 Assessment of Injuries to Killer Whales in Prince William Sound

Marine Mammal Study Number 2
Final Report

Marilyn E. Dahlheim¹ and Craig O. Matkin²

¹Alaska Fisheries Science Center
National Marine Mammal Laboratory
7600 Sand Point Way N. E., Bin C15700
Seattle, Washington 98115

²North Gulf Oceanic Society
P. O. Box 15244
Homer, Alaska 99603

December 1993
Injuries to Killer Whales in Prince William Sound

Marine Mammal Study Number 2
Final Report

Abstract: Photo-identification studies of individual killer whales inhabiting Prince William Sound were collected from 1989-91 to determine the impact of the spill on whale abundance and distribution. Concurrent photo-identification studies were also conducted in Southeast Alaska to determine if PWS killer whales were displaced to other areas. Despite increased effort, the number of encounters with PWS killer whales appears to be decreasing. Analysis of photographic data revealed 14 animals missing from AB pod over the three-year period. Mortality rates for AB pod ranged from 3.1% in 1988 to 19.4% in 1989, 20.7% in 1990, and 4.3% in 1991. Mortality rates on the order of 20% are unprecedented for North Pacific killer whales. No new calves were born into AB pod in 1989 or 1990. There was one calf born in 1991 and two born in 1992. AB pod size in 1988 was 36; in late 1992 the pod had 25 members. The cause(s) of the disappearance of 14 killer whales from AB pod is unknown. We assume, that the whales are dead from natural causes, a result of interactions with fisheries, from the spill, or a combination of these causes.

Key Words: Abundance, distribution, fisheries interactions, killer whales, mortality, Orcinus Orca, photo-identification, Prince William Sound, reproduction, Southeast Alaska.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>4</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>5</td>
</tr>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>OBJECTIVES</td>
<td>7</td>
</tr>
<tr>
<td>METHODS</td>
<td>7</td>
</tr>
<tr>
<td>Count and Identify Killer Whales</td>
<td>7</td>
</tr>
<tr>
<td>Vital Rates</td>
<td>8</td>
</tr>
<tr>
<td>Displacement</td>
<td>9</td>
</tr>
<tr>
<td>RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>Count and Identify Killer Whales in PWS</td>
<td>10</td>
</tr>
<tr>
<td>Vital rates</td>
<td>10</td>
</tr>
<tr>
<td>Displacement</td>
<td>12</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>12</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>15</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>15</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>15</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Summary of vessel survey effort in Prince William Sound 1989-91.

Table 2. Identification numbers of killer whales births (b) and deaths (d) in Prince William Sound pods, 1988-92. [] = number of whales in the pod in fall 1988.

Table 3. Expected (m) and observed (obs) mortality rates (%) and number of deaths (y) in each pod for Prince William Sound killer whales, 1984-92.
LIST OF FIGURES

Figure 1. Map of Prince William Sound showing the approximate range covered by the shore-based field camps.

Figure 2a-c. Data sheets used to record sighting information and vessel trackline.

Figure 3. Examples of identification photographs of PWS killer whales.

Figure 4. Map of southeastern Alaska showing the approximate range covered by the shore-based field camps.

Figure 5. The amount of effort expended to locate killer whales in Prince William Sound. A resident (AB) and transient pod (AT1) are shown.

Figure 6. Summary of the number of killer whales in each pod in Prince William Sound, 1984-91. Data prior to 1989 are from Leatherwood (1984, 1990) and from unpublished data from the North Gulf Oceanic Society.
EXECUTIVE SUMMARY

Photographs of individual killer whales occurring in Prince William Sound (PWS) were collected from May to September 1989-91 to assess the impact of the Exxon Valdez oil spill on killer whale abundance and distribution. To account for killer whales potentially displaced from Prince William Sound to other areas, concurrent photo-identification studies were also conducted in southeastern Alaska (1989 to 1991).

