDITIONS.
Appendix 1E CONST−22D
Alaska Pipeline Project
ConstructionTypicals−150PersonCamp−3Acres
DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E CONST–22E
Alaska Pipeline Project
Construction Typicals – 50 Person Camp – 2 Acres

DRAFT
50 ACRES TOTAL

Appendix 1E CONST-23A
Alaska Pipeline Project
Construction Typical: Pipe Storage/Camp/Contractor Yard - Option 1

DRAFT
Appendix 1E CONST-23B
Alaska Pipeline Project
Construction Typicals – Pipe Storage/Camp/Contractor Yard – Option 2

FERC Docket No. PF09-11-000

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

50 ACRES TOTAL
LIMIT OF PAD

ACCESS ROAD

TO HIGHWAY

STAGING STORAGE

STAGING

FIRST AID

FUEL

700'

500'

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E CONST-24
Alaska Pipeline Project
Construction Typical - Stand Alone Contractor Yard - 8 Acres

Rev C

DRAFT
NOTE:
1. FOR WINTER TESTING OPEN TRENCH, FILL LINE AND PUMPS MAY BE HOARDED AND HEATED.

LEGEND:
1. TEST HEAD
2. TEST SHACK
3. SQUEEZE PUMP
4. FILL PUMP
5. LIGHT STANDS
6. MECHANICAL TRAILER
7. BOILER TRAILER (WINTER – IF REQUIRED)
8. FUEL TRAILER
9. BOOSTER PUMPS
10. WATER INTAKE
11. FREEZE DEPRESSANT TANKS (WINTER – IF REQUIRED)
NOTES:
1. "ZEE" CONFIGURATION MAY BE OPPOSITE HAND.
2. DESIGN PARAMETERS TO BE DETERMINED ON A SITE SPECIFIC BASIS INCLUDE:
 - TRANSITION LEGS, L_A AND L_B
 - CROSSING LEG, L_X
 - SLEEPER SPACING
 - SLEEPER BEAM LENGTH
 - PIPE SHOE LENGTH
 - TYPE AND THICKNESS OF GRANULAR PAD TO SUPPORT SLEEPERS

DRAFT 1 FERC APPLICATION
NOT FOR CONSTRUCTION

Appendix 1E FAULT–01
Alaska Pipeline Project
Conceptual "Zee" Fault Crossing Design – Strike–Slip Faults

DRAFT
NOTES:

1. "U" CONFIGURATION MAY BE OPPOSITE HAND.
2. DESIGN PARAMETERS TO BE DETERMINED ON A SITE SPECIFIC BASIS INCLUDE:
 - TRANSITION LEGS, Lr AND Lb
 - CROSSING LEG, Lx
 - SLEEPER SPACING
 - SLEEPER BEAM LENGTH
 - PIPE SHOE LENGTH
 - TYPE AND THICKNESS OF GRANULAR PAD TO SUPPORT SLEEPERS
NOTES:

1. "ZEE" CONFIGURATION MAY BE OPPOSITE HAND.
2. DESIGN PARAMETERS TO BE DETERMINED ON A SITE SPECIFIC BASIS INCLUDE:
 - TRANSITION LEGS, L\textsubscript{A} AND L\textsubscript{B}
 - CROSSING LEG, L\textsubscript{x}
 - SLEEPER SPACING
 - SLEEPER BEAM LENGTH
 - PIPE SHOE LENGTH
 - TYPE AND THICKNESS OF GRANULAR PAD TO SUPPORT SLEEPERS
 - INTERSECTION ANGLE, \(\beta \)
 - BEND ANGLE, \(\theta \)