Public-data File 84-14

CATALOG OF ALASKAN EARTHQUAKES: JANUARY-MARCH 1984

ΒY

H. Pulpan, D. Marshall, N.N. Biswas, S. Estes, R.D. Siegrist, S. Sexsmith, and H.Biesiot

> University of Alaska Geophysical Institute Fairbanks, Alaska 99701

> > 1984

.

THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY-TO THE EDITORIAL STANDARDS OF DGCS.

> 794 University Avenue, Basement Fairbanks, Alaska 99701

UNIVERSITY OF ALASKA FAIRBANKS, ALASKA

and Alaska Division of Geological and Geophysical Surveys

84-14

PHOTO: TURNAGAIN HEIGHTS, ANCHORAGE, 1964

Catalog of Alaskan Earthquakes

January-March, 1984

This document has not received official PGGS review and publication status. and should not be quoted as such.

CATALOG OF EARTHQUAKES IN CENTRAL AND SOUTHCENTRAL ALASKA,

THE KODIAK ISLAND AND ALASKA PENINSULA AREAS

January-March, 1984

Ъy

H. Pulpan, D. Marshall, N.N. Biswas, S. Estes R.D. Siegrist, S. Sexsmith, H. Biesiot,

TABLE OF CONTENTS

INTRODUCTION	1
DATA	1
DATA PROCESSING	7
VELOCITY MODELS	7
MAGNITUDE	10
DISCUSSION OF CATALOG	10
ACKNOWLEDGEMENTS	18
REFERENCES	19
APPENDIX	20
Catalog Format	20
Alaskan Earthquakes South of 61" North,	22
Alaskan Earthquakes North of 61" North	27
Modified Mercalli Intensity Scale,	38

INTRODUCTION

This catalog lists routinely determined parameters of earthquakes occurring within and adjacent to the areas encompassed by the network of seismograph stations operated and/or recorded by the Geophysical Institute of the University of Alaska (UAGI). Our goal in generating this catalog is to provide a convenient reference source for the earthquake activity in the areas covered and to provide a guantitative set of information on the basis of which interested researchers, administrators, planners, and others can judge to what related data files residing on the Geophysical Institute's extent computer system. might be useful for their various needs. We therefore not only hypocentral parameters but also information about the quality of input provide data and accuracy of the derived parameters, so that potential users of both raw and derived data can obtain some idea as to which type of further data analysis these data would lend themselves. While, on account of the number of the present catalog is the result of routine processing, reasonable events. been taken to locate earthquakes accurately and to use as many useful care has This is especially true for events of magnitude 3 and data as possible. larger. Additional data, primarily from networks operated by other agencies. and more sophisticated methods of anlaysis might, however, in many cases lead more accurate locations. to

DATA

The data used in preparing this catalog are derived from two principal sources: from seismic stations operated by the Geophysical Institute and from seismic stations operated by other agencies but continuously recorded by us under various data sharing or data exchange agreements. Also, for events of about magnitude 3 or larger, arrival times for many stations of NOAA's Tsunami

Warning System are made available to us in the form of copies of their daily TELEX message of arrival times sent to the National Environmental Information Service in Boulder.

Figure 1 shows all stations of the University of Alaska network, and all stations operated by various other agencies (with the exception of the NOAA station Nikolski which locates just outside the map area) from which data have been used for the preparation of this catalog.

Geographic coordinates and other pertinent information about these stations are given in Table 1.

Signals from the various, usually remotely located, stations are transmitted by means of a combination of UAGI operated VHF radio links and leased commercial telephone circuits to one of the two recording centers of the University of Alaska network in Homer and Fairbanks. Remote stations are serviced and calibrated once a year, stations with year-round road access are serviced more often if necessary. In the case of malfunctioning, the difficulties of access associated with many stations can lead to lengthy data losses and, in turn, to lower detection thresholds and solution qualities for earthquakes located in the affected regions. In order to discern such conditions we provide a station use record in Figure 2. Stations with lengthy outages can be identified on this figure. It should be noted, however, that especially in the case of stations not operated by the University of Alaska non-use does not necessarily imply station outage but rather that no data were required for earthquake location purposes.

The data are recorded on 16 mm film on several Teledyne Geotech Develocorders, each of which has a maximum capacity of 20 channels. Satellite linked clocks provide timing marks which are superposed on the records. Figure 3 gives the typical response of the total system from transducer to recorder.

Figure 1: All seismograph stations operated by the University of Alaska and **stations** of other organizations from which data were used in preparing this bulletin. The stations BGM POB, and **SLV** were originally installed and operated by USGS and are presently maintained by the University of Alaska.

Figure-P: Station use *record*. A dash associated with a particular station on a particular date means that at least one arrival-time reading from that station was used on that date.

STATION NAME	CODE	LATITUDE (N)	LONGITUDE (¥)	ELEV V	BLOCITY MODEL	OPERATOR
ANTEL MOUNTA DI	AVN	64 13 9A	165 00 0B	222	1	55 8
AUGUSTINE FAST	AUE	59 23 54	153 22.20	172	2	22
AUGUSTINE HTLL	AUR	59 21.83	153 26.61	900	2	a a
ADCUSTINE ISLAND	AUT	59 20.11	153 25 66	293	2	ΠA
AUGUSTINE LAVA FLOU	ADT.	59 22 93	153 26-07	360	2	()
BEAVER CREEK	MC 1	63 6.00	141 45-50	262	1	U A
BIG HOUNTAIN	NCH	59 23.56	155 13.76	625	2	JIA/USCS
SLUE MOUNTAIN	SLN	58 2.70	156 20.70	539	3	UA COLO
BLACK RAPIDS	ALA	63 30.10	145 50.70	810	1	(CA
BURNT HOUNTAIN	BH 3	67 17.18	144 25.17	30s	L	8A.
BRADLEY LAKE	BELK	59 45.85	150 53.13	631	2	\$G5
BARROW	8 R Y	71 16.43	156 47.08	13	Į	AB
CLEAR CREEK BUTTE	CCE	64 38.80	147 08.33	219	1	UA.
CAPE DOUGLAS	сm	58 53.79	153 38.58	622	2	UA
CHINA Poor	CNP	59 31.55	131 14.16	564	2	∎SGS
DEADHAN MY	DHO	57 5.23	153 57.63	300	3	U.A.
FAIRBANKS	FB2	64 54-00	147 47.60	320	1	Ű A
FEATHERLY PASS	112	57 42.40	156 16.10	486	3	U.A.
PORT YUKON	E TU	66 33.96	145 13.90	137	ι	AU
COLD KING CREEK	CXC	64 10.72	147 56.08	490	1	ŬA.
GILAHINA BUTTE	GL3	61 26.51	143 48.63	845	S	USCS
GILHORE DONE		64 59.26	147 23.34	820	l	U.A.
HARDING LARY	HUM	64 24.35	146 57.23	4 50	1	U A
	HOM	59 39.50	151 38.60	198	2	
INDIAN ROUSTAIN		60 4.10	153 40.72	(380	L	NOM
		5/ 44.8/	152 29.50	13	3	NOM
FIGE TUTUR HORSTVIK	1111	20 51.BU	120 10.50	200	3	UA IZA
	LIVE .	43 13.00	149 15.20	230 410	1	Ψ Α
MARATE CADE	TALK.		184 30-10	310		U.A.
WENTER DIVED		57 20.00	124 30.10	140	3	ULA.
	THE P	44 34 43	149 0.20	344	Z T	UA
NTYNI CYT	NICT	52 56 56	158 \$1 44	#9C	۱ 2	
OIL POINT	0111	52 30.30	163 13 78	450	5	11
PAISON	PAX	62 58-25	145 28.12	1130	ĺ	tta
PEDRO NY	PDA	59 67.27	154 11.55	105	2	RA (TISOS
PALNEL EAST	PHE	61 37.70	149 1.90	232	2	NOM
PALMER OBSERVATORY	8 m	61 35.53	149 7.85	100	2	NOM
ARCTIC VALLEY - PALMER	2115	6L 14.68	149 33.63	716	2	NOAA
PUALE RAY	PUL	57 46.40	155 31.00	280	3	CA
HOUSTON - PALMER WEST	244	61 39.05	149 52.72	137	2	ម្ពុង
RASPBERRY ISLAND	RAI	58 3.63	153 9.55	520	3	8 A
RICHARD D. SIEGRIST	RDS	54 49.59	148 8.58	930	1	UA
REDOUBT	RDT	60 34.43	152 26.37	930	2	USGS
REDOUBT VOLCANO	RED	60 25.14	152 46.32	1067	2	UA
SHEEP HOUNTAIN	SCH	61 50,00	147 19.66	1020	4	UA
SAND FOINT	SDN	55 20.40	160 29.83	19	6	NOM
SHUTAR ISLAND	SHU	58 37.68	152 20.93	10	3	¥ A
SITKINAK ISLAND	SII	56 33.60	154 10,92	500	3	UA
SITKALIDAK ISLAND	SKO	57 9.65	153 4.82	133	3	UA
SINGLA CONTRA	SKA	61 58.86	151 31.78	204	2	ISGS
STREAT I THE	2 TA	59 28,28	151 34.83	9l 700	2	UA/USCS
	37L	J/ 45,55	161 7 7 7 8	600	3	V R
CIVET THE MOTOR AND	370	61 10,90		800	2	0565
CADATONIA MONTAIN	55N	61 27.83	168 47 54	1431	1	8363
TOT COMA	5 W	61 6.49 57 5 70	132 37.30	102	2	
TATALINA	1111	62 6.29	100 IU.38	509 616	,	
UGAK ISLAND	UCT	57 22 K	157 16 40	510 717	1	
HOOD STOFF HTLL.	VRH	64 38.28	148 5 20	314	1	NA
WONDER WHY RIDGE	ugu	58 20,90	156 19.90	414	3	UA.

Table 1. Names and pertinent parameters of seismic stations used in preparing this catalog. For description of velocity models see text.

DATA PROCESSING

Arrival times are read on Geotech filmviewers which provide a resolution of up to 3 lines per millimeter. Thus, the most impulsive arrivals can be read to .05 sec.

Earthquake locations are based on P and S arrivals. As many S arrivals as possible are used to help constrain hypocentral depth. The large majority of the S readings are obtained from vertical components since only few three component systems are recorded. Owing to the nature of the multichannel film recordings in the case of a large event, traces overlap each other making the identification of S arrivals very difficult. The gradual transition to a digital tape recording system, presently underway, will greatly improve this situation.

After identification of events and determination of arrival times, phase data are processed by computer to obtain the earthquake parameters using the computer program HYPOELLIPSE (Lahr, 1980). Each solution is checked for travel time residuals greater than or equal to 0.5 sec and for the spatial distribution of stations used. Events that produce large residuals are reread and for shocks with poor station distribution readings are sought from additional stations, not recorded by the University of Alaska. Events recorded by only five stations or less receive little additional attention. Events of magnitude 3.5 and larger are processed very carefully, sometimes by changing various control parameters in the computer program.

VELOCITY MODELS

Since most computer algorithms for locating earthquakes are based upon some iterative scheme of minimizing the difference between calculated and observed travel times between hypocenter and the stations, a seismic velocity structure has to be provided. The tectonic regime and geological setting vary greatly throughout the area covered by the University of Alaska network. Although our knowledge of the details of the seismic velocity structure is rather limited, considerable variation seems to exist. To take this variation into account each of the University of Alaska stations, depending on its location, is associated with one of three different velocity models. Regardless of the location of the hypocenter, that structure is used in calculating the travel time to that station. The models used are all one dimensional, varying only with depth, and lateral velocity variation (which is especially strong in the vicinity of the subduction zone) is not taken into account. For stations which are not part of the University of Alaska network we generally use models adopted by the operators of these stations. Column 6 of Table 1 indicates the particular velocity model with which each station is.associated.

The University of Al **aska** presently uses the following models: Model 1

Layer	Depth (km)	P Velocity (km/sec)
ĺ		5.9
2	24-40 0-24	7.4
3	40-76	7.9
4	76-300	8.3
5	301-545	10.4
6	Below 545	12.6

This model is used primarily in central and northern Alaska. It was derived from travel-time studies to central Alaskan stations from teleseismic and regional earthquakes (Biswas and Bhattacharya, 1974).

Model	2
-------	---

Layer	Depth (km)	P Velocity (km/sec)
1	o-2	2.75
2	2-4	5.3
3	4-10	5.6
4	10-15	6.2
5	15-20	6.9
6	20-25	7.4
ĩ	25 - 33	7.7
8	33-47	7.9
9	47-65	8.1
10	below 65	8.3

This model is associated with stations located in the Cook Inlet-Kenai Peninsula area. It is based on the model of Matumoto and Page (1969) determined for the Kenai Peninsula from travel time studies of 1964 Alaska earthquake aftershocks. This model is used by USGS in this area for location purposes.

.

Model 3

Laler	Depth (km)	<pre>P Velocity (km/sec)</pre>
2	1.6-12 0-1.5	4.2
		5.5
3	12-42	6.6
4	42-60	8.06
5	60-80	8.09
6	80-100	8.11
7	100-150	8.14
8	150-200	8.27
9	200-250	8.41
10	250-300	8.50
11	300.350	8.74
12	below 350	9,02

This model is used in connection with stations located on Kodiak Island and the Alaska Peninsula. This structure was obtained by Engdahl and Tarr (1970) from refraction experiments, in the central Aleutians.

For all models the S velocity is taken to be equal to the P velocity divided by the square root of three.