Research vessels traversed an average of 9,205 nautical miles in PWS each year. In 1989, eight resident (143 whales) and four transient pods (34 whales) were documented, totalling 177 animals in 89 encounters. In 1990, nine resident pods (148 whales) and four transient pods (30 whales) were identified, representing 80 encounters. During 1991, seven resident pods (105 whales) and two transient pods (14 whales) were identified from Prince William Sound, representing 54 encounters. Despite increased effort in Prince William Sound during the years 1989 to 1991, the number of encounters with killer whales appears to be decreasing.

Photographic analysis of resident pods revealed 14 animals missing from AB pod over the three-year period (1989-1991). The missing whales were not located in southeastern Alaska despite considerable effort. The mortality rates for AB pod ranged from 3.1% in 1988 to 19.4% in 1989, 20.7% in 1990, 4.3% in 1991, and zero in 1992. Killer whale annual mortality rates are usually less than 2%. Annual pod mortality rates on the order of 20% are unprecedented for North Pacific killer whales.

No new calves were born into AB pod in 1989 or 1990. There was one calf born in 1991 and two born in 1992 in AB pod. AB pod size in 1988 was 36; in late 1992 the pod had 25 members.

The cause(s) of the disappearance of 14 killer whales from AB pod is unknown. We are confident that 1) whales have not been mis-identified, 2) adequate effort was made to locate missing whales, and 3) the number of encounters was sufficient to evaluate the presence or absence of an individual whale. The current life history information available on killer whales does not support the possibility that the whales moved elsewhere. Therefore, we assume, that the whales are dead from natural causes, a result of interactions with fisheries, from the spill, or a combination of these causes.
INTRODUCTION

Killer whales, Orcinus orca, occur in all oceans of the world (Dahlheim and Heyning, in press). Population estimates, based on photo-identification studies, are available for three North Pacific regions: Washington State, inland waterways of British Columbia, and Prince William Sound (Bigg et al. 1987, 1990; Leatherwood et al. 1984, 1990). Counts for Prince William Sound include 11 resident pods (representing 245 whales) and eight transient pods (representing 52 whales) totalling 297 whales (Heise et al. 1991). The purpose of this study was to determine the possible impact of the Exxon Valdez oil spill on killer whales in Prince William Sound (PWS) since on four separate occasions, six different killer whale pods were observed swimming directly through oil. There were no apparent attempts made by the whales to avoid the oil. We determined impact by obtaining photographs of individual killer whales in Prince William Sound from mid May to September 1989, 1990 and 1991. These photographs were compared to an existing photographic database from 1984 to 1988 (Ellis 1984; Heise et al. 1991) to determine if changes occurred in whale abundance, seasonal distribution, birth and mortality rates, and continuity of habitat usage. Results of the research allowed determination of the loss (reduction in numbers; change in vital rates) to killer whale populations or extent of injury (displacement) resulting from the spill.

OBJECTIVES

1. To count the number of killer whales in Prince William Sound.
2. To test the hypothesis that killer whale distribution within Prince William Sound and adjacent waters is similar to that reported for previous years.
3. To test the hypothesis that pre- and post-oil spill killer whale pod structure and integrity have remained the same.
4. To test the hypothesis that killer whale natality has not changed since the spill.
5. To test the hypothesis that killer whale mortality rates have not changed since the spill.

METHODS

Count and Identify Killer Whales

Field Procedures - Prince William Sound.—Field seasons occurred from May to September each year. In 1989, small skiffs (< 6 m) operated from camps located on Squire Island, Hinchinbrook Island, and Perry Island (Fig. 1). The Perry Island camp was moved to Point Nowell (14 miles south of Perry Island) in mid-season. In 1990 and 1991, only one field camp was established in the southwestern region at Squire Island (off the southwest side of Knight Island). The Squire Island camp was staffed by two biologists using one small boat. In 1990 and 1991 two biologists used a live-aboard vessel for locating killer whales (replacing the shore-based locations used in previous years).

Weather permitting, an average of 8 to 10 hours per day were spent conducting boat surveys searching for or photographing whales. Specific areas known for whale concentrations were emphasized. If whales were not located in known areas and
opportunistic sighting reports were not available, a general search pattern was developed and implemented. Travel routes (based on information acquired prior to the spill) used by whales were surveyed.

