





Hydrology of the
Southeastern Coastal Plain Aquifer System in
South Carolina and Parts of Georgia and North Carolina

By WALTER R. AUCOTT

REGIONAL AQUIFER-SYSTEM ANALYSIS—
SOUTHEASTERN COASTAL PLAIN

U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1410-E




U.S. DEPARTMENT OF THE INTERIOR
BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

Gordon P. Eaton, Director

Any use of trade, product, or firm names in this publication is for
descriptive purposes only and does not imply endorsement by the
U.S. Government.

Library of Congress Cataloging in Publication Data

Aucott, Walter R.
Hydrology of the Southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina / by Walter R. Aucott
p. cm. —(Regional aquifers-system analysis—Southeastern Coastal Plain) (U.S. Geological Survey professional paper : 1410-E)

Includes bibliographical references.

1. Aquifers—Southern States. I. Title. II. Series. III Series: U.S. Geological Survey professional paper : 1410-E

GB1199.3.S68A83 1996

551.49°0975 92-22179

CIP

ISBN 0-607-86216-5

For sale by the U.S. Geological Survey, Branch of Information Services, Box 25286,
Federal Center, Denver, CO 80225.



FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The Regional Aquifer-System Analysis (RASA) Program represents a
systematic effort to study a number of the Nation’s most important aquifer
systems, which, in aggregate, underlie much of the country and which repre-
sent an important component of the Nation’s total water supply. In general,
the boundaries of these studies are identified by the hydrologic extent of each
system and, accordingly, transcend the political subdivisions to which investi-
gations have often arbitrarily been limited in the past. The broad objective for
each study is to assemble geologic, hydrologic, and geochemical information;
to analyze and develop an understanding of the system; and to develop predic-
tive capabilities that will contribute to the effective management of the
system. The use of computer simulation is an important element of the RASA
studies to develop an understanding of the natural, undisturbed hydrologic
system and the changes brought about in it by human activities and to pro-
vide a means of predicting the regional effects of future pumping or other
stresses.

The final interpretive results of the RASA Program are presented in a
series of U.S. Geological Survey Professional Papers that describe the geology,
hydrology, and geochemistry of each regional aquifer system. Each study
within the RASA Program is assigned a single Professional Paper number
beginning with Professional Paper 1400.

vy A Lods

Gordon P. Eaton
Director
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HYDROLOGY OF THE
SOUTHEASTERN COASTAL PLAIN AQUIFER SYSTEM IN
SOUTH CAROLINA AND PARTS OF GEORGIA AND NORTH CAROLINA

By WALTER R. AucorT

ABSTRACT

The wedge of sediments present beneath the Coastal Plain of South
Carolina and adjacent parts of Georgia and North Carolina consists of
sand, silt, clay, and limestone. These strata have been subdivided into
six regional aquifers: the surficial aquifer, the Floridan aquifer system,
the Tertiary sand aquifer, the Black Creek aquifer, the Middendorf
aquifer, and the Cape Fear aquifer. Intervening confining units sepa-
rate the aquifers, except for the Floridan aquifer system and the
Tertiary sand aquifer, which together function as a single hydrologic
unit.

The quality of ground water from the Coastal Plain aquifers of South
Carolina generally is acceptable for most uses in most areas. The water
in most aquifers under most of the Coastal Plain contains low concen-
trations of dissolved solids (less than 500 milligrams per liter) and no
dominant constituents in the recharge areas. Downgradient, the water
is a calcium bicarbonate or sodium bicarbonate type throughout most of
the Coastal Plain. Sodium-chloride-type water is present still farther
downgradient, near the coast.

A quasi-three-dimensional, finite-difference digital ground-water
flow model was constructed to simulate flow in the Coastal Plain
aquifers prior to development. The model also was used to evaluate the
hydraulic responses to pumping that have occurred up to November
1982. The model consisted of five layers and a 48 by 63 node grid with
a uniform square grid cell of 4 miles on a side.

The Coastal Plain aquifers are recharged primarily by precipitation
in their outerop areas. Discharge is primarily as base flow to upper
Coastal Plain rivers, to overlying aquifers by leakage through confining
units, and to wells.

Total simulated flow in the deep ground-water system was 967 cubic
feet per second at the end of the transient simulation (1982). Recharge
to the deep flow system simulated by the model was 793 cubic feet per
second in the study area in 1982. Simulated aquifer discharge to large
rivers was 660 cubic feet per second. Discharge to smaller rivers was
not simulated because of the scale of the model.

Changes resulting from ground-water pumping were significant as of
1982. The simulated water budget indicates that in 1982, 249 cubic feet
per second were discharged from the aquifer system by wells. This
pumping was balanced by the following changes firom predevelopment
conditions: 110 cubic feet per second derived from storage, 67 cubic feet
per second decrease in aquifer-to-river discharge, 44 cubic feet per
second increase in net inflow from source-sinks, and a net increase in
inflow of 28 cubic feet per second across boundaries. Head declines in
the Black Creek and Middendorf aquifers have occurred throughout

much of the eastern part of the Coastal Plain of South Carolina as a
result of pumping in the Myrtle Beach and Florence areas. Simulation
indicates that the dominant sources of water for upper Coastal Plain
pumping centers such as the city of Florence are decrease in flow to
rivers in the upper Coastal Plain and water derived from storage. The
dominant sources of water for pumping centers in the Myrtle Beach
area are water derived from storage, leakage from overlying aquifers,
and net increases in inflow across boundaries.

Transmissivity values used in the flow simulation range from less
than 1,000 feet squared per day near the updip limit of most aquifers to
about 30,000 feet squared per day in the Middendorf aquifer in the
Savannah River Plant area. Vertical hydraulic conductivity values used
in simulation of confining units range from about 6x107" feet per day
for the confining unit between the Middendorf and Black Creek
aquifers in coastal areas to 3x107% feet per day for most of the
confining units near their updip limits. Storage coefficients used in
transient simulations were 0.15 where unconfined conditions exist and
0.0005 where confined conditions exist.

INTRODUCTION

In 1978 the U.S. Geological Survey began a nationwide
program to study the regional aquifers that provide a
significant part of the country’s water supply. This
program is termed Regional Aquifer-System Analysis
(RASA) and was discussed in detail by Sun (1986). The
general objectives of the RASA studies are described in
the Foreword. The Southeastern Coastal Plain aquifer
system, which underlies an area of about 130,000 square
miles (mi®) in the Southeastern United States, was one of
the regional aquifer systems chosen for study.

The Southeastern Coastal Plain aquifer system con-
sists of clastic sediments of Cretaceous and Tertiary age
in South Carolina, Georgia, Alabama, and Mississippi
and adjacent areas of northern Florida and southeastern
North Carolina. The aquifer system extends from the
southwestern flank of the Cape Fear arch in North
Carolina westward to the Mississippi embayment. The
Southeastern Coastal Plain aquifer system is located
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among four adjacent regional aquifer systems: the
Northern Atlantic Coastal Plain aquifer system to the
northeast, the Mississippi embayment and coastal low-
lands aquifer systems to the west, and the Floridan
aquifer system to the south and southeast. The Floridan
aquifer system overlies much of the Southeastern
Coastal Plain aquifer system in Georgia and South
Carolina.

