Fairbanks to Anchorage Spur Report -Updated Analysis

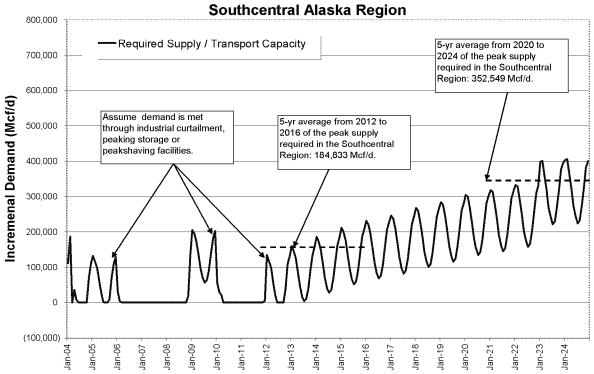
June 2004

CDP_700405

Overview

- Project description
- Earlier findings / conclusions
- Current analysis efforts
- Updated findings
- Implications of ownership / timing
- Work in progress to finalize report

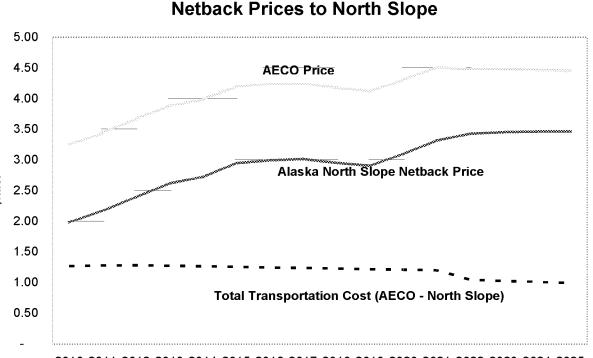
- Analysis of requirement for and feasibility of constructing a spur line from the main Alaska Natural Gas Pipeline to the Anchorage region
- Analysis considered:
 - □ Supply/demand projections for Anchorage region
 - Pipeline construction capital costs
 - Rate methodology for transportation on Alaska Natural Gas Pipeline and Spur pipeline
 - □ Price projections at AECO, North Slope, Anchorage region
- Analysis period was defined as 2005 to 2025


Overview

- Project description
- Earlier draft findings / conclusions
- Current analysis efforts
- Updated findings
- Implications of ownership / timing
- Work in progress to finalize report

Earlier Draft Findings – Need for incremental supply by 2004

- Incremental supply, or curtailment of existing load is required as early as 2004 to meet existing residential, commercial, electric utility and industrial demand in the South-central region of Alaska with average weather.
- Supplies are required into the region during summer and winter periods on a consistent basis starting in 2013


Spur Transportation Capacity Forecast Southcentral Alaska Region

Earlier Draft Findings – Netback prices to North Slope range from \$1.99 to \$3.46 during analysis period

- Rate design models were developed to determine the netback cost of gas.
- North Slope netback was determined by removing the two portions of transportation charges from the AECO Hub gas price forecast:
 - Canadian rate (\$0.57 USD/Mcf, including \$0.15/Mcf for transportation on NOVA system)
 - Alaskan rate (\$0.50 USD/Mcf)
 - □ 2.5% fuel cost

LUKENS ENERGY GROUP

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Earlier Draft Findings – Transportation rates for Spur Project expected to range from \$0.92 to \$1.07/Mcf

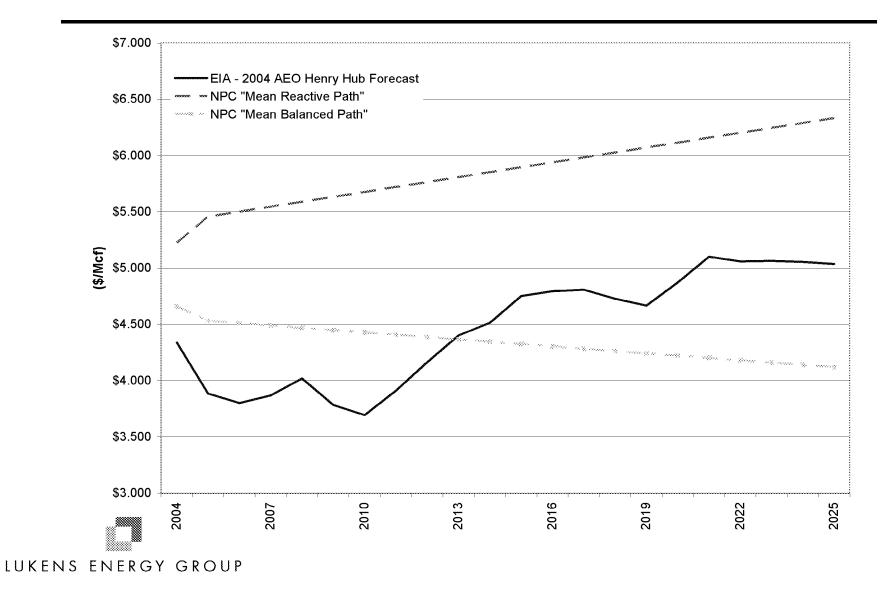
- A zone-based transportation rate was applied from the North Slope to the Spur at Fairbanks and on the Spur from Fairbanks to the Anchorage area
- Various pipeline diameters (and therefore varying capital costs) were selected and two rate methodologies were applied – a rolled-in Spur rate and an incremental Spur rate
- Incremental rate is expected to be applicable

