Baseline Water Quality Inventory for the Southwest Alaska Inventory and Monitoring Network, Aniakchak National Monument and Preserve

> Laurel A. Bennett National Park Service Southwest Alaska Inventory and Monitoring Network 2525 Gambell Street Anchorage, AK 99503

> > June 2004

National Park Service Alaska Region Inventory and Monitoring Program File Name

Recommended Citation:

Bennett, L. 2004. Baseline Water Quality Inventory for the Southwest Alaska Inventory and Monitoring Network, Aniakchak National Monument and Preserve. USDI National Park Service, Anchorage, AK

**Topic:** Inventory

Subtopic: Water

Theme Keywords: Reports, inventory, freshwater, water quality, nutrients, trace elements, major ions

Placename Keywords: Alaska, Aniakchak National Monument and Preserve, Southwest Alaska Network, Surprise Lake, Meshik Lake, Aniakchak River, Meshik River, North Fork Aniakchak, Albert Johnson Creek

# Abstract

Water quality was investigated at Aniakchak National Monument and Preserve during June and July of 2003. This project was initiated as part of the National Park Service Inventory and Monitoring Vital Signs program in an effort to collect water quality data in an area where little work had previously been done. The objectives were to collect baseline information on the physical and chemical characteristics of the water resources, and, where possible, relate basic water quality parameters to fish occurrence.

Temperatures at a warm springs tributary to Surprise lake approached 21 -22° C ( $69.9 - 71.6^{\circ}$  F), the temperature range which forms a migration barrier to adult salmonids, and the upper tolerance limits for juvenile salmonids (McCullough 1999). EPA water quality criteria for aquatic life of pH 6.5 to 9.0 and dissolved oxygen lower limits of 4 mg/L (EPA 1986) were not met at this same warm springs complex.

At Turbid Creek, an upper Aniakchak River tributary, temperature was 2.96° C (37.3 °F). Salmon eggs cannot tolerate extended stream temperature below 4° C (39° F) (McCullough 1999). Temperature and pH exceeded limits in an Albert Johnson Creek slough while measured temperatures were also too high at Iris Creek, a coastal stream. Dissolved oxygen was below EPA water quality criteria for aquatic life in a slough off the Meshik River.

Turbid Creek, Section 3 of the Aniakchak River, and Meshik Lake all exceeded both the chronic (87  $\mu$ g/L) and maximum (740  $\mu$ g/L) EPA water quality criteria for aquatic life for aluminum. However, there are many instances where the criteria level for aluminum are exceeded under natural conditions (EPA 2002). Meshik Lake also exceeded the water quality criteria for aquatic life for iron of 1000  $\mu$ g/L (EPA 2002).

Surprise Lake is classified as oligotrophic, or very low in nutrients, while Meshik is eutrophic, or high in nutrients.

#### Introduction

Aniakchak National Monument and Preserve is located near Port Heiden, approximately 670 km (416 mi) southwest of Anchorage on the Alaska Peninsula (Figure 1). Aniakchak caldera, the defining feature of the park, was formed during a major eruption approximately 3500 years ago (Miller and Smith 1977; Riehle et al. 1987; Beget et al. 1992). Pyroclastic flows reached both the Pacific and Bering Sea coast (Miller and Smith 1977), and attained depths of up to 70 meters (229.7 ft) or more near the caldera (Miller and Smith 1977). Known subsequent eruptions occurred about 500 years ago (McGimsey et al. 1994), and more recently in 1931 (Jagger 1932). The Southwest Alaska Network (SWAN) includes five park units: Alagnak Wild River (ALAG), Aniakchak National Monument and Preserve (ANIA), Katmai National Park and Preserve (KATM), Kenai Fjords National Park (KEFJ) and Lake Clark National Park and Preserve (LACL).

Little information exists on water quality in these park units, and what data does exist was generally collected a decade or more ago. At Aniakchak, all previous work was conducted at Surprise Lake, and within the Meshik Lake/Meshik River system. In 1984, Wagner and Lanigan (1988) of the U.S. Fish & Wildlife Service studied the fisheries resources of the Meshik River drainage, and collected some water quality information within the Monument boundary, including the Meshik Lake outlet. Mahoney and Sonnevil (1989), also with the U.S. Fish & Wildlife Service collected basic water quality parameters at seven locations within Surprise Lake as part of a fisheries inventory, while Cameron and Larson (1992; 1993) of the Oregon State University National Park Service Cooperative Studies Unit carried out extensive studies in 1988-1989, again at Surprise Lake.

The present study was integrated with an ongoing fish inventory. Water quality data compliments fish distribution information, since poor water quality may explain the absence of fish in an otherwise suitable area. Jointly conducting water quality and fisheries inventories is also cost effective. The objectives of this study were to collect baseline information on the physical and chemical characteristics of the water resources within Aniakchak National Monument and Preserve, and, where possible, relate basic water quality parameters to fish occurrence.

#### Hydrography

Surprise Lake rests in the northwest corner of the Aniakchak caldera and drains via the 14. 2 km (22 mi) Aniakchak River to the Pacific Ocean at Aniakchak Bay (Figure 2, Figure 3). Numerous warm springs feed the west and southwest sides of the lake; while other tributaries are snow fed, or originate from cold springs (Cameron and Larsen 1992). The lake has a maximum depth of 19.5 m (62 feet) and a surface area of 275.2 hectares (680 acres) (Mahoney and Sonnevil 1991). "Turbid Creek" (not an official name) or T2, as it was identified by Cameron and Larson (1992), drains into the Surprise Lake outlet from an unusually turbid pond in the southeast corner of the caldera.

The Aniakchak River can be divided into four representative segments based on gradient and channel form (Figure 3). Section 1 flows through a bedrock canyon, and exhibits the highest gradient on the river. Section 2 flows through the outwash fan formed 2000 years ago by a catastrophic outburst flood from the caldera (Waythomas et. al, 1996). In Section 3, the river decreases further in gradient, and forms extensive meanders. Below Cape Horn, in Section 4, the river is tidally influenced.

Albert Johnson Creek and North Fork Aniakchak River are the largest tributaries to the Aniakchak River. Albert Johnson Creek joins the river from the south at the lower end of Section 2, while the North Fork Aniakchak River flows into the river in the lower third of Section 3.

Southeast of the caldera, Meshik Lake is a shallow, marshy lake, with a surface area of 26.7 hectares (66 acres). Meshik River drains Meshik Lake, eventually flowing into the Bering Sea.

Along the Aniakchak Pacific coast, "Iris Creek" (unofficial) is the largest stream between the Aniakchak River and Cape Ayutka. "Willow Creek" (unofficial) is a small stream draining into the south side of Amber Bay.

#### **Methods and Materials**

During 2003, a water quality technician accompanied the fish inventory project on the three sampling trips to Aniakchak: May 29 – June 13, Surprise Lake, Aniakchak River, and major tributaries; June 16 – June 24; Meshik Lake, Meshik River, and headwaters of Albert Johnson Creek; July 12 – July 21, Coastal streams and lower Aniakchak River. Core water quality parameters including temperature, pH, specific conductance (conductivity compensated for temperature), and dissolved oxygen (Freshwater Workgroup Subcommittee 2002) and turbidity were measured in surface waters with a YSI 6600 multiparameter sonde unit at fish sampling sites, or other areas of interest in Surprise Lake, the Aniakchak River, Meshik Lake, Meshik River, tributaries to these waterbodies, and selected coastal streams (Figure 3).

Discharge measurements (Rantz 1982) were taken with a Marsh McBirney Flowmate 2000 in most streams where fish and/or water quality were sampled, including flow measurements on the upper and lower Aniakchak River. Lake levels were estimated following NPS Water Resource Division procedures (Freshwater Workgroup Subcommittee 2002).

Water samples for lab analysis were collected at Surprise Lake, Turbid Creek, Albert Johnson Creek, North Fork Aniakchak, Meshik Lake, and in Sections 1-3 in the Aniakchak River (Figure 3). Parameters analyzed included: total suspended solids, total dissolved solids, major ions, nutrients, alkalinity, and trace metals (Tables 2a, 2b). This study attempted to replicate a subset of the Cameron and Larson (1992) sample sites as closely as possible, but their sample locations are only plotted on maps and not georeferenced.

A lake profile was taken near the deepest portion of Surprise Lake, at Cameron and Larson's ML-1, and Mahoney and Sonnevil's Site B. Water quality measurements were taken with the YSI at intervals of 1 meter for the first five meters, and thereafter at every five meters. Meshik Lake has a maximum depth of 1.2 m (4 feet), so only surface and bottom measurements were taken. Coordinates in Lat/Long decimal degrees and WGS84 datum of sampling sites were collected with a Garmin GPS Map 76s (Tables 1a-1f). Data has not been differentially corrected nor was it averaged. Data were transferred into ArcView, and converted to NAD27 datum.

# Results

Field Parameters: Temperature, Dissolved Oxygen, Specific Conductance, pH, and Turbidity

In the Aniakchak drainage, temperatures ranged from 20.16 to 20.39° C (68.3 to 68.7° F) at WS-4, a known warm springs tributary to I-11 which flows into Surprise Lake, to 2.96° C (37.3 °F) at Turbid Creek, a tributary that drains the southeast section of the caldera (Table 1a-1f). In June, water temperature in the Aniakchak River rose from  $6.55^{\circ}$  C (43.8° F) at the lake outlet, to  $10.9^{\circ}$  C (51.6° F) in the outwash section of the river. After three days of rain, and an influx of colder water from the North Fork, temperatures in the Sections 3 were measured at 8.09° C (46.6 ° F).

The lowest water temperature in the Meshik River drainage  $(5.48^{\circ} \text{ C}, 41.9^{\circ} \text{ F})$  was found in a backwater area to the river; the highest, at  $13.14^{\circ} \text{ C} (55.7^{\circ} \text{ F})$ , was in the mainstem river. Meshik lake surface temperatures were  $12.12^{\circ} \text{ C} (53.8^{\circ} \text{ F})$  on June 19; five days later and after 30 hours of rain, the temperature had dropped to  $9.57^{\circ} \text{ C} (49.2^{\circ} \text{ F})$ .

Iris Creek, a moderately sized stream that drains into Amber Bay, had water temperatures below the first tributary ranging from 20.1 to 21.45° C (68.2 to 70.6° F) on July 15, the warmest water temperatures measured in Aniakchak in 2003. Three days later, after a period of rain, water temperature was measured at 10.01° (50.0° F) about 0.5 kilometer (0.3 miles) above the first tributary.

Dissolved oxygen approached or exceeded 100% saturation throughout all sampled watersheds, with only a few exceptions (Table 1a-1f). Two warm springs influenced tributaries to Surprise Lake, WS-4/I-11, and I-9.5, had levels of 0.86 mg/l (9.6%) and 6 mg/l (55%) respectively. Low dissolved oxygen of 2.77 mg/l (22%) was also found in a Meshik River backwater. Dissolved oxygen in coastal streams ranged from 10.15 mg/l (87.4 %) to 11.55 mg/l (130.7%).

In the Aniakchak River drainage, specific conductance was highest at the WS-4 warm springs, (734 - 998  $\mu$ s/cm), lower in Surprise Lake (387 surface, 398  $\mu$ s/cm bottom), than dropped downriver, as tributaries with lower specific conductance emptied into the mainstem (121  $\mu$ s/cm at the lowest measurement before tidal influence) (Table 1a-1f). The highest specific conductance measured was 1258  $\mu$ s/cm at a small, spring fed tributary to the lower, tidally influenced section of the river.