When encountered, killer whales were photographed and survey forms completed (Figs. 2 a-c). The vessel was guided onto the whale's course and speed to approach within 30-60 meters of the whales left side. The whale's dorsal fin and saddle patch were then photographed with 35 mm camera systems (i.e., Nikon, Canon, Pentax) with motor drives and 300 mm lens set at 1/1000th sec shutter speed, or the highest speed possible. Black and white Ilford HP5 film (ASA 400) was used and developed at ASA 1600. Exposed film was labeled with date, roll number, photographer's initials, location, species code, and ASA setting. A new roll of film was used for each encounter.

All exposed film was analyzed for individual identification (Fig. 3). Each negative (or prints as needed) was placed under a dissection microscope for identification purposes and notes and sketches made of the dorsal fin and saddle-patch. Sub-standard photographs (not showing enough detail or improper angle/side) were not used. Photographs were then grouped by individual and each identified whale was visually compared to the historical photographic database available through the National Marine Mammal Laboratory and the Pacific Biological Station Nanaimo, British Columbia, Canada. In the case of the resident whales, once an individual whale was identified, it was relatively easy to identify the pod to which it belonged. Once all photographs were examined, it was then possible to determine 1) if all members of the pod were present, 2) if pod structure/integrity was similar to previous years, and (3) if new whales (calves) were born into the pod. Any missing animals were noted.

The stability of resident pods is such that if an individual is listed as missing for at least one year, that missing whale is considered dead. No animal consistently missing from a resident group has ever returned to its pod or appeared in another pod in 20 years of research in the United States and Canada (Bigg et al. 1990). Unfortunately, due to the highly variable nature of transient pods, pod structure and mortality rates cannot be conclusively documented to assess damage.

An "encounter" was defined as the successful detection, approach and taking of identification photographs. A "sighting" was the detection and observation of whales when no photographs were obtained. Reliable and specific accounts of whales from other vessels were termed "reports". Although sightings and reports were used to select areas to be searched, all identifications used in analyses were made from photographs taken during encounters.

Daily effort logs were maintained (Figs. 2 a-c). These logs permitted 1) quantification of the amount of time searching for whales versus photographing whales, 2) quantification of search effort under different weather conditions; 3) daily vessel trackline, and 4) an estimation of number of vessels/aircraft encountered in the study area.

Vital Rates

Calves of the year were identified by size, their mothers identified, and pod birth rates calculated. Mortality was assumed based on the absence of an identified animal from its pod for more than one year. Mortality rates were calculated for resident pods only
because the database is more reliable (i.e., stability of social structure) than that collected on transient pods. Finite annual birth rates (BR) and mortality rates (MR) for each pod were calculated as follows:

\[
BR = \frac{NR}{NP}
\]

and,

\[
MR = \frac{NM}{NP}
\]

where \(NR\) = number of new calves in a pod in a given year,

\(NM\) = number of whales missing from the pod in given year, and

\(NP\) = number whales present at end of previous year.

Mean weighted mortality and birth rates for each pod for all years was determined by pooling the data for all years (including years before and after Spill) for each pod. For comparison with AB pod mortality rates, a mean weighted mortality and birth rate was determined by pooling the data for all pods (except AB) for all years.

We used the logistic regression to examine correlations between observed mortality rates and factors such as pod and year. If mortality (\(m\)) is the expected mortality rate, the logistic regression model assumes that the logit of \(m\), i.e. the natural logarithm of \(m/(1-m)\), can be expressed as a linear combination of the factors. The regression coefficients in the linear combination were estimated by maximum likelihood (McCullagh and Nelder 1983). The estimation technique assumes that mortality rates can be estimated more precisely for large than small pods.