	30" Spur		24" Spur Case #1 - 0.350 Bcf/d capacity		24'' Spur Case #2 - 0.310 Bcf/d capacity		16" Spur
Capacity (Bcf)		0.350		0.350		0.310	0.110
Incremental Rates							
Zone 1 Rate	\$	0.357	\$	0.357	\$	0.357	\$ 0.357
Spur Rate	\$	0.715	\$	0.567	\$	0.644	\$ 1.451
Total	\$	1.072	\$	0.924	\$	1.001	\$ 1.808
Roll-in Rates							
Zone 1 Rate	\$	0.379	\$	0.372	\$	0.375	\$ 0.375
Spur Rate	\$	0.255	\$	0.251	\$	0.252	\$ 0.249
Total	\$	0.634	\$	0.623	\$	0.626	\$ 0.623

LUKENS ENERGY GROUP

Earlier Draft Findings – Delivered cost of gas into the Anchorage area is expected to be comparable to alternatives

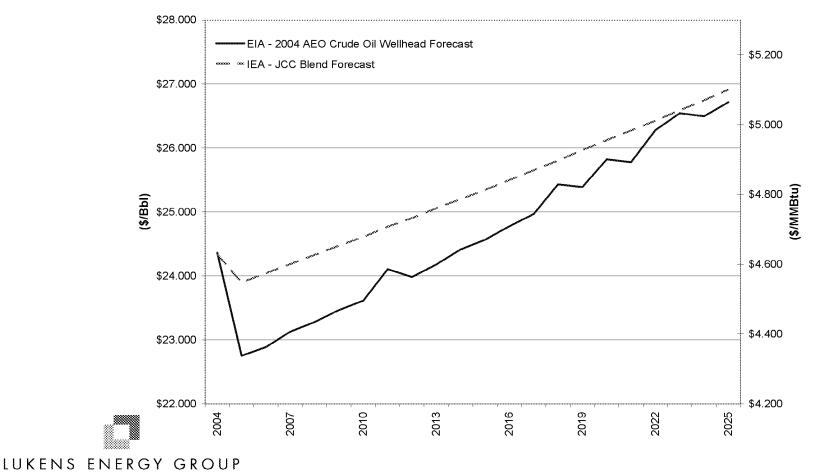
- Delivered cost of gas into Anchorage area based on North Slope price and cost of transportation on Alaska Natural Gas Pipeline and the Spur is \$3.54 to \$3.69/Mcf in 2013, the first year during which supplies are needed for summer and winter periods into the region
- This delivered cost of gas to the Anchorage region is less than ENSTAR's current gas supply agreement with Unocal that is pegged to Henry Hub prices
- Although a more detailed review is needed, the delivered cost is also expected to be less than or competitive with other alternatives for gas delivered into the Anchorage region going forward