Other tributaries had much lower conductivities. Albert Johnson Creek ranged from  $63\mu$ s/cm in the headwaters to  $95\mu$ s/cm near the confluence with the Aniakchak River, while the North Fork measured  $53\mu$ s/cm. Specific conductance in the Meshik River drainage ranged from  $89\mu$ s/cm at Meshik lake to  $64-91\mu$ s/cm in the river and tributaries. The highest reading in the Meshik drainage was  $226\mu$ s/cm, taken in a backwater (Tables 1a-1f). Despite some measurements in tidally influenced areas, all coastal streams were less than 100  $\mu$ s/cm.

pH was neutral to alkaline (basic) in the majority of waters through out the sampling area (Table 1a-1f). Warm spring tributaries to Surprise Lake were the exception, with a pH of 5.83 to 6.69, while Surprise Lake offshore of the warm springs area showed a surface pH of 5.91.

The Aniakchak River ranged from a pH of 7.59 at the outlet to 8.44 in the outwash section, than dropped to 7.8 below the North Fork. Again, this final measurement was taken after three days of rain. Albert Johnson creek was the most alkaline of all the tributaries, with pH measuring 8.64 in the lower reaches, but 7.48 to 7.81 in the headwaters. An Albert Johnson Creek slough had the highest recorded pH of 9.68.

Meshik Lake, Meshik River and their tributaries had a generally alkaline pH, with a range from 7.61 to 8.36. Coastal streams showed a similar variation in pH, with ranges from 6.87 at "Willow Creek" to 8.11 at "Iris Creek" (Tables 1a-1f).

Turbidity was generally less than 20 NTU, and frequently at or near 0 NTU throughout the Aniakchak River drainage (Table 1a-1f). Turbidity in Surprise Lake and tributaries ranged from 0 to 12 NTU; higher readings were taken (242 NTU in I-10, 1280.5 NTU at the bottom of Surprise Lake) but were assumed to be from inadvertent physical disturbance of the substrate by the water quality probe. The Aniakchak River measured 13.2 NTU near the lake outlet, dropped to 2.7 in the outwash section, but rose from 14 near the North Fork to 18.7 in the tidally influenced area.

Meshik Lake had varying turbidities (12.1 to 46.7), but was generally around 40 NTU, while the river and tributaries ranged from 0.4 to 5.9 NTU. Coastal drainages showed the effects of rain, with Iris Creek measuring 0.8 to 2.6 NTU before (although in the lower river) and 39 NTU in the upper river after sustained rain. Willow Creek was only measured after significant precipitation; turbidity ranged from 11.4 to 24.9 NTU.

#### Surprise Lake Profiles

Surprise Lake was not stratified, with surface temperature, Do, specific conductance, pH and turbidity showing little significant change with depth at station ML-1, the deepest part of the lake (Table 1b). Offshore of the warm

springs area, temperature and specific conductance showed a slight increase with depth (6.49 to 7.00° C; 328 to 388  $\mu$ s/cm) while dissolved oxygen and pH slightly increased until reaching depths of 6 to 9 ft, and than decreased. (dissolved oxygen: 10.55 to 12.09 to 11.31; pH: 5.9 to 7.14 to 6.81).

#### Alkalinity

Alkalinity is a measure of the buffering capacity of water, or its ability to resist changes in pH. In this study, it ranged from 15 to 152 mg/L with values dropping from Surprise Lake down the Aniakchak River (Table 2). Measurements were lower in the tributaries; Albert Johnson Creek had the highest tributary value (33.8 mg/l), while the North Fork Aniakchak River had the lowest (15 mg/l). Meshik Lake alkalinity was measured at 31 mg/l (Table 1).

## Nutrients

Total nitrate/nitrite was below the detection level of 0.095 mg/L in all sampled locations (Table 2). Kjeldahl nitrogen (organic) ranged from 1.1 to 1.9 mg/L in the Aniakchak River and Meshik Lake, and was below the minimum detection level of 0.33 mg/L in Surprise Lake and the three Aniakchak River tributaries. Total phosphorous ranged from 0.08 to 0.22 mg/l while potassium ranged from 0.442 to 3.9 mg/l. Kjeldahl nitrogen and phosphorous levels were highest in Meshik Lake.

Chlorophyll-*a* was only analyzed at Surprise (0.534 mg/l) and Meshik Lakes (16 mg/l) due to misplacement of the filtering device on the Aniakchak River float trip. High chlorophyll-a levels in Meshik Lake and a brown/green color to the water suggest a plankton bloom was occurring. Water color was still very turbid and green during an unrelated visit July 24 - 27. Dissolved organic carbon was below detection levels of 1 mg/L at five sampling sites and 1.4 mg/l at Meshik Lake. One sample was not collected in the field and a second was lost in the lab (Table 2).

#### Major lons and Trace Elements

The highest major ion concentrations (Table 2) were found in Surprise Lake, and than dropped at each subsequent downstream location on the Aniakchak River (Table 2). The North Fork Aniakchak River had the lowest concentrations of calcium and magnesium. Trace elements were generally low with cadmium, copper and lead not detected in all eight, four of eight, and five of eight sampling locations (Table 2). Meshik Lake, the North Fork Aniakchak River, and the main Aniakchak River below the North Fork had elevated aluminum and iron concentrations. Surprise Lake also had high iron concentrations, but less than Meshik Lake.

#### Discharge and Lake Levels

Surprise Lake was considered to be at mean seasonal level, based on the relationship of the waterline to moss on adjacent rocks. Meshik Lake was initially at mean level, based on beach exposures, but than rose during two days of rain.

Discharge of the Aniakchak River increased from 222 cfs at the lake, to 1223 below the North Fork. Turbid Creek, at 23.8 cfs, accounted for 1.9% of the mainstem flow, Albert Johnson Creek (75.2 cfs) was 6.1%, and the North Fork (231.1 cfs) was 18.9%. These discharges were taken over a four day span, with a period of rain preceding the North Fork and lower river discharge measurements, so correlations between streams, and between streams and the mainstem are poor.

Meshik River discharge at the lake outlet was measured at 10.0 cfs on June 18. Two days later, a large tributary was measured at 21.9 cfs, and the river just below this tributary was measured at 23.9 cfs.

#### Discussion

Field Parameters: Temperature, Dissolved Oxygen, Conductivity, pH, and Turbidity

Water temperature at I-11, a warm springs tributary to Surprise Lake which corresponds to the WS-4 warm springs complex of Cameron and Larson (1992), were too high to support salmonids. On May 31, water temperature ranged from 20.16 to  $20.39^{\circ}$  C ( $68.3-68.7^{\circ}$  F). These temperatures exceeded the point ( $15.6^{\circ}$  C or  $60.0^{\circ}$  F) at which spawning salmon show an increased incidence of disease for sustained temperatures, and approached 21 -22° C ( $69.9 - 71.6^{\circ}$  F), the temperature range which forms a migration barrier for salmonids, and the upper tolerance limit for juveniles (McCullough 1999). These temperatures also surpassed the disease threshold of 17° C ( $62.6^{\circ}$ F) for juveniles (McCullough 1999). Other studies (Hamon 2001, Mahoney and Sonnevil 1991), as well as the fish inventory accompanying this study (Miller and Markis 2004), found no indications of use by sockeye or chum salmon or Dolly Varden, the only salmonids known to use the Surprise Lake area.

Other studies found similar temperatures in these warm springs. During July 26-28, 1987, Mahoney and Sonnevil (1991) measured stream temperature at 19.4 ° C at the lower end of the stream draining this warm springs complex. Cameron and Larson (1992, 1993), on August 18, 1988, measured temperatures of 23.9, 20.6, and 19.9° C at springs in the WS-4 complex, and took an additional reading of 21.3 in lower I-11, the Surprise Lake tributary to which WS-4 contributes.

Additional sites with water temperatures that fell outside the guidelines for aquatic life include an Albert Johnson Creek slough with a temperature of 17.53° C (63.6° F) on June 6, and Turbid Creek, with a June water temperature of 2.96°

C (37.3 °F). McCullough (1999) states salmonids eggs cannot tolerate extended temperatures of less than 4° C (39° F). Eighty-three juvenile silver salmon were caught near the water quality sampling site in the Albert Johnson Creek slough; Turbid Creek was not sampled for fish.

Temperatures within the Meshik River drainage were well within guidelines for salmonids during this study. However, Wagner and Lanigan (1988) recorded a water temperature of 18° C (64.4° F) with a handheld thermometer on June 5, 1984, which could indicate that at times water temperatures approach stressful levels for salmonids.

On July 15, water temperatures of 20.1 to 21.45° C in lower Iris Creek approached the upper tolerance limit for juveniles (McCullough 1999). However, 38 juvenile silver salmon were caught in the vicinity of these readings, and rainbow/steelheads were identified in other reaches of Iris Creek (Miller and Markis 2004). Thus, either these water temperatures are quite uncommon and attained for only short periods of time, temperature refugia are found nearby, or these populations of salmonids have adapted to a greater temperature range than that measured by McCullough (1999) for Columbia River salmonids.

Dissolved oxygen levels at two sampling sites in this study were less than the EPA minimum regulatory limits of 4 mg/L for coldwater aquatic life (EPA 1986), and one site did not meet the minimum limit of 8 mg/L for embryonic life stages of coldwater aquatic life. All three readings at WS-4, the same group of warm springs with temperature limitations, were less than 2 mg/L, ranging from 9.6 to 16.1%. Dissolved oxygen levels at or below 3 mg/l are generally lethal for salmonids (EPA 1986, Flora et al. 1984). Cameron and Larson (1992) measured dissolved oxygen with a Hydrolab model 4041-110 sonde probe at WS-4 in August at 13.0 %. Cameron and Larson (1992) also attempted to determine dissolved oxygen at WS-4 with the Winkler titrametric method on six additional occasions but levels were too low for analysis. In 1987, Mahoney and Sonnevil recorded dissolved oxygen in this stream at 2.5 mg/L using a Hydrolab.

The fish inventory associated with this study seined Dolly Varden from I-9.5, a nearby slough with dissolved oxygen readings of 6 mg/L (55 %) (Miller and Markis 2004). Neither Cameron and Larson (1992, 1993) nor Mahoney and Sonnevil (1991) sampled this location.

A slough off the Meshik River also did not meet minimum EPA regulatory dissolved oxygen limits. Although one blackfish was captured at this location, dissolved oxygen only recorded at 2.7 mg/L (22 %). This sampling location had normal pH (7.69), but lower temperatures (5.48° C, 41.9° F), and, for this drainage, elevated specific conductance (226 µs/cm). Blackfish are known for their tolerance of low dissolved oxygen.

Specific conductance measurements from this study correlate reasonably well with previous work at Surprise Lake, despite differences in instrumentation. Cameron and Larson measured specific conductance at Surprise Lake tributaries with a Hydrolab, and samples were collected at the same locations for analysis at the Alaska Department of Fish and Game limnology lab. Their Hydrolab readings were consistently higher than the lab samples. Results from this study are comparable with their lab analysis. Water samples taken by Cameron and Larson at I-10 for specific conductance were measured at 275 µs/cm, and at I-11 at 774 µs/cm in June of 1988, whereas this study found specific conductance to vary from 246 to 270 µs/cm for three measurements at I-10. One sample site for this study in I-11 ("at lower warm springs") recorded at 734 µs/cm, while the "upper warm springs" measured 936-989 µs/cm. Mahoney and Sonnevil (1987) reported specific conductivity for I-11 at 901 µs/cm. Two additional readings at I-11 during this study, presumably in a non warm springs influenced tributary, recorded at 89. Cameron and Larson found little change in specific conductance readings in I-10 throughout the season (275-292 µs/cm), with greater variability in I-11 (774-903 µs/cm). Variability was associated with rainfall and snowmelt (Cameron and Larson 1992).