MAGNITUDE

,

Magnitudes are determined from the maximum amplitude of the body wave trace. The relationship derived by Richter (1954) for records of local California earthquakes from horizontal, standard Wood Anderson seismographs is used. Proper adjustments are made for differences in the response characteristics and magnification between the standard instrument and the system actually used. However, no corrections are made for any differences in attenuation properties between California and the various Alaskan regions or the fact that vertical rather than horizontal ground motion is measured.

For a given earthquake, its magnitude is usually calculated at several stations and then averaged.

In the case of large events, when the maximum trace amplitude saturates on most of our stations, we frequently list local magnitude as determined by NOAA's Palmer Observatory. When this is the case, it is indicated in the listings after the event. When available, we also list felt reports after the events and observations of the Modified Mercalli Intensity (Richter, 1958). The definitions of the various intensity levels are given in the Appendix.

DISCUSSION OF THE CATALOG

The Appendix lists hypocenter parameters, magnitude and quality parameters of earthquakes located during the first quarter of 1984. The listings are in two groups: one for events north of 61°N and one for events south of it.

Epicenters for the same time period are plotted in Figures 4 through 6. For the areas of Figures 4 and 5, the epicenters of events of $M_L > 3$ are shown in Figures 7 and 8 respectively. Figure 6 shows only events located outside the areas encompassed by Figures 4 and 5. These events are generally of poor quality and located either because our network appeared to be the only one

FiguretA:s of earthquakes south of $61^{\circ}N$ located during the first quarter of 1984. Symbol size varies with magnitude as indicated. Different symbols are used for indicating depth range of earthquakes: × for 0 to 35 km, \odot for 36 to 100 km, A for deeper than 100 km.

<u>Figure 5:</u> Epicenters of earthquakes north of $61^{\circ}N$ located during the first quarter of 1984. Symbols as in Figure 4.

Figure 7: Epicenters of earthquakes of magnitude $M_1 > 3$ south of 61°N located during the first quarter of 1984. Symbols as in Figure 4.

capable of locating them or because a large number of station readings was available, a fact we thought useful to disseminate by incorporation into the catalog.

Detection threshold and quality of solution vary throughout the areas shown in Figures 4 through 5. For the areas of Figures 4 and 5 the catalog is probably complete for magnitudes larger than 3.0 to 3.5 (see Figure 7 and 8, respectively). As is apparent from Figure 1, station density varies considerably throughout these areas, and with it detection threshold levels.

The quality (i.e., reliability) of a hypocenter can be assessed from two sets of information provided in the listings for each earthquake: from the quality of the input data and from the results of certain statistical tests.

The number of P and S phases used in locating the earthquake (NP and NS, respectively in the listings), the largest azimuthal separation between stations as measured from the epicenter (GAP), and the distances from the 'epicenter to the closest and third closest station (D1, D3) are the most important aspects of the input data that control the hypocenter quality. A GAP of more than 180° means that the event lies outside the network and locations will be less reliable. Also, the higher the ratio of D1 to hypocentral depth is above unity the less reliable will be the depth of the event. Considering the unevenness of station coverage indicated in Figure 1, it is clear that the potential for high quality solutions varies greatly throughout the area of the figure.

The root-mean-square travel-time residual (RMS) and the horizontal (ERH) and vertical (ERZ) projections of the maximum axes of the **one-standard**deviation confidence ellipsoid reflect the relative accuracy of the solution.

Since we use fairly simplified velocity **models**, it is likely that the RMS residuals measure primarily the incompatibility of these models and only secondarily random reading errors and phase misidentifications. While ERH and ERZ measure, respectively, the precision of epicenter and depth fairly well, it

is difficult to say what the absolute accuracy of the locations is, since we lack the proper calibration events (explosions) to perform studies in that regard.

The seismicity south of 61°N (Figure 4) is dominated by the subduction of the North Pacific plate beneath the North American plate. A well-defined Benioff zone dips below Cook Inlet and the Alaska Peninsula in a generally north-westerly direction with a dip of approximately 45 degrees. The relatively high level of seismic activity near 60°N at depths larger than about 70 km is a persistent feature of the area. The Benioff zone also dominates the seismicity of the southern portion of Figure 5 and terminates at about 64°N. A cluster of intermediate depth (> 50 km) seismicity near 63°N. below Mt. McKinley (Denali), is also a static feature of the seismicity of the area and pinpoints the region where the strike of the Benioff zone changes from north-northeasterly towards a more northeasterly direction. It should be noted that because of the large station spacing, the depth resolution of the hypocenters is rather poor between 62°N and 63°N. The cluster of shallowdepth earthquakes near Fairbanks is a long-term feature of the central Alaskan While the relatively great station density near Fairbanks seismicity. provides the lowest detection threshold throughout the network (with the exception of Augustine Volcano) the concentration of epicenters is indicative of a seismically very active zone.

There was *no* unusual seismic activity during the period covered. The largest events recorded were one of magnitude $M_{L} = 5.2$ approximately 40 km west of Anchorage and one of magnitude $M_{L} = 5.0$ off the southwest coast of Kodiak Island. The stations of the Kodiak Island and Alaska Peninsula network were not operating during this period and only few events were recorded in these areas.

ACKNOWLEDGEMENTS

We thank Tom Sokolowski and the staff of the NOAA Tsunami Warning System in Palmer for permitting and helping us to record several of their station signals on a continuous basis. We also thank John Lahr of the USGS for sharing several of his station signals with us and also for providing us with the HYPOELLIPSE computer program.

The operation of the seismic networks and the preparation of this report were made possible by grants from the Division of Geological and Geophysical Surveys of the State of Alaska and by support from the Geophysical Institute of the University of Alaska. We are especially grateful to John Davies of the Division of Geological and Geophysics Surveys for his continued support. REFERENCES

- Biswas, N. N. and B. Bhattacharya, Travel-time relations for the upper mantle from central Alaskan data, Bull. Seism. Sec. Am., 64, 1953-1965, 1974.
- Engdahl, E. R. and A. A. Tarr. Aleutian seismicity, Milrow seismic

effects, U.S. Coast and Geodetic Survey, CGS-746-102, 1976.

- Lahr, J. A. HYPOELLIPSE/MULTICS: A computer program for determining local earthquake hypocentral parameters, magnitude and fi rst motion pattern. USGS Open File Report 80-59, 1980.
- Maley, D. and F. Ellis. Columbia Bay, Alaska strong motions records, Newsletter Earthquake Engineering Research Institute, V. 18, N. 1, p. 30-32, 1984.
- Matumoto, T. and R. A. Page. Micro aftershocks following the Alaska earthquake of 28 March 1964: determination of hypocenters and crustal velocities in the Kenai Peninsula-Prince William Sound area. <u>In</u> The Prince William Sound Alaska, Earthquake of 1964. Vol. 2B, U.S. Government Printing Office, 1969.
- Page, B., Stephens C. and K. Fogleman. Columbian Bay, Alaska earthquakes of July 12 and September 7, 1983. Newsletter Earthquake Engineering Research Institute, V. 18, No. 1, p. 27-29, 1984.
- Richter, C.F., Elementary Seismology, W.H. Freeman and Co., San Francisco, 768 pp, 1958.

APPENDIX

Catalog Format

Earthquakes are listed in chronological order. The following data are given for each event:

- ORIGIN TIME in Universal Time (UT): date, hour (HR), minute (MN), and second (SEC). To convert to Alaska Standard Time (AST) subtract nine hours.
- (2) LAT N, LONG W: epicenter in degrees and minutes of north latitude and west longitude.
- (3) DEPTH, depth of focus in kilometers.
- (4) MAG, magnitude from maximum trace amplitude.
- (5) NP, number of P arrivals used in locating earthquake.
- (6) NS, number of S arrivals used in locating earthquake.
- (7) GAP, largest azimuthal separation in degrees between stations.
- (8) D1, distance in kilometers to the closest station to the epicenter.
- (9) D3, distance in kilometers to the third closest station to the epicenter.
- (10) RMS, root-mean-square error in seconds of the travel time residuals:

$$RMS = \sqrt{\sum_{i}^{2} (R_{P_{i}}^{2} + R_{S_{i}}^{2}) / (NP + NS)}$$

where R_{P_i} and R_{S_i} are the observed minus the computed arrival times of P- and S-waves respectively at the *i*-th station.

- (11) ERH, largest horizontal deviation in kilometers from the hypocenter within the one-standard-deviation confidence ellipsoid. The quantity is a measure of the epicentral precision for an event. Values of ERH that exceed 99 km are tabulated as 99 km.
- (12) ERZ, largest vertical deviation in kilometers from the hypocenter within the one-standard deviation confidence ellipsoid. This quantity is a measure of the depth precision of the event. Values of ERZ that exceed 99 km are listed as 99 km.
- (13) Q, Quality of the hypocenter. This index is a measure of the precision of the hypocenters and reflects both the quality of the input data and the solution. These qualities are determined as follows:

Solution Quality	RMS	ERH	ERZ
A	< .15	< 1.0	\$ 2.0
8	<.30	< 2.5	< 5.0
C	< .50	\$ 5.0	
a	others		
Data Quality	NP + NS	GAP	01
A	> 5	< 90	s depth or 5 km
В	> 6	< 135	< 2*depth or 10 km
C	> б	< 180	< 50 km
D	others		

 ${\tt Q}$ in the average (rounded ${\tt w}$ the poorer quality) of the solution and the data qualities.

,

	ALASKAN EA	RTHQUAKES	SOUTH OF	61 DEGRE	EES NORTH	LATIT	UDE, 1984		
ORIGIN TIM	E LATN	LONG W	DE PIH	MAÇ N P	NS GAP	D1	D3 RMS	ERH	ERZ Q
1984 HR MN SE	DEG MIN	DEG MIN	КM		DEG	КM	KM SEC	ΚM	KM
JAN 01 0 35 2.3	2 59 50.4	$152 \ 21.5$	74.3	2.8 9	4 208	45	69 0.16	3.5	3.1 D
04 5 43 12.5	5 59 54 8	152 49.3	105.7	3.0 10	3 247	69	86 0.25	4.9	3.9 D
04 21 17 22 3	3 60 14 9	151 43 3	70.0	31 10	5 210	61	71 0 33	3.0	34 D
(15 0 35 37 /	1 59 51 5	153 29 2	132.6	2610	2 207	27	74 0 25	29	45 D
07 + 14 + 49 (1 50 01.0 D 50 106	150 40.2	40.3	2.0 10	2 207	50	97 0 29	2.0	4.0 D
07 1 14 45.0	5 36 10.0	152 45.0	40.5	2.4 10	2 175	04	81 0.00	4.0	2.0 D
09 0 29 191	0 50 49 5	159 29 8	102.0	25 7	0 005	54	CO 0 18	19.9	84 D
	50 51 4	152 02.0	76 4	، ر., <i>ي</i> ۱۵ ۹ ۹	5 910	10	69 0.10	10.0	0.4 D
	1 09 01.4 9 50 50 0	102 24.0	70.4 67 6	2.0 10	2 170	40	60 0.40 CO O 97	0.4	2.8 D
	0 09 00.8	151 09.8	07.0	2.0 0	5 170 C 100	00 05	60 0.27	3.0	2.9 C
		152 11.0	93.4	3.3 10	0 192	30	93 0.36	2.1	3.5 D
10 6 15 43.6	5 60 5.7	192 11.1	70.5	2.7 8	5 169	51	74 0.22	4.0	3.9 D
10 00 40 01 0	~		119.1	1.9 10	9 176	0.5	01 0 10	9 1	
	0 09 01.0		114.1	1.0 10	0 110	25	64 U.13	2.1	3.8 C
	5 59 49.9	152 27.0	(8.4	2.8 8	3 216	49	68 0.22	3.8	3.8 D
12 0 43 51.	60 23.5	151 8.4	52.5	3.1 9	3 256	71	90 0.39	3.1	6.0 D
12 2 43 44.2	2 59 37.4	151 6.4	4.2	2.1 8	4 <u>1</u> 76	13	31 0.49	2.2	74.1 c
12 10 59 6.4	4 60 4.6	152 47.5	117.3	3.4 8	3 227	38	96 0.34	5.0	3.8 D
12 16 14 8.	1 59 20.1	153 30.2	109.7	2.1 10	4 188	7	110 0.33	2.1	3.1 D
13 13 30 41.8	8 59 58.8	152 54.0	100.3	3.1 7	3 161	41	$79 \ 0.35$	3.3	3.5 c
13 19 33 52.0	6 60 15.9	152 40.0	109.4	3.5 16	3 96	18	89 0.37	2.0	2.7 C
14 11 44 27.3	3 59 45.2	$153 \ 17.5$	134.5	4.0 12	4 190	12	$80 \ 0.45$	2.1	2.4 D
15 7 11 7.3	3 57 37.8	152 10.1	21.7	3.2 8	0 - 287	23	208 0.37	17.8	12.8 D
$15 \ 7 \ 21 \ 2.3$	3 57 11.3	151 55.5	10.9	2.6 6	0 320	7 I	255 0.18	31.3	99.0 D
15 7 24 31.1	57 23.4	151 52.9	2.6	2.5 5	1 306	54	271 0.19	99.0	80.1 D
15 7 30 1.2	2 56 23.3	152 9.4	0.0	4.0 10	0 250	153	$345 \ 0.50$	11.5	3.4 D
15 7 47 1.1	57 38.7	152 1.0	11.1	2.9 8	1 277	31	205 0.48	15.3	28.7 D
15 12 2 45.0	56 33.6	152 31.2	10.4	3.4 9	0 230	132	339 0.36	16.0	99.0 D
15 12 28 53.3	3 57 32.6	152 0.1	14.7	5.0 10	0 294	37	182 0.40	12.6	3.7 D
			- , ,	PMR. ML=	= 5.0	0.			011 0
16 (12 39 30 () 59 58 4	158 0 6	120.4	29 8	3 253	62	108 0 20	87	69 D
17 9 56 9 9	8 59 944	150 0.0	517	2.0 0	2 202	12	22 0 10	2.6	0.5 D
	5 05 44.4 5 50 20 C		190.9	2.4 U	0 145	10		5.0	201
	09 39.0		101	2.0 11	5 147	32		0.2	3.2 D
10 1 10 14.0	0 00 00.9	147 0.7	12.1	3.1 12	2 202	96	134 0.20	3.0	3.2 D
10 A 94 ह1.	6 60 10 2	159 5 1	110.6	97 0	9 161	0.0	115 0 99	9.9	60 D
10 10 96 90.4		120 010	120.0	4.1 9	4 101	50	100 0.00	0.0 6 0	0.9 D
	7 07 47.0	181 5 0	104.2	4.0: 0	1 266	46		0.8	
19 ZU 12 19.8			00.0	3.1 20	ə 113 ə 107	98	134 0.33	1.8	4.0 C
20 10 21 9.3	5 60 9.3	152 42.7	110.2	2.5 9	3 167	81	108 0.39	4.Z	4.6 D
20 10 00 00.0	> 59 45.4	153 18.8	132.6	23 8	2 257	4.2	103 0 11	5.9	5.3 D