Overview

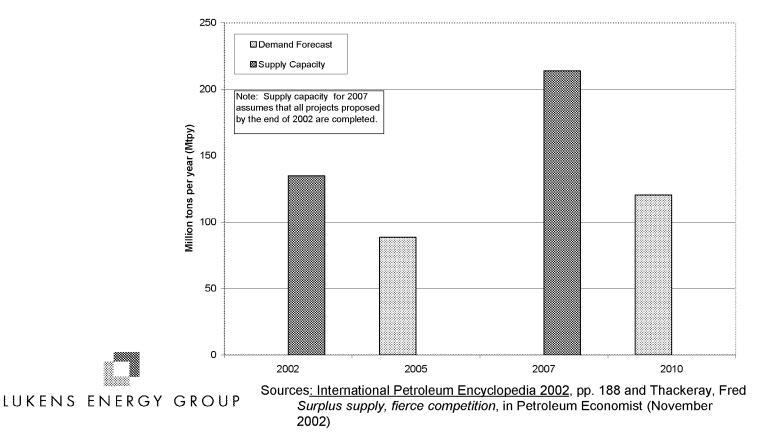
- Project description
- Earlier findings / conclusions
- Current analysis efforts:
 - Price assumptions
 - **Demand assumptions:**
 - LNG market analysis Marathon/ConocoPhillips LNG
 - Agrium
 - LDC load profile & supply assets
 - □ Supply assumptions
 - **Updated ANGP & Spur rates**
- Updated findings
- Implications of ownership / timing
- Work in progress to finalize report

Henry Hub price assumptions



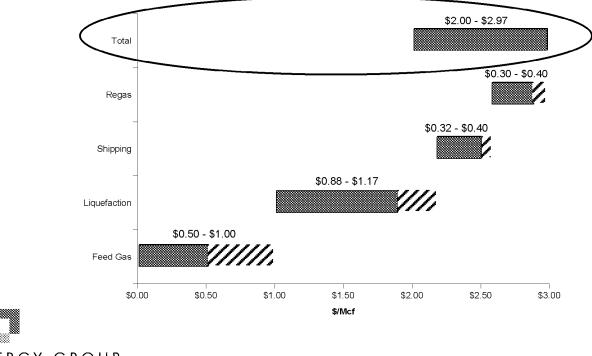
LNG market analysis – Most likely future scenarios for Marathon/ConocoPhillips LNG facility

- Extension of current Japanese contract where LNG prices are tied to JCC:
 - □ Projections of JCC and hence delivered LNG price
 - □ Low likelihood of contract renewal considering changes in Pacific Basin LNG market increased competition, less desire for long-term contracts
- Competing in open market in Asia-Pacific region for contracts:
 - Projected oversupply in region exaggerated if developing markets of China and India are slow to emerge
 - Larger trains coming online in Australia and Indonesia already closer to markets
 - Pacific Basin shift towards a more openly competitive market expected to drive LNG prices to \$3/Mcf, which is below that tied to JCC
- Establish new contracts with possible Western U.S. LNG import terminals:
 - **□** Timing and likelihood of completion of West Coast import terminals
 - □ Shipping issues

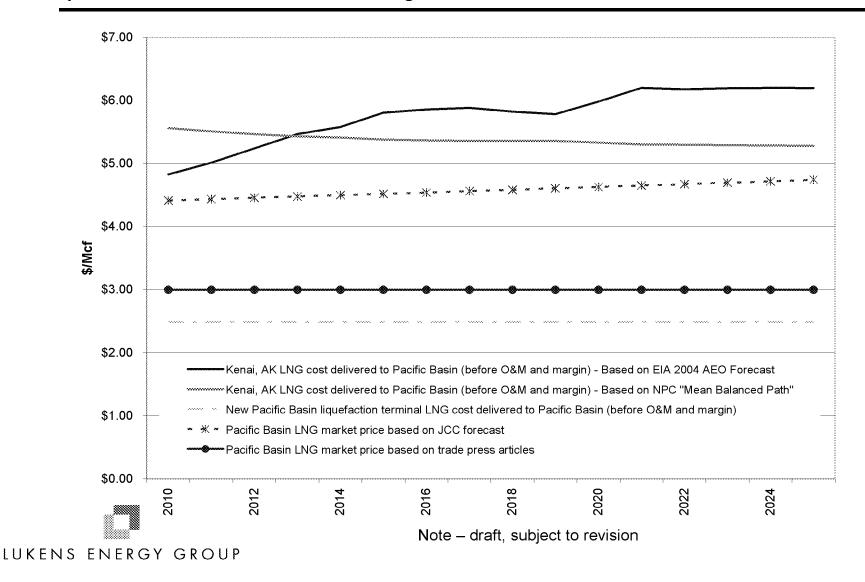


• The projected rise in JCC prices over the next 20 years may encourage Pacific Basin importers to move away from basing LNG delivered prices on the JCC