Mahoney and Sonnevil (1987) in late July of 1987 found that specific conductance at ML-1 increased from 387 at the surface to 394  $\mu$ s/cm at 19 m, with a measurement of 392  $\mu$ s/cm at 13 and 15 m. In June of 1988, Cameron and Larson (1992) found specific conductance at ML-1 varying from 383  $\mu$ s/cm at the surface to 387  $\mu$ s/cm at 3 m to 383  $\mu$ s/cm at their last sample at 14 m. This study measured specific conductance at 387  $\mu$ s/cm at the surface down to 14 m, than rising to 398 at the bottom.

pH is influenced by many factors, including temperature, dissolved oxygen, and various anions and cations, but a range of 6.5 to 9.0 is the regulatory criteria for freshwater aquatic life (EPA 1986). The majority of pH readings in Aniakchak National Monument and Preserve fell within this range (Table 1a-1f). The Surprise Lake tributary and warm spring complex I-11/WS-4 had low pH readings ranging from 5.76 to 6.39, and a Surprise Lake profile near the outlet of this warm springs complex had a pH of 5.9. The upper pH limit was only exceeded once, with a reading of 9.68 at an Albert Johnson Creek slough. Despite the high pH, 83 silver salmon were captured in this slough (Miller and Markis 2004).

Cameron and Larson (1992) and Mahoney and Sonnevil (1987) also found pH at I-11 to be less than the regulatory criteria, with eleven measurements by the former ranging from 5.6 to 6.2, and the later reporting a reading of 5.25. This study measured pH at I-10 at 6.51-6.55, or just above the lower regulatory limit of 6.5. Cameron and Larson reported a range of 6.3 to 6.8 over 12 readings but only 4 were less than 6.5. Mahoney and Sonnevil recorded pH at 1-10 as 6.15.

Alkalinity

All alkalinity samples for Aniakchak were above 10 mg/L, the generally accepted level for vulnerability to changes in pH from natural and human caused sources (Table 1a-1f). Schindler (1988) states that average ratios of alkalinity to calcium plus magnesium (in millequivalents) in lakes of pristine areas usually range from 0.6 to 1.1. In 2003, Surprise Lake had a ratio of 1.4, while Meshik had a ratio of 1.1, indicating that there is little anthropogenic acid deposition. Although Schindler (1988) does not address streams, ratios for streams ranged from 0.8 to 1.4.

#### Nutrients

Surprise Lake is oligotrophic, or having low biologic productivity. Meshik Lake would be considered eutrophic due to high chlorophyll-*a* readings, although nitrogen and phosphorous readings were in the range of other oligotrophic lakes. Meshik Lake is very shallow and surrounded by wetlands, which may contribute to its high productivity.

#### Major lons and Trace Elements

In a comparison of the proportion of major cations, the upper Aniakchak watershed (Surprise Lake and the Aniakchak River, Section 1) was dominated by sodium, followed by magnesium, calcium and potassium. The lower Aniakchak River (Section 2, Section 3), as well as Albert Johnson Creek, were similarly dominated by sodium, but calcium and magnesium were reversed. Calcium was the foremost ion in Turbid Creek, North Fork Aniakchak River, and Meshik Lake, followed by sodium, magnesium and potassium. Calcium and magnesium in Surprise Lake and all three samples sites on the Aniakchak River were always within four percentage points of each other, whereas calcium and magnesium for Meshik Lake and Aniakchak River tributaries had a spread of from 12 to 35 percentage points. For anions, Meshik was strongly sulfate controlled, Turbid was somewhat higher in sulphate than chloride, and the remainder were dominated by chloride, with Albert Johnson Creek strongly so. High sodium and chloride levels are likely due to the close proximity to the ocean. These results should be viewed with caution, since they are based on one sample point for each water body.

LaPerriere (1996) found the eleven lakes that she studied in Katmai to be dominated by calcium followed by sodium. Magnesium was only slightly less than sodium but like this study, potassium levels were considerably less.

Aluminum concentrations in Turbid Creek, the main Aniakchak River below the North Fork, and Meshik Lake appear to be elevated, and probably exceed both the EPA chronic (CCC or criteria continuous concentration) and maximum (CMC or criteria maximum concentration) concentrations of 87 and 740 µg/L, respectively (EPA 2002). Although these aluminum levels are from filtered samples, whereas the EPA criteria are based on unfiltered samples, filtered samples should have lower levels. Aluminum toxicity has been shown to decrease with higher pH and hardness, and there are many instances where the criteria levels of aluminum are exceeded under natural conditions (EPA 2002). LaPerriere (1996) found repeated high aluminum concentrations in the Savonoski and Ukak Rivers and in Up-a-Tree and Headwaters Creek, both tributaries to Brooks Lake. Aluminum was also high in additional streams where, like this study, only one measurement was made.

The Meshik Lake sample (3320  $\mu$ g/L) also exceeded the EPA chronic criteria for iron but all other locations were less than the 1000  $\mu$ g/L criteria (EPA 1999). Concentrations of arsenic, cadmium, copper, lead, and zinc at all sample locations met EPA aquatic life criteria (EPA 2002).

#### Discharge and Lake Levels

Cameron and Larson (1992) found that the three tributaries to Surprise Lake (I-9, I-10, I-11), contributed 14.4%, 65.6%, 14.9%, and of all surface flow to Surprise Lake, whereas this study found that they contributed only 5.7%, 22%, and 6.8%. However, Cameron and Larson measured all the major tributaries to the lake and computed a percentage of their total, whereas this study took a percentage of the discharge at the lake outlet. Cameron and Larson did not measure discharge at the lake outlet, and they suggest that groundwater may directly enter the lake floor at some locations.

The Meshik River and tributary measurements are contradictory and cannot be explained.

#### Plans for Coming Year

The water quality inventory will be continued in Kenai Fjords in 2004.

# Figure 1. Southwest Alaska Network

Location of Aniakchak National Monument & Preserve

National Park Service U.S. Department of the Interior



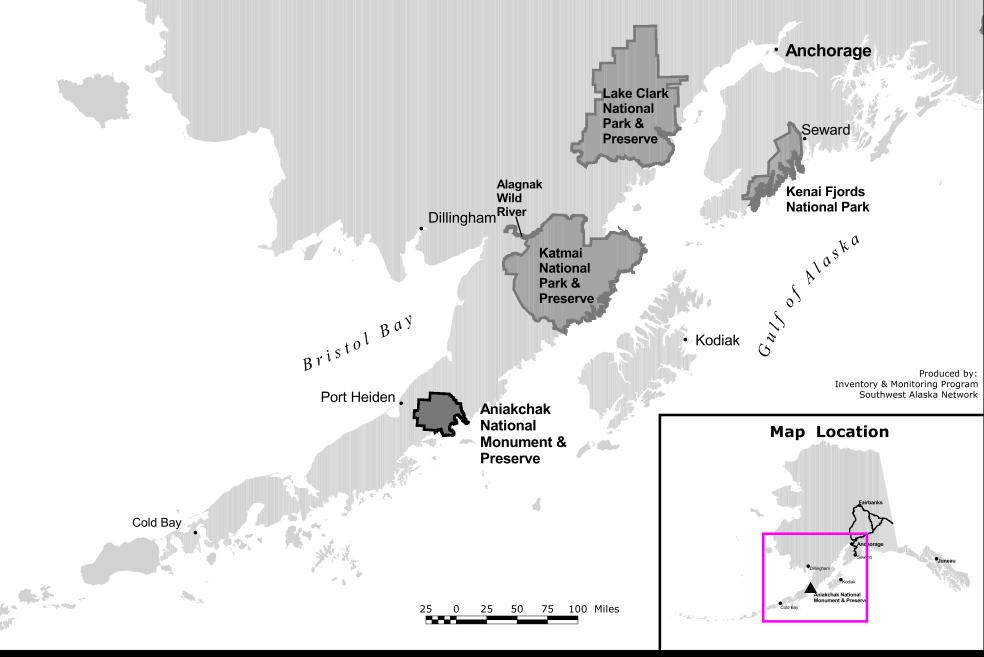
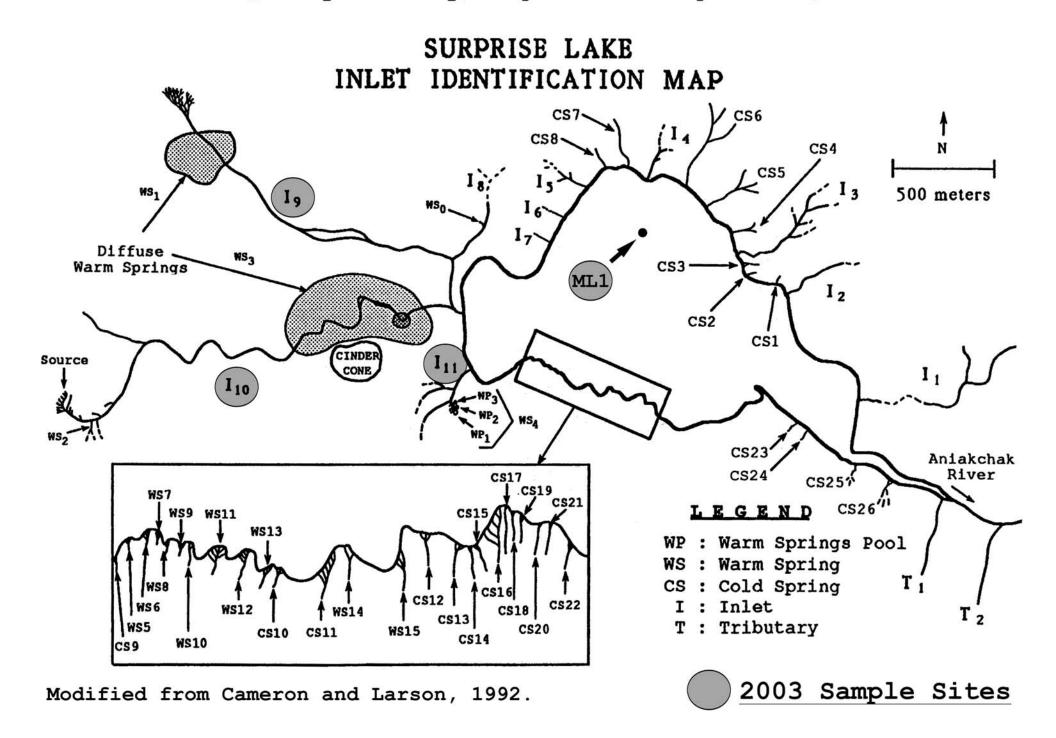




Figure 2. Aniakchak National Monument & Preserve Water Quality Inventory, Surprise Lake Sample Sites, 2003