				AL	ASKAN	EAR	THQUAK	ES SC)UTH	OF	61 I	EGREES	S N	ЮRTH	LATITU	DE,	1984			
		ORI	GIN	TIME	LAT	N	LON	G W	DEP	TH	MAG	NP	NS	GAP	D1	D3	RMS	ERH	ERZ	Q
198	54 H	R	MN	SEC	DEG	MIN	DEG	MIN	X	M				DEG	ΚM	K M	SEC	KM	КM	
JAN	20	1	8 23	3 30.	5 60) 1.1	153	19.5	128.	ō	3.5	13	3	126	71	116	0.37	2.8	4.9	С
	20	20	55	51.1	59	47.9	152	42.0	95.8	8	2.7	11	3	138	62	73	0.30	3.0	2.5	D
	21	4	24	9.9	60 J	9.3	151	51.4	86.	8	2.5	9	3	204	75	95	0.43	4.2	5.6	D
	22	11	47	30.6	60	15.9	152	9.0	81.	2	2.6	11	4	190	73	94	0.43	2.7	4.4	D
	22	23	38	8.7	60	4.0	153	2.5	111.	3	1.8	$\overline{7}$	2	114	42	91	0.12	8.6	3.4	с
	24	1	52	24.3	58	57.6	152	5.9	49.	7	2.3	9	3	164	40	80	0.11	2.1	4.2	C
	25	5	29	22.6	60	0.3	152	46.3	93.:	2	1.8	7	2	151	46	90	0.13	8.2	4.8	С
	25	21	14	41.3	59	56.2	152	8.8	86.	2	3.1	9	4	179	$4\overline{2}$	64	0.31	3.7	2.7	C
	26	7	12	12.2	59	28.3	152	8.9	62.	6	1.7	7	3	252	32	78	0.25	3.2	4.8	D
	26	11	40	6.2	60	5.0	152	31.5	93.	1	2.0	8	2	130	40	95	0.14	3.3	5.3	с
	26	-12	34	52.3	59	36.0	152	58.3	$105.^{\circ}$	7	2.9	16	6	73	16	75	0.46	2.2	3.0	В
	26	15	25	37.0	59	26.9	152	36.5	75.	5	2.7	16	5	84	42	58	0.20	1.4	2.1	В
	26	15	36	40.3	59	47.7	152	59.4	94.	0	3.1	13	3	96	21	7ι	0.35	1.8	1.9	с
	28	10) 43	50.2	2 59	9.5	152	1.8	47.	9	2.0	8	3	208	43	84	0.19	5.5	3.7	D
	30	4	40	50.8	59	38.9	153	9.3	113.2	2	2.9	13	6	174	85	89	0.42	1.6	2.4	D
	31	0	23	33.6	59	58.5	153	23.0	142.3	5	2.0	10	3	129	60	116	0.31	2.7	3.5	c
	31	2	57	45.9	60	6.1	152	14.4	96.8	8	2.4	8	3	169	46	79	0.23	5.1	3.2	D
	31	11	25	14.5	59	43.1	152	41.9	82.2	2	2.6	'10	4	129	56	78	0.27	1.3	2.8	В
FEB	- 0)	L ;	11 4	3 25	6 60) 8.9	152	54.2	102.	7	2.7	11	5	172	31	106	0.43	4.6	2.6	D
	01	20	13	18.5	59	45.6	152	52.6	96.9	9	3.0	14	-7	125	23	70	0.36	1.5	2.0	c
	02	14	- 36	39.8	60	16.8	152	11.8	100.4	4	3.3	11	1	242	35	228	0.17	9.2	8.9	D
	04	0	29	13.4	59	56.2	152	43.5	114.8	8	2.6	12	4	149	68	83	0.33	3.1	2.7	D
	05	23	56	14.8	59	54.0	151	22.5	57.3	3	2.0	6	2	269	31	42	0.09	6.2	6.0	D
	06	7	23	50.2	59	30.8	152	57.0	104.3	5	1.8	8	2	193	31	78	0.15	4.l	4.9	D
	0.6	8	1.5	5.5	593	59.0	152	53.2	117.	7	2.1	7	2	256	74	106	0.23	9.2	7.8	D
	06	13	34	58.0	59	34.0	151	15.0	10.2	5	2.2	6	2	128	5	25	0.24	1.8	3.5	В
	06	16	9	51.7	59	32.8	151	15.5	12.	0	1.9	7	3	111	3	25	0.47	1.6	3.3	\mathbf{c}
	07 (1 5	52 2	0.7 5	59 5	8.2	152	52.2	111.	0	3.4	9	3	150	73	91	0.40	5.0	7.1	D
	07	15	48	44.6	59	46.1	153	3 2.5	120.	1	2.5	7	1	242	48	89	0.12	10.5	6.8	D
	09	22	37	37.0	60	3.5	152	39.7	108.3	3	2.1	6	2	257	87	100	0.13	10.6	9.5	D
	10	9	55	35.8	59	13.3	154	28.3	162.	6	2.9	7	2	200	58	201	0.47	5.9	4.6	D
	11	12	59	59.7	60	10.1	149	46.5	1.	2		5	2	355	77	128	0.44	40.1	7.2	D
	12	0	5	2.8	59 4	17.7	153	30.9	136.	5	2.3	9	4	266	46	115	0.38	8.9	7.0	D
	13	11	14	53.1	60	8.6	151	11.2	58.0	0	2.7	8	3	281	45	69	0.13	5.1	5.3	D
	13	Ĵβ	6	8.6	56	54.1	153	25.0	0 2.:	2		6	1	326	110	100	0.02	38.0	31.0	D

ALASKAN	EARTHQUAKES	SOUTH	OF	61	DEGREES	NORTH	LATITUDE.	1984	
							_		

	OR	IGIN	TIME	L	AT N	LOI	NG W	DEPTH	MAG	NP	NS	GAP	D1	D3	RMS	ERH	ERZ Q
1984	HR	ΜN	SEC	DE	G MIN	DE	G MIN	KM				DEG	КM	КM	SEC	K M	КM
FEB 1	3 23	32	35 6	60	75	153	37.0	158.6	2.7	13	4	135	69	133	0.38	2 3	3.1 D
t.	4 4	22	39.8	59	23.7	153	9.8	112.3	2.7	15	7	105	16	90	0.36	1.9	2.0 c
1	4 18	17	25.2	59	38.5	150	15.0	15.0	3.0	Ιð	6	191	38	78	0.45	2.2	2.9 D
									FEL	T IN	ном	ER					
t.	1 19) 1	24.0	59	46.0	151	51.7	83.1	2.2	8	3	205	37	55	0.13	7.1	5.1 D
L.	57	30	39.3	57	7.9	150	53.0	34.5	2.6	7	2	306	118	264	0.21	10.5	11.9 D
14	36	31	0.1	58	54.5	154	5.8	122 0	2.8	12	4	198	2.6	106	0.27	2.4	2.0 D
Je	3 14	17	53.4	57	21.8	152	446	36.7	3.2	H	1	311	45	182	0.46	61	2.3 D
1	3 14	55	52.5	6.0	6.9	152	12.2	963	28	11	3	175	60	83	0.39	3.6	4.1 D
Le	5 L'	7 8	1.4	60	22.9	151	31.1	102.3	2.9	10	4	221	77	97	0.42	6.5	5.3 D
14	5 20) ō:	3 5.6	5.9	2.3	152	58.4	64.7	3.2	14	5	95	40	58	0.38	1.2	2.3 C
1	7 22	2 26	3 2.6	59	17.4	152	35.1	74.1	2.5	12	5	99	50	73	0.27	14	3.4 B
L	7 2 2	236	0.5	58	44.1	152	13.8	448	2.2	· 10	4	177	14	90	0.35	1.7	3.1 c
I	3 4	26	53.7	59	44.0	152	14.9	90.7	3.1	13	3	108	35	62	0.40	1.9	3.1 c
19	9 5	5	44.0	59	52.7	152	52.1	91.6	1.5	7	2	244	61	86	0.23	6.1	6.9 D
1) 14	59	48 7	59	56.5	153	9.8	125.3	3 0	11	3	188	58	91	0.32	2.1	24 D
_													•••	~ ~			5
20) 9	20	57.9	55	21.8	149	56.9	30.0	2.8	ō	0	342	468	494	0.31	99.0	99.0 D
20) 10	34	51.7	59	16.1	153	20.6	101.7	3.0	10	3	133	[4	92	0.43	2.0	3.3 c
2	0 21	20	23.1	58	36.9	151	59.0	11.6	1.8	6	0	248	21	102	0.36	8.9	31.8 D
2	I I9	52	12.6	58	32.5	153	30 9	65.7	3.0	8	1	193	44	107	0.22	2.3	3.3 D
23	3 3	19	20.2	59	20.8	152	126	78 9	2.4	14	5	116	38	59	0.26	18	2.3 B
23	3 8	5	42.5	59	17.7	153	27.0	103.4	2.1	9	3	181	5	42	0 27	3.9	2.8 D
2^{2}	4 6	47	5.7	60	20.9	152	54.9	134.7	3.2	18	õ	106	11	105	0.45	1.9	3.1 c
2^{4}	2	ύ ε	6.3	60	25.0	151	43.9	83.0	2.4	11	4	236	57	87	0.19	2.3	3.8 D
2	5 1	40	40.6	59	48.8	151	9.7	20.4	2.6	ō	0	219	16	45	0.01	11.9	21.4 D
23	57	55	20.6	58	16.7	151	41.3	0.8	2.9	8	2	204	55	133	0.41	2.9	17 D
			,					- •	- •				- •				
28	5 21	47	32.3	59	49 5	152	20.5	86 5	2.2	8	3	205	54	71	0.13	5.2	5.0 D
27	3	12	23.6	59	43.7	152	26.6	87.9	2.9	18	4	134	45	57	0.34	2.4	2.5 C
	_								FEL	TIN	ном	ER					
2'	7 10	27	111	56	50.5	152	33.7	340	4.5	9		329	161 2	4 1	0 31	16.8	5.2 D
									PMR	ML=	4.5						
28	1 I	0	40.9	59	56.2	151	52.6	76.6	2.9	7	3	307	34	58	0.13	5.8	4.1 D
29) 4	6	57.5	59	49.0	153	9.3	127.4	3.2	13	4	120	51	97	0 4 2	2.8	3.2 C
	-	-				35. •		. –	. –		-					. –	. – .
29	23	8	435	58	14.3	151	22.9	13 8	2.2	9	2	221	71	138	0.47	2.5	2.8 D
MAR OI	3	10	9.0	69	10.6	153	31.6	113.3	3.0	12	5	139	19	91	0.34	2.0	2.1 c
Ŭ	14	2	26.9	60	1.4	151	19.3	53.7		7	3	296	38	56	0.17	6.3	7.2 D