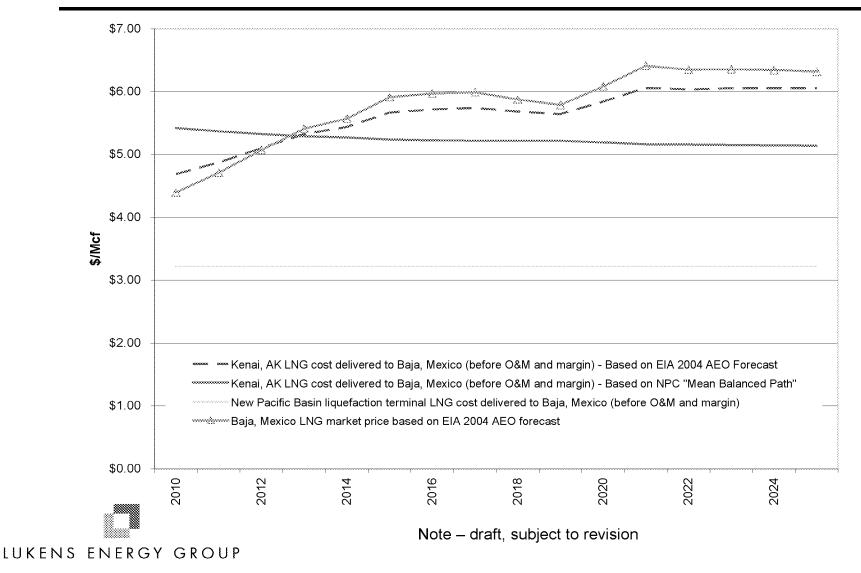
Updated LNG Analysis – Oversupply in region likely to keep LNG prices low


 Petroleum News' May 2, 2004 – "China and India...are signing up for future LNG deliveries at \$3 per thousand cubic feet or less, at least \$1 under what Japan is paying."

Demand Growth, 2005-2010 vs. Supply Growth, 2002-2007


Updated LNG Analysis – New Pacific Basin LNG export terminal value chain economics

- The value chain for the new LNG export terminals in the Pacific Basin have changed due to
 - □ Scale efficiencies
 - proximity to market
 - vertical integration of supply chain



LUKENS ENERGY GROUP

Updated LNG Analysis – Estimated LNG supply and demand prices in the Pacific Basin region

Updated LNG Analysis – Estimated LNG supply and demand prices in the West Coast U.S. / Baja Mexico region

CDP_700420

Agrium - Summary of worldwide nitrogen fertilizer manufacturing

- Agrium's Kenai facility manufactures anhydrous ammonia and urea for export to Pacific Rim markets
- Natural gas can represent 70% to 90% of the cash costs associated with manufacturing nitrogen based fertilizers
- International nitrogen fertilizer production has traditionally relied upon stranded gas reserves:
 - Agrium competes against plants in FSU, South America, Trinidad & Pacific Rim that have gas costs of \$0.60 to \$1.30/Mcf
- U.S. is a net importer of nitrogen fertilizer
- High gas prices in the U.S. has forced closures and curtailment of nitrogen fertilizer manufacturing facilities:
 - □ 9 U.S. ammonia plants closed between 1999 and 2002 13% of U.S. capacity
 - □ 5 U.S. urea plants closed between 1999 and 2002 7% of U.S. capacity

Agrium – Current status

Current status:

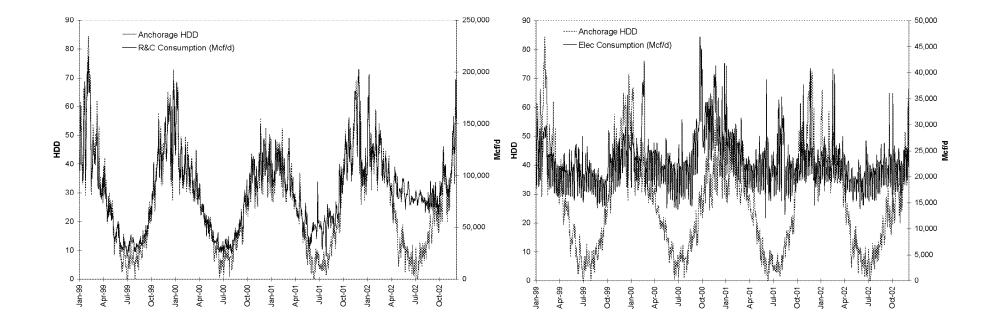
- Q4 2003, Agrium wrote down \$140 million of Kenai facility carrying cost due to uncertainty in utilization and access to gas supply
- Dispute with Unocal on Agrium facility gas supply contract (current supply price approx. \$1.40/Mcf)
- Utilization rates in 2003 71%
- Projected utilization rate in 2004 and 2005 50%

