MUSE STANCIL

NATURAL GAS LIQUIDS, IN-STATE GAS PROCESSING, AND PETROCHEMICAL FACILITIES

Prepared for

STATE OF ALASKA

DEPARTMENT OF REVENUE

September 2004

DALLAS: 15455 Dallas Parkway · Suite 200 · Addison, Texas 75001 · Phone (214) 954-4455 · Fax (214) 954-1521 HOUSTON: Three Allen Center · 333 Clay Street · Suite 4130 · Houston, Texas 77002 · Phone (713) 890-1182 · Fax (713) 751-8888

U.S. NATURAL GAS LIQUID PRODUCTION - 2003

- Overall U.S. demand averaging about 2 million barrels per day (MMb/d)
- > 2003 U.S. net imports of natural gas liquids averaged approximately 166,000 barrels per day (Mb/d)

NGL TRADING HUBS

- Mont Belvieu market is the "price setter" or "NGL price reference point" for North American NGL markets
 - Canadian NGL exports represent about 10 percent of U.S. demand
- In the Lower 48, regional market centers are associated with significant NGL fractionation assets
 - Sarnia, Ontario
 - Conway, Kansas
 - Edmonton, Alberta
- Sales to local markets
 - Via truck and/or barge transport
 - "Bottled Gas" distribution

PRODUCT PRICE TRENDS

> In general, ethane tracks natural gas price; propane and butane track crude oil price

COMPARISON OF NATURAL GAS AND ETHANE VALUES

Although prices for both natural gas and ethane have increased, the difference between the prices for these products has narrowed significantly since late 2000

NGL PRICING

- Energy Information Administration (EIA) is forecasting that NGL prices will remain essentially flat on a real basis in the long term
- Specific netback pricing for Alaska Gas Pipeline (AGP) delivered supplies will be a function of the total cost to extract the NGL and to transport the products to end-user markets
- End-use markets may not develop uniformly for all NGL components and will be dependent on local demand in the geographic location or locations selected for NGL extraction
 - NGL extracted from AGP will be primarily ethane, with significantly lesser amounts of propane and heavier products
 - NGL composition from AGP is expected to be much different than typical Lower 48 NGL mixtures

HISTORICAL NET NGL EXTRACTION MARGIN

Net Operating Margin = Processing Upgrade Less Plant Operating Expenses (Excludes Overhead, Capital Expenditures, and Return on Capital)

PRODUCER'S BREAKEVEN PERCENT OF EXTRACTED NGLS

NOTE: Assumes producer stands fuel, shrink, and transportation and fractionation, and no return on capital

ALTERNATIVE DISPOSITIONS FOR AGP THROUGHPUT

- Extraction and Petrochemical Manufacturing Outside of Alaska
 - U.S. Gulf Coast is the largest petrochemical center with 80 percent of existing U.S./Canadian ethylene production capacity
 - Other petrochemical centers include:
 - Alberta (primarily near Edmonton) 12 percent
 - Sarnia, Ontario 3 percent
 - Various locations within the U.S. Midwest 3 percent
 - U.S. East Coast 1 percent
 - The nearest existing infrastructure of plausible size is located in Alberta
 - Canada is currently supplying internal demand for NGL and exports excess supply to the U.S. Midwest

- New gas processing and petrochemical manufacturing capacity or NGL pipeline export capacity may have to be added in Alberta to absorb Alaskan NGL's, depending on the timing of AGP start-up relative to the decline of existing Canadian gas production and development of new sources of Canadian gas, such as the Mackenzie Delta project
- Extraction in Alaska
 - Would not likely support economic development of second pipeline to Canada/Lower 48 for NGL only
 - Would therefore require development of complete NGL extraction, petrochemical manufacturing, and support system infrastructure
 - May also require transportation infrastructure expansions that have not yet been defined

IN-STATE EXTRACTION OF ALASKAN NGL'S

- Fairbanks Extraction Facility to handle up to 1.4 Bcfd of AGP throughput
- Extraction of approximately 40,000 b/d of ethane to feed petrochemical complex and 1,000 b/d of propane for local consumption
- Availability of commercial-quality natural gas for local distribution
- Residue gas (over 1 Bcfd) and excess NGL re-injected into AGP
- Would be required in addition to NGL extraction facilities or access to NGL extraction capacity at AGP terminus

ALASKAN PETROCHEMICAL COMPLEX

- All of the ethane extracted is utilized in the production of ethylene that is subsequently converted to polyethylene (PE) resin
- Cracker to produce 1.5 billion pounds per year of ethylene
- Includes on-site power generation to support facility operations and optionally could generate excess power for local distribution
- Assumes that the PE resin will move on existing rail infrastructure and be exported to the U.S. West Coast by marine vessel out of Whittier

SUMMARY OF FINDINGS

Advantages of Fairbanks Petrochemical Development

- Availability of attractively priced feedstock extracted from AGP
- Waterborne access to California market
- Synergy with other potential energy developments
 - Provides pipeline quality natural gas to Fairbanks
 - Could develop gas pipeline to Anchorage (supplement Cook Inlet gas)
 - Possible cogeneration plant tied into regional power grid
 - Off-set Cook Inlet gas decline and power generation

Disadvantages of Fairbanks Petrochemical Development

- Variability in gas composition over time
 - Non-optimal sizing and operation of Fairbanks extraction and fractionation plant
- Inherent inefficiency of processing a large portion of the gas twice; first at Fairbanks, then again at pipeline terminus
- Non-optimal sizing of AGP downstream of Fairbanks
- Considerably higher capital cost than other locations
- Higher fixed operating cost than other locations
- Lack of supporting infrastructure
- Lack of market for byproducts

SUMMARY OF FINDINGS (CONTINUED)

> Preliminary Economics

- High level analysis indicates that the production of ethylene in Fairbanks is economically less attractive than in either Alberta or the U.S. Gulf Coast
- Advantages of:
 - Lower feedstock price (ethane)
 - Lower variable operating cost advantage, driven mainly by lower gas price
- More than offset by:
 - Higher fixed operating cost due to higher labor and maintenance costs
 - Lower product value due to downgrading byproducts to fuel
- Significantly higher capital costs also a disincentive to invest
- Using recent U.S. Gulf Coast historical benchmarks, and assuming a Fairbanks location could achieve the same operating cash margin, due to the higher investment cost, a Fairbanks ethylene plant would generate a much less attractive rate of return
 - Returns shown below are expressed as capital recovery factor (CRF)

Return on Capital			
	Annual	CRF	
	Revenue \$MM	U.S. Gulf Coast	Fairbanks
2004 YTD	158.5	11.3%	7.1%
2003 avg.	125.0	8.9%	5.6%
2002 avg.	127.0	9.1%	5.7%
2001 avg.	153.6	11.0%	6.8%