# Figure 3. Aniakchak Water Quality Inventory, 2003

National Park Service U.S. Department of the Interior



|        | Table 1a. Core V    | Vater Quality I | Parameters | , Surprise L | ake Tributar | ries, Aniakch | nak Water Quali | ty Inver | ntory 2003 |             |
|--------|---------------------|-----------------|------------|--------------|--------------|---------------|-----------------|----------|------------|-------------|
|        |                     |                 |            |              |              |               |                 |          |            |             |
|        |                     |                 |            |              |              |               |                 |          |            | Specific    |
|        |                     | Fish Sample     | Cameron    |              |              |               |                 | Temp     | Discharge  | Conductance |
| Sample | Site ID             | Site No.        | Larson ID  | Date         | Time         | Latitude      | Longitude       | (C)      | (cfs)      | (µS/cm)     |
| 111_99 | I-11 stream         | 111             | I-11       | 5/31/2003    | 13:40:00     | 56.928593     | -158.125657     |          | 15.2       |             |
| 111_0  | I-11 stream         |                 | I-11       | 5/31/2003    | 13:42:50     | 56.928540     | -158.125700     | 20.39    |            | 936         |
|        | I-11 stream @ upper |                 |            |              |              |               |                 |          |            |             |
| 111_1  | warm spring         |                 | I-11       | 5/31/2003    | 13:47:10     | 56.928427     | -158.126025     | 20.38    |            | 998         |
|        | I-11 stream @ lower |                 |            |              |              |               |                 |          |            |             |
| 111_2  | warm spring         |                 | I-11       | 5/31/2003    | 13:51:14     | 56.928255     | -158.1263183    | 20.16    |            | 734         |
| 111_3  | I-11 trib           |                 | I-11       | 5/31/2003    | 13:59:37     | 56.928907     | -158.1272467    | 7.44     |            | 89          |
| 111_4  | I-11 trib           |                 | I-11       | 5/31/2003    | 14:00:46     | 56.928898     | -158.1272133    | 7.86     |            | 89          |
| 110_0  | I-10 stream         |                 | I-10       | 5/31/2003    | 14:36:13     | 56.932202     | -158.1250483    | 8.58     | 49         | 270         |
| 110_1  | I-10 stream         |                 | I-10       | 5/31/2003    | 14:38:55     | 56.932113     | -158.1255867    | 8.54     |            | 246         |
| 110_2  | I-10 stream         |                 | I-10       | 5/31/2003    | 14:41:39     | 56.931998     | -158.1266283    | 8.44     |            | 265         |
| 19-5_0 | I-9.5               | SURP 032        | NA         | 5/31/2003    | 14:52:14     | 56.932918     | -158.1234217    | 11.41    |            | 135         |
| 19_0   | I-9 stream          | SURP 033        | I-9        | 5/31/2003    | 15:06:41     | 56.935132     | -158.1216467    | 9.27     | 12.6       | 132         |
| 19_1   | I-9 stream          | SURP 034        | I-9        | 5/31/2003    | 15:11:52     | 56.935482     | -158.12225      | 8.34     |            | 122         |

|        |          |        |        |        |      | Turbidity<br>YSI | Total<br>Dissolved |
|--------|----------|--------|--------|--------|------|------------------|--------------------|
|        |          |        | DO     | Depth  |      | (NTU)            | Solids YSI         |
| Sample | BP (psi) | DO (%) | (mg/L) | (ft)   | pН   |                  | (g/L)              |
| l11_99 |          |        |        |        |      |                  |                    |
| 111_0  | 13.9     | 16.1   | 1.45   | -0.161 | 5.83 | 0                | 0.609              |
|        |          |        |        |        |      |                  |                    |
| 111_1  | 13.92    | 9.6    | 0.86   | -0.148 | 5.83 | 2.1              | 0.649              |
|        |          |        |        |        |      |                  |                    |
| l11_2  | 13.92    | 10.6   | 0.96   | -0.136 | 5.76 | -0.9             | 0.477              |
| l11_3  | 13.93    | 88.5   | 10.63  | -0.145 | 6.38 | -1.1             | 0.058              |
| 111_4  | 13.93    | 88.8   | 10.55  | -0.142 | 6.39 | -1.2             | 0.058              |
| I10_0  | 13.93    | 97     | 11.32  | 0.211  | 6.55 | 242.6            | 0.176              |
| I10_1  | 13.92    | 98.5   | 11.51  | -0.183 | 6.51 | 0                | 0.16               |
| 110_2  | 13.91    | 97     | 11.36  | -0.17  | 6.53 | 0.6              | 0.172              |
| 19-5_0 | 13.91    | 55     | 6      | -0.108 | 6.69 | -1               | 0.088              |
| 19_0   | 13.94    | 105.8  | 12.15  | -0.147 | 7.31 | -1               | 0.086              |
| 19_1   | 13.92    | 103.3  | 12.13  | 0.058  | 7.25 | -1.1             | 0.079              |

|            |                                | Table 1b. Co            | re Water Q           | uality Param | eters, Sur | prise Lake, Ar | niakchak Wate | r Quality   | / Inventory                              | 2003                               |                                 |                            |
|------------|--------------------------------|-------------------------|----------------------|--------------|------------|----------------|---------------|-------------|------------------------------------------|------------------------------------|---------------------------------|----------------------------|
|            |                                |                         |                      |              |            |                |               |             |                                          |                                    |                                 |                            |
| Sample     | Site ID                        | Fish Sample<br>Site No. | Cameron<br>Larson ID | Date         | Time       | Latitude       | Longitude     | Temp<br>(C) | Comment                                  | Specific<br>Conductance<br>(µS/cm) | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) |
|            | Surprise Lake                  |                         |                      |              |            |                |               |             | water level<br>normal:<br>moss,<br>beach |                                    |                                 |                            |
| SURPRISE_0 | spring profile 1               | SURP 001                |                      | 5/29/2003    | 18:33:09   | 56.9219233     | -158.111312   | 6.49        | exposure                                 | 328                                | 14.04                           | 85.9                       |
| SURPRISE_1 | Surprise Lake spring profile 1 | SURP 002                |                      | 5/29/2003    | 18:43:18   | 56.9220783     | -158.111247   | 8.27        |                                          | 390                                | 14.03                           | 102.1                      |
| SURPRISE_2 | Surprise Lake spring profile 1 | SURP 002                |                      | 5/29/2003    | 18:46:09   | 56.9220217     | -158.11128    | 7.87        |                                          | 377                                | 14.04                           | 96.1                       |
| SURPRISE_3 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:50:11   | 56.92255       | -158.109863   | 7.56        |                                          | 373                                | 14.04                           | 101.1                      |
| SURPRISE_4 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:51:02   | 56.9225833     | -158.109782   | 7.54        |                                          | 374                                | 14.04                           | 100.9                      |
| SURPRISE_5 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:52:56   | 56.9226        | -158.109587   | 7.5         |                                          | 376                                | 14.04                           | 100.9                      |
| SURPRISE_6 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:54:04   | 56.9225917     | -158.10957    | 7.44        |                                          | 376                                | 14.04                           | 100.3                      |
| SURPRISE_7 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:56:22   | 56.922485      | -158.109538   | 7.35        |                                          | 378                                | 14.03                           | 99.6                       |
| SURPRISE_8 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 18:57:59   | 56.9223717     | -158.109375   | 7.26        |                                          | 377                                | 14.03                           | 97.8                       |
| SURPRISE_9 | Surprise Lake spring profile 2 | Loc A                   |                      | 5/29/2003    | 19:02:45   | 56.9223067     | -158.109603   | 7.00        |                                          | 388                                | 14.03                           | 93.3                       |

|            |           | 1     |      |           |                    |
|------------|-----------|-------|------|-----------|--------------------|
|            | 1         |       |      |           |                    |
|            |           |       |      |           | Total              |
|            | Dissolved |       |      |           | Total<br>Dissolved |
|            | Oxygen    | Depth |      | Turbidity | Solids YSI         |
| Sample     | (mg/L)    | (ft)  | рН   | YSI (NTU) | (g/L)              |
|            |           |       |      |           |                    |
|            |           |       |      |           |                    |
|            |           |       |      |           |                    |
| SURPRISE_0 | 10.55     | 0.078 | 5.9  | 4         | 0.213              |
|            |           | 0.010 | 0.0  |           | 0.2.0              |
|            | 10        | 0 500 | 0.00 | 44.0      | 0.054              |
| SURPRISE_1 | 12        | 0.593 | 6.88 | 11.3      | 0.254              |
|            |           |       |      |           |                    |
| SURPRISE_2 | 11.4      | 3.329 | 6.6  | 11.9      | 0.245              |
|            |           |       |      |           |                    |
| SURPRISE_3 | 12.09     | 1.126 | 7.11 | 7.8       | 0.243              |
|            |           |       |      |           |                    |
| SURPRISE_4 | 12.07     | 3.361 | 7.1  | 7.7       | 0.243              |
|            |           |       |      |           |                    |
| SURPRISE 5 | 12.08     | 6.437 | 7.14 | 7.7       | 0.244              |
|            |           |       |      |           |                    |
| SURPRISE 6 | 12.03     | 9.068 | 7.09 | 7.8       | 0.245              |
|            |           | 0.000 |      |           | 0.2.10             |
| SURPRISE 7 | 11.98     | 12.02 | 7.07 | 8         | 0.246              |
| SURFRISE_/ | 11.90     | 12.02 | 7.07 | 0         | 0.240              |
| SURPRISE 8 | 11.78     | 15.7  | 6.84 | 7.5       | 0.245              |
| SURFRISE_0 | 11.70     | 10.7  | 0.04 | 7.5       | 0.240              |
|            |           |       |      |           |                    |
| SURPRISE_9 | 11.31     | 22.79 | 6.81 | 17.2      | 0.252              |

|             |              |             |           |          |         |           |             |                   |            | Specific    | Barometric | Dissolved |
|-------------|--------------|-------------|-----------|----------|---------|-----------|-------------|-------------------|------------|-------------|------------|-----------|
|             |              | Fish Sample | Cameron   |          |         |           |             | Temp              |            | Conductance | Pressure   | Oxygen    |
| Sample      | Site ID      | Site No.    | Larson ID | Date     | Time    | Latitude  | Longitude   | (C)               | Comment    |             | (psi)      | (%)       |
|             |              |             |           |          |         |           | 0           | <b>X</b> <i>Y</i> | Secchi     |             |            |           |
|             |              |             |           |          |         |           |             |                   | depth: 1.5 |             |            |           |
| SURPRISE_10 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:17:28 | 56.930437 | -158.105403 | 7.44              | m          | 387         | 14.15      | 97.5      |
| SURPRISE_11 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:17:58 | 56.930485 | -158.105403 | 7.44              |            | 387         | 14.16      | 97.6      |
| SURPRISE_12 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:19:36 | 56.930705 | -158.105730 | 7.43              |            | 387         | 14.15      | 97.6      |
| SURPRISE_13 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:21:56 | 56.930843 | -158.106348 | 7.43              |            | 387         | 14.16      | 97.2      |
| SURPRISE_14 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:23:15 | 56.930843 | -158.106592 | 7.43              |            | 387         |            |           |
| SURPRISE_15 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:25:50 | 56.930770 | -158.107227 | 7.44              |            | 387         | 14.15      | 97.1      |
| SURPRISE_16 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:26:37 | 56.930778 | -158.107128 | 7.45              |            | 387         | 14.15      |           |
| SURPRISE_17 | Lake Profile |             | ML1       | 6/2/2003 | 9:27:35 | 56.930810 | -158.107210 | 7.44              |            | 387         |            |           |
|             | Lake Profile |             | ML1       | 6/2/2003 | 9:29:38 | 56.930550 |             | 7.38              |            | 387         |            |           |
|             | Lake Profile |             | ML1       | 6/2/2003 | 9:30:19 | 56.930477 | -158.107780 | 7.45              |            | 387         | 14.15      |           |
|             | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:33:14 | 56.930192 | -158.108528 | 7.43              |            | 387         | 14.15      |           |
| SURPRISE_21 | Lake Profile |             | ML1       | 6/2/2003 | 9:33:55 | 56.930110 | -158.108562 | 6.96              |            | 389         |            |           |
| SURPRISE_22 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:34:46 | 56.930037 | -158.108643 | 6.87              |            | 388         | 14.16      | 94.7      |
| SURPRISE_23 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:35:10 | 56.930013 | -158.108675 | 6.8               |            | 388         | 14.16      | 94.3      |
| SURPRISE_24 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:38:10 | 56.929615 | -158.108562 | 6.7               |            | 389         | 14.16      | 94        |
| SURPRISE_25 | Lake Profile |             | ML1       | 6/2/2003 | 9:40:21 | 56.929362 | -158.108757 | 6.58              |            | 391         | 14.16      |           |
| SURPRISE_26 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:41:12 | 56.929387 | -158.108838 | 6.58              |            | 391         | 14.16      | 90        |
| SURPRISE_27 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:42:22 |           |             | 6.63              |            | 390         | 14.16      | 91.5      |
| SURPRISE_28 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:42:38 | 56.929435 | -158.109050 | 6.58              |            | 398         | 14.16      | 91.7      |
| SURPRISE_29 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:42:42 | 56.929443 | -158.109050 | 6.58              |            | 397         |            |           |
| SURPRISE_30 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:43:16 | 56.929492 | -158.108935 | 6.69              |            | 389         | 14.16      | 90.2      |
| SURPRISE_31 | Lake Profile |             | ML1       | 6/2/2003 | 9:43:19 | 56.929427 | -158.109065 | 6.7               |            | 389         |            |           |
| SURPRISE_32 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:43:45 | 56.929427 | -158.109147 | 6.75              |            | 387         |            |           |
| SURPRISE_33 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:44:09 | 56.929435 | -158.109197 | 6.87              |            | 388         |            |           |
|             | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:44:27 | 56.929395 | -158.109310 | 7.28              |            | 389         |            |           |
| SURPRISE_35 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:45:09 | 56.929330 | -158.109358 | 7.45              |            | 387         | 14.16      | 95.8      |
| SURPRISE_36 | Lake Profile |             | ML1       | 6/2/2003 | 9:45:28 | 56.929345 | -158.109375 | 7.45              |            | 386         |            |           |
| SURPRISE_37 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:45:49 | 56.929353 | -158.109408 | 7.47              |            | 386         |            | 96.7      |
| SURPRISE_38 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:46:20 | 56.929345 | -158.109375 | 7.48              |            | 386         | 14.16      | 96.9      |
| SURPRISE_39 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:46:24 | 56.929338 | -158.109358 | 7.48              |            | 386         | 14.16      | 97        |
| SURPRISE_40 | Lake Profile |             | ML1       | 6/2/2003 | 9:47:02 | 56.929313 | -158.109342 | 7.45              |            | 387         |            |           |
| SURPRISE_41 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:47:40 | 56.929297 | -158.109375 | 7.45              |            | 386         |            |           |
| SURPRISE_42 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:48:14 | 56.929297 | -158.109408 | 7.5               |            | 386         |            |           |
| SURPRISE_43 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:48:51 | 56.929313 | -158.109473 | 7.49              |            | 386         | 14.16      | 97.2      |
| SURPRISE_44 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:49:20 | 56.929313 | -158.109488 | 7.49              |            | 386         | 14.16      | 97.2      |
| SURPRISE_45 | Lake Profile | Surprise M1 | ML1       | 6/2/2003 | 9:49:59 | 56.929338 | -158.109440 | 7.47              |            | 386         | 14.16      | 97.3      |