PURPOSE AND SCOPE

This report summarizes the findings of the RASA
study of the ground-water flow system of the Coastal
Plain aquifers of South Carolina and adjacent parts of
Georgia and North Carolina. It includes a description of
the geohydrologic framework, the predevelopment and
1982 ground-water flow systems, general water-quality
characteristics, and the results of ground-water flow
simulations. This report is one of several chapters of
U.S. Geological Survey Professional Paper 1410 that
describe various aspects of the geology, hydrology, and
geochemistry of the Southeastern Coastal Plain aquifer
system.

The study area for this report encompasses the Coastal
Plain of South Carolina and adjacent areas in Georgia,
North Carolina, and the offshore areas bordering these
States (fig. 1). It is bounded to the northwest by the
inner margin of Coastal Plain sediments as marked by
the Fall Line, which separates the Coastal Plain and
Piedmont physiographic provinces. Adjoining areas in
eastern Georgia and southeastern North Carolina were
included in this study to describe adequately the hydrol-
ogy of the Coastal Plain aquifer system in South Caro-
lina, which is the principal focus of this report. The
offshore area is bounded seaward by the postulated
position of the freshwater-saltwater interface. The
Coastal Plain sediments studied in this report are
bounded below by consolidated pre-Cretaceous meta-
morphie, igneous, and sedimentary rocks.

This study overlaps a statewide RASA study to the
southwest that is primarily concerned with the Georgia
Coastal Plain (Faye and Mayer, in press) and one to the
northeast that is primarily concerned with the North
Carolina Coastal Plain (Giese and others, in press) (fig.
2). The aquifer system addressed by this study is partly
within the area of the Floridan aquifer system RASA
study (Miller, 1986). However, the Floridan aquifer
system as defined by Miller (1986) has been expanded
and redefined locally for purposes of this study.

This study used several analytical and digital modeling
techniques to investigate the ground-water flow system.
The analytical techniques included analysis of borehole
geophysical logs and geologic sample data; preparation
and analysis of potentiometric-surface maps, transmis-
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sivity maps, and water-quality maps; aquifer-test analy-
sis; and low-flow streamflow analysis. A quasi-three-
dimensional, finite-difference ground-water flow model
was also used to simulate steady-state predevelopment
conditions and to simulate transient changes in the flow
system caused by pumpage.

Included in the report are maps showing distribution
of transmissivity for the different aquifers based on field
data and model calibrations, predevelopment potentio-
metric surfaces, and 1982 potentiometric surfaces. Also
included are maps that show the results of the analysis
of recharge and discharge relations for the various
aquifers based on streamflow data and ground-water
flow simulation.

DESCRIPTION OF THE STUDY AREA

The study area covers about 35,000 mi® of which about
20,000 mi® compose the Coastal Plain of South Carolina
(fig. 2). Also included in the study area are about 7,000
mi? offshore, 5,000 mi® in eastern Georgia, and 3,000 mi®
in southeastern North Carolina.

The climate of the study area is temperate and char-
acterized by hot, humid summers and moderate winters.
The mean monthly temperatures at Columbia, S.C.,
range from 46°F to 81°F. Precipitation in the Coastal
Plain of South Carolina averages about 48 inches per
year (in/yr) (South Carolina Water Resources Commis-
sion, 1983), is relatively uniformly distributed (fig. 3),
and is seasonal in nature, with wet springs and summers
and dry autumns. Stream discharge is greatest during
the winter months and decreases during spring and
summer, when plant growth rates are greatest.

SOUTH CAROLINA PHYSIOGRAPHY

The physiography of the South Carolina Coastal Plain
varies from the upper to the lower parts. The western
part of the upper Coastal Plain is characterized by
“sand-hills” topography: long, gentle slopes and rounded
summits cut by stream valleys filled with alluvium. Much
of the eastern part of the upper Coastal Plain is a gently
coastward-sloping surface that has been dissected by
rivers and streams. Land-surface altitudes in the upper
Coastal Plain range from more than 600 feet (ft) to less
than 100 ft above sea level, the highest altitudes occur-
ring in interstream areas in the west, and the lowest
altitudes in the valleys of large rivers.

The lower Coastal Plain is a low, broad plain. Numer-
ous coastal terraces were formed during Pleistocene
transgressions and regressions of the sea. The lower
Coastal Plain slopes gently coastward, its altitudes rang-
ing from more than 200 ft above sea level to sea level.
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TABLE 1.— Generalized geohydrologic correlation chart
[Modified from Siple, 1959; Do. and do., ditto]

Geologic Regional aquifers Coastal Plain
i1 Litholo; of the Southeastern aquifers of
unit gy q
Coastal Plain® South Carolina
Quaternary
Coastal terrace Sand and clay, reddish-brown, orange, Surficial Surficial
deposits. and white.
Tertiary
Cooper Group Limestone and marl, gray to white, silty Floridan Floridan
(lower part). to sandy, phosphatic. aquifer aquifer
system. system®
(downdip).
Ocala Limestone, white to cream, calcitized, do. Do.
Limestone. fossiliferous, glauconitic.
Santee Limestone, white to creamy yellow, do. Do.
Limestone. fossiliferous, glauconitic; interbedded
in part with gray to yellow sandstone.
Barnwell Sand, red to brown, fine- to coarse-grained, Pearl River Tertiary
Formation. massive. sand
(updip).
McBean Sand, green to yellow, fine-grained, do. Do.
Formation. glauconitic; gray-green glauconitic marl.
Congaree Sand and sandstone, yellowish-brown to do. Do.
Formation. green, fine- to coarse-grained,
quartzose, glauconitic; dark-green to
gray clay.
Black Mingo Shale, gray, sandy; black sandy do. Do.
Formation limestone, may be carbonaceous and
(upper part). fossiliferous in places.
Cretaceous
Black Creek Sand, gray to white, quartzose, calcareous, Chattahoochee Black Creek
Formation. micaceous, phosphatic, glauconitic; River.
dark-gray to black, thinly laminated
clay containing nodules of pyrite and
marcasite and fragments of lignite.
Middendorf Sand, light-gray, fine- to coarse-grained, Chattahoochee Middendorf
Formation. micaceous, glauconitic, in part River.
calcareous; green, purple, and maroon
clay; greenish-gray micaceous silty
sandstone.
Cape Fear Clay, reddish-brown, gray to green; yellow Black Warrior Cape Fear
Formation. to white fine- to coarse-grained sand River.

with traces of mica.

'These geologic units are generally associated with a given aquifer. However, a given aquifer may not consist of the same formations in all areas, and locally, an
aquifer may include parts of other formations.

2From Miller and Renken (1988).

