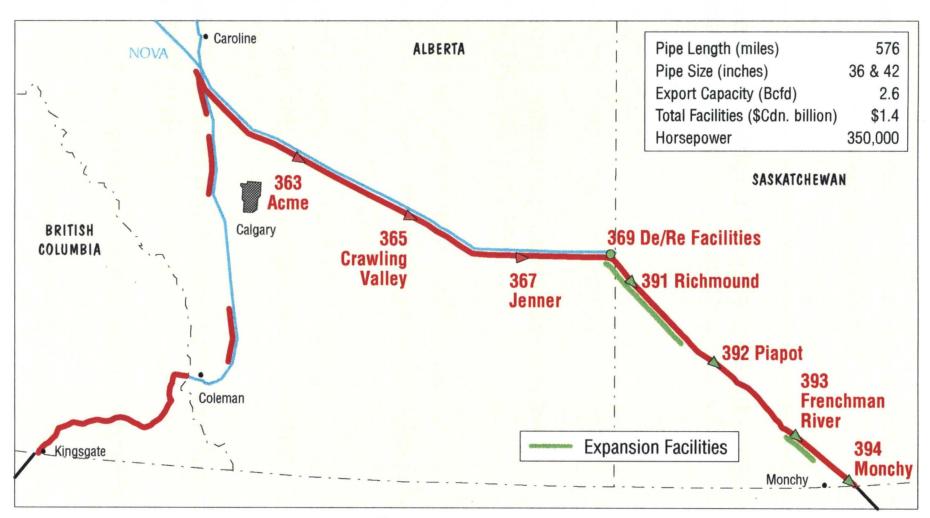
Manay E. Plene Retur

IMPROVING NORTH SLOPE GAS MARKETING THROUGH ADVANCEMENTS IN PIPELINE TECHNOLOGY

MARCH 1997

PRESENTATION OVERVIEW

- Background
- Pipeline Technology Advancements
- North Slope Gas Economics


BACKGROUND

FOOTHILLS PIPE LINES LTD.

- Privately held Canadian Company
- Owned equally by NOVA Corporation and Westcoast Energy Inc.
 - Total combined investment \$US 17 Billion
- Created to pursue Northern Pipeline Project Development and has actively done so since its inception in the 1970's
- Canadian sponsor of the Alaska Natural Gas Transportation System (ANGTS)
- Ownership interest in and joint operator of the Alaskan Segment of the ANGTS (ANNGTC)
- Has done extensive work with respect to all aspects of Northern Pipeline Development
- Owns and operates the Prebuild Canadian section of ANGTS
 - In 1996 transported 922 Bcf, 1/3 of the total Canadian gas exported to the U.S.
- Total investment \$US 1.0 Billion

FOOTHILLS EXISTING FACILITIES

ANGTS PROJECT PIPELINE RESEARCH COMPLETED TOTAL PROJECT

- Hundreds of millions of dollars spent both in Canada and Alaska related to study of:
 - -Permafrost
 - -Soil Stabilization
 - Environmental Management and Mitigation
- Confirmed northern pipeline design and construction techniques, e.g.:
 - Soil Thermal Prediction Techniques
 - Frost Heave and Thaw Settlement Mitigation
 - Arctic Ditching Techniques
 - Pipe Fracture Control Methodology
 - Environmentally Acceptable Construction Windows
- Obtained much of the information from full scale field testing facilities
- Provides base data for site specific pipeline design