|             |           |       |      |           | Total      |
|-------------|-----------|-------|------|-----------|------------|
|             | Dissolved |       |      |           | Dissolved  |
|             | Oxygen    | Depth |      | Turbidity | Solids YSI |
| Sample      | (mg/L)    | (ft)  | рH   | YSI (NTU) |            |
| Sample      | (IIIg/L)  | (11)  | рп   | 131(110)  | (g/L)      |
|             |           |       |      |           |            |
| SURPRISE 10 | 11.7      | 6.396 | 7.32 | 8.3       | 0.251      |
| SURPRISE 11 | 11.71     | 3.221 | 7.32 | 8.3       | 0.251      |
| SURPRISE 12 | 11.71     | 9.137 | 7.31 | 8.4       | 0.251      |
| SURPRISE 13 | 11.67     | 13.21 | 7.31 | 8.3       | 0.251      |
| SURPRISE 14 | 11.65     | 14.87 | 7.31 | 8.4       | 0.252      |
| SURPRISE 15 | 11.65     | 21.3  | 7.32 | 8.2       | 0.252      |
| SURPRISE 16 | 11.65     | 25.46 | 7.31 | 8.2       | 0.252      |
| SURPRISE 17 | 11.64     | 29.08 | 7.31 | 8.4       | 0.252      |
| SURPRISE 18 | 11.67     | 34.87 | 7.32 | 8.1       | 0.252      |
| SURPRISE 19 | 11.63     | 32.25 | 7.32 | 8.1       | 0.252      |
| SURPRISE 20 | 11.52     | 41.83 | 7.29 | 8         | 0.252      |
| SURPRISE 21 | 11.52     | 45.25 | 7.17 | 7.8       | 0.252      |
| SURPRISE 22 | 11.52     | 46.93 | 7.2  | 7.0       | 0.252      |
| SURPRISE 23 | 11.49     | 50.85 | 7.19 | 7.5       | 0.252      |
| SURPRISE 24 | 11.49     | 55.18 | 7.23 | 7.6       | 0.253      |
| SURPRISE 25 | 11.49     | 60.59 | 7.23 | 25.4      | 0.254      |
| SURPRISE 26 | 11.02     | 60.38 | 7.2  | 774.9     | 0.254      |
| SURPRISE 27 | 11.2      | 56.65 | 7.23 | 10.1      | 0.253      |
| SURPRISE 28 | 11.24     | 61.48 | 7.2  | 1280.5    | 0.259      |
| SURPRISE 29 | 11.23     | 61.54 | 7.16 | 1122.3    | 0.258      |
| SURPRISE 30 | 11.02     | 54.52 | 7.21 | 8.6       | 0.253      |
| SURPRISE 31 | 11.06     | 54.22 | 7.22 | 8.3       | 0.253      |
| SURPRISE 32 | 11.21     | 49.12 | 7.26 | 7.4       | 0.251      |
| SURPRISE 33 | 11.32     | 44.9  | 7.23 | 7.3       | 0.252      |
| SURPRISE 34 | 11.28     | 40.12 | 7.21 | 8         | 0.253      |
| SURPRISE 35 | 11.48     | 35.08 | 7.33 | 7.8       | 0.251      |
| SURPRISE 36 | 11.55     | 30.37 | 7.34 | 7.7       | 0.251      |
| SURPRISE 37 | 11.59     | 25.32 | 7.35 | 7.7       | 0.251      |
| SURPRISE 38 | 11.62     | 20.32 | 7.36 | 7.7       | 0.251      |
| SURPRISE 39 | 11.62     | 20.08 | 7.36 | 7.8       | 0.251      |
| SURPRISE 40 | 11.65     | 14.62 | 7.36 | 7.7       | 0.251      |
| SURPRISE 41 | 11.64     | 12.74 | 7.36 | 7.7       | 0.251      |
| SURPRISE 42 | 11.64     | 9.146 | 7.35 | 7.8       | 0.251      |
| SURPRISE 43 | 11.64     | 6.016 | 7.36 | 7.9       | 0.251      |
| SURPRISE 44 | 11.65     | 3.087 | 7.36 | 7.9       | 0.251      |
| SURPRISE_45 | 11.66     | 0.612 | 7.37 | 7.7       | 0.251      |

| Table 1c. Core Water Quality Parameters, Aniakchak River, Aniakchak Water Quality Inventory 2003 |                                                   |                         |          |          |            |             |             |                    |  |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|----------|----------|------------|-------------|-------------|--------------------|--|--|--|
|                                                                                                  |                                                   |                         |          |          |            |             |             |                    |  |  |  |
| Sample                                                                                           | Site ID                                           | Fish Sample<br>Site No. | Date     | Time     | Latitude   | Longitude   | Temp<br>(C) | Discharge<br>(cfs) |  |  |  |
|                                                                                                  |                                                   |                         |          |          |            |             |             |                    |  |  |  |
| ANIA_DC_                                                                                         | Aniakchak river (main stem)                       | SURP 070-073            | 6/5/2003 | 14:01:00 | 56.907309  | -158.088310 |             | 222                |  |  |  |
| ania-rv_0                                                                                        | Aniakchak mainstem                                |                         | 6/5/2003 | 14:32:18 | 56.9042317 | -158.080208 | 6.55        |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem below<br>Turbid Creek          |                         | 6/5/2003 | 19:50:00 | 56.903728  | -158.051361 |             |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem below<br>Turbid Creek          |                         | 6/5/2003 | 20:00:47 | 56.9037683 | -158.051352 | 6.98        |                    |  |  |  |
| _                                                                                                | Aniakchak mainstem below                          |                         | 0.0.2000 |          |            |             | 0.00        |                    |  |  |  |
|                                                                                                  | Turbid Creek                                      |                         | 6/5/2003 | 20:02:57 | 56.9037683 | -158.051335 | 6.99        |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem                                |                         | 6/6/2003 | 12:13:14 | 56.8521233 | -157.905420 | 7.71        |                    |  |  |  |
| ania-rv_4                                                                                        | Aniakchak outwash area                            | ANIA 003                | 6/6/2003 | 20:25:41 | 56.7938883 | -157.765642 | 10.9        |                    |  |  |  |
| ania-rv_5                                                                                        |                                                   | ANIA 003                | 6/6/2003 | 20:26:51 | 56.7938883 | -157.765625 | 10.88       |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 13:09:03 | 56.7961183 | -157.650618 | 8.09        | 1225.38            |  |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 14:34:38 | 56.790958  | -157.605372 | 9.07        |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 15:07:15 | 56.771517  | -157.587533 | 9.26        |                    |  |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 15:26:58 | 56.760880  | -157.561882 | 9.36        |                    |  |  |  |
|                                                                                                  | Aniakchak Main Stem Near                          | Near LANI4              | 7/20/03  |          |            | -157.521610 |             |                    |  |  |  |
|                                                                                                  | Aniakchak Main Stem Near                          |                         | 7/20/03  |          |            |             |             |                    |  |  |  |

| Sample     | Comment                                                        | Specific<br>Conductance<br>(µS/cm) | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) | Dissolved Oxygen<br>Concentration<br>(mg/L) | Depth<br>(ft) | pН   | Turbidity<br>YSI (NTU) | Total Dissolved<br>Solids YSI (g/L) |
|------------|----------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------|---------------------------------------------|---------------|------|------------------------|-------------------------------------|
| ANIA DC    | At lake outlet, water level<br>low: T. Hamon, exposed<br>rocks |                                    |                                 |                            |                                             |               |      |                        |                                     |
| ania-rv_0  |                                                                | 301                                | 14.02                           | 100.2                      | 12.29                                       | 0.467         | 7.59 | 13.2                   | 0.196                               |
| ANIA_TUR   | Duplicate YSI reading, by                                      | 0                                  |                                 |                            |                                             |               |      |                        |                                     |
| ania-rv_1  | cut bank.                                                      | 329                                | 14.1                            | 99                         | 12.01                                       | 0.607         | 7.89 | 6                      | 0.214                               |
| ania-rv 2  | Duplicate YSI reading,<br>away from cut bank                   | 329                                | 14.1                            | 98.3                       | 11.93                                       | 0.498         | 7.91 | 5                      | 0.214                               |
| ania-rv_3  | By Garden Creek                                                | 282                                | 14.49                           | 104.6                      | 12.46                                       | 2.556         | 8.38 | 4.5                    | 0.183                               |
| ania-rv_4  | Duplicate YSI                                                  | 262                                | 14.72                           | 107                        | 11.82                                       | 1.81          | 8.38 | 2.7                    | 0.17                                |
| ania-rv_5  | Duplicate YSI                                                  | 246                                | 14.72                           | 106.1                      | 11.72                                       | 1.603         | 8.44 | 2.7                    | 0.16                                |
| ania-rv_6  | Taken between second<br>and third mouth of NF                  | 155                                |                                 | 109.8                      | 12.97                                       | 1.592         | 7.9  | 13.3                   | 0.101                               |
| ania-rv_7  |                                                                | 100                                | 14.7                            | 123.5                      | 14.24                                       | 2.008         | 7.68 | 16.8                   | 0.065                               |
| ania-rv_8  |                                                                | 129                                | 14.69                           | 117.2                      | 13.46                                       | 1.868         | 7.8  | 14.9                   | 0.084                               |
| ania-rv_9  |                                                                | 124                                | 14.72                           | 118                        | 13.52                                       | 1.908         | 7.81 | 16.3                   | 0.081                               |
| ania rv 97 | Not logged in YSI, bank<br>reading                             | 121                                |                                 | 105.5                      | 11.71                                       | 1.394         | 7.62 | 18.0                   | 0.079                               |
| ania_rv_98 | Not logged in YSI, bank                                        | 121                                |                                 | 106.1                      |                                             | 0.091         | 7.62 |                        | 0.079                               |