3Carbonate rock equivalent of the Tertiary sand aquifer.
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FIGURE 5.—Schematic diagram of regional geohydrologic units and selected rock-stratigraphic units in the Southeastern Coastal Plain
(modified from Miller and Renken, 1988).
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GENERAL GEOHYDROLOGY E1l
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FIGURE 7.—Generalized geohydrologic section A-A’ (from Aucott, Davis, and Speiran, 1987).
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GENERAL GEOHYDROLOGY

In the eastern part of the Coastal Plain, the hydraulic
conductivity of the fine to medium sand of the Black
Creek aquifer is relatively consistent (Aucott, 1988). As
aresult, the transmissivity of the aquifer increases as the
aquifer thickens toward the coast, then remains fairly
constant where the aquifer thickness is relatively con-
stant. In the western part of the upper Coastal Plain, the
transmissivity of the Black Creek aquifer is relatively
high because of the coarse sand and low clay content of
the aquifer. In the southern part of the study area, the
higher clay content of the sediments causes the trans-
missivity of the aquifer to be much lower than in the
upper Coastal Plain or along the coast to the east (Aucott
and Newcome, 1986; Aucott, Davis, and Speiran, 1987).

MIDDENDORF AQUIFER

The Middendorf aquifer consists mostly of sediments
of the Middendorf Formation but locally may include
sediments of the overlying Black Creek Formation or the
underlying Cape Fear Formation. This aquifer has pre-
viously been referred to as all or part of the “Tuscaloosa
aquifer” (Siple, 1957; Park, 1980) and informally as
aquifer A3a3 (Renken, 1984; Aucott and Speiran,
1985b,¢).

In outcrop areas and in the subsurface of the upper
Coastal Plain, sediments of this aquifer primarily are
light gray, white, and buff sand commonly interfingered
with lenses of white, pink, or purple clay, all of which
were deposited in an upper delta-plain environment. In
the lower Coastal Plain, the sediments of the Middendorf
aquifer are lithologically similar to those of the Black
Creek aquifer and consist of thin, laminated layers of fine
to medium sand and clay. The Middendorf aquifer occurs
throughout the Coastal Plain of South Carolina and crops
out along the Fall Line except locally in the western part
of the Coastal Plain, where it is covered by younger
rocks. Although the maximum thickness of the Midden-
dorf aquifer is about 400 ft, it is more typically about 200
ft thick.

The transmissivity of the Middendorf aquifer varies in
a pattern of bands that are approximately parallel to the
Fall Line. The Middendorf sediments in the upper
Coastal Plain are lithologically similar for some distance
from the Fall Line. Because the aquifer thickens away
from the Fall Line and toward the coast, the transmis-
sivity generally increases coastward. Siple (1957) first
noted that the transmissivity of the Middendorf aquifer,
which he called the Tuscaloosa aquifer, is greatest in a
band approximately parallel to the Fall Line in the lower
part of the upper Coastal Plain. In this band, aquifer
thickness remains constant, but transmissivity is greater
on the west side of the band because there the aquifer
contains coarser sand and little clay.

E19

In the lower Coastal Plain, the hydraulic conductivity
of the Middendorf aquifer generally decreases toward
the coast as the percentage of clay in the aquifer
increases. This increase in clay results in a general
decrease in transmissivity despite a small increase in
thickness in some areas. Despite this decrease, the
transmissivity of the Middendorf aquifer near the coast is
as great as or greater than that of adjacent aquifers.
Conclusions about transmissivity are based on lithologic
data, aquifer-test data (Aucott and Newcome, 1986), and
the fresher quality of the water (Speiran and Aucott,
1991), which indicates more complete flushing and thus a
more active flow system in the Middendorf aquifer than
in overlying or underlying aquifers.

CaPE FEAR AQUIFER

The Cape Fear aquifer consists of the lower part of the
Cape Fear Formation and is the basal aquifer in the
Coastal Plain aquifer system of South Carolina. It has
informally been referred to previously as aquifer A4
(Renken, 1984; Aucott and Speiran, 1985b,c), as the
lower part of the Middendorf aquifer (Colquhoun and
others, 1983), or as the Middendorf aquifer (Zack, 1977).
The Cape Fear aquifer consists predominantly of sand,
silt, and gravel separated by relatively thick silt and clay
layers. The Cape Fear aquifer occurs entirely in the
subsurface, and the extent of this aquifer has not been
well defined in the Coastal Plain of South Carolina. The
aquifer probably occurs only in the lower Coastal Plain
and the eastern part of the upper Coastal Plain. Because
shallower aquifers, particularly the overlying Midden-
dorf aquifer, contain water that is less mineralized and
yield more water to wells, few wells penetrate the Cape
Fear aquifer, and as a result, it is poorly defined.

CONFINING UNITS

Much less is known about the hydraulic and lithologic
characteristics of the confining units than is known about
the aquifers of the Coastal Plain aquifer system. Previ-
ous investigations concentrated on water-supply consid-
erations, resulting in much more information on aquifers
than on confining units. Vertical movement of water
within the aquifer system is controlled by the confining
units, which are the geohydrologic units of lowest per-
meability. Vertical movement across a confining unit is
usually controlled by the least permeable layer within
the confining unit, which is typically a tight, marine clay
in the Coastal Plain sediments of South Carolina. All of
the confining units identified allow limited vertical move-
ment of water through them.

The confining unit between the surficial aquifer and
underlying aquifers is not composed of a single forma-
tion. Accordingly, its hydraulic characteristics probably
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vary substantially. Where the surficial aquifer is under-
lain by the upper part of the Cooper Group in the central
and eastern parts of the lower Coastal Plain (Colquhoun
and others, 1983), this confining unit generally is
extremely effective in inhibiting the vertical movement
of water. Moreover, many discrete layers of clayey
material occur in the surficial aquifer, even within the
coastal terrace deposits, locally creating artesian condi-
tions at shallow depths below the water table.

The confining unit that seems to have the greatest
effect on the ground-water flow system in the Coastal
Plain consists of the lower part of the Black Mingo
Formation and other clayey Paleocene sediments. This
confining unit is located below the Floridan aquifer
system and the Tertiary sand aquifer, but above the
Black Creek and Middendorf aquifers.

The effectiveness of a confining unit in inhibiting
vertical flow can cause considerable differences in the
flow systems of the aquifers immediately above and
below it. Such differences are most commonly reflected
as head and water-quality differences between the aqui-
fers. The effectiveness of the clayey Paleocene sediments
in inhibiting the vertical movement of water in the
southern part of the Coastal Plain is illustrated by the
contrasting flow systems in the overlying and underlying
aquifers (Aucott and Speiran, 1985a). Where this confin-
ing unit thins and contains more sand northwestward
toward its updip limit and northeastward toward the
Cape Fear arch, it becomes less effective in inhibiting
vertical movement of water.