Displacement

Aerial surveys were conducted in PWS during 1989 to locate whales on the eastern side of Prince William Sound. The thought was that if killer whales were displaced due to the spill or clean-up activities, they may have moved into the eastern sector of Prince William Sound rather than moving out of the area and not be available for counting or identification. Surveys were flown in a Cessna 180 with two observers and the pilot. Airspeed averaged 115 kts at about 300 m elevation. The survey route consisted of 23 transects connecting 24 waypoints. The waypoints were either obvious landmarks or locations preset into the Loran C. Sighting locations were obtained off the Loran C. Each survey covered approximately 328 nautical miles averaging 3.8 hrs in duration. Transect
grid width was 4 miles. Survey schedules were weather dependent making sighting conditions comparable between surveys. Killer whales may have been displaced out of PWS to southeastern Alaska or the Kodiak Archipelago. In 1989, three shore-based camps and one floating camp were established in southeastern Alaska from 1 June through 30 September 1989 (Fig. 4). One shore-based camp was located at Glacier Bay National Park, one out of Sitka, and the other at The Brothers (a group of islands off the southeast corner of Admiralty Island in Frederick Sound). Glacier Bay personnel surveyed the waters of Glacier Bay, Pt. Adolphus, Cross Sound and then east and south into Icy Strait. Personnel at Sitka, surveyed the Sitka Sound area. The camp at Frederick Sound was responsible for surveying Stephens Passage and Frederick Sound and included at least four researchers operating two vessels. The floating camp provided coverage in Upper Stephens Passage, Lynn Canal, Chatham Strait and the eastern side of Icy Strait. In 1990 and 1991, only one field camp was established at Glacier Bay National Park, operating each year from April to November. Similar field methods apply in southeastern Alaska as those described for PWS except that no aerial surveys were done.

A limited amount of survey effort took place off Kodiak Island. An observer was placed aboard a fisheries research vessel and collected opportunistic sightings of killer whales. The observer was instructed to collect killer whale photographs whenever possible.

RESULTS

Count and Identify Killer Whales in PWS

Between May and September 1989-91, the mean number of nautical miles surveyed each year in Prince William Sound was 9,205 (sd = 1,695) (Table 1). In 1989, eight resident (143 whales) and four transient pods (34 whales) were identified, totalling 177 animals in 89 encounters. In 1990, nine resident pods (148 whales) and four transient pods (30 whales) were identified totalling 178 animals, representing 80 encounters. During the 1991 season, seven resident pods (105 whales) and two transient pods (14 whales) were identified totalling 119 animals, representing 54 encounters. Despite increased effort in PWS during 1989-91, the number of sightings per effort for AB pod and the AT1 group has declined since 1988 (Fig. 5).

In 1989, 47 hours of aerial survey were flown covering 3,504 nautical miles. Survey effort was comparable between June and August (average 12.5 hrs/month) but declined in September (5.7 hrs). Killer whales were the most abundant cetacean seen with 90 individuals observed in 12 encounters (sightings may represent the same individuals/pods). Most sightings occurred in July (8 encounters).

Vital rates

Birth rates.—Two calves were observed in AE pod and one in AJ pod in 1989. In 1990, four calves were observed in AN pod, one in AE, one in AJ, and one in AK pod. Calves were not observed in AB pod during 1989 or 1990. One calf was born in AB pod in 1991 and two were born in 1992 (Table 2). Calculated birth rates for 1988/89 were: 15.4% for AE; 3.7% for AJ; and 5.1% for AN.
An annual birth rate of Prince William Sound killer whales was 3.8% combined for the period of 1984 to 1989 (all resident pods excluding AB pod). A rise in the birth rate of AB pod was documented for the years 1985-86 at 6.3%, 1986-87 at 6.4%, and 1987-88 at 15.6%. Increased natality followed an increase in mortality rates documented for this particular pod.

Mortality rates.—In 1989, seven whales were missing from AB pod and one was missing from AE pod. Twenty two whales (AN 20's), representing a subpod of AN pod, did not enter Prince William Sound during 1989. This subpod was present in the area in 1990 and all individuals were accounted for. Of the seven missing whales from AB pod, two were reproducively active adult females which had calves of two and three years old, respectively. The other missing AB pod members were four juveniles of unknown sex and one adult female that had not reproduced since 1984.

In 1990, the seven whales were still missing from AB pod, plus an additional six animals. Of these six whales, one was an adult female that left behind a 3-year old calf, one was a maturing male, and four were juveniles of unknown sex (two were born in 1988 and one was born in 1986). In 1991 one additional animal (a male) was missing from AB pod. No other resident whales were reported missing for 1991.