|              |                                                 | Fish Sample  | Cameron<br>Larson |           |          |             |              | Temp  | Discharge |
|--------------|-------------------------------------------------|--------------|-------------------|-----------|----------|-------------|--------------|-------|-----------|
| Sample       | Site ID                                         | Site No.     | ID                | Date      | Time     | Latitude    | Longitude    | (C)   | (cfs)     |
| •            |                                                 |              |                   |           |          |             |              |       |           |
| Tur_0        | Turbid creek                                    |              | T2                | 6/5/2003  | 14:24:33 | 56.90398833 | -158.080045  | 2.98  | 23.768    |
| Tur_1        | Turbid creek                                    |              | T2                | 6/5/2003  | 14:26:09 | 56.90396333 | -158.0800617 | 2.96  |           |
|              | Garden creek (small trib                        |              |                   |           |          |             |              |       |           |
| gardn-cr     | to Aniakchak)                                   |              | NA                | 6/6/2003  | 12:11:30 | 56.85208333 | -157.9054367 | 3.59  |           |
|              | Albert Johnson creek (dup                       |              |                   |           |          |             |              |       |           |
| abjcreek_0   | reading)                                        | ABJC 001     | NA                | 6/6/2003  | 19:08:17 | 56.79135667 | -157.762565  | 11.53 | 75.2      |
|              | Albert Johnson creek (dup                       |              |                   |           |          |             |              |       |           |
| abjcreek_1   | reading)                                        |              | NA                | 6/6/2003  | 19:09:13 | 56.79134167 | -157.7627433 | 11.46 |           |
|              | Albert Johnson creek(dup                        |              |                   |           |          |             |              |       |           |
| abjcreek_2   | reading)                                        |              | NA                | 6/6/2003  | 19:10:13 | 56.79134167 | -157.7626633 | 11.51 |           |
| ahiana ala 0 | Albert Johnson creek                            |              | N1.0              | 0/0/000   | 10.10.04 | 50 70004407 | 457 70040    | 47.50 |           |
| abjcreek_3   | slough                                          | ABJC 002     | NA                | 6/6/2003  | 19:16:04 | 56.79094167 | -157.76219   | 17.53 |           |
|              | Albert Johnson creek<br>headwaters (Dup reading |              |                   |           |          |             |              |       |           |
| abjcreek_4   | · · ·                                           | MESH 500     | NA                | 6/21/2003 | 15:16:45 | 56.76984833 | -157.8993167 | 8.64  | 3.022     |
|              | Albert Johnson creek                            |              |                   |           |          |             |              |       |           |
|              | headwaters (dup reading                         |              |                   |           |          |             |              |       |           |
| abjcreek_5   | <b>, , ,</b>                                    | MESH 500     | NA                | 6/21/2003 | 15:17:28 | 56.769825   | -157.8993    | 8.64  |           |
| obiorook 6   | Albert Johnson creek                            |              | ΝΙΑ               | 6/01/0000 | 47.47.40 | EC 77001000 | 157 0002002  | 10.00 | 4 270     |
| abjcreek_6   | headwaters lake system<br>Albert Johnson creek  | MESH 502-505 | NA                | 6/21/2003 | 17:17:40 | 00.11021333 | -157.8893883 | 10.09 | 4.378     |
| abjcreek_7   | headwaters lake system                          | MESH 502-505 | ΝΑ                | 6/21/2003 | 17.20.04 |             |              | 10.07 |           |
|              | Pond that flows into Albert                     | WEST 502-505 |                   | 0/21/2003 | 17.20.04 |             |              | 10.07 |           |
| POND1_0      | Johnson Creek                                   | MESH 501     | NA                | 6/21/2003 | 16:18:47 | 56.77670167 | -157.89414   | 13.93 |           |
|              | Pond that flows into Albert                     |              |                   | 5/21/2000 | 10.10.47 | 00.11010101 | 107.00414    | 10.00 |           |
| POND1 1      | Johnson Creek                                   | MESH 501     | NA                | 6/21/2003 | 16.19.37 | 56 77669333 | -157.8941083 | 13.94 |           |

| Sample     | Comment                                           | Specific<br>Conductance<br>(µS/cm) | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) | Dissolved<br>Oxygen<br>Concentration<br>(mg/L) | Depth<br>(ft) | pН   | Turbidity<br>YSI (NTU) | Total<br>Dissolved<br>Solids YSI<br>(g/L) |
|------------|---------------------------------------------------|------------------------------------|---------------------------------|----------------------------|------------------------------------------------|---------------|------|------------------------|-------------------------------------------|
|            | Discharge low & not turbid: T.                    |                                    |                                 |                            |                                                |               |      |                        |                                           |
| Tur_0      | Hamon                                             | 66                                 | 14.02                           | 101.3                      | 13.64                                          | 0.311         | 7.83 | 1.9                    | 0.043                                     |
| Tur_1      |                                                   | 67                                 | 14.03                           | 98                         | 13.21                                          | 0.333         | 7.78 | 1.5                    | 0.044                                     |
| gardn-cr   |                                                   | 66                                 | 14.48                           | 101.8                      | 13.49                                          | 1.334         | 7.81 | -0.7                   | 0.043                                     |
| abjcreek_0 |                                                   | 93                                 | 14.71                           | 118                        | 12.85                                          | 1.891         | 8.64 | 33.6                   | 0.06                                      |
| abjcreek_1 |                                                   | 95                                 | 14.71                           | 117.6                      | 12.83                                          | 3.504         | 8.64 | 0.5                    | 0.062                                     |
| abjcreek_2 |                                                   | 95                                 | 14.71                           | 117.5                      | 12.8                                           | 3.121         | 8.66 | 2.3                    | 0.061                                     |
| abjcreek_3 |                                                   | 151                                | 14.72                           | 186                        | 17.78                                          | 1.58          | 9.68 | 0.3                    | 0.098                                     |
| abjcreek_4 | Normal flow, glide<br>and cascade over<br>boulder | 63                                 | 14.54                           | 107.5                      | 12.54                                          | 0.681         | 7.67 | -0.2                   | 0.041                                     |
| abjcreek_5 |                                                   | 63                                 | 14.54                           | 107.4                      | 12.52                                          | 0.681         | 7.67 | 0                      | 0.041                                     |
| abjcreek_6 |                                                   | 60                                 | 14.59                           | 112.3                      | 12.64                                          | 2.7           | 7.48 | -0.2                   | 0.039                                     |
| abjcreek_7 |                                                   | 60                                 | 14.59                           | 111.3                      | 12.54                                          | 2.701         | 7.47 | -0.2                   | 0.039                                     |
| POND1_0    |                                                   | 56                                 | 14.59                           | 124.9                      | 12.89                                          | 0.922         | 7.81 | 17                     | 0.036                                     |
| POND1_1    |                                                   | 56                                 | 14.59                           | 124.6                      | 12.86                                          | 0.923         | 7.81 | 11.9                   | 0.036                                     |

| Sample     | Fish Sar<br>Site ID Site No.       | Cameron<br>nple Larson<br>ID | Date      | Time     | Latitude   | Longitude    | Temp<br>(C) | Discharge<br>(cfs) |
|------------|------------------------------------|------------------------------|-----------|----------|------------|--------------|-------------|--------------------|
|            | North Fork Aniakchak               |                              |           |          |            |              |             |                    |
|            | river: lab results                 | NA                           |           |          |            |              |             |                    |
|            | North Fork Aniakchak               |                              |           |          |            |              |             |                    |
| DC_ANIA_NF | River GPS reading                  |                              | 6/9/2003  | 12:02:00 | 56.802609  | -157.656669  |             |                    |
|            | North Fork Aniakchak               |                              |           |          |            |              |             |                    |
|            | river (Channel B,                  |                              |           |          |            |              |             |                    |
| ania-nf_0  | upstream fork)                     | NA                           | 6/9/2003  | 12:04:09 | 56.8024167 | -157.6567050 | 7.35        | 23.09              |
|            | North Fork Aniakchak               |                              |           |          |            |              |             |                    |
|            | river (Channel A,                  |                              |           |          |            |              |             |                    |
| ania-nf_1  | downstream fork)                   | NA                           | 6/9/2003  | 12:06:27 | 56.8024250 | -157.6566900 | 7.25        | 202.69             |
|            | First trib, downstream of          |                              |           |          |            |              |             |                    |
| ania-nf_2  | North Fork Aniakchak               | NA                           | 6/9/2003  | 12:48:11 | 56.7993817 | -157.6520017 | 8.06        | 194.48             |
|            | Below North Fork (second           |                              |           |          |            |              |             |                    |
| ania-bnf   | trib below NF)                     | NA                           | 6/9/2003  | 13:50:13 | 56.7962317 | -157.6403150 | 8.43        | 207.37             |
| LANI_0     | Lower Aniakchak river trib Near LA | NI 003                       | 7/20/2003 | 14:44:35 | 56.766660  | -157.518224  | 8.64        | <10 cfs            |
| LANI_1     | Lower Aniakchak river trib         |                              | 7/20/2003 | 14:48:18 | 56.766660  | -157.518224  | 8.65        |                    |

| Sample     | Comment                            | Specific<br>Conductance<br>(µS/cm) | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) | Dissolved<br>Oxygen<br>Concentration<br>(mg/L) | Depth<br>(ft) | рН   | Turbidity<br>YSI (NTU) | Total<br>Dissolved<br>Solids YSI<br>(g/L) |
|------------|------------------------------------|------------------------------------|---------------------------------|----------------------------|------------------------------------------------|---------------|------|------------------------|-------------------------------------------|
|            |                                    | 0                                  |                                 |                            |                                                |               |      |                        |                                           |
| DC_ANIA_NF |                                    | 0                                  |                                 |                            |                                                |               |      |                        |                                           |
| ania-nf_0  |                                    | 53                                 | 14.7                            | 109.3                      | 13.15                                          | 1.886         | 7.45 | 21.8                   | 0.034                                     |
| ania-nf_1  | Total NF<br>discharge is<br>225.78 | 53                                 | 14.69                           | 107.4                      | 12.96                                          | 1.624         | 7.42 | 15.9                   | 0.034                                     |
| ania-nf_2  |                                    | 53                                 |                                 |                            |                                                |               | 7.43 |                        | 0.035                                     |
| ania-bnf   |                                    | 54                                 | 14.74                           | 113.4                      | 13.29                                          | 1.819         | 7.36 | 18.7                   | 0.035                                     |
| LANI_0     | Spring fed, no detectable flow     | 1252                               | 14.64                           | 87.4                       | 10.15                                          | 0.728         | 6.83 | -0.4                   | 0.814                                     |
| LANI_1     |                                    | 1258                               | 14.65                           | 88.2                       | 10.24                                          | 0.729         | 6.81 | -0.5                   | 0.818                                     |