The confining unit between the Black Creek aquifer
and the Middendorf aquifer primarily consists of sandy
clay in the lower part of the Black Creek Formation.
Because it is sandy, this unit is probably not as effective
as other confining units in the system in inhibiting
vertical flow. Under nonpumping conditions, the flow
systems of the Black Creek and Middendorf aquifers
appear to be quite similar (Aucott and Speiran, 1985b).
However, under pumping conditions, major head differ-
ences exist between the two aquifers. Water-quality
differences between these aquifers also occur in some
areas. Accordingly, this confining unit is more effective
than its sandy lithology would indicate.

The confining unit between the Middendorf and Cape
Fear aquifers is very effective in separating the flow
systems of these aquifers in the eastern part of the study
area. This separation is recognized by differences in
water quality and head between these aquifers (Aucott
and Speiran, 1985b, 1986). In the western part of the
lower Coastal Plain and eastern part of the upper Coastal
Plain, the effectiveness of this confining unit is not well
defined. Limited data indicate that water-quality differ-
ences exist but head differences appear to be minor.
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GROUND-WATER FLOW SYSTEM

Water enters the Coastal Plain aquifers primarily as
recharge from precipitation in topographically high parts
of aquifer outcrop areas. The water percolates down-
ward to the water table, and most of it then moves
laterally along short flow paths to discharge as base flow
to small streams. Some of the water enters deep, con-
fined parts of the aquifers and follows longer flow paths
down the hydraulic gradient. In downdip areas, this
deeply circulating water moves upward and discharges
to shallower aquifers, and eventually to the ocean. Most
of the discharge in downdip areas is by leakage through
confining units that separate the aquifers.

STRATIFICATION OF FLOW SYSTEM

The ground-water flow system in the upper Coastal
Plain of South Carolina is considered to be a stratified
system similar to the system described by Winter (1976)
and shown in figure 14. Water enters the system as
recharge in topographically high areas between rivers
and lakes, flows down the hydraulic gradient, and dis-
charges to rivers, lakes, and swamps. Such factors as
topography, aquifer thickness, and aquifer transmissiv-
ity affect a stratified flow system, as described by Toth
(1963), Freeze and Witherspoon (1966), and Winter
(1976) and as depicted in figure 14. Such a flow system
consists of a continuum of shallow, intermediate, and
deep flow systems. Water moving in the shallow flow
system has a different flow path, velocity, and area of
discharge than water in the deep system.

The shallow flow system is characterized by relatively
short flow paths. Typically, much of the water in a
stratified ground-water system moves through the shal-
low flow system at relatively high velocities and dis-
charges to surface-water bodies located near the
recharge areas. The shallow flow system is close to land
surface and may be relatively thin. As a result, varia-
tions in recharge over time could have a considerable
effect on the amount of water flowing in the shallow flow
system.

In contrast to the shallow system, the deep flow
system is characterized by much longer flow paths and
much lower velocities. Because the time of travel from
sources of recharge to areas of discharge is longer for the
deep flow system than for the shallow flow system, the
deep flow system is less affected by short-term hydro-
logic factors such as seasonal variations in recharge. The
deep flow system as it pertains to the Coastal Plain
aquifers is defined as that part of the flow system that
either discharges to rivers that act as regional drains or
flows downgradient to deeply buried parts of the aquifers
in the lower Coastal Plain. The regional drains in the
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Approximate freshwater-saltwater interface

FIGURE 35. —Diagrammatic geohydrologic section across the South Carolina Coastal Plain.

simulation. A specific yield of 0.15 was used in the half of
the aquifer outcrop area nearest its updip limit and was
used to simulate unconfined conditions (Stricker, 1983).
In all other areas, confined conditions were initially
simulated by using a storage coefficient of 0.0003. The
value of the selected storage coefficient for confined
aquifers is the median value of 21 published values for
South Carolina clastic aquifers (Siple, 1967; Zack, 1977;
Park, 1980; Aucott and Newcome, 1986).

Not to scale
EXPLANATION
‘:l Aquifer
Confining unit
{2)  Number of layer in the digital model
Pumping Time Length
period int. 1
number interva (years)
1 Predevelopment -
2 1935-44 10
3 1945-54 10
4 1955-64 10
5 1965-69 5
6 1970-74 5
7 1975-79 5
8 1980-82 2.8

Simulated pumping rates were held constant during each
pumping period. Pumping period lengths were selected
to be shorter in more recent periods because greater
changes occurred in more recent times and because
recent data probably are more accurate.

Transient modeling required input data in addition to
data necessary for the predevelopment, or steady-state,

Ground-water withdrawals were estimated from pub-
lished water-use data, telephone surveys, and site visits.
In general, more recent data are considered to be the
most accurate. Withdrawals were included in the model
for users of greater than 0.2 Mgal/d during 1980. The
spatial distribution of pumpage for 1980 for all users of 2
Mgal/d or greater is summarized in figure 20. With-
drawal rates for each stress period for the users of more
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EXPLANATION

m Constant head (source-sink)
Actively simulated unit

No-flow model boundary

— Confining unit

FIGURE 36. —Conceptualization of model layers. Part of the downgradient (saltwater-freshwater) boundary of
the Black Creek and Middendorf aquifers was simulated with a general-head boundary in the transient model.

than 2 Mgal/d during 1980-82 are listed in table 3.
Irrigation use prior to 1980 was relatively minor. Most
municipal water use shows a gradual increase over time.
Some industrial water-use patterns show abrupt changes
indicative of plant openings or closings.

The effects of large withdrawals in shallow zones,
which are frequently associated with the dewatering of
quarries, generally were not simulated because the sur-
ficial aquifer in the eastern part of the study area and the
Floridan aquifer system in the western part of the study
area were simulated as constant-head source-sink layers.
Thus, water levels in these layers could not vary. An
attempt was made to simulate the effects of large with-
drawals from shallow zones in actively modeled layers in
the upper Coastal Plain. However, these effects gener-
ally could not be accurately modeled because the scale of
the model does not allow the shallow flow system to be
simulated. Withdrawals from the part of the Floridan
aquifer system simulated by Bush and Johnston (1988)
and by Krause and Randolph (1989), particularly in the
Savannah area, were not modeled under transient con-
ditions because, in this area, the Floridan was simulated
as a constant-head source-sink layer.

MODEL BOUNDARIES

The model boundaries used for the transient simula-
tions described in this report are depicted in figures 36
and 37. Three types of boundaries were used. The first
type, a no-flow boundary, allows the hydraulic head to
vary but prevents the movement of water across the
boundary. The second type, a constant-head boundary,
fixes the hydraulic head at a specified value but allows
the movement of water across the boundary. The third
type, a general-head boundary, allows the hydraulic
head to vary from its specified value and allows the
movement of water across the boundary to vary as well
according to a hydraulic conductance term (McDonald
and Harbaugh, 1984, p. 343). Boundaries for the tran-
sient model were identical to those used for the prede-
velopment model (Aucott, 1988) with the exception that
general-head boundaries were substituted for constant-
head and no-flow boundaries in parts of the Black Creek
aquifer and Middendorf aquifer (see fig. 37C and D) and
adjustments were made in source-sink heads, as
described later.