Future issues:

- Resolving Unocal dispute
- Obtaining additional gas supply
- "Incentives" to continue operations
- Worldwide nitrogen fertilizer prices
- Potential to obtain new markets U.S. (would have similar manufacturing cost position as Agrium's Alberta facility)

Study Implications:

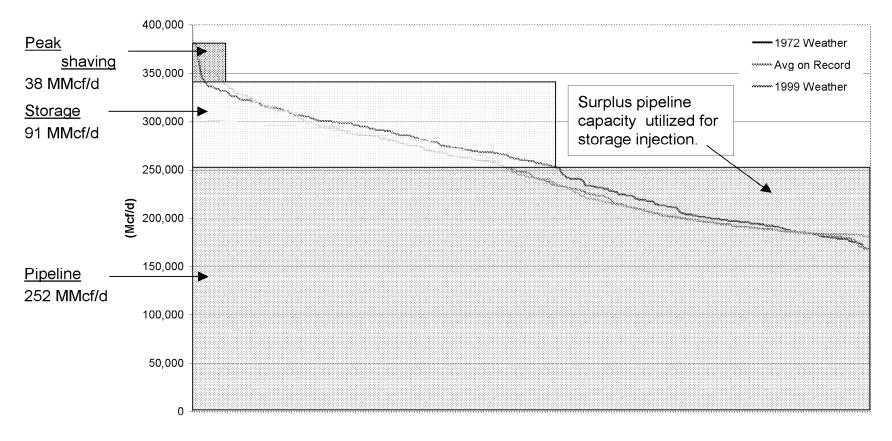
- Detailed study / analysis required to fully understand long term viability of Kenai facility
- Many future scenarios possible
- Not unrealistic to expect plant to continue operating (higher probability at a reduced rate)



LUKENS ENERGY GROUP

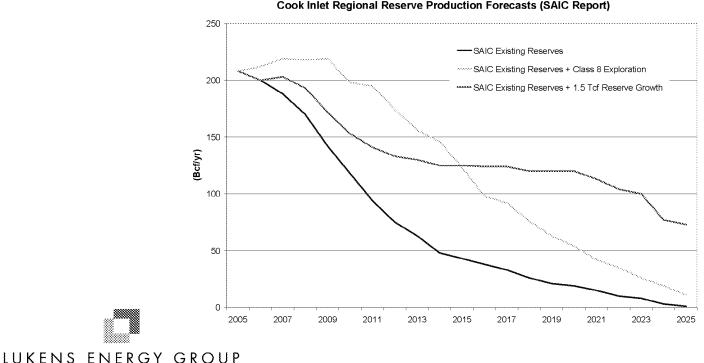
- Performed regression analysis on 1999 2002 *daily* Enstar demand data and *daily* Anchorage HDD data
- R&C demand demonstrated a significant relationship to Anchorage HDD
- Electricity demand did not have a statistically significant direct relationship to Anchorage HDD, but the demand exhibited different seasonal averages
- Industrial demand assumed to be unrelated to weather due to lack of actual industrial consumption data

Demand assumptions – Weather related components of demand (R&C and Electric demand)



- Load duration curves constructed for three scenarios average weather, 1972 weather (2nd coldest on record), and 1999 weather (coldest in last 20 years) – based on regression analysis
- Applied "typical" LDC supply portfolio ratios of 50/40/10% pipeline, storage, and peak shaving, respectively – to the load duration curves
 - Because of the shape of the curves, pipeline capacity not enough to fill storage
 - Therefore new LDC portfolio had to be designed for these type of load duration curves
 - □ Assumed a LDC supply portfolio of 66/24/10%

LDC load profile & supply assets (all South Central Alaska demand except Agrium & LNG facility)