Ten whales may be missing from the AT1 pod (a transient pod). This pod was encountered ten times during the 1991 season. Three of these missing animals (AT 5, AT 7 and AT 8) were photographed behind the *Exxon Valdez* on 27 March 1989.

The expected mortality rates (m) and the observed rates are provided in Table 3. The highest expected (16.2%) and observed (20.0%) mortality rates are those of AB pod in 1988-90. Both pod effects and year effects for all other pods and years lead to a reduced value of m. The p-values of the regression coefficients provide a rough indication of the significance of the mortalities (Table 3). These values indicate the likelihood of obtaining similar results by chance if all pods and all the years represented a population with a uniform annual mortality rate.

The significance of the pod effects is exaggerated because we chose the pod with the highest mortality (AB) to contrast to the others. However, the p-values for the year effects are meaningful because they reflect the null hypothesis, namely that the spill did not affect subsequent mortality rates. Mortality rates were significantly higher in 1988-90, following the spill, than in 1986-88 or 1990-92. It was higher, but not significantly higher, than in 1984-86, when whales were being shot as a consequence of their interactions with the blackcod longline fishery.

A combined annual mortality rate for all Prince William Sound resident killer whale pods (excluding AB pod) was 1.8%, covering the years from 1984 to 1988. Similar mortality has been noted for resident pods off British Columbia, where an annual combined rate of 2.2% (1973-88) has been documented (Olesiuk et al., 1990).

A summary of the number of whales in each resident pod from 1984-91 is shown in Fig. 6. AJ pod was not reported in 1984 or 1991. The reduction in AN pod in 1990-91 reflects the absence of ten whales that were subsequently photographed and given a different pod designation (AN20).

No reports of dead stranded killer whales occurred in 1989. However, in 1990 three whales stranded in PWS. In 1992, one whale was reported stranded in PWS. Out of the
four stranded whales, only one whale could be identified (AT19). None of the stranded whales were from AB pod, and no evidence of Exxon Valdez oil was found in or on the whales.

Displacement
The study teams in southeastern Alaska did not identify any killer whales originating from PWS during 1989. The teams collectively spent 1,011 hours in search of killer whales with a combined effort totalling 230 days of field research between early June and late September 1989. Sixty-three killer whales were photographed, principally in the Icy Strait region. Limited photographic studies occurred in 1990 and 1991 (early June to December). No PWS killer whales were identified in southeastern Alaskan waters.

Between 8 September and 18 October 1989, marine mammal surveys were conducted off Kodiak, Alaska. Out of 399 available daylight hours, 155.5 hours were spent conducting sighting surveys. Approximately 30.7% (122.5 hrs) were lost to survey effort due to inclement weather (Beaufort 5 conditions or greater). Cetaceans composed the majority of observations. Four killer whale groups were seen, totalling 65 individuals. Bad weather precluded collection of killer whale photographs.

In Prince William Sound, areas of known resident pod concentrations and movement patterns were qualitatively compared between 1989 and 1984-1988. Since 1984, AB pod has been the most frequently encountered resident group for all months from April to September. Historically, AB pod was observed in the area south of Naked Island where herring stage before completing their spawning run in mid-April to early May. The occurrence of AB pod on the western side of PWS in early April is also well documented by blackcod fishermen. AB pod was observed in this area on 31 March 1989 but was not seen again until 27 July 1989. In 1989, AK pod was seen more frequently in this area than AB pod.

In late summer and early fall, multi-pod aggregations typically occur in lower Knight Island Passage and Montague Strait, with AB and AI pod usually present (accompanied by various other pods, e.g., AN and AJ). In 1989, only AB and AI pods remained and aggregations were short-term, lasting for only a day. In contrast with other years, the whales did not use lower Knight Island Passage but remained in Montague Strait. Similar distribution patterns were observed in 1990 and 1991. Observations of killer whale pods were of a short-term nature and in contrast with other years the whales did not use lower Knight Island Passage but remained in Montague Strait.