The boundaries chosen simulate observed conditions
everywhere as closely as possible. In general, a no-flow
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reliable because the calibration criteria and model stress
provided a more rigorous model calibration.

The only major areal head decline in the actively
modeled area in the Floridan aquifer system and Terti-
ary sand aquifer is located in the Charleston-
Summerville area and is matched well by the simulation
(fig. 38). Declines resulting from other, much smaller
pumping centers in these aquifers did not match as well.
Reasons for the poorer matches are the effects of the
shallow flow system, which was not simulated, limited
field data, and the small area affected by these declines
compared with the coarse model grid size. No special
calibration efforts were made to attain a better match
because of the limited extent of these declines.

The major areal decline in heads in the Black Creek
aquifer is located in the Myrtle Beach—Georgetown area
and is simulated well by the model (fig. 39). The minor
differences in extent and shape of the simulated and
observed declines are probably a result, at least in part,
of inaccuracies in location and distribution of pumpage or
possibly insufficient head data. Simulation of an area of
smaller head declines in Allendale County is reasonable.

Declines simulated for the Middendorf aquifer (fig. 40)
generally matched well with observed declines. At the
principal pumping center in Florence, the extent of the
simulated and observed declines matches well. Differ-
ences in simulated versus observed water-level declines
in Dillon and northern Marion Counties are regionally
insignificant and could result from sparse water-level
measurements there.

Simulated and observed head declines in the Midden-
dorf aquifer matched reasonably well in other parts of
the area of regional decline in eastern South Carolina.
Little calibration adjustment was made here because the
potentiometric surface of the Middendorf aquifer (Aucott
and Speiran, 1985b, fig. 10) in the eastern part of the
lower Coastal Plain was mostly inferred from the Black
Creek aquifer decline map. Only a few head measure-
ments in wells tapping the Middendorf aquifer were
available. The large differences in western Georgetown
County probably result from an inference of much
greater leakage in the construction of the observed head
decline maps than actually occurs.

The correspondence between observed and simulated
head declines generally was good for other parts of the
Middendorf aquifer. Simulated effects of large withdraw-
als in Sumter and Aiken-Barnwell Counties (Savannah
River Plant) were minimal and corresponded reasonably
well to field observations. Some decline has occurred at
the Savannah River Plant, but it has been less than 25 ft.
Head declines in the Charleston-Dorchester County area
also were simulated quite well. Simulated declines over-
estimated observed declines by about 10 ft in the vicinity
of the Colleton County pumping center and also departed
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somewhat from observed declines in the northern part of
the Charleston-Dorchester County cone.

No comparisons of head declines were made in Georgia
and North Carolina because affected areas in those
States are small, close to the lateral boundaries of the
model, and not in the principal area of interest. Similarly,
no comparisons were made near the Fall Line because of
the problems of simulating the effects of withdrawals
there resulting from scale and the model only simulating
the deep flow system.

The other calibration criterion used was a comparison
of observed and simulated rates of head decline in areas
of large withdrawals. Unfortunately, adequate field data
were available for the construction of only a few long-
term hydrographs. Six hydrographs (figs. 41 and 42)
were used to compare rates of head decline. The avail-
able hydrographs are from wells located mostly near the
large centers of decline resulting from pumping at Flo-
rence and Myrtle Beach. The locations of these wells,
which are screened in the Black Creek and Middendorf
aquifers, are shown in figures 39 and 40. Other major
pumping centers (Sumter and the Savannah River Plant)
appear to have relatively isolated, shallow cones of
depression. Insufficient head declines have oceurred in
these or other areas for useful comparison of simulated
and observed rates of decline.

Hydrographs in figure 41 are from wells completed in
the Middendorf aquifer in the vicinity of Florence. Fig-
ure 41B is representative of wells located near the center
of pumping, whereas figures 41A and 41C are represen-
tative of wells located some distance away from the
center of pumping. The matches of observed and simu-
lated trends are fairly good, although the shapes of the
observed and simulated hydrographs differ somewhat.
The rate of simulated head decline during the last two
stress periods is somewhat greater than observed
declines shown in figure 41B. This probably reflects the
difficulty in accurately comparing observed and simu-
lated drawdowns in model nodes with many large
ground-water withdrawals. Many factors could be
involved, including (1) the model computing heads at the
center of the node when pumping and observation wells
are not at the node center and (2) sources of water not
included in the simulation, such as water derived from
the inelastic compression of clays. The correlation
between simulated and observed data is better in a node
adjacent to one with large withdrawals (fig. 41A4). Water
levels in well FLO-85 (Union Carbide well) are lower
than simulated water levels because the observation well
is closer to the adjacent pumping node than it is to its
node center. Differences between simulated and
observed heads shown in figure 41C probably relate to
the fact that the Middendorf aquifer is much more
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FIGURE 41. —Hydrographs of observed and simulated water levels near Florence, S.C.
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FIGURE 42. —Hydrographs of observed and simulated water levels near Conway and Fairfax, S.C.

heterogeneous and contains more clayey material near | aquifer and show the effects of pumping in the Myrtle
and to the east of the Pee Dee River than to the west. | Beach area. The slopes of the simulated and observed

Hydrographs in figure 424 and B are from two wellsin | hydrographs are similar for both wells. Other head
Horry County that are screened in the Black Creek | measurements in this area generally are limited to
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measurements made since 1974 and are from observation
wells located near pumping wells.

The hydrograph in figure 42C represents a well in
Allendale County that monitors head declines in the
Black Creek aquifer. The shapes of the simulated and
observed hydrographs compare favorably for the early
part of the hydrograph (stress periods 3-5). The 1982
measurement differs by about 10 ft from the simulated
water level. This may be a result of heterogeneities in
the Black Creek aquifer, such as sand-clay layering,
which would cause vertical variations of head within the
aquifer in this area, inaccuracies in the pumping history,
or a greater aquifer storage coefficient than simulated.

All six hydrographs in figures 41 and 42 indicate that
the general trends of simulated head declines in the
major areas affected by pumpage are similar to observed
trends. However, simulated and observed water levels
may show considerable differences.

SENSITIVITY TESTING

Testing was performed to determine the sensitivity of
the predevelopment and transient models to changes in
various input parameters. Tested parameters included
recharge, transmissivity, leakance coefficient, and river-
bed conductance for the predevelopment and transient
simulations, and storage coefficient and pumping rates
for the transient simulation. Given the complexity of the
models and the large number of parameters, layers, and
nodes, complete testing of all the possible combinations
was not practical. The procedure used to test sensitivity
was to vary one parameter by a given multiple for every
node in every layer of the model and observe the effects
on simulated heads and total riverflow. The sensitivity of
the calibrated predevelopment and transient model solu-
tions to changes in each input parameter is shown in
figures 43 (impact of changes on heads) and 44 (impact of
changes on simulated riverflow). Sensitivity was deter-
mined using head residuals (fig. 43), which are the
differences between simulated heads and heads from
contoured field data in every model cell. Predevelopment
heads were compared for the steady-state model,
whereas 1982 heads were compared for the transient
model.