|            | Table 1e. Core Wa                            | ater Quality P             | arameters, N | leshik Drai | inage, Aniakchak | Water Quality Ir | ventor | y 2003             |                                                    |
|------------|----------------------------------------------|----------------------------|--------------|-------------|------------------|------------------|--------|--------------------|----------------------------------------------------|
| Sample     | Site ID                                      | Fish<br>Sample<br>Site No. | Date         | Time        | Latitude         | Longitude        | (C) .  | Discharge<br>(cfs) | Comment                                            |
| mestr1_0   | Small Meshik Lake tributary                  | MESH 100                   | 6/18/2003    | 9:09:27     | 56.785507        | -157.915185      |        | <10                |                                                    |
| mestr1_1   | Small Meshik Lake tributary                  | MESH 100                   | 6/18/2003    | 9:10:38     | 56.785188        | -157.915170      | 5.74   | ,                  |                                                    |
| meshlk_0   | Meshik Lake                                  | MESH 103                   | 6/18/2003    | 9:59:55     |                  | -157.917952      | 12.1   |                    | Lake level: low<br>normal/normal                   |
|            | Meshik Lake                                  |                            | 6/19/2003    | 9:21:00     |                  | -157.930981      |        |                    |                                                    |
| meshlk_1   | Meshik Lake Profile (Surface)                |                            | 6/19/2003    | 9:22:37     |                  | -157.930778      |        |                    |                                                    |
| meshlk_2   | Meshik Lake Profile (bottom)                 |                            | 6/19/2003    | 9:25:19     |                  | -157.930583      |        |                    |                                                    |
|            | Meshik Lake Profile (Surface)                |                            | 6/19/2003    | 9:26:42     | 56.789250        | -157.930583      |        |                    |                                                    |
|            | Meshik Lake Profile (Surface)                |                            | 6/19/2003    | 9:27:29     |                  | -157.930533      |        |                    |                                                    |
| meshlk_5   | Meshik Lake Profile (bottom)                 |                            | 6/19/2003    | 9:28:28     |                  | -157.930533      |        |                    |                                                    |
| meshlk_6   | Meshik Lake                                  |                            | 6/24/2003    | 10:27:31    | 56.785507        | -157.929980      | 9.58   |                    |                                                    |
|            |                                              |                            |              |             |                  |                  |        |                    | Lab sample taken following ~ 30 hrs                |
| meshlk_7   | Meshik Lake                                  |                            | 6/24/2003    |             |                  | -157.929980      |        |                    | of rain                                            |
| meshrv_0   | Meshik River                                 | MESH 209                   | 6/18/2003    |             |                  | -157.939942      | 13.12  |                    |                                                    |
| meshrv_1   | Meshik River                                 | MESH 209                   | 6/18/2003    | 13:33:44    | 56.788533        | -157.939942      | 13.14  | 10.096             |                                                    |
| meshrv_2   | Meshik River Backwater                       | MESH 213                   | 6/20/2003    | 9:44:17     | 56.789608        | -157.945427      | 5.48   |                    | side<br>slough/backwater                           |
| meshrv_3   | Meshik River (Duplicate location with YSI 4) |                            | 6/20/2003    | 12:56:15    | 56.788663        | -157.951773      | 7.69   |                    | Discharge taken<br>after confluence<br>with Trib 1 |
| meshrv_4   | Meshik River (Duplicate location with YSI 3) | MESH 403                   | 6/20/2003    | 12:58:02    | 56.788663        | -157.951773      | 7.38   | 23.057             |                                                    |
| mesrvtr1_0 | Meshik River tribuary                        |                            | 6/20/2003    | 10:20:37    | 56.790348        | -157.950993      | 6.38   |                    |                                                    |
|            | Meshik River tribuary                        |                            | 6/20/2003    |             |                  | -157.950960      |        |                    |                                                    |
| mestr1_2   | Meshik River tribuary                        | MESH 404                   | 6/20/2003    | 13:48:46    | 56.789117        | -157.950553      | 6.85   | 21.283             |                                                    |
| montr1 2   | Machik Divor tribuary                        | MESH 406                   | 6/20/2002    | 14.00.40    | 56.789883        | 157 051900       | 7.73   |                    | Slough/Oxbow;<br>standing water off                |
| mestr1_3   | Meshik River tribuary                        |                            | 6/20/2003    | 14.22.10    | 00.709003        | -157.951823      | 1.13   |                    | Meshik Trib 1                                      |

|            |             |            |           | Dissolved     |       |      |           | Total     |
|------------|-------------|------------|-----------|---------------|-------|------|-----------|-----------|
|            | Specific    | Barometric | Dissolved | Oxygen        |       |      | Turbidity | Dissolved |
|            | Conductance | Pressure   | Oxygen    | Concentration | Depth |      | YSI (NTU) |           |
| Sample     | (µS/cm)     | (psi)      | (%)       | (mg/L)        | (ft)  | pН   | 101(110)  | YSI (g/L) |
| mestr1 0   | 72          | 14.4       |           | 9.16          |       | 7.31 | 1.1       | 0.047     |
| mestr1 1   | 72          | 14.4       | 66.8      | 8.36          | 1.07  | 6.84 | 0.8       | 0.047     |
|            | 89          |            |           |               |       | 0.01 |           | 0.0       |
| meshlk 0   |             | 14.4       | 106.6     | 11.46         | 0.087 | 7.87 | 5.6       | 0.058     |
| meshlk 99  | 0           |            |           |               |       |      |           |           |
| meshlk 1   | 89          | 14.53      | 100.6     | 10.81         | 0.49  | 7.72 | 12.1      | 0.058     |
| meshlk_2   | 89          | 14.52      | 100.6     | 10.78         | 2.547 | 7.45 | 2.1       | 0.058     |
| meshlk_3   | 89          | 14.52      | 100.4     | 10.78         | 0.726 | 7.61 | 46.7      | 0.058     |
| meshlk_4   | 89          | 14.52      | 100.5     | 10.8          | 0.724 | 7.7  | 30.2      | 0.058     |
| meshlk_5   | 89          | 14.53      | 100.2     | 10.77         | 2.345 | 7.72 | 2589.1    | 0.058     |
| meshlk_6   | 81          | 14.36      | 109.8     | 12.51         | 1.039 | 7.69 | 41.8      | 0.053     |
|            | 81          |            |           |               |       |      |           |           |
| meshlk_7   |             | 14.36      |           | 12.51         | 0.809 | 7.69 | 46.5      | 0.053     |
| meshrv_0   | 90          | 14.43      | 112.2     | 11.79         | 0.169 | 8.03 | 4.3       | 0.059     |
| meshrv_1   | 91          | 14.43      | 111.8     | 11.75         | -0.07 | 7.99 | 5.9       | 0.059     |
|            | 226         |            |           |               |       |      |           |           |
| meshrv_2   |             | 14.51      | 22        | 2.77          | 2.371 | 7.69 | 1083      | 0.147     |
|            | 69          |            |           |               |       |      |           |           |
| meshrv_3   |             | 14.5       | 109.4     | 13.05         | 0.315 | 7.68 | 0.9       | 0.045     |
| meshrv 4   | 67          | 14.5       | 109.3     | 13.14         | 1.802 | 7.69 | 1.4       | 0.044     |
|            | 65          |            | 100.0     | 10.14         | 1.002 | 7.00 | 1.4       | 0.044     |
| mesrvtr1_0 |             | 14.5       | 109.4     | 13.49         | 0.14  | 7.61 | 0.4       | 0.042     |
|            | 65          |            |           |               |       |      |           |           |
| mesrvtr1_1 |             | 14.5       | 107.4     | 13.24         | 0.193 | 7.62 | 0.4       | 0.042     |
| mestr1_2   | 64          | 14.5       | 109.1     | 13.29         | 0.098 | 7.73 | 0.4       | 0.042     |
|            | 63          |            |           |               |       |      |           |           |
| mestr1_3   |             | 14.5       | 113.7     | 13.56         | 0.093 | 8.36 | 658.1     | 0.041     |

|                          | Table                    | 1f. Core Water Q                        | uality F | Parameters, Coa | stal Streams,        | Aniakchak Wate         | r Quality Inventor       | y 2003              |                                                       |                                                |
|--------------------------|--------------------------|-----------------------------------------|----------|-----------------|----------------------|------------------------|--------------------------|---------------------|-------------------------------------------------------|------------------------------------------------|
|                          |                          |                                         |          |                 |                      |                        |                          |                     |                                                       |                                                |
| Sample<br>IRIS-CRK_0     | Site ID<br>Iris creek    | Fish Sample<br>Site No.                 | Date     | Time            | 16:12:36             | Latitude<br>56.766919  | Longitude<br>-157.462005 | Temp<br>(C)<br>20.1 | Discharge<br>(cfs)                                    | Comment                                        |
|                          |                          |                                         |          |                 |                      |                        |                          |                     |                                                       | GPS not recorded on                            |
| IRIS-CRK_1               |                          | Betweeen IRIS                           |          | 7/15/2003       | 16:13:41             | 56.766919              |                          |                     |                                                       | YSI<br>tidally<br>influenced<br>(jelly fish on |
| IRIS-CRK_2<br>IRIS-CRK_3 | Iris creek<br>Iris creek | 015 & 016<br>Betweeen IRIS<br>015 & 016 |          | 7/15/2003       | 17:47:29<br>17:49:21 | 56.763080<br>56.763080 |                          |                     |                                                       | bank.)                                         |
| IRIS-CRK_4               | Iris creek               | Between IRIS<br>002 & 003               |          | 7/18/2003       | 13:03:42             | 56.772130              | -157.462830              | 10.01               | GPS reading<br>from field<br>notes                    | overbank flow,<br>fast and turbid              |
| IRIS-CRK_5               | Iris creek               | Between IRIS<br>002 & 003               |          | 7/18/2003       | 13:05:19             | 56.772130              | -157.462830              | 10.01               |                                                       |                                                |
| IRIS-CRK_6               | Willow creek             | Near Willow 001                         |          | 7/18/2003       | 15:04:04             | 56.801680              | -157.443837              | 13.12               | est. 10-15 cfs;<br>GPS reading<br>from field<br>notes | clear, brown<br>water, over<br>bank flow       |
| IRIS-CRK 7               | Willow creek             |                                         |          | 7/18/2003       | 15:07:16             | 56.801680              | -157.443837              | 13.15               | est: 40 cfs;<br>GPS not<br>recorded on<br>YSI         |                                                |
|                          | Packer's cabin creek     |                                         |          | 7/20/2003       | 16:52:51             | 00.001000              | - 107.140007             |                     | <1 cfs                                                | cabin drinking water supply                    |
| PACK-CRK_1               | Packer's cabin creek     |                                         |          | 7/20/2003       | 16:53:48             |                        |                          | 7.01                |                                                       |                                                |

| Table                | 1                                |                       |                                 |                            |                               |               |      |                        |                                           |
|----------------------|----------------------------------|-----------------------|---------------------------------|----------------------------|-------------------------------|---------------|------|------------------------|-------------------------------------------|
|                      |                                  |                       |                                 |                            |                               |               |      |                        |                                           |
| Site ID              | Specific<br>Conductance<br>µS/cm | Conductivity<br>µS/cm | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) | Dissolved<br>Oxygen<br>(mg/L) | Depth<br>(ft) | рH   | Turbidity<br>YSI (NTU) | Total<br>Dissolved<br>Solids YSI<br>(g/L) |
| Iris creek           | 83                               |                       |                                 | 123.9                      |                               |               | 8.03 | 0.8                    |                                           |
| Iris creek           | 83                               | 76                    |                                 |                            |                               |               | 8.04 |                        |                                           |
| Iris creek           | 91                               | 85                    | 14.73                           | 130.7                      | 11.55                         | -0.13         | 8.03 | 2.6                    | 0.059                                     |
| Iris creek           | 87                               | 81                    | 14.72                           | 126.1                      | 11.21                         | 0.972         | 8.11 | 0.8                    | 0.057                                     |
| Iris creek           | 65                               | 46                    | 14.67                           | 223.8                      | 25.26                         | 0.13          | 7.47 | 39                     | 0.042                                     |
| Iris creek           | 65                               | 46                    | 14.68                           | 228.8                      | 25.82                         | 0.612         | 7.39 | 39.9                   | 0.042                                     |
| Willow creek         | 76                               | 58                    | 14.73                           | 772.9                      | 81.21                         | 0.479         | 6.94 | 11.4                   | 0.049                                     |
| Willow creek         | 76                               | 59                    | 14.73                           | 776                        | 81.48                         | 0.106         | 6.87 | 24.9                   | 0.049                                     |
| Packer's cabin creek | 119                              | 78                    | 14.61                           | 101.4                      | 12.3                          | 0.557         | 7.6  | 5.5                    | 0.077                                     |
| Packer's cabin creek | 119                              | 78                    | 14.62                           | 102.1                      | 12.39                         | 0.108         | 7.56 | 3.9                    | 0.077                                     |