DISCUSSION

The reported loss of 14 individual whales from AB pod (which numbered 36 whales in 1988) for the years 1989 through 1991 is unprecedented. Several possible explanations for the missing whales were examined.

The 14 missing animals could have been an artifact of the survey protocol. This possibility was evaluated by examining the potential for error in the photo-identification process and the bias in survey coverage. The number of animals present in Prince William Sound pods during summer surveys in 1989-91 was obtained through detailed examination of the photographic database of individual animals. Presence or absence of members of each
pod were evaluated by comparing photographs taken during the 3-year study period to previous years. Results of the comparisons verified the absence of 14 whales in AB pod.

To evaluate whether or not a mistake was made during the identification process (for example, was a whale present but mis-identified) four other researchers conducted independent analyses of the film. Analyses of the photographic data by the four researchers was completed in a similar manner as that described for the initial examiner (detailed in the methods section of this document). Animals were recorded as being present or absent each time the pod was encountered. The results showed that earlier identifications were correct and that 14 whales were missing.

Another possible bias that could have resulted in the 14 whales not being seen and photographed was that the amount of effort put forth to locate and identify the whales. The overall effort (miles surveyed) conducted during 1989-1991 resulted in the greatest amount of effort to date in Prince William Sound. The number of times each pod was seen in 1989, 1990, and 1991 seasons exceeded that reported for earlier studies. The amount of effort and the number of times each pod was encountered was more than adequate for locating and identifying the presence of individual animals.

We next considered the possibility that individual whales may have moved out of the Prince William Sound area and were not available to be photographed during these studies. Although considerable searching effort took place in southeastern Alaska, the missing whales were not encountered. Unfortunately, minimal effort was expended near Kodiak Island and the waters adjacent to Prince William Sound to locate the missing whales during the 1989, 1990, and 1991 seasons. However, in 1992 photo-identification studies were conducted by the National Marine Mammal Laboratory from Kodiak Island to Seward, Alaska. AB pod pod members were not seen during these investigations (Dahlheim, unpublished data).

A review of the 20-year killer whale database from British Columbia and Puget Sound, Washington, indicated that no resident killer whale consistently missing during repeated encounters had ever returned to its pod or appeared in another pod (Bigg et al. 1990). The possibility that the missing whales have moved out of the area is not supported by our knowledge of the social structure and behavior of resident killer whales. Based upon the historical life history information, it is likely that the missing resident whales are dead and have not moved off to other areas. However, a perturbation as severe as the spill and its direct impact on cetaceans has never been investigated. It is therefore possible that a major catastrophe such as the spill could have effected killer whales in ways never described before. This possibility, although highly unlikely, should not be disregarded.

The most reasonable explanation for the missing whales is that they are dead. However, the cause(s) of their death remain unclear. Natural mortality is certainly plausible, but unlikely. This species is characterized by a low birth and death rate (less than 2.2% per year or less; Olesiuk et al., 1990). The mortality rate for AB pod calculated for the 1989 season with the loss of seven whales was 19.4%. Six additional whales were reported missing from AB pod resulting in a 20.7% mortality rate for the 1989/90 season. In 1991, one more whale was noted as missing from AB pod (mortality rate of 4.3%). These rates for the 1989 and 1990 season are significantly higher than would be expected from natural causes. It is unlikely that natural mortality would account for more than 1-3 animals, and not the loss of 14 whales over a 3-year period as observed.
Examination of other causes to explain the mortality of the 14 missing whales are complicated by the past history of AB pod. This pod was involved in interactions with the Prince William Sound sablefish longline fishery in the mid 1980's (Dahlheim 1988; Matkin et al. 1986, 1987; Leatherwood et al. 1990). In 1985, the National Marine Mammal Laboratory received reports of killer whales either being shot at by fishermen or by fishermen using explosives to frighten whales away from their fishing gear. Several of the animals showed evidence of bullet wounds. In 1985, three whales were reported missing. In 1986, three additional whales were missing. Between 1987 and 1988, this pod lost two more individuals. The loss of at least some of these 8 whales was attributed to shooting or the use of explosives (although never confirmed). These whales have never been seen again after the year they were first identified as missing. It is possible that the 14 whales reported missing during the 1989 through 1991 season could have been shot or died as a result of explosives being used. However, this is unlikely because 1) longline fishing was closed between the time when all whales were accounted for (September 1988) and the time when the first seven whales were first determined missing (March 1989), 2) there were no reports of shootings and, 3) no new bullet wounds have been observed on individuals of AB pod since 1986.