Because the sensitivity testing was of a general
nature, the resulting conclusions must be general as well.
Overall, head residuals in both models appear to be most
sensitive to changes in aquifer transmissivity and
increases in recharge. Changes in the leakance coeffi-
cient of confining units have a great effect on both
models. The transient model was moderately sensitive to
changes in pumping rates and less sensitive to changes in
storage coefficient. In nearly all cases, the transient
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model appeared to be about as sensitive to changes in
individual input parameters as the predevelopment
model.

The calibration of the Middendorf aquifer layer in both
models was extremely sensitive to decreases in transmis-
sivity. The Middendorf aquifer has the largest area of
outcrop available to receive direct recharge. Because no
underlying aquifer exists in the outecrop area, the Mid-
dendorf aquifer is particularly sensitive to changes in
transmissivity and recharge there.

Because both the predevelopment and transient mod-
els are relatively sensitive to changes in leakance coeffi-
cient and recharge, both of which are largely derived by
model calibration, the confidence in the calibrations is
greater than it would have been if the models were
relatively insensitive to these parameters. Model results
do not represent a unique solution in the description of
the flow system. The results of sensitivity testing,
however, give some indication of the limits within which
a given parameter may vary and still provide a reason-
able solution.

Total riverflow (fig. 44) in both the predevelopment
and transient models is most sensitive to changes in
recharge, as expected, and is somewhat less sensitive to
changes in pumping rates. Total riverflow is least sensi-
tive to changes in storage coefficient and specific yield,
and leakance coefficient of confining units. Because most
aquifer-to-river discharge occurs where the aquifers are
unconfined, the insensitivity of riverflow to leakance
coefficient is not surprising. Changes in transmissivity
and riverbed conductance result in moderate changes in
riverflow. The sensitivity of total riverflow in both the
steady-state and transient models to changes in each
input parameter is similar.

MODEL-DERIVED HYDROLOGIC
CHARACTERISTICS

The transmissivity distributions from the calibrated
transient model shown in figures 45 through 48 are little
changed from the values obtained from the transmissiv-
ity calibrated for the predevelopment model. The only
changes made in transmissivity during calibration of the
transient model were reductions in the transmissivity of
the Middendorf aquifer. Reductions of about 50 percent
were needed to adequately simulate head declines in this
aquifer in the Florence area. The resulting Middendorf
transmissivities in the Florence area are somewhat low
in comparison with existing aquifer-test and specific-
capacity information. The Middendorf aquifer in the
Florence vicinity is highly stratified and contains numer-
ous clay beds that inhibit uniform head-change distribu-
tion, as is the case in a homogeneous aquifer. This raises





















MODEL-DERIVED HYDROLOGIC CHARACTERISTICS

some question as to the ability of the model to determine
the “effective” transmissivity of the Middendorf for the
area. The reliability of the model as a predictive tool for
the effects of future pumping in the Florence area is less
certain because of this discrepancy between simulated
and observed transmissivities. Large reductions in the
transmissivity of the Middendorf aquifer in the
Georgetown-Andrews area were made because a reeval-
uation of sparse data available in that area (specific-
capacity tests and geophysical logs) suggested lower
values.

Calibrated transmissivity values range from about 700
to 11,000 feet squared per day (ft¥d) for the Tertiary
sand aquifer and the actively simulated part of the
Floridan aquifer system; from about 400 to 11,000 ft%d
for the Black Creek aquifer; from about 300 to 30,000
ft?/d for the Middendorf aquifer; and from about 1,100 to
3,600 ft%d for the Cape Fear aquifer. Transmissivity
values are lowest near the updip limit of each aquifer due
to thinning of the aquifer. Transmissivity distributions
are not presented for the surficial aquifer and for part of
the Floridan aquifer system because they were not
actively simulated.

The transmissivity of the Tertiary sand aquifer and
Floridan aquifer system increases downdip and from
northwest to southeast along the Savannah River,
through the Tertiary sand aquifer, and into the more
permeable limestone of the Floridan aquifer system as
described by Krause and Randolph (1989). The rapid
increase is due to the coarse-grained material present in
the Tertiary sand aquifer in this area and to the clastic-
carbonate facies change. Increases in transmissivity are
smaller from northeast to southwest, for example, from
Berkeley County to Beaufort County, because in Berke-
ley, Charleston, and Dorchester Counties the Floridan
aquifer system is composed of the Santee Limestone,
which is only moderately permeable (Park, 1985; Aucott
and Newcome, 1986). Transmissivity increases greatly in
Beaufort and Jasper Counties, where the highly perme-
able Ocala Limestone composes the upper part of the
Floridan aquifer system (Hayes, 1979; Krause and Ran-
dolph, 1989). Initial transmissivity values assigned to the
Floridan aquifer system and Tertiary sand aquifer were
not altered substantially during calibration of the prede-
velopment model, except for (1) increases made near the
updip limit of the Tertiary sand aquifer, where sparse
field data likely led to poor initial estimates and (2)
increases in the Barnwell County, S.C., and Burke
County, Ga., area that reflected field data acquired
during model calibration.

Black Creek aquifer transmissivity varies generally as
a sequence of bands parallel to the updip limit of the
aquifer (fig. 46). Near the updip limit, the transmissivity
is less than 2,000 ft%/d but gradually increases toward the
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coast because of increased aquifer thickness. The coarser
grained sediments composing this aquifer in the western
part of the study area result in higher transmissivities
there than to the east, where aquifer materials are much
finer. Throughout most of the eastern part of the study
area, Black Creek aquifer sediments are thin beds of fine
sand interspersed with layers of clay. Because the aqui-
fer thickness in the eastern part of the study area
remains relatively constant, and because the aquifer
materials are uniform there, the transmissivity is consis-
tently between 2,000 and 5,000 ft>d in much of the
eastern part of the study area. The major changes from
initial estimates of Black Creek aquifer transmissivity
made during calibration of the predevelopment model
were an increase of transmissivity within 20 mi of the
updip limit and increases in most of the eastern part of
the study area. The revised transmissivities in the
eastern part of the study area correlate well with the
transmissivity estimates for the Black Creek aquifer
derived from aquifer-test and specific-capacity data.

The pattern of transmissivity distribution in the Mid-
dendorf aquifer (fig. 47) resembles the pattern of the
Black Creek aquifer. In the Middendorf aquifer, trans-
missivities increase from a minimum at the Fall Line,
which is the updip limit for most of the aquifer, to a
maximum about one-third of the way toward the coast.
As in the Black Creek aquifer, the transmissivity of the
Middendorf aquifer is greater in the western than in the
eastern part, primarily as a result of coarser aquifer
sediments in the western part. Transmissivity values of
the Middendorf aquifer generally are lower in parts of
Florence, Marion, Georgetown, and Williamsburg Coun-
ties than elsewhere because of the relatively high clay
content of the aquifer in these counties. Middendorf
aquifer transmissivities generally decrease toward the
coast but are greater than, or equal to, transmissivity
values of the Black Creek aquifer in most areas. Aquifer-
test and specific-capacity data for the Middendorf aquifer
are much sparser near the coast and near the updip limit
of the aquifer than elsewhere.