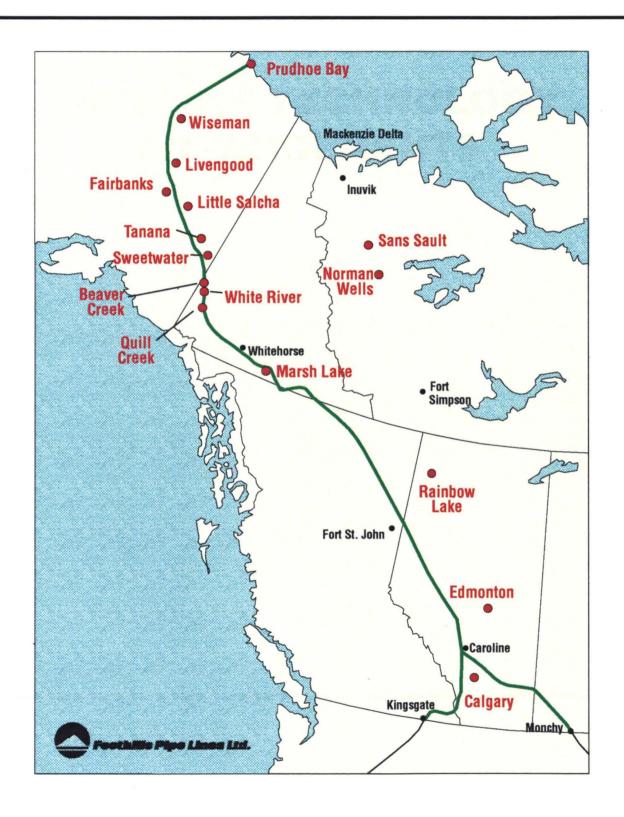
ANGTS PROJECT PIPELINE RESEARCH COMPLETED SPECIFIC TO ALASKA

- Approximately \$450 million spent on research and gathering of field data
 - -Seven Field Research Test Sites
 - Extensive Geotechnical Data Obtained and Documented, eg.:

Borehole Drilling

3650 holes

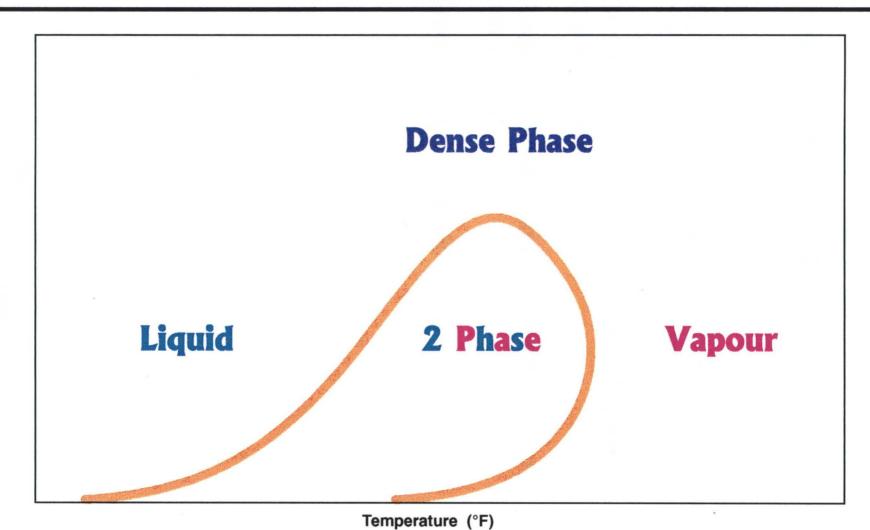
 Hydrologic Surveys and Aufeis Studies


130 stream crossings

 Soil Temperature Measurements 20,000 thermistors

- Seismic and Fault Crossing Studies
- Majority of data specific to the Prudhoe Bay to Delta Junction section of pipeline alignment
- Comprehensive Environmental Studies
- Resulted in approval of engineering and environmental design criteria by both OFI and FERC
- Knowledge applicable to other northern projects