			AL	ASKAI	N EAR	THQUA	LATES SO	OUTH OF	61 DE	CREE	IS NO	ORTH	LATITU	JDE'	1984			
	OR I	GIN	TIME	LA	ΤN	LOI	VG ₩	DEPTH	MAG	ΝP	NS	GAP	D1	D3	RMS	ERH	ERZ	Q
1984 1	HR M	[N	SEC	DEG	MIN	DEC	G MIN	K M				DEG	ΚM	КМ	SEC	KM	КM	
MAR 0	1 1	94	7 26.	6 59) 45.5	5 153	22.3	143.9	2.2	7	2	265	47	106	0.17	15.0	8.0	D
01	20	54	15.4	59	47.5	152	58.7	168.2	2.7	7	2	249	77	103	0.16	12.9	5.6	D
02	7	56	15.4	58	0.9	153	31.6	42.7	2.5	5	1	241	68	102	0.12	10.4	20.8	D
02	15	53	57.4	60	15.7	152	56.9	110.5	2.3	10	3	171	99	117	0.32	3.2	6.5	ñ
03	18	38	59.6	59	54.8	151	4 2	43.5	2.4	10	3	206	20	44	0 16	1.8	2.8	č
~~~	10		0010	00	V 1.0	101		(0.0			-			1.	0.20	1.0	÷.0	Û
03	19	41	38.5	59	47.5	152	27.6	71.6	3.0	15	4	105	46	61	0.31	1.6	2.8	C
03	20	49	0.9	59	36.2	152	48.0	94.2	2.3	9	3	125	44	89	0.11	17	4.3	B
04	5	49	33.3	59	33.9	151	7.4	47.0	1.8	5	ĩ	204	8	28	0.01	6.5	5.4	D
04	10	51	51.6	59	50.3	150	21.6	33.2	2.8	10	4	298	31	75	0.18	3.2	2.4	D
05	Ĩ	52	15.4	60	12.6	152	5.0	88.8	2.6	15	5	184	45	83	0 41	17	29	'n
00	•		10.1		12.0		0.0	00.0	1.0			104	40	0.5	0.41	1.1	<i>4.0</i>	ν
05	6	41	44 4	59	52.0	152	31.1	81.8	2.5	11	4	123	54	69	0.26	2 1	29	R
06	12	17	21.5	60	13.3	152	25.4	103.2	2.4	10	3	161	29	96	0.28	3 5	2.0	0
08	9	37	22.8	59	51.2	151	24 1	76.3	29	15	4	158	26	38	0.35	9.0 9.1	2.0	~
08	18	40	55.5	60	55 7	151	2 68	106.3	2.3	10	4	299	67	146	0.00	6.4	6.9	ñ
09	10	56	11.5	61	36.0	151	6.4	111 /	2.0	6	1	240	160	239	0 1 1	0.4 02 A	3/1 9	D.
00	10	00	11.0	01	50.0	101	0.4	111.4	2.0	0	1	240	100	200	0.11	40.0	04.0	D
10	0	56	24 4	1 6	2 06	14	9 46	7 0.2	2.6	7	1	264	239	288	0.20	56 5	22.1	п
12	8	49	10.5	59	44 1	151	46.0	619	2.1	10	4	122	11	- 38	0 33	24	2.7	c
13	10	39	58.4	60	19.1	152	37.3	118.5	2.6	"11	3	269	82	102	0.42	61	49	Ď
14	10	37	24.7	60	64	152	56.0	99.6	2.0	10	4	159	85	104	0.42	38	5.4	Ď
15	4	7	40.5	59	49.9	152	19.6	76.4	2.1	6	2	391	43	70	0.45	9.0 8.4	10.0	D
10		•	.0.0	50	10.0	1.04	20.0	,		~	4	021	40	10	0.10	0.4	10.0	Đ
15	8	16	11.6	59	24.5	152	48.3	81.4	2.8	14	5	105	36	71	0.31	1.7	2.5	С
16	7	14	30.5	59	23.7	152	17.3	66.9	1.8	8	š	221	41	61	0 17	4.8	4 0	Ď
16 1	1		12.3	60	16.4	153	11.6	137.7	2.1	8	2	167	69	127	0.20	5.3	10.7	Ď
16	20	7	16.6	60	17.9	152	35.0	107.0	24	12	4	182	81	112	0.38	2.9	3.4	D
17	2	12	39.4	59	12.8	152	15.3	47.3	2.4	13	5	126	48	68	0.00	1 1	55	0
×.	~		507.1	50	10.0	10.	10.0	11.0	A. T	10	Ý	140	40	00	V. 4 T	1.1	0.0	C
17	15	51	26.4	58	55.3	153	58 5	109.0	2.5	8	2	279	19	92	0.08	5.0	3.0	D
18	18	8	45.2	59	32.2	152	3.2	771	25	8	2	1.19	28	68	0.00	6.5	2.9	n
19	21	55	28.3	59	55.5	151	38.7	19.2	25	10	3	161	30	50	0 40	0.0	3.4	0
20	5	14	25.0	60	17.6	159	00.7	164.1	2.0	15	0 9	115	108	197	0.40	2.5	4 O	0
20	ร	14	22.0	50	17.0	150	9.5	66 7	2.1	10	2	140	108	127	0.44	2.0	44.U 9.5	0
41	0	411	02.0	09	1.0	104	0.0	00,7	ha . 6a	11	б	140	40	10	0.39	4.1	0.0	С
22	6	50	39.9	59	21.9	151	5.9	30.8	22	10	3	207	20	45	0 19	1.9	2.5	С
22	15	50	27.8	59	57.5	152	17.6	98.7	2.1	7	3	322	50	77	0.28	7.8	51	Ď
22	17	50	16.2	57	55.2	154	54.7	81.1	2.8	6	ĩ	291	135	170	0 08	14.9	21.9	D
25	2	58	25.6	60	4.0	151	42.8	53.9	24	10	3	244	46	66	0.20	3 4	3.9	Ď
25	8	21	19.8	59	47	153	45.3	95.6	2.7	12	3	182	34	71	0.20	2.5	2.6	Đ
20	~		10.0	00	-1.1	100	10.0	00.0	ا د بستو	14	0	100	07	(1	0.00	Sec. ()	<b>H</b> . U	~

				AI	ASKA	N EAF	RTHQUA	KES	SOUTH (	DF 61	DE	GREES	NC	ORTH I	LATITU	DE, 1	984			
		ORI	GIN	TIME	LA	TN	LOI	NG W	DEPI	H M	AG	NP	NS	GAP	) Dl	D3	RMS	ERH	ERZ	Q
1984	4 I	IR	MN	SEC	DEG	MIN	DEC	G MIN	KM	1				DEG	ΚM	КM	SEC	КM	КM	
MAR 2	8	1	30	9.1	60	8.6	153	36.1	209.6	i 3.	8	12	2	149	143	274	0.61	4.8	13.3	D
2	9	4	53	50.8	60	8.6	150	55.1	60.5	<b>i</b> 1	. 8	6	2	320	42	71	0.10	9.2	7.2	D
2	9	6	51	55.7	60	3.1	151	16.6	57.4	+ 2	.1	8	4	300	39	59	0.12	6.4	6.7	D
2	9	18	52	5.2	60	4.5	148	43.8	0.3	i 3.	.4	6	2	253	126	174	0.47	9.5	2.6	D
										1	PMR	ML=	3.4							
1	31	6	3	7.2	59	50.9	153	15.0	146.2	2	.8	8	3	266	55	119	0.18	6.7	3.1	D
3	<b>31</b>	7	36	29.7	58	32.8	151	43.1	41.4	2.	4	7	2	188	38	103	0.28	14.3	8.8	D

			Au	TUCE	AUN DAG	vinge	Anco	NOATH OF		CORD.	DO 1V	Outh	DATU	UDC,	1904			
	OR	IGIN	TIME	$L_{i}$	AT N	LOI	NG W	DEPTH	MAG	ΝP	NS	CAP	P1	D3	RMS	ERH	ERZ	Q
1984	HR	ΜN	SEC	DEG	C MTN	DE	G MIN	ΚM				DEG	KM	КM	SEC	КM	KM	
JAN 01	4	14	3.4	64	48.5	147	31.6	10.4	0.6	7	3	198	16	22	0.08	1.4	4.3	с
01	4	25	53.8	64	43.6	l46	51.0	0.6	1.2	8	3	229	36	47	0.26	1.9	94.4	D
01	17	21	42.0	64	136	147	54.3	0.5	1.2	δ	)	263	47	68	0.39	2.9	99.0	D
01	19	3	14.7	64	254	148	16.5	101.7	1.3	5	1	186	29	51	0.44	11.8	6.1	Ð
0.2	18	6	19.1	63	6 б	150	50.2	146.8	2.4	7	0	237	118	185	0.12	16.9	10.7	Ð
03	0	57	38.1	64	416	146	52.6	2.1	1.1	6	)	223	32	45	0.14	3.3	588	D
03	3	22	$45\ 3$	64	37.2	147	54.3	21.1	1.ð	9	3	149	6	32	0.29	1.1	2.5	С
03	3	44	18.1	63	37.0	147	49.8	0.6	1.9	10	2	258	56	98	0.43	1.7	3.6	Ð
03	11	40	8.J	61	51.0	149	59.7	1.5	3.6	14	0	103	54	133	0.39	2.2	1.4	Ð
									PMF	RML=	3.6	F	ELT I	II PAI	LMER II	I ANCH	ORAGE.	
03	18	62	48.2	63	3.3	149	41.7	93.2	2.8	]4	0	95	85	173	0.20	2.7	5.9	С
04	1	44	42.J	64	37.6	147	11	1.1	09	7	3	196	25	44	0.07	1.3	46.1	D
04	7	42	55.4	63	0.1	160	46.3	0.6	2.3	8	1	236	178	$2 \ 2 \ 1$	0.41	7.3	1.7	D
04	20	14	34.9	65	26.8	150	l4.4	17.2	2.1	9	0	173	110	129	0.25	3.4	31.5	D
05	7	33	46.8	64	46.2	147	30.2	16.7	1.1	6	2	185	19	32	0.10	2.9	6.2	D
06	9	4	11.7	64	3.2	148	45.8	132.5	2.4	14	3	114	30	60	0.33	2.2	2.3	$\mathbf{C}$
06	18	56	27.5	64	51.2	147	41.0	12.3	0.61	7	3	151	7	22	0.17	1.2	3.6	С
06	21	36	24.4	63	54.6	148	54.3	1.0	2.0	11	2	149	20	75	0.35	1.4	1.4	с
07	17	40	25.5	64	44.0	148	57.3	14.7	1.0	6	1	232	18	56	0.32	4.9	2.0	D
08	15	21	15.3	64	48.8	147	44.7	7.3	0.2	6	<b>2</b>	207	10	26	0.27	45.4	6.4.7	D
08	16	23	22.7	64	46 0	147	23.6	47	1.0	ð	1	152	24	86	0 05	1.9	32.2	D
08	21	56	58.4	63	44.9	150	21.9	ð.6	1.7	7	3	303	71	128	0.53	3.2	1.8	D
10	4	30	49.4	64	23.9	147	17.3	17.6	1.6	Ιİ	2	81	16	63	0 35	1.8'	1.8	$\mathbf{C}$
10	22	2 22	2.3	63	30.9	148	2.6	14.8	2.3	17	4	130	50	98	0.30	1.6	1.7	с
12	12	2 2	32.9	64	l4.8	l 4 5	12.3	ā.7	1.7	11	3	99	49	63	0.15	0.9	3.3	с
13	3	7	2.1	64	526	147	51.4	13.5	1.0	7	Ι	161	4	25	0 22	2.1	3.4	$\mathbf{c}$
13	9	57	49.J	64	3.0	150	08	11,7	1.5	7	2	275	62	106	0.42	3.4	1.9	D
14	23	19	47.1	61	54.3	150	47.4	37 5	30	7	0	273	98	225	0.46	99.0	27.2	D
15	1	26	3.3	66	39.7	150	12.e	25.7	2.3	7	$\overline{2}$	337	226	238	0.44	99.0	99.0	Đ
15	3	40	51.7	64	44.3	149	7.2	9.4	0.6	10	3	244	18	58	0.16	3.4	4.4	D
15	7	4	39.2	64	53.b	147	35.0	8.5	0.9	10	3	13c	10	28	0.33	1.4	3.6	С
15	11	23	4.3	64	0.4	149	42.6	15.3	1.1	9	3	257	32	71	0.39	3.4	1.6	D
15	13	51	52.9	64	42.8	146	53.1	25	10	8	2	222	34	44	0.14	1.9	31.9	D
15	19	14	46.8	63	13.4	148	21.3	1.4	2.4	15	$\overline{2}$	111	64	129	0.22	1.6	0.7	с
16	3	5	10.0	63	59.4	147	41.9	4.7	1.3	11	2	208	57	67	0.30	1.4	32.7	D
16	. ૧	38	52 1	63	10 K	ትፋጅ	ר וי	74 6	2 1	13	ົ	166	52	197	οı, n	າດ	6 5	n

ALASKAN EARTHQUAKES NORTH OF 61 DECREES NORTH LATITUDE, 1984

				Al	LASK	AN EA	RTHQU	IAKES	NORTH OF	61 D	EGRE	ES N	IORTH	LATIT	UDE,	1984		
		OR	IGIN	TIME	L	AT N	LOI	√C W	DEPTH	MAG	ΝΡ	NS	$G \land P$	D1	D3	RMS	ERH	ERZ Q
19	84 F	- R	ΜN	SEC	DE	G MIN	DE	G MIN	K M				DEG	KM	KM	SEC	ΚM	КM
JAN	16	15	34	2.0	64	49.5	149	$20 \ 0$	9.4	2.2	10	2	267	30	7 1	0.19	2.9	1.5 D
	16	22	35	54.7	64	36.5	149	10.5	15.4	1.3	7	ł	238	6	54	0.20	3.8	3.5 D
	17	21	29	29.l	64	42.7	149	0.9	15.7	1.9	10	2	236	15	56	0.24	3.5	1.6 D
	18	7	23	44.4	62	12.8	148	10.5	12.9	2.0	10	2	132	61	174	0.35	3.0	4.5 D
	18	9	39	18.6	64	403	147	277	. 1.3	0.8	7	3	235	30	37	0.47	7.9	99.0 D
	18	14	50	28 9	64	45.7	148	11.8	15.4	0.1	7	3	188	8	46	0 32	42.5	15.9 D