Simulated transmissivity values of the Cape Fear
aquifer are less than 2,000 ft?/d nearly everywhere in the
study area (fig. 48). The sparse specific-capacity and
lithologic data available indicate that the transmissivity
may even be less than the values derived from model
calibration. Cape Fear aquifer transmissivities were
increased during predevelopment model calibration to a
value that was considered a reasonable upper limit, given
the available data. As mentioned earlier, sensitivity
testing indicates that the calibration could be further
improved by increasing transmissivity even more.
Because such increases are not supported by the field
data, the transmissivity ranges presented on figure 48
are considered rough estimates.
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Leakance coefficients were adjusted extensively dur-
ing predevelopment model calibration because (1) they
were one of the parameters initially estimated with the
least confidence, and (2) the simulation was sensitive to
changes in the parameter. During the calibration of the
transient model, three changes were made to the prede-
velopment calibrated values: leakance coefficients of the
confining unit underlying the surficial aquifer were
decreased by a factor of 10 in the Myrtle Beach-George-
town area and near offshore areas; leakance coefficients
of the confining unit between the Black Creek and
Middendorf aquifers were decreased by a factor of 3 from
the values used for the predevelopment model in the
Myrtle Beach-Georgetown area and were decreased by a
factor of between 2 and 10 in a band along the eastern
part of the updip limit of the confining unit in the area of
Dillon, Florence, and Sumter. All of these changes were
made in order to improve the calibration.

Final calibrated values for the leakance coefficient,
shown in figures 49 through 52, range from 6x107° to
3x107* (ft/d)/ft. Assuming an average thickness of each
confining unit of 100 ft, vertical hydraulic conductivity
values range from about 6x1077 to 3x1072 ft/d. In
general, the leakance coefficient is greatest near the
updip limit of most confining units, where they typically
are thinnest and consist of coarse sediments, and least
toward the coast, where most units have undergone a
facies change to finer sediments. For example, all con-
fining units have a low hydraulic conductivity at Charles-
ton: leakance coefficient values there for all confining
beds are within the range of 6x10~° and 6x10~® (ft/d)/ft.
Although the relative distributions of leakance coeffi-
cients seem reasonable when compared to geologic infor-
mation (Colquhoun and others, 1983; Aucott, Davis, and
Speiran, 1987), few data are available to provide quanti-
tative verification of these values.

The simulated leakance coefficient of the confining unit
underlying the surficial aquifer ranges between
6.0x107® and 6.0x107° (ft/d)/ft. Leakance coefficients
are greatest near the updip limit of the surficial aquifer
and decrease toward the coast (fig. 49). The leakance of
this unit is least in the southern part of the study
area—in southern Colleton, Dorchester, and southwest-
ern Charleston Counties, where it contains the upper
part of the Cooper Group (Colquhoun and others, 1983).

The simulated leakance coefficient of the confining bed
between the Floridan aquifer system-Tertiary sand
aquifer and the Black Creek aquifer varies over a wide
range: between 8.5x107° and 1.2x107* (ft/d)/ft. It is
greatest near the updip limit of the confining unit and
decreases rapidly toward the coast (fig. 50). It varies
because the Black Mingo Formation of Paleocene age
that is part of this confining unit is less clayey and
thinner near its outcrop to the northeast than it is in the
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subsurface to the southeast. As the Floridan aquifer
system, Tertiary sand aquifer, and Paleocene confining
clays pinch out to the northeast, the confining unit
overlying the Black Creek aquifer consists of part of the
Cretaceous Peedee Formation. This confining unit is
leakier than the Paleocene clays. These model results
support the general hypothesis, discussed previously in
the section of this report describing the predevelopment
flow system, that the direction of flow in the aquifers in
Cretaceous rocks of the lower Coastal Plain is controlled
at least in part by the east-west difference in the
leakance coefficient of this confining unit.

An interesting variation, again from west to east,
occurs in the confining unit between the Black Creek and
Middendorf aquifers (fig. 51). Final results for transient
simulation show that this confining unit is less permeable
in the western part of the study area than in the eastern
part. This variation in permeability corresponds well
with the available data that indicate head and water-
quality differences between the Black Creek and Mid-
dendorf aquifers in the western part of the area are
greater than differences found to the east (figs. 16, 17,
and 28-31). Leakance coefficient values for this confining
unit range from 6.0x107° to 3.0x10™* (ft/d)/ft.

The confining unit between the Middendorf and Cape
Fear aquifers has low permeability everywhere; simu-
lated leakance coefficients range from 9.1x10°° to
9.1x107° (ft/d)/ft (fig. 52). Simulated leakance coeffi-
cients are lowest in the downdip half of the confining
unit. The relatively poor hydraulic connection between
the Middendorf and Cape Fear aquifers that is due to the
low permeability of this confining unit results in the long
flow paths, parallel to the coast, in the Cape Fear aquifer
as previously described.

Because little reliable areal information on storage
coefficients is available and because the transient simu-
lation is relatively insensitive to large changes in this
parameter, a very simplified distribution of storage
coefficient values was used in the model (fig. 53). In
constructing this distribution, it was assumed that aqui-
fers were under unconfined conditions (at least in
response to significant pumping stress) in roughly the
updip half of each of their outcrop areas. In these areas,
a uniform storage coefficient of 0.15 was used to repre-
sent the specific yield. Stricker (1983) used a specific
yield of 0.15 in her analysis of base flow of streams in the
Southeastern Coastal Plain. Confined conditions were
assumed to exist in the downdip half of all aquifer
outerop areas because of the vertical heterogeneities of
the Coastal Plain sediments. Although this treatment of
outcrop areas is a simplification of actual conditions, it
tended to produce reasonable results for pumping cen-
ters in or near outcrop areas despite inherent problems
in simulating the shallow flow systems there. In all areas
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TABLE 5.—Observed and simulated flow from the deep aquifer system to rivers prior to development and in November
1982 and net change

[Values in cubic feet per second]

River! Computed deep system Simulated pre- Simulated Simulated
aquifer-to-river flow? development flow®  November 1982 flow change
Savannah 154 134 116 -18
South Fork Edisto 45 42 39 -3
North Fork Edisto 100 79 79 0
Pee Dee 101 70 61 -9
Lumber 29 28 27 -1

'Upper Coastal Plain reach.
2From Aucott, Meadows, and Patterson (1987).
3From Aucott (1988).

tions in aquifer-to-river discharge represent most of the
water withdrawn from the system due to pumpage.

Simulated aquifer-to-river discharge decreased from
predevelopment to November 1982 in the river reaches
of the upper Coastal Plain (table 5, fig. 19). Decreases
were greatest in the Savannah and Pee Dee Rivers,
which are near the large pumping centers of the Savan-
nah River Plant and Florence, respectively.