The remaining cause of death considered was the effect of the oil spill. Six different killer whale pods were observed swimming through oil (light sheen). The loss of the first seven animals from AB pod could have been through direct contact with the oil, such as from inhalation of toxic volatile gases or ingestion. The loss of the six additional whales one year later is more difficult to explain from oil effects, but might have been associated with residual effects or from indirect effects (e.g., eating contaminated prey).

It is very possible that AB pod was in the Naked Island area when fresh oil was blown down into that area on 27 March 1989. AB pod is known to frequent the Naked Island area in early spring presumably to feed on herring and become involved with the blackcod fishery that typically opens 1 April. Although killer whale pods are seen in tightly grouped formation when resting and socializing often when feeding or travelling they are spread out across distances of a mile or greater. It is possible that within a specific pod, some whales and not others could have come in direct contact with oil.

None of the missing whales were found stranded, although killer whales typically sink upon death (Zenkovich 1938). Four carcasses (only one whale could be identified and it was not from AB pod) were found during the 3-year period (1989-1991). This stranding rate is high compared to other geographical areas, and from previous stranding rates from the Prince William Sound region. However, this may simply have been an artifact of increased effort after the spill. Blubber samples and scrapings from the stomach lining from the stranded whales were analyzed for hydrocarbons. There was no indication of oil contamination in these tissues and cause of death could not be determined. Caution, however, must be used when interpreting these results since the carcasses were old when found and decomposition decreases the viability of the tissue samples for hydrocarbon analyses.
CONCLUSIONS

The cause(s) of the deaths of 14 killer whales from AB pod is unknown. We are confident that 1) whales have not been mis-identified, 2) adequate effort was made in Prince William to locate the missing animals, and 3) the number of encounters was sufficient to evaluate the presence or absence of an individual whale. The current life history information available on killer whales precludes the possibility that the whales moved elsewhere. Therefore, we assume that the whales are dead from either, or a combination of, natural causes; a result of interactions with fisheries; or, from the Exxon Valdez oil spill. The highest mortality rate ever reported in the literature for North Pacific resident killer whales occurred in 1989 and 1990, coinciding with the Exxon Valdez oil spill. There is a strong correlation between the loss of the 14 whales and the Exxon Valdez oil spill, but there is no clear cause and effect relationship.

ACKNOWLEDGEMENTS

Surveys of this magnitude could not have been completed without the help of many people. We thank our field crews for their many hours of effort. Judy Zeh provided the statistical analyses of these data. We thank T. Loughlin and B. Wright for reviewing and editing various drafts of this report.

LITERATURE CITED

Table 1. Summary of vessel survey effort in Prince William Sound 1989-91.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of survey days</td>
<td>260</td>
<td>247</td>
<td>159</td>
</tr>
<tr>
<td>Days lost to weather</td>
<td>44</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Nautical miles surveyed</td>
<td>9,623</td>
<td>10,653</td>
<td>7,340</td>
</tr>
<tr>
<td>Whale encounters</td>
<td>89</td>
<td>80</td>
<td>54</td>
</tr>
<tr>
<td>Miles with whales</td>
<td>1,039</td>
<td>1,320</td>
<td>895</td>
</tr>
<tr>
<td>Film frames exposed</td>
<td>6,600</td>
<td>9,300</td>
<td>5,800</td>
</tr>
</tbody>
</table>
Table 2. Identification numbers of killer whale births (b) and deaths (d) in Prince William Sound pods, 1988-92. [] = number of whales in the pod in fall 1988.