ARCTIC PIPELINE TEST SITE LOCATIONS



PIPELINE TECHNOLOGY ADVANCEMENTS

PIPELINE TECHNOLOGY ADVANCEMENTS OVERVIEW

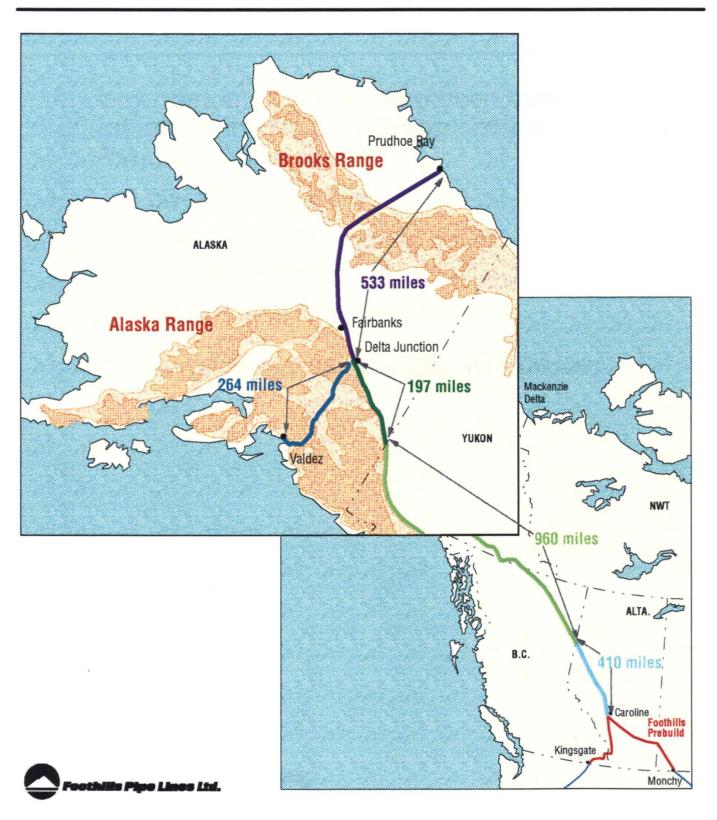
- Dense Phase Flow
- Higher Operating Pressures
- Ultra High Strength Steel/Composite Materials
- High Speed Automatic Welding Systems
- Geometric Inspection Tools
- Advanced Ditcher Technology
- Enhanced Modular Construction Techniques
- Satellite/Fibre Optic Communication Systems
- High Efficiency Gas Turbines
- Real Time Transient Modelling

DENSE PHASE ADVANTAGES

- Transports up to 50% higher Btu stream, reducing unit transportation cost
- Smaller diameter, high strength pipe reduces pipeline cost
- Reduces frost heave/thaw settlement concerns
- Reduces gas conditioning

RECENTLY COMPLETED STUDIES

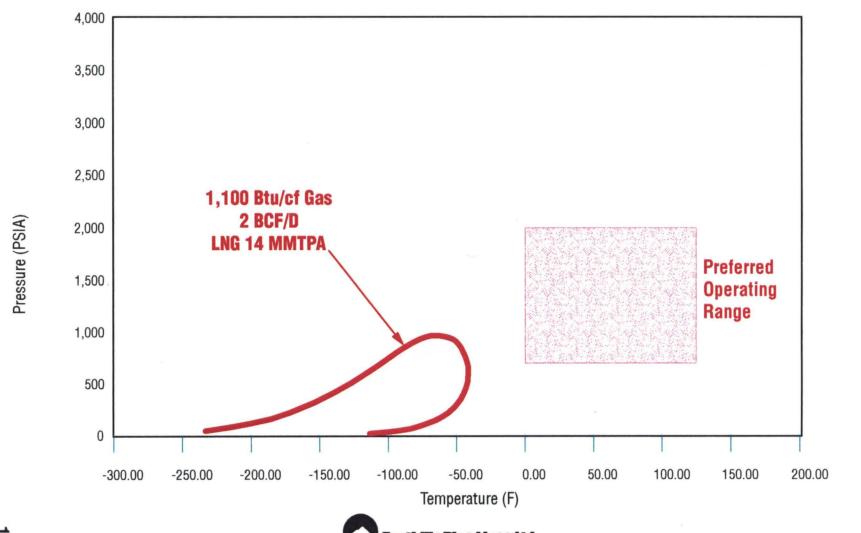
- Preliminary Design and Cost of Prudhoe Bay Gas Conditioning Facility
- Modelling Dense Phase Fluid properties and behaviour - Statoil independent analysis
- Preliminary Design and Cost of Dense Phase Compressor Station
- Study of Technical Capability and Availability of X100 Steels
- Frost Heave Study for X-100 Steel Pipeline
- Hydraulic Design of Pipeline Facilities
- Preliminary Fracture Control Design
- Plume Dispersion Study


