WHAT ABOUT THE VEGETATION?: BUILDING A GAS PIPELINE THROUGH THE ARCTIC (DAMAGE & RECOVERY)
Vegetation

Vegetation is important for two major reasons. It

1. Assists in the stabilization of the rooting zone, reducing the depth of the rooting zone, and thus reducing surface disturbance.

2. Assists in increasing surface disturbance by reducing the depth of the rooting zone, and thus reducing surface disturbance.

Construction Procedures

Most of the pipeline and associated construction activities will be restricted to the winter period when the ground is frozen, and any erosion and deposition resulting from construction activities will be limited. However, there were instances where some vegetation was exposed and deposited on the ground surface. This was generally limited to exposed patches of peat and snow. In these situations, the exposed patches were bulldozed aside and rehabilitation of the areas was greatly reduced.

Surface Disturbances

Surface disturbance is reduced by the complex interaction of vegetation. Where vegetation is established, the depth of the rooting zone is increased, reducing surface disturbance. Where vegetation is disturbed, the depth of the rooting zone is reduced, increasing surface disturbance.

Minimizing Surface Disturbance

Vegetation

Vegetation is important for two major reasons. It

1. Assists in the stabilization of the rooting zone, reducing the depth of the rooting zone, and thus reducing surface disturbance.

2. Assists in increasing surface disturbance by reducing the depth of the rooting zone, and thus reducing surface disturbance.

Construction Procedures

Most of the pipeline and associated construction activities will be restricted to the winter period when the ground is frozen, and any erosion and deposition resulting from construction activities will be limited. However, there were instances where some vegetation was exposed and deposited on the ground surface. This was generally limited to exposed patches of peat and snow. In these situations, the exposed patches were bulldozed aside and rehabilitation of the areas was greatly reduced.

Surface Disturbances

Surface disturbance is reduced by the complex interaction of vegetation. Where vegetation is established, the depth of the rooting zone is increased, reducing surface disturbance. Where vegetation is disturbed, the depth of the rooting zone is reduced, increasing surface disturbance.

Minimizing Surface Disturbance

Vegetation

Vegetation is important for two major reasons. It

1. Assists in the stabilization of the rooting zone, reducing the depth of the rooting zone, and thus reducing surface disturbance.

2. Assists in increasing surface disturbance by reducing the depth of the rooting zone, and thus reducing surface disturbance.

Construction Procedures

Most of the pipeline and associated construction activities will be restricted to the winter period when the ground is frozen, and any erosion and deposition resulting from construction activities will be limited. However, there were instances where some vegetation was exposed and deposited on the ground surface. This was generally limited to exposed patches of peat and snow. In these situations, the exposed patches were bulldozed aside and rehabilitation of the areas was greatly reduced.

Surface Disturbances

Surface disturbance is reduced by the complex interaction of vegetation. Where vegetation is established, the depth of the rooting zone is increased, reducing surface disturbance. Where vegetation is disturbed, the depth of the rooting zone is reduced, increasing surface disturbance.

Minimizing Surface Disturbance

Vegetation

Vegetation is important for two major reasons. It

1. Assists in the stabilization of the rooting zone, reducing the depth of the rooting zone, and thus reducing surface disturbance.

2. Assists in increasing surface disturbance by reducing the depth of the rooting zone, and thus reducing surface disturbance.

Construction Procedures

Most of the pipeline and associated construction activities will be restricted to the winter period when the ground is frozen, and any erosion and deposition resulting from construction activities will be limited. However, there were instances where some vegetation was exposed and deposited on the ground surface. This was generally limited to exposed patches of peat and snow. In these situations, the exposed patches were bulldozed aside and rehabilitation of the areas was greatly reduced.

Surface Disturbances

Surface disturbance is reduced by the complex interaction of vegetation. Where vegetation is established, the depth of the rooting zone is increased, reducing surface disturbance. Where vegetation is disturbed, the depth of the rooting zone is reduced, increasing surface disturbance.

Minimizing Surface Disturbance

Vegetation

Vegetation is important for two major reasons. It

1. Assists in the stabilization of the rooting zone, reducing the depth of the rooting zone, and thus reducing surface disturbance.

2. Assists in increasing surface disturbance by reducing the depth of the rooting zone, and thus reducing surface disturbance.

Construction Procedures

Most of the pipeline and associated construction activities will be restricted to the winter period when the ground is frozen, and any erosion and deposition resulting from construction activities will be limited. However, there were instances where some vegetation was exposed and deposited on the ground surface. This was generally limited to exposed patches of peat and snow. In these situations, the exposed patches were bulldozed aside and rehabilitation of the areas was greatly reduced.

Surface Disturbances

Surface disturbance is reduced by the complex interaction of vegetation. Where vegetation is established, the depth of the rooting zone is increased, reducing surface disturbance. Where vegetation is disturbed, the depth of the rooting zone is reduced, increasing surface disturbance.
NATURAL DISTURBANCE

The Boreal Forest has the most favourable climate. Recovery and reseeding are thus easier and faster on the Boreal Forest than on the Tundra. Since rainfall levels are sufficient to permit germination of seeds and spores, and continued growth and development of the seedling, many species can establish themselves in the open. The establishment of a plant cover on disturbed sites is more successful since the area is so fertile and the initial moisture levels are high. The growth of some grasses has yielded nearly complete cover within 1 to 3 years. Fertilizer must be used for best results. Generally, use of mixes of several species should prove the best for a wide range of conditions within each vegetation zone.

Some species may have to be developed to protect both the pipeline from external erosion and the forests from fires caused by pipeline-related activities. If the proposed gas pipeline from Prudhoe Bay, Alaska to the Mackenzie Delta is constructed, it would cross four vegetation zones.

The climate is more favourable than in the Tundra. If the pipe is warm, not chilled. On other flat sites where soils have low ice contents (right), water erosion can also be subjected to wind erosion, which also reduces the success of revegetation programs. Reseeding investigations on methods of speeding up the establishment of a plant cover on disturbed sites are now known, as are the native species which colonize disturbed sites. These investigations have shown that some species can establish themselves in the open. Some varieties of northern-adapted grasses have yielded nearly complete cover within 1 to 3 years. Fertilizer must be used for best results. Generally, use of mixes of several species should prove the best for a wide range of conditions within each vegetation zone.

The vegetation of the Tundra areas is at the surface are most sensitive to disturbance. The stability of the site greatly affects the success of reseeding. Level sites where mineral matter and growth. The proposed gas pipeline from Prudhoe Bay, Alaska to the Mackenzie Delta is constructed, it would cross four vegetation zones.

The climate is more favourable than in the Tundra. If the pipe is warm, not chilled. On other flat sites where soils have low ice contents (right), water erosion can also be subjected to wind erosion, which also reduces the success of revegetation programs. Reseeding investigations on methods of speeding up the establishment of a plant cover on disturbed sites are now known, as are the native species which colonize disturbed sites. These investigations have shown that some species can establish themselves in the open. Some varieties of northern-adapted grasses have yielded nearly complete cover within 1 to 3 years. Fertilizer must be used for best results. Generally, use of mixes of several species should prove the best for a wide range of conditions within each vegetation zone.