<table>
<thead>
<tr>
<th>Pod</th>
<th>88/89 d</th>
<th>89/90 b</th>
<th>90/91 d</th>
<th>91/92 b</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB [36]</td>
<td>13</td>
<td>8</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AK [8]</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>AE [12]</td>
<td>12</td>
<td>16</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>AJ [27]</td>
<td></td>
<td>29</td>
<td>30</td>
<td>9</td>
</tr>
<tr>
<td>AN [39]</td>
<td>2</td>
<td></td>
<td>41</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
</tr>
</tbody>
</table>
Table 3. Expected (m) and observed (obs) mortality rates (%) and number of deaths (y) in each pod for Prince William Sound killer whales, 1984-92.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m obs y</td>
<td>m obs y</td>
<td>m obs y</td>
<td>y m obs y</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>10.8 9.0 6</td>
<td>4.6 3.2 2</td>
<td>16.2 20.0</td>
<td>13 2.9 2.2 1</td>
<td>0.0210</td>
</tr>
<tr>
<td>AI+AK</td>
<td>1.1 3.7 1</td>
<td>0.4 0.0 0</td>
<td>1.8 0.0</td>
<td>0 0.3 0.0 0</td>
<td>0.0210</td>
</tr>
<tr>
<td>AE</td>
<td>4.9 7.7 2</td>
<td>2.0 4.2 1</td>
<td>7.6 4.0</td>
<td>1 1.3 0.0 0</td>
<td>0.1275</td>
</tr>
<tr>
<td>AJ</td>
<td>1.2 2.0 1</td>
<td>0.5 0.0 0</td>
<td>1.9 0.0</td>
<td>0 0.3 3.4 1</td>
<td>0.0051</td>
</tr>
<tr>
<td>AN</td>
<td>0.9 0.0 0</td>
<td>0.4 1.4 1</td>
<td>1.4 1.3</td>
<td>1 0.2 0.0 0</td>
<td>0.0005</td>
</tr>
<tr>
<td>1984-86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2780</td>
</tr>
<tr>
<td>1986-88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0170</td>
</tr>
<tr>
<td>1990-92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0150</td>
</tr>
</tbody>
</table>
Figure 1. Approximate range covered by shore-based field stations in Prince William Sound: Perry Is./Pt. Nowell Camp (-----), Squire Is. Camp (------), and Hinchinbrook Is. Camp (-----).
DAILY RESEARCH LOG

DATE______________________ PLATFORM_____________________

BEGIN LOCATION______________________ END LOCATION_____________________

_________________________________ __

BEGIN TIME______________________ END TIME_____________________

SEARCH TIME______________________ TIME WITH WHALES______________________ (Hrs)

TOTAL MILES SURVEYED (trackline)_____________________

PERSONEL_____________________

__

WEATHER & SEA STATE /TIME_____________________

__

WHALE SIGHTINGS/TIME_____________________

__

ACTIVITIES/COMMENTS_____________________

__

__

Figure 2a. Daily Research Log.
Figure 2b. Data sheet used to record vessel trackline when following killer whales during photographic surveys.
Date/Enc.#_ N.G.O.S. KILLER WHALE SURVEY

Platform

Observers Time (Beg/End)

Location (Beg/End)

Pods naut. miles traveled w/whales

Total whales ad♂ ad♀/imm♂ juv/calve

Recognized Individuals

whales photographed

Film (Date/Enc#/Roll#/Initials)

Recordings Yes/No Tape#/Side Beg/End

Observations:

Oil present Yes/No Type

Harassment of whales by researchers Yes/No #harassed

Note: Behavior (Feeding, Resting, Traveling, Social/Sexual, Milling)

Note: Vessel traffic and interaction w/ whales

Time Observation

Figure 2c. Killer whale encounter form.
Figure 4. Approximate range covered by the four field research stations in Southeast Alaska.
Effort Expended on Killer Whales
AB and AT1 Pods, 1984-91

Figure 5. The amount of effort expended to locate killer whales in Prince William Sound. A resident (AB) and transient pod (AT1) are shown.
Number of Killer Whales per Pod
Resident pods, 1984-91

Figure 6. Summary of the number of killer whales in each pod in Prince William Sound (1984-1991).