Load Duration R&C, Elec, Tesoro Ind, and Other Industrial Consumption Curves

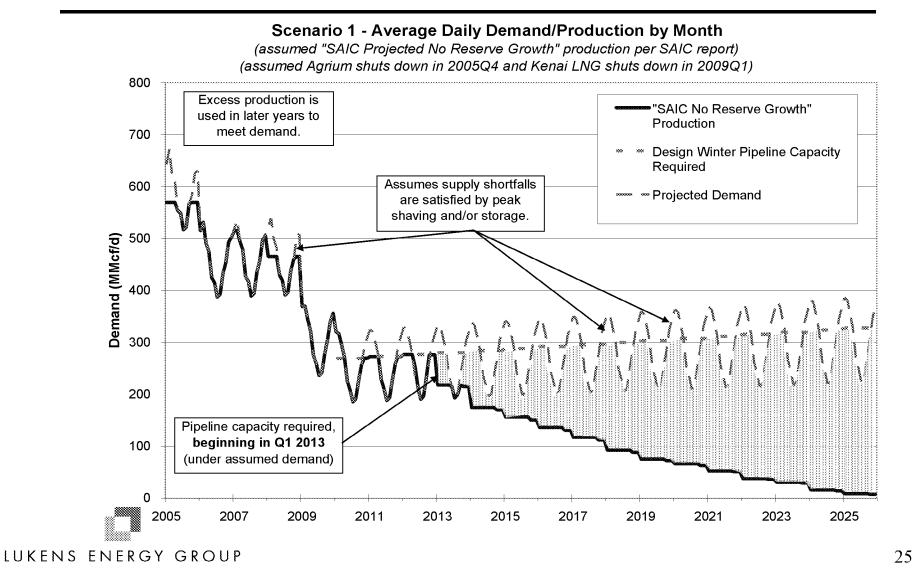
Supply assumptions – based on SAIC report

- SAIC reports various production forecasts for the Cook Inlet region
- LEG chose three production forecasts for the pipeline spur analysis ٠
 - Base Supply (existing reserves in Cook Inlet only)
 - Base Supply + 1.5 Tcf reserve growth
 - Base Supply + 1.5 Tcf reserve growth + Class 8 exploration

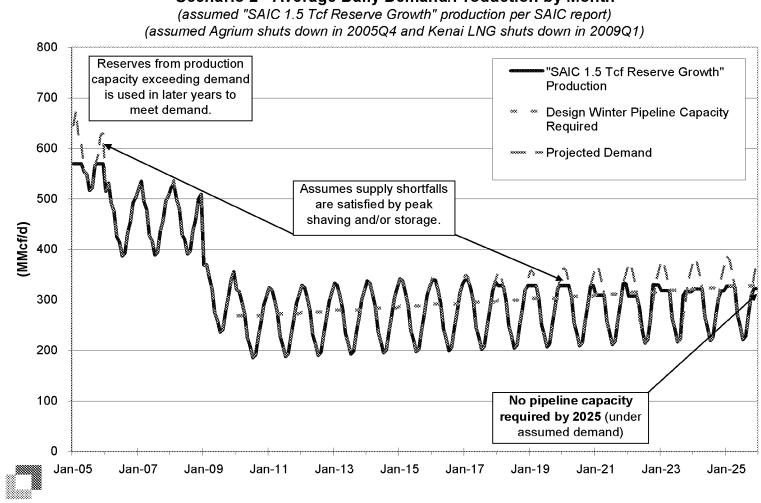
ANGP & Spur pipeline rates

	24'' 2014 .3 Bcf/d	20'' 2019 .2 Bcf/d		
Spur Capacity (Bcf)	0.300		0.200	
Incremental Rates				
Zone 1 Rate	\$ 0.359	\$	0.359	
Spur Rate	\$ 0.952	\$	1.365	
Total	\$ 1.311	\$	1.724	
Roll-in Rates				
Zone 1 Rate	\$ 0.387	\$	0.389	
Spur Rate	\$ 0.259	\$	0.258	
Total	\$ 0.646	\$	0.647	

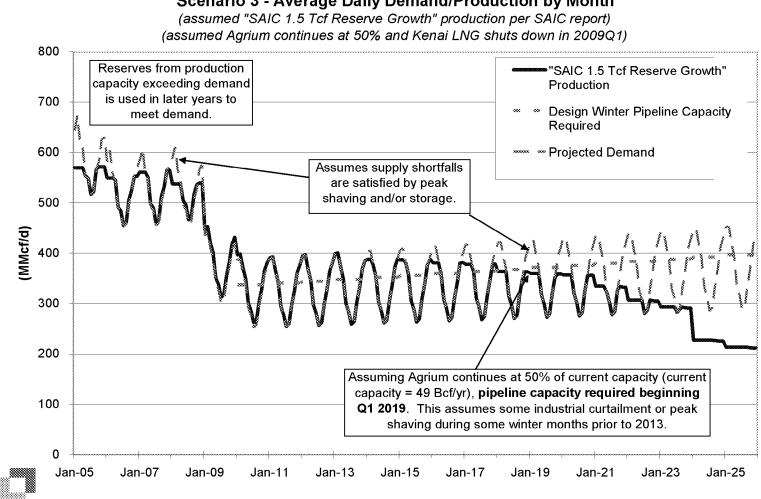
	ANGP		
Capacity (Bcf)		4.500	
Alaska Rate - Levelized			
Rate	\$	0.500	
Fuel (est.)	\$	0.030	
Total	\$	0.530	
Canadian Rate			
Rate (Year 1)	\$	0.560	
Fuel	\$	0.030	
Total	\$	0.590	
NOVA rate to AECO	\$	0.150	
Total (with fuel) to AECO	\$	1.270	