	18	20	40	24.1	64	7.4	149	4.9	137.0	2.0	10	2	151	13	51	0.15	4.3	3.7 D
	19	2	16	28.9	60	30.8	147	24.3	10.9	2.3	6	2	269	147	264	0.47	36	2.5 D
	19	6	45	52.0	63	2.5	149	35.6	96.0	2.5	13	2	154	84	160	0.39	2.7	5.1 D
	19	7	24	15.0	64	49.1	147	22.2	5.2	1.2	8	2	159	19	37	0.19	1.1	2.8 C
	19	23	39	10.8	63	14.2	150	48.9	128.8	1.9	10	1	198	109	192	0.36	4 1	3.6 D
	20	4	36	42.8	61	16.5	151	45.2	220.1	4.3	6	0	257	175	197	0.17	34 1	76.8 D
	20	12	4	55.0	64	35.2	147	55.8	14.2	1.3	9	3	95	29	51	0.35	11	2.3 C
	20	18	3 44	5.6	62	57.7	148	5.6	76.3	1.9	15	3	106	96	132	0.45	1.6	5.6 C
	20	19	40	2.2	64	48.0	147	27.8	196	1.2	9	3	141	19	24	0.41	1.1	1.1 c
	20	20	24	58.2	63	41.0	149	19.3	111.5	2.7	15	0	159	20	100	0.26	2.8	4.5 C
	20	21	35	34.4	63	55.5	149	3.5	0.8		6	0	219	22	77	0.25	12.3	99.0 D
	21	1	48	34.0	64	7.8	149	11.9	127 0	2.0	9	1	203	46	89	0.12	5.0	4.6 D
	21	6	6	15.5	64	47.4	147	48.5	0.4	0.2	6	2	136	12	17	0.31	14	99.0 c
	22	16	5 0	24.3	61	50 7	150	50.7	4.8	2.3	14	3	82	98	185	0.52	14	1.8 D
	24	7	24	38.4	62	5.0	149	9.6	14.9		7	2	134	ō1	183	0.09	1.8	3.1 c
	$2\delta$	20	21	47.6	64	24.7	l 4 7	23.5	4.4	0.9	6	2	134	21	34	0.09	1.7	16.2 C
	25	21	19	55.0	6 I	22.9	146	49.3	20.5	3.2	19	)	209	57	121	0.45	2.2	1.8 D
	27	- 10	51	23.2	68	4.8	147	8.1	27.3	3.6	13	0	168	145	345	0.58	6.5	15.3 D
	27	14	57	22 4	64	24 5	147	35.1	0.1	1.1	ō	1	131	30	5.6	0.14	1.3	99.0 D
	25	23	57	16.2	64	41.7	149	36.2	10.5	2.0	10	2	271	28	71	0 2 2	3.0	1.4 D
	28	22	20	50.5	62	33.3	149	31.4	40.5	2.1	15	3	142	135	166	0.56	3.4	89.0 D
	28	22	42	20.5	64	8.5	148.	55.0	1.1	0.7	6	2	222	46	54	0.40	4.5	98.3 D
	28	22	45	41.0	63	27.5	151	0.6	u.3	2.5	10	3	298	108	157	0.47	3.5	1.7 D
	30	5	24	6.3	62	47.3	148	18.9	12 3	2.9	19	0	68	110	134	0 50	1.6	3.0 D
	30	18	39	68	63	1.4	149	15 5	101.9	2.3	10	0	221	61	174	0.21	5.2	7.6 D
	81	3	52	21.5	63	34 6	148	13.0	6.3		б	ΰ	182	40	111	0.23	1.9	2.4 C
FER	01	9	33	35.4	64	54.7	147	444	24.8	1.5	7	2	179	3	22	0.26	4.5	4.8 C
	01	13	37	50.6	64	34.2	148	35.9	21.8	1.4	8	2	125	23	53	0 35	3.0	1 7 c
	01	15	41	38.3	6 l	55.9	146	45.9	3.9	1.7'	8	1	112	37	194	0.49	3.1	4.6 C

		AL	.ASKA	N EAR	THQU	AKES	NORTH OF	61 DE0	GREES	NO	ר אדאי	טרברא	NE, 1	984		
	ORICIN	TIME	LA	TN	LO	NG W	DEPTH	MAG	NP	N:	S CA	P Dl	D3	RMS	ERH	ERZ Q
1984	HR MN	SEC	DEG	a MIN	DE	G NIN	KM				DEG	KM	KM.	SEC	KM	KM
FEB02	211	44.8	63	33.8	149	0.5	11.7	1.6	16	6	196	19	113	0.37	2.1	1,4 D
Ø2	528	47.6	63	30.9	150	13.9	18.7	1.8	4	0	322	69	178	Ø.28	99.0	35.Ø D
Ø2	7 36	25.8	62	20.3	151	17.0	44.6	2.5	10	1	185	135	196	0.38	3.4	35.7 D
Ø2	15 14	42.6	64	47.6	147	37.8	40.5	1.3	6	1	115	14	25	Ø.45	3.0	3.1 c
Ø2	23 5	2.5	63	6.2	150	47.5	128.9	2.1	9	1	296	116	185	0.18	9.0	5.8 D
Ø2	23 44	14.4	64	45.8	147	56.3	6.5	0.1	6	2	13Ø	12	17	0.03	1.5	3.4 B
Ø3	05	12.8	64	19.0	146	23.1	1.6	1.6	13	4	195	29	84	0.26	2.2	3.9 c
Ø 3	635	22.8	64	33.4	148	37.5	Ø.7	Ø.6	4	1	280	22	55	0.07	82.6	99.0 D
ØЗ	716	31.8	61	58.7	148	49.0	16.7	8.1	11	1	161	41	139	0.36	4.4	5.8 C
Ø3	7 48	19.5	63	2.2	15Ø	47.3	105.3	4.0	21	1	116	121	191	0.46	1.6	7.2 C
Ø3	23 17	13.8	62	10.6	150	56.8	0.5	8.9	23	0	59	118	193	0.56	2.0	1.6 D
								FEL	T IN A	NC	HORAC	GE, BIO	G LAR	E AND	WASILL	. <b>Α</b> .
Ø4	49	26,2	63	19.2	148	31.3	8.9	1.8	8	2	233	-50/	135	Ø.46	5.4	5.1 D
Ø4	12 4	37.1	64	33.5	148	3E.3	1.6	Ø.7	5	2	23Ø	21	56	0.06	81.2	99.0 D
Ø4	14 18	52.3	64	31.5	147	54.7	2.5	Ø.8	7	2	171	36	48	Ø.25	1.5	37.8 C
Ø4	18 34	18.3	64	53.3	147	50.2	12.8	0.1	5	2	182	2	24	0.21	99.0	4.6 D
Ø5	13 11	43.0	65	1.9	147	33.7	0.0	Ø.3	6	3	25Ø	10	36	0.14	2.7	99.0 D
Ø5	16 7	42.5	64	28.6	147	56.Ø	2.5	1.3	11	4	112	40	48	0.23	1.2	40.0 c
Ø5	16 11	43.2	64	25.7	147	20.1	0.6	1.2	8	3	128	19	59	0.21	1.5	63.1 C
Ø5	23 3	26.1	64	11.9	15Ø	9.Ø	17.3	2.2	11	1	280	67	1Ø4	0.14	3.3	1.7 D
<b>Ø</b> 6	110	38.9	61	46.2	149	18.5	4.1	2.1	£	0	119	24	162	Ø.37	3.5	5.7 o
Ø6	11 19	36.7	63	1.7	150	20.7	104.8	2.0	7	0	29ø	1Ø6	227	0.07	23.8	11.1 D
Ø6	12 15	35.5	64	55.7	149	8.9	28.5	2.3	11	0	122	39	6Ø	Ø.46	1.9	3.6 C
<b>Ø</b> 6	12 41	56.1	64	89.3	148	6.1	23.0	1.4	7	2	144	19	48	0.39	26.3	22.9 D
Ø6	14 1	50.6	64	45.Ø	147	44.5	14.1	1.7	6	0	103	17	81	0.14	1.7	2.7 B
06	211	10.3	64	44.6	14b	57.2	4.3	Ø.2	5	1	234	20	56	0.30	5.Ø	22.3 D
Ø7	Ú 32	38.6	63	14.8	148	11.1	64.6	1.1	10	2	224	66	141	0.10	2.8	6.ØD
Ø7	1 86	3.9	65	6.6	146	49.6	5.0	0.6	6	1	337	30	70	0.11	6.7	24.3 D
- 67	2 21	30.9	63	8.3	150	33.0	130.2	2.4	16	4	229	104	186	0.41	3.0	3.1 D
Ø 7	451	19.1	64	32.1	144	13.2	13.6	6.7	6	3	318	8	6)	0.09	1.9	1.8 D
05	8 20	13.5	64	31.1	150	28.5	16.2	t.9	δ	3	292	67	115	0.19	3.7	1.7 D
<b>Ø</b> 7	821	18.6	64	29.2	150	19.8	17.7	1.7	7	2	287	60	168	0.26	2.2	1.6 D
07	14 25	1.5	64	46.1	146	45.6:	7.0	2.6	10	Û	106	38	51	0.23	2.7	2.7 C
Ø7	17 30	85.1	61	41.2	147	12.3	34.4	2.3	11	2	228	18	169	Ø.43	5.Ø	2.Ø D
Ø7	18 0	53.2	64	46.3	146	44.G	0.1	1.2	8	3	237	36	49	0.20	2.0	99.0 D
	18 33	37.9	63	50.4	148	47.0	1.4	1.4	7	3	190	14	114	0.22	2.3	44.Ø D

			AL	ASIC	AIN CAL	(THQU)	AKED I	NORIA OF	01 DI	SOKEI	29 144	ЛИЦИ	LAIII	JUE,	1984			
	ORI	GIN	TIME	L	AT N	LOI	∛G W	DEPTH	MAG	NΡ	NS	CAP	D1	D3	RMS	ERH	ERZ	Q
1984 F	HR N	ΜN	SEC	DE	G MIN	DE	G MJN	КM				DEG	KM	КM	SEC	KM	KМ	
FEB 08	1	19	15.9	61	55.1	150	47.3	118 4	3.4	18	3	111	98	182	0.75	2.2	7.0	с
08	9	40	49.2	63	35.2	148	46.0	99.0	2.1	13	3	172	19	112	0.32	2.4	4.4	с
08	21	9	56.5	64	44.0	148	5.5	12 2	0.3	7	3	167	11	23	0.10	1.5	2.3	С
08	 91	31	4 5	65	25.5	148	17.6	13.4	2.3	12	4	297	63	67	0.39	1.7	1 3	D
08	99	57	26.8	63	11.2	150	4 2	97 5	2.0	11	2	330	83	162	0.15	7 2	34	- D
**	22	0,	20.0	~~	11.2			• · •	2 •	- 4	-		•••		v			Þ
09	1	9	27.8	64	4 R.O	146	43.2	3.3	1.0	8	2	251	38	52	0.34	3.5	26.3	D
09	6	0	38.9	64	29.9	148	21.9	0.3	0.7	8	4	245	35	53	0.26	2.5	99.0	D
09	11	41	5.7	61	40.4	149	39.8	83	2.0	5	1	172	51	142	0.04	4.8	3.2	D
09	15	24	89	64	15.3	148	12.5	06	13	1]	4	138	51	63	0.36	1.2	99.0	D
09	21	55	56.6	64	54.5	148	59.4	7.4	0.8	10	4	257	38	57	0.23	2.3	10.0	D
09	22	6	34.2	63	10.0	150	51.7	111.8	2.3	15	4	261	115	184	0.33	3.3	4.1	D
09	22	34	44.1	64	35.6	147	56.6	19.7	1.0	15	7	71	9	28	0.38	0.9	1.8	В
09	22	42	27.9	62	17.9	149	28.1	8.7	3.1	23	4	62	78	162	0.49	1.6	2.2	D
10	2	12	54.1	64	42.9	147	42.2	15 3	0.5	7	3	224	9	24	0.12	3.5	2.0	D
10	21	17	44.9	61	39.7	146	7.0	172	2.4	9	2	217	67	155	0.38	3.3	2.3	D
	0	\$.9	44.5	64	24.8	147	4 7	0 X	0.9	0	Q.	181	20	48	0.20	1.8	97.0	Б
10	2	02 08	54.0	64	517	148	10.2	15.0	1.1	0	9	107	20 X	41	0.20	1.0	ол 0 о т	Б
14		00	04 I 80 0	29	017	140	12.0	100	11	0	4	101	11.	41	0.00	1.0	2.1 8 1	D
12	4	0	00.2	00	21.0	140	4.1	1.0 %	22	0	4	203	114	191	0.03	4.7	01	U D
12	0 -	1.3	20.6	6.3	29.6	1-40	4.2	13.0	2 0	10	4	134 070	01 174	111	0.42	3.1	3.0	U D
12	Ð	51	4.0	63	11.8	150	44,1	117.5	2.0		1	298	174	200	0.07	10.4	10.7	IJ
12	6	36	17.9	64	46.0	147	28.7	20.7	1.7	7	2	139	19	32	0.28	2.2	1.8	С
13	15	13	44.6	62	48.6	149	36 4	93.6	I. <b>7</b>	5	0	210	108	211	0.10	6.2	11.4	D
13	23	1	12.7	62	53.9	150	30.1	120.2	18	9	]	176	122	203	0.26	3.8	6.9	D
13	23	26	42.1	64	59.G	147	5.3	8.2	0.5	9	3	262	14	51	0.18	1.9	4.0	$\mathbf{c}$
14	2	26	50.3	64	38.0	146	2.5	20.1	18	14	4	84	11	22	0.48	1.1	1 1	₿
14	2	34	0.2	64	8.8	147	8.6	9.9	1.0	13	4	120	30	64	0.44	1.2	5.4	с
14	5	39	49.9	62	20.5	149	38.0	17.6	2.0	6	}	208	86	159	0.34	6.8	5.3	Ð
14	9	47	49.3	62	53.6	150	8.5	88.9	1.8	9	)	226	111	203	0.16	2.8	8.8	D
14	19	58	34.0	64	41.3	149	6.9	12 1	1.2	51	4	252	13	55	0.15	1.6	1.3	c
14	22	33	22.3	64	31.1	147	46.0	17.9	0.5	6	2	253	14	39	0.25	4.9	2.1	D
14	กก	<u>ج</u> 1	12.0	ßK	4 0	140	59.0	96 K	<b>1</b> I	n	ŋ	200	67	106	0 20	5 1	69.9	р