| Table 1c. Core Water Quality Parameters, Aniakchak River, Aniakchak Water Quality Inventory 2003 |                                                   |                         |          |          |            |             |             |                    |  |  |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------|----------|----------|------------|-------------|-------------|--------------------|--|--|
|                                                                                                  |                                                   |                         |          |          |            |             |             |                    |  |  |
| Sample                                                                                           | Site ID                                           | Fish Sample<br>Site No. | Date     | Time     | Latitude   | Longitude   | Temp<br>(C) | Discharge<br>(cfs) |  |  |
|                                                                                                  |                                                   |                         |          |          |            |             |             |                    |  |  |
|                                                                                                  | Aniakchak river (main stem)                       | SURP 070-073            | 6/5/2003 | 14:01:00 | 56.907309  | -158.088310 |             | 222                |  |  |
| ania-rv_0                                                                                        | Aniakchak mainstem                                |                         | 6/5/2003 | 14:32:18 | 56.9042317 | -158.080208 | 6.55        |                    |  |  |
|                                                                                                  | Aniakchak mainstem below<br>Turbid Creek          |                         | 6/5/2003 | 19:50:00 | 56.903728  | -158.051361 |             |                    |  |  |
|                                                                                                  | Aniakchak mainstem below<br>Turbid Creek          |                         | 6/5/2003 | 20:00:47 | 56.9037683 | -158.051352 | 6.98        |                    |  |  |
|                                                                                                  | Aniakchak mainstem below                          |                         |          |          |            |             |             |                    |  |  |
| ania-rv 2                                                                                        | Turbid Creek                                      |                         | 6/5/2003 | 20:02:57 | 56.9037683 | -158.051335 | 6.99        |                    |  |  |
| ania-rv_3                                                                                        | Aniakchak mainstem                                |                         | 6/6/2003 | 12:13:14 | 56.8521233 | -157.905420 | 7.71        |                    |  |  |
| ania-rv_4                                                                                        | Aniakchak outwash area                            | ANIA 003                | 6/6/2003 | 20:25:41 | 56.7938883 | -157.765642 | 10.9        |                    |  |  |
| ania-rv_5                                                                                        |                                                   | ANIA 003                | 6/6/2003 | 20:26:51 | 56.7938883 | -157.765625 | 10.88       |                    |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 13:09:03 | 56.7961183 | -157.650618 | 8.09        | 1225.38            |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 14:34:38 | 56.790958  | -157.605372 | 9.07        |                    |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 15:07:15 | 56.771517  | -157.587533 | 9.26        |                    |  |  |
|                                                                                                  | Aniakchak mainstem below second mouth, North Fork |                         | 6/9/2003 | 15:26:58 | 56.760880  | -157.561882 | 9.36        |                    |  |  |
|                                                                                                  | Aniakchak Main Stem Near<br>Mouth                 | Near LANI4              | 7/20/03  | 19:27:48 | 56.766530  | -157.521610 | 10.70       |                    |  |  |
|                                                                                                  | Aniakchak Main Stem Near                          |                         | 7/20/03  |          |            |             |             |                    |  |  |

| Sample     | Comment                                                        | Specific<br>Conductance<br>(µS/cm) | Barometric<br>Pressure<br>(psi) | Dissolved<br>Oxygen<br>(%) | Dissolved Oxygen<br>Concentration<br>(mg/L) | Depth<br>(ft) | pН   | Turbidity<br>YSI (NTU) | Total Dissolved<br>Solids YSI (g/L) |
|------------|----------------------------------------------------------------|------------------------------------|---------------------------------|----------------------------|---------------------------------------------|---------------|------|------------------------|-------------------------------------|
| ANIA DC    | At lake outlet, water level<br>low: T. Hamon, exposed<br>rocks |                                    |                                 |                            |                                             |               |      |                        |                                     |
| ania-rv_0  |                                                                | 301                                | 14.02                           | 100.2                      | 12.29                                       | 0.467         | 7.59 | 13.2                   | 0.196                               |
| ANIA_TUR   | Duplicate YSI reading, by                                      | 0                                  |                                 |                            |                                             |               |      |                        |                                     |
| ania-rv_1  | cut bank.                                                      | 329                                | 14.1                            | 99                         | 12.01                                       | 0.607         | 7.89 | 6                      | 0.214                               |
| ania-rv 2  | Duplicate YSI reading,<br>away from cut bank                   | 329                                | 14.1                            | 98.3                       | 11.93                                       | 0.498         | 7.91 | 5                      | 0.214                               |
| ania-rv_3  | By Garden Creek                                                | 282                                | 14.49                           | 104.6                      | 12.46                                       | 2.556         | 8.38 | 4.5                    | 0.183                               |
| ania-rv_4  | Duplicate YSI                                                  | 262                                | 14.72                           | 107                        | 11.82                                       | 1.81          | 8.38 | 2.7                    | 0.17                                |
| ania-rv_5  | Duplicate YSI                                                  | 246                                | 14.72                           | 106.1                      | 11.72                                       | 1.603         | 8.44 | 2.7                    | 0.16                                |
| ania-rv_6  | Taken between second<br>and third mouth of NF                  | 155                                |                                 | 109.8                      | 12.97                                       | 1.592         | 7.9  | 13.3                   | 0.101                               |
| ania-rv_7  |                                                                | 100                                | 14.7                            | 123.5                      | 14.24                                       | 2.008         | 7.68 | 16.8                   | 0.065                               |
| ania-rv_8  |                                                                | 129                                | 14.69                           | 117.2                      | 13.46                                       | 1.868         | 7.8  | 14.9                   | 0.084                               |
| ania-rv_9  |                                                                | 124                                | 14.72                           | 118                        | 13.52                                       | 1.908         | 7.81 | 16.3                   | 0.081                               |
| ania rv 97 | Not logged in YSI, bank<br>reading                             | 121                                |                                 | 105.5                      | 11.71                                       | 1.394         | 7.62 | 18.0                   | 0.079                               |
| ania_rv_98 | Not logged in YSI, bank                                        | 121                                |                                 | 106.1                      |                                             | 0.091         | 7.62 |                        | 0.079                               |

## Literature Cited

- APHA (American Public Health Association), American Water Works Association, and Water Environment Federation. 1992. Standard methods for the examination of water and wastewater, 18<sup>th</sup> edition. APHA, Washington, D. C.
- Beget, J., O. Mason, and P. Anderson. 1992. Age, extent and climatic significance of the c. 3400 BP Aniakchak tephra, western Alaska, USA. The Holocene 2 (1):51-56.
- Cameron, W. A., and G. L. Larson. 1992. Baseline inventory of the aquatic resources of Aniakchak National Monument, Alaska Technical Report NPS/PNROSU/NRTR-92/03: National Park Service, Pacific Northwest Region.
- Cameron, W.A., and G. L. Larson. 1993. Limnology of a caldera lake influenced by hydrothermal processes. Archiv fur Hydrobiologie 128(1):13-38.
- Environmental Protection Agency (EPA). 1986. Quality criteria for water 1986. EPA 440/5-86-001.
- Environmental Protection Agency (EPA). 2002. National recommended water quality criteria: 2002. EPA 440/5-86-001.
- Flora, M. D., T. E. Ricketts, J. Wilson and S. Kunkle. 1984. Water quality criteria: an overview for park natural resource specialists. WRFSL Report No. 84-4. Water Resources Field Support Laboratory, NPS, Fort Collins, Co.
- Freshwater Workgroup Subcommittee. 2002. Recommendations for core water quality monitoring parameters and other key elements of the NPS Vital Signs Program water quality component. National Park Service, Water Resources Division. Unpublished.
- Hamon, Troy 2001. Population status, local adaptation, and gene flow in Surprise Lake sockeye salmon: an ecological and evolutionary study of colonization and succession in Aniakchak National Monument and Preserve. Resource management technical report KATM-NR-01-01. King Salmon, AK. 21 pp.

Jaggar, T.A. 1932. Aleutian eruptions 1930-32. The Volcano Letter 375:1-4.

Mahoney, Barbara A., and G. M. Sonnevil. 1991. Surprise Lake and Aniakchak River fishery investigation, Aniakchak National Monument and Preserve, Alaska, 1987 and 1988 final report. U.S. Fish and Wildlife Service, Alaska. Alaska Fisheries Technical Report Number 12, King Salmon, Alaska.

- McCullough, D. A. 1999. A Review and synthesis of effects of alterations to the water temperature regime on freshwater life stages of salmonids, with special reference to Chinook salmon. Seattle, Wash. : U.S. Environmental Protection Agency, Region 10.
- McGimsey, R.G., C. F. Waythomas, and C. A. Neal. 1994. High stand and catastrophic draining of intracaldera Surprise Lake, Aniakchak Volcano, Alaska, in Till, A. B. and T. E. Moore, eds. Geologic studies in Alaska by the U. S. Geological Survey, 1993: U.S. Geological Survey Bulletin 2107, p. 59-71.
- Miller, J. L. and J Markis. 2004. Freshwater Fish Inventory of Aniakchak National Monument and Preserve, Southwest Alaska Inventory and Monitoring Network. National Park Service. Anchorage, AK. 55pg
- Miller, T. P., and R. L. Smith. 1977. Spectacular mobility of ash flows around Aniakchak and Fisher Calderas, Alaska. Geology 5:434-438.
- National Park Service. 2002. Water Quality, sediment quality and aquatic biology Vital Signs Monitoring under the Natural Resource Challenge Long-Term Water Quality Monitoring Program, part C draft guidance on WRD required and other field parameter measurements, general monitoring methods, and some design considerations in preparation of a detailed study plan. http://www.nature.nps.gov/im/monitor/wqPartC.doc
- Rantz, S. E. 1982. Measurements and Computations of streamflow. Volume 1: Meaurements of stage and discharge. U. S. Geological Survey Water Supply Paper #2175.
- Riehle, J. R., C. E. Meyer, T. A. Ager, D. S. Kaufman, and R. E. Ackerman.
  1987. The Aniakchak tephra deposit, a late Holocene marker horizon in Western Alaska. US Geol. Survey Circular 998:9-22.
- Schindler, D. W. 1988. Effects of acid rain on freshwater ecosystems. Science 239:149-157.
- Shelton, L.R. 1994 Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program. U.S. Geological Survey Open-File Report 94-455.
- Suchanek, P. M., R. P. Marshall, S. S. Hale, and D. C. Schmidt. 1984. Juvenile salmon rearing suitability criteria, report 2, part 3. Alaska Department of Fish and Game, Susitna Hydro Aquatic Studies, Anchorage.

- USGS (U.S. Geological Survey). 1997 to present, National field manual for the collection of water-quality data: U.S. Geological Survey Techniques of Water-Resources Investigations, book 9, chaps. A1-A9, 2 v., variously paged. Accessed 2/20/03 at http://pubs.water.usgs.gov/twri9A1.
- Wagner, T. A., and S. H. Lanigan. 1988. Survey of Fisheries Resources in the Meshik River Drainage, AK. Alaska Fisheries Technical Report Number 1.
- Waythomas, C. F., J. S. Walder, R. G. McGimsey, and C. A. Neal. 1996. A catastrophic flood caused by drainage of a caldera lake at Aniakchak Volcano, Alaska, and implications for volcanic hazards assessment. GSA Bulletin 108; no 7, p 861-871.