Water derived from storage, net increases in leakage
from overlying source-sinks, and inflow across bound-
aries are the dominant sources of water for pumping
centers in the Myrtle Beach area. Decrease in flow from
the aquifers to upper Coastal Plain rivers and water
derived from storage are the dominant sources for upper
Coastal Plain pumping centers such as the city of Flo-
rence. The decrease in net storage indicates that the flow
system had not attained a steady state at the end of the
1982 transient simulation.

SUMMARY AND CONCLUSIONS

A wedge of sand, silt, clay, and limestone is present
beneath the Coastal Plain of South Carolina and adjacent
parts of Georgia and North Carolina. These sediments
have been subdivided into six regional water-bearing
units: the surficial aquifer, the Floridan aquifer system,
the Tertiary sand aquifer, the Black Creek aquifer, the
Middendorf aquifer, and the Cape Fear aquifer. Inter-
vening confining units separate the aquifers, except for
the Floridan aquifer system and the Tertiary sand aqui-
fer, which together function as a single hydrologic unit.

Prior to development, the ground-water flow system
was approximately at steady state. The sources of
recharge to the Coastal Plain aquifers were precipitation
in the aquifer outcrop areas and leakage from overlying
and underlying aquifers. Discharge from the aquifers
was to streams, to overlying and underlying aquifers,
and to the ocean. The ground-water flow system in all

aquifers prior to development was dominated in the
upper Coastal Plain by flow toward rivers and streams.
As a result of development of the aquifers, the ground-
water flow system is no longer in steady state. Major
declines in head, centered in the Florence and Myrtle
Beach—Georgetown areas, have occurred in the Midden-
dorf and Black Creek aquifers in eastern South Carolina.
Drawdowns have also occurred in the Floridan aquifer
system in the Savannah-Hilton Head and Charleston-
Summerville areas and in the Black Creek aquifer in
Allendale County. Relatively minor head declines in the
Middendorf aquifer have occurred near the large pump-
ing centers in the Sumter and the Savannah River Plant
areas. '

The quality of ground water from the Coastal Plain
aquifers of South Carolina generally is acceptable for
most uses in most areas. The quality of ground water in
most aquifers ranges from low concentrations of dis-
solved solids and no dominant constituents in the
recharge areas, to a calcium- or sodium-bicarbonate-type
water throughout most of the Coastal Plain, to sodium-
chloride-type water near the coast. Existing or potential
water-quality problems that locally inhibit or restrict the
use of ground water include high concentrations of
chloride resulting from unflushed seawater or saltwater
encroachment, high concentrations of fluoride and iron,
low pH, and water-quality changes resulting from human
activities.

A ground-water flow model, which has an evenly
spaced grid mesh of 4 mi, was constructed to simulate the
predevelopment flow system. Because the intent was to
study regional flow systems, and the model grid size
precludes simulation of the complexities involved with
shallow flow systems, only the deep flow system was
simulated. No-flow boundaries were used to represent
the updip limit of the units, the base of the Coastal Plain
sediments, and the saltwater-freshwater interface. The
lateral flow boundaries in Georgia and North Carolina
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were modeled predominantly as constant-head bound-
aries. The surficial aquifer and parts of the Floridan
aquifer system previously modeled in other studies were
treated as source-sink layers and were simulated with
constant heads.

After the predevelopment (steady-state) model was
calibrated, a model was constructed and calibrated to
represent transient conditions from predevelopment to
November 1982. New input data for the model included
historical pumpage data and aquifer storage coefficients.
A general-head boundary was used for parts of the
lateral and saltwater-freshwater interface boundaries
located near large pumping centers. The transient model
was calibrated by using observed head declines between
predevelopment and 1982 conditions, along with water-
level data from selected hydrographs for wells near the
areas of large head decline. Small adjustments were
made in aquifer transmissivity and leakance coefficients
of confining units during the calibration of the transient
model. These adjustments were tested on the predevel-
opment model and determined to be reasonable.

The calibrated models were tested to determine the
sensitivity of the models to changes in various parame-
ters as measured by head residuals and by total river-
flow. Head residuals were most sensitive to changes in
aquifer transmissivity (particularly in aquifer outerop
areas), leakance coefficient of confining units, and
increases in recharge. Total riverflow was most sensitive
to changes in recharge and least sensitive to changes in
storage coefficient and leakance coefficient of confining
units. The transient model seemed to be equally sensitive
or less sensitive to changes in input parameters than the
predevelopment model.

The output of the ground-water flow models includes
head distributions, water budgets, and refinements of
the distributions of recharge, aquifer transmissivity,
storage coefficients, leakance coefficients of the confining
units, and streambed conductances. The total discharge
from the deep ground-water flow system simulated in the
transient model for 1982 conditions was 967 ft*/s. Simu-
lated direct recharge in outcrop areas was 793 ft3/s. The
remainder of total inflow into the model was from
leakage from overlying source-sink beds (30 ft*/s) and
inflow across boundaries (34 ft*/s). A net amount of 110
ft?/s was derived from storage. Discharge from the
aquifer system included 660 ft*/s to the upper Coastal
Plain rivers, 249 ft*/s to pumped wells, 28 ft*/s of upward
leakage to the overlying source-sink beds, and 30 ft*/s of
outflow across lateral boundaries.

Significant changes in the simulated water budget
occurred between predevelopment and 1982. Changes
included increases in outflow of 249 ft*/s to wells, which
was balanced by a 110-ft*/s decrease in storage, 67-ft%/s
decrease in aquifer-to-river discharge, 44-ft%/s net
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increase in inflow from source-sinks, and 28-ft*s net
inerease in inflow across boundaries. Water derived from
storage, net increases in leakage from overlying source-
sinks, and net increases in boundary flow are the domi-
nant sources of water for pumping centers in the Myrtle
Beach area. A decrease in flow to upper Coastal Plain
rivers and water derived from storage are the dominant
sources of water for upper Coastal Plain pumping cen-
ters, such as the city of Florence.

Simulated transmissivity distributions differ little
from original estimates because the initial estimates from
aquifer-test and specific-capacity data generally were
adequate. Transmissivities of all aquifers ranged from
less than 1,000 to about 30,000 ft%d. Leakance coeffi-
cients of the confining units were adjusted considerably
from initial estimates because there were insufficient
data to establish realistic initial estimates and because
the model is relatively sensitive to changes in this
parameter. On the basis of an assumed average thickness
of 100 ft for a confining unit, vertical hydraulic condue-
tivities of the confining units ranged from 6x1077 to
3x1072 ft/d. Adjustments in predevelopment values of
transmissivity and leakance coefficients to calibrate the
transient model were relatively minor. Storage coeffi-
cient in confined areas changed somewhat from original
estimates of 0.0003 to the final value of 0.0005 and was
held constant areally. The updip half of the outcrop area
of each aquifer was considered to be unconfined, in
response to pumping stress, and assigned a storage
coefficient of 0.15.
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