14	- <u>4</u> -4 - 0	01	10.2 97.4	64	4.2	140	04.0	20.0 0 P	1.1	7	4 9	308 990	01	200	0.00	9 1	0.0	D T
10	2	47	⊋7.4 40-0	04 0 F	47.0	14.7	44.0	9 Q	V.Q	1	ې د	220	21 2)	00 00	0.10	000	9.4	D D
15	ю 7	29 60	49.3 50 I	60	0.0	147	43.7 aa 1	5.4	0.0	4	1	280	21	- 58 - 77	0.00	99.0 0 r	99.U 1 0	U P
15	1	- 09 09	08.1 40.7	04	22.8 00.0	149	22.1	20.9	1.0	0 2	z	229	25		0.26	0.0	1.3	U
15	10	18	42.7	64	33.8	147	4.6	2.0	11	Ð	2	179	19	51	0.12	3.5	22.0	С

ALASKAN EARTHOUAKES NORTH OF 61 DECREES NORTH LATITUDE, 1984

30

				A	LASKA	AN EAF	THQU	AKES	NORTH OF	61 D	EGRE	ES N	IORTH	LATIT	UDE, l	984			
		OR	GIN	TIME	Ĺ	AT N	Lor	IG W	DEPTH	MAG	ΝP	NS	GAP	Dl	D3	RMS	ERH	ERZ	Q
198	34 ]	HR	MN	SEC	DE	g min	DE	G MIN	КM				DEG	KM	КM	SEC	КM	KM	
FEB	15	16	49	39.9	64	46.2	147	46.7	8.1	1.1	7	2	116	15	30	0.27	1.9	6.2	$\mathbf{C}$
	16	2	24	33.1	64	13.9	150	23.0	25.1	2.0	11	4	290	74	114	0.29	2.7	99.0	D
	16	6	10	0.2	63	5.2	150	5.3	94.4	1.9	12	2	243	92	163	0.28	3.4	3.3	D
	16	16	29	44.3	64	44.7	147	45.1	9.8	1.1	9	4	120	17	32	0.34	0.9	4.3	c
	17	0	54	39.6	64	51.0	148	59.8	0.4	1.1	10	4	251	31	57	0.22	2.0	99.0	D
	17	8	50	51.6	64	22.4	149	23.1	14.2	1.4	12	5	230	27	75	0.38	1.6	1.0	D
	17	12	4	11.5	63	2.5	150	50.7	125.1	2.2	13	4	189	123	192	0.44	2.4	3.6	D
	17	12	55	49.8	61	56.6	148	50.6	25.1	2.3	8	2	163	37	200	0.32	2.5	5.6	$\mathbf{C}$
	17	16	47	55.2	63	9.8	151,	31.4	129.1	3.0	18	2	105	102	173	0.34	2.1	4.7	с
	17	21	9	22.7	63	11.8	150	7.2	2.5	1.6	7	2	284	162	198	0.33	16.8	14.0	D
	18	1	34	48.2	64	50.3	147	49.0	13.3	0.4	6	2	220	8	22	0.18	3.9	3.2	$\mathfrak{D}$
	18	5	55	47.8	64	45.9	148	54.3	21.7	1.0	8	3	229	23	51	0.43	1.7	1.6	D
	18	10	14	37.3	64	55.4	148	5.6	14.3	0.5	5	2	245	11	34	0.08	99.0	99.0	D
	18	19	7	57.7	63	11.5	147	12.2	25.4	1.9	9	2	201	76	105	0.34	2.6	99.0	D
	18	20	56	24.9	63	29.2	149	4.4	92.3	1.9	10	3	329	28	120	0.22	6.2	2.0	$\mathbb{D}$
	18	21	10	15.3	64	21.4	147	19.4	1.3	0.8	7	2	216	19	40	0.11	3.1	31.2	D
	19	1	49	33.7	64	14.6	148	32.0	9.6	0.9	12	6	159	33	57	0.41	0.9	5.1	с
	19	4	31	51.0	64	43.9	148	59.0	12.5	0.6	8	1	234	18	52	0.10	3.3	1.6	$\mathbf{D}$
	19	7	24	12.0	61	25.2	146	22.0	12.6	2.0	6	Ι	266	69	179	0.46	6.5	3.3	$\mathbf{D}$
	19	11	23	35.1	65	42.4	145	26.6	1.4	1.8	11	3	171	96	142	0.45	3.2	2.3	D
	19	20	31	17.8	63	53.2	149	14.4	108.9	1.3	9	1	227	23	86	0.11	5.7	4.0	D
	19	23	47	12.6	63	5.7	148	4.5	88.8	2.5	14	)	126	83	133	0.34	1.8	5.2	$\mathbf{C}$
	<b>20</b>	2	<b>27</b>	15.5	64	47.6	149	5.2	10.3	0.8	7	3	260	24	60	0.09	4.0	6.9	D
	<b>20</b>	14	- 58	23.6	64	35.8	148	40.2	21.3	1.0	9	4	140	20	54	0.48	8.1	1.3	c
	20	14	59	14.1	64	39.8	146	47.3	5.6	Ιł	8	3	198	30	55	0.14	2.7	3.7	С
	20	23	37	34.0	64	22.8	147	14.4	7.4	0.4	6	2	159	14	40	0.02	1.9	5.9	C
	20	23	18	3 7.3	63	4.9	150	36.2	128.0	2.0	8	0	256	106	175	0.14	14.2	10.0	D
	21	11	13	12.9	64	41.5	146	56.4	0.6	0.7	6	2	214	32	47	0.11	2,4	99.0	D
	<b>21</b>	12	18	22.4	62	49.5	150	49.J	77.6	2.0	13	2	183	138	1 <b>94</b>	0.43	2.7	9.2	D
	<b>21</b>	16	31	49.4	62	56.4	149	47.6	93.6	2.8	11	1	206	98	lb6	0.21	3.8	7.3	D
	21	16	36	49.1	63	4.5	149	2.6	80.6	1.7	11	3	213	74	167	0.48	2.4	2.9	D
	22	1	9	32.0	64	47.6	147	29.6	12.5	0.7	6	2	206	22	31	0.08	3.1	3.1	D
	22	3	31	58.4	63	23.5	146	26.4	101.6	1.4	4	1	214	32	116	0.00	6.1	2.6	D
	22	3	52	30.8	65	23.0	149	<b>46.</b> 4	40.2	1.4	7	3	320	96	107	0.26	2.5	99.0	D
	22	4	39	13.1	64	51.0	147	24.9	4.9	0.2	6	2	213	15	35	0.09	3.5	13.7	D

		А	LASK/	AN EAI	RTHQU	AKES N	JORTH OF	61 DE	GREE	S NO	ORTH	LATIT	UDE,	1984			
	ORIGI	IN TIME	ليا	AT N	1.01	MG W	DEPTH	MAG	NP	NŞ	GAP	Dl	D3	RMS	ERH	ERZ	Q
1984	HR MN	N SEC	DE	G MIN	DEG	G MTN	КM				$D \to G$	ΚM	KM	SEC	KM	ΚM	
FEB 22	10 48	8 145	65	1.2	147	30.3	0.3	0.4	4	1	248	7	37	0.10	99.0	99.0	D
22	16 4	41.6	65	1.2	150	39.8	39.9	31	13	0	121	90	136	0.27	2.7	16.0	D
22	22 18	5 11.9	63	51.8	148	40.5	0.6	9.0	4	0	196	20	97	0.17	99.0	99.0	D
23	0 4 2	2 6.8	64	46.4	147	27.6	12.3	0.3	10	Б	214	21	2.4	0.09	1.3	3.0	$\mathbf{c}$
23	528	5 <b>48</b> .1	64	481	147	31.6	9.6	0.6	7	3	199	17	$3\ 0$	0.15	3.0	7.5	D
23	10	6 46.9	62	37.2	149	57.8	8.2	2 0	1 1	3	156	121	163	0.49	1.4	1.6	D
23	15	28 1.6	64	56.0	148	0.6	0.6	0.5	4	1	243	13	2.9	0.20	99.0	99.0	D
23	16	56 13.9	64	57.8	147	13.9	10.6	0.7	4	1	321	8	46	0.00	99.0	99.0	D
24	0 1	10 15.6	6.5	18.6	147	54.8	13.1	11	9	3	291	44	55	0 22	2.2	2.5	С
24	1	3 27.7	64	356	148	55.0	13.9	Ct 6	7	3	157	8	45	0 0 6	1.4	2.6	С
24	8 1	19 34.7	63	8.0	151	59	5.0	17	4	0	197	127	223	0.19	85.8	60.3	Ð
24	15	42 45.3	64	17.5	149	34.0	18.7	1.5	7	3	243	40	91	0.43	4.6	1.1	Ð
24	20 3	31 20.8	63	32.6	149	42.7	105.9	1.6	9	1	270	44	119	0.32	7.1	2.4	D
24	21	31 5.0	64	42.0	147	20.0	16.4	1.4	4	0	260	23	32	0.00	8.8	22.0	D
2	4223	2 6 . 1	64	46.7	147	48.3	11.9	0.5	10	5	140	14	17	0.22	1.0	2.0	c
25	1 2	27 18.6	64	50.5	147	34.1	ð.8	0.9	9	3	121	13	24	0.32	1.0	5.3	с
25	6 2	25 22.7	64	45.7	147	31.0	3.8	0.6	8	3	195	15	25	0.12	1.7	10.7	$\mathbb{D}$
25	7 3	32 46.4	61	25.0	151	28.7	68.1	2.9	12	2	151	41	225	0.43	5.4	5.4	c
2 5	0 10 2	9 30.3	63	7.8	149	33.4	93.7	1.5	13	2	167	74	191	0.33	2.0	2.9	D
25	12	5 58.2	63	0.7	148	41.7	7.4 , $0$	18	13	3	165	81	155	0.39	1.7	3 2	D
25	12	55 38.4	64	23.0	148	14.6	5.G	0.4	6	ι	212	12	50	0 40	2.4	4.3	D
25	14 E	55 12.1	62	0.4	149	517	12.9	2.1	9	2	141	61	148	0.40	1.5	25	D
25	23 - 23	29 50.9	64	30.2	147	58.4	10.1	1.0	9	3	109	7	36	0.29	1.5	2.5	В
26	0 2	22 22.5	65	4.5	148	40.1	26.1	0.8	8	2	259	37	59	0.27	4.2	13.4	D
26	7 3	32 45.5	61	24 l	151	344	74.0	2 8	3 20	5	90	36	186	0.63	1.4	$2 \ 2$	с
26	11 2	23 27.1	61	27.6	149	429	15.2	33	$2 \ 0$	1	131	41	133	G 53	2.4	28	D
								FEL	T TN	ANC	HORA	GE AN	D VIC	INITY			
26	18	10 39.6	64	45.6	149	27.9	12.4	0 7	6	2	301	28	73	0.11	4.9	9.2	D
26	20	14 - 25.9	61	32.2	149	48.2	9.h	2.5	14	3	177	42	135	0.33	2.2	2.0	с
26	21 8	54 46.2	61	10	144	44.4	14.9	3.6	18	3	151	78	153	U.23	2.0	2.9	$\mathbf{c}$
26	23	7 2.0	64	40.5	146	539	0.6	. 0.8	5	Û	219	30	44	0.09	2.8	99 0	D
27	12 20	) 45.h	61	465	150	10.8	10 5	2.6	11	1	133	63	151	0.31	1.6	2.9	D
27	$15 \ 36$	56.7	63	4 e . 4	149	36.1	140.0	l.p.	8	1	272	34	105	0 0 6	6.4	3.7	D
27	20 13	3 27.8	64	45.9	147	30.3	6.4	0.6	9	3	188	20	31	0.10	1.5	5.3	D
27	22 41	1.2	64	46 3	147	44.8	13.l	1.0	13	6	102	14	20	0 32	0.9	1.8	¢
<b>Υ</b>	<u> </u>	0 /h 0	( )	ና ጎ	140	(1 )	78 1	1 9	8	າ	361	73	166	0.14	11.3	4.0	Ð

. .. ~ / / . . . . . 1 / 45 . . .. . ....

.

				A	LASK	AN EAI	RTHQU	JAKES	NORTH OI	F 61 DJ	EGREI	ES N	ORTH	LATIT	UDE,	1984		
		OR	IGIN	TIME	L	AT N	LQ.	NG W	DEPTH	MAC	NΡ	NS	GAP	D1	D3	RMS	ERH	ERZ Q
196	54 F	HR i	MN	SEC	DE	G MIN	DE	C MIN	КM				DEG	КM	ΚM	SEC	ΚM	КM
FEE	28	1	1	50.9	64	30.4	148	10.5	5.0	<b>O</b> . 1	3	Ø	229	6	36	0.00	99.0	99.0 D
	28	5	12	46.2	64	44.5	147	34.9	'13.Ø	1 0	8	4	249	15	28	0.08	2.0	2.5 C
	28	5	14	6.0	64	33.4	147	54,3	6.7	Ø.2	5	2	198	11	32	Ø.Ø3	4.1	3.9 D
	28	5	20	51.7	64	57.8	148	32,3	16.2	Ø.9	6	2	3Ø2	24	5Ø	0.04	5.1	5.6 D
	28	7	7	2.1	64	46.6	147	33,8	16.2	Ø.3	8	4	255	18	28	Ú.16	2.0	2.4 C
	28	8	14	41.9	64	46.3	147	45.7	16.6	1.4	11	3	100	14	19	Ø.24	1.2	1.3 B
	28	8	23	6.2	64	46.3	147	47.1	14.8	0.1	7	3	186	14	18	Ø.12	1.5	2.1 c
	28	8	28	57.1	65	46.6	147	5.8	1.3	1.5	5	1	350	103	153	Ø.14	21.2	4.9 D
	28	10	45	43.3	63	48.5	15Ø	10.6	15.1	1.8	4	0	294	62	126	Ø.12	99.Ø	48.2 D
	28	12	27	42.3	64	47.8	147	34.7	16.Ø	Ø.5	6	2	192	15	27	0.08	3.2	5.2 D
	28	2Ø	3Ø	39.6	64	46.4	147	48.3	15.5	Ø.2	7	3	178	14	17	0.07	1.5	2.1 c
	29	I	22	19.9	63	25.7	144	22.6	92.9	1.4	7	ì	320	40	132	0.03	6.8	2.5 D
	29	L	30	44.8	62	58.6	148	4.6	13.0	1.5	6	ø	171	95	167	Ø.28	38.9	21.3 D
	29	2	19	26.4	65	24.7	149	45.0	33.4	1.6	9	4	321	99	111	Ø.42	5.2	35.9 D