Note – draft, subject to revision

Overview


- Project description
- Earlier findings / conclusions
- Current analysis efforts
- Updated findings need for spur pipeline supply
- Implications of ownership / timing
- Work in progress to finalize report

Scenario 1 results - Pipeline supply required in 2013

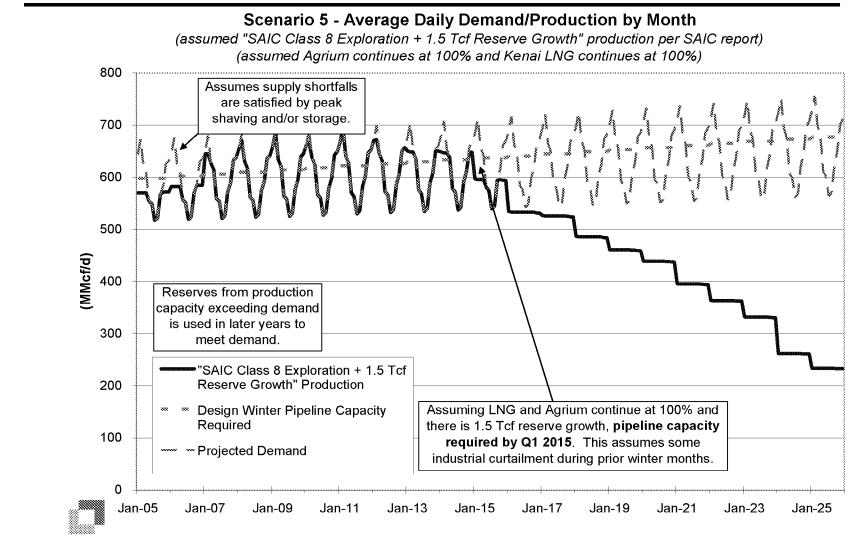


Scenario 2 results – Production sufficient to meet demand through 2025

LUKENS ENERGY GROUP

Scenario 2 - Average Daily Demand/Production by Month

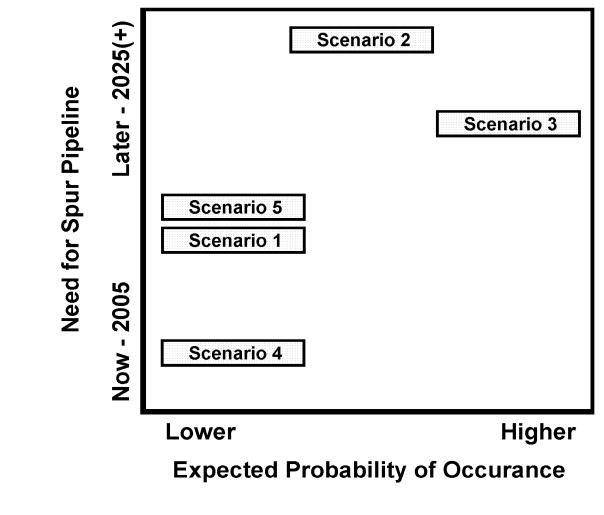
Scenario 3 - Average Daily Demand/Production by Month


LUKENS ENERGY GROUP

Scenario 4 results – Pipeline supply required immediately (2005)