STUDIES IN PROGRESS

- Cost Estimate of Pipeline Facilities
- Composite Materials Design
- High Strength Component Availability
- Evaluation of High Pressure Pipeline Compressors
- Pipe/Ground Heat Flow Simulations
- Environmental Assessment of Dense Phase Design
- Laboratory Evaluation of Dense Phase Fluid Properties
- University of Alaska collaboration

NORTH SLOPE GAS PROJECT

ROUTINGS - ALASKAN GAS PROJECTS



PROJECT ISSUES

- Key obstacles which have been publicly identified in Working Group chaired by Representative Barnes:
 - Lower capital costs
 - Penetrating LNG market quickly with large volumes to realize full project revenues
 - Suitable financing environment
- Presentation addresses first two issues

COMPARISON OF THROUGHPUTS AND PRODUCTS FOR EQUAL ENERGY (2.2 TRILLION BTU/D) LEAN AND ENRICHED GAS STREAMS

COMPARISON OF THROUGHPUTS AND PRODUCTS

FOR EQUAL ENERGY (2.2 TRILLION BTU/D) LEAN AND ENRICHED GAS STREAMS

CONVENTIONAL FLOWS VS DENSE PHASE FLOWS FOR LNG PROJECT

Conventional	Dense Phase	Advantages
Gas Conditioning	Gas Conditioning	- Reduces volume of gas to be processed
42" Pipeline MOP = 2 200 psi	30" Pipeline MOP = 3 400 psi	- Greater flexibility in product mix
3 Compressor Stations	4 Compressor Stations	 Frost heave/thaw settlement reduced
Lean Gas (1 100 Btu/scf)	Rich Gas (eg. 1 500 Btu/scf)	 Reduction in cost of service
1 300 psi inlet	2 100 psi inlet	 Light condensates will liquefy easily
Liquefaction Facilities	Liquefaction Facilities	 Larger pressure drop will aid liquefaction
1 delittles	1 domites	 Likely reduces cost per unit of energy
~hm. ~hm.	~\dam_ ~\dam_	 Less costly tanker fleet Larger market area (light condensates)

PIPELINE COST REDUCTION

- Smaller diameter pipe
 - -30 inch diameter pipe at 3 400 psi
- Automatic welding
 - -higher production rates
 - -120 welds/day
- High strength steel
 - -X-100
- Advanced ditcher technology
- Reduced frost heave concerns
- Year round construction
- Shortened construction period (2 years)

NORTH SLOPE CONDITIONING PLANT COST REDUCTION

- Maximize use of existing infrastructure
 - Central compression facility
 - Central processing facility
- Lower initial gas volumes minimize CO₂ and H₂O removal and gas refrigeration
 - -(1.5 Bcfd versus 2 Bcfd)

LIQUEFACTION PLANT COST REDUCTION

- Initially 6 MM tons/year versus 14 MM tons/year LNG
- Higher inlet pressure reduces capital and operating costs
- Light condensates liquefy more easily than methane
 - New revenue stream

TANKER COST REDUCTION

- 6 MM tons/year versus 14 MM tons/year LNG
- Large light condensate component
- Lower cost condensate tanker construction (-60°F design versus -260°F LNG design)

PRELIMINARY CAPITAL COST COMPARISON OF NORTH SLOPE GAS PROJECTS PRUDHOE BAY - VALDEZ

Component	Capital Cost (1996 \$US Billions)	
-	Conventional ¹ 1 100 Btu/cf, 14 MMT/yr. LNG	Dense Phase 1,500 Btu/cf, 6 MMT/yr. LNG 350,000 Bpd Liquids
Prudhoe Bay Conditioning Plan	1.5 t	1
Pipeline	6	4
Valdez Liquefaction Plant	3.75	2 - 3
Tankers	3.75	2 - 3
TOTAL	15.0	9 - 11

¹ State of Alaska Revenue Department

SUMMARY

- Foothills has extensive northern pipeline expertise
- Technology advancements reduce project cost
- Modest initial LNG volumes sized to penetrate market
- Significant expansion capability
- Highly marketable light condensates
- Revenue equivalent of 14 million tons of LNG per year with smaller start-up project