	29	11	0	59.6	64	31.2	J49	18.4	17.0	Ø.9	9	3	25Ø	13	65	Ø.15	1.8	1.5 D
	29	14	3	59.Ø	61	Ø.9	147	12.4	21.1	2.4	6	1	309	91	316	0.19	6.1	3.7 D
	29	16	51	34.9	62	40.0	144	40.0	7.3	2.2.	10	2	149	120	153	Ø.46	2.2	2.3 D
	29	16	55	41.5	64	52.3	147	43.2	15.1	1.1	8	3	99	5	21	Ø.31	2.3	2.9 c
	29	23	47	10.9	64	44.3	148	16.4	15.4	Ø.5	9	4	147	12	29	Ø.27	Ø.9	3.5 c
MAR	01	19	36	13.8	64	5Ø.1	147	20.4	7.9	Ø.6	7	3	293	23	38	0.10	2.7	7.3 D
													_					
	Ø2	10	0	28.3	63	20.8	15Ø	24.0	133.7	2.2	8	ø	287	85	152	0.14	24.9	16.8 D
	02	13	3 1	49.9	62	37,5	151	4.9	Ø.6	3.5	15	2	186	154	169	Ø.78	2.0	1.0 D
	02	13	20	19.2	61	28.Ø	146	11.0	30.4	3.5	8	Ú	255	73	172	0.50	9.7	5.7 D
										PNR	MI.≖	3.9						
	Ø2	14	57	31.8	62	27.2	148	33.2	19.2		12	6	116	94	144	Ø.47	2.4	4.8 D
	Ø2	17	41	15.3	63	25.5	148	45.6	8.3	Ø.9	4	0	24Ø	35	144	Ø.Ø8	90.4	35.3 D
	Ø2	18	49	31.1	64	42.3	147	22.b	20.2	1.6	7	1	190	21	39	0.20	2.4	1.7 D
	Ø3	1	23	46.9	63	Ø.1	150	54.3	131.6	2.7	13	]	169	128	197	Ø.32	3.7	4.Ø D
	Ø3	]	28	ti.4	63	55.5	14s	54.9	0.4	1.6	10	0	150	22	73	Ø.38	1.8	3.8 C
	Ø3	2	12	10.5	64	32.4	149	16.8	17.1	U.6	9	3	241	11	58	0.35	18	1.6 P
	04	4	51	40.0	64	45.Ø	147	42.2	11.7	(1.9	9	3	161	13	23	Ø.39	12	4.2 C
	¢ A	F	16	20 0	EA.	22.2	178	12 P	a o	1. C	¢	\$	164		20	0 24	1.9	61 × 0
	04 07	16	0 10	0.19 0/7	65	14 4	176	J2.0	97 A	1 0	0 10	۲ ۸	104	24 55	30 71	0.34 0 20	17	
	04 014	10	4	247	00 65	10 0	170	40.0	10.0	1.U	10	<b>*</b>	202	33	71 61	0.27 0 1/	1 ( 3 E	1.0 C
	104 0.4	18	0 01	29.9	00 66	11.0	140	14.0C	10.8	2.0	10	2	291 775	00	C1 67	U.14	3.5 2.2	1.0 D 2 G C
	104 016	21	21	25.9	00	11.0	141;	44.U 16 1	14 9 C 7	1.U	ש וו	2	2/5	43 60	07 60	U•27 a 20	6.6 2 A	25 5 10
								ALC: 14								<b>N</b> 20	<b>/</b>	

,

ц З

				AL	LASKAN	I EAF	RTHQU!	AKES	NORTH OF	61	DEGRE	LES 1	VORTH	LATIT	UDE,	1984			
		OR	ICIN	TIME	LA	ΤN	LOI	VG 🕡	DEPTH	MAG	ΝP	NS	GAP	D1	D3	RMS	ERH	ERZ	Q
198	84 F	IR I	MN	SEC	DEG	MIN	DEC	G MIN	ΚM				DEG	KM	KM	SEC	KM	КM	
MAR	05	10	21	3.5	63 3	26.7	145	32.0	6.4	1.9	10	3	133	17	128	0.50	2.6	1.9	₽
	05	11	44	24.0	65	9.4	148	48.6	16.0	0.9	12	6	274	48	66	0.18	2.1	7.0	Ð
	05	11	48	41.0	65	8.5	148	40.6	25.6	0.9	9	3	268	43	63	0.40	2.5	28.8	D
	05	16	23	6.3	62	18.4	151	23.6	92.0	2.8	13	]	188	130	202	0.28	3.8	15.0	D
	05	20	37	32.6	64	49.9	148	26.9	11.9	0.5	5	]	279	14	37	0.05	6.1	4.7	D
	05	22	22	43.8	64	49.1	147	33.5	11.4	0.3	10	5	189	14	23	0.18	1.2	2.7	C
	05	22	53	17.6	64	15.5	148	30.1	18.8	1.1	13	5	122	29	45	0.35	0.8	0.9	с
	06	10	12	21.1	64	24.6	147	24.0	0.8	0.6	8	3	134	22	34	0.26	0.8	50.2	С
	06	12	2 7	9.7	63	8.6	150	58.0	136.1	ι.8	7	0	198	117	226	0.19	5.9	10.0	D
	06	19	22	14.4	64	19.7	149	38.3	16.0	1.2	9	3	252	39	76	0.43	2.0	2.0	D
	06	20	33	20.8	63 3	27.1	151	10.4	6.6	2.7	12	Ι	148	115	189	0.51	2.7	3.1	D
	06	21	48	56.7	64	46.6	147	34.5	13.9	0.5	6	3	254	17	28	0.05	2.1	3.0	$\mathbf{e}$
	07	2	35	57.0	61	7.9	148	26.4	18.0	3.4	24	0	167	62	96	0.42	1.7	2.2	D
										FE	LT II	PAL	MER AN	VD AN	CHORA	CE.			
	07	5	7	23.4	65	42.8	150	47.7	2.5	1.8	7	2	193	137	167	0.31	14.2	10.5	D
	07	15	32	48.3	63	6.0	149	21.2	82.8	1.6	7	]	284	74	165	0.28	8.4	3.4	D
	07	16	40	51.4	64	45.4	147	28.6	9.4	0.6	9	4	214	20	26	0.15	1.3	3.6	C
	07	19	38	51.0	65	21.0	J 4 9	42.9	72.6	1.4	9	3	309	91	103	0.45	8.9	12.3	Ð
	08	0	57	26.3	63 /	44.3	148	10.2	89.4	1.2	6	1	256	38	82	0.06	12.8	3.2	D
	08	2	57	49.7	63	12.6	150	29.6	115.3	1.8	6	0	290	97	184	0.02	29.2	13.4	D
	08	9	37	24. l	60	6.9	151	5.6	0.6	3.1	7	0	291	130	280	0.32	31.6	2.6	D
	08	22	25	3.8	63	10.1	151	39.b	311.5	2.4	10	l	212	150	216	1.25	18.9	59.3	D
	09	5	33	59.6	64 4	17.0	147	44.3	10.1	0.1	6	2	203	13	20	0.13	1.7	3.2	C
	09	10	56	12.0	61	42.0	150	56.3	54.3	2.4	16	3	90	83	174	0.33	1.7	4.1	с
	09	12	18	44.8	64	15.3	148	30.2	15.6	0.4	6	1	216	29	45	0.10	2.0	5.1	D
	09	21	15	47.8	64	56.2	148	57.1	2.9	0.8	9	3	256	40	55	0.17	1.7	29.5	Ð
	10	0	56	25.4	61 6	3G.0	149	28.6	12.0	2.6	14	J	74	48	164	0.36	2.5	3.7	c
	10	10	<b>24</b>	27.5	64	56.5	147	30.6	9.7	0.5	10	5	157	6	33	0.20	1.4	2.2	$\mathbf{c}$
	$1 \ 0$	) 1 1	48	1.5	64 4	46.4	147	24.6	3.2	1.0	9	3	199	23	24	0.16	1.6	11.3	D
	10	12	39	39.8	64	46.0	147	24.6	$5.\mathrm{E}$	0.8	8	3	223	23	25	0.09	1.6	7.3	D
	10	12	44	43.2	64	23.6	145	42.0	22.6	1.6	9	2	283	30	78	0.28	3.8	1.1	D
	11	5	43	15.1	64	46.5,	147	27.b	3.1	0.9	10	4	152	21	23	0.20	1.2	10.4	D
	11	$\overline{7}$	13	37.2	64 4	46.1	147	22.6	0.1	0.6	8	3	227	24	25	0.12	1.6	99.0	D
	11	11	26	33.1	65	5.2	148	5.5	14.4	0.7	9	4	283	25	35	u.11	2.4	3.8	с
	11	18	43	0.5	64 4	44.]	148	34.0	12.1	0.8	9	4	269	23	38	0.12	2.3	4.6	с
	11	21	51	31.9	64	38.7	149	1.1	14.1	rJ.9	9	4	223	8	49	0.40	2.1	2.1	D

ALA	SKAN	EAF	RTHQUAKES	S	NORTH OF	61	DER	GREES	NVR'	ገኘዝ ሆላቲ	TUTT	DE,	1984
TME	$1.\Delta T$	N	LONG	W	DEPTH	M	AC	NP	NS	GAP	D1	D3	RMS

		ORI	GIN	TIME	LA	AT N	LOI	∛G ₩	DEPTH	MAG	NP	NS	GAP	D1	D3	RMS	ERH	ERZ	Q
198	54 J	HR	MN	SEC	DEG	S MIN	DEC	: MTN	KM				DEG	ΚM	ΚM	SEC	KΜ	КM	
MAR	11	22	53	21.8	64	47.9	145	27.3	4.5	1.7	9	4	271	112	128	0.37	3.5	4.8	D
	11	23	10	51.7	61	2.4	151	12.1	5.0	3.3	12	0	224	49	225	0.79	16.3	22.6	D
	12	8	3	9.8	62	8.0	151	0.3	2.2	2.3	12	1	171	118	196	0.40	2.4	3.3	D
	12	9	12	41.9	64	12.4	147	57.3	10.0	0.8	8	3	185	3	50	0.15	3.3	3.0	D
	12	11	43	59.7	62	56.3	149	88.2	12.1	1.6	10	3	154	172	187	0.40	1.9	3.1	D
	12	14	48	56.6	63	10.4	149	52.8	92.8	1.5	10	ι	280	78	148	0.14	6.5	3.4	D
	12	19	49	34.9	62	50.4	147	48.4	88.5	2.0	7	0	163	115	149	0.19	5.1	11.3	D
	12	21	30	32.5	65	6.6	146	45.8	0.1	0.9	6	1	337	33	71	0.10	4.7	99.0	D
	14	1	29	36.8	63	18.4	150	26.3	131.1	1.9	31	1	250	89	157	0.29	6.4	3.4	D
	14	2	39	17.3	65	1.7	148	45.6	20.6	0.9	6	2	270	37	53	0.30	3.5	1.9	D
	14	3	41	38.7	63	48.4	147	48.2	23.1	1.7	14	<b>5</b>	231	42	75	0.50	2.4	1.5	D
	14	3	58	13.1	64	26.5	147	26.6	8.4	1.4	13	5	120	<b>24</b>	31	0.42	0.9	4.7	e
	14	7	1	27.1	62	53.7	150	13.2	87.3	2.0	11	1	169	113	183	0.21	3.5	4.2	D
	14	14	32	30.4	64	46.8	147	49.0	12.6	0.3	7	3	174	13	17	0.05	1.3	2.3	С
	14	15	32	50.7	61	48.4	151	11.7	0.3	2.7	17	2	160	76	205	0.36	1.8	0.7	D
							_					_							
	14	15	54	53.9	64	10.8	148	0.6	10.1	$^{\circ}1.2$	10	31	31	4	53	0.23	1.5	2.4	В
	14	16	; 1	51.8	64	32.4	146	8.3	14.8	2.q	12	3	222	42	89	0.45	1.4	1.2	D
	14	20	- 32	53.9	61	44.0	149	46.2	39.5	3.9	15	0	138	41	136	0.46	4.5	7.1	¢
			_					_		FEL	T IV	PALI	MER, J	II A	NCHOR.	AGE.			
	14	20	47	57.9	63	54.3	149	1.6	13.3	1.4	6	1	192	20	75	0.16	2.6	1.8	D
	15	9	41	35.5	62	57.3	]44	9.7	0.4	2.2	6	2	151	66	122	0.53	2.1	99.0	D
	1.5	10		10.0	00	1.0	150	10.0	10.0	1.0	-	1	177	1.4.4	990	0.00	4 7	10.9	Ð
	15	18	1 9 50	19.6	63	1.2	150	19.9	10.9	1.9	-	1	111	144	220	0.60	4.7	10.3	0
	10	Z	92 70	52.9	04	38.9	147	42.9	12.2	0.9	10	づ の	230	- 4	28	0.06	2.0	1.0	U
	16	2	ටර 10	17.7	64	31.8	146	12.9	16.1	1.6	13	3	210 001	00	7.7	0.30	1.3 0 5	1.1	C
	10	ර ද	10	10.2	00	00.0	147	9.4	21.9	1.8	9	2	231	102	240	0.41	2.0	2.8	ע
	Ιþ	8	33	17.1	62	51.4	149	20.5	19.1	Z.4	10	3	146	101	təz	0.79	1.3	2.1	D
	16	11	4	47.3	62	16 1	149	371	12.6	19	11	2	146	78	177	0.24	1.6	2.4	С
	16	12	48	55.2	63	15.6	149	52	69	13	n	4	257	53	117	0.48	2.6	1.5	D
	17	14	50	12.6	64	53.4	147	48.5	111	07	10	4	145	1	23	0.33	11	2 1	- -
	17	15	40	58.7	62	18 0	150	20.0	195.7	0.1 9.2	17	2	186	02	159	0.00	3.2	4.7	ñ
	17	18	50	35.8	61	10.0	146	01.0 14 5	120.1	2.0 1.4	17 Q	2	215	60	150	0.40	2.7	34	ก
	17	10	00	00.0	01	4 V . 4	140	(4.0	40.1	1.4	¢	4	210	00	100	0.10	2.7	9.4	5
	17	19	42	14.0	62	44.5	148	53.5	79.5	1.8	10	2	277	110	176	0.23	5.8	5.3	D
	18	2	16	46.5	$\overline{64}$	47.9	147	24.8	11.7	0.6	10	5	219	21	25	0.13	1.4	3.3	с