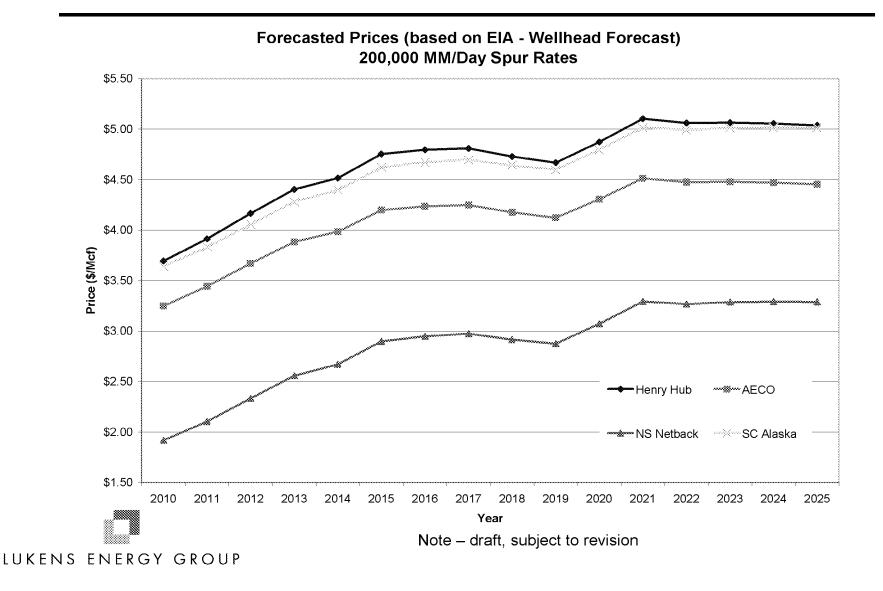
LUKENS ENERGY GROUP

Scenario 5 results – Pipeline supplies required in 2015


LUKENS ENERGY GROUP

500 Scenario 1 - "SAIC No Reserve Growth" Production / Agrium, LNG shutdown Scenario 2 - "SAIC 1.5 Tcf Reserve Growth" Production / Agrium, LNG shutdown Scenario 3 - "SAIC 1.5 Tcf Reserve Growth" Production / Agrium 50%, LNG shutdown Scenario 4 - "SAIC 1.5 Tcf Reserve Growth" Production / Agrium 100%, LNG 100% Scenario 5 - "SAIC Class 8 Exploration + 1.5 Tcf Reserve Growth" Production / Agrium 100%, LNG 100% 400 Pipeline Capacity Required (MMcf/d) ----- Scenario 1 --- Scenario 2 ····· Scenario 3 300 ∽Scenario 4 - Scenario 5 200 100 0 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023 2025

Projected Pipeline Capacity


LUKENS ENERGY GROUP

All scenarios do not have an equal chance of occurrence. LEG assessment of probability:

LUKENS ENERGY GROUP

NS netback prices & South Central Alaska delivered prices

Overview

- Project description
- Earlier findings / conclusions
- Current analysis efforts
- Updated findings need for spur pipeline supply
- Implications of ownership / timing
- Work in progress to finalize report

U.S. Senate Energy Bill

Section 375:

- Expansion service at rates designed to ensure the recovery of expansion costs
 - □ Rolled-in, or
 - □ Incremental
- Existing shippers are not required to subsidize expansion shippers

Section 378:

- Any facility receiving gas from the ANGP, deemed an LDC:
 - □ If spur is part of the ANGP, rates regulated by FERC
 - □ If not, considered an LDC and rates regulated by State

Positive (from State's perspective):

- Rate-making flexibility:
 - □ Ability for main pipeline to allocate lower costs to spur
- Leverage greatest for State during current negotiations (?)
- Immediate access to new gas supplies
- Benefits from project scale lower construction costs
- Potential operating cost savings
- Access to guaranteed debt (lower rates)

Negative:

- Is incremental supply needed in 2012?
- Potential cost over-runs for ANGP and "spill over" to spur
- Lower State influence for future expansions and spur operations

Positive (from State's perspective):

- Limited rate-making flexibility:
 - □ Incremental or rolled-in
- Build when supply/demand picture is clearer
- Lower risk / allocation of ANGP cost overruns
- Potential operating cost savings

Negative:

- Lower State influence for future expansions and spur operations
- May require pipeline to re-design rates
- If no incremental production compete with AECO market for North Slope supplies

Implications - if Spur constructed as an stand-alone pipeline

Positive (from State's perspective):

- Build when supply/demand picture is clearer
- Operated for benefit of State, consumers & producers
- Simpler management and construction of pipeline

Negative:

- If no incremental production compete with AECO market for North Slope supplies
- May require pipeline to re-design rates

Overview

- Project description
- Earlier findings / conclusions
- Current analysis efforts
- Updated findings need for spur pipeline supply
- Implications of ownership / timing
- Work in progress to finalize report

- Obtain updated pipeline cost estimate (Paragon?)
- Update spur rates & ANGP rates
- Update Alaska netbacks:
 - □ Utilize High, medium & low scenarios developed to analyze LNG viability
- Complete report