	18	19	2 91	5.4	64	28 2	147	13.6	0.1	0.5	5	2	173	15	41	0 0 9	34	99.0	ם
	18	14	15	441	64	49.9	147	23.1	9.1 9.1	0.5	8	4	221	17	29	0.19	2.0	4.9	D
	18	17	8	31.7	64	50.7	147	197	11.9	0.3	Ř	3	232	16	32	0.08	1.7	4.5	c c
	,		· · ·	V.C. 1	V -t	. v v · ·	, C T I	x (/ , )	11,4	0.0	<u> </u>	~							-

				A	LASK	AN BA	KTHQ	JAKES	NORTH O	F 61 D	EGKE	ES N	OKIH	LAIII	UDE,	1984		
		OR	IGIN	TIME	L	AT N	LON	IG W	DEPTH	MAG	NP	NS	GAP	D1	D3	RMS	ERH	ERZ Q
196	54 H	IR 1	MN	SEC	DE	GMIN	DE	G MIN	КM				DEG	KM	KМ	SEC	KМ	KM
MAR	іь	20	52	42.9	65	5,6	149	9.4	10.8	1.5	10	4	292	56	68	Ø.3Ø	1.9	2.7 C
	18	23	26	20.0	64	43.3	148	37.4	12.4	1.1	12	5	189	26	38	0.23	1.0	1.6 C
	19	3	15	55.7	62	16.9	149	14.6	21.5	2.3	8	1	191	74	251	0.10	6.8	9.2 D
	19	6	20	14 5	64	9 7	150	10.4	16.8	2.1	13	4	281	45	77	Ø.34	1.7	0.9 D
	10	2	27	28.2	64	AQ Q	148	13 8	13.2	a 4	7	2	259	4	29	Ø 18	1 7	17 c
	13	0	21	30.3	04	43.3	140	10.0	10.2	<b>D</b> .7			600	-	~ 2	0.10		1.7 6
	40						1.47		0 7		•		171	11	25	0 10	1 0	2 7 6
	19	10	3	27.5	64	51.2	14/	35./	9.7	9.4	9	4	1/1	11	25	0.19	1.2	2.7 0
	19	10	33	6.5	64	46.8	147	22.7	6.5	0.0	8	3	226	23	25	0.13	1.9	6.2 D
	19	14	35	38.6	64	43.2	147	30.5	8.5	1.3	9	3	132	24	33	0.15	1.2	7.9 c
	19	20	- 33	23.5	64	50.2	147	26.9	7.7	Ø.5	9	4	2Ø8	17	27	0.09	1.3	4.2 C
	2Ø	ø	41	56.4	65	36.2	144	58.7	5.5	2.6	11	3	142	108	163	Ø.47	2.3	3.5 D
	2Ø	Ø	45	57.2	64	48.8	149	3.7	6.9	1.1	8	3	254	26	63	Ø.16	2.3	7.9 D
	20	11	26	18.4	64	46.4	147	28.0	9.5	0.9	9	3	197	21	24	Ø.18	1.0	3.6 C
	21	9	17	15.3	64	45.6	147	20.0	2.6	1.4	11	3	161	25	27	Ø.18	1.1	21.6 C
	21	11	5 <del>6</del>	34.1	64	19.1	148	6.1	4.6	1.0	11	4	107	17	39	0.28	Ø.8	3.9 c
	22	1	31	45.4	61	6.3	150	14.7	8.0	3.1	15	3	132	87	154	Ø.35	1.7	1.5 D
		-	•••														-	
	22	4	11	26.8	64	29.1	147	15.5	4.3	1.1	8	2	15Ø	17	40	0.12	1.8	11.9 c
	22	18	28	36.4	64	45.6	146	40.3	2.5	1.4	9	3	252	42	56	0.15	1.6	46.9 D
	22	10	18	44 0	63	12 1	151	20.4	10 2	3 5	5	a	216	134	214	0.18	8.1	55 2 D
	~~	1.	, 10	11.0	05	12.1	151	20.3	10.2	DMD	мі-	2 5		201			***	JJ,2 D
	~~	-		07	61	21.0	140	2 0	6 D	12	WIL-	3.5	105	10	24	a 24	2 F	336
	22	12		0.7	04	21.9	140	2.0	5.0	1.5	0	3	100	12	34	0.24	2.5	3.2 L
	22	15	54	10.5	65	4.6	150	59.8	37.7	2.3	8	3	322	101	138	0.50	4./	4.0 D
	~~	-							~ ~		~	•		~				<b>F 1 D</b>
	23	9	57	43.5	64	28.5	146	57.7	6,0	1.1	6	2	232	8	54	0.13	4.3	5.1 D
	23	3	3Ø	15.9	64	37.7	148	3.6	24.7	1.1	10	3	86	12	23	Ø.23	1.1	2.4 B
	23	5	4	5Ø.3	64	57.Ø	148	16.7	24.3	Ø.9	6	1	283	15	54	0.55	3.9	1.8 D
	23	6	38	36.7	61	11.4	151	16.7	5.0	5.2'	14	ø	202	4Ø	3Ø9	Ø.81	18.7	40.3 D
										PDE	ML=	5.2	FELT	IV AT	HOI	MER, II	AT KO	DDIAK.
•	23	13	54	1.6	62	57.Ø	149	21.1	86.3	3.4	12	0	189	90	148	0.16	3.6	7.4 D
										PMR	ML=	3.4						
	24	ø	46	32.8	63	54.4	148	57.3	10.7	1.7	8	)	160	19	58	Ø.3Ø	2.0	10.1 c
	24	16	43	35.7	61	48.0	150	29.0	38.3		9	Ø	147	79	166	0.32	2.3	4.Ø D
	25	3	34	45.7	63	1.8	146	58.3	89.3	1.7	12	4	264	78	167	Ø.23	2.7	2.9 D
	26	1	45	39.0	64	49 4	147	14.5	10.6	0.4	10	5	247	20	33	0.12	1.6	4.2 C
	25	2	2	56 6	64	31.0	147	1 2	10 6	12	11	4	186	16	52	a as	1 4	280
	60	4	č	00.0	04	51.7	141	1.5	10.0	1.3	**	7	100	10	32	0.00	ו7	£.0 C
	27	2	25	£2 7	62	11 2	150	20 4	0 0	20		١	166	00	171	0.17	1 7	230
	67	ۍ ۱	20	54.7	04	17 6	120	27.0 54 0	0.9	3.0		1	100	57	1/1	0.17	00 0	
	28	1	20	29.0	рТ рТ	1/.P	120	04, <b>č</b>	1.5	3.1	6		238	03	3/8	0.30	0.66	99.0 U
	28	19	37	5.5	£4	26.3	146	46.1	10.6	1.1	5	)	208	10	64	0.01	4.8	3.8 U
	29	2	4	12.1	64	22.h	147	23.4	Ø.3	1.1	6	2	148	21	35	0.43	1.6	99.0 C
		•	~					1							<b>^</b> •	~ ^	1 0	· · · ·

AT ASY AN EADTHOUAKES NODTH OF 41 DECREES NODTH I ATTTIDE 1094

NORTH LATITUDE, 1984	0		9	Ω	Ω	Ω	Ω	U
	ERZ	MM	9.4	3.0	27.1	3.2	1.0	1.2
	ERH	Ð	4.7	3.1	14.6	2.2	2.3	2.1
	RMS	SEC	0.14	0.55	0.42	0.85	0.55	0.24
	D3	KM	188	153	272	190	65	30
	נמ	MM	114	83	228	102	17	13
	CAP	DEG	182	169	249	140	259	156
	SN		0	2	1	2	ł	2
ALASKAN EARTHQUAKES NORTH OF 61 DECREES	ЧN		×	13	đ	œ	11	æ
	MAG		2.1	2.4	2.6	1.7	1.4	2.1
	DEPTH	KM	115.5	80.0	13.4	12.9	17.8	22.0
	M DN	NIM D	35.6	0.2	9,4	0.0	21.5	43.7
	G	DE(	150	150	151	149	149	147
	LAT N	MIM	1,9	9.6	18.9	49.0	39.6	45.8
		DEG	63	63	62	62	64	64
	I TIME	SEC	44.8	42.6	7.3	59.5	51.1	34.2
	IGIN	MW	25	26	ŝ	40	11	51
	OR	HR	ŝ	10	12	12	0	0
		1984	<b>MAR 29</b>	29	29	30	31	31

•

.

#### MODIFIED MERCALLI SCALE, 1956 VERSION

- Not felt. Some very low frequency effects, such as seiching in lakes, may be observed resulting from large, distinct earthquakes.
- II. Felt by persons at **rest**, on upper floors, or favorably placed.
- II. Feit indoors. Hanging objects suing. Vibration like passing of light trucks. Duration estimated. May not be recognized as an earthquake.
- IV. Hanging objects swing. Vibration like passing of heavy trucks; or sensation of a joit like a heavy ball striking the walls. Standing motor cars rock. Uindows, dishes, doors rattle. Glasses Clink. Crockery clashes. In the upper range of IV wooden nails and frame creak.
- V. Felt outdoors; direction estimated. Sleepers wakened. Liquids disturbed, some spilled. Smell unstable objects displaced or upset. Doors Swing, close, open. Shutters pictures move. Pendulum clocks stop, start, change rate.
- V]. Felt by a)]. Many frightened and run outdoors. Persons walk unsteadily. Windows, dishes, glassuare broken. Knickknacks, books. etc., oft shelves. Pictures off walls. Furniture moved or overturned. Weak plaster and masonry Ø cracked. Small bells ring (church. school). Trees. bushes shaken (visibly, or heard to rustle--CFR).
- VII. Difficult to stand. Noticed by driven of motor cars. Hanging objects quiver. Furniture broken. Damage to masonry O, including cracks. Ueak chimneys broken at roof line. Fall of plaster, loose bricks, stones, tiles, cornices (also unbraced parapets and architectural ornaments--CFR). 'Some cracks in masonry C. Waves on ponds; water turbid with mud. Small slides and caving in along sand or gravel banks. Large bells ring. Concrete irrigation ditches damaged.
- VIII. Steering of motor cars affected. Damage to masonry C; partial collapse. Some damage to masonry B; none to masonry A. Fall of stucco and some masonry walls. Twisting, fall of chimneys. factory stacks, monuments, towers. elevated tanks. Frame houses moved on foundations if not bolted down; loose panel walls thrown out. Decayed piling broken off. Branches broken from trees. Changes in flow or temperature of springs and wells. Cracks in wet ground and on steep slopes.
- 1X. General panic. Mansonry D destroyed; masonry C heavily damaged. sometimes with complete collapse; masonry B seriously damaged. (General damage to foundations--CFR.) Frame structures, if not bolted, shifted off foundations. Frames racked. Serious damage to reservoirs, Underground pipes broken. Conspicuous cracks in gmund. In alluvlated areas sand and mud ejected. earthqudke fountains, sand Craters.
- X. Most masonry and frame structures destroyed with their foundations. Some well-built wooden structures and bridges destroyed. Serious damage to dams, dikes, embankments. Large landslides. Nater thrown on banks of canals, rivers, lakes, etc. Sand and mud shifted horizontally on beaches and flat land. Rails bent slightly.
- X1. Rails bent greatly. Underground pipellnes completely out of service.
- X]]. Damage nearly total. Large rock masses displaced. Lines of sight and level distorted. Objects thrown into the air.

Note: CFR In parentheses refers to supplemental comments by Charles F. Richter.